Sample records for complex formation reactions

  1. Dioxygen complexes of 3d transition-metal atoms: Formation reactions in the gas phase

    SciTech Connect

    Brown, C.E.; Mitchell, S.A.; Hackett, P.A. (National Research Council of Canada, Ottawa, Ontario (Canada))

    1991-02-07

    Reactions of ground-state 3d transition-metal atoms including Ti, Mn, Co, Ni, and Cu with molecular oxygen in Ar buffer gas have been investigated in the pressure range 5-700 Torr at 296 K. Attention has been given to termolecular association reactions in which mono(dioxygen) complexes are formed. A pulsed laser photolysis-laser fluorescence technique is used where metal atoms are produced by visible multiphoton dissociation of a volatile organometallic precursor in a static pressure reaction cell, and reactions of metal atoms are monitored by resonance fluorescence excitation at variable time delay following the photolysis pulse. The present study completes a survey of the reactions of 3d transition-metal atoms with O{sub 2} under room temperature conditions, from which it emerges that reactivity with respect to complex formation is correlated with a d{sub n}s{sup 1} valence electron configuration of the metal atoms. Simplified RRKM calculations have been used to interpret termolecular rate constants for the association reactions in terms of a trend in the binding energies of the dioxygen complexes.

  2. Formation of complex organic molecules in cold objects: the role of gas-phase reactions

    NASA Astrophysics Data System (ADS)

    Balucani, Nadia; Ceccarelli, Cecilia; Taquet, Vianney

    2015-04-01

    While astrochemical models are successful in reproducing many of the observed interstellar species, they have been struggling to explain the observed abundances of complex organic molecules. Current models tend to privilege grain surface over gas-phase chemistry in their formation. One key assumption of those models is that radicals trapped in the grain mantles gain mobility and react on lukewarm ( ? 30 K) dust grains. Thus, the recent detections of methyl formate (MF) and dimethyl ether (DME) in cold objects represent a challenge and may clarify the respective role of grain-surface and gas-phase chemistry. We propose here a new model to form DME and MF with gas-phase reactions in cold environments, where DME is the precursor of MF via an efficient reaction overlooked by previous models. Furthermore, methoxy, a precursor of DME, is also synthesized in the gas phase from methanol, which is desorbed by a non-thermal process from the ices. Our new model reproduces fairly well the observations towards L1544. It also explains, in a natural way, the observed correlation between DME and MF. We conclude that gas-phase reactions are major actors in the formation of MF, DME and methoxy in cold gas. This challenges the exclusive role of grain-surface chemistry and favours a combined grain-gas chemistry.

  3. Formation of complex organic molecules in cold objects: the role of gas phase reactions

    E-print Network

    Balucani, Nadia; Taquet, Vianney

    2015-01-01

    While astrochemical models are successful in reproducing many of the observed interstellar species, they have been struggling to explain the observed abundances of complex organic molecules. Current models tend to privilege grain surface over gas phase chemistry in their formation. One key assumption of those models is that radicals trapped in the grain mantles gain mobility and react on lukewarm (>30 K) dust grains. Thus, the recent detections of methyl formate (MF) and dimethyl ether (DME) in cold objects represent a challenge and may clarify the respective role of grain surface and gas phase chemistry. We propose here a new model to form DME and MF with gas phase reactions in cold environments, where DME is the precursor of MF via an efficient reaction overlooked by previous models. Furthermore, methoxy, a precursor of DME, is also synthetized in the gas phase from methanol, which is desorbed by a non-thermal process from the ices. Our new model reproduces fairy well the observations towards L1544. It also...

  4. Reaction of dimethyl ether with hydroxyl radicals: kinetic isotope effect and prereactive complex formation.

    PubMed

    Bänsch, Cornelie; Kiecherer, Johannes; Szöri, Milan; Olzmann, Matthias

    2013-09-01

    The kinetic isotope effect of the reactions OH + CH3OCH3 (DME) and OH + CD3OCD3 (DME-d6) was experimentally and theoretically studied. Experiments were carried out in a slow-flow reactor at pressures between 5 and 21 bar (helium as bath gas) with production of OH by laser flash photolysis of HNO3 and time-resolved detection of OH by laser-induced fluorescence. The temperature dependences of the rate coefficients obtained can be described by the following modified Arrhenius expressions: k(OH+DME) = (4.5 ± 1.3) × 10(-16) (T/K)(1.48) exp(66.6 K/T) cm(3) s(-1) (T = 292-650 K, P = 5.9-20.9 bar) and k(OH+DME-d6) = (7.3 ± 2.2) × 10(-23) (T/K)(3.57) exp(759.8 K/T) cm(3) s(-1) (T = 387-554 K, P = 13.0-20.4 bar). A pressure dependence of the rate coefficients was not observed. The agreement of our experimental results for k(OH+DME) with values from other authors is very good, and from a fit to all available literature data, we derived the following modified Arrhenius expression, which reproduces the values obtained in the temperature range T = 230-1500 K at pressures between 30 mbar and 21 bar to better than within ±20%: k(OH+DME) = 8.45 × 10(-18) (T/K)(2.07) exp(262.2 K/T) cm(3) s(-1). For k(OH+DME-d6), to the best of our knowledge, this is the first experimental study. For the analysis of the reaction pathway and the kinetic isotope effect, potential energy diagrams were calculated by using three different quantum chemical methods: (I) CCSD(T)/cc-pV(T,Q)Z//MP2/6-311G(d,p), (II) CCSD(T)/cc-pV(T,Q)Z//CCSD/cc-pVDZ, and (III) CBS-QB3. In all three cases, the reaction is predicted to proceed via a prereaction OH-ether complex with subsequent intramolecular hydrogen abstraction and dissociation to give the methoxymethyl radical and water. Overall rate coefficients were calculated by assuming a thermal equilibrium between the reactants and the prereaction complex and by calculating the rate coefficients of the hydrogen abstraction step from canonical transition state theory. The results based on the molecular data from methods (I) and (II) showed a satisfactory agreement with the experimental values, which indicates that the pre-equilibrium assumption is reasonable under our conditions. In the case of method (III), the isotope effect was significantly underpredicted. The reason for this discrepancy was identified in a fundamentally differing reaction coordinate. Obviously, the B3LYP functional applied in method (III) for geometry and frequency calculations is inadequate to describe such systems, which is in line with earlier findings of other authors. PMID:23914942

  5. Complex Pattern Formation in the Polyacrylamide-Methylene Blue-Oxygen Reaction Oliver Steinbock,*, Eric Kasper, and Stefan C. Mu1ller

    E-print Network

    Steinbock, Oliver

    -MBO) reaction shows self-organization that gives rise to various patterns such as hexagons, stripes, and zigzagComplex Pattern Formation in the Polyacrylamide-Methylene Blue-Oxygen Reaction Oliver Steinbock from either white-eye patterns or hexagons. This transition occurs rapidly along propagating fronts

  6. Intermediates in reactions of copper(I) complexes with N-oxides: from the formation of stable adducts to oxo transfer.

    PubMed

    Hong, Sungjun; Gupta, Aalo K; Tolman, William B

    2009-07-20

    Reactions of copper(I) complexes of bidentate N-donor supporting ligands with pyridine- and trimethylamine-N-oxides or PhIO were explored. Key results include the identification of novel copper(I) N-oxide adducts, aryl substituent hydroxylation, and bis(mu-oxo)dicopper complex formation via a route involving oxo transfer. PMID:19425587

  7. Reaction of aromatic diazonium salts with carrier-free radioiodine and astatine, evidence for complex formation

    Microsoft Academic Search

    G. J. Meyer; K. Roessler; G. Stoecklin

    1979-01-01

    Systematic studies of the astatodiazoniation reaction and a comparison with iododediazoniation under comparable conditions are reported. The yields for all astatohalobenzenes and -toluenes were nearly constant and unaffected by the nature of the diazonium compound, its isomeric form, and the number of isomers used at the same time. Only astatofluorobenzenes were obtained at higher yields. An electron-transfer mechanism is proposed

  8. Reactions of sulfur-nitrosyl iron complexes of "g=2.03" family with hemoglobin (Hb): kinetics of Hb-NO formation in aqueous solutions.

    PubMed

    Sanina, N A; Syrtsova, L A; Shkondina, N I; Rudneva, T N; Malkova, E S; Bazanov, T A; Kotel'nikov, A I; Aldoshin, S M

    2007-03-01

    NO-donating ability of nitrosyl [Fe-S] complexes, namely, mononuclear dinitrosyl complexes of anionic type [Fe(S2O3)2(NO)2]-(I) and neutral [Fe2(SL1)2(NO)2] with L1=1H-1,2,4-triazole-3-yl (II); tetranitrosyl binuclear neutral complexes [Fe2(SL2)2(NO)4] with L2=5-amino-1,2,4-triazole-3-yl (III); 1-methyl-1H-tetrazole-5-yl (IV); imidazole-2-yl (V) and 1-methyl-imidazole-2-yl (VI) has been studied. In addition, Roussin's "red salt" Na2[Fe2S2(NO)4] x 8H2O (VII) and Na2[Fe(CN)5NO] x H2O (VIII) have been investigated. The method for research has been based on the formation of Hb-NO adduct upon the interaction of hemoglobin with NO generated by complexes I-VIII in aqueous solutions. Kinetics of NO formation was studied by registration of absorption spectra of the reaction systems containing Hb and the complex under study. For determination of HbNO concentration, the experimental absorption spectra were processed during the reaction using standard program MATHCAD to determine the contribution of individual Hb and HbNO spectra in each spectrum. The reaction rate constants were obtained by analyzing kinetic dependence of Hb interaction with NO donors under study. All kinetic dependences for complexes I-VI were shown to be described well in the frame of formalism of pseudo first-order reactions. The effective first-order rate constants for the studied reactions have been determined. As follows from the values of rate constants, the rate of interaction of sulfur-nitrosyl iron complexes (I-VI) with Hb is limited by the stage of NO release in the solution. PMID:17140821

  9. Statistical Factors in Complexation Reactions.

    ERIC Educational Resources Information Center

    Chung, Chung-Sun

    1985-01-01

    Four cases which illustrate statistical factors in complexation reactions (where two of the reactants are monodentate ligands) are presented. Included are tables showing statistical factors for the reactions of: (1) square-planar complexes; (2) tetrahedral complexes; and (3) octahedral complexes. (JN)

  10. A STUDY OF FUNDAMENTAL REACTION PATHWAYS FOR TRANSITION METAL ALKYL COMPLEXES. I. THE REACTION OF A NICKEL METHYL COMPLEX WITH ALKYNES. II. THE MECHANISM OF ALDEHYDE FORMATION IN THE REACTION OF A MOLYBDENUM HYDRIDE WITH MOLYBDENUM ALKYLS

    SciTech Connect

    Huggins, John Mitchell

    1980-06-01

    I. This study reports the rapid reaction under mild conditions of internal or terminal alkynes with methyl (acetyl~ acetonato) (triphenylphosphine) nickel (1) in either aromatic or ether solvents. In all cases vinylnickel products 2 are formed by insertion of the alkyne into the nickel=methyl bond. These complexes may be converted into a variety of organic products (e.g. alkenes, esters, vinyl halides) by treatment with appropriate reagents. Unsymmetrical alkynes give selectively the one regioisomer with the sterically largest substituent next to the nickel atom. In order to investigate the stereochemistry of the initial insertion, a x-ray diffraction study of the reaction of 1 with diphenylacetylene was carried out. This showed that the vinylnickel complex formed by overall trans insertion was the product of the reaction. Furthermore, subsequent slow isomerization of this complex, to a mixture of it and the corresponding cis isomer, demonstrated that this trans addition product is the kinetic product of the reaction. In studies with other alkynes, the product of trans addition was not always exclusively (or even predominantly) formed, but the ratio of the stereoisomers formed kinetically was substantially different from the thermodynamic ratio. Isotope labeling, added phosphine, and other experiments have allowed us to conclude that the mechanism of this reaction does involve initial cis addition. However, a coordinatively unsaturated vinylnickel complex is initially formed which can undergo rapid, phosphine-catalyzed cis-trans isomerization in competition with its conversion to the isolable phosphine-substituted kinetic reaction products. II. The reaction of CpMo(CO){sub 3}H (1a) with CpMo(CO){sub 3}R (2, R= CH{sub 3}, C{sub 2}H{sub 5}) at 50{degrees} C in THF gives the aldehyde RCHO and the dimers [CpMo(CO){sub 3}]{sub 2} (3a) and [CpMo(CO){sub 2}]{sub 2} (4a). Labeling one of the reactants with a methylcyclopentadienyl ligand it was possible to show that the mixed dimers MeCpMo(CO){sub 3}-(CO){sub 3}MoCp (3b) and MeCpMo(CO){sub 2}{triple_bond}(CO){sub 2}MoCp (4b) are the predominant kinetic products of the reaction. Additionally labeling the carbonyl ligands of 1a with {sup 13}CO led to the conclusion that all three of the carbonyl ligands in 1a end up in the tetracarbonyl dimers 4a if the reaction is carried out under a continuous purge of argon Trapping studies failed to find any evidence for the intermediacy of either [CpMo(CO){sub 3}]{sup -} or [CpMo(CO){sub 3}]{sup +} in this reaction. A mechanism is proposed that involves the initial migration of the alkyl ligand in 2 to CO forming an unsaturated acyl complex which reacts with 1a to give a binuclear complex containing a three center-two electron Mo-H-Mo bond. This complex then selectively looses a carbonyl from the acyl molybdenum, migrates the hydride to that same metal, and forms a metal-metal bond. This binuclear complex with the hydride and acyl ligands on one metal reductively eliminates aldehyde, and migrates a carbonyl ligand, to give 4a directly. The other product 3a is formed by addition of two molecules of free CO to 4a.

