Science.gov

Sample records for complex formation constants

  1. Formation constants of neodymium acetate complexes at elevated temperatures by laser-induced photoacoustic spectroscopy

    SciTech Connect

    Wruck, D.A.; Kadkhodayan, B.; Palmer, C.E.A.; Silva, R.J.

    1995-12-01

    Chemical thermodynamic data on the formation of solution complexes by radionuclides as a function of temperature are needed for performance assessment studies of proposed radioactive waste repositories. Optical absorption spectroscopy is a preferred method for the measurement of complexation constants in aqueous solutions. Because many of radionuclides of interest, e.g., actinides, must be studied at very low solution concentrations, a system of high sensitivity is required. Therefore, a photoacoustic spectrometer has been developed for high sensitivity optical absorption measurements of aqueous solutions at elevated temperatures. The light source is a Nd: YAG-pumped dye laser system. The photoacoustic signal generated in the sample solution is detected with a piezoelectric transducer coupled to the thermostatted sample cell. The spectrometer has been tested by applying it to the determination of the formation constants of Nd(III) acetate complexes. The formation constants are reported for the temperature range 20 to 70{degrees}C; and are compared to measurements by spectrophotometry and calorimetry.

  2. Formation constants of copper(i) complexes with cysteine, penicillamine and glutathione: implications for copper speciation in the human eye.

    PubMed

    Königsberger, Lan-Chi; Königsberger, Erich; Hefter, Glenn; May, Peter M

    2015-12-21

    Protonation constants for the biologically-important thioamino acids cysteine (CSH), penicillamine (PSH) and glutathione (GSH), and the formation constants of their complexes with Cu(i), have been measured at 25 °C and an ionic strength of 1.00 mol dm(-3) (Na)Cl using glass electrode potentiometry. The first successful characterisation of binary Cu(i)-CSH and Cu(i)-GSH species over the whole pH range was achieved in this study by the addition of a second thioamino acid, which prevented the precipitation that normally occurs. Appropriate combinations of binary and ternary (mixed ligand) titration data were used to optimise the speciation models and formation constants for the binary species. The results obtained differ significantly from literature data with respect to the detection and quantification of protonated and polynuclear complexes. The present results are thought to be more reliable because of the exceptionally wide pH and concentration ranges employed, the excellent reproducibility of the data, the close agreement between the calculated and observed formation functions, and the low standard deviations and absence of numerical correlation in the constants. The present formation constants were incorporated into a large Cu speciation model which was used to predict, for the first time, metal-ligand equilibria in the biofluids of the human eye. This simulation provided an explanation for the precipitation of metallic copper in lens and cornea, which is known to occur as a consequence of Wilson's disease. PMID:26505238

  3. Dynamic titration: determination of dissociation constants for noncovalent complexes in multiplexed format using HPLC-ESI-MS.

    PubMed

    Frycák, Petr; Schug, Kevin A

    2008-03-01

    With recent growth in fields such as life sciences and supramolecular chemistry, there has been an ever increasing need for high-throughput methods that would permit determination of binding affinities for noncovalent complexes of various host-guest systems. These are traditionally measured by titration experiments where concentration-dependent signals of species participating in solution-based binding equilibria are monitored by methods such as UV-vis spectrophotometry, calorimetry, or nuclear magnetic resonance spectrometry. Here we present a new titration technique that unifies and allows chromatographic separation of guests with determination of dissociation constants by electrospray mass spectrometry in a multiplexed format. A theoretical model has been derived that describes the complex formation for the guests eluted from a chromatographic column when hosts are admixed postcolumn. The model takes possible competition equilibria into account; i.e., it can deal with unresolved peaks of guests with the possible addition of multiple hosts in one experiment. This on-line workflow makes determination of binding affinities for large libraries of compounds possible. The potential of the method is demonstrated on the determination of dissociation constants for complexes of beta- and gamma-cyclodextrins with nonsteroidal antiinflammatory drugs ibuprofen, naproxen, and flurbiprofen. PMID:18237190

  4. How the cosmological constant affects gravastar formation

    SciTech Connect

    Chan, R.; Silva, M.F.A. da; Rocha, P. E-mail: mfasnic@gmail.com

    2009-12-01

    Here we generalized a previous model of gravastar consisted of an internal de Sitter spacetime, a dynamical infinitely thin shell with an equation of state, but now we consider an external de Sitter-Schwarzschild spacetime. We have shown explicitly that the final output can be a black hole, a ''bounded excursion'' stable gravastar, a stable gravastar, or a de Sitter spacetime, depending on the total mass of the system, the cosmological constants, the equation of state of the thin shell and the initial position of the dynamical shell. We have found that the exterior cosmological constant imposes a limit to the gravastar formation, i.e., the exterior cosmological constant must be smaller than the interior cosmological constant. Besides, we have also shown that, in the particular case where the Schwarzschild mass vanishes, no stable gravastar can be formed, but we still have formation of black hole.

  5. Bacterial formate hydrogenlyase complex

    PubMed Central

    McDowall, Jennifer S.; Murphy, Bonnie J.; Haumann, Michael; Palmer, Tracy; Armstrong, Fraser A.; Sargent, Frank

    2014-01-01

    Under anaerobic conditions, Escherichia coli can carry out a mixed-acid fermentation that ultimately produces molecular hydrogen. The enzyme directly responsible for hydrogen production is the membrane-bound formate hydrogenlyase (FHL) complex, which links formate oxidation to proton reduction and has evolutionary links to Complex I, the NADH:quinone oxidoreductase. Although the genetics, maturation, and some biochemistry of FHL are understood, the protein complex has never been isolated in an intact form to allow biochemical analysis. In this work, genetic tools are reported that allow the facile isolation of FHL in a single chromatographic step. The core complex is shown to comprise HycE (a [NiFe] hydrogenase component termed Hyd-3), FdhF (the molybdenum-dependent formate dehydrogenase-H), and three iron-sulfur proteins: HycB, HycF, and HycG. A proportion of this core complex remains associated with HycC and HycD, which are polytopic integral membrane proteins believed to anchor the core complex to the cytoplasmic side of the membrane. As isolated, the FHL complex retains formate hydrogenlyase activity in vitro. Protein film electrochemistry experiments on Hyd-3 demonstrate that it has a unique ability among [NiFe] hydrogenases to catalyze production of H2 even at high partial pressures of H2. Understanding and harnessing the activity of the FHL complex is critical to advancing future biohydrogen research efforts. PMID:25157147

  6. Thiocyanato Chromium (III) Complexes: Separation by Paper Electrophoresis and Estimate of Stability Constants

    ERIC Educational Resources Information Center

    Larsen, Erik; Eriksen, J.

    1975-01-01

    Describes an experiment wherein the student can demonstrate the existence of all the thiocyanato chromium complexes, estimate the stepwise formation constants, demonstrate the robustness of chromium III complexes, and show the principles of paper electrophoresis. (GS)

  7. Predicting Stability Constants for Uranyl Complexes Using Density Functional Theory

    DOE PAGESBeta

    Vukovic, Sinisa; Hay, Benjamin P.; Bryantsev, Vyacheslav S.

    2015-04-02

    The ability to predict the equilibrium constants for the formation of 1:1 uranyl:ligand complexes (log K1 values) provides the essential foundation for the rational design of ligands with enhanced uranyl affinity and selectivity. We also use density functional theory (B3LYP) and the IEFPCM continuum solvation model to compute aqueous stability constants for UO22+ complexes with 18 donor ligands. Theoretical calculations permit reasonably good estimates of relative binding strengths, while the absolute log K1 values are significantly overestimated. Accurate predictions of the absolute log K1 values (root mean square deviation from experiment 1 values ranging from 0more »to 16.8) can be obtained by fitting the experimental data for two groups of mono and divalent negative oxygen donor ligands. The utility of correlations is demonstrated for amidoxime and imide dioxime ligands, providing a useful means of screening for new ligands with strong chelate capability to uranyl.« less

  8. Predicting stability constants for uranyl complexes using density functional theory.

    PubMed

    Vukovic, Sinisa; Hay, Benjamin P; Bryantsev, Vyacheslav S

    2015-04-20

    The ability to predict the equilibrium constants for the formation of 1:1 uranyl/ligand complexes (log K1 values) provides the essential foundation for the rational design of ligands with enhanced uranyl affinity and selectivity. We use density functional theory (B3LYP) and the integral equation formalism polarizable continuum model (IEF-PCM) to compute aqueous stability constants for UO2(2+) complexes with 18 donor ligands. Theoretical calculations permit reasonably good estimates of relative binding strengths, while the absolute log K1 values are significantly overestimated. Accurate predictions of the absolute log K1 values (root-mean-square deviation from experiment <1.0 for log K1 values ranging from 0 to 16.8) can be obtained by fitting the experimental data for two groups of mono- and divalent negative oxygen donor ligands. The utility of correlations is demonstrated for amidoxime and imide dioxime ligands, providing a useful means of screening for new ligands with strong chelating capability to uranyl. PMID:25835578

  9. Determination of formation constants at elevated temperatures by laser-induced photoacoustic spectroscopy

    SciTech Connect

    Wruck, D.A.; Kadkhodayan, B.; Russo, R.E.

    1994-12-31

    A photoacoustic spectrometer has been developed for high-sensitivity optical absorption measurements of aqueous solutions at temperatures from ambient to 90 C. The light source is a Nd:YAG-pumped dye laser, and the photoacoustic signal is detected with a piezoelectric transducer coupled to a thermostatted quartz cell. The temperature dependence of the observed photoacoustic signal is compared to a theoretical model, and the application of the instrument to the determination of formation constants of metal-ligand complexes at elevated temperatures is discussed. Measurements of the temperature dependence of the formation constant for AmCO{sub 3}{sup +} are reported.

  10. Stability constants of europium complexes with a nitrogen heterocycle substituted methane-1,1-diphosphonic acid

    SciTech Connect

    Jensen, M.P.; Rickert, P.G.; Schmidt, M.A.; Nash, K.L.

    1996-06-01

    Even in moderately acidic solutions ([H{sup +}] > 0.01 M), N-piperidinomethane-1,1-diphosphonic acid (H{sub 4}PMDPA) is a strong complexant of trivalent lanthanide ions that shows enhanced complex solubility over previously studied 1,1-diphosphonic acids. The protonation constants of PMDPA in 2.0 M H/NaClO{sub 4} were determined by potentiometric and NMR titrations, and the stability constants for formation of complexes with Eu{sup 3+} were determined by solvent extraction. Difference in protonation equilibria induced by addition of the nitrogen heterocycle results in an increase in the complexation strength of PMDPA. In solutions containing 0.1 M H{sup +} and ligand concentrations greater than 0.02 M, PMDPA is the most effective 1,1-diphosphonic acid for europium complexation studied thus far.

  11. Determination of the Formation Constants of Ternary Complexes of Uranyl and Carbonate with Alkaline Earth Metals (Mg2+, Ca2+, Sr2+, and Ba2+) Using Anion Exchange Method

    SciTech Connect

    Brooks, Scott C; Dong, Wenming

    2006-01-01

    The formation constants of ternary complexes (MUO2(CO3)32- and M2UO2(CO3)30) of uranyl and carbonate with alkaline earth metals (M2+ denotes Mg2+, Ca2+, Sr2+, and Ba2+) were determined with an anion exchange method by varying the metal concentrations (0.1-5 mmol/L) at pH 8.1 and a constant ionic strength (0.1 mol/L NaNO3) under equilibrium with atmospheric CO2. The results indicate that the complexes of MUO2(CO3)32- and M2UO2(CO3)3 are simultaneously formed for Ca2+ and Ba2+, while Mg2+ and Sr2+ form only the MUO2(CO3)32- complex under our experimental conditions. The cumulative stability constants for the MUO2(CO3)32- complex obtained at I = 0 are: log 113 = 26.11 b 0.04, 27.18 b 0.06, 26.86 b 0.04, and 26.68 b 0.04 for Mg2+, Ca2+, Sr2+ and Ba2+, respectively. For M2UO2(CO3)30 the value of log 213 at I = 0 was measured to be 30.70 b 0.05 and 29.75 0.07 for Ca2+ and Ba2+, respectively. Based on the formation constants obtained in this study, speciation calculations indicate that at low Ca2+ concentration (e.g., < 2.2 mmol/L) CaUO2(CO3)32- is more important than Ca2UO2(CO3)3 and that the Ca2UO2(CO3)3 distribution increased with increasing Ca2+ concentration. Uranium sorption onto anion exchange resins is inhibited by the formation of the neutral Ca2UO2(CO3)30 species.

  12. Spectrophotometric Determination of Iron(III)-Glycine Formation Constant in Aqueous Medium Using Competitive Ligand Binding

    ERIC Educational Resources Information Center

    Prasad, Rajendra; Prasad, Surendra

    2009-01-01

    The formation constant of iron(III) complex with glycine (Gly) ligand in aqueous acidic medium (0.2 M HNO[subscript 3], I = 0.2 M at 28 plus or minus 1 degree C) was determined spectrophotometrically in which a competing color reaction between Fe(III) and SCN[superscript -] was used as an indicator reaction. Under the specified conditions Fe(III)…

  13. Gravity Induced Chiral Condensate Formation and the Cosmological Constant

    E-print Network

    Stephon H. S. Alexander; Deepak Vaid

    2006-09-10

    It is well known that the covariant coupling of fermionic matter to gravity induces a four-fermion interaction. The presence of this term in a homogenous and isotropic space-time results in a BCS-like Hamiltonian and the formation of a chiral condensate with a mass gap. We calculate the gap ($\\Delta$) via a mean-field approximation for minimally coupled fermionic fields in a FRW background and find that it depends on the scale factor. The calculation also yields a correction to the bare cosmological constant ($\\Lambda_0$), and a non-zero vev for $$ which then behaves as a scalar field. Hence we conjecture that the presence of fermionic matter in gravity provides a natural mechanism for relaxation of the $\\Lambda_0$ and explains the existence of a scalar field from (almost) first principles.

  14. Stability constants of Ni(II)- and Cu(II)-N-heterocycle complexes according to spectrophotometric data

    NASA Astrophysics Data System (ADS)

    Badhe, Samata; Tekade, Pradip; Bajaj, Sonal; Thakare, Shrikant

    2015-12-01

    The interaction of Ni(II) and Cu(II) with ethyl 4-(4-hydroxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine- 5-carboxylate [Ligand 1], 4-(1H-benzimidazol-2-yl)phenol [Ligand 2], and 2-(3-phenylamino- 4,5-dihydro-1,2-oxazol-5-yl)phenol [Ligand 3] have been studied by spectrophotometric technique at 0.01 M ionic strength and 28°C in 70% dioxane—water mixture. The data obtained were used to estimate the stability constant of these ligands. Spectrophotometric investigation of Ni(II) and Cu(II) complexes with these ligands shows 1: 1 complex formation. The formation of complexes has been studied by Job's variation method. The values of conditional stability constants of Cu(II) complexes are greater than the corresponding Ni(II) complexes. The greater value of stability constant of Cu(II) complexes may be due to the fact of more stable nature of Cu(II). The value of stability constant of Cu(II)—Ligand 2 complex is greater than that of Cu(II)-Ligand 1 and Cu(II)-Ligand 3. The same of Ni(II)-Ligand 3 complex is greater than that of Ni(II)-Ligand 1 and Ni(II)-Ligand 2.

  15. Surface tension method for determining binding constants for cyclodextrin inclusion complexes of ionic surfactants

    SciTech Connect

    Dharmawardana, U.R.; Christian, S.D.; Tucker, E.E.; Taylor, R.W.; Scamehorn, J.F. )

    1993-09-01

    A new method has been developed for determining binding constants of complexes of cyclodextrins with surface-active compounds, including water-soluble ionic surfactants. The technique requires measuring the change in surface tension caused by addition of a cyclodextrin (CD) to aqueous solutions of the surfactant; the experimental results lead directly to inferred values of the thermodynamic activity of the surfactant. Surface tension results are reported for three different surfactants sodium dodecyl sulfate (SDS), cetylpyridinium chloride (CPC), and cetyltrimethylammonium bromide (CTAB) in the presence and in the absence of added [beta]-CD. Data for CPC have been obtained at surfactant concentrations below and above the critical micelle concentration. Correlations between surface tension and surfactant activity are expressed by the Szyszkowski equation, which subsumes the Langmuir adsorption model and the Gibbs equation. It is observed that the surface tension increases monotonically as [beta]-cyclodextrin is added to ionic surfactant solutions. At concentrations of CD well in excess of the surfactant concentration, the surface tension approaches that of pure water, indicating that neither the surfactant-CD complexes nor CD itself are surface active. Binding constants are inferred from a model that incorporates the parameters of the Szyszkowski equation and mass action constants relating to the formation of micelles from monomers of the surfactant and the counterion. Evidence is given that two molecules of CD can complex the C-16 hydrocarbon chain of the cetyl surfactants. 30 refs., 5 figs., 1 tab.

  16. Stoichiometry and Formation Constant Determination by Linear Sweep Voltammetry.

    ERIC Educational Resources Information Center

    Schultz, Franklin A.

    1979-01-01

    In this paper an experiment is described in which the equilibrium constants necessary for determining the composition and distribution of lead (II)-oxalate species may be measured by linear sweep voltammetry. (Author/BB)

  17. Star Formation Across the W3 Complex

    NASA Astrophysics Data System (ADS)

    Román-Zúñiga, Carlos G.; Ybarra, Jason E.; Megías, Guillermo D.; Tapia, Mauricio; Lada, Elizabeth A.; Alves, Joáo F.

    2015-09-01

    We present a multi-wavelength analysis of the history of star formation in the W3 complex. Using deep, near-infrared ground-based images combined with images obtained with Spitzer and Chandra observatories, we identified and classified young embedded sources. We identified the principal clusters in the complex and determined their structure and extension. We constructed extinction-limited samples for five principal clusters and constructed K-band luminosity functions that we compare with those of artificial clusters with varying ages. This analysis provided mean ages and possible age spreads for the clusters. We found that IC 1795, the centermost cluster of the complex, still hosts a large fraction of young sources with circumstellar disks. This indicates that star formation was active in IC 1795 as recently as 2 Myr ago, simultaneous to the star-forming activity in the flanking embedded clusters, W3-Main and W3(OH). A comparison with carbon monoxide emission maps indicates strong velocity gradients in the gas clumps hosting W3-Main and W3(OH) and shows small receding clumps of gas at IC 1795, suggestive of rapid gas removal (faster than the T Tauri timescale) in the cluster-forming regions. We discuss one possible scenario for the progression of cluster formation in the W3 complex. We propose that early processes of gas collapse in the main structure of the complex could have defined the progression of cluster formation across the complex with relatively small age differences from one group to another. However, triggering effects could act as catalysts for enhanced efficiency of formation at a local level, in agreement with previous studies.

  18. Determination of association constant of host-guest supramolecular complex (molecular recognition of carbamazepine, antiseizure drug, with calix(4)arene).

    PubMed

    Meenakshi, C; Jayabal, P; Ramakrishnan, V

    2015-12-01

    The thermodynamic property of the host-guest, inclusion complex formed between p-t-butyl calix(4)arene which is a supramolecule, and the antiseizure drug, carbamazepine was studied. p-t-Butyl calix(4)arene has been used as a host molecule and carbamazepine as a guest molecule. Optical absorption spectral studies were carried out to investigate the molecular recognition properties of p-t-butyl calix(4)arene with carbamazepine. The stochiometry of the host-guest complexes formed and the association constant were determined. An interesting 1:2 stochiometric host-guest complex was formed. Job's continuous method of variation and Benesi-Hildebrand expression were used for the determination of binding constant and the stochiometry of the host-guest complex formed. Molecular dimension of the host molecule plays a vital role in the formation of the host-guest stochiometric complexes. PMID:26163795

  19. Star Formation Across the W3 Complex

    E-print Network

    Román-Zúñiga, C G; Megias, G; Tapia, M; Lada, E A; Alves, J F

    2015-01-01

    We present a multi-wavelength analysis of the history of star formation in the W3 complex. Using deep, near-infrared ground-based images, combined with images obtained with Spitzer and Chandra observatories, we identified and classified young embedded sources. We identified the principal clusters in the complex, and determined their structure and extension. We constructed extinction-limited samples for five principal clusters, and constructed K-band luminosity functions (KLF) that we compare with those of artificial clusters with varying ages. This analysis provided mean ages and possible age spreads for the clusters. We found that IC 1795, the centermost cluster of the complex, still hosts a large fraction of young sources with circumstellar disks. This indicates that star formation was active in IC 1795 as recently as 2 Myr ago, simultaneous to the star forming activity in the flanking embedded clusters, W3-Main and W3(OH). A comparison with carbon monoxide emission maps indicates strong velocity gradients ...

  20. Complex formation between uranyl and various thiosemicarbazide derivatives

    SciTech Connect

    Chuguryan, D.G.; Dzyubenko, V.I.

    1987-01-01

    Complex formation between hexavalent uranium and salicylaldehyde thiosemicarbazone (H/sub 2/L), salicylaldehyde S-methyl-isothiosemicarbazone (H/sub 2/Q), S-methyl-N/sub 1/,N/sub 4/-bis(salicylidene)isothiosemicarbazide(H/sub 2/Z), and thiosemicarbazidodiacetic acid (H/sub 2/R) has been studied spectrophotometrically in solution. Stability constants for complexes having the composition UO/sub 2/A have been calculated. Solid uranyl derivatives having the composition UO/sub 2/L x 2H/sub 2/O, UO/sub 2/Q x 2H/sub 2/O, UO/sub 2/Z x 2H/sub 2/O, and UO/sub 2/R x 2H/sub 2/O have been obtained. These derivatives were isolated and their IR spectroscopic behavior and thermal properties were investigated.

  1. Correlation between stabilities of uranyl ion complexes with various monocarboxylic acids and Hammett-Taft substituent constants

    SciTech Connect

    Poluektov, N.S.; Perfil'ev, V.A.; Meshkova, S.B.; Mishchenko, V.T.

    1987-01-01

    A correlation has been observed between the stabilities of uranyl ion complexes (1:1 composition) and the substituent inductive constants in formic and acetic acid derivatives. For substituents which are not directly involved in couples formation the parameters of the Hammett-Taft equation log K/sub 1/ = A + B have the following values: A = 1.311, B = -2.360. For substituents which form a coordination bond with the uranyl ion, A = 7.0077 and B = - 17.321. In the case of complexes formed between the uranyl ion and salicylic acid and its derivatives, there is a correlation between complex stability and sigma/sub m/ and sigma/sub p/ substituent constants for the meta- and para-positions, respectively (A = 12.72, B = -4.41).

  2. Low complexity decoders for constant envelope digital modulations

    NASA Astrophysics Data System (ADS)

    Simmons, S. J.; Wittke, P. H.

    1983-12-01

    Digital angle modulations having input symbol memory can be demodulated using maximum likelihood sequence estimation (MLSE or Viterbi decoding). The demodulation of the more bandwidth efficient of these can require a large number of computations. In this paper, lower complexity decoding approaches are presented. These decoders use a predetermined processing order and a reduced number of survivor signals, S, at every time NT. Processing is performed on the signal sequences using metrics (likelihoods) obtained by a matched filter bank similar to that needed for MLSE. The decoders can achieve asymptotic optimality of error rate while being computationally faster and simpler than MLSE for many modulations. In addition, error rate performance can be traded for complexity reduction. Expected performance has been verified for representative modulations.

  3. Interactive Formation Control in Complex Environments.

    PubMed

    Henry, Joseph; Shum, Hubert P H; Komura, Taku

    2013-08-13

    The degrees of freedom of a crowd is much higher than that provided by a standard user input device. Typically, crowd control systems require multiple passes to design crowd movements by specifying waypoints, and then defining character trajectories and crowd formation. Such multi-pass control would spoil the responsiveness and excitement of real-time control systems. In this paper, we propose a single-pass algorithm to control a crowd in complex environments. We observe that low level details in crowd movement are related to interactions between characters and the environment, such as diverging/merging at cross points, or climbing over obstacles. Therefore, we simplify the problem by representing the crowd with a deformable mesh, and allow the user, via multi-touch input, to specify high level movements and formations that are important for context delivery. To help prevent congestion, our system dynamically reassigns characters in the formation by employing a mass transport solver to minimise their overall movement. The solver uses a cost function to evaluate the impact from the environment, including obstacles and areas affecting movement speed. Experimental results show realistic crowd movement created with minimal high-level user inputs. Our algorithm is particularly useful for real-time applications including strategy games and interactive animation creation. PMID:23959626

  4. Interactive formation control in complex environments.

    PubMed

    Henry, Joseph; Shum, Hubert P H; Komura, Taku

    2014-02-01

    The degrees of freedom of a crowd is much higher than that provided by a standard user input device. Typically, crowd-control systems require multiple passes to design crowd movements by specifying waypoints, and then defining character trajectories and crowd formation. Such multi-pass control would spoil the responsiveness and excitement of real-time control systems. In this paper, we propose a single-pass algorithm to control a crowd in complex environments. We observe that low-level details in crowd movement are related to interactions between characters and the environment, such as diverging/merging at cross points, or climbing over obstacles. Therefore, we simplify the problem by representing the crowd with a deformable mesh, and allow the user, via multitouch input, to specify high-level movements and formations that are important for context delivery. To help prevent congestion, our system dynamically reassigns characters in the formation by employing a mass transport solver to minimize their overall movement. The solver uses a cost function to evaluate the impact from the environment, including obstacles and areas affecting movement speed. Experimental results show realistic crowd movement created with minimal high-level user inputs. Our algorithm is particularly useful for real-time applications including strategy games and interactive animation creation. PMID:24356364

  5. Vortex formation in a complex plasma

    NASA Astrophysics Data System (ADS)

    Ishihara, Osamu

    Complex plasma experiments in ground-based laboratories as well as in microgravity conditions have shown the formation of vortex structures in various conditions (e.g., 1,2,3,4). The vortex structures formed in a complex plasma are visible by naked eyes with the help of irradiating laser and the individual dust particles in the structure give us the opportunity to study detailed physics of the commonly observed natural phenomena known such as tornadoes, typhoons, hurricanes and dust devils. Based on the Navier-Stokes equation with proper complex plasma conditions we analyze as much as possible in a universal way the vortex structure and clarifies the role of the controlling parameters like flow velocity and external magnetic field. 1. G. E. Morfill,H. M. Thomas, U. Konopka,H. Rothermel, M. Zuzic, A. Ivlev, and J. Goree, Phys,. Rev. Lett. 83, 1598 (1999). 2. E. Nebbat and R. Annou, Phys. Plasmas 17, 093702 (2010). 3. Y. Saitou and O. Ishihara, Phys. Rev. Lett. 111, 185003 (2013). 4. V. N. Tsytovich and N. G. Gusein-zade, Plasma Phys. Rep. 39, 515 (2013).

  6. Characterizing the dynamics of functionally relevant complexes of formate dehydrogenase

    PubMed Central

    Bandaria, Jigar N.; Dutta, Samrat; Nydegger, Michael W.; Rock, William; Kohen, Amnon; Cheatum, Christopher M.

    2010-01-01

    The potential for femtosecond to picosecond time-scale motions to influence the rate of the intrinsic chemical step in enzyme-catalyzed reactions is a source of significant controversy. Among the central challenges in resolving this controversy is the difficulty of experimentally characterizing thermally activated motions at this time scale in functionally relevant enzyme complexes. We report a series of measurements to address this problem using two-dimensional infrared spectroscopy to characterize the time scales of active-site motions in complexes of formate dehydrogenase with the transition-state-analog inhibitor azide (). We observe that the frequency–frequency time correlation functions (FFCF) for the ternary complexes with NAD+ and NADH decay completely with slow time constants of 3.2 ps and 4.6 ps, respectively. This result suggests that in the vicinity of the transition state, the active-site enzyme structure samples a narrow and relatively rigid conformational distribution indicating that the transition-state structure is well organized for the reaction. In contrast, for the binary complex, we observe a significant static contribution to the FFCF similar to what is seen in other enzymes, indicating the presence of the slow motions that occur on time scales longer than our measurement window. PMID:20876138

  7. Low complexity concurrent constant modulus algorithm and soft decision directed scheme for blind

    E-print Network

    Chen, Sheng

    Low complexity concurrent constant modulus algorithm and soft decision directed scheme for blind-directed (DD) scheme provides a state-of-the-art low-complexity blind equalisation technique for high of the standard CMA blind equaliser, this concurrent CMA and DD blind equaliser achieves a dramatic improvement

  8. STABILITY CONSTANTS OF NP(V) COMPLEXES WITH FLOURIDE AND SULFATE AT VARIABLE TEMPERATURES

    SciTech Connect

    Y. Xia; J.I. Friese; D.A. Moore; L. Rao

    2005-07-11

    A solvent extraction method was used to determine the stability constants of Np(V) complexes with fluoride and sulfate in 1.0 M NaClO{sub 4} from 25 C to 60 C. The distribution ratio of Np(V) between the organic and aqueous phases was found to decrease as the concentrations of fluoride and sulfate were increased. Stability constants of the 1:1 Np(V)-fluoride complexes and the 1:1 Np(V)-sulfate and 1:2 Np(V)-sulfate complexes, dominant in the aqueous phase under the experimental conditions, were calculated from the effect of [F{sup -}] and [SO{sub 4}{sup 2-}] on the distribution ratio. The enthalpy and entropy of complexation were calculated from the stability constants at different temperatures by using the Van't Hoff equation.

  9. A Simple Method for the Consecutive Determination of Protonation Constants through Evaluation of Formation Curves

    ERIC Educational Resources Information Center

    Hurek, Jozef; Nackiewicz, Joanna

    2013-01-01

    A simple method is presented for the consecutive determination of protonation constants of polyprotic acids based on their formation curves. The procedure is based on generally known equations that describe dissociation equilibria. It has been demonstrated through simulation that the values obtained through the proposed method are sufficiently…

  10. Measurements of Complex Dielectric Constants of Paints and Primers for DSN Antennas: Part I

    NASA Astrophysics Data System (ADS)

    Otoshi, T. Y.; Cirillo, R., Jr.; Sosnowski, J.

    1999-04-01

    In past years, it was known that paint on reflector surfaces causes degradation of antenna gain and noise temperatures, but it was not known how much degradation occurs as a function of paint and primer thickness or frequency. This article presents an approach used to study the properties of paint by first measuring the complex dielectric constants of paint and primers at frequencies of interest. After the complex dielectric constants become known, theoretical calculations then can be made of degradation of antenna gain and noise temperatures due to paint/primer thicknesses as functions of incident-wave polarization and incidence angles in free space. Tables are presented for measured complex dielectric constants over a frequency range from 24 through 34 GHz for (1) the paint and primer currently being used on DSN antenna main and subreflector surfaces and (2) paint and primer that are candidate replacements.

  11. Stability constants important to the understanding of plutonium in environmental waters, hydroxy and carbonate complexation of PuO{sub 2}{sup +}

    SciTech Connect

    Bennett, D A

    1990-04-20

    The formation constants for the reactions PuO{sub 2}{sup +} + H{sub 2}O = PuO{sub 2}(OH) + H{sup +} and PuO{sub 2}{sup +} + CO{sub 3}{sup 2} = PuO{sub 2}(CO{sub 3}){sup {minus}} were determined in aqueous sodium perchlorate solutions by laser-induced photoacoustic spectroscopy. The molar absorptivity of the PuO{sub 2}{sup +} band at 569 nm decreased with increasing hydroxide concentration. Similarly, spectral changes occurred between 540 and 580 nm as the carbonate concentration was increased. The absorption data were analyzed by the non-linear least-squares program SQUAD to yield complexation constants. Using the specific ion interaction theory, both complexation constants were extrapolated to zero ionic strength. These thermodynamic complexation constants were combined with the oxidation-reduction potentials of Pu to obtain Eh versus pH diagrams. 120 refs., 35 figs., 12 tabs.

  12. Equilibrium constant for carbamate formation from monoethanolamine and its relationship with temperature

    SciTech Connect

    Aroua, M.K.; Benamor, A.; Haji-Sulaiman, M.Z.

    1999-09-01

    Removal of acid gases such as CO{sub 2} and H{sub 2}S using aqueous solutions of alkanolamines is an industrially important process. The equilibrium constant for the formation of carbamate from monoethanolamine was evaluated at various temperatures of 298, 308, 318, and 328 K and ionic strengths up to 1.7 M. From the plot of log{sub 10} K versus I{sup 0.5}, the variation of the thermodynamical constant with temperature follows the relationship log{sub 10} K{sub 1} = {minus}0.934 + (0.671 {times} 10{sup 3})K/T.

  13. DISSOCIATION OF ARSENITE-PEPTIDE COMPLEXES: TRIPHASIC NATURE, RATE CONSTANTS, HALF LIVES AND BIOLOGICAL IMPORTANCE

    EPA Science Inventory

    We determined the number and the dissociation rate constants of different complexes formed from arsenite and two peptides containing either one (RV AVGNDYASGYHYGV for peptide 20) or three cysteines (LE AWQGK VEGTEHLYSMK K for peptide 10) via radioactive 73As labeled arsenite and ...

  14. Constant Electric and Magnetic Fields Effect on the Structuring and Thermomechanical and Thermophysical Properties of Nanocomposites Formed from Pectin-Cu(2+)-Polyethyleneimine Interpolyelectrolyte-Metal Complexes.

    PubMed

    Demchenko, V; Shtompel', V; Riabov, S; Lysenkov, E

    2015-12-01

    Applying wide-angle X-ray scattering method, thermomechanical analysis, and differential scanning calorimetry, the structural organization and properties of nanocomposites formed by chemical reduction of ?u(2+) cations in the interpolyelectrolyte-metal complex (pectin-Cu(2+)-polyethyleneimine) under the influence of a constant magnetic and electric fields have been studied. It has been found that the chemical reduction of Cu(2+) cations in the interpolyelectrolyte-metal complex bulk under constant electric and magnetic fields leads to formation of nanocomposite consisting of interpolyelectrolyte complex, including pectin-polyethyleneimine and nanoparticles of the metal Cu phase, whereas nanocomposite with Cu/Cu2O nanoparticles is formed in original state (without any field). It was observed that, under constant field, nanocomposites obtained have higher structural glass-transition temperatures and thermal stability. PMID:26659610

  15. Stability Constants of Technetium (IV) Oxalate Complexes as a Function of Ionic Strength

    SciTech Connect

    Xia, Yuanxian; Hess, Nancy J.; Felmy, Andrew R.

    2006-03-01

    Solvent extraction methods were used to determine the stability constants of Tc(IV) with oxalate anions in NaCl solutions ranging in concentration from 0.5 M to 2.0 M. All experiments were conducted in an atmosphere-controlled chamber under Ar atmosphere (< 1.0ppm O2). A reducing agent (hydrazine) was used during extractions to maintain technetium in the tetravalent oxidation state. Independent tests confirmed that the oxidation state of technetium did not change during extractions. The distribution ratio of Tc(IV) between the organic and aqueous phases was found to decrease as the concentration of oxalic acid increased. At the oxalic acid concentrations used in these experiments, the complexes TcO(Ox) and TcO(Ox)22- were found to be the dominant aqueous species. Based on these data, the thermodynamic stability constants of Tc(IV) with oxalate complexes were calculated by the Specific Ion Interaction Theory (SIT).

  16. QSPR prediction of the stability constants of gadolinium(III) complexes for magnetic resonance imaging.

    PubMed

    Dioury, Fabienne; Duprat, Arthur; Dreyfus, Gérard; Ferroud, Clotilde; Cossy, Janine

    2014-10-27

    Gadolinium(III) complexes constitute the largest class of compounds used as contrast agents for Magnetic Resonance Imaging (MRI). A quantitative structure-property relationship (QSPR) machine-learning based method is applied to predict the thermodynamic stability constants of these complexes (log KGdL), a property commonly associated with the toxicity of such organometallic pharmaceuticals. In this approach, the log KGdL value of each complex is predicted by a graph machine, a combination of parametrized functions that encodes the 2D structure of the ligand. The efficiency of the predictive model is estimated on an independent test set; in addition, the method is shown to be effective (i) for estimating the stability constants of uncharacterized, newly synthesized polyamino-polycarboxylic compounds and (ii) for providing independent log KGdL estimations for complexants for which conflicting or questionable experimental data were reported. The exhaustive database of log KGdL values for 158 complexants, reported for potential application as contrast agents for MRI and used in the present study, is available in the Supporting Information (122 primary literature sources). PMID:25181704

  17. Complex dielectric constants for selected near-millimeter-wave materials at 245 GHz

    NASA Technical Reports Server (NTRS)

    Dutta, J. M.; Jones, C. R.; Dave, H.

    1986-01-01

    A double-beam instrument developed in this laboratory has been used to measure the complex dielectric constant of selected materials at 245 GHz. It is reported here the results for crystalline quartz, fused silica (Spectrosil WF and Dynasil 4000), beryllia (iso-pressed), boron nitride (hot-pressed), and a nickel ferrite (Trans-Tech 2-111). Results are compared with the data obtained by other researchers.

  18. Temperature dependency of the equilibrium constant for the formation of carbamate from diethanolamine

    SciTech Connect

    Aroua, M.K.; Amor, A.B.; Haji-Sulaiman, M.Z.

    1997-07-01

    Aqueous alkanolamine solutions are frequently used to remove acidic components such as H{sub 2}S and CO{sub 2} from process gas streams. The equilibrium constant for the formation of diethanolamine carbamate was determined experimentally at (303, 313, 323, and 331) K for ionic strengths up to 1.8 mol/dm{sup 3}, the inert electrolyte being NaClO{sub 4}. A linear relationship was found to hole between log K and I{sup 0.5}. The thermodynamical constant has been determined and expressed by the equation log K{sub 1} = {minus}5.12 + 1.781 {times} 10{sup 3} K/T.

  19. Dynamics of Lane Formation in Driven Binary Complex Plasmas

    SciTech Connect

    Suetterlin, K. R.; Ivlev, A. V.; Raeth, C.; Thomas, H. M.; Rubin-Zuzic, M.; Morfill, G. E.; Wysocki, A.; Loewen, H.; Goedheer, W. J.; Fortov, V. E.; Lipaev, A. M.; Molotkov, V. I.; Petrov, O. F.

    2009-02-27

    The dynamical onset of lane formation is studied in experiments with binary complex plasmas under microgravity conditions. Small microparticles are driven and penetrate into a cloud of big particles, revealing a strong tendency towards lane formation. The observed time-resolved lane-formation process is in good agreement with computer simulations of a binary Yukawa model with Langevin dynamics. The laning is quantified in terms of the anisotropic scaling index, leading to a universal order parameter for driven systems.

  20. Association constants and heats of formation of heteroassociates of anions of sulphophthaleine dyes

    NASA Astrophysics Data System (ADS)

    Shapovalov, S. A.

    2010-11-01

    The tendency of anions of sulphophthaleine dyes to heteroassociation was studied in aqueous solutions of phenol red, bromophenol blue, bromocresol green, bromocresol purple, and bromothymol blue. It was spectrophotometrically determined that single-(Han-) and double-charged anions (An2-) of sul-phophthaleines can form stable heteroassociates of composition Ct+ · HAn- and (Ct+)2 · An2- with cations (Ct+) of polymethine dyes, pinacyanol, and quinaldine red. The values of enthalpy formation of ions of dyes and heteroassociates were calculated using semi-empirical methods, then correlated with experimentally determined values of equilibrium association constants.

  1. Association constants and enthalpies of formation of heteroassociates of anions of cresol red and thymol blue

    NASA Astrophysics Data System (ADS)

    Shapovalov, S. A.

    2011-01-01

    The tendency of anions of sulfophthaleine dyes to heteroassociation was studied in aqueous solutions of phenol red, cresol red, thymol blue, and non-substituted phenol red. It was spectrophotometrically determined that single (HAn-) and doubly charged anions (An2-) of sulfophthaleines can form stable heteroassociates of the composition Ct+ · HAn- and (Ct+)2 · An2- with cations (Ct+) of polymethine dyes, pinacyanol, and quinaldine red. The values of enthalpy formation of ions of dyes and heteroassociates were calculated semi-empirically and compared with experimentally determined values of the equilibrium association constants.

  2. Complex molecule formation around massive young stellar objects.

    PubMed

    Oberg, Karin I; Fayolle, Edith C; Reiter, John B; Cyganowski, Claudia

    2014-01-01

    Interstellar complex organic molecules were first identified in the hot inner regions of massive young stellar objects (MYSOs), but have more recently been found in many colder sources, indicating that complex molecules can form at a range of temperatures. However, individually these observations provide limited constraints on how complex molecules form, and whether the same formation pathways dominate in cold, warm and hot environments. To address these questions, we use spatially resolved observations from the Submillimeter Array of three MYSOs together with mostly unresolved literature data to explore how molecular ratios depend on environmental parameters, especially temperature. Towards the three MYSOs, we find multiple complex organic emission peaks characterized by different molecular compositions and temperatures. In particular, CH3CCH and CH3CN seem to always trace a lukewarm (T = 60 K) and a hot (T > 100 K) complex chemistry, respectively. These spatial trends are consistent with abundance-temperature correlations of four representative complex organics--CH3CCH, CH3CN, CH3OCH3 and CH3CHO--in a large sample of complex molecule hosts mined from the literature. Together, these results indicate a general chemical evolution with temperature, i.e. that new complex molecule formation pathways are activated as a MYSO heats up. This is qualitatively consistent with model predictions. Furthermore, these results suggest that ratios of complex molecules may be developed into a powerful probe of the evolutionary stage of a MYSO, and may provide information about its formation history. PMID:25302375

  3. Effect of acidity on the equilibria of formation of mixed Co2+ complexes with heparin and arginine in aqueous solutions at 37°C

    NASA Astrophysics Data System (ADS)

    Feofanova, M. A.; Frantseva, Yu. V.; Semenov, A. N.; Baranova, N. V.; Zhuravlev, E. V.

    2014-02-01

    Results from studying interactions in the heparin-Co2+ ion-arginine system are presented. The constants of formation of mixed Co2+ complexes with heparin and arginine in aqueous solutions in a broad pH range at 37°C are determined potentiometrically. The chemical equilibria in the system are simulated and the stoichiometry of formation of the complex forms is determined.

  4. Formation of a Bridging Phosphinidene Thorium Complex.

    PubMed

    Behrle, Andrew C; Castro, Ludovic; Maron, Laurent; Walensky, Justin R

    2015-12-01

    The synthesis and structural determination of the first thorium phosphinidene complex are reported. The reaction of 2 equiv of (C5Me5)2Th(CH3)2 with H2P(2,4,6-(i)Pr3C6H2) at 95 °C produces [(C5Me5)2Th]2(?2-P[(2,6-CH2CHCH3)2-4-(i)PrC6H2] as well as 4 equiv of methane, 2 equiv from deprotonation of the phosphine and 2 equiv from C-H bond activation of one methyl group of each of the isopropyl groups at the 2- and 6-positions. Transition state calculations indicate that the steps in the mechanism are P-H, C-H, C-H, and then P-H bond activation to form the phosphinidene. PMID:26575219

  5. Direct electronic probing of biological complexes formation

    NASA Astrophysics Data System (ADS)

    Macchia, Eleonora; Magliulo, Maria; Manoli, Kyriaki; Giordano, Francesco; Palazzo, Gerardo; Torsi, Luisa

    2014-10-01

    Functional bio-interlayer organic field - effect transistors (FBI-OFET), embedding streptavidin, avidin and neutravidin as bio-recognition element, have been studied to probe the electronic properties of protein complexes. The threshold voltage control has been achieved modifying the SiO2 gate diaelectric surface by means of the deposition of an interlayer of bio-recognition elements. A threshold voltage shift with respect to the unmodified dielectric surface toward more negative potential values has been found for the three different proteins, in agreement with their isoelectric points. The relative responses in terms of source - drain current, mobility and threshold voltage upon exposure to biotin of the FBI-OFET devices have been compared for the three bio-recognition elements.

  6. Complexation of Al(III) with gluconate in alkaline to hyperalkaline solutions: formation, stability and structure.

    PubMed

    Pallagi, Attila; Tasi, Ágost Gyula; Peintler, Gábor; Forgo, Péter; Pálinkó, István; Sipos, Pál

    2013-10-01

    Contrary to suggestions in the literature, it has been proven that Al(III) forms a 1?:?1 complex with gluconate (hereafter Gluc(-)) in strongly alkaline (pH > 12) aqueous solutions. The complex formation was proven via(27)Al and (1)H NMR, freezing-point depression, polarimetric measurements as well as potentiometric and conductometric titrations. This complexation is a pH independent process, i.e., a condensation reaction takes place. The stability constant of the complex formed was derived from (1)H NMR and polarimetric measurements, and was found to be log K = 2.4 ± 0.4. In the complex formed, Al(III) has a tetrahedral geometry, and the Al(OH)4(-) is most probably statistically distributed between the alcoholate groups of the Gluc(-). PMID:23897548

  7. Synthesis, characterization and thermodynamics of complex formation of some new Schiff base ligands with some transition metal ions and the adduct formation of zinc Schiff base complexes with some organotin chlorides

    NASA Astrophysics Data System (ADS)

    Asadi, Mozaffar; Asadi, Zahra; Torabi, Susan; Lotfi, Najmeh

    Four new complexes, [M(Salpyr)] where Salpyr = N,N'-bis(Salicylidene)-2,3- and 3,4-diiminopyridine and M = Co, Cu, Mn, Ni and Zn were synthesized and characterized by 1H NMR, IR spectroscopy, elemental analysis and UV-vis spectrophotometry. UV-vis spectrophotometric study of the adduct formation of the zinc(II) complexes, [Zn(2,3-Salpyr)] and [Zn(3,4-Salpyr)], as donor with R2SnCl2 (R = methyl, phenyl, n-butyl), PhSnCl3 and Bu3SnCl as acceptors has been investigated in methanol, as solvent. The formation constants and the thermodynamic free energies were measured using UV-vis spectrophotometry. Titration of the organotin chlorides with Zn(II) complexes at various temperatures (T = 283-313 K) leads to 1:1 adduct formation. The results show that the formation constants were decreased by increasing the temperature. The trend of the reaction of RnSnCl4-n as acceptors toward given zinc complexes was as follows: PhSnCl3 > Me2SnCl2 > Ph2SnCl2 > Bu2SnCl2 > Bu3SnCl By considering the formation constants and the ?G° of the complex formation for the Schiff base as donor and the M(II) as acceptor, the following conclusion was drawn: the formation constant for a given Schiff base changes according to the following trend: Ni > Cu > Co > Zn > Mn

  8. The formation of iron complexes with bile and bile constituents

    PubMed Central

    Jacobs, A.; Miles, P. M.

    1970-01-01

    Inorganic iron is able to form complexes with whole bile and with some bile constituents and these remain soluble at neutral pH. Ascorbic acid does not appear to play a part in this process. The formation of soluble complexes in vivo is an important factor in maintaining intraluminal iron in a form available for absorption, and bile may have some importance in this respect. PMID:5473602

  9. Variation of lattice constant and cluster formation in GaAsBi

    SciTech Connect

    Puustinen, J.; Schramm, A.; Guina, M.; Wu, M.; Luna, E.; Laukkanen, P.; Laitinen, M.; Sajavaara, T.

    2013-12-28

    We investigate the structural properties of GaAsBi layers grown by molecular beam epitaxy on GaAs at substrate temperatures between 220–315 °C. Irrespective of the growth temperature, the structures exhibited similar Bi compositions, and good overall crystal quality as deduced from X-Ray diffraction measurements. After thermal annealing at temperatures as low as 500 °C, the GaAsBi layers grown at the lowest temperatures exhibited a significant reduction of the lattice constant. The lattice variation was significantly larger for Bi-containing samples than for Bi-free low-temperature GaAs samples grown as a reference. Rutherford backscattering spectrometry gave no evidence of Bi diffusing out of the layer during annealing. However, dark-field and Z-contrast transmission electron microscopy analyses revealed the formation of GaAsBi clusters with a Bi content higher than in the surrounding matrix, as well as the presence of metallic As clusters. The apparent reduction of the lattice constant can be explained by a two-fold process: the diffusion of the excess As incorporated within As{sub Ga} antisites to As clusters, and the reduction of the Bi content in the GaAs matrix due to diffusion of Bi to GaAsBi clusters. Diffusion of both As and Bi are believed to be assisted by the native point defects, which are present in the low-temperature as-grown material.

  10. Formation of copper complexes in landfill leachate and their toxicity to zebrafish embryos

    SciTech Connect

    Fraser, J.K.; Butler, C.A.; Timperley, M.H.; Evans, C.W.

    2000-05-01

    Toxic metal organic complexes have not been found in natural waters, although some organic acids form bioavailable lipophilic and metabolite-type metal complexes. Landfill leachates usually contain organic acids and in the urban environment these leachates, when mixed with storm waters containing Cu, could be a source of toxic Cu organic complexes in streams and estuaries. The authors investigated the formation of Cu complexes in the leachate from an active urban landfill and found that some of the complexes formed were toxic to zebrafish embryos. High and low nominal molecular weight (NMWT) fractions; >5,000 Da and <700 Da, of leachate both formed Cu complexes with almost identical Cu complexing characteristics but the toxicity was due solely to the low NMWT complexes formed in the <700 Da fraction. Chemical equilibrium modeling with MINTEQA2 and H and Cu complex conditional association constants and ligand concentrations obtained from pH and Cu titrations with a Cu ion-selective electrode and van den Berg-Ruzic analyses of the titration data was used to calculate the copper speciation in the embryo test solutions. This calculated speciation, which was confirmed by measurements of Cu{sup 2+} in the test solutions, enabled the toxicity due to the free Cu ion and to the Cu complexes to be distinguished.

  11. The Complexity of Integrable Hamiltonian Systems on a Prescribed Three-Dimensional Constant-Energy Submanifold

    NASA Astrophysics Data System (ADS)

    T'en Zung, Nguen

    1993-02-01

    This paper is devoted to a description of \\mathcal{Q}-regions, i.e., domains in the molecular table of Fomenko that are filled with integrable systems with constant energy surfaces \\mathcal{Q} that occur most frequently in physics. Namely, the \\mathcal{Q}-regions for \\mathcal{Q}=S^3, \\mathbf{R}P^3, S^1\\otimes S^2, T^3, and \\char93 ^l S^1\\otimes S^2 are computed explicitly. The \\mathcal{Q}-regions for an arbitrary three-dimensional constant energy submanifold \\mathcal{Q} are determined up to a finite number of points. These results make it possible to predict the topological properties of integrable Hamiltonian systems as yet not discovered in physics. The concepts of the order of torsion of integrable Hamiltonian systems and of a minimal system are also introduced, and the connection between these concepts and the concepts of complexity of systems and complexity of three-manifolds due to Matveev is indicated.

  12. Formation of Phenylene Oligomers Using Platinum-Phosphine Complexes

    E-print Network

    Jones, William D.

    Formation of Phenylene Oligomers Using Platinum-Phosphine Complexes Nira Simhai, Carl N. Iverson, New York 14627 Received February 12, 2001 The reaction of biphenylene with a series of platinum bis to tetraphenylene using a platinum phos- phine catalyst (eq 2),8 and Ni(COD)(PMe3)2 has also (1) Topics

  13. Complex patterns in patricle aggregation models of biological formation

    E-print Network

    Kolokolnikov, Theodore

    Complex patterns in patricle aggregation models of biological formation Theodore Kolokolnikov Joint/attraction, the steady state typically consists of a bounded "particle cloud" whose diameter and is independent of N)dy. · Questions 1. Describe the equilibrium cloud shape in the limit t 2. What about dynamics? #12;Morse force

  14. Geology of the Biwabik Iron Formation and Duluth Complex

    USGS Publications Warehouse

    Jirsa, M.A.; Miller, J.D., Jr.; Morey, G.B.

    2008-01-01

    The Biwabik Iron Formation is a ???1.9 billion year-old sequence of iron-rich sedimentary rocks that was metamorphosed at its eastern-most extent by ???1.1 billion year-old intrusions of the Duluth Complex. The metamorphic recrystallization of iron-formation locally produced iron-rich amphiboles and other fibrous iron-silicate minerals. The presence of these minerals in iron-formation along the eastern part of what is known as the Mesabi Iron Range, and their potential liberation by iron mining has raised environmental health concerns. We describe here the geologic setting and mineralogic composition of the Biwabik Iron Formation in and adjacent to the contact metamorphic aureole of the Duluth Complex. The effects of metamorphism are most pronounced within a few kilometers of the contact, and decrease progressively away from it. The contact aureole has been divided into four metamorphic zones-each characterized by the composition and crystal structure of the metamorphic minerals it contains. The recrystallization of iron-formation to iron-rich amphibole minerals (grunerite and cummingtonite) and iron-pyroxene minerals (hedenbergite and ferrohypersthene) is best developed in zones that are most proximal to the Duluth Complex contact. ?? 2007 Elsevier Inc. All rights reserved.

  15. Geology of the Biwabik Iron Formation and Duluth Complex.

    PubMed

    Jirsa, Mark A; Miller, James D; Morey, G B

    2008-10-01

    The Biwabik Iron Formation is a approximately 1.9 billion year-old sequence of iron-rich sedimentary rocks that was metamorphosed at its eastern-most extent by approximately 1.1 billion year-old intrusions of the Duluth Complex. The metamorphic recrystallization of iron-formation locally produced iron-rich amphiboles and other fibrous iron-silicate minerals. The presence of these minerals in iron-formation along the eastern part of what is known as the Mesabi Iron Range, and their potential liberation by iron mining has raised environmental health concerns. We describe here the geologic setting and mineralogic composition of the Biwabik Iron Formation in and adjacent to the contact metamorphic aureole of the Duluth Complex. The effects of metamorphism are most pronounced within a few kilometers of the contact, and decrease progressively away from it. The contact aureole has been divided into four metamorphic zones-each characterized by the composition and crystal structure of the metamorphic minerals it contains. The recrystallization of iron-formation to iron-rich amphibole minerals (grunerite and cummingtonite) and iron-pyroxene minerals (hedenbergite and ferrohypersthene) is best developed in zones that are most proximal to the Duluth Complex contact. PMID:17997209

  16. Formation and stability of lanthanide complexes and their encapsulation into polymeric microspheres

    SciTech Connect

    Mumper, R.J.; Jay, M.

    1992-10-15

    The complexation of lanthanides (Ln) with dicarbonyl compounds (acetylacetone, acac; ethyl acetoacetate; 3-ethyl-2,4-pentanedione; 2,4-hexanedione; 3-methyl-2,4-pentanedione; and diethyl malonate) was investigated using a potentiometric titration technique. The ability of a dicarbonyl compound to complex with the lanthanide elements was greatly dependent on its pK{sub a} and on the pH of the titrated solution. Selected lanthanide complexes (Ln complexes) were incorporated into spherical poly(L-lactic acid)(PLA) matrices and irradiated in a nuclear reactor with neutrons to produce short-lived high-energy {Beta}-particle-emitting radioisotopes. The lanthanides investigated (Ho, Dy, Sm, and La) were chosen on the basis of their physical and nuclear properties. A transition element (Re) was also studied. The small decrease in the ionic radii of the lanthanides with increasing atomic number led to (a) greater ability to extract and complex from an aqueous solution with complexing agents, (b) larger formation and stability constants for the Ln complexes, (c) increased solubility of the Ln complexes in chloroform, and (d) increase in the maximum percent incorporation of the stable lanthanides in PLA spheres. Ho(aca) was found to be the most promising candidate of the complexes studied on the basis of the above observations and due to the favorable physical properties of {sup 165}Ho and nuclear properties of {sup 166}Ho. 21 refs., 5 figs., 4 tabs.

  17. Dissection and engineering of the Escherichia coli formate hydrogenlyase complex.

    PubMed

    McDowall, Jennifer S; Hjersing, M Charlotte; Palmer, Tracy; Sargent, Frank

    2015-10-01

    The Escherichia coli formate hydrogenlyase (FHL) complex is produced under fermentative conditions and couples formate oxidation to hydrogen production. In this work, the architecture of FHL has been probed by analysing affinity-tagged complexes from various genetic backgrounds. In a successful attempt to stabilize the complex, a strain encoding a fusion between FdhF and HycB has been engineered and characterised. Finally, site-directed mutagenesis of the hycG gene was performed, which is predicted to encode a hydrogenase subunit important for regulating sensitivity to oxygen. This work helps to define the core components of FHL and provides solutions to improving the stability of the enzyme. PMID:26358294

  18. Complex unconstrained three-dimensional hand movement and constant equi-affine speed.

    PubMed

    Maoz, Uri; Berthoz, Alain; Flash, Tamar

    2009-02-01

    One long-established simplifying principle behind the large repertoire and high versatility of human hand movements is the two-thirds power law-an empirical law stating a relationship between local geometry and kinematics of human hand trajectories during planar curved movements. It was further generalized not only to various types of human movements, but also to motion perception and prediction, although it was unsuccessful in explaining unconstrained three-dimensional (3D) movements. Recently, movement obeying the power law was proved to be equivalent to moving with constant planar equi-affine speed. Generalizing such motion to 3D space-i.e., to movement at constant spatial equi-affine speed-predicts the emergence of a new power law, whose utility for describing spatial scribbling movements we have previously demonstrated. In this empirical investigation of the new power law, subjects repetitively traced six different 3D geometrical shapes with their hand. We show that the 3D power law explains the data consistently better than both the two-thirds power law and an additional power law that was previously suggested for spatial hand movements. We also found small yet systematic modifications of the power-law's exponents across the various shapes, which further scrutiny suggested to be correlated with global geometric factors of the traced shape. Nevertheless, averaging over all subjects and shapes, the power-law exponents are generally in accordance with constant spatial equi-affine speed. Taken together, our findings provide evidence for the potential role of non-Euclidean geometry in motion planning and control. Moreover, these results seem to imply a relationship between geometry and kinematics that is more complex than the simple local one stipulated by the two-thirds power law and similar models. PMID:19073811

  19. Measurements of the complex dielectric constant of sand and dust particles at 11 GHz

    NASA Astrophysics Data System (ADS)

    Al-Rizzo, Hussain M.; Al-Hafid, Hafid T.

    1988-03-01

    Measurements are reported of the refractive index (Delta-n) and loss tangent (tan delta) of dust particles in a laboratory-simulated model of dust storms, carried out at 11 GHz utilizing a confocal microwave open-cavity resonator. Four samples were used namely, sandy, silty, clayey silt, and clayey, for concentrations varying from 10-4 to 4 x 10-3 g/cu cm. The particle-size distribution (PSD) of each sample was measured by seiving along with the hydrometer technique. Dielectric-constant measurements were also conducted at bulk concentrations using the standing-wave technique for the dry samples and as a function of volumetric moisture content for up to 0.5 cu cm/cu cm. The complex dielectric constant of the dust particle material was evaluated by two approaches. In one the data for permittivities obtained over the whole range of measured concentrations were extrapolated to the particle densities of the samples. In the other a mixing formula was utilized for the determination of epsilon(s) from permittivities measured at bulk concentrations.

  20. Accelerating procelain formation by incorporating a complex additive

    SciTech Connect

    Maslennikova, G.N.; Dubovitskii, S.A.; Moroz, I.K.

    1986-05-01

    The authors studied the influence of a complex additive consisting of oxides of calcium, zinc, and magnesium on the formaton of porcelain. In order to achieve a more uniform distribution of the complex additive in the porcelain body it was incorporated in the form of water soluble salts-nitrates, which ensured comparability of results and excluded the effect of the different types of anions. The study of the main parameters of sintering (porosity, shrinkage, and mechanical strength) for the test bodies showed that they sinter at lower temperatures and attain zero porosity, maximum shrinkage, and mechanical strength. The most typical bodies indentified in this way were investigated by methods of complex differential thermal analysis and x-ray diffraction. Thus, the introduction of complex additives consisting of calcium, zinc, and magnesium oxides contributes to the earlier formation of porcelain. With the reduction of firing temperatures by 100/sup 0/C the authors observe an improvement in the basic properties of porcelain.

  1. Multinuclear complex formation in aqueous solutions of Ca(II) and heptagluconate ions.

    PubMed

    Pallagi, Attila; Csendes, Zita; Kutus, Bence; Czeglédi, Eszter; Peintler, Gábor; Forgo, Péter; Pálinkó, István; Sipos, Pál

    2013-06-21

    The equilibria and structure of complexes formed between the Ca(2+) ion and the heptagluconate (Hglu(-)) ion in both neutral and alkaline solutions have been studied. In alkaline solutions an uncharged, multinuclear complex is formed with the composition of Ca3Hglu2(OH)4 (or [Ca3Hglu2H(-4)](0)) with an unexpectedly high stability constant (lg ?(32-4) = 14.09). The formation of the trinuclear complex was deduced from potentiometry and confirmed by freezing-point depression measurements and conductometry as well. The binding sites of Hglu(-) were determined from NMR measurements. Besides the carboxylate group, the O atoms on the second and third carbon atoms proved to be the most probable sites for Ca(2+) binding. PMID:23629045

  2. Contrasting Factors on the Kinetic Path to Protein Complex Formation Diminish the Effects of Crowding Agents

    PubMed Central

    Phillip, Yael; Harel, Michal; Khait, Ruth; Qin, Sanbo; Zhou, Huan-Xiang; Schreiber, Gideon

    2012-01-01

    The crowded environment of cells poses a challenge for rapid protein-protein association. Yet, it has been established that the rates of association are similar in crowded and in dilute solutions. Here we probe the pathway leading to fast association between TEM1 ?-lactamase and its inhibitor protein BLIP in crowded solutions. We show that the affinity of the encounter complex, the rate of final complex formation, and the structure of the transition state are similar in crowded solutions and in buffer. The experimental results were reproduced by calculations based on the transient-complex theory for protein association. Both experiments and calculations suggest that while crowding agents decrease the diffusion constant of the associating proteins, they also induce an effective excluded-volume attraction between them. The combination of the two opposing effects thus results in nearly identical overall association rates in diluted and crowded solutions. PMID:23009850

  3. The shock-induced star formation sequence resulting from a constant spiral pattern speed

    SciTech Connect

    Martínez-García, Eric E.; Puerari, Ivânio E-mail: puerari@inaoep.mx

    2014-08-01

    We utilize a suite of multiwavelength data of nine nearby spirals to analyze the shock-induced star formation sequence that may result from a constant spiral pattern speed. The sequence involves tracers as the H I, CO 24 ?m, and FUV, where the spiral arms were analyzed with Fourier techniques in order to obtain their azimuthal phases as a function of radius. It was found that only two of the objects, NGC 628 and NGC 5194, present coherent phases resembling the theoretical expectations, as indicated by the phase shifts of CO- 24 ?m. The evidence is more clear for NGC 5194 and moderate for NGC 628. It was also found that the phase shifts are different for the two spiral arms. With the exception on NGC 3627, a two-dimensional Fourier analysis showed that the rest of the objects do not exhibit bi-symmetric spiral structures of stellar mass, i.e., grand-design spirals. A phase order inversion indicates a corotation radius of ?89'' for NGC 628 and ?202'' for NGC 5194. For these two objects, the CO-H? phase shifts corroborate the CO-24 ?m azimuthal offsets. Also for NGC 5194, the CO-70 ?m, CO-140 ?m, and CO-250 ?m phase shifts indicate a corotation region.

  4. Spectrophotometric quantification of the thermodynamic constants of the complexes formed by dopamine and Cu(II) in aqueous media

    NASA Astrophysics Data System (ADS)

    Verastegui-Omaña, B.; Palomar-Pardavé, M.; Rojas-Hernández, A.; Corona Avendaño, S.; Romero-Romo, M.; Ramírez-Silva, M. T.

    2015-05-01

    The thermodynamic constants of the complex Cu(II)-dopamine in aqueous solution were evaluated from spectrophotometric data using the software SQUAD. It was found that there exist Cu(II):DA complexes with 1:1 and 1:2 stoichiometries and that their predominance depends on both the solution pH and the [Cu(II)]/[DA] ratio. Moreover, it is shown that the solubility of Cu(OH)2(s) increases drastically when these complexes are thermodynamically stable.

  5. Dynamics and rate of complex ions formation in comets

    NASA Astrophysics Data System (ADS)

    Shoyoqubov, Shoayub; Shoyoqubov, Shohrukh; Ibrohimov, Alisher

    2015-12-01

    The purpose of this research is to create a laboratory model of comet phenomenon and perform mass spectral analysis of the dynamics and rate of formation of complex ions by bombarding the solid mixture of H2O and CO2 with positive Cs ions with energy of 1.5 keV. Results of previous mass spectral studies of laboratory modeled comet phenomena and emission coefficient proportionality method were used in calculations.

  6. The catalytic role of uranyl in formation of polycatechol complexes

    PubMed Central

    2011-01-01

    To better understand the association of contaminant uranium with natural organic matter (NOM) and the fate of uranium in ground water, spectroscopic studies of uranium complexation with catechol were conducted. Catechol provides a model for ubiquitous functional groups present in NOM. Liquid samples were analyzed using Raman, FTIR, and UV-Vis spectroscopy. Catechol was found to polymerize in presence of uranyl ions. Polymerization in presence of uranyl was compared to reactions in the presence of molybdate, another oxyion, and self polymerization of catechol at high pH. The effect of time and dissolved oxygen were also studied. It was found that oxygen was required for self-polymerization at elevated pH. The potential formation of phenoxy radicals as well as quinones was monitored. The benzene ring was found to be intact after polymerization. No evidence for formation of ether bonds was found, suggesting polymerization was due to formation of C-C bonds between catechol ligands. Uranyl was found to form outer sphere complexes with catechol at initial stages but over time (six months) polycatechol complexes were formed and precipitated from solution (forming humic-like material) while uranyl ions remained in solution. Our studies show that uranyl acts as a catalyst in catechol-polymerization. PMID:21396112

  7. The Dynamics of Coalition Formation on Complex Networks

    PubMed Central

    Auer, S.; Heitzig, J.; Kornek, U.; Schöll, E.; Kurths, J.

    2015-01-01

    Complex networks describe the structure of many socio-economic systems. However, in studies of decision-making processes the evolution of the underlying social relations are disregarded. In this report, we aim to understand the formation of self-organizing domains of cooperation (“coalitions”) on an acquaintance network. We include both the network’s influence on the formation of coalitions and vice versa how the network adapts to the current coalition structure, thus forming a social feedback loop. We increase complexity from simple opinion adaptation processes studied in earlier research to more complex decision-making determined by costs and benefits, and from bilateral to multilateral cooperation. We show how phase transitions emerge from such coevolutionary dynamics, which can be interpreted as processes of great transformations. If the network adaptation rate is high, the social dynamics prevent the formation of a grand coalition and therefore full cooperation. We find some empirical support for our main results: Our model develops a bimodal coalition size distribution over time similar to those found in social structures. Our detection and distinguishing of phase transitions may be exemplary for other models of socio-economic systems with low agent numbers and therefore strong finite-size effects. PMID:26303622

  8. The Dynamics of Coalition Formation on Complex Networks

    NASA Astrophysics Data System (ADS)

    Auer, S.; Heitzig, J.; Kornek, U.; Schöll, E.; Kurths, J.

    2015-08-01

    Complex networks describe the structure of many socio-economic systems. However, in studies of decision-making processes the evolution of the underlying social relations are disregarded. In this report, we aim to understand the formation of self-organizing domains of cooperation (“coalitions”) on an acquaintance network. We include both the network’s influence on the formation of coalitions and vice versa how the network adapts to the current coalition structure, thus forming a social feedback loop. We increase complexity from simple opinion adaptation processes studied in earlier research to more complex decision-making determined by costs and benefits, and from bilateral to multilateral cooperation. We show how phase transitions emerge from such coevolutionary dynamics, which can be interpreted as processes of great transformations. If the network adaptation rate is high, the social dynamics prevent the formation of a grand coalition and therefore full cooperation. We find some empirical support for our main results: Our model develops a bimodal coalition size distribution over time similar to those found in social structures. Our detection and distinguishing of phase transitions may be exemplary for other models of socio-economic systems with low agent numbers and therefore strong finite-size effects.

  9. Demixing-stimulated lane formation in binary complex plasma

    SciTech Connect

    Du, C.-R.; Jiang, K.; Suetterlin, K. R.; Ivlev, A. V.; Morfill, G. E.

    2011-11-29

    Recently lane formation and phase separation have been reported for experiments with binary complex plasmas in the PK3-Plus laboratory onboard the International Space Station (ISS). Positive non-additivity of particle interactions is known to stimulate phase separation (demixing), but its effect on lane formation is unknown. In this work, we used Langevin dynamics (LD) simulation to probe the role of non-additivity interactions on lane formation. The competition between laning and demixing leads to thicker lanes. Analysis based on anisotropic scaling indices reveals a crossover from normal laning mode to a demixing-stimulated laning mode. Extensive numerical simulations enabled us to identify a critical value of the non-additivity parameter {Delta} for the crossover.

  10. Heat capacity contributions to the formation of inclusion complexes.

    PubMed

    Olvera, Angeles; Pérez-Casas, Silvia; Costas, Miguel

    2007-10-01

    An analysis scheme for the formation of the inclusion complexes in water is presented. It is exemplified for the case where the host is alpha-cyclodextrin and the guest is a linear alcohol (1-propanol to 1-octanol) or the isomers of 1-pentanol. Eight transfer isobaric heat capacities, DeltatCp, involving different initial and final states are evaluated at infinite dilution of the guest using both data determined in this work and from the literature. Apart from the usual definition for the inclusion heat capacity change, three inclusion transfers are used. The sign of each DeltatCp indicates if the transfer is an order-formation or an order-destruction process. From the DeltatCp data, the main contributions to the heat capacity of cyclodextrin complexation, namely, those due to dehydration of the hydrophobic section of the guest molecule, H-bond formation, formation of hydrophobic interactions, and release of water molecules from the cyclodextrin cavity, are estimated. The relative weight of each of these contributions to the DeltatCp values is discussed, providing a better characterization of the molecular recognition process involved in the inclusion phenomena. PMID:17850130

  11. Spectroscopic and thermodynamic study of charge transfer complex formation between cloxacillin sodium and riboflavin in aqueous ethanol media of varying composition.

    PubMed

    Roy, Dalim Kumar; Saha, Avijit; Mukherjee, Asok K

    2006-03-01

    Cloxacillin sodium has been shown to form a charge transfer complex of 2:1 stoichiometry with riboflavin (Vitamin B(2)) in aqueous ethanol medium. The enthalpy and entropy of formation of this complex have been determined by estimating the formation constant spectrophotometrically at five different temperatures in pure water medium. Pronounced effect of dielectric constant of the medium on the magnitude of K has been observed by determining K in aqueous ethanol mixtures of varying composition. This has been rationalized in terms of ionic dissociation of the cloxacillin sodium (D(-)Na(+)), hydrolysis of the anion D(-) and complexation of the free acid, DH with riboflavin. PMID:16150635

  12. Mercury(II) Penicillamine Complex Formation in Alkaline Aqueous Solution

    SciTech Connect

    Leung, B.O.; Jalilehvand, F.; Mah, V.

    2009-06-01

    The complex formation between mercury(II) and penicillamine (H{sub 2}Pen = 3,3'-dimethyl cysteine) in alkaline aqueous solutions (pH {approx}2) has been investigated with extended X-ray absorption fine structure (EXAFS) and {sup 199}Hg NMR spectroscopy. By varying the penicillamine concentration (C{sub H{sub 2}Pen} = 0.2--1.25 M) in {approx}0.1 M Hg(II) solutions, two coexisting major species [Hg(Pen){sub 2}]{sup 2-} and [Hg(Pen){sub 3}]{sub 4-} were characterized with mean Hg-S bond distances 2.34(2) and 2.44(2) {angstrom}, respectively. The [Hg(Pen){sub 2}]{sup 2-} complex with two deprotonated penicillamine ligands forms an almost linear S-Hg-S entity with two weak chelating Hg-N interactions at the mean Hg-N distance 2.52(2) {angstrom}. The same type of coordination is also found for the corresponding [Hg(Cys){sub 2}]{sup 2-} complex in alkaline aqueous solution with the mean bond distances Hg-S 2.34(2) {angstrom} and Hg-N 2.56(2) {angstrom}. The relative amounts of the [Hg(Pen){sub 2}]{sup 2-} and [Hg(Pen){sub 3}]{sup 4-} complexes were estimated by fitting linear combinations of the EXAFS oscillations to the experimental spectra. Also their {sup 199}Hg NMR chemical shifts were used to evaluate the complex formation, showing that the [Hg(Pen){sub 3}]{sup 4-} complex dominates already at moderate excess of the free ligand ([Pen{sup 2-}] > {approx} 0.1 M).

  13. Metal Complex Formation in Melts of Acetamide-Ammonium Nitrate-Water Mixtures, Part I. Cobalt(II) Chloride Complexes

    NASA Astrophysics Data System (ADS)

    Zsigrai, István J.; Gadžuri?, Slobodan B.; Matijevi?, Borko

    2005-03-01

    The complex formation between cobalt(II) and chloride ions in molten NH4NO3?2.61H2O, NH4NO3?CH3CONH2?1.61H2O and NH4NO3?2.61CH3CONH2 has been investigated. Absorption spectra of cobalt(II) chloride containing variable amounts of ammonium chloride were recorded at 45 to 60 °C. In the absence of chloride, the solutions show spectra typical for octahedral co-ordination of cobalt(II). Addition of chloride caused a shift of the absorption maximum toward lower energies and an increase of the molar absorption coefficient with increasing chloride concentration. The position of the absorption maximum and the intensity of the absorption indicate tetrahedral or severely distorted octahedral co-ordination. The stability constants for [Co(NO3)4]2-, [Co(NO3)2Cl2]2- and [CoCl4]2- complex formation in NH4NO3?2.61CH3CONH2 are reported.

  14. A dramatic change in the interaction of Cu(II) with bio-peptides promoted by SDS--a model for complex formation on a membrane surface.

    PubMed

    Bal, W; Kozlowski, H; Lisowski, M; Pettit, L; Robbins, R; Safavi, A

    1994-07-01

    The extent of complex formation between Cu(II) and many biologically active oligopeptides has been shown to change significantly in the presence of SDS micelles, a recognized model for cell lipid membranes. Protonation constants of peptides can be increased by up to 2 log unit, especially when they contain hydrophobic side chains. Metal complex formation is generally less extensive and the conformations of peptides can be altered dramatically when compared to those in simple aqueous solution. PMID:7519253

  15. The ribosome-associated complex antagonizes prion formation in yeast.

    PubMed

    Amor, Alvaro J; Castanzo, Dominic T; Delany, Sean P; Selechnik, Daniel M; van Ooy, Alex; Cameron, Dale M

    2015-01-01

    The number of known fungal proteins capable of switching between alternative stable conformations is steadily increasing, suggesting that a prion-like mechanism may be broadly utilized as a means to propagate altered cellular states. To gain insight into the mechanisms by which cells regulate prion formation and toxicity we examined the role of the yeast ribosome-associated complex (RAC) in modulating both the formation of the [PSI(+)] prion - an alternative conformer of Sup35 protein - and the toxicity of aggregation-prone polypeptides. The Hsp40 RAC chaperone Zuo1 anchors the RAC to ribosomes and stimulates the ATPase activity of the Hsp70 chaperone Ssb. We found that cells lacking Zuo1 are sensitive to over-expression of some aggregation-prone proteins, including the Sup35 prion domain, suggesting that co-translational protein misfolding increases in ?zuo1 strains. Consistent with this finding, ?zuo1 cells exhibit higher frequencies of spontaneous and induced prion formation. Cells expressing mutant forms of Zuo1 lacking either a C-terminal charged region required for ribosome association, or the J-domain responsible for Ssb ATPase stimulation, exhibit similarly high frequencies of prion formation. Our findings are consistent with a role for the RAC in chaperoning nascent Sup35 to regulate folding of the N-terminal prion domain as it emerges from the ribosome. PMID:25739058

  16. Complex interactions between formative assessment, technology, and classroom practices

    NASA Astrophysics Data System (ADS)

    Price, Edward

    2012-02-01

    Interactive engagement (IE) methods provide instructors with evidence of student thinking that can guide instructional decisions across a range of timescales: facilitating an activity, determining the flow of activities, or modifying the curriculum. Thus, from the instructor's perspective, IE activities can function as formative assessments. As a practical matter, the ability to utilize this potential depends on how the activities are implemented. This paper describes different tools for small group problem solving, including whiteboards, Tablet PCs, digital cameras, and photo-sharing websites. These tools provide the instructor with varying levels of access to student work during and after class, and therefore provide a range of support for formative assessment. Furthermore, the tools differ in physical size, ease of use, and the roles for students and instructor. These differences lead to complex, often surprising interactions with classroom practices.

  17. Formation mechanism of complex pattern on fishes' skin

    NASA Astrophysics Data System (ADS)

    Li, Xia; Liu, Shuhua

    2009-10-01

    In this paper, the formation mechanism of the complex patterns observed on the skin of fishes has been investigated by a two-coupled reaction diffusion model. The effects of coupling strength between two layers play an important role in the pattern-forming process. It is found that only the epidermis layer can produce complicated patterns that have structures on more than one length scale. These complicated patterns including super-stripe pattern, mixture of spots and stripe, and white-eye pattern are similar to the pigmentation patterns on fishes' skin.

  18. Redox reactions and complex formation of transplutonium elements in solutions

    SciTech Connect

    Krot, N.N.; Myasoedov, B.F.

    1986-01-01

    This paper gives a brief analysis of the kinetics and mechanism of a number of redox processes and the complex formation of transplutonium elements in unusual oxidation states. The composition and strength of complexes of TPE with various addends have been determined. The new experimental data on the oxidation potentials of americium and berkelium ions in solutions are cited in abbreviated form. It follows from the data that in phosphoric acid solutions, when the H/sub 3/PO/sub 4/ concentration is increased from 10 to 15 M, the oxidation potential of the couple Am(IV)-Am(III) decreases. The oxidation potentials of the couples Am(VI)-Am(V), Cm(V)-Cm(IV), and Bk(IV)Bk(III) are also presented.

  19. Formation of native hepatitis C virus glycoprotein complexes.

    PubMed Central

    Deleersnyder, V; Pillez, A; Wychowski, C; Blight, K; Xu, J; Hahn, Y S; Rice, C M; Dubuisson, J

    1997-01-01

    The hepatitis C virus (HCV) glycoproteins (E1 and E2) interact to form a heterodimeric complex, which has been proposed as a functional subunit of the HCV virion envelope. As examined in cell culture transient-expression assays, the formation of properly folded, noncovalently associated E1E2 complexes is a slow and inefficient process. Due to lack of appropriate immunological reagents, it has been difficult to distinguish between glycoprotein molecules that undergo productive folding and assembly from those which follow a nonproductive pathway leading to misfolding and aggregation. Here we report the isolation and characterization of a conformation-sensitive E2-reactive monoclonal antibody (H2). The H2 monoclonal antibody selectively recognizes slowly maturing E1E2 heterodimers which are noncovalently linked, protease resistant, and no longer associated with the endoplasmic reticulum chaperone calnexin. This complex probably represents the native prebudding form of the HCV glycoprotein heterodimer. Besides providing a novel reagent for basic studies on HCV virion assembly and entry, this monoclonal antibody should be useful for optimizing production and isolation of native HCV glycoprotein complexes for serodiagnostic and vaccine applications. PMID:8985401

  20. Characterization of Hydrogen Complex Formation in III-V Semiconductors

    SciTech Connect

    Williams, Michael D.

    2006-09-28

    Atomic hydrogen has been found to react with some impurity species in semiconductors. Hydrogenation is a methodology for the introduction of atomic hydrogen into the semiconductor for the express purpose of forming complexes within the material. Efforts to develop hydrogenation as an isolation technique for AlGaAs and Si based devices failed to demonstrate its commercial viability. This was due in large measure to the low activation energies of the formed complexes. Recent studies of dopant passivation in long wavelength (0.98 - 1.55?m) materials suggested that for the appropriate choice of dopants much higher activation energies can be obtained. This effort studied the formation of these complexes in InP, This material is extensively used in optoelectronics, i.e., lasers, modulators and detectors. The experimental techniques were general to the extent that the results can be applied to other areas such as sensor technology, photovoltaics and to other material systems. The activation energies for the complexes have been determined and are reported in the scientific literature. The hydrogenation process has been shown by us to have a profound effect on the electronic structure of the materials and was thoroughly investigated. The information obtained will be useful in assessing the long term reliability of device structures fabricated using this phenomenon and in determining new device functionalities.

