Science.gov

Sample records for complex formation constants

  1. Linear free energy relationship rate constants and basicities of N-substituted phenyl glycines in positronium-glycine complex formation

    NASA Astrophysics Data System (ADS)

    Chen, Rongti; Liang, Jiachang; Du, Youming; Cao, Chun; Yin, Dinzhen; Wang, Shuying; Zhang, Tianbao

    1987-06-01

    Complex formation between positronium and glycine derivatives in solution is discussed and the complex reaction rate constants obtained by means of a positron annihilation lifetime spectrometer with BaF 2 detectors. Rate constants mainly depend on the conjugation effect at the benzene ring and the induction effect of the substituents at the phenyl. There is a linear free energy relationship between rate constants and basicities of N-substituted phenyl glycines in orthopositronium-glycine complex formation.

  2. Studies on chalcone derivatives: Complex formation, thermal behavior, stability constant and antioxidant activity

    NASA Astrophysics Data System (ADS)

    El-Sayed, Yusif S.; Gaber, M.

    2015-02-01

    The chalcone 3-[4‧-dimethylaminophenyl]-1-(2-pyridyl) prop-2-en-1-one (DMAPP) and 3-(4‧-diethylaminophenyl)-1-(2-pyridinyl) prop-2-en-1-one abbreviated as DEAPP have been synthesized and characterized with IR, 1H NMR, 13C NMR spectroscopic techniques as described previously (El-Daly et al., 2008; Gaber et al., 2009; El-Sayed, 2013). By using UV visible spectroscopy method the mole fraction ratio for copper with DMAPP and DEAPP complexes were determined and it was found to be 1:1. The stability constants of this complex have been determined by Job's method. The stability constant (Kf) of copper with DMAPP and DEAPP complexes in universal buffer pH = 3.2 was determined to be 9.9 × 104 and 5.2 × 104 respectively. The effect of Cu(II) ion on the emission spectrum of the free chalcone is also assigned. Adherence to Beer's law and Ringbom optimum concentration ranges are determined. The thermal decomposition of the metal complexes is studied by TGA technique. The kinetic parameters like activation energy, pre-exponential factor and entropy of activation are estimated. The structure of complexes was energetically optimized through molecular mechanics applying MM+ force field coupled with molecular dynamics simulation. The bond lengths and bond angles have been calculated to confirm the geometry of the ligands and their Cu(II) complexes. The mode of interaction of the chalcone to copper nanoparticles was studied. The apparent association constants of the colloidal copper nanoparticles:chalcone complexes in solution were evaluated using the spectral method and compared with the formation constant of the Cu(II) chalcone complexes. Antioxidant activity of these chalcones was evaluated by using 1,1‧-diphenyl-2-picrylhydrazyl (DPPHrad) radicals scavenging method, which showed that the antioxidant activity of DMAPP has higher value than the DEAPP. Semi-empirical study results showed that DMAPP have higher dipole moment than DEAPP [1].

  3. Formation constants of copper(I) complexes with cysteine, penicillamine and glutathione: implications for copper speciation in the human eye.

    PubMed

    Königsberger, Lan-Chi; Königsberger, Erich; Hefter, Glenn; May, Peter M

    2015-12-21

    Protonation constants for the biologically-important thioamino acids cysteine (CSH), penicillamine (PSH) and glutathione (GSH), and the formation constants of their complexes with Cu(I), have been measured at 25 °C and an ionic strength of 1.00 mol dm(-3) (Na)Cl using glass electrode potentiometry. The first successful characterisation of binary Cu(I)-CSH and Cu(I)-GSH species over the whole pH range was achieved in this study by the addition of a second thioamino acid, which prevented the precipitation that normally occurs. Appropriate combinations of binary and ternary (mixed ligand) titration data were used to optimise the speciation models and formation constants for the binary species. The results obtained differ significantly from literature data with respect to the detection and quantification of protonated and polynuclear complexes. The present results are thought to be more reliable because of the exceptionally wide pH and concentration ranges employed, the excellent reproducibility of the data, the close agreement between the calculated and observed formation functions, and the low standard deviations and absence of numerical correlation in the constants. The present formation constants were incorporated into a large Cu speciation model which was used to predict, for the first time, metal-ligand equilibria in the biofluids of the human eye. This simulation provided an explanation for the precipitation of metallic copper in lens and cornea, which is known to occur as a consequence of Wilson's disease. PMID:26505238

  4. Determination of complex formation constants by phase sensitive alternating current polarography: Cadmium-polymethacrylic acid and cadmium-polygalacturonic acid.

    PubMed

    Garrigosa, Anna Maria; Gusmão, Rui; Ariño, Cristina; Díaz-Cruz, José Manuel; Esteban, Miquel

    2007-10-15

    The use of phase sensitive alternating current polarography (ACP) for the evaluation of complex formation constants of systems where electrodic adsorption is present has been proposed. The applicability of the technique implies the previous selection of the phase angle where contribution of capacitive current is minimized. This is made using Multivariate Curve Resolution by Alternating Least Squares (MCR-ALS) in the analysis of ACP measurements at different phase angles. The method is checked by the study of the complexation of Cd by polymethacrylic (PMA) and polygalacturonic (PGA) acids, and the optimal phase angles have been ca. -10 degrees for Cd-PMA and ca. -15 degrees for Cd-PGA systems. The goodness of phase sensitive ACP has been demonstrated comparing the determined complex formation constants with those obtained by reverse pulse polarography, a technique that minimizes the electrode adsorption effects on the measured currents. PMID:19073101

  5. Stability constants for the formation of rare earth-inorganic complexes as a function of ionic strength

    NASA Astrophysics Data System (ADS)

    Millero, Frank J.

    1992-08-01

    Recent studies have been made on the distribution of the rare earths (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) in natural waters relative to their concentration in shales. These metals have also been used as models for the behavior of the trivalent actinides. The speciation of the rare earths in natural waters is modelled by using ionic interaction models which require reliable stability constants. In this paper the stability constants for the formation of lanthanide complexes ( k mx∗) with Cl -, NO 3-, SO 42-, OH -, HCO 3-, H 2PO 4-, HPO 42-, and CO 32- determined in NaClO 44 at various ionic strengths have been extrapolated to infinite dilution using the Pitzer interaction model. The activity coefficients for free ions ( γM, γx) needed for this extrapolation have been estimated from the Pitzer equations. The thermodynamic stability constants ( KMX) and activity coefficients of the various ion pairs ( γMX) were determined from In ( solK MX∗/γ Mγ x) = In K mx+ In (γ MX). The activity coefficients of the ion pairs have been used to determine Pitzer parameters ( BMX) for the rare earth complexes. The values of BMX were found to be the same for complexes of the same charge. These results make it possible to estimate the stability constants for the formation of rare earth complexes over a wide range of ionic strengths. The stability constants have been used to determine the speciation of the lanthanides in seawater and in brines. The carbonate complexes dominate for all natural waters where the carbonate alkalinity is greater than 0.001 eq/L at a pH near 8.

  6. Dynamic titration: determination of dissociation constants for noncovalent complexes in multiplexed format using HPLC-ESI-MS.

    PubMed

    Frycák, Petr; Schug, Kevin A

    2008-03-01

    With recent growth in fields such as life sciences and supramolecular chemistry, there has been an ever increasing need for high-throughput methods that would permit determination of binding affinities for noncovalent complexes of various host-guest systems. These are traditionally measured by titration experiments where concentration-dependent signals of species participating in solution-based binding equilibria are monitored by methods such as UV-vis spectrophotometry, calorimetry, or nuclear magnetic resonance spectrometry. Here we present a new titration technique that unifies and allows chromatographic separation of guests with determination of dissociation constants by electrospray mass spectrometry in a multiplexed format. A theoretical model has been derived that describes the complex formation for the guests eluted from a chromatographic column when hosts are admixed postcolumn. The model takes possible competition equilibria into account; i.e., it can deal with unresolved peaks of guests with the possible addition of multiple hosts in one experiment. This on-line workflow makes determination of binding affinities for large libraries of compounds possible. The potential of the method is demonstrated on the determination of dissociation constants for complexes of beta- and gamma-cyclodextrins with nonsteroidal antiinflammatory drugs ibuprofen, naproxen, and flurbiprofen. PMID:18237190

  7. Lattice constant variation and complex formation in zincblende gallium manganese arsenide

    NASA Astrophysics Data System (ADS)

    Schott, G. M.; Faschinger, W.; Molenkamp, L. W.

    2001-09-01

    We perform high resolution x-ray diffraction on GaMnAs mixed crystals as well as on GaMnAs/GaAs and GaAs/MnAs superlattices for samples grown by low-temperature molecular-beam epitaxy under different growth conditions. Although all samples are of high crystalline quality and show narrow rocking curve widths and pronounced finite thickness fringes, the lattice constant variation with increasing manganese concentration depends strongly on the growth conditions: For samples grown at substrate temperatures of 220 and 270 °C, the extrapolated relaxed lattice constant of Zincblende MnAs is 0.590 nm and 0.598 nm, respectively. This is in contrast to low-temperature GaAs, for which the lattice constant decreases with increasing substrate temperature.

  8. Determination of formation constants and structural characterization of cyclodextrin inclusion complexes with two phenolic isomers: carvacrol and thymol

    PubMed Central

    Kfoury, Miriana; Landy, David; Ruellan, Steven; Auezova, Lizette; Greige-Gerges, Hélène

    2016-01-01

    Summary Carvacrol and thymol have been widely studied for their ability to control food spoilage and to extend shelf-life of food products due to their antimicrobial and antioxidant activities. However, they suffer from poor aqueous solubility and pronounced flavoring ability that limit their application in food systems. These drawbacks could be surpassed by encapsulation in cyclodextrins (CDs). Applications of their inclusion complexes with CDs were reported without investigating the inclusion phenomenon in deep. In this study, inclusion complexes were characterized in terms of formation constants (K f), complexation efficiency (CE), CD:guest molar ratio and increase in bulk formulation by using an UV–visible competitive method, phase solubility studies as well as 1H and DOSY 1H NMR titration experiments. For the first time, a new algorithmic treatment that combines the chemical shifts and diffusion coefficients variations for all guest protons was applied to calculate K f. The position of the hydroxy group in carvacrol and thymol did not affect the stoichiometry of the inclusion complexes but led to a different binding stability with CDs. 2D ROESY NMR experiments were also performed to prove the encapsulation and illustrate the stable 3D conformation of the inclusion complexes. The structural investigation was accomplished with molecular modeling studies. Finally, the radical scavenging activity of carvacrol and thymol was evaluated by the ABTS radical scavenging assay. An improvement of this activity was observed upon encapsulation. Taken together, these results evidence that the encapsulation in CDs could be valuable for applications of carvacrol and thymol in food. PMID:26877806

  9. Determination of formation constants and structural characterization of cyclodextrin inclusion complexes with two phenolic isomers: carvacrol and thymol.

    PubMed

    Kfoury, Miriana; Landy, David; Ruellan, Steven; Auezova, Lizette; Greige-Gerges, Hélène; Fourmentin, Sophie

    2016-01-01

    Carvacrol and thymol have been widely studied for their ability to control food spoilage and to extend shelf-life of food products due to their antimicrobial and antioxidant activities. However, they suffer from poor aqueous solubility and pronounced flavoring ability that limit their application in food systems. These drawbacks could be surpassed by encapsulation in cyclodextrins (CDs). Applications of their inclusion complexes with CDs were reported without investigating the inclusion phenomenon in deep. In this study, inclusion complexes were characterized in terms of formation constants (K f), complexation efficiency (CE), CD:guest molar ratio and increase in bulk formulation by using an UV-visible competitive method, phase solubility studies as well as (1)H and DOSY (1)H NMR titration experiments. For the first time, a new algorithmic treatment that combines the chemical shifts and diffusion coefficients variations for all guest protons was applied to calculate K f. The position of the hydroxy group in carvacrol and thymol did not affect the stoichiometry of the inclusion complexes but led to a different binding stability with CDs. 2D ROESY NMR experiments were also performed to prove the encapsulation and illustrate the stable 3D conformation of the inclusion complexes. The structural investigation was accomplished with molecular modeling studies. Finally, the radical scavenging activity of carvacrol and thymol was evaluated by the ABTS radical scavenging assay. An improvement of this activity was observed upon encapsulation. Taken together, these results evidence that the encapsulation in CDs could be valuable for applications of carvacrol and thymol in food. PMID:26877806

  10. Complex dielectric constant well logging means and method for determining the water saturation and the water resistivity of an earth formation

    SciTech Connect

    Sims, J.C.; Cox, P.T.; Simpson, R.S.

    1988-09-27

    This patent describes a well logging system for determining the water saturation of an earth formation and the resistivity of the water comprising: means for transmitting electromagnetic energy at a frequency lying within a range of frequencies from 10 MHz to 200 MHz into the earth formation from a borehole traversing the earth formation, means for receiving electromagnetic energies at two locations in the borehole from the earth formation, means for deriving a complex dielectric constant from the received electromagnetic energies, and means for deriving the water resistivity and the water saturation of the earth formation in accordance with a predetermined porosity of the earth formation and with the real and imaginary parts of the derived complex dielectric constant.

  11. Stability constants for the formation of lead chloride complexes as a function of temperature and ionic strength

    NASA Astrophysics Data System (ADS)

    Luo, Yanxin; Millero, Frank J.

    2007-01-01

    The stability constants for the formation of lead (Pb 2+) with chloride Pb+nCl↔PbCln2-nβn(n=1,2,3) have been determined using a spectrophotometric method in NaClO 4 solutions as a function of ionic strength (0-6 m) and temperature (15-45 °C). The results have been fitted to the equations:

  12. Stability constants for the formation of lead chloride complexes as a function of temperature and ionic strength

    PubMed Central

    Luo, Yanxin; Millero, Frank J.

    2015-01-01

    The stability constants for the formation of lead (Pb2+) with chloride Pb2+=nCl−↔PbCln2−nβn(n=1,2,3) have been determined using a spectrophotometric method in NaClO4 solutions as a function of ionic strength (0–6 m) and temperature (15–45 °C). The results have been fitted to the equations: logβ1∗=logβ1+0.21I−8.61I0.5∕(1+1.2I0.5)+1927.40[I0.5∕(1+1.2I0.5)]∕Tlogβ2∗=logβ2+0.32I−4.67I0.5(1+1.2I0.5)+594.54[I0.5∕(1+1.2I0.5)]∕Tlogβ3∗=logβ3+0.40I−2.68I0.5(1+1.2I0.5)−43.98[I0.5∕(1+1.2I0.5)]∕T with standard errors of 0.05, 0.04 and 0.06, respectively. The thermodynamic values of log β1, logβ2 and logβ3 at 25.0 °C and the enthalpies of formation of PbCl+, PbCl20 and PbCl3− are in good agreement with literature values. We have combined our results with the earlier work of Seward (1984) to yield thermodynamic constants that are valid from 15 to 300 °C: logβ1=44.82+0.031T−21.21logTlogβ2=61.42+0.046T−29.51logTlogβ3=107.97+0.071T−51.46logT with standard errors of 0.05, 0.08 and 0.10, respectively. PMID:26937043

  13. Formation constants of ternary complexes of some heavy metal ions with N-(2-acetamido)iminodiacetic acid and aliphatic or aromatic acids

    SciTech Connect

    Hamed, M.M.A.; Mahmoud, M.R. . Dept. of Chemistry); Saleh, M.B.; Ahmed, I.T. . Dept. of Chemistry)

    1994-07-01

    N-(2-Acetamido)iminodiacetic acid (H[sub 2]ADA) is considered as one of the biologically important ligands. It is used as a complexing agent in the field of metal ion buffers working at the physiological pH range. Furthermore, it is widely used as an analytical chelating agent for the spectrophotometric determination of metal ions. Solution equilibria of the ternary systems involving La(III), Y(III), Ce(III), and UO[sub 2][sup 2+], N-(2-acetamido)iminodiacetic acid, and some aliphatic or aromatic acids have been investigated potentiometrically. The formation of 1:1:1 mixed ligand complexes is inferred from the potentiometric titration curves. Formation constants of the different binary and ternary complexes formed in such systems were determined at 25 [+-] 0.1 C and [mu] = 0.1 mol dm[sup [minus]3] (KNO[sub 3]). It is deduced that the mixed ligand complexes are more stable than the corresponding binary complexes containing the aliphatic or aromatic acidate moiety. The order of stability of the binary and ternary complexes is investigated and discussed in terms of the nature of both the metal ion and the secondary ligand (aliphatic or aromatic acid).

  14. Constant Communities in Complex Networks

    NASA Astrophysics Data System (ADS)

    Chakraborty, Tanmoy; Srinivasan, Sriram; Ganguly, Niloy; Bhowmick, Sanjukta; Mukherjee, Animesh

    2013-05-01

    Identifying community structure is a fundamental problem in network analysis. Most community detection algorithms are based on optimizing a combinatorial parameter, for example modularity. This optimization is generally NP-hard, thus merely changing the vertex order can alter their assignments to the community. However, there has been less study on how vertex ordering influences the results of the community detection algorithms. Here we identify and study the properties of invariant groups of vertices (constant communities) whose assignment to communities are, quite remarkably, not affected by vertex ordering. The percentage of constant communities can vary across different applications and based on empirical results we propose metrics to evaluate these communities. Using constant communities as a pre-processing step, one can significantly reduce the variation of the results. Finally, we present a case study on phoneme network and illustrate that constant communities, quite strikingly, form the core functional units of the larger communities.

  15. How the cosmological constant affects gravastar formation

    SciTech Connect

    Chan, R.; Silva, M.F.A. da; Rocha, P. E-mail: mfasnic@gmail.com

    2009-12-01

    Here we generalized a previous model of gravastar consisted of an internal de Sitter spacetime, a dynamical infinitely thin shell with an equation of state, but now we consider an external de Sitter-Schwarzschild spacetime. We have shown explicitly that the final output can be a black hole, a ''bounded excursion'' stable gravastar, a stable gravastar, or a de Sitter spacetime, depending on the total mass of the system, the cosmological constants, the equation of state of the thin shell and the initial position of the dynamical shell. We have found that the exterior cosmological constant imposes a limit to the gravastar formation, i.e., the exterior cosmological constant must be smaller than the interior cosmological constant. Besides, we have also shown that, in the particular case where the Schwarzschild mass vanishes, no stable gravastar can be formed, but we still have formation of black hole.

  16. Determination of formation constants of hydroxo and carbonate complexes of Pr(3+) in 2 M NaCl at 303 K.

    PubMed

    López-González, H; Jiménez-Reyes, M; Rojas-Hernández, A; Solache-Ríos, M

    1997-10-01

    The hydrolysis of praseodymium III in 2 M sodium chloride at 303 K was studied. Two methods were used: pH titration followed by a computational refinement and solvent extraction in the presence of a competitive ligand. The hydrolysis constants obtained by pH titration were: logbeta(1,H)=-7.68+/-0.07, logbeta(1,2H)=-15.10+/-0.03, and beta(1,3H)=-23.80+/-0.04. The stability constants of praseodymium carbonate complexes were determined by pH titration as well and were: logbeta(1,CO(2-)(3))=5.94+/-0.08 and logbeta(1,2CO(2-)(3))=11.15+/-0.15. Praseodymium carbonate species were taken into consideration for calculating the first hydrolysis constants by the solvent extraction method and the value obtained was: logbeta(1,H)=-7.69+/-0.27. The values for logbeta(1,H) attained by both methods are the same. The species-distribution diagram was obtained from the stability constants of praseodymium carbonate complexes and hydrolysis products in the conditions of the present work. PMID:18966931

  17. Bacterial formate hydrogenlyase complex

    PubMed Central

    McDowall, Jennifer S.; Murphy, Bonnie J.; Haumann, Michael; Palmer, Tracy; Armstrong, Fraser A.; Sargent, Frank

    2014-01-01

    Under anaerobic conditions, Escherichia coli can carry out a mixed-acid fermentation that ultimately produces molecular hydrogen. The enzyme directly responsible for hydrogen production is the membrane-bound formate hydrogenlyase (FHL) complex, which links formate oxidation to proton reduction and has evolutionary links to Complex I, the NADH:quinone oxidoreductase. Although the genetics, maturation, and some biochemistry of FHL are understood, the protein complex has never been isolated in an intact form to allow biochemical analysis. In this work, genetic tools are reported that allow the facile isolation of FHL in a single chromatographic step. The core complex is shown to comprise HycE (a [NiFe] hydrogenase component termed Hyd-3), FdhF (the molybdenum-dependent formate dehydrogenase-H), and three iron-sulfur proteins: HycB, HycF, and HycG. A proportion of this core complex remains associated with HycC and HycD, which are polytopic integral membrane proteins believed to anchor the core complex to the cytoplasmic side of the membrane. As isolated, the FHL complex retains formate hydrogenlyase activity in vitro. Protein film electrochemistry experiments on Hyd-3 demonstrate that it has a unique ability among [NiFe] hydrogenases to catalyze production of H2 even at high partial pressures of H2. Understanding and harnessing the activity of the FHL complex is critical to advancing future biohydrogen research efforts. PMID:25157147

  18. Thiocyanato Chromium (III) Complexes: Separation by Paper Electrophoresis and Estimate of Stability Constants

    ERIC Educational Resources Information Center

    Larsen, Erik; Eriksen, J.

    1975-01-01

    Describes an experiment wherein the student can demonstrate the existence of all the thiocyanato chromium complexes, estimate the stepwise formation constants, demonstrate the robustness of chromium III complexes, and show the principles of paper electrophoresis. (GS)

  19. A 1H NMR titration study on the binding constants for D- and L-tryptophan inclusion complexes with 6-O-α-D-glucosyl-β-cyclodextrin. Formation of 1:1 and 2:1 (host:guest) complexes

    NASA Astrophysics Data System (ADS)

    Akita, Tomoki; Matsui, Yoshihisa; Yamamoto, Tatsuyuki

    2014-02-01

    A 1H NMR titration study revealed that 6-O-α-D-glucosyl-β-cyclodextrin (G1-β-CD) forms 1:1 and 2:1 (host:guest) inclusion complexes with D- and L-tryptophan in alkaline D2O solutions (pD 11.0). The binding constants (K1's) for the 1:1 complexes of D-isomer at 298 K (59 mol-1 dm3) were virtually equal to that of L-isomer (54 mol-1 dm3). On the other hand, the K2 values for 2:1 complexes of D-isomer (42 mol-1 dm3) were larger than that of L-counterpart (12 mol-1 dm3). These facts suggest that the first CD molecule includes the indole ring moiety of tryptophan, followed by inclusion with the second CD molecule in the vicinity of chiral center, α-carbon of the guest, to result in the difference in K2's for two enantiomers. Two-dimensional NMR measurement (Rotating-frame nuclear Overhauser Effect SpectroscopY, ROESY) supported this interpretation.

  20. Density functional theory-based prediction of the formation constants of complexes of ammonia in aqueous solution: indications of the role of relativistic effects in the solution chemistry of gold(I).

    PubMed

    Hancock, Robert D; Bartolotti, Libero J

    2005-10-01

    A prediction of the formation constants (log K1) for complexes of metal ions with a single NH3 ligand in aqueous solution, using quantum mechanical calculations, is reported. DeltaG values at 298 K in the gas phase for eq 1 (DeltaG(DFT)) were calculated for 34 metal ions using density functional theory (DFT), with the expectation that these would correlate with the free energy of complex formation in aqueous solution (DeltaG(aq)). [M(H2O)6]n+(g) + NH(3)(g) = [M(H2O)5NH3]n+(g) + H2O(g) (eq 1). The DeltaG(aq) values include the effects of complex changes in solvation on complex formation, which are not included in eq 1. It was anticipated that such changes in solvation would be constant or vary systematically with changes in the log K(1) value for different metal ions; therefore, simple correlations between DeltaG(DFT) and DeltaG(aq) were sought. The bulk of the log K1(NH3) values used to calculate DeltaG(aq) were not experimental, but estimated previously (Hancock 1978, 1980) from a variety of empirical correlations. Separate linear correlations between DeltaG(DFT) and DeltaG(aq) for metal ions of different charges (M2+, M3+, and M4+) were found. In plots of DeltaG(DFT) versus DeltaG(aq), the slopes ranged from 2.201 for M2+ ions down to 1.076 for M4+ ions, with intercepts increasing from M2+ to M4+ ions. Two separate correlations occurred for the M3+ ions, which appeared to correspond to small metal ions with a coordination number (CN) of 6 and to large metal ions with a higher CN in the vicinity of 7-9. The good correlation coefficients (R) in the range of 0.97-0.99 for all these separate correlations suggest that the approach used here may be the basis for future predictions of aqueous phase chemistry that would otherwise be experimentally inaccessible. Thus, the log K1(NH3) value for the transuranic Lr3+, which has a half-life of 3.6 h in its most stable isotope, is predicted to be 1.46. These calculations should also lead to a greater insight into the factors

  1. Predicting Stability Constants for Uranyl Complexes Using Density Functional Theory

    SciTech Connect

    Vukovic, Sinisa; Hay, Benjamin P.; Bryantsev, Vyacheslav S.

    2015-04-02

    The ability to predict the equilibrium constants for the formation of 1:1 uranyl:ligand complexes (log K1 values) provides the essential foundation for the rational design of ligands with enhanced uranyl affinity and selectivity. We also use density functional theory (B3LYP) and the IEFPCM continuum solvation model to compute aqueous stability constants for UO22+ complexes with 18 donor ligands. Theoretical calculations permit reasonably good estimates of relative binding strengths, while the absolute log K1 values are significantly overestimated. Accurate predictions of the absolute log K1 values (root mean square deviation from experiment < 1.0 for log K1 values ranging from 0 to 16.8) can be obtained by fitting the experimental data for two groups of mono and divalent negative oxygen donor ligands. The utility of correlations is demonstrated for amidoxime and imide dioxime ligands, providing a useful means of screening for new ligands with strong chelate capability to uranyl.

  2. Predicting Stability Constants for Uranyl Complexes Using Density Functional Theory

    DOE PAGESBeta

    Vukovic, Sinisa; Hay, Benjamin P.; Bryantsev, Vyacheslav S.

    2015-04-02

    The ability to predict the equilibrium constants for the formation of 1:1 uranyl:ligand complexes (log K1 values) provides the essential foundation for the rational design of ligands with enhanced uranyl affinity and selectivity. We also use density functional theory (B3LYP) and the IEFPCM continuum solvation model to compute aqueous stability constants for UO22+ complexes with 18 donor ligands. Theoretical calculations permit reasonably good estimates of relative binding strengths, while the absolute log K1 values are significantly overestimated. Accurate predictions of the absolute log K1 values (root mean square deviation from experiment < 1.0 for log K1 values ranging from 0more » to 16.8) can be obtained by fitting the experimental data for two groups of mono and divalent negative oxygen donor ligands. The utility of correlations is demonstrated for amidoxime and imide dioxime ligands, providing a useful means of screening for new ligands with strong chelate capability to uranyl.« less

  3. Predicting stability constants for uranyl complexes using density functional theory.

    PubMed

    Vukovic, Sinisa; Hay, Benjamin P; Bryantsev, Vyacheslav S

    2015-04-20

    The ability to predict the equilibrium constants for the formation of 1:1 uranyl/ligand complexes (log K1 values) provides the essential foundation for the rational design of ligands with enhanced uranyl affinity and selectivity. We use density functional theory (B3LYP) and the integral equation formalism polarizable continuum model (IEF-PCM) to compute aqueous stability constants for UO2(2+) complexes with 18 donor ligands. Theoretical calculations permit reasonably good estimates of relative binding strengths, while the absolute log K1 values are significantly overestimated. Accurate predictions of the absolute log K1 values (root-mean-square deviation from experiment <1.0 for log K1 values ranging from 0 to 16.8) can be obtained by fitting the experimental data for two groups of mono- and divalent negative oxygen donor ligands. The utility of correlations is demonstrated for amidoxime and imide dioxime ligands, providing a useful means of screening for new ligands with strong chelating capability to uranyl. PMID:25835578

  4. Dissociation rate constant of the biotin-streptavidin complex.

    PubMed

    Piran, U; Riordan, W J

    1990-10-01

    We measured the dissociation rate constants of the biotin/streptavidin and biotin/egg avidin complexes by following the release of radiolabeled biotin from the preformed complexes in the presence of excess unlabeled biotin. For separation of bound and free labeled biotin we employed ultrafiltration with disposable microconcentrators. The dissociation rate constant for underivatized streptavidin was 2.4 x 10(-6) s-1, or approximately 30-fold higher than that observed for egg avidin 7.5 x 10(-8) s-1). The value for streptavidin was further increased after derivatization with an acridinium ester label. Both biotin binding proteins exhibited a faster initial phase, suggesting binding site heterogeneity due to partial subunit dissociation or denaturation. The convenience of the method and the relatively fast dissociation of biotin from streptavidin render the dissociation rate constant a practical experimental criterion for monitoring the integrity of the binding site during purification and derivatization procedures. PMID:2212686

  5. Variation of stability constants of thorium citrate complexes and of thorium hydrolysis constants with ionic strength

    SciTech Connect

    Choppin, G.R.; Erten, H.N.; Xia, Y.X.

    1995-09-01

    Citrate is among the organic anions that are expected to be present in the wastes planned for deposition in the Waste Isolation Pilot Plant repository. In this study, a solvent extraction method has been used to measure the stability constants of Thorium(IV)[Th(IV)] with citrate anions in aqueous solutions with (a) NaClO{sub 4} and (b) NaCl as the background electrolytes. The ionic strengths were varied up to 5 m (NaCl) and 14 m (NaClO{sub 4}). The data from the NaClO{sub 4} solutions at varying pH values were used to calculate the hydrolysis constants for formation of Th(OH){sup 3+} at the different ionic strengths.

  6. The formation constants of ionomycin with divalent cations in 80% methanol/water.

    PubMed

    Stiles, M K; Craig, M E; Gunnell, S L; Pfeiffer, D R; Taylor, R W

    1991-05-01

    The protonation constants and complex formation constants of ionomycin have been determined in 80% methanol/water (w/w) at 25.0 degrees C and mu = 0.050 (tetraethylammonium perchlorate). Potentiometric and spectrometric titration techniques give the following values for the mixed-mode protonation constants of ionomycin: log KH1 = 11.94 +/- 0.02 and log KH2 = 6.80 +/- 0.03. Comparison of these values with those for model compounds indicates that KH1 and KH2 refer to equilibria involving the beta-diketone and carboxylic acid moieties, respectively. Titrations of ionomycin with metal ion at fixed values of pH produced changes in the UV-visual absorbance spectra which were analyzed to give conditional complex formation constants, KMI'. The pH dependence of the values of KMI' indicated that 1:1 divalent metal ion-ionomycin (MI) complexes and protonated MHI+ complexes were formed in the pH range studied. The values of log KMI ranged from 5.30 +/- 0.11 for Sr2+ to 10.25 +/- 0.03 for Ni2+. The selectivity pattern and relative affinities (in parentheses) for the formation of the species MI are as follows: Ni2+ (2000) greater than Zn2+ (600) greater than CO2+ (440) greater than Mn2+ (47) greater than Mg2+ (1.00) greater than Ca2+ (0.21) greater than Sr2+ (0.022). Logarithmic values of KMHI, for the reaction MI + H+ in equilibrium MHI+, ranged from 5.9 (Ni2+) to 8.4 (Sr2+). Calculations using the values of the equilibrium constants determined indicate that an appreciable fraction of the complexed ionophore exists as the protonated complex, MHI+, in the pH range of 6.5-8.5. PMID:1850743

  7. Stability constants of europium complexes with a nitrogen heterocycle substituted methane-1,1-diphosphonic acid

    SciTech Connect

    Jensen, M.P.; Rickert, P.G.; Schmidt, M.A.; Nash, K.L.

    1996-06-01

    Even in moderately acidic solutions ([H{sup +}] > 0.01 M), N-piperidinomethane-1,1-diphosphonic acid (H{sub 4}PMDPA) is a strong complexant of trivalent lanthanide ions that shows enhanced complex solubility over previously studied 1,1-diphosphonic acids. The protonation constants of PMDPA in 2.0 M H/NaClO{sub 4} were determined by potentiometric and NMR titrations, and the stability constants for formation of complexes with Eu{sup 3+} were determined by solvent extraction. Difference in protonation equilibria induced by addition of the nitrogen heterocycle results in an increase in the complexation strength of PMDPA. In solutions containing 0.1 M H{sup +} and ligand concentrations greater than 0.02 M, PMDPA is the most effective 1,1-diphosphonic acid for europium complexation studied thus far.

  8. Spectrophotometric Determination of Iron(III)-Glycine Formation Constant in Aqueous Medium Using Competitive Ligand Binding

    ERIC Educational Resources Information Center

    Prasad, Rajendra; Prasad, Surendra

    2009-01-01

    The formation constant of iron(III) complex with glycine (Gly) ligand in aqueous acidic medium (0.2 M HNO[subscript 3], I = 0.2 M at 28 plus or minus 1 degree C) was determined spectrophotometrically in which a competing color reaction between Fe(III) and SCN[superscript -] was used as an indicator reaction. Under the specified conditions Fe(III)…

  9. Simulation of biomolecular diffusion and complex formation.

    PubMed Central

    Allison, S A; Northrup, S H; McCammon, J A

    1986-01-01

    Diffusion is a phenomenon of very widespread importance in molecular biophysics. Diffusion can determine the rates and character of the assembly of multisubunit structures, the binding of ligands to receptors, and the internal motions of molecules and assemblies that involve solvent surface displacements. Current computer simulation techniques provide much more detailed descriptions of diffusional processes than have been available in the past. Models can be constructed to include such realistic features as structural subunits at the submolecular level (domains, monomers, or atoms); detailed electrostatic charge distributions and corresponding solvent-screened inter- and intramolecular interactions; and hydrodynamic interactions. The trajectories can be analyzed either to provide direct information on biomolecular function (e.g., the bimolecular rate constant for formation of an electron-transfer complex between two proteins), or to provide or test models for the interpretation of experimental data (e.g., the time dependence of fluorescence depolarization for segments of DNA). Here, we first review the theory of diffusional simulations, with special emphasis on new techniques such as those for obtaining transport properties of flexible assemblies and rate constants of diffusion-controlled reactions. Then we survey a variety of recent applications, including studies of large-scale motion in DNA segments and substrate "steering" in enzyme-substrate binding. We conclude with a discussion of current work (e.g., formation of protein complexes) and possible areas for future work. PMID:3955168

  10. Constant-complexity stochastic simulation algorithm with optimal binning

    SciTech Connect

    Sanft, Kevin R.; Othmer, Hans G.

    2015-08-21

    At the molecular level, biochemical processes are governed by random interactions between reactant molecules, and the dynamics of such systems are inherently stochastic. When the copy numbers of reactants are large, a deterministic description is adequate, but when they are small, such systems are often modeled as continuous-time Markov jump processes that can be described by the chemical master equation. Gillespie’s Stochastic Simulation Algorithm (SSA) generates exact trajectories of these systems, but the amount of computational work required for each step of the original SSA is proportional to the number of reaction channels, leading to computational complexity that scales linearly with the problem size. The original SSA is therefore inefficient for large problems, which has prompted the development of several alternative formulations with improved scaling properties. We describe an exact SSA that uses a table data structure with event time binning to achieve constant computational complexity with respect to the number of reaction channels for weakly coupled reaction networks. We present a novel adaptive binning strategy and discuss optimal algorithm parameters. We compare the computational efficiency of the algorithm to existing methods and demonstrate excellent scaling for large problems. This method is well suited for generating exact trajectories of large weakly coupled models, including those that can be described by the reaction-diffusion master equation that arises from spatially discretized reaction-diffusion processes.

  11. Stoichiometry and Formation Constant Determination by Linear Sweep Voltammetry.

    ERIC Educational Resources Information Center

    Schultz, Franklin A.

    1979-01-01

    In this paper an experiment is described in which the equilibrium constants necessary for determining the composition and distribution of lead (II)-oxalate species may be measured by linear sweep voltammetry. (Author/BB)

  12. Theoretical studies on the first proton macroaffinity of Ni(II), Cu(II), Zn(II) and Cd(II) complexes of four triazacycloalkanes ([X]ane N3, X = 9-12): good correlations with the formation constants in solution.

    PubMed

    Salehzadeh, Sadegh; Shooshtari, Amir; Bayat, Mehdi

    2009-04-21

    A theoretical study on the first protonation step of Ni(ii), Cu(ii), Zn(ii) and Cd(ii) complexes of some triazacycloalkanes with general formula [X]ane N(3) (X = 9-12) is reported. The calculations were performed at DFT (B3LYP) level of theory, using LanL2DZ basis set. The DFT calculations were performed again using DZVP2 basis set for Ni(ii), Cu(ii) and Zn(ii) complexes and DZVP for Cd(ii) complexes. Once again, two kinds of our recently published definitions for gas-phase proton affinities of polybasic ligands, proton microaffinity and proton macroaffinity, were extended to their metal complexes. Among the 16 investigated complexes the most stable complex has both the smallest proton macroaffinity and macrobasicity. The least stable complex has also both the greatest proton macroaffinity and macrobasicity. In the case of each metal ion there are good correlations between the calculated gas-phase proton macroaffinities as well as macrobasicities of the corresponding complexes with their formation constants in solution. PMID:19333512

  13. Laboratory measurement of the complex dielectric constant of soils

    NASA Technical Reports Server (NTRS)

    Wiebe, M. L.

    1971-01-01

    The dielectric constant of a material is an extremely important parameter when considering passive radiometric remote sensing applications. This is because the emitted energy measured by a microwave radiometer is dependent on the dielectric constant of the surface being scanned. Two techniques of measuring dielectric constants are described. The first method involves a dielectric located in air. The second method uses basically the same theoretical approach, but the dielectric under consideration is located inside a section of waveguide.

  14. Complexation Constants of Ubiquinone,0 and Ubiquinone,10 with Nucleosides and Nucleic Acid Bases

    NASA Astrophysics Data System (ADS)

    Rahawi, Kassim Y.; Shanshal, Muthana

    2008-02-01

    UV spectrophotometric measurements were done on mixtures of the ubiquinones Ub,0 and Ub,10 in their monomeric form (c < 10-5 mol/l) with the nucleosides; adenosine, cytidine, 2'-desoxyadenosine, 2'-desoxy-quanosine, guanosine and thymidine, as well as the nucleic acid bases; adenine, cytosine, hypoxanthine, thymine and uracil. Applying the Liptay method, it was found that both ubiquinones form 1 : 1 interaction complexes with the nucleic acid components. The complexation constants were found in the order of 105 mol-1. The calculated ΔG values were negative (˜-7.0 kcal/mol), suggesting a favoured hydrogen bridge formation. This is confirmed by the positive change of the entropy ΔS. The complexation enthalpies ΔH for all complexes are negative, suggesting exothermal interactions.

  15. Stability constants of Ni(II)- and Cu(II)-N-heterocycle complexes according to spectrophotometric data

    NASA Astrophysics Data System (ADS)

    Badhe, Samata; Tekade, Pradip; Bajaj, Sonal; Thakare, Shrikant

    2015-12-01

    The interaction of Ni(II) and Cu(II) with ethyl 4-(4-hydroxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine- 5-carboxylate [Ligand 1], 4-(1H-benzimidazol-2-yl)phenol [Ligand 2], and 2-(3-phenylamino- 4,5-dihydro-1,2-oxazol-5-yl)phenol [Ligand 3] have been studied by spectrophotometric technique at 0.01 M ionic strength and 28°C in 70% dioxane—water mixture. The data obtained were used to estimate the stability constant of these ligands. Spectrophotometric investigation of Ni(II) and Cu(II) complexes with these ligands shows 1: 1 complex formation. The formation of complexes has been studied by Job's variation method. The values of conditional stability constants of Cu(II) complexes are greater than the corresponding Ni(II) complexes. The greater value of stability constant of Cu(II) complexes may be due to the fact of more stable nature of Cu(II). The value of stability constant of Cu(II)—Ligand 2 complex is greater than that of Cu(II)-Ligand 1 and Cu(II)-Ligand 3. The same of Ni(II)-Ligand 3 complex is greater than that of Ni(II)-Ligand 1 and Ni(II)-Ligand 2.

  16. The potentiometric determination of stability constants for zinc acetate complexes in aqueous solutions to 295C

    SciTech Connect

    Giordano, T.H. ); Drummond, S.E. )

    1991-09-01

    A potentiometric method was used to determine the formation quotients of zinc acetate complexes in aqueous solutions from 50 to 295C at ionic strengths of 0.03, 0.3, and 1.0 m. The potentiometric titrations were carried out in an externally heated, Teflon-lined concentration cell fitted with hydrogen electrodes. Formal sodium acetate concentrations of the experimental solutions ranged from 0.001 to 0.1 m with acetic acid to sodium acetate ratios ranging from 30 to 300. Sodium trifluoromethanesulfonate (F{sub 3}CSO{sub 3}Na) was used as a supporting electrolyte. Stoichiometries and formation quotients for the complexes ZnCH{sub 3}COO{sup +}, Zn(CH{sub 3}COO){sub 2}, and Zn(CH{sub 3}COO){sub 3}{sup {minus}} were derived from the titration data by regression analysis. Stability constants at infinite dilution (K{sub n}) and other relevant thermodynamic quantities were calculated for these three complexes. Calculations of zinc speciation in acetate-chloride solutions show that zinc acetate complexes should have an importance similar to zinc chloride complexes in high acetate waters where chloride to acetate molal ratios are less than about 10.

  17. Laser complex for investigation of semiconductor nonlinear constants

    NASA Astrophysics Data System (ADS)

    Grabovski, Vitaly V.; Fekeshgazi, Ishtvan V.; May, Konstantin V.; Prokhorenko, Valentin I.; Yatskiv, Dmytro Y.

    1995-11-01

    The laser complex for the investigations of nonlinear properties of semiconductors has been designed. The results of the two-photon absorption coefficient of the chalcohenide glass As2S3 measurements are presented. The measurements accuracy and threshold sensitivity of the complex are estimated.

  18. Studies on chemical kinetics of positronium complex formation

    NASA Astrophysics Data System (ADS)

    Du, Youming; Zhang, Tianbao; Cao, Chun; Chen, Yun-Ti; Liang, Jiachang

    1993-09-01

    The complex formation between ortho-positronium and N-( p-substituted-phenyl) glycine ( p-RPhG, G=NHCH 2COOH; R=NO 2, Cl, H, CH 3, CH 3O) or N-( m-substituted-phenyl) glycine ( m-RPhG, R=NO 2, Cl) in solutions of 30% (v/v) ethanol—water and 20% (v/v) dioxane—water is discussed. The application of a BaF 2 scintillation counter to a positron annihilation lifetime spectrometer is described. By means of this new type of spectrometer, the complex formation reaction rate constants of ortho-positronium with the glycine derivatives in solutions are determined. The results indicate that the rate constants mainly depend on the conjugation effect at the benzene ring, the induction effects of the substitutes on the phenyl and solvents. There exists a linear free-energy relationship between rate constants and the basicities of N-substituted phenyl glycines in ortho-positronium—glycine complex formation. It means that the transient complex formation of ortho-positronium with molecules is like a general chemical reaction and obeys classical rules.

  19. Competitive counterion complexation allows the true host : guest binding constants from a single titration by ionic receptors.

    PubMed

    Pessêgo, Márcia; Basílio, Nuno; Muñiz, M Carmen; García-Río, Luis

    2016-07-01

    Counterion competitive complexation is a background process currently ignored by using ionic hosts. Consequently, guest binding constants are strongly affected by the design of the titration experiments in such a way that the results are dependent on the guest concentration and on the presence of added salts, usually buffers. In the present manuscript we show that these experimental difficulties can be overcome by just considering the counterion competitive complexation. Moreover a single titration allows us to obtain not only the true binding constants but also the stoichiometry of the complex showing the formation of 1 : 1 : 1 (host : guest : counterion) complexes. The detection of high stoichiometry complexes is not restricted to a single titration experiment but also to a displacement assay where both competitive and competitive-cooperative complexation models are taken into consideration. PMID:27278457

  20. Dynamics of plasma flow formation in a pulsed accelerator operating at a constant pressure

    NASA Astrophysics Data System (ADS)

    Baimbetov, F. B.; Zhukeshov, A. M.; Amrenova, A. U.

    2007-01-01

    Features in the dynamics of plasma flow formation at a constant pressure in a pulsed coaxial accelerator have been studied. The temperature and density of electrons in a plasma bunch have been determined using a probe technique.

  1. Determination of stability constants of aminoglycoside antibiotics with their metal complexes

    NASA Astrophysics Data System (ADS)

    Tiwow, Vanny M. A.

    2014-03-01

    One group of aminoglycoside antibiotics contains aminosugars. The aminosugar neomycin B with its derivate product neamine (2-Deoxy-4-0-(2,6-diamino-2,6-dideoxy-α-D-glucopyranosyl)-D-Streptamine) was identified as a free ligands and metal complexes. In particular, the stability constants of metal complexes by potentiometric titration techniques were investigated. Our previous study had determined the acid dissociation constants of these aminosugars with few metal complexes in fair depth. In this work, the complexation of two pyridine-containing amino alcohols and an amino sugar (neamine) have been measured potentiometrically. For instance, the stability constant of copper(II) complexation were determine and the model system generated an excellent fit. Stability constants with several metals have been determined and will be reported.

  2. Correlation between stabilities of uranyl ion complexes with various monocarboxylic acids and Hammett-Taft substituent constants

    SciTech Connect

    Poluektov, N.S.; Perfil'ev, V.A.; Meshkova, S.B.; Mishchenko, V.T.

    1987-01-01

    A correlation has been observed between the stabilities of uranyl ion complexes (1:1 composition) and the substituent inductive constants in formic and acetic acid derivatives. For substituents which are not directly involved in couples formation the parameters of the Hammett-Taft equation log K/sub 1/ = A + B have the following values: A = 1.311, B = -2.360. For substituents which form a coordination bond with the uranyl ion, A = 7.0077 and B = - 17.321. In the case of complexes formed between the uranyl ion and salicylic acid and its derivatives, there is a correlation between complex stability and sigma/sub m/ and sigma/sub p/ substituent constants for the meta- and para-positions, respectively (A = 12.72, B = -4.41).

  3. Dissociation of bimolecular αIIbβ3-fibrinogen complex under a constant tensile force.

    PubMed

    Litvinov, Rustem I; Barsegov, Valeri; Schissler, Andrew J; Fisher, Andrew R; Bennett, Joel S; Weisel, John W; Shuman, Henry

    2011-01-01

    The regulated ability of integrin αIIbβ3 to bind fibrinogen plays a crucial role in platelet aggregation, adhesion, and hemostasis. Employing an optical-trap-based electronic force clamp, we studied the thermodynamics and kinetics of αIIbβ3-fibrinogen bond formation and dissociation under constant unbinding forces, mimicking the forces of physiologic blood shear on a thrombus. The distribution of bond lifetimes was bimodal, indicating that the αIIbβ3-fibrinogen complex exists in two bound states with different mechanical stability. The αIIbβ3 antagonist, abciximab, inhibited binding without affecting the unbinding kinetics, whereas Mn²(+) biased the αIIbβ3-fibrinogen complex to the strong bound state with reduced off-rate. The average bond lifetimes decreased exponentially with increasing pulling force from ∼5 pN to 50 pN, suggesting that in this force range the αIIbβ3-fibrinogen interactions are classical slip bonds. We found no evidence for catch bonds, which is consistent with the known lack of shear-enhanced platelet adhesion on fibrinogen-coated surfaces. Taken together, these data provide important quantitative and qualitative characteristics of αIIbβ3-fibrinogen binding and unbinding that underlie the dynamics of platelet adhesion and aggregation in blood flow. PMID:21190668

  4. Complex organic molecules and star formation

    NASA Astrophysics Data System (ADS)

    Bacmann, A.; Faure, A.

    2014-12-01

    Star forming regions are characterised by the presence of a wealth of chemical species. For the past two to three decades, ever more complex organic species have been detected in the hot cores of protostars. The evolution of these molecules in the course of the star forming process is still uncertain, but it is likely that they are partially incorporated into protoplanetary disks and then into planetesimals and the small bodies of planetary systems. The complex organic molecules seen in star forming regions are particularly interesting since they probably make up building blocks for prebiotic chemistry. Recently we showed that these species were also present in the cold gas in prestellar cores, which represent the very first stages of star formation. These detections question the models which were until now accepted to account for the presence of complex organic molecules in star forming regions. In this article, we shortly review our current understanding of complex organic molecule formation in the early stages of star formation, in hot and cold cores alike and present new results on the formation of their likely precursor radicals.

  5. The thermodynamic characteristics of complex formation between calcium ions and L-leucine in aqueous solution

    NASA Astrophysics Data System (ADS)

    Kurochkin, V. Yu.; Chernikov, V. V.; Orlova, T. D.

    2011-04-01

    Complex formation of L-leucine with calcium ions in aqueous solution was studied by potentiometric titration at 298.15 K and ionic strength values I = 0.5, 1.0, and 1.5 (KNO3). The formation of the CaL+ and CaHL2+ complex particles was established and their stability constants were determined. The enthalpies of protolytic equilibria of leucine and formation of calcium ion complexes with leucine were determined calorimetrically at 298.15 K and I = 0.5 (KNO3). The thermodynamic characteristics of complex formation between calcium ions and L-leucine were calculated.

  6. Stability Constants of Np(V) Complexes with Phosphate at Variable Temperatures

    SciTech Connect

    Xia, Yuanxian; Friese, Judah I.; Moore, Dean A.; Rao, Linfeng

    2006-05-04

    A solvent extraction method was used to determine the stability constants of Np(V) complexes with phosphate in 1.0 M NaClO4 from 25o C to 55o C. A morpholine-4-ethanesulfonic acid buffer was used to maintain pH at about 5 in the Np(V)-H2PO4- system. The distribution ratio of Np(V) between the organic and aqueous phases was found to decrease as the concentrations of phosphate were increased. Stability constants of the 1:1 Np(V)-H2PO4- complexes, dominant in the aqueous phase under the experimental conditions, were calculated from the effect of [H2PO4-] on the distribution ratio. The enthalpy and entropy of complexation were calculated from the stability constants at different temperatures by using the Van’t Hoff equation.

  7. Binding constant determination of uranyl-citrate complex by ACE using a multi-injection method.

    PubMed

    Zhang, Yiding; Li, Linnan; Huang, Hexiang; Xu, Linnan; Li, Ze; Bai, Yu; Liu, Huwei

    2015-04-01

    The binding constant determination of uranyl with small-molecule ligands such as citric acid could provide fundamental knowledge for a better understanding of the study of uranyl complexation, which is of considerable importance for multiple purposes. In this work, the binding constant of uranyl-citrate complex was determined by ACE. Besides the common single-injection method, a multi-injection method to measure the electrophoretic mobility was also applied. The BGEs used contained HClO4 and NaClO4 , with a pH of 1.98 ± 0.02 and ionic strength of 0.050 mol/L, then citric acid was added to reach different concentrations. The electrophoretic mobilities of the uranyl-citrate complex measured by both of the two methods were consistent, and then the binding constant was calculated by nonlinear fitting assuming that the reaction had a 1:1 stoichiometry and the complex was [(UO2 )(Cit)](-) . The binding constant obtained by the multi-injection method was log K = 9.68 ± 0.07, and that obtained by the single-injection method was log K = 9.73 ± 0.02. The results provided additional knowledge of the uranyl-citrate system, and they demonstrated that compared with other methods, ACE using the multi-injection method could be an efficient, fast, and simple way to determine electrophoretic mobilities and to calculate binding constants. PMID:25598434

  8. Equilibrium constant for carbamate formation from monoethanolamine and its relationship with temperature

    SciTech Connect

    Aroua, M.K.; Benamor, A.; Haji-Sulaiman, M.Z.

    1999-09-01

    Removal of acid gases such as CO{sub 2} and H{sub 2}S using aqueous solutions of alkanolamines is an industrially important process. The equilibrium constant for the formation of carbamate from monoethanolamine was evaluated at various temperatures of 298, 308, 318, and 328 K and ionic strengths up to 1.7 M. From the plot of log{sub 10} K versus I{sup 0.5}, the variation of the thermodynamical constant with temperature follows the relationship log{sub 10} K{sub 1} = {minus}0.934 + (0.671 {times} 10{sup 3})K/T.

  9. Determination of stability constants and acute toxicity of potential hepatotropic gadolinium complexes.

    PubMed

    Mikiciuk-Olasik, Elzbieta; Wojewoda, Emilia; Bilichowski, Ireneusz; Witczak, Małgorzata; Karwowski, Bolesław; Wagrowska-Danilewicz, Małgorzata; Stasikowska, Olga

    2010-01-01

    Due to their high specificity for the hepatobiliary system, iminodiacetic acid derivatives are known to form a class of hepatobiliary agents. In this paper we present new hepatotropic gadolinium complexes to be used as potential MRI contrast agents. Derivatives of N-(2-phenylamine-2-oxoethyl) iminodiacetic acid are introduced as ligands into such complexes. In this way, we hope to achieve a valuable diagnostic tool for investigating of pathological changes in the liver. Stability constants of complexes were determined by potentiometric titration in 0.1 mol L(-1) NaNO3 solution at 20.0 +/- 0.1 degrees C. Stability and selectivity constants were also determined for endogenous metal ions such as Cu2+, Ca2+, and Zn2+ with the use of SUPERQUAD computer program. Acute toxicity of new gadolinium complexes was assessed in mice and histopathology examinations were carried out. PMID:20369788

  10. J(Si,H) Coupling Constants in Nonclassical Transition-Metal Silane Complexes.

    PubMed

    Scherer, Wolfgang; Meixner, Petra; Batke, Kilian; Barquera-Lozada, José E; Ruhland, Klaus; Fischer, Andreas; Eickerling, Georg; Eichele, Klaus

    2016-09-12

    We will outline that the sign and magnitude of J(Si,H) coupling constants provide a highly sensitive tool to measure the extent of Si-H bond activation in nonclassical silane complexes. Up to now, this structure-property relationship was obscured by erroneous J(Si,H) sign determinations in the literature. These new findings also help to identify the salient control parameters of the Si-H bond activation process in nonclassical silane complexes. PMID:27503583

  11. Hydrolysis of oxaliplatin-evaluation of the acid dissociation constant for the oxalato monodentate complex.

    PubMed

    Jerremalm, Elin; Eksborg, Staffan; Ehrsson, Hans

    2003-02-01

    Alkaline hydrolysis of the platinum anticancer drug oxaliplatin gives the oxalato monodentate complex and the dihydrated oxaliplatin complex in two consecutive steps. The acid dissociation constant for the oxalato monodentate intermediate was determined by a kinetic approach. The pK(a) value was estimated as 7.23. The monodentate intermediate is assumed to rapidly react with endogenous compounds, resulting in a continuous conversion of oxaliplatin via the monodentate form. PMID:12532393

  12. DISSOCIATION OF ARSENITE-PEPTIDE COMPLEXES: TRIPHASIC NATURE, RATE CONSTANTS, HALF LIVES AND BIOLOGICAL IMPORTANCE

    EPA Science Inventory

    We determined the number and the dissociation rate constants of different complexes formed from arsenite and two peptides containing either one (RV AVGNDYASGYHYGV for peptide 20) or three cysteines (LE AWQGK VEGTEHLYSMK K for peptide 10) via radioactive 73As labeled arsenite and ...

  13. Determination of complex permittivity from propagation constant measurement with planar transmission lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new two-standard calibration procedure is outlined for determining the complex permittivity of materials from the propagation constant measured with planar transmission lines. Once calibrated, a closed-form expression for the material permittivity is obtained. The effects of radiation and conducto...

  14. Quantum theory of the complex dielectric constant of free carriers in polar semiconductors

    SciTech Connect

    Jensen, B.

    1982-09-01

    The optical constants and reflectivity of a semiconductor are known as functions of the real and imaginary parts of the complex dielectric constant. The imaginary part of the complex dielectric constant e/sub 2/ is proportional to the optical conductivity, which has recently been calculated from the quantum density matrix equation of motion. The expression obtained for e/sub 2/ reduces to the Drude result, as obtained from the quasi-classical Boltzmann transport equation, in the limit of low frequencies and elastic scattering mechanisms, and to the quantum result found using time dependent perturbation theory in the limit of high frequencies. This paper derives the real part of the complex dielectric constant e/sub 1/ for a III-V or II-VI semiconductor with the band structure of the Kane theory, using the quantum density matrix method. The relation of e/sub 1/ to the second order perturbation energy of the system is shown, and the reflectivity is a minimum when the second order perturbation energy vanishes. The quantum calculation for e/sub 1/ gives approximately the same result as the Drude theory, except near the fundamental absorption edge, and reduces to the Drude result at low frequencies. Using the complex dielectric constant, the real and imaginary parts of the complex refractive index, the skin depth, and surface impedance, and the reflectivity are found. The plasma resonance is examined. The surface impedance and the skin depth are shown to reduce to the usual classical result in the limit that e/sub 1/ = 0 and w tau << 1, where w is the angular frequency of the applied field and tau is the electron scattering time.

  15. Multiparametric curve fitting-IX Simultaneous regression estimation of stoichiometry and stability constants of complexes.

    PubMed

    Havel, J; Meloun, M

    1986-05-01

    A chemical model (i.e., the number of complexes, their stoichiometry and stability constants with molar absorptivities) in solution equilibria may be established by (i) the trial-and-error method in which stability constants are estimated for an assumed set of complexes in the mixture and a fitness test is used to resolve a choice of plausible models to find the true one; (ii) the simultaneous estimation of the stoichiometry and stability constants for species divided into "certain" species for which the parameters beta(pqr), (p, q, r) are known and held constant, and "uncertain" species with unknown parameters which are determined by regression analysis. The interdependence of stability constants and particular sets of stoichiometric indices requires that the computational strategy should be chosen carefully for each particular case. The benefits and limitations of both approaches are compared by means of examples of potentiometric titration data analysis by the POLET(84) program and of spectrophotometric data analysis by the SQUAD(84) program. A strategy for efficient computation is suggested. PMID:18964117

  16. Complex formation between uranyl and various thiosemicarbazide derivatives

    SciTech Connect

    Chuguryan, D.G.; Dzyubenko, V.I.

    1987-01-01

    Complex formation between hexavalent uranium and salicylaldehyde thiosemicarbazone (H/sub 2/L), salicylaldehyde S-methyl-isothiosemicarbazone (H/sub 2/Q), S-methyl-N/sub 1/,N/sub 4/-bis(salicylidene)isothiosemicarbazide(H/sub 2/Z), and thiosemicarbazidodiacetic acid (H/sub 2/R) has been studied spectrophotometrically in solution. Stability constants for complexes having the composition UO/sub 2/A have been calculated. Solid uranyl derivatives having the composition UO/sub 2/L x 2H/sub 2/O, UO/sub 2/Q x 2H/sub 2/O, UO/sub 2/Z x 2H/sub 2/O, and UO/sub 2/R x 2H/sub 2/O have been obtained. These derivatives were isolated and their IR spectroscopic behavior and thermal properties were investigated.

  17. Stability constants important to the understanding of plutonium in environmental waters, hydroxy and carbonate complexation of PuO{sub 2}{sup +}

    SciTech Connect

    Bennett, D A

    1990-04-20

    The formation constants for the reactions PuO{sub 2}{sup +} + H{sub 2}O = PuO{sub 2}(OH) + H{sup +} and PuO{sub 2}{sup +} + CO{sub 3}{sup 2} = PuO{sub 2}(CO{sub 3}){sup {minus}} were determined in aqueous sodium perchlorate solutions by laser-induced photoacoustic spectroscopy. The molar absorptivity of the PuO{sub 2}{sup +} band at 569 nm decreased with increasing hydroxide concentration. Similarly, spectral changes occurred between 540 and 580 nm as the carbonate concentration was increased. The absorption data were analyzed by the non-linear least-squares program SQUAD to yield complexation constants. Using the specific ion interaction theory, both complexation constants were extrapolated to zero ionic strength. These thermodynamic complexation constants were combined with the oxidation-reduction potentials of Pu to obtain Eh versus pH diagrams. 120 refs., 35 figs., 12 tabs.

  18. The stability constants of copper(II) complexes with some alpha-amino acids in dioxan-water mixtures.

    PubMed

    Doğan, A; Köseoğlu, F; Kiliç, E

    2001-08-15

    In this study, the overall stability constants of copper(II) complexes with some alpha-amino acids (glycine, dl-alanine, dl-valine, l-leucine, l-asparagine, l-glutamine) were determined by potentiometric titration in water, 25% dioxan-75% water, 35% dioxan-65% water, 50% dioxan-50% water, and 60% dioxan-40% water. The titrations were performed at 25 degrees C, under nitrogen atmosphere, and the ionic strength of the medium was maintained at 0.10 M by using sodium perchlorate. The formation curves of their complexes (n-p[L]) were obtained by means of the titration data. Then the stability constants were determined in relation to these curves. The mol ratio of copper(II) to alpha-amino acid was also determined and it was found that the complexes were CuL(2) type. Another important result obtained was that the tendency of amino acids to form complexes with copper(II) was greater in dioxan-water mixtures compared to water. PMID:11488627

  19. Temperature dependency of the equilibrium constant for the formation of carbamate from diethanolamine

    SciTech Connect

    Aroua, M.K.; Amor, A.B.; Haji-Sulaiman, M.Z.

    1997-07-01

    Aqueous alkanolamine solutions are frequently used to remove acidic components such as H{sub 2}S and CO{sub 2} from process gas streams. The equilibrium constant for the formation of diethanolamine carbamate was determined experimentally at (303, 313, 323, and 331) K for ionic strengths up to 1.8 mol/dm{sup 3}, the inert electrolyte being NaClO{sub 4}. A linear relationship was found to hole between log K and I{sup 0.5}. The thermodynamical constant has been determined and expressed by the equation log K{sub 1} = {minus}5.12 + 1.781 {times} 10{sup 3} K/T.

  20. Vortex formation in a complex plasma

    NASA Astrophysics Data System (ADS)

    Ishihara, Osamu

    Complex plasma experiments in ground-based laboratories as well as in microgravity conditions have shown the formation of vortex structures in various conditions (e.g., 1,2,3,4). The vortex structures formed in a complex plasma are visible by naked eyes with the help of irradiating laser and the individual dust particles in the structure give us the opportunity to study detailed physics of the commonly observed natural phenomena known such as tornadoes, typhoons, hurricanes and dust devils. Based on the Navier-Stokes equation with proper complex plasma conditions we analyze as much as possible in a universal way the vortex structure and clarifies the role of the controlling parameters like flow velocity and external magnetic field. 1. G. E. Morfill,H. M. Thomas, U. Konopka,H. Rothermel, M. Zuzic, A. Ivlev, and J. Goree, Phys,. Rev. Lett. 83, 1598 (1999). 2. E. Nebbat and R. Annou, Phys. Plasmas 17, 093702 (2010). 3. Y. Saitou and O. Ishihara, Phys. Rev. Lett. 111, 185003 (2013). 4. V. N. Tsytovich and N. G. Gusein-zade, Plasma Phys. Rep. 39, 515 (2013).

  1. Stability Constants of Technetium (IV) Oxalate Complexes as a Function of Ionic Strength

    SciTech Connect

    Xia, Yuanxian; Hess, Nancy J.; Felmy, Andrew R.

    2006-03-01

    Solvent extraction methods were used to determine the stability constants of Tc(IV) with oxalate anions in NaCl solutions ranging in concentration from 0.5 M to 2.0 M. All experiments were conducted in an atmosphere-controlled chamber under Ar atmosphere (< 1.0ppm O2). A reducing agent (hydrazine) was used during extractions to maintain technetium in the tetravalent oxidation state. Independent tests confirmed that the oxidation state of technetium did not change during extractions. The distribution ratio of Tc(IV) between the organic and aqueous phases was found to decrease as the concentration of oxalic acid increased. At the oxalic acid concentrations used in these experiments, the complexes TcO(Ox) and TcO(Ox)22- were found to be the dominant aqueous species. Based on these data, the thermodynamic stability constants of Tc(IV) with oxalate complexes were calculated by the Specific Ion Interaction Theory (SIT).

  2. Association constants and enthalpies of formation of heteroassociates of anions of cresol red and thymol blue

    NASA Astrophysics Data System (ADS)

    Shapovalov, S. A.

    2011-01-01

    The tendency of anions of sulfophthaleine dyes to heteroassociation was studied in aqueous solutions of phenol red, cresol red, thymol blue, and non-substituted phenol red. It was spectrophotometrically determined that single (HAn-) and doubly charged anions (An2-) of sulfophthaleines can form stable heteroassociates of the composition Ct+ · HAn- and (Ct+)2 · An2- with cations (Ct+) of polymethine dyes, pinacyanol, and quinaldine red. The values of enthalpy formation of ions of dyes and heteroassociates were calculated semi-empirically and compared with experimentally determined values of the equilibrium association constants.

  3. Complex dielectric constants for selected near-millimeter-wave materials at 245 GHz

    NASA Technical Reports Server (NTRS)

    Dutta, J. M.; Jones, C. R.; Dave, H.

    1986-01-01

    A double-beam instrument developed in this laboratory has been used to measure the complex dielectric constant of selected materials at 245 GHz. It is reported here the results for crystalline quartz, fused silica (Spectrosil WF and Dynasil 4000), beryllia (iso-pressed), boron nitride (hot-pressed), and a nickel ferrite (Trans-Tech 2-111). Results are compared with the data obtained by other researchers.

  4. Variation of stability constants of thorium and uranium oxalate complexes with ionic strength

    SciTech Connect

    Erten, H.N; Mohammed, A.K.; Choppin, G.R.

    1993-12-31

    Extraction of Th(IV) and UO{sub 2}{sup 2+} by a solution of TTA and HDEHP, respectively, in toluene was used to obtain stability constants of their oxalate complexes in 1, 3, 5, 7 and 9 M ionic strength (NaClO{sub 2}) solutions. The complexes formed were the MOx, MHOx, MOx{sub 2} and M(HOx){sub 2} (M = Th, UO{sub 2}) species. The values were analyzed by the Specific Interaction Theory and agreed to I {le} 3 M but required an additional term for fitting at I > 3 M.

  5. Complex trajectories sans isochrones: quantum barrier scattering with rectilinear constant velocity trajectories.

    PubMed

    Rowland, Brad A; Wyatt, Robert E

    2007-10-28

    One of the major obstacles in employing complex-valued trajectory methods for quantum barrier scattering calculations is the search for isochrones. In this study, complex-valued derivative propagation method trajectories in the arbitrary Lagrangian-Eulerian frame are employed to solve the complex Hamilton-Jacobi equation for quantum barrier scattering problems employing constant velocity trajectories moving along rectilinear paths whose initial points can be in the complex plane or even along the real axis. It is shown that this effectively removes the need for isochrones for barrier transmission problems. Model problems tested include the Eckart, Gaussian, and metastable quadratic+cubic potentials over a variety of wave packet energies. For comparison, the "exact" solution is computed from the time-dependent Schrodinger equation via pseudospectral methods. PMID:17979316

  6. QSPR prediction of the stability constants of gadolinium(III) complexes for magnetic resonance imaging.

    PubMed

    Dioury, Fabienne; Duprat, Arthur; Dreyfus, Gérard; Ferroud, Clotilde; Cossy, Janine

    2014-10-27

    Gadolinium(III) complexes constitute the largest class of compounds used as contrast agents for Magnetic Resonance Imaging (MRI). A quantitative structure-property relationship (QSPR) machine-learning based method is applied to predict the thermodynamic stability constants of these complexes (log KGdL), a property commonly associated with the toxicity of such organometallic pharmaceuticals. In this approach, the log KGdL value of each complex is predicted by a graph machine, a combination of parametrized functions that encodes the 2D structure of the ligand. The efficiency of the predictive model is estimated on an independent test set; in addition, the method is shown to be effective (i) for estimating the stability constants of uncharacterized, newly synthesized polyamino-polycarboxylic compounds and (ii) for providing independent log KGdL estimations for complexants for which conflicting or questionable experimental data were reported. The exhaustive database of log KGdL values for 158 complexants, reported for potential application as contrast agents for MRI and used in the present study, is available in the Supporting Information (122 primary literature sources). PMID:25181704

  7. Potentiometric determination of the dissociation constants of an asymmetric sorbent containing l-proline, and the stability constants of its Cu(II) complexes.

    PubMed

    Zolotarev, Y A; Kurganov, A A; Davankov, V A

    1978-09-01

    The dissociation constants of the carboxyl groups (pK(a1) = 2.2, n = 1.8) and amino groups (pK(a2) = 9.5, n(2) = 1.6) of a sorbent prepared by reacting l-proline with a cross-linked chloromethylated styrene polymer have been determined by potentiometric titration. The potentiometrically measured stability constants of the Cu(II) complexes of the resin (logbeta(1) = 6.9 and log beta(2) = 12.4) were found to be close to the values for the Cu(II) complexes of N-benzyl-l-proline. For complexed resins of alpha-amino-acid type the pH-values of decomplexation do not appear to be directly correlated with the stability constants. PMID:18962307

  8. Estimating the acidity of transition metal hydride and dihydrogen complexes by adding ligand acidity constants.

    PubMed

    Morris, Robert H

    2014-02-01

    A simple equation (pKa(THF) = ∑AL + Ccharge + Cnd + Cd6) can be used to obtain an estimate of the pKa of diamagnetic transition metal hydride and dihydrogen complexes in tetrahydrofuran, and, by use of conversion equations, in other solvents. It involves adding acidity constants AL for each of the ligands in the 5-, 6-, 7-, or 8-coordinate conjugate base complex of the hydride or dihydrogen complex along with a correction for the charge (Ccharge = -15, 0 or 30 for x = +1, 0 or -1 charge, respectively) and the periodic row of the transition metal (Cnd = 0 for 3d or 4d metal, 2 for 5d metal) as well as a correction for d(6) octahedral acids (Cd6 = 6 for d(6) metal ion in the acid, 0 for others) that are not dihydrogen complexes. Constants AL are provided for 13 commonly occurring ligand types; of these, nine neutral ligands are correlated with Lever's electrochemical ligand parameters EL. This method gives good estimates of the over 170 literature pKa values that range from less than zero to 50 with a standard deviation of 3 pKa units for complexes of the metals chromium to nickel, molybdenum, ruthenium to palladium, and tungsten to platinum in the periodic table. This approach allows a quick assessment of the acidity of hydride complexes found in nature (e.g., hydrogenases) and in industry (e.g., catalysis and hydrogen energy applications). The pKa values calculated for acids that have bulky or large bite angle chelating ligands deviate the most from this correlation. The method also provides an estimate of the base strength of the deprotonated form of the complex. PMID:24410025

  9. Stability constants determination of successive metal complexes by hyphenated CE-ICPMS.

    PubMed

    Petit, Jeremy; Aupiais, Jean; Topin, Sylvain; Geertsen, Valérie; Beaucaire, Catherine; Stambouli, Moncef

    2010-01-01

    The study of radionuclides speciation requires accurate evaluation of stability constants, which can be achieved by CE-ICPMS. We have previously described a method for 1:1 metal complexes stability constants determination. In this paper, we present its extension to the case of successive complexations and its application to uranyl-oxalate and lanthanum-oxalate systems. Several significant steps are discussed: analytical conditions choice, mathematical treatment by non-linear regression, ligand concentration and ionic strength corrections. The following values were obtained: at infinite dilution, log(beta(1) degrees (UO(2)Oxa))=6.93+/-0.05, log(beta(2) degrees (UO(2)(Oxa)(2) (2-)))=11.92+/-0.43 and log(beta(3) degrees (UO(2)(Oxa)(3) (4-)))=15.11+/-0.12; log(beta(1) degrees (LaOxa(+)))=5.90+/-0.07, log(beta(2) degrees (La(Oxa)(2) (-)))=9.18+/-0.19 and log(beta(3) degrees (La(Oxa)(3) (3-)))=9.81+/-0.33. These values are in good agreement with the literature data, even though we suggest the existence of a new lanthanum-oxalate complex: La(Oxa)(3) (3-). This study confirms the suitability of CE-ICPMS for complexation studies. PMID:20084632

  10. Experimental study of the complex resistivity and dielectric constant of chrome-contaminated soil

    NASA Astrophysics Data System (ADS)

    Liu, Haorui; Yang, Heli; Yi, Fengyan

    2016-08-01

    Heavy metals such as arsenic and chromium often contaminate soils near industrialized areas. Soil samples, made with different water content and chromate pollutant concentrations, are often needed to test soil quality. Because complex resistivity and complex dielectric characteristics of these samples need to be measured, the relationship between these measurement results and chromium concentration as well as water content was studied. Based on soil sample observations, the amplitude of the sample complex resistivity decreased with an increase of contamination concentration and water content. The phase of complex resistivity takes on a tendency of initially decrease, and then increase with the increasing of contamination concentration and water content. For a soil sample with the same resistivity, the higher the amplitude of complex resistivity, the lower the water content and the higher the contamination concentration. The real and imaginary parts of the complex dielectric constant increase with an increase in contamination concentration and water content. Note that resistivity and complex resistivity methods are necessary to adequately evaluate pollution at various sites.

  11. Cadmium(II) complex formation with glutathione.

    PubMed

    Mah, Vicky; Jalilehvand, Farideh

    2010-03-01

    Complex formation between heavy metal ions and glutathione (GSH) is considered as the initial step in many detoxification processes in living organisms. In this study the structure and coordination between the cadmium(II) ion and GSH were investigated in aqueous solutions (pH 7.5 and 11.0) and in the solid state, using a combination of spectroscopic techniques. The similarity of the Cd K-edge and L(3)-edge X-ray absorption spectra of the solid compound [Cd(GS)(GSH)]ClO(4).3H(2)O, precipitating at pH 3.0, with the previously studied cysteine compound {Cd(HCys)(2).H(2)O}(2).H(3)O(+).ClO(4) (-) corresponds to Cd(S-GS)(3)O (dominating) and Cd(S-GS)(4) four-coordination within oligomeric complexes with mean bond distances of 2.51 +/- 0.02 A for Cd-S and 2.24 +/- 0.04 A for Cd-O. For cadmium(II) solutions (C (Cd(II)) approximately 0.05 M) at pH 7.5 with moderate excess of GSH (C (GSH)/C (Cd(II)) = 3.0-5.0), a mix of Cd(S-GS)(3)O (dominating) and Cd(S-GS)(4) species is consistent with the broad (113)Cd NMR resonances in the range 632-658 ppm. In alkaline solutions (pH 11.0 and C (GSH)/C (Cd(II)) = 2.0 or 3.0), two distinct peaks at 322 and 674 ppm are obtained. The first peak indicates six-coordinated mononuclear and dinuclear complexes with CdS(2)N(2)(N/O)(2) and CdSN(3)O(2) coordination in fast exchange, whereas the second corresponds to Cd(S-GS)(4) sites. At high ligand excess the tetrathiolate complex, Cd(S-GS)(4), characterized by a sharp delta((113)Cd) NMR signal at 677 ppm, predominates. The average Cd-S distance, obtained from the X-ray absorption spectra, varied within a narrow range, 2.49-2.53 A, for all solutions (pH 7.5 and 11.0) regardless of the coordination geometry. PMID:20035360

  12. Use of laser induced photoacoustic spectroscopy (LIPAS) to determine equilibrium constants of cation-cation complexes

    SciTech Connect

    Hannink, N.J.; Hoffman, D.C.; Silva, R.J.; Russo, R.E.

    1993-12-31

    Laser Induced PhotoAcoustic Spectroscopy (LIPAS) is a relatively new, photothermal technique to examine solutions. Studies in the past have shown it to be more sensitive than conventional absorption spectroscopy, while, yielding the same information thus allowing lower concentrations to be used. This study is using LIPAS to examine solutions to determine the equilibrium constants of cation-cation complexes. It has been found that actinyl(V) cations form cation-cation complexes with a variety of cations, including actinyl(VI) cations. The radioactive nature of the actinide elements requires special handling techniques and also require limits be placed on the amount of material that can be used. The sensitivity of some oxidation states of the actinides to oxygen also presents a problem. Preliminary results will be presented for actinyl(V)-actinyl(VI) cation-cation complexes that were studied using a remote LIPAS system incorporating fiber optics for transmission of laser signals.

  13. Constant Electric and Magnetic Fields Effect on the Structuring and Thermomechanical and Thermophysical Properties of Nanocomposites Formed from Pectin-Cu2+-Polyethyleneimine Interpolyelectrolyte-Metal Complexes

    NASA Astrophysics Data System (ADS)

    Demchenko, V.; Shtompel', V.; Riabov, S.; Lysenkov, E.

    2015-12-01

    Applying wide-angle X-ray scattering method, thermomechanical analysis, and differential scanning calorimetry, the structural organization and properties of nanocomposites formed by chemical reduction of Cu2+ cations in the interpolyelectrolyte-metal complex (pectin-Cu2+-polyethyleneimine) under the influence of a constant magnetic and electric fields have been studied. It has been found that the chemical reduction of Cu2+ cations in the interpolyelectrolyte-metal complex bulk under constant electric and magnetic fields leads to formation of nanocomposite consisting of interpolyelectrolyte complex, including pectin-polyethyleneimine and nanoparticles of the metal Cu phase, whereas nanocomposite with Cu/Cu2O nanoparticles is formed in original state (without any field). It was observed that, under constant field, nanocomposites obtained have higher structural glass-transition temperatures and thermal stability.

  14. Constant Electric and Magnetic Fields Effect on the Structuring and Thermomechanical and Thermophysical Properties of Nanocomposites Formed from Pectin-Cu(2+)-Polyethyleneimine Interpolyelectrolyte-Metal Complexes.

    PubMed

    Demchenko, V; Shtompel', V; Riabov, S; Lysenkov, E

    2015-12-01

    Applying wide-angle X-ray scattering method, thermomechanical analysis, and differential scanning calorimetry, the structural organization and properties of nanocomposites formed by chemical reduction of Сu(2+) cations in the interpolyelectrolyte-metal complex (pectin-Cu(2+)-polyethyleneimine) under the influence of a constant magnetic and electric fields have been studied. It has been found that the chemical reduction of Cu(2+) cations in the interpolyelectrolyte-metal complex bulk under constant electric and magnetic fields leads to formation of nanocomposite consisting of interpolyelectrolyte complex, including pectin-polyethyleneimine and nanoparticles of the metal Cu phase, whereas nanocomposite with Cu/Cu2O nanoparticles is formed in original state (without any field). It was observed that, under constant field, nanocomposites obtained have higher structural glass-transition temperatures and thermal stability. PMID:26659610

  15. Cyclodextrins in pharmaceutical formulations II: solubilization, binding constant, and complexation efficiency.

    PubMed

    Jambhekar, Sunil S; Breen, Philip

    2016-02-01

    Cyclodextrins are cyclic oligosaccharides that have been recognized as pharmaceutical adjuvants for the past 20 years. The molecular structure of these glucose derivatives, which approximates a truncated cone, bucket, or torus, generates a hydrophilic exterior surface and a nonpolar interior cavity. Cyclodextrins can interact with appropriately sized drug molecules to yield an inclusion complex. These noncovalent inclusion complexes offer a variety of advantages over noncomplexed forms of a drug. Cyclodextrins are carbohydrates that are primarily used to enhance the aqueous solubility, physical chemical stability, and bioavailability of drugs. Their other applications include preventing drug-drug interactions, converting liquid drugs into microcrystalline powders, minimizing gastrointestinal and ocular irritation, and reducing or eliminating unpleasant taste and smell. Here, we focus on the solubilization of drugs by complexation, and discuss the determination and significance of binding constants for cyclodextrin complexes, and the determination of complexation efficiency and factors that influence it. We also make some general observations on cyclodextrin complexation and the use of cyclodextrins in solid, as well as parenteral, dosage forms. PMID:26687191

  16. The potentiometric determination of stability constants for zinc acetate complexes in aqueous solutions to 295°C

    NASA Astrophysics Data System (ADS)

    Glordano, Thomas H.; Drummond, S. E.