  11. Formation of interpolymer complexes

    Microsoft Academic Search

    Eishun Tsuchida; Yoshihito Osada; Hiroyuki Ohno

    1980-01-01

    Interpolymer complex formations of poly(methacrylic acid) (PMAA) or poly(acrylic acid) (PAA) with oligocations as well as poly(ethylene oxide) (PEO), and poly-(N-vinyl-2-pyrrolidone of various chain lengths were studied. For the case of complexation between PMAA and oligocations, the standard free energy change for the complexation ?G° was found to be linearly dependent on the number of interacting sites, n. The stability

  12. Kinetics and thermodynamics of formation and electron-transfer reactions of Cu-O2 and Cu2-O2 complexes.

    PubMed

    Fukuzumi, Shunichi; Karlin, Kenneth D

    2013-01-01

    The kinetics and thermodynamics of formation of Cu(II)-superoxo (Cu-O2) complexes by the reaction of Cu(I) complexes with dioxygen (O2) and the reduction of Cu(II)-superoxo complexes to dinuclear Cu-peroxo complexes are discussed. In the former case, electron transfer from a Cu(I) complex to O2 occurs concomitantly with binding of O2 (•-) to the corresponding Cu(II) species. This is defined as an inner-sphere Cu(II) ion-coupled electron transfer process. Electron transfer from another Cu(I) complex to preformed Cu(II)-superoxo complexes also occurs concomitantly with binding of the the Cu(II)-peroxo species with the Cu(II) species to produce the dinuclear Cu-peroxo (Cu2-O2) complexes. The kinetics and thermodynamics of outer-sphere electron-transfer reduction of Cu2-O2 complexes are also been discussed in light of the Marcus theory of outer-sphere electron transfer. PMID:23470920

  13. Highly valence-diversified binuclear uranium complexes of a schiff-base polypyrrolic macrocycle: prediction of unusual structures, electronic properties, and formation reactions.

    PubMed

    Yao, Jun; Zheng, Xiu-Jun; Pan, Qing-Jiang; Schreckenbach, Georg

    2015-06-01

    On the basis of relativistic density functional theory calculations, homo- and heterovalent binuclear uranium complexes of a polypyrrolic macrocycle in a U-O-U bridging fashion have been investigated. These complexes show a variety of oxidation states for uranium ranging from III to VI, which have been confirmed by the calculated electron-spin density on each metal center. An equatorially 5-fold uranyl coordination mode is suitable for hexavalent uranium complexes, while silylation of the uranyl oxo is favored by pentavalent uranium. Uranyl oxo ligands are not required anymore for the coordination environment of tetra- and trivalent uranium because of their replacement by strong donors such as tetrahydrofuran and iodine. Optimization of binuclear U(VI)-U(III) complexes with various coordinating modes of U(III), donor numbers, and donor types reveals that 0.5-1.0 electron has been transferred from U(III) to U(VI). Consequently, U(V)-U(IV) complexes are more favorable. Electronic structures and formation reactions of several representative uranium complexes were calculated. For example, a 5f-based ?(U-U) bonding orbital is found in the diuranium(IV) complex, rationalizing the fact that it shows the shortest U-U distance (3.82 Å) among the studied binuclear complexes. PMID:25955709

  14. Formation, structure, and reactivity of palladium superoxo complexes

    SciTech Connect

    Talsi, E.P.; Babenko, V.P.; Shubin, A.A.; Chinakov, V.D.; Nekipelov, V.M.; Zamaraev, K.I.

    1987-11-18

    The mechanism of formation of palladium superoxo complexes, their structure, and their reactivity are discussed. The formation of the palladium superoxo complexes in the reaction of palladium(II) acetate, propionate, trifluororacetate, and bis(acetylacetonate) and palladium(0) tetrakis(triphenylphosphine) with hydrogen peroxide and potassium superoxide has been detected in solution by electron proton resonance. The oxidation of olefins and carbon monoxide by these complexes is considered. Reaction mechanisms and reaction kinetics for these oxidations are reported using the palladium superoxo complexes. 44 references, 8 figures, 2 tables.

  15. Formation of complex films with water-soluble CTAB molecules

    Microsoft Academic Search

    S. Biswas; S. A. Hussain; S. Deb; R. K. Nathb; D. Bhattacharjee

    2006-01-01

    This communication reports the formation of complex Langmuir monolayer at the air–water interface with the water-soluble N-cetyl N,N,N-trimethyl ammonium bromide (CTAB) molecules when interacted with the stearic acid (SA) molecules. The reaction kinetics of the formation of the CTAB–SA complex was monitored by observing the surface pressure versus time graph. Multilayered LB films of this complex doped with Congo red

  16. Formation of complex films with water-soluble CTAB molecules

    Microsoft Academic Search

    Syed Arshad Hussain; S. Biswas; R. K. Nath; S. Deb; D. Bhattacharjee

    2008-01-01

    This communication reports the formation of complex Langmuir monolayer at the air-water interface with the water-soluble -trimethyl ammonium bromide (CTAB) molecules when interacted with the stearic acid (SA) molecules. The reaction kinetics of the formation of the CTAB-SA complex was monitored by observing the surface pressure versus time graph. Multilayered LB films of this complex doped with congo red was

  17. Reverse hydrotropy by complex formation.

    PubMed

    Wojciechowski, Kamil; Gutberlet, Thomas; Raghuwanshi, Vikram Singh; Terry, Ann

    2015-01-14

    Self-aggregation of three di-N-alkylated diaza-18-crown-6 ethers (ACEs) was studied in non-polar solvents. The three ACEs differed by the length of the alkyl chain: n-decyl (ACE-10), n-hexadecyl (ACE-16) and n-tetracosane (ACE-24). From the previously reported interfacial tension isotherms, the formation of reverse micelles was expected above ACE concentrations of ?10(-3) M. However, the water content analysis in conjunction with Dynamic Light Scattering (DLS), Fluorescence Correlation Spectroscopy (FCS) and (1)H NMR Diffusion Ordered Spectroscopy (DOSY) do not provide any clear proof of the existence of aggregates. Only the Small Angle Neutron Scattering (SANS) of concentrated toluene ACE solutions reveals the existence of small reverse micelles (probably ACE dimers forming small cages hosting 1-2 water molecules). On the other hand, spectrophotometric and fluorescence dye dissolution studies using eosin Y, tropaeolin OO and methyl orange suggest that ACEs can dissolve these dyes without requiring the formation of aggregates. This discrepancy was interpreted assuming the dye-ACE complexation as the driving force for dye solubilisation, providing a possible mechanism of reverse hydrotropy ("lipotropy") in non-polar solvents. This example shows that special care should be taken when dye solubilisation is used to probe self-aggregation of an amphiphile in non-polar solvents. The amphiphile-dye complex formation might be responsible for false positive results and the aggregate formation should always be confirmed with other methods. PMID:25415596

  18. Formation of Phenylene Oligomers Using Platinum-Phosphine Complexes

    E-print Network

    Jones, William D.

    Formation of Phenylene Oligomers Using Platinum-Phosphine Complexes Nira Simhai, Carl N. Iverson to the formation of two strong metal-aryl bonds. This is demonstrated by the reaction of biphenylene with (C5Me5)Rh, R. H.; Dion, R. P.; Gibboni, D. J.; McGrath, D. V.; Holt, E. M. J. Am. Chem. Soc. 1986, 108, 7222

  19. Structural determinants for the formation of sulfhemeprotein complexes

    Microsoft Academic Search

    Elddie Román-Morales; Ruth Pietri; Brenda Ramos-Santana; Serge N. Vinogradov; Ariel Lewis-Ballester; Juan López-Garriga

    2010-01-01

    Several hemoglobins were explored by UV–Vis and resonance Raman spectroscopy to define sulfheme complex formation. Evaluation of these proteins upon the reaction with H2O2 or O2 in the presence of H2S suggest: (a) the formation of the sulfheme derivate requires a HisE7 residue in the heme distal site with an adequate orientation to form an active ternary complex; (b) that

  20. Formation of complex films with water-soluble CTAB molecules

    NASA Astrophysics Data System (ADS)

    Biswas, S.; Hussain, S. A.; Deb, S.; Nath, R. K.; Bhattacharjee, D.

    2006-11-01

    This communication reports the formation of complex Langmuir monolayer at the air-water interface with the water-soluble N-cetyl N, N, N-trimethyl ammonium bromide (CTAB) molecules when interacted with the stearic acid (SA) molecules. The reaction kinetics of the formation of the CTAB-SA complex was monitored by observing the surface pressure versus time graph. Multilayered LB films of this complex doped with Congo red was successfully formed onto a quartz substrate. UV-Vis absorption and steady-state fluorescence spectroscopic characteristics of this doped LB films confirms the successful incorporation of Congo red molecules in to the CTAB-SA complex films.

  1. Formation of complex films with water-soluble CTAB molecules.

    PubMed

    Biswas, S; Hussain, S A; Deb, S; Nath, R K; Bhattacharjee, D

    2006-11-01

    This communication reports the formation of complex Langmuir monolayer at the air-water interface with the water-soluble N-cetyl N,N,N-trimethyl ammonium bromide (CTAB) molecules when interacted with the stearic acid (SA) molecules. The reaction kinetics of the formation of the CTAB-SA complex was monitored by observing the surface pressure versus time graph. Multilayered LB films of this complex doped with Congo red was successfully formed onto a quartz substrate. UV-Vis absorption and steady-state fluorescence spectroscopic characteristics of this doped LB films confirms the successful incorporation of Congo red molecules in to the CTAB-SA complex films. PMID:16549387

  2. Reaction front formation in contaminant plumes

    NASA Astrophysics Data System (ADS)

    Cribbin, Laura B.; Winstanley, Henry F.; Mitchell, Sarah L.; Fowler, Andrew C.; Sander, Graham C.

    2014-12-01

    The formation of successive fronts in contaminated groundwater plumes by subsoil bacterial action is a commonly accepted feature of their propagation, but it is not obviously clear from a mathematical standpoint quite how such fronts are formed or propagate. In this paper we show that these can be explained by combining classical reaction-diffusion theory involving just two reactants (oxidant and reductant), and a secondary reaction in which a reactant on one side of such a front is (re-)formed on the other side of the front via diffusion of its product across the front. We give approximate asymptotic solutions for the reactant profiles, and the propagation rate of the front.

  3. New Pathways for the Formation of Complex Organics and Prebiotic Synthesis in the Gas Phase

    NASA Astrophysics Data System (ADS)

    El-Shall, M. S.

    2010-04-01

    We study the formation mechanisms of complex organics that are present in interstellar clouds. The reaction of acetylene ion with water produces vinyl alcohol while the reaction of benzene ion with acetylene produces naphthalene-type ion.

  4. Stereoregularity Drives Precipitation in Polyelectrolyte Complex Formation

    NASA Astrophysics Data System (ADS)

    Tirrell, Matthew; Perry, Sarah; Leon, Lorraine; Kade, Matthew; Priftis, Dimitris; Black, Katie; Hoffman, Kyle; Whitmer, Jonathan; Qin, Jian; de Pablo, Juan

    2014-03-01

    This study investigates the effect of stereoregularity on the formation of polypeptide-based complex formation and assembly into micelles, hydrogels and ordered phases. We demonstrate that fluid complex coacervate formation (rather than solid complex precipitation) between oppositely charged polypeptides requires at least one racemic partner in order to disrupt backbone hydrogen bonding networks and prevent the hydrophobic collapse of the polymers into compact, fibrillar secondary structures. Computer simulations bear this out and enable visualization of the molecular structure of the complexes. The ability to choose between conditions of fluid phase formation and solid phase formation is a useful tool in developing new self-assembled materials based on polyelectrolyte complex formation. Support from the Argonne National Laboratory Laboratory Research and Development Program (2011-217) is gratefully acknowledged.