  1. Ion wake formation with dust charge fluctuation in complex plasma

    SciTech Connect

    Bhattacharjee, Saurav; Das, Nilakshi

    2013-11-15

    In complex plasma, the interaction mechanism among dust grains near the plasma sheath is significantly influenced by the downward ion flow towards the sheath and dust charge fluctuation over grain surface. Asymmetric ion flow towards the sheath gives rise to well known attractive wake potential in addition to repulsive Yukawa type of potential. The present work shows that the charging dynamics play a significant role in modification of plasma dielectric response function and hence the interaction mechanism among test dust particulates. The effective Debye length is found to be a characteristic of dust size and background plasma response towards the grain along with ion flow speed. The potentials thus obtained show a damping in strength of interaction in the presence of dynamical charging of dust as compared to that of constant charge dust grains. The result also shows decrease in focal length of ion lensing with increase in grain size.

  2. Formation of categories for complex novel auditory stimuli

    NASA Astrophysics Data System (ADS)

    Mirman, Daniel; Holt, Lori L.; McClelland, James L.

    2002-05-01

    Categorization of complex sounds with multiple, imperfectly valid cues is fundamental to phonetic perception. To study the general perceptual and cognitive processes that support complex sound categories, a novel stimulus set was created that allows tight control of category structure and input distributions. Stimuli were created from 300-ms noise bursts by applying bandstop filters at varying center frequencies and manipulating rise/fall time of stimulus onset and offset. Stimuli were assigned to one of two categories and presented to participants in a category identification and an AX discrimination task. Feedback was provided during identification trials, but not during discrimination tasks. Participants quickly learned to apply the category labels with high accuracy. Identification reaction times followed a pattern typical of speech stimuli with an apex in reaction time at category boundary. These results are consistent with formation of new auditory categories. Preliminary results indicate that discrimination performance is not tightly coupled with development of sharp identification functions and response-time peaks at category boundaries. Implications for mechanisms of speech categorization and category formation will be discussed. [Work supported by CNBC, NIH, and NSF.

  3. Quantitative serine protease assays based on formation of copper(II)-oligopeptide complexes.

    PubMed

    Ding, Xiaokang; Yang, Kun-Lin

    2015-01-01

    A quantitative protease assay based on the formation of a copper-oligopeptide complex is developed. In this assay, when a tripeptide GGH fragment is cleaved from an oligopeptide chain by serine proteases, the tripeptide quickly forms a pink GGH/Cu(2+) complex whose concentration can be determined quantitatively by using UV-Vis spectroscopy. Therefore, activities of serine proteases can be determined from the formation rate of the GGH/Cu(2+) complex. This principle can be used to detect the presence of serine protease in a real-time manner, or measure proteolytic activities of serine protease cleaving different oligopeptide substrates. For example, by using this assay, we demonstrate that trypsin, a model serine protease, is able to cleave two oligopeptides GGGGKGGH () and GGGGRGGH (). However, the specificity constant (kcat/Km) for is higher than that of (6.4 × 10(3) mM(-1) min(-1)vs. 1.3 × 10(3) mM(-1) min(-1)). This result shows that trypsin is more specific toward arginine (R) than lysine (K) in the oligopeptide sequence. PMID:25386732

  4. Thermodynamic study of complex formation between Ce3+ and cryptand 222 in some binary mixed nonaqueous solvents

    NASA Astrophysics Data System (ADS)

    Rounaghi, G. H.; Dolatshahi, S.; Tarahomi, S.

    2014-12-01

    The stoichiometry, stability and the thermodynamic parameters of complex formation between cerium(III) cation and cryptand 222 (4,7,13,16,21,24-hexaoxa-1,10-diazabycyclo[8.8.8]-hexacosane) were studied by conductometric titration method in some binary solvent mixtures of dimethylformamide (DMF), 1,2-dichloroethane (DCE), ethyl acetate (EtOAc) and methyl acetate (MeOAc) with methanol (MeOH), at 288, 298, 308, and 318 K. A model based on 1: 1 stoichiometry has been used to analyze the conductivity data. The data have been fitted according to a non-linear least-squares analysis that provide the stability constant, K f, for the cation-ligand inclusion complex. The results revealed that the stability order of [Ce(cryptand 222)]3+ complex changes with the nature and composition of the solvent system. A non-linear relationship was observed between the stability constant (log K f) of [Ce(cryptand 222)]3+ complex versus the composition of the binary mixed solvent. Standard thermodynamic values were obtained from temperature dependence of the stability constant of the complex, show that the studied complexation process is mainly entropy governed and are influenced by the nature and composition of the binary mixed solvent solutions.

  5. Estimation of the initial equilibrium constants in the formation of tetragonal lysozyme nuclei

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.

    1991-01-01

    Results are presented from a study of the equilibria, kinetic rates, and the aggregation pathway which leads from a lysozyme monomer crystal to a tetragonal crystal, using dialyzed and recrystallized commercial hen eggwhite lysozyme. Relative light scattering intensity measurements were used to estimate the initial equilibrium constants for undersaturated lysozyme solutions in the tetragonal regime. The K1 value was estimated to be (1-3) x 10 exp 4 L/mol. Estimates of subsequent equilibrium constants depend on the crystal aggregation model chosen or determined. Experimental data suggest that tetragonal lysozyme crystal grows by addition of aggregates preformed in the bulk solution, rather than by monomer addition.

  6. Physical volcanology of the Gubisa Formation, Kone Volcanic Complex, Ethiopia

    NASA Astrophysics Data System (ADS)

    Rampey, Michael L.; Oppenheimer, Clive; Pyle, David M.; Yirgu, Gezahegn

    2014-08-01

    Despite their significance for understanding the potential environmental factors involved in hominin evolution in Ethiopia, very few modern volcanologic studies have been carried out on the Quaternary calderas and associated silicic tephra deposits of the Ethiopian Rift. We present here the second of a set of papers reporting the findings of fieldwork and laboratory analyses of one of the largest of these structures, Kone Caldera, located within the Kone Volcanic Complex in the northern Main Ethiopian Rift. The most recent major episode of explosive eruptive activity at Kone Caldera was apparently associated with formation of part of the overall 8-km-diameter collapse area, and deposited a widely-dispersed alkali rhyolite tephra that reaches a thickness of up to 60 m in vent-proximal deposits. We report here the physical characteristics of this unit in order to constrain eruptive conditions. The pumice fall deposit suggests that an abrupt decrease in magma discharge rate occurred part way through the eruption.

  7. Single Nucleoprotein Residue Modulates Arenavirus Replication Complex Formation

    PubMed Central

    Knopp, Kristeene A.; Ngo, Tuan; Gershon, Paul D.

    2015-01-01

    ABSTRACT The Arenaviridae are enveloped, negative-sense RNA viruses with several family members that cause hemorrhagic fevers. This work provides immunofluorescence evidence that, unlike those of New World arenaviruses, the replication and transcription complexes (RTC) of lymphocytic choriomeningitis virus (LCMV) colocalize with eukaryotic initiation factor 4E (eIF4E) and that eIF4E may participate in the translation of LCMV mRNA. Additionally, we identify two residues in the LCMV nucleoprotein (NP) that are conserved in every mammalian arenavirus and are required for recombinant LCMV recovery. One of these sites, Y125, was confirmed to be phosphorylated by using liquid chromatography-tandem mass spectrometry (LC-MS/MS). NP Y125 is located in the N-terminal region of NP that is disordered when RNA is bound. The other site, NP T206, was predicted to be a phosphorylation site. Immunofluorescence analysis demonstrated that NP T206 is required for the formation of the punctate RTC that are typically observed during LCMV infection. A minigenome reporter assay using NP mutants, as well as Northern blot analysis, demonstrated that although NP T206A does not form punctate RTC, it can transcribe and replicate a minigenome. However, in the presence of matrix protein (Z) and glycoprotein (GP), translation of the minigenome message with NP T206A was inhibited, suggesting that punctate RTC formation is required to regulate viral replication. Together, these results highlight a significant difference between New and Old World arenaviruses and demonstrate the importance of RTC formation and translation priming in RTC for Old World arenaviruses. PMID:25922393

  8. Image formation in the eye: very specified complexity

    NASA Astrophysics Data System (ADS)

    Stoltzmann, David E.

    2005-08-01

    The formation of an image, and its correct interpretation by sighted living creatures, is a unique example of specified complexity unlike anything else in nature. While many of the functional aspects of living organisms are extremely complex, only an image requires a unique mapping process by the eye-brain system to be useful to the organism. The transfer of light from an object scene to a visual detection system (eye + brain) conveys an enormous amount of information. But unless that information is correctly organized into a useful image, the exchange of information is degraded and of questionable use. This paper examines the "connections" necessary for images to be interpreted correctly, as well as addressing the additional complexity requirement of dual-image mapping for stereovision capabilities. Statistics are presented for "simple eyes" consisting of a few pixels to illustrate the daunting task that random chance has to produce any form of a functional eye. For example, a 12-pixel eye (or camera) has 12! (479,001,600) possible pixel-to-brain (computer) wiring combinations, which can then be compared to the 126 million rods/cones of the actual human eye. If one tries to "connect the wires" (correctly interpret the information contained) in a 12-pixel image by random processes, by the time 6 pixels become correctly connected, over 99.9% of all the trials are incorrect, producing "noise" rather than a recognizable image. Higher numbers of pixels quickly make the problem astronomically worse for achieving any kind of useful image. This paper concludes that random-chance purposeless undirected processes cannot account for how images are perceived by living organisms.

  9. Impact of electric-field dependent dielectric constants on two-dimensional electron gases in complex oxides

    NASA Astrophysics Data System (ADS)

    Peelaers, H.; Krishnaswamy, K.; Gordon, L.; Steiauf, D.; Sarwe, A.; Janotti, A.; Van de Walle, C. G.

    2015-11-01

    High-density two-dimensional electron gas (2DEG) can be formed at complex oxide interfaces such as SrTiO3/GdTiO3 and SrTiO3/LaAlO3. The electric field in the vicinity of the interface depends on the dielectric properties of the material as well as on the electron distribution. However, it is known that electric fields can strongly modify the dielectric constant of SrTiO3 as well as other complex oxides. Solving the electrostatic problem thus requires a self-consistent approach in which the dielectric constant varies according to the local magnitude of the field. We have implemented the field dependence of the dielectric constant in a Schrödinger-Poisson solver in order to study its effect on the electron distribution in a 2DEG. Using the SrTiO3/GdTiO3 interface as an example, we demonstrate that including the field dependence results in the 2DEG being confined closer to the interface compared to assuming a single field-independent value for the dielectric constant. Our conclusions also apply to SrTiO3/LaAlO3 as well as other similar interfaces.

  10. Electronic structure of solid molecular complexes evaluated by positronium formation studies at low temperature

    NASA Astrophysics Data System (ADS)

    Oliveira, F. C.; Denadai, A. M. L.; Fulgêncio, F. H.; Windmöller, D.; Yoshida, M. I.; Magalhães, W. F.

    2015-03-01

    Electronic structure of solid molecular complexes [TPPO1-x?TPMx] and [TPPO1-x?ACNx] at low temperature (80 K) was investigated by positronium annihilation lifetime spectroscopy (PALS) in order to evaluate the positronium formation at this condition and compare with our previous study recently reported at 294 K. Temporal dependence of the ?3 (ortho-positronium lifetime/ns) and I3 (ortho-positronium relative intensity/%) at 80 K remained constant throughout the measurement time (10 h), suggesting non-occurrence of electron trapping. The dependence of I3 with molar fraction at 80 K showed a decrease of I3 when compared with the values obtained at 294 K (?I3 = 8% for [TPPO0.5?TPM0.5] and ?I3 = 37% for [TPPO0.5?ACN0.5]. These results were rationalized in terms of reduction of electronic availability upon lowering of temperature.

  11. Sub-THz complex dielectric constants of smectite clay thin samples with Na$^{+}$/Ca$^{++}$-ions

    E-print Network

    Rezwanur Rahman; Douglas K. McCarty; Manika Prasad

    2015-07-28

    We implement a technique to characterize the electromagnetic properties at frequencies 100 to 165 GHz (3 cm$^{-1}$ to 4.95 cm$^{-1}$) of oriented smectite samples using an open cavity resonator connected to a sub-millimeter wave VNA (Vector Network Analyzer). We measured dielectric constants perpendicular to the bedding plane on oriented Na$^{+}$ and Ca$^{++}$-ion stabilized smectite samples deposited on a glass slide at ambient laboratory conditions (room temperature and room light). The clay layer is much thinner ($\\sim$ 30 $\\mu$m) than the glass substrate ($\\sim$ 2.18 mm). The real part of dielectric constant, $\\epsilon_{re}$, is essentially constant over this frequency range but is larger in Na$^{+}$- than in Ca$^{++}$-ion infused clay. The total electrical conductivity (associated with the imaginary part of dielectric constant, $\\epsilon_{im}$) of both samples increases monotonically at lower frequencies ($$ 110 GHz. The dispersion of the samples display a dependence on the ionic strength in the clay interlayers, i.e., $\\zeta$-potential in the Stern layers.

  12. Sub-THz complex dielectric constants of montmorillionite clay thin samples with Na$^{+}$/Ca$^{++}$-ions

    E-print Network

    Rezwanur Rahman; Douglas K. McCarty; Manika Prasad; John A. Scales

    2015-02-13

    We implement a technique to characterize electromagnetic properties at frequencies 100 to 165 GHz (3 cm$^{-1}$ to 4.95 cm$^{-1}$) of oriented montmorillionite samples using an open cavity resonator connected to a sub-millimeter wave VNA (Vector Network Analyzer). We measured dielectric constants perpendicular to the bedding plane on oriented Na$^{+}$ and Ca$^{++}$-ion stabilized montmorillionite samples deposited on a glass slide at ambient laboratory conditions (room temperature and room light). The clay layer is much thinner ($\\sim$ 30 $\\mu$m) than the glass substrate ($\\sim$ 2.18 mm). The real part of dielectric constant,$\\epsilon_{re}$, is essentially constant over this frequency range but is larger in Na$^{+}$- than in Ca$^{++}$-ioned clay. The total electrical conductivity (associated with the imaginary part of dielectric constant, $\\epsilon_{im}$) of both samples increases monotonically at lower frequencies ($$ 110 GHz. The dispersion of the samples display a dependence on the ionic strength in the clay interlayers, i.e., $\\zeta$-potential in the Stern layers.

  13. On the Complexity of Constant Propagation Markus Muller-Olm and Oliver Ruthing

    E-print Network

    Müller-Olm, Markus

    ¨at Dortmund, FB Informatik, LS V, D-44221 Dortmund, Germany {mmo,ruething}@ls5.cs.uni-dortmund.de Abstract. Constant propagation (CP) is one of the most widely used optimizations in practice (cf. [9]). Intuitively at run-time. Unfortunately, as proved by different authors [4, 16], CP is in general undecidable even

  14. On the Complexity of Constant Propagation Markus MullerOlm and Oliver Ruthing

    E-print Network

    Müller-Olm, Markus

    Ë?at Dortmund, FB Informatik, LS V, D­44221 Dortmund, Germany {mmo,ruething}@ls5.cs.uni­dortmund.de Abstract. Constant propagation (CP) is one of the most widely used optimizations in practice (cf. [9]). Intuitively at run­time. Unfortunately, as proved by di#erent authors [4, 16], CP is in general undecidable even

  15. Sub-THz complex dielectric constants of smectite clay thin samples with Na+/Ca++ ions

    NASA Astrophysics Data System (ADS)

    Rahman, Rezwanur; McCarty, Douglas K.; Prasad, Manika

    2015-09-01

    We implement a technique to characterize the electromagnetic properties at frequencies 100 to 165 GHz (3 cm-1 to 4.95 cm-1) of oriented smectite samples using an open cavity resonator connected to a submillimeter wave VNA (Vector Network Analyzer). We measured dielectric constants perpendicular to the bedding plane on oriented Na+ ion and Ca++ ion stabilized smectite samples deposited on a glass slide at ambient laboratory conditions (room temperature and room light). The clay layer is much thinner (˜30 ?m) than the glass substrate (˜2.18 mm). The real part of dielectric constant, ?re, is essentially constant over this frequency range but is larger in Na+ ion than in Ca++ ion infused clay. The total electrical conductivity (associated with the imaginary part of dielectric constant, ?im) of both samples increases monotonically at lower frequencies (<110 GHz) but shows rapid increase for Na+ ions in the regime > 110 GHz. The dispersion of the samples display a dependence on the ionic strength in the clay interlayers, i.e., ? potential in the Stern layers.

  16. Probing the Formation of Complex Organic Molecules in Interstellar Ices - Beyond the FTIR - RGA Limitation

    NASA Astrophysics Data System (ADS)

    Kaiser, Ralf I.

    2015-08-01

    An understanding of the formation of key classes of complex organic molecules (COMs) within interstellar ices is of core value to the laboratory astrophysics community with structural isomers - molecules with the same molecular formula but different connectivities of atoms - serving as a molecular clock and tracers in defining the evolutionary stage of cold molecular clouds and star forming regions. Here, the lack of data on products, branching ratios, and rate constants of their formation and how they depend on the ice temperature and composition limits the understanding how COMs are synthesized. Classically, infrared spectroscopy combined with mass spectrometry of the irradiated and subliming ices have been exploited for the last decades, but the usefulness of these methods has reached the limits when it comes to the identification of CMS in those ices. Here, infrared spectroscopy can only untangle the functional groups of COMs; mass spectrometry coupled with electron impact ionization cannot discriminate structural isomers and suffers from extensive fragmentation. This talk presents a novel approach to elucidate the formation of COMs by exploiting - besides classical infrared, Raman, and ultraviolet-visual spectroscopy - reflectron time-of-flight mass spectrometry (ReTOF) coupled with tunable vacuum ultraviolet (VUV) soft photoionization (ReTOF-PI). This technique has the unique power to identify the molecules based on a cross correlation of their mass-to-charge ratios, their ionization energies (IE), and their sublimation temperatures ultimately unraveling an inventory of individual COMs molecules formed upon interaction of ionizing radiation with interstellar analog ices.

  17. Hydrolysis, formation and ionization constants at 25/sup 0/C, and at high temperature-high ionic strength

    SciTech Connect

    Phillips, S.L.; Phillips, C.A.; Skeen, J.

    1985-02-01

    Thermochemical data for nuclear waste disposal are compiled. The resulting computerized database consists of critically evaluated data on Gibbs energy of formation, enthalpy of formation, entropy and heat capacity of selected substances for about 16 elements at 25/sup 0/C and zero ionic strength. Elements covered are Am, As, Br, C, Cl, F, I, Mo, Np, N, O, P, Pu, Si, Sr, S, and U. Values of these thermodynamic properties were used to calculate equilibrium quotients for hydrolysis, complexation and ionization reactions up to 300/sup 0/C and 3 ionic strength, for selected chemical reactions.

  18. Silver(I) Complex formation with Cysteine, Penicillamine and Glutathione

    PubMed Central

    Leung, Bonnie O.; Jalilehvand, Farideh; Mah, Vicky; Parvez, Masood; Wu, Qiao

    2013-01-01

    The complex formation between silver(I) and cysteine (H2Cys), penicillamine (H2Pen) or glutathione (H3Glu) in alkaline aqueous solution was examined using extended X-ray absorption fine structure (EXAFS) and 109Ag NMR spectroscopic techniques. The complexes formed in 0.1 mol·dm?3 Ag(I) solutions with cysteine and penicillamine were investigated for ligand/Ag(I) (L/Ag) mole ratios increasing from 2.0 to 10.0. For the series of cysteine solutions (pH 10 - 11) a mean Ag-S bond distance 2.45 ± 0.02 Å consistently emerged, while for penicillamine (pH 9) the average Ag-S bond distance gradually increased from 2.40 to 2.44 ± 0.02 Å. EXAFS and 109Ag NMR spectra of a concentrated Ag(I)-cysteine solution (CAg(I) = 0.8 mol·dm?3, L/Ag = 2.2) showed the mean Ag-S bond distance 2.47 ± 0.02 Å and ?(109Ag) = 1103 ppm, consistent with prevailing, partially oligomeric AgS3 coordinated species, while for penicillamine (CAg(I) = 0.5 mol·dm?3, L/Ag = 2.0) the mean Ag-S bond distance 2.40 ± 0.02 Å and ?(109Ag) = 922 ppm indicate that mononuclear AgS2 coordinated complexes dominate. For Ag(I)-glutathione solutions (CAg(I) = 0.01 mol·dm?3, pH ~ 11), mononuclear AgS2 coordinated species with the mean Ag-S bond distance 2.36 ± 0.02 Å dominate for L/Ag mole ratios from 2.0 to 10.0. The crystal structure of the silver(I)-cysteine compound (NH4)Ag2(HCys)(Cys)·H2O (1) precipitating at pH ~ 10 was solved and showed a layer structure with both AgS3 and AgS3N coordination to the cysteinate ligands. A redetermination of the crystal structure of Ag(HPen)·H2O (2) confirmed the proposed digonal AgS2 coordination environment to bridging thiolate sulfur atoms in polymeric intertwining chains forming a double helix. A survey of Ag-S bond distances for crystalline Ag(I) complexes with S-donor ligands in different AgS2, AgS2(O/N) and AgS3 coordination environments was used, together with a survey of 109Ag NMR chemical shifts, to assist assignments of the Ag(I) coordination in solution. PMID:23556419

  19. Changes in protein structure at the interface accompanying complex formation

    PubMed Central

    Chakravarty, Devlina; Janin, Joël; Robert, Charles H.; Chakrabarti, Pinak

    2015-01-01

    Protein interactions are essential in all biological processes. The changes brought about in the structure when a free component forms a complex with another molecule need to be characterized for a proper understanding of molecular recognition as well as for the successful implementation of docking algorithms. Here, unbound (U) and bound (B) forms of protein structures from the Protein–Protein Interaction Affinity Database are compared in order to enumerate the changes that occur at the interface atoms/residues in terms of the solvent-accessible surface area (ASA), secondary structure, temperature factors (B factors) and disorder-to-order transitions. It is found that the interface atoms optimize contacts with the atoms in the partner protein, which leads to an increase in their ASA in the bound interface in the majority (69%) of the proteins when compared with the unbound interface, and this is independent of the root-mean-square deviation between the U and B forms. Changes in secondary structure during the transition indicate a likely extension of helices and strands at the expense of turns and coils. A reduction in flexibility during complex formation is reflected in the decrease in B factors of the interface residues on going from the U form to the B form. There is, however, no distinction in flexibility between the interface and the surface in the monomeric structure, thereby highlighting the potential problem of using B factors for the prediction of binding sites in the unbound form for docking another protein. 16% of the proteins have missing (disordered) residues in the U form which are observed (ordered) in the B form, mostly with an irregular conformation; the data set also shows differences in the composition of interface and non-interface residues in the disordered polypeptide segments as well as differences in their surface burial. PMID:26594372

  20. Reactions of a Dinitrogen Complex of Molybdenum: Formation of a Carbon-Nitrogen Bond.

    ERIC Educational Resources Information Center

    Busby, David C.; And Others

    1981-01-01

    Reports a procedure for the formation of alkyldiazenido complexes of molybdenum in the absence of dioxygen, suitable for inclusion in an advanced inorganic chemistry laboratory. Includes background information and experimental procedures for two complexes. (SK)

  1. Adhesion and formation of microbial biofilms in complex microfluidic devices

    SciTech Connect

    Kumar, Aloke; Karig, David K; Neethirajan, Suresh; Suresh, Anil K; Srijanto, Bernadeta R; Mukherjee, Partha P; Retterer, Scott T; Doktycz, Mitchel John

    2012-01-01

    Shewanella oneidensis is a metal reducing bacterium, which is of interest for bioremediation and clean energy applications. S. oneidensis biofilms play a critical role in several situations such as in microbial energy harvesting devices. Here, we use a microfluidic device to quantify the effects of hydrodynamics on the biofilm morphology of S. oneidensis. For different rates of fluid flow through a complex microfluidic device, we studied the spatiotemporal dynamics of biofilms, and we quantified several morphological features such as spatial distribution, cluster formation and surface coverage. We found that hydrodynamics resulted in significant differences in biofilm dynamics. The baffles in the device created regions of low and high flow in the same device. At higher flow rates, a nonuniform biofilm develops, due to unequal advection in different regions of the microchannel. However, at lower flow rates, a more uniform biofilm evolved. This depicts competition between adhesion events, growth and fluid advection. Atomic force microscopy (AFM) revealed that higher production of extra-cellular polymeric substances (EPS) occurred at higher flow velocities.

  2. Integrin activation and focal complex formation in cardiac hypertrophy

    NASA Technical Reports Server (NTRS)

    Laser, M.; Willey, C. D.; Jiang, W.; Cooper, G. 4th; Menick, D. R.; Zile, M. R.; Kuppuswamy, D.

    2000-01-01

    Cardiac hypertrophy is characterized by both remodeling of the extracellular matrix (ECM) and hypertrophic growth of the cardiocytes. Here we show increased expression and cytoskeletal association of the ECM proteins fibronectin and vitronectin in pressure-overloaded feline myocardium. These changes are accompanied by cytoskeletal binding and phosphorylation of focal adhesion kinase (FAK) at Tyr-397 and Tyr-925, c-Src at Tyr-416, recruitment of the adapter proteins p130(Cas), Shc, and Nck, and activation of the extracellular-regulated kinases ERK1/2. A synthetic peptide containing the Arg-Gly-Asp (RGD) motif of fibronectin and vitronectin was used to stimulate adult feline cardiomyocytes cultured on laminin or within a type-I collagen matrix. Whereas cardiocytes under both conditions showed RGD-stimulated ERK1/2 activation, only collagen-embedded cells exhibited cytoskeletal assembly of FAK, c-Src, Nck, and Shc. In RGD-stimulated collagen-embedded cells, FAK was phosphorylated only at Tyr-397 and c-Src association occurred without Tyr-416 phosphorylation and p130(Cas) association. Therefore, c-Src activation is not required for its cytoskeletal binding but may be important for additional phosphorylation of FAK. Overall, our study suggests that multiple signaling pathways originate in pressure-overloaded heart following integrin engagement with ECM proteins, including focal complex formation and ERK1/2 activation, and many of these pathways can be activated in cardiomyocytes via RGD-stimulated integrin activation.

  3. Seeking the constant in what is transient: Karl Ernst von Baer's vision of organic formation.

    PubMed

    Vienne, Florence

    2015-03-01

    A well-established narrative in the history of science has it that the years around 1800 saw the end of a purely descriptive, classificatory and static natural history. The emergence of a temporal understanding of nature and the new developmental-history approach, it is thought, permitted the formation of modern biology. This paper questions that historical narrative by closely analysing the concepts of development, history and time set out in Karl Ernst von Baer's study of the mammalian egg (1827). I show that Baer's research on embryogenesis aimed not simply to explain temporal changes, but to inscribe the formation of new individual organisms into a continuous, unending organic process. I confront Baer's views with other explanations of embryogenesis arising in the 1820s and 1830s, especially those of Jean-Baptiste Dumas and Jean-Louis Prévost and of Theodor Schwann. By highlighting divergences between these scientists, especially as to their view of the role of gender differences in reproduction, I argue that biology evolved not from a homogeneous concept of developmental history but out of various, even opposing, views and research programmes. Thus, the birth of biology did not imply the end of all natural history's thought models. PMID:26013434

  4. Ligand(s)-to-metal charge transfer as a factor controlling the equilibrium constants of late first-row transition metal complexes: revealing the Irving-Williams thermodynamical series.

    PubMed

    Varadwaj, Pradeep R; Varadwaj, Arpita; Jin, Bih-Yaw

    2015-01-14

    A unified relationship between the experimental formation constants and the ligand(s)-to-metal charge transfer values of versatile ligand complexes of late transition series first-row bivalent metal ions is uncovered. The latter property not only explicates the Irving-Williams series but also rationalizes quantitatively Pearson's concept of hard and soft acids and bases by correlating the gas-phase to aqueous solution-phase chemistry in a broad sense. PMID:25414118

  5. Polarographic Determination of Composition and Thermodynamic Stability Constant of a Complex Metal Ion.

    ERIC Educational Resources Information Center

    Marin, Dolores; Mendicuti, Francisco

    1988-01-01

    Describes a laboratory experiment designed to encourage laboratory cooperation among individual undergraduate students or groups. Notes each student contributes results individually and the exchange of data is essential to obtain final results. Uses the polarographic method for determining complex metal ions. (MVL)

  6. Generating functional analysis of complex formation and dissociation in large protein interaction networks

    E-print Network

    Coolen, ACC "Ton"

    Generating functional analysis of complex formation and dissociation in large protein interaction proteins, using techniques from the non-equilibrium statistical mechanics of disordered many in the proteome are complex formation and dissociation, and the microscopic degrees of freedom are the evolving

  7. Positronium formation studies in solid molecular complexes: Triphenylphosphine oxide-triphenylmethanol

    NASA Astrophysics Data System (ADS)

    Oliveira, F. C.; Denadai, A. M. L.; Fulgêncio, F. H.; Magalhães, W. F.; Alcântara, A. F. C.; Windmöller, D.; Machado, J. C.

    2012-06-01

    Positronium formation in triphenylphosphine oxide (TPPO), triphenylmethanol (TPM), and systems [TPPO(1-X)?TPMX] has been studied. The low probability of positronium formation in complex [TPPO0.5?TPM0.5] was attributed to strong hydrogen bond and sixfold phenyl embrace interactions. These strong interactions in complex reduce the possibility of the n- and ?-electrons to interact with positrons on the spur and consequently, the probability of positronium formation is lower. The ?3 parameter and free volume (correlated to ?3) were also sensitive to the formation of hydrogen bonds and sixfold phenyl embrace interactions within the complex. For physical mixture the positron annihilation parameters remained unchanged throughout the composition range.

  8. Teasing out Simplicity from Complexity: the Law of Constant Bankfull Velocity in Alluvial Rivers

    NASA Astrophysics Data System (ADS)

    Parker, G.

    2014-12-01

    Of interest here are single-tread alluvial channels (or mildly anastomosing reaches with a single dominant channel) which are self-formed within their own floodplain. The 232 reaches considered here cover nearly the entire range of such channels, with bankfull discharge varying from 3.3x10-1 m3/s to 2.6x105 m3/s, characteristic bed material size varying from 0.04 mm to 168 mm, bed slopes varying from 8x7x10-6 to 5.2x10-2 and bankfull depths varying from 2.2x10-1 m to 4.8x101 m. These channels show complexity at every scale, including the organization of bed grains, the existence or absence of bedforms such as dunes and bars, the state of eroding banks (e.g. fallen trees, rooted stumps, or slump blocks) and the species and density of floodplain vegetation. Scientific research can often be broadly classified into two types: a) research that shows that a system formerly thought to be relatively simple is instead much more complex, with an increase in the number of factors which must be considered to obtain understanding; and b) research which extracts general, broad-brush simplicity from complexity. Both approaches can contribute to the advancement of science. Here we consider the second approach. The problem in question pertains to an explanation of an observation from the time of Luna Leopold: the single bankfull parameter that appears to be invariant is bankfull flow velocity. Here we demonstrate this result empirically at first-order, obtaining the estimate of 1.5 m/s across scales. We then derive a single, universal dimensionless number that specifies bankfull velocity, again across scales. The result is independent of bed material grain size, suggesting that previously-ignored wash load plays a major, and perhaps the dominant role as floodplain material load in setting bankfull velocity.

  9. Dynamics of electrical double layer formation in room-temperature ionic liquids under constant-current charging conditions

    SciTech Connect

    Jiang, Xikai; Huang, Jingsong; Zhao, Hui; Sumpter, Bobby G; Qiao, Rui

    2014-01-01

    We report detailed simulation results on the formation dynamics of an electrical double layer (EDL) inside an electrochemical cell featuring room-temperature ionic liquids (RTILs) enclosed between two planar electrodes. Under relatively small charging currents, the evolution of cell potential during charging can be suitably predicted by the Landau-Ginzburg-type continuum model proposed recently (M. Z. Bazant, B. D. Storey, and A. A. Kornyshev, Phys. Rev. Lett., 106, 046102, 2011). Under very large charging currents, the cell potential shows pronounced oscillation during the initial stage of charging, a feature not captured by the continuum model. Such oscillation originates from the sequential growth of the ionic space charge layers near the electrode surface, allowing the evolution of EDLs in RTILs with time, an atomistic process difficult to visualize experimentally, to be studied by analyzing the cell potential under constant current charging conditions. While the continuum model cannot predict the potential oscillation under such far-from-equilibrium charging conditions, it can nevertheless qualitatively capture the growth of cell potential during the later stage of charging. Improving the continuum model by introducing frequency-dependent dielectric constant and density-dependent ion diffusion coefficients may help to further extend the applicability of the model. Keywords: ionic

  10. Dynamics of electrical double layer formation in room-temperature ionic liquids under constant-current charging conditions.

    PubMed

    Jiang, Xikai; Huang, Jingsong; Zhao, Hui; Sumpter, Bobby G; Qiao, Rui

    2014-07-16

    We report detailed simulation results on the formation dynamics of an electrical double layer (EDL) inside an electrochemical cell featuring room-temperature ionic liquids (RTILs) enclosed between two planar electrodes. Under relatively small charging currents, the evolution of cell potential from molecular dynamics (MD) simulations during charging can be suitably predicted by the Landau-Ginzburg-type continuum model proposed recently (Bazant et al 2011 Phys. Rev. Lett. 106 046102). Under very large charging currents, the cell potential from MD simulations shows pronounced oscillation during the initial stage of charging, a feature not captured by the continuum model. Such oscillation originates from the sequential growth of the ionic space charge layers near the electrode surface. This allows the evolution of EDLs in RTILs with time, an atomistic process difficult to visualize experimentally, to be studied by analyzing the cell potential under constant-current charging conditions. While the continuum model cannot predict the potential oscillation under such far-from-equilibrium charging conditions, it can nevertheless qualitatively capture the growth of cell potential during the later stage of charging. Improving the continuum model by introducing frequency-dependent dielectric constant and density-dependent ion diffusion coefficients may help to further extend the applicability of the model. The evolution of ion density profiles is also compared between the MD and the continuum model, showing good agreement. PMID:24919471

  11. Constant speed control for complex cross-section welding using robot based on angle self-test

    NASA Astrophysics Data System (ADS)

    Xue, Long; Zou, Yong; Huang, Jiqiang; Huang, Junfen; Tao, Xinghua; Hu, Yanfeng

    2014-03-01

    Expandable profile liner(EPL) is a promising new oil well casing cementing technique, and welding is a major EPLs connection technology. Connection of EPL is still in the stage of manual welding so far, automatic welding technology is a hotspot of EPL which is one of the key technologies to be solved. A robot for automatic welding of "8" type EPL is studied. Four quadrants of mathematical equations of the 8-shaped cross-section track of EPL, consisting of multiple arcs, are established. Mechanism program for complex cross-section welding of EPL based on angle detection is proposed according to characteristics of small size, small valleys, and large forming errors, etc. A welding velocity vector control model is established by linkage control of a welding vehicle, a small driven actuator, and a height tracking mechanism. A constant speed control model based on an angle and symmetrical analysis model of rectangular coordinate system for EPL is built. Constraint conditions of constant speed control between each section are analyzed with 4 sections in first quadrant as an example, and cooperation work mechanism of the welding vehicle and the small tracking actuator is established based on pressure detection. The constant speed control model using angle self-test can be used to avoid the need for a precise mathematical model for tracking control and to adapt manufacture and installation deviation of EPL workpiece. The model is able to solve constant speed and trajectory tracking problems of EPL cross-section welding. EPL seams welded by the studied robot are good in appearance, and non-destructive testing(NDT) shows the seams are good in quality with no welding defects. Bulge tests show that the maximum pressure of welded EPL is 35 MPa, which can fulfill expansion performance requirements.

  12. Molecular adsorption of small alkanes on a PdO(101) thin film: Evidence of ?-complex formation

    NASA Astrophysics Data System (ADS)

    Weaver, Jason F.; Hakanoglu, Can; Hawkins, Jeffery M.; Asthagiri, Aravind

    2010-01-01

    We investigated the molecular adsorption of methane, ethane, and propane on a PdO(101) thin film using temperature programmed desorption (TPD) and density functional theory (DFT) calculations. The TPD data reveal that each of the alkanes adsorbs into a low-coverage molecular state on PdO(101) in which the binding is stronger than that for alkanes physically adsorbed on Pd(111). Analysis of the TPD data using limiting values of the desorption prefactors predicts that the alkane binding energies on PdO(101) increase linearly with increasing chain length, but that the resulting line extrapolates to a nonzero value between about 22 and 26 kJ/mol at zero chain length. This constant offset implies that a roughly molecule-independent interaction contributes to the alkane binding energies for the molecules studied. DFT calculations predict that the small alkanes bind on PdO(101) by forming dative bonds with coordinatively unsaturated Pd atoms. The resulting adsorbed species are analogous to alkane ?-complexes in that the bonding involves electron donation from C-H ? bonds to the Pd center as well as backdonation from the metal, which weakens the C-H bonds. The binding energies predicted by DFT lie in a range from 16 to 24 kJ/mol, in good agreement with the constant offsets estimated from the TPD data. We conclude that both the dispersion interaction and the formation of ?-complexes contribute to the binding of small alkanes on PdO(101), and estimate that ?-complex formation accounts for between 30% and 50% of the total binding energy for the molecules studied. The predicted weakening of C-H bonds resulting from ?-complex formation may help to explain the high activity of PdO surfaces toward alkane activation.

  13. Double layer formation at the interface of complex plasmas

    SciTech Connect

    Yaroshenko, V. V.; Thoma, M. H.; Thomas, H. M.; Morfill, G. E.

    2008-08-15

    Necessary conditions are formulated for the generation of a double layer at the interface of a complex plasma and a particle-free electron-ion plasma in a weakly collisional discharge. Examples are calculated for realistic observed complex plasmas, and it is shown that situations of both ''smooth'' transitions and 'sharp' transitions can exist. The model can explain the abrupt boundaries observed.

  14. Crystal structures of complexes of NAD{sup +}-dependent formate dehydrogenase from methylotrophic bacterium Pseudomonas sp. 101 with formate

    SciTech Connect

    Filippova, E. V. Polyakov, K. M.; Tikhonova, T. V.; Stekhanova, T. N.; Boiko, K. M.; Sadykhov, I. G.; Tishkov, V. I.; Popov, V. O.; Labru, N.

    2006-07-15

    Formate dehydrogenase (FDH) from the methylotrophic bacterium Pseudomonas sp. 101 catalyzes oxidation of formate to NI{sub 2} with the coupled reduction of nicotinamide adenine dinucleotide (NAD{sup +}). The three-dimensional structures of the apo form (the free enzyme) and the holo form (the ternary FDH-NAD{sup +}-azide complex) of FDH have been established earlier. In the present study, the structures of FDH complexes with formate are solved at 2.19 and 2.28 A resolution by the molecular replacement method and refined to the R factors of 22.3 and 20.5%, respectively. Both crystal structures contain four protein molecules per asymmetric unit. These molecules form two dimers identical to the dimer of the apo form of FDH. Two possible formatebinding sites are found in the active site of the FDH structure. In the complexes the sulfur atom of residue Cys354 exists in the oxidized state.

  15. Crystal structures of complexes of NAD+-dependent formate dehydrogenase from methylotrophic bacterium Pseudomonas sp. 101 with formate

    NASA Astrophysics Data System (ADS)

    Filippova, E. V.; Polyakov, K. M.; Tikhonova, T. V.; Stekhanova, T. N.; Boiko, K. M.; Sadykhov, I. G.; Tishkov, V. I.; Popov, V. O.; Labru, N.

    2006-07-01

    Formate dehydrogenase (FDH) from the methylotrophic bacterium Pseudomonas sp. 101 catalyzes oxidation of formate to NI2 with the coupled reduction of nicotinamide adenine dinucleotide (NAD+). The three-dimensional structures of the apo form (the free enzyme) and the holo form (the ternary FDH-NAD+-azide complex) of FDH have been established earlier. In the present study, the structures of FDH complexes with formate are solved at 2.19 and 2.28 Å resolution by the molecular replacement method and refined to the R factors of 22.3 and 20.5%, respectively. Both crystal structures contain four protein molecules per asymmetric unit. These molecules form two dimers identical to the dimer of the apo form of FDH. Two possible formatebinding sites are found in the active site of the FDH structure. In the complexes the sulfur atom of residue Cys354 exists in the oxidized state.

  16. Disulfide bond formation involves a quinhydrone-type chargetransfer complex

    E-print Network

    Bardwell, James

    in a stacked configuration. We conclude that disulfide bond formation involves a stacked hydro- quinone­benzoquinone. To function as a cata- lyst, DsbA must be reoxidized. This reoxidation is accomplished by its partner protein

  17. Topology and Complexity of Formations Abubakr Muhammad1

    E-print Network

    Egerstedt, Magnus

    , animal herds, bacterial colonies, schools of fish, formations of flying birds, and so on. These group colonies and fish schools provide a lot of insight into the study and design of artificial multi

  18. Chemical physics behind formation of efficient charge-separated state for complexation between PC70BM and designed diporphyrin in solution

    NASA Astrophysics Data System (ADS)

    Ray, Anamika; Banerjee, Shrabanti; Ghosh, Shalini; Bauri, Ajoy K.; Bhattacharya, Sumanta

    2016-01-01

    The present work reports supramolecular interaction of [6,6]-phenyl C71 butyric acid methyl ester (PC70BM) with two designed diporphyrin molecules having dithiophene (1) and carbazole (2) spacer in solvent having varying polarity. Studies on complex formation reveal relatively higher binding constant for PC70BM/2 complex in all the solvent studied. Solvent dependence of charge separation and charge recombination processes in PC70BM/diporphyrin non-covalent complexes has been well established in present work. Donor-acceptor geometry and stabilization of the singlet excited state of the diporphyrin during charge recombination are considered to be the possible reasons for this behavior.

  19. Chemical physics behind formation of efficient charge-separated state for complexation between PC70BM and designed diporphyrin in solution.

    PubMed

    Ray, Anamika; Banerjee, Shrabanti; Ghosh, Shalini; Bauri, Ajoy K; Bhattacharya, Sumanta

    2016-01-01

    The present work reports supramolecular interaction of [6,6]-phenyl C71 butyric acid methyl ester (PC70BM) with two designed diporphyrin molecules having dithiophene (1) and carbazole (2) spacer in solvent having varying polarity. Studies on complex formation reveal relatively higher binding constant for PC70BM/2 complex in all the solvent studied. Solvent dependence of charge separation and charge recombination processes in PC70BM/diporphyrin non-covalent complexes has been well established in present work. Donor-acceptor geometry and stabilization of the singlet excited state of the diporphyrin during charge recombination are considered to be the possible reasons for this behavior. PMID:26189161

  20. Inhibition of hydroxyapatite formation in the presence of titanocene-amino acid complexes: an experimental and computational study.

    PubMed

    Chrissanthopoulos, A; Klouras, N; Ntala, Ch; Sevastos, D; Dalas, E

    2015-01-01

    Organometallic compounds have been used in various fields of chemistry, medicine and materials science. Central metal, stereochemical configuration and functional groups of the substitutes give to the organometallic compounds very special and selective properties. These properties have been used successfully in selective-antitumor-targeting, as well as anti-arthritic drugs. In the present investigation we study the influence of two organometallic compounds on the inhibition of crystallization of hydroxyapatite. These compounds are complexes of Ti(IV) with the general formula [Cp2Ti(aa)2](2+)2Cl(-), where Cp = ? (5)-C5H5 cyclopentadienyl and aa the amino acid glycine or alanine. The experiments were conducted according to the constant composition technique in supersaturated solutions containing calcium and phosphate ions. The kinetic results indicate a surface diffusion controlled mechanism of the hydroxyapatite (HAP) crystals. The experiments prove that the presence of [Cp2Ti(Ala)2](2+)2Cl(-) and [Cp2Ti(Gly)2](2+)2Cl(-) complexes affects drastically the profile formation rate of the HAP crystals under biological conditions. The complex with the amino acid alanine provides a stronger inhibition of the formation rate comparing to the complex with glycine. The experimental observations are supported by computer calculations. PMID:25578695

  1. Interaction between mosquito-larvicidal Lysinibacillus sphaericus binary toxin components: analysis of complex formation.

    PubMed

    Kale, Avinash; Hire, Ramesh S; Hadapad, Ashok B; D'Souza, Stanislaus F; Kumar, Vinay

    2013-11-01

    The two components (BinA and BinB) of Lysinibacillus sphaericus binary toxin together are highly toxic to Culex and Anopheles mosquito larvae, and have been employed world-wide to control mosquito borne diseases. Upon binding to the membrane receptor an oligomeric form (BinA2.BinB2) of the binary toxin is expected to play role in pore formation. It is not clear if these two proteins interact in solution as well, in the absence of receptor. The interactions between active forms of BinA and BinB polypeptides were probed in solution using size-exclusion chromatography, pull-down assay, surface plasmon resonance, circular dichroism, and by chemically crosslinking BinA and BinB components. We demonstrate that the two proteins interact weakly with first association and dissociation rate constants of 4.5×10(3) M(-1) s(-1) and 0.8 s(-1), resulting in conformational change, most likely, in toxic BinA protein that could kinetically favor membrane translocation of the active oligomer. The weak interactions between the two toxin components could be stabilized by glutaraldehyde crosslinking. The cross-linked complex, interestingly, showed maximal Culex larvicidal activity (LC50 value of 1.59 ng mL(-1)) reported so far for combination of BinA/BinB components, and thus is an attractive option for development of new bio-pesticides for control of mosquito borne vector diseases. PMID:23974012

  2. Interpretation of Nuclear Magnetic Resonance Measurements in Formations with Complex Pore Structure 

    E-print Network

    Chi, Lu

    2015-08-10

    enable us to model the NMR relaxometry in porous rock samples, and to improve interpretation of NMR relaxometry in complex formations. Based on pore-scale simulations and theoretical analysis of NMR relaxometry, this research estimated petrophysical...

  3. New Pathways for the Formation of Complex Organics and Prebiotic Synthesis in the Gas Phase

    NASA Astrophysics Data System (ADS)

    El-Shall, M. S.

    2010-04-01

    We study the formation mechanisms of complex organics that are present in interstellar clouds. The reaction of acetylene ion with water produces vinyl alcohol while the reaction of benzene ion with acetylene produces naphthalene-type ion.

  4. Variation in DNA binding constants with a change in geometry of ternary copper(II) complexes with N2O donor Schiff base and cyanate or dicyanamide

    NASA Astrophysics Data System (ADS)

    Jana, Subrata; Santra, Ramesh Chandra; Das, Saurabh; Chattopadhyay, Shouvik

    2014-09-01

    Two new copper(II) complexes, [Cu(L)(OCN)] (1) and [CuL(dca)]n (2), where HL = 2-(-(2-(diethylamino)ethylimino)methyl)naphthalen-1-ol, dca = N(CN)2-, have been synthesized and characterized by elemental analysis, IR, UV-VIS spectroscopy and single crystal X-ray diffraction studies. Complex 1 has square planar and complex 2 square pyramidal geometries in solid state around metal centre. Interactions of the complexes with calf thymus DNA (CT DNA) were studied by UV-VIS spectroscopy. Binding constant and site size of interaction were determined. Binding site size and intrinsic binding constant K revealed complex 1 interacted with calf thymus DNA better than complex 2.

  5. Effects of salt on intermolecular polyelectrolyte complexes formation between cationic microgel and polyanion.

    PubMed

    Ogawa, Kazuyoshi

    2015-12-01

    The study of interpolyelectrolyte complex (IPEC) formation between cationic microgel and polyanion was presented. The size and molecular weight of cationic microgel are much larger than those of linear anionic polyelectrolyte. The resulting IPEC was divided by dynamic light scattering (DLS), static light scattering (SLS), and turbidity or spectrometry; (i) water-soluble intra-particle complexes consisting of one microgel to which linear polyelectrolytes bind; (ii) complex coacervates (inter-particle complexes composed of aggregated intra-particle complexes); and (iii) insoluble amorphous precipitates. These types depended on not only the mixing ratio of polyanion to cationic microgel but also salt concentration. This trend was discussed from IPEC's composition, thermodynamics of IPEC formation and the salt effect on intermolecular interactions which were expected in IPEC formation. The results obtained from the use of microgel in IPEC's study suggested that not only electrostatic interaction but also hydrophobic interaction play an important role in the aggregation or association of IPEC. PMID:26472211

  6. Dimeric interactions and complex formation using direct coevolutionary couplings

    PubMed Central

    dos Santos, Ricardo N.; Morcos, Faruck; Jana, Biman; Andricopulo, Adriano D.; Onuchic, José N.

    2015-01-01

    We develop a procedure to characterize the association of protein structures into homodimers using coevolutionary couplings extracted from Direct Coupling Analysis (DCA) in combination with Structure Based Models (SBM). Identification of dimerization contacts using DCA is more challenging than intradomain contacts since direct couplings are mixed with monomeric contacts. Therefore a systematic way to extract dimerization signals has been elusive. We provide evidence that the prediction of homodimeric complexes is possible with high accuracy for all the cases we studied which have rich sequence information. For the most accurate conformations of the structurally diverse dimeric complexes studied the mean and interfacial RMSDs are 1.95Å and 1.44Å, respectively. This methodology is also able to identify distinct dimerization conformations as for the case of the family of response regulators, which dimerize upon activation. The identification of dimeric complexes can provide interesting molecular insights in the construction of large oligomeric complexes and be useful in the study of aggregation related diseases like Alzheimer’s or Parkinson’s. PMID:26338201

  7. Interferogram formation in the presence of complex and large deformation

    E-print Network

    's caldera subsided about 5.4 meters. Three hours prior to the onset of the eruption, an earthquake (Mw 5.4) occurred, near the caldera. Because of the large and complex phase gradient due to the huge subsidence and the earthquake, it is difficult to form an interferogram inside the caldera that spans the eruption

  8. A spectrophotometric study of neodymium(III) complexation in sulfate solutions at elevated temperatures

    E-print Network

    Garneau, Michelle

    A spectrophotometric study of neodymium(III) complexation in sulfate solutions at elevated The formation constants of neodymium complexes in sulfate solutions have been determined spectrophotometrically

  9. Physicochemical Controls on the Formation of Polynuclear Metal Complexes at Clay Mineral Surfaces

    E-print Network

    Sparks, Donald L.

    Physicochemical Controls on the Formation of Polynuclear Metal Complexes at Clay Mineral Surfaces R. G. Ford Metal sorption to clay minerals may lead to the formation of secondary precipitates, by enhanced dissolution of the clay mineral structure as indicated by enhanced levels of dissolved silica

  10. Formation en rsolution de problmes complexes aide par le Serious Game Rex Machine

    E-print Network

    Bordenave, Charles

    Formation en résolution de problèmes complexes aidée par le Serious Game « Rex Machine » Elisabeth Serious Game dédié expérimenter et évaluer plusieurs scénarios pédagogiques Processus de résolution de, L. Geneste Formation ResPro 19/05/2015 3 / 3 Aspects liés au Serious Game #12;

  11. Structural Basis of Clostridium perfringens Toxin Complex Formation

    SciTech Connect

    Adams,J.; Gregg, K.; Bayer, E.; Boraston, A.; Smith, S.

    2008-01-01

    The virulent properties of the common human and livestock pathogen Clostridium perfringens are attributable to a formidable battery of toxins. Among these are a number of large and highly modular carbohydrate-active enzymes, including the {mu}-toxin and sialidases, whose catalytic properties are consistent with degradation of the mucosal layer of the human gut, glycosaminoglycans, and other cellular glycans found throughout the body. The conservation of noncatalytic ancillary modules among these enzymes suggests they make significant contributions to the overall functionality of the toxins. Here, we describe the structural basis of an ultra-tight interaction (Ka = 1.44 x 1011 M-1) between the X82 and dockerin modules, which are found throughout numerous C. perfringens carbohydrate-active enzymes. Extensive hydrogen-bonding and van der Waals contacts between the X82 and dockerin modules give rise to the observed high affinity. The {mu}-toxin dockerin module in this complex is positioned {approx}180 relative to the orientation of the dockerin modules on the cohesin module surface within cellulolytic complexes. These observations represent a unique property of these clostridial toxins whereby they can associate into large, noncovalent multitoxin complexes that allow potentiation of the activities of the individual toxins by combining complementary toxin specificities.

  12. Glutathione Complex Formation With Mercury(Ii) in Aqueous Solution at Physiological Ph

    SciTech Connect

    Mah, V.; Jalilehvand, F.; /SLAC

    2012-08-23

    The mercury(II) complexes formed in neutral aqueous solution with glutathione (GSH, here denoted AH{sub 3} in its triprotonated form) were studied using Hg L{sub III}-edge extended X-ray absorption fine structure (EXAFS) and {sup 199}Hg NMR spectroscopy, complemented with electrospray ionization mass spectrometric (ESI-MS) analyses. The [Hg(AH){sub 2}]{sup 2-} complex, with the Hg-S bond distances at 2.325 {+-} 0.01 {angstrom} in linear S-Hg-S coordination, and the {sup 199}Hg NMR chemical shift at -984 ppm, dominates except at high excess of glutathione. In a series of solutions with C{sub Hg(II)} {approx} 17 mM and GSH/Hg(II) mole ratios rising from 2.4 to 11.8, the gradually increasing mean Hg-S bond distance corresponds to an increasing amount of the [Hg(AH){sub 3}]{sup 4-} complex. ESI-MS peaks appear at -m/z values of 1208 and 1230 corresponding to the [Na{sub 4}Hg(AH){sub 2}(A)]{sup -} and [Na{sub 5}Hg(AH)(A){sub 2}]{sup -} species, respectively. In another series of solutions at pH 7.0 with CHg(II) 50 mM and GSH/Hg(II) ratios from 2.0 to 10.0, the Hg L{sub III}-edge EXAFS and {sup 199}Hg NMR spectra show that at high excess of glutathione (0.35 M) about 70% of the total mercury(II) concentration is present as the [Hg(AH){sub 3}]4- complex, with the average Hg-S bond distance 2.42 {+-} 0.02 {angstrom} in trigonal HgS{sub 3} coordination. The proportions of HgSn species, n = 2, 3, and 4, quantified by fitting linear combinations of model EXAFS oscillations to the experimental EXAFS data in our present and previous studies were used to obtain stability constants for the [Hg(AH){sub 3}]{sup 4-} complex and also for the [Hg(A){sub 4}]{sup 10-} complex that is present at high pH. For Hg(II) in low concentration at physiological conditions (pH 7.4, C{sub GSH} = 2.2 mM), the relative amounts of the HgS{sub 2} species [Hg(AH){sub 2}]{sup 2-}, [Hg(AH)(A)]{sup 3-}, and the HgS{sub 3} complex [Hg(AH){sub 3}]{sup 4-} were calculated to be 95:2:3. Our results are not consistent with the formation of dimeric Hg(II)-GSH complexes proposed in a recent EXAFS study.

  13. Biological pattern formation: from basic mechanisms to complex structures

    SciTech Connect

    Koch, A.J.; Meinhardt, H. )

    1994-10-01

    The reliable development of highly complex organisms is an intriguing and fascinating problem. The genetic material is, as a rule, the same in each cell of an organism. How then do cells, under the influence of their common genes, produce spatial patterns Simple models are discussed that describe the generation of patterns out of an initially nearly homogeneous state. They are based on nonlinear interactions of at least two chemicals and on their diffusion. The concepts of local autocatalysis and of long-range inhibition play a fundamental role. Numerical simulations show that the models account for many basic biological observations such as the regeneration of a pattern after excision of tissue or the production of regular (or nearly regular) arrays of organs during (or after) completion of growth. Very complex patterns can be generated in a reproducible way by hierarchical coupling of several such elementary reactions. Applications to animal coats and to the generation of polygonally shaped patterns are provided. It is further shown how to generate a strictly periodic pattern of units that themselves exhibit a complex and polar fine structure. This is illustrated by two examples: the assembly of photoreceptor cells in the eye of [ital Drosophila] and the positioning of leaves and axillary buds in a growing shoot. In both cases, the substructures have to achieve an internal polarity under the influence of some primary pattern-forming system existing in the fly's eye or in the plant. The fact that similar models can describe essential steps in organisms as distantly related as animals and plants suggests that they reveal some universal mechanisms.

  14. Module Based Complexity Formation: Periodic Patterning in Feathers and Hairs

    PubMed Central

    Chuong, Cheng-Ming; Yeh, Chao-Yuan; Jiang, Ting-Xin; Widelitz, Randall

    2012-01-01

    Patterns describe order which emerges from homogeneity. Complex patterns on the integument are striking because of their visibility throughout an organism's lifespan. Periodic patterning is an effective design because the ensemble of hair or feather follicles (modules) allows the generation of complexity, including regional variations and cyclic regeneration, giving the skin appendages a new lease on life. Spatial patterns include the arrangements of feathers and hairs in specified number, size, and spacing. We explore how a field of equivalent progenitor cells can generate periodically arranged modules based on genetic information, physical-chemical rules and developmental timing. Reconstitution experiments suggest a competitive equilibrium regulated by activators / inhibitors involving Turing reaction-diffusion. Temporal patterns result from oscillating stem cell activities within each module (micro-environment regulation), reflected as growth (anagen) and resting (telogen) phases during the cycling of feather and hair follicles. Stimulating modules with activators initiates the spread of regenerative hair waves, while global inhibitors outside each module (macro-environment) prevent this. Different wave patterns can be simulated by Cellular Automata principles. Hormonal status and seasonal changes can modulate appendage phenotypes, leading to “organ metamorphosis”, with multiple ectodermal organ phenotypes generated from the same precursors. We discuss potential evolutionary novel steps using this module based complexity in several amniote integument organs, exemplified by the spectacular peacock feather pattern. We thus explore the application of the acquired knowledge of patterning in tissue engineering. New hair follicles can be generated after wounding. Hairs and feathers can be reconstituted through self-organization of dissociated progenitor cells. PMID:23539312

  15. Ganymede and Callisto - Complex crater formation and planetary crusts

    NASA Technical Reports Server (NTRS)

    Schenk, Paul M.

    1991-01-01

    Results are presented on measurements of crater depths and other morphological parameters (such as central peak and terrace frequency) of fresh craters on Ganymede and Callisto, two geophysically very similar but geologically divergent large icy satellites of Jupiter. These data were used to investigate the crater mechanics on icy satellites and the intersatellite crater scaling and crustal properties. The morphological transition diameters of and complex crater depths on Ganymede and Callisto were found to be similar, indicating that the crusts of both satellites are dominated by water ice with only a minor rocky component.

  16. The formation and study of titanium, zirconium, and hafnium complexes

    NASA Technical Reports Server (NTRS)

    Wilson, Bobby; Sarin, Sam; Smith, Laverne; Wilson, Melanie

    1989-01-01

    Research involves the preparation and characterization of a series of Ti, Zr, Hf, TiO, and HfO complexes using the poly(pyrazole) borates as ligands. The study will provide increased understanding of the decomposition of these coordination compounds which may lead to the production of molecular oxygen on the Moon from lunar materials such as ilmenite and rutile. The model compounds are investigated under reducing conditions of molecular hydrogen by use of a high temperature/pressure stainless steel autoclave reactor and by thermogravimetric analysis.

  17. Reversible carbon-carbon bond formation between carbonyl compounds and a ruthenium pincer complex.

    PubMed

    Huff, Chelsea A; Kampf, Jeff W; Sanford, Melanie S

    2013-08-18

    This communication describes the reversible reaction of a ruthenium pincer complex with a variety of carbonyl compounds. Both NMR spectroscopic and X-ray crystallographic characterization of isomeric carbonyl adducts are reported, and the equilibrium constants for carbonyl binding have been determined. PMID:23832007

  18. Determination of plasma frequency, damping constant, and size distribution from the complex dielectric function of noble metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Mendoza Herrera, Luis J.; Arboleda, David Muñetón; Schinca, Daniel C.; Scaffardi, Lucía B.

    2014-12-01

    This paper develops a novel method for simultaneously determining the plasma frequency ?P and the damping constant ?fr e e in the bulk damped oscillator Drude model, based on experimentally measured real and imaginary parts of the metal refractive index in the IR wavelength range, lifting the usual approximation that restricts frequency values to the UV-deep UV region. Our method was applied to gold, silver, and copper, improving the relative uncertainties in the final values for ?p (0.5%-1.6%) and for ?fr e e (3%-8%), which are smaller than those reported in the literature. These small uncertainties in ?p and ?fr e e determination yield a much better fit of the experimental complex dielectric function. For the case of nanoparticles (Nps), a series expansion of the Drude expression (which includes ?p and ?fr e e determined using our method) enables size-dependent dielectric function to be written as the sum of three terms: the experimental bulk dielectric function plus two size corrective terms, one for free electron, and the other for bound-electron contributions. Finally, size distribution of nanometric and subnanometric gold Nps in colloidal suspension was determined through fitting its experimental optical extinction spectrum using Mie theory based on the previously determined dielectric function. Results are compared with size histogram obtained from Transmission Electron Microscopy (TEM).

  19. Determination of plasma frequency, damping constant, and size distribution from the complex dielectric function of noble metal nanoparticles

    SciTech Connect

    Mendoza Herrera, Luis J.; Arboleda, David Muñetón; Schinca, Daniel C.; Scaffardi, Lucía B.

    2014-12-21

    This paper develops a novel method for simultaneously determining the plasma frequency ?{sub P}?? and the damping constant ?{sub free} in the bulk damped oscillator Drude model, based on experimentally measured real and imaginary parts of the metal refractive index in the IR wavelength range, lifting the usual approximation that restricts frequency values to the UV-deep UV region. Our method was applied to gold, silver, and copper, improving the relative uncertainties in the final values for ?{sub p} (0.5%–1.6%) and for ?{sub free} (3%–8%), which are smaller than those reported in the literature. These small uncertainties in ?{sub p} and ?{sub free} determination yield a much better fit of the experimental complex dielectric function. For the case of nanoparticles (Nps), a series expansion of the Drude expression (which includes ?{sub p} and ?{sub free} determined using our method) enables size-dependent dielectric function to be written as the sum of three terms: the experimental bulk dielectric function plus two size corrective terms, one for free electron, and the other for bound-electron contributions. Finally, size distribution of nanometric and subnanometric gold Nps in colloidal suspension was determined through fitting its experimental optical extinction spectrum using Mie theory based on the previously determined dielectric function. Results are compared with size histogram obtained from Transmission Electron Microscopy (TEM)

  20. Selectivity of lithium electrodes: correlation with ion-lonophore complex stability constants and with interfacial exchange current densities.

    PubMed

    Mikhelson, Konstantin M; Bobacka, Johan; Ivaska, Ari; Lewenstam, Andrzej; Bochenska, Maria

    2002-02-01

    Lithium-selective electrodes with solvent polymeric membranes based on two different dicyclohexylamide neutral ionophores are studied systematically. The selectivity of lithium response is studied by means of the ordinary potentiometric experiments. Stability constants of lithium, sodium, and potassium ions with the neutral ionophores are measured by means of the segmented sandwich membrane method. Charge transfer through the membrane bulk and across the membrane/solution interface is studied by means of electrochemical impedance spectroscopy. Well-resolved Faradaic impedance semicircles are obtained, allowing calculation of exchange current densities for lithium, sodium, and potassium. It is clearly demonstrated that the potentiometric selectivity coefficients correlate well with thermodynamic equilibrium parameters. The correlation with exchange current densities also exists, although it is low, and seems rather qualitative than quantitative. The results are treated in favor of equilibrium at the membrane/solution interface. It is also concluded (tentatively) that the kinetic description is equivalent to the equilibrium one, giving evidence that ion-ionophore complexes form directly at the interface. PMID:11838669

  1. Complex Formation History of Highly Evolved Basaltic Shergottite, Zagami

    NASA Technical Reports Server (NTRS)

    Niihara, T.; Misawa, K.; Mikouchi, T.; Nyquist, L. E.; Park, J.; Hirata, D.

    2012-01-01

    Zagami, a basaltic shergottite, contains several kinds of lithologies such as Normal Zagami consisting of Fine-grained (FG) and Coarse-grained (CG), Dark Mottled lithology (DML), and Olivine-rich late-stage melt pocket (DN). Treiman and Sutton concluded that Zagami (Normal Zagami) is a fractional crystallization product from a single magma. It has been suggested that there were two igneous stages (deep magma chamber and shallow magma chamber or surface lava flow) on the basis of chemical zoning features of pyroxenes which have homogeneous Mg-rich cores and FeO, CaO zoning at the rims. Nyquist et al. reported that FG has a different initial Sr isotopic ratio than CG and DML, and suggested the possibility of magma mixing on Mars. Here we report new results of petrology and mineralogy for DML and the Olivine-rich lithology (we do not use DN here), the most evolved lithology in this rock, to understand the relationship among lithologies and reveal Zagami s formation history

  2. Oxidative peptide /and amide/ formation from Schiff base complexes

    NASA Technical Reports Server (NTRS)

    Strehler, B. L.; Li, M. P.; Martin, K.; Fliss, H.; Schmid, P.

    1982-01-01

    One hypothesis of the origin of pre-modern forms of life is that the original replicating molecules were specific polypeptides which acted as templates for the assembly of poly-Schiff bases complementary to the template, and that these polymers were then oxidized to peptide linkages, probably by photo-produced oxidants. A double cycle of such anti-parallel complementary replication would yield the original peptide polymer. If this model were valid, the Schiff base between an N-acyl alpha mino aldehyde and an amino acid should yield a dipeptide in aqueous solution in the presence of an appropriate oxidant. In the present study it is shown that the substituted dipeptide, N-acetyl-tyrosyl-tyrosine, is produced in high yield in aqueous solution at pH 9 through the action of H2O2 on the Schiff-base complex between N-acetyl-tyrosinal and tyrosine and that a great variety of N-acyl amino acids are formed from amino acids and aliphatic aldehydes under similar conditions.

  3. Factors leading to the formation of arc cloud complexes

    NASA Technical Reports Server (NTRS)

    Welshinger, Mark John; Brundidge, Kenneth C.

    1987-01-01

    A total of 12 mesoscale convective systems (MCSs) were investigated. The duration of the gust front, produced by each MCS, was used to classify the MCSs. Category 1 MCSs were defined as ones that produced a gust front and the gust front lasted for more than 6 h. There were 7 category 1 MCSs in the sample. Category 2 MCSs were defined as ones that produced a gust front and the gust front lasted for 6 h or less. There were 4 category 2 MCSs. The MCS of Case 12 was not categorized because the precipitation characteristics were similar to a squall line, rather than an MCS. All of the category 1 MCSs produced arc cloud complexes (ACCs), while only one of the category 2 MCSs produced an ACC. To determine if there were any differences in the characteristics between the MCSs of the two categories, composite analyses were accomplished. The analyses showed that there were significant differences in the characteristics of category 1 and 2 MCSs. Category 1 MCSs, on average, had higher thunderstorm heights, greater precipitation intensities, colder cloud top temperatures and produced larger magnitudes of surface divergence than category 2 MCSs.

  4. Cleavage and formation of molecular dinitrogen in a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine.

    PubMed

    Miyazaki, Takamasa; Tanaka, Hiromasa; Tanabe, Yoshiaki; Yuki, Masahiro; Nakajima, Kazunari; Yoshizawa, Kazunari; Nishibayashi, Yoshiaki

    2014-10-20

    The N?N bond of molecular dinitrogen bridging two molybdenum atoms in the pentamethylcyclopentadienyl molybdenum complexes that bear ferrocenyldiphosphine as an auxiliary ligand is homolytically cleaved under visible light irradiation at room temperature to afford two molar molybdenum nitride complexes. Conversely, the bridging molecular dinitrogen is reformed by the oxidation of the molybdenum nitride complex at room temperature. This result provides a successful example of the cleavage and formation of molecular dinitrogen induced by a pair of two different external stimuli using a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine under ambient conditions. PMID:25214300

  5. Reactions of sulfur-nitrosyl iron complexes of "g=2.03" family with hemoglobin (Hb): kinetics of Hb-NO formation in aqueous solutions.

    PubMed

    Sanina, N A; Syrtsova, L A; Shkondina, N I; Rudneva, T N; Malkova, E S; Bazanov, T A; Kotel'nikov, A I; Aldoshin, S M

    2007-03-01

    NO-donating ability of nitrosyl [Fe-S] complexes, namely, mononuclear dinitrosyl complexes of anionic type [Fe(S2O3)2(NO)2]-(I) and neutral [Fe2(SL1)2(NO)2] with L1=1H-1,2,4-triazole-3-yl (II); tetranitrosyl binuclear neutral complexes [Fe2(SL2)2(NO)4] with L2=5-amino-1,2,4-triazole-3-yl (III); 1-methyl-1H-tetrazole-5-yl (IV); imidazole-2-yl (V) and 1-methyl-imidazole-2-yl (VI) has been studied. In addition, Roussin's "red salt" Na2[Fe2S2(NO)4] x 8H2O (VII) and Na2[Fe(CN)5NO] x H2O (VIII) have been investigated. The method for research has been based on the formation of Hb-NO adduct upon the interaction of hemoglobin with NO generated by complexes I-VIII in aqueous solutions. Kinetics of NO formation was studied by registration of absorption spectra of the reaction systems containing Hb and the complex under study. For determination of HbNO concentration, the experimental absorption spectra were processed during the reaction using standard program MATHCAD to determine the contribution of individual Hb and HbNO spectra in each spectrum. The reaction rate constants were obtained by analyzing kinetic dependence of Hb interaction with NO donors under study. All kinetic dependences for complexes I-VI were shown to be described well in the frame of formalism of pseudo first-order reactions. The effective first-order rate constants for the studied reactions have been determined. As follows from the values of rate constants, the rate of interaction of sulfur-nitrosyl iron complexes (I-VI) with Hb is limited by the stage of NO release in the solution. PMID:17140821

  6. Effects of chemical and enzymatic modifications on starch-oleic acid complex formation.

    PubMed

    Arijaje, Emily Oluwaseun; Wang, Ya-Jane

    2015-04-29

    The solubility of starch-inclusion complexes affects the digestibility and bioavailability of the included molecules. Acetylation with two degrees of substitution, 0.041 (low) and 0.091 (high), combined without or with a ?-amylase treatment was employed to improve the yield and solubility of the inclusion complex between debranched potato starch and oleic acid. Both soluble and insoluble complexes were recovered and analyzed for their degree of acetylation, complexation yields, molecular size distributions, X-ray diffraction patterns, and thermal properties. Acetylation significantly increased the amount of recovered soluble complexes as well as the complexed oleic acid in both soluble and insoluble complexes. High-acetylated debranched-only starch complexed the highest amount of oleic acid (38.0 mg/g) in the soluble complexes; low-acetylated starch with or without the ?-amylase treatment resulted in the highest complexed oleic acid in the insoluble complexes (37.6-42.9 mg/g). All acetylated starches displayed the V-type X-ray pattern, and the melting temperature generally decreased with acetylation. The results indicate that starch acetylation with or without the ?-amylase treatment can improve the formation and solubility of the starch-oleic acid complex. PMID:25877005

  7. Gating of single molecule junction conductance by charge transfer complex formation.

    PubMed

    Vezzoli, Andrea; Grace, Iain; Brooke, Carly; Wang, Kun; Lambert, Colin J; Xu, Bingqian; Nichols, Richard J; Higgins, Simon J

    2015-12-01

    The solid-state structures of organic charge transfer (CT) salts are critical in determining their mode of charge transport, and hence their unusual electrical properties, which range from semiconducting through metallic to superconducting. In contrast, using both theory and experiment, we show here that the conductance of metal |single molecule| metal junctions involving aromatic donor moieties (dialkylterthiophene, dialkylbenzene) increase by over an order of magnitude upon formation of charge transfer (CT) complexes with tetracyanoethylene (TCNE). This enhancement occurs because CT complex formation creates a new resonance in the transmission function, close to the metal contact Fermi energy, that is a signal of room-temperature quantum interference. PMID:26510687

  8. Synergistic effect of ATP for RuvA–RuvB–Holliday junction DNA complex formation

    PubMed Central

    Iwasa, Takuma; Han, Yong-Woon; Hiramatsu, Ryo; Yokota, Hiroaki; Nakao, Kimiko; Yokokawa, Ryuji; Ono, Teruo; Harada, Yoshie

    2015-01-01

    The Escherichia coli RuvB hexameric ring motor proteins, together with RuvAs, promote branch migration of Holliday junction DNA. Zero mode waveguides (ZMWs) constitute of nanosized holes and enable the visualization of a single fluorescent molecule under micromolar order of the molecules, which is applicable to characterize the formation of RuvA–RuvB–Holliday junction DNA complex. In this study, we used ZMWs and counted the number of RuvBs binding to RuvA–Holliday junction DNA complex. Our data demonstrated that different nucleotide analogs increased the amount of Cy5-RuvBs binding to RuvA–Holliday junction DNA complex in the following order: no nucleotide, ADP, ATP?S, and mixture of ADP and ATP?S. These results suggest that not only ATP binding to RuvB but also ATP hydrolysis by RuvB facilitates a stable RuvA–RuvB–Holliday junction DNA complex formation. PMID:26658024

  9. Mass-dependent and -independent fractionation of isotopes in Ni and Pb chelate complex formation reactions

    SciTech Connect

    Nomura, Masao; Kudo, Takashi; Adachi, Atsuhiko; Aida, Masao; Fujii, Yasuhiko

    2013-11-13

    Mass independent fractionation (MIF) has been a very interesting topic in the field of inorganic isotope chemistry, in particular, geo- and cosmo- chemistry. In the present work, we studied the isotope fractionation of Ni(II) and Pb(II) ions in complex formation with chelating reagent EDTA. To obtain clear results on the mass dependence of the isotope fractionation, we have conducted long-distance ion exchange chromatography of Ni(II) and Pb(II), using chelate complex reagent EDTA. The results apparently show that the isotope fractionation in Ni complex formation system is governed by the mass dependent rule. On the other hand the isotope fractionation in the Pb complex system is governed by the mass independent rule or the nuclear volume effect.

  10. Multistability and sustained oscillations in a model for protein complex formation

    NASA Astrophysics Data System (ADS)

    Löb, Daniel; Priester, Christopher; Drossel, Barbara

    2016-03-01

    We investigate a model for the formation of protein complexes where each protein can occur at most once in a complex. The reaction rates for association and dissociation of proteins can be chosen independently for each reaction, without imposing detailed balance conditions. We show that this simple model can display multistability and periodic oscillations when it contains at least four different protein species. We prove that a system with three elementary species cannot be multistable.

  11. Formation of Stable Cationic Lipid/DNA Complexes for Gene Transfer

    NASA Astrophysics Data System (ADS)

    Hofland, Hans E. J.; Shephard, Lee; Sullivan, Sean M.

    1996-07-01

    Stable cationic lipid/DNA complexes were formed by solubilizing cationic liposomes with 1% octylglucoside and complexing a DNA plasmid with the lipid in the presence of detergent. Removal of the detergent by dialysis yielded a lipid/DNA suspension that was able to transfect tissue culture cells up to 90 days after formation with no loss in activity. Similar levels of gene transfer were obtained by mixing the cationic lipid in a liposome form with DNA just prior to cell addition. However, expression was completely lost 24 hr after mixing. The transfection efficiency of the stable complex in 15% fetal calf serum was 30% of that obtained in the absence of serum, whereas the transient complex was completely inactivated with 2% fetal calf serum. A 90-day stability study comparing various storage conditions showed that the stable complex could be stored frozen or as a suspension at 4 degrees C with no loss in transfection efficiency. Centrifugation of the stable complex produced a pellet that contained approximately 90% of the DNA and 10% of the lipid. Transfection of cells with the resuspended pellet and the supernatant showed that the majority of the transfection activity was in the pellet and all the toxicity was in the supernatant. Formation of a stable cationic lipid/DNA complex has produced a transfection vehicle that can be stored indefinitely, can be concentrated with no loss in transfection efficiency, and the toxicity levels can be greatly reduced when the active complex is isolated from the uncomplexed lipid.

  12. Acidity and complex formation studies of 3-(adenine-9-yl)-propionic and 3-(thymine-1-yl)-propionic acids in ethanol-water media

    NASA Astrophysics Data System (ADS)

    Hammud, Hassan H.; El Shazly, Shawky; Sonji, Ghassan; Sonji, Nada; Bouhadir, Kamal H.

    2015-05-01

    The ligands 3-(adenine-9-yl)propionic acid (AA) and 3-(thymine-1-yl)propionic acid (TA) were prepared by N9-alkylation of adenine and N1-alkylation of thymine with ethylacrylate in presence of a base catalyst, followed by acid hydrolysis of the formed ethyl esters to give the corresponding propionic acid derivatives. The products were characterized by spectral methods (FTIR, 1H NMR and 13C NMR), which confirm their structures. The dissociation constants of ligands, were potentiometrically determined in 0.3 M KCl at 20-50 °C temperature range. The work was extended to study complexation behavior of AA and TA with various biologically important divalent metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Mn2+ and Pb2+) in 50% v/v water-ethanol medium at four different temperatures, keeping ionic strength constant (0.3 M KCl). The order of the stability constants of the formed complexes decreases in the sequence Cu2+ > Pb2+ > Zn2+ > Ni2+ > Co2+ > Mn2+ > Cd2+ for both ligands. The effect of temperature was also studied and the corresponding thermodynamic functions (?G, ?H, ?S) were derived and discussed. The formation of metal complexes has been found to be spontaneous, and the stability constants were dependant markedly on the basicity of the ligands.

  13. Complex formation equilibria of binary and ternary complexes involving 3,3-bis(1-methylimidazol-2yl)propionic acid and bio-relevant ligands as 1-aminocyclopropane carboxylic acid with reference to plant hormone

    NASA Astrophysics Data System (ADS)

    Shoukry, Mohamed M.; Hassan, Safaa S.

    2014-01-01

    The formation equilibria for the binary complexes of Cu(II) with 1-aminocyclopropane carboxylic acid (ACC) and 3,3-bis(1-methylimidazol-2-yl)propionic acid (BIMP) were investigated. ACC and BIMP form the complexes 1 1 0, 1 2 0 and 1 1 -1. The ternary complexes of Cu(II) with BIMP and biorelevant ligands as some selected amino acids, peptides and DNA constituents are formed in a stepwise mechanism. The stability constants of the complexes formed were determined and their distribution diagrams were evaluated. The kinetics of hydrolysis of glycine methyl ester in presence of [Cu(BIMP)]+ was investigated by pH-stat technique and the mechanism was discussed.

  14. A Study of Acrylonitrile Poisoning in Relation to Methaemoglobin-CN Complex Formation

    PubMed Central

    Magos, Ladislaus

    1962-01-01

    Observations are recorded on methaemoglobin-CN complex formation in rats poisoned with acrylonitrile, potassium cyanide, and acetone cyanohydrin. For information on methaemoglobin-CN formation, the methaemoglobin level was increased by sodium nitrite. The results show that the rate of methaemoglobin-CN formation in rats killed by acrylonitrile is lower than in animals surviving potassium cyanide or acetone cyanohydrin poisoning, and much lower than in animals killed by potassium cyanide. These findings indicate that the toxicity of acrylonitrile cannot be solely due to the liberation of cyanide.

  15. Cation-induced formation of a macro-glucan synthase complex

    SciTech Connect

    Delmer, D.; Solomon, M.; Andrawis, A.; Amor, Y. )

    1990-05-01

    Incubation of Chaps or digitonin-solubilized membrane proteins from cotton fiber with Ca{sup 2+} in combination with Mg{sup 2+}, leads to formation of a complex which can be sedimented within 15 min at 15,000 g. The complex is enriched >10-fold in callose synthase activity and possesses a characteristic pattern of enriched polypeptides when analyzed by SDS-PAGE. Although cation dependent, formation of the complex is not dependent upon the presence of the callose synthase substrate, UDP-glc, indicating that complex formation is not due to entrapment of the enzyme by association with glucan product. The enriched polypeptides include: >200, 50, and 46 kD, all of which have been shown by direct photo-labeling to interact with {sup 92}P-UDP-glc in a Ca{sup 2+} or beta-glucoside dependent reaction are considered likely subunits of callose synthase; a 60-62 kD doublet which is recognized by our MAb 2-1 which can form an immune complex with callose synthase; 74 and 34 kD polypeptides which also interact with UDP-glc, but do not associate with callose synthase in the presence of EDTA. A similar phenomenon is also observed with solubilized membrane proteins from mung beans. Possible functions of each of the enriched polypeptides, the catalytic properties, and ultra-structure of this macro-glucan synthase complex are currently under investigation.