    1991-09-01

    A potentiometric method was used to determine the formation quotients of zinc acetate complexes in aqueous solutions from 50 to 295°C at ionic strengths of 0.03,0.3, and 1.0 m. The potentiometric titrations were carried out in an externally heated, Teflon-lined concentration cell fitted with hydrogen electrodes. Formal sodium acetate concentrations of the experimental solutions ranged from 0.001 to 0. 1 m with acetic acid to sodium acetate ratios ranging from 30 to 300. Sodium trifluoromethanesulfonate (F3CSO3Na) was used as a supporting electrolyte. Stoichiometries and formation quotients for the complexes ZnCH3COO+, Zn(CH3COO)2, and Zn(CH3COO)-3 were derived from the titration data by regression analysis. Stability constants at infinite dilution (Kn) and other relevant thermodynamic quantities were calculated for these three complexes. Logarithms for the formation constants of the general reaction Zn2+ + nCH3COO- = Zn(CH3COO)n2-n are n = 1-(1.9 ± 0.2, 50°C), (2.3 ± 0.1, 100°C), (2.8 ± 0.1, 150°C), (3.5 ± 0.1, 200°C), (4.3 ± 0.2, 250°C), (5.3 ± 0.3, 300°C); n = 2-(3.4 ± 0.1, 50°C), (4.0 ± 0.1, 100°C), (4.83 ± 0.09, 150°C), (5.9 ± 0.1, 200°C), (7.1 ± 0.1, 250°C), (8.7 ± 0.2, 300°C); n = 3-(4.1 ± 0.3, 50°C), (4.7 ± 0.3, 100°C), (5.5 ± 0.3, 150°C), (6.6 ± 0.3, 200°C), (7.9 ± 0.3, 250°C), (9.4 ± 0.3, 300°C). Calculations of zinc speciation in acetate-chloride solutions show that zinc acetate complexes should have an importance similar to zinc chloride complexes in high acetate waters where chloride to acetate molal ratios are less than about 10.

  17. Stability Constants of Mixed Ligand Complexes of Nickel(II) with Adenine and Some Amino Acids

    PubMed Central

    Türkel, Naciye

    2015-01-01

    Nickel is one of the essential trace elements found in biological systems. It is mostly found in nickel-based enzymes as an essential cofactor. It forms coordination complexes with amino acids within enzymes. Nickel is also present in nucleic acids, though its function in DNA or RNA is still not clearly understood. In this study, complex formation tendencies of Ni(II) with adenine and certain L-amino acids such as aspartic acid, glutamic acid, asparagine, leucine, phenylalanine, and tryptophan were investigated in an aqueous medium. Potentiometric equilibrium measurements showed that both binary and ternary complexes of Ni(II) form with adenine and the above-mentioned L-amino acids. Ternary complexes of Ni(II)-adenine-L-amino acids are formed by stepwise mechanisms. Relative stabilities of the ternary complexes are compared with those of the corresponding binary complexes in terms of Δlog10⁡K, log10⁡X, and % RS values. It was shown that the most stable ternary complex is Ni(II):Ade:L-Asn while the weakest one is Ni(II):Ade:L-Phe in aqueous solution used in this research. In addition, results of this research clearly show that various binary and ternary type Ni(II) complexes are formed in different concentrations as a function of pH in aqueous solution. PMID:26843852

  18. The Influence of Kinetics on the Formation of Complexes Between Mercury and Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Miller, C. L.; Gu, B.; Brooks, S.; Southworth, G.

    2008-12-01

    Strong complexes between mercury (Hg) and dissolved organic matter (DOM) dominate the speciation of Hg(II) in most oxygenated aquatic systems but the rate of formation of these complexes has not be thoroughly investigated. Kinetic experiments were used to measure the formation rate of strong Hg(II)-DOM complexes in water collected from the Upper East Fork Poplar Creek (UEFPC) in Oak Ridge, TN and in solution prepared using various DOM isolates. The loss of reactive mercury (HgR), defined as the amount of Hg reducible by stannous chloride (SnCl2), was used to examine the formation rates of strong Hg-DOM complexes which are nonreactive with SnCl2. We found that the formation of nonreactive Hg complexes followed first-order reaction kinetics, and the rate constant for the formation these complexes is similar both in creek water and solutions containing unfractionated DOM isolates ( ~4.8 day-1 ). C-18 Solid phase extractions were also used to examine the association of Hg(II) with different fractions of DOM as the mercury transformed from reactive, inorganic complexes to strong Hg-DOM complexes. In both the UEFPC and in laboratory solutions containing Hg and an unfractionated DOM isolate, the complexation of Hg shifted from hydrophilic to hydrophobic complexes as the strong Hg-DOM complexes were formed. This study concludes that, while equilibrium models suggest that strong Hg-DOM complexes dominate the speciation of Hg under equilibrium conditions, the formation of these complexes is kinetically limited. The slow formation of strong Hg-DOM complexes may have important implications in understanding the cycling, transport and bioavailability of Hg in systems such as the UEFPC with varying input sources of organic and inorganic Hg complexes.

  19. Potentiometric estimation of the stability constants of ion-lonophore complexes in ion-selective membranes by the sandwich membrane method: theory, advantages, and limitations.

    PubMed

    Shultz, Mikhail M; Stefanova, Olga K; Mokrov, Sergey B; Mikhelson, Konstantin N

    2002-02-01

    Segmented sandwich membrane method of studying stoichiometry and stability constants of ion-ionophore complexes in ion-selective membranes is considered in detail. The experimental data (reported earlier in Russian) concerning complexes of various ions with valinomycin, with H+-selective neutral ionophore hexabutyltriamidophosphate, and with anion-binding neutral ionophore p-hexyl trifluoroacetylbenzoate is presented in a compact form. Advantages of titration technique in the sandwich membrane method (the presence of an internal criterion of reliability, and the possibility of direct determination of complex stoichiometry coefficients) are specially addressed. Biases of the estimates of the constants caused by ion-pair formation in real membranes and by diffusion potential are analyzed by means of computer simulations. The possibility of revealing two coexisting complexes with different compositions is also discussed. PMID:11838668

  20. Diffusion impregnation of alloys under conditions of complex formation

    SciTech Connect

    Pavlina, V.S.; Matychak, Y.S.

    1985-05-01

    In most cases, diffusion impregnation of alloys with elements for the purpose of improving their service properties occurs with chemical interaction with the constituents of the base. Such processes are described within the limits of the model of reaction diffusion, assuming the formation and growth of new continuous layers by the Fick equation. At the same time, instantaneous reaction of the elements is assumed, as the result of which the rate of the whole process is limited by diffusion. Together with this, diffusion processes and chemical transformations occur simultaneously, as the result of which continuous phases are not formed (internal oxidation, nitriding, etc.). The purpose of this work was an analytical investigation of diffusion impregnation by element A from a constant source of a flat specimen initially uniformly alloyed with a mobile impurity B. The model presented makes it possible to investigate the initial stage of homogeneous formation of complexes and to reveal their influence on the kinetics of redistribution of the diffusing elements.

  1. The evolution of galaxies at constant number density: a less biased view of star formation, quenching, and structural formation

    NASA Astrophysics Data System (ADS)

    Ownsworth, Jamie R.; Conselice, Christopher J.; Mundy, Carl J.; Mortlock, Alice; Hartley, William G.; Duncan, Kenneth; Almaini, Omar

    2016-09-01

    Due to significant galaxy contamination and impurity in stellar mass selected samples (up to 95 per cent from z = 0-3), we examine the star formation history, quenching time-scales, and structural evolution of galaxies using a constant number density selection with data from the United Kingdom Infra-Red Deep Sky Survey Ultra-Deep Survey field. Using this methodology, we investigate the evolution of galaxies at a variety of number densities from z = 0-3. We find that samples chosen at number densities ranging from 3 × 10-4 to 10-5 galaxies Mpc-3 (corresponding to z ˜ 0.5 stellar masses of M* = 1010.95-11.6 M0) have a star-forming blue fraction of ˜50 per cent at z ˜ 2.5, which evolves to a nearly 100 per cent quenched red and dead population by z ˜ 1. We also see evidence for number density downsizing, such that the galaxies selected at the lowest densities (highest masses) become a homogeneous red population before those at higher number densities. Examining the evolution of the colours for these systems furthermore shows that the formation redshift of galaxies selected at these number densities is zform > 3. The structural evolution through size and Sérsic index fits reveal that while there remains evolution in terms of galaxies becoming larger and more concentrated in stellar mass at lower redshifts, the magnitude of the change is significantly smaller than for a mass-selected sample. We also find that changes in size and structure continues at z < 1, and is coupled strongly to passivity evolution. We conclude that galaxy structure is driving the quenching of galaxies, such that galaxies become concentrated before they become passive.

  2. Measurements of the complex dielectric constant of sand and dust particles at 11 GHz

    NASA Astrophysics Data System (ADS)

    Al-Rizzo, Hussain M.; Al-Hafid, Hafid T.

    1988-03-01

    Measurements are reported of the refractive index (Delta-n) and loss tangent (tan delta) of dust particles in a laboratory-simulated model of dust storms, carried out at 11 GHz utilizing a confocal microwave open-cavity resonator. Four samples were used namely, sandy, silty, clayey silt, and clayey, for concentrations varying from 10-4 to 4 x 10-3 g/cu cm. The particle-size distribution (PSD) of each sample was measured by seiving along with the hydrometer technique. Dielectric-constant measurements were also conducted at bulk concentrations using the standing-wave technique for the dry samples and as a function of volumetric moisture content for up to 0.5 cu cm/cu cm. The complex dielectric constant of the dust particle material was evaluated by two approaches. In one the data for permittivities obtained over the whole range of measured concentrations were extrapolated to the particle densities of the samples. In the other a mixing formula was utilized for the determination of epsilon(s) from permittivities measured at bulk concentrations.

  3. FAST TRACK COMMUNICATION: SUSY transformations with complex factorization constants: application to spectral singularities

    NASA Astrophysics Data System (ADS)

    Samsonov, Boris F.

    2010-10-01

    Supersymmetric (SUSY) transformation operators with complex factorization constants are analyzed as operators acting in the Hilbert space of functions square integrable on the positive semiaxis. The obtained results are applied to Hamiltonians possessing spectral singularities which are non-Hermitian SUSY partners of self-adjoint operators. A new regularization procedure for the resolution of the identity operator in terms of a continuous biorthonormal set of the non-Hermitian Hamiltonian eigenfunctions is proposed. It is also argued that if the binorm of continuous spectrum eigenfunctions is interpreted in the same way as the norm of similar functions in the usual Hermitian case, then one can state that the function corresponding to a spectral singularity has zero binorm.

  4. Spectrophotometric study of complex formation between oxovanadium (IV) and antiamebic drugs.

    PubMed

    Abu-Eittah, R; El-Nasr, M S

    1976-09-01

    Complex formation between oxovanadium(IV) and the antiamebic drugs 5, 7-dibromo-8-quinolinol and 5, 7-dichloro-8-quinolinol was studied in the pH 1.5-2.0 range, using ethanol, dioxane-water, and dimethylformamide as solvents. The composition of the formed complexes was determined by more than one procedure. In ethanol and dioxane-water, the 1:1 and 1:2 complexes were formed; in dimethylformamide, the 1:1, 1:2 and 1:3 complexes were formed. The stability constants were computed using two procedures: the molar ratio method and the extrapolation method. The reproducibility or results in satisfactory. PMID:966156

  5. Polarographic determination of lead hydroxide formation constants at low ionic strength

    USGS Publications Warehouse

    Lind, Carol J.

    1978-01-01

    Values of formation constants for lead hydroxide at 25 ??C were calculated from normal pulse polarographic measurements of 10-6 M lead in 0.01 M sodium perchlorate. The low concentrations simulate those found in many freshwaters, permitting direct application of the values when considering distributions of lead species. The precise evaluation of species distribution in waters at other ionic strengths requires activity coefficient corrections. As opposed to much of the previously published work done at high ionic strength, the values reported here were obtained at low ionic strength, permitting use of smaller and better defined activity coefficient corrections. These values were further confirmed by differential-pulse polarography and differential-pulse anodic stripping voltammetry data. The logs of the values for ??1??? ??2???, and ??3??? were calculated to be 6.59, 10.80, and 13.63, respectively. When corrected to zero ionic strength these values were calculated to be 6.77, 11.07, and 13.89, respectively.

  6. The shock-induced star formation sequence resulting from a constant spiral pattern speed

    SciTech Connect

    Martínez-García, Eric E.; Puerari, Ivânio E-mail: puerari@inaoep.mx

    2014-08-01

    We utilize a suite of multiwavelength data of nine nearby spirals to analyze the shock-induced star formation sequence that may result from a constant spiral pattern speed. The sequence involves tracers as the H I, CO 24 μm, and FUV, where the spiral arms were analyzed with Fourier techniques in order to obtain their azimuthal phases as a function of radius. It was found that only two of the objects, NGC 628 and NGC 5194, present coherent phases resembling the theoretical expectations, as indicated by the phase shifts of CO- 24 μm. The evidence is more clear for NGC 5194 and moderate for NGC 628. It was also found that the phase shifts are different for the two spiral arms. With the exception on NGC 3627, a two-dimensional Fourier analysis showed that the rest of the objects do not exhibit bi-symmetric spiral structures of stellar mass, i.e., grand-design spirals. A phase order inversion indicates a corotation radius of ∼89'' for NGC 628 and ∼202'' for NGC 5194. For these two objects, the CO-Hα phase shifts corroborate the CO-24 μm azimuthal offsets. Also for NGC 5194, the CO-70 μm, CO-140 μm, and CO-250 μm phase shifts indicate a corotation region.

  7. Dielectric constant enhancement of epoxy thermosets via formation of polyelectrolyte nanophases.

    PubMed

    Cong, Houluo; Li, Jingang; Li, Lei; Zheng, Sixun

    2014-12-18

    Poly(ethylene oxide)-block-poly(sodium p-styrenesulfonate) (PEO-b-PSSNa) diblock copolymer was synthesized and then incorporated into epoxy to obtain the nanostructured epoxy thermosets containing polyelectrolyte nanophases. This PEO-b-PSSNa diblock copolymer was synthesized via the radical polymerization of p-styrenesulfonate mediated with 4-cyano-4-(thiobenzoylthio)valeric ester-terminated poly(ethylene oxide). The formation of polyelectrolyte (i.e., PSSNa) nanophases in epoxy followed a self-assembly mechanism. The precursors of epoxy acted as the selective solvent of the diblock copolymer, and thus, the self-assembled nanostructures were formed. The self-organized nanophases were fixed through the subsequent curing reaction. By means of transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS), the morphologies of the nanostructured epoxy thermosets containing PSSNa nanophases were investigated. In the glassy state, the epoxy matrixes were significantly reinforced by the spherical PSSNa nanodomains, as evidenced by dynamic mechanical analysis. The measurement of dielectric properties showed that, with the incorporation of PSSNa nanophases, the dielectric constants of the epoxy thermoset were significantly increased. Compared to the control epoxy, the dielectric loss of the nanostructured thermosets still remained at quite a low level, although the values of dielectric loss were slightly increased with inclusion of PSSNa nanophases. PMID:25482332

  8. Complexation of Arsenite with Dissolved Organic Matter: Conditional Distribution Coefficients and Apparent Stability Constants

    PubMed Central

    Liu, Guangliang; Cai, Yong

    2010-01-01

    The complexation of arsenic (As) with dissolved organic matter (DOM), although playing an important role in regulating As mobility and transformation, is poorly characterized, as evidenced by scarce reporting of fundamental parameters of As-DOM complexes. The complexation of arsenite (AsIII) with Aldrich humic acid (HA) at different pHs was characterized using a recently developed analytical technique to measure both free and DOM-bound As. Conditional distribution coefficient (KD), describing capacity of DOM in binding AsIII from the mass perspective, and apparent stability constant (Ks), describing stability of resulting AsIII-DOM complexes, were calculated to characterize AsIII-DOM complexation. Log KD of AsIII ranged from 3.7 to 2.2 (decreasing with increase of As/DOM ratio) at pH 5.2, from 3.6 to 2.6 at pH 7, and from 4.3 to 3.2 at pH = 9.3, respectively. Two-site ligand binding models can capture the heterogeneity of binding sites and be used to calculate Ks by classifying the binding sites into strong (S1) and weak (S2) groups. Log Ks for S1 sites are 7.0, 6.5, and 5.9 for pH 5.2, 7, and 9.3, respectively, which are approximately 1–2 orders of magnitude higher than for weak S2 sites. The results suggest that AsIII complexation with DOM increases with pH, as evidenced by significant spikes in concentrations of DOM-bound AsIII and in KD values at pH 9.3. In contrary to KD, log Ks decreased with pH, in particular for S1 sites, probably due to the presence of negatively charged H2AsO3− and the involvement of metal-bridged AsIII-DOM complexation at pH 9.3. PMID:20801484

  9. Coordination of lanthanides by two polyamino polycarboxylic macrocycles: formation of highly stable lanthanide complexes

    SciTech Connect

    Loncin, M.F.; Desreux, J.F.; Merciny, E.

    1986-07-16

    The formation constants of a few lanthanide complexes with DOTA (1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid) and TETA (1,4,8,11-tetraazacyclotetradecane-N,N',N'',N'''-tetraacetic acid) have been measured by potentiometric and competition methods. The ligand DOTA forms the most stable lanthanide chelates known so far (log K/sub ML/ = 28.2-29.2) while the stability of the TETA compounds at 80 /sup 0/C (log K/sub ML/ = 14.5-16.5) is comparable to the stability of the EDTA complexes. A competition method with the oxalate anion as a probe had to be used for determining the formation constants of the DOTA lanthanide chelates because of the high stability of these compounds. The relative stability of the DOTA and TETA complexes in accounted for by steric factors with reference to known solution- and solid-state structures. 20 references, 2 tables.

  10. Formation of β-cyclodextrin complexes in an anhydrous environment.

    PubMed

    Sifaoui, Hocine; Modarressi, Ali; Magri, Pierre; Stachowicz-Kuśnierz, Anna; Korchowiec, Jacek; Rogalski, Marek

    2016-09-01

    The formation of inclusion complexes of β-cyclodextrin was studied at the melting temperature of guest compounds by differential scanning calorimetry. The complexes of long-chain n-alkanes, polyaromatics, and organic acids were investigated by calorimetry and IR spectroscopy. The complexation ratio of β-cyclodextrin was compared with results obtained in an aqueous environment. The stability and structure of inclusion complexes with various stoichiometries were estimated by quantum chemistry and molecular dynamics calculations. Comparison of experimental and theoretical results confirmed the possible formation of multiple inclusion complexes with guest molecules capable of forming hydrogen bonds. This finding gives new insight into the mechanism of formation of host-guest complexes and shows that hydrophobic interactions play a secondary role in this case. Graphical abstract The formation of complexes of β-cyclodextrin with selected n-alkanes, polyaromatics, and organic acids in an anhydrous environment is studied by differential scanning calorimetry, IR spectroscopy, and molecular modeling. The results obtained confirm the possible formation of multiple inclusion complexes with guest molecules capable of forming hydrogen bonds and give a new perspective on the mechanism of formation of host-guest complexes. PMID:27518085

  11. Studies of formation of bivalent copper complexes with native and denatured DNA.

    PubMed

    Sorokin, V A; Blagoi, Y P; Valeev, V A; Kornilova, S V; Gladchenko, G O; Reva, I D; Sokhan, V I

    1987-06-01

    The formation of Cu2+ complexes with native and denatured DNA is studied by the methods of differential UV spectroscopy, CD spectroscopy, and viscometry. On ion binding to the bases of native DNA the latter transforms into a new conformation. This transition is accompanied with a sharp increase in UV absorption and a decrease in the intrinsic viscosity though the high degree of helicity persists. Possible sites of Cu2+ ion binding on DNA of various conformations are found along with corresponding constants of complex formation. PMID:3598574

  12. Thermodynamic functions of formation of n-alkane complexes with crystalline urea

    SciTech Connect

    Tolmachev, V.V.; Semenov, L.V.; Gaile, A.A.; Proskuryakov, V.A.

    1987-07-10

    For optimization of the conditions of deparaffination of petroleum fractions with the aid of urea, with the composition of the feedstock taken into account, it is important to know the equilibrium constants of formation of complexes of urea with n-alkanes differing in the number of carbon atoms in their molecules, as functions of temperature. In this investigation they obtained experimental data necessary for calculating the thermodynamic functions of formation of n-alkane complexes with crystalline urea up to the decomposition temperature, using Kirchhoff's equations.

  13. Multiparametric curve fitting-XI: POLET computer program for estimation of formation constants and stoichiometric indices from normalized potentiometric data.

    PubMed

    Havel, J; Meloun, M

    1986-06-01

    The FORTRAN computer program POLET(84) analyses a set of normalized potentiometric titration curves to find a chemical model, i.e., the number of species present and their stoichiometry, and to determine the corresponding stability constants log beta(pqrs) and unknown stoichiometric indices p, q, r, and s of up to quaternary M(p)L(q)Y(r)H(s) complexes. The program belongs to the ABLET family, based on the LETAG subroutine, and can use an algorithmic and/or heuristic minimization strategy, or a beneficial combination of both. The data, a set of potentiometric titration curves plotted as volume and potential, are converted into normalized variables (formation function, pH) and then a computer-assisted search for a chemical model by POLET(84) is applied. The procedure for efficient application of POLET(84) in an equilibrium analysis is described and the program is validated by use of literature and simulated data. The reliability of the chemical model and its parameters is established by the degree-of-fit achieved, and the closeness of the stoichiometric indices to integral values. PMID:18964133

  14. Determination of the complexation constants of Pb(II) and Cd(II) with thymol blue using spectrophotometry, SQUAD and the HSAB principle.

    PubMed

    Balderas-Hernández, P; Rojas-Hernández, A; Galván, M; Romo, M Romero; Palomar-Pardavé, M; Ramírez-Silva, M T

    2007-01-01

    This paper presents the results concerning the determination of the formation constants of the complexes between thymol blue, TB, and the metal ions Pb(II) or Cd(II). The experimental procedure was carried out in the presence of a nitrogen atmosphere at 25 degrees C. The spectrophotometry data obtained were processed through the software SQUAD to calculate the complexation constants of the metal-indicator and to establish an adequate base of the models which considered the structure of the indicator, and the actual metal species in the aqueous solutions. For the Pb(II)-TB-H2O system the logK value calculated for the PbTB complex was 5.591+/-0.057 while for the Cd(II)-TB-H2O system, the logK value of the CdTB complex was 5.099+/-0.008. Also, supporting theoretical chemistry results on the chemical hardness of TB molecule were performed to enable establishment of a relative prediction scale of the TB complexation constants ranking in the framework of the Principle of Hard and Soft Acids and Bases or HSAB Principle. PMID:16829173

  15. Determination of the complexation constants of Pb(II) and Cd(II) with thymol blue using spectrophotometry, SQUAD and the HSAB principle

    NASA Astrophysics Data System (ADS)

    Balderas-Hernández, P.; Rojas-Hernández, A.; Galván, M.; Romo, M. Romero; Palomar-Pardavé, M.; Ramírez-Silva, M. T.

    2007-01-01

    This paper presents the results concerning the determination of the formation constants of the complexes between thymol blue, TB, and the metal ions Pb(II) or Cd(II). The experimental procedure was carried out in the presence of a nitrogen atmosphere at 25 °C. The spectrophotometry data obtained were processed through the software SQUAD to calculate the complexation constants of the metal-indicator and to establish an adequate base of the models which considered the structure of the indicator, and the actual metal species in the aqueous solutions. For the Pb(II)-TB-H 2O system the log K value calculated for the PbTB complex was 5.591 ± 0.057 while for the Cd(II)-TB-H 2O system, the log K value of the CdTB complex was 5.099 ± 0.008. Also, supporting theoretical chemistry results on the chemical hardness of TB molecule were performed to enable establishment of a relative prediction scale of the TB complexation constants ranking in the framework of the Principle of Hard and Soft Acids and Bases or HSAB Principle.

  16. Bow shock formation in a complex plasma.

    PubMed

    Saitou, Y; Nakamura, Y; Kamimura, T; Ishihara, O

    2012-02-10

    A bow shock is observed in a two-dimensional supersonic flow of charged microparticles in a complex plasma. A thin conducting needle is used to make a potential barrier as an obstacle for the particle flow in the complex plasma. The flow is generated and the flow velocity is controlled by changing a tilt angle of the device under the gravitational force. A void, microparticle-free region, is formed around the potential barrier surrounding the obstacle. The flow is bent around the leading edge of the void and forms an arcuate structure when the flow is supersonic. The structure is characterized by the bow shock as confirmed by a polytropic hydrodynamic theory as well as numerical simulation. PMID:22401079

  17. Complex formation of alkaline-earth cations with crown ethers and cryptands in methanol solutions

    SciTech Connect

    Buschman, H.J.

    1986-06-01

    The complexation of alkaline-earth cations by different crown ethers, azacrown ethers, and cryptands has been studied in methanol solutions by means of calorimetric and potentiometric titrations. The smallest monocyclic ligands examined from 2:1 complexes (ratio of ligand to cation) with cations which are too large to fit into the ligand cavity. With the smallest cryptand, only Sr/sup 2 +/ and Ba/sup 2 +/ ions are able to form exclusive complexes. In the case of the reaction of cryptand (211) with Ca/sup 2 +/, a separate estimation of stability constants for the formation of exclusive and inclusive complexes was possible for the first time. Higher values for stability constants are found for the reaction of alkaline-earth cations with cryptands compared to the reaction with alkali ions. This increase is only caused by favorable entropic contributions.

  18. Formation, structure, and reactivity of palladium superoxo complexes

    SciTech Connect

    Talsi, E.P.; Babenko, V.P.; Shubin, A.A.; Chinakov, V.D.; Nekipelov, V.M.; Zamaraev, K.I.

    1987-11-18

    The mechanism of formation of palladium superoxo complexes, their structure, and their reactivity are discussed. The formation of the palladium superoxo complexes in the reaction of palladium(II) acetate, propionate, trifluororacetate, and bis(acetylacetonate) and palladium(0) tetrakis(triphenylphosphine) with hydrogen peroxide and potassium superoxide has been detected in solution by electron proton resonance. The oxidation of olefins and carbon monoxide by these complexes is considered. Reaction mechanisms and reaction kinetics for these oxidations are reported using the palladium superoxo complexes. 44 references, 8 figures, 2 tables.

  19. Lead(II) complex formation with glutathione.

    PubMed

    Mah, Vicky; Jalilehvand, Farideh

    2012-06-01

    A structural investigation of complexes formed between the Pb(2+) ion and glutathione (GSH, denoted AH(3) in its triprotonated form), the most abundant nonprotein thiol in biological systems, was carried out for a series of aqueous solutions at pH 8.5 and C(Pb(2+)) = 10 mM and in the solid state. The Pb L(III)-edge extended X-ray absorption fine structure (EXAFS) oscillation for a solid compound with the empirical formula [Pb(AH(2))]ClO(4) was modeled with one Pb-S and two short Pb-O bond distances at 2.64 ± 0.04 and 2.28 ± 0.04 Å, respectively. In addition, Pb···Pb interactions at 4.15 ± 0.05 Å indicate dimeric species in a network where the thiolate group forms an asymmetrical bridge between two Pb(2+) ions. In aqueous solution at the mole ratio GSH/Pb(II) = 2.0 (C(Pb(2+)) = 10 mM, pH 8.5), lead(II) complexes with two thiolate ligands form, characterized by a ligand-to-metal charge-transfer band (LMCT) S(-) → Pb(2+) at 317 nm in the UV-vis spectrum and mean Pb-S and Pb-(N/O) bond distances of 2.65 ± 0.04 and 2.51 ± 0.04 Å, respectively, from a Pb L(III)-edge EXAFS spectrum. For solutions with higher mole ratios, GSH/Pb(II) ≥ 3.0, electrospray ionization mass spectroscopy spectra identified a triglutathionyllead(II) complex, for which Pb L(III)-edge EXAFS spectroscopy shows a mean Pb-S distance of 2.65 ± 0.04 Å in PbS(3) coordination, (207)Pb NMR spectroscopy displays a chemical shift of 2793 ppm, and in the UV-vis spectrum, an S(-) → Pb(2+) LMCT band appears at 335 nm. The complex persists at high excess of GSH and also at ∼25 K in frozen glycerol (33%)/water glasses for GSH/Pb(II) mole ratios from 4.0 to 10 (C(Pb(2+)) = 10 mM) measured by Pb L(III)-edge EXAFS spectroscopy. PMID:22594853

  20. Direct computer simulation of ferredoxin and FNR complex formation in solution

    NASA Astrophysics Data System (ADS)

    Kovalenko, I. B.; Diakonova, A. N.; Abaturova, A. M.; Riznichenko, G. Yu; Rubin, A. B.

    2010-06-01

    Ferredoxin reduced by Photosystem I in light serves as an electron donor for the reduction of NADP+ to NADPH, and this reaction is catalyzed by enzyme ferredoxin:NADP+-reductase (FNR). Kinetics and mechanisms of this reaction have been extensively studied experimentally by site-specific mutagenesis, laser flash photolysis and stopped-flow methods. We have applied a method of multiparticle computer simulation to study the effects of electrostatic interactions upon the reaction rate of Fd-FNR complex formation. Using the model we calculated rate constants of Fd-FNR complex formation for the wild-type proteins and some mutant forms of FNR at different values of ionic strength. Simulation revealed that electrostatic interactions play an important role in Fd-FNR complex formation and define its specificity.

  1. Direct computer simulation of ferredoxin and FNR complex formation in solution.

    PubMed

    Kovalenko, I B; Diakonova, A N; Abaturova, A M; Riznichenko, G Yu; Rubin, A B

    2010-01-01

    Ferredoxin reduced by Photosystem I in light serves as an electron donor for the reduction of NADP(+) to NADPH, and this reaction is catalyzed by enzyme ferredoxin:NADP(+)-reductase (FNR). Kinetics and mechanisms of this reaction have been extensively studied experimentally by site-specific mutagenesis, laser flash photolysis and stopped-flow methods. We have applied a method of multiparticle computer simulation to study the effects of electrostatic interactions upon the reaction rate of Fd-FNR complex formation. Using the model we calculated rate constants of Fd-FNR complex formation for the wild-type proteins and some mutant forms of FNR at different values of ionic strength. Simulation revealed that electrostatic interactions play an important role in Fd-FNR complex formation and define its specificity. PMID:20453296

  2. Direct electronic probing of biological complexes formation

    NASA Astrophysics Data System (ADS)

    Macchia, Eleonora; Magliulo, Maria; Manoli, Kyriaki; Giordano, Francesco; Palazzo, Gerardo; Torsi, Luisa

    2014-10-01

    Functional bio-interlayer organic field - effect transistors (FBI-OFET), embedding streptavidin, avidin and neutravidin as bio-recognition element, have been studied to probe the electronic properties of protein complexes. The threshold voltage control has been achieved modifying the SiO2 gate diaelectric surface by means of the deposition of an interlayer of bio-recognition elements. A threshold voltage shift with respect to the unmodified dielectric surface toward more negative potential values has been found for the three different proteins, in agreement with their isoelectric points. The relative responses in terms of source - drain current, mobility and threshold voltage upon exposure to biotin of the FBI-OFET devices have been compared for the three bio-recognition elements.

  3. Formation of a Bridging Phosphinidene Thorium Complex.

    PubMed

    Behrle, Andrew C; Castro, Ludovic; Maron, Laurent; Walensky, Justin R

    2015-12-01

    The synthesis and structural determination of the first thorium phosphinidene complex are reported. The reaction of 2 equiv of (C5Me5)2Th(CH3)2 with H2P(2,4,6-(i)Pr3C6H2) at 95 °C produces [(C5Me5)2Th]2(μ2-P[(2,6-CH2CHCH3)2-4-(i)PrC6H2] as well as 4 equiv of methane, 2 equiv from deprotonation of the phosphine and 2 equiv from C-H bond activation of one methyl group of each of the isopropyl groups at the 2- and 6-positions. Transition state calculations indicate that the steps in the mechanism are P-H, C-H, C-H, and then P-H bond activation to form the phosphinidene. PMID:26575219

  4. Estimated rate constants for hydrogen abstraction from N-heterocyclic carbene-borane complexes by an alkyl radical.

    PubMed

    Solovyev, Andrey; Ueng, Shau-Hua; Monot, Julien; Fensterbank, Louis; Malacria, Max; Lacôte, Emmanuel; Curran, Dennis P

    2010-07-01

    Rate constants for hydrogen abstraction by a nonyl radical from 20 complexes of N-heterocyclic carbenes and boranes (NHC-boranes) have been determined by the pyridine-2-thioneoxycarbonyl (PTOC) competition kinetic method at a single concentration point. The rate constants range from <1 x 10(4) to 8 x 10(4) M(-1) s(-1). They show little dependence on the electronic properties of the carbene core, but there is a trend for increasing rate constants with decreasing size of the carbene N-substituents. Two promising new reagents with small N-substituents (R = Me) have been identified. PMID:20536158

  5. A bilogarithmic method for the spectrophotometric evaluation of stability constants of 1:1 weak complexes from mole ratio data.

    PubMed

    Boccio, Maravillas; Sayago, Ana; Asuero, Agustín G

    2006-08-01

    The absorbance changes that occur when the mole ratio of the components of ligand complex equilibria is varied while the concentration of one component is kept constant (mole ratio method) allow evaluating stability constants in favourable conditions. Values of the corresponding stability (association) constants are normally assigned on the basis of spectrophotometric analysis. Determination of stability constants can be performed by a number of linear procedures, but most of these, suffer from theoretical and practical drawbacks, e.g., linear transformation of the rectangular hyperbola type of binding constants, is valid only when one of the two species is present in a large excess. A rigorous treatment of the experimental mole ratio data for 1:1 weak complexes is carried out in this paper with the aim of eliminating some of the assumptions involved in the other methods usually applied for evaluating stability constants. Orthogonal regression is required in order to take into account the error in both axes. The method has been applied to literature data for the iron(III)-thiocyanate and nickel(II)-selenocyanate systems, as well as to a number of host-guest cyclodextrin complexes. PMID:16647826

  6. Determination of Equilibrium Constants of Some Novel Antioxidant Compounds and Study on their Complexes with Some Divalent Metal ions in Ethanol-water Mixed.

    PubMed

    Atabey, Hasan; Findik, Esra; Sari, Hayati; Ceylan, Mustafa

    2012-12-01

    This study aims to investigate the nature and type of complexes formed in solution, between novel antioxidant compounds [P1(4-(1-(3-hydroxy-4-methoxyphenyl)propyl)benzene-1,2-diol) and P2(4-(1-(3-hydroxy-4-methoxyphenyl)propyl)benzene-1,3-diol)] and the ions Cu2+, Ni2+, Zn2+ and Co2+. Potentiometric titration technique was used to follow the formation of complexes during the course of coordination. The stability of the complexes formed was controlled through the determination of stability constants in aqueous ethanol solution at 25 ± 0.1 C° and ionic strength of 0.1 M NaCl. Basicity of the ligand was also assessed by the determination of the dissociation constants of the ligand. All the constants were computed by computer refinement of pH-volume data using the SUPERQUAD program. The species distribution diagram of each type of complex has been obtained after computer calculation process. PMID:24061367

  7. Complex formation of Am(III) and Am(IV) with phosphate ions in acetonitrile solutions

    SciTech Connect

    Perevalov, S.A.; Lebedev, I.A.; Myasoedov, B.F.

    1988-05-01

    The first dissociation constant of H/sub 3/PO/sub 4/ in acetonitrile solution (K/sub 1//sup 0/ = 1.75/centered dot/10/sup /minus/13/) and the constant of formation of H(H/sub 2/PO/sub 4/)/sub 2//sup /minus// dimers (K/sub d//sup 0/ = 8/centered dot/10/sup 2/) were determined by the method of pH-potentiometry. The complex formation of Am(III) in acetonitrile solutions containing 0.05-2.0 M H/sub 3/PO/sub 4/ was investigated by a spectrophotometric method; the stability constants of the complexes AmH/sub 2/PO/sub 4//sup 2+/ (/beta//sub 1//sup III/ = 1.0/centered dot/10/sup 12/) and Am(H/sub 2/PO/sub 4/)/sub 2//sup +/ (/beta//sub 2//sup III/ = 4.3/centered dot/10/sup 24/) were determined. The formal potentials of the couple Am/sup (IV)//Am/sup (III)/ in 0.3-1.9 M solutions of H/sub 3/PO/sub 4/ in acetonitrile were measured, and the stability constant of the phosphate complex of tetravalent americium Am(H/sub 2/PO/sub 4/)/sub 3//sup +/ (/beta//sub 3//sup IV/ = 2.5/centered dot/10/sup 46/) was calculated according to the value of the shift of the potential relative to the standard.

  8. Dynamics of Lane Formation in Driven Binary Complex Plasmas

    SciTech Connect

    Suetterlin, K. R.; Ivlev, A. V.; Raeth, C.; Thomas, H. M.; Rubin-Zuzic, M.; Morfill, G. E.; Wysocki, A.; Loewen, H.; Goedheer, W. J.; Fortov, V. E.; Lipaev, A. M.; Molotkov, V. I.; Petrov, O. F.

    2009-02-27

    The dynamical onset of lane formation is studied in experiments with binary complex plasmas under microgravity conditions. Small microparticles are driven and penetrate into a cloud of big particles, revealing a strong tendency towards lane formation. The observed time-resolved lane-formation process is in good agreement with computer simulations of a binary Yukawa model with Langevin dynamics. The laning is quantified in terms of the anisotropic scaling index, leading to a universal order parameter for driven systems.

  9. Complex formation between neptunium(V) and various thiosemicarbazide derivatives in aqueous solution

    SciTech Connect

    Chuguryan, D.G.; Dzyubenko, V.I.; Gerbeleu, N.V.

    1987-01-01

    Complex formation between neptunium(V) and various thiosemicarbazide derivatives in solution has been studied spectrophotometrically in the pH range 4-10. Stepwise formation of three types of complexes, with composition NpO/sub 2/HA, NpO/sub 2/A/sup -/, and NpOHA/sup 2 -/, has been demonstrated with salicylaldehyde thiosemicarbazone (H/sub 2/L) and salicylaldehyde S-methyl-isothiosemicarbazone (H/sub 2/Q) at t = 25 +/- 1/sup 0/C and ..mu.. = 0.05. The logarithmic stability constants of the first two complexes are 5.14 +/- 0.06, 11.85 +/- 0.04 and 8.42 +/- 0.09, 13.33 +/- 0.015 for H/sub 2/L and H/sub 2/Q, respectively; equilibrium constants for the formation of hydroxo complexes of the form NpO/sub 2/OHL/sup 2 -/ and NpO/sub 2/OHQ/sup 2 -/ were also determined, and found to be equal to (2.23 +/-0.37) x 10/sup -5/ and (5.02 +/- 0.9) x 10/sup -5/, respectively. In the case of S-methyl-N/sub 1/,N/sub 4/-bis(salicylidene)isothiosemicarbazide (H/sub 2/Z), only one type of complex is formed under these experimental conditions, namely, NpO/sub 2/Z/sup -/, with a logarithmic stability constant of 4.78 +/- 0.03. Dissociation constants for H/sub 2/Q and H/sub 2/Z were also determined.

  10. Complex molecule formation around massive young stellar objects.

    PubMed

    Oberg, Karin I; Fayolle, Edith C; Reiter, John B; Cyganowski, Claudia

    2014-01-01

    Interstellar complex organic molecules were first identified in the hot inner regions of massive young stellar objects (MYSOs), but have more recently been found in many colder sources, indicating that complex molecules can form at a range of temperatures. However, individually these observations provide limited constraints on how complex molecules form, and whether the same formation pathways dominate in cold, warm and hot environments. To address these questions, we use spatially resolved observations from the Submillimeter Array of three MYSOs together with mostly unresolved literature data to explore how molecular ratios depend on environmental parameters, especially temperature. Towards the three MYSOs, we find multiple complex organic emission peaks characterized by different molecular compositions and temperatures. In particular, CH3CCH and CH3CN seem to always trace a lukewarm (T = 60 K) and a hot (T > 100 K) complex chemistry, respectively. These spatial trends are consistent with abundance-temperature correlations of four representative complex organics--CH3CCH, CH3CN, CH3OCH3 and CH3CHO--in a large sample of complex molecule hosts mined from the literature. Together, these results indicate a general chemical evolution with temperature, i.e. that new complex molecule formation pathways are activated as a MYSO heats up. This is qualitatively consistent with model predictions. Furthermore, these results suggest that ratios of complex molecules may be developed into a powerful probe of the evolutionary stage of a MYSO, and may provide information about its formation history. PMID:25302375

  11. Complex molecule formation around massive young stellar objects

    NASA Astrophysics Data System (ADS)

    Öberg, Karin I.; Fayolle, Edith C.; Reiter, John B.; Cyganowski, Claudia

    2014-02-01

    Interstellar complex organic molecules were first identified in the hot inner regions of massive young stellar objects (MYSOs), but have more recently been found in many colder sources, indicating that complex molecules can form at a range of temperatures. However, individually these observations provide limited constraints on how complex molecules form, and whether the same formation pathways dominate in cold, warm and hot environments. To address these questions, we use spatially resolved observations from the Submillimeter Array of three MYSOs together with mostly unresolved literature data to explore how molecular ratios depend on environmental parameters, especially temperature. Towards the three MYSOs, we find multiple complex organic emission peaks characterized by different molecular compositions and temperatures. In particular, CH3CCH and CH3CN seem to always trace a lukewarm (T ≈ 60 K) and a hot (T > 100 K) complex chemistry, respectively. These spatial trends are consistent with abundance-temperature correlations of four representative complex organics - CH3CCH, CH3CN, CH3OCH3 and CH3CHO - in a large sample of complex molecule hosts mined from the literature. Together, these results indicate a general chemical evolution with temperature, i.e. that new complex molecule formation pathways are activated as a MYSO heats up. This is qualitatively consistent with model predictions. Furthermore, these results suggest that ratios of complex molecules may be developed into a powerful probe of the evolutionary stage of a MYSO, and may provide information about its formation history.

  12. Molecular statics calculations of proton binding to goethite surfaces: A new approach to estimation of stability constants for multisite surface complexation models

    NASA Astrophysics Data System (ADS)

    Rustad, James R.; Felmy, Andrew R.; Hay, Benjamin P.

    1996-05-01

    A new approach to estimating stability constants for proton binding in multisite surface complexation models is presented. The method is based on molecular statics computation of energies for the formation of proton vacancies and interstitials in ideal periodic slabs representing the (100), (110), (010), (001), and (021) surfaces of goethite. Gas-phase energies of clusters representing the hydrolysis products of ferric iron are calculated using the same potential energy functions used for the surface. These energies are linearly related to the hydrolysis constants for ferric iron in aqueous solution. Stability constants for proton binding at goethite surfaces are estimated by assuming the same log K- Δ E relationship for goethite surface protonation reactions. These stability constants predict a pH of zero charge of 8.9, in adequate agreement with measurements on CO 2-free goethite. The estimated stability constants differ significantly from previous estimations based on Pauling bond strength. We find that nearly all the surface oxide ions are reactive; nineteen of the twenty-six surface sites investigated have log Kint between 7.7 and 9.4. This implies a site density between fifteen and sixteen reactive sites/nm for crystals dominated by (110) and (021) crystal faces.

  13. Molecular statics calculations of proton binding to goethite surfaces: A new approach to estimation of stability constants for multisite surface complexation models

    SciTech Connect

    Rustad, J.R.; Felmy, A.R.; Hay, B.P.

    1996-05-01

    A new approach to estimating stability constants for proton binding in multisite surface complexation models is presented. The method is based on molecular statics computation of energies for the formation of proton vacancies and interstitials in ideal periodic slabs representing the (100), (110), (010), (001), and (021) surfaces of goethite. Gas-phase energies of clusters representing the hydrolysis products of ferric iron are calculated using the same potential energy functions used for the surface. These energies are linearly related to the hydrolysis constants for ferric iron in aqueous solution. Stability constants for proton binding at goethite surfaces are estimated by assuming the same log K-{Delta}E relationship for goethite surface protonation reactions. These stability constants predict a pH of zero charge of 8.9, in adequate agreement with measurements on CO{sub 2}-free goethite. The estimated stability constants differ significantly from previous estimations based on Pauling bond strength. We find that nearly all the surface oxide ions are reactive; nineteen of the twenty-six surface sites investigated have log K{sup int} between 7.7 and 9.4. This implies a site density between fifteen and sixteen reactive sites/nm for crystals dominated by (110) and (021) crystal faces. 39 refs., 8 figs., 4 tabs.

  14. A two force-constant model for complexes B⋯M-X (B is a Lewis base and MX is any diatomic molecule): Intermolecular stretching force constants from centrifugal distortion constants DJ or ΔJ

    NASA Astrophysics Data System (ADS)

    Bittner, Dror M.; Walker, Nicholas R.; Legon, Anthony C.

    2016-02-01

    A two force-constant model is proposed for complexes of the type B⋯MX, in which B is a simple Lewis base of at least C2v symmetry and MX is any diatomic molecule lying along a Cn axis (n ≥ 2) of B. The model assumes a rigid subunit B and that force constants beyond quadratic are negligible. It leads to expressions that allow, in principle, the determination of three quadratic force constants F11, F12, and F22 associated with the r(B⋯M) = r2 and r(M-X) = r1 internal coordinates from the equilibrium centrifugal distortion constants DJ e or ΔJ e , the equilibrium principal axis coordinates a1 and a2, and equilibrium principal moments of inertia. The model can be applied generally to complexes containing different types of intermolecular bond. For example, the intermolecular bond of B⋯MX can be a hydrogen bond if MX is a hydrogen halide, a halogen-bond if MX is a dihalogen molecule, or a stronger, coinage-metal bond if MX is a coinage metal halide. The equations were tested for BrCN, for which accurate equilibrium spectroscopic constants and a complete force field are available. In practice, equilibrium values of DJ e or ΔJ e for B⋯MX are not available and zero-point quantities must be used instead. The effect of doing so has been tested for BrCN. The zero-point centrifugal distortion constants DJ 0 or ΔJ 0 for all B⋯MX investigated so far are of insufficient accuracy to allow F11 and F22 to be determined simultaneously, even under the assumption F12 = 0 which is shown to be reasonable for BrCN. The calculation of F22 at a series of fixed values of F11 reveals, however, that in cases for which F11 is sufficiently larger than F22, a good approximation to F22 is obtained. Plots of F22 versus F11 have been provided for Kr⋯CuCl, Xe⋯CuCl, OC⋯CuCl, and C2H2⋯AgCl as examples. Even in cases where F22 ˜ F11 (e.g., OC⋯CuCl), such plots will yield either F22 or F11 if the other becomes available.

  15. A two force-constant model for complexes B⋯M-X (B is a Lewis base and MX is any diatomic molecule): Intermolecular stretching force constants from centrifugal distortion constants D(J) or Δ(J).

    PubMed

    Bittner, Dror M; Walker, Nicholas R; Legon, Anthony C

    2016-02-21

    A two force-constant model is proposed for complexes of the type B⋯MX, in which B is a simple Lewis base of at least C2v symmetry and MX is any diatomic molecule lying along a Cn axis (n ≥ 2) of B. The model assumes a rigid subunit B and that force constants beyond quadratic are negligible. It leads to expressions that allow, in principle, the determination of three quadratic force constants F11, F12, and F22 associated with the r(B⋯M) = r2 and r(M-X) = r1 internal coordinates from the equilibrium centrifugal distortion constants DJ (e) or ΔJ (e), the equilibrium principal axis coordinates a1 and a2, and equilibrium principal moments of inertia. The model can be applied generally to complexes containing different types of intermolecular bond. For example, the intermolecular bond of B⋯MX can be a hydrogen bond if MX is a hydrogen halide, a halogen-bond if MX is a dihalogen molecule, or a stronger, coinage-metal bond if MX is a coinage metal halide. The equations were tested for BrCN, for which accurate equilibrium spectroscopic constants and a complete force field are available. In practice, equilibrium values of DJ (e) or ΔJ (e) for B⋯MX are not available and zero-point quantities must be used instead. The effect of doing so has been tested for BrCN. The zero-point centrifugal distortion constants DJ (0) or ΔJ (0) for all B⋯MX investigated so far are of insufficient accuracy to allow F11 and F22 to be determined simultaneously, even under the assumption F12 = 0 which is shown to be reasonable for BrCN. The calculation of F22 at a series of fixed values of F11 reveals, however, that in cases for which F11 is sufficiently larger than F22, a good approximation to F22 is obtained. Plots of F22 versus F11 have been provided for Kr⋯CuCl, Xe⋯CuCl, OC⋯CuCl, and C2H2⋯AgCl as examples. Even in cases where F22 ∼ F11 (e.g., OC⋯CuCl), such plots will yield either F22 or F11 if the other becomes available. PMID:26896987

  16. Study of ground state EDA complex formation between [70]fullerene and a series of polynuclear aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sumanta; Nayak, Sandip K.; Chattopadhyay, Subrata; Banerjee, Manas; Mukherjee, Asok K.

    2002-01-01

    [70]fullerene has been shown to form 1:1 EDA complex with anthracene, naphthalene, phenanthrene, pyrene and acenaphthene in CCl 4 medium. Charge transfer (CT) bands have been detected in all the cases. Isosbestic points have been observed in the cases of phenanthrene and acenaphthene complexes. Ionisation potentials of the donors and CT transition energies have been found to correlate in accordance with Mulliken equation and from this correlation the electron affinity of C 70 has been found to be 2.59 eV. Enthalpies and entropies of formation of the complexes have been estimated from the formation constants of the complexes determined spectrophotometrically at three different temperatures.

  17. Rate constant for formation of chlorine nitrate by the reaction ClO + NO2 + M

    NASA Technical Reports Server (NTRS)

    Leu, M. T.; Lin, C. L.; Demore, W. B.

    1977-01-01

    The pseudo-first-order decay of ClO in a large excess of NO2 was monitored in a discharge flow/mass-spectrometer apparatus in order to measure the rate constant of the reaction ClO + NO2 + M yields ClONO2 + M for M = He, Ar, and N2 over the temperature range from 248 to 417 K. Numerical results are given for He at 248, 299, 360, and 417 K (1 to 9 torr); for Ar at 298 K (1 to 4 torr); and for N2 at 299, 360, and 417 K (1 to 6 torr). Systematic errors are estimated, and identification of the reaction product is discussed. The results obtained are shown to be in excellent agreement with other recent measurements of the same rate constant.

  18. Structure of tetracarbonylethyleneosmium: ethylene structure changes upon complex formation.

    PubMed

    Karunatilaka, Chandana; Tackett, Brandon S; Washington, John; Kukolich, Stephen G

    2007-08-29

    Rotational spectra of seven isotopomers of tetracarbonylethyleneosmium, Os(CO)4(eta2-C2H4), were measured in the 4-12 GHz range using a Flygare-Balle-type pulsed-beam Fourier transform microwave spectrometer system. Olefin-transition metal complexes of this type occur extensively in recent organic syntheses and serve as important models for transition states in the metal-mediated transformations of alkenes. Three osmium ((192)Os, (190)Os, and (188)Os) and three unique 13C isotopomers (13C in ethylene, axial, and equatorial positions) were observed in natural abundance. Additional spectra were measured for a perdeuterated sample, Os(CO)4(eta2-C2D4). The measured rotational constants for the main osmium isotopomer ((192)Os) are A = 929.3256(6), B = 755.1707(3), and C = 752.7446(3) MHz, indicating a near-prolate asymmetric top molecule. The approximately 140 assigned b-type transitions were fit using a Watson S-reduced Hamiltonian including A, B, C, and five centrifugal distortion constants. A near-complete r0 gas-phase structure has been determined from a least-squares structural fit using eight adjustable structural parameters to fit the 21 measured rotational constants. Changes in the structure of ethylene on coordination to Os(CO)4 are large and well-determined. For the complex, the experimental ethylene C-C bond length is 1.432(5) A, which falls between the free ethylene value of 1.3391(13) A and the ethane value of 1.534(2) A. The angle between the plane of the CH2 group and the extended ethylene C-C bond ( angleout-of-plane) is 26.0(3) degrees , indicating that this complex is better described as a metallacyclopropane than as a pi-bonded olefin-metal complex. The Os-C-C-H dihedral angle is 106.7(2) degrees , indicating that the ethylene carbon atoms have near sp3 character in the complex. Kraitchman analysis of the available rotational constants gave principal axis coordinates for the carbon and hydrogen atoms in excellent agreement with the least-squares fit

  19. Flexible Acyclic Polyol-Chloride Anion Complexes and Their Characterization by Photoelectron Spectroscopy and Variable Temperature Binding Constant Determinations.

    PubMed

    Shokri, Alireza; Wang, Xue-Bin; Wang, Yanping; O'Doherty, George A; Kass, Steven R

    2016-03-17

    Flexible acyclic alcohols with one to five hydroxyl groups were bound to a chloride anion and these complexes were interrogated by negative ion photoelectron spectroscopy and companion density functional theory computations. The resulting vertical detachment energies are reproduced on average to 0.10 eV by M06-2X/aug-cc-pVTZ predictions and range from 4.45-5.96 eV. These values are 0.84-2.35 eV larger than the adiabatic detachment energy of Cl(-) as a result of the larger hydrogen bond networks in the bigger polyols. Adiabatic detachment energies of the alcohol-Cl(-) clusters are more difficult to determine both experimentally and computationally. This is due to the large geometry changes that occur upon photodetachment and the large bond dissociation energy of H-Cl which enables the resulting chlorine atom to abstract a hydrogen from any of the methylene (CH2) or methine (CH) positions. Both ionic and nonionic hydrogen bonds (i.e., OH···Cl(-) and OH···OH···Cl(-)) form in the larger polyols complexes and are found to be energetically comparable. Subtle structural differences, consequently can lead to the formation of different types of hydrogen bonds, and maximizing the ionic ones is not always preferred. Solution equilibrium binding constants between the alcohols and tetrabutylammonium chloride (TBACl) in acetonitrile at -24.2, +22.0, and +53.6 °C were also determined. The free energies of association are nearly identical for all of the substrates (i.e., ΔG° = -2.8 ± 0.7 kcal mol(-1)). Compensating enthalpy and entropy values reveal, contrary to expectation and the intrinsic gas-phase preferences, that the bigger systems with more hydroxyl groups are entropically favored and enthalpically disfavored relative to the smaller species. This suggests that more solvent molecules are released upon binding TBACl to alcohols with more hydroxyl groups and is consistent with the measured negative heat capacities. These quantities increase with molecular

  20. Contours of constant pseudo-Brewster angle in the complex ? plane and an analytical method for the determination of optical constants.

    PubMed

    Azzam, R M; Ugbo, E E

    1989-12-15

    The locus of all points in the complex plane of the dielectric function ?[?(r) + j?(i) = |?| exp(jtheta)], that represent all possible interfaces characterized by the same pseudo-Brewster angle theta(p)B of minimum p reflectance, is derived in the polar form: |?| = l cos(zeta/3), where l = 2(tan(2)Phi(p)B)k, zeta = arccos(- costheta cos(2)Phi(p)B/k(3)), and k = (1 - 2/3 sin(2)Phi(p)B)(1/2). Families of iso-Phi(p)B contours for (I) 0 degrees 80 degrees ) is the iso-Phi(p)B contour accurately approximated as a circle. We find that |?| < 1 for Phi(p)B < 37.23 degrees , and |?| > 1 for Phi(p)B > 45 degrees . The optical constants n,k (where n + jk = ?((1/2)) is the complex refractive index) are determined from the normal incidence reflectance R(0) and Phi(p)B graphically and analytically. Nomograms that consist of iso-R(0) and iso-Phi(p)B families of contours in the nk plane are presented. Equations that permit the reader to produce his own version of the same nomogram are also given. Valid multiple solutions (n,k) for a given measurement set (R(0),phi(p)B) are possible in the domain of fractional optical constants. An analytical solution of the (R(0),Phi(p)B) ? (n,k) inversion problem is developed that involves an exact (noniterative) solution of a quartic equation in |?|. Finally, a graphic representation is developed for the determination of complex ? from two pseudo-Brewster angles measured in two different media of incidence. PMID:20556031

  1. Does slow energy transfer limit the observed time constant for radical pair formation in photosystem II reaction centers?

    PubMed

    Rech, T; Durrant, J R; Joseph, D M; Barber, J; Porter, G; Klug, D R

    1994-12-13

    We have used spectrally photoselective femtosecond transient absorption spectroscopy on photosystem II reaction centers to show that there are at least two pools of chlorin molecules/states which can transfer excitation energy to P680, the primary electron donor in photosystem II. It has previously been shown that one chlorin pool equilibrates with P680 in 100 fs [Durrant et al. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 11632-11636], and we report here the observation of energy transfer from a second more weakly coupled chlorin pool. The effect of the weakly coupled pool is to increase the apparent time constant for radical pair formation from 21 ps when P680 is selectively excited to 27 ps when the accessory chlorins are excited. We conclude that it is possible to observe both radical pair formation somewhat slowed by an energy transfer step and radical pair formation not limited by this slow energy transfer, depending upon which chromophores are initially excited. These observations provide evidence that when using photoselective excitation of P680, the observed 21 ps time constant for radical pair formation is not limited by a slow energy transfer step. PMID:7993905

  2. Quantitative assessment of complex formation of nuclear-receptor accessory proteins.

    PubMed

    Graumann, K; Jungbauer, A

    2000-02-01

    Like other nuclear receptors, steroid hormone receptors form large protein hetero-complexes in their inactive, ligand-friendly state. Several heat-shock proteins, immunophilins and others have been identified as members of these highly dynamic complexes. The interaction kinetics and dynamics of hsp90, hsp70, p60 (Hop), FKBP52, FKBP51, p48 (Hip) and p23 have been assessed by a biosensor approach measuring the complex formation in real time. A core chaperone complex has been reconstituted from p60, hsp90 and hsp70. p60 forms a molecular bridge between hsp90 and hsp70 with an affinity in the range of 10(5) M(-1). Dynamics of hsp90-p60 complex formation is modulated by ATP through changes in the co-operativity of interaction. At low protein concentrations ATP stabilizes the complex. Binding of p23 to hsp90 did not change the affinity of the hsp90-p60 complex and the stabilizing effect of ATP. Saturation of the p48-hsp70 interaction could not be achieved, suggesting multiple binding sites. A picture of the protein complex, including stoichiometric coefficients, co-operativity of interaction and equilibrium-binding constants, has been formed. PMID:10642522

  3. Sub-THz complex dielectric constants of smectite clay thin samples with Na+/Ca++ ions

    NASA Astrophysics Data System (ADS)

    Rahman, Rezwanur; McCarty, Douglas K.; Prasad, Manika

    2015-09-01

    We implement a technique to characterize the electromagnetic properties at frequencies 100 to 165 GHz (3 cm-1 to 4.95 cm-1) of oriented smectite samples using an open cavity resonator connected to a submillimeter wave VNA (Vector Network Analyzer). We measured dielectric constants perpendicular to the bedding plane on oriented Na+ ion and Ca++ ion stabilized smectite samples deposited on a glass slide at ambient laboratory conditions (room temperature and room light). The clay layer is much thinner (˜30 μm) than the glass substrate (˜2.18 mm). The real part of dielectric constant, ɛre, is essentially constant over this frequency range but is larger in Na+ ion than in Ca++ ion infused clay. The total electrical conductivity (associated with the imaginary part of dielectric constant, ɛim) of both samples increases monotonically at lower frequencies (<110 GHz) but shows rapid increase for Na+ ions in the regime > 110 GHz. The dispersion of the samples display a dependence on the ionic strength in the clay interlayers, i.e., ζ potential in the Stern layers.

  4. Geology of the Biwabik Iron Formation and Duluth Complex.

    PubMed

    Jirsa, Mark A; Miller, James D; Morey, G B

    2008-10-01

    The Biwabik Iron Formation is a approximately 1.9 billion year-old sequence of iron-rich sedimentary rocks that was metamorphosed at its eastern-most extent by approximately 1.1 billion year-old intrusions of the Duluth Complex. The metamorphic recrystallization of iron-formation locally produced iron-rich amphiboles and other fibrous iron-silicate minerals. The presence of these minerals in iron-formation along the eastern part of what is known as the Mesabi Iron Range, and their potential liberation by iron mining has raised environmental health concerns. We describe here the geologic setting and mineralogic composition of the Biwabik Iron Formation in and adjacent to the contact metamorphic aureole of the Duluth Complex. The effects of metamorphism are most pronounced within a few kilometers of the contact, and decrease progressively away from it. The contact aureole has been divided into four metamorphic zones-each characterized by the composition and crystal structure of the metamorphic minerals it contains. The recrystallization of iron-formation to iron-rich amphibole minerals (grunerite and cummingtonite) and iron-pyroxene minerals (hedenbergite and ferrohypersthene) is best developed in zones that are most proximal to the Duluth Complex contact. PMID:17997209

  5. Geology of the Biwabik Iron Formation and Duluth Complex

    USGS Publications Warehouse

    Jirsa, M.A.; Miller, J.D., Jr.; Morey, G.B.

    2008-01-01

    The Biwabik Iron Formation is a ???1.9 billion year-old sequence of iron-rich sedimentary rocks that was metamorphosed at its eastern-most extent by ???1.1 billion year-old intrusions of the Duluth Complex. The metamorphic recrystallization of iron-formation locally produced iron-rich amphiboles and other fibrous iron-silicate minerals. The presence of these minerals in iron-formation along the eastern part of what is known as the Mesabi Iron Range, and their potential liberation by iron mining has raised environmental health concerns. We describe here the geologic setting and mineralogic composition of the Biwabik Iron Formation in and adjacent to the contact metamorphic aureole of the Duluth Complex. The effects of metamorphism are most pronounced within a few kilometers of the contact, and decrease progressively away from it. The contact aureole has been divided into four metamorphic zones-each characterized by the composition and crystal structure of the metamorphic minerals it contains. The recrystallization of iron-formation to iron-rich amphibole minerals (grunerite and cummingtonite) and iron-pyroxene minerals (hedenbergite and ferrohypersthene) is best developed in zones that are most proximal to the Duluth Complex contact. ?? 2007 Elsevier Inc. All rights reserved.

  6. Formation of copper complexes in landfill leachate and their toxicity to zebrafish embryos

    SciTech Connect

    Fraser, J.K.; Butler, C.A.; Timperley, M.H.; Evans, C.W.

    2000-05-01

    Toxic metal organic complexes have not been found in natural waters, although some organic acids form bioavailable lipophilic and metabolite-type metal complexes. Landfill leachates usually contain organic acids and in the urban environment these leachates, when mixed with storm waters containing Cu, could be a source of toxic Cu organic complexes in streams and estuaries. The authors investigated the formation of Cu complexes in the leachate from an active urban landfill and found that some of the complexes formed were toxic to zebrafish embryos. High and low nominal molecular weight (NMWT) fractions; >5,000 Da and <700 Da, of leachate both formed Cu complexes with almost identical Cu complexing characteristics but the toxicity was due solely to the low NMWT complexes formed in the <700 Da fraction. Chemical equilibrium modeling with MINTEQA2 and H and Cu complex conditional association constants and ligand concentrations obtained from pH and Cu titrations with a Cu ion-selective electrode and van den Berg-Ruzic analyses of the titration data was used to calculate the copper speciation in the embryo test solutions. This calculated speciation, which was confirmed by measurements of Cu{sup 2+} in the test solutions, enabled the toxicity due to the free Cu ion and to the Cu complexes to be distinguished.

  7. Surface-Guided Formation of an Organocobalt Complex.

    PubMed

    Weber, Peter B; Hellwig, Raphael; Paintner, Tobias; Lattelais, Marie; Paszkiewicz, Mateusz; Casado Aguilar, Pablo; Deimel, Peter S; Guo, Yuanyuan; Zhang, Yi-Qi; Allegretti, Francesco; Papageorgiou, Anthoula C; Reichert, Joachim; Klyatskaya, Svetlana; Ruben, Mario; Barth, Johannes V; Bocquet, Marie-Laure; Klappenberger, Florian

    2016-05-01

    Organocobalt complexes represent a versatile tool in organic synthesis as they are important intermediates in Pauson-Khand, Friedel-Crafts, and Nicholas reactions. Herein, a single-molecule-level investigation addressing the formation of an organocobalt complex at a solid-vacuum interface is reported. Deposition of 4,4'-(ethyne-1,2-diyl)dibenzonitrile and Co atoms on the Ag(111) surface followed by annealing resulted in genuine complexes in which single Co atoms laterally coordinated to two carbonitrile groups undergo organometallic bonding with the internal alkyne moiety of adjacent molecules. Alternative complexation scenarios involving fragmentation of the precursor were ruled out by complementary X-ray photoelectron spectroscopy. According to density functional theory analysis, the complexation with the alkyne moiety follows the Dewar-Chatt-Duncanson model for a two-electron-donor ligand where an alkyne-to-Co donation occurs together with a strong metal-to-alkyne back-donation. PMID:27059261

  8. Formation of complex bacterial colonies via self-generated vortices

    NASA Astrophysics Data System (ADS)

    Czirók, András; Ben-Jacob, Eshel; Cohen, Inon; Vicsek, Tamás

    1996-08-01

    Depending on the environmental conditions bacterial colonies growing on agar surfaces can exhibit complex colony formation and various types of collective motion. Experimental results are presented concerning the hydrodynamics (vortices, migration of bacteria in clusters) and colony formation of a morphotype of Bacillus subtilis. Some of these features are not specific to this morphotype but also have been observed in several other bacterial strains, suggesting the presence of universal effects. A simple model of self-propelled particles is proposed, which is capable of describing the hydrodynamics on the intermediate level, including the experimentally observed rotating disks of bacteria. The colony formation is captured by a complex generic model taking into account nutrient diffusion, reproduction, and sporulation of bacteria, extracellular slime deposition, chemoregulation, and inhomogeneous population. Our model also sheds light on some possible biological benefits of this ``multicellular behavior.''

  9. Impact of electric-field dependent dielectric constants on two-dimensional electron gases in complex oxides

    SciTech Connect

    Peelaers, H.; Gordon, L.; Steiauf, D.; Janotti, A.; Van de Walle, C. G.; Krishnaswamy, K.; Sarwe, A.

    2015-11-02

    High-density two-dimensional electron gas (2DEG) can be formed at complex oxide interfaces such as SrTiO{sub 3}/GdTiO{sub 3} and SrTiO{sub 3}/LaAlO{sub 3}. The electric field in the vicinity of the interface depends on the dielectric properties of the material as well as on the electron distribution. However, it is known that electric fields can strongly modify the dielectric constant of SrTiO{sub 3} as well as other complex oxides. Solving the electrostatic problem thus requires a self-consistent approach in which the dielectric constant varies according to the local magnitude of the field. We have implemented the field dependence of the dielectric constant in a Schrödinger-Poisson solver in order to study its effect on the electron distribution in a 2DEG. Using the SrTiO{sub 3}/GdTiO{sub 3} interface as an example, we demonstrate that including the field dependence results in the 2DEG being confined closer to the interface compared to assuming a single field-independent value for the dielectric constant. Our conclusions also apply to SrTiO{sub 3}/LaAlO{sub 3} as well as other similar interfaces.

  10. Stability constants of copper(II) mixed complexes with some 4-quinolone antibiotics and (N-N) donors.

    PubMed

    Mendoza-Díaz, G; Perez-Alonso, R; Moreno-Esparza, R

    1996-11-15

    Studies of complexation equilibria of the antibiotic anions nalidixate and cinoxacinate with [Cu(phen)]2+ and [Cu(bipy)]2+ are reported. These studies indicate that the stability of this type of complex is strongly related to the metal environment. A correlation between the stability constants, determined here, with the sigma donation character of the ligand is proposed. This study shows that the stability constant for the reaction between the quinolones and the moiety [Cu(N-N)]2+ is dependent on the coordinate diamine to the metal ion. This is in agreement with previous studies where other physical properties as their electronic absorption spectra in the visible region, display similar behavior. These results suggest that inside the living cells, a possible interaction with some metal ion will be strongly controlled by the type of ligand bound to the cation. PMID:8893520

  11. Seeking the constant in what is transient: Karl Ernst von Baer's vision of organic formation.

    PubMed

    Vienne, Florence

    2015-03-01

    A well-established narrative in the history of science has it that the years around 1800 saw the end of a purely descriptive, classificatory and static natural history. The emergence of a temporal understanding of nature and the new developmental-history approach, it is thought, permitted the formation of modern biology. This paper questions that historical narrative by closely analysing the concepts of development, history and time set out in Karl Ernst von Baer's study of the mammalian egg (1827). I show that Baer's research on embryogenesis aimed not simply to explain temporal changes, but to inscribe the formation of new individual organisms into a continuous, unending organic process. I confront Baer's views with other explanations of embryogenesis arising in the 1820s and 1830s, especially those of Jean-Baptiste Dumas and Jean-Louis Prévost and of Theodor Schwann. By highlighting divergences between these scientists, especially as to their view of the role of gender differences in reproduction, I argue that biology evolved not from a homogeneous concept of developmental history but out of various, even opposing, views and research programmes. Thus, the birth of biology did not imply the end of all natural history's thought models. PMID:26013434

  12. Bacterial cadherin domains as carbohydrate binding modules: determination of affinity constants to insoluble complex polysaccharides.

    PubMed

    Fraiberg, Milana; Borovok, Ilya; Weiner, Ronald M; Lamed, Raphael; Bayer, Edward A

    2012-01-01

    Cadherin (CA) and cadherin-like (CADG) doublet domains from the complex polysaccharide-degrading marine bacterium, Saccharophagus degradans 2-40, demonstrated reversible calcium-dependent binding to different complex polysaccharides, which serve as growth substrates for the bacterium. Here we describe a procedure based on adsorption of CA and CADG doublet domains to different insoluble complex polysaccharides, followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) for visualizing and quantifying the distribution of cadherins between the bound and unbound fractions. Scatchard plots were employed to determine the kinetics of interactions of CA and CADG with several complex carbohydrates. On the basis of these binding studies, the CA and CADG doublet domains are proposed to form a new family of carbohydrate-binding module (CBM). PMID:22843394

  13. Formation and stability of lanthanide complexes and their encapsulation into polymeric microspheres

    SciTech Connect

    Mumper, R.J.; Jay, M.

    1992-10-15

    The complexation of lanthanides (Ln) with dicarbonyl compounds (acetylacetone, acac; ethyl acetoacetate; 3-ethyl-2,4-pentanedione; 2,4-hexanedione; 3-methyl-2,4-pentanedione; and diethyl malonate) was investigated using a potentiometric titration technique. The ability of a dicarbonyl compound to complex with the lanthanide elements was greatly dependent on its pK{sub a} and on the pH of the titrated solution. Selected lanthanide complexes (Ln complexes) were incorporated into spherical poly(L-lactic acid)(PLA) matrices and irradiated in a nuclear reactor with neutrons to produce short-lived high-energy {Beta}-particle-emitting radioisotopes. The lanthanides investigated (Ho, Dy, Sm, and La) were chosen on the basis of their physical and nuclear properties. A transition element (Re) was also studied. The small decrease in the ionic radii of the lanthanides with increasing atomic number led to (a) greater ability to extract and complex from an aqueous solution with complexing agents, (b) larger formation and stability constants for the Ln complexes, (c) increased solubility of the Ln complexes in chloroform, and (d) increase in the maximum percent incorporation of the stable lanthanides in PLA spheres. Ho(aca) was found to be the most promising candidate of the complexes studied on the basis of the above observations and due to the favorable physical properties of {sup 165}Ho and nuclear properties of {sup 166}Ho. 21 refs., 5 figs., 4 tabs.

  14. Positronium formation studies in crystalline molecular complexes: Triphenylphosphine oxide - Acetanilide

    NASA Astrophysics Data System (ADS)

    Oliveira, F. C.; Denadai, A. M. L.; Guerra, L. D. L.; Fulgêncio, F. H.; Windmöller, D.; Santos, G. C.; Fernandes, N. G.; Yoshida, M. I.; Donnici, C. L.; Magalhães, W. F.; Machado, J. C.

    2013-04-01

    Hydrogen bond formation in the triphenylphosphine oxide (TPPO), acetanilide (ACN) supramolecular heterosynton system, named [TPPO0.5·ACN0.5], has been studied by Positron Annihilation Lifetime Spectroscopy (PALS) and supported by several analytical techniques. In toluene solution, Isothermal Titration Calorimetry (ITC) presented a 1:1 stoichiometry and indicated that the complexation process is driven by entropy, with low enthalpy contribution. X-ray structure determination showed the existence of a three-dimensional network of hydrogen bonds, allowing also the confirmation of the existence of a 1:1 crystalline molecular complex in solid state. The results of thermal analysis (TGA, DTA and DSC) and FTIR spectroscopy showed that the interactions in the complex are relatively weaker than those found in pure precursors, leading to a higher positronium formation probability at [TPPO0.5·ACN0.5]. These weak interactions in the complex enhance the possibility of the n- and π-electrons to interact with positrons and consequently, the probability of positronium formation is higher. Through the present work is shown that PALS is a sensible powerful tool to investigate intermolecular interactions in solid heterosynton supramolecular systems.

  15. Formation of Complex Molecules via radiative association reactions

    NASA Astrophysics Data System (ADS)

    Acharyya, Kinsuk; Herbst, Eric

    2016-07-01

    The detection of increasing numbers of complex organic molecules in the various phases of star formation plays a key role since they follow the same chemical rules of carbon-based chemistry that are observed in our planet Earth. Many of these molecules are believed to be formed on the surfaces of grains, and can then be released to the gas phase when these grains are heated. This is evident when we observe a rich chemistry in hot core regions. However, recently complex organic molecules have also been observed in cold clouds. Therefore, it is necessary to re-examine various pathways for the formation of these molecules in the gas phase. In this presentation, I will discuss role of radiative association reactions in the formation of complex molecules in the gas phase and at low temperature. We will compare abundance of assorted molecules with and without new radiative association reactions and will show that the abundance of a few complex molecules such as HCOOCH3, CH3OCH3 etc. can go up due to introduction of these reactions, which can help to explain their observed abundances.

  16. Accelerating procelain formation by incorporating a complex additive

    SciTech Connect

    Maslennikova, G.N.; Dubovitskii, S.A.; Moroz, I.K.

    1986-05-01

    The authors studied the influence of a complex additive consisting of oxides of calcium, zinc, and magnesium on the formaton of porcelain. In order to achieve a more uniform distribution of the complex additive in the porcelain body it was incorporated in the form of water soluble salts-nitrates, which ensured comparability of results and excluded the effect of the different types of anions. The study of the main parameters of sintering (porosity, shrinkage, and mechanical strength) for the test bodies showed that they sinter at lower temperatures and attain zero porosity, maximum shrinkage, and mechanical strength. The most typical bodies indentified in this way were investigated by methods of complex differential thermal analysis and x-ray diffraction. Thus, the introduction of complex additives consisting of calcium, zinc, and magnesium oxides contributes to the earlier formation of porcelain. With the reduction of firing temperatures by 100/sup 0/C the authors observe an improvement in the basic properties of porcelain.

  17. Hydrolysis, formation and ionization constants at 25/sup 0/C, and at high temperature-high ionic strength

    SciTech Connect

    Phillips, S.L.; Phillips, C.A.; Skeen, J.

    1985-02-01

    Thermochemical data for nuclear waste disposal are compiled. The resulting computerized database consists of critically evaluated data on Gibbs energy of formation, enthalpy of formation, entropy and heat capacity of selected substances for about 16 elements at 25/sup 0/C and zero ionic strength. Elements covered are Am, As, Br, C, Cl, F, I, Mo, Np, N, O, P, Pu, Si, Sr, S, and U. Values of these thermodynamic properties were used to calculate equilibrium quotients for hydrolysis, complexation and ionization reactions up to 300/sup 0/C and 3 ionic strength, for selected chemical reactions.

  18. Star Formation in Giant Complexes: the Cat's Paw Nebula

    NASA Astrophysics Data System (ADS)

    Ascenso, Joana; Wolk, Scott; Lombardi, Marco; Alves, João; Rathborne, Jill; Forbrich, Jan; Leibundgut, Bruno; Hilker, Michael

    2013-07-01

    NGC 6334, the Cat's Paw Nebula, is a 106 M⊙ molecular cloud, one of the most massive known clouds in the Galaxy. It hosts the youngest massive cluster complex within 2 kpc of the Sun, and is therefore an ideal laboratory to investigate the onset and early evolution of star formation in an environment comparable to that of massive, extra-galactic complexes. Using multi-wavelength data, we are conducting the most sensitive and most complete characterization of this unique region to date.

  19. Polarographic Determination of Composition and Thermodynamic Stability Constant of a Complex Metal Ion.

    ERIC Educational Resources Information Center

    Marin, Dolores; Mendicuti, Francisco

    1988-01-01

    Describes a laboratory experiment designed to encourage laboratory cooperation among individual undergraduate students or groups. Notes each student contributes results individually and the exchange of data is essential to obtain final results. Uses the polarographic method for determining complex metal ions. (MVL)

  20. Constant Modulus Algorithm with Reduced Complexity Employing DFT Domain Fast Filtering

    NASA Astrophysics Data System (ADS)

    Yang, Yoon Gi; Lee, Chang Su; Yang, Soo Mi

    In this paper, a novel CMA (constant modulus algorithm) algorithm employing fast convolution in the DFT (discrete Fourier transform) domain is proposed. We propose a non-linear adaptation algorithm that minimizes CMA cost function in the DFT domain. The proposed algorithm is completely new one as compared to the recently introduced similar DFT domain CMA algorithm in that, the original CMA cost function has not been changed to develop DFT domain algorithm, resulting improved convergence properties. Using the proposed approach, we can reduce the number of multiplications to O(N log 2 N), whereas the conventional CMA has the computation order of O(N2). Simulation results show that the proposed algorithm provides a comparable performance to the conventional CMA.