  5. Kinetics of rouleau formation. II. Reversible reactions.

    PubMed Central

    Samsel, R W; Perelson, A S

    1984-01-01

    Red blood cells aggregate face-to-face to form long, cylindrical, straight chains and sometimes branched structures called rouleaux. Here we extend a kinetic model developed by R. W. Samsel and A. S. Perelson (1982, Biophys. J. 37:493-514) to include both the formation and dissociation of rouleaux. We examine thermodynamic constraints on the rate constants of the model imposed by the principle of detailed balance. Incorporation of reverse reactions allows us to compute mean sizes of rouleaux and straight chain segments within rouleaux, as functions of time and at equilibrium. Using the Flory - Stockmayer method from polymer chemistry, we obtain a closed-form solution for the size distribution of straight chain segments within rouleaux at any point in the evolution of the reaction. The predictions of our theory compare favorably with data collected by D. Kernick , A.W.L. Jay , S. Rowlands , and L. Skibo (1973, Can. J. Physiol. Pharmacol. 51:690-699) on the kinetics of rouleau formation. When rouleaux grow large, they may contain rings or loops and take on the appearance of a network. We demonstrate the importance of including the kinetics of ring closure in the development of realistic models of rouleaux formation. Images FIGURE 1 FIGURE 13 PMID:6426540

  6. The significance of surface complexation reactions in hydrologic systems: a geochemist's perspective

    Microsoft Academic Search

    C. Koretsky

    2000-01-01

    Complexation reactions at the mineral–water interface affect the transport and transformation of metals and organic contaminants, nutrient availability in soils, formation of ore deposits, acidification of watersheds and the global cycling of elements. Such reactions can be understood by quantifying speciation reactions in homogeneous aqueous solutions, characterizing reactive sites at mineral surfaces and developing models of the interactions between aqueous

  7. Mechanism of carbon-carbon bond formation in the reaction of 1,2-disubstituted alkenes with a cationic bridging methylidyne iron complex

    SciTech Connect

    Casey, C.P.; Meszaros, M.W.; Marder, S.R.; Fagan, P.J.

    1984-06-13

    Two independent lines of evidence are presented to establish that the reaction of ((C/sub 5/H/sub 5/)/sub 2/(CO)/sub 2/Fe/sub 2/(..mu..-CO)(..mu..-CH))/sup +/PF/sub 6//sup -/ cis-2-butene and trans-2-butene, and 1-methyl cyclohexane, occurs by hydrocarbation followed by equilibration. 9 references.

  8. Photoinitiated reactions in weakly bonded complexes

    SciTech Connect

    Wittig, C.

    1993-05-01

    This paper discusses photoinitiated reactions in weakly bonded binary complexes in which the constituents are only mildly perturbed by the intermolecular bond. Such complexes, with their large zero point excursions, set the stage for events that occur following electronic excitation of one of the constituents. This can take several forms, but in all cases, entrance channel specificity is imposed by the character of the complex as well as the nature of the photoinitiation process. This has enabled us to examine aspects of bimolecular processes: steric effects, chemical branching ratios, and inelastic scattering. Furthermore, monitoring reactions directly in the time domain can reveal mechanisms that cannot be inferred from measurements of nascent product excitations. Consequently, we examined several systems that had been studied previously by our group with product state resolution. With CO{sub 2}/HI, in which reaction occurs via a HOCO intermediate, the rates agree with RRKM predictions. With N{sub 2}O/HI, the gas phase single collision reaction yielding OH + N{sub 2} has been shown to proceed mainly via an HNNO intermediate that undergoes a 1,3-hydrogen shift to the OH + N{sub 2} channel. With complexes, ab initio calculations and high resolution spectroscopic studies of analogous systems suggest that the hydrogen, while highly delocalized, prefers the oxygen to the nitrogen. We observe that OH is produced with a fast risetime (< 250 fs) which can be attributed to either direct oxygen-side attack or rapid HNNO decomposition and/or a termolecular contribution involving the nearby iodine.

  9. Synthesis, DNA binding and complex formation reactions of 3-amino-5,6-dimethyl-1,2,4-triazine with Pd(II) and some selected biorelevant ligands

    NASA Astrophysics Data System (ADS)

    Shoukry, Azza A.; Alghanmi, Reem M.

    2015-03-01

    With the purpose of studying the binding behavior of Pd(II) complexes with DNA as the main biological target, and their ability to penetrate reasonably into tumour cells and destroy their replication ability, Pd(ADT)Cl2 complex was synthesized and characterized, where ADT is 3-amino-5,6-dimethyl-1,2,4-triazine. Stoichiometry and stability constants of the complexes formed between various biologically relevant ligands (amino acids, amides, DNA constituents, and dicarboxylic acids) and [Pd(ADT)(H2O)2]2+ were investigated at 25 °C and at constant 0.1 mol dm-3 ionic strength. The concentration distribution diagrams of the various species formed are evaluated. Further investigation of the binding properties of the diaqua complex [Pd(ADT)(H2O)2]2+ with calf thymus DNA (CT-DNA) was investigated by UV-vis spectroscopy. The intrinsic binding constants (Kb) calculated from UV-vis absorption studies was calculated to be 2.00 × 103 mol dm-3. The calculated (Kb) value was found to be of lower magnitude than that of the classical intercalator EB (Ethidium bromide) (Kb = 1.23(±0.07) × 105 mol dm-3) suggesting an electrostatic and/or groove binding mode for the interaction with CT-DNA. Thermal denaturation has been systematically studied by spectrophotometric method and the calculated ?Tm was nearly 5 °C, supporting the electrostatic and/or groove binding mode for the interaction between the complex and CT-DNA

  10. Visualization of chemical reaction dynamics: Toward understanding complex polyatomic reactions

    PubMed Central

    SUZUKI, Toshinori

    2013-01-01

    Polyatomic molecules have several electronic states that have similar energies. Consequently, their chemical dynamics often involve nonadiabatic transitions between multiple potential energy surfaces. Elucidating the complex reactions of polyatomic molecules is one of the most important tasks of theoretical and experimental studies of chemical dynamics. This paper describes our recent experimental studies of the multidimensional multisurface dynamics of polyatomic molecules based on two-dimensional ion/electron imaging. It also discusses ultrafast photoelectron spectroscopy of liquids for elucidating nonadiabatic electronic dynamics in aqueous solutions. PMID:23318678

  11. Solvent-dependent mixed complex formation-NMR studies and asymmetric addition reactions of lithioacetonitrile to benzaldehyde mediated by chiral lithium amides.

    PubMed

    Sott, Richard; Granander, Johan; Hilmersson, Göran

    2002-05-01

    Lithioacetonitrile and a chiral lithium amide with an internally coordinating methoxy group form mixed dimers in diethyl ether (DEE) and in tetrahydrofuran (THF) according to NMR studies. Based on the observed (6)Li,(1)H heteronuclear Overhauser effects, in THF lithioacetonitrile is present in a mixed complex with the chiral lithium amide, and this complex has a central N-Li-N-Li core. In DEE, on the other hand, the acetonitrile anion bridges two lithiums of the dimer to form a central six-membered Li-N-C-C-Li-N ring. Gauge individual atomic orbital DFT calculations of the (13)C NMR chemical shifts of the DEE- and THF-solvated mixed dimers show good agreement with those obtained experimentally. Lithioacetonitrile complexed to the chiral lithium amide has been employed in asymmetric addition to benzaldehyde in both DEE and THF. In THF the product, (S)-3-phenyl-3-hydroxy propionitrile, is formed in 55 % ee and in DEE the R enantiomer is formed in 45 % ee. This change in stereoselectivity between solutions in DEE and THF was found to be general among a number of different chiral lithium amides, all with an internal chelating methoxy group. PMID:11981893

  12. Complex-anisotropy-induced pattern formation in bistable media.

    PubMed

    He, Zhi Zhu; Liu, Jing

    2009-02-01

    A construct of anisotropy in bistable media is adopted to characterize the effects of anisotropy on pattern formation by means of anisotropic line tension. A velocity curvature relation is further derived to account for the anisotropic wave propagations. Stability analysis of transverse perturbations indicates that a sufficiently strong complex anisotropy can induce dynamical instabilities and even lead to a breakup of the wave patterns. Numerical simulations show that complex anisotropy can induce rich spatiotemporal behaviors in bistable media. The results of analysis and simulations demonstrate that this method successfully incorporates complex anisotropy into the reaction diffusion model and has general significance. PMID:19391804

  13. Inhibition of positronium formation and its quenching reactions in binary solid solutions and mixtures of metal tris-2,2,6,6-tetramethyl-3,5-heptanedionate (dpm) complexes

    Microsoft Academic Search

    A. O. Porto; W. F. Magalhães; J. C. Machado

    1997-01-01

    The inhibition of positronium formation and its quenching reactions have been studied in binary solid solutions formed by Al(dpm)3 as a matrix, and Co(dpm)3, Fe(dpm)3 and Mn(dpm)3 as guest molecules, by lifetime and Doppler broadening spectroscopies. In all the solid solutions studied the quenching of positronium lifetime by redox reactions was observed. The total inhibition and quenching rate constants determined

  14. Speciation studies on the complex formation reactions of [Pd( N, N-diethyl-ethylendiamine)(H 2O) 2] 2+ with some bio-relevant ligands and displacement reaction by mercaptoethylamine

    NASA Astrophysics Data System (ADS)

    Shehata, Mohamed R.; Shoukry, Mohamed M.; Osman, Afaf A.; AbedelKarim, Abeer T.

    2011-09-01

    Pd(deen)Cl 2 and Pd(deen)(CBDCA) complexes, where deen = N, N-diethylethylenediamine and CBDCA = 1,1-cyclobutanedicarboxylate, were synthesized and characterized by elemental analysis and spectroscopic techniques. The stoichiometry and stability of the complexes formed between various biologically relevant ligands (amino acids, peptides, DNA constituents and dicarboxylic acids) and [Pd(deen)(H 2O) 2] 2+ were investigated at 25 °C and 0.1 M ionic strength. The speciation diagrams of the complexes formed in solutions are evaluated. The mode of coordination of glycylglycine is investigated by spectrophotometric measurements. The equilibrium constants for the displacement of coordinated ligands as inosine, glycine or methionine by mercaptoethylamine are calculated. The results are expected to contribute to the chemistry of antitumour agents.

  15. Coke formation and minimisation during steam reforming reactions

    Microsoft Academic Search

    D. L. Trimm

    1997-01-01

    The formation of coke during the steam reforming of light hydrocarbons results mainly from catalytic reactions. It is believed that the process is endemic to steam reforming in that the same intermediates are involved in the main reaction as are involved in coking. As a result, control of coking depends on the control of the kinetics of intermediate reactions. On

  16. Complex organic molecules and star formation

    NASA Astrophysics Data System (ADS)

    Bacmann, A.; Faure, A.

    2014-12-01

    Star forming regions are characterised by the presence of a wealth of chemical species. For the past two to three decades, ever more complex organic species have been detected in the hot cores of protostars. The evolution of these molecules in the course of the star forming process is still uncertain, but it is likely that they are partially incorporated into protoplanetary disks and then into planetesimals and the small bodies of planetary systems. The complex organic molecules seen in star forming regions are particularly interesting since they probably make up building blocks for prebiotic chemistry. Recently we showed that these species were also present in the cold gas in prestellar cores, which represent the very first stages of star formation. These detections question the models which were until now accepted to account for the presence of complex organic molecules in star forming regions. In this article, we shortly review our current understanding of complex organic molecule formation in the early stages of star formation, in hot and cold cores alike and present new results on the formation of their likely precursor radicals.

  17. Reactions and mass spectra of complex particles using Aerosol CIMS

    NASA Astrophysics Data System (ADS)

    Hearn, John D.; Smith, Geoffrey D.