  16. Methionine oxidation of amyloid peptides by peroxovanadium complexes: inhibition of fibril formation through a distinct mechanism.

    PubMed

    He, Lei; Wang, Xuesong; Zhu, Dengsen; Zhao, Cong; Du, Weihong

    2015-12-01

    Fibril formation of amyloid peptides is linked to a number of pathological states. The prion protein (PrP) and amyloid-? (A?) are two remarkable examples that are correlated with prion disorders and Alzheimer's disease, respectively. Metal complexes, such as those formed by platinum and ruthenium compounds, can act as inhibitors against peptide aggregation primarily through metal coordination. This study revealed the inhibitory effect of two peroxovanadium complexes, (NH4)[VO(O2)2(bipy)]·4H2O (1) and (NH4)[VO(O2)2(phen)]·2H2O (2), on amyloid fibril formation of PrP106-126 and A?1-42via site-specific oxidation of methionine residues, besides direct binding of the complexes with the peptides. Complexes 1 and 2 showed higher anti-amyloidogenic activity on PrP106-126 aggregation than on A?1-42, though their regulation on the cytotoxicity induced by the two peptides could not be differentiated. The action efficacy may be attributed to the different molecular structures of the vanadium complex and the peptide sequence. Results reflected that methionine oxidation may be a crucial action mode in inhibiting amyloid fibril formation. This study offers a possible application value for peroxovanadium complexes against amyloid proteins. PMID:26444976

  17. Salting Constants of Small Organic Molecules in Aerosol-Relevant Salts and Application to Aerosol Formation in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Waxman, E.; Carlton, A. M. G.; Ziemann, P. J.; Volkamer, R. M.

    2014-12-01

    Secondary organic aerosol (SOA) formation from small water-soluble molecules such as glyoxal and methyl glyoxal is a topic of emerging interest. Results from recent field campaigns, e.g. Waxman et al. (2013, GRL) and Knote et al. (2014, ACP), show that these molecules can form significant SOA mass as a result of 'salting-in'. Salting-in happens when a molecule's solubility increases with salt concentration and salting-out is the reverse. Salting effects modify the solubility exponentially with increasing salt concentration, and thus the effective Henry's law constant can strongly modify partitioning, and multiphase chemical reaction rates in aerosol water. Moreover, the solubility in aerosol water cannot easily inferred based on the solubility in cloud water, as the salting effects could change the solubility by a factor of 104 or more. In this work, we have devised and applied a novel experimental setup to measure salting constants using an ion trap mass spectrometer. We focus on small, water soluble molecules like methyl glyoxal and similar compounds and measure salting constants for aerosol-relevant salts including ammonium sulfate, ammonium nitrate, and sodium chloride. The Setschenow salting-constant values are then used to parameterize the effects of salting in CMAQ. We present a series of sensitivity studies of the effects that inorganic aerosols have on the SOA formation from small soluble molecules in the southeastern United States.

  18. Determining resistivity of a formation adjacent to a borehole having casing by generating constant current flow in portion of casing and using at least two voltage measurement electrodes

    DOEpatents

    Vail, III, William Banning (Bothell, WA)

    2000-01-01

    Methods of operation of different types of multiple electrode apparatus vertically disposed in a cased well to measure information related to the resistivity of adjacent geological formations from within the cased well are described. The multiple electrode apparatus has a minimum of two spaced apart voltage measurement electrodes that electrically engage a first portion of the interior of the cased well and that provide at least first voltage information. Current control means are used to control the magnitude of any selected current that flows along a second portion of the interior of the casing to be equal to a predetermined selected constant. The first portion of the interior of the cased well is spaced apart from the second portion of the interior of the cased well. The first voltage information and the predetermined selected constant value of any selected current flowing along the casing are used in part to determine a magnitude related to the formation resistivity adjacent to the first portion of the interior of the cased well. Methods and apparatus having a plurality of voltage measurement electrodes are disclosed that provide voltage related information in the presence of constant currents flowing along the casing which is used to provide formation resistivity.

  19. The significance of ACTH for the process of formation of complex heparin compounds in the blood during immobilization stress

    NASA Technical Reports Server (NTRS)

    Kudryashov, B. A.; Shapiro, F. B.; Lomovskaya, F. B.; Lyapina, L. A.

    1979-01-01

    Adrenocorticotropin (ACTH) was administered to rats at different times following adrenalectomy. Adrenocorticotropin caused a significant increase in the formation of heparin complexes even in the absence of stress factor. When ACTH secretion is blocked, immobilization stress is not accompanied by an increase in the process of complex formation. The effect of ACTH on the formation of heparin complexes was mediated through its stimulation of the adrenal cortex.

  20. Three-Coordinate Terminal Imidoiron(III) Complexes: Structure, Spectroscopy, and Mechanism of Formation

    PubMed Central

    Cowley, Ryan E.; DeYonker, Nathan J.; Eckert, Nathan A.; Cundari, Thomas R.; DeBeer, Serena; Bill, Eckhard; Ottenwaelder, Xavier; Flaschenriem, Christine; Holland, Patrick L.

    2010-01-01

    Reaction of 1-adamantyl azide with iron(I) diketiminate precursors gives metastable but isolable imidoiron(III) complexes LFe=NAd (L = bulky ?-diketiminate ligand; Ad = 1-adamantyl). This paper addresses: (1) the spectroscopic and structural characterization of the Fe=N multiple bond in these interesting three-coordinate iron imido complexes, and (2) the mechanism through which the imido complexes form. The iron(III) imido complexes have been examined by 1H NMR and EPR spectroscopies and temperature-dependent magnetic susceptibility (SQUID), and structurally characterized by crystallography and/or X-ray absorption (EXAFS) measurements. These data show that the imido complexes have quartet ground states and short (1.68 ± 0.01 Å) iron-nitrogen bonds. The formation of the imido complexes proceeds through unobserved iron–RN3 intermediates, which are indicated by QM/MM computations to be best described as iron(II) with an RN3 radical anion. The radical character on the organoazide bends its NNN linkage to enable easy N2 loss and imido complex formation. The product distribution between imidoiron(III) products and hexazene-bridged diiron(II) products is solvent-dependent, and the solvent dependence can be explained by coordination of certain solvents to the iron(I) precursor prior to interaction with the organoazide. PMID:20524625

  1. Cluster formation in complex multi-scale BY J. D. GIBBON

    E-print Network

    Gibbon, J. D.

    Cluster formation in complex multi-scale systems BY J. D. GIBBON 1 AND E. S. TITI 2,3 1 Department of Mathematics, Imperial College London, London SW7 2AZ, UK (j.d.gibbon@ic.ac.uk) 2 Department of Computer

  2. The standard enthalpies of combustion and formation of crystalline cobalt tetrakis(4-metoxyphenyl)porphin complex

    NASA Astrophysics Data System (ADS)

    Tarasov, R. P.; Volkov, A. V.; Bazanov, M. I.; Semeikin, A. S.

    2009-05-01

    The energy of combustion of cobalt tetrakis(4-metoxyphenyl)porphin was determined in an isothermic-shell liquid calorimeter with a stationary calorimetric bomb. The standard enthalpies of combustion and formation of the complex were calculated, -? c H o = 27334.06 ± 50.98 kJ/mol and ?f H o = 3062.90 ± 50.97 kJ/mol.

  3. STUDY USING A THREE-DIMENSIONAL SMOG FORMATION MODEL UNDER CONDITIONS OF COMPLEX FLOW

    EPA Science Inventory

    To clarify the photochemical smog formation mechanisms under conditions of complex flow, the SAI Urban Airshed Model was evaluated using a 1981 field observed data base. In the Tokyo Metropolitan Area higher O3 concentrations are usually observed near the shore in the morning. As...

  4. Generating functional analysis of complex formation and dissociation in large protein interaction networks

    E-print Network

    Coolen, ACC "Ton"

    Generating functional analysis of complex formation and dissociation in large protein interaction, Sep 13-16, Kyoto ACC Coolen (KCL) Dynamics of protein interaction networks IWSMI-2009 1 / 31 #12 of the macroscopic equations Remaining problem Solution in simplifying limits Ideas that don't work Alternative

  5. Structure and kinetics of formation of catechol complexes of ferric soybean lipoxygenase-1

    SciTech Connect

    Nelson, M.J.; Brennan, B.A.; Chase, D.B. |

    1995-11-21

    Ferric soybean lipoxygenase forms stable complexes with 4-substituted catechols. The structure of the complex between the enzyme and 3,4-dihydroxybenzonitrile has been studied by resonance Raman, electron paramagnetic resonance, visible, and X-ray spectroscopies. It is a bidentate iron-catecholate complex with at least one water ligand. The kinetics of formation of complexes between lipoxygenase and 3,4-dihydroxybenzonitrile and 3,4-dihydroxyacetophenone have been studied by stopped-flow spectroscopy. The data are consistent with two kinetically distinct, reversible steps. The pH dependence of the first step suggests that the substrate for the reaction is the catechol monoanion. When these results are combined, plausible mechanisms for the complexation reaction are suggested. 51 refs., 12 figs., 2 tabs.

  6. Formation of complex impact craters - Evidence from Mars and other planets

    NASA Technical Reports Server (NTRS)

    Pike, R. J.

    1980-01-01

    An analysis of the depth vs diameter data of Arthur (1980), is given along with geomorphic data for 73 Martian craters. The implications for the formation of complex impact craters on solid planets is discussed. The analysis integrates detailed morphological observations on planetary craters with geologic data from terrestrial meteorite and explosion craters. The simple to complex transition for impact craters on Mars appears at diameters in the range of 3 to 8 km. Five features appear sequentially with increasing crater size, flat floors, central peaks and shallower depths, scalloped rims, and terraced walls. This order suggests that a shallow depth of excavation and a rebound mechanism have produced the central peaks, not centripetal collapse and deep sliding. Simple craters are relatively uniform in shape from planet to planet, but complex craters vary considerably. Both the average onset diameter for complex impact craters on Mars and the average depth of complex craters vary inversely with gravitational acceleration on four planets.

  7. Effect of entropy-packing fraction relation on the formation of complex metallic materials

    NASA Astrophysics Data System (ADS)

    Tourki Samaei, Arash; Mohammadi, Ehsan

    2015-09-01

    By combining a number of elements to form complex metallic materials without a base element, it was recently shown that one can obtain rather complex structures, including random solute solutions, multi-phased mixtures and amorphous structures with/without nano-precipitations. Compared to conventional metallic materials, these complex ones could show excellent mechanical and physical properties across a wide range of temperatures, therefore being a promising advanced material for high-temperature applications; however, designing these complex materials, at present, still lacks a unified physical approach but relies on the choice of a few metallurgical parameters, such as atomic size mismatch, heat of mixing and valence electron concentration. Here, we identify a physical mechanism through the optimization of the excess configurational entropy of mixing in the control of phase formation in these metallic materials. The theoretical framework herein established is expected to provide a new paradigm in pursuit of complex metallic materials with superior properties.

  8. Mechanism of acyl-enzyme complex formation from the Henry-Michaelis complex of class C ?-lactamases with ?-lactam antibiotics.

    PubMed

    Tripathi, Ravi; Nair, Nisanth N

    2013-10-01

    Bacteria that cause most of the hospital-acquired infections make use of class C ?-lactamase (CBL) among other enzymes to resist a wide spectrum of modern antibiotics and pose a major public health concern. Other than the general features, details of the defensive mechanism by CBL, leading to the hydrolysis of drug molecules, remain a matter of debate, in particular the identification of the general base and role of the active site residues and substrate. In an attempt to unravel the detailed molecular mechanism, we carried out extensive hybrid quantum mechanical/molecular mechanical Car-Parrinello molecular dynamics simulation of the reaction with the aid of the metadynamics technique. On this basis, we report here the mechanism of the formation of the acyl-enzyme complex from the Henry-Michaelis complex formed by ?-lactam antibiotics and CBL. We considered two ?-lactam antibiotics, namely, cephalothin and aztreonam, belonging to two different subfamilies. A general mechanism for the formation of a ?-lactam antibiotic-CBL acyl-enzyme complex is elicited, and the individual roles of the active site residues and substrate are probed. The general base in the acylation step has been identified as Lys67, while Tyr150 aids the protonation of the ?-lactam nitrogen through either the substrate carboxylate group or a water molecule. PMID:24010547

  9. Recrystallized Impact Glasses of the Onaping Formation and the Sudbury Igneous Complex, Sudbury Structure, Ontario, Canada

    NASA Technical Reports Server (NTRS)

    Dressler, B. O.; Weiser, T.; Brockmeyer, P.

    1996-01-01

    The origin of the Sudbury Structure and of the associated heterolithic breccias of the Onaping Formation and the Sudbury Igneous Complex have been controversial. While an impact origin of the structure has gained wide acceptance over the last 15 years, the origin of the recrystallized Onaping Formation glasses and of the igneous complex is still being debated. Recently the interpretation of the breccias of the Onaping Formation as suevitic fall-back impact breccias has been challenged. The igneous complex is interpreted either as a differentiated impact melt sheet or as a combination of an upper impact melt represented by the granophyre, and a lower, impact-triggered magmatic body consisting of the norite-sublayer formations. The Onaping Formation contains glasses as fluidal and nonfluidal fragments of various shapes and sizes. They are recrystallized, and our research indicates that they are petrographically heterogeneous and span a wide range of chemical compositions. These characteristics are not known from glasses of volcanic deposits. This suggests an origin by shock vitrification, an interpretation consistent with their association with numerous and varied country rock clasts that exhibit microscopic shock metamorphic features. The recrystallized glass fragments represent individual solid-state and liquid-state vitrified rocks or relatively small melt pods. The basal member lies beneath the Gray and Black members of the Onaping Formation and, where not metamorphic, has an igneous matrix. Igneous-textured melt bodies occur in the upper two members and above the Basal Member. A comparison of the chemical compositions of recrystallized glasses and of the matrices of the Basal Member and the melt bodies with the components and the bulk composition of the igneous complex is inconclusive as to the origin of the igneous complex. Basal Member matrix and Melt Bodies, on average, are chemically similar to the granophyre of the Sudbury Igneous Complex, suggesting that they are genetically related. Our chemical results allow interpretation of the entire igneous complex as a differentiated impact melt. However, they are also consistent with the granophyre alone being the impact melt and the nofite and quartz gabbro beneath it representing an impact-triggered magmatic body. This interpretation is preferred, as it is consistent with a number of field observations. A re-evaluation and extension of structural field studies and of geochemical data, as well as a systematic study of the contact relationships of the various igneous phases of the igneous complex, are needed to establish a Sudbury impact model consistent with all data and observations

  10. [Preparation, formation mechanism and preliminary evaluation of oral absorption of a Bicyclol-phospholipid complex].

    PubMed

    Li, Lin; Dong, Wu-Jun; Sheng, Li; Xia, Xue-Jun; Li, Yan; Liu, Yu-Ling

    2014-11-01

    Bicyclol with benzyl alcohol structure, is a poorly water-soluble drug, used for the treatment of chronic hepatitis B. To increase the drug solubility and oral bioavailability, a Bicyclol-phospholipid complex was studied on its preparation, formation mechanism, and the influence on drug physicochemical properties and oral absorption. The complex was prepared by a solvent evaporation method. The optimal formulation was selected by orthogonal experimental design, and a reasonable evaluating method of the complexation rate was established. Various methods, such as differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and 31P nuclear magnetic resonance (31P-NMR), were used to explore the phase state and formation mechanism of the complex. The solubility of drug in complex was investigated in water/n-octanol. Preliminary study of its absorption and liver tissue distribution in rats was also carried out. The results showed that Bicyclol and phosphatidylcholine can be complexed entirely in the molar ratio 1 : 2. Bicyclol was dispersed in phospholipids as amorphous state. They were combined by intermolecular hydrogen bond due to charge transfer effect which occurred between the two polarities of the double bond between phosphorus and oxygen (P=O) of phosphatidylcholine and benzalcohol group of Bicyclol. The solubility of the complex compared to the active pharmaceutical ingredient (API) was effectively enhanced 5.75 times in water and 7.72 times in n-octanol, separately. In addition, drug concentrations were also enhanced 43 times in plasma and 13 times in liver with one hour after administering the complex to rats via oral gavage. All of these indicated that Bicyclol with benzalcohol group can interact with phospholipids to form complex, improving drug's physicochemical properties, thus further increasing its absorption and target tissue distribution. This study also provided theoretical reference for the research of other benzalcohol derivatives complexed with phospholipids. PMID:25757289

  11. Gating of single molecule junction conductance by charge transfer complex formation

    NASA Astrophysics Data System (ADS)

    Vezzoli, Andrea; Grace, Iain; Brooke, Carly; Wang, Kun; Lambert, Colin J.; Xu, Bingqian; Nichols, Richard J.; Higgins, Simon J.

    2015-11-01

    The solid-state structures of organic charge transfer (CT) salts are critical in determining their mode of charge transport, and hence their unusual electrical properties, which range from semiconducting through metallic to superconducting. In contrast, using both theory and experiment, we show here that the conductance of metal |single molecule| metal junctions involving aromatic donor moieties (dialkylterthiophene, dialkylbenzene) increase by over an order of magnitude upon formation of charge transfer (CT) complexes with tetracyanoethylene (TCNE). This enhancement occurs because CT complex formation creates a new resonance in the transmission function, close to the metal contact Fermi energy, that is a signal of room-temperature quantum interference.The solid-state structures of organic charge transfer (CT) salts are critical in determining their mode of charge transport, and hence their unusual electrical properties, which range from semiconducting through metallic to superconducting. In contrast, using both theory and experiment, we show here that the conductance of metal |single molecule| metal junctions involving aromatic donor moieties (dialkylterthiophene, dialkylbenzene) increase by over an order of magnitude upon formation of charge transfer (CT) complexes with tetracyanoethylene (TCNE). This enhancement occurs because CT complex formation creates a new resonance in the transmission function, close to the metal contact Fermi energy, that is a signal of room-temperature quantum interference. Electronic supplementary information (ESI) available: Synthesis of 1c; experimental details of conductance measurements, formation of charge transfer complexes of 1c and 2 in solution; further details of theoretical methods. See DOI: 10.1039/c5nr04420k

  12. Enhanced CO2 hydrate formation kinetic under organo-mineral complex environment

    NASA Astrophysics Data System (ADS)

    Kyung, D.; Lee, W.

    2012-12-01

    CO2 hydrate formation under marine sediments can be one of the feasible options to mitigate atmospheric concentration of CO2, main source of global warming. For the better application of CO2 sequestration via hydrate form under ocean, it is indispensable to understand the effects of marine environmental factors on hydrate formation kinetic and equilibrium. In this study, we investigated the effect of organo-mineral complex (i.e., Na-montmorillonite (Na-MMT) and glycine complex) on hydrate formation kinetic both experimentally and computationally. Organo-mineral complex suspension showed much more favorable hydrate formation kinetic (2-6 min) than pure water control (48-80 min). TEM image showed that glycine are well distributed and strongly adsorbed on Na-MMT surface and FT/IR results (i.e., increased frequency of N-H stretch) also proved that amine part of glycine can make strong hydrogen bonding with silicon atoms of Na-MMT. Molecular dynamics (MD) simulation was performed to fully understand the CO2 hydrate nucleation on the organo-mineral complex and its result showed that high concentration of CO2 molecules are located near Na-MMT surface and glycine attached on Na-MMT can attract water molecules to form intermediate hydrate structure. This one plays a key role in complete hydrate formation as nucleation seeds and can significantly enhance the hydrate formation kinetic. This fundamental knowledge could provide idea to select proper CO2 storage site under marine sediments and be applied to in-situ swapping technology to recover CH4 from deep sea gas hydrate deposits and sequester the CO2 to CH4 hydrate layer.

  13. Hydrogen-bonding and protonation effects on the formation of charge transfer complex between para-benzoquinone and 2,6-dimethoxy phenol

    NASA Astrophysics Data System (ADS)

    Bangal, Prakriti Ranjan

    2005-01-01

    Formation of CT complex of series of quinines of increasing basicity (chloranil to duroquinone) were checked systematically in methylenechloride with different aromatic donors in presence of hydroxylic additives of increasing hydrogen-bonding power (tetra-butyl-alcohol to hexafluoro-2-propanol) or acidity. The effect of the basic additives of increasing basicity (pyridine to 4- N, N-dimethylaminopyridine) was also observed. The formation constant ( KCT) of CT complex between para-benzoquinone and 2,6-dimthoxyphenol was enhanced approximately 50 times by TFA and approximately two times by HFIPA due to protonation and strong hydrogen-bonding interaction of BQ with TFA and HPIPA, respectively. Similarly, KCT increased approximately six times by DMAPy due to hydrogen-bonding with DMOPh.

  14. Lethal synergism between organic and inorganic wood preservatives via formation of an unusual lipophilic ternary complex

    SciTech Connect

    Sheng, Zhi-Guo; Li, Yan; Fan, Rui-Mei; Chao, Xi-Juan; Zhu, Ben-Zhan; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331

    2013-02-01

    We have shown previously that exposing bacteria to wood preservatives pentachlorophenol (PCP) and copper-containing compounds together causes synergistic toxicity. However, it is not clear whether these findings also hold true in mammalian cells; and if so, what is the underlying molecular mechanism? Here we show that PCP and a model copper complex bis-(1,10-phenanthroline) cupric (Cu(OP){sub 2}), could also induce synergistic cytotoxicity in human liver cells. By the single crystal X-ray diffraction and atomic absorption spectroscopy assay, the synergism was found to be mainly due to the formation of a lipophilic ternary complex with unusual structural and composition characteristics and subsequent enhanced cellular copper uptake, which markedly promoted cellular reactive oxygen species (ROS) production, leading to apoptosis by decreasing mitochondrial membrane potential, increasing pro-apoptotic protein expression, releasing cytochrome c from mitochondria and activating caspase-3, and -9. Analogous results were observed with other polychlorinated phenols (PCPs) and Cu(OP){sub 2}. Synergistic cytotoxicity could be induced by PCP/Cu(OP){sub 2} via formation of an unusual lipophilic complex in HepG2 cells. The formation of ternary complexes with similar lipophilic character could be of relevance as a general mechanism of toxicity, which should be taken into consideration especially when evaluating the toxicity of environmental pollutants found at currently-considered non- or sub-toxic concentrations. -- Highlights: ? The combination of PCP/Cu(OP){sub 2} induces synergistic cytotoxicity in HepG2 cells. ? The synergism is mainly due to forming a lipophilic ternary complex between them. ? The formation of lipophilic ternary complex enhances cellular copper uptake. ? PCP/Cu(OP){sub 2} stimulates the cellular ROS production. ? The ROS promoted by PCP/Cu(OP){sub 2} induces mitochondria-dependent apoptosis.

  15. Characterizing Extragalactic Star Formation with GALEX Legacy Photometric Analysis of UV-Bright Stellar Complexes

    NASA Astrophysics Data System (ADS)

    Thilker, David

    At the close of nearly a decade of observing, GALEX has accumulated an unprecedented archive of ultraviolet (UV) images revealing both the scope and intricacy of star formation (SF) in many thousands of galaxies inhabiting the local universe. If the observed hierarchical SF morphology can be quantified systematically, and physically interpreted with multi-wavelength ancillary data and modeling, then the low redshift GALEX legacy will approach completion. However, the GALEX GR6 pipeline database contains a highly incomplete census of young stellar complexes even for very well-studied galaxies. We propose to apply a dedicated photometry algorithm that has been optimized for measuring the properties of irregularly shaped sources in crowded galaxy images containing spatially variant, diffuse intra-clump emission. Structures will be selected in the UV, but we will compile UV-visible-MIR SEDs for each detection utilizing Pan-STARRS1+SDSS and WISE data. These SEDs will then be fit using population-synthesis models to derive estimated stellar mass, age, and extinction. Processing will be completed for the entire diameter-limited GALEX Large Galaxy Atlas (GLGA) sample of 20,000+ galaxies, at a variety of standardized spatial resolutions. Although the precise categorization of the cataloged substructures will depend on galaxy distance, the outcome of our analysis will be a catalog similar to the stellar association surveys of past decades for very nearby galaxies based on resolved stars (e.g. van den Bergh 1964, Hodge 1986, Efremov et al. 1987), except that our investigation will probe a galaxy sample of dramatically larger size using the integrated UV light from such groupings of young stars. Our algorithm is multi-scale in nature and will thus preserve the hierarchical properties of the stellar distribution, by linking sub-clumps to their larger-scale parent feature(s). The resulting database will be a fundamental resource for follow-up multi-wavelength studies probing SF-driven galaxy evolution using both existing NASA databases and operating instruments, in addition to upcoming space telescopes. While a legacy of our project will be the hierarchical photometric database (disseminated via MAST and NED) which supports extragalactic community science, our own goals from the proposed comprehensive measurements address some vital issues: (i) Currently there is controversy regarding the power-law slope of the empirical star formation law (SFL). Is there constant star formation efficiency above the HI-to-H_2 transition gas surface density (implying ~unity slope, see papers by Bigiel et al. and Leroy et al.), or is the SFL relation a stronger function of gas density with a super-linear form (as observed by Kennicutt et al. 2007)? Liu et al. (2011) have shown that the answer may depend critically on whether or not diffuse emission underlying star-forming substructures is removed. Our analysis will allow firm resolution of this issue, as we will also apply our photometry algorithm to Spitzer imaging for a subset of our sample galaxies, thus providing background-subtracted L(UV) and L(IR) measurements for substructures which can then be compared to existing and forthcoming (ALMA) CO imaging. (ii) We will also verify/calibrate our SED-fit based determination of age, extinction, and mass for UV-bright structures via direct comparison to the ground-truth stemming from resolved stellar populations (e.g. in ANGST galaxies) and also high-resolution HST UV-optical star cluster surveys (further out in the Local Volume). (iii) Finally, we will measure the diffuse UV fraction in a few hundred of the nearest galaxies (accounting for variation tied only to spatial resolution), trying to ascertain the characteristic fraction in galaxies of different Hubble type and dust-to-gas ratio. Systematic local variations in diffuse fraction and color will also be quantified as a function of environment.

  16. Complex formation with nucleic acids and aptamers alters the antigenic properties of platelet factor 4

    PubMed Central

    Jaax, Miriam E.; Krauel, Krystin; Marschall, Thomas; Brandt, Sven; Gansler, Julia; Fürll, Birgitt; Appel, Bettina; Fischer, Silvia; Block, Stephan; Helm, Christiane A.; Müller, Sabine; Preissner, Klaus T.

    2013-01-01

    The tight electrostatic binding of the chemokine platelet factor 4 (PF4) to polyanions induces heparin-induced thrombocytopenia, a prothrombotic adverse drug reaction caused by immunoglobulin G directed against PF4/polyanion complexes. This study demonstrates that nucleic acids, including aptamers, also bind to PF4 and enhance PF4 binding to platelets. Systematic assessment of RNA and DNA constructs, as well as 4 aptamers of different lengths and secondary structures, revealed that increasing length and double-stranded segments of nucleic acids augment complex formation with PF4, while single nucleotides or single-stranded polyA or polyC constructs do not. Aptamers were shown by circular dichroism spectroscopy to induce structural changes in PF4 that resemble those induced by heparin. Moreover, heparin-induced anti-human–PF4/heparin antibodies cross-reacted with human PF4/nucleic acid and PF4/aptamer complexes, as shown by an enzyme immunoassay and a functional platelet activation assay. Finally, administration of PF4/44mer–DNA protein C aptamer complexes in mice induced anti–PF4/aptamer antibodies, which cross-reacted with murine PF4/heparin complexes. These data indicate that the formation of anti-PF4/heparin antibodies in postoperative patients may be augmented by PF4/nucleic acid complexes. Moreover, administration of therapeutic aptamers has the potential to induce anti-PF4/polyanion antibodies and a prothrombotic diathesis. PMID:23673861

  17. Complex formation with nucleic acids and aptamers alters the antigenic properties of platelet factor 4.

    PubMed

    Jaax, Miriam E; Krauel, Krystin; Marschall, Thomas; Brandt, Sven; Gansler, Julia; Fürll, Birgitt; Appel, Bettina; Fischer, Silvia; Block, Stephan; Helm, Christiane A; Müller, Sabine; Preissner, Klaus T; Greinacher, Andreas

    2013-07-11

    The tight electrostatic binding of the chemokine platelet factor 4 (PF4) to polyanions induces heparin-induced thrombocytopenia, a prothrombotic adverse drug reaction caused by immunoglobulin G directed against PF4/polyanion complexes. This study demonstrates that nucleic acids, including aptamers, also bind to PF4 and enhance PF4 binding to platelets. Systematic assessment of RNA and DNA constructs, as well as 4 aptamers of different lengths and secondary structures, revealed that increasing length and double-stranded segments of nucleic acids augment complex formation with PF4, while single nucleotides or single-stranded polyA or polyC constructs do not. Aptamers were shown by circular dichroism spectroscopy to induce structural changes in PF4 that resemble those induced by heparin. Moreover, heparin-induced anti-human-PF4/heparin antibodies cross-reacted with human PF4/nucleic acid and PF4/aptamer complexes, as shown by an enzyme immunoassay and a functional platelet activation assay. Finally, administration of PF4/44mer-DNA protein C aptamer complexes in mice induced anti-PF4/aptamer antibodies, which cross-reacted with murine PF4/heparin complexes. These data indicate that the formation of anti-PF4/heparin antibodies in postoperative patients may be augmented by PF4/nucleic acid complexes. Moreover, administration of therapeutic aptamers has the potential to induce anti-PF4/polyanion antibodies and a prothrombotic diathesis. PMID:23673861

  18. PHOSPHOLIPIDS ARE NEEDED FOR PROPER FORMATION, STABILITY AND FUNCTION OF THE PHOTOACTIVATED RHODOPSIN-TRANSDUCIN COMPLEX

    PubMed Central

    Jastrzebska, Beata; Goc, Anna; Golczak, Marcin; Palczewski, Krzysztof

    2009-01-01

    Heterotrimeric G proteins become activated after they form a catalytically active complex with activated G protein-coupled receptors (GPCRs) and GTP replaces GDP on the G protein ? subunit. This transient coupling can be stabilized by nucleotide depletion, resulting in an empty-nucleotide G-protein-GPCR complex. Efficient and reproducible formation of conformationally homogenous GPCR-Gt complexes is a prerequisite for structural studies. Herein, we report isolation conditions that enhance the stability, and preserve activity and proper stoichiometry of productive complexes between the purified prototypical GPCR, rhodopsin (Rho), and the rod cell-specific G protein, transducin (Gt). Binding of purified Gt to photoactivated Rho (Rho*) in n-dodecyl-?-maltoside (DDM) examined by gel filtration chromatography was generally modest and purified complexes provided heterogeneous ratios of protein components, most likely because of excess detergent. Rho*-Gt complex stability and activity was greatly increased by addition of phospholipids such as DOPC, DOPE and DOPS, and asolectin to detergent-containing solutions of these proteins. In contrast, native Rho*-Gt complexes purified directly from light-exposed bovine ROS membranes by sucrose gradient centrifugation exhibited improved stability and the expected 2:1 stoichiometry between Rho* and Gt. The above results strongly indicate a lipid requirement for stable complex formation wherein the likely oligomeric structure of Rho provides a superior platform for coupling to Gt, and phospholipids likely form a matrix to which Gt can anchor through its myristoyl and farnesyl groups. Our findings also demonstrate that the choice of detergent and purification method is critical for obtaining highly purified, stable, and active complexes with appropriate stoichiometry between GPCRs and G proteins needed for structural studies. PMID:19413332

  19. Functional insight into the role of Orc6 in septin complex filament formation in Drosophila

    PubMed Central

    Akhmetova, Katarina; Balasov, Maxim; Huijbregts, Richard P. H.; Chesnokov, Igor

    2015-01-01

    Septins belong to a family of polymerizing GTP-binding proteins that are important for cytokinesis and other processes that involve spatial organization of the cell cortex. We reconstituted a recombinant Drosophila septin complex and compared activities of the wild-type and several mutant septin complex variants both in vitro and in vivo. We show that Drosophila septin complex functions depend on the intact GTP-binding and/or hydrolysis domains of Pnut, Sep1, and Sep2. The presence of the functional C-terminal domain of septins is required for the integrity of the complex. Drosophila Orc6 protein, the smallest subunit of the origin recognition complex (ORC), directly binds to septin complex and facilitates septin filament formation. Orc6 forms dimers through the interactions of its N-terminal, TFIIB-like domains. This ability of the protein suggests a direct bridging role for Orc6 in stimulating septin polymerization in Drosophila. Studies reported here provide a functional dissection of a Drosophila septin complex and highlight the basic conserved and divergent features among metazoan septin complexes. PMID:25355953

  20. Protein complex directs hemoglobin-to-hemozoin formation in Plasmodium falciparum

    PubMed Central

    Chugh, Monika; Sundararaman, Vidhya; Kumar, Saravanan; Reddy, Vanga S.; Siddiqui, Waseem A.; Stuart, Kenneth D.; Malhotra, Pawan

    2013-01-01

    Malaria parasites use hemoglobin (Hb) as a major nutrient source in the intraerythrocytic stage, during which heme is converted to hemozoin (Hz). The formation of Hz is essential for parasite survival, but to date, the underlying mechanisms of Hb degradation and Hz formation are poorly understood. We report the presence of a ?200-kDa protein complex in the food vacuole that is required for Hb degradation and Hz formation. This complex contains several parasite proteins, including falcipain 2/2?, plasmepsin II, plasmepsin IV, histo aspartic protease, and heme detoxification protein. The association of these proteins is evident from coimmunoprecipitation followed by mass spectrometry, coelution from a gel filtration column, cosedimentation on a glycerol gradient, and in vitro protein interaction analyses. To functionally characterize this complex, we developed an in vitro assay using two of the proteins present in the complex. Our results show that falcipain 2 and heme detoxification protein associate with each other to efficiently convert Hb to Hz. We also used this in vitro assay to elucidate the modes of action of chloroquine and artemisinin. Our results reveal that both chloroquine and artemisinin act during the heme polymerization step, and chloroquine also acts at the Hb degradation step. These results may have important implications in the development of previously undefined antimalarials. PMID:23471987

  1. Complex coacervates obtained from peptide leucine and gum arabic: Formation and characterization.

    PubMed

    Gulão, Eliana da S; de Souza, Clitor J F; Andrade, Cristina T; Garcia-Rojas, Edwin E

    2016-03-01

    In this study, interactions between polypeptide-leucine (0.2% w/w) and gum arabic (0.03, 0.06, 0.09, 0.12, and 0.15% w/w) were examined at concentrations of NaCl (0, 0.01, 0.25, 0.3, 0.5mol/l) and at different pH values (from 1.0 to 12.0). Formation of insoluble complex coacervates was highest at pH 4.0. At pH 2.0, which is the pKa of the gum Arabic, the dissociation of precipitate occurred. The pHØ2 positively shifted with the addition of higher concentrations of salt. Samples containing 0.2% PL and 0.03% GA and no salt had higher turbidity and increased formation of precipitates showing greater turbidity and particle sizes. The Fourier transform infrared spectroscopy confirms the complex coacervate formation of leucine and gum arabic, and rheological measurements suggest the elastic behavior of 0.2% PL and 0.03% GA complex. Overall, the study suggests that complex coacervates of PLs could be one feasible ways of incorporating amino acids in food products. PMID:26471607

  2. Structural and spectroscopic study of Al(III)-3-hydroxyflavone complex: Determination of the stability constants in water-methanol mixtures

    NASA Astrophysics Data System (ADS)

    Davila, Y. A.; Sancho, M. I.; Almandoz, M. C.; Blanco, S. E.

    2012-09-01

    Stoichiometry and apparent stability constant (KC) of the complex formed between Al(III) and 3-hydroxyflavone were determined in methanol and water-methanol mixtures (% water w/w: 3.11; 6.15; 10.4; 15.2; 19.9 and 25.3) by UV-vis spectroscopy at 25.0 °C and constant ionic strength (0.05 M, sodium chloride). Stoichiometry of the complex (1:2, metal:ligand) is not modified with an increase in water percentage in the analyzed interval. The value of KC in methanol is greater than in the binary solutions. The effects of changing solvent composition on KC data were explained by linear solvation free energy relationships using the solvatochromic parameter of Kamlet and Taft (?, ? and ?*). Multiple linear regression analysis indicates that the hydrogen bond donating ability (?) of the solvent and non-specific interactions (?*) play an important role in the degree of occurrence of the reaction. The effect of temperature on KC was also analyzed by assessing standard entropy and enthalpy variations of the reaction in methanol. Finally, the structure of the complex was investigated using FTIR spectroscopy and DFT calculations. The ligand exhibits small structural changes upon complexation, localized on the chelating site. The calculated vibrational frequencies of the complex were successfully compared against the experimental values.

  3. Structural and spectroscopic study of Al(III)-3-hydroxyflavone complex: determination of the stability constants in water-methanol mixtures.

    PubMed

    Davila, Y A; Sancho, M I; Almandoz, M C; Blanco, S E

    2012-09-01

    Stoichiometry and apparent stability constant (K(C)) of the complex formed between Al(III) and 3-hydroxyflavone were determined in methanol and water-methanol mixtures (% water w/w: 3.11; 6.15; 10.4; 15.2; 19.9 and 25.3) by UV-vis spectroscopy at 25.0°C and constant ionic strength (0.05 M, sodium chloride). Stoichiometry of the complex (1:2, metal:ligand) is not modified with an increase in water percentage in the analyzed interval. The value of K(C) in methanol is greater than in the binary solutions. The effects of changing solvent composition on K(C) data were explained by linear solvation free energy relationships using the solvatochromic parameter of Kamlet and Taft (?, ? and ?(*)). Multiple linear regression analysis indicates that the hydrogen bond donating ability (?) of the solvent and non-specific interactions (?(*)) play an important role in the degree of occurrence of the reaction. The effect of temperature on K(C) was also analyzed by assessing standard entropy and enthalpy variations of the reaction in methanol. Finally, the structure of the complex was investigated using FTIR spectroscopy and DFT calculations. The ligand exhibits small structural changes upon complexation, localized on the chelating site. The calculated vibrational frequencies of the complex were successfully compared against the experimental values. PMID:22609565

  4. Formation of host-guest complexes of ?-cyclodextrin and perfluorooctanoic acid.

    PubMed

    Karoyo, Abdalla H; Borisov, Alex S; Wilson, Lee D; Hazendonk, Paul

    2011-08-11

    Structural characterization and dynamic properties of solid-state inclusion complexes of ?-cyclodextrin (?-CD) with perfluorooctanoic acid (PFOA) were investigated by (19)F/(13)C solid-state and (19)F/(1)H solution NMR spectroscopy. The complexes in the solid state were prepared using dissolution and slow cool methods, where thermal analyses (DSC and TGA), PXRD, and FT-IR results provided complementary support that inclusion complexes were formed between ?-CD and PFOA with variable stoichiometry and inclusion geometry. (19)F DP (direct polarization) and (13)C CP (cross-polarization) with magic-angle spinning (MAS) solids NMR, along with (19)F/(1)H solution NMR were used to characterize the complexes in the solid and solution phases, respectively. The dynamics of the guest molecules in the inclusion complexes (ICs) were studied using variable temperature (VT) (19)F DP/MAS NMR experiments in the solid state. The guest molecules were observed to be in several different molecular environments, providing strong evidence of variable host-guest stoichiometry and inclusion geometry, in accordance with the preparation method of the complex and the conformational preference of PFOA. It was concluded from PXRD that ?-CD and PFOA form inclusion complexes with "channel-type" structures. Variable spin rate (VSR) (19)F DP/MAS NMR was used to assess the phase purity of the complexes, and it was revealed that slow cooling resulted in relatively pure phases. In the solution state, (1)H and (19)F NMR complexation-induced chemical shifts (CISs) of ?-CD and PFOA, respectively, provided strong support for the formation of 1:1 and 2:1 ?-CD/PFOA inclusion complexes. The dynamics of the guest molecule in the ?-CD/PFOA complexes in D(2)O solutions were probed using VT (19)F NMR and revealed some guest conformational and exchange dynamics as a function of temperature and the relative concentrations of the host and guest. PMID:21688796

  5. Formation of complexes between PAMAM-NH2 G4 dendrimer and L-?-tryptophan and L-?-tyrosine in water

    NASA Astrophysics Data System (ADS)

    Buczkowski, Adam; Urbaniak, Pawel; Belica, Sylwia; Sekowski, Szymon; Bryszewska, Maria; Palecz, Bartlomiej

    2014-07-01

    Interactions between electromagnetic radiation and the side substituents of aromatic amino acids are widely used in the biochemical studies on proteins and their interactions with ligand molecules. That is why the aim of our study was to characterize the formation of complexes between PAMAM-NH2 G4 dendrimer and L-?-tryptophan and L-?-tyrosine in water. The number of L-?-tryptophan and L-?-tyrosine molecules attached to the macromolecule of PAMAM-NH2 G4 dendrimer and the formation constants of the supramolecular complexes formed have been determined. The macromolecule of PAMAM-NH2 G4 can reversibly attach about 25 L-?-tryptophan molecules with equilibrium constant K equal to 130 ± 30 and 24 ± 6 L-?-tyrosine molecules. This characterization was deduced on the basis of the solubility measurements of the amino acids in aqueous dendrimer solutions, the 1H NMR and 2D-NOESY measurements of the dendrimer solutions with the amino acids, the equilibrium dialysis and the circular dichroism measurements of the dendrimer aqueous solutions with L-?-tryptophan. Our date confirmed the interactions of L-?-tryptophan and L-?-tyrosine with the dendrimer in aqueous solution and indicated a reversible character of the formed complexes.

  6. Formation of multiple focal spots using a high NA lens with a complex spiral phase mask

    NASA Astrophysics Data System (ADS)

    Lalithambigai, K.; Anbarasan, P. M.; Rajesh, K. B.

    2014-07-01

    The formation of a transversally polarized beam by transmitting a tightly focused double-ring-shaped azimuthally polarized beam through a complex spiral phase mask and high numerical aperture lens is presented based on vector diffraction theory. The generation of transversally polarized focal spot segment splitting and multiple focal spots is illustrated numerically. Moreover, we found that a properly designed complex spiral phase mask can move the focal spots along the optical axis in the z direction. Therefore, one can achieve a focal segment of two, three or multiple completely transversely polarized focal spots, which finds applications in optical trapping and in material processing technologies.

  7. An Efficient Format for Nearly Constant-Time Access to Arbitrary Time Intervals in Large Trace Files

    DOE PAGESBeta

    Chan, Anthony; Gropp, William; Lusk, Ewing

    2008-01-01

    A powerful method to aid in understanding the performance of parallel applications uses log or trace files containing time-stamped events and states (pairs of events). These trace files can be very large, often hundreds or even thousands of megabytes. Because of the cost of accessing and displaying such files, other methods are often used that reduce the size of the tracefiles at the cost of sacrificing detail or other information. This paper describes a hierarchical trace file format that provides for display of an arbitrary time window in a time independent of the total size of the file and roughlymore »proportional to the number of events within the time window. This format eliminates the need to sacrifice data to achieve a smaller trace file size (since storage is inexpensive, it is necessary only to make efficient use of bandwidth to that storage). The format can be used to organize a trace file or to create a separate file ofannotationsthat may be used with conventional trace files. We present an analysis of the time to access all of the events relevant to an interval of time and we describe experiments demonstrating the performance of this file format.« less

  8. Multinuclear complex formation between Ca(II) and gluconate ions in hyperalkaline solutions.

    PubMed

    Pallagi, Attila; Bajnóczi, Éva G; Canton, Sophie E; Bolin, Trudy; Peintler, Gábor; Kutus, Bence; Kele, Zoltán; Pálinkó, István; Sipos, Pál

    2014-06-17

    Alkaline solutions containing polyhydroxy carboxylates and Ca(II) are typical in cementitious radioactive waste repositories. Gluconate (Gluc(-)) is a structural and functional representative of these sugar carboxylates. In the current study, the structure and equilibria of complexes forming in such strongly alkaline solutions containing Ca(2+) and gluconate have been studied. It was found that Gluc(-) significantly increases the solubility of portlandite (Ca(OH)2(s)) under these conditions and Ca(2+) complexes of unexpectedly high stability are formed. The mononuclear (CaGluc(+) and [CaGlucOH](0)) complexes were found to be minor species, and predominant multinuclear complexes were identified. The formation of the neutral [Ca2Gluc(OH)3](0) (log ?213 = 8.03) and [Ca3Gluc2(OH)4](0) (log ?324 = 12.39) has been proven via H2/Pt-electrode potentiometric measurements and was confirmed via XAS, (1)H NMR, ESI-MS, conductometry, and freezing-point depression experiments. The binding sites of Gluc(-) were identified from multinuclear NMR measurements. Besides the carboxylate group, the O atoms on the second and third carbon atoms were proved to be the most probable sites for Ca(2+) binding. The suggested structure of the trinuclear complex was deduced from ab initio calculations. These observations are of relevance in the thermodynamic modeling of radioactive waste repositories, where the predominance of the binuclear Ca(2+) complex, which is a precursor of various high-stability ternary complexes with actinides, is demonstrated. PMID:24865662

  9. Electron Bihole Complex Formation in Neutralization of Ne{sup +} on LiF(001)

    SciTech Connect

    Khemliche, H.; Villette, J.; Borisov, A. G.; Momeni, A.; Roncin, P.

    2001-06-18

    Neutralization of low keV Ne{sup +} ions at a LiF(001) surface is studied in a grazing incidence geometry. The combination of energy loss and electron spectroscopy in coincidence reveals two neutralization channels of comparable importance. Besides the Auger process, the Ne{sup +} neutralization can proceed via peculiar target excitation, corresponding to the formation of an electron bihole complex termed trion.

  10. Simultaneous measurement of amyloid fibril formation by dynamic light scattering and fluorescence reveals complex aggregation kinetics.

    PubMed

    Streets, Aaron M; Sourigues, Yannick; Kopito, Ron R; Melki, Ronald; Quake, Stephen R

    2013-01-01

    An apparatus that combines dynamic light scattering and Thioflavin T fluorescence detection is used to simultaneously probe fibril formation in polyglutamine peptides, the aggregating subunit associated with Huntington's disease, in vitro. Huntington's disease is a neurodegenerative disorder in a class of human pathologies that includes Alzheimer's and Parkinson's disease. These pathologies are all related by the propensity of their associated protein or polypeptide to form insoluble, ?-sheet rich, amyloid fibrils. Despite the wide range of amino acid sequence in the aggregation prone polypeptides associated with these diseases, the resulting amyloids display strikingly similar physical structure, an observation which suggests a physical basis for amyloid fibril formation. Thioflavin T fluorescence reports ?-sheet fibril content while dynamic light scattering measures particle size distributions. The combined techniques allow elucidation of complex aggregation kinetics and are used to reveal multiple stages of amyloid fibril formation. PMID:23349924

  11. Simultaneous Measurement of Amyloid Fibril Formation by Dynamic Light Scattering and Fluorescence Reveals Complex Aggregation Kinetics

    PubMed Central

    Streets, Aaron M.; Sourigues, Yannick; Kopito, Ron R.; Melki, Ronald; Quake, Stephen R.

    2013-01-01

    An apparatus that combines dynamic light scattering and Thioflavin T fluorescence detection is used to simultaneously probe fibril formation in polyglutamine peptides, the aggregating subunit associated with Huntington's disease, in vitro. Huntington's disease is a neurodegenerative disorder in a class of human pathologies that includes Alzheimer's and Parkinson's disease. These pathologies are all related by the propensity of their associated protein or polypeptide to form insoluble, ?-sheet rich, amyloid fibrils. Despite the wide range of amino acid sequence in the aggregation prone polypeptides associated with these diseases, the resulting amyloids display strikingly similar physical structure, an observation which suggests a physical basis for amyloid fibril formation. Thioflavin T fluorescence reports ?-sheet fibril content while dynamic light scattering measures particle size distributions. The combined techniques allow elucidation of complex aggregation kinetics and are used to reveal multiple stages of amyloid fibril formation. PMID:23349924

  12. The cytoprotective effect of nitrite is based on the formation of dinitrosyl iron complexes.

    PubMed

    Dungel, Peter; Perlinger, Martin; Weidinger, Adelheid; Redl, Heinz; Kozlov, Andrey V

    2015-12-01

    Nitrite protects various organs from ischemia-reperfusion injury by ameliorating mitochondrial dysfunction. Here we provide evidence that this protection is due to the inhibition of iron-mediated oxidative reactions caused by the release of iron ions upon hypoxia. We show in a model of isolated rat liver mitochondria that upon hypoxia, mitochondria reduce nitrite to nitric oxide (NO) in amounts sufficient to inactivate redox-active iron ions by formation of inactive dinitrosyl iron complexes (DNIC). The scavenging of iron ions in turn prevents the oxidative modification of the outer mitochondrial membrane and the release of cytochrome c during reoxygenation. This action of nitrite protects mitochondrial function. The formation of DNIC with nitrite-derived NO could also be confirmed in an ischemia-reperfusion model in liver tissue. Our data suggest that the formation of DNIC is a key mechanism of nitrite-mediated cytoprotection. PMID:26415027

  13. Study using a three-dimensional smog formation model under conditions of complex flow

    NASA Astrophysics Data System (ADS)

    Wakamatsu, S.; Schere, K. L.; Shreffler, J. H.; Uno, I.

    1986-05-01

    To clarify the photochemical smog formation mechanisms under conditions of complex flow, the SAI Urban Airshed Model was evaluated using a 1981 field observed data base. In the Tokyo Metropolitan Area higher O3 concentrations are usually observed near the shore in the morning. As the sea breeze layer penetrates inland, this high concentration region travels with it, increasing in concentration with time. A night-time radiation inversion which persists into the early morning prevents the dispersion of primary pollutants emitted from the big coastal industrial zones and the Tokyo Metropolitan Area. The effect is believed to accelerate the formation of secondary pollutants during the next day. The quantitative role and weight of the previous days's secondary pollutants, newly emitted pollutants, temporal variation of mixing height and three-dimensional wind field for the O3 formation mechanisms were investigated. The three-dimensional simulated results showed good quantitative agreement with the observed field data but underestimated the aircraft data.

  14. Formylglycinamide Ribonucleotide Amidotransferase from Thermotoga maritima: Structural Insights into Complex Formation

    SciTech Connect

    Morar, Mariya; Hoskins, Aaron A.; Stubbe, JoAnne; Ealick, Steven E.

    2008-10-02

    In the fourth step of the purine biosynthetic pathway, formyl glycinamide ribonucleotide (FGAR) amidotransferase, also known as PurL, catalyzes the conversion of FGAR, ATP, and glutamine to formyl glycinamidine ribonucleotide (FGAM), ADP, P{sub i}, and glutamate. Two forms of PurL have been characterized, large and small. Large PurL, present in most Gram-negative bacteria and eukaryotes, consists of a single polypeptide chain and contains three major domains: the N-terminal domain, the FGAM synthetase domain, and the glutaminase domain, with a putative ammonia channel located between the active sites of the latter two. Small PurL, present in Gram-positive bacteria and archaea, is structurally homologous to the FGAM synthetase domain of large PurL, and forms a complex with two additional gene products, PurQ and PurS. The structure of the PurS dimer is homologous with the N-terminal domain of large PurL, while PurQ, whose structure has not been reported, contains the glutaminase activity. In Bacillus subtilis, the formation of the PurLQS complex is dependent on glutamine and ADP and has been demonstrated by size-exclusion chromatography. In this work, a structure of the PurLQS complex from Thermotoga maritima is described revealing a 2:1:1 stoichiometry of PurS:Q:L, respectively. The conformational changes observed in TmPurL upon complex formation elucidate the mechanism of metabolite-mediated recruitment of PurQ and PurS. The flexibility of the PurS dimer is proposed to play a role in the activation of the complex and the formation of the ammonia channel. A potential path for the ammonia channel is identified.

  15. Determination of the Physical Constants of Ferric and Ferrous Complexes of Phytic Acid by Proton Nuclear Magnetic Resonance and Resistance of Complexes to Enzymatic Dephosphoralation by Aspergillus ficcum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the fate and transport of organic forms of phosphate requires in the case of myo-inositol hex kis phosphate (phytate) knowledge charge speciation as a function of pH and affinity of mineral cations such as soluble iron for phytate. Twelve acidity constants exist for phytic acid becau...

  16. Lowstand transgressive upper Cretaceous (Coniacian) gravelly deltaic complexes of the Cardium formation, West Central Alberta, Canada

    SciTech Connect

    Thomas, D.V.

    1996-12-31

    A detailed facies and sequence stratigraphic analysis is used to demonstrate the reservoir compartmentalization of gravelly deltaic complexes deposited on a ramp margin in the Western Canadian Sedimentary Basin. Gravelly deltas of the Carrot Creek Member of the Cardium Formation in the Cyn Pem Field area of West Central Alberta occur along well defined backslapping shoreline trends that represent high frequency lowstand to transgressive systems tracts that followed the second order sea level fall ({approximately}90 Ma) of the Turonian. The Cyn Pem Cardium D pool is used to illustrate the detailed sedimentologly and stratigraphy of a gravelly deltaic complex. The pool consists of two distinct coarse-grained delta lobes oriented along a northwest-trending shoreline. Up to 21 meters of gravelly stream mouth bar and distributary channel facles were deposited unconformably on distal marine highstand deposits of the Raven River Member (Turonian) of the Cardium Formation. Production data and facies analysis indicates excellent communication along high permeability (>l Darcy) Gilbert-type deltaic foresets oriented parallel to strike and moderate to poor communication in a depositional dip direction. Poorly sorted gravelly distributary channels dissect the deltaic ioresets. A complex history of high frequency lowstand and transgressive erosion resulted in substantial paleotopographic relief that both bounds and compartmentalizes these gravelly deltaic complexes.

  17. Lowstand transgressive upper Cretaceous (Coniacian) gravelly deltaic complexes of the Cardium formation, West Central Alberta, Canada

    SciTech Connect

    Thomas, D.V. )

    1996-01-01

    A detailed facies and sequence stratigraphic analysis is used to demonstrate the reservoir compartmentalization of gravelly deltaic complexes deposited on a ramp margin in the Western Canadian Sedimentary Basin. Gravelly deltas of the Carrot Creek Member of the Cardium Formation in the Cyn Pem Field area of West Central Alberta occur along well defined backslapping shoreline trends that represent high frequency lowstand to transgressive systems tracts that followed the second order sea level fall ([approximately]90 Ma) of the Turonian. The Cyn Pem Cardium D pool is used to illustrate the detailed sedimentologly and stratigraphy of a gravelly deltaic complex. The pool consists of two distinct coarse-grained delta lobes oriented along a northwest-trending shoreline. Up to 21 meters of gravelly stream mouth bar and distributary channel facles were deposited unconformably on distal marine highstand deposits of the Raven River Member (Turonian) of the Cardium Formation. Production data and facies analysis indicates excellent communication along high permeability (>l Darcy) Gilbert-type deltaic foresets oriented parallel to strike and moderate to poor communication in a depositional dip direction. Poorly sorted gravelly distributary channels dissect the deltaic ioresets. A complex history of high frequency lowstand and transgressive erosion resulted in substantial paleotopographic relief that both bounds and compartmentalizes these gravelly deltaic complexes.

  18. Perfluoroalkyl Cobalt(III) Fluoride and Bis(perfluoroalkyl) Complexes: Catalytic Fluorination and Selective Difluorocarbene Formation.

    PubMed

    Leclerc, Matthew C; Bayne, Julia M; Lee, Graham M; Gorelsky, Serge I; Vasiliu, Monica; Korobkov, Ilia; Harrison, Daniel J; Dixon, David A; Baker, R Tom

    2015-12-30

    Four perfluoroalkyl cobalt(III) fluoride complexes have been synthesized and characterized by elemental analysis, multinuclear NMR spectroscopy, X-ray crystallography, and powder X-ray diffraction. The remarkable cobalt fluoride (19)F NMR chemical shifts (-716 to -759 ppm) were studied computationally, and the contributing paramagnetic and diamagnetic factors were extracted. Additionally, the complexes were shown to be active in the catalytic fluorination of p-toluoyl chloride. Furthermore, two examples of cobalt(III) bis(perfluoroalkyl)complexes were synthesized and their reactivity studied. Interestingly, abstraction of a fluoride ion from these complexes led to selective formation of cobalt difluorocarbene complexes derived from the trifluoromethyl ligand. These electrophilic difluorocarbenes were shown to undergo insertion into the remaining perfluoroalkyl fragment, demonstrating the elongation of a perfluoroalkyl chain arising from a difluorocarbene insertion on a cobalt metal center. The reactions of both the fluoride and bis(perfluoroalkyl) complexes provide insight into the potential catalytic applications of these model systems to form small fluorinated molecules as well as fluoropolymers. PMID:26674217

  19. Mechanistic study of intertypic nucleoprotein complex formation and its inhibitory effect toward influenza A virus.

    PubMed

    Narkpuk, Jaraspim; Jaru-Ampornpan, Peera; Subali, Theressa; Bertulfo, Fatima Carla T; Wongthida, Phonphimon; Jongkaewwattana, Anan

    2015-11-01

    Co-infection of influenza A and B viruses (IAV and IBV) results in marked decreases in IAV replication. Multiple mechanisms have been proposed for this phenomenon. Recently, we reported that IBV nucleoprotein (BNP) alone can suppress IAV replication and proposed an inhibition model in which BNP binds IAV nucleoprotein (ANP) and disrupts IAV polymerase complexes. Here, using mutagenesis and co-immunoprecipitation, we determined the protein motifs mediating the intertypic ANP-BNP complex and showed that it specifically interferes with ANP?s interaction with the PB2 subunit of the IAV polymerase but not with the other subunit PB1. We further demonstrated that BNP only suppresses growth of IAVs but not other RNA viruses. However, different IAV strains display varied sensitivity toward the BNP?s inhibitory effect. Together, our data provide mechanistic insights into intertypic nucleoprotein complex formation and highlight the role of BNP as a potential broad-spectrum anti-IAV agent. PMID:26218215

  20. Actomyosin-dependent formation of the mechanosensitive talin-vinculin complex reinforces actin anchoring

    NASA Astrophysics Data System (ADS)

    Ciobanasu, Corina; Faivre, Bruno; Le Clainche, Christophe

    2014-01-01

    The force generated by the actomyosin cytoskeleton controls focal adhesion dynamics during cell migration. This process is thought to involve the mechanical unfolding of talin to expose cryptic vinculin-binding sites. However, the ability of the actomyosin cytoskeleton to directly control the formation of a talin-vinculin complex and the resulting activity of the complex are not known. Here we develop a microscopy assay with pure proteins in which the self-assembly of actomyosin cables controls the association of vinculin to a talin-micropatterned surface in a reversible manner. Quantifications indicate that talin refolding is limited by vinculin dissociation and modulated by the actomyosin network stability. Finally, we show that the activation of vinculin by stretched talin induces a positive feedback that reinforces the actin-talin-vinculin association. This in vitro reconstitution reveals the mechanism by which a key molecular switch senses and controls the connection between adhesion complexes and the actomyosin cytoskeleton.

  1. Mössbauer study of peroxynitrito complex formation with FeIII-chelates

    NASA Astrophysics Data System (ADS)

    Homonnay, Zoltan; Buszlai, Peter; Nádor, Judit; Sharma, Virender K.; Kuzmann, Erno; Vértes, Attila

    2012-03-01

    The reaction of the ?-oxo-diiron(III)-L complex (L = EDTA, ethylene diamine tetraacetate, HEDTA, hydroxyethyl ethylene diamine triacetate, and CyDTA, cyclohexane diamine tetraacetate) with peroxynitrite in alkaline solution was studied by Mössbauer spectroscopy using rapid-freezing technique. These complexes yield an (L)FeIII( ? 2-O2)^{3-} complex ion when they react with hydrogen peroxide and the formation of the peroxide adduct results in a deep purple coloration of the solution. The same color appears when the reaction occurs with peroxinitrite. Although spectrophotometry indicated some difference between the molar extinction coefficients of the peroxo and the peroxinitrito adducts, the Mössbauer parameters proved to be the same within experimental error. It is concluded that the peroxynitrite ion decomposes when reacting with FeIII(L) and the peroxo adduct forms.

  2. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    SciTech Connect

    Bhattacharjee, Rajesh; Xiang, Wenpei; Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China ; Wang, Yinna; Zhang, Xiaoying

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. Black-Right-Pointing-Pointer cAMP blocks NF-{kappa}B activation induced by TNF and actinomycin D. Black-Right-Pointing-Pointer cAMP blocks DISC formation following TNF and actinomycin D exposure. Black-Right-Pointing-Pointer cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor {alpha} (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found that cAMP exerts its affect at the proximal level of TNF signaling by inhibiting the formation of the DISC complex upon the binding of TNF to TNFR1. In conclusion, our study shows that cAMP prevents TNF + ActD-induced apoptosis in rat hepatocytes by inhibiting DISC complex formation.

  3. Structural Complexities Influencing Biostratigraphic Interpretations of the Permian Nansen Formation type-section, Ellesmere Island, Canada

    NASA Astrophysics Data System (ADS)

    Hill, M.; Guest, B.

    2011-12-01

    The Carboniferous to Permian aged Nansen Formation is a cyclic carbonate shelf deposit and potential hydrocarbon reservoir. This formation is the thickest, most widespread carbonate sequence in the Sverdrup Basin. Deformed during the Eurekan Orogeny, the Nansen Fm. is topographically prominent and responsible for the rugged topography on Axel Heiburg and Ellesmere Island. The type-section for the Nansen Fm. is located on the north side of Hare Fiord, along Girty Creek. At this location there is an estimated stratigraphic thickness of 2 km. Due to easier access most of the stratigraphic work has been completed on nearby glacially exposed sections that traverse parallel to Girty Creek along glacial margins. Extensive biostratigraphy was completed on a glacier section to the west, however, in a glacier section to the east of Girty Creek, structural complexities appear to be repeating sections of the formation. Here, the Nansen formation is bounded by two regional reverse faults. This has produced duplex structures, with clearly exposed stacked horses, footwall synclines, and truncations. By projecting the structures observed along the eastern glacier section to the western glacier section that was used for biostratigraphic studies, it is clear that these structures would affect biostratigraphic interpretations. It was previously noted by biostratigraphers that thrust faults appear to be repeating sections of the Nansen formation. However by correlating all observed faults with the biostratigraphy, we can determine the extent to which the faulting has affected the interpretations, and whether all faults or stratigraphic repetitions are accounted for.

  4. Coordination Modes in the Formation of Ternary Complexes of Am(III), Cm(III) and Eu(III) with EDTA and NTA: TRLFS, 13C NMR, EXAFS, and Thermodynamics of the complexation.

    SciTech Connect

    Mathur,J.; Thakur, P.; Dodge, C.; Francis, A.; Choppin, G.

    2006-01-01

    The formation and the structure of the ternary complexes of trivalent Am, Cm, and Eu with mixtures of EDTA+NTA (ethylenediamine tetraacetate and nitrilotriacetate) have been studied by time-resolved laser fluorescence spectroscopy, {sup 13}C NMR, extended X-ray absorption fine structure, and two-phase metal ion equilibrium distribution at 6.60 m (NaClO{sub 4}) and a hydrogen ion concentration value (pcH) between 3.60 and 11.50. In the ternary complexes, EDTA binds via four carboxylates and two nitrogens, while the binding of the NTA varies with the hydrogen ion concentration, pcH, and the concentration ratios of the metal ion and the ligand. When the concentration ratios of the metal to ligand is low (1:1:1-1:1:2), two ternary complexes, M(EDTA)(NTAH){sup 3-} and M(EDTA)(NTA){sup 4-}, are formed at pcH ca. 9.00 in which NTA binds via three carboxylates, via two carboxylates and one nitrogen, or via two carboxylates and a H{sub 2}O. At higher ratios (1:1:20 and 1:10:10) and pcH's of ca. 9.00 and 11.50, one ternary complex, M(EDTA)(NTA){sup 4-}, is formed in which NTA binds via three carboxylates and not via nitrogen. The two-phase equilibrium distribution studies at tracer concentrations of Am, Cm, and Eu have also confirmed the formation of the ternary complex M(EDTA)(NTA){sup 4-} at temperatures between 0 and 60 {sup o}C. The stability constants (log{beta}{sub 111}) for these metal ions increase with increasing temperature. The endothermic enthalpy and positive entropy indicated a significant effect of cation dehydration in the formation of the ternary complexes at high ionic strength.

  5. Formation and transition of highly ordered structures of polyelectrolyte-surfactant complexes

    SciTech Connect

    Zhou, S.; Yeh, F.; Chu, B.; Burger, C.

    1999-03-25

    Small-angle X-ray scattering studies on the nanostructures of water-equilibrated complexes, formed by slightly cross-linked copolymer gels of poly(sodium methacrylate/N-isopropylacrylamide) P(MAA/NIPAM) and fully charged sodium polystyrenesulfonate (PSS), respectively, interacting with oppositely charged surfactants of alkyltrimethylammonium bromide (C{sub n}TAB, with n being the number of carbon atoms in the alkyl chain) at {approximately}23 C, are presented. In P(MAA/NIPAM)-C{sub n}TA complexes, the formation and transition of highly ordered structures were investigated in terms of the surfactant alkyl chain length and the hydrophobicity of the polyelectrolyte chain. The complexes between fully charged PMAA gel and C{sub n}TAB showed Pm3n cubic structures at 10 {le} n {le} 16 but did not show highly ordered structures at n = 8 and 18 due to the weak hydrophobic interaction and the steric hindrance of the long alkyl chains inside the gel, respectively. In complexes formed by moderately charged P(MAA/NIPAM) gel with C{sub n}TAB, the decrease in the surfactant alkyl chain length could induce the phase structure transition from Pm3n cubic to face-centered cubic, and then to hexagonal close packing of spheres. The longer the surfactant alkyl chain, the lower the charge density and the hydrophobicity of polyelectrolyte chains are required to form highly ordered structures inside the resulting complexes. In PSS-C{sub n}Ta complexes, structures of two-dimensional (2D) hexagonal packing of cylinders were determined. The 2D hexagonal structures were different from both the layered structures in the corresponding solid-state complexes and the Pm3n cubic structures in PMAA-C{sub n}TA complexes, in which the PMAA chains were more flexible than the PSS chains.

  6. Predicting permeability from the characteristic relaxation time and intrinsic formation factor of complex conductivity spectra

    NASA Astrophysics Data System (ADS)

    Revil, A.; Binley, A.; Mejus, L.; Kessouri, P.

    2015-08-01

    Low-frequency quadrature conductivity spectra of siliclastic materials exhibit typically a characteristic relaxation time, which either corresponds to the peak frequency of the phase or the quadrature conductivity or a typical corner frequency, at which the quadrature conductivity starts to decrease rapidly toward lower frequencies. This characteristic relaxation time can be combined with the (intrinsic) formation factor and a diffusion coefficient to predict the permeability to flow of porous materials at saturation. The intrinsic formation factor can either be determined at several salinities using an electrical conductivity model or at a single salinity using a relationship between the surface and quadrature conductivities. The diffusion coefficient entering into the relationship between the permeability, the characteristic relaxation time, and the formation factor takes only two distinct values for isothermal conditions. For pure silica, the diffusion coefficient of cations, like sodium or potassium, in the Stern layer is equal to the diffusion coefficient of these ions in the bulk pore water, indicating weak sorption of these couterions. For clayey materials and clean sands and sandstones whose surface have been exposed to alumina (possibly iron), the diffusion coefficient of the cations in the Stern layer appears to be 350 times smaller than the diffusion coefficient of the same cations in the pore water. These values are consistent with the values of the ionic mobilities used to determine the amplitude of the low and high-frequency quadrature conductivities and surface conductivity. The database used to test the model comprises a total of 202 samples. Our analysis reveals that permeability prediction with the proposed model is usually within an order of magnitude from the measured value above 0.1 mD. We also discuss the relationship between the different time constants that have been considered in previous works as characteristic relaxation time, including the mean relaxation time obtained from a Debye decomposition of the spectra and the Cole-Cole time constant.

  7. On-line dynamic titration: determination of dissociation constants for noncovalent complexes using Gaussian concentration profiles by electrospray ionization mass spectrometry.

    PubMed

    Frycák, Petr; Schug, Kevin A

    2007-07-15

    A new method for determination of dissociation constants (Kd) using on-line titration by electrospray ionization mass spectrometry is presented. Unlike in common titration experiments, where a set of discrete solutions with a fixed concentration of host and increasing concentration of guest is measured, here a continuous Gaussian concentration profile of guest, formed by band-broadening dispersion during passage through a long tubing, is utilized. An equation allowing access to dissociation constant values from experimental data fit to a 1:1 binding model was derived and incorporated into an in-house-written computer program for automated data processing. The new method is demonstrated for noncovalent complexes of cinchona alkaloid carbamate chiral selectors with N-dinitrobenzoylleucine enantiomers and a series of cyclodextrins with sulfonated azo dyes. PMID:17542559

  8. Complement complex C5b-8 induces PGI/sub 2/ formation in culture endothelial cells

    SciTech Connect

    Suttorp, N.; Seeger, W.; Zinsky, S.; Bhakdi, S.

    1987-07-01

    The effects of the terminal complement sequence on prostacyclin (PGI/sub 2/) generation in antibody-sensitized pulmonary arterial endothelial cells were examined. Whereas C5b-7 complement complexes induced no PGI/sub 2/ formation, addition of purified complement component C8 resulted in a time- and dose-dependent burst of PGI/sub 2/ release in the absence of overt cell damage. Formation of the complete terminal complement complex C5b-9 enhanced PGI/sub 2/ release but was accompanied by cytolysis. Extracellular Ca/sup 2 +/ was required for C5b-8-dependent PGI/sub 2/ formation. Three different blockers of physiological calcium channels failed to suppress the observed stimulatory effect. In contrast, W7 (N-(6-amino-hexyl)-5-chloro-1-napththalene sulfonamide) and trifluoperazine, inhibitors of calmodulin activity, all reduced the C5b-8-dependent PGI/sub 2/ generation. None of the inhibitors used impaired Ca/sup 2 +/ flux into the cells. One minute after addition of C8 to endothelial cells carrying C5b-7 complexes, a six- to seven-fold enhanced passive influx of /sup 45/Ca/sup 2 +/ into the cells was noted. An enhanced passive influx was also observed for /sup 51/CrO/sub 4//sup 2 -/, (/sup H/) aminobutyric acid, and (/sup 3/H) sucrose, but not for (/sup 3/H)inulin and (/sup 3/H)dextran. These data together suggest that complement C5b-8 complexes may serve as Ca/sup 2 +/bypass gates in endothelial cells, the ensuring influx of Ca/sup 2 +/ leading to subsequent activation of the arachiodonic acid pathway.

  9. Studies on the weak interactions and CT complex formations between chloranilic acid, 2,3-dichloro-5,6-dicyano-p-benzoquinone, tetracyanoethylene and papaverine in acetonitrile and their thermodynamic properties, theoretically, spectrophotometrically aided by FTIR.

    PubMed

    Datta, Asim Sagar; Chattaraj, Seema Bagchi; Chakrabortty, Ashutosh; Lahiri, Sujit Chandra

    2015-07-01

    Spectrophotometric, FTIR and theoretical studies of the charge-transfer complexes between mild narcotic drug papaverine and the acceptors chloranilic acid (Cl-A), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) and tetracyanoethylene (TCNE) in acetonitrile, their association constants, thermodynamic (?G(0), ?H(0) and ?S(0)) and other related properties had been described. Papaverine was found to form colored charge-transfer complexes with Cl-A, DDQ and TCNE in acetonitrile. The absorption maxima of the complexes were 518.5, 584.0 and 464.0 nm for Cl-A complex, DDQ complex, and TCNE complex respectively. The compositions of the papaverine complexes were determined to be 1:1 from Job's method of continuous variation. Solid complexes formed between papaverine and the acceptors were isolated. Comparison of the FTIR spectra of the solid complexes between papaverine and the acceptors and their constituents showed considerable shift in absorption peaks, changes in intensities of the peaks and formation of the new bands on complexation. However, no attempt has been made to purify the complexes and study the detailed spectra both theoretically and experimentally. The energies h?(CT) of the charge-transfer complexes were compared with the theoretical values of h?(CT) of the complexes obtained from HOMO and LUMO of the donor and the acceptors. The reasons for the differences in h?CT values were explained. Density function theory was used for calculation. h?(CT) (experimental) values of the transition energies of the complexes in acetonitrile differed from h?(CT) (theoretical) values. ID(V) value of papaverine was calculated. Charge-transfer complexes were assumed to be partial electrovalent compounds with organic dative ions D(+) and A(-) (in the excited state) and attempts had been made to correlate the energy changes for the formation of the complexes with the energy changes for the formation of electrovalent compounds between M(+) and X(-) ions. PMID:25813169

  10. Studies on the weak interactions and CT complex formations between chloranilic acid, 2,3-dichloro-5,6-dicyano-p-benzoquinone, tetracyanoethylene and papaverine in acetonitrile and their thermodynamic properties, theoretically, spectrophotometrically aided by FTIR

    NASA Astrophysics Data System (ADS)

    Datta, Asim Sagar; (Chattaraj), Seema Bagchi; Chakrabortty, Ashutosh; Lahiri, Sujit Chandra

    2015-07-01

    Spectrophotometric, FTIR and theoretical studies of the charge-transfer complexes between mild narcotic drug papaverine and the acceptors chloranilic acid (Cl-A), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) and tetracyanoethylene (TCNE) in acetonitrile, their association constants, thermodynamic (?G0, ?H0 and ?S0) and other related properties had been described. Papaverine was found to form colored charge-transfer complexes with Cl-A, DDQ and TCNE in acetonitrile. The absorption maxima of the complexes were 518.5, 584.0 and 464.0 nm for Cl-A complex, DDQ complex, and TCNE complex respectively. The compositions of the papaverine complexes were determined to be 1:1 from Job's method of continuous variation. Solid complexes formed between papaverine and the acceptors were isolated. Comparison of the FTIR spectra of the solid complexes between papaverine and the acceptors and their constituents showed considerable shift in absorption peaks, changes in intensities of the peaks and formation of the new bands on complexation. However, no attempt has been made to purify the complexes and study the detailed spectra both theoretically and experimentally. The energies h?CT of the charge-transfer complexes were compared with the theoretical values of h?CT of the complexes obtained from HOMO and LUMO of the donor and the acceptors. The reasons for the differences in h?CT values were explained. Density function theory was used for calculation. h?CT (experimental) values of the transition energies of the complexes in acetonitrile differed from h?CT (theoretical) values. IDV value of papaverine was calculated. Charge-transfer complexes were assumed to be partial electrovalent compounds with organic dative ions D+ and A- (in the excited state) and attempts had been made to correlate the energy changes for the formation of the complexes with the energy changes for the formation of electrovalent compounds between M+ and X- ions.

  11. Inhibition of human amylin fibril formation by insulin-mimetic vanadium complexes.

    PubMed

    He, Lei; Wang, Xuesong; Zhao, Cong; Zhu, Dengsen; Du, Weihong

    2014-05-01

    The toxicity of amyloid-forming proteins can be linked to many degenerative and systemic diseases. Human islet amyloid polypeptide (hIAPP, amylin) has been associated with type II diabetes. Methods for efficient inhibition of amyloid fibril formation are highly clinically important. This study demonstrated the significant inhibitory effects of six vanadium complexes on hIAPP aggregation. Vanadium complexes, such as bis(maltolato)-oxovanadium (BMOV), have been used as insulin-mimetic agents for the treatment of diabetes for many years. Different biophysical methods were applied to investigate the interaction between V complexes and hIAPP. The results indicated that the selected compounds affected the peptide aggregation by different action modes and protected the cells from the cytotoxicity induced by hIAPP. Both the high binding affinity and the ligand spatial effect on inhibiting hIAPP aggregation are significant. Although some of these compounds undergo biotransformation under the conditions of the experiments, and the active species are not identified, it is understood that the effect results from a particular compound and its conversion products. Importantly, our work provided information on the effects of the selected V complexes on hIAPP and demonstrated multiple levels of effects of V complexes against amyloid-related diseases. PMID:24714786

  12. Structural and Thermodynamic Characterization of Cadherin·?-Catenin·?-Catenin Complex Formation*

    PubMed Central

    Pokutta, Sabine; Choi, Hee-Jung; Ahlsen, Goran; Hansen, Scott D.; Weis, William I.

    2014-01-01

    The classical cadherin·?-catenin·?-catenin complex mediates homophilic cell-cell adhesion and mechanically couples the actin cytoskeletons of adjacent cells. Although ?-catenin binds to ?-catenin and to F-actin, ?-catenin significantly weakens the affinity of ?-catenin for F-actin. Moreover, ?-catenin self-associates into homodimers that block ?-catenin binding. We investigated quantitatively and structurally ?E- and ?N-catenin dimer formation, their interaction with ?-catenin and the cadherin·?-catenin complex, and the effect of the ?-catenin actin-binding domain on ?-catenin association. The two ?-catenin variants differ in their self-association properties: at physiological temperatures, ?E-catenin homodimerizes 10× more weakly than does ?N-catenin but is kinetically trapped in its oligomeric state. Both ?E- and ?N-catenin bind to ?-catenin with a Kd of 20 nm, and this affinity is increased by an order of magnitude when cadherin is bound to ?-catenin. We describe the crystal structure of a complex representing the full ?-catenin·?N-catenin interface. A three-dimensional model of the cadherin·?-catenin·?-catenin complex based on these new structural data suggests mechanisms for the enhanced stability of the ternary complex. The C-terminal actin-binding domain of ?-catenin has no influence on the interactions with ?-catenin, arguing against models in which ?-catenin weakens actin binding by stabilizing inhibitory intramolecular interactions between the actin-binding domain and the rest of ?-catenin. PMID:24692547

  13. Molybdenum Hydride and Dihydride Complexes Bearing Diphosphine Ligands with a Pendant Amine: Formation of Complexes With Bound Amines

    SciTech Connect

    Zhang, Shaoguang; Bullock, R. Morris

    2015-07-06

    CpMo(CO)(PNP)H complexes (PNP = (R2PCH2)2NMe, R = Et or Ph) were synthesized by displacement of two CO ligands of CpMo(CO)3H by the PNP ligand; these complexes were characterized by IR and variable temperature 1H and 31P NMR spectroscopy. CpMo(CO)(PNP)H complexes are formed as mixture of cis and trans-isomers. Both cis-CpMo(CO)(PEtNMePEt)H and trans-CpMo(CO)(PPhNMePPh)H were analyzed by single crystal X-ray diffraction. Electrochemical oxidation of CpMo(CO)(PEtNMePEt)H and CpMo(CO)(PPhNMePPh)H in CH3CN are both irreversible at slow scan rates and quasi-reversible at higher scan rates, with E1/2 = -0.36 V (vs. Cp2Fe+/0) for CpMo(CO)(PEtNMePEt)H and E1/2 = -0.18 V for CpMo(CO)(PPhNMePPh)H. Hydride abstraction from CpMo(CO)(PNP)H with [Ph3C]+[A]- (A = B(C6F5)4 or BArF4; [ArF = 3,5-bis(trifluoromethyl)phenyl]) afforded “tuck-in” [CpMo(CO)(?3-PNP)]+ complexes that feature the amine bound to the metal. Displacement of the ?3 Mo-N bond by CD3CN gives [CpMo(CO)(PNP)(CD3CN)]+. The kinetics of this reaction were studied by NMR spectroscopy, providing the activation parameters ?H‡ = 22.1 kcal/mol, ?S‡ = 1.89 cal/(mol·K), Ea = 22.7 kcal/mol. Protonation of CpMo(CO)(PEtNMePEt)H affords [CpMo(CO)(?2-PEtNMePEt)(H)2]+ as a Mo dihydride complex, which loses H2 to generate [CpMo(CO)(?3-PEtNMePEt)]+ at room temperature. CpMo(CO)(dppp)H (dppp = 1,2-bis(diphenylphosphino)propane) was studied as a Mo diphosphine analogue without a pendant amine, and the product of protonation of this complex gives [CpMo(CO)(dppp)(H)2]+. Our results show that the pendant amine has a strong driving force to form stable “tuck-in” [CpMo(CO)(?3-PNP)]+ complexes, and also promotes hydrogen elimination from [CpMo(CO)(PNP)(H)2]+ complexes by formation of Mo-N dative bond. We thank the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences for support. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy. We thank Monte Helm, Elliott Hulley and Deanna Miller for help on the crystallography, and Ming Fang for assistance on the electrochemical experiments.