  1. The role of plasma proteins in formation of obstructive protamine complexes

    SciTech Connect

    De Paulis, R.; Mohammad, S.F.; Chiariello, L.; Morea, M.; Olsen, D.B. )

    1991-06-01

    Formation of complexes between heparin and protamine (in saline), or heparin, plasma proteins, and protamine (in plasma) was assessed by measurements of light transmission through different test solutions. To examine the formation of these complexes, 125I-labeled protamine was used. Addition of 125I-protamine to plasma or blood resulted in the sedimentation of 125I-protamine in the form of insoluble complexes. This complex formation was not affected by the presence of heparin, suggesting that protamine-plasma protein interaction may be primarily responsible for precipitation of 125I-protamine. To assess the capability of these complexes to obstruct the pulmonary circulation, an in vitro experimental model was developed. Citrated serum, plasma, blood, or saline were allowed to flow through a glass bead column with the help of a peristaltic pump. A pressure transducer positioned before the column allowed pressure measurements at a constant flow rate during the experiment. Mixing of protamine with plasma or blood prior to their passage through the glass bead column resulted in a significant increase in pressure suggesting that the column was being clogged with insoluble complexes. The increase in pressure occurred both in the presence and absence of heparin in plasma or blood. Under identical experimental conditions, the increase in pressure was insignificant when protamine was added to saline or serum regardless of whether heparin was present or absent. This was further confirmed by the use of 125I-protamine. These observations suggest that protamine forms insoluble complexes with certain plasma proteins. Based on these observations, it is hypothesized that following intravenous administration, protamine immediately forms complexes in circulating blood.

  2. Demixing-stimulated lane formation in binary complex plasma

    SciTech Connect

    Du, C.-R.; Jiang, K.; Suetterlin, K. R.; Ivlev, A. V.; Morfill, G. E.

    2011-11-29

    Recently lane formation and phase separation have been reported for experiments with binary complex plasmas in the PK3-Plus laboratory onboard the International Space Station (ISS). Positive non-additivity of particle interactions is known to stimulate phase separation (demixing), but its effect on lane formation is unknown. In this work, we used Langevin dynamics (LD) simulation to probe the role of non-additivity interactions on lane formation. The competition between laning and demixing leads to thicker lanes. Analysis based on anisotropic scaling indices reveals a crossover from normal laning mode to a demixing-stimulated laning mode. Extensive numerical simulations enabled us to identify a critical value of the non-additivity parameter {Delta} for the crossover.

  3. The Dynamics of Coalition Formation on Complex Networks

    NASA Astrophysics Data System (ADS)

    Auer, S.; Heitzig, J.; Kornek, U.; Schöll, E.; Kurths, J.

    2015-08-01

    Complex networks describe the structure of many socio-economic systems. However, in studies of decision-making processes the evolution of the underlying social relations are disregarded. In this report, we aim to understand the formation of self-organizing domains of cooperation (“coalitions”) on an acquaintance network. We include both the network’s influence on the formation of coalitions and vice versa how the network adapts to the current coalition structure, thus forming a social feedback loop. We increase complexity from simple opinion adaptation processes studied in earlier research to more complex decision-making determined by costs and benefits, and from bilateral to multilateral cooperation. We show how phase transitions emerge from such coevolutionary dynamics, which can be interpreted as processes of great transformations. If the network adaptation rate is high, the social dynamics prevent the formation of a grand coalition and therefore full cooperation. We find some empirical support for our main results: Our model develops a bimodal coalition size distribution over time similar to those found in social structures. Our detection and distinguishing of phase transitions may be exemplary for other models of socio-economic systems with low agent numbers and therefore strong finite-size effects.

  4. The catalytic role of uranyl in formation of polycatechol complexes

    PubMed Central

    2011-01-01

    To better understand the association of contaminant uranium with natural organic matter (NOM) and the fate of uranium in ground water, spectroscopic studies of uranium complexation with catechol were conducted. Catechol provides a model for ubiquitous functional groups present in NOM. Liquid samples were analyzed using Raman, FTIR, and UV-Vis spectroscopy. Catechol was found to polymerize in presence of uranyl ions. Polymerization in presence of uranyl was compared to reactions in the presence of molybdate, another oxyion, and self polymerization of catechol at high pH. The effect of time and dissolved oxygen were also studied. It was found that oxygen was required for self-polymerization at elevated pH. The potential formation of phenoxy radicals as well as quinones was monitored. The benzene ring was found to be intact after polymerization. No evidence for formation of ether bonds was found, suggesting polymerization was due to formation of C-C bonds between catechol ligands. Uranyl was found to form outer sphere complexes with catechol at initial stages but over time (six months) polycatechol complexes were formed and precipitated from solution (forming humic-like material) while uranyl ions remained in solution. Our studies show that uranyl acts as a catalyst in catechol-polymerization. PMID:21396112

  5. The Dynamics of Coalition Formation on Complex Networks

    PubMed Central

    Auer, S.; Heitzig, J.; Kornek, U.; Schöll, E.; Kurths, J.

    2015-01-01

    Complex networks describe the structure of many socio-economic systems. However, in studies of decision-making processes the evolution of the underlying social relations are disregarded. In this report, we aim to understand the formation of self-organizing domains of cooperation (“coalitions”) on an acquaintance network. We include both the network’s influence on the formation of coalitions and vice versa how the network adapts to the current coalition structure, thus forming a social feedback loop. We increase complexity from simple opinion adaptation processes studied in earlier research to more complex decision-making determined by costs and benefits, and from bilateral to multilateral cooperation. We show how phase transitions emerge from such coevolutionary dynamics, which can be interpreted as processes of great transformations. If the network adaptation rate is high, the social dynamics prevent the formation of a grand coalition and therefore full cooperation. We find some empirical support for our main results: Our model develops a bimodal coalition size distribution over time similar to those found in social structures. Our detection and distinguishing of phase transitions may be exemplary for other models of socio-economic systems with low agent numbers and therefore strong finite-size effects. PMID:26303622

  6. The Dynamics of Coalition Formation on Complex Networks.

    PubMed

    Auer, S; Heitzig, J; Kornek, U; Schöll, E; Kurths, J

    2015-01-01

    Complex networks describe the structure of many socio-economic systems. However, in studies of decision-making processes the evolution of the underlying social relations are disregarded. In this report, we aim to understand the formation of self-organizing domains of cooperation ("coalitions") on an acquaintance network. We include both the network's influence on the formation of coalitions and vice versa how the network adapts to the current coalition structure, thus forming a social feedback loop. We increase complexity from simple opinion adaptation processes studied in earlier research to more complex decision-making determined by costs and benefits, and from bilateral to multilateral cooperation. We show how phase transitions emerge from such coevolutionary dynamics, which can be interpreted as processes of great transformations. If the network adaptation rate is high, the social dynamics prevent the formation of a grand coalition and therefore full cooperation. We find some empirical support for our main results: Our model develops a bimodal coalition size distribution over time similar to those found in social structures. Our detection and distinguishing of phase transitions may be exemplary for other models of socio-economic systems with low agent numbers and therefore strong finite-size effects. PMID:26303622

  7. Correlations between Community Structure and Link Formation in Complex Networks

    PubMed Central

    Liu, Zhen; He, Jia-Lin; Kapoor, Komal; Srivastava, Jaideep

    2013-01-01

    Background Links in complex networks commonly represent specific ties between pairs of nodes, such as protein-protein interactions in biological networks or friendships in social networks. However, understanding the mechanism of link formation in complex networks is a long standing challenge for network analysis and data mining. Methodology/Principal Findings Links in complex networks have a tendency to cluster locally and form so-called communities. This widely existed phenomenon reflects some underlying mechanism of link formation. To study the correlations between community structure and link formation, we present a general computational framework including a theory for network partitioning and link probability estimation. Our approach enables us to accurately identify missing links in partially observed networks in an efficient way. The links having high connection likelihoods in the communities reveal that links are formed preferentially to create cliques and accordingly promote the clustering level of the communities. The experimental results verify that such a mechanism can be well captured by our approach. Conclusions/Significance Our findings provide a new insight into understanding how links are created in the communities. The computational framework opens a wide range of possibilities to develop new approaches and applications, such as community detection and missing link prediction. PMID:24039818

  8. Complex formation between polyelectrolytes and oppositely charged oligoelectrolytes.

    PubMed

    Zhou, Jiajia; Barz, Matthias; Schmid, Friederike

    2016-04-28

    We study the complex formation between one long polyanion chain and many short oligocation chains by computer simulations. We employ a coarse-grained bead-spring model for the polyelectrolyte chains and model explicitly the small salt ions. We systematically vary the concentration and the length of the oligocation and examine how the oligocations affects the chain conformation, the static structure factor, the radial and axial distribution of various charged species, and the number of bound ions in the complex. At low oligocation concentration, the polyanion has an extended structure. Upon increasing the oligocation concentration, the polyanion chain collapses and forms a compact globule, but the complex still carries a net negative charge. Once the total charge of the oligocations is equal to that of the polyanion, the collapse stops and is replaced by a slow expansion. In this regime, the net charge on the complexes is positive or neutral, depending on the microion concentration in solution. The expansion can be explained by the reduction of the oligocation bridging. We find that the behavior and the structure of the complex are largely independent of the length of oligocations, and very similar to that observed when replacing the oligocations by multivalent salt cations, and conclude that the main driving force keeping the complex together is the release of monovalent counterions and coions. We speculate on the implications of this finding for the problem of controlled oligolyte release and oligolyte substitution. PMID:27131564

  9. Complex formation between polyelectrolytes and oppositely charged oligoelectrolytes

    NASA Astrophysics Data System (ADS)

    Zhou, Jiajia; Barz, Matthias; Schmid, Friederike

    2016-04-01

    We study the complex formation between one long polyanion chain and many short oligocation chains by computer simulations. We employ a coarse-grained bead-spring model for the polyelectrolyte chains and model explicitly the small salt ions. We systematically vary the concentration and the length of the oligocation and examine how the oligocations affects the chain conformation, the static structure factor, the radial and axial distribution of various charged species, and the number of bound ions in the complex. At low oligocation concentration, the polyanion has an extended structure. Upon increasing the oligocation concentration, the polyanion chain collapses and forms a compact globule, but the complex still carries a net negative charge. Once the total charge of the oligocations is equal to that of the polyanion, the collapse stops and is replaced by a slow expansion. In this regime, the net charge on the complexes is positive or neutral, depending on the microion concentration in solution. The expansion can be explained by the reduction of the oligocation bridging. We find that the behavior and the structure of the complex are largely independent of the length of oligocations, and very similar to that observed when replacing the oligocations by multivalent salt cations, and conclude that the main driving force keeping the complex together is the release of monovalent counterions and coions. We speculate on the implications of this finding for the problem of controlled oligolyte release and oligolyte substitution.

  10. Temperature and salt effects on the formation of preinitiation complexes between RNA polymerase and phage DNA.

    PubMed

    Escarmis, C; Domingo, E; Warner, R C

    1975-08-21

    The influence of temperature and KCl concentration on the formation of rifampicin-resistant preinitiation complexes by holo RNA polymerase has been compared for T4 DNA and Azotobacter phage A21 DNA. The sharp transition with respect to temperature between an inactive complex of polymerase and DNA and a preinitiation complex reflects an equilibrium between the two complexes, the position of which depends on the temperature and the salt concentration. The transition is shifted to higher temperatures by increasing the KCl concentration. The position of this transition is characteristically different for T4 and A21 DNA. The midpoint for A21 DNA is about 15 degrees C above that for T4 at 0.006 M KCl. At 0.15 M KCl the transition for A21 DNA cannot be observed below 37 degrees C. This difference is responsible for the apparent inhibition of a21 dna transcription by KCl and for the low template activity of A21 DNA under the conditions of the standard assay. Both holo and core RNA polymerases are able to form complexes with A21 DNA that are resistant to attack by rifampicin. The second-order rate constant for the inactivation of the complex with the core enxyme is three times greater than that for the complex with the holoenzyme. PMID:1100115

  11. Titanium complex formation of organic ligands in titania gels.

    PubMed

    Nishikiori, Hiromasa; Todoroki, Kenta; Setiawan, Rudi Agus; Teshima, Katsuya; Fujii, Tsuneo; Satozono, Hiroshi

    2015-01-27

    Thin films of organic ligand-dispersing titania gels were prepared from titanium alkoxide sols containing ligand molecules by steam treatment without heating. The formation of the ligand-titanium complex and the photoinduced electron transfer process in the systems were investigated by photoelectrochemical measurements. The complex was formed between the 8-hydroxyquinoline (HQ) and titanium species, such as the titanium ion, on the titania nanoparticle surface through the oxygen and nitrogen atoms of the quinolate. A photocurrent was observed in the electrodes containing the complex due to the electron injection from the LUMO of the complex into the titania conduction band. A bidentate ligand, 2,3-dihydroxynaphthalene (DHN), formed the complex on the titania surface through dehydration between its two hydroxyl groups of DHN and two TiOH groups of the titania. The electron injection from the HOMO of DHN to the titania conduction band was observed during light irradiation. This direct electron injection was more effective than the two-step electron injection. PMID:25535798

  12. Formation of a Ternary Complex for Selenocysteine Biosynthesis in Bacteria.

    PubMed

    Silva, Ivan R; Serrão, Vitor H B; Manzine, Livia R; Faim, Lívia M; da Silva, Marco T A; Makki, Raphaela; Saidemberg, Daniel M; Cornélio, Marinônio L; Palma, Mário S; Thiemann, Otavio H

    2015-12-01

    The synthesis of selenocysteine-containing proteins (selenoproteins) involves the interaction of selenocysteine synthase (SelA), tRNA (tRNA(Sec)), selenophosphate synthetase (SelD, SPS), a specific elongation factor (SelB), and a specific mRNA sequence known as selenocysteine insertion sequence (SECIS). Because selenium compounds are highly toxic in the cellular environment, the association of selenium with proteins throughout its metabolism is essential for cell survival. In this study, we demonstrate the interaction of SPS with the SelA-tRNA(Sec) complex, resulting in a 1.3-MDa ternary complex of 27.0 ± 0.5 nm in diameter and 4.02 ± 0.05 nm in height. To assemble the ternary complex, SPS undergoes a conformational change. We demonstrated that the glycine-rich N-terminal region of SPS is crucial for the SelA-tRNA(Sec)-SPS interaction and selenoprotein biosynthesis, as revealed by functional complementation experiments. Taken together, our results provide new insights into selenoprotein biosynthesis, demonstrating for the first time the formation of the functional ternary SelA-tRNA(Sec)-SPS complex. We propose that this complex is necessary for proper selenocysteine synthesis and may be involved in avoiding the cellular toxicity of selenium compounds. PMID:26378233

  13. Dynamics of electrical double layer formation in room-temperature ionic liquids under constant-current charging conditions

    SciTech Connect

    Jiang, Xikai; Huang, Jingsong; Zhao, Hui; Sumpter, Bobby G; Qiao, Rui

    2014-01-01

    We report detailed simulation results on the formation dynamics of an electrical double layer (EDL) inside an electrochemical cell featuring room-temperature ionic liquids (RTILs) enclosed between two planar electrodes. Under relatively small charging currents, the evolution of cell potential during charging can be suitably predicted by the Landau-Ginzburg-type continuum model proposed recently (M. Z. Bazant, B. D. Storey, and A. A. Kornyshev, Phys. Rev. Lett., 106, 046102, 2011). Under very large charging currents, the cell potential shows pronounced oscillation during the initial stage of charging, a feature not captured by the continuum model. Such oscillation originates from the sequential growth of the ionic space charge layers near the electrode surface, allowing the evolution of EDLs in RTILs with time, an atomistic process difficult to visualize experimentally, to be studied by analyzing the cell potential under constant current charging conditions. While the continuum model cannot predict the potential oscillation under such far-from-equilibrium charging conditions, it can nevertheless qualitatively capture the growth of cell potential during the later stage of charging. Improving the continuum model by introducing frequency-dependent dielectric constant and density-dependent ion diffusion coefficients may help to further extend the applicability of the model. Keywords: ionic

  14. Dynamics of electrical double layer formation in room-temperature ionic liquids under constant-current charging conditions.

    PubMed

    Jiang, Xikai; Huang, Jingsong; Zhao, Hui; Sumpter, Bobby G; Qiao, Rui

    2014-07-16

    We report detailed simulation results on the formation dynamics of an electrical double layer (EDL) inside an electrochemical cell featuring room-temperature ionic liquids (RTILs) enclosed between two planar electrodes. Under relatively small charging currents, the evolution of cell potential from molecular dynamics (MD) simulations during charging can be suitably predicted by the Landau-Ginzburg-type continuum model proposed recently (Bazant et al 2011 Phys. Rev. Lett. 106 046102). Under very large charging currents, the cell potential from MD simulations shows pronounced oscillation during the initial stage of charging, a feature not captured by the continuum model. Such oscillation originates from the sequential growth of the ionic space charge layers near the electrode surface. This allows the evolution of EDLs in RTILs with time, an atomistic process difficult to visualize experimentally, to be studied by analyzing the cell potential under constant-current charging conditions. While the continuum model cannot predict the potential oscillation under such far-from-equilibrium charging conditions, it can nevertheless qualitatively capture the growth of cell potential during the later stage of charging. Improving the continuum model by introducing frequency-dependent dielectric constant and density-dependent ion diffusion coefficients may help to further extend the applicability of the model. The evolution of ion density profiles is also compared between the MD and the continuum model, showing good agreement. PMID:24919471

  15. GABAergic complex basket formations in the human neocortex.

    PubMed

    Blazquez-Llorca, Lidia; García-Marín, Virginia; DeFelipe, Javier

    2010-12-15

    Certain GABAergic interneurons in the cerebral cortex, basket cells, establish multiple connections with cell bodies that typically outline the somata and proximal dendrites of pyramidal cells. During studies into the distribution of the vesicular GABA transporter (VGAT) in the human cerebral cortex, we were struck by the presence of a very dense, pericellular arrangement of multiple VGAT-immunoreactive (-ir) terminals in certain cortical areas. We called these terminals "Complex basket formations" (Cbk-formations) to distinguish them from the simpler and more typical pericellular GABAergic innervations of most cortical neurons. Here we examined the distribution of these VGAT-ir Cbk-formations in various cortical areas, including the somatosensory (area 3b), visual (areas 17 and 18), motor (area 4), associative frontal (dorsolateral areas 9, 10, 45, 46, and orbital areas 11, 12, 13, 14, 47), associative temporal (areas 20, 21, 22, and 38), and limbic cingulate areas (areas 24, 32). Furthermore, we used dual or triple staining techniques to study the chemical nature of the innervated cells. We found that VGAT-ir Cbk-formations were most frequently found in area 4 followed by areas 3b, 13, and 18. In addition, they were mostly observed in layer III, except in area 17, where they were most dense in layer IV. We also found that 70% of the innervated neurons were pyramidal cells, while the remaining 30% were multipolar cells. Most of these multipolar cells expressed the calcium-binding protein parvalbumin and the lectin Vicia villosa agglutinin. PMID:21031559

  16. The ribosome-associated complex antagonizes prion formation in yeast

    PubMed Central

    Amor, Alvaro J; Castanzo, Dominic T; Delany, Sean P; Selechnik, Daniel M; van Ooy, Alex; Cameron, Dale M

    2015-01-01

    Abstract The number of known fungal proteins capable of switching between alternative stable conformations is steadily increasing, suggesting that a prion-like mechanism may be broadly utilized as a means to propagate altered cellular states. To gain insight into the mechanisms by which cells regulate prion formation and toxicity we examined the role of the yeast ribosome-associated complex (RAC) in modulating both the formation of the [PSI+] prion – an alternative conformer of Sup35 protein – and the toxicity of aggregation-prone polypeptides. The Hsp40 RAC chaperone Zuo1 anchors the RAC to ribosomes and stimulates the ATPase activity of the Hsp70 chaperone Ssb. We found that cells lacking Zuo1 are sensitive to over-expression of some aggregation-prone proteins, including the Sup35 prion domain, suggesting that co-translational protein misfolding increases in Δzuo1 strains. Consistent with this finding, Δzuo1 cells exhibit higher frequencies of spontaneous and induced prion formation. Cells expressing mutant forms of Zuo1 lacking either a C-terminal charged region required for ribosome association, or the J-domain responsible for Ssb ATPase stimulation, exhibit similarly high frequencies of prion formation. Our findings are consistent with a role for the RAC in chaperoning nascent Sup35 to regulate folding of the N-terminal prion domain as it emerges from the ribosome. PMID:25739058

  17. Formation of polyelectrolyte complexes with diethylaminoethyl dextran: charge ratio and molar mass effect.

    PubMed

    Le Cerf, Didier; Pepin, Anne Sophie; Niang, Pape Momar; Cristea, Mariana; Karakasyan-Dia, Carole; Picton, Luc

    2014-11-26

    The formation of polyelectrolyte complexes (PECs) between carboxymethyl pullulan and DEAE Dextran, was investigated, in dilute solution, with emphasis on the effect of charge density (molar ratio or pH) and molar masses. Electrophoretic mobility measurements have evidenced that insoluble PECs (neutral electrophoretic mobility) occurs for charge ratio between 0.6 (excess of polycation) and 1 (stoichiometry usual value) according to the pH. This atypical result is explained by the inaccessibility of some permanent cationic charge when screened by pH dependant cationic ones (due to the Hoffman alkylation). Isothermal titration calorimetry (ITC) indicates an endothermic formation of PEC with a binding constant around 10(5) L mol(-1). Finally asymmetrical flow field flow fractionation coupled on line with static multi angle light scattering (AF4/MALS) evidences soluble PECs with very large average molar masses and size around 100 nm, in agreement with scrambled eggs multi-association between various polyelectrolyte chains. PMID:25256478

  18. Formation and Redox Interconversion of Niobium Methylidene and Methylidyne Complexes.

    PubMed

    Searles, Keith; Smith, Kyle T; Kurogi, Takashi; Chen, Chun-Hsing; Carroll, Patrick J; Mindiola, Daniel J

    2016-06-01

    The niobium methylidene [{(Ar'O)2 Nb}2 (μ2 -Cl)2 (μ2 -CH2 )] (2) can be cleanly prepared via thermolysis or photolysis of [(Ar'O)2 Nb(CH3 )2 Cl] (1) (OAr'=2,6-bis(diphenylmethyl)-4-tert-butylphenoxide). Reduction of 2 with two equivalents of KC8 results in formation of the first niobium methylidyne [K][{(Ar'O)2 Nb}2 (μ2 -CH)(μ2 -H)(μ2 -Cl)] (3) via a binuclear α-hydrogen elimination. Oxidation of 3 with two equiv of ClCPh3 reforms 2. In addition to solid state X-ray analysis, all these complexes were elucidated via multinuclear NMR experiments and isotopic labelling studies, including a crossover experiment, support the notion for a radical mechanism as well as a binuclear α-hydrogen abstraction pathway being operative in the formation of 2 from 1. PMID:27110689

  19. Formation of glutathionyl dinitrosyl iron complexes protects against iron genotoxicity.

    PubMed

    Lewandowska, Hanna; Sadło, Jarosław; Męczyńska, Sylwia; Stępkowski, Tomasz M; Wójciuk, Grzegorz; Kruszewski, Marcin

    2015-07-28

    Dinitrosyl iron(i) complexes (DNICs), intracellular NO donors, are important factors in nitric oxide-dependent regulation of cellular metabolism and signal transduction. It has been shown that NO diminishes the toxicity of iron ions and vice versa. To gain insight into the possible role of DNIC in this phenomenon, we examined the effect of GS-DNIC formation on the ability of iron ions to mediate DNA damage, by treatment of the pUC19 plasmid with physiologically relevant concentrations of GS-DNIC. It was shown that GS-DNIC formation protects against the genotoxic effect of iron ions alone and iron ions in the presence of a naturally abundant antioxidant, GSH. This sheds new light on the iron-related protective effect of NO under the circumstances of oxidative stress. PMID:26079708

  20. Constant speed control for complex cross-section welding using robot based on angle self-test

    NASA Astrophysics Data System (ADS)

    Xue, Long; Zou, Yong; Huang, Jiqiang; Huang, Junfen; Tao, Xinghua; Hu, Yanfeng

    2014-03-01

    Expandable profile liner(EPL) is a promising new oil well casing cementing technique, and welding is a major EPLs connection technology. Connection of EPL is still in the stage of manual welding so far, automatic welding technology is a hotspot of EPL which is one of the key technologies to be solved. A robot for automatic welding of "8" type EPL is studied. Four quadrants of mathematical equations of the 8-shaped cross-section track of EPL, consisting of multiple arcs, are established. Mechanism program for complex cross-section welding of EPL based on angle detection is proposed according to characteristics of small size, small valleys, and large forming errors, etc. A welding velocity vector control model is established by linkage control of a welding vehicle, a small driven actuator, and a height tracking mechanism. A constant speed control model based on an angle and symmetrical analysis model of rectangular coordinate system for EPL is built. Constraint conditions of constant speed control between each section are analyzed with 4 sections in first quadrant as an example, and cooperation work mechanism of the welding vehicle and the small tracking actuator is established based on pressure detection. The constant speed control model using angle self-test can be used to avoid the need for a precise mathematical model for tracking control and to adapt manufacture and installation deviation of EPL workpiece. The model is able to solve constant speed and trajectory tracking problems of EPL cross-section welding. EPL seams welded by the studied robot are good in appearance, and non-destructive testing(NDT) shows the seams are good in quality with no welding defects. Bulge tests show that the maximum pressure of welded EPL is 35 MPa, which can fulfill expansion performance requirements.

  1. Formation of gold mineralization in ultramafic alkalic magmatic complexes

    NASA Astrophysics Data System (ADS)

    Ryabchikov, I. D.; Kogarko, L. N.; Sazonov, A. M.; Kononkova, N. N.

    2016-06-01

    Study of mineral inclusions within alluvial gold particles of the Guli Complex (East Siberia) and findings of lode gold in rocks of the same intrusion have demonstrated that gold mineralization occurs in interstitions of both early high-magnesium rocks (dunite) and later alkalic and carbonatite rocks. In dunite the native gold occurs in association with Fe-Ni sulfides (monosulfide solid solution, pentlandite, and heazlewoodite). Formation of the gold-bearing alloys took place under a low oxygen potential over a broad range of temperatures: from those close to 600°C down to below 400°C.

  2. Redox reactions and complex formation of transplutonium elements in solutions

    SciTech Connect

    Krot, N.N.; Myasoedov, B.F.

    1986-01-01

    This paper gives a brief analysis of the kinetics and mechanism of a number of redox processes and the complex formation of transplutonium elements in unusual oxidation states. The composition and strength of complexes of TPE with various addends have been determined. The new experimental data on the oxidation potentials of americium and berkelium ions in solutions are cited in abbreviated form. It follows from the data that in phosphoric acid solutions, when the H/sub 3/PO/sub 4/ concentration is increased from 10 to 15 M, the oxidation potential of the couple Am(IV)-Am(III) decreases. The oxidation potentials of the couples Am(VI)-Am(V), Cm(V)-Cm(IV), and Bk(IV)Bk(III) are also presented.

  3. Nucleation-dependent tau filament formation: the importance of dimerization and an estimation of elementary rate constants.

    PubMed

    Congdon, Erin E; Kim, Sohee; Bonchak, Jonathan; Songrug, Tanakorn; Matzavinos, Anastasios; Kuret, Jeff

    2008-05-16

    Filamentous inclusions composed of the microtubule-associated protein tau are found in Alzheimer disease and other tauopathic neurodegenerative diseases, but the mechanisms underlying their formation from full-length protein monomer under physiological conditions are unclear. To address this issue, the fibrillization of recombinant full-length four-repeat human tau was examined in vitro as a function of time and submicromolar tau concentrations using electron microscopy assay methods and a small-molecule inducer of aggregation, thiazine red. Data were then fit to a simple homogeneous nucleation model with rate constant constraints established from filament dissociation rate, critical concentration, and mass-per-unit length measurements. The model was then tested by comparing the predicted time-dependent evolution of length distributions to experimental data. Results indicated that once assembly-competent conformations were attained, the rate-limiting step in the fibrillization pathway was tau dimer formation. Filament elongation then proceeded by addition of tau monomers to nascent filament ends. Filaments isolated at reaction plateau contained approximately 2 tau protomers/beta-strand spacing on the basis of mass-per-unit length measurements. The model suggests four key steps in the aggregation pathway that must be surmounted for tau filaments to form in disease. PMID:18359772

  4. Characterization of Hydrogen Complex Formation in III-V Semiconductors

    SciTech Connect

    Williams, Michael D

    2006-09-28

    Atomic hydrogen has been found to react with some impurity species in semiconductors. Hydrogenation is a methodology for the introduction of atomic hydrogen into the semiconductor for the express purpose of forming complexes within the material. Efforts to develop hydrogenation as an isolation technique for AlGaAs and Si based devices failed to demonstrate its commercial viability. This was due in large measure to the low activation energies of the formed complexes. Recent studies of dopant passivation in long wavelength (0.98 - 1.55m) materials suggested that for the appropriate choice of dopants much higher activation energies can be obtained. This effort studied the formation of these complexes in InP, This material is extensively used in optoelectronics, i.e., lasers, modulators and detectors. The experimental techniques were general to the extent that the results can be applied to other areas such as sensor technology, photovoltaics and to other material systems. The activation energies for the complexes have been determined and are reported in the scientific literature. The hydrogenation process has been shown by us to have a profound effect on the electronic structure of the materials and was thoroughly investigated. The information obtained will be useful in assessing the long term reliability of device structures fabricated using this phenomenon and in determining new device functionalities.

  5. DFT calculations of 15N NMR shielding constants, chemical shifts and complexation shifts in complexes of rhodium(II) tetraformate with some nitrogenous organic ligands

    NASA Astrophysics Data System (ADS)

    Leniak, Arkadiusz; Jaźwiński, Jarosław

    2015-03-01

    Benchmark calculations of 15N NMR shielding constants for a set of model complexes of rhodium(II) tetraformate with nine organic ligands using the Density Functional Theory (DFT) methods have been carried out. The calculations were performed by means of several methods: the non-relativistic, relativistic scalar ZORA, and spin-orbit ZORA approaches at the CGA-PBE/QZ4P theory level, and the GIAO NMR method using the B3PW91 functional with the 6-311++G(2d,p) basis set for C, H, N, O atoms and the Stuttgart basis set for the Rh atom. The geometry of compounds was optimised either by the same basis set as for the NMR calculations or applying the B3LYP functional with the 6-31G(2d) basis set for C, H, N, O atoms and LANL2DZ for the Rh atom. Computed 15N NMR shielding constants σ were compatible with experimental 15N chemical shifts δ of complexes exhibiting similar structure and fulfil the linear equation δ = aσ + b. The a and b parameters for all data sets have been estimated by means of linear regression analysis. In contrast to the correlation method giving "scaled" chemical shifts, the conversion of shielding constants to chemical shifts with respect to the reference shielding of CH3NO2 provided very inaccurate "raw" δ values. The application of the former to the calculation of complexation shifts Δδ (Δδ = δcompl - δlig) reproduced experimental values qualitatively or semi-quantitatively. The non-relativistic B3PW91/[6-311++G(2d,p), Stuttgart] theory level reproduced the NMR parameters as good as the more expensive relativistic CGA-PBE//QZ4P ZORA approaches.

  6. Interference-mediated synaptonemal complex formation with embedded crossover designation

    PubMed Central

    Zhang, Liangran; Espagne, Eric; de Muyt, Arnaud; Zickler, Denise; Kleckner, Nancy E.

    2014-01-01

    Biological systems exhibit complex patterns at length scales ranging from the molecular to the organismic. Along chromosomes, events often occur stochastically at different positions in different nuclei but nonetheless tend to be relatively evenly spaced. Examples include replication origin firings, formation of chromatin loops along chromosome axes and, during meiosis, localization of crossover recombination sites (“crossover interference”). We present evidence in the fungus Sordaria macrospora that crossover interference is part of a broader pattern that includes synaptonemal complex (SC) nucleation. This pattern comprises relatively evenly spaced SC nucleation sites, among which a subset are crossover sites that show a classical interference distribution. This pattern ensures that SC forms regularly along the entire length of the chromosome as required for the maintenance of homolog pairing while concomitantly having crossover interactions locally embedded within the SC structure as required for both DNA recombination and structural events of chiasma formation. This pattern can be explained by a threshold-based designation and spreading interference process. This model can be generalized to give diverse types of related and/or partially overlapping patterns, in two or more dimensions, for any type of object. PMID:25380597

  7. Method for rapidly determining the swelling-clay content in shales and shaly sandstone formations by high-frequency dielectric constant measurements

    SciTech Connect

    Kroeger, M.K.; Longo, J.M.; Steiger, R.P.; Leung, P.K.

    1989-10-24

    This patent describes a method for measuring the swelling-clay content of earth formations by dielectric measurements. It comprises: grinding a sample of the earth formation to a size suitable for testing; washing the sample with a fluid having a water activity substantially less than that of water; packing the washed sample into a sample cell suitable for dielectric measurement; measuring the dielectric constant of the washed sample at a preselected frequency; and comparing the measured dielectric constant of the rock sample to a calibration curve, to determine the swelling-clay content of the earth formation.

  8. Incipient species formation in salamanders of the Ensatina complex

    PubMed Central

    Wake, David B.

    1997-01-01

    The Ensatina eschscholtzii complex of plethodontid salamanders, a well-known “ring species,” is thought to illustrate stages in the speciation process. Early research, based on morphology and coloration, has been extended by the incorporation of studies of protein variation and mitochondrial DNA sequences. The new data show that the complex includes a number of geographically and genetically distinct components that are at or near the species level. The complex is old and apparently has undergone instances of range contraction, isolation, differentiation, and then expansion and secondary contact. While the hypothesis that speciation is retarded by gene flow around the ring is not supported by molecular data, the general biogeographical hypothesis is supported. There is evidence of a north to south range expansion along two axes, with secondary contact and completion of the ring in southern California. Current research targets regions once thought to show primary intergradation, but which molecular markers reveal to be zones of secondary contact. Here emphasis is on the subspecies E. e. xanthoptica, which is involved in four distinct secondary contacts in central California. There is evidence of renewed genetic interactions upon recontact, with greater genetic differentiation within xanthoptica than between it and some of the interacting populations. The complex presents a full array of intermediate conditions between well-marked species and geographically variable populations. Geographically differentiated segments represent a diversity of depths of time of isolation and admixture, reflecting the complicated geomorphological history of California. Ensatina illustrates the continuing difficulty in making taxonomic assignments in complexes studied during species formation. PMID:9223261

  9. The thermodynamic characteristics of complex formation of Cd2+ with N,N-Bis(carboxymethyl)aspartic acid in aqueous solutions at 298.15 K

    NASA Astrophysics Data System (ADS)

    Lytkin, A. I.; Chernyavskaya, N. V.; Litvinenko, V. E.

    2011-01-01

    The equilibrium constants and heats of formation of complexes of N,N-bis(carboxymethyl)aspartic acid (H4Y) with Cd2+ ions at 298.15 K and ionic strengths of 0.2, 0.5, and 1.0 (KNO3) were determined by potentiometric titration and calorimetrically. The thermodynamic characteristics of formation of the CdY2- complex at fixed and zero ionic strength values were calculated. The values obtained were interpreted.

  10. Effect of acidity on the equilibria of formation of mixed Co2+ complexes with heparin and arginine in aqueous solutions at 37°C

    NASA Astrophysics Data System (ADS)

    Feofanova, M. A.; Frantseva, Yu. V.; Semenov, A. N.; Baranova, N. V.; Zhuravlev, E. V.

    2014-02-01

    Results from studying interactions in the heparin-Co2+ ion-arginine system are presented. The constants of formation of mixed Co2+ complexes with heparin and arginine in aqueous solutions in a broad pH range at 37°C are determined potentiometrically. The chemical equilibria in the system are simulated and the stoichiometry of formation of the complex forms is determined.

  11. Factor Xa dimerization competes with prothrombinase complex formation on platelet-like membrane surfaces.

    PubMed

    Koklic, Tilen; Chattopadhyay, Rima; Majumder, Rinku; Lentz, Barry R

    2015-04-01

    Exposure of phosphatidylserine (PS) molecules on activated platelet membrane surface is a crucial event in blood coagulation. Binding of PS to specific sites on factor Xa (fXa) and factor Va (fVa) promotes their assembly into a complex that enhances proteolysis of prothrombin by approximately 10⁵. Recent studies demonstrate that both soluble PS and PS-containing model membranes promote formation of inactive fXa dimers at 5 mM Ca²⁺. In the present study, we show how competition between fXa dimerization and prothrombinase formation depends on Ca²⁺ and lipid membrane concentrations. We used homo-FRET measurements between fluorescein-E-G-R-chloromethylketone (CK)-Xa [fXa irreversibly inactivated by alkylation of the active site histidine residue with FEGR (FEGR-fXa)] and prothrombinase activity measurements to reveal the balance between fXa dimer formation and fXa-fVa complex formation. Changes in FEGR-fXa dimer homo-FRET with addition of fVa to model-membrane-bound FEGR-fXa unambiguously demonstrated that formation of the FEGR-fXa-fVa complex dissociated the dimer. Quantitative global analysis according to a model for protein interaction equilibria on a surface provided an estimate of a surface constant for fXa dimer dissociation (K(fXa×fXa)(d, σ)) approximately 10-fold lower than K(fXa×fVa)(d,σ) for fXa-fVa complex. Experiments performed using activated platelet-derived microparticles (MPs) showed that competition between fXa dimerization and fXa-fVa complex formation was even more prominent on MPs. In summary, at Ca²⁺ concentrations found in the maturing platelet plug (2-5 mM), fVa can compete fXa off of inactive fXa dimers to significantly amplify thrombin production, both because it releases dimer inhibition and because of its well-known cofactor activity. This suggests a hitherto unanticipated mechanism by which PS-exposing platelet membranes can regulate amplification and propagation of blood coagulation. PMID:25572019

  12. Influence of structural features of carrageenan on the formation of polyelectrolyte complexes with chitosan.

    PubMed

    Volod'ko, A V; Davydova, V N; Glazunov, V P; Likhatskaya, G N; Yermak, I M

    2016-03-01

    The polyelectrolyte complexes (PEC) of carrageenans (CG)-κ-, κ/β-, λ-and x-CG with chitosan were obtained. The formation of PEC was detected by Fourier-transform infrared (FTIR) spectroscopy and by centrifugation in a Percoll gradient. The influence of the structural peculiarities of CG on its interaction with chitosan was studied. The results of centrifugation showed that x-CG with a high degree of sulphation (SD) was completely bound to chitosan, unlike low SD κ-CG and κ/β-CG. Binding constant values showed there was a high affinity of CG for chitosan. CG with flexible macromolecule conformation and high SD exhibited the greatest binding affinity for chitosan. The full-atomic 3D-structures of the PEC κ-CG: chitosan in solution have been obtained by the experiments in silico for the first time. The amino groups of chitosan make the largest contribution to the energy of the complex formation by means of hydrogen and ionic bonds. The most probable complexes have stoichiometries of 1:1 and 1:1.5. PMID:26712704

  13. Cadmium(II) Complex Formation with Cysteine and Penicillamine

    PubMed Central

    Jalilehvand, Farideh; Leung, Bonnie O.; Mah, Vicky

    2009-01-01

    The complex formation between cadmium(II) and the ligands cysteine (H2Cys) or penicillamine (H2Pen = 3, 3′-dimethylcysteine) in aqueous solutions, containing CCd(II) ∼ 0.1 mol dm-3 and CH2L = 0.2 – 2 mol dm-3, was studied at pH = 7.5 and 11.0 by means of 113Cd-NMR and Cd K- and L3-edge X-ray absorption spectroscopy. For all cadmium(II)-cysteine mole ratios the mean Cd-S and Cd-(N/O) bond distances were found in the ranges 2.52 – 2.54 Å and 2.27 – 2.35 Å, respectively. The corresponding cadmium(II)-penicillamine complexes showed slightly shorter Cd-S bonds, 2.50 – 2.53 Å, but with the Cd-(N/O) bond distances in a similar wide range, 2.28 – 2.33 Å. For the mole ratio CH2L / CCd(II) = 2, the 113Cd chemical shifts, in the range 509 – 527 ppm at both pH values, indicated complexes with distorted tetrahedral CdS2N(N/O) coordination geometry. With a large excess of cysteine (mole ratios CH2Cys / CCd(II) ≥ 10) complexes with CdS4 coordination geometry dominate, consistent with the 113Cd NMR chemical shifts, δ ∼ 680 ppm at pH 7.5 and 636 - 658 ppm at pH 11.0, and their mean Cd-S distances of 2.53 ± 0.02 Å. At pH 7.5, the complexes are almost exclusively sulfur-coordinated as [Cd(S-cysteinate)4]n-, while at higher pH the deprotonation of the amine groups promotes chelate formation, and at pH 11.0 a minor amount of the [Cd(Cys)3]4- complex with CdS3N coordination is formed. For the corresponding penicillamine solutions with mole ratios CH2Pen / CCd(II) ≥ 10, the 113Cd-NMR chemical shifts, δ ∼ 600 ppm at pH 7.5 and 578 ppm at pH 11.0, together with the average bond distances Cd-S 2.53 ± 0.02 Å and Cd-O 2.30 – 2.33 Å, indicate that [Cd(penicillaminate)3]n- complexes with chelating CdS3(N/O) coordination dominate already at pH 7.5, and become mixed with CdS2N(N/O) complexes at pH 11.0. The present study reveals differences between cysteine and penicillamine as ligands to the cadmium(II) ion that can explain why cysteine-rich metallothionines

  14. Cadmium(II) complex formation with cysteine and penicillamine.

    PubMed

    Jalilehvand, Farideh; Leung, Bonnie O; Mah, Vicky

    2009-07-01

    The complex formation between cadmium(II) and the ligands cysteine (H(2)Cys) and penicillamine (H(2)Pen = 3,3'-dimethylcysteine) in aqueous solutions, having C(Cd(II)) approximately 0.1 mol dm(-3) and C(H(2)L) = 0.2-2 mol dm(-3), was studied at pH = 7.5 and 11.0 by means of (113)Cd NMR and Cd K- and L(3)-edge X-ray absorption spectroscopy. For all cadmium(II)-cysteine molar ratios, the mean Cd-S and Cd-(N/O) bond distances were found in the ranges 2.52-2.54 and 2.27-2.35 A, respectively. The corresponding cadmium(II)-penicillamine complexes showed slightly shorter Cd-S bonds, 2.50-2.53 A, but with the Cd-(N/O) bond distances in a similar wide range, 2.28-2.33 A. For the molar ratio C(H(2)L)/C(Cd(II)) = 2, the (113)Cd chemical shifts, in the range 509-527 ppm at both pH values, indicated complexes with distorted tetrahedral CdS(2)N(N/O) coordination geometry. With a large excess of cysteine (molar ratios C(H(2)Cys)/C(Cd(II)) >or= 10), complexes with CdS(4) coordination geometry dominate, consistent with the (113)Cd NMR chemical shifts, delta approximately 680 ppm at pH 7.5 and 636-658 ppm at pH 11.0, and their mean Cd-S distances were 2.53 +/- 0.02 A. At pH 7.5, the complexes are almost exclusively sulfur-coordinated as [Cd(S-cysteinate)(4)](n-), while at higher pH, the deprotonation of the amine groups promotes chelate formation. At pH 11.0, a minor amount of the [Cd(Cys)(3)](4-) complex with CdS(3)N coordination is formed. For the corresponding penicillamine solutions with molar ratios C(H(2)Pen)/C(Cd(II)) >or= 10, the (113)Cd NMR chemical shifts, delta approximately 600 ppm at pH 7.5 and 578 ppm at pH 11.0, together with the average bond distances, Cd-S 2.53 +/- 0.02 A and Cd-(N/O) 2.30-2.33 A, indicate that [Cd(penicillaminate)(3)](n-) complexes with chelating CdS(3)(N/O) coordination dominate already at pH 7.5 and become mixed with CdS(2)N(N/O) complexes at pH 11.0. The present study reveals differences between cysteine and penicillamine as ligands to the

  15. A spectroscopic study on the formation of Cm(III) acetate complexes at elevated temperatures.

    PubMed

    Fröhlich, Daniel R; Skerencak-Frech, Andrej; Panak, Petra J

    2014-03-14

    The complexation of Cm(III) with acetate is studied by time resolved laser fluorescence spectroscopy (TRLFS) as a function of ionic strength, ligand concentration, temperature and background electrolyte (NaClO4, NaCl and CaCl2 solution). The speciation of Cm(III) is determined by peak deconvolution of the emission spectra. To obtain the thermodynamic stability constants (log K) for the formation of [Cm(Ac)n](3-n) (n = 1-3), the experimental data are extrapolated to zero ionic strength according to the specific ion interaction theory (SIT). The results show a continuous increase of the stability constants with increasing temperature (20-90 °C). The standard reaction enthalpies and entropies (ΔrH, ΔrS) of the respective reactions are derived from the integrated Van't Hoff equation. The results show that all complexation steps are endothermic and thus entropy driven (ΔrH and ΔrS > 0). PMID:24448229

  16. Image formation in the eye: very specified complexity

    NASA Astrophysics Data System (ADS)

    Stoltzmann, David E.

    2005-08-01

    The formation of an image, and its correct interpretation by sighted living creatures, is a unique example of specified complexity unlike anything else in nature. While many of the functional aspects of living organisms are extremely complex, only an image requires a unique mapping process by the eye-brain system to be useful to the organism. The transfer of light from an object scene to a visual detection system (eye + brain) conveys an enormous amount of information. But unless that information is correctly organized into a useful image, the exchange of information is degraded and of questionable use. This paper examines the "connections" necessary for images to be interpreted correctly, as well as addressing the additional complexity requirement of dual-image mapping for stereovision capabilities. Statistics are presented for "simple eyes" consisting of a few pixels to illustrate the daunting task that random chance has to produce any form of a functional eye. For example, a 12-pixel eye (or camera) has 12! (479,001,600) possible pixel-to-brain (computer) wiring combinations, which can then be compared to the 126 million rods/cones of the actual human eye. If one tries to "connect the wires" (correctly interpret the information contained) in a 12-pixel image by random processes, by the time 6 pixels become correctly connected, over 99.9% of all the trials are incorrect, producing "noise" rather than a recognizable image. Higher numbers of pixels quickly make the problem astronomically worse for achieving any kind of useful image. This paper concludes that random-chance purposeless undirected processes cannot account for how images are perceived by living organisms.

  17. Cyclodextrins in pharmaceutical formulations I: structure and physicochemical properties, formation of complexes, and types of complex.

    PubMed

    Jambhekar, Sunil S; Breen, Philip

    2016-02-01

    Cyclodextrins are cyclic oligosaccharides that have been recognized as pharmaceutical adjuvants for the past 20 years. The molecular structure of these glucose derivatives, which approximates a truncated cone, bucket, or torus, generates a hydrophilic exterior surface and a nonpolar interior cavity. Cyclodextrins can interact with appropriately sized drug molecules to yield an inclusion complex. These noncovalent inclusion complexes offer a variety of advantages over the noncomplexed form of a drug. Cyclodextrins are primarily used to enhance the aqueous solubility, physical chemical stability, and bioavailability of drugs. Their other applications include preventing drug-drug interactions, converting liquid drugs into microcrystalline powders, minimizing gastrointestinal and ocular irritation, and reducing or eliminating unpleasant taste and smell. Here, we discuss the physical chemical properties of various cyclodextrins, including the effects of substitutions on these properties. Additionally, we report on the regulatory status of their use, commercial products containing cyclodextrins, toxicological considerations, and the forces involved in complex formation. We also highlight the types of complex formed and discuss the methods used to determine the types of complex present. PMID:26686054

  18. Thermodynamic Investigation and Mixed Ligand Complex Formation of 1,4-Bis-(3-aminopropyl)-piperazine and Biorelevant Ligands

    PubMed Central

    El-Sherif, Ahmed A.; Shehata, Mohamed R.; Shoukry, Mohamed M.; Barakat, Mohammad H.

    2012-01-01

    Thermodynamic parameters for protonation of 1,4-bis(3-aminopropyl)-piperazine (BAPP) and its metal complexation with some divalent metal ions were determined in aqueous solution at constant ionic strength (0.1 M NaNO3) using a potentiometric technique. The order of –ΔG0 and –ΔH0 was found to obey Co2+ < Ni2+ < Cu2+ > Zn2+, in accordance with the Irving-Williams order. The formation equilibria of zinc (II) complexes and the ternary complexes Zn(BAPP)L, where L = amino acid, amides, or DNA constituents), have been investigated. Ternary complexes are formed by a simultaneous mechanism. The concentration distribution of the complexes in solution was evaluated as a function of pH. Stoichiometry and stability constants for the complexes formed are reported and discussed. The stability of ternary complexes was quantitatively compared with their corresponding binary complexes in terms of the parameter Δlog K. PMID:23226992

  19. Formation of complexes of antimicrobial agent norfloxacin with antitumor antibiotics of anthracycline series

    NASA Astrophysics Data System (ADS)

    Evstigneev, M. P.; Rybakova, K. A.; Davies, D. B.

    2007-05-01

    The formation of complexes in solutions of the norfloxacin antimicrobial agent (NOR) with daunomycin (DAU) and nogalamycin (NOG), antitumor anthracycline antibiotics, was studied using 1H NMR spectroscopy. Based on the concentration and temperature dependences of the chemical shifts of the protons of interacting molecules, the equilibrium constants and thermodynamic parameters (enthalpy and entropy) of heteroassociation of the antibiotics were calculated. It was shown that NOR interacts with DAU (NOG) in aqueous solutions forming stacked heterocomplexes with parallel orientation of the molecular chromophores. The conclusion was drawn that such interactions should be taken into account when anthracyclines and quinolones are jointly administered during combined chemotherapy, since they can contribute to the medico-biological synergistic effect of these antibiotics.

  20. Phase Transition in Postsynaptic Densities Underlies Formation of Synaptic Complexes and Synaptic Plasticity.

    PubMed

    Zeng, Menglong; Shang, Yuan; Araki, Yoichi; Guo, Tingfeng; Huganir, Richard L; Zhang, Mingjie

    2016-08-25

    Postsynaptic densities (PSDs) are membrane semi-enclosed, submicron protein-enriched cellular compartments beneath postsynaptic membranes, which constantly exchange their components with bulk aqueous cytoplasm in synaptic spines. Formation and activity-dependent modulation of PSDs is considered as one of the most basic molecular events governing synaptic plasticity in the nervous system. In this study, we discover that SynGAP, one of the most abundant PSD proteins and a Ras/Rap GTPase activator, forms a homo-trimer and binds to multiple copies of PSD-95. Binding of SynGAP to PSD-95 induces phase separation of the complex, forming highly concentrated liquid-like droplets reminiscent of the PSD. The multivalent nature of the SynGAP/PSD-95 complex is critical for the phase separation to occur and for proper activity-dependent SynGAP dispersions from the PSD. In addition to revealing a dynamic anchoring mechanism of SynGAP at the PSD, our results also suggest a model for phase-transition-mediated formation of PSD. PMID:27565345

  1. Variation in DNA binding constants with a change in geometry of ternary copper(II) complexes with N2O donor Schiff base and cyanate or dicyanamide

    NASA Astrophysics Data System (ADS)

    Jana, Subrata; Santra, Ramesh Chandra; Das, Saurabh; Chattopadhyay, Shouvik

    2014-09-01

    Two new copper(II) complexes, [Cu(L)(OCN)] (1) and [CuL(dca)]n (2), where HL = 2-(-(2-(diethylamino)ethylimino)methyl)naphthalen-1-ol, dca = N(CN)2-, have been synthesized and characterized by elemental analysis, IR, UV-VIS spectroscopy and single crystal X-ray diffraction studies. Complex 1 has square planar and complex 2 square pyramidal geometries in solid state around metal centre. Interactions of the complexes with calf thymus DNA (CT DNA) were studied by UV-VIS spectroscopy. Binding constant and site size of interaction were determined. Binding site size and intrinsic binding constant K revealed complex 1 interacted with calf thymus DNA better than complex 2.

  2. Probing the Formation of Complex Organic Molecules in Interstellar Ices - Beyond the FTIR - RGA Limitation

    NASA Astrophysics Data System (ADS)

    Kaiser, Ralf I.

    2015-08-01

    An understanding of the formation of key classes of complex organic molecules (COMs) within interstellar ices is of core value to the laboratory astrophysics community with structural isomers - molecules with the same molecular formula but different connectivities of atoms - serving as a molecular clock and tracers in defining the evolutionary stage of cold molecular clouds and star forming regions. Here, the lack of data on products, branching ratios, and rate constants of their formation and how they depend on the ice temperature and composition limits the understanding how COMs are synthesized. Classically, infrared spectroscopy combined with mass spectrometry of the irradiated and subliming ices have been exploited for the last decades, but the usefulness of these methods has reached the limits when it comes to the identification of CMS in those ices. Here, infrared spectroscopy can only untangle the functional groups of COMs; mass spectrometry coupled with electron impact ionization cannot discriminate structural isomers and suffers from extensive fragmentation. This talk presents a novel approach to elucidate the formation of COMs by exploiting - besides classical infrared, Raman, and ultraviolet-visual spectroscopy - reflectron time-of-flight mass spectrometry (ReTOF) coupled with tunable vacuum ultraviolet (VUV) soft photoionization (ReTOF-PI). This technique has the unique power to identify the molecules based on a cross correlation of their mass-to-charge ratios, their ionization energies (IE), and their sublimation temperatures ultimately unraveling an inventory of individual COMs molecules formed upon interaction of ionizing radiation with interstellar analog ices.

  3. Determination of Effective Stability Constants of Ion-Carrier Complexes in Ion Selective Nanospheres with Charged Solvatochromic Dyes.

    PubMed

    Xie, Xiaojiang; Bakker, Eric

    2015-11-17

    Ionophores are widely used ion carriers in ion selective sensors. The effective stability constant (β) is a key physical parameter providing valuable guidelines to the design of ionophores and carrier-based ion selective sensors. The β value of ion-carrier complex in plasticized poly(vinyl chloride) (PVC) membranes and solutions have been determined in the past by various techniques, but most of them are difficult to implement at the nanoscale owing to the ultrasmall sample volume. A new methodology based on charged solvatochromic dyes is introduced here for the first time to determine β values directly within ion selective nanospheres. Four ionophores with different selectivities toward Na(+), K(+), Ca(2+), and H(+), respectively, are successfully characterized in nanospheres composed of triblock copolymer Pluronic F-127 and bis(2-ethylhexyl) sebacate. The values determined in the nanospheres are smaller compared with those in plasticized PVC membranes, indicating a more polar nanosphere microenvironment and possible uneven distribution of the sensing components in the interfacial region. PMID:26502342

  4. Determination of plasma frequency, damping constant, and size distribution from the complex dielectric function of noble metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Mendoza Herrera, Luis J.; Arboleda, David Muñetón; Schinca, Daniel C.; Scaffardi, Lucía B.

    2014-12-01

    This paper develops a novel method for simultaneously determining the plasma frequency ωP and the damping constant γfr e e in the bulk damped oscillator Drude model, based on experimentally measured real and imaginary parts of the metal refractive index in the IR wavelength range, lifting the usual approximation that restricts frequency values to the UV-deep UV region. Our method was applied to gold, silver, and copper, improving the relative uncertainties in the final values for ωp (0.5%-1.6%) and for γfr e e (3%-8%), which are smaller than those reported in the literature. These small uncertainties in ωp and γfr e e determination yield a much better fit of the experimental complex dielectric function. For the case of nanoparticles (Nps), a series expansion of the Drude expression (which includes ωp and γfr e e determined using our method) enables size-dependent dielectric function to be written as the sum of three terms: the experimental bulk dielectric function plus two size corrective terms, one for free electron, and the other for bound-electron contributions. Finally, size distribution of nanometric and subnanometric gold Nps in colloidal suspension was determined through fitting its experimental optical extinction spectrum using Mie theory based on the previously determined dielectric function. Results are compared with size histogram obtained from Transmission Electron Microscopy (TEM).

  5. Determination of plasma frequency, damping constant, and size distribution from the complex dielectric function of noble metal nanoparticles

    SciTech Connect

    Mendoza Herrera, Luis J.; Arboleda, David Muñetón; Schinca, Daniel C.; Scaffardi, Lucía B.

    2014-12-21

    This paper develops a novel method for simultaneously determining the plasma frequency ω{sub P}   and the damping constant γ{sub free} in the bulk damped oscillator Drude model, based on experimentally measured real and imaginary parts of the metal refractive index in the IR wavelength range, lifting the usual approximation that restricts frequency values to the UV-deep UV region. Our method was applied to gold, silver, and copper, improving the relative uncertainties in the final values for ω{sub p} (0.5%–1.6%) and for γ{sub free} (3%–8%), which are smaller than those reported in the literature. These small uncertainties in ω{sub p} and γ{sub free} determination yield a much better fit of the experimental complex dielectric function. For the case of nanoparticles (Nps), a series expansion of the Drude expression (which includes ω{sub p} and γ{sub free} determined using our method) enables size-dependent dielectric function to be written as the sum of three terms: the experimental bulk dielectric function plus two size corrective terms, one for free electron, and the other for bound-electron contributions. Finally, size distribution of nanometric and subnanometric gold Nps in colloidal suspension was determined through fitting its experimental optical extinction spectrum using Mie theory based on the previously determined dielectric function. Results are compared with size histogram obtained from Transmission Electron Microscopy (TEM)

  6. Stability constants and thermodynamic data for complexes of 12-crown-4 with alkali metal and alkaline-earth cations in methanol solutions

    SciTech Connect

    Buschmann, H.

    1987-03-01

    The formation of 1:1- and 2:1-complexes of the crown ether 12C4 with mono- and bivalent cations was studied in methanol solutions by calorimetric, potentiometric and conductometric titrations. It is shown that not all donor atoms of the ligand 12C4 take part in complex formation. The accuracy of the three experimental methods are checked by comparing the results for the complexation of alkali ions with crown ether 18C6.

  7. Structural basis of complement membrane attack complex formation.

    PubMed

    Serna, Marina; Giles, Joanna L; Morgan, B Paul; Bubeck, Doryen

    2016-01-01

    In response to complement activation, the membrane attack complex (MAC) assembles from fluid-phase proteins to form pores in lipid bilayers. MAC directly lyses pathogens by a 'multi-hit' mechanism; however, sublytic MAC pores on host cells activate signalling pathways. Previous studies have described the structures of individual MAC components and subcomplexes; however, the molecular details of its assembly and mechanism of action remain unresolved. Here we report the electron cryo-microscopy structure of human MAC at subnanometre resolution. Structural analyses define the stoichiometry of the complete pore and identify a network of interaction interfaces that determine its assembly mechanism. MAC adopts a 'split-washer' configuration, in contrast to the predicted closed ring observed for perforin and cholesterol-dependent cytolysins. Assembly precursors partially penetrate the lipid bilayer, resulting in an irregular β-barrel pore. Our results demonstrate how differences in symmetric and asymmetric components of the MAC underpin a molecular basis for pore formation and suggest a mechanism of action that extends beyond membrane penetration. PMID:26841837

  8. Integrin activation and focal complex formation in cardiac hypertrophy

    NASA Technical Reports Server (NTRS)

    Laser, M.; Willey, C. D.; Jiang, W.; Cooper, G. 4th; Menick, D. R.; Zile, M. R.; Kuppuswamy, D.

    2000-01-01

    Cardiac hypertrophy is characterized by both remodeling of the extracellular matrix (ECM) and hypertrophic growth of the cardiocytes. Here we show increased expression and cytoskeletal association of the ECM proteins fibronectin and vitronectin in pressure-overloaded feline myocardium. These changes are accompanied by cytoskeletal binding and phosphorylation of focal adhesion kinase (FAK) at Tyr-397 and Tyr-925, c-Src at Tyr-416, recruitment of the adapter proteins p130(Cas), Shc, and Nck, and activation of the extracellular-regulated kinases ERK1/2. A synthetic peptide containing the Arg-Gly-Asp (RGD) motif of fibronectin and vitronectin was used to stimulate adult feline cardiomyocytes cultured on laminin or within a type-I collagen matrix. Whereas cardiocytes under both conditions showed RGD-stimulated ERK1/2 activation, only collagen-embedded cells exhibited cytoskeletal assembly of FAK, c-Src, Nck, and Shc. In RGD-stimulated collagen-embedded cells, FAK was phosphorylated only at Tyr-397 and c-Src association occurred without Tyr-416 phosphorylation and p130(Cas) association. Therefore, c-Src activation is not required for its cytoskeletal binding but may be important for additional phosphorylation of FAK. Overall, our study suggests that multiple signaling pathways originate in pressure-overloaded heart following integrin engagement with ECM proteins, including focal complex formation and ERK1/2 activation, and many of these pathways can be activated in cardiomyocytes via RGD-stimulated integrin activation.

  9. Lipogenic Enzymes Complexes and Cytoplasmic Lipid Droplet Formation During Adipogenesis.

    PubMed

    Padilla-Benavides, Teresita; Velez-delValle, Cristina; Marsch-Moreno, Meytha; Castro-Muñozledo, Federico; Kuri-Harcuch, Walid

    2016-10-01

    Lipid droplets are dynamic organelles that store triglycerides and participate in their mobilization in adipose cells. These organelles require the reorganization of some structural components, the cytoskeleton, and the activation of lipogenic enzymes. Using confocal microscopy, we analyzed the participation of cytoskeletal components and two lipogenic enzymes, fatty acid synthase and glycerophosphate dehydrogenase, during lipid droplet biogenesis in differentiating 3T3-F442A cells into adipocytes. We show that subcortical actin microfilaments are extended at the basal side of the cells in parallel arrangement to the culture dish substrate, and that the microtubule network traverses the cytoplasm as a scaffold that supports the round shape of the mature adipocyte. By immunoprecipitation, we show that vimentin and perilipin1a associate during the early stages of the differentiation process for lipid droplet formation. We also report that the antibody against perilipin1 detected a band that might correspond to a modified form of the molecule. Finally, the cytosolic distribution and punctate organization of lipogenic enzymes and their co-localization in the proximity of lipid droplets suggest the existence of dynamic protein complexes involved in synthesis and storage of triglycerides. J. Cell. Biochem. 117: 2315-2326, 2016. © 2016 Wiley Periodicals, Inc. PMID:26928794

  10. Adhesion and formation of microbial biofilms in complex microfluidic devices

    SciTech Connect

    Kumar, Aloke; Karig, David K; Neethirajan, Suresh; Suresh, Anil K; Srijanto, Bernadeta R; Mukherjee, Partha P; Retterer, Scott T; Doktycz, Mitchel John

    2012-01-01

    Shewanella oneidensis is a metal reducing bacterium, which is of interest for bioremediation and clean energy applications. S. oneidensis biofilms play a critical role in several situations such as in microbial energy harvesting devices. Here, we use a microfluidic device to quantify the effects of hydrodynamics on the biofilm morphology of S. oneidensis. For different rates of fluid flow through a complex microfluidic device, we studied the spatiotemporal dynamics of biofilms, and we quantified several morphological features such as spatial distribution, cluster formation and surface coverage. We found that hydrodynamics resulted in significant differences in biofilm dynamics. The baffles in the device created regions of low and high flow in the same device. At higher flow rates, a nonuniform biofilm develops, due to unequal advection in different regions of the microchannel. However, at lower flow rates, a more uniform biofilm evolved. This depicts competition between adhesion events, growth and fluid advection. Atomic force microscopy (AFM) revealed that higher production of extra-cellular polymeric substances (EPS) occurred at higher flow velocities.

  11. Structural basis of complement membrane attack complex formation

    NASA Astrophysics Data System (ADS)

    Serna, Marina; Giles, Joanna L.; Morgan, B. Paul; Bubeck, Doryen

    2016-02-01

    In response to complement activation, the membrane attack complex (MAC) assembles from fluid-phase proteins to form pores in lipid bilayers. MAC directly lyses pathogens by a `multi-hit' mechanism; however, sublytic MAC pores on host cells activate signalling pathways. Previous studies have described the structures of individual MAC components and subcomplexes; however, the molecular details of its assembly and mechanism of action remain unresolved. Here we report the electron cryo-microscopy structure of human MAC at subnanometre resolution. Structural analyses define the stoichiometry of the complete pore and identify a network of interaction interfaces that determine its assembly mechanism. MAC adopts a `split-washer' configuration, in contrast to the predicted closed ring observed for perforin and cholesterol-dependent cytolysins. Assembly precursors partially penetrate the lipid bilayer, resulting in an irregular β-barrel pore. Our results demonstrate how differences in symmetric and asymmetric components of the MAC underpin a molecular basis for pore formation and suggest a mechanism of action that extends beyond membrane penetration.

  12. Structural basis of complement membrane attack complex formation

    PubMed Central

    Serna, Marina; Giles, Joanna L.; Morgan, B. Paul; Bubeck, Doryen

    2016-01-01

    In response to complement activation, the membrane attack complex (MAC) assembles from fluid-phase proteins to form pores in lipid bilayers. MAC directly lyses pathogens by a ‘multi-hit' mechanism; however, sublytic MAC pores on host cells activate signalling pathways. Previous studies have described the structures of individual MAC components and subcomplexes; however, the molecular details of its assembly and mechanism of action remain unresolved. Here we report the electron cryo-microscopy structure of human MAC at subnanometre resolution. Structural analyses define the stoichiometry of the complete pore and identify a network of interaction interfaces that determine its assembly mechanism. MAC adopts a ‘split-washer' configuration, in contrast to the predicted closed ring observed for perforin and cholesterol-dependent cytolysins. Assembly precursors partially penetrate the lipid bilayer, resulting in an irregular β-barrel pore. Our results demonstrate how differences in symmetric and asymmetric components of the MAC underpin a molecular basis for pore formation and suggest a mechanism of action that extends beyond membrane penetration. PMID:26841837

  13. Synthesis of crystalline americium hydroxide, Am(OH){sub 3}, and determination of its enthalpy of formation; estimation of the solubility-product constants of actinide(III) hydroxides

    SciTech Connect

    Morss, L.R.; Williams, C.W.

    1993-12-31

    This paper reports a new synthesis of pure, microcrystalline Am(OH){sub 3}, its characterization by x-ray powder diffraction and infrared spectroscopy, and the calorimetric determination of its enthalpy of solution in dilute hydrochloric acid. From the enthalpy of solution the enthalpy of formation of Am(OH){sub 3} has been calculated to be {minus}1371.2{plus_minus}7.9 kj{center_dot}mol{sup {minus}1}, which represents the first experimental determination of an enthalpy of formation of any actinide hydroxide. The free energy of formation and solubility product constant of Am(OH){sub 3} (K{sub sp} = 7 {times} 10{sup {minus}31}) have been calculated from our enthalpy of formation and entropy estimates and are compared with literature measurements under near-equilibrium conditions. Since many properties of the tripositive lanthanide and actinide ions (e.g., hydrolysis, complex-ion formation, and thermochemistry) change in a regular manner, these properties can be interpreted systematically in terms of ionic size. This paper compares the thermochemistry of Am(OH){sub 3} with thermochemical studies of lanthanide hydroxides. A combined structural and acid-base model is used to explain the systematic differences in enthalpies of solution between the oxides and hydroxides of the 4f{sup n} and 5f{sup n} subgroups and to predict solubility-product constants for the actinide(III) hydroxides of Pu through Cf.

  14. Reactions of dioxygen complexes. Oxidative dehydrogenation of 1,6-bis(2-pyridyl)-2,5-diazahexane through cobalt dioxygen complex formation

    SciTech Connect

    Basak, A.K.; Martell, A.E.

    1988-06-01

    The formation constants and oxygenation constants of the cobalt(II) complexes of 1,6-bis(2-pyridyl)-2,5-diazahexane (PYEN) have been determined by potentiometric equilibrium measurements under nitrogen and oxygen. The kinetics of the oxidative degradation of the coordinated ligand in the cobalt dioxygen complex have been measured spectrophotometrically, and the rate constants of two parallel degradation reactions have been determined. Both reactions were found to be second order, first order with respect to the concentration of the dioxygen complex and first order with respect to the hydroxide ion concentration. Kinetics and product analysis reveal that one of the terminal aminomethyl residues of the ligand PYEN undergoes two-electron oxidation to form the corresponding imine, which under the reaction conditions employed is converted to pyridine-2-carboxyaldehyde, identified semiquantitatively as the (2,6-dinitrophenyl)hydrazone. Comparisons of these results with those of systems investigated previously, and the large kinetic deuterium isotope effect for the dehydrogenation reaction, are employed as the basis of a proposed reaction mechanism, which involves deprotonation of an aliphatic amino group in a preequilibrium step. Reaction mechanisms are suggested. 30 references, 10 figures, 3 tables.

  15. Reactions of a Dinitrogen Complex of Molybdenum: Formation of a Carbon-Nitrogen Bond.

    ERIC Educational Resources Information Center

    Busby, David C.; And Others

    1981-01-01

    Reports a procedure for the formation of alkyldiazenido complexes of molybdenum in the absence of dioxygen, suitable for inclusion in an advanced inorganic chemistry laboratory. Includes background information and experimental procedures for two complexes. (SK)

  16. Absorption spectrometric study of charge transfer complex formation between 4-acetamidophenol (paracetamol) and a series of quinones including vitamin K3.

    PubMed

    Saha, Avijit; Mukherjee, Asok K

    2004-07-01

    The formation of charge transfer (CT) complexes of 4-acetamidophenol (commonly called 'paracetamol') and a series of quinones (including Vitamin K3) has been studied spectrophotometrically in ethanol medium. The vertical ionisation potential of paracetamol and the degrees of charge transfer of the complexes in their ground state has been estimated from the trends in the charge transfer bands. The oscillator and transition dipole strengths of the complexes have been determined from the CT absorption spectra at 298 K. The complexes have been found by Job's method of continuous variation to have the uncommon 2:1 (paracetamol:quinone) stoichiometry in each case. The enthalpies and entropies of formation of the complexes have been obtained by determining their formation constants at five different temperatures. PMID:15248945

  17. Absorption spectrometric study of charge transfer complex formation between 4-acetamidophenol (paracetamol) and a series of quinones including Vitamin K 3

    NASA Astrophysics Data System (ADS)

    Saha, Avijit; Mukherjee, Asok K.

    2004-07-01

    The formation of charge transfer (CT) complexes of 4-acetamidophenol (commonly called 'paracetamol') and a series of quinones (including Vitamin K 3) has been studied spectrophotometrically in ethanol medium. The vertical ionisation potential of paracetamol and the degrees of charge transfer of the complexes in their ground state has been estimated from the trends in the charge transfer bands. The oscillator and transition dipole strengths of the complexes have been determined from the CT absorption spectra at 298 K. The complexes have been found by Job's method of continuous variation to have the uncommon 2:1 (paracetamol:quinone) stoichiometry in each case. The enthalpies and entropies of formation of the complexes have been obtained by determining their formation constants at five different temperatures.

  18. Selective determination of rate constants of reactions of atomic hydrogen with various functional groups of a complex molecule

    NASA Astrophysics Data System (ADS)

    Brauer, G. B.; Pugachev, D. V.; Azatyan, V. V.

    2016-05-01

    The possibility of determining absolute values of the rate constants of reactions of active intermediate species with different functional groups of molecules is demonstrated by measuring macrokinetic combustion characteristics. The Arrhenius parameters of the rate constant of the reaction between atomic hydrogen with the methylene group of ethanol and molecular oxygen within the temperature range of 830-970 K are determined. The reasons for the differences between the rate constants of reactions with the methylene and methyl groups of an ethanol molecule are discussed using thermochemical data. It is found that the obtained values of activation energies and preexponential factors of rate constants are in good agreement with the literature data on the region of lower temperatures.

  19. Estimation of free acid content in lanthanide salt solutions used for potentiometric determination of stability constant of lanthanide complexes with organic ligands

    SciTech Connect

    Zheltvai, T.I.; Tishchenko, M.A.

    1985-08-20

    This paper studies the possibility of alkalimetric titration of free acid after binding the metal ions by the disodium salt of ethylenediaminetetraacetic (complexone III). The proposed method of free acid determination in lanthanide salt solutions is very simple and helps to avoid gross methodical errors in works involving determination of stability constants of lanthanide complexes.

  20. Ethanol oxidation by imidorhenium(V) complexes: formation of amidorhenium(III) complexes.

    PubMed

    Suing, A L; Dewan, C R; White, P S; Thorp, H H

    2000-12-25

    The reaction of Re(NC6H4R)Cl3(PPh3)2 (R = H, 4-Cl, 4-OMe) with 1,2-bis(diphenylphosphino)ethane (dppe) is investigated in refluxing ethanol. The reaction produces two major products, Re(NC6H4R)Cl(dppe)(2)2+ (R = H, 1-H; R = Cl, 1-Cl; R = OMe, 1-OMe) and the rhenium(III) species Re(NHC6H4R)Cl(dppe)2+ (R = H, 2-H; R = Cl, 2-Cl). Complexes 1-H (orthorhombic, Pcab, a = 22.3075(10) A, b = 23.1271(10) A, c = 23.3584(10) A, Z = 8), 1-Cl (triclinic, P1, a = 11.9403(6) A, b = 14.6673(8) A, c = 17.2664(9) A, alpha = 92.019(1) degrees, beta = 97.379(1) degrees, gamma = 90.134(1) degrees, Z = 2), and 1-OMe (triclinic, P1, a = 11.340(3) A, b = 13.134(4) A, c = 13.3796(25) A, alpha = 102.370(20) degrees, beta = 107.688(17) degrees, gamma = 114.408(20) degrees, Z = 1) are crystallographically characterized and show an average Re-N bond length (1.71 A) typical of imidorhenium(V) complexes. There is a small systematic decrease in the Re-N bond length on going from Cl to H to OMe. Complex 2-Cl (monoclinic, Cc, a = 24.2381(11) A, b = 13.4504(6) A, c = 17.466(8) A, beta = 97.06900(0) degrees, Z = 4) is also crystallographically characterized and shows a Re-N bond length (1.98 A) suggestive of amidorhenium(III). The rhenium(III) complexes exhibit unusual proton NMR spectra where all of the resonances are found at expected locations except those for the amido protons, which are at 37.8 ppm for 2-Cl and 37.3 ppm for 1-H. The phosphorus resonances are also unremarkable, but the 13C spectrum of 2-Cl shows a significantly shifted resonance at 177.3 ppm, which is assigned to the ipso carbon of the phenylamido ligand. The extraordinary shifts of the amido hydrogen and ipso carbon are attributed to second-order magnetism that is strongly focused along the axially compressed amido axis. The reducing equivalents for the formation of the Re(III) product are provided by oxidation of the ethanol solvent, which produces acetal and acetaldehyde in amounts as much as 30 equiv based on the quantity of

  1. Salting Constants of Small Organic Molecules in Aerosol-Relevant Salts and Application to Aerosol Formation in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Waxman, E.; Carlton, A. M. G.; Ziemann, P. J.; Volkamer, R. M.

    2014-12-01

    Secondary organic aerosol (SOA) formation from small water-soluble molecules such as glyoxal and methyl glyoxal is a topic of emerging interest. Results from recent field campaigns, e.g. Waxman et al. (2013, GRL) and Knote et al. (2014, ACP), show that these molecules can form significant SOA mass as a result of 'salting-in'. Salting-in happens when a molecule's solubility increases with salt concentration and salting-out is the reverse. Salting effects modify the solubility exponentially with increasing salt concentration, and thus the effective Henry's law constant can strongly modify partitioning, and multiphase chemical reaction rates in aerosol water. Moreover, the solubility in aerosol water cannot easily inferred based on the solubility in cloud water, as the salting effects could change the solubility by a factor of 104 or more. In this work, we have devised and applied a novel experimental setup to measure salting constants using an ion trap mass spectrometer. We focus on small, water soluble molecules like methyl glyoxal and similar compounds and measure salting constants for aerosol-relevant salts including ammonium sulfate, ammonium nitrate, and sodium chloride. The Setschenow salting-constant values are then used to parameterize the effects of salting in CMAQ. We present a series of sensitivity studies of the effects that inorganic aerosols have on the SOA formation from small soluble molecules in the southeastern United States.

  2. On the formation of dynamic structures in the form of rotating rings and vortices in a thin layer of a magnetodielectric colloid subjected to a constant electric field

    NASA Astrophysics Data System (ADS)

    Danilov, M. I.; Yastrebov, S. S.

    2012-04-01

    Experimental data on the electrical and optical properties of a thin layer of a magnetodielectric colloid obtained by Kozhevnikov et al. (Tech. Phys. 51 (7), 946 (2006)), are analyzed. Using a three-layer hierarchical model, the possible structure and properties of near-electrode layers are determined, the formation mechanisms of dynamic structures are described, and the variation of the electrical properties of the magnetodielectric colloid layer with time and constant electric field strength are discussed.

  3. Double layer formation at the interface of complex plasmas

    SciTech Connect

    Yaroshenko, V. V.; Thoma, M. H.; Thomas, H. M.; Morfill, G. E.

    2008-08-15

    Necessary conditions are formulated for the generation of a double layer at the interface of a complex plasma and a particle-free electron-ion plasma in a weakly collisional discharge. Examples are calculated for realistic observed complex plasmas, and it is shown that situations of both ''smooth'' transitions and 'sharp' transitions can exist. The model can explain the abrupt boundaries observed.

  4. Determining resistivity of a formation adjacent to a borehole having casing by generating constant current flow in portion of casing and using at least two voltage measurement electrodes

    DOEpatents

    Vail, III, William Banning

    2000-01-01

    Methods of operation of different types of multiple electrode apparatus vertically disposed in a cased well to measure information related to the resistivity of adjacent geological formations from within the cased well are described. The multiple electrode apparatus has a minimum of two spaced apart voltage measurement electrodes that electrically engage a first portion of the interior of the cased well and that provide at least first voltage information. Current control means are used to control the magnitude of any selected current that flows along a second portion of the interior of the casing to be equal to a predetermined selected constant. The first portion of the interior of the cased well is spaced apart from the second portion of the interior of the cased well. The first voltage information and the predetermined selected constant value of any selected current flowing along the casing are used in part to determine a magnitude related to the formation resistivity adjacent to the first portion of the interior of the cased well. Methods and apparatus having a plurality of voltage measurement electrodes are disclosed that provide voltage related information in the presence of constant currents flowing along the casing which is used to provide formation resistivity.

  5. Coexistence facilitates interspecific biofilm formation in complex microbial communities.

    PubMed

    Madsen, Jonas S; Røder, Henriette L; Russel, Jakob; Sørensen, Helle; Burmølle, Mette; Sørensen, Søren J

    2016-09-01

    Social interactions in which bacteria respond to one another by modifying their phenotype are central determinants of microbial communities. It is known that interspecific interactions influence the biofilm phenotype of bacteria; a phenotype that is central to the fitness of bacteria. However, the underlying role of fundamental ecological factors, specifically coexistence and phylogenetic history, in biofilm formation remains unclear. This study examines how social interactions affect biofilm formation in multi-species co-cultures from five diverse environments. We found prevalence of increased biofilm formation among co-cultured bacteria that have coexisted in their original environment. Conversely, when randomly co-culturing bacteria across these five consortia, we found less biofilm induction and a prevalence of biofilm reduction. Reduction in biofilm formation was even more predominant when co-culturing bacteria from environments where long-term coexistence was unlikely to have occurred. Phylogenetic diversity was not found to be a strong underlying factor but a relation between biofilm induction and phylogenetic history was found. The data indicates that biofilm reduction is typically correlated with an increase in planktonic cell numbers, thus implying a behavioral response rather than mere growth competition. Our findings suggest that an increase in biofilm formation is a common adaptive response to long-term coexistence. PMID:27119650

  6. Quantifying the association constant and stoichiometry of the complexation between colloidal polyacrylate-coated gold nanoparticles and chymotrypsin.