    2006-12-01

    Aerosol chemical ionization mass spectrometry (CIMS) is used both on- and off-line for the analysis of complex laboratory-generated and ambient particles. One of the primary advantages of Aerosol CIMS is the low degree of ion fragmentation, making this technique well suited for investigating the reactivity of complex particles. To demonstrate the usefulness of this "soft" ionization, particles generated from meat cooking were reacted with ozone and the composition was monitored as a function of reaction time. Two distinct kinetic regimes were observed with most of the oleic acid in these particles reacting quickly but with 30% appearing to be trapped in the complex mixture. Additionally, detection limits are measured to be sufficiently low (100-200 ng/m3) to detect some of the more abundant constituents in ambient particles, including sulfate, which is measured in real-time at 1.2 [mu]g/m3. To better characterize complex aerosols from a variety of sources, a novel off-line collection method was also developed in which non-volatile and semi-volatile organics are desorbed from particles and concentrated in a cold U-tube. Desorption from the U-tube followed by analysis with Aerosol CIMS revealed significant amounts of nicotine in cigarette smoke and levoglucosan in oak and pine smoke, suggesting that this may be a useful technique for monitoring particle tracer species. Additionally, secondary organic aerosol formed from the reaction of ozone with R-limonene and volatile organics from orange peel were analyzed off-line showing large molecular weight products (m/z > 300 amu) that may indicate the formation of oligomers. Finally, mass spectra of ambient aerosol collected offline reveal a complex mixture of what appears to be highly processed organics, some of which may contain nitrogen.

  18. Understanding bistability in complex enzyme-driven reaction networks

    E-print Network

    Craciun, Gheorghe

    Understanding bistability in complex enzyme-driven reaction networks Gheorghe Craciun* , Yangzhong for enzyme catalysis of a single overall reaction. We present a theorem that distinguishes between those mass- ically simple enzyme-catalyzed reaction networks can give rise to bistability. If two experiments under

  19. Nonlinear Dynamics and Structure Formation in Complex Systems

    E-print Network

    Zonca, Fulvio

    Nonlinear Dynamics and Structure Formation in Complex Systems F. Zonca - Complex behaviors ENEA, Frascati, Italy #12;Nonlinear Dynamics and Structure Formation in Complex Systems F. Zonca-heating) of charged fusion products balances power losses #12;Nonlinear Dynamics and Structure Formation in Complex

  20. ALKALI AGGREGATE REACTION AND DELAYED ETTRINGITE FORMATION: COMMON FEATURES AND DIFFERENCES

    E-print Network

    Paris-Sud XI, Université de

    ALKALI AGGREGATE REACTION AND DELAYED ETTRINGITE FORMATION: COMMON FEATURES AND DIFFERENCES Renaud Department, Paris, France Abstract Alkali-Aggregate Reaction (AAR) and Delayed Ettringite Formation (DEF effects 1 INTRODUCTION Alkali Aggregate Reaction (AAR) and Delayed Ettringite Formation (DEF) are internal

  1. Model Accuracy Assessment in Reaction-Diffusion Pattern Formation in

    E-print Network

    Henderson, Thomas C.

    locally while diffusing to its neighbors; a stable solution may be thresholded to produce a binary valueModel Accuracy Assessment in Reaction-Diffusion Pattern Formation in Wireless Sensor Networks reaction-diffusion (RD) patterns as part of the wireless sensor network (S-Net) high- level structure

  2. Quantitative descriptions of periodic layer formation during solid state reactions

    Microsoft Academic Search

    Y. C. Chen; Y. G. Zhang; C. Q. Chen

    2003-01-01

    Periodic layer formation during solid state reactions is related to the stresses induced by the difference in interface growth rate of the two phases within the layer. When the elastic deformation of the slow-growing phase reaches its elastic maximum, it would be split up from the reaction front and the layer separating occurs. Theoretical model describes systematically the patterns formed

  3. Thiazole formation through a modified Gewald reaction

    PubMed Central

    Mallia, Carl J; Englert, Lukas; Walter, Gary C

    2015-01-01

    Summary The synthesis of thiazoles and thiophenes starting from nitriles, via a modified Gewald reaction has been studied for a number of different substrates. 1,4-Dithiane-2,5-diol was used as the aldehyde precursor to give either 2-substituted thiazoles or 2-substituted aminothiophenes depending on the substitution of the ?-carbon to the cyano group.

  4. The Activated Complex in Chemical Reactions

    Microsoft Academic Search

    Henry Eyring

    1935-01-01

    The calculation of absolute reaction rates is formulated in terms of quantities which are available from the potential surfaces which can be constructed at the present time. The probability of the activated state is calculated using ordinary statistical mechanics. This probability multiplied by the rate of decomposition gives the specific rate of reaction. The occurrence of quantized vibrations in the

  5. Star Formation Across the W3 Complex

    E-print Network

    Román-Zúñiga, C G; Megias, G; Tapia, M; Lada, E A; Alves, J F

    2015-01-01

    We present a multi-wavelength analysis of the history of star formation in the W3 complex. Using deep, near-infrared ground-based images, combined with images obtained with Spitzer and Chandra observatories, we identified and classified young embedded sources. We identified the principal clusters in the complex, and determined their structure and extension. We constructed extinction-limited samples for five principal clusters, and constructed K-band luminosity functions (KLF) that we compare with those of artificial clusters with varying ages. This analysis provided mean ages and possible age spreads for the clusters. We found that IC 1795, the centermost cluster of the complex, still hosts a large fraction of young sources with circumstellar disks. This indicates that star formation was active in IC 1795 as recently as 2 Myr ago, simultaneous to the star forming activity in the flanking embedded clusters, W3-Main and W3(OH). A comparison with carbon monoxide emission maps indicates strong velocity gradients ...

  6. The catalytic role of uranyl in formation of polycatechol complexes

    PubMed Central

    2011-01-01

    To better understand the association of contaminant uranium with natural organic matter (NOM) and the fate of uranium in ground water, spectroscopic studies of uranium complexation with catechol were conducted. Catechol provides a model for ubiquitous functional groups present in NOM. Liquid samples were analyzed using Raman, FTIR, and UV-Vis spectroscopy. Catechol was found to polymerize in presence of uranyl ions. Polymerization in presence of uranyl was compared to reactions in the presence of molybdate, another oxyion, and self polymerization of catechol at high pH. The effect of time and dissolved oxygen were also studied. It was found that oxygen was required for self-polymerization at elevated pH. The potential formation of phenoxy radicals as well as quinones was monitored. The benzene ring was found to be intact after polymerization. No evidence for formation of ether bonds was found, suggesting polymerization was due to formation of C-C bonds between catechol ligands. Uranyl was found to form outer sphere complexes with catechol at initial stages but over time (six months) polycatechol complexes were formed and precipitated from solution (forming humic-like material) while uranyl ions remained in solution. Our studies show that uranyl acts as a catalyst in catechol-polymerization. PMID:21396112

  7. Thiazolidinones Derived from Dynamic Systemic Resolution of Complex Reversible-Reaction Networks

    PubMed Central

    Zhang, Yan; Ramström, Olof

    2014-01-01

    A complex dynamic system based on a network of multiple reversible reactions has been established. The network was applied to a dynamic systemic resolution protocol based on kinetically controlled lipase-catalyzed transformations. This resulted in the formation of cyclized products, where two thiazolidinone compounds were efficiently produced from a range of potential transformations. PMID:24677507

  8. [Simple screening method for judging the complex formation between drug and aluminum (III)].

    PubMed

    Miyachi, Kanako; Nakao, Masahiro; Kurokawa, Hisashi; Tomida, Mayu; Kamino, Shinichiro; Moriyama, Kenzo; Yamaguchi, Takako; Fujita, Yoshikazu

    2009-12-01

    We examined a simple screening method for judging the complex formation between a drug and aluminum(III) on a spot plate. As few drug had color reaction by basing on the binary complex formation of drug-aluminum(III), the ternary complex formation of drug-aluminum(III)-dye was studied this time using 50 kinds of drugs. The dyes used were Chromazurol S and Erythrosin. As a result, in the drug that the complex formation with aluminum(III) was assumed, a remarkable coloration difference was recognized in comparison with the blank prepared under the same conditions. The proposed simple screening method should be very useful for judging instantly the complex formation between a drug and aluminum(III). PMID:19952536

  9. C-H bond activation during and after the reactions of a metallacyclic amide with silanes: formation of a ?-alkylidene hydride complex, its H-D exchange, and ?-H abstraction by a hydride ligand.

    PubMed

    Wang, Li; Hunter, Seth C; Song, Zhimin; Steren, Carlos A; Chen, Tianniu; Wei, Zhenhong; Cai, Hu; Xue, Zi-Ling

    2014-05-12

    Metallacyclic complex [(Me2N)3Ta(?(2)-CH2SiMe2NSiMe3)] (3) undergoes C-H activation in its reaction with H3SiPh to afford a Ta/?-alkylidene/hydride complex, [(Me2N)2{(Me3Si)2N}Ta(?-H)2(?-C-?(2)-CHSiMe2NSiMe3)Ta(NMe2)2] (4). Deuterium-labeling studies with [D3]SiPh show H-D exchange between the Ta-D-Ta unit and all methyl groups in [(Me2N)2{(Me3Si)2N}Ta(?-D)2(?-C-?(2)-CHSiMe2NSiMe3)Ta(NMe2)2] ([D2]-4) to give the partially deuterated complex [Dn]-4. In addition, 4 undergoes ?-H abstraction between a hydride and an NMe2 ligand and forms a new complex [(Me2N){(Me3 Si)2N}Ta(?-H)(?-N-?(2)-C,N-CH2NMe)(?-C-?(2)-C,N-CHSiMe2NSiMe3)Ta(NMe2)2] (5) with a cyclometalated, ?(2)-imine ligand. These results indicate that there are two simultaneous processes in [Dn]-4:1)?H-D exchange through ?-bond metathesis, and 2)?H-D elimination through ?-H abstraction (to give [Dn]-5). Both 4 and 5 have been characterized by single-crystal X-ray diffraction studies. PMID:24682935

  10. Formation of complex defects involving molecular oxygen by electron-hole reactions in x-irradiated KClO4 and KBrO4, studied by ESR and IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Bjerre, Nis; Byberg, J. R.

    1985-03-01

    Complex defects of composition [XO-2, O2], X=Cl, Br, produced by UV or x-irradiation of solid KClO4 and KBrO4 at 26 K are characterized by ESR and IR spectroscopy. [XO-2, O2] is shown to arise during x-irradiation in a reaction between self-trapped electrons in the form of XO2-4 defects, and self-trapped holes in the form of (XO4)-2 defects. The previously described hole defect [XO2, O2] is shown to arise from oxidation of [XO-2, O2] by reaction with (XO4)-2. Thus all the abundant defects observed in x-irradiated KClO4 and KBrO4 stem from self-trapping of electrons and holes and from simple reactions of the self-trapped electrons and holes. The observed equivalence of optical excitation of the anions with electron-hole recombination may be a general property of polyatomic solids.

  11. Effect of inclusion complex on nitrous acid reaction with flavonoids

    NASA Astrophysics Data System (ADS)

    Khalafi, Lida; Rafiee, Mohammad; Sedaghat, Sajjad

    2011-10-01

    The kinetic of the nitrous acid reactions with quercetin and catechin has been studied using spectrophotometric method in aqueous solution. The results show that these antioxidants participate in oxidation reactions with nitrous acid which is derived from protonation of nitrite ion in mild acidic conditions. Corresponding o-quinones as relatively stable products were detected by spectrophotometric techniques. pH dependence of the reactions has been examined and the rate constants of reactions were obtained by non-linear fitting of kinetic profiles. The effect of ?-cyclodextrin on the oxidation pathway was another object of this study. It is shown that ?-cyclodextrin has an inhibitory effect on the oxidation reaction. The rate constants of oxidation reactions for complexed forms and their stability constants were obtained based on changes in the reaction rates as a function of ?-cyclodextrin concentration.

  12. Formation of styrene during the Maillard reaction is negligible

    Microsoft Academic Search

    T. Goldmann; T. Davidek; E. Gouezec; I. Blank; M.-C. Bertholet; R. Stadler

    2009-01-01

    The elucidation of chemical pathways and the identification of intermediates leading to vinylogous compounds such as acrylamide by the Maillard reaction have proven challenging. This study was conducted to assess the formation of styrene from L-phenylalanine, employing binary mixtures of the amino acid heated together with simple C3-sugar analogue (1-hydroxyacetone) or methylglyoxal. The formation of the corresponding vinylogous product, i.e.

  13. Formation of superheavy elements in cold fusion reactions

    Microsoft Academic Search

    V. Yu. Denisov; S. Hofmann

    2000-01-01

    The process of the synthesis of superheavy elements (SHEs) is not yet understood completely. In the presented work we make an attempt to describe the cold fusion reactions of the type X+(Pb,Bi)-->SHE+1n at subbarrier energies. The process of the formation of SHEs is subdivided into three steps. (1) The capture of two spherical nuclei and the formation of a common

  14. EXFOR SYSTEMS MANUAL NUCLEAR REACTION DATA EXCHANGE FORMAT.

    SciTech Connect

    MCLANE,V.; NUCLEAR DATA CENTER NETWORK

    2000-05-19

    EXFOR is an exchange format designed to allow transmission of nuclear reaction data between the members of the Nuclear Data Centers Network. This document has been written for use by the members of the Network and includes matters of procedure and protocol, as well as detailed rules for the compilation of data. Users may prefer to consult EXFOR Basics' for a brief description of the format.