  14. Gas Phase Uranyl Activation: Formation of a Uranium Nitrosyl Complex from Uranyl Azide

    SciTech Connect

    Gong, Yu; De Jong, Wibe A.; Gibson, John K.

    2015-05-13

    Activation of the oxo bond of uranyl, UO22+, was achieved by collision induced dissociation (CID) of UO2(N3)Cl2– in a quadrupole ion trap mass spectrometer. The gas phase complex UO2(N3)Cl2– was produced by electrospray ionization of solutions of UO2Cl2 and NaN3. CID of UO2(N3)Cl2– resulted in the loss of N2 to form UO(NO)Cl2–, in which the “inert” uranyl oxo bond has been activated. Formation of UO2Cl2– via N3 loss was also observed. Density functional theory computations predict that the UO(NO)Cl2– complex has nonplanar Cs symmetry and a singlet ground state. Analysis of the bonding of the UO(NO)Cl2– complex shows that the side-on bonded NO moiety can be considered as NO3–, suggesting a formal oxidation state of U(VI). Activation of the uranyl oxo bond in UO2(N3)Cl2– to form UO(NO)Cl2– and N2 was computed to be endothermic by 169 kJ/mol, which is energetically more favorable than formation of NUOCl2– and UO2Cl2–. The observation of UO2Cl2– during CID is most likely due to the absence of an energy barrier for neutral ligand loss.

  15. Selective repression of light harvesting complex 2 formation in Rhodobacter azotoformans by light under semiaerobic conditions.

    PubMed

    Yue, Huiying; Zhao, Chungui; Li, Kai; Yang, Suping

    2015-11-01

    Photosystem formation in anaerobic anoxygenic phototrophic bacteria (APB) is repressed by oxygen but is de-repressed when oxygen tension decreases. Under semiaerobic conditions, the synthesis of photopigments and pigment protein complexes in Rhodobacter (Rba.) sphaeroides are repressed by light. AppA, a blue-light receptor, mediates this regulation. In the present study, it was showed that the synthesis of bacteriochlorophyll, carotenoid, and pigment protein complexes in Rba. azotoformans 134K20 was significantly repressed by oxygen. Oxygen exposure also led to a conversion of spheroidene to spheroidenone. In semiaerobically growing cells, light irradiation resulted in a decrease in the formation of photosystem, and blue light was found to be the most effective light source. Blue light reduced the contents of bacteriochlorophyll and carotenoid slightly, but had negligible effects on light harvesting complex (LH) 1 content, whereas the content of LH2 was significantly decreased indicating that blue light selectively repressed the synthesis of LH2 in semiaerobically growing 134K20. It was concluded that, similar to Rba. sphaeroides, a blue light receptor presented in strain 134K20 played important roles in its light-dependent repression. A possible mechanism involved in controlling the differential inhibitory of blue light on the synthesis of photosystem was discussed. PMID:26193456

  16. Smog chamber experiments to investigate Henry's law constants of glyoxal using different seed aerosols as well as imidazole formation in the presence of ammonia

    NASA Astrophysics Data System (ADS)

    Jakob, Ronit

    2015-04-01

    Aerosols play an important role in the chemistry and physics of the atmosphere. Hence, they have a direct as well as an indirect impact on the earth's climate. Depending on their formation, one distinguishes between primary and secondary aerosols[1]. Important groups within the secondary aerosols are the secondary organic aerosols (SOAs). In order to improve predictions about these impacts on the earth's climate the existing models need to be optimized, because they still underestimate SOA formation[2]. Glyoxal, the smallest ?-dicarbonyl, not only acts as a tracer for SOA formation but also as a direct contributor to SOA. Because glyoxal has such a high vapour pressure, it was common knowledge that it does not take part in gas-particle partitioning and therefore has no impact on direct SOA formation. However, the Henry's law constant for glyoxal is surprisingly high. This has been explained by the hydration of the aldehyde groups, which means that a species with a lower vapour pressure is produced. Therefore the distribution of glyoxal between gas- and particle phase is atmospherically relevant and the direct contribution of glyoxal to SOA can no longer be neglected[3]. Besides this particulate glyoxal is able to undergo heterogeneous chemistry with gaseous ammonia to form imidazoles. This plays an important role for regions with aerosols exhibiting alkaline pH values for example from lifestock or soil dust because imidazoles as nitrogen containing compounds change the optical properties of aerosols[4]. A high salt concentration present in chamber seed aerosols leads to an enhanced glyoxal uptake into the particle. This effect is called "salting-in". The salting effect depends on the composition of the seed aerosol as well as the soluble compound. For very polar compounds, like glyoxal, a "salting-in" is observed[3]. Glyoxal particle formation during a smog chamber campaign at Paul-Scherrer-Institut (PSI) in Switzerland was examined using different seed aerosols such as ammonium sulfate, sodium chloride and sodium nitrate. The aim of this campaign was to investigate Henry's law constants for different seed aerosols. Additionally imidazole formation was studied. During the campaign filter samples were taken to investigate the amount of glyoxal and imidazole in the particle phase. After filter extraction and derivatisation of glyoxal, the compounds were measured using UHPLC-ESI-HR-MS. Additionally, gas-phase glyoxal has been analysed during the campaign. The results will be used to calculate the Henry's law constants. In this work, results of the glyoxal study as well as imidazole formation are presented. [1] J. Schnelle-Kreis, M. Sklorz, H. Herrmann, R. Zimmermann, Chem. Unserer Zeit, 2007, 41, 220-230 [2] M. M. Galloway, P. S. Chhabra, A. W. H. Chan, J. D. Surratt, R. C. Flagan, J. H. Seinfeld, F. N. Keutsch, Atmos. Chem. Phys, 9, 3331-3345, 2009 [3] C. J. Kampf, E. M. Waxman, J. G. Slowik, J. Dommen, L. Pfaffenberger, A. P. Praplan, A. S. H. Prévôt, U. Baltensperger, T. Hoffmann, R. Volkamer, Environ. Sci. Technol., 2013, 47, 4236-4244 [4] C. J. Kampf, R. Jakob, T. Hoffmann, Atmos. Chem. Phys., 12, 6323-6333, 2012

  17. Formation of colloidal silver nanoparticles stabilized by Na+-poly(gamma-glutamic acid)-silver nitrate complex via chemical reduction process.

    PubMed

    Yu, Da-Guang

    2007-10-01

    Macromolecular and polyanionic Na(+)-poly(gamma-glutamic acid) (PGA) silver nitrate complex acted as both a metal ion provider and a particle protector to fabricate nanosized silver colloids under chemical reduction by dextrose. The formation and size of particles have been characterized from transmission electron microscopy (TEM), dynamic light scattering analysis and UV-vis spectrophotometer. The results showed that the average particle size was 17.2+/-3.4 to 37.3+/-5.5 nm, apparently depending on the complex concentration. It was found that the rate constant and conversion of silver nanoparticles were proportional to the concentration of PGA. The growth mechanism of nanosized silver colloid was fully discussed. In addition, the in vitro cytotoxicity evaluated by L929 fibroblasts proliferation and antibacterial activity against Gram-positive strain (methicillin-resistant S. aureus (MRSA)) and Gram-negative strain (P. aeruginosa) bacteria have been assessed. PMID:17583483

  18. Col1a1-cre mediated activation of ?-catenin leads to aberrant dento-alveolar complex formation

    PubMed Central

    Kim, Tak-Heun; Bae, Cheol-Hyeon; Jang, Eun-Ha; Yoon, Chi-Young; Bae, Young; Ko, Seung-O; Taketo, Makoto M.

    2012-01-01

    Wnt/?-catenin signaling plays a critical role in bone formation and regeneration. Dentin and cementum share many similarities with bone in their biochemical compositions and biomechanical properties. Whether Wnt/?-catenin signaling is involved in the dento-alveolar complex formation is unknown. To understand the roles of Wnt/?-catenin signaling in the dento-alveolar complex formation, we generated conditional ?-catenin activation mice through intercross of Catnb+/lox(ex3) mice with Col1a1-cre mice. In mutant mice, tooth formation and eruption was disturbed. Lower incisors and molars did not erupt. Bone formation was increased in the mandible but tooth formation was severely disturbed. Hypomineralized dentin was deposited in the crown but roots of molars were extremely short and distorted. In the odontoblasts of mutant molars, expression of dentin matrix proteins was obviously downregulated following the activation of ?-catenin whereas that of mineralization inhibitor was increased. Cementum and periodontal ligament were hypoplastic but periodontal space was narrow due to increased alveolar bone formation. While cementum matrix proteins were decreased, bone matrix proteins were increased in the cementum and alveolar bone of mutant mice. These results indicate that local activation of ?-catenin in the osteoblasts and odontoblasts leads to aberrant dento-alveolar complex formation. Therefore, appropriate inhibition of Wnt/?-catenin signaling is important for the dento-alveolar complex formation. PMID:23094208

  19. Struvite crystal growth inhibition by trisodium citrate and the formation of chemical complexes in growth solution

    NASA Astrophysics Data System (ADS)

    Prywer, Jolanta; Mielniczek-Brzóska, Ewa; Olszynski, Marcin

    2015-05-01

    Effect of trisodium citrate on the crystallization of struvite was studied. To evaluate such an effect an experiment of struvite growth from artificial urine was performed. The investigations are related to infectious urinary stones formation. The crystallization process was induced by the addition of aqueous ammonia solution to mimic the bacterial activity. The spectrophotometric results demonstrate that trisodium citrate increases induction time with respect to struvite formation and decreases the growth efficiency of struvite. The inhibitory effect of trisodium citrate on the nucleation and growth of struvite is explained in base of chemical speciation analysis. Such an analysis demonstrates that the inhibitory effect is related with the fact that trisodium citrate binds NH4 + and Mg2+ ions in the range of pH from 7 to 9.5 characteristic for struvite precipitation. The most important is the MgCit- complex whose concentration strongly depends on an increase in pH rather than on an increase in citrate concentrations.

  20. Chiral symmetry breaking in complex chemical systems during formation of life on earth

    NASA Astrophysics Data System (ADS)

    Konstantinova, A. F.; Konstantinov, K. K.

    2015-09-01

    The chiral symmetry in complex chemical systems containing many amino acids and characterized by many similar chemical reactions (a situation corresponding to the formation of life on Earth) is considered. It is shown that effective averaging over similar reaction channels may lead to very weak effective enantioselectivity, which does not allow for chiral symmetry breaking in most known models. A class of models with simple and catalytic synthesis of one amino acid, the formation of peptides with a length reaching three, and the precipitation of one insoluble pair of materials is analyzed. It is proven that chiral symmetry breaking may occur in one possible version from an insoluble pair of materials even in the complete absence of catalytic synthesis of amino acid. It is shown that the presence of weakly enantioselective catalytic synthesis in a model significantly increases the number of possible versions in which chiral symmetry breaks.

  1. High-Throughput Metagenomic Technologies for Complex Microbial Community Analysis: Open and Closed Formats

    PubMed Central

    He, Zhili; Yang, Yunfeng; Deng, Ye; Tringe, Susannah G.; Alvarez-Cohen, Lisa

    2015-01-01

    ABSTRACT?  Understanding the structure, functions, activities and dynamics of microbial communities in natural environments is one of the grand challenges of 21st century science. To address this challenge, over the past decade, numerous technologies have been developed for interrogating microbial communities, of which some are amenable to exploratory work (e.g., high-throughput sequencing and phenotypic screening) and others depend on reference genes or genomes (e.g., phylogenetic and functional gene arrays). Here, we provide a critical review and synthesis of the most commonly applied “open-format” and “closed-format” detection technologies. We discuss their characteristics, advantages, and disadvantages within the context of environmental applications and focus on analysis of complex microbial systems, such as those in soils, in which diversity is high and reference genomes are few. In addition, we discuss crucial issues and considerations associated with applying complementary high-throughput molecular technologies to address important ecological questions. PMID:25626903

  2. High-throughput metagenomic technologies for complex microbial community analysis. Open and closed formats

    DOE PAGESBeta

    Zhou, Jizhong; He, Zhili; Yang, Yunfeng; Deng, Ye; Tringe, Susannah G.; Alvarez-Cohen, Lisa

    2015-01-27

    Understanding the structure, functions, activities and dynamics of microbial communities in natural environments is one of the grand challenges of 21st century science. To address this challenge, over the past decade, numerous technologies have been developed for interrogating microbial communities, of which some are amenable to exploratory work (e.g., high-throughput sequencing and phenotypic screening) and others depend on reference genes or genomes (e.g., phylogenetic and functional gene arrays). Here, we provide a critical review and synthesis of the most commonly applied “open-format” and “closed-format” detection technologies. We discuss their characteristics, advantages, and disadvantages within the context of environmental applications andmore »focus on analysis of complex microbial systems, such as those in soils, in which diversity is high and reference genomes are few. In addition, we discuss crucial issues and considerations associated with applying complementary high-throughput molecular technologies to address important ecological questions.« less

  3. Cord formation in BACTEC(TM) medium aids rapid identification of Mycobacterium tuberculosis complex.

    PubMed

    O'Hara, G A; Abdullah, S; Creer, D D; Elsaghier, A F

    2015-06-01

    Mycobacterium tuberculosis complex (MTC) organisms form serpentine cords in fluid culture medium. Reporting of a presumptive identification of MTC based on cording allows rapid identification of patients with tuberculosis. A total of 612 positive mycobacterial cultures from 316 patients over 3 years (2008-2010) were evaluated for the presence of cord formation. Cording was identified in 426 (69.6%) specimens, while the reference laboratory confirmed M. tuberculosis in 424 specimens (69.3%). Sensitivity of the test in our laboratory was 99.1% (95%CI 97.4-99.7) and specificity was 96.8% (95%CI 92.8-98.7). Presumptive identification of M. tuberculosis by the presence of cording formation is both sensitive and specific. PMID:25946364

  4. High-throughput metagenomic technologies for complex microbial community analysis. Open and closed formats

    SciTech Connect

    Zhou, Jizhong; He, Zhili; Yang, Yunfeng; Deng, Ye; Tringe, Susannah G.; Alvarez-Cohen, Lisa

    2015-01-27

    Understanding the structure, functions, activities and dynamics of microbial communities in natural environments is one of the grand challenges of 21st century science. To address this challenge, over the past decade, numerous technologies have been developed for interrogating microbial communities, of which some are amenable to exploratory work (e.g., high-throughput sequencing and phenotypic screening) and others depend on reference genes or genomes (e.g., phylogenetic and functional gene arrays). Here, we provide a critical review and synthesis of the most commonly applied “open-format” and “closed-format” detection technologies. We discuss their characteristics, advantages, and disadvantages within the context of environmental applications and focus on analysis of complex microbial systems, such as those in soils, in which diversity is high and reference genomes are few. In addition, we discuss crucial issues and considerations associated with applying complementary high-throughput molecular technologies to address important ecological questions.

  5. Rare earth fluoride solubilities, complex formation and thermodynamic functions for the solution process

    SciTech Connect

    Menon, M.P.; James, J.; Jackson, J.D.

    1986-01-01

    The solubilities, solubility products and thermodynamic functions for four rare earth fluoride-water systems, LaF/sub 3/(s)-H/sub 2/O(1), NdF/sub 3/(s)-H/sub 2/O(1), SmF/sub 3/(s)-H/sub 2/O(1) and GdF/sub 3/(s)-H/sub 2/O(1), have been measured using conductometric and potentiometric techniques. Radiometric procedure was also employed for the measurement of solubilities of LaF/sub 3/ and NdF/sub 3/. Among the rare earth fluorides studied so far, gadolinium trifluoride was found to have the highest solubility, differing from the solubilities of other fluorides by a factor of ten. There is also considerable difference in the values for thermodynamic functions for the dissolution of GdF/sub 3/ from those of other fluorides. There is evidence for the existence of the monofluoride and difluoride complexes of the lanthanons studied in this work. The stability constants for the monfluoride complexes range from 427 for LaF/sup +2/ to 1215 for GdF/sup +2/ while those for the difluoride complexes are of the order of 10/sup 4/. 18 refs., 2 figs., 3 tabs.

  6. Formation and dynamics of "waterproof" photoluminescent complexes of rare earth ions in crowded environment.

    PubMed

    Ignatova, Tetyana; Blades, Michael; Duque, Juan G; Doorn, Stephen K; Biaggio, Ivan; Rotkin, Slava V

    2014-12-28

    Understanding behavior of rare-earth ions (REI) in crowded environments is crucial for several nano- and bio-technological applications. Evolution of REI photoluminescence (PL) in small compartments inside a silica hydrogel, mimic to a soft matter bio-environment, has been studied and explained within a solvation model. The model uncovered the origin of high PL efficiency to be the formation of REI complexes, surrounded by bile salt (DOC) molecules. Comparative study of these REI-DOC complexes in bulk water solution and those enclosed inside the hydrogel revealed a strong correlation between an up to 5×-longer lifetime of REIs and appearance of the DOC ordered phase, further confirmed by dynamics of REI solvation shells, REI diffusion experiments and morphological characterization of microstructure of the hydrogel. PMID:25379879

  7. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation

    PubMed Central

    Montagnoli, Alessia; Fiore, Francesca; Eytan, Esther; Carrano, Andrea C.; Draetta, Giulio F.; Hershko, Avram; Pagano, Michele

    1999-01-01

    The cellular abundance of the cyclin-dependent kinase (Cdk) inhibitor p27 is regulated by the ubiquitin–proteasome system. Activation of p27 degradation is seen in proliferating cells and in many types of aggressive human carcinomas. p27 can be phosphorylated on threonine 187 by Cdks, and cyclin E/Cdk2 overexpression can stimulate the degradation of wild-type p27, but not of a threonine 187-to-alanine p27 mutant [p27(T187A)]. However, whether threonine 187 phosphorylation stimulates p27 degradation through the ubiquitin–proteasome system or an alternative pathway is still not known. Here, we demonstrate that p27 ubiquitination (as assayed in vivo and in an in vitro reconstituted system) is cell-cycle regulated and that Cdk activity is required for the in vitro ubiquitination of p27. Furthermore, ubiquitination of wild-type p27, but not of p27(T187A), can occur in G1-enriched extracts only upon addition of cyclin E/Cdk2 or cyclin A/Cdk2. Using a phosphothreonine 187 site-specific antibody for p27, we show that threonine 187 phosphorylation of p27 is also cell-cycle dependent, being present in proliferating cells but undetectable in G1 cells. Finally, we show that in addition to threonine 187 phosphorylation, efficient p27 ubiquitination requires formation of a trimeric complex with the cyclin and Cdk subunits. In fact, cyclin B/Cdk1 which can phosphorylate p27 efficiently, but cannot form a stable complex with it, is unable to stimulate p27 ubiquitination by G1 extracts. Furthermore, another p27 mutant [p27(CK?)] that can be phosphorylated by cyclin E/Cdk2 but cannot bind this kinase complex, is refractory to ubiquitination. Thus throughout the cell cycle, both phosphorylation and trimeric complex formation act as signals for the ubiquitination of a Cdk inhibitor. PMID:10323868

  8. Structure of Soybean Serine Acetyltransferase and Formation of the Cysteine Regulatory Complex as a Molecular Chaperone*

    PubMed Central

    Yi, Hankuil; Dey, Sanghamitra; Kumaran, Sangaralingam; Lee, Soon Goo; Krishnan, Hari B.; Jez, Joseph M.

    2013-01-01

    Serine acetyltransferase (SAT) catalyzes the limiting reaction in plant and microbial biosynthesis of cysteine. In addition to its enzymatic function, SAT forms a macromolecular complex with O-acetylserine sulfhydrylase. Formation of the cysteine regulatory complex (CRC) is a critical biochemical control feature in plant sulfur metabolism. Here we present the 1.75–3.0 ? resolution x-ray crystal structures of soybean (Glycine max) SAT (GmSAT) in apoenzyme, serine-bound, and CoA-bound forms. The GmSAT-serine and GmSAT-CoA structures provide new details on substrate interactions in the active site. The crystal structures and analysis of site-directed mutants suggest that His169 and Asp154 form a catalytic dyad for general base catalysis and that His189 may stabilize the oxyanion reaction intermediate. Glu177 helps to position Arg203 and His204 and the ?1c-?2c loop for serine binding. A similar role for ionic interactions formed by Lys230 is required for CoA binding. The GmSAT structures also identify Arg253 as important for the enhanced catalytic efficiency of SAT in the CRC and suggest that movement of the residue may stabilize CoA binding in the macromolecular complex. Differences in the effect of cold on GmSAT activity in the isolated enzyme versus the enzyme in the CRC were also observed. A role for CRC formation as a molecular chaperone to maintain SAT activity in response to an environmental stress is proposed for this multienzyme complex in plants. PMID:24225955

  9. Fluids circulations during the formation of the Naxos Metamorphic Core Complex (Greece)

    NASA Astrophysics Data System (ADS)

    Vanderhaeghe, Olivier; Boiron, Marie-Christine; Siebenaller, Luc

    2015-04-01

    The island of Naxos, in the central part of the Cycladic Metamorphic Core Complex (Greece) represents a perfect example to address the evolution of fluid circulations during collapse of an orogenic belt. It displays a complex detachment system characterized by mylonites, cataclasites and high-angle normal faults which geometric relationships reflect rheological layering of the orogenic crust and its evolution during collapse. The chemistry of fluid inclusions determined by microthermometry, RAMAN spectroscopy, LA-ICPMS, and crush-leach combined with C and H isotopic signatures point to three distinct types of fluids, namely (i) a H2O-dominated fluid, (ii) a composite H2O-CO2 fluid, and (iii) a NaCl-rich fluid concentrated in metals. These different types of fluids are interpreted to reflect mixtures to various degrees among fluids generated by (i) condensation of clouds (meteoric aqueous fluid), (ii) dehydration and decarbonatation of metasedimentary rocks during metamorphism (metamorphic aqueous-carbonic fluid), and (iii) crystallization of granitic magmas (magmatic saline fluid with high metal contents). The distribution of fluids with respect to microstructures evidences the close link between deformation and fluid circulations at the mineral scale from intracristalline deformation to fracturing. The orientation of fluid inclusion planes, veins and alteration zones allows to identify the scale and geometry of the reservoir into which fluids are circulating and their evolution during the formation of the Metamorphic Core Complex. These data indicate that the orogenic crust is subdivided in two reservoirs separated by the ductile/fragile transition. Meteoric fluids circulate in the upper crust affected by brittle deformation whereas metamorphic and magmatic fluids circulate in relation to intracristalline ductile deformation affecting the lower crust. The geometry of these reservoirs evolves during the formation of the Naxos Metamorphic Core Complex as the orogenic crust is extended and cooled. In particular, the exhumation of metamorphic rocks and their transfer from the ductile to the fragile reservoir is marked by a transition from a lithostatic to an hydrostatic pressure associated with a drastic decrease of the geothermal gradient from 60-100°C/km to 35-60°C/km. This implies that fluid circulations during the formation of a Metamorphic Core Complex are intimately related to the rheologic layering of the orogenic crust and its evolution during collapse. Accordingly, the ductile/fragile transition, in addition to represent a fundamental rheologic boundary, also corresponds to a thermal and hydrologic crustal-scale transition zone.

  10. Munc18-1 prevents the formation of ectopic SNARE complexes in living cells.

    PubMed

    Medine, Claire N; Rickman, Colin; Chamberlain, Luke H; Duncan, Rory R

    2007-12-15

    Membrane trafficking in eukaryotic cells must be strictly regulated both temporally and spatially. The assembly at the plasma membrane of the ternary SNARE complex, formed between syntaxin1a, SNAP-25 and VAMP, is essential for efficient exocytotic membrane fusion. These exocytotic SNAREs are known to be highly promiscuous in their interactions with other non-cognate SNAREs. It is therefore an important cellular requirement to traffic exocytotic SNARE proteins through the endoplasmic reticulum and Golgi complex while avoiding ectopic interactions between SNARE proteins. Here, we show that syntaxin1a traffics in an inactive form to the plasma membrane, requiring a closed-form interaction, but not N-terminal binding, with munc18-1. If syntaxin is permitted to interact with SNAP-25, both proteins fail to traffic to the plasma membrane, becoming trapped in intracellular compartments. The munc18-1-syntaxin interactions must form before syntaxin encounters SNAP-25 in the Golgi complex, preventing the formation of intracellular exocytotic SNARE complexes there. Upon delivery to the plasma membrane, most SNARE clusters in resting cells do not produce detectable FRET between t-SNARE proteins. These observations highlight the crucial role that munc18-1 plays in trafficking syntaxin through the secretory pathway. PMID:18057031

  11. Ice Complex formation in arctic East Siberia during the MIS3 Interstadial

    NASA Astrophysics Data System (ADS)

    Wetterich, Sebastian; Tumskoy, Vladimir; Rudaya, Natalia; Andreev, Andrei A.; Opel, Thomas; Meyer, Hanno; Schirrmeister, Lutz; Hüls, Matthias

    2014-01-01

    A continuous 15 m long sequence of Ice Complex permafrost (Yedoma) exposed in a thermo-cirque at the southern coast of Bol'shoy Lyakhovsky Island (New Siberian Archipelago, Dmitry Laptev Strait) was studied to reconstruct past landscape and environmental dynamics. The sequence accumulated during the Marine Isotope Stage 3 (MIS3) Interstadial between >49 and 29 ka BP in an ice-wedge polygon. The frozen deposits were cryolithologically described and sampled on a vertical bluff between two ice wedges. According to sedimentological and geochronological data, the section is subdivided into three units which correlate with environmental conditions of the early, middle, and late MIS3 period. Palynological data support this stratification. The stable isotope signature of texture ice in the polygon structure reflects fractionation due to local freeze-thaw processes, while the signature of an approximately 5 m wide and more than 17 m high ice wedge fits very well into the regional stable-water isotope record. Regional climate dynamics during the MIS3 Interstadial and local landscape conditions of the polygonal patterned ground controlled the Ice Complex formation. The sequence presented here completes previously published MIS3 permafrost records in Northeast Siberia. Late Quaternary stadial-interstadial climate variability in arctic West Beringia is preserved at millennial resolution in the Ice Complex. A MIS3 climate optimum was revealed between 48 and 38 ka BP from the Ice Complex on Bol'shoy Lyakhovsky Island.

  12. Coupling of downstream RNA polymerase-promoter interactions with formation of catalytically competent transcription initiation complex

    PubMed Central

    Mekler, Vladimir; Minakhin, Leonid; Borukhov, Sergei; Mustaev, Arkady; Severinov, Konstantin

    2014-01-01

    Bacterial RNA polymerase (RNAP) makes extensive contacts with duplex DNA downstream of the transcription bubble in initiation and elongation complexes. We investigated the role of downstream interactions in formation of catalytically competent transcription initiation complex by measuring initiation activity of stable RNAP complexes with model promoter DNA fragments whose downstream ends extend from +3 to +21 relative to the transcription start site at +1. We found that DNA downstream of position +6 does not play a significant role in transcription initiation when RNAP-promoter interactions upstream of the transcription start site are strong and promoter melting region is AT-rich. Further shortening of downstream DNA dramatically reduces efficiency of transcription initiation. The boundary of minimal downstream DNA duplex needed for efficient transcription initiation shifted further away from the catalytic center upon increasing the GC content of promoter melting region or in the presence of bacterial stringent response regulators DksA and ppGpp. These results indicate that the strength of RNAP-downstream DNA interactions has to reach a certain threshold to retain the catalytically competent conformation of the initiation complex and that establishment of contacts between RNAP and downstream DNA can be coupled with promoter melting. The data further suggest that RNAP interactions with DNA immediately downstream of the transcription bubble are particularly important for initiation of transcription. We hypothesize that these active center-proximal contacts stabilize the DNA template strand in the active center cleft and/or position the RNAP clamp domain to allow RNA synthesis. PMID:25311862

  13. Zeaxanthin Radical Cation Formation in Minor Light-Harvesting Complexes of Higher Plant Antenna

    SciTech Connect

    Avenson, Thomas H.; Ahn, Tae Kyu; Zigmantas, Donatas; Niyogi, Krishna K.; Li, Zhirong; Ballottari, Matteo; Bassi, Roberto; Fleming, Graham R.

    2008-01-31

    Previous work on intact thylakoid membranes showed that transient formation of a zeaxanthin radical cation was correlated with regulation of photosynthetic light-harvesting via energy-dependent quenching. A molecular mechanism for such quenching was proposed to involve charge transfer within a chlorophyll-zeaxanthin heterodimer. Using near infrared (880-1100 nm) transient absorption spectroscopy, we demonstrate that carotenoid (mainly zeaxanthin) radical cation generation occurs solely in isolated minor light-harvesting complexes that bind zeaxanthin, consistent with the engagement of charge transfer quenching therein. We estimated that less than 0.5percent of the isolated minor complexes undergo charge transfer quenching in vitro, whereas the fraction of minor complexes estimated to be engaged in charge transfer quenching in isolated thylakoids was more than 80 times higher. We conclude that minor complexes which bind zeaxanthin are sites of charge transfer quenching in vivo and that they can assume Non-quenching and Quenching conformations, the equilibrium LHC(N)<--> LHC(Q) of which is modulated by the transthylakoid pH gradient, the PsbS protein, and protein-protein interactions.

  14. The Inhibition of Calcium Phosphate Precipitation by Fetuin Is Accompanied by the Formation of a Fetuin-Mineral Complex*

    E-print Network

    Price, Paul A.

    The Inhibition of Calcium Phosphate Precipitation by Fetuin Is Accompanied by the Formation- apatite from supersaturated solutions of calcium and phosphate in vitro is accompanied by the formation of the fetuin-mineral complex, a high molecular mass com- plex of calcium phosphate mineral and the proteins fe

  15. Sensitive and selective spectrophotometric assay of piroxicam in pure form, capsule and human blood serum samples via ion-pair complex formation.

    PubMed

    Alizadeh, Nina; Keyhanian, Fereshteh

    2014-09-15

    A simple, accurate and highly sensitive spectrophotometric method has been developed for the rapid determination of piroxicam (PX) in pure and pharmaceutical formulations. The proposed method involves formation of stable yellow colored ion-pair complexes of the amino derivative (basic nitrogen) of PX with three sulphonphthalein acid dyes namely; bromocresol green (BCG), bromothymol blue (BTB), bromophenol blue (BPB) in acidic medium. The colored species exhibited absorption maxima at 438, 429 and 432 nm with molar absorptivity values of 9.400×10(3), 1.218×10(3) and 1.02×10(4) L mol(-1) cm(-1) for PX-BCG, PX-BTB and PX-BPB complexes, respectively. The effect of optimum conditions via acidity, reagent concentration, time and solvent were studied. The reactions were extremely rapid at room temperature and the absorbance values remained constant for 48h. Beer's law was obeyed with a good correlation coefficient in the concentration ranges 1-100 ?g mL(-1) for BCG, BTB complexes and 1-95 ?g mL(-1) for BPB complex. The composition ratio of the ion-pair complexes were found to be 1:1 in all cases as established by Job's method. No interference was observed from common additives and excipients which may be present in the pharmaceutical preparations. The proposed method was successfully applied for the determination of PX in capsule and human blood serum samples with good accuracy and precision. PMID:24792197

  16. Sensitive and selective spectrophotometric assay of piroxicam in pure form, capsule and human blood serum samples via ion-pair complex formation

    NASA Astrophysics Data System (ADS)

    Alizadeh, Nina; Keyhanian, Fereshteh

    2014-09-01

    A simple, accurate and highly sensitive spectrophotometric method has been developed for the rapid determination of piroxicam (PX) in pure and pharmaceutical formulations. The proposed method involves formation of stable yellow colored ion-pair complexes of the amino derivative (basic nitrogen) of PX with three sulphonphthalein acid dyes namely; bromocresol green (BCG), bromothymol blue (BTB), bromophenol blue (BPB) in acidic medium. The colored species exhibited absorption maxima at 438, 429 and 432 nm with molar absorptivity values of 9.400 × 103, 1.218 × 103 and 1.02 × 104 L mol-1 cm-1 for PX-BCG, PX-BTB and PX-BPB complexes, respectively. The effect of optimum conditions via acidity, reagent concentration, time and solvent were studied. The reactions were extremely rapid at room temperature and the absorbance values remained constant for 48 h. Beer’s law was obeyed with a good correlation coefficient in the concentration ranges 1-100 ?g mL-1 for BCG, BTB complexes and 1-95 ?g mL-1 for BPB complex. The composition ratio of the ion-pair complexes were found to be 1:1 in all cases as established by Job’s method. No interference was observed from common additives and excipients which may be present in the pharmaceutical preparations. The proposed method was successfully applied for the determination of PX in capsule and human blood serum samples with good accuracy and precision.

  17. Probing formation of cargo/importin-? transport complexes in plant cells using a pathogen effector.

    PubMed

    Wirthmueller, Lennart; Roth, Charlotte; Fabro, Georgina; Caillaud, Marie-Cécile; Rallapalli, Ghanasyam; Asai, Shuta; Sklenar, Jan; Jones, Alexandra M E; Wiermer, Marcel; Jones, Jonathan D G; Banfield, Mark J

    2015-01-01

    Importin-?s are essential adapter proteins that recruit cytoplasmic proteins destined for active nuclear import to the nuclear transport machinery. Cargo proteins interact with the importin-? armadillo repeat domain via nuclear localization sequences (NLSs), short amino acids motifs enriched in Lys and Arg residues. Plant genomes typically encode several importin-? paralogs that can have both specific and partially redundant functions. Although some cargos are preferentially imported by a distinct importin-? it remains unknown how this specificity is generated and to what extent cargos compete for binding to nuclear transport receptors. Here we report that the effector protein HaRxL106 from the oomycete pathogen Hyaloperonospora arabidopsidis co-opts the host cell's nuclear import machinery. We use HaRxL106 as a probe to determine redundant and specific functions of importin-? paralogs from Arabidopsis thaliana. A crystal structure of the importin-?3/MOS6 armadillo repeat domain suggests that five of the six Arabidopsis importin-?s expressed in rosette leaves have an almost identical NLS-binding site. Comparison of the importin-? binding affinities of HaRxL106 and other cargos in vitro and in plant cells suggests that relatively small affinity differences in vitro affect the rate of transport complex formation in vivo. Our results suggest that cargo affinity for importin-?, sequence variation at the importin-? NLS-binding sites and tissue-specific expression levels of importin-?s determine formation of cargo/importin-? transport complexes in plant cells. PMID:25284001

  18. Inhibition of formation of complex oligosaccharides by the glucosidase inhibitor bromoconduritol.

    PubMed Central

    Datema, R; Romero, P A; Legler, G; Schwarz, R T

    1982-01-01

    The alpha-glucosidase inhibitor bromoconduritol (6-bromo-3,4,5-trihydroxycyclohex-1-ene) inhibits trimming of the innermost glucose residue from the Glc3Man9GlcNAc2 precursor of high-mannose and complex oligosaccharides. This inhibition occurs both in intact cells and with a microsomal enzyme preparation. The formation of lipid-linked oligosaccharides was increased in glucosidase-inhibited cells. Inhibition of transfer of high-mannose oligosaccharides to protein was not observed. In bromoconduritol-treated virus-infected cells, trimming of mannose can occur despite incomplete removal of glucose. The glucosylated high-mannose oligosaccharides GlcMan9GlcNAc, GlcMan8GlcNAc, and GlcMan7GlcNAc were released from viral glycoproteins after digestion with Pronase and endo-beta-N-acetylglucosaminidase H. The formation of complex oligosaccharides was concomitantly inhibited. The release of infectious fowl plague virus particles (an influenza virus) was inhibited from bromoconduritol-treated infected chicken-embryo cells. PMID:6757922

  19. Ammonium chloride complex formation during downstream microwave ammonia plasma treatment of parylene-C

    SciTech Connect

    Pruden, K.G.; Beaudoin, S.P.

    2005-11-15

    In this work, parylene-C is exposed to the effluent from a microwave ammonia plasma with a goal of producing primary amine groups on the parylene-C. These amine groups are desired as sites for the attachment of various biomolecules that will influence the biocompatibility of the parylene-C. Ammonia plasma treatment is an effective approach for creating amine species on polymers. In this work, attenuated total reflectance infrared spectroscopy studies showed that no primary amine groups resulted from this treatment of parylene-C. Instead, reactive nitrogen-bearing radicals from the plasma appear to have been complexed by chlorine in the polymer. The formation of these complexes scavenged nitrogen-bearing radicals from the plasma and prevented the formation of nitrogenous species, such as the desired primary amines, on the parylene-C. These results are consistent with results of ammonia plasma treatment of other chlorinated polymers and suggest that alternative approaches are required to create nitrogen-bearing species on parylene-C.

  20. Frataxin Accelerates [2Fe-2S] Cluster Formation on the Human Fe–S Assembly Complex

    PubMed Central

    Fox, Nicholas G.; Das, Deepika; Chakrabarti, Mrinmoy; Lindahl, Paul A.; Barondeau, David P.

    2015-01-01

    Iron–sulfur (Fe–S) clusters function as protein cofactors for a wide variety of critical cellular reactions. In human mitochondria, a core Fe–S assembly complex [called SDUF and composed of NFS1, ISD11, ISCU2, and frataxin (FXN) proteins] synthesizes Fe–S clusters from iron, cysteine sulfur, and reducing equivalents and then transfers these intact clusters to target proteins. In vitro assays have relied on reducing the complexity of this complicated Fe–S assembly process by using surrogate electron donor molecules and monitoring simplified reactions. Recent studies have concluded that FXN promotes the synthesis of [4Fe-4S] clusters on the mammalian Fe–S assembly complex. Here the kinetics of Fe–S synthesis reactions were determined using different electron donation systems and by monitoring the products with circular dichroism and absorbance spectroscopies. We discovered that common surrogate electron donor molecules intercepted Fe–S cluster intermediates and formed high-molecular weight species (HMWS). The HMWS are associated with iron, sulfide, and thiol-containing proteins and have properties of a heterogeneous solubilized mineral with spectroscopic properties remarkably reminiscent of those of [4Fe-4S] clusters. In contrast, reactions using physiological reagents revealed that FXN accelerates the formation of [2Fe-2S] clusters rather than [4Fe-4S] clusters as previously reported. In the preceding paper [Fox, N. G., et al. (2015) Biochemistry 54, DOI: 10.1021/bi5014485], [2Fe-2S] intermediates on the SDUF complex were shown to readily transfer to uncomplexed ISCU2 or apo acceptor proteins, depending on the reaction conditions. Our results indicate that FXN accelerates a rate-limiting sulfur transfer step in the synthesis of [2Fe-2S] clusters on the human Fe–S assembly complex. PMID:26016518

  1. Nucleoprotein complex formation by the enhancer binding protein nifA.

    PubMed Central

    Wang, X Y; Kolb, A; Cannon, W; Buck, M

    1997-01-01

    The nitrogen fixation protein NifA is a member of the protein family activating transcription by the alternative eubacterial sigmaN (sigma54) RNA polymerase holoenzyme. Binding sites for NifA, upstream activator sequences (UASs), are remotely located. Interaction between holoenzyme bound in a closed promoter complex and NiFA is facilitated by bending of the intervening DNA by integration host factor (IHF). We have examined NifA contact with the Klebsiella pneumoniae nifH promoter UAS in the presence and absence of holoenzyme and IHF. Footprints with UV light were made on 5-BrdU-substituted DNA and DNase I and laser UV footprints on conventional DNA templates. Results establish that the consensus thymidine residues of the UAS motif 5'-TGT are in close proximity to NifA. Reactivity suggests that each UAS thymidine is not structurally equivalent. Titration of NifA binding to the UAS in the presence or absence of the closed promoter complex indicates that the interaction of NifA with the UAS is not strongly co-operative with holoenzyme or IHF, a result supportive of an activation mechanism not reliant upon simple recruitment of factors to the promoter. Laser footprints demonstrated that holoenzyme suppressed reactivity of promoter consensus -14, -15 and -16 T residues, indicating close contact. Binding of holoenzyme resulted in a specific increase in 5-BrdU reactivity at -9 within the holoenzyme binding site, likely reflecting DNA distortion. Enhanced -9 reactivity required sigmaNN-terminal sequences that are necessary for activation. Since T-9 is melted in open complexes the closed complex appears poised for melting. Open promoter complex formation was accompanied by a distinct change in laser footprint signal at -11, consistent with the view that nucleation of strand separation occurs within or close to the -12 promoter element. PMID:9254707

  2. Changes in solvent accessibility of wild-type and deamidated ?B2-crystallin following complex formation with ?A-crystallin

    PubMed Central

    Lampi, Kirsten J.; Fox, Cade B.; David, Larry L.

    2012-01-01

    Aberrant protein interactions can lead to aggregation and insolubilization, such as occurs during cataract formation. Deamidation, a prevalent age-related modification in the lens of the eye, decreases stability of the major lens proteins, crystallins. The mechanism of deamidation altering interactions between ?A-crystallin and ?B2-crystallin was investigated by detecting changes in solvent accessibility upon complex formation during heating. Solvent accessibility was determined by measuring hydrogen/deuterium exchange levels of backbone amides by high-resolution mass spectrometry. Deuterium levels in wild type ?B2-crystallin increased 50-60% in both domains following complex formation with ?A-crystallin. This increased solvent accessibility indicated a general loosening along the backbone amides. Peptides with the greatest deuterium increases were located at the buried monomer-monomer interface, suggesting that the ?B2 dimer was disrupted. The only region where the deuterium levels decreased was in ?B2 peptide 123-139, containing an outside loop, and may be a potential site of interaction with ?A. Mimicking deamidation at the ?B2 dimer interface prevented complex formation with ?A. When temperatures were lowered, an ?A/?B2 Q70E/Q162E complex formed with similar solvent accessibilities as ?A/WT ?B2. Deamidation did not disrupt specific ?A/?B2 interactions but favored aggregation before complex formation with ?A. We conclude that deamidation contributes to cataract formation through destabilization of crystallins before they can be rescued by ?-crystallin. PMID:22982024

  3. Conformational plasticity is crucial for C3-RhoA complex formation by ARTT-loop.

    PubMed

    Tsuge, Hideaki; Yoshida, Toru; Tsurumura, Toshiharu

    2015-12-01

    ADP-ribosylation is an important post-translational protein modification catalyzed by bacterial toxins and eukaryotic endogenous ADP-ribosyltransferases. Bacterial binary toxins and C3-like toxins recognize and ADP-ribosylate actin Arg177 and RhoA Asn41, respectively. Structural and mutational studies have identified an ADP-ribosylating turn-turn loop (ARTT-loop) that has been implicated in substrate specificity and recognition, although it has not been verified. Recently, we determined the crystal structure of the C3 exoenzyme-RhoA complex. The complex structure shows how C3 recognizes Rho GTPase and provides the first structural evidence for RhoA recognition by the ARTT-loop. The complex formation mediated by the ARTT-loop is through the intrinsic plasticity of C3 and RhoA. C3 changes the conformations of both the phosphate nicotinamide-loop and the ARTT-loop by NAD(+) and RhoA binding, respectively. In contrast, RhoA changes the conformations of switch I and II regions upon C3 binding with a particular conformation, irrespective of the bound nucleotide (GTP or GDP). PMID:26474844

  4. The application of the constants of motion to nonlinear stationary waves in complex plasmas: a unified fluid dynamic viewpoint

    NASA Astrophysics Data System (ADS)

    McKenzie, J. F.; Dubinin, E.; Sauer, K.; Doyle, T. B.

    2004-08-01

    Perturbation reductive procedures, as used to analyse various weakly nonlinear plasma waves (solitons and periodic waves), normally lead to the dynamical system being described by KdV, Burgers' or a nonlinear Schrödinger-type equation, with properties that can be deduced from an array of mathematical techniques. Here we develop a fully nonlinear theory of one-dimensional stationary plasma waves, which elucidates the common nature of various diverse wave phenomena. This is accomplished by adopting an essentially fluid dynamic viewpoint. In this unified treatment the constants of the motion (for mass, momentum and energy) lead naturally to the construction of the wave structure equations. It is shown, for example, that electrostatic, Hall magnetohydrodynamic and ion cyclotron acoustic nonlinear waves all obey first-order differential equations of the same generic type for the longitudinal flow field of the wave. The equilibrium points, which define the soliton amplitude, are given by the compressive and/or rarefactive roots of a total plasma ‘energy’ or ‘momentum’ function characterizing the wave type. This energy function, which is an algebraic combination of the Bernoulli momentum and energy functions for the longitudinal flow field, is the fluid dynamic counterpart of the pseudo-potentials, which are characteristic of system structure equations formulated in other than fluid variables. Another general feature of the structure equation is the phenomenon of choked flow, which occurs when the flow speed becomes sonic. It is this trans-sonic property that limits the soliton amplitudes and defines the critical collective Mach numbers of the waves. These features are also obtained in multi-component plasmas where, for example, in a bi-ion plasma, momentum exchanges between protons and heavier ions are mediated by the Maxwell magnetic stresses. With a suitable generalization of the concept of a sonic point in a bi-ion system and the corresponding choked flow feature, the wave structures, although now more complicated, can also be understood within this overall fluid framework. Particularly useful tools in this context are the momentum hodograph (an algebraic relation between the bi-ion speeds and the electron speed, or magnetic field, which follows from the conservation of mass, momentum and charge-neutrality) and a generalized Bernoulli energy density for each species. Analysis shows that the bi-ion solitons are essentially compressive, but contain the remarkable feature of the presence of a proton rarefactive core. A new type of soliton, called an ‘oscilliton’ because embedded spatial oscillations are superimposed on the classical soliton, is also described and discussed. A necessary condition for the existence of this type of wave is that the linear phase velocity must exhibit an extremum where the phase speed matches the group speed. The remarkable properties of this wave are illustrated for the case of both whistler waves and bi-ion waves where, for the latter, the requisite condition is met near the cross-over frequencies. In the case of the whistler oscilliton, which propagates at speeds in excess of one half of the Alfvén speed (based on the electrons), an analytic solution has been constructed through a phase-portrait integral of the system in which the proton and electron dynamics must be placed on the same footing. The relevance of the different wave structures to diverse space environments is briefly discussed in relation to recently available high-time and spatial resolution data from satellite observations.

  5. Stability constants for mono- and dioxalato-complexes of Y and the REE, potentially important species in groundwaters and surface freshwaters

    NASA Astrophysics Data System (ADS)

    Schijf, J.; Byrne, R. H.

    2001-04-01

    We present the first measured set of stability constants for mono- and dioxalato-complexes of yttrium and all rare earths except Pm (Y+REE), Ox? n = [MOx n3-2n] [M 3+] -1 [Ox 2-] -n(where [ ] ? concentrations, M ? Y+REE, and Ox 2- ? C 2O 42-). Aqueous solutions of Y+REE were titrated with oxalic acid in the presence of a cation-exchange resin, and Y+REE concentrations in the solution phase were measured by ICP-MS. This method allows investigation of all Y+REE simultaneously under identical conditions and is thus very sensitive to subtle inter-element variations in log Ox? n. Experiments were performed at a single ionic strength ( I = 0.05 M), but at two values of pH. Patterns of log Ox? 1 and log Ox? 2, determined from our experiments, are similar in shape and reminiscent of those for carbonato-complexes. The average ratio of stepwise stability constants K 2/K 1 = Ox? 2/( Ox? 1) 2 is 0.05 ± 0.02 for Y+REE excluding La and Ce. Literature values of Ox? 1(Eu) for 0.03 mol/L ? I ? 1 mol/L were used to derive the relation log Ox? 1(Eu) = log Ox? 10(Eu) - 6.132? I/(1 + 1.47? I) + 0.902 I, where log Ox? 10(Eu) is the stability constant at infinite dilution. Applying this relation to all Y+REE, the following values of log Ox? 10 (at zero ionic strength) were found: 6.66 (Y), 5.87 (La), 5.97 (Ce), 6.25 (Pr), 6.31 (Nd), 6.43 (Sm), 6.52 (Eu), 6.53 (Gd), 6.63 (Tb), 6.74 (Dy), 6.77 (Ho), 6.83 (Er), 6.89 (Tm), 6.95 (Yb), 6.96 (Lu). These values, which are based on direct measurements for each individual Y+REE, agree quite well with published extrapolations that are mostly based on linear free-energy relationships. Total oxalate concentrations of 10 -5-10 -3 M have been reported for soil solutions. Free oxalate ions persist at much lower pH than free carbonate ions and a simple speciation model demonstrates that oxalato-complexes can dominate Y+REE speciation in mildly acidic groundwaters of low-to-moderate alkalinity.

  6. STAR FORMATION ACTIVITY IN THE GALACTIC H II COMPLEX S255-S257

    SciTech Connect

    Ojha, D. K.; Ghosh, S. K.; Samal, M. R.; Pandey, A. K.; Sharma, Saurabh; Bhatt, B. C.; Tamura, M.; Mohan, V.; Zinchenko, I.

    2011-09-10

    We present results on the star formation activity of an optically obscured region containing an embedded cluster (S255-IR) and molecular gas between two evolved H II regions, S255 and S257. We have studied the complex using optical and near-infrared (NIR) imaging, optical spectroscopy, and radio continuum mapping at 15 GHz, along with Spitzer-IRAC results. We found that the main exciting sources of the evolved H II regions S255 and S257 and the compact H II regions associated with S255-IR are of O9.5-B3 V nature, consistent with previous observations. Our NIR observations reveal 109 likely young stellar object (YSO) candidates in an area of {approx}4.'9 x 4.'9 centered on S255-IR, which include 69 new YSO candidates. To see the global star formation, we constructed the V - I/V diagram for 51 optically identified IRAC YSOs in an area of {approx}13' x 13' centered on S255-IR. We suggest that these YSOs have an approximate age between 0.1 and 4 Myr, indicating a non-coeval star formation. Using spectral energy distribution models, we constrained physical properties and evolutionary status of 31 and 16 YSO candidates outside and inside the gas ridge, respectively. The models suggest that the sources associated with the gas ridge are younger (mean age {approx}1.2 Myr) than the sources outside the gas ridge (mean age {approx}2.5 Myr). The positions of the young sources inside the gas ridge at the interface of the H II regions S255 and S257 favor a site of induced star formation.

  7. The development of folds and cleavages in slate belts by underplating in accretionary complexes: A comparison of the Kodiak Formation, Alaska and the Calaveras Complex, California

    NASA Astrophysics Data System (ADS)

    Paterson, Scott R.; Sample, James C.

    1988-08-01

    The development of folds and cleavages in slate and graywacke belts is commonly attributed to arc-continent or continent-continent collisions. However, the Kodiak Formation of southern Alaska and the Calaveras Complex of the western Sierra Nevada, California, are two slate and graywacke belts in which folds and slaty cleavages developed during simple underthrusting and underplating within accretionary wedges. The Maastrichtian Kodiak Formation is composed dominantly of coherent turbidites but includes lesser pebbly mudstone, minor conglomerate, and rare chert. The Kodiak Formation is part of a large accretionary complex that youngs in age seaward, but bedding tops generally show landward younging. A progression of structures has been determined by crosscutting relationships and includes (1) syndeformational depositional features; (2) broken formation; (3) slaty cleavage, folds, and thrust faults; (4) crenulations and crenulation cleavage; (5) late brittle thrust faults; and (6) right-lateral strike-slip faults. Broken formation, slaty cleavage, thrust faults, and folds developed during underthrusting and underplating within an accretionary wedge. Crenulations and brittle thrust faults are related to subsequent intrawedge shortening. Based on peak metamorphism in the uppermost zeolite to prehnite-pumpellyite facies, underplating occurred at a minimum depth of 10 km. The Calaveras Complex is composed of argillite, chert, graywacke, pebbly mudstone, limestone, and volcanic rocks. Its age of deposition has a maximum range from Permian to Early Jurassic. Overall, the unit appears to young westward, but local facing indicators show eastward younging of individual blocks. The sequence of structures developed in the Calaveras Complex is (1) syn-depositional olistostromes; (2) broken formation; (3) slaty cleavage, folds, and thrust faults; and (4) younger Jura-Triassic folds and crenulation cleavages. Broken formation and slaty cleavage developed during underthrusting and underplating in an accretionary wedge, in an analogous fashion to the Kodiak Formation. Greenschist facies metemorphism during underplating suggests that the Calaveras Complex was accreted at deeper levels, or in a wedge with a higher geothermal gradient, than the Kodiak Formation. Some other probable examples of slate/graywacke belts that became folded and well-foliated during underplating include part of the Dunnage Zone (Newfoundland), the Southern Uplands complex (Scotland), the Torlesse terrane (New Zealand), part of the Hamburg klippe (Pennsylvania), and the Taconic allochthons (New York). Peak metamorphism in these belts indicates that they were accreted in accretionary wedges with geothermal gradients higher than usually assumed for such tectonic settings; such wedges may have been fairly common features at convergent margins.

  8. Aging, rejuvenation and thixotropy in complex fluids. Time-dependence of the viscosity at rest and under constant shear rate or shear stress

    E-print Network

    Daniel Quemada

    2008-08-25

    Complex fluids exhibit time-dependent changes in viscosity that have been ascribed to both thixotropy and aging. However, there is no consensus for which phenomenon is the origin of which changes. A novel thixotropic model is defined that incorporates aging. Conditions under which viscosity changes are due to thixotropy and aging are unambiguously defined. Viscosity changes in a complex fluid during a period of rest after destructuring exhibit a bifurcation at a critical volume fraction PHIc2. For volume fractions less than PHIc2, the viscosity remains finite in the limit t => infinite. For volume fractions above critical the viscosity grows without limit, so aging occurs at rest. At constant shear rate there is no bifurcation, whereas under constant shear stress the model predicts a new bifurcation in the viscosity at a critical stress sB, identical to the yield stress sy observed under steady conditions. The divergence of the viscosity for stress s sB is best defined as aging. However, for s > sB, where the viscosity remains finite, it seems preferable to use the concepts of restructuring and destructuring, rather than aging and rejuvenation. Nevertheless, when a stress sA (sB) is applied during aging, slower aging is predicted and discussed as true rejuvenation. Plastic behaviour is predicted under steady conditions when s > sB. The Herschel-Bulkley model fits the flow curve for stresses close to sB, whereas the Bingham model gives a better fit for s >> sB. Finally, the model's predictions are shown to be consistent with experimental data from the literature for the transient behaviour of laponite gels.

  9. Spontaneous formation of complex structures made from elastic membranes in an aluminum-hydroxide-carbonate system

    NASA Astrophysics Data System (ADS)

    Kiehl, Micah; Kaminker, Vitaliy; Pantaleone, James; Nowak, Piotr; Dyonizy, Agnieszka; Maselko, Jerzy

    2015-06-01

    A popular playground for studying chemo-hydrodynamic patterns and instabilities is chemical gardens, also known as silicate gardens. In these systems, complex structures spontaneously form, driven by buoyant forces and either osmotic or mechanical pumps. Here, we report on systems that differ somewhat from classical chemical gardens in that the membranes are much more deformable and soluble. These properties lead to structures that self-construct and evolve in new ways. For example, they exhibit the formation of chemical balloons, a new growth mechanism for tubes, and also the homologous shrinking of these tubes. The stretching mechanism for the membranes is probably different than for other systems by involving membrane "self-healing." Other unusual properties are osmosis that sometimes occurs out of the structure and also small plumes that flow away from the structure, sometimes upwards, and sometimes downwards. Mathematical models are given that explain some of the observed phenomena.

  10. Spontaneous formation of complex structures made from elastic membranes in an aluminum-hydroxide-carbonate system.

    PubMed

    Kiehl, Micah; Kaminker, Vitaliy; Pantaleone, James; Nowak, Piotr; Dyonizy, Agnieszka; Maselko, Jerzy

    2015-06-01

    A popular playground for studying chemo-hydrodynamic patterns and instabilities is chemical gardens, also known as silicate gardens. In these systems, complex structures spontaneously form, driven by buoyant forces and either osmotic or mechanical pumps. Here, we report on systems that differ somewhat from classical chemical gardens in that the membranes are much more deformable and soluble. These properties lead to structures that self-construct and evolve in new ways. For example, they exhibit the formation of chemical balloons, a new growth mechanism for tubes, and also the homologous shrinking of these tubes. The stretching mechanism for the membranes is probably different than for other systems by involving membrane "self-healing." Other unusual properties are osmosis that sometimes occurs out of the structure and also small plumes that flow away from the structure, sometimes upwards, and sometimes downwards. Mathematical models are given that explain some of the observed phenomena. PMID:26117121

  11. Transcriptional activation through the tetrameric complex formation of E4TF1 subunits.

    PubMed Central

    Sawada, J; Goto, M; Sawa, C; Watanabe, H; Handa, H

    1994-01-01

    Transcription factor E4TF1 is composed of two types of subunit, an ets-related DNA binding protein, E4TF1-60, and its associated proteins with four tandemly repeated Notch-ankyrin motifs, E4TF1-53 and E4TF1-47. To determine the functional domains, we constructed various mutants of the subunits. E4TF1-60 bound to DNA as a monomer. The ets domain and its N-terminal flanking region were necessary to recognize the specific DNA sequence. The 48 amino acids at the E4TF1-60 C-terminus were required for interaction with the other type of subunit. E4TF1-53 and E4TF1-47 share the N-terminal 332 amino acids but differ at the C-termini. They interacted with E4TF1-60 through the N-terminal flanking region to form a heterodimer. E4TF1-53 dimerized with itself, whereas E4TF1-47 did not. The C-terminal region specific for E4TF1-53 was required for the dimerization. Therefore, heterodimers composed of E4TF1-53 and E4TF1-60 were further dimerized, resulting in the formation of a tetrameric complex, which stimulated transcription in vitro. Heterodimers of E4TF1-47 and E4TF1-60 weakly stimulated transcription in vitro. The results indicated that the tetrameric complex formation of E4TF1 subunits was necessary to activate transcription efficiently in vitro. Images PMID:8137823

  12. Altered tyrosine metabolism and melanization complex formation underlie the developmental regulation of melanization in Manduca sexta.

    PubMed

    Clark, Kevin D

    2015-03-01

    The study of hemolymph melanization in Lepidoptera has contributed greatly to our understanding of its role in insect immunity. Manduca sexta in particular has been an excellent model for identifying the myriad components of the phenoloxidase (PO) cascade and their activation through exposure to pathogen-associated molecular patterns (PAMPs). However, in a process that is not well characterized or understood, some insect species rapidly melanize upon wounding in the absence of added PAMPs. We sought to better understand this process by measuring wound-induced melanization in four insect species. Of these, only plasma from late 5th instar M. sexta was unable to melanize, even though each contained millimolar levels of the putative melanization substrate tyrosine (Tyr). Analysis of Tyr metabolism using substrate-free plasmas (SFPs) from late 5th instar larvae of each species showed that only M. sexta SFP failed to melanize with added Tyr. In contrast, early instar M. sexta larvae exhibited wound-induced melanization and Tyr metabolism, and SFPs prepared from these larvae melanized in the presence of Tyr. Early instar melanization in M. sexta was associated with the formation of a high mass protein complex that could be observed enzymatically in native gels or by PO-specific immunoblotting. Topical treatment of M. sexta larvae with the juvenile hormone (JH) analog methoprene delayed pupation and increased melanizing ability late in the instar, thus linking development with immunity. Our results demonstrate that melanization rates are highly variable in Lepidoptera, and that developmental stage can be an important factor for melanization within a species. More specifically, we show that the physiological substrate for melanization in M. sexta is Tyr, and that melanization is associated with the formation of a PO-containing protein complex. PMID:25596090

  13. Formation of Large Polysulfide Complexes during the Lithium-Sulfur Battery Discharge

    SciTech Connect

    Wang, Bin; Alhassan, Saeed M.; Pantelides, Sokrates T

    2014-01-01

    Sulfur cathodes have much larger capacities than transition-metal-oxide cathodes used in commercial lithium-ion batteries but suffer from unsatisfactory capacity retention and long-term cyclability. Capacity degradation originates from soluble lithium polysulfides gradually diffusing into the electrolyte. Understanding of the formation and dynamics of soluble polysulfides during the discharging process at the atomic level remains elusive, which limits further development of lithium-sulfur (Li-S) batteries. Here we report first-principles molecular dynamics simulations and density functional calculations, through which the discharging products of Li-S batteries are studied. We find that, in addition to simple Li2Sn (1 n 8) clusters generated from single cyclooctasulfur (S8) rings, large Li-S clusters form by collectively coupling several different rings to minimize the total energy. At high lithium concentration, a Li-S network forms at the sulfur surfaces. The results can explain the formation of the soluble Li-S complex, such as Li2S8, Li2S6, and Li2S4, and the insoluble Li2S2 and Li2S structures. In addition, we show that the presence of oxygen impurities in graphene, particularly oxygen atoms bonded to vacancies and edges, may stabilize the lithium polysulfides that may otherwise diffuse into the electrolyte.

  14. Unraveling the complexities of circadian and sleep interactions with memory formation through invertebrate research.

    PubMed

    Michel, Maximilian; Lyons, Lisa C

    2014-01-01

    Across phylogeny, the endogenous biological clock has been recognized as providing adaptive advantages to organisms through coordination of physiological and behavioral processes. Recent research has emphasized the role of circadian modulation of memory in generating peaks and troughs in cognitive performance. The circadian clock along with homeostatic processes also regulates sleep, which itself impacts the formation and consolidation of memory. Thus, the circadian clock, sleep and memory form a triad with ongoing dynamic interactions. With technological advances and the development of a global 24/7 society, understanding the mechanisms underlying these connections becomes pivotal for development of therapeutic treatments for memory disorders and to address issues in cognitive performance arising from non-traditional work schedules. Invertebrate models, such as Drosophila melanogaster and the mollusks Aplysia and Lymnaea, have proven invaluable tools for identification of highly conserved molecular processes in memory. Recent research from invertebrate systems has outlined the influence of sleep and the circadian clock upon synaptic plasticity. In this review, we discuss the effects of the circadian clock and sleep on memory formation in invertebrates drawing attention to the potential of in vivo and in vitro approaches that harness the power of simple invertebrate systems to correlate individual cellular processes with complex behaviors. In conclusion, this review highlights how studies in invertebrates with relatively simple nervous systems can provide mechanistic insights into corresponding behaviors in higher organisms and can be used to outline possible therapeutic options to guide further targeted inquiry. PMID:25136297

  15. Formation of complex organic molecules in cold objects: the role of gas phase reactions

    E-print Network

    Balucani, Nadia; Taquet, Vianney

    2015-01-01

    While astrochemical models are successful in reproducing many of the observed interstellar species, they have been struggling to explain the observed abundances of complex organic molecules. Current models tend to privilege grain surface over gas phase chemistry in their formation. One key assumption of those models is that radicals trapped in the grain mantles gain mobility and react on lukewarm (>30 K) dust grains. Thus, the recent detections of methyl formate (MF) and dimethyl ether (DME) in cold objects represent a challenge and may clarify the respective role of grain surface and gas phase chemistry. We propose here a new model to form DME and MF with gas phase reactions in cold environments, where DME is the precursor of MF via an efficient reaction overlooked by previous models. Furthermore, methoxy, a precursor of DME, is also synthetized in the gas phase from methanol, which is desorbed by a non-thermal process from the ices. Our new model reproduces fairy well the observations towards L1544. It also...

  16. Complex organic molecules during low-mass star formation: Pilot survey results

    SciTech Connect

    Öberg, Karin I.; Graninger, Dawn; Lauck, Trish

    2014-06-10

    Complex organic molecules (COMs) are known to be abundant toward some low-mass young stellar objects (YSOs), but how these detections relate to typical COM abundance are not yet understood. We aim to constrain the frequency distribution of COMs during low-mass star formation, beginning with this pilot survey of COM lines toward six embedded YSOs using the IRAM 30 m Telescope. The sample was selected from the Spitzer c2d ice sample and covers a range of ice abundances. We detect multiple COMs, including CH{sub 3}CN, toward two of the YSOs, and tentatively toward a third. Abundances with respect to CH{sub 3}OH vary between 0.7% and 10%. This sample is combined with previous COM observations and upper limits to obtain a frequency distributions of CH{sub 3}CN, HCOOCH{sub 3}, CH{sub 3}OCH{sub 3}, and CH{sub 3}CHO. We find that for all molecules more than 50% of the sample have detections or upper limits of 1%-10% with respect to CH{sub 3}OH. Moderate abundances of COMs thus appear common during the early stages of low-mass star formation. A larger sample is required, however, to quantify the COM distributions, as well as to constrain the origins of observed variations across the sample.

  17. The human SepSecS-tRNASec complex reveals the mechanism of selenocysteine formation.

    PubMed

    Palioura, Sotiria; Sherrer, R Lynn; Steitz, Thomas A; Söll, Dieter; Simonovic, Miljan

    2009-07-17

    Selenocysteine is the only genetically encoded amino acid in humans whose biosynthesis occurs on its cognate transfer RNA (tRNA). O-Phosphoseryl-tRNA:selenocysteinyl-tRNA synthase (SepSecS) catalyzes the final step of selenocysteine formation by a poorly understood tRNA-dependent mechanism. The crystal structure of human tRNA(Sec) in complex with SepSecS, phosphoserine, and thiophosphate, together with in vivo and in vitro enzyme assays, supports a pyridoxal phosphate-dependent mechanism of Sec-tRNA(Sec) formation. Two tRNA(Sec) molecules, with a fold distinct from other canonical tRNAs, bind to each SepSecS tetramer through their 13-base pair acceptor-TPsiC arm (where Psi indicates pseudouridine). The tRNA binding is likely to induce a conformational change in the enzyme's active site that allows a phosphoserine covalently attached to tRNA(Sec), but not free phosphoserine, to be oriented properly for the reaction to occur. PMID:19608919

  18. The Human SepSecS-tRNASec Complex Reveals the Mechanism of Selenocysteine Formation

    PubMed Central

    Palioura, Sotiria; Sherrer, R. Lynn; Steitz, Thomas A.; Söll, Dieter; Simonovi?, Miljan

    2010-01-01

    Selenocysteine is the only genetically encoded amino acid in humans whose biosynthesis occurs on its cognate transfer RNA (tRNA). O-Phosphoseryl-tRNA:selenocysteinyl-tRNA synthase (SepSecS) catalyzes the final step of selenocysteine formation by a poorly understood tRNA-dependent mechanism. The crystal structure of human tRNASec in complex with SepSecS, phosphoserine, and thiophosphate, together with in vivo and in vitro enzyme assays, supports a pyridoxal phosphate–dependent mechanism of Sec-tRNASec formation. Two tRNASec molecules, with a fold distinct from other canonical tRNAs, bind to each SepSecS tetramer through their 13–base pair acceptor-T?C arm (where ? indicates pseudouridine). The tRNA binding is likely to induce a conformational change in the enzyme’s active site that allows a phosphoserine covalently attached to tRNASec, but not free phosphoserine, to be oriented properly for the reaction to occur. PMID:19608919

  19. Unraveling the complexities of circadian and sleep interactions with memory formation through invertebrate research

    PubMed Central

    Michel, Maximilian; Lyons, Lisa C.

    2014-01-01

    Across phylogeny, the endogenous biological clock has been recognized as providing adaptive advantages to organisms through coordination of physiological and behavioral processes. Recent research has emphasized the role of circadian modulation of memory in generating peaks and troughs in cognitive performance. The circadian clock along with homeostatic processes also regulates sleep, which itself impacts the formation and consolidation of memory. Thus, the circadian clock, sleep and memory form a triad with ongoing dynamic interactions. With technological advances and the development of a global 24/7 society, understanding the mechanisms underlying these connections becomes pivotal for development of therapeutic treatments for memory disorders and to address issues in cognitive performance arising from non-traditional work schedules. Invertebrate models, such as Drosophila melanogaster and the mollusks Aplysia and Lymnaea, have proven invaluable tools for identification of highly conserved molecular processes in memory. Recent research from invertebrate systems has outlined the influence of sleep and the circadian clock upon synaptic plasticity. In this review, we discuss the effects of the circadian clock and sleep on memory formation in invertebrates drawing attention to the potential of in vivo and in vitro approaches that harness the power of simple invertebrate systems to correlate individual cellular processes with complex behaviors. In conclusion, this review highlights how studies in invertebrates with relatively simple nervous systems can provide mechanistic insights into corresponding behaviors in higher organisms and can be used to outline possible therapeutic options to guide further targeted inquiry. PMID:25136297

  20. In Silico Inhibition Studies of Jun-Fos-DNA Complex Formation by Curcumin Derivatives

    PubMed Central

    Kumar, Anil; Bora, Utpal

    2012-01-01

    Activator protein-1 (AP1) is a transcription factor that consists of the Jun and Fos family proteins. It regulates gene expression in response to a variety of stimuli and controls cellular processes including proliferation, transformation, inflammation, and innate immune responses. AP1 binds specifically to 12-O-tetradecanoylphorbol-13-acetate (TPA) responsive element 5?-TGAG/CTCA-3? (AP1 site). It has been found constitutively active in breast, ovarian, cervical, and lung cancers. Numerous studies have shown that inhibition of AP1 could be a promising strategy for cancer therapeutic applications. The present in silico study provides insights into the inhibition of Jun-Fos-DNA complex formation by curcumin derivatives. These derivatives interact with the amino acid residues like Arg155 and Arg158 which play a key role in binding of Jun-Fos complex to DNA (AP1 site). Ala151, Ala275, Leu283, and Ile286 were the residues present at binding site which could contribute to hydrophobic contacts with inhibitor molecules. Curcumin sulphate was predicted to be the most potent inhibitor amongst all the natural curcumin derivatives docked. PMID:25374685

  1. Electrocatalytic Oxidation of Formate with Nickel Diphosphane Dipeptide Complexes: Effect of Ligands Modified with Amino Acids

    SciTech Connect

    Galan, Brandon R.; Reback, Matthew L.; Jain, Avijita; Appel, Aaron M.; Shaw, Wendy J.

    2013-10-28

    A series of nickel bis-diphosphine complexes with dipeptides appended to the ligands were investigated for the catalytic oxidation of formate. Typical rates of ~7 s-1 were found, similar to the parent complex (~8 s-1), with amino acid size and positioning contributing very little to rate or operating potential. Hydroxyl functionalities did result in lower rates, which were recovered by protecting the hydroxyl group. The results suggest that the overall dielectric introduced by the dipeptides does not play an important role in catalysis, but free hydroxyl groups do influence activity suggesting contributions from intra- or intermolecular interactions. These observations are important in developing a fundamental understanding of the affect that an enzyme-like outer coordination sphere can have upon molecular catalysts. This work was funded by the US DOE Basic Energy Sciences, Chemical Sciences, Geoscience and Biosciences Division (BRG, AJ, AMA, WJS), the US DOE Basic Energy Sciences, Physical Bioscience program (MLR). Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  2. Interactions between plutonism and detachments during metamorphic core complex formation, Serifos Island (Cyclades, Greece)

    NASA Astrophysics Data System (ADS)

    Rabillard, Aurélien; Arbaret, Laurent; Jolivet, Laurent; Le Breton, Nicole; Gumiaux, Charles; Augier, Romain; Grasemann, Bernhard

    2015-06-01

    In order to better understand the interactions between plutonic activity and strain localization during metamorphic core complex formation, the Miocene granodioritic pluton of Serifos (Cyclades, Greece) is studied. This pluton (11.6-9.5 Ma) intruded the Cycladic Blueschists during thinning of the Aegean domain along a system of low-angle normal faults belonging to the south dipping West Cycladic Detachment System (WCDS). Based on structural fieldwork, together with microstructural observations and anisotropy of magnetic susceptibility, we recognize a continuum of deformation from magmatic to brittle conditions within the magmatic body. This succession of deformation events is kinematically compatible with the development of the WCDS. The architecture of the pluton shows a marked asymmetry resulting from its interaction with the detachments. We propose a tectonic scenario for the emplacement of Serifos pluton and its subsequent cooling during the Aegean extension: (1) A first stage corresponds to the metamorphic core complex initiation and associated southwestward shearing along the Meghàlo Livadhi detachment. (2) In the second stage, the Serifos pluton has intruded the dome at shallow crustal level, piercing through the ductile/brittle Meghàlo Livadhi detachment. Southwest directed extensional deformation was contemporaneously transferred upward in the crust along the more localized Kàvos Kiklopas detachment. (3) The third stage was marked by synmagmatic extensional deformation and strain localization at the contact between the pluton and the host rocks resulting in nucleation of narrow shear zones, which (4) continued to develop after the pluton solidification.

  3. Formation and unimolecular dissociation of Al3+(DMSO)n complexes

    NASA Astrophysics Data System (ADS)

    El-Nahas, Ahmed M.; Xiao, Chuanyun; Hagelberg, Frank

    2004-09-01

    Density functional theory (DFT) calculations at the B3LYP/6-31+G(d) level have been performed to follow up the formation and dissociation of Al3+(DMSO)n complexes (n = 1-3) in the gas phase. Different exit channels are examined and transition states for unimolecular dissociation processes have been located. These channels include loss of neutral (DMSO, CH3, and CH4) as well as charged (DMSO+, (CH3)2S+, CH3+, and DMSOH+) fragments. The minimum number (nmin) of DMSO ligands needed to stabilize Al3+ is 2. Loss of the neutral species is energetically unfavorable and release of DMSO needs high coordination number. On the other hand, charge-separation processes (loss of DMSO+, CH3+, and (CH3)2S+) are thermodynamically feasible. The loss of a methyl cation is thermodynamically the most favorable process for n = 2, while the loss of the dimethyl thioether cation is the preferred one for n = 3. Nevertheless, the presence of sizable kinetic energy barriers (40-89 kcal/mol) hinders such transformation and yields metastable Al3+(DMSO)2,3 complexes. Therefore, DMSO di- and triligated Al trications form kinetically metastable species and could be observed in the gas phase. Comparison with the available experimental data is presented and could motivate further studies.

  4. A SPITZER VIEW OF STAR FORMATION IN THE CYGNUS X NORTH COMPLEX

    SciTech Connect

    Beerer, I. M.; Koenig, X. P.; Hora, J. L.; Keto, E.; Smith, H. A.; Fazio, G. G.; Gutermuth, R. A.; Bontemps, S.; Schneider, N.; Megeath, S. T.; Motte, F.; Simon, R.; Allen, L. E.; Kraemer, K. E.; Price, S.; Mizuno, D.; Adams, J. D.; Hernandez, J.; Lucas, P. W.

    2010-09-01

    We present new images and photometry of the massive star-forming complex Cygnus X obtained with the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer for Spitzer (MIPS) on board the Spitzer Space Telescope. A combination of IRAC, MIPS, UKIRT Deep Infrared Sky Survey, and Two Micron All Sky Survey data are used to identify and classify young stellar objects (YSOs). Of the 8231 sources detected exhibiting infrared excess in Cygnus X North, 670 are classified as class I and 7249 are classified as class II. Using spectra from the FAST Spectrograph at the Fred L. Whipple Observatory and Hectospec on the MMT, we spectrally typed 536 sources in the Cygnus X complex to identify the massive stars. We find that YSOs tend to be grouped in the neighborhoods of massive B stars (spectral types B0 to B9). We present a minimal spanning tree analysis of clusters in two regions in Cygnus X North. The fraction of infrared excess sources that belong to clusters with {>=}10 members is found to be 50%-70%. Most class II objects lie in dense clusters within blown out H II regions, while class I sources tend to reside in more filamentary structures along the bright-rimmed clouds, indicating possible triggered star formation.

  5. A calorimetric study of the hydrolysis and peroxide complex formation of the uranyl(VI) ion.

    PubMed

    Zanonato, Pier Luigi; Di Bernardo, Plinio; Grenthe, Ingmar

    2014-02-14

    The enthalpies of reaction for the formation of uranyl(vi) hydroxide {[(UO2)2(OH)2](2+), [(UO2)3(OH)4](2+), [(UO2)3(OH)5](+), [(UO2)3(OH)6](aq), [(UO2)3(OH)7](-), [(UO2)3(OH)8](2-), [(UO2)(OH)3](-), [(UO2)(OH)4](2-)} and peroxide complexes {[UO2(O2)(OH)](-) and [(UO2)2(O2)2(OH)](-)} have been determined from calorimetric titrations at 25 °C in a 0.100 M tetramethyl ammonium nitrate ionic medium. The hydroxide data have been used to test the consistency of the extensive thermodynamic database published by the Nuclear Energy Agency (I. Grenthe, J. Fuger, R. J. M. Konings, R. J. Lemire, A. B. Mueller, C. Nguyen-Trung and H. Wanner, Chemical Thermodynamics of Uranium, North-Holland, Amsterdam, 1992 and R. Guillaumont, T. Fanghänel, J. Fuger, I. Grenthe, V. Neck, D. J. Palmer and M. R. Rand, Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, Elsevier, Amsterdam, 2003). A brief discussion is given about a possible structural relationship between the trinuclear complexes [(UO2)3(OH)n](6-n), n = 4-8. PMID:24301256

  6. Structural basis of protein complex formation and reconfiguration by polyglutamine disease protein Ataxin-1 and Capicua.

    PubMed

    Kim, Eunji; Lu, Hsiang-Chih; Zoghbi, Huda Y; Song, Ji-Joon

    2013-03-15

    Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease caused by polyglutamine expansion in Ataxin-1 (ATXN1). ATXN1 binds to the transcriptional repressor Capicua (CIC), and the interaction plays a critical role in SCA1 pathogenesis whereby reducing CIC levels rescues SCA1-like phenotypes in a mouse model. The ATXN1/HBP1 (AXH) domain of ATXN1 mediates its homodimerization as well as the interaction with CIC. Here, we present the crystal structure of ATXN1's AXH domain bound to CIC and show that the binding pocket of the AXH domain to CIC overlaps with the homodimerization pocket of the AXH domain. Thus, the binding to CIC disrupts the homodimerization of ATXN1. Furthermore, the binding of CIC reconfigures the complex to allow another form of dimerization mediated by CIC, showing the intricacy of protein complex formation and reconfiguration by ATXN1 and CIC. Identifying the surfaces mediating the interactions between CIC and ATXN1 reveals a critical role for CIC in the reconfiguration of the AXH dimers and might provide insight into ways to target the ATXN1/CIC interactions to modulate SCA1 pathogenesis. PMID:23512657

  7. In Silico Inhibition Studies of Jun-Fos-DNA Complex Formation by Curcumin Derivatives.

    PubMed

    Kumar, Anil; Bora, Utpal

    2012-01-01

    Activator protein-1 (AP1) is a transcription factor that consists of the Jun and Fos family proteins. It regulates gene expression in response to a variety of stimuli and controls cellular processes including proliferation, transformation, inflammation, and innate immune responses. AP1 binds specifically to 12-O-tetradecanoylphorbol-13-acetate (TPA) responsive element 5'-TGAG/CTCA-3' (AP1 site). It has been found constitutively active in breast, ovarian, cervical, and lung cancers. Numerous studies have shown that inhibition of AP1 could be a promising strategy for cancer therapeutic applications. The present in silico study provides insights into the inhibition of Jun-Fos-DNA complex formation by curcumin derivatives. These derivatives interact with the amino acid residues like Arg155 and Arg158 which play a key role in binding of Jun-Fos complex to DNA (AP1 site). Ala151, Ala275, Leu283, and Ile286 were the residues present at binding site which could contribute to hydrophobic contacts with inhibitor molecules. Curcumin sulphate was predicted to be the most potent inhibitor amongst all the natural curcumin derivatives docked. PMID:25374685

  8. Spectrophotometric determination of nizatidine and ranitidine through charge transfer complex formation.

    PubMed

    Walash, M; Sharaf-El Din, M; Metwalli, M E-S; RedaShabana, M

    2004-07-01

    Two Spectrophotometric procedures are presented for the determination of two commonly used H2-receptor antagonists, nizatidine (I) and ranitidine hydrochloride (II). The methods are based mainly on charge transfer complexation reaction of these drugs with either p-chloranilic acid (rho-CA) or 2, 3 dichloro-5, 6-dicyanoquinone (DDQ). The produced colored products are quantified spectrophotometrically at 515 and 467 nm in chloranilic acid and DDQ methods, respectively. The molar ratios for the reaction products and the optimum assay conditions were studied. The methods determine the cited drugs in concentration ranges of 20-200 and 20-160 microg/mL for nizatidine and ranges of 20-240 and 20-140 microg/mL for ranitidine with chloranilic acid and DDQ methods, respectively. A more detailed investigation of the complexes formed was made with respect to their composition, association constant, molar absorptivity and free energy change. The proposed procedures were successfully utilized in the determination of the drugs in pharmaceutical preparations. The standard addition method was applied by adding nizatidine and ranitidine to the previously analyzed tablets or capsules. The recovery of each drug was calculated by comparing the concentration obtained from the spiked mixtures with those of the pure drug. The results of analysis of commercial tablets and the recovery study (standard addition method) of the cited drugs suggested that there is no interference from any excipients, which are present in tablets or capsules. Statistical comparison of the results was performed with regard to accuracy and precision using student's t-test and F-ratio at 95% confidence level. There is no significant difference between the reported and proposed methods with regard to accuracy and precision. PMID:15356997

  9. Determination and analysis of the optical constants of thin films of nickel(II) and copper(II) hydrazone complexes by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Chen, Z. M.; Wu, Y. Q.; Gu, D. H.; Gan, F. X.