    PubMed

    Hou, Jie; Szaflarski, Diane M; Simon, John D

    2013-04-25

    Qualitative and quantitative insights into the capacity and association constant for the binding of chymotrypsin to polyacrylate-coated gold nanoparticles is determined using fluorescence quenching, optical absorption and circular dichroism spectroscopy, isothermal calorimetry, and gel electrophoresis. The collective data reveal a binding capacity and constant for this particular system of ~7 and ~2 × 10(6) M(-1), respectively. These values vary among the individual techniques, and not all techniques are able to provide quantitative information. The present study demonstrates that accurately quantifying the association between nanoparticles and biological materials requires using multiple approaches to ensure consistency among the binding parameters determined. PMID:23305403

  7. Crystal structures of complexes of NAD{sup +}-dependent formate dehydrogenase from methylotrophic bacterium Pseudomonas sp. 101 with formate

    SciTech Connect

    Filippova, E. V. Polyakov, K. M.; Tikhonova, T. V.; Stekhanova, T. N.; Boiko, K. M.; Sadykhov, I. G.; Tishkov, V. I.; Popov, V. O.; Labru, N.

    2006-07-15

    Formate dehydrogenase (FDH) from the methylotrophic bacterium Pseudomonas sp. 101 catalyzes oxidation of formate to NI{sub 2} with the coupled reduction of nicotinamide adenine dinucleotide (NAD{sup +}). The three-dimensional structures of the apo form (the free enzyme) and the holo form (the ternary FDH-NAD{sup +}-azide complex) of FDH have been established earlier. In the present study, the structures of FDH complexes with formate are solved at 2.19 and 2.28 A resolution by the molecular replacement method and refined to the R factors of 22.3 and 20.5%, respectively. Both crystal structures contain four protein molecules per asymmetric unit. These molecules form two dimers identical to the dimer of the apo form of FDH. Two possible formatebinding sites are found in the active site of the FDH structure. In the complexes the sulfur atom of residue Cys354 exists in the oxidized state.

  8. The Effect of Complex Formation upon the Redox Potentials of Metallic Ions. Cyclic Voltammetry Experiments.

    ERIC Educational Resources Information Center

    Ibanez, Jorge G.; And Others

    1988-01-01

    Describes experiments in which students prepare in situ soluble complexes of metal ions with different ligands and observe and estimate the change in formal potential that the ion undergoes upon complexation. Discusses student formation and analysis of soluble complexes of two different metal ions with the same ligand. (CW)

  9. An Efficient Format for Nearly Constant-Time Access to Arbitrary Time Intervals in Large Trace Files

    DOE PAGESBeta

    Chan, Anthony; Gropp, William; Lusk, Ewing

    2008-01-01

    A powerful method to aid in understanding the performance of parallel applications uses log or trace files containing time-stamped events and states (pairs of events). These trace files can be very large, often hundreds or even thousands of megabytes. Because of the cost of accessing and displaying such files, other methods are often used that reduce the size of the tracefiles at the cost of sacrificing detail or other information. This paper describes a hierarchical trace file format that provides for display of an arbitrary time window in a time independent of the total size of the file andmore » roughly proportional to the number of events within the time window. This format eliminates the need to sacrifice data to achieve a smaller trace file size (since storage is inexpensive, it is necessary only to make efficient use of bandwidth to that storage). The format can be used to organize a trace file or to create a separate file of annotations that may be used with conventional trace files. We present an analysis of the time to access all of the events relevant to an interval of time and we describe experiments demonstrating the performance of this file format.« less

  10. Economy of operon formation: cotranscription minimizes shortfall in protein complexes.

    PubMed

    Sneppen, Kim; Pedersen, Steen; Krishna, Sandeep; Dodd, Ian; Semsey, Szabolcs

    2010-01-01

    Genes of prokaryotes and Archaea are often organized in cotranscribed groups, or operons. In contrast, eukaryotic genes are generally transcribed independently. Here we show that there is a substantial economic gain for the cell to cotranscribe genes encoding protein complexes because it synchronizes the fluctuations, or noise, in the levels of the different components. This correlation substantially reduces the shortfall in production of the complex. This benefit is relatively large in small cells such as bacterial cells, in which there are few mRNAs and proteins per cell, and is diminished in larger cells such as eukaryotic cells. PMID:20877578

  11. Interaction between mosquito-larvicidal Lysinibacillus sphaericus binary toxin components: analysis of complex formation.

    PubMed

    Kale, Avinash; Hire, Ramesh S; Hadapad, Ashok B; D'Souza, Stanislaus F; Kumar, Vinay

    2013-11-01

    The two components (BinA and BinB) of Lysinibacillus sphaericus binary toxin together are highly toxic to Culex and Anopheles mosquito larvae, and have been employed world-wide to control mosquito borne diseases. Upon binding to the membrane receptor an oligomeric form (BinA2.BinB2) of the binary toxin is expected to play role in pore formation. It is not clear if these two proteins interact in solution as well, in the absence of receptor. The interactions between active forms of BinA and BinB polypeptides were probed in solution using size-exclusion chromatography, pull-down assay, surface plasmon resonance, circular dichroism, and by chemically crosslinking BinA and BinB components. We demonstrate that the two proteins interact weakly with first association and dissociation rate constants of 4.5×10(3) M(-1) s(-1) and 0.8 s(-1), resulting in conformational change, most likely, in toxic BinA protein that could kinetically favor membrane translocation of the active oligomer. The weak interactions between the two toxin components could be stabilized by glutaraldehyde crosslinking. The cross-linked complex, interestingly, showed maximal Culex larvicidal activity (LC50 value of 1.59 ng mL(-1)) reported so far for combination of BinA/BinB components, and thus is an attractive option for development of new bio-pesticides for control of mosquito borne vector diseases. PMID:23974012

  12. Structural Basis of Clostridium perfringens Toxin Complex Formation

    SciTech Connect

    Adams,J.; Gregg, K.; Bayer, E.; Boraston, A.; Smith, S.

    2008-01-01

    The virulent properties of the common human and livestock pathogen Clostridium perfringens are attributable to a formidable battery of toxins. Among these are a number of large and highly modular carbohydrate-active enzymes, including the {mu}-toxin and sialidases, whose catalytic properties are consistent with degradation of the mucosal layer of the human gut, glycosaminoglycans, and other cellular glycans found throughout the body. The conservation of noncatalytic ancillary modules among these enzymes suggests they make significant contributions to the overall functionality of the toxins. Here, we describe the structural basis of an ultra-tight interaction (Ka = 1.44 x 1011 M-1) between the X82 and dockerin modules, which are found throughout numerous C. perfringens carbohydrate-active enzymes. Extensive hydrogen-bonding and van der Waals contacts between the X82 and dockerin modules give rise to the observed high affinity. The {mu}-toxin dockerin module in this complex is positioned {approx}180 relative to the orientation of the dockerin modules on the cohesin module surface within cellulolytic complexes. These observations represent a unique property of these clostridial toxins whereby they can associate into large, noncovalent multitoxin complexes that allow potentiation of the activities of the individual toxins by combining complementary toxin specificities.

  13. DNA and buffers: the hidden danger of complex formation.

    PubMed

    Stellwagen, N C; Gelfi, C; Righetti, P G

    2000-08-01

    The free solution electrophoretic mobility of DNA differs significantly in different buffers, suggesting that DNA-buffer interactions are present in certain buffer systems. Here, capillary and gel electrophoresis data are combined to show that the Tris ions in Tris-acetate-EDTA (TAE) buffers are associated with the DNA helix to approximately the same extent as sodium ions. The borate ions in Tris-borate-EDTA (TBE) buffers interact with DNA to form highly charged DNA-borate complexes, which are stable both in free solution and in polyacrylamide gels. DNA-borate complexes are not observed in agarose gels, because of the competition of the agarose gel fibers for the borate residues. The resulting agarose-borate complexes increase the negative charge of the agarose gel fibers, leading to an increased electroendosmotic flow of the solvent in agarose-TBE gels. The combined results indicate that the buffers in which DNA is studied cannot automatically be assumed to be innocuous. PMID:10861374

  14. Enhanced inhibition of bacterial biofilm formation and reduced leukocyte toxicity by chloramphenicol:β-cyclodextrin:N-acetylcysteine complex.

    PubMed

    Aiassa, Virginia; Zoppi, Ariana; Becerra, M Cecilia; Albesa, Inés; Longhi, Marcela R

    2016-11-01

    The purpose of this study was to improve the physicochemical and biological properties of chloramphenicol (CP) by multicomponent complexation with β-cyclodextrin (β-CD) and N-acetylcysteine (NAC). The present work describes the ability of solid multicomponent complex (MC) to decrease biomass and cellular activity of Staphylococcus by crystal violet and XTT assay, and leukocyte toxicity, measuring the increase of reactive oxygen species by chemiluminescence, and using 123-dihydrorhodamine. In addition, MC was prepared by the freeze-drying or physical mixture methods, and then characterized by scanning electron microscopy and powder X-ray diffraction. Nuclear magnetic resonance and phase solubility studies provided information at the molecular level on the structure of the MC and its association binding constants, respectively. The results obtained allowed us to conclude that MC formation is an effective pharmaceutical strategy that can reduce CP toxicity against leukocytes, while enhancing its solubility and antibiofilm activity. PMID:27516318

  15. Structural and spectroscopic study of Al(III)-3-hydroxyflavone complex: Determination of the stability constants in water-methanol mixtures

    NASA Astrophysics Data System (ADS)

    Davila, Y. A.; Sancho, M. I.; Almandoz, M. C.; Blanco, S. E.

    2012-09-01

    Stoichiometry and apparent stability constant (KC) of the complex formed between Al(III) and 3-hydroxyflavone were determined in methanol and water-methanol mixtures (% water w/w: 3.11; 6.15; 10.4; 15.2; 19.9 and 25.3) by UV-vis spectroscopy at 25.0 °C and constant ionic strength (0.05 M, sodium chloride). Stoichiometry of the complex (1:2, metal:ligand) is not modified with an increase in water percentage in the analyzed interval. The value of KC in methanol is greater than in the binary solutions. The effects of changing solvent composition on KC data were explained by linear solvation free energy relationships using the solvatochromic parameter of Kamlet and Taft (α, β and π*). Multiple linear regression analysis indicates that the hydrogen bond donating ability (α) of the solvent and non-specific interactions (π*) play an important role in the degree of occurrence of the reaction. The effect of temperature on KC was also analyzed by assessing standard entropy and enthalpy variations of the reaction in methanol. Finally, the structure of the complex was investigated using FTIR spectroscopy and DFT calculations. The ligand exhibits small structural changes upon complexation, localized on the chelating site. The calculated vibrational frequencies of the complex were successfully compared against the experimental values.

  16. Effect of Solvent Dielectric Constant on the Formation of Large Flat Bilayer Stacks in a Lecithin/Hexadecanol Hydrogel.

    PubMed

    Nakagawa, Yasuharu; Nakazawa, Hiromitsu; Kato, Satoru

    2016-07-12

    We investigated the effect of dielectric properties of the aqueous medium on the novel type of hydrogel composed of a crude lecithin mixture (PC70) and hexadecanol (HD), in which charged sheet-like bilayers are kept far apart due to interbilayer repulsive interaction. We used dipropylene glycol (DPG) as a modifier of the dielectric properties and examined its effect on the hydrogel by synchrotron X-ray diffraction, differential scanning calorimetry (DSC), polarized optical microscopy, and freeze-fracture electron microscopy. We found that at a DPG weight fraction in the aqueous medium WDPG ≈ 0.4, the bilayer organization is transformed into unusually large flat bilayer stacks with a regular lamellar spacing of 6.25 nm and consequently disintegration of the hydrogel takes place. Semiquantitative calculation of the interbilayer interaction energy based on the Deyaguin-Landau-Verwey-Overbeek (DLVO) theory suggested that the reduction of the aqueous medium dielectric constant ε by DPG may lower the energy barrier preventing flat bilayers from coming closer together. We inferred that the size of the bilayer sheet increases because the reduction of ε promotes protonation of acidic lipids that work as edge-capping molecules. PMID:27322136

  17. Formation rates of complex organics in UV irradiated CH_3OH-rich ices. I. Experiments

    NASA Astrophysics Data System (ADS)

    Öberg, K. I.; Garrod, R. T.; van Dishoeck, E. F.; Linnartz, H.

    2009-09-01

    Context: Gas-phase complex organic molecules are commonly detected in the warm inner regions of protostellar envelopes, so-called hot cores. Recent models show that photochemistry in ices followed by desorption may explain the observed abundances. There is, however, a general lack of quantitative data on UV-induced complex chemistry in ices. Aims: This study aims to experimentally quantify the UV-induced production rates of complex organics in CH3OH-rich ices under a variety of astrophysically relevant conditions. Methods: The ices are irradiated with a broad-band UV hydrogen microwave-discharge lamp under ultra-high vacuum conditions, at 20-70 K, and then heated to 200 K. The reaction products are identified by reflection-absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD), through comparison with RAIRS and TPD curves of pure complex species, and through the observed effects of isotopic substitution and enhancement of specific functional groups, such as CH3, in the ice. Results: Complex organics are readily formed in all experiments, both during irradiation and during the slow warm-up of the ices after the UV lamp is turned off. The relative abundances of photoproducts depend on the UV fluence, the ice temperature, and whether pure CH3OH ice or CH3OH:CH4/CO ice mixtures are used. C2H6, CH3CHO, CH3CH2OH, CH3OCH3, HCOOCH3, HOCH2CHO and (CH2OH)2 are all detected in at least one experiment. Varying the ice thickness and the UV flux does not affect the chemistry. The derived product-formation yields and their dependences on different experimental parameters, such as the initial ice composition, are used to estimate the CH3OH photodissociation branching ratios in ice and the relative diffusion barriers of the formed radicals. At 20 K, the pure CH3OH photodesorption yield is 2.1(±1.0)×10-3 per incident UV photon, the photo-destruction cross section 2.6(±0.9)×10-18 cm^2. Conclusions: Photochemistry in CH3OH ices is efficient enough to

  18. Laboratory Measurement of the Gas-Phase Rate Constant for Formation of Nitric Acid from the Reaction of OH and NO2

    NASA Astrophysics Data System (ADS)

    Mollner, A. K.; Feng, L.; Sprague, M. K.; Okumura, M.; Vallavudasan, S.; Sander, S. P.; Martien, P. T.; Harley, R. A.; McCoy, A. B.

    2007-12-01

    The rate constant for the reaction OH + NO2 + M → HONO2 + M is among the most influential parameters affecting air pollution levels. There remains significant uncertainty about this rate, due to lack of laboratory data at 1 atm and to the unknown yield of a secondary channel forming peroxynitrous acid (HOONO). New experimental measurements of both the kinetics and HOONO/HONO2 branching ratios at 760 Torr are presented. The results are compared with current recommendations; when incorporated in models, the new parameters lead to significantly higher modeled ozone levels and reduced formation of nitric acid.

  19. Biological pattern formation: from basic mechanisms to complex structures

    SciTech Connect

    Koch, A.J.; Meinhardt, H. )

    1994-10-01

    The reliable development of highly complex organisms is an intriguing and fascinating problem. The genetic material is, as a rule, the same in each cell of an organism. How then do cells, under the influence of their common genes, produce spatial patterns Simple models are discussed that describe the generation of patterns out of an initially nearly homogeneous state. They are based on nonlinear interactions of at least two chemicals and on their diffusion. The concepts of local autocatalysis and of long-range inhibition play a fundamental role. Numerical simulations show that the models account for many basic biological observations such as the regeneration of a pattern after excision of tissue or the production of regular (or nearly regular) arrays of organs during (or after) completion of growth. Very complex patterns can be generated in a reproducible way by hierarchical coupling of several such elementary reactions. Applications to animal coats and to the generation of polygonally shaped patterns are provided. It is further shown how to generate a strictly periodic pattern of units that themselves exhibit a complex and polar fine structure. This is illustrated by two examples: the assembly of photoreceptor cells in the eye of [ital Drosophila] and the positioning of leaves and axillary buds in a growing shoot. In both cases, the substructures have to achieve an internal polarity under the influence of some primary pattern-forming system existing in the fly's eye or in the plant. The fact that similar models can describe essential steps in organisms as distantly related as animals and plants suggests that they reveal some universal mechanisms.

  20. Module Based Complexity Formation: Periodic Patterning in Feathers and Hairs

    PubMed Central

    Chuong, Cheng-Ming; Yeh, Chao-Yuan; Jiang, Ting-Xin; Widelitz, Randall

    2012-01-01

    Patterns describe order which emerges from homogeneity. Complex patterns on the integument are striking because of their visibility throughout an organism's lifespan. Periodic patterning is an effective design because the ensemble of hair or feather follicles (modules) allows the generation of complexity, including regional variations and cyclic regeneration, giving the skin appendages a new lease on life. Spatial patterns include the arrangements of feathers and hairs in specified number, size, and spacing. We explore how a field of equivalent progenitor cells can generate periodically arranged modules based on genetic information, physical-chemical rules and developmental timing. Reconstitution experiments suggest a competitive equilibrium regulated by activators / inhibitors involving Turing reaction-diffusion. Temporal patterns result from oscillating stem cell activities within each module (micro-environment regulation), reflected as growth (anagen) and resting (telogen) phases during the cycling of feather and hair follicles. Stimulating modules with activators initiates the spread of regenerative hair waves, while global inhibitors outside each module (macro-environment) prevent this. Different wave patterns can be simulated by Cellular Automata principles. Hormonal status and seasonal changes can modulate appendage phenotypes, leading to “organ metamorphosis”, with multiple ectodermal organ phenotypes generated from the same precursors. We discuss potential evolutionary novel steps using this module based complexity in several amniote integument organs, exemplified by the spectacular peacock feather pattern. We thus explore the application of the acquired knowledge of patterning in tissue engineering. New hair follicles can be generated after wounding. Hairs and feathers can be reconstituted through self-organization of dissociated progenitor cells. PMID:23539312

  1. The formation and study of titanium, zirconium, and hafnium complexes

    NASA Technical Reports Server (NTRS)

    Wilson, Bobby; Sarin, Sam; Smith, Laverne; Wilson, Melanie

    1989-01-01

    Research involves the preparation and characterization of a series of Ti, Zr, Hf, TiO, and HfO complexes using the poly(pyrazole) borates as ligands. The study will provide increased understanding of the decomposition of these coordination compounds which may lead to the production of molecular oxygen on the Moon from lunar materials such as ilmenite and rutile. The model compounds are investigated under reducing conditions of molecular hydrogen by use of a high temperature/pressure stainless steel autoclave reactor and by thermogravimetric analysis.

  2. Ganymede and Callisto - Complex crater formation and planetary crusts

    NASA Technical Reports Server (NTRS)

    Schenk, Paul M.

    1991-01-01

    Results are presented on measurements of crater depths and other morphological parameters (such as central peak and terrace frequency) of fresh craters on Ganymede and Callisto, two geophysically very similar but geologically divergent large icy satellites of Jupiter. These data were used to investigate the crater mechanics on icy satellites and the intersatellite crater scaling and crustal properties. The morphological transition diameters of and complex crater depths on Ganymede and Callisto were found to be similar, indicating that the crusts of both satellites are dominated by water ice with only a minor rocky component.

  3. Determination of the Physical Constants of Ferric and Ferrous Complexes of Phytic Acid by Proton Nuclear Magnetic Resonance and Resistance of Complexes to Enzymatic Dephosphoralation by Aspergillus ficcum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the fate and transport of organic forms of phosphate requires in the case of myo-inositol hex kis phosphate (phytate) knowledge charge speciation as a function of pH and affinity of mineral cations such as soluble iron for phytate. Twelve acidity constants exist for phytic acid becau...

  4. New Pathways for the Formation of Complex Organics and Prebiotic Synthesis in the Gas Phase

    NASA Astrophysics Data System (ADS)

    El-Shall, M. S.

    2010-04-01

    We study the formation mechanisms of complex organics that are present in interstellar clouds. The reaction of acetylene ion with water produces vinyl alcohol while the reaction of benzene ion with acetylene produces naphthalene-type ion.

  5. The complex interplay between semantics and grammar in impression formation.

    PubMed

    Shreves, Wyley B; Hart, William; Adams, John M; Guadagno, Rosanna E; Eno, Cassie A

    2014-09-01

    We sought to bridge findings showing that (a) describing a person's behavior with the perfective verb aspect (did), compared to the imperfective aspect (was doing), increases processing of semantic knowledge unrelated to the target's action such as stereotypes and (b) an increased recognition of stereotypical thoughts often promotes a judgment correction for the stereotypes. We hypothesized an interplay between grammar (verb conjugation) and semantic information (gender) in impression-formation. Participants read a resume, attributed to a male or female, for a traditionally masculine job. When the resume was written in the imperfective, people rated a male (vs. female) more positively. When the resume was in the perfective, this pattern reversed. Only these latter effects of gender were influenced by cognitive load. Further, people more quickly indicated the applicant's gender in the perfective condition, suggesting an enhanced focus on gender during processing. PMID:24950389

  6. Constant Rate or Stepwise Injection of Cold Fluid into a Geologic Formation: A Hydro-Thermo-Mechanical Analysis

    NASA Astrophysics Data System (ADS)

    Kim, S.; Hosseini, S. A.

    2015-12-01

    Operations such as CO2 geologic storage, enhanced geothermal systems, and wastewater injection are rendering fluid injection as important as fluid extraction. In particular, injecting fluid colder than the original fluid causes thermal contraction and ensuing decreases in stresses, which yield an effect opposite of what volume expansion driven by the fluid injection imposes. In this study, we conduct numerical simulations to investigate pore-pressure buildup, thermal diffusion, and stress changes for two conditions: (1) constant rate, and (2) stepwise injection of cold fluid. The numerical-simulation method—which combines fluid flow, poroelasticity, thermal diffusion, and thermal stress—is based on the single-phase flow condition to simplify a computation model and thus facilitate a focus on mechanical responses. We also examine temporal evolutions of stress states and mobilized friction angles across base, injection-zone, and caprock layers for two different stress regimes: normal-faulting and reverse-faulting. Under the normal-faulting stress regime, the maximum mobilized friction angle occurs inside of the injection zone, which may act to improve the stability of the caprock. Special attention is required, however, because the location of the maximum mobilized friction angle is close to interfaces with the caprock and base layers. The hypothetical stepwise injection of cold fluid is shown to improve the stability of the injection zone to some extent. Under the reverse-faulting stress regime, the maximum mobilized friction angle occurs near the middle of the injection zone; stability in the injection zone is enhanced while that in the caprock/base is aggravated with time. The hypothetical stepwise injection not only helps improve the stability of the injection zone but also delays the moment when the maximum friction angle is mobilized. Finally, we suggest using dimensionless parameters to determine a prevalence of the thermal-stress effect in the injection

  7. Subcellular location for the formation of the retinol/retinol-binding protein complex in rat liver

    SciTech Connect

    Crumbaugh, L.M.; Green, E.L.; Smith, J.E.

    1986-03-01

    Retinol complexes with retinol-binding protein (RBP) within the hepatocyte, however the subcellular location where complex formation occurs has not previously been identified. A model similar to that of lipoproteins formation has been hypothesized. The authors have identified the initial site of retinol/RBP complex formation. Furthermore, the authors have elucidated the progression of the complex through the subcellular organelles. Intravenous injections of /sup 3/H-retinol suspended in Tween 40 were administered to vitamin A depleted rats. After intervals of 2, 3, 4, 5, 10, 15, 20, and 30 minutes the rat livers were removed and fractions enriched in rough and smooth microsomes and Golgi apparatus were prepared. Extracts of these subcellular fractions were chromatographed on Sephadex G-100. Simultaneous elution of /sup 3/H-retinol and immunoreactive RBP indicated the presence of the complex. The retinol/RBP complex was observed in rough microsomes 2 minute after the injection of /sup 3/H-retinal. The complex appeared subsequently in smooth microsomes and Golgi apparatus. The complex was first detected serum around 10 minutes after injection. Based on the data, they believe that the retinol/RBP complex formation occurs in rough microsomes.

  8. {sup 13}C and {sup 17}O NMR binding constant studies of uranyl carbonate complexes in near-neutral aqueous solution. Yucca Mountain Project Milestone Report 3351

    SciTech Connect

    Clark, D.L.; Newton, T.W.; Palmer, P.D.; Zwick, B.D.

    1995-01-01

    Valuable structural information, much of it unavailable by other methods, can be obtained about complexes in solution through NMR spectroscopy. From chemical shift and intensity measurements of complexed species, NMR can serve as a species-specific structural probe for molecules in solution and can be used to validate thermodynamic constants used in geochemical modeling. Fourier-transform nuclear magnetic resonance (FT-NMR) spectroscopy has been employed to study the speciation of uranium(VI) ions in aqueous carbonate solutions as a function of pH, ionic strength, carbonate concentration, uranium concentration, and temperature. Carbon-13 and oxygen-17 NMR spectroscopy were used to monitor the fractions, and hence thermodynamic binding constants of two different uranyl species U0{sub 2}(CO{sub 3}){sub 3}{sup 4{minus}} and (UO{sub 2}){sub 3}(CO{sub 3}){sub 6}{sup 6{minus}} in aqueous solution. Synthetic buffer solutions were prepared under the ionic strength conditions used in the NMR studies in order to obtain an accurate measure of the hydrogen ion concentration, and a discussion of pH = {minus}log(a{sub H}{sup +}) versus p[H] = {minus}log[H+] is provided. It is shown that for quantitative studies, the quantity p[H] needs to be used. Fourteen uranium(VI) binding constants recommended by the OECD NEA literature review were corrected to the ionic strengths employed in the NMR study using specific ion interaction theory (SIT), and the predicted species distributions were compared with the actual species observed by multinuclear NMR. Agreement between observed and predicted stability fields is excellent. This establishes the utility of multinuclear NMR as a species-specific tool for the study of the actinide carbonate complexation constants, and serves as a means for validating the recommendations provided by the OECD NEA.

  9. Carbon–heteroatom bond formation catalysed by organometallic complexes

    PubMed Central

    Hartwig, John F.

    2010-01-01

    At one time the synthetic chemist’s last resort, reactions catalysed by transition metals are now the preferred method for synthesizing many types of organic molecule. A recent success in this type of catalysis is the discovery of reactions that form bonds between carbon and heteroatoms (such as nitrogen, oxygen, sulphur, silicon and boron) via complexes of transition metals with amides, alkoxides, thiolates, silyl groups or boryl groups. The development of these catalytic processes has been supported by the discovery of new elementary reactions that occur at metal–heteroatom bonds and by the identification of factors that control these reactions. Together, these findings have led to new synthetic processes that are in daily use and have formed a foundation for the development of processes that are likely to be central to synthetic chemistry in the future. PMID:18800130

  10. Enhancing the Reduction Potential of Quinones via Complex Formation.

    PubMed

    Nepal, Binod; Scheiner, Steve

    2016-05-20

    Quantum calculations are used to study the manner in which quinones interact with proton-donating molecules. For neutral donors, a stacked geometry is favored over a H-bond structure. The former is stabilized by charge transfers from the N or O lone pairs to the quinone's π* orbitals. Following the addition of an electron to the quinone, the radical anion forms strong H-bonded complexes with the various donors. The presence of the donor enhances the electron affinity of the quinone. This enhancement is on the order of 15 kcal/mol for neutral donors, but up to as much as 85 kcal/mol for a cationic donor. The increase in electron affinity is larger for electron-rich quinones than for their electron-deficient counterparts, containing halogen substituents. Similar trends are in evidence when the systems are immersed in aqueous solvent. PMID:27135719

  11. Use of the ion exchange method for the determination of stability constants of trivalent metal complexes with humic and fulvic acids--part I: Eu3+ and Am3+ complexes in weakly acidic conditions.

    PubMed

    Wenming, Dong; Hongxia, Zhang; Meide, Huang; Zuyi, Tao

    2002-06-01

    The conditional stability constants for tracer concentrations of Eu(III) and Am(III) with a red earth humic acid (REHA), a red earth fulvic acid (REFA) and a fulvic acid from weathered coal (WFA) were determined at pH 5.2-6.4 (such values are similar to those in non-calcareous soils) in the presence of HAc/NaAc or NaNO3 by using the cation exchange method. It was found that 1:1 complexes were predominately formed in weakly acidic conditions. The total exchangeable proton capacities and the degrees of dissociation of these humic substances were determined by using a potentiometric titration method. The key parameters necessary for the experimental determination of the conditional stability constants of metal ions with humic substances in weakly acidic conditions by using the cation exchange method were discussed. The conditional stability constants of 1:1 complexes obtained in this paper were compared with the literature data of Am(III) determined by using the ion exchange method and the solvent extraction method and with the stability constants of 1:1 complexes of UO2(2+) and Th4+ with the same soil humic substances. These results indicate the great stability of bivalent UO2(2+), trivalent Eu3+, Am3+ and tetravalent Th4+ complexes with humic and fulvic acids in weakly acidic conditions. PMID:12102358

  12. Glutathione Complex Formation With Mercury(Ii) in Aqueous Solution at Physiological Ph

    SciTech Connect

    Mah, V.; Jalilehvand, F.; /SLAC

    2012-08-23

    The mercury(II) complexes formed in neutral aqueous solution with glutathione (GSH, here denoted AH{sub 3} in its triprotonated form) were studied using Hg L{sub III}-edge extended X-ray absorption fine structure (EXAFS) and {sup 199}Hg NMR spectroscopy, complemented with electrospray ionization mass spectrometric (ESI-MS) analyses. The [Hg(AH){sub 2}]{sup 2-} complex, with the Hg-S bond distances at 2.325 {+-} 0.01 {angstrom} in linear S-Hg-S coordination, and the {sup 199}Hg NMR chemical shift at -984 ppm, dominates except at high excess of glutathione. In a series of solutions with C{sub Hg(II)} {approx} 17 mM and GSH/Hg(II) mole ratios rising from 2.4 to 11.8, the gradually increasing mean Hg-S bond distance corresponds to an increasing amount of the [Hg(AH){sub 3}]{sup 4-} complex. ESI-MS peaks appear at -m/z values of 1208 and 1230 corresponding to the [Na{sub 4}Hg(AH){sub 2}(A)]{sup -} and [Na{sub 5}Hg(AH)(A){sub 2}]{sup -} species, respectively. In another series of solutions at pH 7.0 with CHg(II) 50 mM and GSH/Hg(II) ratios from 2.0 to 10.0, the Hg L{sub III}-edge EXAFS and {sup 199}Hg NMR spectra show that at high excess of glutathione (0.35 M) about 70% of the total mercury(II) concentration is present as the [Hg(AH){sub 3}]4- complex, with the average Hg-S bond distance 2.42 {+-} 0.02 {angstrom} in trigonal HgS{sub 3} coordination. The proportions of HgSn species, n = 2, 3, and 4, quantified by fitting linear combinations of model EXAFS oscillations to the experimental EXAFS data in our present and previous studies were used to obtain stability constants for the [Hg(AH){sub 3}]{sup 4-} complex and also for the [Hg(A){sub 4}]{sup 10-} complex that is present at high pH. For Hg(II) in low concentration at physiological conditions (pH 7.4, C{sub GSH} = 2.2 mM), the relative amounts of the HgS{sub 2} species [Hg(AH){sub 2}]{sup 2-}, [Hg(AH)(A)]{sup 3-}, and the HgS{sub 3} complex [Hg(AH){sub 3}]{sup 4-} were calculated to be 95:2:3. Our results are not

  13. Formation, Migration, and Reactivity of Au CO Complexes on Gold Surfaces

    DOE PAGESBeta

    Wang, Jun; McEntee, Monica; Tang, Wenjie; Neurock, Matthew; Baddorf, Arthur P.; Maksymovych, Petro; Yates, Jr, John T.

    2016-01-12

    Here, we report experimental as well as theoretical evidence that suggests Au CO complex formation upon the exposure of CO to active sites (step edges and threading dislocations) on a Au(111) surface. Room-temperature scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy, transmission infrared spectroscopy, and density functional theory calculations point to Au CO complex formation and migration. Room-temperature STM of the Au(111) surface at CO pressures in the range from 10^ 8 to 10^ 4 Torr (dosage up to 10^6 langmuir) indicates Au atom extraction from dislocation sites of the herringbone reconstruction, mobile Au CO complex formation and diffusion, and Aumore » adatom cluster formation on both elbows and step edges on the Au surface. The formation and mobility of the Au CO complex result from the reduced Au Au bonding at elbows and step edges leading to stronger Au CO bonding and to the formation of a more positively charged CO (CO +) on Au. These studies indicate that the mobile Au CO complex is involved in the Au nanoparticle formation and reactivity, and that the positive charge on CO increases due to the stronger adsorption of CO at Au sites with lower coordination numbers.« less

  14. Formation, Migration, and Reactivity of Au-CO Complexes on Gold Surfaces.

    PubMed

    Wang, Jun; McEntee, Monica; Tang, Wenjie; Neurock, Matthew; Baddorf, Arthur P; Maksymovych, Petro; Yates, John T

    2016-02-10

    We report experimental as well as theoretical evidence that suggests Au-CO complex formation upon the exposure of CO to active sites (step edges and threading dislocations) on a Au(111) surface. Room-temperature scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy, transmission infrared spectroscopy, and density functional theory calculations point to Au-CO complex formation and migration. Room-temperature STM of the Au(111) surface at CO pressures in the range from 10(-8) to 10(-4) Torr (dosage up to 10(6) langmuir) indicates Au atom extraction from dislocation sites of the herringbone reconstruction, mobile Au-CO complex formation and diffusion, and Au adatom cluster formation on both elbows and step edges on the Au surface. The formation and mobility of the Au-CO complex result from the reduced Au-Au bonding at elbows and step edges leading to stronger Au-CO bonding and to the formation of a more positively charged CO (CO(δ+)) on Au. Our studies indicate that the mobile Au-CO complex is involved in the Au nanoparticle formation and reactivity, and that the positive charge on CO increases due to the stronger adsorption of CO at Au sites with lower coordination numbers. PMID:26754257

  15. Real-time Live Imaging of T-cell Signaling Complex Formation

    PubMed Central

    Barda-Saad, Mira

    2013-01-01

    real-time imaging of live cells allows both the spatial tracking of proteins and the ability to temporally distinguish between signaling events, thus shedding light on the dynamics of the process 9,10. We present a method of real-time imaging of signaling-complex formation during T-cell activation. Primary T-cells or T-cell lines, such as Jurkat, are transfected with plasmids encoding for proteins of interest fused to monomeric fluorescent proteins, preventing non-physiological oligomerization 11. Live T cells are dropped over a coverslip pre-coated with T-cell activating antibody 8,9, which binds to the CD3/TCR complex, inducing T-cell activation while overcoming the need for specific activating antigens. Activated cells are constantly imaged with the use of confocal microscopy. Imaging data are analyzed to yield quantitative results, such as the colocalization coefficient of the signaling proteins. PMID:23851483

  16. Complex Formation History of Highly Evolved Basaltic Shergottite, Zagami

    NASA Technical Reports Server (NTRS)

    Niihara, T.; Misawa, K.; Mikouchi, T.; Nyquist, L. E.; Park, J.; Hirata, D.

    2012-01-01

    Zagami, a basaltic shergottite, contains several kinds of lithologies such as Normal Zagami consisting of Fine-grained (FG) and Coarse-grained (CG), Dark Mottled lithology (DML), and Olivine-rich late-stage melt pocket (DN). Treiman and Sutton concluded that Zagami (Normal Zagami) is a fractional crystallization product from a single magma. It has been suggested that there were two igneous stages (deep magma chamber and shallow magma chamber or surface lava flow) on the basis of chemical zoning features of pyroxenes which have homogeneous Mg-rich cores and FeO, CaO zoning at the rims. Nyquist et al. reported that FG has a different initial Sr isotopic ratio than CG and DML, and suggested the possibility of magma mixing on Mars. Here we report new results of petrology and mineralogy for DML and the Olivine-rich lithology (we do not use DN here), the most evolved lithology in this rock, to understand the relationship among lithologies and reveal Zagami s formation history

  17. Substrate Binding Promotes Formation of the Skp1-Cul1-Fbxl3 (SCFFbxl3) Protein Complex*

    PubMed Central

    Yumimoto, Kanae; Muneoka, Tetsuya; Tsuboi, Tomohiro; Nakayama, Keiichi I.

    2013-01-01

    The Skp1–Cul1–F-box protein (SCF) complex is one of the most well characterized types of ubiquitin ligase (E3), with the E3 activity of the complex being regulated in part at the level of complex formation. Fbxl3 is an F-box protein that is responsible for the ubiquitylation and consequent degradation of cryptochromes (Crys) and thus regulates oscillation of the circadian clock. Here we show that formation of the SCFFbxl3 complex is regulated by substrate binding in vivo. Fbxl3 did not associate with Skp1 and Cul1 to a substantial extent in transfected mammalian cells. Unexpectedly, however, formation of the SCFFbxl3 complex was markedly promoted by forced expression of its substrate Cry1 in these cells. A mutant form of Fbxl3 that does not bind to Cry1 was unable to form an SCF complex, suggesting that interaction of Cry1 with Fbxl3 is essential for formation of SCFFbxl3. In contrast, recombinant Fbxl3 associated with recombinant Skp1 and Cul1 in vitro even in the absence of recombinant Cry1. Domain-swap analysis revealed that the COOH-terminal leucine-rich repeat domain of Fbxl3 attenuates the interaction of Skp1, suggesting that a yet unknown protein associated with the COOH-terminal domain of Fbxl3 and inhibited SCF complex formation. Our results thus provide important insight into the regulation of both SCF ubiquitin ligase activity and circadian rhythmicity. PMID:24085301

  18. Direct measurement via phage titre of the dissociation constants in solution of fusion phage-substrate complexes.

    PubMed Central

    Dyson, M R; Germaschewski, V; Murray, K

    1995-01-01

    Studies of interactions between filamentous fusion phage particles and protein or nucleic acid molecules have gained increasing importance with recent successes of screening techniques based upon random phage display libraries (biopanning). Since a number of different phage are usually obtained by biopanning, it is useful to compare quantitatively the binding affinities of individual phage for the substrate used for selection. A procedure is described for determination of relative dissociation constants (KdRel) between filamentous phage carrying peptide fusions to the coat protein gpIII and substrates in solution. This novel method is based on the measurement of phage titres. Phage selected from a random fusion phage library for binding to a monoclonal antibody or a viral structural protein exhibited KdRel values in the nanomolar and micromolar ranges for their respective substrates, thus validating the method over a wide range of binding affinities. PMID:7784206

  19. The imidazole role in strontium beta-diketonate complexes formation.

    PubMed

    Marchetti, Fabio; Pettinari, Claudio; Pettinari, Riccardo; Cingolani, Augusto; Gobetto, Roberto; Chierotti, Michele R; Drozdov, Andrei; Troyanov, Sergey I

    2006-04-01

    A selection of new strontium beta-diketonate derivatives (imH2)2[Sr2(beta-dike)6] [where imH = imidazole and beta-dike = tfac (tfacH = 1,1,1-trifluoro-2,4-pentanedione), tfbz (tfbzH = 1,1,1-trifluoro-4-phenyl-2,4-butanedione), or hfac (hfacH = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione)], [Sr2(tfac)4(Meim)2(H2O)2], (MeimH)2[Sr(beta-dike)4] (where Meim = 1-methylimidazole and beta-dike = tfbz or hfac), [Sr2(thd)4(imH)2(EtOH)], and [Sr2(thd)4(Meim)2(EtOH)] (where thdH = 2,2,6,6-tetramethyl-3,5-heptanedione) have been synthesized and fully characterized. (imH2)2[Sr2(beta-dike)6] and (MeimH)2[Sr(beta-dike)4] are di- and mononuclear Sr anionic complexes, respectively, while [Sr2(tfac)4(Meim)2(H2O)2], [Sr2(thd)4(imH)2(EtOH)], and [Sr2(thd)4(Meim)2(EtOH)] are neutral dinuclear molecular derivatives. The derivative (imH2)2[Sr2(hfac)6] slowly decomposes in solution under aerobic conditions, giving (imH2)2[Sr(H2O)2(tfa)3](tfa) (tfaH = trifluoroacetic acid), which is an ionic compound containing polynuclear anionic chains composed of Sr(H2O)2(tfa)3 units. When a deficiency of imH is employed, the thdH proligand forms not only the dinuclear derivative [Sr2(thd)4(imH)2(EtOH)] but also an additional product with the formula [Sr(thd)2(H2O)2(EtOH)], in which the Sr atom is seven-coordinated. A complete solid-state characterization has been accomplished by comparing X-ray and solid-state 13C NMR data. Elucidation of the H-bond interaction between the heterocyclic rings and metal complexes by cross-polarization magic-angle-spinning 15N NMR is also reported. PMID:16562964

  20. An illustration of the complexity of continent formation

    NASA Technical Reports Server (NTRS)

    Burke, Kevin

    1988-01-01

    It was pointed out that a consensus may be emerging in crustal growth models, considering the clustering of most growth curves and their uncertainties. Curves most distant from this clustering represent models involving extensive recycling of continental material back into the mantle, but the author wondered if geochemical signatures for this would be recognizable considering the lack of evidence from seismic tomography for discrete mantle reservoirs, and the likelihood of core-mantle interaction based on recent high pressure experiments. Unreactivated Archean rocks represent only 2 percent of present continental area, and the author was uncomfortable about basing inferences on what the early Earth was like on such a small amount of information. He feels that the hypothesis of continental assembly that needs testing is that of banging together of island arcs, such as in Indonesia today. As an example of how complex this process can be, the author described the geology of the Caribbean arc system, which shows evidence for reversals of subduction polarity, numerous collisional events, and substantial strike-slip movements. It seemed unlikely to the author that Archean examples would have been less complicated.

  1. Interferogram formation in the presence of complex and large deformation

    USGS Publications Warehouse

    Yun, S.-H.; Zebker, H.; Segall, P.; Hooper, A.; Poland, M.

    2007-01-01

    Sierra Negra volcano in Isabela island, Gala??pagos, erupted from October 22 to October 30 in 2005. During the 8 days of eruption, the center of Sierra Negra's caldera subsided about 5.4 meters. Three hours prior to the onset of the eruption, an earthquake (Mw 5.4) occurred, near the caldera. Because of the large and complex phase gradient due to the huge subsidence and the earthquake, it is difficult to form an interferogram inside the caldera that spans the eruption. The deformation is so large and spatially variable that the approximations used in existing InSAR software (ROI, ROI_PAC, DORIS, GAMMA) cannot properly coregister SAR image pairs spanning the eruption. We have developed here a two-step algorithm that can form intra-caldera interferograms from these data. The first step involves a "rubber-sheeting" SAR image coregistration. In the second step we use range offset estimates to mitigate the steep phase gradient. Using this new algorithm, we retrieve an interferogram with the best coverage to date inside the caldera of Sierra Negra. Copyright 2007 by the American Geophysical Union.

  2. Oxidative peptide /and amide/ formation from Schiff base complexes

    NASA Technical Reports Server (NTRS)

    Strehler, B. L.; Li, M. P.; Martin, K.; Fliss, H.; Schmid, P.

    1982-01-01

    One hypothesis of the origin of pre-modern forms of life is that the original replicating molecules were specific polypeptides which acted as templates for the assembly of poly-Schiff bases complementary to the template, and that these polymers were then oxidized to peptide linkages, probably by photo-produced oxidants. A double cycle of such anti-parallel complementary replication would yield the original peptide polymer. If this model were valid, the Schiff base between an N-acyl alpha mino aldehyde and an amino acid should yield a dipeptide in aqueous solution in the presence of an appropriate oxidant. In the present study it is shown that the substituted dipeptide, N-acetyl-tyrosyl-tyrosine, is produced in high yield in aqueous solution at pH 9 through the action of H2O2 on the Schiff-base complex between N-acetyl-tyrosinal and tyrosine and that a great variety of N-acyl amino acids are formed from amino acids and aliphatic aldehydes under similar conditions.

  3. Interferogram formation in the presence of complex and large deformation

    NASA Astrophysics Data System (ADS)

    Yun, Sang-Ho; Zebker, Howard; Segall, Paul; Hooper, Andrew; Poland, Michael

    2007-06-01

    Sierra Negra volcano in Isabela island, Galápagos, erupted from October 22 to October 30 in 2005. During the 8 days of eruption, the center of Sierra Negra's caldera subsided about 5.4 meters. Three hours prior to the onset of the eruption, an earthquake (Mw 5.4) occurred, near the caldera. Because of the large and complex phase gradient due to the huge subsidence and the earthquake, it is difficult to form an interferogram inside the caldera that spans the eruption. The deformation is so large and spatially variable that the approximations used in existing InSAR software (ROI, ROI_PAC, DORIS, GAMMA) cannot properly coregister SAR image pairs spanning the eruption. We have developed here a two-step algorithm that can form intra-caldera interferograms from these data. The first step involves a ``rubber-sheeting'' SAR image coregistration. In the second step we use range offset estimates to mitigate the steep phase gradient. Using this new algorithm, we retrieve an interferogram with the best coverage to date inside the caldera of Sierra Negra.

  4. The adenylate cyclase receptor complex and aqueous humor formation.

    PubMed Central

    Caprioli, J.; Sears, M.

    1984-01-01

    The secretory tissue of the eye, the ciliary processes, contains an enzyme receptor complex, composed of membrane proteins, the catalytic moiety of the enzyme adenylate cyclase, a guanyl nucleotide regulatory protein (or N protein), and other features. The enzyme can be activated by well-known neurohumoral or humoral agents, catecholamines, glycoprotein hormones produced by the hypothalamic pituitary axis, and other related compounds, including placental gonadotropin, organic fluorides, and forskolin, a diterpene. These compounds cause the ciliary epithelia to produce cyclic AMP at an accelerated rate. Cyclic AMP, as a second messenger, causes, either directly or indirectly, a decrease in the net rate of aqueous humor inflow that may be modulated by cofactors. Clinical syndromes fit the experimental data so that an integrated explanation can be given for the reduced intraocular pressure witnessed under certain central nervous system and adrenergic influences. The molecular biology of this concept provides important leads for future investigations that bear directly both upon the regulation of intraocular pressure and upon glaucoma. Images FIG. 11 PMID:6093393

  5. Polyphenol-Aluminum Complex Formation: Implications for Aluminum Tolerance in Plants.

    PubMed

    Zhang, Liangliang; Liu, Ruiqiang; Gung, Benjamin W; Tindall, Steven; Gonzalez, Javier M; Halvorson, Jonathan J; Hagerman, Ann E

    2016-04-20

    Natural polyphenols may play an important role in aluminum detoxification in some plants. We examined the interaction between Al(3+) and the purified high molecular weight polyphenols pentagalloyl glucose (940 Da) and oenothein B (1568 Da), and the related compound methyl gallate (184 Da) at pH 4 and 6. We used spectrophotometric titration and chemometric modeling to determine stability constants and stoichiometries for the aluminum-phenol (AlL) complexes. The structures and spectral features of aluminum-methyl gallate complexes were evaluated with quantum chemical calculations. The high molecular weight polyphenols formed Al3L2 complexes with conditional stability constants (β) ∼ 1 × 10(23) at pH 6 and AlL complexes with β ∼ 1 × 10(5) at pH 4. Methyl gallate formed AlL complexes with β = 1 × 10(6) at pH 6 but did not complex aluminum at pH 4. At intermediate metal-to-polyphenol ratios, high molecular weight polyphenols formed insoluble Al complexes but methyl gallate complexes were soluble. The high molecular weight polyphenols have high affinities and solubility features that are favorable for a role in aluminum detoxification in the environment. PMID:27022835

  6. Structure of soybean serine acetyltransferase and formation of the cysteine regulatory complex as a molecular chaperone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serine acetyltransferase (SAT) catalyzes the limiting reaction in plant and microbial biosynthesis of cysteine. In addition to its enzymatic function, SAT forms a macromolecular complex with O-acetylserine sulfhydrylase (OASS). Formation of the cysteine regulatory complex (CRC) is a critical biochem...

  7. Phosphorylation-dependent formation of a quaternary complex at the c-fos SRE.

    PubMed Central

    Gille, H; Kortenjann, M; Strahl, T; Shaw, P E

    1996-01-01

    The rapid and transient induction of the human proto-oncogene c-fos in response to a variety of stimuli depends on the serum responses element (SRE). In vivo footprinting experiments show that this promoter element is bound by a multicomponent complex including the serum response factor (SRF) and a ternary complex factor such as Elk-1. SRF is thought to recruit a ternary complex factor monomer into an asymmetric complex. In this report, we describe a quaternary complex over the SRE which, in addition to an SRF dimer, contains two Elk-1 molecules. Its formation at the SRE is strictly dependent on phosphorylation of S-383 in the Elk-1 regulatory domain and appears to involve a weak intermolecular association between the two Elk-1 molecules. The influence of mutations in Elk-1 on quaternary complex formation in vitro correlates with their effect on the induction of c-fos reporter expression in response to mitogenic stimuli in vivo. PMID:8622654

  8. MICROCALORIMETRIC STUDIES ON THE FORMATION OF MAGNESIUM COMPLEXES OF ADENINE NUCLEOTIDES

    PubMed Central

    Belaich, J. P.; Sari, J. C.

    1969-01-01

    Values for the thermodynamic quantities (ΔF, ΔH, ΔS) in reactions in which complexes of adenine nucleotides with magnesium ion (ATPMg--, ADPMg-, AMPMg) are formed have been obtained by a microcalorimetric technique by using an isothermic Calvet's apparatus. Experimental values measured at ionic strength μ = 0.2 indicate that complex formation reactions are driven by the entropic factor and that stability of complexes increases with length of the phosphate chain. PMID:5261047

  9. Evidence of iron(III)-oxalato complex formation in aqueous solution from x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Magini, Mauro

    1981-02-01

    An aqueous solution of ferric ammonium oxalate has been examined to provide direct experimental evidence of complex formation between iron(III) and a typical organic complexing ligand. The radial distribution function as well as analysis of the structure function lead to the conclusion that the dominant species present in solution is the trioxalato-iron(III) complex in which each oxalate ion occupies two corners of a distorted octahedron around the Fe 3+ ions.

  10. HC[triple bond]P and H3C-C[triple bond]P as proton acceptors in protonated complexes containing two phosphorus bases: structures, binding energies, and spin-spin coupling constants.

    PubMed

    Alkorta, Ibon; Elguero, José; Bene, Janet E Del

    2007-10-01

    Ab initio calculations at the MP2/aug'-cc-pVTZ level have been carried out to investigate the structures and binding energies of cationic complexes involving protonated sp, sp2, and sp3 phosphorus bases as proton donor ions and the sp-hybridized phosphorus bases H-C[triple bond]P and H3C-C[triple bond]P as proton acceptors. These proton-bound complexes exhibit a variety of structural motifs, but all are stabilized by interactions that occur through the pi cloud of the acceptor base. The binding energies of these complexes range from 6 to 15 kcal/mol. Corresponding complexes with H3C-C[triple bond]P as the proton acceptor are more stable than those with H-C[triple bond]P as the acceptor, a reflection of the greater basicity of H3C-C[triple bond]P. In most complexes with sp2- or sp3-hybridized P-H donor ions, the P-H bond lengthens and the P-H stretching frequency is red-shifted relative to the corresponding monomers. Complex formation also leads to a lengthening of the C[triple bond]P bond and a red shift of the C[triple bond]P stretching vibration. The two-bond coupling constants 2pihJ(P-P) and 2pihJ(P-C) are significantly smaller than 2hJ(P-P) and 2hJ(P-C) for complexes in which hydrogen bonding occurs through lone pairs of electrons on P or C. This reflects the absence of significant s electron density in the hydrogen-bonding regions of these pi complexes. PMID:17760429

  11. Positronium formation studies in solid molecular complexes: Triphenylphosphine oxide-triphenylmethanol

    NASA Astrophysics Data System (ADS)

    Oliveira, F. C.; Denadai, A. M. L.; Fulgêncio, F. H.; Magalhães, W. F.; Alcântara, A. F. C.; Windmöller, D.; Machado, J. C.

    2012-06-01

    Positronium formation in triphenylphosphine oxide (TPPO), triphenylmethanol (TPM), and systems [TPPO(1-X)ṡTPMX] has been studied. The low probability of positronium formation in complex [TPPO0.5ṡTPM0.5] was attributed to strong hydrogen bond and sixfold phenyl embrace interactions. These strong interactions in complex reduce the possibility of the n- and π-electrons to interact with positrons on the spur and consequently, the probability of positronium formation is lower. The τ3 parameter and free volume (correlated to τ3) were also sensitive to the formation of hydrogen bonds and sixfold phenyl embrace interactions within the complex. For physical mixture the positron annihilation parameters remained unchanged throughout the composition range.

  12. The chitosan-gelatin (bio)polyelectrolyte complexes formation in an acidic medium.

    PubMed

    Voron'ko, Nicolay G; Derkach, Svetlana R; Kuchina, Yuliya A; Sokolan, Nina I

    2016-03-15

    The interaction of cationic polysaccharide chitosan and gelatin accompanied by the stoichiometric (bio)polyelectrolyte complexes formation has been studied by the methods of capillary viscometry, UV and FTIR spectroscopy and dispersion of light scattering. Complexes were formed in the aqueous phase, with pH being less than the isoelectric point of gelatin (pIgel). The particle size of the disperse phase increases along with the growth of the relative viscosity in comparison with sols of the individual components-polysaccharide and gelatin. Possible models and mechanism of (bio)polyelectrolyte complexes formation have been discussed. It was shown that the complex formation takes place not only due to the hydrogen bonds, but also due to the electrostatic interactions between the positively charged amino-groups of chitosan and negatively charged amino acid residues (glutamic Glu and aspartic Asp acids) of gelatin. PMID:26794762

  13. Smog chamber experiments to investigate Henry's law constants of glyoxal using different seed aerosols as well as imidazole formation in the presence of ammonia

    NASA Astrophysics Data System (ADS)

    Jakob, Ronit

    2015-04-01

    Aerosols play an important role in the chemistry and physics of the atmosphere. Hence, they have a direct as well as an indirect impact on the earth's climate. Depending on their formation, one distinguishes between primary and secondary aerosols[1]. Important groups within the secondary aerosols are the secondary organic aerosols (SOAs). In order to improve predictions about these impacts on the earth's climate the existing models need to be optimized, because they still underestimate SOA formation[2]. Glyoxal, the smallest α-dicarbonyl, not only acts as a tracer for SOA formation but also as a direct contributor to SOA. Because glyoxal has such a high vapour pressure, it was common knowledge that it does not take part in gas-particle partitioning and therefore has no impact on direct SOA formation. However, the Henry's law constant for glyoxal is surprisingly high. This has been explained by the hydration of the aldehyde groups, which means that a species with a lower vapour pressure is produced. Therefore the distribution of glyoxal between gas- and particle phase is atmospherically relevant and the direct contribution of glyoxal to SOA can no longer be neglected[3]. Besides this particulate glyoxal is able to undergo heterogeneous chemistry with gaseous ammonia to form imidazoles. This plays an important role for regions with aerosols exhibiting alkaline pH values for example from lifestock or soil dust because imidazoles as nitrogen containing compounds change the optical properties of aerosols[4]. A high salt concentration present in chamber seed aerosols leads to an enhanced glyoxal uptake into the particle. This effect is called "salting-in". The salting effect depends on the composition of the seed aerosol as well as the soluble compound. For very polar compounds, like glyoxal, a "salting-in" is observed[3]. Glyoxal particle formation during a smog chamber campaign at Paul-Scherrer-Institut (PSI) in Switzerland was examined using different seed aerosols

  14. Complexes of sulfur-containing ligands. I. Factors influencing complex formation between D-penicillamine and copper (II) ion.

    PubMed

    Gergely, A; Sóvágó, I

    1978-07-01

    Complex formation and redox reactions between copper (II) ion and D-penicillamine were studied in detail as functions of the metal/-ligand ratio and the concentration of halide ions. It was established that a copper (I)- D-penicillamine polymeric complex of amphoteric character is formed when excess D-penicillamine is present. When the D-penicillamine/copper (II) ratio = 1.45 in the starting reaction mixture, a mixed valence complex with an intense red-violet color is formed. The formation of this compound, which contains 44% copper (II) ion, is greatly influenced by the experimental conditions, primarily by the concentration of halide ions. The main chemical and physical characteristics of the mixed valence complex were determined via magnetic and spectroscopic measurements. It was further established that a very intense blue complex is formed when the D-penicillamine/copper (II) ratio = 2 and halide ions are present. On the basis of the nature of the products formed under various conditions it was concluded that the copper (II)-D-penicillamine system may serve as a good model for studying the binding sites of copper-containing proteins. PMID:210846

  15. Determination of the stability constants and oxidation susceptibility of nickel(II) complexes with 2'-deoxyguanosine 5'-triphosphate and L-histidine.

    PubMed

    Kaczmarek, Piotr; Jezowska-Bojczuk, Małgorzata; Bal, Wojciech; Kasprzak, Kazimierz S

    2005-03-01

    The formation of binary Ni(II) complexes with 2'-deoxyguanosine 5'-triphosphate (dGTP, L) as well as ternary complexes thereof with L-histidine (His, A) was studied with the use of potentiometry and electronic absorption spectroscopy. In the binary and ternary systems, the complexes with stoichiometries NiH2L-, NiHL2-, NiL3- and NiH2LA2-, NiHLA3-, NiLA4- respectively, were detected. The ternary complexes are very stable at pH 7.4 and thus may constitute biologically relevant Ni(II) carriers in the cell. In the presence of hydrogen peroxide, the binary and ternary systems both generate hydroxyl radical-like species and undergo dGTP degradation with the formation of the 8-oxo-dGTP intermediate. The latter, along with dGTP complexation and degradation, may lead to mutagenesis and carcinogenesis due to base-mispairing properties of 8-oxoguanine and the disturbance in the physiological balance among the four canonical triphosphodeoxynucleotide substrates for DNA synthesis. PMID:15708794

  16. SEPALLATA3: the 'glue' for MADS box transcription factor complex formation

    PubMed Central

    Immink, Richard GH; Tonaco, Isabella AN; de Folter, Stefan; Shchennikova, Anna; van Dijk, Aalt DJ; Busscher-Lange, Jacqueline; Borst, Jan W; Angenent, Gerco C

    2009-01-01

    Background Plant MADS box proteins play important roles in a plethora of developmental processes. In order to regulate specific sets of target genes, MADS box proteins dimerize and are thought to assemble into multimeric complexes. In this study a large-scale yeast three-hybrid screen is utilized to provide insight into the higher-order complex formation capacity of the Arabidopsis MADS box family. SEPALLATA3 (SEP3) has been shown to mediate complex formation and, therefore, special attention is paid to this factor in this study. Results In total, 106 multimeric complexes were identified; in more than half of these at least one SEP protein was present. Besides the known complexes involved in determining floral organ identity, various complexes consisting of combinations of proteins known to play a role in floral organ identity specification, and flowering time determination were discovered. The capacity to form this latter type of complex suggests that homeotic factors play essential roles in down-regulation of the MADS box genes involved in floral timing in the flower via negative auto-regulatory loops. Furthermore, various novel complexes were identified that may be important for the direct regulation of the floral transition process. A subsequent detailed analysis of the APETALA3, PISTILLATA, and SEP3 proteins in living plant cells suggests the formation of a multimeric complex in vivo. Conclusions Overall, these results provide strong indications that higher-order complex formation is a general and essential molecular mechanism for plant MADS box protein functioning and attribute a pivotal role to the SEP3 'glue' protein in mediating multimerization. PMID:19243611

  17. Complexation-flocculation combined with microwave-assisted headspace solid-phase microextraction in determining the binding constants of hydrophobic organic pollutants to dissolved humic substances.

    PubMed

    Hsieh, Ping-Chieh; Lee, Chon-Lin; Jen, Jen-Fon; Chang, Kuei-Chen

    2015-02-21

    The binding constants, KDOC, of selected polycyclic aromatic hydrocarbons (PAHs)-phenanthrene, anthracene, fluoranthene, and pyrene-to dissolved humic substances (DHS) were determined by complexation-flocculation combined with microwave-assisted headspace solid-phase microextraction (CF-MA-HS-SPME). The results obtained are comparable with KDOC data reported in the literature. No disruption of the PAH to DHS binding equilibrium was observed during the complexation-flocculation process. The present study, which is the first to determine KDOC by CF-MA-HS-SPME, provides an alternative approach to determine the KDOC of PAHs. CF-MA-HS-SPME provides some advantages over other methods, such as no limitation of fluorescent compounds, greater determination speed, and the capability of measuring various compounds simultaneously. PMID:25568896

  18. Simultaneous determination of helical unwinding angles and intrinsic association constants in ligand–DNA complexes: The interaction between DNA and calichearubicin B

    PubMed Central

    Zeman, Steven M.; Depew, Kristopher M.; Danishefsky, Samuel J.; Crothers, Donald M.

    1998-01-01

    We present a helical unwinding assay for reversibly binding DNA ligands that uses closed circular DNA, topoisomerase I (Topo I), and two-dimensional agarose gel electrophoresis. Serially diluted Topo I relaxation reactions at constant DNA/ligand ratio are performed, and the resulting apparent unwinding of the closed circular DNA is used to calculate both ligand unwinding angle (φ) and intrinsic association constant (Ka). Mathematical treatment of apparent unwinding is formally analogous to that of apparent extinction coefficient data for optical binding titrations. Extrapolation to infinite DNA concentration yields the true unwinding angle of a given ligand and its association constant under Topo I relaxation conditions. Thus this assay delivers simultaneous structural and thermodynamic information describing the ligand–DNA complex. The utility of this assay has been demonstrated by using calichearubicin B (CRB), a synthetic hybrid molecule containing the anthraquinone chromophore of (DA) and the carbohydrate domain of calicheamicin γ1I. The unwinding angle for CRB calculated by this method is −5.3 ± 0.5°. Its Ka value is 0.20 × 106 M−1. For comparison, the unwinding angles of ethidium bromide and DA have been independently calculated, and the results are in agreement with canonical values for these compounds. Although a stronger binder to selected sites, CRB is a less potent unwinder than its parent compound DA. The assay requires only small amounts of ligand and offers an attractive option for analysis of DNA binding by synthetic and natural compounds. PMID:9539736

  19. Cleavage and formation of molecular dinitrogen in a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine.

    PubMed

    Miyazaki, Takamasa; Tanaka, Hiromasa; Tanabe, Yoshiaki; Yuki, Masahiro; Nakajima, Kazunari; Yoshizawa, Kazunari; Nishibayashi, Yoshiaki

    2014-10-20

    The N≡N bond of molecular dinitrogen bridging two molybdenum atoms in the pentamethylcyclopentadienyl molybdenum complexes that bear ferrocenyldiphosphine as an auxiliary ligand is homolytically cleaved under visible light irradiation at room temperature to afford two molar molybdenum nitride complexes. Conversely, the bridging molecular dinitrogen is reformed by the oxidation of the molybdenum nitride complex at room temperature. This result provides a successful example of the cleavage and formation of molecular dinitrogen induced by a pair of two different external stimuli using a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine under ambient conditions. PMID:25214300

  20. Complex Formation of Human Proelastases with Procarboxypeptidases A1 and A2.

    PubMed

    Szabó, András; Pilsak, Claudia; Bence, Melinda; Witt, Heiko; Sahin-Tóth, Miklós

    2016-08-19

    The pancreas secretes digestive proenzymes typically in their monomeric form. A notable exception is the ternary complex formed by proproteinase E, chymotrypsinogen C, and procarboxypeptidase A (proCPA) in cattle and other ruminants. In the human and pig pancreas binary complexes of proCPA with proelastases were found. To characterize complex formation among human pancreatic protease zymogens in a systematic manner, we performed binding experiments using recombinant proelastases CELA2A, CELA3A, and CELA3B; chymotrypsinogens CTRB1, CTRB2, CTRC, and CTRL1; and procarboxypeptidases CPA1, CPA2, and CPB1. We found that proCELA3B bound not only to proCPA1 (KD 43 nm) but even more tightly to proCPA2 (KD 18 nm), whereas proCELA2A bound weakly to proCPA1 only (KD 152 nm). Surprisingly, proCELA3A, which shares 92% identity with proCELA3B, did not form stable complexes due to the evolutionary replacement of Ala(241) with Gly. The polymorphic nature of position 241 in both CELA3A (∼4% Ala(241) alleles) and CELA3B (∼2% Gly(241) alleles) points to individual variations in complex formation. The functional effect of complex formation was delayed procarboxypeptidase activation due to increased affinity of the inhibitory activation peptide, whereas proelastase activation was unchanged. We conclude that complex formation among human pancreatic protease zymogens is limited to a subset of proelastases and procarboxypeptidases. Complex formation stabilizes the inhibitory activation peptide of procarboxypeptidases and thereby increases zymogen stability and controls activation. PMID:27358403

  1. Full solution, for crystal class 3m, of the Holland-EerNisse complex material-constant theory of lossy piezoelectrics for harmonic time dependence.

    PubMed

    Piquette, Jean C; McLaughlin, Elizabeth A

    2007-06-01

    A complex material-constant theory of lossy piezoelectrics is fully solved for crystal class 3m for harmonic time dependence of the fields and stresses. A new demonstration that the theory's eigen coupling factor equation applies to the lossy alternating current (AC) case also is given. The solution presented for crystal class 3m provides a complete orthonormal set of eigenvectors and eigenvalues for the eigen coupling factor problem, and it also provides a complete orthonormal set of eigenvectors and eigenvalues for the eigen loss tangent problem, for this crystal class. It is shown that two positive coupling factors are sufficient to express an arbitrary 3m crystal state. Despite the complex nature of the material constants, the Holland-EerNisse theory produces fully real expressions for the coupling factors. The loss tangent eigenvalues also are fully real and positive. The loss eigenstates are important because driving a crystal in a loss eigenstate tends to minimize the impact of material losses. Given also is a set of loss inequalities for crystal class 3m. The loss inequalities of crystal class 6mm are recovered from these when d22 and s(E)14 both vanish. PMID:17571823

  2. Effects of chemical and enzymatic modifications on starch-oleic acid complex formation.

    PubMed

    Arijaje, Emily Oluwaseun; Wang, Ya-Jane

    2015-04-29

    The solubility of starch-inclusion complexes affects the digestibility and bioavailability of the included molecules. Acetylation with two degrees of substitution, 0.041 (low) and 0.091 (high), combined without or with a β-amylase treatment was employed to improve the yield and solubility of the inclusion complex between debranched potato starch and oleic acid. Both soluble and insoluble complexes were recovered and analyzed for their degree of acetylation, complexation yields, molecular size distributions, X-ray diffraction patterns, and thermal properties. Acetylation significantly increased the amount of recovered soluble complexes as well as the complexed oleic acid in both soluble and insoluble complexes. High-acetylated debranched-only starch complexed the highest amount of oleic acid (38.0 mg/g) in the soluble complexes; low-acetylated starch with or without the β-amylase treatment resulted in the highest complexed oleic acid in the insoluble complexes (37.6-42.9 mg/g). All acetylated starches displayed the V-type X-ray pattern, and the melting temperature generally decreased with acetylation. The results indicate that starch acetylation with or without the β-amylase treatment can improve the formation and solubility of the starch-oleic acid complex. PMID:25877005

  3. Thermodynamics of the formation of copper(II) complexes with L-histidine in aqueous solution

    NASA Astrophysics Data System (ADS)

    Gorboletova, G. G.; Metlin, A. A.

    2015-02-01

    The heat effects from the reaction between L-histidine solutions and Cu(NO3)2 solutions at 298.15 K in the 0.2 to 1.0 (KNO3) range of ionic strength are measured by means of direct calorimetry. The experimental data is treated with allowance for the simultaneous proceeding of several processes. The heat effects of the formation of complexes Cu(His)+, Cu(His)2, CuHHis2+, CuH(His){2/+} and CuH2(His){2/2+} are calculated from calorimetric measurements. The standard enthalpies of formation for complexes of L-histidine with Cu2+ ions are obtained via extrapolation to zero ionic strength. The relationship between the thermodynamic characteristics of the formation of complexes of copper(II) with L-histidine and their structure is determined.

  4. High density of REC8 constrains sister chromatid axes and prevents illegitimate synaptonemal complex formation.

    PubMed

    Agostinho, Ana; Manneberg, Otto; van Schendel, Robin; Hernández-Hernández, Abrahan; Kouznetsova, Anna; Blom, Hans; Brismar, Hjalmar; Höög, Christer

    2016-06-01

    During meiosis, cohesin complexes mediate sister chromatid cohesion (SCC), synaptonemal complex (SC) assembly and synapsis. Here, using super-resolution microscopy, we imaged sister chromatid axes in mouse meiocytes that have normal or reduced levels of cohesin complexes, assessing the relationship between localization of cohesin complexes, SCC and SC formation. We show that REC8 foci are separated from each other by a distance smaller than 15% of the total chromosome axis length in wild-type meiocytes. Reduced levels of cohesin complexes result in a local separation of sister chromatid axial elements (LSAEs), as well as illegitimate SC formation at these sites. REC8 but not RAD21 or RAD21L cohesin complexes flank sites of LSAEs, whereas RAD21 and RAD21L appear predominantly along the separated sister-chromatid axes. Based on these observations and a quantitative distribution analysis of REC8 along sister chromatid axes, we propose that the high density of randomly distributed REC8 cohesin complexes promotes SCC and prevents illegitimate SC formation. PMID:27170622

  5. Can arsenic-phytochelatin complex formation be used as an indicator for toxicity in Helianthus annuus?

    PubMed

    Raab, Andrea; Ferreira, Katia; Meharg, Andrew A; Feldmann, Jörg

    2007-01-01

    The formation of arsenic-phytochelatin (As-PC) complexes is thought to be part of the plant detoxification strategy for arsenic. This work examines (i) the arsenic (As) concentration-dependent formation of As-PC complex formation and (ii) redistribution and metabolism of As after arrested As uptake in Helianthus annuus. HPLC with parallel ICP-MS/ES-MS detection was used to identify and quantify the species present in plant extracts exposed to arsenate (As(V)) (between 0 and 66.7 micromol As l-1 for 24 h). At As concentrations below the EC50 value for root growth (22 micromol As l-1) As uptake is exponential, but it is reduced at concentrations above. Translocation between root and shoot seemed to be limited to the uptake phase of arsenic. No redistribution of As between root and shoot was observed after arresting As exposure. The formation of As-PC complexes was concentration-dependent. The amount and number of As-PC complexes increased exponentially with concentration up to 13.7 micromol As l-1. As(III)-PC3 and GS-As(III)-PC2 complexes were the dominant species in all samples. The ratio of PC-bound As to unbound As increased up to 1.3 micromol As l-1 and decreased at higher concentrations. Methylation of inorganic As was only a minor pathway in H. annuus with about 1% As methylated over a 32 d period. The concentration dependence of As-PC complex formation, amount of unbound reduced and oxidized PC2, and the relative uptake rate showed that As starts to influence the cellular metabolism of H. annuus negatively at As concentrations well below the EC50 value determined by more traditional means. Generally, As-PC complexes and PC-synthesis rate seem to be the more sensitive parameters to be studied when As toxicity values are to be estimated. PMID:17283372

  6. Formation of ATP by the adenosine triphosphatase complex from spinach chloroplasts reconstituted together with bacteriorhodopsin.

    PubMed

    Winget, G D; Kanner, N; Racker, E

    1977-06-01

    The energy-linked ATPase complex has been isolated from spinach chloroplasts. This protein complex contained all the subunits of the chloroplast coupling factor (CF1) as well as several hydrophobic compoenents. When the activated complex was reconstituted with added soybean phospholipids, it catalyzed the exchange of radioactive inorganic phosphate with ATP. Sonication of the complex into proteoliposomes together with bacteriorhodopsin yield vesicles that catalyzed light-dependent ATP formation. Both the 32Pi-ATP exchange reactions and ATP formation were sensitive to uncouplers such as 3-tert-butyl-5,2'-dichloro-4'-nitrosalicylanilide, bis-(hexafluoroacetonyl)acetone and carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazone, that act to dissipate a proton gradient. The energy transfer inhibitors dicyclohexylcarbodiimide, triphenyltin chloride and 2-beta-D-glucopyranosyl-4,6'-dihydroxydihydrochalcone were also effective inhibitors of both reactions. PMID:141938

  7. Mass-dependent and -independent fractionation of isotopes in Ni and Pb chelate complex formation reactions

    NASA Astrophysics Data System (ADS)

    Nomura, Masao; Kudo, Takashi; Adachi, Atsuhiko; Aida, Masao; Fujii, Yasuhiko

    2013-11-01

    Mass independent fractionation (MIF) has been a very interesting topic in the field of inorganic isotope chemistry, in particular, geo- and cosmo- chemistry. In the present work, we studied the isotope fractionation of Ni(II) and Pb(II) ions in complex formation with chelating reagent EDTA. To obtain clear results on the mass dependence of the isotope fractionation, we have conducted long-distance ion exchange chromatography of Ni(II) and Pb(II), using chelate complex reagent EDTA. The results apparently show that the isotope fractionation in Ni complex formation system is governed by the mass dependent rule. On the other hand the isotope fractionation in the Pb complex system is governed by the mass independent rule or the nuclear volume effect.

  8. Mass-dependent and -independent fractionation of isotopes in Ni and Pb chelate complex formation reactions

    SciTech Connect

    Nomura, Masao; Kudo, Takashi; Adachi, Atsuhiko; Aida, Masao; Fujii, Yasuhiko

    2013-11-13

    Mass independent fractionation (MIF) has been a very interesting topic in the field of inorganic isotope chemistry, in particular, geo- and cosmo- chemistry. In the present work, we studied the isotope fractionation of Ni(II) and Pb(II) ions in complex formation with chelating reagent EDTA. To obtain clear results on the mass dependence of the isotope fractionation, we have conducted long-distance ion exchange chromatography of Ni(II) and Pb(II), using chelate complex reagent EDTA. The results apparently show that the isotope fractionation in Ni complex formation system is governed by the mass dependent rule. On the other hand the isotope fractionation in the Pb complex system is governed by the mass independent rule or the nuclear volume effect.

  9. Synergistic effect of ATP for RuvA–RuvB–Holliday junction DNA complex formation

    PubMed Central

    Iwasa, Takuma; Han, Yong-Woon; Hiramatsu, Ryo; Yokota, Hiroaki; Nakao, Kimiko; Yokokawa, Ryuji; Ono, Teruo; Harada, Yoshie

    2015-01-01

    The Escherichia coli RuvB hexameric ring motor proteins, together with RuvAs, promote branch migration of Holliday junction DNA. Zero mode waveguides (ZMWs) constitute of nanosized holes and enable the visualization of a single fluorescent molecule under micromolar order of the molecules, which is applicable to characterize the formation of RuvA–RuvB–Holliday junction DNA complex. In this study, we used ZMWs and counted the number of RuvBs binding to RuvA–Holliday junction DNA complex. Our data demonstrated that different nucleotide analogs increased the amount of Cy5-RuvBs binding to RuvA–Holliday junction DNA complex in the following order: no nucleotide, ADP, ATPγS, and mixture of ADP and ATPγS. These results suggest that not only ATP binding to RuvB but also ATP hydrolysis by RuvB facilitates a stable RuvA–RuvB–Holliday junction DNA complex formation. PMID:26658024

  10. Formation of P450•P450 Complexes and Their Effect on P450 Function

    PubMed Central

    Reed, James R.; Backes, Wayne L.

    2011-01-01

    Cytochromes P450 (P450) are membrane-bound enzymes that catalyze the monooxygenation of a diverse array of xenobiotic and endogenous compounds. The P450s responsible for foreign compound metabolism generally are localized in the endoplasmic reticulum of the liver, lung and small intestine. P450 enzymes do not act alone but require an interaction with other electron transfer proteins such as NADPH-cytochrome P450 reductase (CPR) and cytochrome b5. Because P450s are localized in the endoplasmic reticulum with these and other ER-resident proteins, there is a potential for protein-protein interactions to influence P450 function. There has been increasing evidence that P450 enzymes form complexes in the ER, with compelling support that formation of P450•P450 complexes can significantly influence their function. Our goal is to review the research supporting the formation of P450•P450 complexes, their specificity, and how drug metabolism may be affected. This review describes the potential mechanisms by which P450s may interact, and provides evidence to support each of the possible mechanisms. Additionally, evidence for the formation of both heteromeric and homomeric P450 complexes are reviewed. Finally, direct physical evidence for P450 complex formation in solution and in membranes is summarized, and questions directing the future research of functional P450 interactions are discussed with respect to their potential impact on drug metabolism. PMID:22155419

  11. Production of unstable proteins through the formation of stable core complexes

    PubMed Central

    Levy, Nicolas; Eiler, Sylvia; Pradeau-Aubreton, Karine; Maillot, Benoit; Stricher, François; Ruff, Marc

    2016-01-01

    Purification of proteins that participate in large transient complexes is impeded by low amounts, heterogeneity, instability and poor solubility. To circumvent these difficulties we set up a methodology that enables the production of stable complexes for structural and functional studies. This procedure is benchmarked and applied to two challenging protein families: the human steroid nuclear receptors (SNR) and the HIV-1 pre-integration complex. In the context of transcriptional regulation studies, we produce and characterize the ligand-binding domains of the glucocorticoid nuclear receptor and the oestrogen receptor beta in complex with a TIF2 (transcriptional intermediary factor 2) domain containing the three SNR-binding motifs. In the context of retroviral integration, we demonstrate the stabilization of the HIV-1 integrase by formation of complexes with partner proteins and DNA. This procedure provides a powerful research tool for structural and functional studies of proteins participating in non-covalent macromolecular complexes. PMID:26983699

  12. Production of unstable proteins through the formation of stable core complexes.

    PubMed

    Levy, Nicolas; Eiler, Sylvia; Pradeau-Aubreton, Karine; Maillot, Benoit; Stricher, François; Ruff, Marc

    2016-01-01

    Purification of proteins that participate in large transient complexes is impeded by low amounts, heterogeneity, instability and poor solubility. To circumvent these difficulties we set up a methodology that enables the production of stable complexes for structural and functional studies. This procedure is benchmarked and applied to two challenging protein families: the human steroid nuclear receptors (SNR) and the HIV-1 pre-integration complex. In the context of transcriptional regulation studies, we produce and characterize the ligand-binding domains of the glucocorticoid nuclear receptor and the oestrogen receptor beta in complex with a TIF2 (transcriptional intermediary factor 2) domain containing the three SNR-binding motifs. In the context of retroviral integration, we demonstrate the stabilization of the HIV-1 integrase by formation of complexes with partner proteins and DNA. This procedure provides a powerful research tool for structural and functional studies of proteins participating in non-covalent macromolecular complexes. PMID:26983699

  13. Acidity and complex formation studies of 3-(adenine-9-yl)-propionic and 3-(thymine-1-yl)-propionic acids in ethanol-water media

    NASA Astrophysics Data System (ADS)

    Hammud, Hassan H.; El Shazly, Shawky; Sonji, Ghassan; Sonji, Nada; Bouhadir, Kamal H.