  15. Complex formation of uranium(VI) with 4-hydroxy-3-methoxybenzoic acid and related compounds

    Microsoft Academic Search

    D. Vulpius; G. Geipel; L. Baraniak; A. Rossberg; G. Bernhard

    2006-01-01

    Summary  The complex formation of uranium(VI) with 4-hydroxy-3-methoxybenzoic acid as well as with benzoic acid and 4-hydroxybenzoic\\u000a acid was studied. In aqueous solution weak carboxylic 1 : 1 complexes, are formed in which the carboxyl group is bidentately\\u000a coordinated to the metal atom. The logarithmic stability constants of these complexes regarding the reaction of the uranyl\\u000a ion with the single charged

  16. Spatio-temporal Pattern Formation in Reaction-Diffusion Systems

    E-print Network

    Mocenni, Chiara

    Spatio-temporal Pattern Formation in Reaction-Diffusion Systems Chiara Mocenni January 15, 2013 #12 without diffusion By nondimensionalization and discarding diffusion, we have the following system is the wave number. #12;Diffusion-Driven Instability c = f (c) c Rn (R) #12;Diffusion-Driven Instability c

  17. Formation of superheavy nuclei in cold fusion reactions

    E-print Network

    Feng, Zhao-Qing; Li, Jun-Qing; Scheid, Werner

    2007-01-01

    Within the concept of the dinuclear system (DNS), a dynamical model is proposed for describing the formation of superheavy nuclei in complete fusion reactions by incorporating the coupling of the relative motion to the nucleon transfer process. The capture of two heavy colliding nuclei, the formation of the compound nucleus and the de-excitation process are calculated by using an empirical coupled channel model, solving a master equation numerically and applying statistical theory, respectively. Evaporation residue excitation functions in cold fusion reactions are investigated systematically and compared with available experimental data. Maximal production cross sections of superheavy nuclei in cold fusion reactions with stable neutron-rich projectiles are obtained. Isotopic trends in the production of the superheavy elements Z=110, 112, 114, 116, 118 and 120 are analyzed systematically. Optimal combinations and the corresponding excitation energies are proposed.

  18. Formation of superheavy nuclei in cold fusion reactions

    E-print Network

    Zhao-Qing Feng; Gen-Ming Jin; Jun-Qing Li; Werner Scheid

    2007-10-17

    Within the concept of the dinuclear system (DNS), a dynamical model is proposed for describing the formation of superheavy nuclei in complete fusion reactions by incorporating the coupling of the relative motion to the nucleon transfer process. The capture of two heavy colliding nuclei, the formation of the compound nucleus and the de-excitation process are calculated by using an empirical coupled channel model, solving a master equation numerically and applying statistical theory, respectively. Evaporation residue excitation functions in cold fusion reactions are investigated systematically and compared with available experimental data. Maximal production cross sections of superheavy nuclei in cold fusion reactions with stable neutron-rich projectiles are obtained. Isotopic trends in the production of the superheavy elements Z=110, 112, 114, 116, 118 and 120 are analyzed systematically. Optimal combinations and the corresponding excitation energies are proposed.

  19. Actinide complexation kinetics: rate and mechanism of dioxoneptunium (V) reaction with chlorophosphonazo III

    SciTech Connect

    Fugate, G.; Feil-Jenkins, J.F.; Sullivan, J.C.; Nash, K.L.

    1996-12-01

    Rates of complex formation and dissociation in NpO{sub 2}{sup +}- Chlorophosphonazo III (2,7-bis(4-chloro-2-phosphonobenzeneazo)-1,8- dihydroxynapthalene-3,6-disulfonic acid)(CLIII) were investigated by stopped-flow spectrophotometry. Also, limited studies were made of the rates of reaction of La{sup 3+}, Eu{sup 3+}, Dy{sup 3+}, and Fe{sup 3+} with CLIII. Rate determining step in each system is an intramolecular process, the NpO{sub 2}{sup +}-CLIII reaction proceeding by a first order approach to equilibrium in the acid range from 0.1 to 1.0 M. Complex formation occurs independent of acidity, while both acid dependent and independent dissociation pathways are observed. Activation parameters for the complex formation reaction are {Delta}H=46.2{+-}0.3 kJ/m and {Delta}S=7{+-} J/mK (I=1.0 M); these for the acid dependent and independent dissociation pathways are {Delta}H=38.8{+-}0.6 kJ/m, {Delta}S=-96{+-}18 J/mK, {Delta}H=70.0{+-} kJ/m, and {Delta}S=17{+-}1 J/mK, respectively. An isokinetic relationship is observed between the activation parameters for CLIII complex formation with NpO{sub 2}{sup +}, UO{sub 2}{sup 2+}, Th{sup 4+}, and Zr{sup 4+}. Rates of CLIII complex formation reactions for Fe{sup 3+}, Zr{sup 4+}, NpO{sub 2}{sup +}, UO{sub 2}{sup 2+}, Th{sup 4+}, La{sup 3+}, Eu{sup 3+}, and Dy{sup 3+} correlate with cation radius rather than charge/radius ratio.

  20. Group transfer and electron transfer reactions of organometallic complexes

    SciTech Connect

    Atwood, J.D.

    1994-12-01

    During 1994, despite the disruptions, the authors have made progress in several aspects of their research on electron transfer reactions between organometallic complexes. This summary covers three areas that are relatively complete: (1) reactions between metal carbonyl anions and metal carbonyl halides, (2) reactions of hydrido- and alkyl-containing anions (RFe(CO){sup {minus}}{sub 4} and RW (CO){sub 5}{sup {minus}}) with metal carbonyl cations and (3) reactions of a seventeen-electron complex (Cp{asterisk}Cr(CO){sub 3}{lg_bullet}) with metal carbonyl derivatives. Two areas of examination that have just begun (possible carbene transfer and the possible role of metal carbonyl anions in carbon-hydrogen bond activation) will also be described.

  1. N-Heterocyclic Carbene Complexes in Reactions Involving Carbon Monoxide

    NASA Astrophysics Data System (ADS)

    Jeletic, Matthew; Veige, Adam

    This chapter focuses on carbon monoxide as a reagent in M-NHC catalysed reactions. The most important and popular of these reactions is hydroformylation. Unfortunately, uncertainty exists as to the identity of the active catalyst and whether the NHC is bound to the catalyst in a number of the reported reactions. Mixed bidentate NHC complexes and cobalt-based complexes provide for better stability of the catalyst. Catalysts used for hydroaminomethylation and carbonylation reactions show promise to rival traditional phosphine-based catalysts. Reports of decarbonylation are scarce, but the potential strength of the M-NHC bond is conducive to the harsh conditions required. This report will highlight, where appropriate, the potential benefits of exchanging traditional phosphorous ligands with N-heterocyclic carbenes as well as cases where the role of the NHC might need re-evaluation. A review by the author on this topic has recently appeared [1].

  2. Secondary aerosol formation from atmospheric reactions of aliphatic amines

    NASA Astrophysics Data System (ADS)

    Murphy, S. M.; Sorooshian, A.; Kroll, J. H.; Ng, N. L.; Chhabra, P.; Tong, C.; Surratt, J. D.; Knipping, E.; Flagan, R. C.; Seinfeld, J. H.

    2007-05-01

    Although aliphatic amines have been detected in both urban and rural atmospheric aerosols, little is known about the chemistry leading to particle formation or the potential aerosol yields from reactions of gas-phase amines. We present here the first systematic study of aerosol formation from the atmospheric reactions of amines. Based on laboratory chamber experiments and theoretical calculations, we evaluate aerosol formation from reaction of OH, ozone, and nitric acid with trimethylamine, methylamine, triethylamine, diethylamine, ethylamine, and ethanolamine. Entropies of formation for alkylammonium nitrate salts are estimated by molecular dynamics calculations enabling us to estimate equilibrium constants for the reactions of amines with nitric acid. Though subject to significant uncertainty, the calculated dissociation equilibrium constant for diethylammonium nitrate is found to be sufficiently small to allow for its atmospheric formation, even in the presence of ammonia which competes for available nitric acid. Experimental chamber studies indicate that the dissociation equilibrium constant for triethylammonium nitrate is of the same order of magnitude as that for ammonium nitrate. All amines studied form aerosol when photooxidized in the presence of NOx with the majority of the aerosol mass present at the peak of aerosol growth consisting of aminium (R3NH+) nitrate salts, which repartition back to the gas phase as the parent amine is consumed. Only the two tertiary amines studied, trimethylamine and triethylamine, are found to form significant non-salt organic aerosol when oxidized by OH or ozone; calculated organic mass yields for the experiments conducted are similar for ozonolysis (15% and 5% respectively) and photooxidation (23% and 8% respectively). The non-salt organic aerosol formed appears to be more stable than the nitrate salts and does not quickly repartition back to the gas phase.

  3. Secondary aerosol formation from atmospheric reactions of aliphatic amines

    NASA Astrophysics Data System (ADS)

    Murphy, S. M.; Sorooshian, A.; Kroll, J. H.; Ng, N. L.; Chhabra, P.; Tong, C.; Surratt, J. D.; Knipping, E.; Flagan, R. C.; Seinfeld, J. H.

    2007-01-01

    Although aliphatic amines have been detected in both urban and rural atmospheric aerosols, little is known about the chemistry leading to particle formation or the potential aerosol yields from reactions of gas-phase amines. We present here the first systematic study of aerosol formation from the atmospheric reactions of amines. Based on laboratory chamber experiments and theoretical calculations, we evaluate aerosol formation from reaction of OH, ozone, and nitric acid with trimethylamine, methylamine, triethylamine, diethylamine, ethylamine, and ethanolamine. Entropies of formation for alkylammonium nitrate salts are estimated by molecular dynamics calculations enabling us to estimate equilibrium constants for the reactions of amines with nitric acid. Though subject to significant uncertainty, the calculated dissociation equilibrium constant for diethylammonium nitrate is found to be sufficiently small to allow for its atmospheric formation, even in the presence of ammonia which competes for available nitric acid. Experimental chamber studies indicate that the dissociation equilibrium constant for triethylammonium nitrate is of the same order of magnitude as that for ammonium nitrate. All amines studied form aerosol when photooxidized in the presence of NOx with the majority of the aerosol mass present at the peak of aerosol growth consisting of aminium (R3NH+) nitrate salts, which repartition back to the gas phase as the parent amine is consumed. Only the two tertiary amines studied, trimethylamine and triethylamine, are found to form significant non-salt organic aerosol when oxidized by OH or ozone; calculated organic mass yields for the experiments conducted are similar for ozonolysis (15% and 5% respectively) and photooxidation (23% and 8% respectively). The non-salt organic aerosol formed appears to be more stable than the nitrate salts and does not quickly repartition back to the gas phase.

  4. Buffering dissociation/formation reaction of biogenic calcium carbonate.

    PubMed

    Ichikawa, Kazuhiko

    2007-01-01

    The oscillating stability of coral reef seawater pH has been maintained at around physiological pH values over the past 300 years (Pelejero et al., 2005). The stability mechanism of its pH has been interpreted in terms of the buffering dissolution/formation reaction of CaCO(3) as well as the proton consumption/generation reaction in CaCO(3)-saturated water. Here the pH-dependent solubility product [HCO(3)(-)][Ca(2+)] has been derived on the basis of the actual pH-dependent reactions for the atmospheric CO(2)/CO(2 (aq.))/HCO(3)(-)/CO(3)(2-)/Ca(2+)/CaCO(3) system. Overbasic pH peaks appeared between pH approximately 8 and approximately 9.5 during sodium hydroxide titration, as a result of simultaneous CaCO(3) formation and proton generation. The spontaneous and prompt water pH recovery from the acidic to the physiological range has been confirmed by the observation of acid/base time evolution, because of simultaneous CaCO(3) dissolution and proton consumption. The dissolution/formation of CaCO(3) in water at pH 7.5-9 does not take place without a proton consumption/generation reaction, or a buffering chemical reaction of HCO(3)(-)+Ca(2+)right arrow over left arrowCaCO(3)+H(+). SEM images of the CaCO(3) fragments showed that the acid water ate away at the CaCO(3) formed at physiological pH values. Natural coral reefs can thus recover the physiological pH levels of seawater from the acidic range through partial dissolution of their own skeletons. PMID:17910015

  5. Self-propagating formation reactions in Nb\\/Si multilayers

    Microsoft Academic Search

    M. E. Reiss; C. M. Esber; D. Van Heerden; A. J. Gavens; M. E. Williams; T. P. Weihs

    1999-01-01

    Structural silicides with promising high temperature mechanical properties can be fabricated into near-net shapes using self-propagating high-temperature synthesis of powders. These silicides can also be formed from vapor deposited reactive multilayer foils. The foils typically contain hundreds of layers that alternate between two elements that will mix exothermically to form a compound. Once the formation reaction is ignited in a

  6. Effect of reaction time on the formation of disinfection byproducts

    USGS Publications Warehouse

    Rathbun, R.E.