    2007-08-01

    Thin films of four nickel(II) and copper(II) hydrazone complexes, which will hopefully be used as recording layers for the next-generation of high-density recordable disks, were prepared by using the spin-coating method. Absorption spectra of the thin films on K9 optical glass substrates in the 300-700 nm wavelength region were measured. Optical constants (complex refractive indices N) and thickness d of the thin films prepared on single-crystal silicon substrates in the 275-675 nm wavelength region were investigated on a rotating analyzer-polarizer scanning ellipsometer by fitting the measured ellipsometric angles (?(?) and ?(?)) with a 3-layer model (Si/dye film/air). The dielectric functions ? and absorption coefficients ? as a function of the wavelength were then calculated. Additionally, a design to achieve high reflectivity and optimum dye film thickness with an appropriate reflective layer was performed with the Film Wizard software using a multilayered model (PC substrate/reflective layer/dye film/air) at 405 nm wavelength.

  10. (PEO)n:Na4P2O7- a Report on Complex Formation

    NASA Astrophysics Data System (ADS)

    Bhide, Amrtha; Hariharan, K.

    2006-06-01

    A new polymer electrolyte, based on poly (ethylene oxide) complexed with Na4P2O7 is investigated. (PEO)n:Na4P2O7 polymer metal salt complexes with different n = [ethylene oxide]/ Na ratio (80,100,120,160 and 200) are prepared by solution casting method. Dissolution of the salt into the polymer host is investigated by X-ray diffraction, differential calorimetry and Scanning electron microscopy techniques. The formation of the complex has been confirmed by (i) the broadening and reduction in the intensity of the Bragg peaks (ii) the reduction in the percentage of crystallinity by DSC and (iii) the increase in the glass transition temperature of the polymer with addition of the salt. Maximum reduction in crystallinity from 76.1 % to 56.2 % is observed for (PEO)120:Na4P2O7 system. Qualitative analysis of FTIR spectra in the range 3000-500 cm-1, reveals broadening of the bands corresponding to the C-O-C symmetric stretching modes around 840 cm-1 and 1057-1160 cm-1. These conformal changes have inferred the coordination of the ether oxygen of the PEO with the metal salt ion. Compositional dependence of conductivity studies show a maximum value of 7.58 × 0-7 S/cm at 351 K for O:Na = 120.Conductivity of the above electrolytes proceeds via an activated conduction mechanism with two activation energies, 0.62 eV and 0.78 eV above and below the softening of the polymer. The electronic transport number measured by dc polarization technique shows that, the conducting species are ionic in nature.

  11. Galvanic Cells and the Determination of Equilibrium Constants

    ERIC Educational Resources Information Center

    Brosmer, Jonathan L.; Peters, Dennis G.

    2012-01-01

    Readily assembled mini-galvanic cells can be employed to compare their observed voltages with those predicted from the Nernst equation and to determine solubility products for silver halides and overall formation constants for metal-ammonia complexes. Results obtained by students in both an honors-level first-year course in general chemistry and…

  12. Pore-controlled formation of 0D metal complexes in anionic 3D metal-organic frameworks

    SciTech Connect

    Zhang, MW; Bosch, M; Zhou, HC

    2015-01-01

    The host-guest chemistry between a series of anionic MOFs and their trapped counterions was investigated by single crystal XRD. The PCN-514 series contains crystallographically identifiable metal complexes trapped in the pores, where their formation is controlled by the size and shape of the MOF pores. A change in the structure and pore size of PCN-518 indicates that the existence of guest molecules may reciprocally affect the formation of host MOFs.

  13. Double-decker phthalocyanine complex: Scanning tunneling microscopy study of film formation and spin properties

    NASA Astrophysics Data System (ADS)

    Komeda, Tadahiro; Katoh, Keiichi; Yamashita, Masahiro

    2014-05-01

    We review recent studies of double-decker and triple-decker phthalocyanine (Pc) molecules adsorbed on surfaces in terms of the bonding configuration, electronic structure and spin state. The Pc molecule has been studied extensively in surface science. A Pc molecule can contain various metal atoms at the center, and the class of the molecule is called as metal phthalocyanine (MPc). If the center metal has a large radius, like as lanthanoid metals, it becomes difficult to incorporate the metal atom inside of the Pc ring. Pc ligands are placed so as to sandwich the metal atom, where the metal atom is placed out of the Pc plane. The molecule in this configuration is called as a multilayer-decker Pc molecule. After the finding that the double-decker Pc lanthanoid complex shows single-molecule magnet (SMM) behavior, it has attracted a large attention. This is partly due to a rising interest for the ‘molecular spintronics’, in which the freedoms of spin and charge of an electron are applied to the quantum process of information. SMMs represent a class of compounds in which a single molecule behaves as a magnet. The reported blocking temperature, below which a single SMM molecule works as an quantum magnet, has been increasing with the development in the molecular design and synthesis techniques of multiple-decker Pc complex. However, even the bulk properties of these molecules are promising for the use of electronic materials, the films of multi-decker Pc molecules is less studied than those for the MPc molecules. An intriguing structural property is expected for the multi-decker Pc molecules since the Pc planes are linked by metal atoms. This gives an additional degree of freedom to the rotational angle between the two Pc ligands, and they can make a wheel-like symmetric rotation. Due to a simple and well-defined structure of a multi-decker Pc complex, the molecule can be a model molecule for molecular machine studies. The multi-decker Pc molecules can provide interesting spin configuration. The center metal atom, including a lanthanoid metal of Tb, tends to be 3+ cation, while the Pc ligand to be 2- anion. This realizes two-spin system, in which spins from 4f electrons and ? radical coexist. Though the spins of 4f orbitals of those molecules have been studied, the importance of the ? radicals has been highlighted recently from the measurement of electronic conductance properties of these molecules. In this article, recent researches on multi-decker Pc molecules are reviewed. The manuscript is organized with groups of chapters as follows: (1) Film formation, (2) Spin of TbPc2 film and Kondo resonance observation, (3) Rotation of double-decker Pc complex and chemical modification for spin control, (4) Device formation using double-decker Pc complex.

  14. Solid Eu(III) complexes studied by positron annihilation, optical and Mössbauer spectroscopies: insights on the positronium formation mechanism.

    PubMed

    Fulgêncio, F; de Oliveira, F C; Ivashita, F F; Paesano, A; Windmöller, D; Marques-Netto, A; Magalhães, W F; Machado, J C

    2012-06-15

    In this work, positron annihilation lifetime (PALS), Doppler broadening annihilation radiation lineshape (DBARL), Mössbauer and optical spectroscopies measurements were performed in Eu(III) dipivaloylmetanate complex, Eu(dpm)(3), at 295 and 80 K. The Eu(dpm)(3) complex is not luminescent at 298 K and does not form positronium. On the other hand, it is highly luminescent at 80K, but still does not form positronium. The absence of positronium formation at 80K cannot be explained by a ligand/metal charge transfer process. We found strong evidences that the electronic delocalization does not occur at both temperatures. Despite the Mössbauer results being inconclusive regarding the Eu(III)/Eu(II) reduction hypothesis, previous results showing positronium formation in other Eu(III) complexes suggest that this process is not occurring. Thus, more studies are needed to explain the absence of positronium in Eu(III) complexes. PMID:22466013

  15. Inclusion complex formation of ternary system: Fluoroscein-p-sulfonato calix[4]arene-Cu2+ by cooperative binding

    NASA Astrophysics Data System (ADS)

    Gawhale, Sharadchandra; Jadhav, Ankita; Rathod, Nilesh; Malkhede, Dipalee; Chaudhari, Gajanan

    2015-09-01

    The aqueous solution of fluorescein-para sulfonato calix[4]arene-metal ion complex has been studied based on absorption, fluorescence, 1H NMR and FTIR spectroscopic results. It was found that the fluorescence intensity quenched regularly upon addition of pSCX4 and metal ion. The quenching constants and binding constants were determined for pSCX4-FL and pSCX4-FL-Cu2+ systems. 1:1 stoichiometry is obtained for pSCX4-Cu2+ system by continuous variation method. The NMR and IR results indicates the interaction among FL, pSCX4 and Cu2+. The combined results demonstrate the cooperative binding to design the complex for ternary system. The life time for binary and ternary system has been studied.

  16. Methodological approach to the study of the formation and physicochemical properties of phosphate-metal-humic complexes in solution.

    PubMed

    Guardado, Iñaki; Urrutia, Oscar; Garcia-Mina, Jose M

    2005-11-01

    The aim of this work is to study the suitability of the complementary use of ultrafiltration (UF) and the interaction with an anion-exchange resin (AR) to characterize of phosphate-metal-humic complexes in solution. The results indicate that a methodological approach consisting of the validation and calibration of the AR method by the UF method and the further use of the AR method is suitable for characterizing phosphate-metal complexes. Such an approach has proven to be useful for calculating the phosphate maximum binding capacity of iron-humic complexes and stability constants. It might also be used to obtain valuable purified phosphate-metal-humic complexes for further structural characterization. PMID:16248570

  17. Protostellar Interferometric Line Survey (PILS): Constraining the formation of complex organic molecules with ALMA

    NASA Astrophysics Data System (ADS)

    Jorgensen, Jes K.; Coutens, Audrey; Bourke, Tyler L.; Favre, Cecile; Garrod, Robin; Lykke, Julie; Mueller, Holger; Oberg, Karin I.; Schmalzl, Markus; van der Wiel, Matthijs; van Dishoeck, Ewine; Wampfler, Susanne F.

    2015-08-01

    Understanding how, when and where complex organic and potentially prebiotic molecules are formed is a fundamental goal of astrochemistry and an integral part of origins of life studies. Already now ALMA is showing its capabilities for studies of the chemistry of solar-type stars with its high sensitivity for faint lines, high spectral resolution which limits line confusion, and high angular resolution making it possible to study the structure of young protostars on solar-system scales. We here present the first results from a large unbiased survey “Protostellar Interferometric Line Survey (PILS)” targeting one of the astrochemical template sources, the low-mass protostellar binary IRAS 16293-2422. The survey is more than an order of magnitude more sensitive than previous surveys of the source and provide imaging down to 25 AU scales (radius) around each of the two components of the binary. An example of one of the early highlights from the survey is unambiguous detections of the (related) prebiotic species glycolaldehyde, ethylene glycol (two lowest energy conformers), methyl formate and acetic acid. The glycolaldehyde-ethylene glycol abundance ratio is high in comparison to comets and other protostars - but agrees with previous measurements, e.g., in the Galactic Centre clouds possibly reflecting different environments and/or evolutionary histories. Complete mapping of this and other chemical networks in comparison with detailed chemical models and laboratory experiments will reveal the origin of complex organic molecules in a young protostellar system and investigate the link between these protostellar stages and the early Solar System.

  18. Alkali-metal ion coordination in uranyl(vi) poly-peroxo complexes in solution, inorganic analogues to crown-ethers. Part 2. Complex formation in the tetramethyl ammonium-, Li(+)-, Na(+)- and K(+)-uranyl(vi)-peroxide-carbonate systems.

    PubMed

    Zanonato, Pier Luigi; Szabó, Zoltán; Vallet, Valerie; Di Bernardo, Plinio; Grenthe, Ingmar

    2015-09-15

    The constitution and equilibrium constants of ternary uranyl(vi) peroxide carbonate complexes [(UO2)p(O2)q(CO3)r](2(p-q-r)) have been determined at 0 °C in 0.50 M MNO3, M = Li, K, and TMA (tetramethyl ammonium), ionic media using potentiometric and spectrophotometric data; (17)O NMR data were used to determine the number of complexes present. The formation of cyclic oligomers, "[(UO2)(O2)(CO3)]n", n = 4, 5, 6, with different stoichiometries depending on the ionic medium used, suggests that Li(+), Na(+), K(+) and TMA ions act as templates for the formation of uranyl peroxide rings where the uranyl-units are linked by ?-?(2)-?(2) bridged peroxide-ions. The templating effect is due to the coordination of the M(+)-ions to the uranyl oxygen atoms, where the coordination of Li(+) results in the formation of Li[(UO2)(O2)(CO3)]4(7-), Na(+) and K(+) in the formation of Na/K[(UO2)(O2)(CO3)]5(9-) complexes, while the large tetramethyl ammonium ion promotes the formation of two oligomers, TMA[(UO2)(O2)(CO3)]5(9-) and TMA[(UO2)(O2)(CO3)]6(11-). The NMR spectra demonstrate that the coordination of Na(+) in the five- and six-membered oligomers is significantly stronger than that of TMA(+); these observations suggest that the templating effect is similar to the one observed in the synthesis of crown-ethers. The NMR experiments also demonstrate that the exchange between TMA[(UO2)(O2)(CO3)]5(9-) and TMA[(UO2)(O2)(CO3)]6(11-) is slow on the (17)O chemical shift time-scale, while the exchange between TMA[(UO2)(O2)(CO3)]6(11-) and Na[(UO2)(O2)(CO3)]6(11-) is fast. There was no indication of the presence of large clusters of the type identified by Burns and Nyman (M. Nyman and P. C. Burns, Chem. Soc. Rev., 2012, 41, 7314-7367) and possible reasons for this and the implications for the synthesis of large clusters are briefly discussed. PMID:26331776

  19. STAR FORMATION AND YOUNG POPULATION OF THE H II COMPLEX Sh2-294

    SciTech Connect

    Samal, M. R.; Pandey, A. K.; Chauhan, N.; Jose, J.; Ojha, D. K.; Pandey, B.

    2012-08-10

    The Sh2-294 H II region ionized by a single B0V star features several infrared excess sources, a photodissociation region, and also a group of reddened stars at its border. The star formation scenario in this region seems to be quite complex. In this paper, we present follow-up results of Sh2-294 H II region at 3.6, 4.5, 5.8, and 8.0 {mu}m observed with the Spitzer Space Telescope Infrared Array Camera (IRAC), coupled with H{sub 2} (2.12 {mu}m) observation, to characterize the young population of the region and to understand its star formation history. We identified 36 young stellar object (YSO, Class I, Class II, and Class I/II) candidates using IRAC color-color diagrams. It is found that Class I sources are preferentially located at the outskirts of the H II region and associated with enhanced H{sub 2} emission; none of them are located near the central cluster. Combining the optical to mid-infrared (MIR) photometry of the YSO candidates and using the spectral energy distribution fitting models, we constrained stellar parameters and the evolutionary status of 33 YSO candidates. Most of them are interpreted by the model as low-mass (<4 M{sub Sun }) YSOs; however, we also detected a massive YSO ({approx}9 M{sub Sun }) of Class I nature, embedded in a cloud of visual extinction of {approx}24 mag. Present analysis suggests that the Class I sources are indeed a younger population of the region relative to Class II sources (age {approx} 4.5 Multiplication-Sign 10{sup 6} yr). We suggest that the majority of the Class I sources, including the massive YSOs, are second-generation stars of the region whose formation is possibly induced by the expansion of the H II region powered by a {approx}4 Multiplication-Sign 10{sup 6} yr B0 main-sequence star.

  20. Formation of Complex Organic molecules from Formaldehyde Chemistry in Cometary Ice Analogues

    NASA Astrophysics Data System (ADS)

    Duvernay, fabrice; Vinogradoff, Vassilissa; Danger, Grégoire; Theulé, Patrice; Chiavassa, Thierry

    2015-04-01

    There is convincing evidence that the formation of complex organic molecules occurred in a variety of astrophysical environments. Among them, precursors of biomolecules are of particular significance due to their exobiological implications. Hexamethylenetetramine (HMT, C6H12N4) and the polyoxymethylene (POM, -(CH2-O)n-) are of prime interest since they are supposed to be present in cometary environments. They are also ones of the main components of the organic residue formed from the warming of photolysed interstellar/cometary ice analogs. In this work, we study the warming of water-dominated cometary ice analogs containing formaldehyde (H2CO). Based on infrared and mass spectrometry measurements, and complemented by quantum chemical calculations, we report that NH2CH2OH, HOCH2OH, and POM are the only reaction products when the ice also contains NH3. The branching ratio between the three products strongly depends on the initial H2CO/NH3 concentration ratio. Moreover, the influence of the initial ice composition on the formation of POM oligomers (HO-(CH2O)n-H, n<5) as well as their thermal instability between 200 and 320 K are investigated. Finally, the implications of these results with respect to cometary nucleus chemistry and their impact on POM detection by the Rosetta mission are discussed. In addition, the mechanism for HMT formation in interstellar or cometary ice analogs containing H2CO, NH3, and HCOOH has been determined by combining laboratory experiments and DFT calculations. We show that HMT is thermally formed from H2CO and NH3 activated by HCOOH. Two intermediates has been unambiguously detected: NH2CH2OH and the trimer of CH2NH (1,3,5-triazinane, TMT). Unlike to what it was previously thought, HMT is not an indicator of ice photochemistry, but an indicator of thermal processing of ice. These results strengthen the hypothesis that HMT and its intermediates should be present in comets, where they may be detected with the COSAC or COSIMA instrument of the Rosetta mission.

  1. Structural basis of yeast aminoacyl-tRNA synthetase complex formation revealed by crystal structures of two binary sub-complexes

    PubMed Central

    Simader, Hannes; Hothorn, Michael; Köhler, Christine; Basquin, Jerome; Simos, George; Suck, Dietrich

    2006-01-01

    The yeast aminoacyl-tRNA synthetase (aaRS) complex is formed by the methionyl- and glutamyl-tRNA synthetases (MetRS and GluRS, respectively) and the tRNA aminoacylation cofactor Arc1p. It is considered an evolutionary intermediate between prokaryotic aaRS and the multi- aaRS complex found in higher eukaryotes. While a wealth of structural information is available on the enzymatic domains of single aaRS, insight into complex formation between eukaryotic aaRS and associated protein cofactors is missing. Here we report crystal structures of the binary complexes between the interacting domains of Arc1p and MetRS as well as those of Arc1p and GluRS at resolutions of 2.2 and 2.05 ?, respectively. The data provide a complete structural model for ternary complex formation between the interacting domains of MetRS, GluRS and Arc1p. The structures reveal that all three domains adopt a glutathione S-transferase (GST)-like fold and that simultaneous interaction of Arc1p with GluRS and MetRS is mediated by the use of a novel interface in addition to a classical GST dimerization interaction. The results demonstrate a novel role for this fold as a heteromerization domain specific to eukaryotic aaRS, associated proteins and protein translation elongation factors. PMID:16914447

  2. Complexation and thermodynamics of Cm(III) at high temperatures: the formation of [Cm(SO4)(n)](3-2n) (n = 1, 2, 3) complexes at T = 25 to 200 °C.

    PubMed

    Skerencak, Andrej; Panak, Petra J; Fanghänel, Thomas

    2013-01-14

    The formation of [Cm(SO(4))(n)](3-2n) complexes (n = 1, 2, 3) in an aquatic solution is studied by time resolved laser fluorescence spectroscopy as a function of the ligand concentration, the ionic strength (NaClO(4)) and the temperature (25 to 200 °C). The experiments are performed in a custom-built high temperature cell for spectroscopic measurements at high pressures and temperatures. The single component spectra of the individual species are identified by slope analysis at every studied temperature and their molar fractions are determined by peak deconvolution of the emission spectra. The results show a strong shift of the chemical equilibrium towards the complexed species at increased temperatures. With the determined speciation, the conditional stepwise stability constants are calculated and extrapolated to zero ionic strength, using the specific ion interaction theory (SIT). The log K(0)(n)(T) values increase by several orders of magnitude in the studied temperature range. The fitting of the temperature dependency of the first and second stability constant (log K(0)(1) and log K(0)(2)) requires an extended van't Hoff equation, taking into account a constant heat capacity of the reaction (?(r)C(0)(p,m) = const.). Contrarily, the temperature dependency of the log K(0)(3) is very well described by the linear van't Hoff equation, assuming ?(r)C(0)(p,m) = 0. Thus, the thermodynamic standard state data (?(r)H(0)(m), ?(r)S(0)(m), ?(r)C(0)(p,m)) of the stepwise complexation of Cm(III) with SO(4)(2-) are determined. Additionally, the ion interaction coefficients of the stepwise complexation reactions (??(n)) are determined as a function of the temperature. The fluorescence lifetimes of Cm(III) are recorded at different sulphate concentrations as a function of the temperature. The results give a strong indication that at T > 100 °C the first excited state of Cm(III) ((6)D'(7/2)) is effectively quenched by a temperature dependent enhancement of the energy transfer from the metal ion to OH vibrations of first shell water molecules. PMID:23085717

  3. Monitoring the formation of carbide crystal phases during the thermal decomposition of 3d transition metal dicarboxylate complexes

    SciTech Connect

    Huba, ZJ; Carpenter, EE

    2014-06-06

    Single molecule precursors can help to simplify the synthesis of complex alloys by minimizing the amount of necessary starting reagents. However, single molecule precursors are time consuming to prepare with very few being commercially available. In this study, a simple precipitation method is used to prepare Fe, Co, and Ni fumarate and succinate complexes. These complexes were then thermally decomposed in an inert atmosphere to test their efficiency as single molecule precursors for the formation of metal carbide phases. Elevated temperature X-ray diffraction was used to identify the crystal phases produced upon decomposition of the metal dicarboxylate complexes. Thermogravimetric analysis coupled with an infrared detector was used to identify the developed gaseous decomposition products. All complexes tested showed a reduction from the starting M2+ oxidation state to the M oxidation state, upon decomposition. Also, each complex tested showed CO2 and H2O as gaseous decomposition products. Nickel succinate, iron succinate, and iron fumarate complexes were found to form carbide phases upon decomposition. This proves that transition metal dicarboxylate salts can be employed as efficient single molecule precursors for the formation of metal carbide crystal phases.

  4. Light Scattering Study of the Formation and Structure of Partially Hydrolyzed Poly(acrylamide)/Calcium(II) Complexes

    E-print Network

    Wu, Chi

    Light Scattering Study of the Formation and Structure of Partially Hydrolyzed Poly of the self-complexation of partially hydrolyzed poly(acrylamide) (HPAM) chains in CaCl2 aqueous solution are attached to a polymer chain backbone, such as partially hydrolyzed poly(acrylamide) (HPAM), the interaction

  5. Annual Logging Symposium, June 19-23, 2010 Formation Evaluation in the Bakken Complex Using Laboratory Core Data

    E-print Network

    SPWLA 51st Annual Logging Symposium, June 19-23, 2010 Formation Evaluation in the Bakken Complex Using Laboratory Core Data and Advanced Logging Technologies Sandeep Ramakrishna, Ron Balliet, Danny jointly by the Society of Petrophysicists and Well Log Analysts (SPWLA) and the submitting authors

  6. Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation

    PubMed Central

    de Vries, Femke A.T.; de Boer, Esther; van den Bosch, Mike; Baarends, Willy M.; Ooms, Marja; Yuan, Li; Liu, Jian-Guo; van Zeeland, Albert A.; Heyting, Christa; Pastink, Albert

    2005-01-01

    In meiotic prophase, synaptonemal complexes (SCs) closely appose homologous chromosomes (homologs) along their length. SCs are assembled from two axial elements (AEs), one along each homolog, which are connected by numerous transverse filaments (TFs). We disrupted the mouse gene encoding TF protein Sycp1 to analyze the role of TFs in meiotic chromosome behavior and recombination. Sycp1-/- mice are infertile, but otherwise healthy. Sycp1-/- spermatocytes form normal AEs, which align homologously, but do not synapse. Most Sycp1-/- spermatocytes arrest in pachynema, whereas a small proportion reaches diplonema, or, exceptionally, metaphase I. In leptotene Sycp1-/- spermatocytes, ?H2AX (indicative of DNA damage, including double-strand breaks) appears normal. In pachynema, Sycp1-/- spermatocytes display a number of discrete ?H2AX domains along each chromosome, whereas ?H2AX disappears from autosomes in wild-type spermatocytes. RAD51/DMC1, RPA, and MSH4 foci (which mark early and intermediate steps in pairing/recombination) appear in similar numbers as in wild type, but do not all disappear, and MLH1 and MLH3 foci (which mark late steps in crossing over) are not formed. Crossovers were rare in metaphase I of Sycp1-/- mice. We propose that SYCP1 has a coordinating role, and ensures formation of crossovers. Unexpectedly, Sycp1-/- spermatocytes did not form XY bodies. PMID:15937223

  7. Gap2 Promotes the Formation of a Stable Protein Complex Required for Mature Fap1 Biogenesis

    PubMed Central

    Echlin, Haley; Zhu, Fan; Li, Yirong; Peng, Zhixiang; Ruiz, Teresa; Bedwell, Gregory J.; Prevelige, Peter E.

    2013-01-01

    Serine-rich repeat glycoproteins (SRRPs) are important bacterial adhesins conserved in streptococci and staphylococci. Fap1, a SRRP identified in Streptococcus parasanguinis, is the major constituent of bacterial fimbriae and is required for adhesion and biofilm formation. An 11-gene cluster is required for Fap1 glycosylation and secretion; however, the exact mechanism of Fap1 biogenesis remains a mystery. Two glycosylation-associated proteins within this cluster—Gap1 and Gap3—function together in Fap1 biogenesis. Here we report the role of the third glycosylation-associated protein, Gap2. A gap2 mutant exhibited the same phenotype as the gap1 and gap3 mutants in terms of Fap1 biogenesis, fimbrial assembly, and bacterial adhesion, suggesting that the three proteins interact. Indeed, all three proteins interacted with each other independently and together to form a stable protein complex. Mechanistically, Gap2 protected Gap3 from degradation by ClpP protease, and Gap2 required the presence of Gap1 for expression at the wild-type level. Gap2 augmented the function of Gap1 in stabilizing Gap3; this function was conserved in Gap homologs from Streptococcus agalactiae. Our studies demonstrate that the three Gap proteins work in concert in Fap1 biogenesis and reveal a new function of Gap2. This insight will help us elucidate the molecular mechanism of SRRP biogenesis in this bacterium and in pathogenic species. PMID:23475979

  8. Feedback control of prion formation and propagation by the ribosome-associated chaperone complex.

    PubMed

    Kiktev, Denis A; Melomed, Mikhail M; Lu, Caroline D; Newnam, Gary P; Chernoff, Yury O

    2015-05-01

    Cross-beta fibrous protein aggregates (amyloids and amyloid-based prions) are found in mammals (including humans) and fungi (including yeast), and are associated with both diseases and heritable traits. The Hsp104/70/40 chaperone machinery controls propagation of yeast prions. The Hsp70 chaperones Ssa and Ssb show opposite effects on [PSI(+)], a prion form of the translation termination factor Sup35 (eRF3). Ssb is bound to translating ribosomes via ribosome-associated complex (RAC), composed of Hsp40-Zuo1 and Hsp70-Ssz1. Here we demonstrate that RAC disruption increases de novo prion formation in a manner similar to Ssb depletion, but interferes with prion propagation in a manner similar to Ssb overproduction. Release of Ssb into the cytosol in RAC-deficient cells antagonizes binding of Ssa to amyloids. Thus, propagation of an amyloid formed because of lack of ribosome-associated Ssb can be counteracted by cytosolic Ssb, generating a feedback regulatory circuit. Release of Ssb from ribosomes is also observed in wild-type cells during growth in poor synthetic medium. Ssb is, in a significant part, responsible for the prion destabilization in these conditions, underlining the physiological relevance of the Ssb-based regulatory circuit. PMID:25649498

  9. Decamethylytterbocene complexes of bipyridines and diazabutadines: multiconfigurational ground states and open-shell singlet formation

    SciTech Connect

    Bauer, Eric D; Booth, C H; Walter, M D; Kazhdan, D; Hu, Y - J; Lukens, Wayne; Maron, Laurent; Eisentein, Odile; Anderson, Richard

    2009-01-01

    Partial ytterbium f-orbital occupancy (i.e. intermediate valence) and open-shell singlet Draft 12/formation are established for a variety of bipyridine and diazabutadiene adducts to decamethylytterbocene, (C{sub 5}Me{sub 5}){sub 2}Yb or Cp*{sub 2}Yb. Data used to support this claim includes ytterbium valence measurements using Yb Lm-edge x-ray absorption near-edge structure (XANES) spectroscopy, magnetic susceptibility and Complete Active Space Self-Consistent Field (CASSCF) multi configurational calculations, as well as structural measurements compared to density-functional theory (DFT) calculations. The CASSCF calculations indicate that the intermediate valence is the result of a multiconfigurational ground state wave function that has both an open-shell singlet f{sup 13} and a closed-shell singlet f{sup 14} component. A number of other competing theories for the unusual magnetism in these materials are ruled out by the presence of intermediate valence and its lack of any significant temperature dependence. These results have implications for understanding chemical bonding not only in organolanthanide complexes, but also for organometallic chemistry in general, as well as understanding magnetic interactions in nanopartic1es and devices.

  10. Decamethylytterbocene Complexes of Bipyridines and Diazabutadienes: Multiconfigurational Ground States and Open-Shell Singlet Formation

    SciTech Connect

    Booth, Corwin H.; Walter, Marc D.; Kazhdan, Daniel; Hu, Yung-Jin; Lukens, Wayne W.; Bauer, Eric D.; Maron, Laurent; Eisenstein, Odile; Andersen, Richard A.

    2009-04-22

    Partial ytterbium f-orbital occupancy (i.e., intermediate valence) and open-shell singlet formation are established for a variety of bipyridine and diazabutadiene adducts with decamethylytterbocene, (C5Me5)2Yb, abbreviated as Cp*2Yb. Data used to support this claim include ytterbium valence measurements using Yb LIII-edge X-ray absorption near-edge structure spectroscopy, magnetic susceptibility, and complete active space self-consistent field (CASSCF) multiconfigurational calculations, as well as structural measurements compared to density functional theory calculations. The CASSCF calculations indicate that the intermediate valence is the result of a multiconfigurational ground-state wave function that has both an open-shell singlet f13(?*)1, where pi* is the lowest unoccupied molecular orbital of the bipyridine or dpiazabutadiene ligands, and a closed-shell singlet f14 component. A number of other competing theories for the unusual magnetism in these materials are ruled out by the lack of temperature dependence of the measured intermediate valence. These results have implications for understanding chemical bonding not only in organolanthanide complexes but also for f-element chemistry in general, as well as understanding magnetic interactions in nanoparticles and devices.

  11. Formation and Identification of Unresolved Complex Mixtures in Lacustrine Biodegraded Oil from Nanxiang Basin, China

    PubMed Central

    Guo, Pengfei; He, Sheng; Zhu, Shukui; Chai, Derong; Yin, Shiyan; Dai, Wei; Zhang, Wanfeng

    2014-01-01

    A comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC × GC/TOFMS) method has been developed for the formation and identification of unresolved complex mixtures (UCMs) in lacustrine biodegraded oils that with the same source rock, similar maturity, and increasing degradation rank from Nanxiang Basin, China. Normal alkanes, light hydrocarbons, isoprenoids, steranes, and terpanes are degraded gradually from oil B330 to oil G574. The compounds in biodegraded oil (oil G574) have fewer types, the polarity difference of compounds in different types is minor, and the relative content of individual compounds is similar. All the features make the compounds in biodegraded oil coelute in GC analysis and form the raised “baseline hump” named UCMs. By injecting standard materials and analyzing mass spectrums of target compounds, it is shown that cyclic alkanes with one to five rings are the major components of UCMs. Furthermore, UCMs were divided into six classes. Classes I and II, composed of alkyl-cyclohexanes, alkyl-naphthanes, and their isomers, are originated from the enrichment of hydrocarbons resistant to degradation in normal oils. Classes III ~ VI, composed of sesquiterpenoids, tricyclic terpanes, low molecular steranes, diasteranes, norhopanes, and their isomers, are probably from some newly formed compounds during the microbial transformation of oil. PMID:25177711

  12. Cluster formation by allelomimesis in real-world complex adaptive systems

    NASA Astrophysics Data System (ADS)

    Juanico, Dranreb Earl; Monterola, Christopher; Saloma, Caesar

    2005-04-01

    Animal and human clusters are complex adaptive systems and many organize in cluster sizes s that obey the frequency distribution D(s)?s-? . The exponent ? describes the relative abundance of the cluster sizes in a given system. Data analyses reveal that real-world clusters exhibit a broad spectrum of ? values, 0.7 (tuna fish schools) ???4.61 (T4 bacteriophage gene family sizes). Allelomimesis is proposed as an underlying mechanism for adaptation that explains the observed broad ? spectrum. Allelomimesis is the tendency of an individual to imitate the actions of others and two cluster systems have different ? values when their component agents display unequal degrees of allelomimetic tendencies. Cluster formation by allelomimesis is shown to be of three general types: namely, blind copying, information-use copying, and noncopying. Allelomimetic adaptation also reveals that the most stable cluster size is formed by three strongly allelomimetic individuals. Our finding is consistent with available field data taken from killer whales and marmots.

  13. Constant Communication ORAM without Encryption

    E-print Network

    International Association for Cryptologic Research (IACR)

    1 Constant Communication ORAM without Encryption Tarik Moataz1, Erik-Oliver Blass2, Travis Mayberry--Recent techniques reduce ORAM communication complexity down to constant in the number of blocks N. However individual ORAM buckets with PIS. As a result, our first ORAM features O(log N) communication complexity

  14. Accurate density functional theory description of binding constants and NMR chemical shifts of weakly interacting complexes of C60 with corannulene-based molecular bowls.

    PubMed

    Welsh, Ivan; Lein, Matthias

    2014-01-30

    Density functional calculations on "catch and release" complexes of C60 with corannulene derived molecular bowls show that computationally obtained (1) H nuclear magnetic resonance (NMR) chemical shifts can be used as a reliable predictor of binding constants. A wide range of functionals was benchmarked against accurate ab initio calculations to ensure a credible representation of the weak forces that dominate the interactions in these systems. The most reliable density functional theory (DFT) results were then calibrated using experimentally observed NMR data. Careful analysis and comparison of a wide range of commonly used density functionals shows that the explicit inclusion of dispersion corrections is currently the only reliable way to accurately describe the systems investigated in our study. Moreover, we are able to show that the B97-D and ?B97X-D functionals are not only able to reproduce ab initio benchmark calculations, but they do so accurately with a moderately sized basis sets and without the problems of numerical integration we encountered with other functionals in this study. PMID:24122910

  15. Crystal structure and solution species of Ce(III) and Ce(IV) formates: from mononuclear to hexanuclear complexes.

    PubMed

    Hennig, Christoph; Ikeda-Ohno, Atsushi; Kraus, Werner; Weiss, Stephan; Pattison, Philip; Emerich, Hermann; Abdala, Paula M; Scheinost, Andreas C

    2013-10-21

    Cerium(III) and cerium(IV) both form formate complexes. However, their species in aqueous solution and the solid-state structures are surprisingly different. The species in aqueous solutions were investigated with Ce K-edge EXAFS spectroscopy. Ce(III) formate shows only mononuclear complexes, which is in agreement with the predicted mononuclear species of Ce(HCOO)(2+) and Ce(HCOO)2(+). In contrast, Ce(IV) formate forms in aqueous solution a stable hexanuclear complex of [Ce6(?3-O)4(?3-OH)4(HCOO)x(NO3)y](12-x-y). The structural differences reflect the different influence of hydrolysis, which is weak for Ce(III) and strong for Ce(IV). Hydrolysis of Ce(IV) ions causes initial polymerization while complexation through HCOO(-) results in 12 chelate rings stabilizing the hexanuclear Ce(IV) complex. Crystals were grown from the above-mentioned solutions. Two crystal structures of Ce(IV) formate were determined. Both form a hexanuclear complex with a [Ce6(?3-O)4(?3-OH)4](12+) core in aqueous HNO3/HCOOH solution. The pH titration with NaOH resulted in a structure with the composition [Ce6(?3-O)4(?3-OH)4(HCOO)10(NO3)2(H2O)3]·(H2O)9.5, while the pH adjustment with NH3 resulted in [Ce6(?3-O)4(?3-OH)4(HCOO)10(NO3)4]·(NO3)3(NH4)5(H2O)5. Furthermore, the crystal structure of Ce(III) formate, Ce(HCOO)3, was determined. The coordination polyhedron is a tricapped trigonal prism which is formed exclusively by nine HCOO(-) ligands. The hexanuclear Ce(IV) formate species from aqueous solution is widely preserved in the crystal structure, whereas the mononuclear solution species of Ce(III) formate undergoes a polymerization during the crystallization process. PMID:24090406

  16. Formation, Detection and the Distribution of Complex Organic Molecules with the Atacama Large Millimeter/submillimeter Array (ALMA)

    NASA Astrophysics Data System (ADS)

    Remijan, Anthony John

    2015-08-01

    The formation and distribution of complex organic material in astronomical environments continues to be a focused research area in astrochemistry. For several decades now, emphasis has been placed on the millimeter/submillimeter regime of the radio spectrum for trying to detect new molecular species and to constrain the chemical formation route of complex molecules by comparing and contrasting their relative distributions towards varying astronomical environments. This effort has been extremely laborious as millimeter/submillimeter facilities have been only able to detect and map the distribution of the strongest transition(s) of the simplest organic molecules. Even then, these single transition "chemical maps" have been very low spatial resolution because early millimeter/submillimeter facilities did not have access to broadband spectral coverage or the imaging capabilities to truly ascertain the morphology of the molecular emission. In the era of ALMA, these limitations have been greatly lifted. Broadband spectral line surveys now hold the key to uncovering the full molecular complexity in astronomical environments. In addition, searches for complex organic material is no longer limited to investigating the strongest lines of the simplest molecules toward the strongest sources of emission in the Galaxy. ALMA is issuing a new era of exploration as the search for complex molecules will now be available to an increased suite of sources in the Galaxy and our understanding of the formation of this complex material will be greatly increased as a result. This presentation will highlight the current and future ALMA capabilities in the search for complex molecules towards astronomical environments, highlight the recent searches that ALMA scientists have conducted from the start of ALMA Early Science and provide the motivation for the next suite of astronomical searches to investigate our pre-biotic origins in the universe.

  17. Histone Deacetylase Inhibitors Synergize p300 Autoacetylation that Regulates Its Transactivation Activity and Complex Formation

    PubMed Central

    Liang, Dongming; Jiang, Yubao; Sang, Nianli

    2015-01-01

    p300/cyclic AMP–responsive element binding protein–binding protein (CBP) are general coactivators for multiple transcription factors involved in various cellular processes. Several highly conserved domains of p300/CBP serve as interacting sites for transcription factors and regulatory proteins. Particularly, the intrinsic histone acetyltransferase (HAT) activity and transactivation domains (TAD) play essential roles for their coactivating function. Autoacetylation of p300/CBP is commonly observed in cell-free HAT assays and has been implicated in the regulation of their HAT activity. Here, we show that six lysine-rich regions in several highly conserved functional domains of p300 are targeted by p300HAT for acetylation in cell-free systems. We show that p300 is susceptible to acetylation in cultured tumor cells and that its acetylation status is affected by histone deacetylase inhibitor trichostatin A. We further show that either treatment with deacetylase inhibitors or coexpression of Gal4-p300HAT, which alone has no transactivation activity, stimulates the activity of the COOH-terminal TAD of p300 (p300C-TAD). We have defined the minimal p300C-TAD and show that it is sufficient to respond to deacetylase inhibitors and is a substrate for p300HAT. Finally, we show that acetylated p300 possesses enhanced ability to interact with p53. Taken together, our data suggest that acetylation regulates p300C-TAD and that acetylation of p300/CBP may contribute to the dynamic regulation of their complex formation with various interacting partners. PMID:17332356

  18. Protection of Metal Artifacts with the Formation of Metal–Oxalates Complexes by Beauveria bassiana

    PubMed Central

    Joseph, Edith; Cario, Sylvie; Simon, Anaële; Wörle, Marie; Mazzeo, Rocco; Junier, Pilar; Job, Daniel

    2012-01-01

    Several fungi present high tolerance to toxic metals and some are able to transform metals into metal–oxalate complexes. In this study, the ability of Beauveria bassiana to produce copper oxalates was evaluated. Growth performance was tested on various copper-containing media. B. bassiana proved highly resistant to copper, tolerating concentrations of up to 20?g?L?1, and precipitating copper oxalates on all media tested. Chromatographic analyses showed that this species produced oxalic acid as sole metal chelator. The production of metal–oxalates can be used in the restoration and conservation of archeological and modern metal artifacts. The production of copper oxalates was confirmed directly using metallic pieces (both archeological and modern). The conversion of corrosion products into copper oxalates was demonstrated as well. In order to assess whether the capability of B. bassiana to produce metal–oxalates could be applied to other metals, iron and silver were tested as well. Iron appears to be directly sequestered in the wall of the fungal hyphae forming oxalates. However, the formation of a homogeneous layer on the object is not yet optimal. On silver, a co-precipitation of copper and silver oxalates occurred. As this greenish patina would not be acceptable on silver objects, silver reduction was explored as a tarnishing remediation. First experiments showed the transformation of silver nitrate into nanoparticles of elemental silver by an unknown extracellular mechanism. The production of copper oxalates is immediately applicable for the conservation of copper-based artifacts. For iron and silver this is not yet the case. However, the vast ability of B. bassiana to transform toxic metals using different immobilization mechanisms seems to offer considerable possibilities for industrial applications, such as the bioremediation of contaminated soils or the green synthesis of chemicals. PMID:22291684

  19. Petrological and geochemical constraints on granitoid formation: The Waldoboro Pluton Complex, Maine

    SciTech Connect

    Barton, M. . Dept. of Geological Science); Sidle, W.S. )

    1992-01-01

    The Waldoboro Pluton Complex (WPC) comprises seven units ranging from qtz-diorite to aplite. The country rocks are biotite-rich metagraywackes with minor shales mostly belonging to the Proterozoic Z-Ordovician Bucksport Formation. Field evidence strongly suggests that the WPC formed in-situ: contacts with the country rock are cryptic, transitional and concordant; restitic minerals in the granitoids are identical to those in the country rocks; prolific metasedimentary enclaves in the WPC are locally derived. Major and trace element data for country rock and the most voluminous units of the WPC define consistent linear trends suggesting limited melt segregation and retention of a high proportion of restite. Mixing models and partial melting models require 54--76% melting for generation of the gneissic granites and two-mica granites. Garnet-biotite geothermometry and garnet-Al[sub 2]SiO[sub 5]-SiO[sub 2]-plagioclase geobarometry indicate that the WPC formed at T = 740--780 C and P = 0.4--0.7 GPa. Published experimental data show that < 50% melting is likely under these conditions if melting is controlled by dehydration reactions. Bucksport lithologies contain < 20% biotite, suggesting that the maximum amount of melt that could have formed by dehydration melting is < 20%, even if all biotite was consumed during melting. It seems probable that a free fluid phase was required to generate the WPC. Migmatization is apparent in all lithologies (including amphibolites) in the vicinity of the WPC, consistent with fluid-present melting. Fluid may have ingressed along the St. George thrust, but the source of the fluid is unknown.

  20. Review: Formation of Peptide Radical Ions Through Dissociative Electron Transfer in Ternary Metal-Ligand-Peptide Complexes

    SciTech Connect

    Chu, Ivan K.; Laskin, Julia

    2011-12-31

    The formation and fragmentation of odd-electron ions of peptides and proteins is of interest to applications in biological mass spectrometry. Gas-phase redox chemistry occurring during collision-induced dissociation of ternary metal-ligand-peptide complexes enables the formation of a variety of peptide radicals including the canonical radical cations, M{sup +{sm_bullet}}, radical dications, [M{sup +}H]{sup 2+{sm_bullet}}, radical anions, [M-2H]{sup -{sm_bullet}}. In addition, odd-electron peptide ions with well-defined initial location of the radical site are produced through side chain losses from the radical ions. Subsequent fragmentation of these species provides information on the role of charge and the location of the radical site on the competition between radical-induced and proton-driven fragmentation of odd-electron peptide ions. This account summarizes current understanding of the factors that control the efficiency of the intramolecular electron transfer (ET) in ternary metal-ligand-peptide complexes resulting in formation of odd-electron peptide ions. Specifically, we discuss the effect of the metal center, the ligand and the peptide structure on the competition between the ET, proton transfer (PT), and loss of neutral peptide and neutral peptide fragments from the complex. Fundamental studies of the structures, stabilities, and the energetics and dynamics of fragmentation of such complexes are also important for detailed molecular-level understanding of photosynthesis and respiration in biological systems.

  1. Myosin Loop 2 Is Involved in the Formation of a Trimeric Complex of Twitchin, Actin, and Myosin*

    PubMed Central

    Funabara, Daisuke; Osawa, Rika; Ueda, Miki; Kanoh, Satoshi; Hartshorne, David J.; Watabe, Shugo

    2009-01-01

    Molluscan smooth muscles exhibit a low energy cost contraction called catch. Catch is regulated by twitchin phosphorylation and dephosphorylation. Recently, we found that the D2 fragment of twitchin containing the D2 site (Ser-4316) and flanking immunoglobulin motifs (TWD2-S) formed a heterotrimeric complex with myosin and with actin in the region that interacts with myosin loop 2 (Funabara, D., Hamamoto, C., Yamamoto, K., Inoue, A., Ueda, M., Osawa, R., Kanoh, S., Hartshorne, D. J., Suzuki, S., and Watabe, S. (2007) J. Exp. Biol. 210, 4399–4410). Here, we show that TWD2-S interacts directly with myosin loop 2 in a phosphorylation-sensitive manner. A synthesized peptide, CAQNKEAETTGTHKKRKSSA, based on the myosin loop 2 sequence (loop 2 peptide), competitively inhibited the formation of the trimeric complex. Isothermal titration calorimetry showed that TWD2-S binds to the loop 2 peptide with a Ka of (2.44 ± 0.09) × 105 m?1 with two binding sites. The twitchin-binding peptide of actin, AGFAGDDAP, which also inhibited formation of the trimeric complex, bound to TWD2-S with a Ka of (5.83 ± 0.05) × 104 m?1 with two binding sites. The affinity of TWD2-S to actin and myosin was slightly decreased with an increase of pH, but this effect could not account for the marked pH dependence of catch in permeabilized fibers. The complex formation also showed a moderate Ca2+ sensitivity in that in the presence of Ca2+ complex formation was reduced. PMID:19439402

  2. Designing ancillary ligands for heteroleptic/homoleptic zinc complex formation: synthesis, structures and application in ROP of lactides.

    PubMed

    J?drzkiewicz, D; Ejfler, J; Gulia, N; John, ?; Szafert, S

    2015-08-14

    Synthesis and characterization of a series of new amino-phenol/naphthol ligands (L(1,2)-H) have been developed and their respective zinc complexes ( 1 and 2-Zn ) have been synthesized. The molecular structures of L(1)-H and 1, 2-Zn were explored in detail by NMR, single-crystal X-ray studies and DFT calculations, which confirmed the existence of complexes as stabile dimers both in a solution and in the solid state. All complexes mediate the ring-opening polymerization (ROP) of lactide highly efficiently, at room temperature, in a controlled fashion. The influence of the architecture of the ligand on the desired homo/heteroleptic complex formation, as well as the relationship between the initiator design and the catalytic activity have been investigated. PMID:26150026

  3. Formation of mono(dithiolene)-thiocarboxamido complexes in reactions of thio(dithiocarbamato)-Mo/W complexes and dimethyl acetylenedicarboxylate.

    PubMed

    Lim, Patrick J; Slizys, Damian A; Tiekink, Edward R T; Young, Charles G

    2005-01-10

    Reactions of TpMS(S(2)CNEt(2)) with dimethyl acetylenedicarboxylate in dichloromethane produce olive green/black TpM{S(2)C(2)(CO(2)Me)(2)}(SCNEt(2)-kappa(2)S,C) (M = Mo (1), W (2); Tp = hydrotris(3,5-dimethylpyrazol-1-yl)borate). The seven-coordinate complexes exhibit pseudo-octahedral (1) and distorted pentagonal bipyramidal (2) coordination spheres comprised of tridentate fac-Tp, bidentate dithiolene, and thiocarboxamido-kappa(2)S,C ligands. In the solid state, molecules of 1 exhibit pseudo-C(s)() symmetry, with the thiocarboxamide NEt(2) group in a cleft in the Tp ligand. Molecules of 2 have C(1) symmetry in the solid state; here, the thiocarboxamide unit is orientated along one of the W-S(dithiolene) bonds with its NEt(2) group projecting away from the Tp ligand. Both complexes possess effective C(s)() symmetry in solution. Reaction of TpMoI(CO)(3) with AgS(2)CNEt(2) affords olive green TpMo(S(2)CNEt(2))(CO)(2) (3), which reacts with propylene sulfide in a new synthesis for TpMoS(S(2)CNEt(2)), the starting material for 1. Complex 3 exhibits a distorted pentagonal bipyramidal structure, the axial sites being defined by a Tp nitrogen atom and a carbonyl ligand, the pentagonal plane by the remaining nitrogen and carbonyl donors and the two sulfur atoms of the bidentate dithiocarbamate ligand. PMID:15627367

  4. Effects of chemical and enzymatic modifications on starch-stearic acid complex formation.

    PubMed

    Arijaje, Emily Oluwaseun; Wang, Ya-Jane; Shinn, Sara; Shah, Utkarsh; Proctor, Andrew

    2014-04-01

    Debranched unacetylated and acetylated potato starches with two degrees of substitution, 0.041 (low) and 0.078 (high), combined with or without ?-amylase hydrolysis were prepared to form soluble and insoluble complexes with stearic acid. The effects of modifications on the complexation, thermal properties, and X-ray patterns of soluble and insoluble complexes were investigated. Acetylation decreased the recovery of insoluble complexes but increased that of soluble complexes. Low acetylated, ?-amylase-treated starch had a significantly increased amount of complexed stearic acid (123.1 mg/g) for insoluble complexes; high acetylated, ?-amylase-treated starch had the highest complexed stearic acid (61.2 mg/g) for the soluble complexes. The melting temperature of the complexes decreased with acetylation. All ?-amylase-treated acetylated complexes displayed the V-type diffraction pattern with peaks at 2? = 7.4°, 12.9°, and 20°. These results suggest that starch can be modified by acetylation, debranching, and/or ?-amylase to produce significant quantities of soluble starch-stearic acid complexes. PMID:24641427

  5. Three-color single molecule imaging shows WASP detachment from Arp2/3 complex triggers actin filament branch formation

    PubMed Central

    Smith, Benjamin A; Padrick, Shae B; Doolittle, Lynda K; Daugherty-Clarke, Karen; Corrêa, Ivan R; Xu, Ming-Qun; Goode, Bruce L; Rosen, Michael K; Gelles, Jeff

    2013-01-01

    During cell locomotion and endocytosis, membrane-tethered WASP proteins stimulate actin filament nucleation by the Arp2/3 complex. This process generates highly branched arrays of filaments that grow toward the membrane to which they are tethered, a conflict that seemingly would restrict filament growth. Using three-color single-molecule imaging in vitro we revealed how the dynamic associations of Arp2/3 complex with mother filament and WASP are temporally coordinated with initiation of daughter filament growth. We found that WASP proteins dissociated from filament-bound Arp2/3 complex prior to new filament growth. Further, mutations that accelerated release of WASP from filament-bound Arp2/3 complex proportionally accelerated branch formation. These data suggest that while WASP promotes formation of pre-nucleation complexes, filament growth cannot occur until it is triggered by WASP release. This provides a mechanism by which membrane-bound WASP proteins can stimulate network growth without restraining it. DOI: http://dx.doi.org/10.7554/eLife.01008.001 PMID:24015360

  6. Pathway of actin filament branch formation by Arp2/3 complex revealed by single-molecule imaging

    PubMed Central

    Smith, Benjamin A.; Daugherty-Clarke, Karen; Goode, Bruce L.; Gelles, Jeff

    2013-01-01

    Actin filament nucleation by actin-related protein (Arp) 2/3 complex is a critical process in cell motility and endocytosis, yet key aspects of its mechanism are unknown due to a lack of real-time observations of Arp2/3 complex through the nucleation process. Triggered by the verprolin homology, central, and acidic (VCA) region of proteins in the Wiskott-Aldrich syndrome protein (WASp) family, Arp2/3 complex produces new (daughter) filaments as branches from the sides of preexisting (mother) filaments. We visualized individual fluorescently labeled Arp2/3 complexes dynamically interacting with and producing branches on growing actin filaments in vitro. Branch formation was strikingly inefficient, even in the presence of VCA: only ?1% of filament-bound Arp2/3 complexes yielded a daughter filament. VCA acted at multiple steps, increasing both the association rate of Arp2/3 complexes with mother filament and the fraction of filament-bound complexes that nucleated a daughter. The results lead to a quantitative kinetic mechanism for branched actin assembly, revealing the steps that can be stimulated by additional cellular factors. PMID:23292935

  7. Microbial Adhesion and Biofilm Formation on Microfiltration Membranes: A Detailed Characterization Using Model Organisms with Increasing Complexity

    PubMed Central

    Vanysacker, L.; Denis, C.; Declerck, P.; Piasecka, A.; Vankelecom, I. F. J.

    2013-01-01

    Since many years, membrane biofouling has been described as the Achilles heel of membrane fouling. In the present study, an ecological assay was performed using model systems with increasing complexity: a monospecies assay using Pseudomonas aeruginosa or Escherichia coli separately, a duospecies assay using both microorganisms, and a multispecies assay using activated sludge with or without spiked P. aeruginosa. The microbial adhesion and biofilm formation were evaluated in terms of bacterial cell densities, species richness, and bacterial community composition on polyvinyldifluoride, polyethylene, and polysulfone membranes. The data show that biofouling formation was strongly influenced by the kind of microorganism, the interactions between the organisms, and the changes in environmental conditions whereas the membrane effect was less important. The findings obtained in this study suggest that more knowledge in species composition and microbial interactions is needed in order to understand the complex biofouling process. This is the first report describing the microbial interactions with a membrane during the biofouling development. PMID:23986906

  8. It's not easy being green: stress and invalidation in identity formation of culturally-complex or mixed-race individuals 

    E-print Network

    Roberts Perez, Samaria Dalia

    2009-05-15

    In much of the literature, parents are seen as major factors who clearly contribute to a culturally-complex individual?s process of identification. If we revisit George Herbert Mead?s notion of symbolic interactionism, parents would certainly fit...,? or ?symbolic interaction? posed by sociologists such as Mead and Cooley argue that others? perceptions largely determine how individuals see themselves (Brooks Gardner & Gronfein, 2005; Gecas & Schwalbe, 1983). In short, identity-formation and self...

  9. Kinetic pathways of formation and dissociation of the glycerol-3-phosphate dehydrogenase-fructose-1,6-bisphosphate aldolase complex.

    PubMed Central

    Ovádi, J; Mátrai, G; Bartha, F; Batke, J

    1985-01-01

    Quantitative analysis of the time courses of fluorescence anisotropy changes due to the binding of fructose-1,6-bisphosphate aldolase to the dissociable cytoplasmic glycerol-3-phosphate dehydrogenase covalently labelled with fluorescent dye was carried out. The behaviour of the aldolase-dehydrogenase system seems to be consistent with a cyclic reversible model characterized by the formation and dissociation of complexes of both the monomeric and the dimeric forms of dehydrogenase with aldolase, and rapid equilibrium between the free monomeric and dimeric forms of dehydrogenase. The half-life time of the formation of dimeric dehydrogenase-aldolase complex at the concentration of the enzymes expected to exist in the cell (i.e. in the micromolar range) is some minutes, and the time needed for equilibration between the aldolase-bound dimeric and monomeric forms of dehydrogenase is a few minutes as well. Consequently, one may expect that both the formation and the dissociation of this heterologous enzyme complex have physiological relevance. PMID:4038265

  10. Study of complex formation in octanoic acid-amine-benzene systems by means of nmr and ir spectroscopy

    SciTech Connect

    Chibizov, V.P.; Komissarova, L.N.

    1985-05-01

    This paper describes an investigation of complex formation in octanoic acid (HOct) -amine (RNH/sub 2/)-benzene systems. The authors used the following amines: propylamine (PrNH/sub 2/), butyalmine (BuNH/sub 2/), isobutylamine (i-BuNH/sub 2/), and hexylamine (HexNH2). In the system investigated the intensity of the band of the C=O stretching vibrations in the dimers (HOct)/sub 2/ in the region of 1717 cm/sup -1/ decreases with increase in the RNH/sub 2/ content. It is shown that in benzene aliphatic amines form 1''2 and 1:1 complex compounds with octanoic acid. The length and isomerism of the hydrocarbon group of the amine participating in the formation of compounds with octanoic acid have no substantial influence on the conditions of the formation and with octanoic acid have no substantial influence on the conditions of the formation and stabilities of the compounds, and also on the intracomplex tautomerism of the 1:1 compound.

  11. Reactivity of Cys4 zinc finger domains with gold(III) complexes: insights into the formation of "gold fingers".

    PubMed

    Jacques, Aurélie; Lebrun, Colette; Casini, Angela; Kieffer, Isabelle; Proux, Olivier; Latour, Jean-Marc; Sénèque, Olivier

    2015-04-20

    Gold(I) complexes such as auranofin or aurothiomalate have been used as therapeutic agents for the treatment of rheumatoid arthritis for several decades. Several gold(I) and gold(III) complexes have also shown in vitro anticancer properties against human cancer cell lines, including cell lines resistant to cisplatin. Because of the thiophilicity of gold, cysteine-containing proteins appear as likely targets for gold complexes. Among them, zinc finger proteins have attracted attention and, recently, gold(I) and gold(III) complexes have been shown to inhibit poly(adenosine diphosphate ribose)polymerase-1 (PARP-1), which is an essential protein involved in DNA repair and in cancer resistance to chemotherapies. In this Article, we characterize the reactivity of the gold(III) complex [Au(III)(terpy)Cl]Cl2 (Auterpy) with a model of Zn(Cys)4 "zinc ribbon" zinc finger by a combination of absorption spectroscopy, circular dichroism, mass spectrometry, high-performance liquid chromatography analysis, and X-ray absorption spectroscopy. We show that the Zn(Cys)4 site of Zn·LZR is rapidly oxidized by Auterpy to form a disulfide bond. The Zn(2+) ion is released, and the two remaining cysteines coordinate the Au(+) ion that is produced during the redox reaction. Subsequent oxidation of these cysteines can take place in conditions of excess gold(III) complex. In the presence of excess free thiols mimicking the presence of glutathione in cells, mixing of the zinc finger model and gold(III) complex yields a different product: complex (Au(I))2·LZR with two Au(+) ions bound to cysteines is formed. Thus, on the basis of detailed speciation and kinetic measurements, we demonstrate herein that the destruction of Zn(Cys)4 zinc fingers by gold(III) complexes to achieve the formation of "gold fingers" is worth consideration, either directly or mediated by reducing agents. PMID:25839236

  12. Temperature-dependence of open-complex formation at two Escherichia coli promoters with extended -10 sequences.

    PubMed Central

    Burns, H D; Belyaeva, T A; Busby, S J; Minchin, S D

    1996-01-01

    We have studied the formation of open complexes between purified RNA polymerase from Escherichia coli and DNA fragments carrying the galP1 promoter, a promoter with an extended -10 region. Unusually, these complexes are formed readily at low temperatures. This low-temperature opening is unaffected by deletions of either upstream or downstream promoter sequences. We conclude that low-temperature open-complex formation is due to specific base sequences in and just upstream of the extended -10 region. In contrast, open complexes are not formed at low temperatures with DNA fragments carrying the E. coli cysG promoter, which also has an extended -10 region. This demonstrates that an extended -10 sequence alone is not sufficient for low-temperature opening. Additionally, we report the temperature dependence of a hybrid galP1-cysG promoter, the related galP2 and galP3 promoters and a derivative of galP1 with an improved -10 hexamer sequence. PMID:8694780

  13. Non-structural protein-1 is required for West Nile virus replication complex formation and viral RNA synthesis

    PubMed Central

    2013-01-01

    Background Flavivirus NS1 is a non-structural glycoprotein that is expressed on the cell surface and secreted into the extracellular space, where it acts as an antagonist of complement pathway activation. Despite its transit through the secretory pathway and intracellular localization in the lumen of the endoplasmic reticulum and Golgi vesicles, NS1 is as an essential gene for flavivirus replication. How NS1 modulates infection remains uncertain given that the viral RNA replication complex localizes to the cytosolic face of the endoplasmic reticulum. Methods and Results Using a trans-complementation assay, we show that viruses deleted for NS1 (?-NS1) can be rescued by transgenic expression of NS1 from West Nile virus (WNV) or heterologous flaviviruses in the absence of adaptive mutations. In viral lifecycle experiments, we demonstrate that WNV NS1 was not required for virus attachment or input strand translation of the infectious viral RNA, but was necessary for negative and positive strand RNA synthesis and formation of the endoplasmic reticulum-associated replication complex. Conclusions WNV RNA lacking intact NS1 genes was efficiently translated but failed to form canonical replication complexes at early times after infection, which resulted in an inability to replicate viral RNA. These results expand on prior studies with yellow fever and Kunjin viruses to show that flavivirus NS1 has an essential co-factor role in regulating replication complex formation and viral RNA synthesis. PMID:24245822

  14. Stoichiometric complex formation by proliferating cell nuclear antigen (PCNA) and its interacting protein: purification and crystallization of the DNA polymerase and PCNA monomer mutant complex from Pyrococcus furiosus

    SciTech Connect

    Nishida, Hirokazu; Matsumiya, Shigeki; Tsuchiya, Daisuke; Ishino, Yoshizumi; Morikawa, Kosuke

    2006-03-01

    A stable stoichiometric complex of archaeal DNA polymerase with proliferating cell nuclear antigen (PCNA) was formed using a PCNA monomer mutant and the complex was successfully crystallized. Replicative DNA polymerase interacts with processivity factors, the ?-subunit of DNA polymerase III or proliferating cell nuclear antigen (PCNA), in order to function with a long template DNA. The archaeal replicative DNA polymerase from Pyrococcus furiosus interacts with PCNA via its PCNA-interacting protein (PIP) motif at the C-terminus. The PCNA homotrimeric ring contains one PIP interacting site on each monomer and since the ring can accommodate up to three molecules simultaneously, formation of a stable stoichiometric complex of PCNA with its interacting protein has been difficult to control in vitro. A stable complex of the DNA polymerase with PCNA, using a PCNA monomer mutant, has been purified and crystallized. The best ordered crystal diffracted to 3.0 Å resolution using synchrotron radiation. The crystals belong to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 225.3, b = 123.3, c = 91.3 Å.

  15. Complex formation of blueberry (Vaccinium angustifolium) anthocyanins during freeze-drying and its influence on their biological activity.

    PubMed

    Correa-Betanzo, Julieta; Padmanabhan, Priya; Corredig, Milena; Subramanian, Jayasankar; Paliyath, Gopinadhan

    2015-03-25

    Biological activity of polyphenols is influenced by their uptake and is highly influenced by their interactions with the food matrix. This study evaluated the complex formation of blueberry polyphenols with fruit matrixes such as pectin and cellulose and their effect on the biological and antiproliferative properties of human colon cell lines HT-29 and CRL 1790. Free or complexed polyphenols were isolated by dialyzing aqueous or methanolic blueberry homogenates. Seven phenolic compounds and thirteen anthocyanins were identified in blueberry extracts. Blueberry extracts showed varying degrees of antioxidant and antiproliferative activities, as well as ?-glucosidase activity. Fruit matrix containing cellulose and pectin, or purified polygalacturonic acid and cellulose, did not retain polyphenols and showed very low antioxidant or antiproliferative activities. These findings suggest that interactions between polyphenols and the food matrix may be more complex than a simple association and may play an important role in the bioefficacy of blueberry polyphenols. PMID:25727778

  16. Hair dye-incorporated poly-?-glutamic acid/glycol chitosan nanoparticles based on ion-complex formation

    PubMed Central

    Lee, Hye-Young; Jeong, Young-IL; Choi, Ki-Choon

    2011-01-01

    Background p-Phenylenediamine (PDA) or its related chemicals are used more extensively than oxidative hair dyes. However, permanent hair dyes such as PDA are known to have potent contact allergy reactions in humans, and severe allergic reactions are problematic. Methods PDA-incorporated nanoparticles were prepared based on ion-complex formation between the cationic groups of PDA and the anionic groups of poly(?-glutamic acid) (PGA). To reinforce PDA/PGA ion complexes, glycol chitosan (GC) was added. PDA-incorporated nanoparticles were characterized using field-emission scanning electron microscopy, Fourier- transform infrared (FT-IR) spectroscopy, dynamic light scattering, and powder X-ray diffractometry (XRD). Results Nanoparticles were formed by ion-complex formation between the amine groups of PDA and the carboxyl groups of PGA. PDA-incorporated nanoparticles are small in size (<100 nm), and morphological observations showed spherical shapes. FT-IR spectra results showed that the carboxylic acid peak of PGA decreased with increasing PDA content, indicating that the ion complexes were formed between the carboxyl groups of PGA and the amine groups of PDA. Furthermore, the intrinsic peak of the carboxyl groups of PGA was also decreased by the addition of GC. Intrinsic crystalline peaks of PDA were observed by XRD. This crystalline peak of PDA was completely nonexistent when nanoparticles were formed by ion complex between PDA, PGA, and GC, indicating that PDA was complexed with PGA and no free drug existed in the formulation. During the drug-release experiment, an initial burst release of PDA was observed, and then PDA was continuously released over 1 week. Cytotoxicity testing against HaCaT human skin keratinocyte cells showed PDA-incorporated nanoparticles had lower toxicity than PDA itself. Furthermore, PDA-incorporated nanoparticles showed reduced apoptosis and necrosis reaction at HaCaT cells. Conclusion The authors suggest that these microparticles are ideal candidates for a vehicle for decreasing side effects of hair dye. PMID:22131834

  17. Formation and spectral characterization of Cu(II)-poly(L-ornithine) complexes.

    PubMed

    Phan, C V; Tosi, L; Garnier, A

    1978-01-01

    Cu(II)-Poly-(1-ornithine) complexes in aqueous solution have been studied using potentiometric titration and absorption and circular dichroism spectra. As in the case of Cu(II)-poly(L-arginine) complexes studied previously, two types of compounds have been detected, labeled complexes I and II. Complex I contains two amine nitrogens and two water molecules coordinated to the copper. Complex II, two amine and two amide nitrogens. Amide nitrogen coordination confers optical activity to the copper d-d transitions. Furthermore, amine and amide nitrogen coordination to the copper are characterized by charge transfer transitions at 250 and 320 nm respectively which were already identified in Cu(II)-poly(L-arginine) systems. PMID:23868

  18. Platelet Activation and Thrombus Formation over IgG Immune Complexes Requires Integrin ?IIb?3 and Lyn Kinase

    PubMed Central

    Zhi, Huiying; Dai, Jing; Liu, Junling; Zhu, Jieqing; Newman, Debra K.; Gao, Cunji; Newman, Peter J.

    2015-01-01

    IgG immune complexes contribute to the etiology and pathogenesis of numerous autoimmune disorders, including heparin-induced thrombocytopenia, systemic lupus erythematosus, rheumatoid- and collagen-induced arthritis, and chronic glomerulonephritis. Patients suffering from immune complex-related disorders are known to be susceptible to platelet-mediated thrombotic events. Though the role of the Fc receptor, Fc?RIIa, in initiating platelet activation is well understood, the role of the major platelet adhesion receptor, integrin ?IIb?3, in amplifying platelet activation and mediating adhesion and aggregation downstream of encountering IgG immune complexes is poorly understood. The goal of this investigation was to gain a better understanding of the relative roles of these two receptor systems in immune complex-mediated thrombotic complications. Human platelets, and mouse platelets genetically engineered to differentially express Fc?RIIa and ?IIb?3, were allowed to interact with IgG-coated surfaces under both static and flow conditions, and their ability to spread and form thrombi evaluated in the presence and absence of clinically-used fibrinogen receptor antagonists. Although binding of IgG immune complexes to Fc?RIIa was sufficient for platelet adhesion and initial signal transduction events, platelet spreading and thrombus formation over IgG-coated surfaces showed an absolute requirement for ?IIb?3 and its ligands. Tyrosine kinases Lyn and Syk were found to play key roles in IgG-induced platelet activation events. Taken together, our data suggest a complex functional interplay between Fc?RIIa, Lyn, and ?IIb?3 in immune complex-induced platelet activation. Future studies may be warranted to determine whether patients suffering from immune complex disorders might benefit from treatment with anti-?IIb?3-directed therapeutics. PMID:26291522

  19. Heterogenised N-heterocyclic carbene complexes: synthesis, characterisation and application for hydroformylation and C-C bond formation reactions.

    PubMed

    Dastgir, Sarim; Coleman, Karl S; Green, Malcolm L H

    2011-01-21

    The imidazolium salts: 1-mesityl-3-(3-trimethoxysilylpropyl)imidazolium iodide and 1-tert-butyl-3-(3-trimethoxysilylpropyl)imidazolium iodide, abbreviated as (tmpMes)HI (3a) and (tmp(t)Bu)HI (3b), respectively, have been synthesised. The palladium(ii) complexes (?(3)-C(3)H(5)) (tmpMes)PdCl (5a) and (?(3)-C(3)H(5))(tmp(t)Bu)PdCl (5b), rhodium(i) and iridium(i) complexes (?(4)-1,5-COD) (tmpMes)MCl, M = Rh (6a), Ir (7a) and (?(4)-1,5-COD)(tmp(t)Bu)MCl, where M = Rh (6b), Ir (7b), were synthesised by silver transmetallation reactions using the silver(i) complexes (tmpMes)AgI (4a) and (tmp(t)Bu)AgI (4b). The iridium complex 7b has been structurally characterised. The Pd(ii) and Rh(i) complexes have been immobilised by attachment to chemically modified MCM-41. The immobilised palladium(ii) materials have been tested as recyclable catalysts for Suzuki type C-C bond formation reactions in water and the immobilised rhodium(i) materials have been examined for their catalytic ability for the hydroformylation of 1-octene. PMID:21116572

  20. Photocatalytic CO2 reduction with high turnover frequency and selectivity of formic acid formation using Ru(II) multinuclear complexes

    PubMed Central

    Tamaki, Yusuke; Morimoto, Tatsuki; Koike, Kazuhide; Ishitani, Osamu

    2012-01-01

    Previously undescribed supramolecules constructed with various ratios of two kinds of Ru(II) complexes—a photosensitizer and a catalyst—were synthesized. These complexes can photocatalyze the reduction of CO2 to formic acid with high selectivity and durability using a wide range of wavelengths of visible light and NADH model compounds as electron donors in a mixed solution of dimethylformamide–triethanolamine. Using a higher ratio of the photosensitizer unit to the catalyst unit led to a higher yield of formic acid. In particular, of the reported photocatalysts, a trinuclear complex with two photosensitizer units and one catalyst unit photocatalyzed CO2 reduction (?HCOOH = 0.061, TONHCOOH = 671) with the fastest reaction rate (TOFHCOOH = 11.6 min-1). On the other hand, photocatalyses of a mixed system containing two kinds of model mononuclear Ru(II) complexes, and supramolecules with a higher ratio of the catalyst unit were much less efficient, and black oligomers and polymers were produced from the Ru complexes during photocatalytic reactions, which reduced the yield of formic acid. The photocatalytic formation of formic acid using the supramolecules described herein proceeds via two sequential processes: the photochemical reduction of the photosensitizer unit by NADH model compounds and intramolecular electron transfer to the catalyst unit. PMID:22908243

  1. Identification of a Myc-dependent step during the formation of active G1 cyclin-cdk complexes.

    PubMed Central

    Steiner, P; Philipp, A; Lukas, J; Godden-Kent, D; Pagano, M; Mittnacht, S; Bartek, J; Eilers, M

    1995-01-01

    Activation of conditional alleles of Myc can induce proliferation in quiescent cells. We now report that induction of Myc in density-arrested fibroblasts triggers rapid hyperphosphorylation of the retinoblastoma protein and activation of both cyclin D1- and cyclin E-associated kinase activities in the absence of significant changes in the amounts of cyclin-cdk complexes. Kinase activation by Myc is blocked by inhibitors of transcription and requires intact DNA binding and heterodimerization domains of Myc. Activation of cyclin E-cdk2 kinase in serum-starved cells occurs in two steps. The first is induced by Myc and involves the release of a 120 kDa cyclin E-cdk2 complex from a 250 kDa inactive complex that is present in starved cells. This is necessary, but not sufficient, to generate full kinase activity, as cdc25 phosphatase activity is limiting in the absence of external growth factors. In vivo cdc25 activity can be supplied by the addition of growth factors. In vitro recombinant cdc25a strongly activates the 120 kDa, but only poorly activates the 250 kDa cyclin E-cdk2 complex. Our data show that two distinct signals, one of which is supplied by Myc, are necessary for consecutive steps during growth factor-induced formation of active cyclin E-cdk2 complexes in G(o)-arrested rodent fibroblasts. Images PMID:7588611

  2. Catalytic C-N and C-F bond formation by organometallic group 11 complexes

    E-print Network

    Akana, Jennifer Anne

    2007-01-01

    This thesis presents a study of the reaction between an (NHC)gold(I) fluoride complex (NHC = N-heterocyclic carbene) and alkynes (Chapter 1). Gold(I) and fluoride add trans across the triple bond of 3-hexyne and ...

  3. Stability constant estimator user`s guide

    SciTech Connect

    Hay, B.P.; Castleton, K.J.; Rustad, J.R.

    1996-12-01

    The purpose of the Stability Constant Estimator (SCE) program is to estimate aqueous stability constants for 1:1 complexes of metal ions with ligands by using trends in existing stability constant data. Such estimates are useful to fill gaps in existing thermodynamic databases and to corroborate the accuracy of reported stability constant values.

  4. Diffusion NMR study of complex formation in membrane-associated peptides

    E-print Network

    Suliman Barhoum; Valerie Booth; Anand Yethiraj

    2013-01-15

    Pulsed-field-gradient nuclear magnetic resonance (PFG-NMR) is used to obtain the true hydrodynamic size of complexes of peptides with sodium dodecyl sulfate SDS micelles. The peptide used in this study is a 19-residue antimicrobial peptide, GAD-2. Two smaller dipeptides, alanine-glycine (Ala-Gly) and tyrosine-leucine (Tyr-Leu), are used for comparison. We use PFG-NMR to simultaneously measure diffusion coefficients of both peptide and surfactant. These two inputs, as a function of SDS concentration, are then fit to a simple two species model that neglects hydrodynamic interactions between complexes. From this we obtain the fraction of free SDS, and the hydrodynamic size of complexes in a GAD-2--SDS system as a function of SDS concentration. These results are compared to those for smaller dipeptides and for peptide-free solutions. At low SDS concentrations ([SDS] $\\leq$ 25 mM), the results self-consistently point to a GAD-2--SDS complex of fixed hydrodynamic size R =(5.5 $\\pm$ 0.3) nm. At intermediate SDS concentrations (25 mM $<$ [SDS] $<$ 60 mM), the apparent size of a GAD-2--SDS complex shows almost a factor of two increase without a significant change in surfactant-to-peptide ratio within a complex, most likely implying an increase in the number of peptides in a complex. For peptide-free solutions, the self-diffusion coefficients of SDS with and without buffer are significantly different at low SDS concentrations but merge above [SDS]=60 mM. We find that in order to obtain unambiguous information about the hydrodynamic size of a peptide-surfactant complex from diffusion measurements, experiments must be carried out at or below [SDS] = 25 mM.

  5. Evolutionarily Conserved Sequence Features Regulate the Formation of the FG Network at the Center of the Nuclear Pore Complex.

    PubMed

    Peyro, M; Soheilypour, M; Lee, B L; Mofrad, M R K

    2015-01-01

    The nuclear pore complex (NPC) is the portal for bidirectional transportation of cargos between the nucleus and the cytoplasm. While most of the structural elements of the NPC, i.e. nucleoporins (Nups), are well characterized, the exact transport mechanism is still under much debate. Many of the functional Nups are rich in phenylalanine-glycine (FG) repeats and are believed to play the key role in nucleocytoplasmic transport. We present a bioinformatics study conducted on more than a thousand FG Nups across 252 species. Our results reveal the regulatory role of polar residues and specific sequences of charged residues, named 'like charge regions' (LCRs), in the formation of the FG network at the center of the NPC. Positively charged LCRs prepare the environment for negatively charged cargo complexes and regulate the size of the FG network. The low number density of charged residues in these regions prevents FG domains from forming a relaxed coil structure. Our results highlight the significant role of polar interactions in FG network formation at the center of the NPC and demonstrate that the specific localization of LCRs, FG motifs, charged, and polar residues regulate the formation of the FG network at the center of the NPC. PMID:26541386

  6. Evolutionarily Conserved Sequence Features Regulate the Formation of the FG Network at the Center of the Nuclear Pore Complex

    PubMed Central

    Peyro, M.; Soheilypour, M.; Lee, B.L.; Mofrad, M.R.K.

    2015-01-01

    The nuclear pore complex (NPC) is the portal for bidirectional transportation of cargos between the nucleus and the cytoplasm. While most of the structural elements of the NPC, i.e. nucleoporins (Nups), are well characterized, the exact transport mechanism is still under much debate. Many of the functional Nups are rich in phenylalanine-glycine (FG) repeats and are believed to play the key role in nucleocytoplasmic transport. We present a bioinformatics study conducted on more than a thousand FG Nups across 252 species. Our results reveal the regulatory role of polar residues and specific sequences of charged residues, named ‘like charge regions’ (LCRs), in the formation of the FG network at the center of the NPC. Positively charged LCRs prepare the environment for negatively charged cargo complexes and regulate the size of the FG network. The low number density of charged residues in these regions prevents FG domains from forming a relaxed coil structure. Our results highlight the significant role of polar interactions in FG network formation at the center of the NPC and demonstrate that the specific localization of LCRs, FG motifs, charged, and polar residues regulate the formation of the FG network at the center of the NPC. PMID:26541386

  7. Fluorescent Filter-Trap Assay for Amyloid Fibril Formation Kinetics in Complex Solutions

    PubMed Central

    2015-01-01

    Amyloid fibrils are the most distinct components of the plaques associated with various neurodegenerative diseases. Kinetic studies of amyloid fibril formation shed light on the microscopic mechanisms that underlie this process as well as the contributions of internal and external factors to the interplay between different mechanistic steps. Thioflavin T is a widely used noncovalent fluorescent probe for monitoring amyloid fibril formation; however, it may suffer from limitations due to the unspecific interactions between the dye and the additives. Here, we present the results of a filter-trap assay combined with the detection of fluorescently labeled amyloid ? (A?) peptide. The filter-trap assay separates formed aggregates based on size, and the fluorescent label attached to A? allows for their detection. The times of half completion of the process (t1/2) obtained by the filter-trap assay are comparable to values from the ThT assay. High concentrations of human serum albumin (HSA) and carboxyl-modified polystyrene nanoparticles lead to an elevated ThT signal, masking a possible fibril formation event. The filter-trap assay allows fibril formation to be studied in the presence of those substances and shows that A? fibril formation is kinetically inhibited by HSA and that the amount of fibrils formed are reduced. In contrast, nanoparticles exhibit a dual-behavior governed by their concentration. PMID:25946560

  8. DNA Polymerase ? Subunit Residues and Interactions Required for Efficient Initiation Complex Formation Identified by a Genetic Selection.