    2015-05-01

    The ligands 3-(adenine-9-yl)propionic acid (AA) and 3-(thymine-1-yl)propionic acid (TA) were prepared by N9-alkylation of adenine and N1-alkylation of thymine with ethylacrylate in presence of a base catalyst, followed by acid hydrolysis of the formed ethyl esters to give the corresponding propionic acid derivatives. The products were characterized by spectral methods (FTIR, 1H NMR and 13C NMR), which confirm their structures. The dissociation constants of ligands, were potentiometrically determined in 0.3 M KCl at 20-50 °C temperature range. The work was extended to study complexation behavior of AA and TA with various biologically important divalent metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Mn2+ and Pb2+) in 50% v/v water-ethanol medium at four different temperatures, keeping ionic strength constant (0.3 M KCl). The order of the stability constants of the formed complexes decreases in the sequence Cu2+ > Pb2+ > Zn2+ > Ni2+ > Co2+ > Mn2+ > Cd2+ for both ligands. The effect of temperature was also studied and the corresponding thermodynamic functions (ΔG, ΔH, ΔS) were derived and discussed. The formation of metal complexes has been found to be spontaneous, and the stability constants were dependant markedly on the basicity of the ligands.

  14. Formation of Stable Cationic Lipid/DNA Complexes for Gene Transfer

    NASA Astrophysics Data System (ADS)

    Hofland, Hans E. J.; Shephard, Lee; Sullivan, Sean M.

    1996-07-01

    Stable cationic lipid/DNA complexes were formed by solubilizing cationic liposomes with 1% octylglucoside and complexing a DNA plasmid with the lipid in the presence of detergent. Removal of the detergent by dialysis yielded a lipid/DNA suspension that was able to transfect tissue culture cells up to 90 days after formation with no loss in activity. Similar levels of gene transfer were obtained by mixing the cationic lipid in a liposome form with DNA just prior to cell addition. However, expression was completely lost 24 hr after mixing. The transfection efficiency of the stable complex in 15% fetal calf serum was 30% of that obtained in the absence of serum, whereas the transient complex was completely inactivated with 2% fetal calf serum. A 90-day stability study comparing various storage conditions showed that the stable complex could be stored frozen or as a suspension at 4 degrees C with no loss in transfection efficiency. Centrifugation of the stable complex produced a pellet that contained approximately 90% of the DNA and 10% of the lipid. Transfection of cells with the resuspended pellet and the supernatant showed that the majority of the transfection activity was in the pellet and all the toxicity was in the supernatant. Formation of a stable cationic lipid/DNA complex has produced a transfection vehicle that can be stored indefinitely, can be concentrated with no loss in transfection efficiency, and the toxicity levels can be greatly reduced when the active complex is isolated from the uncomplexed lipid.

  15. TAR RNA decoys inhibit tat-activated HIV-1 transcription after preinitiation complex formation.

    PubMed Central

    Bohjanen, P R; Liu, Y; Garcia-Blanco, M A

    1997-01-01

    The ability of the HIV-1 Tat protein to trans -activate HIV-1 transcription in vitro is specifically inhibited by a circular TAR RNA decoy. This inhibition is not overcome by adding an excess of Tat to the reaction but is partially overcome by adding Tat in combination with nuclear extract, suggesting that TAR RNA might function by interacting with a complex containing Tat and cellular factor(s). A cell-free transcription system involving immobilized DNA templates was used to further define the factor(s) that interact with TAR RNA. Preinitiation complexes formed in the presence or absence of Tat were purified on immobilized templates containing the HIV-1 promoter. After washing, nucleotides and radiolabelled UTP were added and transcription was measured. The presence of Tat during preinitiation complex formation resulted in an increase in the level of full-length HIV-1 transcripts. This Tat-activated increase in HIV-1 transcription was not inhibited by circular TAR decoys added during preinitiation complex formation but was inhibited by circular TAR decoys subsequently added during the transcription reaction. These results suggest that TAR decoys inhibit Tat-activated HIV-1 transcription after preinitiation complex formation, perhaps by interacting with components of transcription complexes. PMID:9358155

  16. Methionine oxidation of amyloid peptides by peroxovanadium complexes: inhibition of fibril formation through a distinct mechanism.

    PubMed

    He, Lei; Wang, Xuesong; Zhu, Dengsen; Zhao, Cong; Du, Weihong

    2015-12-01

    Fibril formation of amyloid peptides is linked to a number of pathological states. The prion protein (PrP) and amyloid-β (Aβ) are two remarkable examples that are correlated with prion disorders and Alzheimer's disease, respectively. Metal complexes, such as those formed by platinum and ruthenium compounds, can act as inhibitors against peptide aggregation primarily through metal coordination. This study revealed the inhibitory effect of two peroxovanadium complexes, (NH4)[VO(O2)2(bipy)]·4H2O (1) and (NH4)[VO(O2)2(phen)]·2H2O (2), on amyloid fibril formation of PrP106-126 and Aβ1-42via site-specific oxidation of methionine residues, besides direct binding of the complexes with the peptides. Complexes 1 and 2 showed higher anti-amyloidogenic activity on PrP106-126 aggregation than on Aβ1-42, though their regulation on the cytotoxicity induced by the two peptides could not be differentiated. The action efficacy may be attributed to the different molecular structures of the vanadium complex and the peptide sequence. Results reflected that methionine oxidation may be a crucial action mode in inhibiting amyloid fibril formation. This study offers a possible application value for peroxovanadium complexes against amyloid proteins. PMID:26444976

  17. Reinvestigation of the copper(II)-carcinine equilibrium system: "two-dimensional" EPR simulation and NMR relaxation studies for determining the formation constants and coordination modes.

    PubMed

    Arkosi, Zsuzsanna; Paksi, Zoltán; Korecz, László; Gajda, Tamás; Henry, Bernard; Rockenbauer, Antal

    2004-12-01

    The equilibria and solution structure of complexes formed between copper(II) and carcinine (beta-alanyl-histamine) at 2< or = pH< or =11.2 have been studied by EPR and NMR relaxation methods. Beside the species that have already been described in the literature from pH-potentiometric measurements, several new complexes have been identified and/or structurally characterized. The singlet on the EPR spectrum detected in equimolar solutions at pH 7, indicates the formation of an oligomerized (CuL)n(2n+) complex, with [NH2,Nim] coordination. The oligomerization is probably associated with the low stability of the ten-membered macrochelate ring, which would form in the mononuclear complex CuL2+. In presence of moderate excess of ligand the formation of four new bis-complexes (CuL2Hn(2+n), n=2,1 and 0/-1) was detected with [Nim][Nim], [NH2,Nim][Nim] and [NH2,N-,Nim][Nim] type co-ordination modes, respectively. At higher excess of ligand ([L]/[Cu2+]>10) and at pH approximately 7, the predominant species is CuL4H2(4+). The 1H and 13C relaxation measurements of carcinine solutions (0.6 M) in presence of 0 mM< or = [Cu2+](tot)< or = 5 mM at pH=6.8, allowed us to extract the carbon-to-metal distances, the electronic relaxation and tumbling correlation times, as well as the ligand exchange rate for the species CuL4H2(4+). According to these results, the metal ion is [4Nim] co-ordinated in the equatorial plane, while the neutral amino groups are unbounded. Since naturally occurring carcinine shows in vivo antioxidant property, the SOD-like activity of the copper(II)-carcinine system has also been investigated and the complex CuLH(-1) was found to be highly active. PMID:15541487

  18. Stability constants for mono- and dioxalato-complexes of Y and the REE, potentially important species in groundwaters and surface freshwaters

    NASA Astrophysics Data System (ADS)

    Schijf, J.; Byrne, R. H.

    2001-04-01

    We present the first measured set of stability constants for mono- and dioxalato-complexes of yttrium and all rare earths except Pm (Y+REE), Oxβ n = [MOx n3-2n] [M 3+] -1 [Ox 2-] -n(where [ ] ≡ concentrations, M ≡ Y+REE, and Ox 2- ≡ C 2O 42-). Aqueous solutions of Y+REE were titrated with oxalic acid in the presence of a cation-exchange resin, and Y+REE concentrations in the solution phase were measured by ICP-MS. This method allows investigation of all Y+REE simultaneously under identical conditions and is thus very sensitive to subtle inter-element variations in log Oxβ n. Experiments were performed at a single ionic strength ( I = 0.05 M), but at two values of pH. Patterns of log Oxβ 1 and log Oxβ 2, determined from our experiments, are similar in shape and reminiscent of those for carbonato-complexes. The average ratio of stepwise stability constants K 2/K 1 = Oxβ 2/( Oxβ 1) 2 is 0.05 ± 0.02 for Y+REE excluding La and Ce. Literature values of Oxβ 1(Eu) for 0.03 mol/L ≤ I ≤ 1 mol/L were used to derive the relation log Oxβ 1(Eu) = log Oxβ 10(Eu) - 6.132√ I/(1 + 1.47√ I) + 0.902 I, where log Oxβ 10(Eu) is the stability constant at infinite dilution. Applying this relation to all Y+REE, the following values of log Oxβ 10 (at zero ionic strength) were found: 6.66 (Y), 5.87 (La), 5.97 (Ce), 6.25 (Pr), 6.31 (Nd), 6.43 (Sm), 6.52 (Eu), 6.53 (Gd), 6.63 (Tb), 6.74 (Dy), 6.77 (Ho), 6.83 (Er), 6.89 (Tm), 6.95 (Yb), 6.96 (Lu). These values, which are based on direct measurements for each individual Y+REE, agree quite well with published extrapolations that are mostly based on linear free-energy relationships. Total oxalate concentrations of 10 -5-10 -3 M have been reported for soil solutions. Free oxalate ions persist at much lower pH than free carbonate ions and a simple speciation model demonstrates that oxalato-complexes can dominate Y+REE speciation in mildly acidic groundwaters of low-to-moderate alkalinity.

  19. Complexes of DNA with cationic peptides: conditions of formation and factors effecting internalization by mammalian cells.

    PubMed

    Dizhe, E B; Ignatovich, I A; Burov, S V; Pohvoscheva, A V; Akifiev, B N; Efremov, A M; Perevozchikov, A P; Orlov, S V

    2006-12-01

    This work was devoted to the study of conditions of the formation of DNA/K8 complex and analysis of factors effecting the entry of DNA/K8 complex into mammalian cells in comparison with DNA complexes with arginine-rich fragment (47-57) of human immunodeficiency virus (type 1) transcription factor Tat (Tat peptide). The stoichiometry of positively charged DNA/K8 complexes has been studied for the first time. Non-cooperative character of DNA-K8 interaction was revealed. It has been shown that along with the positive charge of such complexes, the presence of an excess of free K8 peptide in the culture medium is a necessary condition for maximal efficiency of cell transfection with DNA/K8 complexes. A stimulatory effect of free K8 peptide on the efficiency of mammalian cell transfection by DNA/K8 complexes is likely to be mediated by the interactions of cationic peptide K8 with negatively charged proteoglycans on the cell surface, which leads to protection of DNA/K8 complexes from disruption by cellular heparan sulfates. However, the protective role of free cationic peptides depends not only on their positive charge, but also on the primary structure of the peptide. In contrast with the results obtained for DNA complexes with molecular conjugates based on poly-L-lysine, the aggregation of DNA/K8 complexes leads to a significant increase in the expression of transferred gene. PMID:17223788

  20. Identification of functional targets of the Zta transcriptional activator by formation of stable preinitiation complex intermediates.

    PubMed Central

    Lieberman, P

    1994-01-01

    Transcriptional activator proteins stimulate the formation of a preinitiation complex that may be distinct from a basal-level transcription complex in its composition and stability. Components of the general transcription factors that form activator-dependent stable intermediates were determined by the use of Sarkosyl and oligonucleotide challenge experiments. High-level transcriptional activation by the Epstein-Barr virus-encoded Zta protein required an activity in the TFIID fraction that is distinct from the TATA-binding protein (TBP) and the TBP-associated factors. This additional activity copurifies with and is likely to be identical to the previously defined coactivator, USA (M. Meisterernst, A. L. Roy, H. M. Lieu, and R. G. Roeder, Cell 66:981-994, 1991). The formation of a stable preinitiation complex intermediate resistant to Sarkosyl required the preincubation of the promoter DNA with Zta, holo-TFIID (TBP and TBP-associated factors), TFIIB, TFIIA, and the coactivator USA. The formation of a Zta response element-resistant preinitiation complex required the preincubation of promoter DNA with Zta, holo-TFIID, TFIIB, and TFIIA. Agarose gel electrophoretic mobility shift showed that a preformed Zta-holo-TFIID-TFIIA complex was resistant to Sarkosyl and to Zta response element oligonucleotide challenge. DNase I footprinting suggests that only Zta, holo-TFIID, and TFIIA make significant contacts with the promoter DNA. These results provide functional and physical evidence that the Zta transcriptional activator influences at least two distinct steps in preinitiation complex assembly, the formation of the stable holo-TFIID-TFIIA-promoter complex and the subsequent binding of TFIIB and a USA-like coactivator. Images PMID:7969171

  1. Stability constants of the ternary complexes of CuDTPA, NiDCTA, CrEDTA, CoHEEDTA, NiHEEDTA and CuHEEEDT Aheedta with OH-.

    PubMed

    Korsse, J; Leurs, G A; Louwrier, P W

    1985-06-01

    The acid dissociation constants of the metal chelates H(3)CuDTPA, H(2) NiDCTA, HCrEDTA, HCoHEEDTA, HNiHEEDTA and HCuHEEDTA were determined by potentiometric titration. The constants determined at an ionic strength of 0.1 were pK(a,1) = 2.1; pK(a,2) = 2.8 and pK(a,3) = 4.75 for H(3) CuDTPA (296 K), pK(a,1) = 2.16 for HCrEDTA (298 K); pK(a,1) = 1.6 and pK(a,2) = 2.0 for H(2) NiDCTA (298 K); pK(a,1) = 2.24 for HCoHEEDTA, pK(a,1) = 2.47 for HCuHEEDTA and pK(a,1) = 1.73 for HNi-HEEDTA. At high pH the formation of ternary hydroxo-complexes was observed for the chelates CrEDTA(-) (pK(a,1) = 7.35; pK(a,1) = 12.35), CoHEEDTA(-) (pK(a,1) = 11.74), NiHEEDTA(-) (pK(a,2) = 12,44) and CuHEEDTA(-) (pK(a,2) = 10.45). PMID:18963877

  2. Complex formation equilibria of binary and ternary complexes involving 3,3-bis(1-methylimidazol-2yl)propionic acid and bio-relevant ligands as 1-aminocyclopropane carboxylic acid with reference to plant hormone

    NASA Astrophysics Data System (ADS)

    Shoukry, Mohamed M.; Hassan, Safaa S.

    2014-01-01

    The formation equilibria for the binary complexes of Cu(II) with 1-aminocyclopropane carboxylic acid (ACC) and 3,3-bis(1-methylimidazol-2-yl)propionic acid (BIMP) were investigated. ACC and BIMP form the complexes 1 1 0, 1 2 0 and 1 1 -1. The ternary complexes of Cu(II) with BIMP and biorelevant ligands as some selected amino acids, peptides and DNA constituents are formed in a stepwise mechanism. The stability constants of the complexes formed were determined and their distribution diagrams were evaluated. The kinetics of hydrolysis of glycine methyl ester in presence of [Cu(BIMP)]+ was investigated by pH-stat technique and the mechanism was discussed.

  3. Ligand-induced formation of a transient tryptophan synthase complex with αββ subunit stoichiometry.

    PubMed

    Ehrmann, Alexander; Richter, Klaus; Busch, Florian; Reimann, Julia; Albers, Sonja-Verena; Sterner, Reinhard

    2010-12-28

    The prototypical tryptophan synthases form a stable heterotetrameric αββα complex in which the constituting TrpA and TrpB1 subunits activate each other in a bidirectional manner. The hyperthermophilic archaeon Sulfolobus solfataricus does not contain a TrpB1 protein but instead two members of the phylogenetically distinct family of TrpB2 proteins, which are encoded within (sTrpB2i) and outside (sTrpB2a) the tryptophan operon. It has previously been shown that sTrpB2a does not functionally or structurally interact with sTrpA, whereas sTrpB2i substantially activates sTrpA in a unidirectional manner. However, in the absence of catalysis, no physical complex between sTrpB2i and sTrpA could be detected. In order to elucidate the structural requirements for complex formation, we have analyzed the interaction between sTrpA (α-monomer) and sTrpB2i (ββ-dimer) by means of spectroscopy, analytical gel filtration, and analytical ultracentrifugation, as well as isothermal titration calorimetry. In the presence of the TrpA ligand glycerol 3-phosphate (GP) and the TrpB substrate l-serine, sTrpA and sTrpB2i formed a physical complex with a thermodynamic dissociation constant of about 1 μM, indicating that the affinity between the α- and ββ-subunits is weaker by at least 1 order of magnitude than the affinity between the corresponding subunits of prototypical tryptophan synthases. The observed stoichiometry of the complex was 1 subunit of sTrpA per 2 subunits of sTrpB2i, which corresponds to a αββ quaternary structure and testifies to a strong negative cooperativity for the binding of the α-monomers to the ββ-dimer. The analysis of the interaction between sTrpB2i and sTrpA in the presence of several substrate, transition state, and product analogues suggests that the αββ complex remains stable during the whole catalytic cycle and disintegrates into α- and ββ-subunits upon the release of the reaction product tryptophan. The formation of a transient tryptophan

  4. Characterizing Extragalactic Star Formation with GALEX Legacy Photometric Analysis of UV-Bright Stellar Complexes

    NASA Astrophysics Data System (ADS)

    Thilker, David

    At the close of nearly a decade of observing, GALEX has accumulated an unprecedented archive of ultraviolet (UV) images revealing both the scope and intricacy of star formation (SF) in many thousands of galaxies inhabiting the local universe. If the observed hierarchical SF morphology can be quantified systematically, and physically interpreted with multi-wavelength ancillary data and modeling, then the low redshift GALEX legacy will approach completion. However, the GALEX GR6 pipeline database contains a highly incomplete census of young stellar complexes even for very well-studied galaxies. We propose to apply a dedicated photometry algorithm that has been optimized for measuring the properties of irregularly shaped sources in crowded galaxy images containing spatially variant, diffuse intra-clump emission. Structures will be selected in the UV, but we will compile UV-visible-MIR SEDs for each detection utilizing Pan-STARRS1+SDSS and WISE data. These SEDs will then be fit using population-synthesis models to derive estimated stellar mass, age, and extinction. Processing will be completed for the entire diameter-limited GALEX Large Galaxy Atlas (GLGA) sample of 20,000+ galaxies, at a variety of standardized spatial resolutions. Although the precise categorization of the cataloged substructures will depend on galaxy distance, the outcome of our analysis will be a catalog similar to the stellar association surveys of past decades for very nearby galaxies based on resolved stars (e.g. van den Bergh 1964, Hodge 1986, Efremov et al. 1987), except that our investigation will probe a galaxy sample of dramatically larger size using the integrated UV light from such groupings of young stars. Our algorithm is multi-scale in nature and will thus preserve the hierarchical properties of the stellar distribution, by linking sub-clumps to their larger-scale parent feature(s). The resulting database will be a fundamental resource for follow-up multi-wavelength studies probing SF

  5. Complex Formation in a Liquid-Liquid Extraction System Containing Co(II), 4-(2-Thiazolylazo)resorcinol and Monotetrazolium Salt.

    PubMed

    Divarova, Vidka; Stojnova, Kirila; Racheva, Petya; Lekova, Vanya

    2016-01-01

    The ion-associated complex formed between anionic chelate of Co(II)-4-(2-Thiazolylazo)resorcinol (TAR) with the monotetrazolium cation of 2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-phenyl-2H-tetrazolium chloride (INT) in the liquid-liquid extraction system Co(II)-TAR-INT-H(2)O-CHCl(3) was studied by the spectrophotometric method. The optimum extraction conditions of Co(II) were found. The extraction equilibria were studied. The equilibrium constants, the recovery factor and some analytical characteristics were calculated. The validity of Beer's law was checked. The molar ratio of the components in the ternary ion-associated complex Co(II)-TAR-INT was determined. The general formula of the complex was suggested. The effect of various foreign ions and reagents on the process of complex formation in the liquid-liquid extraction system was studied. PMID:26970793

  6. Controlling energy transfer in ytterbium complexes: oxygen dependent lanthanide luminescence and singlet oxygen formation.

    PubMed

    Watkis, Andrew; Hueting, Rebekka; Sørensen, Thomas Just; Tropiano, Manuel; Faulkner, Stephen

    2015-11-01

    Pyrene-appended ytterbium complexes have been prepared using Ugi reactions to vary the chromophore-lanthanide separation. Formation of the ytterbium(iii) excited state is sensitised via both the singlet and triplet excited states of the chromophore. Energy transfer from the latter is relatively slow, and gives rise to oxygen-dependent luminescence. PMID:26346499

  7. Enthalpies of complex formation of boron and aluminum bromides with organic bases of high donor power

    SciTech Connect

    Grigor-ev, A.A.; Kondrat'ev, Y.V.; Suvorov, A.V.

    1986-11-20

    By the calorimetric method enthalpies of complex formation were determined for boron and aluminum bromides with piperidine and hexamethylphosphoric triamide in benzene solutions and for boron bromide with pyridine in dichloroethane, and also enthalpies of solution were determined for BBr/sub 3/ and the adducts AlBr/sub 3/ x PPy and BBr/sub 2/ x Py in benzene and pyridine.

  8. Three-Coordinate Terminal Imidoiron(III) Complexes: Structure, Spectroscopy, and Mechanism of Formation

    PubMed Central

    Cowley, Ryan E.; DeYonker, Nathan J.; Eckert, Nathan A.; Cundari, Thomas R.; DeBeer, Serena; Bill, Eckhard; Ottenwaelder, Xavier; Flaschenriem, Christine; Holland, Patrick L.

    2010-01-01

    Reaction of 1-adamantyl azide with iron(I) diketiminate precursors gives metastable but isolable imidoiron(III) complexes LFe=NAd (L = bulky β-diketiminate ligand; Ad = 1-adamantyl). This paper addresses: (1) the spectroscopic and structural characterization of the Fe=N multiple bond in these interesting three-coordinate iron imido complexes, and (2) the mechanism through which the imido complexes form. The iron(III) imido complexes have been examined by 1H NMR and EPR spectroscopies and temperature-dependent magnetic susceptibility (SQUID), and structurally characterized by crystallography and/or X-ray absorption (EXAFS) measurements. These data show that the imido complexes have quartet ground states and short (1.68 ± 0.01 Å) iron-nitrogen bonds. The formation of the imido complexes proceeds through unobserved iron–RN3 intermediates, which are indicated by QM/MM computations to be best described as iron(II) with an RN3 radical anion. The radical character on the organoazide bends its NNN linkage to enable easy N2 loss and imido complex formation. The product distribution between imidoiron(III) products and hexazene-bridged diiron(II) products is solvent-dependent, and the solvent dependence can be explained by coordination of certain solvents to the iron(I) precursor prior to interaction with the organoazide. PMID:20524625

  9. Effect of entropy-packing fraction relation on the formation of complex metallic materials

    NASA Astrophysics Data System (ADS)

    Tourki Samaei, Arash; Mohammadi, Ehsan

    2015-09-01

    By combining a number of elements to form complex metallic materials without a base element, it was recently shown that one can obtain rather complex structures, including random solute solutions, multi-phased mixtures and amorphous structures with/without nano-precipitations. Compared to conventional metallic materials, these complex ones could show excellent mechanical and physical properties across a wide range of temperatures, therefore being a promising advanced material for high-temperature applications; however, designing these complex materials, at present, still lacks a unified physical approach but relies on the choice of a few metallurgical parameters, such as atomic size mismatch, heat of mixing and valence electron concentration. Here, we identify a physical mechanism through the optimization of the excess configurational entropy of mixing in the control of phase formation in these metallic materials. The theoretical framework herein established is expected to provide a new paradigm in pursuit of complex metallic materials with superior properties.

  10. Formation of complex impact craters - Evidence from Mars and other planets

    NASA Technical Reports Server (NTRS)

    Pike, R. J.

    1980-01-01

    An analysis of the depth vs diameter data of Arthur (1980), is given along with geomorphic data for 73 Martian craters. The implications for the formation of complex impact craters on solid planets is discussed. The analysis integrates detailed morphological observations on planetary craters with geologic data from terrestrial meteorite and explosion craters. The simple to complex transition for impact craters on Mars appears at diameters in the range of 3 to 8 km. Five features appear sequentially with increasing crater size, flat floors, central peaks and shallower depths, scalloped rims, and terraced walls. This order suggests that a shallow depth of excavation and a rebound mechanism have produced the central peaks, not centripetal collapse and deep sliding. Simple craters are relatively uniform in shape from planet to planet, but complex craters vary considerably. Both the average onset diameter for complex impact craters on Mars and the average depth of complex craters vary inversely with gravitational acceleration on four planets.

  11. Recrystallized Impact Glasses of the Onaping Formation and the Sudbury Igneous Complex, Sudbury Structure, Ontario, Canada

    NASA Technical Reports Server (NTRS)

    Dressler, B. O.; Weiser, T.; Brockmeyer, P.

    1996-01-01

    The origin of the Sudbury Structure and of the associated heterolithic breccias of the Onaping Formation and the Sudbury Igneous Complex have been controversial. While an impact origin of the structure has gained wide acceptance over the last 15 years, the origin of the recrystallized Onaping Formation glasses and of the igneous complex is still being debated. Recently the interpretation of the breccias of the Onaping Formation as suevitic fall-back impact breccias has been challenged. The igneous complex is interpreted either as a differentiated impact melt sheet or as a combination of an upper impact melt represented by the granophyre, and a lower, impact-triggered magmatic body consisting of the norite-sublayer formations. The Onaping Formation contains glasses as fluidal and nonfluidal fragments of various shapes and sizes. They are recrystallized, and our research indicates that they are petrographically heterogeneous and span a wide range of chemical compositions. These characteristics are not known from glasses of volcanic deposits. This suggests an origin by shock vitrification, an interpretation consistent with their association with numerous and varied country rock clasts that exhibit microscopic shock metamorphic features. The recrystallized glass fragments represent individual solid-state and liquid-state vitrified rocks or relatively small melt pods. The basal member lies beneath the Gray and Black members of the Onaping Formation and, where not metamorphic, has an igneous matrix. Igneous-textured melt bodies occur in the upper two members and above the Basal Member. A comparison of the chemical compositions of recrystallized glasses and of the matrices of the Basal Member and the melt bodies with the components and the bulk composition of the igneous complex is inconclusive as to the origin of the igneous complex. Basal Member matrix and Melt Bodies, on average, are chemically similar to the granophyre of the Sudbury Igneous Complex, suggesting that

  12. Formation and base hydrolysis of oxidimethaneamine bridges in CoIII-amine complexes.

    PubMed

    Morgenstern, Bernd; Neis, Christian; Zaschka, Anton; Romba, Jens; Weyhermüller, Thomas; Hegetschweiler, Kaspar

    2013-10-21

    cis-[CoL2](3+) (1a(3+)), trans-[CoL2](3+) (2a(3+)), cis-[Co(MeL)2](3+) (1b(3+)), and trans-[Co(MeL)2](3+) (2b(3+)), L = 1,4-diazepan-6-amine (daza) and MeL = 6-methyl-1,4-diazepan-6-amine (Medaza), were allowed to react as templates in acetonitrile with paraformaldehyde and triethylamine. Several Co(III) complexes, where two adjacent amino groups of two ligand moieties are interlinked by an oxidimethaneamine bridge, were obtained. Connection of a primary with a secondary amino group (prim-sec bridging) was found to be predominant. The singly and doubly bridged daza- and Medaza-derivatives 7a(3+), 9a(3+) and 7b(3+), 9b(3+) were characterized by crystal-structure analysis. The bridging process resulted in a slight lengthening of the mean Co-N distance, a red shift of the A1g-T1g transition, and an increase of the Co(III)/Co(II) reduction potential. Several minor components, which could be only partially separated by chromatographic methods, were also formed. The daza-derivatives 6a(3+) (prim-prim bridged) and 10a(3+) (bidentate coordination of one daza frame) formed in small quantities. The Medaza derivatives 3b(3+) and 4b(3+) (trans configuration of the Medaza frames, with additional pending carbinolamino groups), and 8b(3+) (with a methylideneimino group) represent intermediates of the condensation process. Their structure was again corroborated by X-ray diffraction. All bridged species (6a(3+), 7a(3+), 7b(3+), 8b(3+), 9a(3+), 9b(3+), and 10a(3+)) exhibited exclusively a cis orientation of the two diazepane frames, even if the trans configured 2a(3+) or 2b(3+) were used as starting materials. Molecular mechanics calculations indicate that in the bridged species with a trans configuration steric strain is substantially more pronounced. In alkaline aqueous media, 9a(3+) and 9b(3+) revealed a complete degradation of the bridges whereby the original 1a(3+) and 1b(3+) reformed. The pseudo-first-order rate constant k(obs) of the degradation reaction was found to depend

  13. Gating of single molecule junction conductance by charge transfer complex formation

    NASA Astrophysics Data System (ADS)

    Vezzoli, Andrea; Grace, Iain; Brooke, Carly; Wang, Kun; Lambert, Colin J.; Xu, Bingqian; Nichols, Richard J.; Higgins, Simon J.

    2015-11-01

    The solid-state structures of organic charge transfer (CT) salts are critical in determining their mode of charge transport, and hence their unusual electrical properties, which range from semiconducting through metallic to superconducting. In contrast, using both theory and experiment, we show here that the conductance of metal |single molecule| metal junctions involving aromatic donor moieties (dialkylterthiophene, dialkylbenzene) increase by over an order of magnitude upon formation of charge transfer (CT) complexes with tetracyanoethylene (TCNE). This enhancement occurs because CT complex formation creates a new resonance in the transmission function, close to the metal contact Fermi energy, that is a signal of room-temperature quantum interference.The solid-state structures of organic charge transfer (CT) salts are critical in determining their mode of charge transport, and hence their unusual electrical properties, which range from semiconducting through metallic to superconducting. In contrast, using both theory and experiment, we show here that the conductance of metal |single molecule| metal junctions involving aromatic donor moieties (dialkylterthiophene, dialkylbenzene) increase by over an order of magnitude upon formation of charge transfer (CT) complexes with tetracyanoethylene (TCNE). This enhancement occurs because CT complex formation creates a new resonance in the transmission function, close to the metal contact Fermi energy, that is a signal of room-temperature quantum interference. Electronic supplementary information (ESI) available: Synthesis of 1c; experimental details of conductance measurements, formation of charge transfer complexes of 1c and 2 in solution; further details of theoretical methods. See DOI: 10.1039/c5nr04420k

  14. Arsenic-Lipid Complex Formation During the Active Transport of Arsenate in Yeast

    PubMed Central

    Cerbón, Jorge

    1969-01-01

    In studying formation of an arsenic-lipid complex during the active transport of 74As-arsenate in yeast, it was found that adaptation of yeast to arsenate resulted in cell populations which showed a deficient inflow of arsenate as compared to the nonadapted yeast. Experiments with both types of cells showed a direct correlation between the arsenate taken up and the amount of As-lipid complex formed. 74As-arsenate was bound exclusively to the phosphoinositide fraction of the cellular lipids. When arsenate transport was inhibited by dinitrophenol and sodium azide, the formation of the As-lipid complex was also inhibited. Phosphate did not interfere with the arsenate transport at a non-inhibitory concentration of external arsenate (10−9m). The As-adapted cells but not the unadapted cells were able to take up phosphate when growing in the presence of 10−2m arsenate. PMID:5773018

  15. Standard thermodynamic functions of complex formation between Cu2+ and glycine in aqueous solution

    NASA Astrophysics Data System (ADS)

    Gorboletova, G. G.; Metlin, A. A.

    2013-05-01

    Heat effects of the interaction of copper(II) solutions with aminoacetic acid (glycine) are measured by the direct calorimetry at 298.15 K and ionic strengths of 0.5, 1.0, and 1.5 against a background of potassium nitrate. Standard enthalpy values for reactions of the formation of aminoacetic acid copper complexes in aqueous solutions are obtained using an equation with a single individual parameter by extrapolating it to zero ionic strength. The standard thermodynamic characteristics of complex formation in the Cu2+-glycine system are calculated. It is shown that glycine-like coordination is most likely in Cu(II) complexes with L-asparagine, L-glutamine, and L-valine.

  16. Stability of furosemide polymorphs and the effects of complex formation with β-cyclodextrin and maltodextrin.

    PubMed

    Garnero, Claudia; Chattah, Ana Karina; Longhi, Marcela

    2016-11-01

    The effect of the formation of supramolecular binary complexes with β-cyclodextrin and maltodextrin on the chemical and physical stability of the polymorphs I and II of furosemide was evaluated in solid state. The solid samples were placed under accelerated storage conditions and exposed to daylight into a stability chamber for a 6-month. Chemical stability was monitored by high performance liquid chromatography, while the physical stability was studied by solid state nuclear magnetic resonance, powder X-ray diffraction and scanning electron microscopy. Changes in the physical appearance of the samples were evaluated. The studies showed a significant stabilizing effect of β-cyclodextrin on furosemide form II. Our results suggest that the complex formation is a useful tool for improving the stability of furosemide polymorphs. These new complexes are promising candidates that can be used in the pharmaceutical industry for the preparation of alternative matrices that improve physicochemical properties. PMID:27516309

  17. The significance of ACTH for the process of formation of complex heparin compounds in the blood during immobilization stress

    NASA Technical Reports Server (NTRS)

    Kudryashov, B. A.; Shapiro, F. B.; Lomovskaya, F. B.; Lyapina, L. A.

    1979-01-01

    Adrenocorticotropin (ACTH) was administered to rats at different times following adrenalectomy. Adrenocorticotropin caused a significant increase in the formation of heparin complexes even in the absence of stress factor. When ACTH secretion is blocked, immobilization stress is not accompanied by an increase in the process of complex formation. The effect of ACTH on the formation of heparin complexes was mediated through its stimulation of the adrenal cortex.

  18. Lethal synergism between organic and inorganic wood preservatives via formation of an unusual lipophilic ternary complex

    SciTech Connect

    Sheng, Zhi-Guo; Li, Yan; Fan, Rui-Mei; Chao, Xi-Juan; Zhu, Ben-Zhan

    2013-02-01

    We have shown previously that exposing bacteria to wood preservatives pentachlorophenol (PCP) and copper-containing compounds together causes synergistic toxicity. However, it is not clear whether these findings also hold true in mammalian cells; and if so, what is the underlying molecular mechanism? Here we show that PCP and a model copper complex bis-(1,10-phenanthroline) cupric (Cu(OP){sub 2}), could also induce synergistic cytotoxicity in human liver cells. By the single crystal X-ray diffraction and atomic absorption spectroscopy assay, the synergism was found to be mainly due to the formation of a lipophilic ternary complex with unusual structural and composition characteristics and subsequent enhanced cellular copper uptake, which markedly promoted cellular reactive oxygen species (ROS) production, leading to apoptosis by decreasing mitochondrial membrane potential, increasing pro-apoptotic protein expression, releasing cytochrome c from mitochondria and activating caspase-3, and -9. Analogous results were observed with other polychlorinated phenols (PCPs) and Cu(OP){sub 2}. Synergistic cytotoxicity could be induced by PCP/Cu(OP){sub 2} via formation of an unusual lipophilic complex in HepG2 cells. The formation of ternary complexes with similar lipophilic character could be of relevance as a general mechanism of toxicity, which should be taken into consideration especially when evaluating the toxicity of environmental pollutants found at currently-considered non- or sub-toxic concentrations. -- Highlights: ► The combination of PCP/Cu(OP){sub 2} induces synergistic cytotoxicity in HepG2 cells. ► The synergism is mainly due to forming a lipophilic ternary complex between them. ► The formation of lipophilic ternary complex enhances cellular copper uptake. ► PCP/Cu(OP){sub 2} stimulates the cellular ROS production. ► The ROS promoted by PCP/Cu(OP){sub 2} induces mitochondria-dependent apoptosis.

  19. Complex formation with nucleic acids and aptamers alters the antigenic properties of platelet factor 4

    PubMed Central

    Jaax, Miriam E.; Krauel, Krystin; Marschall, Thomas; Brandt, Sven; Gansler, Julia; Fürll, Birgitt; Appel, Bettina; Fischer, Silvia; Block, Stephan; Helm, Christiane A.; Müller, Sabine; Preissner, Klaus T.

    2013-01-01

    The tight electrostatic binding of the chemokine platelet factor 4 (PF4) to polyanions induces heparin-induced thrombocytopenia, a prothrombotic adverse drug reaction caused by immunoglobulin G directed against PF4/polyanion complexes. This study demonstrates that nucleic acids, including aptamers, also bind to PF4 and enhance PF4 binding to platelets. Systematic assessment of RNA and DNA constructs, as well as 4 aptamers of different lengths and secondary structures, revealed that increasing length and double-stranded segments of nucleic acids augment complex formation with PF4, while single nucleotides or single-stranded polyA or polyC constructs do not. Aptamers were shown by circular dichroism spectroscopy to induce structural changes in PF4 that resemble those induced by heparin. Moreover, heparin-induced anti-human–PF4/heparin antibodies cross-reacted with human PF4/nucleic acid and PF4/aptamer complexes, as shown by an enzyme immunoassay and a functional platelet activation assay. Finally, administration of PF4/44mer–DNA protein C aptamer complexes in mice induced anti–PF4/aptamer antibodies, which cross-reacted with murine PF4/heparin complexes. These data indicate that the formation of anti-PF4/heparin antibodies in postoperative patients may be augmented by PF4/nucleic acid complexes. Moreover, administration of therapeutic aptamers has the potential to induce anti-PF4/polyanion antibodies and a prothrombotic diathesis. PMID:23673861

  20. Effect of citrate on the local Fe coordination in ferrihydrite, arsenate binding, and ternary arsenate complex formation

    NASA Astrophysics Data System (ADS)

    Mikutta, Christian; Frommer, Jakob; Voegelin, Andreas; Kaegi, Ralf; Kretzschmar, Ruben

    2010-10-01

    In oxic environments contaminated with arsenate (As(V)), small polyhydroxycarboxylates such as citrate may impact the structure of precipitating ferrihydrite (Fh) and thus the surface speciation of As(V). In this study, '2-line' Fh was precipitated from ferric nitrate solutions that were neutralized to pH 6.5 in the presence of increasing citrate concentrations and in the absence or presence of As(V). The initial citrate/Fe and As/Fe ratios were 0-50 mol% and 5 mol%, respectively. The reaction products, enriched with up to 0.32 mol citrate per mole Fe, were characterized by X-ray diffraction, transmission electron microscopy, and Fe and As K-edge X-ray absorption spectroscopy. Citrate decreased the particle size of Fh by impairing the polymerization of Fe(O,OH) 6 octahedra via edge and corner linkages. In the presence of citrate and As(V), coordination numbers of Fe decreased by up to 28% relative to pure Fh. Citrate significantly reduced the static disorder of Fe-O bonds, implying a decreased octahedral distortion in Fh. Mean bond distances in Fh were not affected by citrate and remained constant within error at 1.98 Å for Fe-O, 3.03 Å for Fe-Fe1, and 3.45 Å for Fe-Fe2. Likewise, citrate had no effect on the As-Fe (3.31 Å) bond distance in As(V) coprecipitated with Fh. The As K-edge EXAFS data comply with the formation of (i) only monodentate binuclear ( 2C) As(V) surface complexes and (ii) combinations of 2C, monodentate mononuclear ( 1V), and outersphere As(V) surface complexes. Our results suggest that increasing citrate concentrations led to a decreasing 1V/ 2C ratio and/or that citrate increasingly impaired the formation of outersphere As(V) complexes. Moreover, citrate stabilized colloidal suspensions of Fh (pH 4.3-6.6, I ˜0.45 M) and reduced Fh formation at the expense of soluble Fe(III)-citrate complexes. At initial citrate/Fe ratios ⩾25 mol%, between 8% and 41% of total Fe was bound in Fe(III)-citrate complexes after Fh formation. Polynuclear Fe

  1. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria.

    PubMed

    Turrens, J F; Alexandre, A; Lehninger, A L

    1985-03-01

    Much evidence indicates that superoxide is generated from O2 in a cyanide-sensitive reaction involving a reduced component of complex III of the mitochondrial respiratory chain, particularly when antimycin A is present. Although it is generally believed that ubisemiquinone is the electron donor to O2, little experimental evidence supporting this view has been reported. Experiments with succinate as electron donor in the presence of antimycin A in intact rat heart mitochondria, which contain much superoxide dismutase but little catalase, showed that myxothiazol, which inhibits reduction of the Rieske iron-sulfur center, prevented formation of hydrogen peroxide, determined spectrophotometrically as the H2O2-peroxidase complex. Similarly, depletion of the mitochondria of their cytochrome c also inhibited formation of H2O2, which was restored by addition of cytochrome c. These observations indicate that factors preventing the formation of ubisemiquinone also prevent H2O2 formation. They also exclude ubiquinol, which remains reduced under these conditions, as the reductant of O2. Since cytochrome b also remains fully reduced when myxothiazol is added to succinate- and antimycin A-supplemented mitochondria, reduced cytochrome b may also be excluded as the reductant of O2. These observations, which are consistent with the Q-cycle reactions, by exclusion of other possibilities leave ubisemiquinone as the only reduced electron carrier in complex III capable of reducing O2 to O2-. PMID:2983613

  2. Kinetic mechanism for formation of the active, dimeric UvrD helicase-DNA complex.

    PubMed

    Maluf, Nasib K; Ali, Janid A; Lohman, Timothy M

    2003-08-22

    Escherichia coli UvrD protein is a 3' to 5' SF1 helicase required for DNA repair as well as DNA replication of certain plasmids. We have shown previously that UvrD can self-associate to form dimers and tetramers in the absence of DNA, but that a UvrD dimer is required to form an active helicase-DNA complex in vitro. Here we have used pre-steady state, chemical quenched flow methods to examine the kinetic mechanism for formation of the active, dimeric helicase-DNA complex. Experiments were designed to examine the steps leading to formation of the active complex, separate from the subsequent DNA unwinding steps. The results show that the active dimeric complex can form via two pathways. The first, faster path involves direct binding to the DNA substrate of a pre-assembled UvrD dimer (dimer path), whereas the second, slower path proceeds via sequential binding to the DNA substrate of two UvrD monomers (monomer path), which then assemble on the DNA to form the dimeric helicase. The rate-limiting step within the monomer pathway involves dimer assembly on the DNA. These results show that UvrD dimers that pre-assemble in the absence of DNA are intermediates along the pathway to formation of the functional dimeric UvrD helicase. PMID:12788954

  3. Complex coacervates obtained from peptide leucine and gum arabic: formation and characterization.

    PubMed

    Gulão, Eliana da S; de Souza, Clitor J F; Andrade, Cristina T; Garcia-Rojas, Edwin E

    2016-03-01

    In this study, interactions between polypeptide-leucine (0.2% w/w) and gum arabic (0.03, 0.06, 0.09, 0.12, and 0.15% w/w) were examined at concentrations of NaCl (0, 0.01, 0.25, 0.3, 0.5mol/l) and at different pH values (from 1.0 to 12.0). Formation of insoluble complex coacervates was highest at pH 4.0. At pH 2.0, which is the pKa of the gum Arabic, the dissociation of precipitate occurred. The pHØ2 positively shifted with the addition of higher concentrations of salt. Samples containing 0.2% PL and 0.03% GA and no salt had higher turbidity and increased formation of precipitates showing greater turbidity and particle sizes. The Fourier transform infrared spectroscopy confirms the complex coacervate formation of leucine and gum arabic, and rheological measurements suggest the elastic behavior of 0.2% PL and 0.03% GA complex. Overall, the study suggests that complex coacervates of PLs could be one feasible ways of incorporating amino acids in food products. PMID:26471607

  4. The formation of molecular aggregates of sulfophthalocyanine in complexes with semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Dadadzhanov, D. R.; Martynenko, I. V.; Orlova, A. O.; Maslov, V. G.; Fedorov, A. V.; Baranov, A. V.

    2015-11-01

    In this study, complexes of CdSe/ZnS quantum dots and quantum rods with sulfophthalocyanine molecules have been formed. Analysis of spectral and luminescent properties of solutions of the complexes has revealed that an increase in the number of molecules per one nanocrystal in a mixed solution results in a noticeable decrease in the intensity of the luminescence of the quantum dots and quantum rods. In addition, it has been found that, upon an increase in the concentration of sulfophthalocyanine molecules, the absorption spectra of the samples in the region of their first absorption band have signs of formation of nonluminiscent aggregates of sulfophthalocyanine molecules. Analysis of the absorption spectra of the mixed solutions has made it possible to demonstrate that the complexes with the quantum rods have a content of the sulfophthalocyanine aggregates significantly lower than the complexes with the quantum dots.

  5. An autocatalytic radical chain pathway in formation of an iron(IV)-oxo complex by oxidation of an iron(II) complex with dioxygen and isopropanol.

    PubMed

    Morimoto, Yuma; Lee, Yong-Min; Nam, Wonwoo; Fukuzumi, Shunichi

    2013-03-28

    Evidence of an autocatalytic radical chain pathway has been reported in formation of a non-heme iron(IV)-oxo complex by oxidation of an iron(II) complex with dioxygen and isopropanol in acetonitrile at 298 K. The radical chain reaction is initiated by hydrogen abstraction from isopropanol by the iron(IV)-oxo complex. PMID:23423328

  6. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    PubMed Central

    Bhattacharjee, Rajesh; Xiang, Wenpei; Wang, Yinna; Zhang, Xiaoying; Billiar, Timothy R.

    2013-01-01

    Tumor necrosis factor α (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found that cAMP exerts its affect at the proximal level of TNF signaling by inhibiting the formation of the DISC complex upon the binding of TNF to TNFR1. In conclusion, our study shows that cAMP prevents TNF + ActD-induced apoptosis in rat hepatocytes by inhibiting DISC complex formation. PMID:22634003

  7. Numerical Modeling of Hydraulic Fractures Interaction in Complex Naturally Fractured Formations

    NASA Astrophysics Data System (ADS)

    Kresse, Olga; Weng, Xiaowei; Gu, Hongren; Wu, Ruiting

    2013-05-01

    A recently developed unconventional fracture model (UFM) is able to simulate complex fracture network propagation in a formation with pre-existing natural fractures. A method for computing the stress shadow from fracture branches in a complex hydraulic fracture network (HFN) based on an enhanced 2D displacement discontinuity method with correction for finite fracture height is implemented in UFM and is presented in detail including approach validation and examples. The influence of stress shadow effect from the HFN generated at previous treatment stage on the HFN propagation and shape at new stage is also discussed.

  8. 3D structure and formation of hydrothermal vent complexes in the Møre Basin

    NASA Astrophysics Data System (ADS)

    Kjoberg, Sigurd; Schmiedel, Tobias; Planke, Sverre; Svensen, Henrik H.; Galland, Oliver; Jerram, Dougal A.

    2016-04-01

    The mid-Norwegian Møre margin is regarded as a type example of a volcanic rifted margin, with its formation usually related to the influence of the Icelandic plume activity. The area is characterized by the presence of voluminous basaltic complexes such as extrusive lava sequences, intrusive sills and dikes, and hydrothermal vent complexes within the Møre Basin. Emplacement of hydrothermal vent complexes is accommodated by deformation of the host rock. The edges of igneous intrusions mobilize fluids by heat transfer into the sedimentary host rock (aureoles). Fluid expansion may lead to formation of piercing structures due to upward fluid migration. Hydrothermal vent complexes induce bending of overlying strata, leading to the formation of dome structures at the paleo-surface. These dome structures are important as they indicate the accommodation created for the intrusions by deformation of the upper layers of the stratigraphy, and may form important structures in many volcanic margins. Both the morphological characteristics of the upper part and the underlying feeder-structure (conduit-zone) can be imaged and studied on 3D seismic data. Seismic data from the Tulipan prospect located in the western part of the Møre Basin have been used in this study. The investigation focusses on (1) the vent complex geometries, (2) the induced surface deformation patterns, (3) the relation to the intrusions (heat source), as well as (4) the emplacement depth of the hydrothermal vent complexes. We approach this by doing a detailed 3D seismic interpretation of the Tulipan seismic data cube. The complexes formed during the initial Eocene, and are believed to be a key factor behind the rapid warming event called the Paleocene-Eocene thermal maximum (PETM). The newly derived understanding of age, eruptive deposits, and formation of hydrothermal vent complexes in the Møre Basin enables us to contribute to the general understanding of the igneous plumbing system in volcanic basins and

  9. Spectrophotometric Determination of Metoprolol Tartrate in Pharmaceutical Dosage Forms on Complex Formation with Cu(II)

    PubMed Central

    Cesme, Mustafa; Tarinc, Derya; Golcu, Aysegul

    2011-01-01

    A new, simple, sensitive and accurate spectrophotometric method has been developed for the assay of metoprolol tartrate (MPT), which is based on the complexation of drug with copper(II) [Cu(II)] at pH 6.0, using Britton-Robinson buffer solution, to produce a blue adduct. The latter has a maximum absorbance at 675 nm and obeys Beer's law within the concentration range 8.5-70 μg/mL. Regression analysis of the calibration data showed a good correlation coefficient (r = 0.998) with a limit of detection of 5.56 μg/mL. The proposed procedure has been successfully applied to the determination of this drug in its tablets. In addition, the spectral data and stability constant for the binuclear copper(II) complex of MPT (Cu2MPT2Cl2) have been reported.

  10. Almost enclosed buckyball joints: synthesis, complex formation, and computational simulations of pentypticene-extended tribenzotriquinacene.

    PubMed

    Henne, Stefan; Bredenkötter, Björn; Alaghemandi, Mohammad; Bureekaew, Sareeya; Schmid, Rochus; Volkmer, Dirk

    2014-12-01

    We report the synthesis of a tribenzotriquinacene-based (TBTQ) receptor (3) for C60 fullerene, which is extended by pentiptycene moieties to provide an almost enclosed concave ball bearing. The system serves as a model for a self-assembling molecular rotor with a flexible and adapting stator. Unexpectedly, nuclear magnetic resonance spectroscopic investigations reveal a surprisingly low complex stability constant of K1 =213±37 M(-1) for [C60 ⊂3], seemingly inconsistent with the previously reported TBTQ systems. Molecular dynamics (MD) simulations have been conducted for three different [C60 ⊂TBTQ] complexes to resolve this. Because of the dominating dispersive interactions, the binding energies increase with the contact area between guest and host, however, only for rigid host structures. By means of free-energy calculations with an explicit solvent model it can be shown that the novel flexible TBTQ receptor 3 binds weakly because of hampering entropic contributions. PMID:25234364

  11. Electrochemical and spectroscopic studies of the chloro and oxochloro complex formation of Nb(V) and Ta(V) in NaCl-AlCl3 melts.

    PubMed

    von Barner, J H; Bjerrum, N J

    2005-12-26

    The equilibrium constant for the chloro complex formation of Nb(V) NbCl6-<--->NbCl5+Cl- (i) in NaCl-AlCl3 melts at 175 degrees C was found to be pKi = 2.86(5). The oxochloro complex formation of Nb(V) and Ta(V) in NaCl-AlCl3 melts at 175 degrees C could be explained by the following equilibria: MOCl4- <-->MOCl3+Cl- (ii) MOCl3<-->MOCl2(+)+Cl- (iii) where M = Nb and Ta. The equilibrium constants determined by potentiometric measurements with chlorine-chloride electrodes were, for M = Nb, pKii = 2.21(4) and pKiii = 3.95(5) and, for M = Ta, pKii = 2.743(15) and pKiii = 4.521(13). NbCl6- has two bands in the UV-vis region, a strong one at 34.7 x 10(3) cm-1 and a weaker one at 41.6 x 10(3) cm-1. The MOCl4- complexes showed in the case of Nb(V) absorption bands at 32.7 and 42.9 x 10(3) cm-1 and in the case of Ta(V) at 38.6 and 48.1 x 10(3) cm-1. PMID:16363855

  12. Formation of complexes between PAMAM-NH2 G4 dendrimer and L-α-tryptophan and L-α-tyrosine in water

    NASA Astrophysics Data System (ADS)

    Buczkowski, Adam; Urbaniak, Pawel; Belica, Sylwia; Sekowski, Szymon; Bryszewska, Maria; Palecz, Bartlomiej

    2014-07-01

    Interactions between electromagnetic radiation and the side substituents of aromatic amino acids are widely used in the biochemical studies on proteins and their interactions with ligand molecules. That is why the aim of our study was to characterize the formation of complexes between PAMAM-NH2 G4 dendrimer and L-α-tryptophan and L-α-tyrosine in water. The number of L-α-tryptophan and L-α-tyrosine molecules attached to the macromolecule of PAMAM-NH2 G4 dendrimer and the formation constants of the supramolecular complexes formed have been determined. The macromolecule of PAMAM-NH2 G4 can reversibly attach about 25 L-α-tryptophan molecules with equilibrium constant K equal to 130 ± 30 and 24 ± 6 L-α-tyrosine molecules. This characterization was deduced on the basis of the solubility measurements of the amino acids in aqueous dendrimer solutions, the 1H NMR and 2D-NOESY measurements of the dendrimer solutions with the amino acids, the equilibrium dialysis and the circular dichroism measurements of the dendrimer aqueous solutions with L-α-tryptophan. Our date confirmed the interactions of L-α-tryptophan and L-α-tyrosine with the dendrimer in aqueous solution and indicated a reversible character of the formed complexes.

  13. Integrin-Associated Complexes Form Hierarchically with Variable Stoichiometry during Nascent Adhesion Formation

    PubMed Central

    Bachir, Alexia I.; Zareno, Jessica; Moissoglu, Konstadinos; Plow, Edward; Gratton, Enrico; Horwitz, Alan R.

    2014-01-01

    Summary Background A complex network of putative molecular interactions underlies the architecture and function of cell-matrix adhesions. Most of these interactions are implicated from co-immunoprecipitation studies using expressed components; but few have been demonstrated or characterized functionally in living cells. Results We introduce fluorescence fluctuation methods to determine, at high spatial and temporal resolution, ‘when’ and ‘where’ molecular complexes form and their stoichiometry in nascent adhesions (NAs). We focus on integrin-associated molecules implicated in integrin-activation and in the integrin-actin linkage in NAs and show that these molecules form integrin containing complexes hierarchically within the adhesion itself. Integrin and kindlin reside in a molecular complex as soon as adhesions are visible; talin, while also present early, associates with the integrin-kindlin complex only after NAs have formed and in response to myosin II activity. Furthermore, talin and vinculin association precedes the formation of the integrin-talin complex. Finally, α-actinin enters NAs periodically and in clusters that transiently associate with integrins. The absolute number and stoichiometry of these molecules varies among the molecules studied and changes as adhesions mature. Conclusions These observations suggest a working model for NA assembly, whereby transient α-actinin- integrin complexes help nucleate NAs within the lamellipodium. Subsequently integrin complexes containing kindlin, but not talin, emerge. Once NAs have formed, myosin II activity promotes talin association with the integrin-kindlin complex in a stoichiometry consistent with each talin molecule linking two integrin-kindlin complexes. PMID:25088556

  14. Formation of ternary complexes with MgATP: effects on the detection of Mg2+ in biological samples by bidentate fluorescent sensors.

    PubMed

    Schwartz, Sarina C; Pinto-Pacheco, Brismar; Pitteloud, Jean-Philippe; Buccella, Daniela

    2014-03-17

    Fluorescent indicators based on β-keto-acid bidentate coordination motifs display superior metal selectivity profiles compared to current o-aminophenol-N,N,O-triacetic acid (APTRA) based chelators for the study of biological magnesium. These low denticity chelators, however, may allow for the formation of ternary complexes with Mg(2+) and common ligands present in the cellular milieu. In this work, absorption, fluorescence, and NMR spectroscopy were employed to study the interaction of turn-on and ratiometric fluorescent indicators based on 4-oxo-4H-quinolizine-3-carboxylic acid with Mg(2+) and ATP, the most abundant chelator of biological magnesium, thus revealing the formation of ternary complexes under conditions relevant to fluorescence imaging. The formation of ternary species elicits comparable or greater optical changes than those attributed to the formation of binary complexes alone. Dissociation of the fluorescent indicators from both ternary and binary species have apparent equilibrium constants in the low millimolar range at pH 7 and 25 °C. These results suggest that these bidentate sensors are incapable of distinguishing between free Mg(2+) and MgATP based on ratio or intensity-based steady-state fluorescence measurements, thus posing challenges in the interpretation of results from fluorescence imaging of magnesium in nucleotide-rich biological samples. PMID:24593871

  15. Formation of Ternary Complexes with MgATP: Effects on the Detection of Mg2+ in Biological Samples by Bidentate Fluorescent Sensors

    PubMed Central

    2015-01-01

    Fluorescent indicators based on β-keto-acid bidentate coordination motifs display superior metal selectivity profiles compared to current o-aminophenol-N,N,O-triacetic acid (APTRA) based chelators for the study of biological magnesium. These low denticity chelators, however, may allow for the formation of ternary complexes with Mg2+ and common ligands present in the cellular milieu. In this work, absorption, fluorescence, and NMR spectroscopy were employed to study the interaction of turn-on and ratiometric fluorescent indicators based on 4-oxo-4H-quinolizine-3-carboxylic acid with Mg2+ and ATP, the most abundant chelator of biological magnesium, thus revealing the formation of ternary complexes under conditions relevant to fluorescence imaging. The formation of ternary species elicits comparable or greater optical changes than those attributed to the formation of binary complexes alone. Dissociation of the fluorescent indicators from both ternary and binary species have apparent equilibrium constants in the low millimolar range at pH 7 and 25 °C. These results suggest that these bidentate sensors are incapable of distinguishing between free Mg2+ and MgATP based on ratio or intensity-based steady-state fluorescence measurements, thus posing challenges in the interpretation of results from fluorescence imaging of magnesium in nucleotide-rich biological samples. PMID:24593871

  16. Green synthesis of ZnO nanoparticles via complex formation by using Curcuma longa extract

    NASA Astrophysics Data System (ADS)

    Fatimah, Is; Yudha, Septian P.; Mutiara, Nur Afisa Lintang

    2016-02-01

    Synthesis of ZnO nanoparticles(NPs) were conducted via Zn(II) complex formation by using Curcuma longa extract as template. Curcuma longa extract has the ability to form zinc ions complex with curcumin as ligating agent. Study on synthesis was conducted by monitoring thermal degradation of the material. Successful formation of zinc oxide nanoparticles was confirmed by employing x-ray diffraction, surface area analysis and transmission electron microscopy(TEM) studies. From the XRD analysis it is denoted that ZnO in hexagonal wurtzite phase was formed and particle size was varied as varied temperature. The data are also confirmed by TEM analysis which shows the particle sie at the range 20-80nm. The NPs exhibited excelent photocatalytic activity for methylene blue degradation and also significant antibacterial activity for Eschericia coli. The activity in methylene blue degradation was also confirmed from fast chemical oxygen demand (COD) reduction.

  17. Formation equilibria of nickel complexes with glycyl-histidyl-lysine and two synthetic analogues.

    PubMed

    Conato, Chiara; Kozłowski, Henryk; Swiatek-Kozłowska, Jolanta; Młynarz, Piotr; Remelli, Maurizio; Silvestri, Sergio

    2004-01-01

    Complex-formation equilibria between the Ni(II) ion and the natural tripeptide glycyl-L-histidyl-L-lysine have been investigated. Two synthetic analogues, where the histidine residue has been substituted with L-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid (L-Spinacine) and L-1,2,3,4-tetrahydro-isoquinolin-3-carboxylic acid (Tic), respectively, have been considered, as well. Different experimental techniques have been employed: potentiometry, calorimetry, visible spectrophotometry and CD spectroscopy. Structural hypotheses on the main complex species are suggested. Evidences on the formation of tetrameric species with the first ligand are shown. No involvement of the side-chain amino group of lysine residue in metal ion coordination was found. PMID:14659644

  18. Stress-dependent nucleolin mobilization mediated by p53-nucleolin complex formation.

    PubMed

    Daniely, Yaron; Dimitrova, Diana D; Borowiec, James A

    2002-08-01

    We recently discovered that heat shock causes nucleolin to relocalize from the nucleolus to the nucleoplasm, whereupon it binds replication protein A and inhibits DNA replication initiation. We report that nucleolin mobilization also occurs following exposure to ionizing radiation (IR) and treatment with camptothecin. Mobilization was selective in that another nucleolar marker, upstream binding factor, did not relocalize in response to IR. Nucleolin relocalization was dependent on p53 and stress, the latter initially stimulating nucleolin-p53 complex formation. Nucleolin relocalization and complex formation in vivo were independent of p53 transactivation but required the p53 C-terminal regulatory domain. Nucleolin and p53 also interact directly in vitro, with a similar requirement for p53 domains. These data indicate a novel p53-dependent mechanism in which cell stress mobilizes nucleolin for transient replication inhibition and DNA repair. PMID:12138209

  19. Microbial growth and biofilm formation in geologic media is detected with complex conductivity measurements

    NASA Astrophysics Data System (ADS)

    Davis, Caroline A.; Atekwana, Estella; Atekwana, Eliot; Slater, Lee D.; Rossbach, Silvia; Mormile, Melanie R.

    2006-09-01

    Complex conductivity measurements (0.1-1000 Hz) were obtained from biostimulated sand-packed columns to investigate the effect of microbial growth and biofilm formation on the electrical properties of porous media. Microbial growth was verified by direct microbial counts, pH measurements, and environmental scanning electron microscope imaging. Peaks in imaginary (interfacial) conductivity in the biostimulated columns were coincident with peaks in the microbial cell concentrations extracted from sands. However, the real conductivity component showed no discernible relationship to microbial cell concentration. We suggest that the observed dynamic changes in the imaginary conductivity (σ″) arise from the growth and attachment of microbial cells and biofilms to sand surfaces. We conclude that complex conductivity techniques, specifically imaginary conductivity measurements are a proxy indicator for microbial growth and biofilm formation in porous media. Our results have implications for microbial enhanced oil recovery, CO2 sequestration, bioremediation, and astrobiology studies.

  20. Unique behaviour of dinitrogen-bridged dimolybdenum complexes bearing pincer ligand towards catalytic formation of ammonia

    PubMed Central

    Tanaka, Hiromasa; Arashiba, Kazuya; Kuriyama, Shogo; Sasada, Akira; Nakajima, Kazunari; Yoshizawa, Kazunari; Nishibayashi, Yoshiaki

    2014-01-01

    It is vital to design effective nitrogen fixation systems that operate under mild conditions, and to this end we recently reported an example of the catalytic formation of ammonia using a dinitrogen-bridged dimolybdenum complex bearing a pincer ligand, where up to twenty three equivalents of ammonia were produced based on the catalyst. Here we study the origin of the catalytic behaviour of the dinitrogen-bridged dimolybdenum complex bearing the pincer ligand with density functional theory calculations, based on stoichiometric and catalytic formation of ammonia from molecular dinitrogen under ambient conditions. Comparison of di- and mono-molybdenum systems shows that the dinitrogen-bridged dimolybdenum core structure plays a critical role in the protonation of the coordinated molecular dinitrogen in the catalytic cycle. PMID:24769530

  1. Electron Bihole Complex Formation in Neutralization of Ne{sup +} on LiF(001)

    SciTech Connect

    Khemliche, H.; Villette, J.; Borisov, A. G.; Momeni, A.; Roncin, P.

    2001-06-18

    Neutralization of low keV Ne{sup +} ions at a LiF(001) surface is studied in a grazing incidence geometry. The combination of energy loss and electron spectroscopy in coincidence reveals two neutralization channels of comparable importance. Besides the Auger process, the Ne{sup +} neutralization can proceed via peculiar target excitation, corresponding to the formation of an electron bihole complex termed trion.

  2. The standard enthalpies of combustion and formation of crystalline cobalt tetrakis(4-metoxyphenyl)porphin complex

    NASA Astrophysics Data System (ADS)

    Tarasov, R. P.; Volkov, A. V.; Bazanov, M. I.; Semeikin, A. S.

    2009-05-01

    The energy of combustion of cobalt tetrakis(4-metoxyphenyl)porphin was determined in an isothermic-shell liquid calorimeter with a stationary calorimetric bomb. The standard enthalpies of combustion and formation of the complex were calculated, -Δ c H o = 27334.06 ± 50.98 kJ/mol and Δf H o = 3062.90 ± 50.97 kJ/mol.

  3. DNA strand exchange stimulated by spontaneous complex formation with cationic comb-type copolymer.

    PubMed

    Kim, Won Jong; Akaike, Toshihiro; Maruyama, Atsushi

    2002-10-30

    Cationic comb-type copolymers (CCCs) composed of a polycation backbone and water-soluble side chains accelerate by 4-5 orders the DNA strand exchange reaction (SER) between double helical DNA and its homologous single-strand DNA. The accelerating effect is considered due to alleviation of counterion association during transitional intermediate formation in sequential displacement pathway. CCCs stabilize not only matured hybrids but also the nucleation complex to accelerate hybridization. PMID:12392411

  4. Display format and highlight validity effects on search performance using complex visual displays

    NASA Technical Reports Server (NTRS)

    Donner, Kimberly A.; Mckay, Tim; O'Brien, Kevin M.; Rudisill, Marianne

    1991-01-01

    Display format and highlight validity were shown to affect visual display search performance; however, these studies were conducted on small, artificial displays of alphanumeric stimuli. A study manipulating these variables was conducted using realistic, complex Space Shuttle information displays. A 2x2x3 within-subjects analysis of variance found that search times were faster for items in reformatted displays than for current displays. The significant format by highlight validity interaction showed that there was little difference in response time to both current and reformatted displays when the highlight validity was applied; however, under the non or invalid highlight conditions, search times were faster with reformatted displays. Benefits of highlighting and reformatting displays to enhance search and the necessity to consider highlight validity and format characteristics in tandem for predicting search performance are discussed.

  5. Microscopic Mechanism and Kinetics of Ice Formation at Complex Interfaces: Zooming in on Kaolinite.

    PubMed

    Sosso, Gabriele C; Li, Tianshu; Donadio, Davide; Tribello, Gareth A; Michaelides, Angelos

    2016-07-01

    Most ice in nature forms because of impurities which boost the exceedingly low nucleation rate of pure supercooled water. However, the microscopic details of ice nucleation on these substances remain largely unknown. Here, we have unraveled the molecular mechanism and the kinetics of ice formation on kaolinite, a clay mineral playing a key role in climate science. We find that the formation of ice at strong supercooling in the presence of this clay is about 20 orders of magnitude faster than homogeneous freezing. The critical nucleus is substantially smaller than that found for homogeneous nucleation and, in contrast to the predictions of classical nucleation theory (CNT), it has a strong two-dimensional character. Nonetheless, we show that CNT describes correctly the formation of ice at this complex interface. Kaolinite also promotes the exclusive nucleation of hexagonal ice, as opposed to homogeneous freezing where a mixture of cubic and hexagonal polytypes is observed. PMID:27269363

  6. Simultaneous Measurement of Amyloid Fibril Formation by Dynamic Light Scattering and Fluorescence Reveals Complex Aggregation Kinetics

    PubMed Central

    Streets, Aaron M.; Sourigues, Yannick; Kopito, Ron R.; Melki, Ronald; Quake, Stephen R.

    2013-01-01

    An apparatus that combines dynamic light scattering and Thioflavin T fluorescence detection is used to simultaneously probe fibril formation in polyglutamine peptides, the aggregating subunit associated with Huntington's disease, in vitro. Huntington's disease is a neurodegenerative disorder in a class of human pathologies that includes Alzheimer's and Parkinson's disease. These pathologies are all related by the propensity of their associated protein or polypeptide to form insoluble, β-sheet rich, amyloid fibrils. Despite the wide range of amino acid sequence in the aggregation prone polypeptides associated with these diseases, the resulting amyloids display strikingly similar physical structure, an observation which suggests a physical basis for amyloid fibril formation. Thioflavin T fluorescence reports β-sheet fibril content while dynamic light scattering measures particle size distributions. The combined techniques allow elucidation of complex aggregation kinetics and are used to reveal multiple stages of amyloid fibril formation. PMID:23349924

  7. Microscopic Mechanism and Kinetics of Ice Formation at Complex Interfaces: Zooming in on Kaolinite

    PubMed Central

    2016-01-01

    Most ice in nature forms because of impurities which boost the exceedingly low nucleation rate of pure supercooled water. However, the microscopic details of ice nucleation on these substances remain largely unknown. Here, we have unraveled the molecular mechanism and the kinetics of ice formation on kaolinite, a clay mineral playing a key role in climate science. We find that the formation of ice at strong supercooling in the presence of this clay is about 20 orders of magnitude faster than homogeneous freezing. The critical nucleus is substantially smaller than that found for homogeneous nucleation and, in contrast to the predictions of classical nucleation theory (CNT), it has a strong two-dimensional character. Nonetheless, we show that CNT describes correctly the formation of ice at this complex interface. Kaolinite also promotes the exclusive nucleation of hexagonal ice, as opposed to homogeneous freezing where a mixture of cubic and hexagonal polytypes is observed. PMID:27269363

  8. ESI formation of a Meisenheimer complex from tetryl and its unusual dissociation.

    PubMed

    Hubert, Cécile; Dossmann, Héloïse; Machuron-Mandard, Xavier; Tabet, Jean-Claude

    2013-03-01

    The reactivity of the explosive tetryl (N-methyl-N,2,4,6-tetranitroaniline; Mw = 287 u) was studied using electrospray ionization in negative mode. The main species detected in the spectrum corresponds to the ion observed at m/z 318 (previously assumed to be the odd-electron ion [tetryl + HNO](-•), C7H6O9N6). In this study, we show using D-labeling combined with high-resolution mass spectrometry that this species corresponds to an even-electron anion (i.e. C8H8O9N5), resulting from the formation of a Meisenheimer complex between tetryl and the methanol used as the solvent. Fragmentation of this complex under CID conditions revealed an unexpected fragment: the formation of a 2,4,6-trinitrophenoxide anion at m/z 228. (18)O-labeling combined with quantum chemical calculations helped us better understand the reaction pathways and mechanisms involved in the formation of this product ion. This occurs via a transition state leading to a SN2-type reaction, consequently evolving toward an ion-dipole complex. The latter finally dissociates into deprotonated picric acid. PMID:23494785

  9. Novel checkpoint response to genotoxic stress mediated by nucleolin-replication protein a complex formation.

    PubMed

    Kim, Kyung; Dimitrova, Diana D; Carta, Kristine M; Saxena, Anjana; Daras, Mariza; Borowiec, James A

    2005-03-01

    Human replication protein A (RPA), the primary single-stranded DNA-binding protein, was previously found to be inhibited after heat shock by complex formation with nucleolin. Here we show that nucleolin-RPA complex formation is stimulated after genotoxic stresses such as treatment with camptothecin or exposure to ionizing radiation. Complex formation in vitro and in vivo requires a 63-residue glycine-arginine-rich (GAR) domain located at the extreme C terminus of nucleolin, with this domain sufficient to inhibit DNA replication in vitro. Fluorescence resonance energy transfer studies demonstrate that the nucleolin-RPA interaction after stress occurs both in the nucleoplasm and in the nucleolus. Expression of the GAR domain or a nucleolin mutant (TM) with a constitutive interaction with RPA is sufficient to inhibit entry into S phase. Increasing cellular RPA levels by overexpression of the RPA2 subunit minimizes the inhibitory effects of nucleolin GAR or TM expression on chromosomal DNA replication. The arrest is independent of p53 activation by ATM or ATR and does not involve heightened expression of p21. Our data reveal a novel cellular mechanism that represses genomic replication in response to genotoxic stress by inhibition of an essential DNA replication factor. PMID:15743838

  10. The LINC complex component Sun4 plays a crucial role in sperm head formation and fertility

    PubMed Central

    Pasch, Elisabeth; Link, Jana; Beck, Carolin; Scheuerle, Stefanie; Alsheimer, Manfred

    2015-01-01

    ABSTRACT LINC complexes are evolutionarily conserved nuclear envelope bridges, physically connecting the nucleus to the peripheral cytoskeleton. They are pivotal for dynamic cellular and developmental processes, like nuclear migration, anchoring and positioning, meiotic chromosome movements and maintenance of cell polarity and nuclear shape. Active nuclear reshaping is a hallmark of mammalian sperm development and, by transducing cytoskeletal forces to the nuclear envelope, LINC complexes could be vital for sperm head formation as well. We here analyzed in detail the behavior and function of Sun4, a bona fide testis-specific LINC component. We demonstrate that Sun4 is solely expressed in spermatids and there localizes to the posterior nuclear envelope, likely interacting with Sun3/Nesprin1 LINC components. Our study revealed that Sun4 deficiency severely impacts the nucleocytoplasmic junction, leads to mislocalization of other LINC components and interferes with the formation of the microtubule manchette, which finally culminates in a globozoospermia-like phenotype. Together, our study provides direct evidence for a critical role of LINC complexes in mammalian sperm head formation and male fertility. PMID:26621829

  11. Predicting permeability from the characteristic relaxation time and intrinsic formation factor of complex conductivity spectra

    NASA Astrophysics Data System (ADS)

    Revil, A.; Binley, A.; Mejus, L.; Kessouri, P.

    2015-08-01

    Low-frequency quadrature conductivity spectra of siliclastic materials exhibit typically a characteristic relaxation time, which either corresponds to the peak frequency of the phase or the quadrature conductivity or a typical corner frequency, at which the quadrature conductivity starts to decrease rapidly toward lower frequencies. This characteristic relaxation time can be combined with the (intrinsic) formation factor and a diffusion coefficient to predict the permeability to flow of porous materials at saturation. The intrinsic formation factor can either be determined at several salinities using an electrical conductivity model or at a single salinity using a relationship between the surface and quadrature conductivities. The diffusion coefficient entering into the relationship between the permeability, the characteristic relaxation time, and the formation factor takes only two distinct values for isothermal conditions. For pure silica, the diffusion coefficient of cations, like sodium or potassium, in the Stern layer is equal to the diffusion coefficient of these ions in the bulk pore water, indicating weak sorption of these couterions. For clayey materials and clean sands and sandstones whose surface have been exposed to alumina (possibly iron), the diffusion coefficient of the cations in the Stern layer appears to be 350 times smaller than the diffusion coefficient of the same cations in the pore water. These values are consistent with the values of the ionic mobilities used to determine the amplitude of the low and high-frequency quadrature conductivities and surface conductivity. The database used to test the model comprises a total of 202 samples. Our analysis reveals that permeability prediction with the proposed model is usually within an order of magnitude from the measured value above 0.1 mD. We also discuss the relationship between the different time constants that have been considered in previous works as characteristic relaxation time, including

  12. Formylglycinamide Ribonucleotide Amidotransferase from Thermotoga maritima: Structural Insights into Complex Formation

    SciTech Connect

    Morar, Mariya; Hoskins, Aaron A.; Stubbe, JoAnne; Ealick, Steven E.

    2008-10-02

    In the fourth step of the purine biosynthetic pathway, formyl glycinamide ribonucleotide (FGAR) amidotransferase, also known as PurL, catalyzes the conversion of FGAR, ATP, and glutamine to formyl glycinamidine ribonucleotide (FGAM), ADP, P{sub i}, and glutamate. Two forms of PurL have been characterized, large and small. Large PurL, present in most Gram-negative bacteria and eukaryotes, consists of a single polypeptide chain and contains three major domains: the N-terminal domain, the FGAM synthetase domain, and the glutaminase domain, with a putative ammonia channel located between the active sites of the latter two. Small PurL, present in Gram-positive bacteria and archaea, is structurally homologous to the FGAM synthetase domain of large PurL, and forms a complex with two additional gene products, PurQ and PurS. The structure of the PurS dimer is homologous with the N-terminal domain of large PurL, while PurQ, whose structure has not been reported, contains the glutaminase activity. In Bacillus subtilis, the formation of the PurLQS complex is dependent on glutamine and ADP and has been demonstrated by size-exclusion chromatography. In this work, a structure of the PurLQS complex from Thermotoga maritima is described revealing a 2:1:1 stoichiometry of PurS:Q:L, respectively. The conformational changes observed in TmPurL upon complex formation elucidate the mechanism of metabolite-mediated recruitment of PurQ and PurS. The flexibility of the PurS dimer is proposed to play a role in the activation of the complex and the formation of the ammonia channel. A potential path for the ammonia channel is identified.

  13. Successive ratio subtraction coupled with constant multiplication spectrophotometric method for determination of hydroquinone in complex mixture with its degradation products, tretinoin and methyl paraben

    NASA Astrophysics Data System (ADS)

    Elghobashy, Mohamed R.; Bebawy, Lories I.; Shokry, Rafeek F.; Abbas, Samah S.

    2016-03-01

    A sensitive and selective stability-indicating successive ratio subtraction coupled with constant multiplication (SRS-CM) spectrophotometric method was studied and developed for the spectrum resolution of five component mixture without prior separation. The components were hydroquinone in combination with tretinoin, the polymer formed from hydroquinone alkali degradation, 1,4 benzoquinone and the preservative methyl paraben. The proposed method was used for their determination in their pure form and in pharmaceutical formulation. The zero order absorption spectra of hydroquinone, tretinoin, 1,4 benzoquinone and methyl paraben were determined at 293, 357.5, 245 and 255.2 nm, respectively. The calibration curves were linear over the concentration ranges of 4.00-46.00, 1.00-7.00, 0.60-5.20, and 1.00-7.00 μg mL- 1 for hydroquinone, tretinoin, 1,4 benzoquinone and methyl paraben, respectively. The pharmaceutical formulation was subjected to mild alkali condition and measured by this method resulting in the polymerization of hydroquinone and the formation of toxic 1,4 benzoquinone. The proposed method was validated according to ICH guidelines. The results obtained were statistically analyzed and compared with those obtained by applying the reported method.

  14. Successive ratio subtraction coupled with constant multiplication spectrophotometric method for determination of hydroquinone in complex mixture with its degradation products, tretinoin and methyl paraben.

    PubMed

    Elghobashy, Mohamed R; Bebawy, Lories I; Shokry, Rafeek F; Abbas, Samah S

    2016-03-15

    A sensitive and selective stability-indicating successive ratio subtraction coupled with constant multiplication (SRS-CM) spectrophotometric method was studied and developed for the spectrum resolution of five component mixture without prior separation. The components were hydroquinone in combination with tretinoin, the polymer formed from hydroquinone alkali degradation, 1,4 benzoquinone and the preservative methyl paraben. The proposed method was used for their determination in their pure form and in pharmaceutical formulation. The zero order absorption spectra of hydroquinone, tretinoin, 1,4 benzoquinone and methyl paraben were determined at 293, 357.5, 245 and 255.2nm, respectively. The calibration curves were linear over the concentration ranges of 4.00-46.00, 1.00-7.00, 0.60-5.20, and 1.00-7.00μgmL(-1) for hydroquinone, tretinoin, 1,4 benzoquinone and methyl paraben, respectively. The pharmaceutical formulation was subjected to mild alkali condition and measured by this method resulting in the polymerization of hydroquinone and the formation of toxic 1,4 benzoquinone. The proposed method was validated according to ICH guidelines. The results obtained were statistically analyzed and compared with those obtained by applying the reported method. PMID:26745510

  15. Formation and Recondensation of Complex Organic Molecules during Protostellar Luminosity Outbursts

    NASA Astrophysics Data System (ADS)

    Taquet, Vianney; Wirström, Eva S.; Charnley, Steven B.