    1997-01-01

    The effect of reaction time on the trihalomethane and nonpurgeable total organic-halide formation potentials was determined by chlorinating water samples from the Mississippi, Missouri, and Ohio Rivers. Samples were collected for three seasons at 12 locations on the Mississippi from Minneapolis, Minnesota, to New Orleans, Louisiana, and on the Missouri and Ohio 1.6 kilometers above their confluences with the Mississippi. Both types of compounds formed rapidly during the initial stages of the reaction-time period, with formation rates decreasing with time. The ratio of the nonpurgeable total organic-halide and trihalomethane concentrations decreased with time, with the nonpurgeable total organic-halide compounds forming faster during the first stages of the time period and the trihalomethane compounds forming faster during the latter stages of the time period. Variation with distance along the Mississippi River of the formation rates approximately paralleled the variation of the dissolved organic carbon concentration, indicating that the rates of formation, as well as the concentrations of the compounds formed, depended on the dissolved organic carbon concentration.

  7. Acid-catalyzed Heterogeneous Reactions in SOA Formation

    NASA Astrophysics Data System (ADS)

    Ng, N.; Keywood, M.; Varutbangkul, V.; Gao, S.; Loewer, E.; Surratt, J.; Richard, F. C.; John, S. H.

    2003-12-01

    The importance of heterogeneous reactions in secondary organic aerosol (SOA) formation has recently excited a great deal of interest in the aerosol community. Jang and Kamens (2001) showed enhanced aerosol yield from aldehydes, which can be produced by atmospheric photochemical reactions, in the presence of acidic seed. They suggest that the carbonyl functional groups of the aldehydes further react in the aerosol phase via hydration, polymerization, and hemiacetal/acetal formation with alcohols at an accelerated rate in the presence of acid. Jang et al. (2003) demonstrated similar results using a flow reactor and Czoschke et al. (in press) qualitatively showed increased yields for isoprene and alpha-pinene ozonolysis in the presence of acidic seed. While these findings are intriguing and important, the conditions under which the experiments were carried out were atmospherically unrealistic. A series of SOA formation experiments have been carried out in the Caltech Indoor Chamber Facility, which is comprised of dual 28 m3 FEP Teflon chambers, with the flexibility to carry out both dark ozonolysis and photochemical OH oxidation reactions. Cycloheptene and alpha-pinene were oxidized in the presence of neutral seed under dry (<10% RH) and humid (50% RH) conditions and in the presence of acidic seed under humid (50% RH) conditions. The SOA yields for these experiments will be presented, and the extent of the influence of acid-catalyzed reactions on SOA yield will be discussed. Reference List 1. Cocker, D. R. III. and R. C. Flagan and J. H. Seinfeld, State-of-the-art chamber facility for studying atmospheric aerosol chemistry, Environmental Science and Technology, 35, 2594-2601, 2001. 2. Czoschke, N. M., M. Jang, and R. M. Kamens, Effect of acid seed on biogenic sceondary organic aerosol growth, Atmospheric Environment, In press. 3. Jang, M., S. Lee, and R. M. Kamens, Organic aerosol growth by acid-catalyzed heterogeneous reactions of octanal in a flow reactor, Atmospheric Environment, 37, 2125-2138, 2003. 4. Jang, M. S. and R. M Kamens, Atmospheric secondary aerosol formation by heterogeneous reactions of aldehydes in the presence of a sulfuric acid aerosol catalyst. Environmental Science and Technology, 35, 4758-4766,2001.

  8. Monte Carlo Algorithms for Complex Surface Reaction Mechanisms: Efficiency and Accuracy

    Microsoft Academic Search

    J. S. Reese; S. Raimondeau; D. G. Vlachos

    2001-01-01

    A continuous-time Monte Carlo (CTMC) algorithm with lists of neighbors and local update (tree-type architecture) for simulating the dynamics and stationary pattern formation of complex surface reaction mechanisms is discussed. Two additional CTMC algorithms, often used in the literature, are also presented. The computational efficiency of these CTMC algorithms is compared to a null-event algorithm for the CO oxidation on

  9. Kinetics of enol formation from reaction of OH with propene.

    PubMed

    Huynh, Lam K; Zhang, Hongzhi R; Zhang, Shaowen; Eddings, Eric; Sarofim, Adel; Law, Matthew E; Westmoreland, Phillip R; Truong, Thanh N

    2009-04-01

    Kinetics of enol generation from propene has been predicted in an effort to understand the presence of enols in flames. A potential energy surface for reaction of OH with propene was computed by CCSD(T)/cc-pVDZ//B3LYP/cc-pVTZ calculations. Rate constants of different product channels and branching ratios were then calculated using the Master Equation formulation (J. Phys. Chem. A 2006, 110, 10528). Of the two enol products, ethenol is dominant over propenol, and its pathway is also the dominant pathway for the OH + propene addition reactions to form bimolecular products. In the temperature range considered, hydrogen abstraction dominated propene + OH consumption by a branching ratio of more than 90%. Calculated rate constants of enol formation were included in the Utah Surrogate Mechanism to model the enol profile in a cyclohexane premixed flame. The extended model shows consistency with experimental data and gives 5% contribution of ethenol formation from OH + propene reaction, the rest coming from ethene + OH. PMID:19271758

  10. DNA Branch Migration Reactions Through Photocontrollable Toehold Formation

    PubMed Central

    Huang, Fujian; You, Mingxu; Han, Da; Xiong, Xiangling

    2013-01-01

    Strand displacement cascades are commonly used to make dynamically assembled structures. Particularly, the concept of “toehold-mediated DNA branch migration reactions” has attracted considerable attention in relation to dynamic DNA nanostructures. However, it is a challenge to obtain and control the formation of pure 1:1 ratio DNA duplexes with toehold structures. Here, for the first time, we report a photocontrolled toehold formation method, which is based on the photocleavage of 2-nitrobenzyl linker-embedded DNA hairpin precursor structures. UV light irradiation (??365 nm) of solutions containing these DNA hairpin structures causes the complete cleavage of the nitrobenzyl linker, and pure 1:1 DNA duplexes with toehold structures are easily formed. Our experimental results indicate that the amount of toehold can be controlled by simply changing the dose of UV irradiation and that the resulting toehold structures can be used for subsequent toehold-mediated DNA branch migration reactions, e.g., DNA hybridization chain reactions. This newly established method will find broad application in the construction of light-powered, controllable and dynamic DNA nanostructures or large-scale DNA circuits. PMID:23642046

  11. Dynamic NMR study of the oxaphosphetane complexation with lithium during the Wittig reaction

    NASA Astrophysics Data System (ADS)

    Pascariu, Aurelia; Mracec, Mircea; Berger, Stefan

    Dynamic NMR spectroscopy at very low temperatures (148-182 K) reveal the dynamic behavior of the (2-tri(3-furyl)-3-methyl-4-cyclopropenyl-oxaphosphetane) generated during a Wittig reaction between tri(3-furyl)ethylphosphonium iodine and cyclopropylaldehyde. The possibility of formation of different adducts between Li+ ions and oxaphosphetane or betainic intermediates was checked calculating the formation enthalpies using the MNDO, AM1, and PM3 semiempirical MO methods. The observed species are interpreted as oxaphosphetane complexes with lithium ions present in solution. Quantum mechanical calculations confirm the spectroscopic results.0

  12. The formate-pyruvate exchange reaction by Streptococcus faecalis 

    E-print Network

    Yeager, Robert Lee

    1960-01-01

    of the fortrmts activating systen. . An apprca. =h t? study the formats exchange reaction was made by :hood (is. . s) with . faecalis. This organisrs requires lipoic acid for the oxidatio~ or tne dtsmutation of pyruve'. e. Du-;ing th&. investigation, Q... oscillation (IQkc Raytheon) for 10, 20, 50. 45, 50?90 and 120 minutes were Inacttve, liow?ver, as shown in Table 2, extracts of S. faecalis prepared by the French pressure call method were capable J of exchanging forr!ate-" 1" with the carboxyl group cf...

  13. Exploring complex chemical reactions by ab-initio simulation

    NASA Astrophysics Data System (ADS)

    Parrinello, Michele

    1998-03-01

    Recent progress in the ab-initio molecular dynamics method and the power of parallel computing, allow the detailed study of complex chemical reaction of great industrial relevance. We illustrate this unprecedented capability by investigating the second generation Ziegler-Natta catalytic process. In this inhomogeneous catalyst, a polymerization reaction is induced by TiCl4 molecules deposited on an MgCl2 solid support. A density functional based ab-initio molecular dynamics calculation conducted with a minimum of initial assumption allows to understand the nature of the catalytic center and to determine the reaction path with the associated free energy barrier. Furthermore our calculation can explain in a nontrivial way the stereo-selectivity of the process.

  14. Complex signal amplitude analysis for complete fusion nuclear reaction products

    E-print Network

    Yu. S. Tsyganov

    2015-06-07

    A complex analysis has been performed on the energy amplitude signals corresponding to events of Z=117 element measured in the 249Bk+48Ca complete fusion nuclear reaction. These signals were detected with PIPS position sensitive detector. The significant values of pulse height defect both for recoils (ER) and fission fragments (FF) were measured. Comparison with the computer simulations and empirical formulae has been performed both for ER and FF signals.

  15. Complex signal amplitude analysis for complete fusion nuclear reaction products

    E-print Network

    Tsyganov, Yu S

    2015-01-01

    A complex analysis has been performed on the energy amplitude signals corresponding to events of Z=117 element measured in the 249Bk+48Ca complete fusion nuclear reaction. These signals were detected with PIPS position sensitive detector. The significant values of pulse height defect both for recoils (ER) and fission fragments (FF) were measured. Comparison with the computer simulations and empirical formulae has been performed both for ER and FF signals.

  16. Reaction between magnesium ammine complex compound and lithium hydride

    Microsoft Academic Search

    Masami Tsubota; Satoshi Hino; Hironobu Fujii; Chie Oomatsu; Masashi Yamana; Takayuki Ichikawa; Yoshitsugu Kojima

    2010-01-01

    The possibility of using ammonia as a hydrogen carrier is examined for the reaction between magnesium ammine complex MgCl2(NH3)6 and lithium hydride LiH. Sample was milled at low temperature of ?40 °C to avoid decomposition of MgCl2(NH3)6 during the milling. The effects of milling time, milling speed (revolutions per minute), and catalysts on hydrogen storage properties were investigated by thermogravimetry, thermal

  17. Radionuclide reactions with groundwater and basalts from Columbia River basalt formations

    SciTech Connect

    Barney, G.S.

    1981-06-01

    Chemical reactions of radionuclides with geologic materials found in Columbia River basalt formations were studied. The objective was to determine the ability of these formations to retard radionuclide migration from a radioactive waste repository located in deep basalt. Reactions that can influence migration are precipitation, ion-exchange, complexation, and oxidation-reduction. These reactions were studied by measuring the effects of groundwater composition and redox potential (Eh) on radionuclide sorption on fresh basalt surfaces, a naturally altered basalt, and a sample of secondary minerals associated with a Columbia River basalt flow. In addition, radionuclide sorption isotherms were measured for these materials and reaction kinetics were determined. The radionuclides studied were /sup 137/Cs, /sup 85/Sr, /sup 75/Se, /sup 95m/Tc, /sup 237/Np, /sup 241/Am, /sup 226/Ra and /sup 237/Pu. The Freundlich equation accurately describes the isotherms when precipitation of radionuclides does not occur. In general, sorption increased in the order: basalt < altered basalt < secondary minerals. This increase in sorption corresponds to increasing surface area and cation exchange capacity. The Eh of the system had a large effect on technetium, plutonium, and neptunium sorption. Technetium(VII), Pu(VI), and Np(V) are reduced to Tc(IV), Pu(IV), and Np(IV), respectively, under Eh conditions expected in deep basalt formations. The kinetics of radionuclide sorption and basalt-groundwater reactions were observed over a period of 18 weeks. Most sorption reactions stabilized after about four weeks. Groundwater composition changed the least in contact with altered basalt. Contact with secondary minerals greatly increased Ca, K, and Mg concentrations in the groundwater.