    PubMed

    Lindow, Janet C; Dohrmann, Paul R; McHenry, Charles S

    2015-07-01

    Biophysical and structural studies have defined many of the interactions that occur between individual components or subassemblies of the bacterial replicase, DNA polymerase III holoenzyme (Pol III HE). Here, we extended our knowledge of residues and interactions that are important for the first step of the replicase reaction: the ATP-dependent formation of an initiation complex between the Pol III HE and primed DNA. We exploited a genetic selection using a dominant negative variant of the polymerase catalytic subunit that can effectively compete with wild-type Pol III ? and form initiation complexes, but cannot elongate. Suppression of the dominant negative phenotype was achieved by secondary mutations that were ineffective in initiation complex formation. The corresponding proteins were purified and characterized. One class of mutant mapped to the PHP domain of Pol III ?, ablating interaction with the ? proofreading subunit and distorting the polymerase active site in the adjacent polymerase domain. Another class of mutation, found near the C terminus, interfered with ? binding. A third class mapped within the known ?-binding domain, decreasing interaction with the ?2 processivity factor. Surprisingly, mutations within the ? binding domain also ablated interaction with ?, suggesting a larger ? binding site than previously recognized. PMID:25987558

  9. Complexes of HNO? and NO?¯ with NO? and N?O?, and their potential role in atmospheric HONO formation

    SciTech Connect

    Kamboures, Michael A.; Raff, Jonathan D.; Miller, Y.; Phillips, Leon F.; Finlayson-Pitts, Barbara J.; Gerber, Robert B.

    2008-08-11

    Calculations were performed to determine the structures, energetics, and spectroscopy of the atmospherically relevant complexes (HNO?)•(NO?), (HNO?)•(N?O?), (NO?¯)•(NO?), and (NO?¯)•(N?O?). The binding energies indicate that three of the four complexes are quite stable, with the most stable (NO?¯)•(N?O?) possessing binding energy of almost -14 kcal mol¯¹. Vibrational frequencies were calculated for use in detecting the complexes by infrared and Raman spectroscopy. An ATR-FTIR experiment showed features at 1632 and 1602 cm¯¹ that are attributed to NO? complexed to NO?¯ and HNO?, respectively. The electronic states of (HNO?)•(N?O?) and (NO?¯)•( N?O?) were investigated using an excited state method and it was determined that both complexes possess one low-lying excited state that is accessible through absorption of visible radiation. Evidence for the existence of (NO?¯)•( N?O?) was obtained from UV/vis absorption spectra of N?O? in concentrated HNO?, which show a band at 320 nm that is blue shifted by 20 nm relative to what is observed for N?O? dissolved in organic solvents. Finally, hydrogen transfer reactions within the (HNO?)•(NO?) and (HNO?)•( N?O?) complexes leading to the formation of HONO, were investigated. In both systems the calculated potential profiles rule out a thermal mechanism, but indicate the reaction could take place following the absorption of visible radiation. We propose that these complexes are potentially important in the thermal and photochemical production of HONO observed in previous laboratory and field studies.

  10. Association of phycoerythrin and phycocyanin: in vitro formation of a functional energy transferring phycobilisome complex of Porphyridium sordidum

    SciTech Connect

    Lipschultz, C.A.; Gantt, E.

    1981-01-01

    Functional in vitro association and dissociation of a phycobiliprotein complex, isolated from phycobilisomes of the red alga Porphyridium sordidum, were studied. The complex contained large bangiophyceaen phycoerythrin and cyanophytan phycocyanin in an equimolar ratio and had absorption maxima at 625, 567, and 550 nm and a shoulder at 495 nm. Emission at 655 nm (with excitation at 545 nm) from phycocyanin indicated functional coupling. The complex was stable over a wide buffer concentration range, and, notably, it was maximally stable in low phosphate, <0.01 M, unlike the phycobilisomes, which dissociate at this concentration. Its molecular weight was estimated to be ca. 510 000, and by electron microscopy it was seen to consist of two units of similar size. The complex in 0.1 M phosphate was separated on a sucrose gradient into a homogeneous phycoerythrin band and a spectrally heterogeneous phycocyanin band. In vitro association of phycoerythrin and phycocyanin resulted in a complex with the same absorbance, emission, sedimentation, and molar pigment ratio as those of the native complex. The spectrally heterogeneous phycocyanin fractions from the dissociation gradient varied in the degree of association with phycoerythrin. Phycocyanin fractions absorbing from 622 to 633 nm exhibited high associability (>70%), whereas those with maxima at 617-620 nm had low associability (<30%). The presence of a 30 000 molecular weight polypeptide accompanied high associability, where it was ca. 2-fold more prominent. It is suggested that this polypeptide is involved in complex formation and could serve either in the stabilization of the conformational state of cyanophytan phycocyanin or as a direct linker between phycobiliproteins.

  11. Use of an exchange method to estimate the association and dissociation rate constants of cadmium complexes formed with low-molecular-weight organic acids commonly exuded by plant roots.

    PubMed

    Schneider, André; Nguyen, Christophe

    2011-01-01

    Organic acids released from plant roots can form complexes with cadmium (Cd) in the soil solution and influence metal bioavailability not only due to the nature and concentration of the complexes but also due to their lability. The lability of a complex influences its ability to buffer changes in the concentration of free ions (Cd); it depends on the association (, m mol s) and dissociation (, s) rate constants. A resin exchange method was used to estimate and (m mol s), which is the conditional estimate of depending on the calcium (Ca) concentration in solution. The constants were estimated for oxalate, citrate, and malate, three low-molecular-weight organic acids commonly exuded by plant roots and expected to strongly influence Cd uptake by plants. For all three organic acids, the and estimates were around 2.5 10 m mol s and 1.3 × 10 s, respectively. Based on the literature, these values indicate that the Cd- low-molecular-weight organic acids complexes formed between Cd and low-molecular-weight organic acids may be less labile than complexes formed with soil soluble organic matter but more labile than those formed with aminopolycarboxylic chelates. PMID:22031568

  12. Real-time dynamics of peptide ligand-dependent receptor complex formation in planta.

    PubMed

    Somssich, Marc; Ma, Qijun; Weidtkamp-Peters, Stefanie; Stahl, Yvonne; Felekyan, Suren; Bleckmann, Andrea; Seidel, Claus A M; Simon, Rüdiger

    2015-08-01

    The CLAVATA (CLV) and flagellin (flg) signaling pathways act through peptide ligands and closely related plasma membrane-localized receptor-like kinases (RLKs). The plant peptide CLV3 regulates stem cell homeostasis, whereas the bacterial flg22 peptide elicits defense responses. We applied multiparameter fluorescence imaging spectroscopy (MFIS) to characterize the dynamics of RLK complexes in the presence of ligand in living plant cells expressing receptor proteins fused to fluorescent proteins. We found that the CLV and flg pathways represent two different principles of signal transduction: flg22 first triggered RLK heterodimerization and later assembly into larger complexes through homomerization. In contrast, CLV receptor complexes were preformed, and ligand binding stimulated their clustering. This different behavior likely reflects the nature of these signaling pathways. Pathogen-triggered flg signaling impedes plant growth and development; therefore, receptor complexes are formed only in the presence of ligand. In contrast, CLV3-dependent stem cell homeostasis continuously requires active signaling, and preformation of receptor complexes may facilitate this task. PMID:26243190

  13. A Novel Chitosan-?PGA Polyelectrolyte Complex Hydrogel Promotes Early New Bone Formation in the Alveolar Socket Following Tooth Extraction

    PubMed Central

    Chang, Hao-Hueng; Wang, Yin-Lin; Chiang, Yu-Chih; Chen, Yen-Liang; Chuang, Yu-Horng; Tsai, Shang-Jye; Heish, Kuo-Huang; Lin, Feng-Huei; Lin, Chun-Pin

    2014-01-01

    A novel chitosan-?PGA polyelectrolyte complex hydrogel (C-PGA) has been developed and proven to be an effective dressing for wound healing. The purpose of this study was to evaluate if C-PGA could promote new bone formation in the alveolar socket following tooth extraction. An animal model was proposed using radiography and histomorphology simultaneously to analyze the symmetrical sections of Wistar rats. The upper incisors of Wistar rats were extracted and the extraction sockets were randomly treated with gelatin sponge, neat chitosan, C-PGA, or received no treatment. The extraction sockets of selected rats from each group were evaluated at 1, 2, 4, or 6 wk post-extraction. The results of radiography and histopathology indicated that the extraction sockets treated with C-PGA exhibited lamellar bone formation (6.5%) as early as 2 wk after the extraction was performed. Moreover, the degree of new bone formation was significantly higher (P < 0.05) in the extraction sockets treated with C-PGA at 6 wk post-extraction than that in the other study groups. In this study, we demonstrated that the proposed animal model involving symmetrical sections and simultaneous radiography and histomorphology evaluation is feasible. We also conclude that the novel C-PGA has great potential for new bone formation in the alveolar socket following tooth extraction. PMID:24658174

  14. Professional Motivation Formation of Future Specialists under the Conditions of Regional Educational Complex

    ERIC Educational Resources Information Center

    Kargina, Elena Mikhaylovna

    2015-01-01

    Motivation plays the leading role in the organization of the personality structure. It is a driving force of the activity. Motivation accounts for the behavior and activity and has a great impact on professional self-determination and person's satisfaction with the work. The problem of professional motivation formation of a future specialist is…

  15. A Case Study of Teacher Personal Practice Assessment Theories and Complexities of Implementing Formative Assessment

    ERIC Educational Resources Information Center

    Box, Cathy; Skoog, Gerald; Dabbs, Jennifer M.

    2015-01-01

    The value and effectiveness of formative assessment in the classroom has gained an increasing amount of attention during the past decade, especially since the publication of seminal work by Black and Wiliam titled "Assessment and Classroom Learning." Since that time, there has been a renewed interest in describing and evaluating teacher…

  16. Structural consequences of effector protein complex formation in a diiron hydroxylase

    SciTech Connect

    Bailey, Lucas J.; McCoy, Jason G.; Phillips, Jr., George N.; Fox, Brian G.

    2009-06-12

    Carboxylate-bridged diiron hydroxylases are multicomponent enzyme complexes responsible for the catabolism of a wide range of hydrocarbons and as such have drawn attention for their mechanism of action and potential uses in bioremediation and enzymatic synthesis. These enzyme complexes use a small molecular weight effector protein to modulate the function of the hydroxylase. However, the origin of these functional changes is poorly understood. Here, we report the structures of the biologically relevant effector protein-hydroxylase complex of toluene 4-monooxygenase in 2 redox states. The structures reveal a number of coordinated changes that occur up to 25 {angstrom} from the active site and poise the diiron center for catalysis. The results provide a structural basis for the changes observed in a number of the measurable properties associated with effector protein binding. This description provides insight into the functional role of effector protein binding in all carboxylate-bridged diiron hydroxylases.

  17. A molecular loop with interstitial channels in a chiral environment and study of formation of metal-metal bonds in dinickel, dipalladium and dititanium complexes 

    E-print Network

    Ibragimov, Sergey

    2006-08-16

    This dissertation consists of two independent topics: (1) a molecular loop with interstitial channels in a chiral environment; (2) study of formation of metal-metal bonds in dinickel, dipalladium and dititanium complexes On the first topic, a study...

  18. CONTINUOUS MULTILIGAND DISTRIBUTION MODEL USED TO PREDICT THE STABILITY CONSTANT OF CU(II) METAL COMPLEXATION WITH HUMIC MATERIAL FROM FLUORESCENCE QUENCHING DATA

    EPA Science Inventory

    We report the use of a pH-dependent continuous multiligand distribution model to determine the stability constant between Cu(II) and dissolved humic material. luorescence quenching of the humic material by Cu(II) is used to produce spectral titration curves. he values form the ti...

  19. A complex microbiota from snowball Earth times: Microfossils from the Neoproterozoic Kingston Peak Formation, Death Valley, USA

    PubMed Central

    Corsetti, Frank A.; Awramik, Stanley M.; Pierce, David

    2003-01-01

    A thin carbonate unit associated with a Sturtian-age (?750–700 million years ago) glaciogenic diamictite of the Neoproterozoic Kingston Peak Formation, eastern California, contains microfossil evidence of a once-thriving prokaryotic and eukaryotic microbial community (preserved in chert and carbonate). Stratiform stromatolites, oncoids, and rare columnar stromatolites also occur. The microbial fossils, which include putative autotrophic and heterotrophic eukaryotes, are similar to those found in chert in the underlying preglacial units. They indicate that microbial life adapted to shallow-water carbonate environments did not suffer the significant extinction postulated for this phase of low-latitude glaciation and that trophic complexity survived through snowball Earth times. PMID:12682298

  20. Unexpected formation of a novel pyridinium-containing catecholate ligand and its manganese(III) complex.

    PubMed

    Sheriff, Tippu S; Watkinson, Michael; Motevalli, Majid; Lesin, Jocelyne F

    2010-01-01

    Nucleophilic aromatic substitution of tetrachloro-o-benzoquinone by pyridine and reduction of the o-quinone to the catechol by hydroxylamine forms 1,2-dihydroxy-3,5,6-trichlorobenzene-4-pyridinium chloride. This compound reacts with manganese(II) acetate in air to form chlorobis(3,5,6-trichlorobenzene 4-pyridinium catecholate)manganese(III), which represents the first complex of this ligand class to be structurally characterized by X-ray diffraction; this complex is active in the catalytic reduction of dioxygen to hydrogen peroxide under ambient conditions and turnover frequencies (TOFs) >10,000 h(-1) can be obtained. PMID:20023930

  1. Receptors determine the cellular localization of a gamma-tubulin complex and thereby the site of microtubule formation.

    PubMed Central

    Knop, M; Schiebel, E

    1998-01-01

    The yeast microtubule organizing centre (MTOC), known as the spindle pole body (SPB), organizes the nuclear and cytoplasmic microtubules which are functionally and spatially distinct. Microtubule organization requires the yeast gamma-tubulin complex (Tub4p complex) which binds to the nuclear side of the SPB at the N-terminal domain of Spc110p. Here, we describe the identification of the essential SPB component Spc72p whose N-terminal domain interacts with the Tub4p complex on the cytoplasmic side of the SPB. We further report that this Tub4p complex-binding domain of Spc72p is essential and that temperature-sensitive alleles of SPC72 or overexpression of a binding domain-deleted variant of SPC72 (DeltaN-SPC72) impair cytoplasmic microtubule formation. Consequently, polynucleated and anucleated cells accumulated in these cultures. In contrast, overexpression of the entire SPC72 results in more cytoplasmic microtubules compared with wild-type. Finally, exchange of the Tub4p complex-binding domains of Spc110p and Spc72p established that the Spc110p domain, when attached to DeltaN-Spc72p, was functional at the cytoplasmic site of the SPB, while the corresponding domain of Spc72p fused to DeltaN-Spc110p led to a dominant-negative effect. These results suggest that different components of MTOCs act as receptors for gamma-tubulin complexes and that they are essential for the function of MTOCs. PMID:9670012

  2. Sunlight-driven formation and dissociation of a dynamic mixed-valence thallium(III)/thallium(I) porphyrin complex.

    PubMed

    Ndoyom, Victoria; Fusaro, Luca; Dorcet, Vincent; Boitrel, Bernard; Le Gac, Stéphane

    2015-03-16

    Inspired by a Newton's cradle device and interested in the development of redox-controllable bimetallic molecular switches, a mixed-valence thallium(III)/thallium(I) bis-strap porphyrin complex, with Tl(III) bound out of the plane of the N?core and Tl(I) hung to a strap on the opposite side, was formed by the addition of TlOAc to the free base and exposure to indirect sunlight. In this process, oxygen photosensitization by the porphyrin allows the oxidation of Tl(I) to Tl(III). The bimetallic complex is dynamic as the metals exchange their positions symmetrically to the porphyrin plane with Tl(III) funneling through the macrocycle. Further exposure of the complex to direct sunlight leads to thallium dissociation and to total recovery of the free base. Hence, the porphyrin plays a key role at all stages of the cycle of the complex: It hosts two metal ions, and by absorbing light, it allows the formation and dissociation of Tl(III). These results constitute the basis for the further design of innovative light-driven bimetallic molecular devices. PMID:25631210

  3. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation.

    PubMed

    Blackledge, Neil P; Farcas, Anca M; Kondo, Takashi; King, Hamish W; McGouran, Joanna F; Hanssen, Lars L P; Ito, Shinsuke; Cooper, Sarah; Kondo, Kaori; Koseki, Yoko; Ishikura, Tomoyuki; Long, Hannah K; Sheahan, Thomas W; Brockdorff, Neil; Kessler, Benedikt M; Koseki, Haruhiko; Klose, Robert J

    2014-06-01

    Chromatin modifying activities inherent to polycomb repressive complexes PRC1 and PRC2 play an essential role in gene regulation, cellular differentiation, and development. However, the mechanisms by which these complexes recognize their target sites and function together to form repressive chromatin domains remain poorly understood. Recruitment of PRC1 to target sites has been proposed to occur through a hierarchical process, dependent on prior nucleation of PRC2 and placement of H3K27me3. Here, using a de novo targeting assay in mouse embryonic stem cells we unexpectedly discover that PRC1-dependent H2AK119ub1 leads to recruitment of PRC2 and H3K27me3 to effectively initiate a polycomb domain. This activity is restricted to variant PRC1 complexes, and genetic ablation experiments reveal that targeting of the variant PCGF1/PRC1 complex by KDM2B to CpG islands is required for normal polycomb domain formation and mouse development. These observations provide a surprising PRC1-dependent logic for PRC2 occupancy at target sites in vivo. PMID:24856970

  4. Variant PRC1 Complex-Dependent H2A Ubiquitylation Drives PRC2 Recruitment and Polycomb Domain Formation

    PubMed Central

    Blackledge, Neil P.; Farcas, Anca M.; Kondo, Takashi; King, Hamish W.; McGouran, Joanna F.; Hanssen, Lars L.P.; Ito, Shinsuke; Cooper, Sarah; Kondo, Kaori; Koseki, Yoko; Ishikura, Tomoyuki; Long, Hannah K.; Sheahan, Thomas W.; Brockdorff, Neil; Kessler, Benedikt M.; Koseki, Haruhiko; Klose, Robert J.

    2014-01-01

    Summary Chromatin modifying activities inherent to polycomb repressive complexes PRC1 and PRC2 play an essential role in gene regulation, cellular differentiation, and development. However, the mechanisms by which these complexes recognize their target sites and function together to form repressive chromatin domains remain poorly understood. Recruitment of PRC1 to target sites has been proposed to occur through a hierarchical process, dependent on prior nucleation of PRC2 and placement of H3K27me3. Here, using a de novo targeting assay in mouse embryonic stem cells we unexpectedly discover that PRC1-dependent H2AK119ub1 leads to recruitment of PRC2 and H3K27me3 to effectively initiate a polycomb domain. This activity is restricted to variant PRC1 complexes, and genetic ablation experiments reveal that targeting of the variant PCGF1/PRC1 complex by KDM2B to CpG islands is required for normal polycomb domain formation and mouse development. These observations provide a surprising PRC1-dependent logic for PRC2 occupancy at target sites in vivo. PMID:24856970

  5. Competition between Decapping Complex Formation and Ubiquitin-Mediated Proteasomal Degradation Controls Human Dcp2 Decapping Activity

    PubMed Central

    Erickson, Stacy L.; Corpuz, Elizabeth O.; Maloy, Jeffrey P.; Fillman, Christy; Webb, Kristofer; Bennett, Eric J.

    2015-01-01

    mRNA decapping is a central step in eukaryotic mRNA decay that simultaneously shuts down translation initiation and activates mRNA degradation. A major complex responsible for decapping consists of the decapping enzyme Dcp2 in association with decapping enhancers. An important question is how the activity and accumulation of Dcp2 are regulated at the cellular level to ensure the specificity and fidelity of the Dcp2 decapping complex. Here, we show that human Dcp2 levels and activity are controlled by a competition between decapping complex assembly and Dcp2 degradation. This is mediated by a regulatory domain in the Dcp2 C terminus, which, on the one hand, promotes Dcp2 activation via decapping complex formation mediated by the decapping enhancer Hedls and, on the other hand, targets Dcp2 for ubiquitin-mediated proteasomal degradation in the absence of Hedls association. This competition between Dcp2 activation and degradation restricts the accumulation and activity of uncomplexed Dcp2, which may be important for preventing uncontrolled decapping or for regulating Dcp2 levels and activity according to cellular needs. PMID:25870104

  6. Study of complex formation of 5,5'-(2 E, 2' E)-2,2'-(ethane-1,2-diylidene)bis(hydrazine-1-yl-2-ylidene)bis(4-amino-4H-1,2,4-triazole-3-thiol) (HYT) macrocyclic ligand with Cd2+ cation in non-aqueous solution by spectroscopic and conductometric methods

    NASA Astrophysics Data System (ADS)

    Mallaekeh, Hassan; Shams, Alireza; Shaker, Mohammad; Bahramzadeh, Ehsan; Arefi, Donya

    2014-12-01

    In this paper the complexation reaction of the 5,5'-(2 E,2' E)-2,2'-(ethane-1,2-diylidene)bis(hydrazine-1-yl-2-ylidene)bis(4-amino-4H-1,2,4-triazole-3-thiol) ligand (HYT) with Cd2+ education was studied in some binary mixtures of methanol (MeOH), n-propanol (PrOH) and dimethyl-formamide (DMF) at different temperatures using the conductometry and spectrophotometry. The stability constants of the complex was determined using a GENPLOT computer program. The conductance data and absorbance-mole ratio plots show that in all solvent systems, the stoichiometry of the complex formed between (HYT) and Cd2+ cation is 1: 1. The obtained results show that the stability of (HYT)-Cd complex is sensitive to the mixed solvents composition. The values of thermodynamic parameters (? G ?, ? H ?, and ? S ?) for formation of (HYT)-Cd complex were obtained from temperature dependence of the stability constant using the van't Hoff plots. The results show that in most cases, the complex are enthalpy destabilized but entropy stabilized and the complex formation is affected by pH, time, temperature and the nature of the solvent.

  7. Molecular Orbital Studies of Titanium Nitride Chemical Vapor Deposition: Gas Phase Complex Formation,

    E-print Network

    Schlegel, H. Bernhard

    Molecular Orbital Studies of Titanium Nitride Chemical Vapor Deposition: Gas Phase Complex Received June 6, 2000 The chemical vapor deposition (CVD) of titanium nitride can be carried out with TiCl4 Titanium nitride thin films have a variety of proper- ties, such as extreme hardness, high chemical

  8. Cationic liposomemicrotubule complexes: Pathways to the formation of two-state lipidprotein

    E-print Network

    Needleman, Daniel

    the membrane spontaneous curvature, CM, and the polyelectrolyte curvature, Cp 2 Dp, where Dp and symmetry of PLCs when CM and CP are comparable in complexes of cationic liposomes and microtubules (MTs), for which CP 0. Using synchrotron small angle x-ray diffraction (SAXRD) and transmission electron mi

  9. Rare metal granites of the Katugin complex (Aldan shield): Sources and geodynamic formation settings

    NASA Astrophysics Data System (ADS)

    Larin, A. M.; Kotov, A. B.; Vladykin, N. V.; Gladkochub, D. P.; Kovach, V. P.; Sklyarov, E. V.; Donskaya, T. V.; Velikoslavinskii, S. D.; Zagornaya, N. Yu.; Sotnikova, I. A.

    2015-09-01

    Isotope-Geochemical Sm-Nd studies of the Early Proterozoic alkaline granites of the Katugan complex (Aldan shield) were carried out. The unique Katugan rare metals (Ta, Nb, Zr, Y, and REE) deposit is confined to these granites. Parent melts of the granites are of mantle-crustal nature.

  10. Formation and Dissociation of Intra-Intermolecular Hydrogen-Bonded Solute-Solvent Complexes: Chemical

    E-print Network

    Fayer, Michael D.

    and dissociation (chemical exchange) of this type of three-centered hydrogen bond complex were observed in real in the most basic and important chemical and biological phenomena.1-3 The strength of hydrogen bonds lies between van der Waals forces and covalent bonds. Although not a true chemical bond, a hydrogen bond

  11. Unexpected features and mechanism of heterodimer formation of a herpesvirus nuclear egress complex.

    PubMed

    Lye, Ming F; Sharma, Mayuri; El Omari, Kamel; Filman, David J; Schuermann, Jonathan P; Hogle, James M; Coen, Donald M

    2015-12-01

    Herpesvirus nucleocapsids escape from the nucleus in a process orchestrated by a highly conserved, viral nuclear egress complex. In human cytomegalovirus, the complex consists of two proteins, UL50 and UL53. We solved structures of versions of UL53 and the complex by X-ray crystallography. The UL53 structures, determined at 1.93 and 3.0 Å resolution, contained unexpected features including a Bergerat fold resembling that found in certain nucleotide-binding proteins, and a Cys3His zinc finger. Substitutions of zinc-coordinating residues decreased UL50-UL53 co-localization in transfected cells, and, when incorporated into the HCMV genome, ablated viral replication. The structure of the complex, determined at 2.47 Å resolution, revealed a mechanism of heterodimerization in which UL50 clamps onto helices of UL53 like a vise. Substitutions of particular residues on the interaction interface disrupted UL50-UL53 co-localization in transfected cells and abolished virus production. The structures and the identification of contacts can be harnessed toward the rational design of novel and highly specific antiviral drugs and will aid in the detailed understanding of nuclear egress. PMID:26511021

  12. Percentages: The Effect of Problem Structure, Number Complexity and Calculation Format

    ERIC Educational Resources Information Center

    Baratta, Wendy; Price, Beth; Stacey, Kaye; Steinle, Vicki; Gvozdenko, Eugene

    2010-01-01

    This study reports how the difficulty of simple worded percentage problems is affected by the problem structure and the complexity of the numbers involved. We also investigate which methods students know. Results from 677 Year 8 and 9 students are reported. Overall the results indicate that more attention needs to be given to this important topic.…

  13. Isotopic evidence for complex microbial ecosystems in the phosphate-rich interval of the Miocene Monterey Formation

    NASA Astrophysics Data System (ADS)

    Theiling, B. P.; Coleman, M. L.

    2014-12-01

    The middle Miocene Monterey Formation has long been debated as a crucial global sink for organic carbon that led to global cooling. We evaluate proxies for the microbial ecosystem to investigate organic carbon burial within the phosphate-rich interval of the Monterey Formation at Naples Beach, California by combining mineralogical evidence with ?34S analyses of carbonate associated sulfate (CAS). All ?34S are below Miocene seawater values (~22‰, VCDT) and range from +12.2‰ to +18.5‰. ?34SCAS < ?34Sseawater sulfate is typical of microbial environments at or near the interface between oxic and suboxic waters. Low pyrite concentrations characteristic of the Monterey Formation indicate that the system is iron-limited; iron reducing bacteria consume all ferric iron, producing a small amount of pyrite. Sulfate reducing bacteria then consume the excess, residual sulfate, generating free H2S in the absence of available iron. H2S diffuses upward towards the sediment-water interface (an oxic-suboxic mixing zone) where H2S is oxidized to 34S-depleted sulfate either aerobically or coupled to nitrate reduction, and lowers seawater pH. The high phosphate content and low carbonate content of this interval of the Monterey Formation supports a model of precipitation in lower pH waters. Assuming a -40‰ fractionation of ?34S due to microbial sulfate reduction, we estimate at least a 10%-20% contribution of sulfate from sulfide oxidation to marine porewater sulfate. These results suggest that the phosphate-rich interval of the Monterey Formation housed a complex suite of iron and sulfate reducing bacteria as well as sulfide oxidizing bacteria, suggesting that significant organic carbon was consumed during early diagenesis and may account for low organic carbon content described in previous studies.

  14. Stereoselective formation and catalytic activity of hydrido(acylphosphane)(chlorido)(pyrazole)rhodium(III) complexes. Experimental and DFT studies.

    PubMed

    San Nacianceno, Virginia; Azpeitia, Susan; Ibarlucea, Lourdes; Mendicute-Fierro, Claudio; Rodríguez-Diéguez, Antonio; Seco, José M; San Sebastian, Eider; Garralda, María A

    2015-08-01

    The reaction of [{RhCl(COD)}2] (COD = 1,5-cyclooctadiene) with L = pyrazole (Hpz), 3(5)-methylpyrazole (Hmpz) or 3,5-dimethylpyrazole (Hdmpz) and PPh2(o-C6H4CHO) (Rh?:?L?:?P = 1?:?2?:?1) gives hydridoacyl complexes [RhHCl{PPh2(o-C6H4CO)}(L)2] (). Stereoselective formation of and with pyrazoles trans to hydrido and phosphorus and hydrogen bond formation with O-acyl and chlorido occur. is a mixture of two linkage isomers in a 9?:?1 ratio, with two 5-methylpyrazole ligands or with one 3- and one 5-methylpyrazole ligand, respectively. Fluxional undergoes metallotropic tautomerization and is a mixture of equal amounts of and , with hydrido trans to pyrazole or chlorido, respectively. Complexes readily exchange hydrido by chlorido to afford [RhCl2{PPh2(o-C6H4CO)}(L)2] (, and ) as single isomers with cis chloridos and two N-HCl hydrogen bonds. The reaction of with PPh3 or PPh2OH affords static [RhHCl{PPh2(o-C6H4CO)}(PPh3)L] () or [RhHCl{PPh2(o-C6H4CO)}(PPh2OH)L] () respectively with trans P-atoms and pyrazoles forming N-HCl hydrogen bonds. and contain single species with hydrido cis to chlorido, while is a mixture of equal amounts of and . Complexes , with an additional O-HO hydrogen bond, selectively contain only the cis-H,Cl species with all the three ligands. The reaction of [{RhCl(COD)}2] with L and PPh2(o-C6H4CHO) (Rh?:?L?:?P = 1?:?1?:?2) led to complexes with trans P-atoms, [RhHCl{PPh2(o-C6H4CO)}{PPh2(o-C6H4CHO)-?P}L] (, and ), at room temperature, and to [RhCl{PPh2(o-C6H4CO)}{PPh2(o-C6H4CHOH)}(Hmpz)] () or [RhCl{PPh2(o-C6H4CO)}2L] () with hydrogen evolution in refluxing benzene. DFT calculations were used to predict the correct isomers, their ratios and the particular intramolecular hydrogen bonds in these complexes. Single crystal X-ray diffraction analysis was performed on , and . Complexes are efficient homogeneous catalysts (0.5 mol% loading) in the hydrolysis of amine- or ammonia-borane (AB) to generate up to 3 equivalents of hydrogen in the presence of air. PMID:26107554

  15. Robust assessment of protein complex formation in vivo via single-molecule intensity distributions of autofluorescent proteins

    NASA Astrophysics Data System (ADS)

    Meckel, Tobias; Semrau, Stefan; Schaaf, Marcel J. M.; Schmidt, Thomas

    2011-07-01

    The formation of protein complexes or clusters in the plasma membrane is essential for many biological processes, such as signaling. We develop a tool, based on single-molecule microscopy, for following cluster formation in vivo. Detection and tracing of single autofluorescent proteins have become standard biophysical techniques. The determination of the number of proteins in a cluster, however, remains challenging. The reasons are (i) the poor photophysical stability and complex photophysics of fluorescent proteins and (ii) noise and autofluorescent background in live cell recordings. We show that, despite those obstacles, the accurate fraction of signals in which a certain (or set) number of labeled proteins reside, can be determined in an accurate an robust way in vivo. We define experimental conditions under which fluorescent proteins exhibit predictable distributions of intensity and quantify the influence of noise. Finally, we confirm our theoretical predictions by measurements of the intensities of individual enhanced yellow fluorescent protein (EYFP) molecules in living cells. Quantification of the average number of EYFP-C10HRAS chimeras in diffraction-limited spots finally confirm that the membrane anchor of human Harvey rat sarcoma (HRAS) heterogeneously distributes in the plasma membrane of living Chinese hamster ovary cells.

  16. ON MAGNETIC ACTIVITY BAND OVERLAP, INTERACTION, AND THE FORMATION OF COMPLEX SOLAR ACTIVE REGIONS

    SciTech Connect

    McIntosh, Scott W.; Leamon, Robert J.

    2014-11-20

    Recent work has revealed a phenomenological picture of the how the ?11 yr sunspot cycle of the Sun arises. The production and destruction of sunspots is a consequence of the latitudinal-temporal overlap and interaction of the toroidal magnetic flux systems that belong to the 22 yr magnetic activity cycle and are rooted deep in the Sun's convective interior. We present a conceptually simple extension of this work, presenting a hypothesis on how complex active regions can form as a direct consequence of the intra- and extra-hemispheric interaction taking place in the solar interior. Furthermore, during specific portions of the sunspot cycle, we anticipate that those complex active regions may be particularly susceptible to profoundly catastrophic breakdown, producing flares and coronal mass ejections of the most severe magnitude.

  17. Analysis of De Novo Golgi Complex Formation after Enzyme-based Inactivation

    PubMed Central

    Jollivet, Florence; Raposo, Graça; Dimitrov, Ariane; Sougrat, Rachid; Goud, Bruno

    2007-01-01

    The Golgi complex is characterized by its unique morphology of closely apposed flattened cisternae that persists despite the large quantity of lipids and proteins that transit bidirectionally. Whether such a structure is maintained through endoplasmic reticulum (ER)-based recycling and auto-organization or whether it depends on a permanent Golgi structure is strongly debated. To further study Golgi maintenance in interphase cells, we developed a method allowing for a drug-free inactivation of Golgi dynamics and function in living cells. After Golgi inactivation, a new Golgi-like structure, containing only certain Golgi markers and newly synthesized cargos, was produced. However, this structure did not acquire a normal Golgi architecture and was unable to ensure a normal trafficking activity. This suggests an integrative model for Golgi maintenance in interphase where the ER is able to autonomously produce Golgi-like structures that need pre-existing Golgi complexes to be organized as morphologically normal and active Golgi elements. PMID:17855505

  18. Stable complex formation of CENP-B with the CENP-A nucleosome

    PubMed Central

    Fujita, Risa; Otake, Koichiro; Arimura, Yasuhiro; Horikoshi, Naoki; Miya, Yuta; Shiga, Tatsuya; Osakabe, Akihisa; Tachiwana, Hiroaki; Ohzeki, Jun-ichirou; Larionov, Vladimir; Masumoto, Hiroshi; Kurumizaka, Hitoshi

    2015-01-01

    CENP-A and CENP-B are major components of centromeric chromatin. CENP-A is the histone H3 variant, which forms the centromere-specific nucleosome. CENP-B specifically binds to the CENP-B box DNA sequence on the centromere-specific repetitive DNA. In the present study, we found that the CENP-A nucleosome more stably retains human CENP-B than the H3.1 nucleosome in vitro. Specifically, CENP-B forms a stable complex with the CENP-A nucleosome, when the CENP-B box sequence is located at the proximal edge of the nucleosome. Surprisingly, the CENP-B binding was weaker when the CENP-B box sequence was located in the distal linker region of the nucleosome. This difference in CENP-B binding, depending on the CENP-B box location, was not observed with the H3.1 nucleosome. Consistently, we found that the DNA-binding domain of CENP-B specifically interacted with the CENP-A-H4 complex, but not with the H3.1-H4 complex, in vitro. These results suggested that CENP-B forms a more stable complex with the CENP-A nucleosome through specific interactions with CENP-A, if the CENP-B box is located proximal to the CENP-A nucleosome. Our in vivo assay also revealed that CENP-B binding in the vicinity of the CENP-A nucleosome substantially stabilizes the CENP-A nucleosome on alphoid DNA in human cells. PMID:25916850

  19. Kizilcaören ore-bearing complex with carbonatites (northwestern Anatolia, Turkey): Formation time and mineralogy of rocks

    NASA Astrophysics Data System (ADS)

    Nikiforov, A. V.; Öztürk, H.; Altuncu, S.; Lebedev, V. A.

    2014-02-01

    The results of isotope-geochronological and mineralogical studies of the rocks making up the Kizilcaören fluorite-barite-REE deposit, northwestern Anatolia, Turkey are discussed in the paper. The ore is a constituent of the subvolcanic complex localized in a large fault zone. The complex combines (from earlier to later rocks): (1) phonolite and trachyte stocks, (2) carbonatite and carbonate-silicate dikelike bodies; and (3) fluorite-barite-bastnaesite ore in the form of thick homogeneous veins and cement in breccia. The K-Ar dating of silicate igneous rocks and carbonatites shows that they were formed in the Chattian Age of the Oligocene 25-24 Ma ago. Mineralogical observations show that the ore is the youngest constituent in the rock complex. Supergene alteration deeply transformed ore-bearing rocks, in particular, resulting in leaching of primary minerals, presumably Ca-Mn-Fe carbonates, and in cementation of the residual bastnaesitefluorite framework by Fe and Mn hydroxides. Most of the studied rocks contain pyrochlore, LREE fluorocarbonates, Nb-bearing rutile, Fe-Mg micas, and K-feldspar. The genetic features of the deposit have been considered. In general, the ore-bearing rock complex is compared in the set of rocks and their mineralogy and geochemistry with deposits of the Gallinas Mountains in the United States, the Arshan and Khalyuta deposits in the western Transbaikalia region, and Mushugai-Khuduk deposit in Mongolia. The Kizilcaören deposit represents a variant of postmagmatic mineralization closely related to carbonatite magmatism associated with alkaline and subalkaline intermediate rocks.

  20. When constants are important

    SciTech Connect

    Beiu, V.

    1997-04-01

    In this paper the authors discuss several complexity aspects pertaining to neural networks, commonly known as the curse of dimensionality. The focus will be on: (1) size complexity and depth-size tradeoffs; (2) complexity of learning; and (3) precision and limited interconnectivity. Results have been obtained for each of these problems when dealt with separately, but few things are known as to the links among them. They start by presenting known results and try to establish connections between them. These show that they are facing very difficult problems--exponential growth in either space (i.e. precision and size) and/or time (i.e., learning and depth)--when resorting to neural networks for solving general problems. The paper will present a solution for lowering some constants, by playing on the depth-size tradeoff.

  1. Ultrahigh-resolution imaging reveals formation of neuronal SNARE/Munc18 complexes in situ

    PubMed Central

    Pertsinidis, Alexandros; Mukherjee, Konark; Sharma, Manu; Pang, Zhiping P.; Park, Sang Ryul; Zhang, Yunxiang; Brunger, Axel T.; Südhof, Thomas C.; Chu, Steven

    2013-01-01

    Membrane fusion is mediated by complexes formed by SNAP-receptor (SNARE) and Secretory 1 (Sec1)/mammalian uncoordinated-18 (Munc18)-like (SM) proteins, but it is unclear when and how these complexes assemble. Here we describe an improved two-color fluorescence nanoscopy technique that can achieve effective resolutions of up to 7.5-nm full width at half maximum (3.2-nm localization precision), limited only by stochastic photon emission from single molecules. We use this technique to dissect the spatial relationships between the neuronal SM protein Munc18-1 and SNARE proteins syntaxin-1 and SNAP-25 (25 kDa synaptosome-associated protein). Strikingly, we observed nanoscale clusters consisting of syntaxin-1 and SNAP-25 that contained associated Munc18-1. Rescue experiments with syntaxin-1 mutants revealed that Munc18-1 recruitment to the plasma membrane depends on the Munc18-1 binding to the N-terminal peptide of syntaxin-1. Our results suggest that in a primary neuron, SNARE/SM protein complexes containing syntaxin-1, SNAP-25, and Munc18-1 are preassembled in microdomains on the presynaptic plasma membrane. Our superresolution imaging method provides a framework for investigating interactions between the synaptic vesicle fusion machinery and other subcellular systems in situ. PMID:23821748

  2. Kinetics of self-assembly via facilitated diffusion: Formation of the transcription complex.

    PubMed

    Kalay, Ziya

    2015-10-01

    We present an analytically solvable model for self-assembly of a molecular complex on a filament. The process is driven by a seed molecule that undergoes facilitated diffusion, which is a search strategy that combines diffusion in three dimensions and one dimension. Our study is motivated by single-molecule-level observations revealing the dynamics of transcription factors that bind to the deoxyribonucleic acid at early stages of transcription. We calculate the probability that a complex made up of a given number of molecules is completely formed, as well as the distribution of completion times, upon the binding of a seed molecule at a target site on the filament (without explicitly modeling the three-dimensional diffusion that precedes binding). We compare two different mechanisms of assembly where molecules bind in sequential and random order. Our results indicate that while the probability of completion is greater for random binding, the completion time scales exponentially with the size of the complex; in contrast, it scales as a power law or slower for sequential binding, asymptotically. Furthermore, we provide model predictions for the dissociation and residence times of the seed molecule, which are observables accessible in single-molecule tracking experiments. PMID:26565281

  3. Ammonia formation by a thiolate-bridged diiron amide complex as a nitrogenase mimic

    NASA Astrophysics Data System (ADS)

    Li, Yang; Li, Ying; Wang, Baomin; Luo, Yi; Yang, Dawei; Tong, Peng; Zhao, Jinfeng; Luo, Lun; Zhou, Yuhan; Chen, Si; Cheng, Fang; Qu, Jingping

    2013-04-01

    Although nitrogenase enzymes routinely convert molecular nitrogen into ammonia under ambient temperature and pressure, this reaction is currently carried out industrially using the Haber-Bosch process, which requires extreme temperatures and pressures to activate dinitrogen. Biological fixation occurs through dinitrogen and reduced NxHy species at multi-iron centres of compounds bearing sulfur ligands, but it is difficult to elucidate the mechanistic details and to obtain stable model intermediate complexes for further investigation. Metal-based synthetic models have been applied to reveal partial details, although most models involve a mononuclear system. Here, we report a diiron complex bridged by a bidentate thiolate ligand that can accommodate HN=NH. Following reductions and protonations, HN=NH is converted to NH3 through pivotal intermediate complexes bridged by N2H3- and NH2- species. Notably, the final ammonia release was effected with water as the proton source. Density functional theory calculations were carried out, and a pathway of biological nitrogen fixation is proposed.

  4. Ammonia formation by a thiolate-bridged diiron amide complex as a nitrogenase mimic.

    PubMed

    Li, Yang; Li, Ying; Wang, Baomin; Luo, Yi; Yang, Dawei; Tong, Peng; Zhao, Jinfeng; Luo, Lun; Zhou, Yuhan; Chen, Si; Cheng, Fang; Qu, Jingping

    2013-04-01

    Although nitrogenase enzymes routinely convert molecular nitrogen into ammonia under ambient temperature and pressure, this reaction is currently carried out industrially using the Haber-Bosch process, which requires extreme temperatures and pressures to activate dinitrogen. Biological fixation occurs through dinitrogen and reduced NxHy species at multi-iron centres of compounds bearing sulfur ligands, but it is difficult to elucidate the mechanistic details and to obtain stable model intermediate complexes for further investigation. Metal-based synthetic models have been applied to reveal partial details, although most models involve a mononuclear system. Here, we report a diiron complex bridged by a bidentate thiolate ligand that can accommodate HN=NH. Following reductions and protonations, HN=NH is converted to NH3 through pivotal intermediate complexes bridged by N2H3(-) and NH2(-) species. Notably, the final ammonia release was effected with water as the proton source. Density functional theory calculations were carried out, and a pathway of biological nitrogen fixation is proposed. PMID:23511421

  5. Ganglioside-magnetosome complex formation enhances uptake of gangliosides by cells

    PubMed Central

    Guan, Feng; Li, Xiang; Guo, Jia; Yang, Ganglong; Li, Xiang

    2015-01-01

    Bacterial magnetosomes, because of their nano-scale size, have a large surface-to-volume ratio and are able to carry large quantities of bioactive substances such as enzymes, antibodies, and genes. Gangliosides, a family of sialic acid-containing glycosphingolipids, function as distinctive cell surface markers and as specific determinants in cellular recognition and cell-to-cell communication. Exogenously added gangliosides are often used to study biological functions, transport mechanisms, and metabolism of their endogenous counterparts. Absorption of gangliosides into cells is typically limited by their tendency to aggregate into micelles in aqueous media. We describe here a simple strategy to remove proteins from the magnetosome membrane by sodium dodecyl sulfate treatment, and efficiently immobilize a ganglioside (GM1 or GM3) on the magnetosome by mild ultrasonic treatment. The maximum of 11.7±1.2 µg GM1 and 11.6±1.5 ?g GM3 was loaded onto 1 mg magnetosome, respectively. Complexes of ganglioside-magnetosomes stored at 4°C for certain days presented the consistent stability. The use of GM1-magnetosome complex resulted in the greatest enhancement of ganglioside incorporation by cells. GM3-magnetosome complex significantly inhibited EGF-induced phosphorylation of the epidermal growth factor receptor. Both of these effects were further enhanced by the presence of a magnetic field. PMID:26609230

  6. Kinetics of self-assembly via facilitated diffusion: Formation of the transcription complex

    NASA Astrophysics Data System (ADS)

    Kalay, Ziya

    2015-10-01

    We present an analytically solvable model for self-assembly of a molecular complex on a filament. The process is driven by a seed molecule that undergoes facilitated diffusion, which is a search strategy that combines diffusion in three dimensions and one dimension. Our study is motivated by single-molecule-level observations revealing the dynamics of transcription factors that bind to the deoxyribonucleic acid at early stages of transcription. We calculate the probability that a complex made up of a given number of molecules is completely formed, as well as the distribution of completion times, upon the binding of a seed molecule at a target site on the filament (without explicitly modeling the three-dimensional diffusion that precedes binding). We compare two different mechanisms of assembly where molecules bind in sequential and random order. Our results indicate that while the probability of completion is greater for random binding, the completion time scales exponentially with the size of the complex; in contrast, it scales as a power law or slower for sequential binding, asymptotically. Furthermore, we provide model predictions for the dissociation and residence times of the seed molecule, which are observables accessible in single-molecule tracking experiments.

  7. Undergraduate Analytical Chemistry Experiment: The Determination of Formation Constants for Acetate and Mono-and Dichloroacetate Salts of Primary, Secondary, and Tertiary Methyl-and Ethylamines

    ERIC Educational Resources Information Center

    D'Amelia, Ronald P.; Chiang, Stephanie; Pollut, Stephanie; Nirode, William F.

    2014-01-01

    The formation and the hydrolysis of organic salts produced by the titration of a 0.1 M solution of the following amines: methyl-, dimethyl-, trimethyl-, ethyl-, diethyl-, and triethylamine with a 0.1 M solution of acetic, chloroacetic, and dichloracetic acids are studied. The pK[subscript b] of the amine and the pH at the end point were determined…

  8. A Mild C-O Bond Formation Catalyzed by a Rhenium-Oxo Complex Benjamin D. Sherry, Alexander T. Radosevich, and F. Dean Toste*

    E-print Network

    Toste, Dean

    A Mild C-O Bond Formation Catalyzed by a Rhenium-Oxo Complex Benjamin D. Sherry, Alexander T to terminal propargyl alcohols.5b Herein, we describe the development and application of a rhenium hindered. A rhenium(V)-oxo complex bearing a bidentate phosphine ligand (dppm ) diphenylphosphinomethane

  9. Formation and alteration of complex amino acid precursors in cosmic dusts and their relevance to origins of life

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Kaneko, Takeo; Mita, Hajime; Obayashi, Yumiko; Kawamoto, Yukinori; Kanda, Kazuhiro; Takayama, Ken; Shibata, Hiromi

    A wide variety of organic compounds including many kinds of amino acids have been detected in carbonaceous chondrites. It has been known that comets also bring complex organic compounds. The relevance of extraterrestrial organics to the origin of life is extensively discussed. There have been many scenarios of the origin of amino acids found in meteorites or comets, including the Strecker synthesis in the parent bodies of meteorites, the Fischer-Tropsch type reaction in the solar nebula and reactions in cosmic dusts. We examined possible formation of amino acids or their precursors in interstellar dust environments. When possible interstellar media (a mixture of carbon monoxide, ammonia and water) was irradiated with high energy protons, complex organic compounds whose molecular weights are thousands were formed [1], which gave amino acids after acid hydrolysis: Hereafter we will refer them simulated interstellar organics. It was suggested that complex amino acid precursors could be formed in ice mantles of interstellar dust particles in prior to the formation of the solar system. We are planning to irradiate simulated interstellar ices with high-energy heavy ions from the Digital Accelerator (KEK) to confirm the scenario. The simulated interstellar oraganics were so hydrophilic that they were easy to dissolve in water. Complex organics found in meteorites are generally so hydrophobic and are insoluble to water. Organics found in cometary dusts sampled by the Stardust Mission contains organics with various hydrophobicity. We irradiated the simulated interstellar organics with UV and/or soft X-rays. Soft X-rays irradiation of the simulated interstellar organics resulted in the formation of more hydrophobic compounds as seen in some of cometary dusts. It was suggested that organics of interstellar origin on dusts were altered when the solar system was being formed with soft X-rays from the young Sun in prior to the incorporation to planetesimals or comets. Dusts have another important role: Delivery of extraterrestrial organics to the primitive Earth. We are planning a novel astrobiology mission named Tanpopo by utilizing the Exposed Facility of Japan Experimental Module (JEM/EF) of the International Space Station (ISS). We will collect cosmic dusts by using ultra-low density silica gel (aerogel), and will analyze them after returning them to the Earth. Details will be presented in the other session of COSPAR 2014 [2]. [1] Y. Takano et al., Appl. Phys. Lett., 84 (2004) 1410-1412. [2] K. Kobayashi et al., COSPAR 2014, Session F31, #14256, Moscow, Russia.

  10. Formation and intracellular localization of hepatitis C virus envelope glycoprotein complexes expressed by recombinant vaccinia and Sindbis viruses.

    PubMed Central

    Dubuisson, J; Hsu, H H; Cheung, R C; Greenberg, H B; Russell, D G; Rice, C M

    1994-01-01

    Hepatitis C virus (HCV) encodes two putative virion glycoproteins (E1 and E2) which are released from the polyprotein by signal peptidase cleavage. In this report, we have characterized the complexes formed between E1 and E2 (called E1E2) for two different HCV strains (H and BK) and studied their intracellular localization. Vaccinia virus and Sindbis virus vectors were used to express the HCV structural proteins in three different cell lines (HepG2, BHK-21, and PK-15). The kinetics of association between E1 and E2, as studied by pulse-chase analysis and coprecipitation of E2 with an anti-E1 monoclonal antibody, indicated that formation of stable E1E2 complexes is slow. The times required for half-maximal association between E1 and E2 were 60 to 85 min for the H strain and more than 165 min for the BK strain. In the presence of nonionic detergents, two forms of E1E2 complexes were detected. The predominant form was a heterodimer of E1 and E2 stabilized by noncovalent interactions. A minor fraction consisted of heterogeneous disulfide-linked aggregates, which most likely represent misfolded complexes. Posttranslational processing and localization of the HCV glycoproteins were examined by acquisition of endoglycosidase H resistance, subcellular fractionation, immunofluorescence, cell surface immunostaining, and immunoelectron microscopy. HCV glycoproteins containing complex N-linked glycans were not observed, and the proteins were not detected at the cell surface. Rather, the proteins localized predominantly to the endoplasmic reticular network, suggesting that some mechanism exists for their retention in this compartment. Images PMID:8083956

  11. A Highly Efficient Heterogenized Iridium Complex for the Catalytic Hydrogenation of Carbon Dioxide to Formate.

    PubMed

    Park, Kwangho; Gunasekar, Gunniya Hariyanandam; Prakash, Natarajan; Jung, Kwang-Deog; Yoon, Sungho

    2015-10-01

    A heterogenized catalyst on a highly porous covalent triazine framework was synthesized and characterized to have a coordination environment similar to that of its homogeneous counterpart. The catalyst efficiently converted CO2 into formate through hydrogenation with a turnover number of 5000 after 2?h and an initial turnover frequency of up to 5300?h(-1) ; both of these values are the highest reported to date for a heterogeneous catalyst, which makes it attractive toward industrial application. Furthermore, the synthesized catalyst was found to be stable in air and was recycled by simple filtration without significant loss of catalytic activity. PMID:26493515

  12. On the formation and structure of rare-earth element complexes in aqueous solutions under hydrothermal conditions with new data on gadolinium aqua and chloro complexes

    USGS Publications Warehouse

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2007-01-01

    Synchrotron X-ray spectroscopy experiments were made on the Gd(III) aqua and chloro complexes in low pH aqueous solutions at temperatures ranging from 25 to 500????C and at pressures up to 480??MPa using a hydrothermal diamond anvil cell. Analysis of fluorescence Gd L3-edge X-ray absorption fine structure (XAFS) spectra measured from a 0.006m Gd/0.16m HNO3 aqueous solution at temperatures up to 500????C and at pressures up to 260??MPa shows that the Gd-O distance of the Gd3+ aqua ion decreases steadily at a rate of ??? 0.007??A??/100????C whereas the number of coordinated H2O molecules decreases from 9.0 ?? 0.5 to 7.0 ?? 0.4. The loss of water molecules in the Gd3+ aqua ion inner hydration shell over this temperature range (a 22% reduction) is smaller than exhibited by the Yb3+ aqua ion (42% reduction) indicating that the former is significantly more stable than the later. We conjecture that the anomalous enrichment of Gd reported from measurement of REE concentrations in ocean waters may be attributed to the enhanced stability of the Gd3+ aqua ion relative to other REEs. Gd L3-edge XAFS measurements of 0.006m and 0.1m GdCl3 aqueous solutions at temperatures up to 500????C and pressures up to 480??MPa reveal that the onset of significant Gd3+-Cl- association occurs around 300????C. Partially-hydrated stepwise inner-sphere complexes most likely of the type Gd(H2O)??-nCln+3-n occur in the chloride solutions at higher temperatures, where ?? ??? 8 at 300????C decreasing slightly to an intermediate value between 7 and 8 upon approaching 500????C. This is the first direct evidence for the occurrence of partially-hydrated REE Gd (this study) and Yb [Mayanovic, R.A., Jayanetti, S., Anderson, A.J., Bassett, W.A., Chou, I-M., 2002a. The structure of Yb3+ aquo ion and chloro complexes in aqueous solutions at up to 500 ??C and 270 MPa. J. Phys. Chem. A 106, 6591-6599.] chloro complexes in hydrothermal solutions. The number of chlorides (n) of the partially-hydrated Gd(III) chloro complexes increases steadily with temperature from 0.4 ?? 0.2 to 1.7 ?? 0.3 in the 0.006m chloride solution and from 0.9 ?? 0.7 to 1.8 ?? 0.7 in the 0.1m GdCl3 aqueous solution in the 300-500????C range. Conversely, the number of H2O ligands of Gd(H2O)??-nCln+3-n complexes decreases steadily from 8.9 ?? 0.4 to 5.8 ?? 0.7 in the 0.006m GdCl3 aqueous solution and from 9.0 ?? 0.5 to 5.3 ?? 1.0 in the 0.1m GdCl3 aqueous solution at temperatures from 25 to 500????C. Analysis of our results shows that the chloride ions partially displace the inner-shell water molecules during Gd(III) complex formation under hydrothermal conditions. The Gd-OH2 bond of the partially-hydrated Gd(III) chloro complexes exhibits slightly smaller rates of length contraction (??? 0.005??A??/100????C) for both solutions. The structural aspects of chloride speciation of Gd(III) as measured from this study and of Yb(III) as measured from our previous experiments are consistent with the solubility of these and other REE in deep-sea hydrothermal fluids. ?? 2006 Elsevier B.V. All rights reserved.

  13. Ipl1/Aurora B kinase coordinates synaptonemal complex disassembly with cell cycle progression and crossover formation in budding yeast meiosis

    PubMed Central

    Jordan, Philip; Copsey, Alice; Newnham, Louise; Kolar, Elizabeth; Lichten, Michael; Hoffmann, Eva

    2009-01-01

    Several protein kinases collaborate to orchestrate and integrate cellular and chromosomal events at the G2/M transition in both mitotic and meiotic cells. During the G2/M transition in meiosis, this includes the completion of crossover recombination, spindle formation, and synaptonemal complex (SC) breakdown. We identified Ipl1/Aurora B kinase as the main regulator of SC disassembly. Mutants lacking Ipl1 or its kinase activity assemble SCs with normal timing, but fail to dissociate the central element component Zip1, as well as its binding partner, Smt3/SUMO, from chromosomes in a timely fashion. Moreover, lack of Ipl1 activity causes delayed SC disassembly in a cdc5 as well as a CDC5-inducible ndt80 mutant. Crossover levels in the ipl1 mutant are similar to those observed in wild type, indicating that full SC disassembly is not a prerequisite for joint molecule resolution and subsequent crossover formation. Moreover, expression of meiosis I and meiosis II-specific B-type cyclins occur normally in ipl1 mutants, despite delayed formation of anaphase I spindles. These observations suggest that Ipl1 coordinates changes to meiotic chromosome structure with resolution of crossovers and cell cycle progression at the end of meiotic prophase. PMID:19759266

  14. An Anomalous Formation Pathway for Dislocation-Sulfur Vacancy Complexes in Polycrystalline Monolayer MoS2.

    PubMed

    Yu, Zhi Gen; Zhang, Yong-Wei; Yakobson, Boris I

    2015-10-14

    Two-dimensional (2D) molybdenum disulfide (MoS2) has attracted significant attention recently due to its direct bandgap semiconducting characteristics. Experimental studies on monolayer MoS2 show that S vacancy concentration varies greatly; while recent theoretical studies show that the formation energy of S vacancy is high and thus its concentration should be low. We perform density functional theory calculations to study the structures and energetics of vacancy and interstitial in both grain boundary (GB) and grain interior (GI) in monolayer MoS2 and uncover an anomalous formation pathway for dislocation-double S vacancy (V2S) complexes in MoS2. In this pathway, a (5|7) defect in an S-polar GB energetically favorably converts to a (4|6) defect, which possesses a duality: dislocation and double S vacancy. Its dislocation character allows it to glide into GI through thermal activation at high temperatures, bringing the double vacancy with it. Our findings here not only explain why VS is predominant in exfoliated 2D MoS2 and V2S is predominant in chemical vapor deposition (CVD)-grown 2D MoS2 but also reproduce GB patterns in CVD-grown MoS2. The new pathway for sulfur vacancy formation revealed here provides important insights and guidelines for controlling the quality of monolayer MoS2. PMID:26421881

  15. Cationic cluster formation versus disproportionation of low-valent indium and gallium complexes of 2,2'-bipyridine.

    PubMed

    Lichtenthaler, Martin R; Stahl, Florian; Kratzert, Daniel; Heidinger, Lorenz; Schleicher, Erik; Hamann, Julian; Himmel, Daniel; Weber, Stefan; Krossing, Ingo

    2015-01-01

    Group 13 M(I) compounds often disproportionate into M(0) and M(III). Here, however, we show that the reaction of the M(I) salt of the weakly coordinating alkoxyaluminate [Ga(I)(C6H5F)2](+)[Al(OR(F))4](-) (R(F)=C(CF3)3) with 2,2'-bipyridine (bipy) yields the paramagnetic and distorted octahedral [Ga(bipy)3](2+)(•){[Al(OR(F))4](-)}2 complex salt. While the latter appears to be a Ga(II) compound, both, EPR and DFT investigations assign a ligand-centred [Ga(III){(bipy)3}(•)](2+) radical dication. Surprisingly, the application of the heavier homologue [(I)n(I)(C6H5F)2](+)[Al(OR(F))4](-) leads to aggregation and formation of the homonuclear cationic triangular and rhombic [In3(bipy)6](3+), [In3(bipy)5](3+) and [In4(bipy)6](4+) metal atom clusters. Typically, such clusters are formed under strongly reductive conditions. Analysing the unexpected redox-neutral cationic cluster formation, DFT studies suggest a stepwise formation of the clusters, possibly via their triplet state and further investigations attribute the overall driving force of the reactions to the strong In-In bonds and the high lattice enthalpies of the resultant ligand stabilized [M3](3+){[Al(OR(F))4](-)}3 and [M4](4+){[Al(OR(F))4](-)}4 salts. PMID:26478464

  16. The Axial Element Protein DESYNAPTIC2 Mediates Meiotic Double-Strand Break Formation and Synaptonemal Complex Assembly in Maize.

    PubMed

    Lee, Ding Hua; Kao, Yu-Hsin; Ku, Jia-Chi; Lin, Chien-Yu; Meeley, Robert; Jan, Ya-Shiun; Wang, Chung-Ju Rachel

    2015-09-01

    During meiosis, homologous chromosomes pair and recombine via repair of programmed DNA double-strand breaks (DSBs). DSBs are formed in the context of chromatin loops, which are anchored to the proteinaceous axial element (AE). The AE later serves as a framework to assemble the synaptonemal complex (SC) that provides a transient but tight connection between homologous chromosomes. Here, we showed that DESYNAPTIC2 (DSY2), a coiled-coil protein, mediates DSB formation and is directly involved in SC assembly in maize (Zea mays). The dsy2 mutant exhibits homologous pairing defects, leading to sterility. Analyses revealed that DSB formation and the number of RADIATION SENSITIVE51 (RAD51) foci are largely reduced, and synapsis is completely abolished in dsy2 meiocytes. Super-resolution structured illumination microscopy showed that DSY2 is located on the AE and forms a distinct alternating pattern with the HORMA-domain protein ASYNAPTIC1 (ASY1). In the dsy2 mutant, localization of ASY1 is affected, and loading of the central element ZIPPER1 (ZYP1) is disrupted. Yeast two-hybrid and bimolecular fluorescence complementation experiments further demonstrated that ZYP1 interacts with DSY2 but does not interact with ASY1. Therefore, DSY2, an AE protein, not only mediates DSB formation but also bridges the AE and central element of SC during meiosis. PMID:26296964

  17. Discovery of multi-seeded multi-mode formation of embedded clusters in the Rosette Molecular Complex

    E-print Network

    J. Z. Li; M. D. Smith

    2005-04-01

    An investigation based on data from the spatially complete 2MASS Survey reveals that a remarkable burst of clustered star formation is taking place throughout the south-east quadrant of the Rosette Molecular Cloud. Compact clusters are forming in a multi-seeded mode, in parallel and at various places. In addition, sparse aggregates of embedded young stars are extensively distributed. In this study, we report the primary results and implications for high-mass and clustered star formation in giant molecular clouds. In particular, we incorporate for the first time the birth of medium to low-mass stars into the scenario of sequential formation of OB clusters. Following the emergence of the young OB cluster NGC 2244, a variety of manifestations of forming clusters of medium to high mass appear in the vicinity of the swept-up layer of the H{\\small II} region as well as further into the molecular cloud. The embedded clusters appear to form in a structured manner, which suggests they follow tracks laid out by the decay of macroturbulence. We address the possible origins of the turbulence. This leads us to propose a tree model to interpret the neat spatial distribution of clusters within a large section of the Rosette complex. Prominent new generation OB clusters are identified at the root of the tree pattern.

  18. Cationic cluster formation versus disproportionation of low-valent indium and gallium complexes of 2,2'-bipyridine

    PubMed Central

    Lichtenthaler, Martin R.; Stahl, Florian; Kratzert, Daniel; Heidinger, Lorenz; Schleicher, Erik; Hamann, Julian; Himmel, Daniel; Weber, Stefan; Krossing, Ingo

    2015-01-01

    Group 13 MI compounds often disproportionate into M0 and MIII. Here, however, we show that the reaction of the MI salt of the weakly coordinating alkoxyaluminate [GaI(C6H5F)2]+[Al(ORF)4]? (RF=C(CF3)3) with 2,2'-bipyridine (bipy) yields the paramagnetic and distorted octahedral [Ga(bipy)3]2+•{[Al(ORF)4]?}2 complex salt. While the latter appears to be a GaII compound, both, EPR and DFT investigations assign a ligand-centred [GaIII{(bipy)3}•]2+ radical dication. Surprisingly, the application of the heavier homologue [InI(C6H5F)2]+[Al(ORF)4]? leads to aggregation and formation of the homonuclear cationic triangular and rhombic [In3(bipy)6]3+, [In3(bipy)5]3+ and [In4(bipy)6]4+ metal atom clusters. Typically, such clusters are formed under strongly reductive conditions. Analysing the unexpected redox-neutral cationic cluster formation, DFT studies suggest a stepwise formation of the clusters, possibly via their triplet state and further investigations attribute the overall driving force of the reactions to the strong In?In bonds and the high lattice enthalpies of the resultant ligand stabilized [M3]3+{[Al(ORF)4]?}3 and [M4]4+{[Al(ORF)4]?}4 salts. PMID:26478464

  19. The complexity of phosphorylated H2AX foci formation and DNA repair assembly at DNA double-strand breaks

    PubMed Central

    Nakamura, Asako J.; Rao, V. Ashutosh; Pommier, Yves; Bonner, William M.

    2011-01-01

    The maintenance of genome stability requires efficient DNA double-stranded break (DSB) repair mediated by the phosphorylation of multiple histone H2AX molecules near the break sites. The phosphorylated H2AX (?H2AX) molecules form foci covering many megabases of chromatin. the formation of ?-H2AX foci is critical for efficient DNA damage response (DDR) and for the maintenance of genome stability, however, the mechanisms of protein organization in foci is largely unknown. To investigate the nature of ?H2AX foci formation, we analyzed the distribution of ?H2AX and other DDR proteins at DSB sites using a variety of techniques to visualize, expand and partially disrupt chromatin. We report here that ?H2AX foci change composition during the cell cycle, with proteins 53BP1, NBS1 and MRE11 dissociating from foci in G2 and mitosis to return at the beginning of the following G1. In contrast, MDC1 remained colocalized with ?-H2AX during mitosis. In addition, while ?H2AX was found to span large domains flanking DSB sites, 53BP1 and NBS1 were more localized and MDC1 colocalized in doublets in foci. H2AX and MDC1 were found to be involved in chromatin relaxation after DSB formation. Our data demonstrates that the DSB repair focus is a heterogeneous and dynamic structure containing internal complexity. PMID:20046100

  20. Reactive desorption electrospray ionization linear ion trap mass spectrometry of latest-generation counterfeit antimalarials via noncovalent complex formation.

    PubMed

    Nyadong, Leonard; Green, Michael D; De Jesus, Victor R; Newton, Paul N; Fernández, Facundo M

    2007-03-01

    Desorption electrospray ionization mass spectrometry (DESI MS) is rapidly becoming accepted as a powerful surface characterization tool for a wide variety of samples in the open air. Besides its well-established high-throughput capabilities, a unique feature of DESI is that chemical reactions between the charged spray microdroplets and surface molecules can be exploited to enhance ionization. Here, we present a rapid screening assay for artesunate antimalarials based on reactive DESI. Artesunate is a vital therapy for Plasmodium falciparum malaria, but artesunate tablets have been counterfeited on a very large scale in SE Asia, and more recently in Africa. For this reason, faster and more sensitive screening tests are urgently needed. The proposed DESI assay is based on the formation of stable noncovalent complexes between linear alkylamines dissolved in the DESI spray solution and artesunate molecules exposed on the tablet surface. We found that, depending on amine type and concentration, a sensitivity gain of up to 170x can be obtained, in comparison to reagent-less DESI. Hexylamine (Hex), dodecylamine (DDA), and octadecylamine (ODA) produced proton-bound noncovalent complexes with gas-phase stabilities, increasing in the order [M + Hex + H]+ < [M + DDA + H]+ < [M + ODA + H]+. Tandem MS experiments revealed that complex formation occurred by hydrogen bonding between the amine nitrogen and the ether-like moieties within the artesunate lactone ring. After the reactive DESI assay was fully characterized, it was applied to a set of recently collected suspicious artesunate tablets purchased in shops and pharmacies in SE Asia. Not only did we find that these samples were counterfeits, but we also detected the presence of several wrong active ingredients. Of particular concern was the positive detection of artesunate traces in the surface of one of the samples, which we quantified with standard chromatographic techniques. PMID:17269655

  1. Major kinetic features of the formation of the. pi. -complex of cobalt hydrocarbonyl with olefin and its conversion to R'Co(CO)/sub 4/

    SciTech Connect

    Kardashina, L.F.; Sapunov, V.N.

    1986-09-01

    The major kinetic features were studied for the formation of the ..pi..-complex of cobalt hydrocarbonyl with 1-hexene and its conversion to R'Co(CO)/sub 4/. The composition of the catalytically active ..pi..-complex with the olefin was established. The slow steps of the hydroformylation reaction were determined. A procedure was proposed for the preparation of solutions of cobalt hydrocarbonyl containing a ..pi..-complex with an olefin or R'Co(CO)/sub 4/.

  2. A Submillimetre Study of Massive Star Formation Within the W51 Complex and Infrared Dark Clouds

    NASA Astrophysics Data System (ADS)

    Parsons, Harriet Alice Louise

    Despite its importance the fundamental question of how massive stars form remains unanswered, with improvements to both models and observations having crucial roles to play. To quote Bate et al. (2003) computational models of star formation are limited because "conditions in molecular clouds are not sufficiently well understood to be able to select a representative sample of cloud cores for the initial conditions". It is this notion that motivates the study of the environments within Giant Molecular Clouds (GMCs) and Infrared Dark Clouds (IRDCs), known sites of massive star formation, at the clump and core level. By studying large populations of these objects, it is possible to make conclusions based on global properties. With this in mind I study the dense molecular clumps within one of the most massive GMCs in the Galaxy: the W51 GMC. New observations of the W51 GMC in the 12CO, 13CO and C18O (3-2) transitions using the HARP instrument on the JCMT are presented. With the help of the clump finding algorithm CLUMPFIND a total of 1575 dense clumps are identified of which 1130 are associated with the W51 GMC, yielding a dense mass reservoir of 1.5 × 10^5 M contained within these clumps. Of these clumps only 1% by number are found to be super-critical, yielding a super-critical clump formation efficiency of 0.5%, below current SFE estimates of the region. This indicates star formation within the W51 GMC will diminish over time although evidence from the first search for molecular outflows presents the W51 GMC in an active light with a lower limit of 14 outflows. The distribution of the outflows within the region searched found them concentrated towards the W51A region. Having much smaller sizes and masses, obtaining global properties of clumps and cores within IRDCs required studying a large sample of these objects. To do this pre-existing data from the SCUBA Legacy Catalogue was utilised to study IRDCs within a catalogues based on 8 ?m data. This data identified 154 IRDC cores that are detected at 850 ?m and 51 cores that were not. This work suggests that cores not detected at 850 ?m are low mass, low column density and low temperature cores that are below the sensitivity limit of SCUBA at 850 ?m Utilising observations at 24 ?m from the Spitzer space telescope, allows for an investigation of current star formation by looking for warm embedded objects within the cores. This work reveals 69% of the IRDC cores have 24 ?m embedded objects. IRDC cores without associated 24 ?m emission ("starless" IRDC cores) may have yet to form stars, or may contain low mass YSOs below the detection limit. If it is assumed that cores without 24 ?m embedded sources are at an earlier evolutionary stage to cores with embedded objects a statistical lifetime for the quiescent phase of a few 10^3 - 10^4 years is derived.

  3. Heterobimetallic complexes of rhodium dibenzotetramethylaza[14]annulene [(tmtaa)Rh-M]: formation, structures, and bond dissociation energetics.

    PubMed

    Imler, Gregory H; Peters, Garvin M; Zdilla, Michael J; Wayland, Bradford B

    2015-01-01

    A rhodium(II) dibenzotetramethylaza[14]annulene dimer ([(tmtaa)Rh]2) undergoes metathesis reactions with [CpCr(CO)3]2, [CpMo(CO)3]2, [CpFe(CO)2]2, [Co(CO)4]2, and [Mn(CO)5]2 to form (tmtaa)Rh-M complexes (M = CrCp(CO)3, MoCp(CO)3, FeCp(CO)2, Co(CO)4, or Mn(CO)5). Molecular structures were determined for (tmtaa)Rh-FeCp(CO)2, (tmtaa)Rh-Co(?-CO)(CO)3, and (tmtaa)Rh-Mn(CO)5 by X-ray diffraction. Equilibrium constants measured for the metathesis reactions permit the estimation of several (tmtaa)Rh-M bond dissociation enthalpies (Rh-Cr = 19 kcal mol(-1), Rh-Mo = 25 kcal mol(-1), and Rh-Fe = 27 kcal mol(-1)). Reactivities of the bimetallic complexes with synthesis gas to form (tmtaa)Rh-C(O)H and M-H are surveyed. PMID:25529638

  4. Spectrophotometric determination of benzydamine HCl, levamisole HCl and mebeverine HCl through ion-pair complex formation with methyl orange.

    PubMed

    El-Didamony, Akram M

    2008-03-01

    A simple, rapid and sensitive spectrophotometric method has been proposed for the assay of benzydamine HCl (BENZ), levamisole HCl (LEV) and mebeverine HCl (MBV) in bulk and pharmaceutical formulations. The method based on the reaction of the selected drugs with methyl orange (MO) in buffered aqueous solution at pH 3.6. The formed yellow ion-pair complexes were extracted with dichloromethane and measured quantitatively with maximum absorption at 422 nm. The analytical parameters and their effects on the reported systems are investigated. The extracts are intensely colored and very stable at room temperature. The calibration graphs were linear over the concentration range of 2-10 microg ml(-1) for BENZ, 6-24 microg ml(-1) for LEV and 4-14 microg ml(-1) for MBV. The stoichiometry of the reaction was found to be 1:1 in all cases and the conditional stability constant (K(f)) of the complexes have been calculated. The proposed method was successfully extended to pharmaceutical preparations-tablets. Excipients used as additive in commercial formulations did not interfere in the analysis. The proposed method can be recommended for quality control and routine analysis where time, cost effectiveness and high specificity of analytical technique are of great importance. PMID:17625955

  5. Spectrophotometric determination of benzydamine HCl, levamisole HCl and mebeverine HCl through ion-pair complex formation with methyl orange

    NASA Astrophysics Data System (ADS)

    El-Didamony, Akram M.

    2008-03-01

    A simple, rapid and sensitive spectrophotometric method has been proposed for the assay of benzydamine HCl (BENZ), levamisole HCl (LEV) and mebeverine HCl (MBV) in bulk and pharmaceutical formulations. The method based on the reaction of the selected drugs with methyl orange (MO) in buffered aqueous solution at pH 3.6. The formed yellow ion-pair complexes were extracted with dichloromethane and measured quantitatively with maximum absorption at 422 nm. The analytical parameters and their effects on the reported systems are investigated. The extracts are intensely colored and very stable at room temperature. The calibration graphs were linear over the concentration range of 2-10 ?g ml -1 for BENZ, 6-24 ?g ml -1 for LEV and 4-14 ?g ml -1 for MBV. The stoichiometry of the reaction was found to be 1:1 in all cases and the conditional stability constant ( Kf) of the complexes have been calculated. The proposed method was successfully extended to pharmaceutical preparations-tablets. Excipients used as additive in commercial formulations did not interfere in the analysis. The proposed method can be recommended for quality control and routine analysis where time, cost effectiveness and high specificity of analytical technique are of great importance.

  6. The TrxG Complex Mediates Cytokine Induced De Novo Enhancer Formation in Islets

    PubMed Central

    Hurley, Peter; Dhillon, Jasmine; Gill, Amol; Whiting, Cheryl

    2015-01-01

    To better understand how ?-cells respond to proinflammatory cytokines we mapped the locations of histone 3 lysine 4 monomethylation (H3K4me1), a post-translational histone modification enriched at active and poised cis-regulatory regions, in IFN?, Il-1?, and TNF? treated pancreatic islets. We identified 96,721 putative cis-regulatory loci, of which 3,590 were generated de novo, 3,204 had increased H3K4me1, and 5,354 had decreased H3K4me1 in IFN?, Il-1?, and TNF? exposed islets. Roughly 10% of the de novo and increased regions were enriched for the repressive histone modification histone 3 lysine 27 trimethylation (H3K27me3) in untreated cells, and these were frequently associated with chemokine genes. We show that IFN?, Il-1?, and TNF? exposure overcomes this repression and induces chemokine gene activation in as little as three hours, and that this expression persists for days in absence of continued IFN?, Il-1?, and TNF? exposure. We implicate trithorax group (TrxG) complexes as likely players in the conversion of these repressed loci to an active state. To block the activity of these complexes, we suppressed Wdr5, a core component of the TrxG complexes, and used the H3K27me3 demethylase inhibitor GSK-J4. We show that GSK-J4 is particularly effective in blunting IFN?, Il-1?, and TNF?-induced chemokine gene expression in ?-cells; however, it induced significant islet-cell apoptosis and ?-cell dysfunction. Wdr5 suppression also reduced IFN?, Il-1?, and TNF? induced chemokine gene expression in ?-cells without affecting islet-cell survival or ?-cell function after 48hrs, but did begin to increase islet-cell apoptosis and ?-cell dysfunction after four days of treatment. Taken together these data suggest that the TrxG complex is potentially a viable target for preventing cytokine induced chemokine gene expression in ?-cells. PMID:26505193

  7. Formation and decay of the arrestin·rhodopsin complex in native disc membranes.

    PubMed

    Beyrière, Florent; Sommer, Martha E; Szczepek, Michal; Bartl, Franz J; Hofmann, Klaus Peter; Heck, Martin; Ritter, Eglof

    2015-05-15

    In the G protein-coupled receptor rhodopsin, light-induced cis/trans isomerization of the retinal ligand triggers a series of distinct receptor states culminating in the active Metarhodopsin II (Meta II) state, which binds and activates the G protein transducin (Gt). Long before Meta II decays into the aporeceptor opsin and free all-trans-retinal, its signaling is quenched by receptor phosphorylation and binding of the protein arrestin-1, which blocks further access of Gt to Meta II. Although recent crystal structures of arrestin indicate how it might look in a precomplex with the phosphorylated receptor, the transition into the high affinity complex is not understood. Here we applied Fourier transform infrared spectroscopy to monitor the interaction of arrestin-1 and phosphorylated rhodopsin in native disc membranes. By isolating the unique infrared signature of arrestin binding, we directly observed the structural alterations in both reaction partners. In the high affinity complex, rhodopsin adopts a structure similar to Gt-bound Meta II. In arrestin, a modest loss of ?-sheet structure indicates an increase in flexibility but is inconsistent with a large scale structural change. During Meta II decay, the arrestin-rhodopsin stoichiometry shifts from 1:1 to 1:2. Arrestin stabilizes half of the receptor population in a specific Meta II protein conformation, whereas the other half decays to inactive opsin. Altogether these results illustrate the distinct binding modes used by arrestin to interact with different functional forms of the receptor. PMID:25847250

  8. A Strategy for Complex Dimer Formation When Biomimicry Fails: Total Synthesis of Ten Coccinellid Alkaloids

    PubMed Central

    2015-01-01

    Although dimeric natural products can often be synthesized in the laboratory by directly merging advanced monomers, these approaches sometimes fail, leading instead to non-natural architectures via incorrect unions. Such a situation arose during our studies of the coccinellid alkaloids, when attempts to directly dimerize Nature’s presumed monomeric precursors in a putative biomimetic sequence afforded only a non-natural analogue through improper regiocontrol. Herein, we outline a unique strategy for dimer formation that obviates these difficulties, one which rapidly constructs the coccinellid dimers psylloborine A and isopsylloborine A through a terminating sequence of two reaction cascades that generate five bonds, five rings, and four stereocenters. In addition, a common synthetic intermediate is identified which allows for the rapid, asymmetric formal or complete total syntheses of eight monomeric members of the class. PMID:24959981

  9. A strategy for complex dimer formation when biomimicry fails: total synthesis of ten coccinellid alkaloids.

    PubMed

    Sherwood, Trevor C; Trotta, Adam H; Snyder, Scott A

    2014-07-01

    Although dimeric natural products can often be synthesized in the laboratory by directly merging advanced monomers, these approaches sometimes fail, leading instead to non-natural architectures via incorrect unions. Such a situation arose during our studies of the coccinellid alkaloids, when attempts to directly dimerize Nature's presumed monomeric precursors in a putative biomimetic sequence afforded only a non-natural analogue through improper regiocontrol. Herein, we outline a unique strategy for dimer formation that obviates these difficulties, one which rapidly constructs the coccinellid dimers psylloborine A and isopsylloborine A through a terminating sequence of two reaction cascades that generate five bonds, five rings, and four stereocenters. In addition, a common synthetic intermediate is identified which allows for the rapid, asymmetric formal or complete total syntheses of eight monomeric members of the class. PMID:24959981

  10. On-Surface Observation of the Formation of Organometallic Complex in a Supramolecular Network

    NASA Astrophysics Data System (ADS)

    Li, Yibao; Cheng, Linxiu; Liu, Chunhua; Liu, Wei; Fan, Yulan; Fan, Xiaolin; Zeng, Qingdao

    2015-06-01

    The on-surface formation of organometallic monomers or oligomers, especially in supramolecular network, attracts an extensive interest for chemists and material scientist. In this work, we have investigated metal coordination between zinc (II) phthalocyanine (ZnPc) and 1, 3-di (4-pyridyl) propane (dipy-pra) in the 2, 6, 11-tricarboxydecyloxy-3, 7, 10-triundecyloxy triphenylene (asym-TTT) supramolecular template by means of scanning tunneling microscopy (STM) on highly oriented pyrolytic graphite (HOPG) substrate under ambient conditions. The experimental results demonstrate that every two ZnPc molecules in one nano-reactor connect with each other through one dipy-pra molecule by metal-coordination interaction. In this coordinating process, the template of asym-TTT supramolecular networks plays a significant role.