    2016-04-01

    During the formation of stars, the accretion of surrounding material toward the central object is thought to undergo strong luminosity outbursts followed by long periods of relative quiescence, even at the early stages of star formation when the protostar is still embedded in a large envelope. We investigated the gas-phase formation and recondensation of the complex organic molecules (COMs) di-methyl ether and methyl formate, induced by sudden ice evaporation processes occurring during luminosity outbursts of different amplitudes in protostellar envelopes. For this purpose, we updated a gas-phase chemical network forming COMs in which ammonia plays a key role. The model calculations presented here demonstrate that ion–molecule reactions alone could account for the observed presence of di-methyl ether and methyl formate in a large fraction of protostellar cores without recourse to grain-surface chemistry, although they depend on uncertain ice abundances and gas-phase reaction branching ratios. In spite of the short outburst timescales of about 100 years, abundance ratios of the considered species higher than 10% with respect to methanol are predicted during outbursts due to their low binding energies relative to water and methanol which delay their recondensation during cooling. Although the current luminosity of most embedded protostars would be too low to produce complex organics in the hot-core regions that are observable with current sub-millimetric interferometers, previous luminosity outburst events would induce the formation of COMs in extended regions of protostellar envelopes with sizes increasing by up to one order of magnitude.

  16. Disruption of PF4/H multimolecular complex formation with a minimally anticoagulant heparin (ODSH)

    PubMed Central

    Joglekar, Manali V.; Quintana Diez, Pedro M.; Marcus, Stephen; Qi, Rui; Espinasse, Benjamin; Wiesner, Mark R.; Pempe, Elizabeth; Liu, Jian; Monroe, Dougald M.; Arepally, Gowthami M.

    2015-01-01

    Summary Recent studies have shown that ultra-large complexes (ULCs) of platelet factor 4 (PF4) and heparin (H) play an essential role in the pathogenesis of Heparin-Induced Thrombocytopenia (HIT), an immune-mediated disorder caused by PF4/H antibodies. Because antigenic PF4/H ULCs assemble through non-specific electrostatic interactions, we reasoned that disruption of charge-based interactions can modulate the immune response to antigen. We tested a minimally anticoagulant compound (2-O, 3-O desulfated heparin or ODSH) with preserved charge to disrupt PF4/H complex formation and immunogenicity. We show that ODSH disrupts complexes when added to pre-formed PF4/H ULCs and prevents ULC formation when incubated simultaneously with PF4 and UFH. In other studies, we show that excess ODSH reduces HIT antibody (Ab) binding in immunoassays and that PF4/ODSH complexes do not cross-react with HIT Abs. When ODSH and UFH are mixed at equimolar concentrations, we show that there is a negligible effect on amount of protamine required for heparin neutralization and reduced immunogenicity of PF4/UFH in the presence of ODSH. Taken together, these studies suggest that ODSH can be used concurrently with UFH to disrupt PF4/H charge interactions and provides a novel strategy to reduce antibody mediated complications in HIT. PMID:22318669

  17. Structure formation in metal complex/polymer hybrid nanomaterials prepared by miniemulsion.

    PubMed

    Hauser, Christoph P; Jagielski, Nicole; Heller, Jeannine; Hinderberger, Dariush; Spiess, Hans W; Lieberwirth, Ingo; Weiss, Clemens K; Landfester, Katharina

    2011-11-01

    Polymer/complex hybrid nanostructures were prepared using a variety of hydrophobic metal β-diketonato complexes. The mechanism of structure formation was investigated by electron paramagnetic resonance (EPR) spectroscopy and small-angle X-ray scattering (SAXS) in the liquid phase. Structure formation is attributed to an interaction between free coordination sites of metal β-diketonato complexes and coordinating anionic surfactants. Lamellar structures are already present in the miniemulsion. By subsequent polymerization the lamellae can be embedded in a great variety of different polymeric matrices. The morphology of the lamellar structures, as elucidated by transmission electron microscopy (TEM), can be controlled by the choice of anionic surfactant. Using sodium alkylsulfates and sodium dodecylphosphate, "nano-onions" are formed, while sodium carboxylates lead to "kebab-like" structures. The composition of the hybrid nanostructures can be described as bilayer lamellae, embedded in a polymeric matrix. The metal complexes are separated by surfactant molecules which are arranged tail-to-tail; by increasing the carbon chain length of the surfactant the layer distance of the structured nanomaterial can be adjusted between 2 and 5 nm. PMID:21977909

  18. Formation and fate of a complete 31-protein RNA polymerase II transcription preinitiation complex.

    PubMed

    Murakami, Kenji; Calero, Guillermo; Brown, Christopher R; Liu, Xin; Davis, Ralph E; Boeger, Hinrich; Kornberg, Roger D

    2013-03-01

    Whereas individual RNA polymerase II (pol II)-general transcription factor (GTF) complexes are unstable, an assembly of pol II with six GTFs and promoter DNA could be isolated in abundant homogeneous form. The resulting complete pol II transcription preinitiation complex (PIC) contained equimolar amounts of all 31 protein components. An intermediate in assembly, consisting of four GTFs and promoter DNA, could be isolated and supplemented with the remaining components for formation of the PIC. Nuclease digestion and psoralen cross-linking mapped the PIC between positions -70 and -9, centered on the TATA box. Addition of ATP to the PIC resulted in quantitative conversion to an open complex, which retained all 31 proteins, contrary to expectation from previous studies. Addition of the remaining NTPs resulted in run-off transcription, with an efficiency that was promoter-dependent and was as great as 17.5% with the promoters tested. PMID:23303183

  19. Germ cell differentiation and synaptonemal complex formation are disrupted in CPEB knockout mice.

    PubMed

    Tay, J; Richter, J D

    2001-08-01

    CPEB is a sequence-specific RNA binding protein that regulates translation during vertebrate oocyte maturation. Adult female CPEB knockout mice contained vestigial ovaries that were devoid of oocytes; ovaries from mid-gestation embryos contained oocytes that were arrested at the pachytene stage. Male CPEB null mice also contained germ cells arrested at pachytene. The germ cells from the knockout mice harbored fragmented chromatin, suggesting a possible defect in homologous chromosome adhesion or synapsis. Two CPE-containing synaptonemal complex protein mRNAs, which interact with CPEB in vitro and in vivo, contained shortened poly(A) tails and mostly failed to sediment with polysomes in the null mice. Synaptonemal complexes were not detected in these animals. CPEB therefore controls germ cell differentiation by regulating the formation of the synaptonemal complex. PMID:11702780

  20. Mössbauer study of peroxynitrito complex formation with FeIII-chelates

    NASA Astrophysics Data System (ADS)

    Homonnay, Zoltan; Buszlai, Peter; Nádor, Judit; Sharma, Virender K.; Kuzmann, Erno; Vértes, Attila

    2012-03-01

    The reaction of the μ-oxo-diiron(III)-L complex (L = EDTA, ethylene diamine tetraacetate, HEDTA, hydroxyethyl ethylene diamine triacetate, and CyDTA, cyclohexane diamine tetraacetate) with peroxynitrite in alkaline solution was studied by Mössbauer spectroscopy using rapid-freezing technique. These complexes yield an (L)FeIII( η 2-O2)^{3-} complex ion when they react with hydrogen peroxide and the formation of the peroxide adduct results in a deep purple coloration of the solution. The same color appears when the reaction occurs with peroxinitrite. Although spectrophotometry indicated some difference between the molar extinction coefficients of the peroxo and the peroxinitrito adducts, the Mössbauer parameters proved to be the same within experimental error. It is concluded that the peroxynitrite ion decomposes when reacting with FeIII(L) and the peroxo adduct forms.

  1. Actomyosin-dependent formation of the mechanosensitive talin-vinculin complex reinforces actin anchoring

    NASA Astrophysics Data System (ADS)

    Ciobanasu, Corina; Faivre, Bruno; Le Clainche, Christophe

    2014-01-01

    The force generated by the actomyosin cytoskeleton controls focal adhesion dynamics during cell migration. This process is thought to involve the mechanical unfolding of talin to expose cryptic vinculin-binding sites. However, the ability of the actomyosin cytoskeleton to directly control the formation of a talin-vinculin complex and the resulting activity of the complex are not known. Here we develop a microscopy assay with pure proteins in which the self-assembly of actomyosin cables controls the association of vinculin to a talin-micropatterned surface in a reversible manner. Quantifications indicate that talin refolding is limited by vinculin dissociation and modulated by the actomyosin network stability. Finally, we show that the activation of vinculin by stretched talin induces a positive feedback that reinforces the actin-talin-vinculin association. This in vitro reconstitution reveals the mechanism by which a key molecular switch senses and controls the connection between adhesion complexes and the actomyosin cytoskeleton.

  2. Complex formation between excited-state saturated amines and water in n-hexane solution

    SciTech Connect

    Halpern, A.M.; Ruggles, C.J.; Zhang, X.K.

    1987-06-10

    Fluorescence spectra and decay curves of dilute solutions (<3 x 10/sup -4/ M) of triethylamine (TEA), tri-n-propylamine (TPA), and 1,4-diazabicyclo(2.2.2)octane (DABCO) in H/sub 2/O- and D/sub 2/O-saturated n-hexane reveal the presence of a complex formed between the electronically excited amine and water. The decay curves, measured between 273 and 323 K (and at 280 and 360 nm; 300 and 400 nm for DABCO), conform to the standard monomer-excimer photokinetic scheme and are analyzed accordingly. These results indicate that the binding energy of the excited TEA-H/sub 2/O complex (B*) is ca. 7.8 kcal/mol, which is larger than that of the ground-state TEA hydrate. B* for the TPA and DABCO-H/sub 2/O complexes is estimated to be ca. 10 and 8.8 kcal/mol, respectively. Stationary-state measurements are consistent with these assignments. The activation energy for the diffusion of water in n-hexane (assumed to be monomeric) appears to be very small (<1 kcal/mol). The decay constants of the three complexes studied are ca. 3.4 x 10/sup 7/ s/sup -1/ for amine-H/sub 2/O and 2.9 x 10/sup 7/ s/sup -1/ for the amine-D/sub 2/O systems. Intrinsic fluorescence quantum efficiencies of the amine-H/sub 2/O complexes are 0.17, 0.23, and 0.28 for TEA, TPA, and DABCO, respectively, at 303 K. A Foerster cycle analysis of the dry and H/sub 2/O-saturated fluorescence spectra of TEA, when taking the ground-state hydrate into account indicates that the repulsion energy of the post-fluorescence (TEA-H/sub 2/O) complex is ca. 10 kcal/mol.

  3. A chiral ligand exchange CE essay with zinc(II)-L-valine complex for determining enzyme kinetic constant of L-amino acid oxidase.

    PubMed

    Qi, Li; Yang, Gengliang; Zhang, Haizhi; Qiao, Juan

    2010-06-15

    A new strategy for the enantioseparation of D,L-amino acids employing the principle of ligand exchange capillary electrophoresis with Zn(II)-L-valine complex as a chiral selecting system in the presence of beta-cyclodextrin has been designed. Successful enantioseparation of label free and labeled amino acids have been achieved with a buffer of 100.0mM boric acid, 5.0mM ammonium acetate, 4.0mM beta-cyclodextrin, 4.0mM ZnSO(4) and 8.0mM L-valine at pH 8.1. This new method was shown to be applicable to the quantitative analysis of label free D- and L-aromatic amino acids. Furthermore, the expanding enzymatic use of L-amino acid oxidase to incubate with different L-amino acids has allowed understanding of the substrate's specificity. An on-column incubation assay has been developed to study the L-amino acid oxidase's catalytic efficiency. It was demonstrated that the enzyme kinetic constant could be determined by using this new method. PMID:20441938

  4. Premelting base pair opening probability and drug binding constant of a daunomycin-poly d(GCAT).poly d(ATGC) complex.

    PubMed Central

    Chen, Y Z; Prohofsky, E W

    1994-01-01

    We calculate room temperature thermal fluctuational base pair opening probability of a daunomycin-poly d(GCAT).poly d(ATGC) complex. This system is constructed at an atomic level of detail based on x-ray analysis of a crystal structure. The base pair opening probabilities are calculated from a modified self-consistent phonon approach of anharmonic lattice dynamics theory. We find that daunomycin binding substantially enhances the thermal stability of one of the base pairs adjacent the drug because of strong hydrogen bonding between the drug and the base. The possible effect of this enhanced stability on the drug inhibition of DNA transcription and replication is discussed. We also calculate the probability of drug dissociation from the helix based on the selfconsistent calculation of the probability of the disruption of drug-base H-bonds and the unstacking probability of the drug. The calculations can be used to determine the equilibrium drug binding constant which is found to be in good agreement with observations on similar daunomycin-DNA systems. PMID:8011914

  5. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    SciTech Connect

    Bhattacharjee, Rajesh; Xiang, Wenpei; Wang, Yinna; Zhang, Xiaoying

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. Black-Right-Pointing-Pointer cAMP blocks NF-{kappa}B activation induced by TNF and actinomycin D. Black-Right-Pointing-Pointer cAMP blocks DISC formation following TNF and actinomycin D exposure. Black-Right-Pointing-Pointer cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor {alpha} (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found

  6. Structural Complexities Influencing Biostratigraphic Interpretations of the Permian Nansen Formation type-section, Ellesmere Island, Canada

    NASA Astrophysics Data System (ADS)

    Hill, M.; Guest, B.

    2011-12-01

    The Carboniferous to Permian aged Nansen Formation is a cyclic carbonate shelf deposit and potential hydrocarbon reservoir. This formation is the thickest, most widespread carbonate sequence in the Sverdrup Basin. Deformed during the Eurekan Orogeny, the Nansen Fm. is topographically prominent and responsible for the rugged topography on Axel Heiburg and Ellesmere Island. The type-section for the Nansen Fm. is located on the north side of Hare Fiord, along Girty Creek. At this location there is an estimated stratigraphic thickness of 2 km. Due to easier access most of the stratigraphic work has been completed on nearby glacially exposed sections that traverse parallel to Girty Creek along glacial margins. Extensive biostratigraphy was completed on a glacier section to the west, however, in a glacier section to the east of Girty Creek, structural complexities appear to be repeating sections of the formation. Here, the Nansen formation is bounded by two regional reverse faults. This has produced duplex structures, with clearly exposed stacked horses, footwall synclines, and truncations. By projecting the structures observed along the eastern glacier section to the western glacier section that was used for biostratigraphic studies, it is clear that these structures would affect biostratigraphic interpretations. It was previously noted by biostratigraphers that thrust faults appear to be repeating sections of the Nansen formation. However by correlating all observed faults with the biostratigraphy, we can determine the extent to which the faulting has affected the interpretations, and whether all faults or stratigraphic repetitions are accounted for.

  7. Influence of Substrate Complexity on the Diastereoselective Formation of Spiroiminodihydantoin and Guanidinohydantoin from Chromate Oxidation

    PubMed Central

    Gremaud, Julia N.; Martin, Brooke D.; Sugden, Kent D.

    2009-01-01

    Chromate is a human carcinogen with a poorly defined mechanism of DNA damage. In vitro and prokaryotic studies have shown that DNA damage may occur via the formation of the hydantoin lesions guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp) from further oxidation of 8-oxo-7,8-dihydroguanine (8oxoG). The unusual structure of these lesions coupled with their enhanced mutagenicity make them attractive for study with regard to their role in chromate-induced cancer. We have studied the formation of Gh versus Sp and their associated diastereomers following oxidation by model Cr(V) complexes and from in situ chromate reduction by ascorbate and glutathione. Identification of the two optically assigned diastereomers of Sp (R-Sp, S-Sp) as well as the two diastereomers of Gh, (Gh1 and Gh2; not yet optically assigned) were carried out using increasingly sterically hindered substrates (nucleoside → ssDNA → dsDNA). Lesion formation and diastereomeric preference was found to be highly oxidant- and substrate-dependent. The Ir(IV) positive control showed a shift from near equal levels of Gh and Sp, and near equal levels of all four diastereomers in the nucleoside, to all Gh formation in dsDNA, with a 5-fold enhancement in Gh2 over Gh1. The two model Cr(V) complexes used in this study, Cr(V)-salen and Cr(V)-ehba, showed opposite trends going from nucleoside to dsDNA with Cr(V)-salen giving enhanced Sp formation (with mainly R-Sp formed) and the Cr(V)-ehba having an oxidation profile nearly identical to that of Ir(IV). The two chromate reduction systems, Cr6+/ascorbate and Cr6+/glutathione, designed to model the intracellular reduction of chromate, showed lower levels of oxidation in all substrates. Notable in this group was the shift in the formation of the lesions to essentially all Sp for the Cr6+/ascorbate system with the most sterically hindered substrate, dsDNA. These results, when coupled with the known diastereomeric preference for excision of hydantoin lesions by

  8. Molybdenum Hydride and Dihydride Complexes Bearing Diphosphine Ligands with a Pendant Amine: Formation of Complexes With Bound Amines

    SciTech Connect

    Zhang, Shaoguang; Bullock, R. Morris

    2015-07-06

    CpMo(CO)(PNP)H complexes (PNP = (R2PCH2)2NMe, R = Et or Ph) were synthesized by displacement of two CO ligands of CpMo(CO)3H by the PNP ligand; these complexes were characterized by IR and variable temperature 1H and 31P NMR spectroscopy. CpMo(CO)(PNP)H complexes are formed as mixture of cis and trans-isomers. Both cis-CpMo(CO)(PEtNMePEt)H and trans-CpMo(CO)(PPhNMePPh)H were analyzed by single crystal X-ray diffraction. Electrochemical oxidation of CpMo(CO)(PEtNMePEt)H and CpMo(CO)(PPhNMePPh)H in CH3CN are both irreversible at slow scan rates and quasi-reversible at higher scan rates, with E1/2 = -0.36 V (vs. Cp2Fe+/0) for CpMo(CO)(PEtNMePEt)H and E1/2 = -0.18 V for CpMo(CO)(PPhNMePPh)H. Hydride abstraction from CpMo(CO)(PNP)H with [Ph3C]+[A]- (A = B(C6F5)4 or BArF4; [ArF = 3,5-bis(trifluoromethyl)phenyl]) afforded “tuck-in” [CpMo(CO)(κ3-PNP)]+ complexes that feature the amine bound to the metal. Displacement of the κ3 Mo-N bond by CD3CN gives [CpMo(CO)(PNP)(CD3CN)]+. The kinetics of this reaction were studied by NMR spectroscopy, providing the activation parameters ΔH‡ = 22.1 kcal/mol, ΔS‡ = 1.89 cal/(mol·K), Ea = 22.7 kcal/mol. Protonation of CpMo(CO)(PEtNMePEt)H affords [CpMo(CO)(κ2-PEtNMePEt)(H)2]+ as a Mo dihydride complex, which loses H2 to generate [CpMo(CO)(κ3-PEtNMePEt)]+ at room temperature. CpMo(CO)(dppp)H (dppp = 1,2-bis(diphenylphosphino)propane) was studied as a Mo diphosphine analogue without a pendant amine, and the product of protonation of this complex gives [CpMo(CO)(dppp)(H)2]+. Our results show that the pendant amine has a strong driving force to form stable “tuck-in” [CpMo(CO)(κ3-PNP)]+ complexes, and also promotes hydrogen elimination from [CpMo(CO)(PNP)(H)2]+ complexes by formation of Mo-N dative bond. We thank the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences for support. Pacific Northwest National Laboratory is operated by

  9. In vivo dynamics of chromatin-associated complex formation in mammalian nucleotide excision repair

    PubMed Central

    Moné, Martijn J.; Bernas, Tytus; Dinant, Christoffel; Goedvree, Feliks A.; Manders, Erik M. M.; Volker, Marcel; Houtsmuller, Adriaan B.; Hoeijmakers, Jan H. J.; Vermeulen, Wim; van Driel, Roel

    2004-01-01

    Chromatin is the substrate for many processes in the cell nucleus, including transcription, replication, and various DNA repair systems, all of which require the formation of multiprotein machineries on the chromatin fiber. We have analyzed the kinetics of in vivo assembly of the protein complex that is responsible for nucleotide excision repair (NER) in mammalian cells. Assembly is initiated by UV irradiation of a small area of the cell nucleus, after which the accumulation of GFP-tagged NER proteins in the DNA-damaged area is measured, reflecting the establishment of the dual-incision complex. The dynamic behavior of two NER proteins, ERCC1-XPF and TFIIH, was studied in detail. Results show that the repair complex is assembled with a rate of ≈30 complexes per second and is not diffusion limited. Furthermore, we provide in vivo evidence that not only binding of TFIIH, but also its helicase activity, is required for the recruitment of ERCC1-XPF. These studies give quantitative insight into the de novo assembly of a chromatin-associated protein complex in living cells. PMID:15520397

  10. Spectrophotometric and AAS determination of ramipril and enalapril through ternary complex formation.

    PubMed

    Ayad, Magda M; Shalaby, Abdalla A; Abdellatef, Hisham E; Hosny, Mervat M

    2002-04-15

    Two sensitive, spectrophotometric and atomic absorption spectrometric procedures are developed for the determination of two antihypertensive agents (enalapril maleate and ramipril). The spectrophotometric procedures for the two cited drugs are based on ternary complex formation. The first ternary complex (copper(II), eosin, and enalapril) was estimated by two methods; the first depends on its extraction with chloroform measuring at 533.4 nm. Beer's law was obeyed in concentration range from 56 to 112 microg ml(-1). The second method for the same complex depends on its direct measurement after addition of methylcellulose as surfactant at the pH value 5 at 558.8 nm. The concentration range is from 19 to 32 microg ml(-1). The second ternary complex (iron(III), thiocyanate, and ramipril) was extracted with methylene chloride, measuring at 436.6 nm, with a concentration range 60-132 microg ml(-1). The direct atomic absorption spectrometric method through the quantitative determination of copper or iron content of the complex was also investigated for the purpose of enhancing the sensitivity of the determination. The spectrophotometric and atomic absorption spectrometric procedures hold their accuracy and precision well when applied to the determination of ramipril and enalapril dosage forms. PMID:11929674

  11. Revised nomenclature and stratigraphic relationships of the Fredericksburg Complex and Quantico Formation of the Virginia Piedmont

    USGS Publications Warehouse

    Pavlides, Louis

    1980-01-01

    The Fredericksburg Complex, in part a migmatitic terrane in northeast Virginia, is subdivided on the basis of lithology, as well as aeromagnetic and aeroradiometric data, into two metamorphic suites. These suites are separated by the northeast-trending Spotsylvania lineament, a rectilinear geophysical feature that is probably the trace of an old fault zone. East of the lineament, the Po River Metamorphic Suite, of Proterozoic Z and (or) early Paleozoic age, consists dominantly of biotite gneiss, generally augen gneiss, and lesser amounts of hornblende gneiss and mica schist. West of the Spotsylvania lineament is the Ta River Metamorphic Suite, composed mostly of amphibolite and amphibole gneiss. However, to the southwest, along its strike belt, the Ta River contains abundant biotite gneiss and mica schist. Both the Ta River and Po River contain abundant foliated granitoid and pegmatoid bodies as concordant tabular masses and as crosscutting dikes; these rocks are considered part of the Ta River and Po River Metamorphic Suites. The amphibolitic Holly Corner Gneiss is interpreted to be a western allochthonous equivalent of the Ta River. Both the Ta River and Holly Corner are considered to be coeval, eastern, distal facies of the Lower Cambrian(?) Chopawamsic Formation. The Paleozoic Falls Run Granite Gneiss intrudes the Ta River Metamorphic Suite and the Holly Corner Gneiss; locally the Falls Run is interpreted to have been transported westward with the Holly Corner after intrusion. The Quantico Formation, in the core of the Quantico-Columbia synclinorium, rests with angular unconformity along its northwest and southeast limbs, respectively, on the Chopawamsic Formation and the Ta River Metamorphic Suite. The Quantico Formation is assigned the same Late Ordovician age and similar stratigraphic position as the Arvonia Slate of the Arvonia syncline. The youngest rocks of the area are the granitoid and pegmatoid bodies of the Falmouth Intrusive Suite. They consist of

  12. Maturation of suprathreshold auditory nerve activity involves cochlear CGRP-receptor complex formation.

    PubMed

    Dickerson, Ian M; Bussey-Gaborski, Rhiannon; Holt, Joseph C; Jordan, Paivi M; Luebke, Anne E

    2016-07-01

    In adult animals, the neuropeptide calcitonin gene-related peptide (CGRP) is contained in cochlear efferent fibers projecting out to the cochlea, and contributes to increased suprathreshold sound-evoked activity in the adult auditory nerve. Similarly, CGRP applied to the lateral-line organ (hair cell organ) increases afferent nerve activity in adult frogs (post-metamorphic day 30), yet this increase is developmentally delayed from post-metamorphic day 4-30. In this study, we discovered that there was also a developmental delay in increased suprathreshold sound-evoked activity auditory nerve between juvenile and adult mice similar to what had been observed previously in frog. Moreover, juvenile mice with a targeted deletion of the αCGRP gene [CGRP null (-/-)] did not show a similar developmental increase in nerve activity, suggesting CGRP signaling is involved. This developmental delay is not due to a delay in CGRP expression, but instead is due to a delay in receptor formation. We observed that the increase in sound-evoked nerve activity is correlated with increased formation of cochlear CGRP receptors, which require three complexed proteins (CLR, RAMP1, RCP) to be functional. CGRP receptor formation in the cochlea was incomplete at 1 month of age (juvenile), but complete by 3 months (adult), which corresponded to the onset of suprathreshold enhancement of sound-evoked activity in wild-type animals. Taken together, these data support a model for cochlear function that is enhanced by maturation of CGRP receptor complexes. PMID:27440744

  13. Carbon Dioxide Influence on the Thermal Formation of Complex Organic Molecules in Interstellar Ice Analogs

    NASA Astrophysics Data System (ADS)

    Vinogradoff, V.; Duvernay, F.; Fray, N.; Bouilloud, M.; Chiavassa, T.; Cottin, H.

    2015-08-01

    Interstellar ices are submitted to energetic processes (thermal, UV, and cosmic-ray radiations) producing complex organic molecules. Laboratory experiments aim to reproduce the evolution of interstellar ices to better understand the chemical changes leading to the reaction, formation, and desorption of molecules. In this context, the thermal evolution of an interstellar ice analogue composed of water, carbon dioxide, ammonia, and formaldehyde is investigated. The ice evolution during the warming has been monitored by IR spectroscopy. The formation of hexamethylenetetramine (HMT) and polymethylenimine (PMI) are observed in the organic refractory residue left after ice sublimation. A better understanding of this result is realized with the study of another ice mixture containing methylenimine (a precursor of HMT) with carbon dioxide and ammonia. It appears that carbamic acid, a reaction product of carbon dioxide and ammonia, plays the role of catalyst, allowing the reactions toward HMT and PMI formation. This is the first time that such complex organic molecules (HMT, PMI) are produced from the warming (without VUV photolysis or irradiation with energetic particles) of abundant molecules observed in interstellar ices (H2O, NH3, CO2, H2CO). This result strengthens the importance of thermal reactions in the ices’ evolution. HMT and PMI, likely components of interstellar ices, should be searched for in the pristine objects of our solar system, such as comets and carbonaceous chondrites.

  14. Formation of host-guest complexes of β-cyclodextrin and perfluorooctanoic acid.

    PubMed

    Karoyo, Abdalla H; Borisov, Alex S; Wilson, Lee D; Hazendonk, Paul

    2011-08-11

    Structural characterization and dynamic properties of solid-state inclusion complexes of β-cyclodextrin (β-CD) with perfluorooctanoic acid (PFOA) were investigated by (19)F/(13)C solid-state and (19)F/(1)H solution NMR spectroscopy. The complexes in the solid state were prepared using dissolution and slow cool methods, where thermal analyses (DSC and TGA), PXRD, and FT-IR results provided complementary support that inclusion complexes were formed between β-CD and PFOA with variable stoichiometry and inclusion geometry. (19)F DP (direct polarization) and (13)C CP (cross-polarization) with magic-angle spinning (MAS) solids NMR, along with (19)F/(1)H solution NMR were used to characterize the complexes in the solid and solution phases, respectively. The dynamics of the guest molecules in the inclusion complexes (ICs) were studied using variable temperature (VT) (19)F DP/MAS NMR experiments in the solid state. The guest molecules were observed to be in several different molecular environments, providing strong evidence of variable host-guest stoichiometry and inclusion geometry, in accordance with the preparation method of the complex and the conformational preference of PFOA. It was concluded from PXRD that β-CD and PFOA form inclusion complexes with "channel-type" structures. Variable spin rate (VSR) (19)F DP/MAS NMR was used to assess the phase purity of the complexes, and it was revealed that slow cooling resulted in relatively pure phases. In the solution state, (1)H and (19)F NMR complexation-induced chemical shifts (CISs) of β-CD and PFOA, respectively, provided strong support for the formation of 1:1 and 2:1 β-CD/PFOA inclusion complexes. The dynamics of the guest molecule in the β-CD/PFOA complexes in D(2)O solutions were probed using VT (19)F NMR and revealed some guest conformational and exchange dynamics as a function of temperature and the relative concentrations of the host and guest. PMID:21688796

  15. Model of formation of the Khibiny-Lovozero ore-bearing volcanic-plutonic complex

    NASA Astrophysics Data System (ADS)

    Arzamastsev, A. A.; Arzamastseva, L. V.; Zhirova, A. M.; Glaznev, V. N.

    2013-09-01

    The paper presents the results of a study of the large Paleozoic ore-magmatic system in the northeastern Fennoscandian Shield comprising the Khibiny and Lovozero plutons, the Kurga intrusion, volcanic rocks, and numerous alkaline dike swarms. As follows from the results of deep drilling and 3D geophysical simulation, large bodies of rocks pertaining to the ultramafic alkaline complex occur at the lower level of the ore-magmatic system. Peridotite, pyroxenite, melilitolite, melteigite, and ijolite occupy more than 50 vol % of the volcanic-plutonic complex within the upper 15 km accessible to gravity exploration. The proposed model represents the ore-magmatic system as a conjugate network of mantle magmatic sources localized at different depth levels and periodically supplying the melts belonging to the two autonomous groups: (1) ultramafic alkaline rocks with carbonatites and (2) alkali syenites-peralkaline syenites, which were formed synchronously having a common system of outlet conduits. With allowance for the available isotopic datings and new geochronological evidence, the duration of complex formation beginning from supply of the first batches of melt into calderas and up to postmagmatic events, expressed in formation of late pegmatoids, was no less than 25 Ma.

  16. SOHLH2 is essential for synaptonemal complex formation during spermatogenesis in early postnatal mouse testes

    PubMed Central

    Park, Miree; Lee, Youngeun; Jang, Hoon; Lee, Ok-Hee; Park, Sung-Won; Kim, Jae-Hwan; Hong, Kwonho; Song, Hyuk; Park, Se-Pill; Park, Yun-Yong; Ko, Jung Jae; Choi, Youngsok

    2016-01-01

    Spermatogenesis- and oogenesis-specific helix-loop-helix transcription factor 2 (SOHLH2) is exclusively expressed in germ cells of the gonads. Previous studies show that SOHLH2 is critical for spermatogenesis in mouse. However, the regulatory mechanism of SOHLH2 during early spermatogenesis is poorly understood. In the present study, we analyzed the gene expression profile of the Sohlh2-deficient testis and examined the role of SOHLH2 during spermatogenesis. We found 513 genes increased in abundance, while 492 genes decreased in abundance in 14-day-old Sohlh2-deficient mouse testes compared to wildtype mice. Gene ontology analysis revealed that Sohlh2 disruption effects the relative abundance of various meiotic genes during early spermatogenesis, including Spo11, Dmc1, Msh4, Prdm9, Sycp1, Sycp2, Sycp3, Hormad1, and Hormad2. Western blot analysis and immunostaining showed that SYCP3, a component of synaptonemal complex, was significantly less abundant in Sohlh2-deficient spermatocytes. We observed a lack of synaptonemal complex formation during meiosis in Sohlh2-deficient spermatocytes. Furthermore, we found that SOHLH2 interacted with two E-boxes on the mouse Sycp1 promoter and Sycp1 promoter activity increased with ectopically expressed SOHLH2. Taken together, our data suggest that SOHLH2 is critical for the formation of synaptonemal complexes via its regulation of Sycp1 expression during mouse spermatogonial differentiation. PMID:26869299

  17. Gas Phase Uranyl Activation: Formation of a Uranium Nitrosyl Complex from Uranyl Azide

    SciTech Connect

    Gong, Yu; De Jong, Wibe A.; Gibson, John K.

    2015-05-13

    Activation of the oxo bond of uranyl, UO22+, was achieved by collision induced dissociation (CID) of UO2(N3)Cl2– in a quadrupole ion trap mass spectrometer. The gas phase complex UO2(N3)Cl2– was produced by electrospray ionization of solutions of UO2Cl2 and NaN3. CID of UO2(N3)Cl2– resulted in the loss of N2 to form UO(NO)Cl2–, in which the “inert” uranyl oxo bond has been activated. Formation of UO2Cl2– via N3 loss was also observed. Density functional theory computations predict that the UO(NO)Cl2– complex has nonplanar Cs symmetry and a singlet ground state. Analysis of the bonding of the UO(NO)Cl2– complex shows that the side-on bonded NO moiety can be considered as NO3–, suggesting a formal oxidation state of U(VI). Activation of the uranyl oxo bond in UO2(N3)Cl2– to form UO(NO)Cl2– and N2 was computed to be endothermic by 169 kJ/mol, which is energetically more favorable than formation of NUOCl2– and UO2Cl2–. The observation of UO2Cl2– during CID is most likely due to the absence of an energy barrier for neutral ligand loss.

  18. Selective repression of light harvesting complex 2 formation in Rhodobacter azotoformans by light under semiaerobic conditions.

    PubMed

    Yue, Huiying; Zhao, Chungui; Li, Kai; Yang, Suping

    2015-11-01

    Photosystem formation in anaerobic anoxygenic phototrophic bacteria (APB) is repressed by oxygen but is de-repressed when oxygen tension decreases. Under semiaerobic conditions, the synthesis of photopigments and pigment protein complexes in Rhodobacter (Rba.) sphaeroides are repressed by light. AppA, a blue-light receptor, mediates this regulation. In the present study, it was showed that the synthesis of bacteriochlorophyll, carotenoid, and pigment protein complexes in Rba. azotoformans 134K20 was significantly repressed by oxygen. Oxygen exposure also led to a conversion of spheroidene to spheroidenone. In semiaerobically growing cells, light irradiation resulted in a decrease in the formation of photosystem, and blue light was found to be the most effective light source. Blue light reduced the contents of bacteriochlorophyll and carotenoid slightly, but had negligible effects on light harvesting complex (LH) 1 content, whereas the content of LH2 was significantly decreased indicating that blue light selectively repressed the synthesis of LH2 in semiaerobically growing 134K20. It was concluded that, similar to Rba. sphaeroides, a blue light receptor presented in strain 134K20 played important roles in its light-dependent repression. A possible mechanism involved in controlling the differential inhibitory of blue light on the synthesis of photosystem was discussed. PMID:26193456

  19. Drop formation, pinch-off dynamics and liquid transfer of simple and complex fluids

    NASA Astrophysics Data System (ADS)

    Dinic, Jelena; Sharma, Vivek

    Liquid transfer and drop formation processes underlying jetting, spraying, coating, and printing - inkjet, screen, roller-coating, gravure, nanoimprint hot embossing, 3D - often involve formation of unstable columnar necks. Capillary-driven thinning of such necks and their pinchoff dynamics are determined by a complex interplay of inertial, viscous and capillary stresses for simple, Newtonian fluids. Micro-structural changes in response to extensional flow field that arises within the thinning neck give rise to additional viscoelastic stresses in complex, non- Newtonian fluids. Using FLOW-3D, we simulate flows realized in prototypical geometries (dripping and liquid bridge stretched between two parallel plates) used for studying pinch-off dynamics and influence of microstructure and viscoelasticity. In contrast with often-used 1D or 2D models, FLOW-3D allows a robust evaluation of the magnitude of the underlying stresses and extensional flow field (both uniformity and magnitude). We find that the simulated radius evolution profiles match the pinch-off dynamics that are experimentally-observed and theoretically-predicted for model Newtonian fluids and complex fluids.

  20. Gas phase uranyl activation: formation of a uranium nitrosyl complex from uranyl azide.

    PubMed

    Gong, Yu; de Jong, Wibe A; Gibson, John K

    2015-05-13

    Activation of the oxo bond of uranyl, UO2(2+), was achieved by collision induced dissociation (CID) of UO2(N3)Cl2(-) in a quadrupole ion trap mass spectrometer. The gas phase complex UO2(N3)Cl2(-) was produced by electrospray ionization of solutions of UO2Cl2 and NaN3. CID of UO2(N3)Cl2(-) resulted in the loss of N2 to form UO(NO)Cl2(-), in which the "inert" uranyl oxo bond has been activated. Formation of UO2Cl2(-) via N3 loss was also observed. Density functional theory computations predict that the UO(NO)Cl2(-) complex has nonplanar Cs symmetry and a singlet ground state. Analysis of the bonding of the UO(NO)Cl2(-) complex shows that the side-on bonded NO moiety can be considered as NO(3-), suggesting a formal oxidation state of U(VI). Activation of the uranyl oxo bond in UO2(N3)Cl2(-) to form UO(NO)Cl2(-) and N2 was computed to be endothermic by 169 kJ/mol, which is energetically more favorable than formation of NUOCl2(-) and UO2Cl2(-). The observation of UO2Cl2(-) during CID is most likely due to the absence of an energy barrier for neutral ligand loss. PMID:25906363

  1. Anion Complexes with Tetrazine-Based Ligands: Formation of Strong Anion-π Interactions in Solution and in the Solid State.

    PubMed

    Savastano, Matteo; Bazzicalupi, Carla; Giorgi, Claudia; García-Gallarín, Celeste; López de la Torre, Maria Dolores; Pichierri, Fabio; Bianchi, Antonio; Melguizo, Manuel

    2016-08-15

    Ligands L1 and L2, consisting of a tetrazine ring decorated with two morpholine pendants of different lengths, show peculiar anion-binding behaviors. In several cases, even the neutral ligands, in addition to their protonated HL(+) and H2L(2+) (L = L1 and L2) forms, bind anions such as F(-), NO3(-), PF6(-), ClO4(-), and SO4(2-) to form stable complexes in water. The crystal structures of H2L1(PF6)2·2H2O, H2L1(ClO4)2·2H2O, H2L2(NO3)2, H2L2(PF6)2·H2O, and H2L2(ClO4)2·H2O show that anion-π interactions are pivotal for the formation of these complexes, although other weak forces may contribute to their stability. Complex stability constants were determined by means of potentiometric titration in aqueous solution at 298.1 K, while dissection of the free-energy change of association (ΔG°) into its enthalpic (ΔH°) and entropic (TΔS°) components was accomplished by means of isothermal titration calorimetry measurements. Stability constants are poorly regulated by anion-ligand charge-charge attraction. Thermodynamic data show that the formation of complexes with neutral ligands, which are principally stabilized by anion-π interactions, is enthalpically favorable (-ΔG°, 11.1-17.5 kJ/mol; ΔH°, -2.3 to -0.5 kJ/mol; TΔS°, 9.0-17.0 kJ/mol), while for charged ligands, enthalpy changes are mostly unfavorable. Complexation reactions are invariably promoted by large and favorable entropic contributions. The importance of desolvation phenomena manifested by such thermodynamic data was confirmed by the hydrodynamic results obtained by means of diffusion NMR spectroscopy. In the case of L2, complexation equilibria were also studied in a 80:20 (v/v) water/ethanol mixture. In this mixed solvent of lower dielectric constant than water, the stability of anion complexes decreases, relative to water. Solvation effects, mostly involving the ligand, are thought to be responsible for this peculiar behavior. PMID:27454810

  2. Galvanic Cells and the Determination of Equilibrium Constants

    ERIC Educational Resources Information Center

    Brosmer, Jonathan L.; Peters, Dennis G.

    2012-01-01

    Readily assembled mini-galvanic cells can be employed to compare their observed voltages with those predicted from the Nernst equation and to determine solubility products for silver halides and overall formation constants for metal-ammonia complexes. Results obtained by students in both an honors-level first-year course in general chemistry and…

  3. Struvite crystal growth inhibition by trisodium citrate and the formation of chemical complexes in growth solution

    NASA Astrophysics Data System (ADS)

    Prywer, Jolanta; Mielniczek-Brzóska, Ewa; Olszynski, Marcin

    2015-05-01

    Effect of trisodium citrate on the crystallization of struvite was studied. To evaluate such an effect an experiment of struvite growth from artificial urine was performed. The investigations are related to infectious urinary stones formation. The crystallization process was induced by the addition of aqueous ammonia solution to mimic the bacterial activity. The spectrophotometric results demonstrate that trisodium citrate increases induction time with respect to struvite formation and decreases the growth efficiency of struvite. The inhibitory effect of trisodium citrate on the nucleation and growth of struvite is explained in base of chemical speciation analysis. Such an analysis demonstrates that the inhibitory effect is related with the fact that trisodium citrate binds NH4 + and Mg2+ ions in the range of pH from 7 to 9.5 characteristic for struvite precipitation. The most important is the MgCit- complex whose concentration strongly depends on an increase in pH rather than on an increase in citrate concentrations.

  4. Two quorum sensing systems control biofilm formation and virulence in members of the Burkholderia cepacia complex

    PubMed Central

    Suppiger, Angela; Schmid, Nadine; Aguilar, Claudio; Pessi, Gabriella; Eberl, Leo

    2013-01-01

    The Burkholderia cepacia complex (Bcc) consists of 17 closely related species that are problematic opportunistic bacterial pathogens for cystic fibrosis patients and immunocompromised individuals. These bacteria are capable of utilizing two different chemical languages: N-acyl homoserine lactones (AHLs) and cis-2-unsaturated fatty acids. Here we summarize the current knowledge of the underlying molecular architectures of these communication systems, showing how they are interlinked and discussing how they regulate overlapping as well as specific sets of genes. A particular focus is laid on the role of these signaling systems in the formation of biofilms, which are believed to be highly important for chronic infections. We review genes that have been implicated in the sessile lifestyle of this group of bacteria. The new emerging role of the intracellular second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) as a downstream regulator of the fatty acid signaling cascade and as a key factor in biofilm formation is also discussed. PMID:23799665

  5. Heat-induced formation of myosin oligomer-soluble filament complex in high-salt solution.

    PubMed

    Shimada, Masato; Takai, Eisuke; Ejima, Daisuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2015-02-01

    Heat-induced aggregation of myosin into an elastic gel plays an important role in the water-holding capacity and texture of meat products. Here, we investigated thermal aggregation of porcine myosin in high-salt solution over a wide temperature range by dynamic light scattering experiments. The myosin samples were readily dissolved in 1.0 M NaCl at 25 °C followed by dilution into various salt concentrations. The diluted solutions consistently contained both myosin monomers and soluble filaments. The filament size decreased with increasing salt concentration and temperature. High temperatures above Tm led to at least partial dissociation of soluble filaments and thermal unfolding, resulting in the formation of soluble oligomers and binding to the persistently present soluble filaments. Such a complex formation between the oligomers and filaments has never been observed. Our results provide new insight into the heat-induced myosin gelation in high-salt solution. PMID:25445683

  6. Magnetically Regulated Star Formation in Three Dimensions: The Case of the Taurus Molecular Cloud Complex

    NASA Astrophysics Data System (ADS)

    Nakamura, Fumitaka; Li, Zhi-Yun

    2008-11-01

    We carry out three-dimensional MHD simulations of star formation in turbulent, magnetized clouds, including ambipolar diffusion and feedback from protostellar outflows. The calculations focus on relatively diffuse clouds threaded by a strong magnetic field capable of resisting severe tangling by turbulent motions and retarding global gravitational contraction in the cross field direction. They are motivated by observations of the Taurus molecular cloud complex (and, to a lesser extent, Pipe Nebula), which shows an ordered large-scale magnetic field, as well as elongated condensations that are generally perpendicular to the large-scale field. We find that stars form in earnest in such clouds when enough material has settled gravitationally along the field lines that the mass-to-flux ratios of the condensations approach the critical value. Only a small fraction (of order 1% or less) of the nearly magnetically critical, condensed material is turned into stars per local free-fall time, however. The slow star formation takes place in condensations that are moderately supersonic; it is regulated primarily by magnetic fields, rather than turbulence. The quiescent condensations are surrounded by diffuse halos that are much more turbulent, as observed in the Taurus complex. Strong support for magnetic regulation of star formation in this complex comes from the extremely slow conversion of the already condensed, relatively quiescent C18O gas into stars, at a rate 2 orders of magnitude below the maximum, free-fall value. We analyze the properties of dense cores, including their mass spectrum, which resembles the stellar initial mass function.

  7. Charge-transfer complex formation in gelation: the role of solvent molecules with different electron-donating capacities.

    PubMed

    Basak, Shibaji; Bhattacharya, Sumantra; Datta, Ayan; Banerjee, Arindam

    2014-05-01

    A naphthalenediimide (NDI)-based synthetic peptide molecule forms gels in a particular solvent mixture (chloroform/aromatic hydrocarbon, 4:1) through charge-transfer (CT) complex formation; this is evident from the corresponding absorbance and fluorescence spectra at room temperature. Various aromatic hydrocarbon based solvents, including benzene, toluene, xylene (ortho, meta and para) and mesitylene, have been used for the formation of the CT complex. The role of different solvent molecules with varying electron-donation capacities in the formation of CT complexes has been established through spectroscopic and computational studies. PMID:24677404

  8. Effect of buffer cations and of H3O+ on the charge states of native proteins. Significance to determinations of stability constants of protein complexes.

    PubMed

    Verkerk, Udo H; Peschke, Michael; Kebarle, Paul

    2003-06-01

    The progressive reduction of charge in charge states of non-denatured proteins (lysozyme, ubiquitin, and cytochrome c), observed with nanospray in the positive ion mode, when the buffer salt ammonium acetate is replaced by ethylammonium acetates (EtNH(3)Ac, Et(2)NH(2)Ac and Et(3)NHAc) is rationalized on the basis of the charge residue model (CRM). The charge states of the multiply protonated protein are shown to be controlled by the increasing gas-phase basicities, GB(B), of the bases(B) NH(3), EtNH(2), Et(2)NH and Et(3)N. Charge states derived from evaluated apparent gas-phase basicities GB(app) of the basic side-chains of the protein and the known GB(B) of the above bases are found to be in agreement with the experimentally observed charge states. This is a requirement of the CRM, because in this model the small positive ions (the buffer cations in the present case) at the surface of the electrospray droplets are the excess ions that provide the charge of the final small droplet that contains the protein molecule and on evaporation of the solvent transfer the charge to the protein. The observed charge states in the absence of buffer salts, i.e. pure water, are attributed to excess H(3)O(+) ions produced by the electrolysis process that attends electrospray. A proposed extended mechanism provides predictions of factors that determine the sensitivity for detection of the multiply protonated proteins. Consideration of restraints imposed by the CRM lead to some simple predictions for conditions that should be present to obtain accurate determinations by electrospray and nanospray of stability constants for the protein-complex equilibrium in aqueous solution. PMID:12827631

  9. Effect of fat type in baked bread on amylose-lipid complex formation and glycaemic response.

    PubMed

    Lau, Evelyn; Zhou, Weibiao; Henry, Christiani Jeyakumar

    2016-06-01

    The formation of amylose-lipid complexes (ALC) had been associated with reduced starch digestibility. A few studies have directly characterised the extent of ALC formation with glycaemic response. The objectives of this study were to investigate the effect of using fats with varying degree of saturation and chain length on ALC formation as well as glycaemic and insulinaemic responses after consumption of bread. Healthy men consumed five test breads in a random order: control bread without any added fats (CTR) and breads baked with butter (BTR), coconut oil (COC), grapeseed oil (GRP) or olive oil (OLV). There was a significant difference in glycaemic response between the different test breads (P=0·002), primarily due to COC having a lower response than CTR (P=0·016), but no significant differences between fat types were observed. Insulinaemic response was not altered by the addition of fats/oils. Although BTR was more insulinotropic than GRP (P<0·05), postprandial β-cell function did not differ significantly. The complexing index (CI), a measure of ALC formation, was significantly higher for COC and OLV compared with BTR and GRP (P<0·05). CI was significantly negatively correlated with incremental AUC (IAUC) of change in blood glucose concentrations over time (IAUCglucose) (r -0·365, P=0·001). Linear regression analysis showed that CI explained 13·3 % of the variance and was a significant predictor of IAUCglucose (β=-1·265, P=0·001), but IAUCinsulin did not predict IAUCglucose. Our study indicated that a simple way to modulate glycaemic response in bread could lie in the choice of fats/oils, with coconut oil showing the greatest attenuation of glycaemic response. PMID:27102847

  10. Formation of charge-transfer-complex in organic:metal oxides systems

    NASA Astrophysics Data System (ADS)

    Wu, S. P.; Kang, Y.; Liu, T. L.; Jin, Z. H.; Jiang, N.; Lu, Z. H.

    2013-04-01

    It is found that composite systems consisting of 4,4'-bis(carbazol-9-yl)biphenyl (CBP) and molybdenum trioxide (MoO3) form an IR absorption band around 847 nm. It is also found that the vibrational modes of the CBP, as measured by Fourier Transform Infrared Spectroscopy, are quenched upon the formation of charge-transfer-complex (CTC) between CBP and MoO3. By examining several sets of organic:metal oxides systems, we discovered that the IR absorption band of the CTCs follow two distinct mechanisms depending on the nature and location of the HOMOs in the organic molecules.

  11. Time-resolved fluorescence spectroscopic investigation of cationic polymer/DNA complex formation

    NASA Astrophysics Data System (ADS)

    D'Andrea, Cosimo; Bassi, Andrea; Taroni, Paola; Pezzoli, Daniele; Volonterio, Alessandro; Candiani, Gabriele

    2011-07-01

    Since DNA is not internalized efficiently by cells, the success of gene therapy depends on the availability of carriers to efficiently deliver genetic material into target cells. Gene delivery vectors can be broadly categorized into viral and non-viral ones. Non-viral gene delivery systems are represented by cationic lipids and polymers rely on the basics of supramolecular chemistry termed "self-assembling": at physiological pH, they are cations and spontaneously form lipoplexes (for lipids) and polyplexes (for polymers) complexing nucleic acids. In this scenario, cationic polymers are commonly used as non-viral vehicles. Their effectiveness is strongly related to key parameters including DNA binding ability and stability in different environments. Time-resolved fluorescence spectroscopy of SYBR Green I (DNA dye) was carried out to characterize cationic polymer/DNA complex (polyplex) formation dispersed in aqueous solution. Both fluorescence amplitude and lifetime proved to be very sensitive to the polymer/DNA ratio (N/P ratio, +/-).

  12. Modified bimolecular fluorescence complementation assay to study the inhibition of transcription complex formation by JAZ proteins.

    PubMed

    Qi, Tiancong; Song, Susheng; Xie, Daoxin

    2013-01-01

    The jasmonate (JA) ZIM-domain (JAZ) proteins of Arabidopsis thaliana repress JA signaling and negatively regulate the JA responses. Recently, JAZ proteins have been found to inhibit the transcriptional function of several transcription factors, among which the basic helix-loop-helix (bHLH) (GLABRA3 [GL3], ENHANCER OF GLABRA3 [EGL3], and TRANSPARENT TESTA8 [TT8]) and R2R3-MYB (GL1 and MYB75) that can interact with each other to form bHLH-MYB complexes and further control gene expression. The bimolecular fluorescence complementation (BiFC) assay is a widely used technique to study protein-protein interactions in living cells. Here we describe a modified BiFC experimental procedure to study the inhibition of the formation of the bHLH (GL3)-MYB (GL1) complex by JAZ proteins. PMID:23615997

  13. Arachidonic acid stimulates formation of a novel complex containing nucleolin and RhoA.

    PubMed

    Garcia, Melissa C; Williams, Jason; Johnson, Katina; Olden, Kenneth; Roberts, John D

    2011-02-18

    Arachidonic acid (AA) stimulates cell adhesion through a p38 mitogen activated protein kinase-mediated RhoA signaling pathway. Here we report that a proteomic screen following AA-treatment identified nucleolin, a multifunctional nucleolar protein, in a complex with the GTPase, RhoA, that also included the Rho kinase, ROCK. AA-stimulated cell adhesion was inhibited by expression of nucleolin-targeted shRNA and formation of the multiprotein complex was blocked by expression of dominant-negative RhoA. AA-treatment also induced ROCK-dependent serine phosphorylation of nucleolin and translocation of nucleolin from the nucleus to the cytoplasm, where it appeared to co-localize with RhoA. These data suggest the existence of a new signaling pathway through which the location and post-translational state of nucleolin are modulated. PMID:21281639

  14. Formation and dynamics of "waterproof" photoluminescent complexes of rare earth ions in crowded environment.

    PubMed

    Ignatova, Tetyana; Blades, Michael; Duque, Juan G; Doorn, Stephen K; Biaggio, Ivan; Rotkin, Slava V

    2014-12-28

    Understanding behavior of rare-earth ions (REI) in crowded environments is crucial for several nano- and bio-technological applications. Evolution of REI photoluminescence (PL) in small compartments inside a silica hydrogel, mimic to a soft matter bio-environment, has been studied and explained within a solvation model. The model uncovered the origin of high PL efficiency to be the formation of REI complexes, surrounded by bile salt (DOC) molecules. Comparative study of these REI-DOC complexes in bulk water solution and those enclosed inside the hydrogel revealed a strong correlation between an up to 5×-longer lifetime of REIs and appearance of the DOC ordered phase, further confirmed by dynamics of REI solvation shells, REI diffusion experiments and morphological characterization of microstructure of the hydrogel. PMID:25379879

  15. Experimental study of aluminum-oxalate complexing at 80 °C: Implications for the formation of secondary porosity within sedimentary reservoirs

    NASA Astrophysics Data System (ADS)

    Fein, Jeremy B.

    1991-10-01

    An experimental study of aluminum-oxalate complexing at 80 °C indicates that the presence of oxalate in sedimentary basin fluids may play an important role in creating secondary porosity in reservoir rocks. The solubility of gibbsite was measured as a function of oxalate concentration. Geologically realistic oxalate concentrations were used in order to simulate the aluminum mobilities that occur in reservoir fluids. Although the stoichiometry of the important aluminum-oxalate species cannot be determined from these data, the results are used to quantify the minimum extent of aluminum-oxalate complexing that occurs in solution. Assuming that Al(Ox)33- is the only important aluminum-oxalate complex, the data limit the log of the dissociation constant of Al(Ox)33- to be ≤-16.5. Thermodynamic modeling of aluminum systems with fluids that contain NaCl, acetate, and oxalate illustrates that aluminum-oxalate complexing is much more important than aluminum-acetate complexing, even at relatively low oxalate concentrations and at very high acetate concentrations. In addition, these calculations show that aluminum-oxalate complexing can greatly increase aluminum mobility in formation waters and, therefore, may increase aluminosilicate mineral dissolution within sedimentary basin fluid-rock systems.

  16. Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation

    SciTech Connect

    Hazawa, Masaharu; Tomiyama, Kenichi; Saotome-Nakamura, Ai; Obara, Chizuka; Yasuda, Takeshi; Gotoh, Takaya; Tanaka, Izumi; Yakumaru, Haruko; Ishihara, Hiroshi; Tajima, Katsushi

    2014-04-18

    Highlights: • Radiation increases cellular uptake of exosomes. • Radiation induces colocalization of CD29 and CD81. • Exosomes selectively bind the CD29/CD81 complex. • Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation. - Abstract: Exosomes mediate intercellular communication, and mesenchymal stem cells (MSC) or their secreted exosomes affect a number of pathophysiologic states. Clinical applications of MSC and exosomes are increasingly anticipated. Radiation therapy is the main therapeutic tool for a number of various conditions. The cellular uptake mechanisms of exosomes and the effects of radiation on exosome–cell interactions are crucial, but they are not well understood. Here we examined the basic mechanisms and effects of radiation on exosome uptake processes in MSC. Radiation increased the cellular uptake of exosomes. Radiation markedly enhanced the initial cellular attachment to exosomes and induced the colocalization of integrin CD29 and tetraspanin CD81 on the cell surface without affecting their expression levels. Exosomes dominantly bound to the CD29/CD81 complex. Knockdown of CD29 completely inhibited the radiation-induced uptake, and additional or single knockdown of CD81 inhibited basal uptake as well as the increase in radiation-induced uptake. We also examined possible exosome uptake processes affected by radiation. Radiation-induced changes did not involve dynamin2, reactive oxygen species, or their evoked p38 mitogen-activated protein kinase-dependent endocytic or pinocytic pathways. Radiation increased the cellular uptake of exosomes through CD29/CD81 complex formation. These findings provide essential basic insights for potential therapeutic applications of exosomes or MSC in combination with radiation.

  17. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation

    PubMed Central

    Montagnoli, Alessia; Fiore, Francesca; Eytan, Esther; Carrano, Andrea C.; Draetta, Giulio F.; Hershko, Avram; Pagano, Michele

    1999-01-01

    The cellular abundance of the cyclin-dependent kinase (Cdk) inhibitor p27 is regulated by the ubiquitin–proteasome system. Activation of p27 degradation is seen in proliferating cells and in many types of aggressive human carcinomas. p27 can be phosphorylated on threonine 187 by Cdks, and cyclin E/Cdk2 overexpression can stimulate the degradation of wild-type p27, but not of a threonine 187-to-alanine p27 mutant [p27(T187A)]. However, whether threonine 187 phosphorylation stimulates p27 degradation through the ubiquitin–proteasome system or an alternative pathway is still not known. Here, we demonstrate that p27 ubiquitination (as assayed in vivo and in an in vitro reconstituted system) is cell-cycle regulated and that Cdk activity is required for the in vitro ubiquitination of p27. Furthermore, ubiquitination of wild-type p27, but not of p27(T187A), can occur in G1-enriched extracts only upon addition of cyclin E/Cdk2 or cyclin A/Cdk2. Using a phosphothreonine 187 site-specific antibody for p27, we show that threonine 187 phosphorylation of p27 is also cell-cycle dependent, being present in proliferating cells but undetectable in G1 cells. Finally, we show that in addition to threonine 187 phosphorylation, efficient p27 ubiquitination requires formation of a trimeric complex with the cyclin and Cdk subunits. In fact, cyclin B/Cdk1 which can phosphorylate p27 efficiently, but cannot form a stable complex with it, is unable to stimulate p27 ubiquitination by G1 extracts. Furthermore, another p27 mutant [p27(CK−)] that can be phosphorylated by cyclin E/Cdk2 but cannot bind this kinase complex, is refractory to ubiquitination. Thus throughout the cell cycle, both phosphorylation and trimeric complex formation act as signals for the ubiquitination of a Cdk inhibitor. PMID:10323868

  18. Cadmium(II) N-acetylcysteine complex formation in aqueous solution.

    PubMed

    Jalilehvand, Farideh; Amini, Zahra; Parmar, Karnjit; Kang, Eun Young

    2011-12-21

    The complex formation between Cd(II) ions and N-acetylcysteine (H(2)NAC) in aqueous solution was investigated using Cd K- and L(3)-edge X-ray absorption and (113)Cd NMR spectroscopic techniques. Two series of 0.1 M Cd(II) solutions with the total N-acetylcysteine concentration c(H2NAC) varied between 0.2-2 M were studied at pH 7.5 and 11.0, respectively. At pH = 11 a novel mononuclear [Cd(NAC)(4)](6-) complex with the average Cd-S distance 2.53(2) Å and the chemical shift δ((113)Cd) = 677 ppm was found to dominate at a concentration of the free deprotonated ligand [NAC(2-)] > 0.1 M, consistent with our previous reports on cadmium tetrathiolate complex formation with cysteine and glutathione. At pH 7.5 much higher ligand excess ([HNAC(-)] > 0.6 M) is required to make this tetrathiolate complex the major species. The (113)Cd NMR spectrum of a solution containing c(Cd(II)) = 0.5 M and c(H2NAC) = 1.0 M measured at 288 K showed three broad signals at 421, 583 and 642 ppm, which can be attributed to CdS(3)O(3), CdS(3)O and CdS(4) coordination sites, respectively, in oligomeric Cd(II)-NAC species with single thiolate bridges between the cadmium ions. PMID:22012146

  19. Hormad1 mutation disrupts synaptonemal complex formation, recombination, and chromosome segregation in mammalian meiosis.

    PubMed

    Shin, Yong-Hyun; Choi, Youngsok; Erdin, Serpil Uckac; Yatsenko, Svetlana A; Kloc, Malgorzata; Yang, Fang; Wang, P Jeremy; Meistrich, Marvin L; Rajkovic, Aleksandar

    2010-11-01

    Meiosis is unique to germ cells and essential for reproduction. During the first meiotic division, homologous chromosomes pair, recombine, and form chiasmata. The homologues connect via axial elements and numerous transverse filaments to form the synaptonemal complex. The synaptonemal complex is a critical component for chromosome pairing, segregation, and recombination. We previously identified a novel germ cell-specific HORMA domain encoding gene, Hormad1, a member of the synaptonemal complex and a mammalian counterpart to the yeast meiotic HORMA domain protein Hop1. Hormad1 is essential for mammalian gametogenesis as knockout male and female mice are infertile. Hormad1 deficient (Hormad1(-/) (-)) testes exhibit meiotic arrest in the early pachytene stage, and synaptonemal complexes cannot be visualized by electron microscopy. Hormad1 deficiency does not affect localization of other synaptonemal complex proteins, SYCP2 and SYCP3, but disrupts homologous chromosome pairing. Double stranded break formation and early recombination events are disrupted in Hormad1(-/) (-) testes and ovaries as shown by the drastic decrease in the γH2AX, DMC1, RAD51, and RPA foci. HORMAD1 co-localizes with γH2AX to the sex body during pachytene. BRCA1, ATR, and γH2AX co-localize to the sex body and participate in meiotic sex chromosome inactivation and transcriptional silencing. Hormad1 deficiency abolishes γH2AX, ATR, and BRCA1 localization to the sex chromosomes and causes transcriptional de-repression on the X chromosome. Unlike testes, Hormad1(-/) (-) ovaries have seemingly normal ovarian folliculogenesis after puberty. However, embryos generated from Hormad1(-/) (-) oocytes are hyper- and hypodiploid at the 2 cell and 8 cell stage, and they arrest at the blastocyst stage. HORMAD1 is therefore a critical component of the synaptonemal complex that affects synapsis, recombination, and meiotic sex chromosome inactivation and transcriptional silencing. PMID:21079677

  20. Asymmetrical Macromolecular Complex Formation of Lysophosphatidic Acid Receptor 2 (LPA2) Mediates Gradient Sensing in Fibroblasts*

    PubMed Central

    Ren, Aixia; Moon, Changsuk; Zhang, Weiqiang; Sinha, Chandrima; Yarlagadda, Sunitha; Arora, Kavisha; Wang, Xusheng; Yue, Junming; Parthasarathi, Kaushik; Heil-Chapdelaine, Rick; Tigyi, Gabor; Naren, Anjaparavanda P.

    2014-01-01

    Chemotactic migration of fibroblasts toward growth factors relies on their capacity to sense minute extracellular gradients and respond to spatially confined receptor-mediated signals. Currently, mechanisms underlying the gradient sensing of fibroblasts remain poorly understood. Using single-particle tracking methodology, we determined that a lysophosphatidic acid (LPA) gradient induces a spatiotemporally restricted decrease in the mobility of LPA receptor 2 (LPA2) on chemotactic fibroblasts. The onset of decreased LPA2 mobility correlates to the spatial recruitment and coupling to LPA2-interacting proteins that anchor the complex to the cytoskeleton. These localized PDZ motif-mediated macromolecular complexes of LPA2 trigger a Ca2+ puff gradient that governs gradient sensing and directional migration in response to LPA. Disruption of the PDZ motif-mediated assembly of the macromolecular complex of LPA2 disorganizes the gradient of Ca2+ puffs, disrupts gradient sensing, and reduces the directional migration of fibroblasts toward LPA. Our findings illustrate that the asymmetric macromolecular complex formation of chemoattractant receptors mediates gradient sensing and provides a new mechanistic basis for models to describe gradient sensing of fibroblasts. PMID:25542932

  1. Zeaxanthin Radical Cation Formation in Minor Light-Harvesting Complexes of Higher Plant Antenna

    SciTech Connect

    Avenson, Thomas H.; Ahn, Tae Kyu; Zigmantas, Donatas; Niyogi, Krishna K.; Li, Zhirong; Ballottari, Matteo; Bassi, Roberto; Fleming, Graham R.

    2008-01-31

    Previous work on intact thylakoid membranes showed that transient formation of a zeaxanthin radical cation was correlated with regulation of photosynthetic light-harvesting via energy-dependent quenching. A molecular mechanism for such quenching was proposed to involve charge transfer within a chlorophyll-zeaxanthin heterodimer. Using near infrared (880-1100 nm) transient absorption spectroscopy, we demonstrate that carotenoid (mainly zeaxanthin) radical cation generation occurs solely in isolated minor light-harvesting complexes that bind zeaxanthin, consistent with the engagement of charge transfer quenching therein. We estimated that less than 0.5percent of the isolated minor complexes undergo charge transfer quenching in vitro, whereas the fraction of minor complexes estimated to be engaged in charge transfer quenching in isolated thylakoids was more than 80 times higher. We conclude that minor complexes which bind zeaxanthin are sites of charge transfer quenching in vivo and that they can assume Non-quenching and Quenching conformations, the equilibrium LHC(N)<--> LHC(Q) of which is modulated by the transthylakoid pH gradient, the PsbS protein, and protein-protein interactions.

  2. Asymmetrical macromolecular complex formation of lysophosphatidic acid receptor 2 (LPA2) mediates gradient sensing in fibroblasts.

    PubMed

    Ren, Aixia; Moon, Changsuk; Zhang, Weiqiang; Sinha, Chandrima; Yarlagadda, Sunitha; Arora, Kavisha; Wang, Xusheng; Yue, Junming; Parthasarathi, Kaushik; Heil-Chapdelaine, Rick; Tigyi, Gabor; Naren, Anjaparavanda P

    2014-12-26

    Chemotactic migration of fibroblasts toward growth factors relies on their capacity to sense minute extracellular gradients and respond to spatially confined receptor-mediated signals. Currently, mechanisms underlying the gradient sensing of fibroblasts remain poorly understood. Using single-particle tracking methodology, we determined that a lysophosphatidic acid (LPA) gradient induces a spatiotemporally restricted decrease in the mobility of LPA receptor 2 (LPA2) on chemotactic fibroblasts. The onset of decreased LPA2 mobility correlates to the spatial recruitment and coupling to LPA2-interacting proteins that anchor the complex to the cytoskeleton. These localized PDZ motif-mediated macromolecular complexes of LPA2 trigger a Ca(2+) puff gradient that governs gradient sensing and directional migration in response to LPA. Disruption of the PDZ motif-mediated assembly of the macromolecular complex of LPA2 disorganizes the gradient of Ca(2+) puffs, disrupts gradient sensing, and reduces the directional migration of fibroblasts toward LPA. Our findings illustrate that the asymmetric macromolecular complex formation of chemoattractant receptors mediates gradient sensing and provides a new mechanistic basis for models to describe gradient sensing of fibroblasts. PMID:25542932

  3. E-ring conformation has a key role in cleavable complex formation: homocamptothecin versus camptothecins

    NASA Astrophysics Data System (ADS)

    Chauvier, D.; Chourpa, I.; Maizieres, M.; Riou, J.-F.; Dauchez, M.; Alix, A. J. P.; Manfait, M.

    2003-06-01

    Homocamptothecin (hCPT) is a new camptothecin (CPT) derivative with a seven-membered β-hydroxylactone E-ring. This modification provides higher lactone stability and did not impair its activity against topoisomerase I (top1), but rather appears to improve it compared to CPT. Such lactone modification was unexpected regarding the previous structure-activity relationship data inside the CPT series, and may have crucial mechanistic implications in the ternary cleavable complex formation. In this study, the detailed characterization of the E-ring homologation and lactone/carboxylate conversion, self-aggregation, influence of pH and polarity of the molecular environment have been performed for hCPT by frequency-domain fluorescence. The real-time spectrofluorometry confirmed the enhanced stability of hCPT. We have also investigated the E-ring status of hCPT within the top1 ternary complex with DNA, and with top1 or DNA binary complexes. Unlike CPT, no modification of the (β-hydroxy-) lactone-carboxylate conversion rates was observed, suggesting that E-ring opening is not required for cleavable complex stabilization in presence of hCPT. Comparison of the two structures by molecular modeling revealed similar conformation and steric volumes between the β-hydroxylactone ring conformation of hCPT and the opened ring of CPT. The lack of hCPT E-ring opening was discussed in the light of these molecular modeling results.

  4. Formation and function of the Rbl2p-beta-tubulin complex.

    PubMed

    Archer, J E; Magendantz, M; Vega, L R; Solomon, F

    1998-03-01

    The yeast protein Rbl2p suppresses the deleterious effects of excess beta-tubulin as efficiently as does alpha-tubulin. Both in vivo and in vitro, Rbl2p forms a complex with beta-tubulin that does not contain alpha-tubulin, thus defining a second pool of beta-tubulin in the cell. Formation of the complex depends upon the conformation of beta-tubulin. Newly synthesized beta-tubulin can bind to Rbl2p before it binds to alpha-tubulin. Rbl2p can also bind beta-tubulin from the alpha/beta-tubulin heterodimer, apparently by competing with alpha-tubulin. The Rbl2p-beta-tubulin complex has a half-life of approximately 2.5 h and is less stable than the alpha/beta-tubulin heterodimer. The results of our experiments explain both how excess Rbl2p can rescue cells overexpressing beta-tubulin and how it can be deleterious in a wild-type background. They also suggest that the Rbl2p-beta-tubulin complex is part of a cellular mechanism for regulating the levels and dimerization of tubulin chains. PMID:9488492

  5. Coupling of downstream RNA polymerase-promoter interactions with formation of catalytically competent transcription initiation complex

    PubMed Central

    Mekler, Vladimir; Minakhin, Leonid; Borukhov, Sergei; Mustaev, Arkady; Severinov, Konstantin

    2014-01-01

    Bacterial RNA polymerase (RNAP) makes extensive contacts with duplex DNA downstream of the transcription bubble in initiation and elongation complexes. We investigated the role of downstream interactions in formation of catalytically competent transcription initiation complex by measuring initiation activity of stable RNAP complexes with model promoter DNA fragments whose downstream ends extend from +3 to +21 relative to the transcription start site at +1. We found that DNA downstream of position +6 does not play a significant role in transcription initiation when RNAP-promoter interactions upstream of the transcription start site are strong and promoter melting region is AT-rich. Further shortening of downstream DNA dramatically reduces efficiency of transcription initiation. The boundary of minimal downstream DNA duplex needed for efficient transcription initiation shifted further away from the catalytic center upon increasing the GC content of promoter melting region or in the presence of bacterial stringent response regulators DksA and ppGpp. These results indicate that the strength of RNAP-downstream DNA interactions has to reach a certain threshold to retain the catalytically competent conformation of the initiation complex and that establishment of contacts between RNAP and downstream DNA can be coupled with promoter melting. The data further suggest that RNAP interactions with DNA immediately downstream of the transcription bubble are particularly important for initiation of transcription. We hypothesize that these active center-proximal contacts stabilize the DNA template strand in the active center cleft and/or position the RNAP clamp domain to allow RNA synthesis. PMID:25311862

  6. Hedgehog induces formation of PKA-Smoothened complexes to promote Smoothened phosphorylation and pathway activation

    PubMed Central

    Li, Shuang; Ma, Guoqiang; Wang, Bing; Jiang, Jin

    2015-01-01

    Hedgehog (Hh) is a secreted glycoprotein that binds its receptor Patched to activate the G protein-coupled receptor-like protein Smoothened (Smo). In Drosophila, protein kinase A (PKA) phosphorylates and activates Smo in cells stimulated with Hh. In unstimulated cells, PKA phosphorylates and inhibits the transcription factor Cubitus interruptus (Ci). Here, we found that in cells exposed to Hh, the catalytic subunit of PKA (PKAc) bound to the juxtamembrane region of the C terminus of Smo. PKA-mediated phosphorylation of Smo further enhanced its association with PKAc to form stable kinase-substrate complexes that promoted the PKA-mediated trans-phosphorylation of Smo dimers. We identified multiple basic residues in the C-terminus of Smo that were required for interaction with PKAc, Smo phosphorylation, and Hh pathway activation. Hh induced a switch from the association of PKAc with a cytosolic complex of Ci and the kinesin-like protein Costal2 (Cos2) to a membrane-bound Smo-Cos2 complex. Thus, our study uncovers a previously uncharacterized mechanism for regulation of PKA activity and demonstrates that the signal-regulated formation of kinase-substrate complexes plays a central role in Hh signal transduction. PMID:24985345

  7. Dinitrosyl iron complexes with cysteine. Kinetics studies of the formation and reactions of DNICs in aqueous solution.

    PubMed

    Pereira, José Clayston Melo; Iretskii, Alexei V; Han, Rui-Min; Ford, Peter C

    2015-01-14

    Kinetics studies provide mechanistic insight regarding the formation of dinitrosyl iron complexes (DNICs) now viewed as playing important roles in the mammalian chemical biology of the ubiquitous bioregulator nitric oxide (NO). Reactions in deaerated aqueous solutions containing FeSO4, cysteine (CysSH), and NO demonstrate that both the rates and the outcomes are markedly pH dependent. The dinuclear DNIC Fe2(μ-CysS)2(NO)4, a Roussin's red salt ester (Cys-RSE), is formed at pH 5.0 as well as at lower concentrations of cysteine in neutral pH solutions. The mononuclear DNIC Fe(NO)2(CysS)2(-) (Cys-DNIC) is produced from the same three components at pH 10.0 and at higher cysteine concentrations at neutral pH. The kinetics studies suggest that both Cys-RSE and Cys-DNIC are formed via a common intermediate Fe(NO)(CysS)2(-). Cys-DNIC and Cys-RSE interconvert, and the rates of this process depend on the cysteine concentration and on the pH. Flash photolysis of the Cys-RSE formed from Fe(II)/NO/cysteine mixtures in anaerobic pH 5.0 solution led to reversible NO dissociation and a rapid, second-order back reaction with a rate constant kNO = 6.9 × 10(7) M(-1) s(-1). In contrast, photolysis of the mononuclear-DNIC species Cys-DNIC formed from Fe(II)/NO/cysteine mixtures in anaerobic pH 10.0 solution did not labilize NO but instead apparently led to release of the CysS(•) radical. These studies illustrate the complicated reaction dynamics interconnecting the DNIC species and offer a mechanistic model for the key steps leading to these non-heme iron nitrosyl complexes. PMID:25479566

  8. Theoretical study of the formation of mercury (Hg2+) complexes in solution using an explicit solvation shell in implicit solvent calculations.

    PubMed

    Afaneh, Akef T; Schreckenbach, Georg; Wang, Feiyue

    2014-09-25

    The structures and harmonic vibrational frequencies of water clusters (H2O)n, n = 1-10, have been computed using the M06-L/, B3LYP/, and CAM-BLYP/cc-pVTZ levels of theories. On the basis of the literature and our results, we use three hexamer structures of the water molecules to calculate an estimated "experimental" average solvation free energy of [Hg(H2O)6](2+). Aqueous formation constants (log K) for Hg(2+) complexes, [Hg(L)m(H2O)n](2-mq), L = Cl(-), HO(-), HS(-), and S(2-), are calculated using a combination of experimental (solvation free energies of ligands and Hg(2+)) and calculated gas- and liquid-phase free energies. A combined approach has been used that involves attaching n explicit water molecules to the Hg(2+) complexes such that the first coordination sphere is complete, then surrounding the resulting (Hg(2+)-Lm)-(OH2)n cluster by a dielectric continuum, and using suitable thermodynamic cycles. This procedure significantly improves the agreement between the calculated log K values and experiment. Thus, for some neutral and anionic Hg(II) complexes, particularly Hg(II) metal ion surrounded with homo- or heteroatoms, augmenting implicit solvent calculations with sufficient explicit water molecules to complete the first coordination sphere is required-and adequate-to account for strong short-range hydrogen bonding interactions between the anion and the solvent. Calculated values for formation constants of Hg(2+) complexes with S(2-) and SH(-) are proposed. Experimental measurements of these log K values have been lacking or controversial. PMID:25076413

  9. Extraction of pyridines into fluorous solvents based on hydrogen bond complex formation with carboxylic acid receptors.

    PubMed

    O'Neal, Kristi L; Geib, Steven; Weber, Stephen G

    2007-04-15

    A molecular receptor embedded in a 'poor-solvent' receiving phase, such as a fluorous phase, should offer the ideal medium for selective extraction and sensing. The limited solubility of most solutes in fluorous phases enhances selectivity by reducing the extraction of unwanted matrix components. Thus, receptor-doped fluorous phases may be ideal extraction media. Unfortunately, sufficient data do not exist to judge the capability of this approach. The solubilities of very few nonfluorous solutes are known. As far as we are aware, such important quantities as the strength of a hydrogen bond in a fluorous environment are not known. Thus, it is currently impossible to predict whether a particular receptor/solute complex based on a particular set of noncovalent interactions will provide enough thermodynamic stabilization to extract the solute into the fluorous phase. In this work, fluorous carboxylic acids (a carboxylic acid-terminated perfluoropolypropylene oxide called Krytox and perfluorodecanoic acid (PFDA)) were used as receptors and substituted pyridines as solutes to show that the fluorous receptor dramatically enhances the liquid-liquid extraction of the polar substrates from chloroform into perfluorohexanes. The method of continuous variations was used to determine the receptor-pyridine complex stoichiometry of 3:1. The free energies of formation of the 3:1 complexes from one pyridine and 3/2 H-bonded cyclic dimers of the fluorous carboxylic acid are -30.4 (Krytox) and -37.3 kJ mol-1 (PFDA). The free energy required to dissociate the dimer in perfluorohexanes is +16.5 kJ mol-1 (Krytox). The crystal structure of the complex showed a 1:1 stoichiometry with a mixed strong-weak hydrogen-bonded motif. Based on the stoichiometry, crystal structure, and UV and IR spectroscopic shifts, we propose that the 3:1 complex has four hydrogen bonds and the carboxylic acid transfers a proton to pyridine. The resulting pyridinium carboxylate N+H-O- hydrogen bond is accompanied

  10. Complex formation between ovalbumin and strong polyanion PSSNa: study of structure and properties.

    PubMed

    Trabelsi, Saber; Aschi, Adel; Othman, Tahar; Gharbi, Abdelhafidh

    2014-09-01

    The mixture system of long-chain polyelectrolyte complexed with a globular protein was investigated based on dynamic light scattering and turbidimetric measurements. We have discussed at different pH values the influence of high salt concentration and mass ratio (protein:PSSNa) on the behavior of the mixture. In dilute concentration regime, the PSSNa chain contracts at pHc by patch binding. We found two critical values of mass ratio: The first corresponds to the maximum shrinking of PSSNa. The second indicates the system that became more stable where the number of proteins attached to the PSSNa chain was constant. The screen of electrostatic interaction shows a high contribution of hydrophobic interaction at large salt concentration to form the coacervates. By building phase diagram, the continuity of pHφ1 in over whole range of salt concentrations and the widening of pH window (pHφ1-pHφ2) were observed. At certain salt concentrations, we can obtain the coexistence of two types of complex particles formed by electrostatic and hydrophobic interactions. PMID:25063122

  11. Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: the Draken Conglomerate Formation, Spitsbergen

    NASA Technical Reports Server (NTRS)

    Knoll, A. H.; Swett, K.; Mark, J.