  18. Roles of acetone and diacetone alcohol in coordination and dissociation reactions of uranyl complexes.

    PubMed

    Rios, Daniel; Schoendorff, George; Van Stipdonk, Michael J; Gordon, Mark S; Windus, Theresa L; Gibson, John K; de Jong, Wibe A

    2012-12-01

    Combined collision-induced dissociation mass spectrometry experiments with DFT and MP2 calculations were employed to elucidate the molecular structures and energetics of dissociation reactions of uranyl species containing acetone and diacetone alcohol ligands. It is shown that solutions containing diacetone alcohol ligands can produce species with more than five oxygen atoms available for coordination. Calculations confirm that complexes with up to four diacetone alcohol ligands can be energetically stable but that the effective number of atoms coordinating with uranium in the equatorial plane does not exceed five. Water elimination reactions of diacetone alcohol ligands are shown to have two coordination-dependent reaction channels, through formation of mesityl oxide ligands or formation of alkoxide and protonated mesityl oxide species. The present results provide an explanation for the implausible observation of "[UO(2)(ACO)(6,7,8)](2+)" in and observed water-elimination reactions from purportedly uranyl-acetone complexes (Rios, D.; Rutkowski, P. X.; Van Stipdonk, M. J.; Gibson, J. K. Inorg. Chem. 2011, 50, 4781). PMID:23146003

  19. Surface complexation reaction for phase transfer of hydrophobic quantum dot from nonpolar to polar medium.

    PubMed

    Bhandari, Satyapriya; Roy, Shilaj; Pramanik, Sabyasachi; Chattopadhyay, Arun

    2014-09-01

    Chemical reaction between oleate-capped Zn(x)Cd(1-x)S quantum dots (Qdots) and 8-hydroxyquinoline (HQ) led to formation of a surface complex, which was accompanied by transfer of hydrophobic Qdots from nonpolar (hexane) to polar (water) medium with high efficiency. The stability of the complex on the surface was achieved via involvement of dangling sulfide bonds. Moreover, the transferred hydrophilic Qdots--herein called as quantum dot complex (QDC)--exhibited new and superior optical properties in comparison to bare inorganic complexes with retention of the dimension and core structure of the Qdots. Finally, the new and superior optical properties of water-soluble QDC make them potentially useful for biological--in addition to light emitting device (LED)--applications. PMID:25133937

  20. Thermodynamics of the formation of copper(II) complexes with L-histidine in aqueous solution

    NASA Astrophysics Data System (ADS)

    Gorboletova, G. G.; Metlin, A. A.

    2015-02-01

    The heat effects from the reaction between L-histidine solutions and Cu(NO3)2 solutions at 298.15 K in the 0.2 to 1.0 (KNO3) range of ionic strength are measured by means of direct calorimetry. The experimental data is treated with allowance for the simultaneous proceeding of several processes. The heat effects of the formation of complexes Cu(His)+, Cu(His)2, CuHHis2+, CuH(His){2/+} and CuH2(His){2/2+} are calculated from calorimetric measurements. The standard enthalpies of formation for complexes of L-histidine with Cu2+ ions are obtained via extrapolation to zero ionic strength. The relationship between the thermodynamic characteristics of the formation of complexes of copper(II) with L-histidine and their structure is determined.

  1. Dynamics of Lane Formation in Driven Binary Complex Plasmas

    SciTech Connect

    Suetterlin, K. R.; Ivlev, A. V.; Raeth, C.; Thomas, H. M.; Rubin-Zuzic, M.; Morfill, G. E. [Max Planck Institute for Extraterrestrial Physics, 85741 Garching (Germany); Wysocki, A.; Loewen, H. [Heinrich-Heine-Universitaet Duesseldorf, 40225 Duesseldorf (Germany); Goedheer, W. J. [FOM-Institute for Plasma Physics Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Fortov, V. E.; Lipaev, A. M.; Molotkov, V. I.; Petrov, O. F. [Joint Institute for High Temperatures, 125412 Moscow (Russian Federation)

    2009-02-27

    The dynamical onset of lane formation is studied in experiments with binary complex plasmas under microgravity conditions. Small microparticles are driven and penetrate into a cloud of big particles, revealing a strong tendency towards lane formation. The observed time-resolved lane-formation process is in good agreement with computer simulations of a binary Yukawa model with Langevin dynamics. The laning is quantified in terms of the anisotropic scaling index, leading to a universal order parameter for driven systems.

  2. Dynamics of lane formation in driven binary complex plasmas.

    PubMed

    Sütterlin, K R; Wysocki, A; Ivlev, A V; Räth, C; Thomas, H M; Rubin-Zuzic, M; Goedheer, W J; Fortov, V E; Lipaev, A M; Molotkov, V I; Petrov, O F; Morfill, G E; Löwen, H

    2009-02-27

    The dynamical onset of lane formation is studied in experiments with binary complex plasmas under microgravity conditions. Small microparticles are driven and penetrate into a cloud of big particles, revealing a strong tendency towards lane formation. The observed time-resolved lane-formation process is in good agreement with computer simulations of a binary Yukawa model with Langevin dynamics. The laning is quantified in terms of the anisotropic scaling index, leading to a universal order parameter for driven systems. PMID:19257747

  3. Complex Reaction Environments and Competing Reaction Mechanisms in Zeolite Catalysis: Insights from Advanced Molecular Dynamics.

    PubMed

    De Wispelaere, Kristof; Ensing, Bernd; Ghysels, An; Meijer, Evert Jan; Van Speybroeck, Veronique

    2015-06-22

    The methanol-to-olefin process is a showcase example of complex zeolite-catalyzed chemistry. At real operating conditions, many factors affect the reactivity, such as framework flexibility, adsorption of various guest molecules, and competitive reaction pathways. In this study, the strength of first principle molecular dynamics techniques to capture this complexity is shown by means of two case studies. Firstly, the adsorption behavior of methanol and water in H-SAPO-34 at 350?°C is investigated. Hereby an important degree of framework flexibility and proton mobility was observed. Secondly, the methylation of benzene by methanol through a competitive direct and stepwise pathway in the AFI topology was studied. Both case studies clearly show that a first-principle molecular dynamics approach enables unprecedented insights into zeolite-catalyzed reactions at the nanometer scale to be obtained. PMID:25951509

  4. Formation of superheavy elements in cold fusion reactions

    SciTech Connect

    Smolanczuk, Robert

    2001-04-01

    We calculate the formation cross sections of transactinides (superheavy elements), as well as heavy actinides (No and Lr), which have been or might be obtained in fusion reactions with the evaporation of only one neutron. We use both more realistic fusion barrier and survival probability of the compound nucleus in comparison with the original phenomenological model [Phys. Rev. C 59, 2634 (1999)] that prompted the Berkeley experiment on the synthesis of a new superheavy element 118 [Phys. Rev. Lett. 83, 1104 (1999)]. Calculations are performed for asymmetric and symmetric target-projectile combinations and for reactions with stable and radioactive-ion beams. The formation cross sections measured at GSI-Darmstadt for transactinides and heavy actinides, as well as that for superheavy element 118 reported by the LBNL-Berkeley group, are reproduced within a factor of 2.4, on average. Based on the obtained relatively large cross sections, we predict that optimal reactions with stable beams for the synthesis of so far unobserved superheavy elements 119, 120, and 121 are {sup 209}Bi({sup 86}Kr, 1n){sup 294}119, {sup 208}Pb({sup 88}Sr, 1n){sup 295}120, and {sup 209}Bi({sup 88}Sr, 1n){sup 296}121, respectively. This is because of the magic of both the target and the projectile that leads to larger Q value and, consequently, lower effective fusion barrier with larger transmission probability. The same effect is responsible for relatively large cross sections predicted for the symmetric reactions {sup 136}Xe({sup 124}Sn, 1n){sup 259}Rf, {sup 136}Xe({sup 136}Xe, 1n){sup 271}Hs,{sup 138}Ba({sup 136}Xe, 1n){sup 273}110, and {sup 140}Ce({sup 136}Xe, 1n){sup 275}112. Although shell effects in the magic nuclei {sup 124}Sn, {sup 136}Xe, {sup 138}Ba, and {sup 140}Ce are not as strong as in {sup 208}Pb and {sup 209}Bi, they act on both the target and the projectile and lead to the prediction of measurable cross sections.

  5. Snapshot of a Reaction Intermediate: Analysis of Benzoylformate Decarboxylase in Complex with a Benzoylphosphonate Inhibitor

    SciTech Connect

    Brandt, Gabriel S.; Kneen, Malea M.; Chakraborty, Sumit; Baykal, Ahmet T.; Nemeria, Natalia; Yep, Alejandra; Ruby, David I.; Petsko, Gregory A.; Kenyon, George L.; McLeish, Michael J.; Jordan, Frank; Ringe, Dagmar; (Michigan); (Rutgers); (Brandeis)

    2009-04-22

    Benzoylformate decarboxylase (BFDC) is a thiamin diphosphate- (ThDP-) dependent enzyme acting on aromatic substrates. In addition to its metabolic role in the mandelate pathway, BFDC shows broad substrate specificity coupled with tight stereo control in the carbon-carbon bond-forming reverse reaction, making it a useful biocatalyst for the production of chiral-hydroxy ketones. The reaction of methyl benzoylphosphonate (MBP), an analogue of the natural substrate benzoylformate, with BFDC results in the formation of a stable analogue (C2{alpha}-phosphonomandelyl-ThDP) of the covalent ThDP-substrate adduct C2{alpha}-mandelyl-ThDP. Formation of the stable adduct is confirmed both by formation of a circular dichroism band characteristic of the 1',4'-iminopyrimidine tautomeric form of ThDP (commonly observed when ThDP forms tetrahedral complexes with its substrates) and by high-resolution mass spectrometry of the reaction mixture. In addition, the structure of BFDC with the MBP inhibitor was solved by X-ray crystallography to a spatial resolution of 1.37 {angstrom} (PDB ID 3FSJ). The electron density clearly shows formation of a tetrahedral adduct between the C2 atom of ThDP and the carbonyl carbon atom of the MBP. This adduct resembles the intermediate from the penultimate step of the carboligation reaction between benzaldehyde and acetaldehyde. The combination of real-time kinetic information via stopped-flow circular dichroism with steady-state data from equilibrium circular dichroism measurements and X-ray crystallography reveals details of the first step of the reaction catalyzed by BFDC. The MBP-ThDP adduct on BFDC is compared to the recently solved structure of the same adduct on benzaldehyde lyase, another ThDP-dependent enzyme capable of catalyzing aldehyde condensation with high stereospecificity.

  6. Bow shock formation in a complex plasma.

    PubMed

    Saitou, Y; Nakamura, Y; Kamimura, T; Ishihara, O

    2012-02-10

    A bow shock is observed in a two-dimensional supersonic flow of charged microparticles in a complex plasma. A thin conducting needle is used to make a potential barrier as an obstacle for the particle flow in the complex plasma. The flow is generated and the flow velocity is controlled by changing a tilt angle of the device under the gravitational force. A void, microparticle-free region, is formed around the potential barrier surrounding the obstacle. The flow is bent around the leading edge of the void and forms an arcuate structure when the flow is supersonic. The structure is characterized by the bow shock as confirmed by a polytropic hydrodynamic theory as well as numerical simulation. PMID:22401079

  7. Complex molecule formation around massive young stellar objects.

    PubMed

    Oberg, Karin I; Fayolle, Edith C; Reiter, John B; Cyganowski, Claudia

    2014-01-01

    Interstellar complex organic molecules were first identified in the hot inner regions of massive young stellar objects (MYSOs), but have more recently been found in many colder sources, indicating that complex molecules can form at a range of temperatures. However, individually these observations provide limited constraints on how complex molecules form, and whether the same formation pathways dominate in cold, warm and hot environments. To address these questions, we use spatially resolved observations from the Submillimeter Array of three MYSOs together with mostly unresolved literature data to explore how molecular ratios depend on environmental parameters, especially temperature. Towards the three MYSOs, we find multiple complex organic emission peaks characterized by different molecular compositions and temperatures. In particular, CH3CCH and CH3CN seem to always trace a lukewarm (T = 60 K) and a hot (T > 100 K) complex chemistry, respectively. These spatial trends are consistent with abundance-temperature correlations of four representative complex organics--CH3CCH, CH3CN, CH3OCH3 and CH3CHO--in a large sample of complex molecule hosts mined from the literature. Together, these results indicate a general chemical evolution with temperature, i.e. that new complex molecule formation pathways are activated as a MYSO heats up. This is qualitatively consistent with model predictions. Furthermore, these results suggest that ratios of complex molecules may be developed into a powerful probe of the evolutionary stage of a MYSO, and may provide information about its formation history. PMID:25302375

  8. ?,?-Unsaturated diimines as substrates in catalytic C–H activation reactions and as ligands in iron carbonyl complexes