  11. On-Surface Observation of the Formation of Organometallic Complex in a Supramolecular Network

    PubMed Central

    Li, Yibao; Cheng, Linxiu; Liu, Chunhua; Liu, Wei; Fan, Yulan; Fan, Xiaolin; Zeng, Qingdao

    2015-01-01

    The on-surface formation of organometallic monomers or oligomers, especially in supramolecular network, attracts an extensive interest for chemists and material scientist. In this work, we have investigated metal coordination between zinc (II) phthalocyanine (ZnPc) and 1, 3-di (4-pyridyl) propane (dipy-pra) in the 2, 6, 11-tricarboxydecyloxy-3, 7, 10-triundecyloxy triphenylene (asym-TTT) supramolecular template by means of scanning tunneling microscopy (STM) on highly oriented pyrolytic graphite (HOPG) substrate under ambient conditions. The experimental results demonstrate that every two ZnPc molecules in one nano-reactor connect with each other through one dipy-pra molecule by metal-coordination interaction. In this coordinating process, the template of asym-TTT supramolecular networks plays a significant role. PMID:26061532

  12. Structural rearrangements preceding dioxygen formation by the water oxidation complex of photosystem II.

    PubMed

    Bao, Han; Burnap, Robert L

    2015-11-10

    Photosynthetic water oxidation is catalyzed by the Mn4CaO5 cluster of photosystem II. Recent studies implicate an oxo bridge atom, O5, of the Mn4CaO5 cluster, as the "slowly exchanging" substrate water molecule. The D1-V185N mutant is in close vicinity of O5 and known to extend the lag phase and retard the O2 release phase (slow phase) in this critical last [Formula: see text] transition of water oxidation. The pH dependence, hydrogen/deuterium (H/D) isotope effect, and temperature dependence on the O2 release kinetics for this mutant were studied using time-resolved O2 polarography, and comparisons were made with WT and two mutants of the putative proton gate D1-D61. Both kinetic phases in V185N are independent of pH and buffer concentration and have weaker H/D kinetic isotope effects. Each phase is characterized by a parallel or even lower activation enthalpy but a less favorable activation entropy than the WT. The results indicate new rate-determining steps for both phases. It is concluded that the lag does not represent inhibition of proton release but rather, slowing of a previously unrecognized kinetic phase involving a structural rearrangement or tautomerism of the S3 (+) ground state as it approaches a configuration conducive to dioxygen formation. The parallel impacts on both the lag and O2 formation phases suggest a common origin for the defects surmised to be perturbations of the H-bond network and the water cluster adjacent to O5. PMID:26508637

  13. The complex interplay of iron, biofilm formation, and mucoidy affecting antimicrobial resistance of Pseudomonas aeruginosa

    PubMed Central

    Oglesby-Sherrouse, Amanda G.; Djapgne, Louise; Nguyen, Angela T.; Vasil, Adriana I.; Vasil, Michael L.

    2014-01-01

    Pseudomonas aeruginosa is a Gram-negative opportunistic bacterial pathogen that is refractory to a variety of current antimicrobial therapeutic regimens. Complicating treatment of such infections is the ability of P. aeruginosa to form biofilms, as well as several innate and acquired resistance mechanisms. Previous studies suggest iron plays a role in resistance to antimicrobial therapy, including the efficacy of an FDA-approved iron chelator, deferasirox (DSX), or Gallium, an iron analog, in potentiating antibiotic-dependent killing of P. aeruginosa biofilms. Here we show that iron-replete conditions enhance resistance of P. aeruginosa nonbiofilm growth against tobramycin and tigecycline. Interestingly, the mechanism of iron-enhanced resistance to each of these antibiotics is distinct. Whereas pyoverdine-mediated iron uptake is important for optimal resistance to tigecycline, it does not enhance tobramycin resistance. In contrast, heme supplementation results in increased tobramycin resistance, while having no significant effect on tigecycline resistance. Thus, non-siderophore bound iron plays an important role in resistance to tobramycin, while pyoverdine increases the ability of P. aeruginosa to resist tigecycline treatment. Lastly, we show that iron increases the minimal concentration of tobramycin, but not tigecycline, required to eradicate P. aeruginosa biofilms. Moreover, iron depletion blocks the previous observed induction of biofilm formation by sub-inhibitory concentrations of tobramycin, suggesting iron and tobramycin signal through overlapping regulatory pathways to affect biofilm formation. These data further support the role of iron in P. aeruginosa antibiotic resistance, providing yet another compelling case for targeting iron acquisition for future antimicrobial drug development. PMID:24436170

  14. Mechanistic studies on the formation of linear polyethylene chain catalyzed by palladium phosphine-sulfonate complexes: experiment and theoretical studies.

    PubMed

    Noda, Shusuke; Nakamura, Akifumi; Kochi, Takuya; Chung, Lung Wa; Morokuma, Keiji; Nozaki, Kyoko

    2009-10-01

    Linear polyethylene propagation starting from Pd phosphine-sulfonate complexes, Pd(CH(3))(L)(Ar(2)PC(6)H(4)SO(3)) (L = 2,6-lutidine, Ar = o-MeOC(6)H(4) (2a) and L = pyridine, Ar = Ph (2b)), was studied both experimentally and theoretically. Experimentally, highly linear polyethylene was obtained with Pd(CH(3))(L)(Ar(2)PC(6)H(4)SO(3)) complexes 2a and 2b. Formation of a long alkyl-substituted palladium complex (3) was detected as a result of ethylene oligomerization on a palladium center starting from methylpalladium complex. Additionally, well-defined ethyl and propyl complexes (6(Et) and 6(Pr)) were synthesized as stable n-alkyl palladium complexes. In spite of the existence of beta-hydrogens, the beta-hydride elimination to give 1-alkenes was very slow or negligible in all cases. On the other hand, isomerization of 1-hexene in the presence of a methylpalladium/phosphine-sulfonate complex 2a indicated that this catalyst system actually undergoes beta-hydride elimination and reinsertion to release internal alkenes. On the theoretical side, the relative energies were calculated for intermediates and transition states for chain-growth, chain-walking, and chain-transfer on the basis of the starting model complex Pd(n-C(3)H(7))(pyridine)(o-Me(2)PC(6)H(4)SO(3)) (8). First, cis/trans isomerization process via the Berry's pseudorotation was proposed for the Pd/phosphine-sulfonate system. The second oxygen atom of sulfonate group is involved in the isomerization process as the associative ligand, which is one of the most unique natures of the sulfonate group. Chain propagation was suggested to take place from the less stable alkylPd(ethylene) complex 10' with the TS of 27.4/27.7 ((E+ZPC)/G) kcal/mol. Possible beta-hydride elimination was suggested to occur under low concentration of ethylene: the highest-energy transition state to override for beta-hydride elimination was either >37.4/25.3 kcal/mol (TS(9-12)) or 29.1/27.4 kcal/mol (TS(8'-9') to reach 12'). The ethylene insertion to the iso-alkylpalladium species (14') is allowed via a TS of 28.6/29.1 kcal/mol (TS(14'-15')), slightly higher in energy than that for the normal-alkylpalladium species (TS(10'-11')). Easy chain transfer was suggested to proceed from the more stable PdH(olefin) complex 12' if beta-hydride elimination to 12' does take place. Thus, the production of linear polyethylene with high molecular weight under ethylene pressure suggests that the cis and trans PdH(alkene)(phosphine-sulfonate) complexes (12 and 12') are merely accessible in the presence of excess amount of ethylene. PMID:19746977

  15. Competitive formation of DNA linkage isomers by a trinuclear platinum complex and the influence of pre-association.

    PubMed

    Moniodis, Joseph J; Thomas, Donald S; Davies, Murray S; Berners-Price, Susan J; Farrell, Nicholas P

    2015-02-28

    2D [(1)H, (15)N] HSQC NMR spectroscopy has been used to monitor the reaction of fully (15)N-labelled [{trans-PtCl(NH3)2}2(?-trans-Pt(NH3)2{NH2(CH2)6NH2}2)](4+) (BBR3464 ((15)N-1)) with the 14-mer duplex (5'-{d(ATACATG(7)G(8)TACATA)}-3'·5'-{d(TATG(18)TACCATG(25)TAT)}-3' or I) at pH 5.4 and 298 K, to examine the possible formation of 1,4 and 1,5-GG adducts in both 5'-5' and 3'-3' directions. In a previous study, the binding of the dinuclear 1,1/t,t to I showed specific formation of the 5'-5' 1,4 G(8)G(18) cross-link, whereas in this case a mixture of adducts were formed. Initial (1)H NMR spectra suggested the presence of two pre-associated states aligned in both directions along the DNA. The pre-association was studied in the absence of covalent binding, by use of the "non-covalent" analog [{trans-Pt(NH3)3}2(?-trans-Pt(NH3)2{NH2(CH2)6NH2}2)](6+) (AH44, 0). Chemical shift changes of DNA protons combined with NOE connectivities between CH2 and NH3 protons of 0 and the adenine H2 protons on I show that two different molecules of 0 are bound in the minor groove. Molecular dynamic simulations were performed to study the interaction of 0 at the two pre-association sites using charges derived from density functional theory (DFT) calculations. Structures where the central platinum is located in the minor groove and the aliphatic linkers extend into the major groove, in opposite directions, often represent the lowest energy structures of the snapshots selected. In the reaction of (15)N-1 and I, following the pre-association step, aquation occurs to give the mono aqua monochloro species 2, with a rate constant of 3.43 ± 0.03 × 10(-5) s(-1). There was evidence for two monofunctional adducts (3, 4) bound to the 3' (G8) and 5' (G7) residues and the asymmetry of the (1)H,(15)N peak for 3 suggested two conformers of the 3' adduct, aligned in different directions along the DNA. The rate constant for combined monofunctional adduct formation (0.6 ± 0.1 M(-1)) is ca. 2-fold lower for 1 compared to 1,1/t,t, whereas the rate constant for conversion of the combined monofunctional species to combined bifunctional adducts (5) (8.0 ± 0.2 × 10(-5) s(-1)) is two-fold higher. PMID:25407024

  16. Viral Glycoprotein Complex Formation, Essential Function and Immunogenicity in the Guinea Pig Model for Cytomegalovirus

    PubMed Central

    Maddux, Sarah; Choi, K. Yeon; McGregor, Alistair

    2015-01-01

    Development of a cytomegalovirus (CMV) vaccine is a major public health priority due to the risk of congenital infection. A key component of a vaccine is thought to be an effective neutralizing antibody response against the viral glycoproteins necessary for cell entry. Species specificity of human CMV (HCMV) precludes direct studies in an animal model. The guinea pig is the only small animal model for congenital cytomegalovirus infection. Analysis of the guinea pig CMV (GPCMV) genome indicates that it potentially encodes homologs to the HCMV glycoproteins (including gB, gH, gL, gM, gN and gO) that form various cell entry complexes on the outside of the virus: gCI (gB); gCII (gH/gL/gO); gCIII (gM/gN). The gB homolog (GP55) has been investigated as a candidate subunit vaccine but little is known about the other homolog proteins. GPCMV glycoproteins were investigated by transient expression studies which indicated that homolog glycoproteins to gN and gM, or gH, gL and gO were able to co-localize in cells and generate respective homolog complexes which could be verified by immunoprecipitation assays. ELISA studies demonstrated that the individual complexes were highly immunogenic in guinea pigs. The gO (GP74) homolog protein has 13 conserved N-glycosylation sites found in HCMV gO. In transient expression studies, only the glycosylated protein is detected but in virus infected cells both N-glycosylated and non-glycosylated gO protein were detected. In protein interaction studies, a mutant gO that lacked N-glycosylation sites had no impact on the ability of the protein to interact with gH/gL which indicated a potential alternative function associated with these sites. Knockout GPCMV BAC mutagenesis of the respective glycoprotein genes (GP55 for gB, GP75 for gH, GP115 for gL, GP100 for gM, GP73 for gN and GP74 for gO) in separate reactions was lethal for virus regeneration on fibroblast cells which demonstrated the essential nature of the GPCMV glycoproteins. The gene knockout results were similar to HCMV, except in the case of the gO homolog, which was non-essential in epithelial tropic virus but essential in lab adapted GPCMV. Overall, the findings demonstrate the similarity between HCMV and GPCMV glycoproteins and strengthen the relevance of this model for development of CMV intervention strategies. PMID:26267274

  17. Visible Light Driven Nanosecond Bromide Oxidation by a Ru Complex with Subsequent Br-Br Bond Formation.

    PubMed

    Li, Guocan; Ward, William M; Meyer, Gerald J

    2015-07-01

    Visible light excitation of [Ru(deeb)(bpz)2](2+) (deeb = 4,4'-diethylester-2,2'-bipyridine; bpz = 2,2'-bipyrazine), in Br(-) acetone solutions, led to the formation of Br-Br bonds in the form of dibromide, Br2(•-). This light reactivity stores ?1.65 eV of free energy for milliseconds. Combined (1)H NMR, UV-vis and photoluminescence measurements revealed two distinct mechanisms. The first involves diffusional quenching of the excited state by Br(-) with a rate constant of (8.1 ± 0.1) × 10(10) M(-1) s(-1). At high Br(-) concentrations, an inner-sphere pathway is dominant that involves the association of Br(-), most likely with the 3,3'-H atoms of a bpz ligand, before electron transfer from Br(-) to the excited state, ket = (2.5 ± 0.3) × 10(7) s(-1). In both mechanisms, the direct photoproduct Br(•) subsequently reacts with Br(-) to yield dibromide, Br(•) + Br(-) ? Br2(•-). Under pseudo-first-order conditions, this occurs with a rate constant of (1.1 ± 0.4) × 10(10) M(-1) s(-1) that was, within experimental error, the same as that measured when Br(•) were generated with ultraviolet light. Application of Marcus theory to the sensitized reaction provided an estimate of the Br(•) formal reduction potential E(Br(•)/Br(-)) = 1.22 V vs SCE in acetone, which is about 460 mV less positive than the accepted value in H2O. The results demonstrate that Br(-) oxidation by molecular excited states can be rapid and useful for solar energy conversion. PMID:26085129

  18. The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription.

    PubMed

    Santoro, Raffaella; Li, Junwei; Grummt, Ingrid

    2002-11-01

    Epigenetic control mechanisms silence about half of the ribosomal RNA (rRNA) genes in metabolically active cells. In exploring the mechanism by which the active or silent state of rRNA genes is inherited, we found that NoRC, a nucleolar remodeling complex containing Snf2h (also called Smarca5, SWI/SNF-related matrix-associated actin-dependent regulator of chromatin, subfamily a, member 5), represses rDNA transcription. NoRC mediates rDNA silencing by recruiting DNA methyltransferase and histone deacetylase activity to the rDNA promoter, thus establishing structural characteristics of heterochromatin such as DNA methylation, histone hypoacetylation and methylation of the Lys9 residue of histone H3. These results indicate that active and inactive rRNA genes can be demarcated by their associated proteins, and link chromatin remodeling to DNA methylation and specific histone modifications. PMID:12368916

  19. Structural effects and nanoparticle size are essential for quantum dots-metallothionein complex formation.

    PubMed

    Tmejova, Katerina; Hynek, David; Kopel, Pavel; Gumulec, Jaromir; Krizkova, Sona; Guran, Roman; Heger, Zbynek; Kalina, Michal; Vaculovicova, Marketa; Adam, Vojtech; Kizek, Rene

    2015-10-01

    Interaction between semiconductor nanocrystals, cadmium telluride quantum dots (CdTe QDs) capped with mercaptosuccinic acid (MSA) and metallothionein (MT) was investigated. MSA-capped CdTe QDs were synthesized in aqueous solution. Mixture of MT and MSA-capped CdTe QDs has been investigated by various analytical methods as follows: tris-tricine gel electrophoresis, fluorescence evaluation and electrochemical detection of catalysed hydrogen evolution. The obtained results demonstrate that MSA-capped CdTe QDs and MT do not create firmly bound stabile complex. However, weak electrostatic interactions contribute to the interaction of MT with MSA-capped CdTeQDs. It can be concluded that QDs size influences the QDs and MT interaction. The smallest QDs had the highest affinity to MT and vice versa. PMID:26209776

  20. Angiopoietin-like protein 4 inhibition of lipoprotein lipase: evidence for reversible complex formation.

    PubMed

    Lafferty, Michael J; Bradford, Kira C; Erie, Dorothy A; Neher, Saskia B

    2013-10-01

    Elevated triglycerides are associated with an increased risk of cardiovascular disease, and lipoprotein lipase (LPL) is the rate-limiting enzyme for the hydrolysis of triglycerides from circulating lipoproteins. The N-terminal domain of angiopoietin-like protein 4 (ANGPTL4) inhibits LPL activity. ANGPTL4 was previously described as an unfolding molecular chaperone of LPL that catalytically converts active LPL dimers into inactive monomers. Our studies show that ANGPTL4 is more accurately described as a reversible, noncompetitive inhibitor of LPL. We find that inhibited LPL is in a complex with ANGPTL4, and upon dissociation, LPL regains lipase activity. Furthermore, we have generated a variant of ANGPTL4 that is dependent on divalent cations for its ability to inhibit LPL. We show that LPL inactivation by this regulatable variant of ANGPTL4 is fully reversible after treatment with a chelator. PMID:23960078

  1. Tempest in a glass tube: A helical vortex formation in a complex plasma

    NASA Astrophysics Data System (ADS)

    Saitou, Yoshifumi; Ishihara, Osamu; Ishihara

    2014-12-01

    A collective behavior of dust particles in a complex plasma with a magnetic field (up to 4 kG) is investigated. Dust particles form a dust disk which is rotating in a horizontal plane pushed by ions rotating with the E × B drift as a trigger force. The thickness of the disk is determined by controlling the experimental conditions. The disk rotates in a horizontal plane and forms a two-dimensional thin structure when the pressure pAr is relatively high. The dust particles are ejected from near the disk center and form a rotation in the vertical plane and, hence, forms a helical vortex when the disk is thick for relatively low pAr . The reason the dust disk has the different thickness is due to the neutral pressure. Under a higher (lower) neutral gas pressure, the disk becomes two (three) dimensional due to the influence of the neutral drag force.

  2. Modeling Networks and Dynamics in Complex Systems: from Nano-Composites to Opinion Formation

    NASA Astrophysics Data System (ADS)

    Shi, Feng

    Complex networks are ubiquitous in systems of physical, biological, social or technological origin. Components in those systems range from as large as cities in power grids, to as small as molecules in metabolic networks. Since the dawn of network science, significant attention has focused on the implications of dynamics in establishing network structure and the impact of structural properties on dynamics on those networks. The first part of the thesis follows this direction, studying the network formed by conductive nanorods in nano-materials, and focuses on the electrical response of the composite to the structure change of the network. New scaling laws for the shear-induced anisotropic percolation are introduced and a robust exponential tail of the current distribution across the network is identified. These results are relevant especially to "active" composite materials where materials are exposed to mechanical loading and strain deformations. However, in many real-world networks the evolution of the network topology is tied to the states of the vertices and vice versa. Networks that exhibit such a feedback are called adaptive or coevolutionary networks. The second part of the thesis examines two closely related variants of a simple, abstract model for coevolution of a network and the opinions of its members. As a representative model for adaptive networks, it displays the feature of self-organization of the system into a stable configuration due to the interplay between the network topology and the dynamics on the network. This simple model yields interesting dynamics and the slight change in the rewiring strategy results in qualitatively different behaviors of the system. In conclusion, the dissertation aims to develop new network models and tools which enable insights into the structure and dynamics of various systems, and seeks to advance network algorithms which provide approaches to coherently articulated questions in real-world complex systems such as social networks and composite materials.

  3. Structure-property relationships based on Hammett constants in cyclometalated iridium(III) complexes: their application to the design of a fluorine-free FIrPic-like emitter.

    PubMed

    Frey, Julien; Curchod, Basile F E; Scopelliti, Rosario; Tavernelli, Ivano; Rothlisberger, Ursula; Nazeeruddin, Mohammad K; Baranoff, Etienne

    2014-04-21

    While phosphorescent cyclometalated iridium(iii) complexes have been widely studied, only correlations between oxidation potential EOX and Hammett constant ?, and between the redox gap (?EREDOX = EOX-ERED) and emission or absorption wavelength (?abs, ?em) have been reported. We present now a quantitative model based on Hammett parameters that rationalizes the effect of the substituents on the properties of cyclometalated iridium(iii) complexes. This simple model allows predicting the apparent redox potentials as well as the electrochemical gap of homoleptic complexes based on phenylpyridine ligands with good accuracy. In particular, the model accounts for the unequal effect of the substituents on both the HOMO and the LUMO energy levels. Consequently, the model is used to anticipate the emission maxima of the corresponding complexes with improved reliability. We demonstrate in a series of phenylpyridine emitters that electron-donating groups can effectively replace electron-withdrawing substituents on the orthometallated phenyl to induce a blue shift of the emission. This result is in contrast with the common approach that uses fluorine to blue shift the emission maximum. Finally, as a proof of concept, we used electron-donating substituents to design a new fluorine-free complex, referred to as EB343, matching the various properties, namely oxidation and reduction potentials, electrochemical gap and emission profile, of the standard sky-blue emitter FIrPic. PMID:24345847

  4. The late Quaternary Diego Hernandez Formation, Tenerife: Volcanology of a complex cycle of voluminous explosive phonolitic eruptions

    NASA Astrophysics Data System (ADS)

    Edgar, C. J.; Wolff, J. A.; Olin, P. H.; Nichols, H. J.; Pittari, A.; Cas, R. A. F.; Reiners, P. W.; Spell, T. L.; Martí, J.

    2007-02-01

    The Diego Hernandez Formation (DHF; 600-ca. 180 ka) represents the products of the most recent complete cycle of phonolitic explosive volcanism on Tenerife (Canary Islands, Spain). We provide a revised and detailed stratigraphy, new 40Ar/ 39Ar and (U-Th)/He age determinations for major eruptive units, a summary of new chemical data and an overview of the key characteristics of the cycle, including volume estimates, dispersal patterns, eruption styles, phreatomagmatic influences and caldera collapse episodes. The complex stratigraphy of the DHF is divided into 20 named members, each representing a major eruption, as well as numerous unnamed members of limited present-day exposure. The major eruptions are represented by the Fortaleza (370 ka), Roque (347 ka, 3 km 3), Aldea (319 ka, 3 km 3), Fasnia (309 ka, 13 km 3), Poris (268 ka, 3.5 km 3), Arafo (4 km 3), Caleta (223 ka, 3.5 km 3) and Abrigo (between 196 and 171 ka, 20 km 3) Members. The Aldea, Fasnia and Poris Members consist of highly complex successions of plinian fall, surge and flow deposits and several of the eruptions produced widespread and internally complex ignimbrite sheets. Phreatomagmatism occurred most frequently in the opening phase of the eruptions but also recurred repeatedly throughout many of the sequences. Inferred sources of water include a shallow caldera lake and groundwater, and intermittent phreatomagmatic activity was an important influence on eruption style. Another important factor was conduit and vent instability, which frequently loaded the eruption column with dense lithic debris and occasionally triggered column collapse and ignimbrite formation. Most of the major DHF eruptions were triggered by injection of mafic magma into existing phonolitic magma bodies. Two phonolitic magma types were available for eruption during the lifetime of the DHF, but each was dominant at different times. The results presented here support a caldera collapse rather than a landslide model for the origin of the Las Cañadas Caldera, although the evolution of the caldera is evidently more complex and incremental than first thought.

  5. The influence of water-ethanol mixture on the thermodynamics of complex formation between 18-crown-6 ether and L-phenylalanine

    NASA Astrophysics Data System (ADS)

    Usacheva, T. R.; Sharnin, V. A.; Chernov, I. V.; Matteoli, E.; Terekhova, I. V.; Kumeev, R. S.

    2012-08-01

    The influence of water-ethanol mixture composition on the complex formation between 18-crown-6 ether and L-phenylalanine was studied by titration calorimetry at ? = 298.15 K. The standard thermodynamic parameters (?rG?, ?rH?, ??rS?) of formation of [Phe18C6] molecular complex were calculated from data obtained by means of the microcalorimetric system TAM III (TA Instruments, USA) at X(EtOH) = 0.0/0.6 mol fraction. The stability of [Phe18C6] and the mechanism of complexation in water were investigated using the 1? and 13? NMR spectroscopy. The increase of EtOH concentration results in an increase of the complex stability and of the exothermicity of complexation.

  6. [Formation/stabilization of the water oxidizing complex: Polypeptide/secondary donor requirement

    SciTech Connect

    Not Available

    1992-01-01

    We have previously reported EPR analyses and optical spectrophotometric analyses of P[sub 680][sup +] of NH[sub 2]OH-PSII following various durations of weak light photoinhibition. These analyses led to partial identification of the sites of damage responsible for the observed kinetic components of loss of electron transport. These analyses led us to conclude that the order of susceptibility of components of NH[sub 2]OH-PSII to weak light photodamage is Chl/Car>Y[sub Z] of D[sub 1]>Y[sub D], of D[sub 2] [much gt] = P[sub 680], Pheo, Q[sub A]. These photodamages were significantly prevented by addition of an exogenous PSII electron donor (1 mM Mn[sup 2+]) to the NH[sub 2]OH-PSII prior to illumination suggesting that the damages were caused directly by P[sub 680] [sup +] or Chl[sup +]. During the last year, rather extensive efforts were made to understand the earliest event of photoinhibition of NH[sub 2]OH-PSII, the reaction mechanism causing inhibition of P[sub 680][sup +] reduction by Y[sub Z] with accompanying formations of Chl[sup +]/Car[sup +]/quencher of Chla variable fluorescence, loss of photoactivation capability, and decrease of the quantum yield of photooxidation of Mn[sup 2+] via its high affinity binding site.

  7. [Formation/stabilization of the water oxidizing complex: Polypeptide/secondary donor requirement]. Progress report

    SciTech Connect

    Not Available

    1992-12-31

    We have previously reported EPR analyses and optical spectrophotometric analyses of P{sub 680}{sup +} of NH{sub 2}OH-PSII following various durations of weak light photoinhibition. These analyses led to partial identification of the sites of damage responsible for the observed kinetic components of loss of electron transport. These analyses led us to conclude that the order of susceptibility of components of NH{sub 2}OH-PSII to weak light photodamage is Chl/Car>Y{sub Z} of D{sub 1}>Y{sub D}, of D{sub 2} {much_gt} = P{sub 680}, Pheo, Q{sub A}. These photodamages were significantly prevented by addition of an exogenous PSII electron donor (1 mM Mn{sup 2+}) to the NH{sub 2}OH-PSII prior to illumination suggesting that the damages were caused directly by P{sub 680} {sup +} or Chl{sup +}. During the last year, rather extensive efforts were made to understand the earliest event of photoinhibition of NH{sub 2}OH-PSII, the reaction mechanism causing inhibition of P{sub 680}{sup +} reduction by Y{sub Z} with accompanying formations of Chl{sup +}/Car{sup +}/quencher of Chla variable fluorescence, loss of photoactivation capability, and decrease of the quantum yield of photooxidation of Mn{sup 2+} via its high affinity binding site.

  8. Adhesion of membranes via receptor-ligand complexes: Domain formation, binding cooperativity, and active processes

    E-print Network

    Thomas R. Weikl; Mesfin Asfaw; Heinrich Krobath; Bartosz Rozycki; Reinhard Lipowsky

    2009-06-09

    Cell membranes interact via anchored receptor and ligand molecules. Central questions on cell adhesion concern the binding affinity of these membrane-anchored molecules, the mechanisms leading to the receptor-ligand domains observed during adhesion, and the role of cytoskeletal and other active processes. In this review, these questions are addressed from a theoretical perspective. We focus on models in which the membranes are described as elastic sheets, and the receptors and ligands as anchored molecules. In these models, the thermal membrane roughness on the nanometer scale leads to a cooperative binding of anchored receptor and ligand molecules, since the receptor-ligand binding smoothens out the membranes and facilitates the formation of additional bonds. Patterns of receptor domains observed in Monte Carlo simulations point towards a joint role of spontaneous and active processes in cell adhesion. The interactions mediated by the receptors and ligand molecules can be characterized by effective membrane adhesion potentials that depend on the concentrations and binding energies of the molecules.

  9. Complex igneous processes and the formation of the primitive lunar crustal rocks

    NASA Technical Reports Server (NTRS)

    Longhi, J.; Boudreau, A. E.

    1979-01-01

    Crystallization of a magma ocean with initial chondritic Ca/Al and REE ratios such as proposed by Taylor and Bence (TB, 1975), is capable of producing the suite of primitive crustal rocks if the magma ocean underwent locally extensive assimilation and mixing in its upper layers as preliminary steps in formation of an anorthositic crust. Lunar anorthosites were the earliest permanent crustal rocks to form the result of multiple cycles of suspension and assimilation of plagioclase in liquids fractionating olivine and pyroxene. There may be two series of Mg-rich cumulate rocks: one which developed as a result of the equilibration of anorthositic crust with the magma ocean; the other which formed in the later stages of the magma ocean during an epoch of magma mixing and ilmenite crystallization. This second series may be related to KREEP genesis. It is noted that crystallization of the magma ocean had two components: a low pressure component which produced a highly fractionated and heterogeneous crust growing downward and a high pressure component which filled in the ocean from the bottom up, mostly with olivine and low-Ca pyroxene.

  10. NGC 6845: metallicity gradients and star formation in a complex compact group

    NASA Astrophysics Data System (ADS)

    Olave-Rojas, D.; Torres-Flores, S.; Carrasco, E. R.; Mendes de Oliveira, C.; de Mello, D. F.; Scarano, S.

    2015-11-01

    We have obtained Gemini/Gemini Multi-Object Spectrograph spectra of 28 regions located across the interacting group NGC 6845, spanning from the inner regions of the four major galaxies (NGC 6845A, B, C, D) to the tidal tails of NGC 6845A. All regions in the tails are star-forming objects with ages younger than 10 Myr. We derived the gas-phase metallicity gradients across NGC 6845A and its two tails and we find that these are shallower than those for isolated galaxies. NGC 6845A has a gas-phase oxygen central metallicity of 12 + log(O/H) ˜ 8.5 and a flat gas-phase metallicity gradient (? = 0.002 ± 0.004 dex kpc-1) out to ˜4R25 (to the end of the longest tidal tail). Considering the mass-metallicity relation, the central region of NGC 6845A displays a lower oxygen abundance than the expected for its mass. Taking into account this fact and considering the flat oxygen distribution measured along the eastern tidal tail, we suggest that an interaction event has produced a dilution in the central metallicity of this galaxy and the observed flattening in its metal distribution. We found that the star formation process along the eastern tidal structure has not been efficient enough to increase the oxygen abundances in this place, suggesting that this structure was formed from enriched material.

  11. Synthesis, DNA binding and complex formation reactions of 3-amino-5,6-dimethyl-1,2,4-triazine with Pd(II) and some selected biorelevant ligands

    NASA Astrophysics Data System (ADS)

    Shoukry, Azza A.; Alghanmi, Reem M.

    2015-03-01

    With the purpose of studying the binding behavior of Pd(II) complexes with DNA as the main biological target, and their ability to penetrate reasonably into tumour cells and destroy their replication ability, Pd(ADT)Cl2 complex was synthesized and characterized, where ADT is 3-amino-5,6-dimethyl-1,2,4-triazine. Stoichiometry and stability constants of the complexes formed between various biologically relevant ligands (amino acids, amides, DNA constituents, and dicarboxylic acids) and [Pd(ADT)(H2O)2]2+ were investigated at 25 °C and at constant 0.1 mol dm-3 ionic strength. The concentration distribution diagrams of the various species formed are evaluated. Further investigation of the binding properties of the diaqua complex [Pd(ADT)(H2O)2]2+ with calf thymus DNA (CT-DNA) was investigated by UV-vis spectroscopy. The intrinsic binding constants (Kb) calculated from UV-vis absorption studies was calculated to be 2.00 × 103 mol dm-3. The calculated (Kb) value was found to be of lower magnitude than that of the classical intercalator EB (Ethidium bromide) (Kb = 1.23(±0.07) × 105 mol dm-3) suggesting an electrostatic and/or groove binding mode for the interaction with CT-DNA. Thermal denaturation has been systematically studied by spectrophotometric method and the calculated ?Tm was nearly 5 °C, supporting the electrostatic and/or groove binding mode for the interaction between the complex and CT-DNA

  12. A functional model for O-O bond formation by the O2-evolving complex in photosystem II.

    PubMed

    Limburg, J; Vrettos, J S; Liable-Sands, L M; Rheingold, A L; Crabtree, R H; Brudvig, G W

    1999-03-01

    The formation of molecular oxygen from water in photosynthesis is catalyzed by photosystem II at an active site containing four manganese ions that are arranged in di-mu-oxo dimanganese units (where mu is a bridging mode). The complex [H2O(terpy)Mn(O)2Mn(terpy)OH2](NO3)3 (terpy is 2,2':6', 2"-terpyridine), which was synthesized and structurally characterized, contains a di-mu-oxo manganese dimer and catalyzes the conversion of sodium hypochlorite to molecular oxygen. Oxygen-18 isotope labeling showed that water is the source of the oxygen atoms in the molecular oxygen evolved, and so this system is a functional model for photosynthetic water oxidation. PMID:10066173

  13. Reversibility of the inhibitory effect of atrazine and lindane on cytosol 5. alpha. -dihydrotestosterone receptor complex formation in rat prostate

    SciTech Connect

    Simic, B.; Kniewald, Z.; Kniewald, J. ); Davies, J.E. )

    1991-01-01

    Once entering the bloodstream, most toxic substances, including pesticides, can reach organs involved in the reproductive system. They can cross the placenta, as well as the brain barrier, posing various risks to the reproductive processes. The organochlorine insecticide lindane and the s-triazine herbicide atrazine produce changes in hormone-dependent reactions in the rat hypothalamus, anterior pituitary, and prostate. Lindane also causes histological and biochemical alterations in the rat testis. In vivo treatment with atrazine produces a markedly inhibitory influence of 5{alpha}-dihydrotestosterone - receptor complex formation in rat prostate cytosol. Therefore, the aim of this study was to investigate whether such changes in the crucial step in the reproductive process are reversible. A parallel investigation using lindane was also undertaken.

  14. Dithienylcyclopentene-functionalised subphthalocyaninatoboron complexes: photochromism, fluorescence modulation and formation of self-assembled monolayers on gold

    PubMed Central

    Weidner, Tobias; Baio, Joe E.; Seibel, Johannes

    2012-01-01

    Subphthalocyaninatoboron (SubPc) complexes bearing six peripheral n-dodecylthio substituents and an apical photochromic dithienylperfluorocyclopentene unit were prepared. The photoinduced isomerisation of the apical substitutent from the open to the ring-closed form significantly influences the photoluminescence of the covalently attached SubPc unit, which is more efficiently quenched by the ring-closed form. Films on gold were fabricated from these multifunctional conjugates and characterised by near-edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS). The results are in accord with the formation of self-assembled monolayers based on dome-shaped SubPc-based anchor groups. Their chemisorption is primarily due to the peripheral n-dodecylthio substituents, giving rise to covalently attached thiolate as well as coordinatively bound thioether units, whose alkyl chains are in an almost parallel orientation to the surface. PMID:22138955

  15. Breccia Formation at a Complex Impact Crater: Slate Islands, Lake Superior, Ontario, Canada

    NASA Technical Reports Server (NTRS)

    Dressler, B. O.; Sharpton, V. L.

    1997-01-01

    The Slate Islands impact structure is the eroded remnant of a approximately 30-32 km-diameter complex impact structure located in northern Lake Superior, Ontario, Canada. Target rocks are Archean supracrustal and igneous rocks and Proterozoic metavolcanics, metasediments, and diabase. A wide variety of breccias occurs on the islands, many of which contain fragments exhibiting shock metamorphic features. Aphanitic, narrow and inclusion-poor pseudotachylite veins, commonly with more or less parallel boundaries and apophyses branching off them, represent the earliest breccias formed during the compression stage of the impact process. Coarse-grained, polymictic elastic matrix breccias form small to very large, inclusion-rich dikes and irregularly shaped bodies that may contain altered glass fragments. These breccias have sharp contacts with their host rocks and include a wide range of fragment types some of which were transported over minimum distances of approximately 2 km away from the center of the structure. They cut across pseudotachylite veins and contain inclusions of them. Field and petrographic evidence indicate that these polymictic breccias formed predominantly during the excavation and central uplift stages of the impact process. Monomictic breccias, characterized by angular fragments and transitional contacts with their host rocks, occur in parautochthonous target rocks, mainly on the outlying islands of the Slate Islands archipelago. A few contain fragmented and disrupted, coarse-grained, polymictic clastic matrix breccia dikes. This is an indication that at least some of these monomictic breccias formed late in the impact process and that they are probably related to a late crater modification stage. A small number of relatively large occurrences of glass-poor, suevitic breccias occur at the flanks of the central uplift and along the inner flank of the outer ring of the Slate Islands complex crater. A coarse, glass-free, allogenic breccia, containing shatter-coned fragments derived from Proterozoic target rocks (upper target strata), observed at two locations may be analogous to the 'Bunt Breccia' of the Ries crater in Germany. At one of these locations this breccia lies close to a crater suevite deposit. At the other, it overlies parautochthonous, monomictic breccia. The State Islands impact breccias are superbly exposed, much better than breccias in most other terrestrial impact structures. Observations, including those indicative of multiple and and sequential processes, provide insight on how impact breccias form and how they relate to the various phases of the impact process. Eventually they will lead to an improved understanding of planetary impact processes.

  16. Alloy Design of Intermetallics for Protective Scale Formation and for Use as Precursors for Complex Ceramic Phase Surfaces

    SciTech Connect

    Brady, Michael P; Tortorelli, Peter F

    2004-01-01

    This paper highlights some evolving new design approaches to developing intermetallic alloys capable of protective scale formation and/or for their use as precursors for functional complex ceramic phase surface synthesis. The unique characteristics of intermetallics present challenges to achieving protective scale formation, but also offer the potential for leveraging novel phenomena not generally observed in conventional alloys. Examples will be drawn from the oxidation of aluminides (Fe{sub 3}Al, Nb{sub 2}Al, NbAl{sub 3}, Ti{sub 3}Al, TiAl), silicides (MoSi{sub 2}, Mo{sub 5}Si{sub 3}, Mo-Si-B, Ti{sub 5}Si{sub 3}), and Laves phases (Cr{sub 2}Nb, Cr{sub 2}Ta, Nb(Cr,Al){sub 2}, Ti(Cr,Al){sub 2}). Recent work also suggests that intermetallics can be used as precursors for the synthesis of functional complex ceramic phase surfaces by gas-metal reactions (oxidation, nitridation, carburization, etc.). The potential for using such reaction phenomena to synthesize layered or composite surfaces of ternary nitrides (carbides, borides, etc.) of technological interest such as Ti{sub 3}AlC{sub 2}, bimetallic nitride and carbide catalysts (e.g. Co{sub 3}Mo{sub 3}N or Co{sub 3}Mo{sub 3}C), and magnetic rare earth nitrides (Fe{sub 17}Sm{sub 2}N{sub x} or Fe{sub 17}Nd{sub 2}N{sub x}), from intermetallic precursors is discussed.

  17. Star formation in the filament of S254-S258 OB complex: a cluster in the process of being created

    NASA Astrophysics Data System (ADS)

    Samal, M. R.; Ojha, D. K.; Jose, J.; Zavagno, A.; Takahashi, S.; Neichel, B.; Kim, J. S.; Chauhan, N.; Pandey, A. K.; Zinchenko, I.; Tamura, M.; Ghosh, S. K.

    2015-09-01

    Infrared dark clouds are ideal laboratories for studying the initial processes of high-mass star and star-cluster formation. We investigated the star formation activity of an unexplored filamentary dark cloud (size ~5.7 pc × 1.9 pc), which itself is part of a large filament (~20 pc) located in the S254-S258 OB complex at a distance of 2.5 kpc. Using Multi-band Imaging Photometer (MIPS) Spitzer 24 ?m data, we uncovered 49 sources with signal-to-noise ratios greater than 5. We identified 45 sources as candidate young stellar objects (YSOs) of Class I, flat-spectrum, and Class II natures. Additional 17 candidate YSOs (9 Class I and 8 Class II) are also identified using JHK and Wide-field Infrared Survey Explorer (WISE) photometry. We find that the protostar-to-Class II sources ratio (~2) and the protostar fraction (~70%) of the region are high. Comparison of the protostar fraction to other young clusters suggests that the star formation in the dark cloud possibly started only 1 Myr ago. Combining the near-infrared photometry of the YSO candidates with the theoretical evolutionary models, we infer that most of the candidate YSOs formed in the dark cloud are low-mass (<2 M?). We examine the spatial distribution of the YSOs and find that majority of them are linearly aligned along the highest column density line (N(H2)~1 × 1022 cm-2) of the dark cloud along its long axis at the mean nearest-neighbour separation of ~0.2 pc. Using the observed properties of the YSOs, physical conditions of the cloud and a simple cylindrical model, we explore the possible star formation process of this filamentary dark cloud and suggest that gravitational fragmentation within the filament should have played a dominant role in the formation of the YSOs. From the total mass of the YSOs, the gaseous mass associated with the dark cloud, and the surrounding environment, we infer that the region is presently forming stars at an efficiency of ~3% and a rate ~30 M? Myr-1, and it may emerge in a richer cluster.

  18. Spectrophotometric determination of ?-adrenergic antagonists drugs via ion-pair complex formation using MO and EBT

    NASA Astrophysics Data System (ADS)

    El-Didamony, A. M.; Shehata, A. M.

    2014-09-01

    Two simple, rapid and sensitive spectrophotometric methods have been proposed for the assay of bisoprolol fumarate (BSF), propranolol hydrochloride (PRH), and timolol maleate (TIM) either in bulk or in pharmaceutical formulations. The methods are based on the reaction of the selected drugs with methyl orange (MO) and eriochrome black T in acidic buffers, after extracting in dichloromethane and measured quantitatively with maximum absorption at 428 and 518 nm for MO and EBT, respectively. The analytical parameters and their effects on the reported systems are investigated. The extracts are intensely colored and very stable at room temperature. The calibration graphs were linear over the concentration range of 0.8-6.4, 0.4-3.6, 0.8-5.6 ?g/mL for BSF, PRH, and TIM, respectively, with MO and 0.8-6.4, 0.4-3.2, and 0.8-8.0 ?g/mL for BSF, PRH, and TIM, respectively, with EBT. The stoichiometry of the complexes was found to be 1 : 1 in all cases. The proposed methods were successfully extended to pharmaceutical preparations. Excipients used as additive in commercial formulations did not interfere in the analysis. The proposed methods can be recommended for quality control and routine analysis where time, cost effectiveness and high specificity of analytical technique are of great importance.

  19. Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes

    PubMed Central

    Netz, Daili J. A.; Stith, Carrie M.; Stümpfig, Martin; Köpf, Gabriele; Vogel, Daniel; Genau, Heide M.; Stodola, Joseph L.; Lill, Roland; Burgers, Peter M. J.; Pierik, Antonio J.

    2011-01-01

    The eukaryotic replicative DNA polymerases (Pol ?, ?, and ?), and the major DNA mutagenesis enzyme Pol ? contain two conserved cysteine-rich metal-binding motifs (CysA and CysB) in the C-terminal domain (CTD) of their catalytic subunits. Here, we demonstrate by in vivo and in vitro approaches the presence of an essential [4Fe-4S] cluster in the CysB motif of all four yeast B-family DNA polymerases. Loss of the [4Fe-4S] cofactor by cysteine ligand mutagenesis in Pol3 destabilized the CTD and abrogated interaction with the Pol31-Pol32 subunits. Reciprocally, overexpression of accessory subunits increased the amount of CTD-bound Fe-S cluster. This implies an important physiological role of the Fe-S cluster in polymerase complex stabilization. Further, we demonstrate that the Zn-binding CysA motif is required for PCNA-mediated Pol ? processivity. Together, our findings show that the function of eukaryotic replicative DNA polymerases crucially depends on different metallocenters for accessory subunit recruitment and for replisome stability. PMID:22119860

  20. Formation of Mercury Sulfide from Hg(II)-Thiolate Complexes in Natural Organic Matter.

    PubMed

    Manceau, Alain; Lemouchi, Cyprien; Enescu, Mironel; Gaillot, Anne-Claire; Lanson, Martine; Magnin, Valérie; Glatzel, Pieter; Poulin, Brett A; Ryan, Joseph N; Aiken, George R; Gautier-Luneau, Isabelle; Nagy, Kathryn L

    2015-08-18

    Methylmercury is the environmental form of neurotoxic mercury that is biomagnified in the food chain. Methylation rates are reduced when the metal is sequestered in crystalline mercury sulfides or bound to thiol groups in macromolecular natural organic matter. Mercury sulfide minerals are known to nucleate in anoxic zones, by reaction of the thiol-bound mercury with biogenic sulfide, but not in oxic environments. We present experimental evidence that mercury sulfide forms from thiol-bound mercury alone in aqueous dark systems in contact with air. The maximum amount of nanoparticulate mercury sulfide relative to thiol-bound mercury obtained by reacting dissolved mercury and soil organic matter matches that detected in the organic horizon of a contaminated soil situated downstream from Oak Ridge, TN, in the United States. The nearly identical ratios of the two forms of mercury in field and experimental systems suggest a common reaction mechanism for nucleating the mineral. We identified a chemical reaction mechanism that is thermodynamically favorable in which thiol-bound mercury polymerizes to mercury-sulfur clusters. The clusters form by elimination of sulfur from the thiol complexes via breaking of mercury-sulfur bonds as in an alkylation reaction. Addition of sulfide is not required. This nucleation mechanism provides one explanation for how mercury may be immobilized, and eventually sequestered, in oxygenated surface environments. PMID:26168020

  1. Soft matter strategies for controlling food texture: formation of hydrogel particles by biopolymer complex coacervation

    NASA Astrophysics Data System (ADS)

    Wu, Bi-cheng; Degner, Brian; McClements, David Julian

    2014-11-01

    Soft matter physics principles can be used to address important problems in the food industry. Starch granules are widely used in foods to create desirable textural attributes, but high levels of digestible starch may pose a risk of diabetes. Consequently, there is a need to find healthier replacements for starch granules. The objective of this research was to create hydrogel particles from protein and dietary fiber with similar dimensions and functional attributes as starch granules. Hydrogel particles were formed by mixing gelatin (0.5?wt%) with pectin (0 to 0.2?wt%) at pH values above the isoelectric point of the gelatin (pH 9, 30?°C). When the pH was adjusted to pH 5, the biopolymer mixture spontaneously formed micron-sized particles due to electrostatic attraction of cationic gelatin with anionic pectin through complex coacervation. Differential interference contrast (DIC) microscopy showed that the hydrogel particles were translucent and spheroid, and that their dimensions were determined by pectin concentration. At 0.01?wt% pectin, hydrogel particles with similar dimensions to swollen starch granules (D3,2 ? 23?µm) were formed. The resulting hydrogel suspensions had similar appearances to starch pastes and could be made to have similar textural attributes (yield stress and shear viscosity) by adjusting the effective hydrogel particle concentration. These hydrogel particles may therefore be used to improve the texture of reduced-calorie foods and thereby help tackle obesity and diabetes.

  2. Hyperspectral clustering and unmixing for studying the ecology of state formation and complex societies

    NASA Astrophysics Data System (ADS)

    Kwong, Justin D.; Messinger, David W.; Middleton, William D.

    2009-08-01

    This project is an application of hyperspectral classification and unmixing in support of an ongoing archaeological study. The study region is the Oaxaca Valley located in the state of Oaxaca, Mexico on the southern coast. This was the birthplace of the Zapotec civilization which grew into a complex state level society. Hyperion imagery is being collected over a 30,000 km2 area. Classification maps of regions of interest are generated using K-means clustering and a novel algorithm called Gradient Flow. Gradient Flow departs from conventional stochastic or deterministic approaches, using graph theory to cluster spectral data. Spectral unmixing is conducted using the RIT developed algorithm Max-D to automatically find end members. Stepwise unmixing is performed to better model the data using the end members found be Max-D. Data are efficiently shared between imaging scientists and archaeologists using Google Earth to stream images over the internet rather than downloading them. The overall goal of the project is to provide archaeologists with useful information maps without having to interpret the raw data.

  3. ZDHHC17 promotes axon outgrowth by regulating TrkA-tubulin complex formation.

    PubMed

    Shi, Wei; Wang, Fen; Gao, Ming; Yang, Yang; Du, Zhaoxia; Wang, Chen; Yao, Yao; He, Kun; Chen, Xueran; Hao, Aijun

    2015-09-01

    Correct axonal growth during nervous system development is critical for synaptic transduction and nervous system function. Proper axon outgrowth relies on a suitable growing environment and the expression of a series of endogenous neuronal factors. However, the mechanisms of these neuronal proteins involved in neuronal development remain unknown. ZDHHC17 is a member of the DHHC (Asp-His-His-Cys)-containing family, a family of highly homologous proteins. Here, we show that loss of function of ZDHHC17 in zebrafish leads to motor dysfunction in 3-day post-fertilization (dpf) larvae. We performed immunolabeling analysis to reveal that mobility dysfunction was due to a significant defect in the axonal outgrowth of spinal motor neurons (SMNs) without affecting neuron generation. In addition, we found a similar phenotype in zdhhc17 siRNA-treated neural stem cells (NSCs) and PC12 cells. Inhibition of zdhhc17 limited neurite outgrowth and branching in both NSCs and PC12. Furthermore, we discovered that the level of phosphorylation of extracellular-regulated kinase (ERK) 1/2, a major downstream effector of tyrosine kinase (TrkA), was largely upregulated in ZDHHC17 overexpressing PC12 cells by a mechanism independent on its palmitoyltransferase (PAT) activity. Specifically, ZDHHC17 is necessary for proper TrkA-tubulin module formation in PC12 cells. These results strongly indicate that ZDHHC17 is essential for correct axon outgrowth in vivo and in vitro. Our findings identify ZDHHC17 as an important upstream factor of ERK1/2 to regulate the interaction between TrkA and tubulin during neuronal development. PMID:26232532

  4. Early diagenesis of a phylloid algal-mound complex, Laborcita Formation, southeastern New Mexico

    SciTech Connect

    Ward, W.B.; Meyers, W.J.; Goldstein, R.

    1985-02-01

    Marine carbonate cementation was the initial stage in the paragenesis of phylloid algal mounds in the Laborcita Formation (Wolfcampian), Sacramento Mountains, New Mexico, and the cements are almost identical to those in Holocene coral reefs of Belize. These cements include relics of botryoids and crusts of needle crystals, in part defined by inclusion patterns and luminescent ghosts in mosaic calcite. Individual needle crystals are pseudohexagonal in cross section and range from less than 1 to 30 ..mu..m wide. These nonluminescent early cements line cavity walls, coat phylloid-algal blades and stromatolites, and are interlayered with marine sediment. Early cements also include bladed, fibrous, and rare radiaxial fibrous calcites, which are microdolomite-rich. They have a proximal nonluminescent zone, a central bright-luminescent zone, and a distal blotchy, moderate-luminescent zone. The bright zone may be time equivalent to bright-luminescent micritic coatings on botryoids and grains. Botryoids are encrusted by isopachous bladed cement, some of which has prismatic overgrowths containing an early inclusion-rich zone. This initial cementation was followed closely by: (1) dissolution of algal blades and mollusks, (2) in-situ brecciation, and (3) cementation by blocky calcite. Botryoidal and acicular cements are interpreted as originally marine aragonite precipitates, based on morphology, occurrence, susceptibility to diagenesis, and similarity to Holocene reef cements. The same criteria, plus the microdolomite inclusions, indicate that the bladed, fibrous, and radiaxial cements had a marine Mg-calcite precursor. This assemblage followed by prismatic overgrowths, dissolution, and blocky-calcite cementation indicates an evolution from marine to freshwater diagenesis.

  5. The Human SepSecS-tRNA[superscript Sec] Complex Reveals the Mechanism of Selenocysteine Formation

    SciTech Connect

    Palioura, Sotiria; Sherrer, R. Lynn; Steitz, Thomas A.; Söll, Dieter; Simonovic, Miljan

    2009-08-13

    Selenocysteine is the only genetically encoded amino acid in humans whose biosynthesis occurs on its cognate transfer RNA (tRNA). O-Phosphoseryl-tRNA:selenocysteinyl-tRNA synthase (SepSecS) catalyzes the final step of selenocysteine formation by a poorly understood tRNA-dependent mechanism. The crystal structure of human tRNA{sup Sec} in complex with SepSecS, phosphoserine, and thiophosphate, together with in vivo and in vitro enzyme assays, supports a pyridoxal phosphate-dependent mechanism of Sec-tRNA{sup Sec} formation. Two tRNA{sup Sec} molecules, with a fold distinct from other canonical tRNAs, bind to each SepSecS tetramer through their 13-base pair acceptor-T{Upsilon}C arm (where {Upsilon} indicates pseudouridine). The tRNA binding is likely to induce a conformational change in the enzyme's active site that allows a phosphoserine covalently attached to tRNA{sup Sec}, but not free phosphoserine, to be oriented properly for the reaction to occur.

  6. OLA1 regulates protein synthesis and integrated stress response by inhibiting eIF2 ternary complex formation

    PubMed Central

    Chen, Huarong; Song, Renduo; Wang, Guohui; Ding, Zonghui; Yang, Chunying; Zhang, Jiawei; Zeng, Zihua; Rubio, Valentina; Wang, Luchang; Zu, Nancy; Weiskoff, Amanda M.; Minze, Laurie J.; Jeyabal, Prince V.S.; Mansour, Oula C.; Bai, Li; Merrick, William C.; Zheng, Shu; Shi, Zheng-Zheng

    2015-01-01

    Translation is a fundamental cellular process, and its dysregulation can contribute to human diseases such as cancer. During translation initiation the eukaryotic initiation factor 2 (eIF2) forms a ternary complex (TC) with GTP and the initiator methionyl-tRNA (tRNAi), mediating ribosomal recruitment of tRNAi. Limiting TC availability is a central mechanism for triggering the integrated stress response (ISR), which suppresses global translation in response to various cellular stresses, but induces specific proteins such as ATF4. This study shows that OLA1, a member of the ancient Obg family of GTPases, is an eIF2-regulatory protein that inhibits protein synthesis and promotes ISR by binding eIF2, hydrolyzing GTP, and interfering with TC formation. OLA1 thus represents a novel mechanism of translational control affecting de novo TC formation, different from the traditional model in which phosphorylation of eIF2? blocks the regeneration of TC. Depletion of OLA1 caused a hypoactive ISR and greater survival in stressed cells. In vivo, OLA1-knockdown rendered cancer cells deficient in ISR and the downstream proapoptotic effector, CHOP, promoting tumor growth and metastasis. Our work suggests that OLA1 is a novel translational GTPase and plays a suppressive role in translation and cell survival, as well as cancer growth and progression. PMID:26283179

  7. Formation of metamorphic core complexes in non-over-thickened continental crust: A case study of Liaodong Peninsula (East Asia)

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Burov, Evgueni; Gumiaux, Charles; Chen, Yan; Lu, Gang; Mezri, Leila; Zhao, Liang

    2015-12-01

    Pre-thickened hot orogenic crust is often considered a necessary condition for the formation of continental metamorphic core complexes (MCCs). However, the discovery of MCCs in the Liaodong Peninsula, where the crust has a normal thickness (~ 35 km), challenges the universality of this scenario. Therefore, we implement a series of 2-D numerical thermo-mechanical modeling experiments in which we investigate the conditions of MCC formation in normal crusts, as well as the relationships between the underlying mechanisms and the syn-rift basin evolution. In these experiments, we explore the impact of the lithostratigraphic and thermo-rheological structure of the crust. We also examine the lithosphere thickness, strain softening, extension rate, and surface erosion/ sedimentation processes. The experiments demonstrate that high thermal gradients and crustal heterogeneities result only in a symmetric spreading dome, which is geometrically incompatible with the observations of the MCCs in the Liaodong Peninsula. According to our further findings, the strain softening should play a key role in the development of asymmetric strain localization and domal topography uplift, while synchronous surface erosion controls the polarity of the syn-rift basin. The synthetic model data are compatible with the geological observations and cooling history based on the thermo-chronology for the eastern part of the East Asia during the late Mesozoic to the early Cenozoic. The model-predicted P-T-t paths are essentially different from those inferred for the other known MCCs, confirming the exceptional character of the MCC formation in the wide rift system of the East Asia.

  8. Tripropeptin C blocks the lipid cycle of cell wall biosynthesis by complex formation with undecaprenyl pyrophosphate.

    PubMed

    Hashizume, Hideki; Sawa, Ryuichi; Harada, Shigeko; Igarashi, Masayuki; Adachi, Hayamitsu; Nishimura, Yoshio; Nomoto, Akio

    2011-08-01

    Tripropeptin C (TPPC) is a naturally occurring cyclic lipodepsipeptide antibiotic produced by a Lysobacter sp. TPPC exhibits potent antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and penicillin-resistant Streptococcus pneumoniae. This antibiotic also inhibits the incorporation of N-acetylglucosamine into the peptidoglycan of S. aureus at a 50% inhibitory concentration (IC(50)) of 0.7 ?M, which is proportional to its MIC (0.87 ?M; equivalent to 1.0 ?g/ml). Treatment of exponential-phase S. aureus cells with TPPC resulted in accumulation of UDP-MurNAc-pentapeptide in the cytoplasm. The antimicrobial activity of TPPC was weakened by the addition of prenyl pyrophosphates but not by prenyl phosphates, UDP-linked sugars, or the pentapeptide of peptidoglycan. The direct interaction between TPPC and undecaprenyl pyrophosphate (C(55)-PP) was observed by mass spectrometry and thin-layer chromatography analysis, indicating that TPPC can potentially inhibit C(55)-PP phosphatase activity, which plays a crucial role in the lipid cycle of peptidoglycan synthesis. As expected, TPPC inhibits this enzymatic reaction at an IC(50) of 0.03 to 0.1 ?M in vitro, as does bacitracin. From the analysis of accumulation of lipid carrier-related compounds, TPPC was found to cause the accumulation of C(55)-PP in situ, leading to the accumulation of a glycine-containing lipid intermediate. This suggested that the TPPC/C(55)-PP complex also inhibits the transglycosylation step or flippase activity, adding to the inhibition of C(55)-PP dephosphorylation. This mode of action is different from that of currently available drugs such as vancomycin, daptomycin, and bacitracin. PMID:21628543

  9. Auditory scene analysis and sonified visual images. Does consonance negatively impact on object formation when using complex sonified stimuli?

    PubMed Central

    Brown, David J.; Simpson, Andrew J. R.; Proulx, Michael J.

    2015-01-01

    A critical task for the brain is the sensory representation and identification of perceptual objects in the world. When the visual sense is impaired, hearing and touch must take primary roles and in recent times compensatory techniques have been developed that employ the tactile or auditory system as a substitute for the visual system. Visual-to-auditory sonifications provide a complex, feature-based auditory representation that must be decoded and integrated into an object-based representation by the listener. However, we don’t yet know what role the auditory system plays in the object integration stage and whether the principles of auditory scene analysis apply. Here we used coarse sonified images in a two-tone discrimination task to test whether auditory feature-based representations of visual objects would be confounded when their features conflicted with the principles of auditory consonance. We found that listeners (N = 36) performed worse in an object recognition task when the auditory feature-based representation was harmonically consonant. We also found that this conflict was not negated with the provision of congruent audio–visual information. The findings suggest that early auditory processes of harmonic grouping dominate the object formation process and that the complexity of the signal, and additional sensory information have limited effect on this. PMID:26528202

  10. Formation of a Complex between Nucleolin and Replication Protein a after Cell Stress Prevents Initiation of DNA Replication

    PubMed Central

    Daniely, Yaron; Borowiec, James A.

    2000-01-01

    We used a biochemical screen to identify nucleolin, a key factor in ribosome biogenesis, as a high-affinity binding partner for the heterotrimeric human replication protein A (hRPA). Binding studies in vitro demonstrated that the two proteins physically interact, with nucleolin using an unusual contact with the small hRPA subunit. Nucleolin significantly inhibited both simian virus 40 (SV-40) origin unwinding and SV-40 DNA replication in vitro, likely by nucleolin preventing hRPA from productive interaction with the SV-40 initiation complex. In vivo, use of epifluorescence and confocal microscopy showed that heat shock caused a dramatic redistribution of nucleolin from the nucleolus to the nucleoplasm. Nucleolin relocalization was concomitant with a tenfold increase in nucleolin–hRPA complex formation. The relocalized nucleolin significantly overlapped with the position of hRPA, but only poorly with sites of ongoing DNA synthesis. We suggest that the induced nucleolin–hRPA interaction signifies a novel mechanism that represses chromosomal replication after cell stress. PMID:10811822

  11. Nucleoprotein of influenza B virus binds to its type A counterpart and disrupts influenza A viral polymerase complex formation

    SciTech Connect

    Jaru-ampornpan, Peera Narkpuk, Jaraspim; Wanitchang, Asawin; Jongkaewwattana, Anan

    2014-01-03

    Highlights: •FluB nucleoprotein (BNP) can bind to FluA nucleoprotein (ANP). •BNP–ANP interaction inhibits FluA polymerase activity. •BNP binding prevents ANP from forming a functional FluA polymerase complex. •Nuclear localization of BNP is necessary for FluA polymerase inhibition. •Viral RNA is not required for the BNP–ANP interaction. -- Abstract: Upon co-infection with influenza B virus (FluB), influenza A virus (FluA) replication is substantially impaired. Previously, we have shown that the nucleoprotein of FluB (BNP) can inhibit FluA polymerase machinery, retarding the growth of FluA. However, the molecular mechanism underlying this inhibitory action awaited further investigation. Here, we provide evidence that BNP hinders the proper formation of FluA polymerase complex by competitively binding to the nucleoprotein of FluA. To exert this inhibitory effect, BNP must be localized in the nucleus. The interaction does not require the presence of the viral RNA but needs an intact BNP RNA-binding motif. The results highlight the novel role of BNP as an anti-influenza A viral agent and provide insights into the mechanism of intertypic interference.

  12. Conformational flexibility of the oncogenic protein LMO2 primes the formation of the multi-protein transcription complex

    PubMed Central

    Sewell, H.; Tanaka, T.; Omari, K. El; Mancini, E. J.; Cruz, A.; Fernandez-Fuentes, N.; Chambers, J.; Rabbitts, T. H.

    2014-01-01

    LMO2 was discovered via chromosomal translocations in T-cell leukaemia and shown normally to be essential for haematopoiesis. LMO2 is made up of two LIM only domains (thus it is a LIM-only protein) and forms a bridge in a multi-protein complex. We have studied the mechanism of formation of this complex using a single domain antibody fragment that inhibits LMO2 by sequestering it in a non-functional form. The crystal structure of LMO2 with this antibody fragment has been solved revealing a conformational difference in the positioning and angle between the two LIM domains compared with its normal binding. This contortion occurs by bending at a central helical region of LMO2. This is a unique mechanism for inhibiting an intracellular protein function and the structural contusion implies a model in which newly synthesized, intrinsically disordered LMO2 binds to a partner protein nucleating further interactions and suggests approaches for therapeutic targeting of LMO2. PMID:24407558

  13. A Loss-Of-Function Analysis Reveals That Endogenous Rem2 Promotes Functional Glutamatergic Synapse Formation and Restricts Dendritic Complexity

    PubMed Central

    Moore, Anna R.; Ghiretti, Amy E.; Paradis, Suzanne

    2013-01-01

    Rem2 is a member of the RGK family of small Ras-like GTPases whose expression and function is regulated by neuronal activity in the brain. A number of questions still remain as to the endogenous functions of Rem2 in neurons. RNAi-mediated Rem2 knockdown leads to an increase in dendritic complexity and a decrease in functional excitatory synapses, though a recent report challenged the specificity of Rem2-targeted RNAi reagents. In addition, overexpression in a number of cell types has shown that Rem2 can inhibit voltage-gated calcium channel (VGCC) function, while studies employing RNAi-mediated knockdown of Rem2 have failed to observe a corresponding enhancement of VGCC function. To further investigate these discrepancies and determine the endogenous function of Rem2, we took a comprehensive, loss-of-function approach utilizing two independent, validated Rem2-targeted shRNAs to analyze Rem2 function. We sought to investigate the consequence of endogenous Rem2 knockdown by focusing on the three reported functions of Rem2 in neurons: regulation of synapse formation, dendritic morphology, and voltage-gated calcium channels. We conclude that endogenous Rem2 is a positive regulator of functional, excitatory synapse development and a negative regulator of dendritic complexity. In addition, while we are unable to reach a definitive conclusion as to whether the regulation of VGCCs is an endogenous function of Rem2, our study reports important data regarding RNAi reagents for use in future investigation of this issue. PMID:23991227

  14. Quantitative studies of tubular immune complex formation and clearance in rats

    SciTech Connect

    Ishidate, T.; Ward, H.J.; Hoyer, J.R. )

    1990-12-01

    Tubular antibody deposition and clearance was quantitatively studied using affinity-purified rabbit antibodies to rat Tamm-Horsfall protein (TH), a surface membrane glycoprotein of the tubular cells of the thick ascending limb of the loop of Henle. Immune complexes are formed in situ at the base of these cells in rats injected with antisera to TH. The renal binding of I125-anti-TH was determined in pair label studies. Kidneys and other organs were removed from groups of rats for isotope counting at four hours to 14 days after an injection of I125-anti-TH and I131-normal rabbit IgG. The greatest total renal anti-TH binding after injection of 500 micrograms of anti-TH was observed at 24 hours in normal rats (18.55 +/- 1.6 micrograms). During the period of most rapid clearance (day 2 to day 7) the half life of renal anti-TH binding (84.2 hours) and the half life of anti-TH in the serum (68.5 hours) were shorter than that of IgG in the serum (117.8 hours). There was no substantial uptake of anti-TH by other organs. A close relationship between serum levels and renal uptake of anti-TH at 24 hours was also observed in rats given from 50 to 6000 micrograms of anti-TH; renal saturation was evident only at the highest dose. This close relationship was also present during the clearance phase in rats injected with 3700 micrograms of anti-TH; the half life of anti-TH was 96.2 hours in kidneys and 110 hours in serum while the half life of rabbit IgG in serum was 151.8 hours. Markedly increased renal uptake of anti-TH was observed in protein-uric rats with passive Heymann nephritis. In very proteinuric rats, 14.1% of the injected dose was bound to kidneys at 24 hours. In these rats, serum anti-TH levels decreased very rapidly to 4% of control serum levels by five days.

  15. Discovery of a Strongly-Interrelated Gene Network in Corals under Constant Darkness by Correlation Analysis after Wavelet Transform on Complex Network Model

    PubMed Central

    Zhou, Xilong; Liu, Xuefeng; Zhang, Zhaobao; Wang, Xumin; Liu, Tao; Liu, Guiming

    2014-01-01

    Coral reefs occupy a relatively small portion of sea area, yet serve as a crucial source of biodiversity by establishing harmonious ecosystems with marine plants and animals. Previous researches mainly focused on screening several key genes induced by stress. Here we proposed a novel method—correlation analysis after wavelet transform of complex network model, to explore the effect of light on gene expression in the coral Acropora millepora based on microarray data. In this method, wavelet transform and the conception of complex network were adopted, and 50 key genes with large differences were finally captured, including both annotated genes and novel genes without accurate annotation. These results shed light on our understanding of coral's response toward light changes and the genome-wide interaction among genes under the control of biorhythm, and hence help us to better protect the coral reef ecosystems. Further studies are needed to explore how functional connections are related to structural connections, and how connectivity arises from the interactions within and between different systems. The method introduced in this study for analyzing microarray data will allow researchers to explore genome-wide interaction network with their own dataset and understand the relevant biological processes. PMID:24651851

  16. The composition and internal structure of drumlins: Complexity, commonality, and implications for a unifying theory of their formation

    NASA Astrophysics Data System (ADS)

    Stokes, Chris R.; Spagnolo, Matteo; Clark, Chris D.

    2011-08-01

    Investigation of drumlins is significant to both glaciology and palaeoglaciology but the sheer diversity of their composition and internal structure is often cited as a major obstacle towards a satisfactory (unifying?) explanation of their formation. This paper presents the first systematic survey of the vast literature on this subject, with the aim of concisely summarising observations and identifying any emergent patterns or commonality that theories of drumlin formation should be able to explain. Results confirm that investigations are often limited by availability of suitable sediment exposures (40% of studies report data from < 5 drumlins and 44% do not specify sample size), although borehole data and geophysical techniques can alleviate this problem. However, it is clear that the constituents of drumlins are incredibly diverse in terms of their composition (e.g. a range of lithologies, clast shapes, sizes and fabrics); structure (e.g. sediments that are sorted, homogeneous, surface conformable, unconformable); and evidence of deformation (e.g. ranging from pervasive, to non-pervasive/limited, to absent). Despite this diversity, our review leads us to suggest that drumlin composition can be simplified to five basic types: (i), mainly bedrock, (ii), part bedrock/part till; (iii), mainly till; (iv), part till/part sorted sediments; and (v), mainly sorted sediments. This is a potentially significant step, in that it reduces the oft-cited complexity of drumlin composition and provides a more realistic goal for theories or numerical models of drumlin formation to target. The various types can occur within the same drumlin field, which leaves us with two possible implications for drumlin formation. (1) Different types of drumlin are formed/seeded by different processes, despite being morphologically similar (equifinality?) — investigation of drumlin composition may, therefore, reveal diagnostic processes/explanations for these different types of drumlin and we argue that bedrock 'drumlins' are an example. (2) A single process occurs across large parts of the ice-bed interface to create drumlinised terrain in a variety of sediments — investigation of drumlin composition may, in this case, simply reflect pre-existing sediments but, importantly, the way in which the drumlin-forming mechanism modifies/is modified by them. We argue that the latter, simpler, explanation applies to all other types of drumlin (excluding purely bedrock forms) and conclude that the diversity in drumlin composition is no obstacle to a single unifying theory.

  17. Optical-near-IR analysis of globular clusters in the IKN dwarf spheroidal: a complex star formation history

    NASA Astrophysics Data System (ADS)

    Tudorica, A.; Georgiev, I. Y.; Chies-Santos, A. L.

    2015-09-01

    Context. Age, metallicity, and spatial distribution of globular clusters (GCs) provide a powerful tool for reconstructing major star-formation episodes in galaxies. IKN is a faint dwarf spheroidal (dSph) in the M 81 group of galaxies. It contains five old GCs, which makes it the galaxy with the highest known specific frequency (SN = 126). Aims: We estimate the photometric age, metallicity, and spatial distribution of the poorly studied IKN GCs. We search SDSS for GC candidates beyond the HST/ACS field of view, which covers half of IKN. Methods: To break the age-metallicity degeneracy in the colour, we used WHT/LIRIS KS-band photometry and derived photometric ages and metallicities by comparison with SSP models in the V,I,Ks colour space. Results: IKN GCs' VIKs colours are consistent with old ages (?8 Gyr) and a metallicity distribution with a higher mean than is typical for such a dSph ([Fe/H] ? -1.4-0.2+0.6 dex). Their photometric mass range (0.5 < ?GC< 4 × 105 M?) implies an unusually high mass ratio between GCs and field stars, of 10.6%. Mixture model analysis of the RGB field stars' metallicity suggests that 72% of the stars may have formed together with the GCs. Using the most massive GC-SFR relation, we calculated a star formation rate (SFR) of ~10 M?/yr during its formation epoch. We note that the more massive GCs are closer to the galaxy photometric centre. IKN GCs also appear spatially aligned along a line close to the major axis of the IKN and nearly orthogonal to the plane of spatial distribution of galaxies in the M 81 group. We identify one new IKN GC candidate based on colour and the PSF analysis of the SDSS data. Conclusions: The evidence of i) broad and high metallicity distribution of the field IKN RGB stars and its GCs, ii) high fraction, and iii) spatial alignment of IKN GCs supports a scenario for tidally triggered, complex IKN's star formation history in the context of interactions with galaxies in the M 81 group.

  18. Analytical applications of ternary complexes-VII Elucidation of mode of formation of sensitized metal-chelate systems and determination of molybdenum and antimony.

    PubMed

    Bailey, B W; Chester, J E; Dagnall, R M; West, T S

    1968-12-01

    The ternary complexes which are formed when surface-active agents are added to various metal-dyestuff chelate systems are shown to be dependent on the formation of micelles. Spectrophotometric measurements indicate that true ternary complexes are formed with well defined structures and that the changes in absorption spectra produced are not due to simple adsorption of the binary metal-dye complex onto micellar aggregates. Some suggestions are made to account for the nature of the observed changes. The analytical potentialities of this type of system are illustrated by the formation of such complexes between molybdenum or antimony, Catechol Violet and cetyltrimethylammonium bromide, yielding molar absorptivities of 4.6 x 10(4) and 3.0 x 10(4) respectively. PMID:18960441

  19. Traumatic Brain Injury Impairs Soluble N-Ethylmaleimide-Sensitive Factor Attachment Protein Receptor Complex Formation and Alters Synaptic Vesicle Distribution in the Hippocampus.

    PubMed

    Carlson, Shaun W; Yan, Hong; Ma, Michelle; Li, Youming; Henchir, Jeremy; Dixon, C Edward

    2016-01-01

    Traumatic brain injury (TBI) impairs neuronal function and can culminate in lasting cognitive impairment. While impaired neurotransmitter release has been well established after experimental TBI, little is understood about the mechanisms underlying this consequence. In the synapse, vesicular docking and neurotransmitter release requires the formation of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex. Impairments in vesicle docking, and alterations in SNARE complex formation are associated with impaired neurotransmitter release. We hypothesized that TBI reduces SNARE complex formation and disrupts synaptic vesicle distribution in the hippocampus. To examine the effect of TBI on the SNARE complex, rats were subjected to controlled cortical impact (CCI) or sham injury, and the brains were assessed at 6?h, 1 d, one week, two weeks, or four weeks post-injury. Immunoblotting of hippocampal homogenates revealed significantly reduced SNARE complex formation at one week and two weeks post-injury. To assess synaptic vesicles distribution, rats received CCI or sham injury and the brains were processed for transmission electron microscopy at one week post-injury. Synapses in the hippocampus were imaged at 100k magnification, and vesicle distribution was assessed in pre-synaptic terminals at the active zone. CCI resulted in a significant reduction in vesicle number within 150?nm of the active zone. These findings provide the first evidence of TBI-induced impairments in synaptic vesicle docking, and suggest that reductions in the pool of readily releasable vesicles and impaired SNARE complex formation are two novel mechanisms contributing to impaired neurotransmission after TBI. PMID:25923735

  20. In situ investigations of bromine-storing complex formation in a zinc-flow battery at gold electrodes

    SciTech Connect

    Kautek, W.; Conradi, A.; Sahre, M.; Fabjan, C.; Drobits, J.; Bauer, G.; Schuster, P.

    1999-09-01

    One of the most promising candidates for affordable energy storage systems for electric vehicles is the zinc/bromine battery. The reversible cell voltage of 1.82 V, a theoretical specific energy of 430 Wh kg{sup {minus}1}, robustness, high cycle life, unlimited standby periods in the charged or discharged state, low self-discharge rates, and operation at ambient temperature explain the scientific and industrial interest in this system. The storage reactions of the zinc/bromine battery are the cathodic deposition of zinc and the anodic formation of a nonaqueous polybromide phase. Quaternary ammonium cations, N-methylethylpyrrolidinium (MEP{sup +}) and N-methylethylmorpholinium (MEM{sup +}), store the bromine as polybromide complexes. The mechanism of this complicated reaction determines the polarization and self-discharge rate of the bromine electrode. Electrochemical in situ techniques, phase-stabilized electrochemical quartz microbalance, and in situ reflection-absorption Fourier transform infrared spectroscopy were employed for the first time to investigate these electrode processes. It was shown that specifically adsorbed polybromide anions (Br{sub n}{minus}) formed MEM-Br{sub n}. Therefore, a homogeneous chemical reaction of the dissolved MEP{sup +} cation with electrochemically generated bromine leads to the storage complex MEP-Br{sub n} much more rapidly than the heterogeneous electrochemical reaction of the strongly adsorbed MEM{sup +} to MEM-Br{sub n}. These results demonstrate that in situ techniques not only support the evaluation of the mechanism but also provide key information for battery development.

  1. Formation of complexes between hematite nanoparticles and a non-conventional galactomannan gum. Toward a better understanding on interaction processes.

    PubMed

    Busch, Verónica M; Loosli, Fréderic; Santagapita, Patricio R; Buera, M Pilar; Stoll, Serge

    2015-11-01

    The physicochemical characteristics of hematite nanoparticles related to their size, surface area and reactivity make them useful for many applications, as well as suitable models to study aggregation kinetics. For several applications (such as remediation of contaminated groundwater) it is crucial to maintain the stability of hematite nanoparticle suspensions in order to assure their arrival to the target place. The use of biopolymers has been proposed as a suitable environmentally friendly option to avoid nanoparticle aggregation and assure their stability. The aim of the present work was to investigate the formation of complexes between hematite nanoparticles and a non-conventional galactomannan (vinal gum--VG) obtained from Prosopis ruscifolia in order to promote hematite nanoparticle coating with a green biopolymer. Zeta potential and size of hematite nanoparticles, VG dispersions and the stability of their mixtures were investigated, as well as the influence of the biopolymer concentration and preparation method. DLS and nanoparticle tracking analysis techniques were used for determining the size and the zeta-potential of the suspensions. VG showed a polydispersed size distribution (300-475 nm Z-average diameter, 0.65 Pdi) and a negative zeta potential (between -1 and -12 mV for pH2 and 12, respectively). The aggregation of hematite nanoparticles (3.3 mg/L) was induced by the addition of VG at lower concentrations than 2mg/L (pH5.5). On the other hand, hematite nanoparticles were stabilized at concentrations of VG higher than 2 mg/L. Several phenomena between hematite nanoparticles and VG were involved: steric effects, electrostatic interactions, charge neutralization, charge inversion and polymer bridging. The process of complexation between hematite nanoparticles and the biopolymer was strongly influenced by the preparation protocols. It was concluded that the aggregation, dispersion, and stability of hematite nanoparticles depended on biopolymer concentration and also on the way of preparation and initial physicochemical properties of the aqueous system. PMID:26100735

  2. Eocene and Miocene extension, meteoric fluid infiltration, and core complex formation in the Great Basin (Raft River Mountains, Utah)

    NASA Astrophysics Data System (ADS)

    Methner, Katharina; Mulch, Andreas; Teyssier, Christian; Wells, Michael L.; Cosca, Michael A.; Gottardi, Raphaël.; Gébelin, Aude; Chamberlain, C. Page

    2015-04-01

    Metamorphic core complexes (MCCs) in the North American Cordillera reflect the effects of lithospheric extension and contribute to crustal adjustments both during and after a protracted subduction history along the Pacific plate margin. While the Miocene-to-recent history of most MCCs in the Great Basin, including the Raft River-Albion-Grouse Creek MCC, is well documented, early Cenozoic tectonic fabrics are commonly severely overprinted. We present stable isotope, geochronological (40Ar/39Ar), and microstructural data from the Raft River detachment shear zone. Hydrogen isotope ratios of syntectonic white mica (?2Hms) from mylonitic quartzite within the shear zone are very low (-90‰ to -154‰, Vienna SMOW) and result from multiphase synkinematic interaction with surface-derived fluids. 40Ar/39Ar geochronology reveals Eocene (re)crystallization of white mica with ?2Hms ? -154‰ in quartzite mylonite of the western segment of the detachment system. These ?2Hms values are distinctively lower than in localities farther east (?2Hms ? -125‰), where 40Ar/39Ar geochronological data indicate Miocene (18-15 Ma) extensional shearing and mylonitic fabric formation. These data indicate that very low ?2H surface-derived fluids penetrated the brittle-ductile transition as early as the mid-Eocene during a first phase of exhumation along a detachment rooted to the east. In the eastern part of the core complex, prominent top-to-the-east ductile shearing, mid-Miocene 40Ar/39Ar ages, and higher ?2H values of recrystallized white mica, indicate Miocene structural and isotopic overprinting of Eocene fabrics.