    1991-01-01

    Carbonates and rare shales of the ca 700-800 Ma old Draken Conglomerate Formation, northeastern Spitsbergen, preserve a record of environmental variation within a Neoproterozoic tidal flat/lagoon complex. Forty-two microfossil taxa have been recognized in Draken rocks, and of these, 39 can be characterized in terms of their paleoenvironmental distributions along a gradient from the supratidal zone to permanently submerged lagoons. Supratidal to subtidal trends include: increasing microbenthic diversity, increasing abundance and diversity of included allochthonous (presumably planktonic) elements, decreasing sheath thickness of mat-building organisms (with significant taphonomic consequences), and an increasing sediment/fossil ratio in fossiliferous rocks. Five principal and several minor biofacies can be distinguished. The paleoecological resolution obtainable in the Draken Conglomerate Formation rivals that achieved for most Phanerozoic fossil deposits. It documents the complexity and diversity of Proterozoic coastal ecosystems and indicates that both environment and taphonomy need to be taken into explicit consideration in attempts to understand evolutionary trends in early fossil record. Three species, Coniunctiophycus majorinum, Myxococcoides distola, and M. chlorelloidea, are described as new; Siphonophycus robustum, Siphonophycus septatum, and Gorgonisphaeridium maximum are proposed as new combinations.

  12. PROSTAGLANDIN E2 MODIFIES SMAD2 AND PROMOTES SMAD2-SMAD4 COMPLEX FORMATION

    PubMed Central

    Yang, Chen; Chen, Chen; Sorokin, Andrey

    2014-01-01

    We report that PGE2 promotes Smad2-Smad4 complex formation and this phenomenon could be blocked by DIDS, an anion transporter inhibitor. Our data suggest that PGE2 had no effects on Smad2 phosphorylation, suggesting that PGE2-mediated Smad2-Smad4 complex formation is independent of TGF-β signaling and that PGE2 induced Smad2 modification which is different from TGF-β-mediated phosphorylation. We demonstrate that in primary human glomerular mesangial cells PGE2 caused modification of Smad2 as detected by Smad2N antibody, raised against a peptide near the N-terminus of Smad2. We hypothesize that Smad2 protein is post-translationaly modified by PGE2. Direct evidence of Smad2 modification by PGE2 was achieved by avidin pulldown assay which showed that endogenous Smad2 and recombinant Smad2 protein were attached by biotin-labeled PGE2. Taken together, our results provided evidence that post-translational modification of Smad2 could be a mechanism for the action of PGE2 in the pathogenesis of human pathologies. PMID:24613014

  13. Formation of Neoproterozoic metamorphic complex during oblique convergence (Eastern Desert, Egypt)

    NASA Astrophysics Data System (ADS)

    Fritz, H.; Wallbrecher, E.; Khudeir, A. A.; Abu el Ela, F.; Dallmeyer, D. R.

    1996-10-01

    Major portions of the Pan-African Orogen in the Eastern Desert of Egypt were formed by island-arc accretion in the Neoproterozoic. These areas are characterized by their lack of major crustal thickening. Metamorphic core complexes occur parallel to the strike of the Eastern Desert Orogen. These domes exhibit polyphase metamorphism and deformation in contrast to the structurally overlying nappes which include ophiolitic melanges and island-arc volcanic rocks. These nappes show northwest directed, orogen-parallel thrusting in the internal parts and west to southwest directed imbrication in the external parts of the orogen. Structures related to exhumation of the metamorphic core complexes partition into different displacement paths localized within a crustal-scale wrench corridor of the Najd fault system. Northwest trending orogen-parallel, sinistral strike-slip faults define the western and eastern margins of the domes. North and south dipping low-angle normal faults developed along the northern and southern margins of the domes and form extensional bridges between them. {40Ar}/{39Ar} ages obtained from syntectonic muscovites within the shear zones gave Neoproterozoic ages of 595.9±0.5 and 588.2±0.3 Ma. The synchronous activity of strike-slip and normal faults suggests a regional east-west shortening which was accomodated by deep-level basal decollement beneath the metamorphic core complexes and a coeval northwest-southeast, orogen-parallel extension. This extension was accompanied by intramontane molasse sedimentation and emplacement of calc-alkaline plutons. Since the rapid exhumation of gneisses in the core complexes cannot be explained by thickening of the crust, the authors favour a model which calls for enhanced heat flow along the Najd fault system which would have enabled the formation of syn-extensional plutonism and triggered the exhumation of the metamorphic core complexes. Lateral buoyancy forces were concentrated within the Najd wrench corridor and

  14. Frataxin Accelerates [2Fe-2S] Cluster Formation on the Human Fe–S Assembly Complex

    PubMed Central

    Fox, Nicholas G.; Das, Deepika; Chakrabarti, Mrinmoy; Lindahl, Paul A.; Barondeau, David P.

    2015-01-01

    Iron–sulfur (Fe–S) clusters function as protein cofactors for a wide variety of critical cellular reactions. In human mitochondria, a core Fe–S assembly complex [called SDUF and composed of NFS1, ISD11, ISCU2, and frataxin (FXN) proteins] synthesizes Fe–S clusters from iron, cysteine sulfur, and reducing equivalents and then transfers these intact clusters to target proteins. In vitro assays have relied on reducing the complexity of this complicated Fe–S assembly process by using surrogate electron donor molecules and monitoring simplified reactions. Recent studies have concluded that FXN promotes the synthesis of [4Fe-4S] clusters on the mammalian Fe–S assembly complex. Here the kinetics of Fe–S synthesis reactions were determined using different electron donation systems and by monitoring the products with circular dichroism and absorbance spectroscopies. We discovered that common surrogate electron donor molecules intercepted Fe–S cluster intermediates and formed high-molecular weight species (HMWS). The HMWS are associated with iron, sulfide, and thiol-containing proteins and have properties of a heterogeneous solubilized mineral with spectroscopic properties remarkably reminiscent of those of [4Fe-4S] clusters. In contrast, reactions using physiological reagents revealed that FXN accelerates the formation of [2Fe-2S] clusters rather than [4Fe-4S] clusters as previously reported. In the preceding paper [Fox, N. G., et al. (2015) Biochemistry 54, DOI: 10.1021/bi5014485], [2Fe-2S] intermediates on the SDUF complex were shown to readily transfer to uncomplexed ISCU2 or apo acceptor proteins, depending on the reaction conditions. Our results indicate that FXN accelerates a rate-limiting sulfur transfer step in the synthesis of [2Fe-2S] clusters on the human Fe–S assembly complex. PMID:26016518

  15. Nucleoprotein complex formation by the enhancer binding protein nifA.

    PubMed

    Wang, X Y; Kolb, A; Cannon, W; Buck, M

    1997-09-01

    The nitrogen fixation protein NifA is a member of the protein family activating transcription by the alternative eubacterial sigmaN (sigma54) RNA polymerase holoenzyme. Binding sites for NifA, upstream activator sequences (UASs), are remotely located. Interaction between holoenzyme bound in a closed promoter complex and NiFA is facilitated by bending of the intervening DNA by integration host factor (IHF). We have examined NifA contact with the Klebsiella pneumoniae nifH promoter UAS in the presence and absence of holoenzyme and IHF. Footprints with UV light were made on 5-BrdU-substituted DNA and DNase I and laser UV footprints on conventional DNA templates. Results establish that the consensus thymidine residues of the UAS motif 5'-TGT are in close proximity to NifA. Reactivity suggests that each UAS thymidine is not structurally equivalent. Titration of NifA binding to the UAS in the presence or absence of the closed promoter complex indicates that the interaction of NifA with the UAS is not strongly co-operative with holoenzyme or IHF, a result supportive of an activation mechanism not reliant upon simple recruitment of factors to the promoter. Laser footprints demonstrated that holoenzyme suppressed reactivity of promoter consensus -14, -15 and -16 T residues, indicating close contact. Binding of holoenzyme resulted in a specific increase in 5-BrdU reactivity at -9 within the holoenzyme binding site, likely reflecting DNA distortion. Enhanced -9 reactivity required sigmaNN-terminal sequences that are necessary for activation. Since T-9 is melted in open complexes the closed complex appears poised for melting. Open promoter complex formation was accompanied by a distinct change in laser footprint signal at -11, consistent with the view that nucleation of strand separation occurs within or close to the -12 promoter element. PMID:9254707

  16. Formation of complex organic molecules in cold objects: the role of gas-phase reactions

    NASA Astrophysics Data System (ADS)

    Balucani, Nadia; Ceccarelli, Cecilia; Taquet, Vianney

    2015-04-01

    While astrochemical models are successful in reproducing many of the observed interstellar species, they have been struggling to explain the observed abundances of complex organic molecules. Current models tend to privilege grain surface over gas-phase chemistry in their formation. One key assumption of those models is that radicals trapped in the grain mantles gain mobility and react on lukewarm ( ≳ 30 K) dust grains. Thus, the recent detections of methyl formate (MF) and dimethyl ether (DME) in cold objects represent a challenge and may clarify the respective role of grain-surface and gas-phase chemistry. We propose here a new model to form DME and MF with gas-phase reactions in cold environments, where DME is the precursor of MF via an efficient reaction overlooked by previous models. Furthermore, methoxy, a precursor of DME, is also synthesized in the gas phase from methanol, which is desorbed by a non-thermal process from the ices. Our new model reproduces fairly well the observations towards L1544. It also explains, in a natural way, the observed correlation between DME and MF. We conclude that gas-phase reactions are major actors in the formation of MF, DME and methoxy in cold gas. This challenges the exclusive role of grain-surface chemistry and favours a combined grain-gas chemistry.

  17. Effects of the Preparation Method on the Formation of True Nimodipine SBE-β-CD/HP-β-CD Inclusion Complexes and Their Dissolution Rates Enhancement.

    PubMed

    Semcheddine, Farouk; Guissi, Nida El Islem; Liu, XueYin; Wu, ZuoMin; Wang, Bo

    2015-06-01

    The aims of this study were to enhance the solubility and dissolution rate of nimodipine (ND) by preparing the inclusion complexes of ND with sulfobutylether-b-cyclodextrin (SBE-β-CD) and 2-hydroxypropyl-b-cyclodextrin (HP-β-CD) and to study the effect of the preparation method on the in vitro dissolution profile in different media (0.1 N HCl pH 1.2, phosphate buffer pH 7.4, and distilled water). Thus, the inclusion complexes were prepared by kneading, coprecipitation, and freeze-drying methods. Phase solubility studies were conducted to characterize the complexes in the liquid state. The inclusion complexes in the solid state were investigated with differential scanning calorimetry (DSC), X-ray diffractometry (X-RD), and Fourier transform infrared spectroscopy (FT-IR). Stable complexes of ND/SBE-β-CD and ND/HP-β-CD were formed in distilled water in a 1:1 stoichiometric inclusion complex as indicated by an AL-type diagram. The apparent stability constants (Ks) were 1334.4 and 464.1 M(-1) for ND/SBE-β-CD and ND/HP-β-CD, respectively. The water-solubility of ND was significantly increased in an average of 22- and 8-fold for SBE-β-CD and HP-β-CD, respectively. DSC results showed the formation of true inclusion complexes between the drug and both SBE-β-CD and HP-β-CD prepared by the kneading method. In contrast, crystalline drug was detectable in all other products. The dissolution studies showed that all the products exhibited higher dissolution rate than those of the physical mixtures and ND alone, in all mediums. However, the kneading complexes displayed the maximum dissolution rate in comparison with drug and other complexes, confirming the influence of the preparation method on the physicochemical properties of the products. PMID:25511809

  18. Stability constants and molar absorptivities for complexes of copper(II) with N-methyldiethanolamine, 1,4-bis(2-hydroxypropyl)-2-methylpiperazine, and 2-amino-2-methyl-1-propanol.

    PubMed

    Siefker, J R; Aroc, R V

    1986-09-01

    The stability constants and molar absorptivities of complexes of Cu(2+) with N-methyldiethanolamine, 1,4-bis(2-hydroxypropyl)-2-methylpiperazine, and 2-amino-2-methyl-1-propanol have been determined from spectrophotometric data for very dilute aqueous solutions. PMID:18964197

  19. A Multi-wavelength Study of Star Formation Activity in the S235 Complex

    NASA Astrophysics Data System (ADS)

    Dewangan, L. K.; Ojha, D. K.; Luna, A.; Anandarao, B. G.; Ninan, J. P.; Mallick, K. K.; Mayya, Y. D.

    2016-03-01

    We have carried out an extensive multi-wavelength study to investigate the star formation process in the S235 complex. The S235 complex has a spherelike shell appearance at wavelengths longer than 2 μm and harbors an O9.5V type star approximately at its center. A near-infrared extinction map of the complex traces eight subregions (having AV > 8 mag), and five of them appear to be distributed in an almost regularly spaced manner along the spherelike shell surrounding the ionized emission. This picture is also supported by the integrated 12CO and 13CO intensity maps and by Bolocam 1.1 mm continuum emission. The position-velocity analysis of CO reveals an almost semi-ringlike structure, suggesting an expanding H ii region. We find that the Bolocam clump masses increase as we move away from the location of the ionizing star. This correlation is seen only for those clumps that are distributed near the edges of the shell. Photometric analysis reveals 435 young stellar objects (YSOs), 59% of which are found in clusters. Six subregions (including five located near the edges of the shell) are very well correlated with the dust clumps, CO gas, and YSOs. The average values of Mach numbers derived using NH3 data for three (East 1, East 2, and Central E) out of these six subregions are 2.9, 2.3, and 2.9, indicating these subregions are supersonic. The molecular outflows are detected in these three subregions, further confirming the ongoing star formation activity. Together, all these results are interpreted as observational evidence of positive feedback of a massive star.

  20. BAG3 regulates formation of the SNARE complex and insulin secretion

    PubMed Central

    Iorio, V; Festa, M; Rosati, A; Hahne, M; Tiberti, C; Capunzo, M; De Laurenzi, V; Turco, M C

    2015-01-01

    Insulin release in response to glucose stimulation requires exocytosis of insulin-containing granules. Glucose stimulation of beta cells leads to focal adhesion kinase (FAK) phosphorylation, which acts on the Rho family proteins (Rho, Rac and Cdc42) that direct F-actin remodeling. This process requires docking and fusion of secretory vesicles to the release sites at the plasma membrane and is a complex mechanism that is mediated by SNAREs. This transiently disrupts the F-actin barrier and allows the redistribution of the insulin-containing granules to more peripheral regions of the β cell, hence facilitating insulin secretion. In this manuscript, we show for the first time that BAG3 plays an important role in this process. We show that BAG3 downregulation results in increased insulin secretion in response to glucose stimulation and in disruption of the F-actin network. Moreover, we show that BAG3 binds to SNAP-25 and syntaxin-1, two components of the t-SNARE complex preventing the interaction between SNAP-25 and syntaxin-1. Upon glucose stimulation BAG3 is phosphorylated by FAK and dissociates from SNAP-25 allowing the formation of the SNARE complex, destabilization of the F-actin network and insulin release. PMID:25766323

  1. Substrate-Na{sup +} complex formation: Coupling mechanism for {gamma}-aminobutyrate symporters

    SciTech Connect

    Pallo, Anna; Simon, Agnes; Bencsura, Akos; Heja, Laszlo; Kardos, Julianna

    2009-07-24

    Crystal structures of transmembrane transport proteins belonging to the important families of neurotransmitter-sodium symporters reveal how they transport neurotransmitters across membranes. Substrate-induced structural conformations of gated neurotransmitter-sodium symporters have been in the focus of research, however, a key question concerning the mechanism of Na{sup +} ion coupling remained unanswered. Homology models of human glial transporter subtypes of the major inhibitory neurotransmitter {gamma}-aminobutyric acid were built. In accordance with selectivity data for subtype 2 vs. 3, docking and molecular dynamics calculations suggest similar orthosteric substrate (inhibitor) conformations and binding crevices but distinguishable allosteric Zn{sup 2+} ion binding motifs. Considering the occluded conformational states of glial human {gamma}-aminobutyric acid transporter subtypes, we found major semi-extended and minor ring-like conformations of zwitterionic {gamma}-aminobutyric acid in complex with Na{sup +} ion. The existence of the minor ring-like conformation of {gamma}-aminobutyric acid in complex with Na{sup +} ion may be attributed to the strengthening of the intramolecular H-bond by the electrostatic effect of Na{sup +} ion. Coupling substrate uptake into cells with the thermodynamically favorable Na{sup +} ion movement through substrate-Na{sup +} ion complex formation may be a mechanistic principle featuring transmembrane neurotransmitter-sodium symporter proteins.

  2. Spectrophotometric determination of tizanidine and orphenadrine via ion pair complex formation using eosin Y

    PubMed Central

    2011-01-01

    A simple, sensitive and rapid spectrophotometric method was developed and validated for the determination of two skeletal muscle relaxants namely, tizanidine hydrochloride (I) and orphenadrine citrate (II) in pharmaceutical formulations. The proposed method is based on the formation of a binary complex between the studied drugs and eosin Y in aqueous buffered medium (pH 3.5). Under the optimum conditions, the binary complex showed absorption maxima at 545 nm for tizanidine and 542 nm for orphenadrine. The calibration plots were rectilinear over concentration range of 0.5-8 μg/mL and 1-12 μg/mL with limits of detection of 0.1 μg/mL and 0.3 μg/mL for tizanidine and orphenadrine respectively. The different experimental parameters affecting the development and stability of the complex were studied and optimized. The method was successfully applied for determination of the studied drugs in their dosage forms; and to the content uniformity test of tizanidine in tablets. PMID:21982341

  3. BAG3 regulates formation of the SNARE complex and insulin secretion.

    PubMed

    Iorio, V; Festa, M; Rosati, A; Hahne, M; Tiberti, C; Capunzo, M; De Laurenzi, V; Turco, M C

    2015-01-01

    Insulin release in response to glucose stimulation requires exocytosis of insulin-containing granules. Glucose stimulation of beta cells leads to focal adhesion kinase (FAK) phosphorylation, which acts on the Rho family proteins (Rho, Rac and Cdc42) that direct F-actin remodeling. This process requires docking and fusion of secretory vesicles to the release sites at the plasma membrane and is a complex mechanism that is mediated by SNAREs. This transiently disrupts the F-actin barrier and allows the redistribution of the insulin-containing granules to more peripheral regions of the β cell, hence facilitating insulin secretion. In this manuscript, we show for the first time that BAG3 plays an important role in this process. We show that BAG3 downregulation results in increased insulin secretion in response to glucose stimulation and in disruption of the F-actin network. Moreover, we show that BAG3 binds to SNAP-25 and syntaxin-1, two components of the t-SNARE complex preventing the interaction between SNAP-25 and syntaxin-1. Upon glucose stimulation BAG3 is phosphorylated by FAK and dissociates from SNAP-25 allowing the formation of the SNARE complex, destabilization of the F-actin network and insulin release. PMID:25766323

  4. Sensitive and selective spectrophotometric assay of piroxicam in pure form, capsule and human blood serum samples via ion-pair complex formation

    NASA Astrophysics Data System (ADS)

    Alizadeh, Nina; Keyhanian, Fereshteh

    2014-09-01

    A simple, accurate and highly sensitive spectrophotometric method has been developed for the rapid determination of piroxicam (PX) in pure and pharmaceutical formulations. The proposed method involves formation of stable yellow colored ion-pair complexes of the amino derivative (basic nitrogen) of PX with three sulphonphthalein acid dyes namely; bromocresol green (BCG), bromothymol blue (BTB), bromophenol blue (BPB) in acidic medium. The colored species exhibited absorption maxima at 438, 429 and 432 nm with molar absorptivity values of 9.400 × 103, 1.218 × 103 and 1.02 × 104 L mol-1 cm-1 for PX-BCG, PX-BTB and PX-BPB complexes, respectively. The effect of optimum conditions via acidity, reagent concentration, time and solvent were studied. The reactions were extremely rapid at room temperature and the absorbance values remained constant for 48 h. Beer’s law was obeyed with a good correlation coefficient in the concentration ranges 1-100 μg mL-1 for BCG, BTB complexes and 1-95 μg mL-1 for BPB complex. The composition ratio of the ion-pair complexes were found to be 1:1 in all cases as established by Job’s method. No interference was observed from common additives and excipients which may be present in the pharmaceutical preparations. The proposed method was successfully applied for the determination of PX in capsule and human blood serum samples with good accuracy and precision.

  5. Erythromycin, roxithromycin, and clarithromycin: use of slow-binding kinetics to compare their in vitro interaction with a bacterial ribosomal complex active in peptide bond formation.

    PubMed

    Dinos, George P; Connell, Sean R; Nierhaus, Knud H; Kalpaxis, Dimitrios L

    2003-03-01

    In a cell-free system derived from Escherichia coli, it is shown that clarithromycin and roxithromycin, like their parent compound erythromycin, do not inhibit the puromycin reaction (i.e., the peptide bond formation between puromycin and AcPhe-tRNA bound at the P-site of 70S ribosomes programmed with heteropolymeric mRNA). Nevertheless, all three antibiotics compete for binding on the ribosome with tylosin, a 16-membered ring macrolide that behaves as a slow-binding, slowly reversible inhibitor of peptidyltransferase. The mutually exclusive binding of these macrolides to ribosomes is also corroborated by the fact that they protect overlapping sites in domain V of 23S rRNA from chemical modification by dimethyl sulfate. From this competition effect, detailed kinetic analysis revealed that roxithromycin or clarithromycin (A), like erythromycin, reacts rapidly with AcPhe-tRNA.MF-mRNA x 70S ribosomal complex (C) to form the encounter complex CA which is then slowly isomerized to a more tight complex, termed C*A. The value of the overall dissociation constant, K, encompassing both steps of macrolide interaction with complex C, is 36 nM for erythromycin, 20 nM for roxithromycin, and 8 nM for clarithromycin. Because the off-rate constant of C*A complex does not significantly differ among the three macrolides, the superiority of clarithromycin as an inhibitor of translation in E. coli cells and many Gram-positive bacteria may be correlated with its greater rate of association with ribosomes. PMID:12606769

  6. Formation of the light-harvesting complex I (B870) of anoxygenic phototrophic purple bacteria.

    PubMed

    Drews, G

    1996-09-01

    The light-harvesting (LH) complex I (B870) of anoxygenic photosynthetic purple bacteria is the oligomeric form of its subunit B820 consisting of the low-molecular-weight polypeptides alpha, beta, bacteriochlorophyll (BChl), and carotenoids in the stoichiometric ratio [alpha1 beta1 (BChl2) Crt1-2]n. LHI surrounds the photochemical reaction center (RC). The major absorption band of the LHI complex is species-specific and is found at 870-890 nm; those of the subunit and the monomeric BChl a (dissolved in methanol) absorb at 820 and 770 nm, respectively. The isolated LHI complex can be reversibly dissociated to the B820 subunit or to the polypeptides and pigments by addition of detergents. Reconstitution of the B820 or the functional B870 complex is still possible after partial truncation of the N- or C-terminal regions of the alpha- or beta-polypeptide or of the beta-polypeptide only. The minimal structural requirements for reconstitution of a spectrally wild-type form after truncation of the polypeptides and/or modifications of the BChl molecule are described. The insertion of the LHIalpha- and LHIbeta-polypeptides into the membrane and the in vivo assembly of LHI, studied in a cell-free system and in whole cells of Rhodobacter capsulatus, depend on the primary structures of both polypeptides, BChl, the chaperones DnaK and GroEL, membrane-bound proteins, and energized membranes. Exchanges, deletions, or insertions of amino acyl residues, especially in the conserved region of the N-terminus of the LHIalpha-polypeptide, prevent or reduce the efficiency and stability of the LHI assembly. Therefore, reconstitution of LHI in a detergent micelle does not exactly reproduce the formation of the LHI complex in the photosynthetic membrane in vivo. The N-terminal domains play a crucial role in the formation of the oligomeric protein scaffold and of the pigment array. Facultatively phototrophic bacteria such as Rhodospirillum (Rsp.) rubrum or Rhodobacter (Rba.) capsulatus can

  7. Formation of host-guest complexes on gold surface investigated by surface-enhanced IR absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Inokuchi, Yoshiya; Mizuuchi, Takahiro; Ebata, Takayuki; Ikeda, Toshiaki; Haino, Takeharu; Kimura, Tetsunari; Guo, Hao; Furutani, Yuji

    2014-01-01

    We apply surface-enhanced infrared absorption (SEIRA) spectroscopy to host-guest complexes in liquid phase to examine the structural change in the complex formation. Two thiol derivatives of 18-crown-6 (18C6) are chemisorbed on a gold surface, and aqueous solutions of MCl salts (M = Li, Na, K, Rb, and Cs) are put to form M+·18C6 complexes. Infrared spectra of these complexes in the 900-2000 cm-1 region are obtained by SEIRA spectroscopy. The observed IR spectra show noticeable peaks due to the complex formation, demonstrating that SEIRA spectroscopy will be a powerful method to investigate the structure of host-guest complexes in supramolecular chemistry.

  8. The formation of glycine and other complex organic molecules in exploding ice mantles.

    PubMed

    Rawlings, J M C; Williams, D A; Viti, S; Cecchi-Pestellini, C; Duley, W W

    2014-01-01

    Complex Organic Molecules (COMs), such as propylene (CH3CHCH2) and the isomers of C2H4O2 are detected in cold molecular clouds (such as TMC-1) with high fractional abundances (Marcelino et al., Astrophys. J., 2007, 665, L127). The formation mechanism for these species is the subject of intense speculation, as is the possibility of the formation of simple amino acids such as glycine (NH2CH2COOH). At typical dark cloud densities, normal interstellar gas-phase chemistries are inefficient, whilst surface chemistry is at best ill defined and does not easily reproduce the abundance ratios observed in the gas phase. Whatever mechanism(s) is/are operating, it/they must be both efficient at converting a significant fraction of the available carbon budget into COMs, and capable of efficiently returning the COMs to the gas phase. In our previous studies we proposed a complementary, alternative mechanism, in which medium- and large-sized molecules are formed by three-body gas kinetic reactions in the warm high density gas phase. This environment exists, for a very short period of time, after the total sublimation of grain ice mantles in transient co-desorption events. In order to drive the process, rapid and efficient mantle sublimation is required and we have proposed that ice mantle 'explosions' can be driven by the catastrophic recombination of trapped hydrogen atoms, and other radicals, in the ice. Repeated cycles of freeze-out and explosion can thus lead to a cumulative molecular enrichment of the interstellar medium. Using existing studies we based our chemical network on simple radical addition, subject to enthalpy and valency restrictions. In this work we have extended the chemistry to include the formation pathways of glycine and other large molecular species that are detected in molecular clouds. We find that the mechanism is capable of explaining the observed molecular abundances and complexity in these sources. We find that the proposed mechanism is easily capable

  9. Inhibition of InhA activity, but not KasA activity, induces formation of a KasA-containing complex in mycobacteria.

    PubMed

    Kremer, Laurent; Dover, Lynn G; Morbidoni, Hector R; Vilchèze, Catherine; Maughan, William N; Baulard, Alain; Tu, Shiao-Chun; Honoré, Nadine; Deretic, Vojo; Sacchettini, James C; Locht, Camille; Jacobs, William R; Besra, Gurdyal S

    2003-06-01

    Isoniazid (INH) remains one of the key drugs used to control tuberculosis, with the enoyl-AcpM reductase InhA being the primary target. However, based on the observation that INH-treated Mycobacterium tuberculosis overproduces KasA, an enzyme involved in the biosynthesis of mycolic acids, and induces the formation of a covalent complex consisting of AcpM, KasA, and INH, it has been proposed that KasA represents the primary target of INH. However, the relevance of this complex to INH action remains obscure. This study was aimed at clarifying the role of InhA and KasA in relation to INH activity. By using anti-KasA antibodies we detected the KasA-containing complex in INH-treated Mycobacterium smegmatis. In addition, INH-treated cells also produced constant levels of KasA that were not sequestered in the complex and presumably were sufficient to ensure mycolic acid biosynthesis. Interestingly, a furA-lacking strain induced the complex at lower concentrations of INH compared with the control strain, whereas higher INH concentrations were necessary to induce the complex in a strain that lacks katG, suggesting that INH needs to be activated by KatG to induce the KasA-containing complex. The InhA inhibitors ethionamide and diazaborine also induced the complex; thus, its formation was not specifically relevant to INH action but was because of InhA inhibition. In addition, in vitro assays using purified InhA and KasA demonstrated that KatG-activated INH, triclosan, and diazaborine inhibited InhA but not KasA activity. Moreover, several thermosensitive InhA mutant strains of M. smegmatis constitutively expressed the KasA-containing complex. This study provides the biochemical and genetic evidence. 1) Only inhibition of InhA, but not KasA, induces the KasA-containing complex. 2) INH is not part of the complex. 3) INH does not target KasA, consistent with InhA being the primary target of INH. PMID:12654922

  10. The acid-catalyzed decompostion of phenacylcobalamin: evidence for the formation of an enol-Co(III) pi-complex intermediate.

    PubMed

    Brown, K L; Chu, M M; Ingraham, L L

    1976-04-01

    Phenacylcobalamin has been synthesized and characterized by thin-layer chromatography and uv-visible spectroscopy, as well as identification of the cobalt-containing and organic products of its cleavage in acid and base and by aerobic photolysis. The major organic product from all three cleavage reactions is acetophenone and the cobalt-containing product is aquacobalamin (or hydroxocobalamin, its conjugate base). In aqueous acidic solution (pH 0 to 7.3, ionic strength 1.0 M, and 25.0 degrees C), the kinetics of the formation of aquacobalamin are biphasic representing the linear sum of two exponential terms. The pH dependence of the first-order rate constant of both phases shows a first-order dependence on proton concentration but with an inflection point ot pH 3.55 for the faster phase and at pH 4.03 for the slower phase. This behavior is interpreted in terms of the specific acid catalyzed formation of an intermediate from both "base on" and "base off" phenacylcobalamin with different second-order rate constants for each form, followed by an intermediate decompotion step with a similar formal mechanism. The nature of the intermediate is discussed and it is concluded to be a pi-complex between cob(III)alamin and the enol of acetophenone. PMID:4086

  11. Directed formation of a ferrocenyl-decorated organotin sulfide complex and its controlled degradation.

    PubMed

    You, Zhiliang; Dehnen, Stefanie

    2013-11-01

    Attachment of ferrocenyl (Fc) units to an organo-functionalized precursor yielded the Fc-decorated complex [(R(Fc)Sn)4Sn6S10] [1; R(Fc) = CMe2CH2C(Me)═N-N═C(Me)Fc], which shows different ligand dynamics in solution than in the solid state, as confirmed by NMR spectroscopy and by cyclic and differential pulse voltammetry. The addition of different amounts of hydrochloric acid to a solution of 1 produced the derivatives [(R(Fc)SnCl2)2S] (2) and [R(Fc)SnCl3·HCl] (3), the latter of which acts as a precursor to the formation/recovery of 2 or 1, respectively. PMID:24128383

  12. Formation of impeller-like helical DNA–silica complexes by polyamines induced chiral packing

    PubMed Central

    Liu, Ben; Han, Lu; Che, Shunai

    2012-01-01

    The helicity of DNA and its long-range chiral packing are widespread phenomena; however, the packing mechanism remains poorly understood both in vivo and in vitro. Here, we report the extraordinary DNA chiral self-assembly by silica mineralization, together with circular dichroism measurements and electron microscopy studies on the structure and morphology of the products. Mg2+ ion and diethylenetriamine were found to induce right- and left-handed chiral DNA packing with two-dimensional-square p4mm mesostructures, respectively, to give corresponding enantiomeric impeller-like helical DNA–silica complexes. Moreover, formation of macroscopic impeller-like helical architectures depends on the types of polyamines and co-structure-directing agents and pH values of reaction solution. It has been suggested that interaction strength between negatively charged DNA phosphate strands and positively charged counterions may be the key factor for the induction of DNA packing handedness. PMID:24098845

  13. Polyelectrolyte complex formation mediated immobilization of chitosan-invertase neoglycoconjugate on pectin-coated chitin.

    PubMed

    Gómez, Leissy; Ramírez, Hector L; Neira-Carrillo, Andrónico; Villalonga, Reynaldo

    2006-05-01

    Saccharomyces cerevisiae invertase, chemically modified with chitosan, was immobilized on pectin-coated chitin support via polyelectrolyte complex formation. The yield of immobilized enzyme protein was determined as 85% and the immobilized biocatalyst retained 97% of the initial chitosan-invertase activity. The optimum temperature for invertase was increased by 10 degrees C and its thermostability was enhanced by about 10 degrees C after immobilization. The immobilized enzyme was stable against incubation in high ionic strength solutions and was 4-fold more resistant to thermal treatment at 65 degrees C than the native counterpart. The biocatalyst prepared retained 96 and 95% of the original catalytic activity after ten cycles of reuse and 74 h of continuous operational regime in a packed bed reactor, respectively. PMID:16775742

  14. Spontaneous formation of complex structures made from elastic membranes in an aluminum-hydroxide-carbonate system

    NASA Astrophysics Data System (ADS)

    Kiehl, Micah; Kaminker, Vitaliy; Pantaleone, James; Nowak, Piotr; Dyonizy, Agnieszka; Maselko, Jerzy

    2015-06-01

    A popular playground for studying chemo-hydrodynamic patterns and instabilities is chemical gardens, also known as silicate gardens. In these systems, complex structures spontaneously form, driven by buoyant forces and either osmotic or mechanical pumps. Here, we report on systems that differ somewhat from classical chemical gardens in that the membranes are much more deformable and soluble. These properties lead to structures that self-construct and evolve in new ways. For example, they exhibit the formation of chemical balloons, a new growth mechanism for tubes, and also the homologous shrinking of these tubes. The stretching mechanism for the membranes is probably different than for other systems by involving membrane "self-healing." Other unusual properties are osmosis that sometimes occurs out of the structure and also small plumes that flow away from the structure, sometimes upwards, and sometimes downwards. Mathematical models are given that explain some of the observed phenomena.

  15. Al-O complex formation in ion implanted Czochralski and floating-zone Si substrates

    NASA Astrophysics Data System (ADS)

    La Ferla, A.; Torrisi, L.; Galvagno, G.; Rimini, E.; Ciavola, G.; Carnera, A.; Gasparotto, A.

    1993-01-01

    Aluminum ions at 100 MeV were implanted into floating-zone (FZ) and Czochralski (CZ) grown Si substrates. At this energy the influence of the surface on the subsequent thermal treatment is negligible. In FZ samples the electrical active dose, as measured by spreading resistance profilometry, is independent of the annealing time at 1200 °C. In the CZ samples instead it considerably decreases with time. Secondary ion mass spectrometry analysis in CZ samples have revealed the presence of a multipeak structure around the projected range region for both Al and O signals. In FZ the structure is just detectable. The results imply that the Al-O complex formation is enhanced by the presence of oxygen but that it is catalyzed by the damage created during the implant. The carrier profiles coincide in both CZ and FZ diffused substrates by predeposition of Al from a solid source, i.e., in damage-free samples.

  16. Redox-Active-Ligand-Mediated Formation of an Acyclic Trinuclear Ruthenium Complex with Bridging Nitrido Ligands.

    PubMed

    Bagh, Bidraha; Broere, Daniël L J; Siegler, Maxime A; van der Vlugt, Jarl Ivar

    2016-07-11

    Coordination of a redox-active pyridine aminophenol ligand to Ru(II) followed by aerobic oxidation generates two diamagnetic Ru(III) species [1 a (cis) and 1 b (trans)] with ligand-centered radicals. The reaction of 1 a/1 b with excess NaN3 under inert atmosphere resulted in the formation of a rare bis(nitrido)-bridged trinuclear ruthenium complex with two nonlinear asymmetrical Ru-N-Ru fragments. The spontaneous reduction of the ligand centered radical in the parent 1 a/1 b supports the oxidation of a nitride (N(3-) ) to half an equivalent of N2 . The trinuclear omplex is reactive toward TEMPO-H, tin hydrides, thiols, and dihydrogen. PMID:27321547

  17. Thermodynamics of Complex Sulfide Inclusion Formation in Ca-Treated Al-Killed Structural Steel

    NASA Astrophysics Data System (ADS)

    Guo, Yin-tao; He, Sheng-ping; Chen, Gu-jun; Wang, Qian

    2016-08-01

    Controlling the morphology of the sulfide inclusion is of vital importance in enhancing the properties of structural steel. Long strip-shaped sulfides in hot-rolled steel can spherize when, instead of the inclusion of pure single-phase MnS, the guest is a complex sulfide, such as an oxide-sulfide duplex and a solid-solution sulfide particle. In this study, the inclusions in a commercial rolled structural steel were investigated. Spherical and elongated oxide-sulfide duplex as well as single-phase (Mn,Ca)S solid solution inclusions were observed in the steel. A thermodynamic equilibrium between the oxide and sulfide inclusions was proposed to understand the oxide-sulfide duplex inclusion formation. Based on the equilibrium solidification principle, thermodynamic discussions on inclusion precipitation during the solidification process were performed for both general and resulfurized structural steel. The predicted results of the present study agreed well with the experimental ones.

  18. Thermodynamics of Complex Sulfide Inclusion Formation in Ca-Treated Al-Killed Structural Steel

    NASA Astrophysics Data System (ADS)

    Guo, Yin-tao; He, Sheng-ping; Chen, Gu-jun; Wang, Qian

    2016-05-01

    Controlling the morphology of the sulfide inclusion is of vital importance in enhancing the properties of structural steel. Long strip-shaped sulfides in hot-rolled steel can spherize when, instead of the inclusion of pure single-phase MnS, the guest is a complex sulfide, such as an oxide-sulfide duplex and a solid-solution sulfide particle. In this study, the inclusions in a commercial rolled structural steel were investigated. Spherical and elongated oxide-sulfide duplex as well as single-phase (Mn,Ca)S solid solution inclusions were observed in the steel. A thermodynamic equilibrium between the oxide and sulfide inclusions was proposed to understand the oxide-sulfide duplex inclusion formation. Based on the equilibrium solidification principle, thermodynamic discussions on inclusion precipitation during the solidification process were performed for both general and resulfurized structural steel. The predicted results of the present study agreed well with the experimental ones.

  19. Amphiphilic Residues 29-44 of DREAM N-Termini Mediate Calmodulin:DREAM Complex Formation.

    PubMed

    Gonzalez, Walter G; Arango, Andres S; Miksovska, Jaroslava

    2015-07-21

    DREAM (downstream regulatory element antagonist modulator) is a neuronal calcium sensor that has been shown to modulate gene expression as well as to be involved in numerous neuronal processes. In this report, we show that association of calcium-bound calmodulin (CaM) with DREAM is mediated by a short amphipathic amino acid sequence located between residues 29 and 44 on DREAM. The association of CaM with a peptide analogous to DREAM(29-44) or to full-length DREAM protein is calcium-dependent with a dissociation constant of 136 nM or 3.4 μM, respectively. Thermodynamic and kinetic studies show that the observed decrease in affinity for the native protein is due to electrostatic interactions between the basic N-terminus and an electronegative surface on DREAM. These results are further supported by circular dichroism, binding studies, and molecular dynamics simulations. Additionally, fluorescence anisotropy decay measurements show a rotational correlation time of 10.8 ns for a complex of CaM with a DREAM(29-44) peptide, supporting a wraparound semispherical model with 1:1 stoichiometry. Furthermore, the interaction between an IEDANS-labeled CaM construct with DREAM is best modeled as a heterotetramer that adopts an elongated conformation with a correlation time of 45 ns in the presence of Ca(2+). We also demonstrate that association of CaM with DREAM eliminates the nonspecific interaction of DREAM with the DRE double-stranded DNA sequence of the human prodynorphin gene. This work provides molecular insight into the CaM:DREAM complex and its potential role in modulation of gene expression. PMID:26108881

  20. Nuclear pore complex assembly studied with a biochemical assay for annulate lamellae formation.

    PubMed

    Meier, E; Miller, B R; Forbes, D J

    1995-06-01

    Formation of the nuclear pore is an intricate process involving membrane fusion and the ordered assembly of up to 1,000 pore proteins. As such, the study of pore assembly is not a simple one. Interestingly, annulate lamellae, a cytoplasmic organelle consisting of stacks of flattened membrane cisternae perforated by numerous pore complexes, have been found to form spontaneously in a reconstitution system derived from Xenopus egg extracts, as determined by electron microscopy (Dabauvalle et al., 1991). In this work, a biochemical assay for annulate lamellae (AL) formation was developed and used to study the mechanism of AL assembly in general and the assembly of individual nucleoporins into pore complexes in particular. Upon incubation of Xenopus egg cytosol and membrane vesicles, the nucleoporins nup58, nup60, nup97, nup153, and nup200 initially present in a disassembled form in the cytosol became associated with membranes and were pelletable. The association was time and temperature dependent and could be measured by immunoblotting. Thin-section electron microscopy as well as negative staining confirmed that annulate lamellae were forming coincident with the incorporation of pore proteins into membranes. Homogenization and subsequent flotation of the membrane fraction allowed us to separate a population of dense membranes, containing the integral membrane pore protein gp210 and all other nucleoporins tested, from the bulk of cellular membranes. Electron microscopy indicated that annulate lamellae were enriched in this dense, pore protein-containing fraction. GTP gamma S prevented incorporation of the soluble pore proteins into membranes. To address whether AL form in the absence of N-acetylglucosaminylated pore proteins, AL assembly was carried out in WGA-sepharose-depleted cytosol. Under these conditions, annulate lamellae formed but were altered in appearance. When the membrane fraction containing this altered AL was homogenized and subjected to flotation, the

  1. Validation of a Parcel-Based Reduced-Complexity Model for River Delta Formation (Invited)

    NASA Astrophysics Data System (ADS)

    Liang, M.; Geleynse, N.; Passalacqua, P.; Edmonds, D. A.; Kim, W.; Voller, V. R.; Paola, C.

    2013-12-01

    Reduced-Complexity Models (RCMs) take an intuitive yet quantitative approach to represent processes with the goal of getting maximum return in emergent system-scale behavior with minimum investment in computational complexity. This approach is in contrast to reductionist models that aim at rigorously solving the governing equations of fluid flow and sediment transport. RCMs have had encouraging successes in modeling a variety of geomorphic systems, such as braided rivers, alluvial fans, and river deltas. Despite the fact that these models are not intended to resolve detailed flow structures, questions remain on how to interpret and validate the output of RCMs beyond qualitative behavior-based descriptions. Here we present a validation of the newly developed RCM for river delta formation with channel dynamics (Liang, 2013). The model uses a parcel-based 'weighted-random-walk' method that resolves the formation of river deltas at the scale of channel dynamics (e.g., avulsions and bifurcations). The main focus of this validation work is the flow routing model component. A set of synthetic test cases were designed to compare hydrodynamic results from the RCM and Delft3D, including flow in a straight channel, around a bump, and flow partitioning at a single bifurcation. Output results, such as water surface slope and flow field, are also compared to field observations collected at Wax Lake Delta. Additionally, we investigate channel avulsion cycles and flow path selection in an alluvial fan with differential styles of subsidence and compare model results to laboratory experiments, as a preliminary effort in pairing up numerical and experimental models to understand channel organization at process scale. Strengths and weaknesses of the RCM are discussed and potential candidates for model application identified.

  2. Stability constant estimator user`s guide

    SciTech Connect

    Hay, B.P.; Castleton, K.J.; Rustad, J.R.

    1996-12-01

    The purpose of the Stability Constant Estimator (SCE) program is to estimate aqueous stability constants for 1:1 complexes of metal ions with ligands by using trends in existing stability constant data. Such estimates are useful to fill gaps in existing thermodynamic databases and to corroborate the accuracy of reported stability constant values.

  3. When constants are important

    SciTech Connect

    Beiu, V.

    1997-04-01

    In this paper the authors discuss several complexity aspects pertaining to neural networks, commonly known as the curse of dimensionality. The focus will be on: (1) size complexity and depth-size tradeoffs; (2) complexity of learning; and (3) precision and limited interconnectivity. Results have been obtained for each of these problems when dealt with separately, but few things are known as to the links among them. They start by presenting known results and try to establish connections between them. These show that they are facing very difficult problems--exponential growth in either space (i.e. precision and size) and/or time (i.e., learning and depth)--when resorting to neural networks for solving general problems. The paper will present a solution for lowering some constants, by playing on the depth-size tradeoff.

  4. Unraveling the complexities of circadian and sleep interactions with memory formation through invertebrate research

    PubMed Central

    Michel, Maximilian; Lyons, Lisa C.

    2014-01-01

    Across phylogeny, the endogenous biological clock has been recognized as providing adaptive advantages to organisms through coordination of physiological and behavioral processes. Recent research has emphasized the role of circadian modulation of memory in generating peaks and troughs in cognitive performance. The circadian clock along with homeostatic processes also regulates sleep, which itself impacts the formation and consolidation of memory. Thus, the circadian clock, sleep and memory form a triad with ongoing dynamic interactions. With technological advances and the development of a global 24/7 society, understanding the mechanisms underlying these connections becomes pivotal for development of therapeutic treatments for memory disorders and to address issues in cognitive performance arising from non-traditional work schedules. Invertebrate models, such as Drosophila melanogaster and the mollusks Aplysia and Lymnaea, have proven invaluable tools for identification of highly conserved molecular processes in memory. Recent research from invertebrate systems has outlined the influence of sleep and the circadian clock upon synaptic plasticity. In this review, we discuss the effects of the circadian clock and sleep on memory formation in invertebrates drawing attention to the potential of in vivo and in vitro approaches that harness the power of simple invertebrate systems to correlate individual cellular processes with complex behaviors. In conclusion, this review highlights how studies in invertebrates with relatively simple nervous systems can provide mechanistic insights into corresponding behaviors in higher organisms and can be used to outline possible therapeutic options to guide further targeted inquiry. PMID:25136297

  5. Complex organic molecules during low-mass star formation: Pilot survey results

    SciTech Connect

    Öberg, Karin I.; Graninger, Dawn; Lauck, Trish

    2014-06-10

    Complex organic molecules (COMs) are known to be abundant toward some low-mass young stellar objects (YSOs), but how these detections relate to typical COM abundance are not yet understood. We aim to constrain the frequency distribution of COMs during low-mass star formation, beginning with this pilot survey of COM lines toward six embedded YSOs using the IRAM 30 m Telescope. The sample was selected from the Spitzer c2d ice sample and covers a range of ice abundances. We detect multiple COMs, including CH{sub 3}CN, toward two of the YSOs, and tentatively toward a third. Abundances with respect to CH{sub 3}OH vary between 0.7% and 10%. This sample is combined with previous COM observations and upper limits to obtain a frequency distributions of CH{sub 3}CN, HCOOCH{sub 3}, CH{sub 3}OCH{sub 3}, and CH{sub 3}CHO. We find that for all molecules more than 50% of the sample have detections or upper limits of 1%-10% with respect to CH{sub 3}OH. Moderate abundances of COMs thus appear common during the early stages of low-mass star formation. A larger sample is required, however, to quantify the COM distributions, as well as to constrain the origins of observed variations across the sample.

  6. Formation of Large Polysulfide Complexes during the Lithium-Sulfur Battery Discharge

    SciTech Connect

    Wang, Bin; Alhassan, Saeed M.; Pantelides, Sokrates T

    2014-01-01

    Sulfur cathodes have much larger capacities than transition-metal-oxide cathodes used in commercial lithium-ion batteries but suffer from unsatisfactory capacity retention and long-term cyclability. Capacity degradation originates from soluble lithium polysulfides gradually diffusing into the electrolyte. Understanding of the formation and dynamics of soluble polysulfides during the discharging process at the atomic level remains elusive, which limits further development of lithium-sulfur (Li-S) batteries. Here we report first-principles molecular dynamics simulations and density functional calculations, through which the discharging products of Li-S batteries are studied. We find that, in addition to simple Li2Sn (1 n 8) clusters generated from single cyclooctasulfur (S8) rings, large Li-S clusters form by collectively coupling several different rings to minimize the total energy. At high lithium concentration, a Li-S network forms at the sulfur surfaces. The results can explain the formation of the soluble Li-S complex, such as Li2S8, Li2S6, and Li2S4, and the insoluble Li2S2 and Li2S structures. In addition, we show that the presence of oxygen impurities in graphene, particularly oxygen atoms bonded to vacancies and edges, may stabilize the lithium polysulfides that may otherwise diffuse into the electrolyte.

  7. The development of folds and cleavages in slate belts by underplating in accretionary complexes: A comparison of the Kodiak Formation, Alaska and the Calaveras Complex, California

    NASA Astrophysics Data System (ADS)

    Paterson, Scott R.; Sample, James C.

    1988-08-01

    The development of folds and cleavages in slate and graywacke belts is commonly attributed to arc-continent or continent-continent collisions. However, the Kodiak Formation of southern Alaska and the Calaveras Complex of the western Sierra Nevada, California, are two slate and graywacke belts in which folds and slaty cleavages developed during simple underthrusting and underplating within accretionary wedges. The Maastrichtian Kodiak Formation is composed dominantly of coherent turbidites but includes lesser pebbly mudstone, minor conglomerate, and rare chert. The Kodiak Formation is part of a large accretionary complex that youngs in age seaward, but bedding tops generally show landward younging. A progression of structures has been determined by crosscutting relationships and includes (1) syndeformational depositional features; (2) broken formation; (3) slaty cleavage, folds, and thrust faults; (4) crenulations and crenulation cleavage; (5) late brittle thrust faults; and (6) right-lateral strike-slip faults. Broken formation, slaty cleavage, thrust faults, and folds developed during underthrusting and underplating within an accretionary wedge. Crenulations and brittle thrust faults are related to subsequent intrawedge shortening. Based on peak metamorphism in the uppermost zeolite to prehnite-pumpellyite facies, underplating occurred at a minimum depth of 10 km. The Calaveras Complex is composed of argillite, chert, graywacke, pebbly mudstone, limestone, and volcanic rocks. Its age of deposition has a maximum range from Permian to Early Jurassic. Overall, the unit appears to young westward, but local facing indicators show eastward younging of individual blocks. The sequence of structures developed in the Calaveras Complex is (1) syn-depositional olistostromes; (2) broken formation; (3) slaty cleavage, folds, and thrust faults; and (4) younger Jura-Triassic folds and crenulation cleavages. Broken formation and slaty cleavage developed during underthrusting and

  8. Functionalized organotin-chalcogenide complexes that exhibit defect heterocubane scaffolds: formation, synthesis, and characterization.

    PubMed

    Eußner, Jens P; Barth, Beatrix E K; Leusmann, Eliza; You, Zhiliang; Rinn, Niklas; Dehnen, Stefanie

    2013-10-01

    The synthesis of new functionalized organotin-chalcogenide complexes was achieved by systematic optimization of the reaction conditions. The structures of compounds [(R(1, 2) Sn)3 S4 Cl] (1, 2), [((R(2) Sn)2 SnS4 )2 (μ-S)2 ] (3), [(R(1, 2) Sn)3 Se4 ][SnCl3 ] (4, 5), and [Li(thf)n ][(R(3) Sn)(HR(3) Sn)2 Se4 Cl] (6), in which R(1) =CMe2 CH2 C(O)Me, R(2) =CMe2 CH2 C(NNH2 )Me, and R(3) =CH2 CH2 COO, are based on defect heterocubane scaffolds, as shown by X-ray diffraction, (119) Sn NMR spectroscopy, and ESI mass spectrometry analyses. Compounds 4, 5, and 6 constitute the first examples of defect heterocubane-type metal-chalcogenide complexes that are comprised of selenide ligands. Comprehensive DFT calculations prompted us to search for the formal intermediates [(R(1) SnCl2 )2 (μ-S)] (7) and [(R(1) SnCl)2 (μ-S)2 ] (8), which were isolated and helped to understand the stepwise formation of compounds 1-6. PMID:23963989

  9. Protein complex formation and intranuclear dynamics of NAC1 in cancer cells.

    PubMed

    Nakayama, Naomi; Kato, Hiroaki; Sakashita, Gyosuke; Nariai, Yuko; Nakayama, Kentaro; Kyo, Satoru; Urano, Takeshi

    2016-09-15

    Nucleus accumbens-associated protein 1 (NAC1) is a cancer-related transcription regulator protein that is also involved in the pluripotency and differentiation of embryonic stem cells. NAC1 is overexpressed in various carcinomas including ovarian, cervical, breast, and pancreatic carcinomas. NAC1 knock-down was previously shown to result in the apoptosis of ovarian cancer cell lines and to rescue their sensitivity to chemotherapy, suggesting that NAC1 may be a potential therapeutic target, but protein complex formation and the dynamics of intranuclear NAC1 in cancer cells remain poorly understood. In this study, analysis of HeLa cell lysates by fast protein liquid chromatography (FPLC) on a sizing column showed that the NAC1 peak corresponded to an apparent molecular mass of 300-500 kDa, which is larger than the estimated molecular mass (58 kDa) of the protein. Furthermore, live cell photobleaching analyses with green fluorescent protein (GFP)-fused NAC1 proteins revealed the intranuclear dynamics of NAC1. Collectively our results demonstrate that NAC1 forms a protein complex to function as a transcriptional regulator in cancer cells. PMID:27424155

  10. Localization and dynamics of amylose-lipophilic molecules inclusion complex formation in starch granules.

    PubMed

    Manca, Marianna; Woortman, Albert J J; Mura, Andrea; Loos, Katja; Loi, Maria Antonietta

    2015-03-28

    Inclusion complex formation between lipophilic dye molecules and amylose polymers in starch granules is investigated using laser spectroscopy and microscopy. By combining confocal laser scanning microscopy (CLSM) with spatial resolved photoluminescence (PL) spectroscopy, we are able to discriminate the presence of amylose in the peripheral region of regular and waxy granules from potato and corn starch, associating a clear optical fingerprint with the interaction between starch granules and lipophilic dye molecules. We show in particular that in the case of regular starch the polar head of the lipophilic dye molecules remains outside the amylose helix experiencing a water-based environment. The measurements performed on samples that have been extensively washed provide a strong proof of the specific interaction between lipid dye molecules and amylose chains in regular starch. These measurements also confirm the tendency of longer amylopectin chains, located in the hilum of waxy starch granules, to form inclusion complexes with ligands. Through real-time recording of CLSM micrographs, within a time frame of tens of seconds, we measured the dynamics of occurrence of the inclusion process between lipids and amylose located at the periphery of starch granules. PMID:25715960

  11. Enhanced conformational sampling to visualize a free-energy landscape of protein complex formation.

    PubMed

    Iida, Shinji; Nakamura, Haruki; Higo, Junichi

    2016-06-15

    We introduce various, recently developed, generalized ensemble methods, which are useful to sample various molecular configurations emerging in the process of protein-protein or protein-ligand binding. The methods introduced here are those that have been or will be applied to biomolecular binding, where the biomolecules are treated as flexible molecules expressed by an all-atom model in an explicit solvent. Sampling produces an ensemble of conformations (snapshots) that are thermodynamically probable at room temperature. Then, projection of those conformations to an abstract low-dimensional space generates a free-energy landscape. As an example, we show a landscape of homo-dimer formation of an endothelin-1-like molecule computed using a generalized ensemble method. The lowest free-energy cluster at room temperature coincided precisely with the experimentally determined complex structure. Two minor clusters were also found in the landscape, which were largely different from the native complex form. Although those clusters were isolated at room temperature, with rising temperature a pathway emerged linking the lowest and second-lowest free-energy clusters, and a further temperature increment connected all the clusters. This exemplifies that the generalized ensemble method is a powerful tool for computing the free-energy landscape, by which one can discuss the thermodynamic stability of clusters and the temperature dependence of the cluster networks. PMID:27288028

  12. A calorimetric study of the hydrolysis and peroxide complex formation of the uranyl(VI) ion.

    PubMed

    Zanonato, Pier Luigi; Di Bernardo, Plinio; Grenthe, Ingmar

    2014-02-14

    The enthalpies of reaction for the formation of uranyl(vi) hydroxide {[(UO2)2(OH)2](2+), [(UO2)3(OH)4](2+), [(UO2)3(OH)5](+), [(UO2)3(OH)6](aq), [(UO2)3(OH)7](-), [(UO2)3(OH)8](2-), [(UO2)(OH)3](-), [(UO2)(OH)4](2-)} and peroxide complexes {[UO2(O2)(OH)](-) and [(UO2)2(O2)2(OH)](-)} have been determined from calorimetric titrations at 25 °C in a 0.100 M tetramethyl ammonium nitrate ionic medium. The hydroxide data have been used to test the consistency of the extensive thermodynamic database published by the Nuclear Energy Agency (I. Grenthe, J. Fuger, R. J. M. Konings, R. J. Lemire, A. B. Mueller, C. Nguyen-Trung and H. Wanner, Chemical Thermodynamics of Uranium, North-Holland, Amsterdam, 1992 and R. Guillaumont, T. Fanghänel, J. Fuger, I. Grenthe, V. Neck, D. J. Palmer and M. R. Rand, Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, Elsevier, Amsterdam, 2003). A brief discussion is given about a possible structural relationship between the trinuclear complexes [(UO2)3(OH)n](6-n), n = 4-8. PMID:24301256

  13. Influence of RNA Strand Rigidity on Polyion Complex Formation with Block Catiomers.

    PubMed

    Hayashi, Kotaro; Chaya, Hiroyuki; Fukushima, Shigeto; Watanabe, Sumiyo; Takemoto, Hiroyasu; Osada, Kensuke; Nishiyama, Nobuhiro; Miyata, Kanjiro; Kataoka, Kazunori

    2016-03-01

    Polyion complexes (b-PICs) are prepared by mixing single- or double-stranded oligo RNA (aniomer) with poly(ethylene glycol)-b-poly(L-lysine) (PEG-PLL) (block catiomer) to clarify the effect of aniomer chain rigidity on association behaviors at varying concentrations. Here, a 21-mer single-stranded RNA (ssRNA) (persistence length: 1.0 nm) and a 21-mer double-stranded RNA (small interfering RNA, siRNA) (persistence length: 62 nm) are compared. Both oligo RNAs form a minimal charge-neutralized ionomer pair with a single PEG-PLL chain, termed unit b-PIC (uPIC), at low concentrations (<≈ 0.01 mg mL(-1)). Above the critical association concentration (≈ 0.01 mg mL(-1)), ssRNA b-PICs form secondary associates, PIC micelles, with sizes up to 30-70 nm, while no such multimolecular assembly is observed for siRNA b-PICs. The entropy gain associated with the formation of a segregated PIC phase in the multimolecular PIC micelles may not be large enough for rigid siRNA strands to compensate with appreciably high steric repulsion derived from PEG chains. Chain rigidity appears to be a critical parameter in polyion complex association. PMID:26765970

  14. In Silico Inhibition Studies of Jun-Fos-DNA Complex Formation by Curcumin Derivatives

    PubMed Central

    Kumar, Anil; Bora, Utpal

    2012-01-01

    Activator protein-1 (AP1) is a transcription factor that consists of the Jun and Fos family proteins. It regulates gene expression in response to a variety of stimuli and controls cellular processes including proliferation, transformation, inflammation, and innate immune responses. AP1 binds specifically to 12-O-tetradecanoylphorbol-13-acetate (TPA) responsive element 5′-TGAG/CTCA-3′ (AP1 site). It has been found constitutively active in breast, ovarian, cervical, and lung cancers. Numerous studies have shown that inhibition of AP1 could be a promising strategy for cancer therapeutic applications. The present in silico study provides insights into the inhibition of Jun-Fos-DNA complex formation by curcumin derivatives. These derivatives interact with the amino acid residues like Arg155 and Arg158 which play a key role in binding of Jun-Fos complex to DNA (AP1 site). Ala151, Ala275, Leu283, and Ile286 were the residues present at binding site which could contribute to hydrophobic contacts with inhibitor molecules. Curcumin sulphate was predicted to be the most potent inhibitor amongst all the natural curcumin derivatives docked. PMID:25374685

  15. Dynamics of DNA-protein complex formation in rat liver during induction by phenobarbital and triphenyldioxane.

    PubMed

    Pustylnyak, V O; Zacharova, L Yu; Gulyaeva, L F; Lyakhovich, V V; Slynko, N M

    2004-10-01

    CYP2B gene expression in liver of rats treated with phenobarbital and triphenyldioxane at early stage of induction (40 min-18 h) was studied using electrophoretic mobility shift assay (EMSA) and RT-PCR. During first 6 h after induction, differences in the dynamics of formation of DNA-protein complexes were shown for each inducer. Later (18 h after induction), the intensity pattern of these complexes became the same for both phenobarbital and triphenyldioxane treated animals. This suggests the existence of specific signaling for each inducer only in early stages of CYP2B activation. Increase in nuclear protein (possible transcription factor) binding to Barbie-box regulatory sequence of CYP2B genes was accompanied by their increased expression. Thus, we have demonstrated for the first time that early stages of induction (40 min and 3 h after administration of phenobarbital and triphenyldioxane, respectively) are accompanied by activation of nuclear proteins that can bind to Barbie-box element of CYP2B. Although various chemical inducers cause distinct activation of such binding, this process involves activation of gene transcription. PMID:15527410

  16. Enhanced conformational sampling to visualize a free-energy landscape of protein complex formation

    PubMed Central

    Iida, Shinji; Nakamura, Haruki; Higo, Junichi

    2016-01-01

    We introduce various, recently developed, generalized ensemble methods, which are useful to sample various molecular configurations emerging in the process of protein–protein or protein–ligand binding. The methods introduced here are those that have been or will be applied to biomolecular binding, where the biomolecules are treated as flexible molecules expressed by an all-atom model in an explicit solvent. Sampling produces an ensemble of conformations (snapshots) that are thermodynamically probable at room temperature. Then, projection of those conformations to an abstract low-dimensional space generates a free-energy landscape. As an example, we show a landscape of homo-dimer formation of an endothelin-1-like molecule computed using a generalized ensemble method. The lowest free-energy cluster at room temperature coincided precisely with the experimentally determined complex structure. Two minor clusters were also found in the landscape, which were largely different from the native complex form. Although those clusters were isolated at room temperature, with rising temperature a pathway emerged linking the lowest and second-lowest free-energy clusters, and a further temperature increment connected all the clusters. This exemplifies that the generalized ensemble method is a powerful tool for computing the free-energy landscape, by which one can discuss the thermodynamic stability of clusters and the temperature dependence of the cluster networks. PMID:27288028

  17. Interactions between plutonism and detachments during metamorphic core complex formation, Serifos Island (Cyclades, Greece)

    NASA Astrophysics Data System (ADS)

    Rabillard, Aurélien; Arbaret, Laurent; Jolivet, Laurent; Le Breton, Nicole; Gumiaux, Charles; Augier, Romain; Grasemann, Bernhard

    2015-06-01

    In order to better understand the interactions between plutonic activity and strain localization during metamorphic core complex formation, the Miocene granodioritic pluton of Serifos (Cyclades, Greece) is studied. This pluton (11.6-9.5 Ma) intruded the Cycladic Blueschists during thinning of the Aegean domain along a system of low-angle normal faults belonging to the south dipping West Cycladic Detachment System (WCDS). Based on structural fieldwork, together with microstructural observations and anisotropy of magnetic susceptibility, we recognize a continuum of deformation from magmatic to brittle conditions within the magmatic body. This succession of deformation events is kinematically compatible with the development of the WCDS. The architecture of the pluton shows a marked asymmetry resulting from its interaction with the detachments. We propose a tectonic scenario for the emplacement of Serifos pluton and its subsequent cooling during the Aegean extension: (1) A first stage corresponds to the metamorphic core complex initiation and associated southwestward shearing along the Meghàlo Livadhi detachment. (2) In the second stage, the Serifos pluton has intruded the dome at shallow crustal level, piercing through the ductile/brittle Meghàlo Livadhi detachment. Southwest directed extensional deformation was contemporaneously transferred upward in the crust along the more localized Kàvos Kiklopas detachment. (3) The third stage was marked by synmagmatic extensional deformation and strain localization at the contact between the pluton and the host rocks resulting in nucleation of narrow shear zones, which (4) continued to develop after the pluton solidification.

  18. Reactivity of thiosemicarbazides with redox active metal ions: controlled formation of coordination complexes versus heterocyclic compounds.

    PubMed

    López-Torres, Elena; Dilworth, Jonathan R

    2009-01-01

    The reactions of 1,1-dimethyl-4-phenylthiosemicarbazide (LH) with Cu(II) and Sn(IV) have been investigated. If THF or methanol is used as solvent with Cu(II), oxidative cyclisation and coupling are observed, yielding a 1,2,4-thiadiazole or a 1,3,4-thiadiazolium salt. SnI(4) is also able to induce oxidative coupling of two thiosemicarbazide ligands, yielding 1,2,4-thiadiazolium or 1,2,4-triazolium salts, with I(3)(-) as the counterion, depending on the reaction conditions. By contrast, reaction of LH with SnI(4) in acetone yields a 1,3-thiazolium salt, with I(-) as counterion. Reaction with Cu(II) salts or SnI(4) in basic media leads to the formation of metal complexes containing two deprotonated thiosemicarbazide ligands. In the reaction of CuCl(2) in water in the presence of acid a complex containing two neutral ligands is obtained. Reactions with SnCl(4) are not able to induce ligand cyclisation, although a coordination compound with two neutral ligands was isolated from methanol. PMID:19180593

  19. MOZ increases p53 acetylation and premature senescence through its complex formation with PML.

    PubMed

    Rokudai, Susumu; Laptenko, Oleg; Arnal, Suzzette M; Taya, Yoichi; Kitabayashi, Issay; Prives, Carol

    2013-03-01

    Monocytic leukemia zinc finger (MOZ)/KAT6A is a MOZ, Ybf2/Sas3, Sas2, Tip60 (MYST)-type histone acetyltransferase that functions as a coactivator for acute myeloid leukemia 1 protein (AML1)- and Ets family transcription factor PU.1-dependent transcription. We previously reported that MOZ directly interacts with p53 and is essential for p53-dependent selective regulation of p21 expression. We show here that MOZ is an acetyltransferase of p53 at K120 and K382 and colocalizes with p53 in promyelocytic leukemia (PML) nuclear bodies following cellular stress. The MOZ-PML-p53 interaction enhances MOZ-mediated acetylation of p53, and this ternary complex enhances p53-dependent p21 expression. Moreover, we identified an Akt/protein kinase B recognition sequence in the PML-binding domain of MOZ protein. Akt-mediated phosphorylation of MOZ at T369 has a negative effect on complex formation between PML and MOZ. As a result of PML-mediated suppression of Akt, the increased PML-MOZ interaction enhances p21 expression and induces p53-dependent premature senescence upon forced PML expression. Our research demonstrates that MOZ controls p53 acetylation and transcriptional activity via association with PML. PMID:23431171

  20. Electrocatalytic Oxidation of Formate with Nickel Diphosphane Dipeptide Complexes. Effect of Ligands Modified with Amino Acids

    SciTech Connect

    Galan, Brandon R.; Reback, Matthew L.; Jain, Avijita; Appel, Aaron M.; Shaw, Wendy J.

    2013-09-03

    A series of nickel bis-diphosphine complexes with dipeptides appended to the ligands were investigated for the catalytic oxidation of formate. Typical rates of ~7 s-1 were found, similar to the parent complex (~8 s-1), with amino acid size and positioning contributing very little to rate or operating potential. Hydroxyl functionalities did result in lower rates, which were recovered by protecting the hydroxyl group. The results suggest that the overall dielectric introduced by the dipeptides does not play an important role in catalysis, but free hydroxyl groups do influence activity suggesting contributions from intra- or intermolecular interactions. These observations are important in developing a fundamental understanding of the affect that an enzyme-like outer coordination sphere can have upon molecular catalysts. This work was funded by the US DOE Basic Energy Sciences, Chemical Sciences, Geoscience and Biosciences Division (BRG, AJ, AMA, WJS), the US DOE Basic Energy Sciences, Physical Bioscience program (MLR). Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  1. CONTINUOUS MULTILIGAND DISTRIBUTION MODEL USED TO PREDICT THE STABILITY CONSTANT OF CU(II) METAL COMPLEXATION WITH HUMIC MATERIAL FROM FLUORESCENCE QUENCHING DATA

    EPA Science Inventory

    We report the use of a pH-dependent continuous multiligand distribution model to determine the stability constant between Cu(II) and dissolved humic material. luorescence quenching of the humic material by Cu(II) is used to produce spectral titration curves. he values form the ti...

  2. Complement C1q formation of immune complexes with milk caseins and wheat glutens in schizophrenia

    PubMed Central

    Severance, Emily G.; Gressitt, Kristin; Halling, Meredith; Stallings, Cassie R.; Origoni, Andrea E.; Vaughan, Crystal; Khushalani, Sunil; Alaedini, Armin; Dupont, Didier; Dickerson, Faith B.; Yolken, Robert H.

    2012-01-01

    Immune system factors including complement pathway activation are increasingly linked to the etiology and pathophysiology of schizophrenia. Complement protein, C1q, binds to and helps to clear immune complexes composed of immunoglobulins coupled to antigens. The antigenic stimuli for C1q activation in schizophrenia are not known. Food sensitivities characterized by elevated IgG antibodies to bovine milk caseins and wheat glutens have been reported in individuals with schizophrenia. Here, we examined the extent to which these food products might comprise the antigen component of complement C1q immune complexes in individuals with recent onset schizophrenia (n=38), non-recent onset schizophrenia (n=61) and non-psychiatric controls (n=63). C1q seropositivity was significantly associated with both schizophrenia groups (recent onset, odds ratio (OR)=8.02, p≤0.008; non-recent onset, OR=3.15, p≤0.03) compared to controls (logistic regression models corrected for age, sex, race and smoking status). Casein- and/or gluten-IgG binding to C1q was significantly elevated in the non-recent onset group compared to controls (OR=4.36, p≤0.01). Significant amounts of C1q-casein/gluten-related immune complexes and C1q correlations with a marker for gastrointestinal inflammation in non-recent onset schizophrenia suggests a heightened rate of food antigens in the systemic circulation, perhaps via a disease-associated altered intestinal permeability. In individuals who are in the early stages of disease onset, C1q activation may reflect the formation of immune complexes with non-casein- or non-gluten-related antigens, the presence of C1q autoantibodies, and/or a dissociated state of immune complex components. In conclusion, complement activation may be a useful biomarker to diagnose schizophrenia early during the course of the disease. Future prospective studies should evaluate the impacts of casein- and gluten-free diets on C1q activation in schizophrenia. PMID:22801085

  3. (PEO)n:Na4P2O7- a Report on Complex Formation

    NASA Astrophysics Data System (ADS)

    Bhide, Amrtha; Hariharan, K.

    2006-06-01

    A new polymer electrolyte, based on poly (ethylene oxide) complexed with Na4P2O7 is investigated. (PEO)n:Na4P2O7 polymer metal salt complexes with different n = [ethylene oxide]/ Na ratio (80,100,120,160 and 200) are prepared by solution casting method. Dissolution of the salt into the polymer host is investigated by X-ray diffraction, differential calorimetry and Scanning electron microscopy techniques. The formation of the complex has been confirmed by (i) the broadening and reduction in the intensity of the Bragg peaks (ii) the reduction in the percentage of crystallinity by DSC and (iii) the increase in the glass transition temperature of the polymer with addition of the salt. Maximum reduction in crystallinity from 76.1 % to 56.2 % is observed for (PEO)120:Na4P2O7 system. Qualitative analysis of FTIR spectra in the range 3000-500 cm-1, reveals broadening of the bands corresponding to the C-O-C symmetric stretching modes around 840 cm-1 and 1057-1160 cm-1. These conformal changes have inferred the coordination of the ether oxygen of the PEO with the metal salt ion. Compositional dependence of conductivity studies show a maximum value of 7.58 × 0-7 S/cm at 351 K for O:Na = 120.Conductivity of the above electrolytes proceeds via an activated conduction mechanism with two activation energies, 0.62 eV and 0.78 eV above and below the softening of the polymer. The electronic transport number measured by dc polarization technique shows that, the conducting species are ionic in nature.

  4. Nucleophilicity and P-C Bond Formation Reactions of a Terminal Phosphanido Iridium Complex.

    PubMed

    Serrano, Ángel L; Casado, Miguel A; Ciriano, Miguel A; de Bruin, Bas; López, José A; Tejel, Cristina

    2016-01-19

    The diiridium complex [{Ir(ABPN2)(CO)}2(μ-CO)] (1; [ABPN2](-) = [(allyl)B(Pz)2(CH2PPh2)](-)) reacts with diphenylphosphane affording [Ir(ABPN2)(CO)(H) (PPh2)] (2), the product of the oxidative addition of the P-H bond to the metal. DFT studies revealed a large contribution of the terminal phosphanido lone pair to the HOMO of 2, indicating nucleophilic character of this ligand, which is evidenced by reactions of 2 with typical electrophiles such as H(+), Me(+), and O2. Products from the reaction of 2 with methyl chloroacetate were found to be either [Ir(ABPN2)(CO)(H)(PPh2CH2CO2Me)][PF6] ([6]PF6) or [Ir(ABPN2)(CO)(Cl)(H)] (7) and the free phosphane (PPh2CH2CO2Me), both involving P-C bond formation, depending on the reaction conditions. New complexes having iridacyclophosphapentenone and iridacyclophosphapentanone moieties result from reactions of 2 with dimethyl acetylenedicarboxylate and dimethyl maleate, respectively, as a consequence of a further incorporation of the carbonyl ligand. In this line, the terminal alkyne methyl propiolate gave a mixture of a similar iridacyclophosphapentanone complex and [Ir(ABPN2){CH═C(CO2Me)-CO}{PPh2-CH═CH(CO2Me)}] (10), which bears the functionalized phosphane PPh2-CH═CH(CO2Me) and an iridacyclobutenone fragment. Related model reactions aimed to confirm mechanistic proposals are also studied. PMID:26695592

  5. Oceanic crust formation in the Egeria Fracture Zone Complex (Central Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Le Minor, Marine; Gaina, Carmen; Sigloch, Karin; Minakov, Alexander

    2016-04-01

    This study aims to analyse in detail the oceanic crust fabric and volcanic features (seamounts) formed for the last 10 million years at the Central Indian Ridge between 19 and 21 latitude south. Multibeam bathymetry and magnetic data has been collected in 2013 as part of the French-German expedition RHUM-RUM (Reunion hotspot and upper mantle - Reunion's unterer mantel). Three long profiles perpendicular on the Central Indian Ridge (CIR), south of the Egeria fracture zone, document the formation of oceanic crust since 10 million years, along with changes in plate kinematics and variations in the magmatic input. We have inspected the abyssal hill geometry and orientation along conjugate oceanic flanks and within one fracture zone segment where we could identify J-shaped features that are indicators of changes in plate kinematics. The magnetic anomaly data shows a slight asymmetry in seafloor spreading rates on conjugate flanks: while a steady increase in spreading rate from 10 Ma to the present is shown by the western flank, the eastern part displays a slowing down from 5 Ma onwards. The deflection of the anti J-shaped abyssal hill lineations suggest that the left-stepping Egeria fracture zone complex (including the Egeria, Flinders and an un-named fracture zone to the southeast) was under transpression from 9 to 6 Ma and under transtension since 3 Ma. The transpressional event was triggered by a clockwise mid-ocean ridge reorientation and a decrease of its offset, whereas the transtensional regime was probably due to a counter-clockwise change in the spreading direction and an increase of the ridge offset. The new multibeam data along the three profiles reveal that crust on the eastern side is smoother (as shown by the abyssal hill number and structure) and hosts several seamounts (with age estimations of 7.67, 6.10 and 0.79 Ma), in contrast to the rougher conjugate western flank. Considering that the western flank was closer to the Reunion plume, and therefore

  6. SPITZER ANALYSIS OF H II REGION COMPLEXES IN THE MAGELLANIC CLOUDS: DETERMINING A SUITABLE MONOCHROMATIC OBSCURED STAR FORMATION INDICATOR

    SciTech Connect

    Lawton, B.; Gordon, K. D.; Meixner, M.; Sewilo, M.; Shiao, B.; Babler, B.; Bracker, S.; Meade, M.; Block, M.; Engelbracht, C. W.; Misselt, K.; Bolatto, A. D.; Carlson, L. R.; Hora, J. L.; Robitaille, T.; Indebetouw, R.; Madden, S. C.; Oliveira, J. M.; Vijh, U. P. E-mail: kgordon@stsci.ed

    2010-06-10

    H II regions are the birth places of stars, and as such they provide the best measure of current star formation rates (SFRs) in galaxies. The close proximity of the Magellanic Clouds allows us to probe the nature of these star forming regions at small spatial scales. To study the H II regions, we compute the bolometric infrared flux, or total infrared (TIR), by integrating the flux from 8 to 500 {mu}m. The TIR provides a measure of the obscured star formation because the UV photons from hot young stars are absorbed by dust and re-emitted across the mid-to-far-infrared (IR) spectrum. We aim to determine the monochromatic IR band that most accurately traces the TIR and produces an accurate obscured SFR over large spatial scales. We present the spatial analysis, via aperture/annulus photometry, of 16 Large Magellanic Cloud (LMC) and 16 Small Magellanic Cloud (SMC) H II region complexes using the Spitzer Space Telescope's IRAC (3.6, 4.5, 8 {mu}m) and MIPS (24, 70, 160 {mu}m) bands. Ultraviolet rocket data (1500 and 1900 A) and SHASSA H{alpha} data are also included. All data are convolved to the MIPS 160 {mu}m resolution (40 arcsec full width at half-maximum), and apertures have a minimum radius of 35''. The IRAC, MIPS, UV, and H{alpha} spatial analysis are compared with the spatial analysis of the TIR. We find that nearly all of the LMC and SMC H II region spectral energy distributions (SEDs) peak around 70 {mu}m at all radii, from {approx}10 to {approx}400 pc from the central ionizing sources. As a result, we find the following: the sizes of H II regions as probed by 70 {mu}m are approximately equal to the sizes as probed by TIR ({approx}70 pc in radius); the radial profile of the 70 {mu}m flux, normalized by TIR, is constant at all radii (70 {mu}m {approx} 0.45TIR); the 1{sigma} standard deviation of the 70 {mu}m fluxes, normalized by TIR, is a lower fraction of the mean (0.05-0.12 out to {approx}220 pc) than the normalized 8, 24, and 160 {mu}m normalized fluxes (0

  7. From PII Signaling to Metabolite Sensing: A Novel 2-Oxoglutarate Sensor That Details PII - NAGK Complex Formation

    PubMed Central

    Lüddecke, Jan; Forchhammer, Karl

    2013-01-01

    The widespread PII signal transduction proteins are known for integrating signals of nitrogen and energy supply and regulating cellular behavior by interacting with a multitude of target proteins. The PII protein of the cyanobacterium Synechococcus elongatus forms complexes with the controlling enzyme of arginine synthesis, N-acetyl-L-glutamate kinase (NAGK) in a 2-oxoglutarate- and ATP/ADP-dependent manner. Fusing NAGK and PII proteins to either CFP or YFP yielded a FRET sensor that specifically responded to 2-oxoglutarate. The impact of the fluorescent tags on PII and NAGK was evaluated by enzyme assays, surface plasmon resonance spectroscopy and isothermal calorimetric experiments. The developed FRET sensor provides real-time data on PII - NAGK interaction and its modulation by the effector molecules ATP, ADP and 2-oxoglutarate in vitro. Additionally to its utility to monitor 2-oxoglutarate levels, the FRET assay provided novel insights into PII - NAGK complex formation: (i) It revealed the formation of an encounter-complex between PII and NAGK, which holds the proteins in proximity even in the presence of inhibitors of complex formation; (ii) It revealed that the PII T-loop residue Ser49 is neither essential for complex formation with NAGK nor for activation of the enzyme but necessary to form a stable complex and efficiently relieve NAGK from arginine inhibition; (iii) It showed that arginine stabilizes the NAGK hexamer and stimulates PII - NAGK interaction. PMID:24349456

  8. From PII signaling to metabolite sensing: a novel 2-oxoglutarate sensor that details PII-NAGK complex formation.

    PubMed

    Lüddecke, Jan; Forchhammer, Karl

    2013-01-01

    The widespread PII signal transduction proteins are known for integrating signals of nitrogen and energy supply and regulating cellular behavior by interacting with a multitude of target proteins. The PII protein of the cyanobacterium Synechococcus elongatus forms complexes with the controlling enzyme of arginine synthesis, N-acetyl-L-glutamate kinase (NAGK) in a 2-oxoglutarate- and ATP/ADP-dependent manner. Fusing NAGK and PII proteins to either CFP or YFP yielded a FRET sensor that specifically responded to 2-oxoglutarate. The impact of the fluorescent tags on PII and NAGK was evaluated by enzyme assays, surface plasmon resonance spectroscopy and isothermal calorimetric experiments. The developed FRET sensor provides real-time data on PII - NAGK interaction and its modulation by the effector molecules ATP, ADP and 2-oxoglutarate in vitro. Additionally to its utility to monitor 2-oxoglutarate levels, the FRET assay provided novel insights into PII - NAGK complex formation: (i) It revealed the formation of an encounter-complex between PII and NAGK, which holds the proteins in proximity even in the presence of inhibitors of complex formation; (ii) It revealed that the PII T-loop residue Ser49 is neither essential for complex formation with NAGK nor for activation of the enzyme but necessary to form a stable complex and efficiently relieve NAGK from arginine inhibition; (iii) It showed that arginine stabilizes the NAGK hexamer and stimulates PII - NAGK interaction. PMID:24349456

  9. Double-decker phthalocyanine complex: Scanning tunneling microscopy study of film formation and spin properties

    NASA Astrophysics Data System (ADS)

    Komeda, Tadahiro; Katoh, Keiichi; Yamashita, Masahiro

    2014-05-01

    interesting spin configuration. The center metal atom, including a lanthanoid metal of Tb, tends to be 3+ cation, while the Pc ligand to be 2- anion. This realizes two-spin system, in which spins from 4f electrons and π radical coexist. Though the spins of 4f orbitals of those molecules have been studied, the importance of the π radicals has been highlighted recently from the measurement of electronic conductance properties of these molecules. In this article, recent researches on multi-decker Pc molecules are reviewed. The manuscript is organized with groups of chapters as follows: (1) Film formation, (2) Spin of TbPc2 film and Kondo resonance observation, (3) Rotation of double-decker Pc complex and chemical modification for spin control, (4) Device formation using double-decker Pc complex.

  10. Mercury(II) Complex Formation With Glutathione in Alkaline Aqueous Solution

    SciTech Connect

    Mah, V.; Jalilehvand, F.

    2009-05-19

    The structure and speciation of the complexes formed between mercury(II) ions and glutathione (GSH = L-glutamyl-L-cysteinyl-glycine) have been studied for a series of alkaline aqueous solutions (C{sub Hg{sup 2+}} {approx} 18 mmol dm{sup -3} and C{sub GSH} = 40-200 mmol dm{sup -3} at pH {approx} 10.5) by means of extended X-ray absorption fine structure (EXAFS) and {sup 199}Hg NMR spectroscopy at ambient temperature. The dominant complexes are [Hg(GS){sub 2}]{sup 4-} and [Hg(GS){sub 3}]{sup 7-}, with mean Hg-S bond distances of 2.32(1) and 2.42(2) {angstrom} observed in digonal and trigonal Hg-S coordination, respectively. The proportions of the Hg{sup 2+}-glutathione complexes were evaluated by fitting linear combinations of model EXAFS oscillations representing each species to the experimental EXAFS spectra. The [Hg(GS){sub 4}]{sup 10-} complex, with four sulfur atoms coordinated at a mean Hg-S bond distance of 2.52(2) {angstrom}, is present in minor amounts (<30%) in solutions containing a large excess of glutathione (C{sub GSH} {ge} 160 mmol dm{sup -3}). Comparable alkaline mercury(II) cysteine (H{sub 2}Cys) solutions were also investigated and a reduced tendency to form higher complexes was observed, because the deprotonated amino group of Cys{sup 2-} allows the stable [Hg(S,N-Cys){sub 2}]{sup 2-} chelate to form. The effect of temperature on the distribution of the Hg{sup 2+}-glutathione complexes was studied by comparing the EXAFS spectra at ambient temperature and at 25 K of a series of glycerol/water (33/67, v/v) frozen glasses with and C{sub Hg{sup 2+}} {approx} 7 mmol dm{sup -3} and C{sub GSH} = 16-81 mmol dm{sup -3}. Complexes with high Hg-S coordination numbers, [Hg(GS){sub 3}]{sup 7-} and [Hg(GS){sub 4}]{sup 10-}, became strongly favored when just a moderate excess of glutathione (C{sub GSH} {ge} 28 mmol dm{sup -3}) was used in the glassy samples, as expected for a stepwise exothermic bond formation. Addition of glycerol had no effect on the Hg

  11. Complex formation of cadmium with sugar residues, nucleobases, phosphates, nucleotides, and nucleic acids.

    PubMed

    Sigel, Roland K O; Skilandat, Miriam; Sigel, Astrid; Operschall, Bert P; Sigel, Helmut

    2013-01-01

    Cadmium(II), commonly classified as a relatively soft metal ion, prefers indeed aromatic-nitrogen sites (e.g., N7 of purines) over oxygen sites (like sugar-hydroxyl groups). However, matters are not that simple, though it is true that the affinity of Cd(2+) towards ribose-hydroxyl groups is very small; yet, a correct orientation brought about by a suitable primary binding site and a reduced solvent polarity, as it is expected to occur in a folded nucleic acid, may facilitate metal ion-hydroxyl group binding very effectively. Cd(2+) prefers the guanine(N7) over the adenine(N7), mainly because of the steric hindrance of the (C6)NH(2) group in the adenine residue. This Cd(2+)-(N7) interaction in a guanine moiety leads to a significant acidification of the (N1)H meaning that the deprotonation reaction occurs now in the physiological pH range. N3 of the cytosine residue, together with the neighboring (C2)O, is also a remarkable Cd(2+) binding site, though replacement of (C2)O by (C2)S enhances the affinity towards Cd(2+) dramatically, giving in addition rise to the deprotonation of the (C4)NH(2) group. The phosphodiester bridge is only a weak binding site but the affinity increases further from the mono- to the di- and the triphosphate. The same also holds for the corresponding nucleotides. Complex stability of the pyrimidine-nucleotides is solely determined by the coordination tendency of the phosphate group(s), whereas in the case of purine-nucleotides macrochelate formation takes place by the interaction of the phosphate-coordinated Cd(2+) with N7. The extents of the formation degrees of these chelates are summarized and the effect of a non-bridging sulfur atom in a thiophosphate group (versus a normal phosphate group) is considered. Mixed ligand complexes containing a nucleotide and a further mono- or bidentate ligand are covered and it is concluded that in these species N7 is released from the coordination sphere of Cd(2+). In the case that the other ligand

  12. Thermochemical study of processes of complex formation of Cu2+ ions with L-glutamine in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Gorboletova, G. G.; Gridchin, S. N.; Lutsenko, A. A.

    2010-11-01

    Heats of the interaction of Cu(NO3)2 solutions with L-glutamine solutions were measured directly by calorimetry at a temperature of 298.15 K and ionic strength values of 0.5, 1.0, and 1.5 (KNO3). Using RRSU universal software, the experimental data were subjected to rigorous mathematical treatment with allowances made for several concurrent processes in the system. The heats of formation of the CuL+ and CuL2 complexes were calculated from the calorimetric measurements. The standard heats of the complex formation of Cu2+ with L-glutamine were obtained by extrapolation to zero ionic strength. The complete thermodynamic characteristic (Δr H o, Δr G o, Δr S o) of the complex formation processes in a Cu2+—L-glutamine system was obtained.

  13. Undergraduate Analytical Chemistry Experiment: The Determination of Formation Constants for Acetate and Mono-and Dichloroacetate Salts of Primary, Secondary, and Tertiary Methyl-and Ethylamines

    ERIC Educational Resources Information Center

    D'Amelia, Ronald P.; Chiang, Stephanie; Pollut, Stephanie; Nirode, William F.

    2014-01-01

    The formation and the hydrolysis of organic salts produced by the titration of a 0.1 M solution of the following amines: methyl-, dimethyl-, trimethyl-, ethyl-, diethyl-, and triethylamine with a 0.1 M solution of acetic, chloroacetic, and dichloracetic acids are studied. The pK[subscript b] of the amine and the pH at the end point were determined…

  14. Polyprotein-Driven Formation of Two Interdependent Sets of Complexes Supporting Hepatitis C Virus Genome Replication

    PubMed Central

    Gomes, Rafael G. B.; Isken, Olaf; Tautz, Norbert; McLauchlan, John

    2015-01-01

    ABSTRACT Hepatitis C virus (HCV) requires proteins from the NS3-NS5B polyprotein to create a replicase unit for replication of its genome. The replicase proteins form membranous compartments in cells to facilitate replication, but little is known about their functional organization within these structures. We recently reported on intragenomic replicons, bicistronic viral transcripts expressing an authentic replicase from open reading frame 2 (ORF2) and a second duplicate nonstructural (NS) polyprotein from ORF1. Using these constructs and other methods, we have assessed the polyprotein requirements for rescue of different lethal point mutations across NS3-5B. Mutations readily tractable to rescue broadly fell into two groupings: those requiring expression of a minimum NS3-5A and those requiring expression of a minimum NS3-5B polyprotein. A cis-acting mutation that blocked NS3 helicase activity, T1299A, was tolerated when introduced into either ORF within the intragenomic replicon, but unlike many other mutations required the other ORF to express a functional NS3-5B. Three mutations were identified as more refractile to rescue: one that blocked cleavage of the NS4B5A boundary (S1977P), another in the NS3 helicase (K1240N), and a third in NS4A (V1665G). Introduced into ORF1, these exhibited a dominant negative phenotype, but with K1240N inhibiting replication as a minimum NS3-5A polyprotein whereas V1665G and S1977P only impaired replication as a NS3-5B polyprotein. Furthermore, an S1977P-mutated NS3-5A polyprotein complemented other defects shown to be dependent on NS3-5A for rescue. Overall, our findings suggest the existence of two interdependent sets of protein complexes supporting RNA replication, distinguishable by the minimum polyprotein requirement needed for their formation. IMPORTANCE Positive-strand RNA viruses reshape the intracellular membranes of cells to form a compartment within which to replicate their genome, but little is known about the functional

  15. Pore-controlled formation of 0D metal complexes in anionic 3D metal-organic frameworks

    SciTech Connect

    Zhang, MW; Bosch, M; Zhou, HC

    2015-01-01

    The host-guest chemistry between a series of anionic MOFs and their trapped counterions was investigated by single crystal XRD. The PCN-514 series contains crystallographically identifiable metal complexes trapped in the pores, where their formation is controlled by the size and shape of the MOF pores. A change in the structure and pore size of PCN-518 indicates that the existence of guest molecules may reciprocally affect the formation of host MOFs.

  16. Protostellar Interferometric Line Survey (PILS): Constraining the formation of complex organic molecules with ALMA

    NASA Astrophysics Data System (ADS)

    Jorgensen, Jes K.; Coutens, Audrey; Bourke, Tyler L.; Favre, Cecile; Garrod, Robin; Lykke, Julie; Mueller, Holger; Oberg, Karin I.; Schmalzl, Markus; van der Wiel, Matthijs; van Dishoeck, Ewine; Wampfler, Susanne F.

    2015-08-01

    Understanding how, when and where complex organic and potentially prebiotic molecules are formed is a fundamental goal of astrochemistry and an integral part of origins of life studies. Already now ALMA is showing its capabilities for studies of the chemistry of solar-type stars with its high sensitivity for faint lines, high spectral resolution which limits line confusion, and high angular resolution making it possible to study the structure of young protostars on solar-system scales. We here present the first results from a large unbiased survey “Protostellar Interferometric Line Survey (PILS)” targeting one of the astrochemical template sources, the low-mass protostellar binary IRAS 16293-2422. The survey is more than an order of magnitude more sensitive than previous surveys of the source and provide imaging down to 25 AU scales (radius) around each of the two components of the binary. An example of one of the early highlights from the survey is unambiguous detections of the (related) prebiotic species glycolaldehyde, ethylene glycol (two lowest energy conformers), methyl formate and acetic acid. The glycolaldehyde-ethylene glycol abundance ratio is high in comparison to comets and other protostars - but agrees with previous measurements, e.g., in the Galactic Centre clouds possibly reflecting different environments and/or evolutionary histories. Complete mapping of this and other chemical networks in comparison with detailed chemical models and laboratory experiments will reveal the origin of complex organic molecules in a young protostellar system and investigate the link between these protostellar stages and the early Solar System.

  17. EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages

    SciTech Connect

    Lancaster, J.R. Jr.; Hibbs, J.B. Jr. )

    1990-02-01

    Activated macrophage cytotoxicity is characterized by loss of intracellular iron and inhibition of certain enzymes that have catalytically active nonheme-iron coordinated to sulfur. This phenomenon involves the oxidation of one of the terminal guanidino nitrogen atoms of L-arginine, which results in the production of citrulline and inorganic nitrogen oxides (NO2-, NO3-, and NO). We report here the results of an electron paramagnetic resonance spectroscopic study performed on cytotoxic activated macrophage (CAM) effector cells, which develop the same pattern of metabolic inhibition as their targets. Examination of activated macrophages from mice infected with Mycobacterium bovis (strain bacillus Calmette-Guerin) that were cultured in medium with lipopolysaccharide and L-arginine showed the presence of an axial signal at g = 2.039, which is similar to previously described iron-nitrosyl complexes formed from the destruction of iron-sulfur centers by nitric oxide (NO). Inhibition of the L-arginine-dependent pathway by addition of NG-monomethyl-L-arginine (methyl group on a terminal guanidino nitrogen) inhibits the production of nitrite, nitrate, citrulline, and the g = 2.039 signal. Comparison of the hyperfine structure of the signal from cells treated with L-arginine with terminal guanidino nitrogen atoms of natural abundance N14 atoms or labeled with N15 atoms showed that the nitrosyl group in this paramagnetic species arises from one of these two atoms. These results show that loss of iron-containing enzyme function in CAM is a result of the formation of iron-nitrosyl complexes induced by the synthesis of nitric oxide from the oxidation of a terminal guanidino nitrogen atom of L-arginine.

  18. Formation of Complex Organic molecules from Formaldehyde Chemistry in Cometary Ice Analogues

    NASA Astrophysics Data System (ADS)

    Duvernay, fabrice; Vinogradoff, Vassilissa; Danger, Grégoire; Theulé, Patrice; Chiavassa, Thierry

    2015-04-01

    There is convincing evidence that the formation of complex organic molecules occurred in a variety of astrophysical environments. Among them, precursors of biomolecules are of particular significance due to their exobiological implications. Hexamethylenetetramine (HMT, C6H12N4) and the polyoxymethylene (POM, -(CH2-O)n-) are of prime interest since they are supposed to be present in cometary environments. They are also ones of the main components of the organic residue formed from the warming of photolysed interstellar/cometary ice analogs. In this work, we study the warming of water-dominated cometary ice analogs containing formaldehyde (H2CO). Based on infrared and mass spectrometry measurements, and complemented by quantum chemical calculations, we report that NH2CH2OH, HOCH2OH, and POM are the only reaction products when the ice also contains NH3. The branching ratio between the three products strongly depends on the initial H2CO/NH3 concentration ratio. Moreover, the influence of the initial ice composition on the formation of POM oligomers (HO-(CH2O)n-H, n<5) as well as their thermal instability between 200 and 320 K are investigated. Finally, the implications of these results with respect to cometary nucleus chemistry and their impact on POM detection by the Rosetta mission are discussed. In addition, the mechanism for HMT formation in interstellar or cometary ice analogs containing H2CO, NH3, and HCOOH has been determined by combining laboratory experiments and DFT calculations. We show that HMT is thermally formed from H2CO and NH3 activated by HCOOH. Two intermediates has been unambiguously detected: NH2CH2OH and the trimer of CH2NH (1,3,5-triazinane, TMT). Unlike to what it was previously thought, HMT is not an indicator of ice photochemistry, but an indicator of thermal processing of ice. These results strengthen the hypothesis that HMT and its intermediates should be present in comets, where they may be detected with the COSAC or COSIMA instrument of

  19. Ab-initio calculation study on the formation mechanism of boron-oxygen complexes in c-Si

    SciTech Connect

    Yu, Xuegong; Chen, Peng; Chen, Xianzi; Liu, Yong; Yang, Deren

    2015-07-15

    Boron-oxygen (B-O) complex in crystalline silicon (c-Si) solar cells is responsible for the light-induced efficiency degradation of solar cell. However, the formation mechanism of B-O complex is not clear yet. By Ab-initio calculation, it is found that the stagger-type oxygen dimer (O{sub 2i}{sup st}) should be the component of B-O complex, whose movement occurs through its structure reconfiguration at low temperature, instead of its long-distance diffusion. The O{sub 2i}{sup st} can form two stable “latent centers” with the B{sub s}, which are recombination-inactive. The latent centers can be evolved into the metastable recombination centers via their structure transformation in the presence of excess carriers. These results can well explain the formation behaviors of B-O complexes in c-Si.

  20. Age range of formation of sedimentary-volcanogenic complex of the Vetreny Belt (the southeast of the Baltic Shield)

    NASA Astrophysics Data System (ADS)

    Mezhelovskaya, S. V.; Korsakov, A. K.; Mezhelovskii, A. D.; Bibikova, E. V.

    2016-03-01

    As a result of studying the Vetreny Belt greenstone structure (the southeast of the Baltic Shield), zircons from terrigenous deposits of the Toksha Formation, underlying the section of the sedimentary-volcanogenic complex, and zircons of the Vetreny Belt Formation, deposits of which crown the section, were dated. The results of analysis of age data of detrital zircons from quartzites of the Toksha Formation indicate that Mesoarchean greenstone complexes and paleo-Archean granitogneisses of the Vodlozero Block (Karelia) were the provenance area from which these zircons were derived. The occurrence of the youngest zircons with age of 2654.3 ± 38.5 Ma is evidence that the formation of the Vetreny Belt, including the Toksha Formation, began no earlier than this time. Zircons from volcanic rocks of the Vetreny Belt yielded the age of 2405 ± 5 Ma. Thus, the age interval of the formation of the sedimentary-volcanogenic complex of the Vetreny Belt ranges from 2654.3 ± 38.5 to 2405 ± 5 Ma.

  1. Apatite formation behaviour during metasomatism in the Bathtub Intrusion (Babbitt deposit, Duluth Complex, USA)

    NASA Astrophysics Data System (ADS)

    Raič, Sara; Mogessie, Aberra; Krenn, Kurt; Hauzenberger, Christoph A.; Tropper, Peter

    2016-04-01

    The mineralized troctolitic Bathtub intrusion (Duluth Complex, NE-Minnesota) is known for its famous Cu-Ni-Sulfide±PGM Babbitt deposit, where platinum group minerals (PGMs) are either hosted by primary magmatic sulfides (base metal sulfides) or associated with hydrothermally altered portions. This secondary generation of PGMs is present in alteration patches and suggests the involvement of hydrothermal fluids in the mobilization of platinum-group elements (PGEs). Accessory fluorapatite in these samples reveals besides H2O- and CO2-rich primary fluid inclusions, textural and compositional variations that also record magmatic and metasomatic events. Based on detailed back-scattered electron imaging (BSE) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS), a primary magmatic origin is reflected by homogeneous or zoned grains, where zoning patterns are either concentric or oscillatory, with respect to LREE. Late magmatic to hydrothermal processes are indicated by grains with bright LREE-enriched rims or conversion textures with REE-enriched patches in the interior of the apatite. A metasomatic formation of monazite from apatite is documented by the presence of monazite inclusions in apatite and newly grown monazite at altered apatite rims. They formed by the release of REEs from the apatite during a fluid-induced alteration, based on the coupled substitution Ca2+ + P5+ = REE3+ + Si4+ (Rønsbo 1989; Rønsbo 2008). Samples with monazite inclusions in apatite further display occurrences of PGMs associated with hydrothermal alteration patches (chlorite + amphibole). The presence of H2O- and CO2-rich fluid inclusions in apatite, the metasomatically induced monazite growth, as well as the occurrence of PGMs in hydrothermally alteration zones, also suggest the involvement of aqueous chloride complexes in a H2O dominated fluid in the transportation of LREE and redistribution of the second generation of PGEs. Rønsbo, J.G. (1989): Coupled substitutions

  2. A desk-computer program for calculation of the parameters of acid-base titration curves and protonation or metal-complex stability constants from potentiometric data.

    PubMed

    Gaizer, F; Puskás, A

    1981-08-01

    The program MINIPOT is designed to run on a desk-computer with 16-kbyte of memory. It can calculate the optimum values of the parameters of a blank acid-base titration in any solvent, and the protonation/deprotonation or overall stability constants of a maximum of four species with compositions H(q)L(p) or M(q)L(p) from potential, titrant volume and analytical concentration data. The program, written in BASIC, is based on the least-squares principle and is capable of simultaneous refinement of a maximum of four parameters. PMID:18962959

  3. Computation of infinite dilute activity coefficients of binary liquid alloys using complex formation model

    NASA Astrophysics Data System (ADS)

    Awe, O. E.; Oshakuade, O. M.

    2016-04-01

    A new method for calculating Infinite Dilute Activity Coefficients (γ∞s) of binary liquid alloys has been developed. This method is basically computing γ∞s from experimental thermodynamic integral free energy of mixing data using Complex formation model. The new method was first used to theoretically compute the γ∞s of 10 binary alloys whose γ∞s have been determined by experiments. The significant agreement between the computed values and the available experimental values served as impetus for applying the new method to 22 selected binary liquid alloys whose γ∞s are either nonexistent or incomplete. In order to verify the reliability of the computed γ∞s of the 22 selected alloys, we recomputed the γ∞s using three other existing methods of computing or estimating γ∞s and then used the γ∞s obtained from each of the four methods (the new method inclusive) to compute thermodynamic activities of components of each of the binary systems. The computed activities were compared with available experimental activities. It is observed that the results from the method being proposed, in most of the selected alloys, showed better agreement with experimental activity data. Thus, the new method is an alternative and in certain instances, more reliable approach of computing γ∞s of binary liquid alloys.

  4. Late neoproterozoic igneous complexes of the western Baikal-Muya Belt: Formation stages

    NASA Astrophysics Data System (ADS)

    Fedotova, A. A.; Razumovskiy, A. A.; Khain, E. V.; Anosova, M. O.; Orlova, A. V.

    2014-07-01

    The paper presents new geological, geochemical, and isotopic data on igneous rocks from a thoroughly studied area in the western Baikal-Muya Belt, which is a representative segment of the Neoproterozoic framework of the Siberian Craton. Three rock associations are distinguished in the studied area: granulite-enderbite-charnockite and ultramafic-mafic complexes followed by the latest tonalite-plagiogranitegranite series corresponding to adakite in geochemical characteristics. Tonalites and granites intrude the metamorphic and gabbroic rocks of the Tonky Mys Point, as well as Slyudyanka and Kurlinka intrusions. The tonalites yielded a U-Pb zircon age of 595 ± 5 Ma. The geochronological and geological information indicate that no later than a few tens of Ma after granulite formation they were transferred to the upper lithosphere level. The Sm-Nd isotopic data show that juvenile material occurs in rocks of granitoid series (ɛNd(t) = 3.2-7.1). Ophiolites, island-arc series, eclogites, and molasse sequences have been reviewed as indicators of Neoproterozoic geodynamic settings that existed in the Baikal-Muya Belt. The implications of spatially associated granulites and ultramafic-mafic intrusions, as well as granitoids with adakitic geochemical characteristics for paleogeodynamic reconstructions of the western Baikal-Muya Belt, are discussed together with other structural elements of the Central Asian Belt adjoining the Siberian Platform in the south.

  5. Decamethylytterbocene complexes of bipyridines and diazabutadines: multiconfigurational ground states and open-shell singlet formation

    SciTech Connect

    Bauer, Eric D; Booth, C H; Walter, M D; Kazhdan, D; Hu, Y - J; Lukens, Wayne; Maron, Laurent; Eisentein, Odile; Anderson, Richard

    2009-01-01

    Partial ytterbium f-orbital occupancy (i.e. intermediate valence) and open-shell singlet Draft 12/formation are established for a variety of bipyridine and diazabutadiene adducts to decamethylytterbocene, (C{sub 5}Me{sub 5}){sub 2}Yb or Cp*{sub 2}Yb. Data used to support this claim includes ytterbium valence measurements using Yb Lm-edge x-ray absorption near-edge structure (XANES) spectroscopy, magnetic susceptibility and Complete Active Space Self-Consistent Field (CASSCF) multi configurational calculations, as well as structural measurements compared to density-functional theory (DFT) calculations. The CASSCF calculations indicate that the intermediate valence is the result of a multiconfigurational ground state wave function that has both an open-shell singlet f{sup 13} and a closed-shell singlet f{sup 14} component. A number of other competing theories for the unusual magnetism in these materials are ruled out by the presence of intermediate valence and its lack of any significant temperature dependence. These results have implications for understanding chemical bonding not only in organolanthanide complexes, but also for organometallic chemistry in general, as well as understanding magnetic interactions in nanopartic1es and devices.

  6. Decamethylytterbocene Complexes of Bipyridines and Diazabutadienes: Multiconfigurational Ground States and Open-Shell Singlet Formation

    SciTech Connect

    Booth, Corwin H.; Walter, Marc D.; Kazhdan, Daniel; Hu, Yung-Jin; Lukens, Wayne W.; Bauer, Eric D.; Maron, Laurent; Eisenstein, Odile; Andersen, Richard A.

    2009-04-22

    Partial ytterbium f-orbital occupancy (i.e., intermediate valence) and open-shell singlet formation are established for a variety of bipyridine and diazabutadiene adducts with decamethylytterbocene, (C5Me5)2Yb, abbreviated as Cp*2Yb. Data used to support this claim include ytterbium valence measurements using Yb LIII-edge X-ray absorption near-edge structure spectroscopy, magnetic susceptibility, and complete active space self-consistent field (CASSCF) multiconfigurational calculations, as well as structural measurements compared to density functional theory calculations. The CASSCF calculations indicate that the intermediate valence is the result of a multiconfigurational ground-state wave function that has both an open-shell singlet f13(?*)1, where pi* is the lowest unoccupied molecular orbital of the bipyridine or dpiazabutadiene ligands, and a closed-shell singlet f14 component. A number of other competing theories for the unusual magnetism in these materials are ruled out by the lack of temperature dependence of the measured intermediate valence. These results have implications for understanding chemical bonding not only in organolanthanide complexes but also for f-element chemistry in general, as well as understanding magnetic interactions in nanoparticles and devices.

  7. SEPT12-Microtubule Complexes Are Required for Sperm Head and Tail Formation

    PubMed Central

    Kuo, Pao-Lin; Chiang, Han-Sun; Wang, Ya-Yun; Kuo, Yung-Che; Chen, Mei-Feng; Yu, I-Shing; Teng, Yen-Ni; Lin, Shu-Wha; Lin, Ying-Hung

    2013-01-01

    The septin gene belongs to a highly conserved family of polymerizing GTP-binding cytoskeletal proteins. SEPTs perform cytoskeletal remodeling, cell polarity, mitosis, and vesicle trafficking by interacting with various cytoskeletons. Our previous studies have indicated that SEPTIN12+/+/+/− chimeras with a SEPTIN12 mutant allele were infertile. Spermatozoa from the vas deferens of chimeric mice indicated an abnormal sperm morphology, decreased sperm count, and immotile sperm. Mutations and genetic variants of SEPTIN12 in infertility cases also caused oligozoospermia and teratozoospermia. We suggest that a loss of SEPT12 affects the biological function of microtublin functions and causes spermiogenesis defects. In the cell model, SEPT12 interacts with α- and β-tubulins by co-immunoprecipitation (co-IP). To determine the precise localization and interactions between SEPT12 and α- and β-tubulins in vivo, we created SEPTIN12-transgene mice. We demonstrate how SEPT12 interacts and co-localizes with α- and β-tubulins during spermiogenesis in these mice. By using shRNA, the loss of SEPT12 transcripts disrupts α- and β-tubulin organization. In addition, losing or decreasing SEPT12 disturbs the morphogenesis of sperm heads and the elongation of sperm tails, the steps of which are coordinated and constructed by α- and β-tubulins, in SEPTIN12+/+/+/− chimeras. In this study, we discovered that the SEPTIN12-microtubule complexes are critical for sperm formation during spermiogenesis. PMID:24213608

  8. Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation

    PubMed Central

    de Vries, Femke A.T.; de Boer, Esther; van den Bosch, Mike; Baarends, Willy M.; Ooms, Marja; Yuan, Li; Liu, Jian-Guo; van Zeeland, Albert A.; Heyting, Christa; Pastink, Albert

    2005-01-01

    In meiotic prophase, synaptonemal complexes (SCs) closely appose homologous chromosomes (homologs) along their length. SCs are assembled from two axial elements (AEs), one along each homolog, which are connected by numerous transverse filaments (TFs). We disrupted the mouse gene encoding TF protein Sycp1 to analyze the role of TFs in meiotic chromosome behavior and recombination. Sycp1-/- mice are infertile, but otherwise healthy. Sycp1-/- spermatocytes form normal AEs, which align homologously, but do not synapse. Most Sycp1-/- spermatocytes arrest in pachynema, whereas a small proportion reaches diplonema, or, exceptionally, metaphase I. In leptotene Sycp1-/- spermatocytes, γH2AX (indicative of DNA damage, including double-strand breaks) appears normal. In pachynema, Sycp1-/- spermatocytes display a number of discrete γH2AX domains along each chromosome, whereas γH2AX disappears from autosomes in wild-type spermatocytes. RAD51/DMC1, RPA, and MSH4 foci (which mark early and intermediate steps in pairing/recombination) appear in similar numbers as in wild type, but do not all disappear, and MLH1 and MLH3 foci (which mark late steps in crossing over) are not formed. Crossovers were rare in metaphase I of Sycp1-/- mice. We propose that SYCP1 has a coordinating role, and ensures formation of crossovers. Unexpectedly, Sycp1-/- spermatocytes did not form XY bodies. PMID:15937223

  9. Formation and Identification of Unresolved Complex Mixtures in Lacustrine Biodegraded Oil from Nanxiang Basin, China

    PubMed Central

    Guo, Pengfei; He, Sheng; Zhu, Shukui; Chai, Derong; Yin, Shiyan; Dai, Wei; Zhang, Wanfeng

    2014-01-01

    A comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC × GC/TOFMS) method has been developed for the formation and identification of unresolved complex mixtures (UCMs) in lacustrine biodegraded oils that with the same source rock, similar maturity, and increasing degradation rank from Nanxiang Basin, China. Normal alkanes, light hydrocarbons, isoprenoids, steranes, and terpanes are degraded gradually from oil B330 to oil G574. The compounds in biodegraded oil (oil G574) have fewer types, the polarity difference of compounds in different types is minor, and the relative content of individual compounds is similar. All the features make the compounds in biodegraded oil coelute in GC analysis and form the raised “baseline hump” named UCMs. By injecting standard materials and analyzing mass spectrums of target compounds, it is shown that cyclic alkanes with one to five rings are the major components of UCMs. Furthermore, UCMs were divided into six classes. Classes I and II, composed of alkyl-cyclohexanes, alkyl-naphthanes, and their isomers, are originated from the enrichment of hydrocarbons resistant to degradation in normal oils. Classes III ~ VI, composed of sesquiterpenoids, tricyclic terpanes, low molecular steranes, diasteranes, norhopanes, and their isomers, are probably from some newly formed compounds during the microbial transformation of oil. PMID:25177711

  10. SipB-SipC complex is essential for translocon formation.

    PubMed

    Myeni, Sebenzile K; Wang, Lu; Zhou, Daoguo

    2013-01-01

    The delivery of effector proteins by Salmonella across the host cell membrane requires a subset of effectors secreted by the type III secretion system (TTSS) known as translocators. SipC and SipB are translocator proteins that are inserted into host membranes and presumably form a channel that translocates type III effectors into the host cell. The molecular events of how these translocators insert into the host cell membrane remain unknown. We have previously shown that the SipC C-terminal amino acid region (321-409) is required for the translocation of effectors into host cells. In this study, we demonstrate that the ability to form SipC-SipB complex is essential for their insertion into the host membrane. The SipB-interacting domain of SipC is near its C-terminal amino acid region (340-409). In the absence of SipB, SipC was not detected in the membrane fraction. Furthermore, SipC mutants that no longer interact with SipB are defective in inserting into the host cell membrane. We propose a mechanism whereby SipC binds SipB through its C-terminal region to facilitate membrane-insertion and subsequent translocon formation in the host cell membrane. PMID:23544147

  11. [Pattern formation in microcosm: the role of self-assembly in complex biological envelopes development].

    PubMed

    Gabaraeva, N I; Hemsley, A R

    2010-01-01

    The data on the development of pollen/spore walls (of sporoderm) were reconsidered in the light of our hypothesis regarding a considerable role of self-assembling processes in the formation of this complex pattern. The premises that (1) glycocalyx (cell surface coating) is a self-assembling colloidal solution, and that (2) exine, formed on a glycocalyx framework, appears as a result of the self-assembly of the biopolymer (sporopollenin microemulsion), were independently suggested by the authors of this paper (Gabarayeva, 1990, 1993; Hemsley et al., 1992). Afterwards a joint hypothesis has been worked out which interpreted the processes of sporoderm development through regularities of colloidal chemistry. It was shown that all of the successive developmental stages, seen in transmission electron microscope (TEM) in the course of pollen wall development, correspond to successive micelle mesophases of a colloidal solution of surface-active substances which self-assemble when their concentration increases. Such an interpretation implies that all of the microstructures, observed in mature pollen walls (granules; rods-columellae; hexagonally packed layers of rods; bilayers, separated with a gap) are somewhat like "stiff history" of their appearance as a micellar sequence, immortalized by chemically resistant sporopollenin. Since self-assembling processes have nonlinear, spasmodic character, and microstructures of pollen wall, mentioned above, are arranged, as a rule, in successive layers, it has been suggested that these layers of heterogeneous microstructures occur as a result of the abrupt phase transitions typical for self-assembling micellar systems. PMID:20865932

  12. A cyclo‐P6 Ligand Complex for the Formation of Planar 2D Layers

    PubMed Central

    Heindl, Claudia; Peresypkina, Eugenia V.; Lüdeker, David; Brunklaus, Gunther; Virovets, Alexander V.

    2016-01-01

    Abstract The all‐phosphorus analogue of benzene, stabilized as middle deck in triple‐decker complexes, is a promising building block for the formation of graphene‐like sheet structures. The reaction of [(CpMo)2(μ,η6:η6‐P6)] (1) with CuX (X=Br, I) leads to self‐assembly into unprecedented 2D networks of [{(CpMo)2P6}(CuBr)4]n (2) and [{(CpMo)2P6}(CuI)2]n (3). X‐ray structural analyses show a unique deformation of the previously planar cyclo‐P6 ligand. This includes bending of one P atom in an envelope conformation as well as a bisallylic distortion. Despite this, 2 and 3 form planar layers. Both polymers were furthermore analyzed by 31P{1H} magic angle spinning (MAS) NMR spectroscopy, revealing signals corresponding to six non‐equivalent phosphorus sites. A peak assignment is achieved by 2D correlation spectra as well as by DFT chemical shift computations. PMID:26711699

  13. Multi-scale modeling of complex neuronal networks: a view towards striatal cholinergic pattern formations.

    PubMed

    Noori, Hamid Reza

    2012-09-01

    The phenomena related to brain function occur as the interplay of various modules at different spatial and temporal scales. Particularly, the integration of the dynamical behavior of cells within the complex brain topology reveals a heterogeneous multi-scale problem, which has, to date, mainly been addressed by methods of statistical physics such as mean-field approximations. In contrast, the present study introduces an abstract mathematical model of a deterministic nature that provides a robust integral transformation of the microscopic activities into macroscopic spatiotemporal patterns. The existence of the transformation operator is guaranteed by the convergence of a repetitive patching of the network domain with its fundamental domains that express the local topologies of the tissue. Depending on the choice of the local connectivity function, this framework represents a computationally efficient generalization of the classical Kirchhoff's, Hebbian, and Hopfield's approaches. The capabilities of this multi-scale method have been evaluated within the structure of the dorsal striatum of rats, a brain region with major involvement in motor and cognitive information processing. Numerical simulations suggest the formation of characteristic spatiotemporal patterns due to the activation of cholinergic interneurons. PMID:24615222

  14. Cluster formation by allelomimesis in real-world complex adaptive systems

    NASA Astrophysics Data System (ADS)

    Juanico, Dranreb Earl; Monterola, Christopher; Saloma, Caesar

    2005-04-01

    Animal and human clusters are complex adaptive systems and many organize in cluster sizes s that obey the frequency distribution D(s)∝s-τ . The exponent τ describes the relative abundance of the cluster sizes in a given system. Data analyses reveal that real-world clusters exhibit a broad spectrum of τ values, 0.7 (tuna fish schools) ⩽τ⩽4.61 (T4 bacteriophage gene family sizes). Allelomimesis is proposed as an underlying mechanism for adaptation that explains the observed broad τ spectrum. Allelomimesis is the tendency of an individual to imitate the actions of others and two cluster systems have different τ values when their component agents display unequal degrees of allelomimetic tendencies. Cluster formation by allelomimesis is shown to be of three general types: namely, blind copying, information-use copying, and noncopying. Allelomimetic adaptation also reveals that the most stable cluster size is formed by three strongly allelomimetic individuals. Our finding is consistent with available field data taken from killer whales and marmots.

  15. Floatation-spectrophotometric Determination of Thorium, Using Complex Formation with Eriochrome Cyanine R

    PubMed Central

    Shiri, Sabah; Delpisheh, Ali; Haeri, Ali; Poornajaf, Abdolhossein; Khezeli, Tahereh; Badkiu, Nadie

    2011-01-01

    A novel and sensitive floatation-spectrophotometric method is presented for determination of trace amounts of thorium in water samples. The method is based on the ion-associated formation between thorium, Eriochrome cyanine R and Brij-35 at pH = 4 media. The complex was floated in the interface of the aqueous phase and n-hexane by vigorous shaking. After removing the aqueous phase the floated particles were dissolved in methanol and the absorbance was measured at 607 nm. The influence of different important parameters such as Eriochrome cyanine R and surfactants concentration, pH, volume of n-hexane, standing time and interfering ions were evaluated. Under optimized conditions the calibration graph was linear in the range of 6–230 ng mL−1 of thorium with a correlation coefficient of 0.9985. The limit of detections (LOD), based on signal to noise ratio (S/N) of 3 was 1.7 ng mL−1. The relative standard deviations for determination of 150 and 30 ng ml−1 of thorium were 3.26 and 4.41%, respectively (n = 10). The method showed a good linearity, recoveries, as well as some advantages such as sensitivity, simplicity, affordability and a high feasibility. The method was successfully applied to determine thorium in different water and urine samples. PMID:21340019

  16. Resolving detailed molecular structures in complex organic mixtures and modeling their secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Goodman-Rendall, Kevin A. S.; Zhuang, Yang R.; Amirav, Aviv; Chan, Arthur W. H.

    2016-03-01

    Characterization of unresolved complex mixtures (UCMs) remains an ongoing challenge towards developing detailed and accurate inputs for modeling secondary organic aerosol (SOA) formation. Traditional techniques based on gas chromatography/electron impact-mass spectrometry induce excessive fragmentation, making it difficult to speciate and quantify isomers precisely. The goal of this study is to identify individual organic isomers by gas chromatography/mass spectrometry with supersonic molecular beam (SMB-GC/MS, also known as GC/MS with Cold EI) and to incorporate speciated isomers into an SOA model that accounts for the specific structures elucidated. Two samples containing atmospherically relevant UCMs are analyzed. The relative isomer distributions exhibit remarkably consistent trends across a wide range of carbon numbers. Constitutional isomers of different alkanes are speciated and individually quantified as linear, branched - for the first time by position of branching - multiply branched, or unsaturated - by degree of ring substitution and number of rings. Relative amounts of exact molecular structures are used as input parameters in an SOA box model to study the effects of molecular structures on SOA yields and volatility evolution. Highly substituted cyclic, mono-substituted cyclic, and linear species have the highest SOA yields while branched alkanes formed the least SOA. The rate of functionalization of a representative UCM is found to be in agreement with current volatility basis set (VBS) parameterizations based on detailed knowledge of composition and known oxidation mechanisms, confirming the validity of VBS parameters currently used in air quality models.

  17. Bound Na(+) is a Negative Effecter for Thrombin-Substrate Stereospecific Complex Formation.

    PubMed

    Kurisaki, Ikuo; Takayanagi, Masayoshi; Nagaoka, Masataka

    2016-05-26

    Thrombin has been studied as a paradigmatic protein of Na(+)-activated allosteric enzymes. Earlier structural studies suggest that Na(+)-binding promotes the thrombin-substrate association reaction. However, it is still elusive because (1) the structural change, driven by Na(+)-binding, is as small as the thermal fluctuation, and (2) the bound Na(+) is close to Asp189 in the primary substrate binding pocket (S1-pocket), possibly preventing substrate access via repulsive interaction. It still remains a matter of debate whether Na(+)-binding actually promotes the reaction. To solve this problem, we examined the effect of Na(+) on the reaction by employing molecular dynamics (MD) simulations. By executing independent 210 MD simulations of apo and holo systems, we obtained 80 and 26 trajectories undergoing substrate access to S1-pocket, respectively. Interestingly, Na(+)-binding results in a 3-fold reduction of the substrate access. Furthermore, we examined works for the substrate access and release, and found that Na(+)-binding is disadvantageous for the presence of the substrate in the S1-pocket. These observations provide the insight that the bound Na(+) is essentially a negative effecter in thrombin-substrate stereospecific complex formation. The insight rationalizes an enigmatic feature of thrombin, relatively low Na(+)-binding affinity. This is essential to reduce the disadvantage of Na(+)-binding in the substrate-binding. PMID:27164318

  18. Feedback control of prion formation and propagation by the ribosome-associated chaperone complex

    PubMed Central

    Kiktev, Denis A.; Melomed, Mikhail M.; Lu, Caroline D.; Newnam, Gary P.; Chernoff, Yury O.

    2015-01-01

    Summary Cross-beta fibrous protein aggregates (amyloids and amyloid-based prions) are found in mammals (including humans) and fungi (including yeast), and are associated with both diseases and heritable traits. The Hsp104/70/40 chaperone machinery controls propagation of yeast prions. The Hsp70 chaperones Ssa and Ssb show opposite effects on [PSI+], a prion form of the translation termination factor Sup35 (eRF3). Ssb is bound to translating ribosomes via ribosome-associated complex (RAC), composed of Hsp40-Zuo1 and Hsp70-Ssz1. Here we demonstrate that RAC disruption increases de novo prion formation in a manner similar to Ssb depletion, but interferes with prion propagation in a manner similar to Ssb overproduction. Release of Ssb into the cytosol in RAC-deficient cells antagonizes binding of Ssa to amyloids. Thus, propagation of an amyloid formed due to lack of ribosome-associated Ssb can be counteracted by cytosolic Ssb, generating a feedback regulatory circuit. Release of Ssb from ribosomes is also observed in wild type cells during growth in poor synthetic medium. Ssb is, in a significant part, responsible for the prion destabilization in these conditions, underlining the physiological relevance of the Ssb-based regulatory circuit. PMID:25649498

  19. A cyclo-P6 Ligand Complex for the Formation of Planar 2D Layers.

    PubMed

    Heindl, Claudia; Peresypkina, Eugenia V; Lüdeker, David; Brunklaus, Gunther; Virovets, Alexander V; Scheer, Manfred

    2016-02-01

    The all-phosphorus analogue of benzene, stabilized as middle deck in triple-decker complexes, is a promising building block for the formation of graphene-like sheet structures. The reaction of [(CpMo)2 (μ,η(6) :η(6) -P6 )] (1) with CuX (X=Br, I) leads to self-assembly into unprecedented 2D networks of [{(CpMo)2 P6 }(CuBr)4 ]n (2) and [{(CpMo)2 P6 }(CuI)2 ]n (3). X-ray structural analyses show a unique deformation of the previously planar cyclo-P6 ligand. This includes bending of one P atom in an envelope conformation as well as a bisallylic distortion. Despite this, 2 and 3 form planar layers. Both polymers were furthermore analyzed by (31) P{(1) H} magic angle spinning (MAS) NMR spectroscopy, revealing signals corresponding to six non-equivalent phosphorus sites. A peak assignment is achieved by 2D correlation spectra as well as by DFT chemical shift computations. PMID:26711699

  20. Study of the complex formation between amine local anesthetics and uncouplers of oxidative phosphorylation carbonyl cyanide phenylhydrazones.

    PubMed

    Kolajová, M; Antalík, M; Sturdík, E

    1993-06-01

    Spectroscopic evidence is presented which indicates that the anionic uncoupler carbonyl cyanide-4-nitro-2-chloro-phenylhydrazone and the amine local anesthetics form a complex in aqueous solution. The complex formation studies were carried out for several pharmacologically important tertiary amines and some primary amines. Their relative potencies to form a complex with uncoupler have followed the order: procaine < trimecaine < tetracaine < dibucaine < dodecylamine < dicyclohexylamine < hexadecylamine. As to the more lipophilic nature of the complex the emphasized penetration into octanol and reinforced retention into mitochondria was observed. The higher ability of the complex to colapse the mitochondrial membrane potential confirms this fact. The effective concentration of amine local anesthetics to form a complex was correlated with their physicochemical properties namely lipophilicity and acidobasicity. The highest effectivities for complex formation is shown by the most lipophilic and the most ionized molecules of amines. Present results point to the importance of considering the role of amine anesthetic-uncoupler complex in interpreting physiological or ion transport data in which these substances have been used together. PMID:8224779

  1. Structure Formation of Ultrathin PEO Films at Solid Interfaces—Complex Pattern Formation by Dewetting and Crystallization

    PubMed Central

    Braun, Hans-Georg; Meyer, Evelyn

    2013-01-01

    The direct contact of ultrathin polymer films with a solid substrate may result in thin film rupture caused by dewetting. With crystallisable polymers such as polyethyleneoxide (PEO), molecular self-assembly into partial ordered lamella structures is studied as an additional source of pattern formation. Morphological features in ultrathin PEO films (thickness < 10 nm) result from an interplay between dewetting patterns and diffusion limited growth pattern of ordered lamella growing within the dewetting areas. Besides structure formation of hydrophilic PEO molecules, n-alkylterminated (hydrophobic) PEO oligomers are investigated with respect to self-organization in ultrathin films. Morphological features characteristic for pure PEO are not changed by the presence of the n-alkylgroups. PMID:23385233

  2. Inducer effect on the complex formation between rat liver nuclear proteins and cytochrome P450 2B gene regulatory elements.

    PubMed

    Duzhak, T G; Schwartz, E I; Gulyaeva, L F; Lyakhovich, V V

    2002-09-01

    DNA gel retardation assay has been applied to the investigation of complexes between rat liver nuclear proteins and Barbie box positive regulatory element of cytochrome P450 2B (CYP2B) genes. The intensities of B1 and B2 bands detected in the absence of an inducer increased after 30 min protein incubation with phenobarbital (PB) or triphenyldioxane (TPD), but not with 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOPOB). In addition, a new complex (B3 band) was for the first time detected under induction by PB, TPD, and TCPOPOB. Increase in the incubation time up to 2 h facilitated the formation of other new complexes (B4 and B5 bands), which were detected only in the presence of TPD. The use of [3H]TPD in hybridization experiments revealed that this inducer, capable of binding to Barbie box DNA, is also present in B4 and B5 complexes. It is probable that the investigated compounds activate the same proteins at the initial induction steps, which correlates with the formation of B1, B2, and B3 complexes. The further induction step might be inducer-specific, as indicated by the formation of B4 and B5 complexes in the presence of TPD only. Thus, the present data suggest the possibility of specific gene activation signaling pathways that are dependent on a particular inducer. PMID:12387719

  3. Reactions of a chromium(III)-superoxo complex and nitric oxide that lead to the formation of chromium(IV)-oxo and chromium(III)-nitrito complexes.

    PubMed

    Yokoyama, Atsutoshi; Cho, Kyung-Bin; Karlin, Kenneth D; Nam, Wonwoo

    2013-10-01

    The reaction of an end-on Cr(III)-superoxo complex bearing a 14-membered tetraazamacrocyclic TMC ligand, [Cr(III)(14-TMC)(O2)(Cl)](+), with nitric oxide (NO) resulted in the generation of a stable Cr(IV)-oxo species, [Cr(IV)(14-TMC)(O)(Cl)](+), via the formation of a Cr(III)-peroxynitrite intermediate and homolytic O-O bond cleavage of the peroxynitrite ligand. Evidence for the latter comes from electron paramagnetic resonance spectroscopy, computational chemistry and the observation of phenol nitration chemistry. The Cr(IV)-oxo complex does not react with nitrogen dioxide (NO2), but reacts with NO to afford a Cr(III)-nitrito complex, [Cr(III)(14-TMC)(NO2)(Cl)](+). The Cr(IV)-oxo and Cr(III)-nitrito complexes were also characterized spectroscopically and/or structurally. PMID:24066924

  4. Enantioseparation of mandelic acid derivatives by high performance liquid chromatography with substituted β-cyclodextrin as chiral mobile phase additive and evaluation of inclusion complex formation

    PubMed Central

    Tong, Shengqiang; Zhang, Hu; Shen, Mangmang

    2014-01-01

    The enantioseparation of ten mandelic acid derivatives was performed by reverse phase high performance liquid chromatography with hydroxypropyl-β-cyclodextrin (HP-β-CD) or sulfobutyl ether-β-cyclodextrin (SBE-β-CD) as chiral mobile phase additives, in which inclusion complex formations between cyclodextrins and enantiomers were evaluated. The effects of various factors such as the composition of mobile phase, concentration of cyclodextrins and column temperature on retention and enantioselectivity were studied. The peak resolutions and retention time of the enantiomers were strongly affected by the pH, the organic modifier and the type of β-cyclodextrin in the mobile phase, while the concentration of buffer solution and temperature had a relatively low effect on resolutions. Enantioseparations were successfully achieved on a Shimpack CLC-ODS column (150×4.6 mm i.d., 5 μm). The mobile phase was a mixture of acetonitrile and 0.10 mol L-1 of phosphate buffer at pH 2.68 containing 20 mmol L-1 of HP-β-CD or SBE-β-CD. Semi-preparative enantioseparation of about 10 mg of α-cyclohexylmandelic acid and α-cyclopentylmandelic acid were established individually. Cyclodextrin-enantiomer complex stoichiometries as well as binding constants were investigated. Results showed that stoichiomertries for all the inclusion complex of cyclodextrin-enantiomers were 1:1. PMID:24893270

  5. Spectrofluorimetric Determination of Famotidine in Pharmaceutical Preparations and Biological Fluids through Ternary Complex Formation with Some Lanthanide Ions: Application to Stability Studies

    PubMed Central

    Walash, M. I.; El-Brashy, A.; El-Enany, N.; Wahba, M. E. K.

    2009-01-01

    A simple, sensitive and specific method was developed for the determination of famotidine (FMT) in pharmaceutical preparations and biological fluids. The proposed method is based on ternary complex formation of famotidine (FMT) with EDTA and terbium chloride TbCl3 in acetate buffer of pH 4. Alternatively, the complex is formed via the reaction with hexamine and either lanthanum chloride LaCl3, or cerous chloride CeCl3 in borate buffer of pH6.2 and 7.2 respectively. In all cases, the relative fluorescence intensity of the formed complexes was measured at 580 nm after excitation at 290 nm. The fluorescence intensity - concentration plots were rectilinear over the concentration range of 10-100, 5-70, and 5-60 ng/ml, with minimum quantification limits (LOQ) of 2.4, 2.2, and 5.2 ng/ml, and minimum limits of detection (LOD) of 0.79, 0.74, and 1.7 ng/ml upon using TbCl3, LaCl3, and CeCl3 respectively. The proposed method was applied successfully for the analysis of famotidine in dosage forms and in human plasma. The kinetics of both alkaline and oxidative induced degradation of the drug was studied using the proposed method. The apparent first order rate constant and half life time were calculated. A proposal of the reaction pathways is presented. PMID:23675130

  6. The high-spin cytochrome o' component of the cytochrome bo-type quinol oxidase in membranes from Escherichia coli: formation of the primary oxygenated species at low temperatures is characterized by a slow 'on' rate and low dissociation constant.

    PubMed

    Poole, R K; Salmon, I; Chance, B

    1994-05-01

    Cytochromes b and o in membrane vesicles from aerobically grown Escherichia coli were readily reduced by succinate; one cytochrome, which we propose should be called cytochrome o', reacted with CO in the Fe(II) state to give a photodissociable CO adduct. The photodissociation spectrum (photolysed minus pre-photolysis) at sub-zero temperatures had a relatively high gamma/alpha absorbance ratio, indicating a high-spin haem, which, in the reduced state, probably contributes little to the sharp alpha absorbance of the oxidase complex in membranes. Reaction with oxygen of the unliganded high-spin haem between -132 degrees C and -95 degrees C following photolytic activation gave a product that is identified as the oxygenated form, being spectrally similar to, but not identical with, the CO adduct. In membranes, the forward velocity constant at -95 degrees C was 61 M-1s-1, and the dissociation constant was 1.6 x 10(-5) M O2, as it is in intact cells. These data clearly distinguish the oxygen-trapping strategy of the cytochrome o' in this oxidase from that of cytochrome a3 and also suggest that the presence of the soluble flavohaemoglobin (Hmp) in intact cells is without effect on such measurements of the primary oxygen reaction. In view of recent findings that this oxidase complex contains predominantly one mole of haem O and one of haem B, a revised nomenclature for the oxidase complex is proposed, namely, cytochrome bo'. PMID:8025668

  7. Alkali-metal ion coordination in uranyl(VI) poly-peroxo complexes in solution, inorganic analogues to crown-ethers. Part 2. Complex formation in the tetramethyl ammonium-, Li(+)-, Na(+)- and K(+)-uranyl(VI)-peroxide-carbonate systems.

    PubMed

    Zanonato, Pier Luigi; Szabó, Zoltán; Vallet, Valerie; Di Bernardo, Plinio; Grenthe, Ingmar

    2015-10-01

    The constitution and equilibrium constants of ternary uranyl(vi) peroxide carbonate complexes [(UO2)p(O2)q(CO3)r](2(p-q-r)) have been determined at 0 °C in 0.50 M MNO3, M = Li, K, and TMA (tetramethyl ammonium), ionic media using potentiometric and spectrophotometric data; (17)O NMR data were used to determine the number of complexes present. The formation of cyclic oligomers, "[(UO2)(O2)(CO3)]n", n = 4, 5, 6, with different stoichiometries depending on the ionic medium used, suggests that Li(+), Na(+), K(+) and TMA ions act as templates for the formation of uranyl peroxide rings where the uranyl-units are linked by μ-η(2)-η(2) bridged peroxide-ions. The templating effect is due to the coordination of the M(+)-ions to the uranyl oxygen atoms, where the coordination of Li(+) results in the formation of Li[(UO2)(O2)(CO3)]4(7-), Na(+) and K(+) in the formation of Na/K[(UO2)(O2)(CO3)]5(9-) complexes, while the large tetramethyl ammonium ion promotes the formation of two oligomers, TMA[(UO2)(O2)(CO3)]5(9-) and TMA[(UO2)(O2)(CO3)]6(11-). The NMR spectra demonstrate that the coordination of Na(+) in the five- and six-membered oligomers is significantly stronger than that of TMA(+); these observations suggest that the templating effect is similar to the one observed in the synthesis of crown-ethers. The NMR experiments also demonstrate that the exchange between TMA[(UO2)(O2)(CO3)]5(9-) and TMA[(UO2)(O2)(CO3)]6(11-) is slow on the (17)O chemical shift time-scale, while the exchange between TMA[(UO2)(O2)(CO3)]6(11-) and Na[(UO2)(O2)(CO3)]6(11-) is fast. There was no indication of the presence of large clusters of the type identified by Burns and Nyman (M. Nyman and P. C. Burns, Chem. Soc. Rev., 2012, 41, 7314-7367) and possible reasons for this and the implications for the synthesis of large clusters are briefly discussed. PMID:26331776

  8. Methamphetamine-Induced Dopamine Transporter Complex Formation and Dopaminergic Deficits: The Role of D2 Receptor Activation

    PubMed Central

    Hadlock, Gregory C.; Chu, Pei-Wen; Walters, Elliot T.; Hanson, Glen R.

    2010-01-01

    Methamphetamine (METH) abuse is a serious public health issue. Of particular concern are findings that repeated high-dose administrations of METH cause persistent dopaminergic deficits in rodents, nonhuman primates, and humans. Previous studies have also revealed that METH treatment causes alterations in the dopamine transporter (DAT), including the formation of higher molecular mass DAT-associated complexes. The current study extends these findings by examining mechanisms underlying DAT complex formation. The association among DAT complex formation and other METH-induced phenomena, including alterations in vesicular monoamine transporter 2 (VMAT2) immunoreactivity, astrocytic activation [as assessed by increased glial fibrillary acidic protein (GFAP) immunoreactivity], and persistent dopaminergic deficits was also explored. Results revealed that METH-induced DAT complex formation and reductions in VMAT2 immunoreactivity precede increases in GFAP immunoreactivity. Furthermore, and as reported previously for DAT complexes, pretreatment with the D2 receptor antagonist eticlopride [S-(−)-3-chloro-5-ethyl-N-[(1-ethyl-2-pyrrolidinyl)methyl]-6-hydroxy-2-methoxybenzamide hydrochloride] attenuated the decrease in VMAT2 immunoreactivity as assessed 24 h after METH treatment. DAT complexes distinct from those present 24 h after METH treatment, decreases in VMAT2 immunoreactivity, and increased GFAP immunoreactivity were present 48 to 72 h after METH treatment. Pretreatment with eticlopride attenuated each of these phenomena. Finally, DAT complexes were present 7 days after METH treatment, a time point at which VMAT2 and DAT monomer immunoreactivity were also reduced. Eticlopride pretreatment attenuated each of these phenomena. These findings provide novel insight into not only receptor-mediated mechanisms underlying the effects of METH but also the interaction among factors that probably are associated with the persistent dopaminergic deficits caused by the stimulant. PMID

  9. Titanium oxide complexes with dinitrogen. Formation and characterization of the side-on and end-on bonded titanium oxide-dinitrogen complexes in solid neon.

    PubMed

    Zhou, Mingfei; Zhuang, Jia; Zhou, Zijian; Li, Zhen Hua; Zhao, Yanying; Zheng, Xuming; Fan, Kangnian

    2011-06-23

    The reactions of titanium oxide molecules with dinitrogen have been studied by matrix isolation infrared spectroscopy. The titanium monoxide molecule reacts with dinitrogen to form the TiO(N(2))(x) (x = 1-4) complexes spontaneously on annealing in solid neon. The TiO(η(1)-NN) complex is end-on bonded and was predicted to have a (3)A'' ground state arising from the (3)Δ ground state of TiO. Argon doping experiments indicate that TiO(η(1)-NN) is able to form complexes with one or more argon atoms. Argon atom coordination induces a large red-shift of the N-N stretching frequency. The TiO(η(2)-N(2))(2) complex was characterized to have C(2v) symmetry, in which both the N(2) ligands are side-on bonded to the titanium metal center. The tridinitrogen complex TiO(η(1)-NN)(3) most likely has C(3v) symmetry with three end-on bonded N(2) ligands. The TiO(η(1)-NN)(4) complex was determined to have a C(4v) structure with four equivalent end-on bonded N(2) ligands. In addition, evidence is also presented for the formation of the TiO(2)(η(1)-NN)(x) (x = 1-4) complexes, which were predicted to be end-on bonded. PMID:21604730

  10. Ablation of MMP9 gene ameliorates paracellular permeability and fibrinogen-amyloid beta complex formation during hyperhomocysteinemia.

    PubMed

    Muradashvili, Nino; Tyagi, Reeta; Metreveli, Naira; Tyagi, Suresh C; Lominadze, David

    2014-09-01

    Increased blood level of homocysteine (Hcy), called hyperhomocysteinemia (HHcy) accompanies many cognitive disorders including Alzheimer's disease. We hypothesized that HHcy-enhanced cerebrovascular permeability occurs via activation of matrix metalloproteinase-9 (MMP9) and leads to an increased formation of fibrinogen-β-amyloid (Fg-Aβ) complex. Cerebrovascular permeability changes were assessed in C57BL/6J (wild type, WT), cystathionine-β-synthase heterozygote (Cbs+/-, a genetic model of HHcy), MMP9 gene knockout (Mmp9-/-), and Cbs and Mmp9 double knockout (Cbs+/-/Mmp9-/-) mice using a dual-tracer probing method. Expression of vascular endothelial cadherin (VE-cadherin) and Fg-Aβ complex formation was assessed in mouse brain cryosections by immunohistochemistry. Short-term memory of mice was assessed with a novel object recognition test. The cerebrovascular permeability in Cbs+/- mice was increased via mainly the paracellular transport pathway. VE-cadherin expression was the lowest and Fg-Aβ complex formation was the highest along with the diminished short-term memory in Cbs+/- mice. These effects of HHcy were ameliorated in Cbs+/-/Mmp9-/- mice. Thus, HHcy causes activation of MMP9 increasing cerebrovascular permeability by downregulation of VE-cadherin resulting in an enhanced formation of Fg-Aβ complex that can be associated with loss of memory. These data may lead to the identification of new targets for therapeutic intervention that can modulate HHcy-induced cerebrovascular permeability and resultant pathologies. PMID:24865997

  11. Assessment of the CCSD and CCSD(T) Coupled-Cluster Methods in Calculating Heats of Formation for Zn Complexes

    NASA Astrophysics Data System (ADS)

    Weaver, Michael N.; Yang, Yue; Merz, Kenneth M.

    2009-08-01

    Heats of formation were calculated using coupled-cluster methods for a series of zinc complexes. The calculated values were evaluated against previously conducted computational studies using density functional methods as well as experimental values. Heats of formation for nine neutral ZnXn complexes [X = -Zn, -H, -O, -F2, -S, -Cl, -Cl2, -CH3, (-CH3)2] were determined at the CCSD and CCSD(T) levels using the 6-31G** and TZVP basis sets as well as the LANL2DZ-6-31G** (LACVP**) and LANL2DZ-TZVP hybrid basis sets. The CCSD(T)/6-31G** level of theory was found to predict the heat of formation for the nonalkyl Zn complexes most accurately. The alkyl Zn species were problematic in that none of the methods that were tested accurately predicted the heat of formation for these complexes. In instances where experimental geometric parameters were available, these were most accurately predicted by the CCSD/6-31G** level of theory; going to CCSD(T) did not improve agreement with the experimental values. Coupled-cluster methods did not offer a systemic improvement over DFT calculations for a given functional/basis set combination. With the exceptions of ZnH and ZnF2, there are multiple density functionals that outperform coupled-cluster calculations with the 6-31G** basis set.

  12. A Developmental Framework for Complex Plasmodesmata Formation Revealed by Large-Scale Imaging of the Arabidopsis Leaf Epidermis[W

    PubMed Central

    Fitzgibbon, Jessica; Beck, Martina; Zhou, Ji; Faulkner, Christine; Robatzek, Silke; Oparka, Karl

    2013-01-01

    Plasmodesmata (PD) form tubular connections that function as intercellular communication channels. They are essential for transporting nutrients and for coordinating development. During cytokinesis, simple PDs are inserted into the developing cell plate, while during wall extension, more complex (branched) forms of PD are laid down. We show that complex PDs are derived from existing simple PDs in a pattern that is accelerated when leaves undergo the sink–source transition. Complex PDs are inserted initially at the three-way junctions between epidermal cells but develop most rapidly in the anisocytic complexes around stomata. For a quantitative analysis of complex PD formation, we established a high-throughput imaging platform and constructed PDQUANT, a custom algorithm that detected cell boundaries and PD numbers in different wall faces. For anticlinal walls, the number of complex PDs increased with increasing cell size, while for periclinal walls, the number of PDs decreased. Complex PD insertion was accelerated by up to threefold in response to salicylic acid treatment and challenges with mannitol. In a single 30-min run, we could derive data for up to 11k PDs from 3k epidermal cells. This facile approach opens the door to a large-scale analysis of the endogenous and exogenous factors that influence PD formation. PMID:23371949

  13. Monitoring the formation of carbide crystal phases during the thermal decomposition of 3d transition metal dicarboxylate complexes

    SciTech Connect

    Huba, ZJ; Carpenter, EE

    2014-06-06

    Single molecule precursors can help to simplify the synthesis of complex alloys by minimizing the amount of necessary starting reagents. However, single molecule precursors are time consuming to prepare with very few being commercially available. In this study, a simple precipitation method is used to prepare Fe, Co, and Ni fumarate and succinate complexes. These complexes were then thermally decomposed in an inert atmosphere to test their efficiency as single molecule precursors for the formation of metal carbide phases. Elevated temperature X-ray diffraction was used to identify the crystal phases produced upon decomposition of the metal dicarboxylate complexes. Thermogravimetric analysis coupled with an infrared detector was used to identify the developed gaseous decomposition products. All complexes tested showed a reduction from the starting M2+ oxidation state to the M oxidation state, upon decomposition. Also, each complex tested showed CO2 and H2O as gaseous decomposition products. Nickel succinate, iron succinate, and iron fumarate complexes were found to form carbide phases upon decomposition. This proves that transition metal dicarboxylate salts can be employed as efficient single molecule precursors for the formation of metal carbide crystal phases.

  14. Formation of ternary complexes by coordination of (diethylenetriamine)-platinum(II) to N1 or N7 of the adenine moiety of the antiviral nucleotide analogue 9.

    PubMed

    Kampf, G; Lüth, M S; Kapinos, L E; Müller, J; Holý, A; Lippert, B; Sigel, H

    2001-05-01

    The synthesis of (Dien)Pt(PMEA-N1), where Dien = diethylenetriamine and PMEA2- = dianion of 9-[2-(phosphonomethoxy)ethyl]adenine, is described. The acidity constants of the threefold protonated H3[(Dien)Pt(PMEA-N1)]3+ complex were determined and in part estimated (UV spectrophotometry and potentiometric pH titration): The release of the proton from the (N7)H+ site in H4[(Dien)Pt(PMEA-N1)]3+ occurs with a rather low pKa (= 0.52+/-0.10). The release of the proton from the -P(O)2(OH) group (pKa = 6.69+/-0.03) in H[(Dien)Pt(PMEA-N1)]+ is only slightly affected by the N1-coordinated (Dien)Pt2+ unit. Comparison with the acidic properties of the H[(Dien)Pt(PMEA-N7)]+ species provides evidence that in the (Dien)Pt(PMEA-N7) complex in aqueous solution an intramolecular, outer-sphere macrochelate is formed through hydrogen bonds between the -PO3(2-) residue of PMEA2- and a PtII-coordinated (Dien)NH2 group; its formation degree amounts to about 40%. The stability constants of the M[(Dien)Pt(PMEA-N1)]2+ complexes with M2+ = Mg2+, Ca2+, Ni2+, Cu2+ and Zn2+ were measured by potentiometric pH titrations in aqueous solution at 25 degrees C and I = 0.1 M (NaNO3). Application of previously determined straight-line plots of log K(M(R-PO3))M versus pK(H(R-PO3)H for simple phosph(on)ate ligands. R-PO3(2-), where R represents a non-inhibiting residue without an affinity for metal ions, proves that the primary binding site of (Dien)Pt(PMEA-N1) is the phosphonate group with all metal ions studied; in fact, Mg2+, Ca2+ and Ni2+ coordinate (within the error limits) only to this site. For the Cu[(Dien)Pt(PMEA-N1)]2+ and Zn[(Dien)Pt(PMEA-N1)]2- systems also the formation of five-membered chelates involving the ether oxygen of the -CH2-O-CH2-PO3(2-) residue could be detected; the formation degrees are about 60% and 30%, respectively. The metal-ion-binding properties of the isomeric (Dien)Pt(PMEA-N7) species studied previously differ in so far that the resulting M[(Dien)Pt(PMEA-N7)]2+ complexes

  15. Formation of κ-carrageenan-gelatin polyelectrolyte complexes studied by (1)H NMR, UV spectroscopy and kinematic viscosity measurements.

    PubMed

    Voron'ko, Nicolay G; Derkach, Svetlana R; Vovk, Mikhail A; Tolstoy, Peter M

    2016-10-20

    The intermolecular interactions between an anionic polysaccharide from the red algae κ-carrageenan and a gelatin polypeptide, forming stoichiometric polysaccharide-polypeptide (bio)polyelectrolyte complexes in the aqueous phase, were examined. The major method of investigation was high-resolution (1)H NMR spectroscopy. Additional data were obtained by UV absorption spectroscopy, light scattering dispersion and capillary viscometry. Experimental data were interpreted in terms of the changing roles of electrostatic interactions, hydrophobic interactions and hydrogen bonds when κ-carrageenan-gelatin complexes are formed. At high temperatures, when biopolymer macromolecules in solution are in the state of random coil, hydrophobic interactions make a major contribution to complex stabilization. At the temperature of gelatin's coil→helix conformational transition and at lower temperatures, electrostatic interactions and hydrogen bonds play a defining role in complex formation. A proposed model of the κ-carrageenan-gelatin complex is discussed. PMID:27474666

  16. The effects of pH and PEG 400-water cosolvents on oxytetracycline-magnesium complex formation and stability.

    PubMed

    Tongaree, S; Goldberg, A M; Flanagan, D R; Poust, R I

    2000-01-01

    The effects of pH and PEG 400 on the stoichiometry, conformation, and stability of the magnesium-oxytetracycline (Mg+2-OTC) complex were evaluated. Circular dichroism (CD) and HPLC were used to investigate Mg+2-OTC complex formation and determine the stability of the complexes formed. The stoichiometry of the complex was determined to be a 1:1 molar ratio of Mg+2 to OTC regardless of changes in pH, in the range 7-10, and regardless of the percentage of polyethylene glycol (PEG) 400 in solution. CD showed that the conformation assumed by Mg+2-OTC complex is sensitive to changes in pH, however, little to no effect was found when the PEG 400 concentration was varied. PEG 400 was found to effect the magnitude of complexation as evident by the dependence of CD peak intensity on the cosolvent concentration in solution. The Job's method confirmed that the formation of this complex increased with increasing PEG 400 concentration and was most favored at pH 8. HPLC analyses of OTC solutions at pH 9 revealed the formation of multiple degradation products after storage at 50 degrees C. The incidence and magnitude of OTC degradation products were reduced in the presence of Mg+2 and PEG 400. Despite the HPLC results of maintained OTC stability in magnesium-complexed solutions over time, visual inspection showed these solutions to have darkened, indicating that an oxidative process is responsible for initial degradation of OTC. Therefore, the need for additional measures (i.e., antioxidants) was established to ensure the long-term stability of OTC in solution. PMID:10810749

  17. Inclusion complex formation of ionic liquids with 4-sulfonatocalixarenes studied by competitive binding of berberine alkaloid fluorescent probe

    NASA Astrophysics Data System (ADS)

    Miskolczy, Zsombor; Biczók, László

    2009-07-01

    A clinically important natural isoquinoline alkaloid, berberine, was used as a fluorescent probe to study the encapsulation of 1-alkyl-3-methylimidazolium (C nMIm +) type ionic liquids in 4-sulfonato-substituted calix[4]arene (SCX4) and calix[6]arene (SCX6) at pH 2. Addition of ionic liquids to the aqueous solution of berberine-SCXn inclusion complexes brought about considerable fluorescence intensity diminution due to the extrusion of berberine from the macrocycle into the aqueous phase by the competitive inclusion of C nMIm + cation. The lengthening of the aliphatic side chain of the imidazolium moiety diminished the equilibrium constant of complexation with SCX4, but enhanced the stability of SCX6 complexes. Larger binding strength was found for SCX4.

  18. Ternary complex formation and competition quench fluorescence of ZnAF family zinc sensors.

    PubMed

    Staszewska, Anna; Kurowska, Ewa; Bal, Wojciech

    2013-11-01

    Our current understanding of the intracellular thermodynamics and kinetics of Zn(ii) ions is largely based on the application of fluorescent sensor molecules, used to study and visualize the concentration, distribution and transport of Zn(ii) ions in real time. Such agents are designed for high selectivity for zinc in respect to other biological metal ions. However, the issue of their sensitivity to physiological levels of low molecular weight Zn(ii) ligands (LMWLs) has not been addressed. We followed the effects of eight such compounds on the fluorescence of ZnAF-1 and ZnAF-2F, two representatives of the ZnAF family of fluorescein-based zinc sensors containing the N,N-bis(2-pyridylmethyl)ethylenediamine chelating unit. Fluorescence titrations of equimolar Zn(ii)-ZnAF-1 and Zn(ii)-ZnAF-2F solutions with acetate, phosphate, citrate, glycine, glutamic acid, histidine, ATP and GSH demonstrated strong fluorescence quenching. These results are interpreted in terms of an interplay of the formation of the [ZnAF-Zn(ii)-LMWL] ternary complexes and the competition for Zn(ii) between ZnAF and LMWLs. UV-vis spectroscopic titrations revealed the existence of supramolecular interactions between the fluorescein moiety of ZnAF-1 and ATP and His, which, however, did not contribute to fluorescence quenching. Therefore, the obtained results show that the ZnAF sensors, other currently used zinc sensors containing the N,N-bis(2-pyridylmethyl)ethylenediamine unit, and, in general, all sensors that do not saturate the Zn(ii) coordination sphere may co-report cellular metabolites and Zn(ii) ions, leading to misrepresentations of the concentrations and fluxes of biological zinc. PMID:23939683

  19. Synaptonemal Complex Proteins of Budding Yeast Define Reciprocal Roles in MutSγ-Mediated Crossover Formation.

    PubMed

    Voelkel-Meiman, Karen; Cheng, Shun-Yun; Morehouse, Savannah J; MacQueen, Amy J

    2016-07-01

    During meiosis, crossover recombination creates attachments between homologous chromosomes that are essential for a precise reduction in chromosome ploidy. Many of the events that ultimately process DNA repair intermediates into crossovers during meiosis occur within the context of homologous chromosomes that are tightly aligned via a conserved structure called the synaptonemal complex (SC), but the functional relationship between SC and crossover recombination remains obscure. There exists a widespread correlation across organisms between the presence of SC proteins and successful crossing over, indicating that the SC or its building block components are procrossover factors . For example, budding yeast mutants missing the SC transverse filament component, Zip1, and mutant cells missing the Zip4 protein, which is required for the elaboration of SC, fail to form MutSγ-mediated crossovers. Here we report the reciprocal phenotype-an increase in MutSγ-mediated crossovers during meiosis-in budding yeast mutants devoid of the SC central element components Ecm11 or Gmc2, and in mutants expressing a version of Zip1 missing most of its N terminus. This novel phenotypic class of SC-deficient mutants demonstrates unequivocally that the tripartite SC structure is dispensable for MutSγ-mediated crossover recombination in budding yeast. The excess crossovers observed in SC central element-deficient mutants are Msh4, Zip1, and Zip4 dependent, clearly indicating the existence of two classes of SC proteins-a class with procrossover function(s) that are also necessary for SC assembly and a class that is not required for crossover formation but essential for SC assembly. The latter class directly or indirectly limits MutSγ-mediated crossovers along meiotic chromosomes. Our findings illustrate how reciprocal roles in crossover recombination can be simultaneously linked to the SC structure. PMID:27184389

  20. Complex formation between heme oxygenase and phytochrome during biosynthesis in Pseudomonas syringae pv. tomato.

    PubMed

    Shah, Rashmi; Schwach, Julia; Frankenberg-Dinkel, Nicole; Gärtner, Wolfgang

    2012-06-01

    The plant pathogen Pseudomonas syringae pv. tomato carries two genes encoding bacterial phytochromes. Sequence motifs identify both proteins (PstBphP1 and PstBphP2, respectively) as biliverdin IXα (BV)-binding phytochromes. PstbphP1 is arranged in an operon with a heme oxygenase (PstBphO)-encoding gene (PstbphO), whereas PstbphP2 is flanked downstream by a gene encoding a CheY-type response regulator. Expression of the heme oxygenase PstBphO yielded a green protein (λ(max) = 650 nm), indicative for bound BV. Heterologous expression of PstbphP1 and PstbphP2 and in vitro assembly with BV IXα yielded the apoproteins for both phytochromes, but only in the case of PstBphP1 a light-inducible chromoprotein. Attempts to express the endogenous heme oxygenase BphO and either of the two phytochromes from two plasmids yielded only holo-PstBphP1. Relatively small amounts of soluble holo-PstBphP2 were just obtained upon co-expression with BphO from P. aeruginosa. Expression of the operon containing PstbphO:PstbphP1 led to an improved yield and better photoreactivity for PstBphP1, whereas an identical construct, exchanging PstbphP1 for PstbphP2 (PstbphO:PstbphP2), again yielded only minute amounts of chromophore-loaded BphP2-holoprotein. The improved yield for PstBphP1 from the PstbphO:PstbphP1 operon expression is apparently caused by complex formation between both proteins during biosynthesis as affinity chromatography of either protein using two different tags always co-purified the reaction partner. These results support the importance of protein-protein interactions during tetrapyrrole metabolism and phytochrome assembly. PMID:22415794