  3. Reactivity of platinum alkyne complexes towards N-fluorobenzenesulfonimide: formation of platinum compounds bearing a ?-fluorovinyl ligand.

    PubMed

    Berger, Josefine; Braun, Thomas; Herrmann, Roy; Braun, Beatrice

    2015-12-01

    The platinum(0) alkyne complexes [Pt(L)(?(2)-PhC[triple bond, length as m-dash]CPh)] 1-4 were synthesized by reactions of [Pt(cod)2] with diphenylacetylene and a phosphine ligand precursor (1: L = dcpe, 2: L = xantphos, 3: L = ?(2)-(P,N)-iPr2PC3H6NMe2, 4: L = ?(2)-(P,N)-iPr2PC2H4NMe2). Treatment of 1 or 4 with NFSI gave the complexes [Pt(F){N(SO2Ph)2}(dcpe)] (5) and [Pt(PhC[double bond, length as m-dash]CFPh){N(SO2Ph)2}{?(2)-(P,N)-iPr2PC2H4NMe2}] (8), whereas the reactivity of 2 and 3 towards NFSI led to product mixtures. The compounds [Pt(F){N(SO2Ph)2}(xantphos)] (6a) as well as [Pt(PhC[double bond, length as m-dash]CFPh){N(SO2Ph)2}{?(2)-(P,N)-iPr2PC2H4NMe2}] (7a) and [Pt(PhC[double bond, length as m-dash]CFPh)(F){?(2)-(P,N)-iPr2PC2H4NMe2}] (7b) were clearly identified. Ligand exchange reactions at 8 resulted in the formation of the ?-fluorovinyl platinum(ii) complexes [Pt(PhC[double bond, length as m-dash]CFPh){OC(O)CF3}{?(2)-(P,N)-iPr2PC2H4NMe2}] (9), [Pt(PhC[double bond, length as m-dash]CFPh)(FHF){?(2)-(P,N)-iPr2PC2H4NMe2}] (10) and [Pt(PhC[double bond, length as m-dash]CFPh)(F){?(2)-(P,N)-iPr2PC2H4NMe2}] (11). Treatment of 8 with dihydrogen yielded the fluorinated olefin (Z)-(1-fluoroethene-1,2-diyl)dibenzene and [Pt{N(SO2Ph)2}(H){?(2)-(P,N)-iPr2PC2H4NMe2}] (12). PMID:26308149

  4. High Fat Diet Enhances ?-Site Cleavage of Amyloid Precursor Protein (APP) via Promoting ?-Site APP Cleaving Enzyme 1/Adaptor Protein 2/Clathrin Complex Formation

    PubMed Central

    Maesako, Masato; Uemura, Maiko; Tashiro, Yoshitaka; Sasaki, Kazuki; Watanabe, Kiwamu; Noda, Yasuha; Ueda, Karin; Asada-Utsugi, Megumi; Kubota, Masakazu; Okawa, Katsuya; Ihara, Masafumi; Shimohama, Shun; Uemura, Kengo; Kinoshita, Ayae

    2015-01-01

    Obesity and type 2 diabetes are risk factors of Alzheimer’s disease (AD). We reported that a high fat diet (HFD) promotes amyloid precursor protein (APP) cleavage by ?-site APP cleaving enzyme 1 (BACE1) without increasing BACE1 levels in APP transgenic mice. However, the detailed mechanism had remained unclear. Here we demonstrate that HFD promotes BACE1/Adaptor protein-2 (AP-2)/clathrin complex formation by increasing AP-2 levels in APP transgenic mice. In Swedish APP overexpressing Chinese hamster ovary (CHO) cells as well as in SH-SY5Y cells, overexpression of AP-2 promoted the formation of BACE1/AP-2/clathrin complex, increasing the level of the soluble form of APP ? (sAPP?). On the other hand, mutant D495R BACE1, which inhibits formation of this trimeric complex, was shown to decrease the level of sAPP?. Overexpression of AP-2 promoted the internalization of BACE1 from the cell surface, thus reducing the cell surface BACE1 level. As such, we concluded that HFD may induce the formation of the BACE1/AP-2/clathrin complex, which is followed by its transport of BACE1 from the cell surface to the intracellular compartments. These events might be associated with the enhancement of ?-site cleavage of APP in APP transgenic mice. Here we present evidence that HFD, by regulation of subcellular trafficking of BACE1, promotes APP cleavage. PMID:26414661

  5. Spectrophotometric Determination of Risedronate in Pharmaceutical Formulations via Complex Formation with Cu (II) Ions: Application to Content Uniformity Testing

    PubMed Central

    Walash, M. I.; Metwally, M. E.-S.; Eid, M.; El-Shaheny, R. N.

    2008-01-01

    A simple, sensitive, rapid and accurate spectrophotometric method was developed for the determination of risedronate, a bisphosphonate drug important for the treatment of a variety of bone diseases, in raw material and pharmaceutical formulations. The proposed method is based on complex formation between risedronate and Cu (II) ions in acetate buffer of pH5.5. The optimum conditions for this reaction were ascertained and a spectrophotometric method was developed for the determination of risedronate in concentration range of 2-40 ?g/mL with detection limit of 0.03 ?g/mL (9.51 × 10-8 mol/L). The molar absorbtivity was 8.00 × 103 l/mol/cm. The method was successfully applied for the determination of risedronate in tablet dosage form with mean percentage recovery of 101.04 ± 0.32. The results obtained were favorably compared with those obtained by the comparison method. Furthermore, the proposed method was applied for content uniformity testing of risedronate tablets. PMID:23675102

  6. SMU.746-SMU.747, a Putative Membrane Permease Complex, Is Involved in Aciduricity, Acidogenesis, and Biofilm Formation in Streptococcus mutans

    PubMed Central

    Król, Jaros?aw E.; Biswas, Saswati; King, Clay

    2014-01-01

    Dental caries induced by Streptococcus mutans is one of the most prevalent chronic infectious diseases worldwide. The pathogenicity of S. mutans relies on the bacterium's ability to colonize tooth surfaces and survive a strongly acidic environment. We performed an ISS1 transposon mutagenesis to screen for acid-sensitive mutants of S. mutans and identified an SMU.746-SMU.747 gene cluster that is needed for aciduricity. SMU.746 and SMU.747 appear to be organized in an operon and encode a putative membrane-associated permease. SMU.746- and SMU.747-deficient mutants showed a reduced ability to grow in acidified medium. However, the short-term or long-term acid survival capacity and F1F0 ATPase activity remained unaffected in the mutants. Furthermore, deletion of both genes did not change cell membrane permeability and the oxidative and heat stress responses. Growth was severely affected even with slight acidification of the defined medium (pH 6.5). The ability of the mutant strain to acidify the defined medium during growth in the presence of glucose and sucrose was significantly reduced, although the glycolysis rate was only slightly affected. Surprisingly, deletion of the SMU.746-SMU.747 genes triggered increased biofilm formation in low-pH medium. The observed effects were more striking in a chemically defined medium. We speculate that the SMU.746-SMU.747 complex is responsible for amino acid transport, and we discuss its possible role in colonization and survival in the oral environment. PMID:24142257

  7. Double-stranded DNA translocase activity of transcription factor TFIIH and the mechanism of RNA polymerase II open complex formation.

    PubMed

    Fishburn, James; Tomko, Eric; Galburt, Eric; Hahn, Steven

    2015-03-31

    Formation of the RNA polymerase II (Pol II) open complex (OC) requires DNA unwinding mediated by the transcription factor TFIIH helicase-related subunit XPB/Ssl2. Because XPB/Ssl2 binds DNA downstream from the location of DNA unwinding, it cannot function using a conventional helicase mechanism. Here we show that yeast TFIIH contains an Ssl2-dependent double-stranded DNA translocase activity. Ssl2 tracks along one DNA strand in the 5' ? 3' direction, implying it uses the nontemplate promoter strand to reel downstream DNA into the Pol II cleft, creating torsional strain and leading to DNA unwinding. Analysis of the Ssl2 and DNA-dependent ATPase activity of TFIIH suggests that Ssl2 has a processivity of approximately one DNA turn, consistent with the length of DNA unwound during transcription initiation. Our results can explain why maintaining the OC requires continuous ATP hydrolysis and the function of TFIIH in promoter escape. Our results also suggest that XPB/Ssl2 uses this translocase mechanism during DNA repair rather than physically wedging open damaged DNA. PMID:25775526

  8. The NoRC complex mediates the heterochromatin formation and stability of silent rRNA genes and centromeric repeats

    PubMed Central

    Guetg, Claudio; Lienemann, Philipp; Sirri, Valentina; Grummt, Ingrid; Hernandez-Verdun, Danièle; Hottiger, Michael O; Fussenegger, Martin; Santoro, Raffaella

    2010-01-01

    Maintenance of specific heterochromatic domains is crucial for genome stability. In eukaryotic cells, a fraction of the tandem-repeated ribosomal RNA (rRNA) genes is organized in the heterochromatic structures. The principal determinant of rDNA silencing is the nucleolar remodelling complex, NoRC, that consists of TIP5 (TTF-1-interacting protein-5) and the ATPase SNF2h. Here we showed that TIP5 not only mediates the establishment of rDNA silencing but also the formation of perinucleolar heterochromatin that contains centric and pericentric repeats. Our data indicated that the TIP5-mediated heterochromatin is indispensable for stability of silent rRNA genes and of major and minor satellite repeats. Moreover, depletion of TIP5 impairs rDNA silencing, upregulates rDNA transcription levels and induces cell transformation. These findings point to a role of TIP5 in protecting genome stability and suggest that it can play a role in the cellular transformation process. PMID:20168299

  9. The NoRC complex mediates the heterochromatin formation and stability of silent rRNA genes and centromeric repeats.

    PubMed

    Guetg, Claudio; Lienemann, Philipp; Sirri, Valentina; Grummt, Ingrid; Hernandez-Verdun, Danièle; Hottiger, Michael O; Fussenegger, Martin; Santoro, Raffaella

    2010-07-01

    Maintenance of specific heterochromatic domains is crucial for genome stability. In eukaryotic cells, a fraction of the tandem-repeated ribosomal RNA (rRNA) genes is organized in the heterochromatic structures. The principal determinant of rDNA silencing is the nucleolar remodelling complex, NoRC, that consists of TIP5 (TTF-1-interacting protein-5) and the ATPase SNF2h. Here we showed that TIP5 not only mediates the establishment of rDNA silencing but also the formation of perinucleolar heterochromatin that contains centric and pericentric repeats. Our data indicated that the TIP5-mediated heterochromatin is indispensable for stability of silent rRNA genes and of major and minor satellite repeats. Moreover, depletion of TIP5 impairs rDNA silencing, upregulates rDNA transcription levels and induces cell transformation. These findings point to a role of TIP5 in protecting genome stability and suggest that it can play a role in the cellular transformation process. PMID:20168299

  10. Silicon Promotes Exodermal Casparian Band Formation in Si-Accumulating and Si-Excluding Species by Forming Phenol Complexes

    PubMed Central

    Hinrichs, Martin; Specht, André; Waßmann, Friedrich; Schreiber, Lukas; Schenk, Manfred K.

    2015-01-01

    We studied the effect of Silicon (Si) on Casparian band (CB) development, chemical composition of the exodermal CB and Si deposition across the root in the Si accumulators rice and maize and the Si non-accumulator onion. Plants were cultivated in nutrient solution with and without Si supply. The CB development was determined in stained root cross-sections. The outer part of the roots containing the exodermis was isolated after enzymatic treatment. The exodermal suberin was transesterified with MeOH/BF3 and the chemical composition was measured using gas chromatography-mass spectroscopy (GC-MS) and flame ionization detector (GC-FID). Laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS) was used to determine the Si deposition across root cross sections. Si promoted CB formation in the roots of Si-accumulator and Si non-accumulator species. The exodermal suberin was decreased in rice and maize due to decreased amounts of aromatic suberin fractions. Si did not affect the concentration of lignin and lignin-like polymers in the outer part of rice, maize and onion roots. The highest Si depositions were found in the tissues containing CB. These data along with literature were used to suggest a mechanism how Si promotes the CB development by forming complexes with phenols. PMID:26383862

  11. Non-covalent interactions of nitrous oxide with aromatic compounds: Spectroscopic and computational evidence for the formation of 1:1 complexes

    SciTech Connect

    Cao, Qian; School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 ; Gor, Gennady Y.; Krogh-Jespersen, Karsten; Khriachtchev, Leonid

    2014-04-14

    We present the first study of intermolecular interactions between nitrous oxide (N{sub 2}O) and three representative aromatic compounds (ACs): phenol, cresol, and toluene. The infrared spectroscopic experiments were performed in a Ne matrix and were supported by high-level quantum chemical calculations. Comparisons of the calculated and experimental vibrational spectra provide direct identification and characterization of the 1:1 N{sub 2}O-AC complexes. Our results show that N{sub 2}O is capable of forming non-covalently bonded complexes with ACs. Complex formation is dominated by dispersion forces, and the interaction energies are relatively low (about ?3 kcal mol{sup ?1}); however, the complexes are clearly detected by frequency shifts of the characteristic bands. These results suggest that N{sub 2}O can be bound to the amino-acid residues tyrosine or phenylalanine in the form of ? complexes.

  12. Non-covalent interactions of nitrous oxide with aromatic compounds: Spectroscopic and computational evidence for the formation of 1:1 complexes

    NASA Astrophysics Data System (ADS)

    Cao, Qian; Gor, Gennady Y.; Krogh-Jespersen, Karsten; Khriachtchev, Leonid

    2014-04-01

    We present the first study of intermolecular interactions between nitrous oxide (N2O) and three representative aromatic compounds (ACs): phenol, cresol, and toluene. The infrared spectroscopic experiments were performed in a Ne matrix and were supported by high-level quantum chemical calculations. Comparisons of the calculated and experimental vibrational spectra provide direct identification and characterization of the 1:1 N2O-AC complexes. Our results show that N2O is capable of forming non-covalently bonded complexes with ACs. Complex formation is dominated by dispersion forces, and the interaction energies are relatively low (about -3 kcal mol-1); however, the complexes are clearly detected by frequency shifts of the characteristic bands. These results suggest that N2O can be bound to the amino-acid residues tyrosine or phenylalanine in the form of ? complexes.

  13. Apolipoprotein E structural requirements for the formation of SDS-stable complexes with beta-amyloid-(1-40): the role of salt bridges.

    PubMed Central

    Bentley, Nicholas M; Ladu, Mary Jo; Rajan, Chandrika; Getz, Godfrey S; Reardon, Catherine A

    2002-01-01

    Of the three major isoforms of human apolipoprotein E (apoE), apoE4 is a risk factor for the development of Alzheimer's disease. Among possible neurologically relevant differences in the properties of apoE3 and apoE4 is the fact that apoE3 forms an SDS-stable complex with beta-amyloid-(1-40) (Abeta40) with greater avidity than does apoE4. This interaction may sequester potentially toxic species of Abeta or facilitate clearance. To understand more about this difference, we examined whether differences in salt bridges between apoE domains influence the capacity of apoE isoforms to form complexes with Abeta. In apoE3 there is a salt bridge between Arg-61 and Asp-65, while in apoE4 there are salt bridges between Arg-61 and Glu-255, and Arg-112 and Glu-109. Mutation of position 112, which is Cys in apoE3 and Arg in apoE4, to Ala or Lys abolished complex formation, while mutant apoE with Ser at this position retained the capacity to form complex. Substituting Ala for Glu-109 had no effect on the ability of either apoE4 or apoE3 to form complexes. On the other hand, substitution of Thr for Arg-61 in apoE3 abolished, and truncation of apoE3 at position 201 substantially lowered, but did not abolish, complex formation. Neither of these mutations within apoE4 had any affect on its complex formation with Abeta. These results suggest that the nature of the cysteine residue in apoE3 and interactions between the N-terminal and C-terminal domains of human apoE are important for the ability of apoE3 to form an SDS-stable complex with Abeta40. PMID:12015813

  14. Mixed ligand complex formation of 2-aminobenzamide with Cu(II) in the presence of some amino acids: synthesis, structural, biological, pH-metric, spectrophotometric and thermodynamic studies.

    PubMed

    Dharmaraja, Jeyaprakash; Esakkidurai, Thirugnanasamy; Subbaraj, Paramasivam; Shobana, Sutha

    2013-10-01

    Mixed ligand Cu(II) complexes of 2-aminobenzamide (2AB) and amino acids viz., glycine (gly), L-alanine (ala), L-valine (val) and L-phenylalanine (phe) have been synthesised and characterized by various physico-chemical and spectral techniques. The calculated g-tensor values for Cu(II) complexes at 77 K and 300 K, show the distorted octahedral geometry which has been confirmed from the absorption studies. Consequently, the thermal studies illustrate that the loss of water and acetate molecules in the initial stage which are followed by the decomposition of organic residues. The powder X-ray diffraction and SEM analysis reflect that all the complexes have well-defined crystallinity nature with homogeneous morphology. The binding activities of CT DNA with CuAB complexes have been examined by absorption studies. Further, the oxidative cleavage interactions of 2-aminobenzamide and CuAB complexes with DNA were studied by gel electrophoresis method in H2O2 medium. Also, the complex formation of Cu(II) involving 2-aminobenzamide and amino acids were carried out by a combined pH-metric and spectrophotometric techniques in 50% (v/v) water-ethanol mixture at 300, 310, 320 and 330±0.1 K with I=0.15 mol dm(-3) (NaClO4). In solution, CuAB and CuAB2 species has been detected and the binding modes of 2-aminobenzamide and amino acids in both binary and mixed ligand complexes are same. The calculated stabilization value of ?logK, log X and log X' indicates higher stabilities for the mixed ligand complexes rather than their binary species. The thermodynamic parameters like ?G, ?H and ?S have been determined from temperature dependence of the stability constant. In vitro biological activities of 2-aminobenzamide, CuA and CuAB complexes show remarkable activities against some bacterial and fungal strains. The percentage distribution of various binary and mixed ligand species in solution at dissimilar pH intervals were also evaluated. PMID:23811147

  15. Proteomic analysis of HIV-1 Nef cellular binding partners reveals a role for exocyst complex proteins in mediating enhancement of intercellular nanotube formation

    PubMed Central

    2012-01-01

    Background HIV-1 Nef protein contributes to pathogenesis via multiple functions that include enhancement of viral replication and infectivity, alteration of intracellular trafficking, and modulation of cellular signaling pathways. Nef stimulates formation of tunneling nanotubes and virological synapses, and is transferred to bystander cells via these intercellular contacts and secreted microvesicles. Nef associates with and activates Pak2, a kinase that regulates T-cell signaling and actin cytoskeleton dynamics, but how Nef promotes nanotube formation is unknown. Results To identify Nef binding partners involved in Pak2-association dependent Nef functions, we employed tandem mass spectrometry analysis of Nef immunocomplexes from Jurkat cells expressing wild-type Nef or Nef mutants defective for the ability to associate with Pak2 (F85L, F89H, H191F and A72P, A75P in NL4-3). We report that wild-type, but not mutant Nef, was associated with 5 components of the exocyst complex (EXOC1, EXOC2, EXOC3, EXOC4, and EXOC6), an octameric complex that tethers vesicles at the plasma membrane, regulates polarized exocytosis, and recruits membranes and proteins required for nanotube formation. Additionally, Pak2 kinase was associated exclusively with wild-type Nef. Association of EXOC1, EXOC2, EXOC3, and EXOC4 with wild-type, but not mutant Nef, was verified by co-immunoprecipitation assays in Jurkat cells. Furthermore, shRNA-mediated depletion of EXOC2 in Jurkat cells abrogated Nef-mediated enhancement of nanotube formation. Using bioinformatic tools, we visualized protein interaction networks that reveal functional linkages between Nef, the exocyst complex, and the cellular endocytic and exocytic trafficking machinery. Conclusions Exocyst complex proteins are likely a key effector of Nef-mediated enhancement of nanotube formation, and possibly microvesicle secretion. Linkages revealed between Nef and the exocyst complex suggest a new paradigm of exocyst involvement in polarized targeting for intercellular transfer of viral proteins and viruses. PMID:22534017

  16. NADP-Specific Electron-Bifurcating [FeFe]-Hydrogenase in a Functional Complex with Formate Dehydrogenase in Clostridium autoethanogenum Grown on CO

    PubMed Central

    Wang, Shuning; Huang, Haiyan; Kahnt, Jörg; Mueller, Alexander P.; Köpke, Michael

    2013-01-01

    Flavin-based electron bifurcation is a recently discovered mechanism of coupling endergonic to exergonic redox reactions in the cytoplasm of anaerobic bacteria and archaea. Among the five electron-bifurcating enzyme complexes characterized to date, one is a heteromeric ferredoxin- and NAD-dependent [FeFe]-hydrogenase. We report here a novel electron-bifurcating [FeFe]-hydrogenase that is NADP rather than NAD specific and forms a complex with a formate dehydrogenase. The complex was found in high concentrations (6% of the cytoplasmic proteins) in the acetogenic Clostridium autoethanogenum autotrophically grown on CO, which was fermented to acetate, ethanol, and 2,3-butanediol. The purified complex was composed of seven different subunits. As predicted from the sequence of the encoding clustered genes (fdhA/hytA-E) and from chemical analyses, the 78.8-kDa subunit (FdhA) is a selenocysteine- and tungsten-containing formate dehydrogenase, the 65.5-kDa subunit (HytB) is an iron-sulfur flavin mononucleotide protein harboring the NADP binding site, the 51.4-kDa subunit (HytA) is the [FeFe]-hydrogenase proper, and the 18.1-kDa (HytC), 28.6-kDa (HytD), 19.9-kDa (HytE1), and 20.1-kDa (HytE2) subunits are iron-sulfur proteins. The complex catalyzed both the reversible coupled reduction of ferredoxin and NADP+ with H2 or formate and the reversible formation of H2 and CO2 from formate. We propose the complex to have two functions in vivo, namely, to normally catalyze CO2 reduction to formate with NADPH and reduced ferredoxin in the Wood-Ljungdahl pathway and to catalyze H2 formation from NADPH and reduced ferredoxin when these redox mediators get too reduced during unbalanced growth of C. autoethanogenum on CO (E0? = ?520 mV). PMID:23893107

  17. Basal membrane complex architecture is disrupted during posterior subcapsular cataract formation in Royal College of Surgeons rats

    PubMed Central

    Joy, Anita

    2014-01-01

    Purpose Previous studies detailing the development of posterior subcapsular cataracts (PSC) in Royal College of Surgeons (RCS) rats have shown that aberrant fiber-end migration underlies the structural compromise. This investigation was conducted to examine the distribution of select basal membrane complex (BMC) components and to assess the intravitreal levels of specific cytokines during PSC formation. Methods Lenses from 52 RCS dystrophic rats (RCS/Lav) and 28 genetically matched control animals (RCS-rdy+/Lav) from 2 to 8 weeks old were used. After enucleation, vitreous was collected for eventual cytokine level analyses; lenses were then removed and processed for immunocytochemical localization of actin, cadherin, ? integrin, vinculin, and cell nuclei. Results At 2–3 weeks postnatal, dystrophic lenses showed normal BMC distribution of actin, cadherin, and vinculin; however ? integrin distribution was altered as compared to controls. By 4–6 weeks of age, F-actin was visible as bright foci arranged in a “rosette” pattern around fiber-end profiles. Concurrently, vinculin was rearranged into a diffuse pattern within the BMC. Cadherin delineated the fiber ends in dystrophic lenses until 5 weeks postnatal, after which it displayed diffuse cytoplasmic staining with more definitive labeling at the BMC periphery. ? integrin was initially distributed as punctuate spots at 2–3 weeks postnatal; however, by 4–6 weeks it was co-localized with F-actin around the periphery of fiber ends. The distribution of F-actin, cadherin, and ? integrin components did not undergo further changes after 6 weeks of age; however, vinculin was present predominantly at the periphery of the BMC in 7–8-week-old dystrophic lenses. Intravitreal cytokine levels were assessed for interleukin (IL)-1?, IL-4, IL-6, IL-8, tumor necrosis factor (TNF), and interferon (IFN)-?. Levels of IL-1?, IL-4, TNF, and IFN-? demonstrated a similar pattern, with concentrations increasing from 2 to 6 weeks postnatal and then decreasing slightly up to 8 weeks of age. IL-4 and TNF had the highest average concentrations, with peaks of 148.00 pg/ml and 34.20 pg/ml, respectively. Conclusions The data indicate that defined rearrangements of normal BMC architecture precede and characterize the structural changes that culminate in the PSC. These are consistent with modifications of adhesion mechanics involving cell–cell attachment, cell–matrix adhesion, and timely fiber-end detachment. Further, the results suggest that pro-inflammatory cytokines are potential initiating factors in aberrant fiber-end migration and subsequent PSC formation. PMID:25593506

  18. Cytochrome P-455 nm complex formation in the metabolism of phenylalkylamines. XI. Peroxygenase versus monooxygenase function of cytochrome P-450 in rat liver microsomes.

    PubMed

    Jönsson, K H; Lindeke, B

    1990-01-01

    Cytochrome P-455 nm complex formation in phenobarbital induced rat liver microsomes was investigated using both an NADPH/O2-dependent monooxygenase system and a peroxygenase/peroxidase system where hydrogen peroxide was substituted for NADPH. The substrates tested were the enantiomers of four 1-alkyl-substituted 2-phenylethanamines (unbranched 1-alkyl substituents, comprising one to four carbons), S(+)- and R(-)-N-hydroxyamphetamine and racemic mixtures of N-hydroxy-1-phenyl-2-butanamine and N-hydroxy-3-methyl-1-phenyl-2-butanamine. During NADPH/O2-dependent metabolism the amines showed a positive correlation between extent of complex formation and lipophilicity; furthermore the S(+)-isomers gave rise to larger amounts of complex than the corresponding R(-)-analogues. With the hydroxylamines the ability to form complexes was greater than with any of the amines but no definite difference was seen among the hydroxylamines. In the peroxygenase system the hydroxylamines still gave larger amounts of complex than the amines but the differences seen within the homologous series of chiral amines when using the monooxygenase system were no longer observed. Although the quantitative trends in complex formation seen in the monooxygenase system were non-existent when H2O2 was substituted for NADPH, mere qualitative rules still seemed to apply; substrates which failed to give the complex during NADPH-dependent metabolism (2-phenylethanamine, phentermine, N-hydroxyphentermine and phenylacetone oxime) were inactive also in the peroxygenase system. The results substantiate the notion that the monooxygenase and peroxygenase reaction mechanisms of cyt. P-450 follow similar but not identical pathways. PMID:2165869

  19. A common intermediate for N2 formation in enzymes and zeolites: side-on Cu-nitrosyl complexes

    SciTech Connect

    Kwak, Ja Hun; Lee, Jong H.; Burton, Sarah D.; Lipton, Andrew S.; Peden, Charles HF; Szanyi, Janos

    2013-09-16

    Understanding the mechanisms of catalytic processes requires the identification of reaction centers and key intermediates, both of which are often achieved by the use of spectroscopic characterization tools. Due to the heterogeneity of active centers in heterogeneous catalysts, it is frequently difficult to identify the specific sites that are responsible for the overall activity. Furthermore, the simultaneous presence of a large number of surface species on the catalyst surface often poses a great challenge for the unambiguous determination of the relevant species in the reaction mechanism. In contrast, enzymes possess catalytically active centers with precisely defined coordination environments that are only able to accommodate intermediates relevant to the specific catalytic process. Here we show that side-on Cu+-NO+ complexes characterized by high magnetic field solid state magic angle spinning nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopies are the key intermediates in the selective catalytic reduction of NO over Cu-SSZ-13 zeolite catalysts. Analogous intermediates have been observed and characterized in nitrite reductase enzymes, and shown to be the critical intermediates in the formation of N2 for anaerobic ammonium oxidation reactions.[1] The identification of this key reaction intermediate, combined with the results of our prior kinetic studies, allows us to propose a new reaction mechanism for the selective catalytic reduction of NO with NH3 under oxygen-rich environments over Cu-SSZ-13 zeolites, a key reaction in automotive emission control. The authors acknowledge the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy/Vehicle Technologies Program for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle Memorial Institute.

  20. Discrimination between platelet-mediated and coagulation-mediated mechanisms in a model of complex thrombus formation in vivo

    SciTech Connect

    Cadroy, Y.; Horbett, T.A.; Hanson, S.R.

    1989-04-01

    To study mechanisms of complex thrombus formation in vivo, and to compare the relative antithrombotic effects of anticoagulants and antiplatelet agents, a model was developed in baboons. Segments of collagen-coated tubing followed by two sequentially placed expansion chambers exhibiting disturbed flow patterns were exposed to native blood under laminar flow conditions. The device was incorporated for 1 hour into an exteriorized arteriovenous shunt in baboons under controlled blood flow (20 ml/min). Morphologic evaluation by scanning electron microscopy showed that thrombi associated with collagen were relatively rich in platelets but thrombi in the chambers were rich in fibrin and red cells. Deposition of indium 111-labeled platelets was continuously measured with a scintillation camera. Platelet deposition increased in a linear (collagen-coated segment) or exponential (chambers 1 and 2) fashion over time, with values after 40 minutes averaging 24.1 +/- 3.3 x 10(8) platelets (collagen segment), 16.7 +/- 3.4 x 10(8) platelets (chamber 1), and 8.4 +/- 2.4 x 10(8) platelets (chamber 2). Total fibrinogen deposition after 40 minutes was determined by using iodine 125-labeled baboon fibrinogen and averaged 0.58 +/- 0.14 mg in the collagen segment, 1.51 +/- 0.27 mg in chamber 1, and 0.95 +/- 0.25 mg in chamber 2. Plasma levels of beta-thromboglobulin (beta TG), platelet-factor 4 (PF4), and fibrinopeptide A (FPA) increased fourfold to fivefold after 60 minutes of blood exposure to the thrombotic device. Platelet deposition onto the collagen segment, chamber 1, and chamber 2 was linearly dependent on the circulating platelet count. Platelet accumulation in chamber 1 and chamber 2 was also dependent on the presence of the proximal collagen segment.

  1. Operational mechanism of light-emitting devices based on Ru(II) complexes: Evidence for electrochemical junction formation

    NASA Astrophysics Data System (ADS)

    Rudmann, Hartmut; Shimada, Satoru; Rubner, Michael F.

    2003-07-01

    In this work, the operational mechanism of single-layer light-emitting electrochemical cells (LECs) based on the small molecule tris(2,2' bipyridyl) ruthenium(II) [Ru(II)] was investigated using capacitance and resistance measurements. The current-voltage and capacitance-voltage characteristics of such devices suggest that an electrochemical junction is formed during operation with a high electric field across the junction. A similar mechanism has been proposed for polymer LECs. In the case of Ru(II) devices, electrically conducting regions adjacent to the electrodes are the result of mixed-valent states that form due to oxidation and reduction of the complex. The junction thickness is a function of the type of counterions used and the operating voltage. Thinner junctions were observed for devices with high ionic conductivity and at higher operating voltages. Transient capacitance and resistance measurements show that the junction formation is faster in devices with higher ion mobility and during higher operating voltages. In addition, the capacitance and resistance exhibit a relaxation time after the device is turned off. This relaxation shows that the electrochemical junction stays present in a device for some time (several seconds to minutes) once a device is turned off. The electrochemical junction disappears as the counterions relax back. Furthermore, a theoretical model is presented, which shows that due to the concentration gradient of mixed-valent states during operation, an electric field has to be present in the device. The model also shows that there can be no local charge neutrality in the bulk of the device during operation.

  2. Structural and thermodynamic properties of molecular complexes of aluminum and gallium trihalides with bifunctional donor pyrazine: decisive role of Lewis acidity in 1D polymer formation.

    PubMed

    Sevastianova, Tatiana N; Bodensteiner, Michael; Lisovenko, Anna S; Davydova, Elena I; Scheer, Manfred; Susliakova, Tatiana V; Krasnova, Irina S; Timoshkin, Alexey Y

    2013-08-28

    Solid state structures of group 13 metal halide complexes with pyrazine (pyz) of 2:1 and 1:1 composition have been established by X-ray structural analysis. Complexes of 2:1 composition adopt molecular structures MX3·pyz·MX3 with tetrahedral geometry of group 13 metals. Complexes of AlBr3 and GaCl3 of 1:1 composition are 1D polymers (MX3·pyz)? with trigonal bipyramidal geometry of the group 13 metal, while the weaker Lewis acid GaI3 forms the monomeric molecular complex GaI3·pyz, which is isostructural to its pyridine analog GaI3·py. Tensimetry studies of vaporization and thermal dissociation of AlBr3·pyz and AlBr3·pyz·AlBr3 complexes have been carried out using the static method with a glass membrane null-manometer. Thermodynamic characteristics of vaporization and equilibrium gas phase dissociation of the AlBr3·pyz complex have been determined. Comprehensive theoretical studies of (MX3)n·(pyz)m complexes (M = Al, Ga; X = Cl, Br, I; n = 1, 2; m = 1-3) have been carried out at the B3LYP/TZVP level of theory. Donor-acceptor bond energies were obtained taking into account reorganization energies of the fragments. Computational data indicate that the formation of (MX3·pyz)? polymers with coordination number 5 is only slightly more energetically favorable than the formation of molecular complexes of type MX3·pyz for X = Cl, Br. It is expected that on melting (MX3·pyz)? polymers dissociate into individual MX3·pyz molecules. This dovetails with low melting enthalpies of the (MX3·pyz)? complexes. Polymer stability decreases in the order AlCl3 > AlBr3 > GaCl3 > AlI3 > GaBr3 > GaI3. For MI3·pyz complexes computations predict that the monomeric structure motif is more energetically favorable compared to the catena polymer. These theoretical predictions agree well with the experimentally observed monomeric complex GaI3·pyz in the solid state. Thus, the Lewis acidity of the group 13 halides may play a decisive role in the formation of 1D polymeric networks. PMID:23824052

  3. EF-Tu dynamics during pre-translocation complex formation: EF-Tu·GDP exits the ribosome via two different pathways.

    PubMed

    Liu, Wei; Chen, Chunlai; Kavaliauskas, Darius; Knudsen, Charlotte R; Goldman, Yale E; Cooperman, Barry S

    2015-10-30

    The G-protein EF-Tu, which undergoes a major conformational change when EF-Tu·GTP is converted to EF-Tu·GDP, forms part of an aminoacyl(aa)-tRNA·EF-Tu·GTP ternary complex (TC) that accelerates the binding of aa-tRNA to the ribosome during peptide elongation. Such binding, placing a portion of EF-Tu in contact with the GTPase Associated Center (GAC), is followed by GTP hydrolysis and Pi release, and results in formation of a pretranslocation (PRE) complex. Although tRNA movement through the ribosome during PRE complex formation has been extensively studied, comparatively little is known about the dynamics of EF-Tu interaction with either the ribosome or aa-tRNA. Here we examine these dynamics, utilizing ensemble and single molecule assays employing fluorescent labeled derivatives of EF-Tu, tRNA, and the ribosome to measure changes in either FRET efficiency or fluorescence intensity during PRE complex formation. Our results indicate that ribosome-bound EF-Tu separates from the GAC prior to its full separation from aa-tRNA, and suggest that EF-Tu·GDP dissociates from the ribosome by two different pathways. These pathways correspond to either reversible EF-Tu·GDP dissociation from the ribosome prior to the major conformational change in EF-Tu that follows GTP hydrolysis, or irreversible dissociation after or concomitant with this conformational change. PMID:26338772

  4. EF-Tu dynamics during pre-translocation complex formation: EF-Tu·GDP exits the ribosome via two different pathways

    PubMed Central

    Liu, Wei; Chen, Chunlai; Kavaliauskas, Darius; Knudsen, Charlotte R.; Goldman, Yale E.; Cooperman, Barry S.

    2015-01-01

    The G-protein EF-Tu, which undergoes a major conformational change when EF-Tu·GTP is converted to EF-Tu·GDP, forms part of an aminoacyl(aa)-tRNA·EF-Tu·GTP ternary complex (TC) that accelerates the binding of aa-tRNA to the ribosome during peptide elongation. Such binding, placing a portion of EF-Tu in contact with the GTPase Associated Center (GAC), is followed by GTP hydrolysis and Pi release, and results in formation of a pretranslocation (PRE) complex. Although tRNA movement through the ribosome during PRE complex formation has been extensively studied, comparatively little is known about the dynamics of EF-Tu interaction with either the ribosome or aa-tRNA. Here we examine these dynamics, utilizing ensemble and single molecule assays employing fluorescent labeled derivatives of EF-Tu, tRNA, and the ribosome to measure changes in either FRET efficiency or fluorescence intensity during PRE complex formation. Our results indicate that ribosome-bound EF-Tu separates from the GAC prior to its full separation from aa-tRNA, and suggest that EF-Tu·GDP dissociates from the ribosome by two different pathways. These pathways correspond to either reversible EF-Tu·GDP dissociation from the ribosome prior to the major conformational change in EF-Tu that follows GTP hydrolysis, or irreversible dissociation after or concomitant with this conformational change. PMID:26338772

  5. Charge transfer spectra of organometallic complexes—III. Energy contributions to the formation of a donor—acceptor complex and to the electron transfer in the interaction between trialkyltin iodides and iodine in carbon tetrachloride solutions1

    NASA Astrophysics Data System (ADS)

    Hoste, S.; Herman, G. G.; Lippens, W.; Verdonck, L.; van der Kelen, G.

    The enthalpies of formation for charge transfer complexes of the type [R 3SnI.I 2] (R = CH 3, C 2H 5, n-C 3H 7, n-C 4H 9) have been measured by calorimetry. The data are analysed using Mulliken's resonance structure theory, to produce the different energy contributions to the formation of and the charge transfer interaction in these products. The use of cyclic voltammetry and photoelectron spectroscopy to assess the donor properties of R 3SnI ligands is discussed.

  6. Temperature-controlled poly(propylene) glycol hydrophobicity on the formation of inclusion complexes with modified cyclodextrins. A DSC and ITC study.

    PubMed

    De Lisi, R; Lazzara, G; Milioto, S

    2011-07-21

    The study highlighted the main forces driving the formation of hydroxypropyl-cyclodextrins (HP-CDs) + poly(propylene) glycol 725 g mol(-1) inclusion complexes. The temperature parameter was chosen as the variable to modulate the hydrophobicity of the polymer, and consequently ITC experiments as functions of temperature as well as DSC measurements were done in a systematic way. The polymer is not included into HP-?-CD, it is strongly bound to HP-?-CD and it is floating in HP-?-CD. The stability of the inclusion complexes is entropy controlled. The gain of the entropy is a unique result compared to the opposite literature findings for inclusion complexes based on polymers and CDs. This peculiarity is ascribable to the removal of water molecules from cages during complexation and this effect compensates the entropy loss due to constraints caused by the CD threading. In spite the host-guest van der Waals contacts are optimized, the enthalpies for the inclusion complex formation are positive and reveal the large heat required for dehydrating the propylene oxide units. All the macrocycles enhanced the polymer solubility in water. Increasing the affinity of the macrocycle to the macromolecule makes more expanded the one-phase area of the binodal curve. A new thermodynamic approach was proposed to predict quantitatively the binodal curve as well as the dependence of the enthalpy of separation phase on the macrocycle composition. The agreement between the experimental data and the computed values was excellent. PMID:21666930

  7. Americium(iii) and europium(iii) complex formation with lactate at elevated temperatures studied by spectroscopy and quantum chemical calculations.

    PubMed

    Barkleit, Astrid; Kretzschmar, Jerome; Tsushima, Satoru; Acker, Margret

    2014-08-01

    Thermodynamic parameters for the complex formation of Am(iii) and Eu(iii) with lactate were determined with UV-vis and time-resolved laser-induced fluorescence spectroscopy (TRLFS) in a temperature range between 25 and 70 °C. The reaction enthalpy decreased with increasing ionic strength. ATR FT-IR and NMR spectroscopy in combination with density functional theory (DFT) calculations revealed structural details of the Eu(iii) lactate 1?:?1 complex: a chelating coordination mode of the lactate with a monodentate binding carboxylate group and the hydroxyl group being deprotonated. PMID:24828353

  8. Structural uplift and ejecta thickness of lunar mare craters: New insights into the formation of complex crater rims

    NASA Astrophysics Data System (ADS)

    Krüger, Tim; Kenkmann, Thomas

    2015-04-01

    Most complex impact craters on solid planetary surfaces throughout the Solar System exhibit elevated crater rims similar to the elevated crater rims of simple craters. In principal the final elevation of the crater rim is due to the deposition of ejecta on the structurally uplifted bedrock of the pre-impact surface. For simple craters the elevated crater rim is due to two well understood factors: (i) Emplacement of the coherent proximal ejecta material at the transient cavity rim (overturned flap) [1]. (ii) Structural uplift of the pre-impact surface in the proximity of the transient cavity [1, 2]. The amount of structural uplift at the rim of simple craters is due to plastic thickening of the target rock, the emplacement of interthrust wedges and/or the injection of dike material in the underlying target [1, 2, 3, 4]. Both factors, (i) and (ii), are believed to equally contribute to the structural uplift of simple craters. Larger craters have complex morphologies and the crater's extent may considerably exceed that of the transient cavity due to gravity-driven adjustment movements. For instance, the Ries crater's final diameter is twice of its transient cavity size. It is expected that both ejecta thickness and structural uplift decrease with increasing distance from the rim of the transient crater. For lunar craters the continuous ejecta extends up to 2 crater radii from the crater center. The ejecta blanket thickness ET at the rim crest of the transient crater (which is inside the final crater) is a function of the distance r from the crater center, with RT as the radius of the transient crater [2, 6, 7] and is expressed by the following function: (1) ET = 0.033 RT (r/RT)^-3.0 for r ? RT [5, 6] The structural uplift is largest at the transient cavity rim and gets rapidly smaller with increasing distance to the crater center and disappears after 1.3 - 1.7 crater radii [1]. These circumstances raise the question, how elevated rims of complex craters form? Based on High-resolution imagery from the Lunar Reconnaissance Orbiter Camera [8] we studied several complex lunar craters and precisely measured their total rim height, the amount of structural uplift and the ejecta thickness along the final crater rim. Our detailed investigation is focused on the lunar mare craters Bessel (16 km), Euler (28 km), Kepler (32 km), Harpalus (39 km) and Bürg (41 km). A mean of 70.6% of the rim height of the final crater of the five lunar craters is due to the structural uplift of the target. The rest is contributed by the ejecta thickness (29.4 %). These results are in good agreement with previous studies [1]. The final crater diameter is given as a multiple of the transient crater diameter (DT) for all investigated craters: Bessel (1.01DT), Euler (1.16DT), Kepler (1.21DT), Harpalus (1.40DT) and Bürg (1.10DT). The transient crater diameter increases with the diameter of the final crater. Currently we are assessing the mechanism of a structural uplift at larger distance to the transient cavity rim. The structural uplift of the crater rim only by dike injection and plastic deformation in the underlying target material seems unlikely at distances >1 km from the transient crater cavity. Other mechanisms, like reverse faulting, beginning in the excavation stage of crater formation, could be responsible for additional structural uplift of the crater rim. Nevertheless, our results show that structural uplift is a more dominant effect than ejecta emplacement for complex impact craters. References: [1] Sharpton V.L. (2014) JGR, 119, 1, 154-168. [2] Melosh H.J. (1989) Oxford monographs on geology and geophysics, 11, Impact cratering: a geologic process. [3] Shoemaker E. M. (1963) The Solar System, 4, 301-336. [4] Poelchau M.H. et al. (2009) JGR, 114, E01006. [5] Settle M., and Head J.W. (1977) Icarus, v. 31, p. 123. [6] McGetchin, T. R., Settle, M. and Head, J. W. 1973. EPSL 20: 226-236. [7] Pike R. J. (1974) EPSL, 23, 265-274. [8] Robinson M.S. et al. (2010) Space Sci. Rev. 150, 81-124.

  9. Crystallographic analysis of an RNA polymerase ?-­subunit fragment complexed with ?10 promoter element ssDNA: quadruplex formation as a possible tool for engineering crystal contacts in protein–ssDNA complexes

    PubMed Central

    Feklistov, Andrey; Darst, Seth A.

    2013-01-01

    Structural studies of ?10 promoter element recognition by domain 2 of the RNA polymerase ? subunit [Feklistov & Darst (2011 ?), Cell, 147, 1257–1269] reveal an unusual crystal-packing arrangement dominated by G-quartets. The 3?-terminal GGG motif of the oligonucleotide used in crystallization participates in G-quadruplex formation with GGG motifs from symmetry-related complexes. Stacking between neighboring G-quadruplexes results in the formation of pseudo-continuous four-stranded columns running throughout the length of the crystal (G-columns). Here, a new crystal form is presented with a different arrangement of G-columns and it is proposed that the fortuitous finding of G-­quartet packing could be useful in engineering crystal contacts in protein–ssDNA complexes. PMID:23989139

  10. Molar Absorptivity and Concentration-Dependent Quantum Yield of Fe(II) Photo-Formation for the Aqueous Solutions of Fe(III)-Dicarboxylate Complexes

    NASA Astrophysics Data System (ADS)

    Hitomi, Y.; Arakaki, T.

    2009-12-01

    Redox cycles of iron in the aquatic environment affect formation of reactive oxygen species such as hydrogen peroxide and hydroxyl radicals, which in turn determines lifetimes of many organic compounds. Although aqueous Fe(III)-dicarboxylate complexes are considered to be important sources of photo-formed Fe(II), molar absorptivity and quantum yield of Fe(II) formation for individual species are not well understood. We initiated a study to characterize Fe(II) photo-formation from Fe(III)-dicarboxylates with the concentration ranges that are relevant to the natural aquatic environment. The Visual MINTEQ computer program was used to calculate the equilibrium concentrations of individual Fe(III)-dicarboxylate species. The molar absorptivity of Fe(III)-dicarboxylate species was obtained by UV-VIS spectrophotometer, and the product of the quantum yield and the molar absorptivity of Fe(III)-dicarboxylate species were obtained from photochemical experiments. These experimental data were combined with the calculated equilibrium Fe(III)-dicarboxylate concentrations to determine individual molar absorptivity and quantum yield of Fe(II) photo-formation for a specific Fe(III)-dicarboxylate species. We used initial concentrations of less than 10 micromolar Fe(III) to study the photochemical formation of Fe(II). Dicarboxylate compounds studied include oxalate, malonate, succinate, malate, and phthalate. We report molar absorptivity and concentration-dependent quantum yields of Fe(II) photo-formation of individual Fe(III)-dicarboxylates.

  11. Modeling of Flow, Transport and Controlled Sedimentation Phenomena during Mixing of Salt Solutions in Complex Porous Formations

    NASA Astrophysics Data System (ADS)

    Skouras, Eugene D.; Jaho, Sofia; Pavlakou, Efstathia I.; Sygouni, Varvara; Petsi, Anastasia; Paraskeva, Christakis A.

    2015-04-01

    The deposition of salts in porous media is a major engineering phenomenon encountered in a plethora of industrial and environmental applications where in some cases is desirable and in other not (oil production, geothermal systems, soil stabilization etc). Systematic approach of these problems requires knowledge of the key mechanisms of precipitating salts within the porous structures, in order to develop new methods to control the process. In this work, the development and the solution of spatiotemporally variable mass balances during salt solution mixing along specific pores were performed. Both analytical models and finite differences CFD models were applied for the study of flow and transport with simultaneous homogeneous and heterogeneous nucleation (by crystal growth on the surface of the pores) in simple geometries, while unstructured finite elements and meshless methods were developed and implemented for spatial discretization, reconstruction, and solution of transport equations and homogeneous / heterogeneous reactions in more complex geometries. At initial stages of this work, critical problem parameters were identified, such as the characteristics of the porosity, the number of dissolved components, etc. The parameters were then used for solving problems which correspond to available experimental data. For each combination of ions and materials, specific data and process characteristics were included: (a) crystal kinetics (nucleation, growth rates or reaction surface rates of crystals, critical suspension concentrations), (b) physico-chemical properties (bulk density, dimensions of generated crystals, ion diffusion coefficients in the solution), (c) operating parameters (macroscopic velocity, flow, or pressure gradient of the solution, ion concentration) (d) microfluidic data (geometry, flow area), (e) porosity data in Darcy description (initial porosity, specific surface area, tortuosity). During the modeling of flow and transport in three-dimensional pore network, the dependence of the mass balance in all major directions is taken into account, either as a three-dimensional network of pores with specific geometry (cylinders, sinusoidal cells), or as a homogeneous random medium (Darcy description). The distribution of the crystals along the porous medium was calculated in the case of selective crystallization on the walls, which is the predominant effect to date in the experiments. The crystals distribution was also examined in the case where crystallization was carried out in the bulk solution. Salts sedimentation experiments were simulated both in an unsaturated porous medium and in a medium saturated with an oil phase. A comparison of the simulation results with corresponding experimental results was performed in order to design improved selective sedimentation of salts systems in porous formations. ACKNOWLEDGMENTS This research was partially funded by the European Union (European Social Fund-ESF) and Greek National Funds through the Operational program "Education and Lifelong Learning" under the action Aristeia II (Code No 4420).

  12. The 70 S monosome accumulation and in vitro initiation complex formation by Escherichia coli ribosomes at 5 C. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Broeze, R. J.; Pope, D. H.

    1978-01-01

    The inhibition of translation which is observed after shifting Escherichia coli to low temperature was investigated. 70 S ribosomes were isolated from E. coli 8 hours after a shift to 5 C synthesized protein in the absence of added mRNA (i.e., endogenous protein synthesis by 70 S monosomes) at a rate which was three times greater than the rate of endogenous protein synthesis by 70 S ribosomes which were isolated at the time of the shift to 5 C. Calculations based on the rates of endogenous protein synthesis and polyphenylalanine synthesis indicate that 70 S monosomes comprise only 0.1% of the total E. coli 70 S ribosome population after 8 hours at 5 c. Experiments designed to test initiation complex formation on ApUpG or formaldehyde treated MS-2 viral RNA demonstrated that, although the rate of formation of 30 S initiation complexes was not inhibited, the rate of formation of active 70 S initiation complexes, able to react with puromycin, was inhibited to a great extent at 5 C. A model depicting the effects of low temperature on the E. coli translation system is proposed.

  13. Sus1p facilitates pre-initiation complex formation at the SAGA-regulated genes independently of histone H2B de-ubiquitylation

    PubMed Central

    Durairaj, Geetha; Shukla, Abhijit; Bhaumik, Sukesh R.

    2014-01-01

    Sus1p is a common component of transcriptional co-activator, SAGA (Spt-Ada-Gcn5-Acetyltransferase), and mRNA export complex, TREX-2 (Transcription-export 2), and is involved in promoting transcription as well as mRNA export. However, it is not clearly understood how Sus1p promotes transcription. Here, we show that Sus1p is predominantly recruited to the upstream activating sequence of a SAGA-dependent gene, GAL1, under transcriptionally active conditions as a component of SAGA to promote the formation of pre-initiation complex (PIC) at the core promoter, and consequently, transcriptional initiation. Likewise, Sus1p promotes the PIC formation at other SAGA-dependent genes, and hence transcriptional initiation. Such function of Sus1p in promoting PIC formation and transcriptional initiation is not mediated via its role in regulation of SAGA’s histone H2B de-ubiquitylation activity. However, Sus1p’s function in regulation of histone H2B ubiquitylation is associated with transcriptional elongation, DNA repair and replication. Collectively, our results support that Sus1p promotes PIC formation (and hence transcriptional initiation) at the SAGA-regulated genes independently of histone H2B de-ubiquitylation, and further controls transcriptional elongation, DNA repair and replication via orchestration of histone H2B ubiquitylation, thus providing distinct functional insights of Sus1p in regulation of DNA transacting processes. PMID:24911582

  14. Thermodynamic study of complex formation between Kryptofix-5 and Sn2+ in several individual and binary non-aqueous solvents using a conductometric method

    NASA Astrophysics Data System (ADS)

    Khoshnood, Razieh Sanavi; Hatami, Elaheh

    2014-12-01

    The complex formation between 1,13-bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane (Kryptofix-5) and Sn2+ ions was studied in pure acetonitrile (AN), dimethylformamide (DMF), 1,4-dioxane (DOX), and methanol (MeOH) and in acetonitrile-1,4-dioxane (AN-DOX), acetonitrile-dichloromethane (AN-DCM), acetonitrile-methanol (AN-MeOH), and acetonitrile-dimethylformamide (AN-DMF) binary mixed solvent solutions at different temperatures using conductometric method. 1: 1 [ML] complex is formed between the metal cation and ligand in most solvent systems but in the cases of AN-MeOH (MeOH = 90 mol %) binary mixture and in pure MeOH a 2: 1 [M2L] complex was observed, that is the stoichiometry of complexes may be changed by the nature of the medium. The stability order of the (Kryptofix-5·Sn)2+ complex in the studied binary mixed solvent solutions at 25°C was found to be AN-DOX > AN-DCM > AN-MeOH > AN-DMF and in the case of pure solvents at 25°C the sequence was the following: AN > DMF > DOX. A non-linear behavior was observed for changes of log K f of (Kryptofix-5·Sn)2+ complex versus the composition of the binary mixed solvents, which was explained in terms of solvent-solvent intractions and also by the preferential solvation of the f species involved in the complexation reaction. The values of standard enthalpy changes (? Hc°) for complexation reactions were obtained from the slope of the Van't Hoff plots and the changes in standard entropy (? Sc°) were calculated from the relationship ? Gc,298.15° = ? Hc° - 298.15? Sc°. The results show that in most cases, the (Kryptofix-5·Sn)2+ complex is both enthalpy and entropy stabilized.

  15. Formation of stacked luminescent complex of 8-hydroxyquinoline molecules on hydroxyapatite coating by using cold isostatic pressing.

    PubMed

    Matsuya, Takehiko; Otsuka, Yuichi; Tagaya, Motohiro; Motozuka, Satoshi; Ohnuma, Kiyoshi; Mutoh, Yoshiharu

    2016-01-01

    Cold isostatic pressing successfully formed a chelate complex of 8-hydroxyquinoline (8Hq) molecules on plasma-sprayed hydroxyapatite (HAp) coating by solid-state reaction. The complex emits a fluorescence peak at approximately 500nm by UV irradiation. The red shift of the fluorescence was newly observed in the cases of highly compressed complex due to ? - ? stacking of aromatic ring in the molecular structure of 8Hq. The immersed complex coating in Simulated Body Fluid (SBF) demonstrated amorphous apatite precipitation and kept its fluorescence property. PMID:26478295

  16. Chirality transfer based on reversible C-C bond formation/breaking in nickel(II) complexes.

    PubMed

    Kawamoto, Tatsuya; Suzuki, Narumi; Ono, Takeshi; Gong, Dafei; Konno, Takumi

    2013-01-25

    The reaction of (1R)-(-)-myrtenal-derived benzothiazoline with nickel(II) acetate in ethanol exclusively gave a Schiff base-type nickel(II) complex having M helical configurational myrtenyl arms, which is reversibly converted to a non-innocent-type complex having additional S,S configurational asymmetric carbon centres. PMID:23090291

  17. Electrokinetic probes for single-step screening of polyol stereoisomers: the virtues of ternary boronate ester complex formation.

    PubMed

    Kaiser, Claire; Segui-Lines, Giselle; D'Amaral, Jason C; Ptolemy, Adam S; Britz-McKibbin, Philip

    2008-01-21

    Electrokinetic probes based on the differential migration of ternary boronate ester complexes permit the selective analysis of micromolar levels of UV-transparent polyol stereoisomers in urine samples via dynamic complexation-capillary electrophoresis that is applicable to single-step screening of in-born errors of sugar metabolism, such as galactosemia. PMID:18399200

  18. Palladium(II)-1-phenylthio-2-arylchalcogenoethane complexes: palladium phosphide nano-peanut and ribbon formation controlled by chalcogen and Suzuki coupling activation.

    PubMed

    Kumar Rao, Gyandshwar; Kumar, Arun; Saleem, Fariha; Singh, Mahabir P; Kumar, Satyendra; Kumar, Bharat; Mukherjee, Goutam; Singh, Ajai K

    2015-04-14

    The ligands PhSCH2CH2EAr (; E = S, Se or Te) and their Pd-complexes [PdLCl2] () have been synthesized and authenticated with their (1)H, (13)C{(1)H}, (77)Se{(1)H} and (125)Te{(1)H} NMR spectra. Single crystal structures of and reveal the geometry of donor atoms around palladium as nearly square planar. Thermolysis of all three complexes in trioctylphosphine (TOP) at 350, 320 and 280 °C, respectively, results in a single phase of crystalline PdP2. The morphology of the phase varies with 'E' to some extent. The nanopeanuts (size ?30 and ?35 nm) were formed with and as precursor complexes. On using complex as a precursor nanoribbons are formed. The preferential growth in the (202) plane in the case of all the three precursor complexes has been rationalized in terms of texture coefficient and average crystallite size. All three complexes and PdP2 NPs have been explored for Suzuki-Miyaura coupling of several aryl halides. Complexes and show good catalytic activity but complex does not. The activity appears to result due to in situ generated palladium containing nanoparticles (NPs) in the case of and . The formation of inactive large Pd aggregates in the case of appears to be responsible for the difference. The PdP2 NPs have been found to show good catalytic activity and recyclability up to six reaction cycles. The results of the three phase test suggest the involvement of both homogeneous and heterogeneous pathways in the activation of Suzuki coupling. DFT based free energy calculations are consistent with the results of catalysis via Pd(0) protected with the ligand. This palladium may also be released from in situ generated NPs. In the case of , negligible reactivity may be due to non-release of Pd. PMID:25757704

  19. Inhibition of the Smc5/6 Complex during Meiosis Perturbs Joint Molecule Formation and Resolution without Significantly Changing Crossover or Non-crossover Levels

    PubMed Central

    Lilienthal, Ingrid; Kanno, Takaharu; Sjögren, Camilla

    2013-01-01

    Meiosis is a specialized cell division used by diploid organisms to form haploid gametes for sexual reproduction. Central to this reductive division is repair of endogenous DNA double-strand breaks (DSBs) induced by the meiosis-specific enzyme Spo11. These DSBs are repaired in a process called homologous recombination using the sister chromatid or the homologous chromosome as a repair template, with the homolog being the preferred substrate during meiosis. Specific products of inter-homolog recombination, called crossovers, are essential for proper homolog segregation at the first meiotic nuclear division in budding yeast and mice. This study identifies an essential role for the conserved Structural Maintenance of Chromosomes (SMC) 5/6 protein complex during meiotic recombination in budding yeast. Meiosis-specific smc5/6 mutants experience a block in DNA segregation without hindering meiotic progression. Establishment and removal of meiotic sister chromatid cohesin are independent of functional Smc6 protein. smc6 mutants also have normal levels of DSB formation and repair. Eliminating DSBs rescues the segregation block in smc5/6 mutants, suggesting that the complex has a function during meiotic recombination. Accordingly, smc6 mutants accumulate high levels of recombination intermediates in the form of joint molecules. Many of these joint molecules are formed between sister chromatids, which is not normally observed in wild-type cells. The normal formation of crossovers in smc6 mutants supports the notion that mainly inter-sister joint molecule resolution is impaired. In addition, return-to-function studies indicate that the Smc5/6 complex performs its most important functions during joint molecule resolution without influencing crossover formation. These results suggest that the Smc5/6 complex aids primarily in the resolution of joint molecules formed outside of canonical inter-homolog pathways. PMID:24244180

  20. Cyclodextrin inclusion complex formation and solid-state characterization of the natural antioxidants alpha-tocopherol and quercetin.

    PubMed

    Koontz, John L; Marcy, Joseph E; O'Keefe, Sean F; Duncan, Susan E

    2009-02-25

    Cyclodextrin (CD) complexation procedures are relatively simple processes, but these techniques often require very specific conditions for each individual guest molecule. Variations of the coprecipitation from aqueous solution technique were optimized for the CD complexation of the natural antioxidants alpha-tocopherol and quercetin. Solid inclusion complex products of alpha-tocopherol/beta-CD and quercetin/gamma-CD had molar ratios of 1.7:1, which were equivalent to 18.1% (w/w) alpha-tocopherol and 13.0% (w/w) quercetin. The molar reactant ratios of CD/antioxidant were optimized at 8:1 to improve the yield of complexation. The product yields of alpha-tocopherol/beta-CD and quercetin/gamma-CD complexes from their individual reactants were calculated as 24 and 21% (w/w), respectively. ATR/FT-IR, 13C CP/MAS NMR, TGA, and DSC provided evidence of antioxidant interaction with CD at the molecular level, which indicated true CD inclusion complexation in the solid state. Natural antioxidant/CD inclusion complexes may serve as novel additives in controlled-release active packaging to extend the oxidative stability of foods. PMID:19178291

  1. A GAS-PHASE FORMATION ROUTE TO INTERSTELLAR TRANS-METHYL FORMATE

    SciTech Connect

    Cole, Callie A.; Wehres, Nadine; Yang Zhibo; Thomsen, Ditte L.; Bierbaum, Veronica M.; Snow, Theodore P. E-mail: Nadine.Wehres@colorado.edu E-mail: Veronica.Bierbaum@colorado.edu E-mail: dlt@chem.ku.dk

    2012-07-20

    The abundance of methyl formate in the interstellar medium has previously been underpredicted by chemical models. Additionally, grain surface chemistry cannot account for the relative abundance of the cis- and trans-conformers of methyl formate, and the trans-conformer is not even formed at detectable abundance on these surfaces. This highlights the importance of studying formation pathways to methyl formate in the gas phase. The rate constant and branching fractions are reported for the gas-phase reaction between protonated methanol and formic acid to form protonated trans-methyl formate and water as well as adduct ion: Rate constants were experimentally determined using a flowing afterglow-selected ion flow tube apparatus at 300 K and a pressure of 530 mTorr helium. The results indicate a moderate overall rate constant of (3.19 {+-} 0.39) Multiplication-Sign 10{sup -10} cm{sup 3} s{sup -1} ({+-} 1{sigma}) and an average branching fraction of 0.05 {+-} 0.04 for protonated trans-methyl formate and 0.95 {+-} 0.04 for the adduct ion. These experimental results are reinforced by ab initio calculations at the MP2(full)/aug-cc-pVTZ level of theory to examine the reaction coordinate and complement previous density functional theory calculations. This study underscores the need for continued observational studies of trans-methyl formate and for the exploration of other gas-phase formation routes to complex organic molecules.

  2. A Gas-phase Formation Route to Interstellar Trans-methyl Formate

    NASA Astrophysics Data System (ADS)

    Cole, Callie A.; Wehres, Nadine; Yang, Zhibo; Thomsen, Ditte L.; Snow, Theodore P.; Bierbaum, Veronica M.

    2012-07-01

    The abundance of methyl formate in the interstellar medium has previously been underpredicted by chemical models. Additionally, grain surface chemistry cannot account for the relative abundance of the cis- and trans-conformers of methyl formate, and the trans-conformer is not even formed at detectable abundance on these surfaces. This highlights the importance of studying formation pathways to methyl formate in the gas phase. The rate constant and branching fractions are reported for the gas-phase reaction between protonated methanol and formic acid to form protonated trans-methyl formate and water as well as adduct ion: Rate constants were experimentally determined using a flowing afterglow-selected ion flow tube apparatus at 300 K and a pressure of 530 mTorr helium. The results indicate a moderate overall rate constant of (3.19 ± 0.39) × 10-10 cm3 s-1 (± 1?) and an average branching fraction of 0.05 ± 0.04 for protonated trans-methyl formate and 0.95 ± 0.04 for the adduct ion. These experimental results are reinforced by ab initio calculations at the MP2(full)/aug-cc-pVTZ level of theory to examine the reaction coordinate and complement previous density functional theory calculations. This study underscores the need for continued observational studies of trans-methyl formate and for the exploration of other gas-phase formation routes to complex organic molecules.

  3. Fast and continuous-flow detection and separation of DNA complexes and DNA in nanofluidic chip format.

    PubMed

    Viefhues, Martina; Regtmeier, Jan; Anselmetti, Dario

    2015-01-01

    Fast separation of DNA and detection of protein/DNA complexes are important in many state-of-the-art molecular medicine technologies, like the production of gene vaccines or medical diagnostics. Here, we describe a nanofluidic chip-based technique for fast, efficient, and virtually label-free detection and separation of protein/DNA and drug/DNA complexes and topological DNA variants. The mechanism is based on a continuous-flow dielectrophoresis at a nanoslit and allows efficient separation of small DNA fragments (<7,000 base pairs) and fast detection of DNA complexes within 1 min. PMID:25673486

  4. Probing 3-ssDNA Loop Formation in E. coli RecBCD/RecBCDNA Complexes Using Non-natural

    E-print Network

    Lohman, Timothy M.

    for "Chi" Recognition Complexes C. Jason Wong1 , Rachel L. Rice1 , Nathan A. Baker1 , Tao Ju2 and Timothy M are a class of motor proteins that couple the energy from nucleoside triphosphate (NTP) binding and hydrolysis

  5. Calculation of Heats of Formation for Zn Complexes: Comparison of Density Functional Theory, Second Order Perturbation Theory, Coupled-Cluster and Complete Active Space Methods

    PubMed Central

    Weaver, Michael N.; Ma, Dongxia; Kim, Hyun Jung

    2013-01-01

    Heats of formation were predicted for nine ZnX complexes (X= Zn, H, O, F2, S, Cl, Cl2, CH3, (CH3)2) using fourteen density functionals, MP2 calculations and the CCSD and CCSD(T) coupled-cluster methods. Calculations utilized the correlation consistent cc-pVTZ and aug-cc-pVTZ basis sets. Heats of formation were most accurately predicted by the TPSSTPSS and TPSSKCIS density functionals, and the BLYP, B3LYP, MP2, CCSD and CCSD(T) levels were among the poorest performing methods based on accuracy. A wide range of Zn2 equilibrium bond distances were predicted, indicating that many of the studied levels of theory may be unable to adequately describe this transition metal dimer. To further benchmark the accuracy of the density functional methods, high-level CASSCF and CASPT2 calculations were performed to estimate bond dissociation energies, equilibrium bond lengths and heats of formation for the diatomic Zn complexes and the latter two quantities were compared with the results of DFT, MP2 and coupled-cluster calculations as well as experimental values. PMID:24409106

  6. A Rac/Cdc42 exchange factor complex promotes formation of lateral filopodia and blood vessel lumen morphogenesis

    PubMed Central

    Abraham, Sabu; Scarcia, Margherita; Bagshaw, Richard D.; McMahon, Kathryn; Grant, Gary; Harvey, Tracey; Yeo, Maggie; Esteves, Filomena O.G.; Thygesen, Helene H.; Jones, Pamela F.; Speirs, Valerie; Hanby, Andrew M.; Selby, Peter J.; Lorger, Mihaela; Dear, T. Neil; Pawson, Tony; Marshall, Christopher J.; Mavria, Georgia

    2015-01-01

    During angiogenesis, Rho-GTPases influence endothelial cell migration and cell–cell adhesion; however it is not known whether they control formation of vessel lumens, which are essential for blood flow. Here, using an organotypic system that recapitulates distinct stages of VEGF-dependent angiogenesis, we show that lumen formation requires early cytoskeletal remodelling and lateral cell–cell contacts, mediated through the RAC1 guanine nucleotide exchange factor (GEF) DOCK4 (dedicator of cytokinesis 4). DOCK4 signalling is necessary for lateral filopodial protrusions and tubule remodelling prior to lumen formation, whereas proximal, tip filopodia persist in the absence of DOCK4. VEGF-dependent Rac activation via DOCK4 is necessary for CDC42 activation to signal filopodia formation and depends on the activation of RHOG through the RHOG GEF, SGEF. VEGF promotes interaction of DOCK4 with the CDC42 GEF DOCK9. These studies identify a novel Rho-family GTPase activation cascade for the formation of endothelial cell filopodial protrusions necessary for tubule remodelling, thereby influencing subsequent stages of lumen morphogenesis. PMID:26129894

  7. Evidence of Intraflagellar Transport and Apical Complex Formation in a Free-Living Relative of the Apicomplexa

    PubMed Central

    Portman, Neil; Foster, Christie; Walker, Giselle

    2014-01-01

    Since its first description, Chromera velia has attracted keen interest as the closest free-living relative of parasitic Apicomplexa. The life cycle of this unicellular alga is complex and involves a motile biflagellate form. Flagella are thought to be formed in the cytoplasm, a rare phenomenon shared with Plasmodium in which the canonical mode of flagellar assembly, intraflagellar transport, is dispensed with. Here we demonstrate the expression of intraflagellar transport components in C. velia, answering the question of whether this organism has the potential to assemble flagella via the canonical route. We have developed and characterized a culturing protocol that favors the generation of flagellate forms. From this, we have determined a marked shift in the mode of daughter cell production from two to four daughter cells per division as a function of time after passage. We conduct an ultrastructural examination of the C. velia flagellate form by using serial TEM and show that flagellar biogenesis in C. velia occurs prior to cytokinesis. We demonstrate a close association of the flagellar apparatus with a complex system of apical structures, including a micropore, a conoid, and a complex endomembrane system reminiscent of the apical complex of parasitic apicomplexans. Recent work has begun to elucidate the possible flagellar origins of the apical complex, and we show that in C. velia these structures are contemporaneous within a single cell and share multiple connections. We propose that C. velia therefore represents a vital piece in the puzzle of the origins of the apical complex. PMID:24058169

  8. Formation of a covalent complex between the terminal protein of pneumococcal bacteriophage Cp-1 and 5'-dAMP

    SciTech Connect

    Garcia, P.; Hermoso, J.M.; Garcia, J.A.; Garcia, E.; Lopez, R.; Salas, M.

    1986-04-01

    Incubation of extracts of Cp-1-infected Streptococcus pneumoniae with (..cap alpha..-/sup 32/P)dATP produced a labeled protein with the electrophoretic mobility of the Cp-1 terminal protein. The reaction product was resistant to treatment with micrococcal nuclease and sensitive to treatment with proteinase K. Incubation of the /sup 32/P-labeled protein with 5 M piperidine for 4 h at 50/sup 0/C released 5'-dAMP, indicating that a covalent complex between the terminal protein and 5'-dAMP was formed in vitro. When the four deoxynucleoside triphosphates were included in the reaction mixture, a labeled complex of slower electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gels than the terminal protein-dAMP complex was also found, indicating that the Cp-1 terminal protein-dAMP complex can be elongated and, therefore, that it is an initiation complex. Treatment of the /sup 32/P-labeled terminal protein-dAMP complex with 5.8 M HCl at 110/sup 0/C for 2 h yielded phosphothreonine. These results, together with the resistance of the terminal protein-DNA linkage to hydroxylamine, suggest that the Cp-1 terminal protein is covalently linked to the DNA through a phosphoester bond between L-threonine and 5'-dAMP, namely, a O-5'-deoxyadenylyl-L-threonine bond.

  9. Thermodynamics and kinetics of the formation of the supramolecular complexes bisacetato(5,10,15,20-tetraphenylporphinate)zirconium(IV) with pyridine and imidazole

    NASA Astrophysics Data System (ADS)

    Tyulyaeva, E. Yu.; Lomova, T. N.

    2010-05-01

    The equilibria and rates of step reactions for the formation of the supramolecular complexes of bisacetato(5,10,15,20-tetraphenylporphinate)zirconium(IV) (AcO)2ZrTPP and bioactive bases pyridine (Py) and imidazole (Im) in toluene were studied using UV-Vis and IR spectroscopy. The step stoichiometric mechanism, including the reversible coordination of two Py molecules ( K 1 = 1.8 × 108 l2/mol2), the equilibrium of the displacement of two AcO- into the second coordination sphere by increasing the concentration of the solvent polar component ( K 2 = 2.4), and the coordination of the third and fourth Py molecules in a one step with the formation of [(Py)4ZrTPP]2+ · 2(AcO)- ( K 3 = 2.8 × 104 l2/mol2), was verified. It was established that the spectrophotometric titration is sensible for the two-stage ?-?-complexation of [(Py)4ZrTPP]2+ · 2(AcO)- with Py molecules ( K 4 = 29 l/mol and K 5 = 1.8 l/mol). It was shown that the stronger base Im reacts irreversibly with (AcO)2ZrTPP. The thermodynamic and optical characteristics of (AcO)2ZrTPP required for using the complex in the detection of bioactive bases were studied.

  10. RACK1 Promotes Autophagy by Enhancing the Atg14L-Beclin 1-Vps34-Vps15 Complex Formation upon Phosphorylation by AMPK.

    PubMed

    Zhao, Yawei; Wang, Qingyang; Qiu, Guihua; Zhou, Silei; Jing, Zhaofei; Wang, Jingyang; Wang, Wendie; Cao, Junxia; Han, Kun; Cheng, Qianqian; Shen, Beifen; Chen, Yingyu; Zhang, Weiping J; Ma, Yuanfang; Zhang, Jiyan

    2015-11-17

    Autophagy is essential for maintaining tissue homeostasis. Although adaptors have been demonstrated to facilitate the assembly of the Atg14L-Beclin 1-Vps34-Vps15 complex, which functions in autophagosome formation, it remains unknown whether the autophagy machinery actively recruits such adaptors. WD40-repeat proteins are a large, highly conserved family of adaptors implicated in various cellular activities. However, the role of WD40-repeat-only proteins, such as RACK1, in postnatal mammalian physiology remains unknown. Here, we report that hepatocyte-specific RACK1 deficiency leads to lipid accumulation in the liver, accompanied by impaired Atg14L-linked Vps34 activity and autophagy. Further exploration indicates that RACK1 participates in the formation of autophagosome biogenesis complex upon its phosphorylation by AMPK at Thr50. Thr50 phosphorylation of RACK1 enhances its direct binding to Vps15, Atg14L, and Beclin 1, thereby promoting the assembly of the autophagy-initiation complex. These observations provide insight into autophagy induction and establish a pivotal role for RACK1 in postnatal mammalian physiology. PMID:26549445

  11. A complex of YlbF, YmcA and YaaT regulates sporulation, competence and biofilm formation by accelerating the phosphorylation of Spo0A.

    PubMed

    Carabetta, Valerie J; Tanner, Andrew W; Greco, Todd M; Defrancesco, Melissa; Cristea, Ileana M; Dubnau, David

    2013-04-01

    Bacillus subtilis has adopted a bet-hedging strategy to ensure survival in changing environments. From a clonal population, numerous sub-populations can emerge, expressing different sets of genes that govern the developmental processes of sporulation, competence and biofilm formation. The master transcriptional regulator Spo0A controls the entry into all three fates and the production of the phosphorylated active form of Spo0A is precisely regulated via a phosphorelay, involving at least four proteins. Two proteins, YmcA and YlbF were previously shown to play an unidentified role in the regulation of biofilm formation, and in addition, YlbF was shown to regulate competence and sporulation. Using an unbiased proteomics screen, we demonstrate that YmcA and YlbF interact with a third protein, YaaT to form a tripartite complex. We show that all three proteins are required for proper establishment of the three above-mentioned developmental states. We show that the complex regulates the activity of Spo0A?in vivo and, using in vitro reconstitution experiments, determine that they stimulate the phosphorelay, probably by interacting with Spo0F and Spo0B. We propose that the YmcA-YlbF-YaaT ternary complex is required to increase Spo0A~P levels above the thresholds needed to induce development. PMID:23490197

  12. Hydrothermal solubility of rhodochrosite, Mn (II) speciation, and equilibrium constants

    NASA Astrophysics Data System (ADS)

    Wolfram, Olaf; Krupp, Ralf E.

    1996-11-01

    The aqueous solubility of natural rhodochrosite (MnCO 3) has been studied as a function of pH and total dissolved carbonate concentration, from 25 to 275°C and at saturation pressures. At 25 and 90°C the solubility measurements were conducted in Al-capped glass vials which were additionally encapsulated in CO 2-filled Al cans to prevent CO 2 losses or air diffusion into the vials. At 200 and 275°C the runs were performed in Ag tubes. Natural, very pure, and well-crystallized rhodochrosite from Hotazel, South Africa was employed in all cases. Manganese concentrations were analyzed by AA and ICP-MS, carbonate was weighed in, and pH was measured at 25 and 90°C and was calculated at higher temperatures. The experimentally derived solubility curves allowed identification of the principal Mn-species. With increasing pH, Mn 2+, MnHCO 3+, MnCO 30, Mn(OH)CO 2- (only above 25°C), and Mn(OH) 20 (only at low total carbonate) were found to be the dominating species. From the experimental dataset, solubility products and equilibrium constants for the dissolution reactions, as well as for complex formation and hydrolysis of the Mn 2+ ion, were calculated. The equilibrium constants show that the Mn-carbonate species are moderately strong complexes, and in view of the abundance of CO 2 in many geological fluids, carbonate complexing of Mn 2+ may be important in neutral and alkaline solutions.

  13. On the Khinchin Constant

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Borwein, Jonathan M.; Crandall, Richard E.; Craw, James M. (Technical Monitor)

    1995-01-01

    We prove known identities for the Khinchin constant and develop new identities for the more general Hoelder mean limits of continued fractions. Any of these constants can be developed as a rapidly converging series involving values of the Riemann zeta function and rational coefficients. Such identities allow for efficient numerical evaluation of the relevant constants. We present free-parameter, optimizable versions of the identities, and report numerical results.

  14. The cosmological constant

    NASA Technical Reports Server (NTRS)

    Carroll, Sean M.; Press, William H.; Turner, Edwin L.

    1992-01-01

    The cosmological constant problem is examined in the context of both astronomy and physics. Effects of a nonzero cosmological constant are discussed with reference to expansion dynamics, the age of the universe, distance measures, comoving density of objects, growth of linear perturbations, and gravitational lens probabilities. The observational status of the cosmological constant is reviewed, with attention given to the existence of high-redshift objects, age derivation from globular clusters and cosmic nuclear data, dynamical tests of Omega sub Lambda, quasar absorption line statistics, gravitational lensing, and astrophysics of distant objects. Finally, possible solutions to the physicist's cosmological constant problem are examined.

  15. The hubble constant.

    PubMed

    Huchra, J P

    1992-04-17

    The Hubble constant is the constant of proportionality between recession velocity and distance in the expanding universe. It is a fundamental property of cosmology that sets both the scale and the expansion age of the universe. It is determined by measurement of galaxy The Hubble constant is the constant of proportionality between recession velocity and development of new techniques for the measurements of galaxy distances, both calibration uncertainties and debates over systematic errors remain. Current determinations still range over nearly a factor of 2; the higher values favored by most local measurements are not consistent with many theories of the origin of large-scale structure and stellar evolution. PMID:17743107

  16. Long-term avoidance memory formation is associated with a transient increase in mushroom body synaptic complexes in leaf-cutting ants

    PubMed Central

    Falibene, Agustina; Roces, Flavio; Rössler, Wolfgang

    2015-01-01

    Long-term behavioral changes related to learning and experience have been shown to be associated with structural remodeling in the brain. Leaf-cutting ants learn to avoid previously preferred plants after they have proved harmful for their symbiotic fungus, a process that involves long-term olfactory memory. We studied the dynamics of brain microarchitectural changes after long-term olfactory memory formation following avoidance learning in Acromyrmex ambiguus. After performing experiments to control for possible neuronal changes related to age and body size, we quantified synaptic complexes (microglomeruli, MG) in olfactory regions of the mushroom bodies (MBs) at different times after learning. Long-term avoidance memory formation was associated with a transient change in MG densities. Two days after learning, MG density was higher than before learning. At days 4 and 15 after learning—when ants still sh