    Microsoft Academic Search

    Wolfgang Imhof; Angela Göbel

    2005-01-01

    The reaction of 3-[4-(3-oxo-propenyl)-phenyl]-propenal with two equivalents cyclohexylamine as well as the treatment of cyclohexane-1,4-diamine or bis-(4-aminocyclohexyl)-methane with two equivalents of cinnamaldehyde leads to the formation of the corresponding diimines. Mono- or dinuclear iron carbonyl complexes are produced if the diimines are reacted with iron carbonyls. Two of these complexes have been characterized by X-ray crystallography showing that one or

  9. Reactions of heteroallenes with cyclam-based Zr(IV) complexes.

    PubMed

    Alves, Luis G; Madeira, Filipe; Munhá, Rui F; Barroso, Sónia; Veiros, Luis F; Martins, Ana M

    2015-01-21

    This work describes reactions of heteroallenes with diamido-diamine cyclam-based Zr(iv) complexes of the general formula (Bn2Cyclam)ZrX2 (X = O(t)Bu, , O(i)Pr, , SPh, , NH(t)Bu, ) as well as the di-orthometallated species ((C6H4CH2)2Cyclam)Zr, . The reactions of isocyanates or isothiocyanates with , or resulted in the formation of N-bonded ureate or thioureate cyclam complexes upon [2 + 2] cycloaddition of the Zr-Namido bonds of the cyclam to the heteroallene (). DFT calculations showed that ?(2)-N,N'-ureate bonding is favoured over ?(2)-N,O-ureates, which in turn may be formed in reactions with bulky isocyanates as 1-naphthyl isocyanate (NpN[double bond, length as m-dash]C[double bond, length as m-dash]O). The reactions of with N,N'-cyclohexylcarbodiimide (CyN[double bond, length as m-dash]C[double bond, length as m-dash]NCy) and carbon disulfide afforded guanidinate and dithiocarbamate fragments, respectively, appended to one of the nitrogen atoms of the cyclam ligand. These reactions represent a reliable method for the synthesis of asymmetrically N-functionalized cyclams giving rise to C1 symmetry Zr(iv) species by addition of one equivalent of heteroallenes. The reaction of (Bn2Cyclam)Zr(NH(t)Bu)2, , with one equivalent of mesityl isocyanate (MesN[double bond, length as m-dash]C[double bond, length as m-dash]O) also proceeds through insertion, involving one Zr-NH(t)Bu bond. However, it was observed that the reaction of (Bn2Cyclam)Zr(NH(t)Bu)2, , with MesN[double bond, length as m-dash]C[double bond, length as m-dash]O follows a different path if the reaction is carried out at 60 °C. In this case the reaction leads to [2 + 2] addition of the Zr-Ncyclam bond to the isocyanate, with a concomitant occurrence of orthometallation of the one benzyl pending group of the cyclam ring. The reaction of (t)BuN[double bond, length as m-dash]C[double bond, length as m-dash]O with the di-orthometallated complex ((C6H4CH2)2Cyclam)Zr, , also gave a ?(2)-N,N'-ureate fragment, by isocyanate addition to the macrocycle. DFT calculations on these systems were conducted in an attempt to rationalise the reactivity patterns observed. PMID:25427676

  10. Direct electronic probing of biological complexes formation

    NASA Astrophysics Data System (ADS)

    Macchia, Eleonora; Magliulo, Maria; Manoli, Kyriaki; Giordano, Francesco; Palazzo, Gerardo; Torsi, Luisa

    2014-10-01

    Functional bio-interlayer organic field - effect transistors (FBI-OFET), embedding streptavidin, avidin and neutravidin as bio-recognition element, have been studied to probe the electronic properties of protein complexes. The threshold voltage control has been achieved modifying the SiO2 gate diaelectric surface by means of the deposition of an interlayer of bio-recognition elements. A threshold voltage shift with respect to the unmodified dielectric surface toward more negative potential values has been found for the three different proteins, in agreement with their isoelectric points. The relative responses in terms of source - drain current, mobility and threshold voltage upon exposure to biotin of the FBI-OFET devices have been compared for the three bio-recognition elements.

  11. An artificial photosynthetic antenna-reaction center complex

    SciTech Connect

    Kuciauskas, D.; Liddell, P.A.; Lin, S.; Johnson, T.E.; Weghorn, S.J.; Lindsey, J.S.; Moore, A.L.; Moore, T.A.; Gust, D.

    1999-09-22

    A model photosynthetic antenna consisting of four covalently linked zinc tetraarylporphyrins, (P{sub ZP}){sub 3}-P{sub ZP}, has been joined to a free base porphyrin-fullerene artificial photosynthetic reaction center, P-C{sub 60}, to form a (P{sub ZP}){sub 3}-P{sub ZC}-PC{sub 60} hexad. As revealed by time-resolved absorption and emissions studies, excitation of any peripheral zinc porphyrin moiety (P{sub ZP}) in 2-methyltetrahydrofuran solution is followed by singlet-singlet energy transfer to the central zinc porphyrin to give (P{sub ZP}){sub 3}-{sup 1}P{sub ZC}-P-C{sub 60} with a time constant of {approximately}50 ps. The excitation is passed on to the free base porphyrin in 240 ps to produce (P{sub ZP}){sub 3}-P{sub ZC}-{sup 1}P-C{sub 60}, which decays by electron transfer to the fullerene with a time constant of 3 ps. The (P{sub ZP}){sub 3}-P{sub ZC}-P{sup {center{underscore}dot}{plus}}-C{sub 60}{sup {center{underscore}dot}{minus}} charge-separated state thus formed has a lifetime of 1,330 ps, and is generated with a quantum yield of 0.70 based on light absorbed by the zinc porphyrin antenna. The complex thus mimics the basic functions of natural photosynthetic antenna systems and reaction center complexes.

  12. Thermodynamics of formation for the 18-crown-6-triglycine molecular complex in water-dimethylsulfoxide solvents

    NASA Astrophysics Data System (ADS)

    Usacheva, T. R.; Lan, Pham Thi; Sharnin, V. A.

    2014-06-01

    The effect of a water-dimethylsulfoxide (DMSO) solvent on the formation of a molecular complex of 18-crown-6 (18C6) with triglycine (diglycylglycine, 3Gly) is studied via calorimetric titration. It is found that switching from water to an H2O-DMSO mixture with DMSO mole fraction of 0.30 is accompanied by a monotonic increase in the stability of [3Gly18C6] complex, from log K ? = 1.10 to log K ? = 2.44, and an increase in the exothermicity of the reaction of its formation, from -5.9 to -16.9 kJ/mol. It is shown that the [3Gly18C6] complex exhibits enthalpy stabilization with negative values of enthalpy and entropy over the investigated range of H2O-DMSO solvents. Analysis of the reagents' solvation characteristics reveals that the increase in the reaction's exothermicity of transfer is due to differences in the solvation of [3Gly18C6] and 18C6 with a small solvation contribution from 3Gly. It is concluded that the change in the Gibbs energy of the reaction 3Glysolv + 18C6solv ? [3Gly18C6]solv is due to differences in the change in the solvation state of the complex and the peptide (?tr G ?([3Gly18C6])-?tr G ?(3Gly)).

  13. Chemistry of transition metal carbene complexes: nucleophilic substitution reactions of cyanamide anion to Fischer carbene complexes.

    PubMed

    Gangopadhyay, Sumana; Mistri, Tarun; Dolai, Malay; Alam, Rabiul; Ali, Mahammad

    2013-01-14

    Rate constants for the reactions of cyanamide anion N?C-NH(-) with Fischer carbene complexes of the type (CO)(5)M=C(XR)C(6)H(4)Z with M = Cr and W, XR = SMe and OMe, Z = NMe(2), OMe, Me, H, F, Cl and CF(3) in 50% MeCN-50% water (v/v) at 25 °C are reported. N?C-NH(-) shows a much higher reactivity towards these carbene complexes than OH(-), primary aliphatic amines (e.g. n-butylamine) or secondary alicyclic amines (e.g. piperidine) but is slightly less reactive than thiolate ions (e.g. HOCH(2)CH(2)S(-)). The alkoxy carbene complexes were found to react faster than the thiomethyl derivatives, consistent with previous findings for alkoxide ion, CH(CN)(2)(-), OH(-), amine and thiolate ion nucleophiles. Hammett ? values are 3.00 ± 0.08 (k(1)) and 2.98 ± 0.08 (k(2)) for Cr-OMe-Z-N?C-NH(-) reactions and 0.94 ± 0.05 (k(1)) for Cr-SMe-Z-N?C-NH(-) reactions. The ? values for the reaction of Cr-OMe-Z and Cr-SMe-Z with CH(CN)(2)(-) and DABCO (1,4-diazabicyclo[2.2.2]octane) (in 50% MeCN-50% H(2)O (v/v) are comparable to the present reactions. The much higher reactivity and hence much higher ? value for methoxy carbene complexes over the corresponding thiomethyl derivatives is best explained by considering the substituent effects not only on the transition state (TS) but also on the reactant, and consistent with the previously observed pattern. Higher k(1)(W)/k(1)(Cr) ratios for (thiomethyl)carbene complexes as well as methoxy and ethoxycarbene complexes are related to the intrinsic rate constant which is higher for tungsten-carbene complexes than the corresponding Cr ones resulting in an enhanced ratio. This can also be explained by considering the electronegativity of Cr and W, which is higher for the latter; as a result the negative charge on the central metal atom is more localized in case of W causing destabilization of the TS and hence higher reactivity. PMID:23076623

  14. Trialkylphosphine-stabilized copper-phenyltellurolate complexes: from small molecules to nanoclusters via condensation reactions.

    PubMed

    DeGroot, M W; Cockburn, M W; Workentin, M S; Corrigan, J F

    2001-08-27

    Reactions of CuCl with Te(Ph)SiMe3 and solublizing trialkylphosphine ligands afford a series of polynuclear copper-phenyltellurolate complexes that has been structurally characterized. The formation of the complexes is found to be highly dependent on the ancillary phosphine ligand used. The synthesis and structures of [Cu2(mu-TePh)2(PMe3)4] 1, [Cu4(mu3-TePh)4(PPr(i)3)3] 2, [Cu5(mu-TePh)3(mu3-TePh)3(PEt3)3][PEt3Ph] 3, and [Cu12Te3(mu3-TePh)6(PEt3)6] 4 are described. The telluride (Te(2-)) ligands in 4 arise from the generation of TePh2 in the reaction mixtures. The subsequent co-condensation of clusters 3 and 4 leads to the generation of the nanometer sized complex [Cu29Te9(mu3-TePh)10(mu4-TePh)2(PEt3)8][PEt3Ph] 5 in good yield, in addition to small amounts of [Cu39(mu3-TePh)10(mu4-TePh)Te16(PEt3)13] 6. These complexes are formed via the photo elimination of TePh2. The cyclic voltammogram of 5 in THF solution exhibits two oxidation waves, assigned to the oxidation of the Cu(I) centers. PMID:11511215

  15. Efficient and Selective Formation of Macrocyclic Disubstituted Z Alkenes by Ring-Closing Metathesis (RCM) Reactions Catalyzed by Mo- or W-Based Monoaryloxide Pyrrolide (MAP) Complexes. Applications to Total Syntheses of Epilachnene, Yuzu Lactone, Ambrettolide, Epothilone C and Nakadomarin A

    PubMed Central

    Wang, Chenbo; Yu, Miao; Kyle, Andrew F.; Jakubec, Jakubec; Dixon, Darren J.; Schrock, Richard R.; Hoveyda, Amir H.

    2014-01-01

    The first broadly applicable set of protocols for efficient and highly Z-selective formation of macrocyclic disubstituted alkenes through catalytic ring-closing metathesis (RCM) is described. Cyclizations are performed in the presence of 1.2–7.5 mol % of a Mo- or W-based mono-aryloxide pyrrolide (MAP) complex at 22 °C and typically proceed to complete conversion within two hours. The utility of the catalytic strategy is demonstrated by stereoselective synthesis of representative macrocyclic alkenes, including natural products yuzu lactone (13-membered ring: 73% Z) epilachnene (15-membered ring: 91% Z), ambrettolide (17-membered ring: 91% Z), an advanced precursor to epothilones C and A (16-membered ring: up to 97% Z) and nakadomarin A (polycyclic 15-membered ring: up to 97% Z). We demonstrate the complementary nature of the Mo-based catalysts, which deliver high activity but can be more prone to causing post-RCM stereoisomerization, versus W-based variants, which furnish lower activity but are less inclined towards causing loss of kinetic Z selectivity; a number of catalytic Z-selective cases are provided to elucidate which catalyst class is best suited for which substrate and particular type of alkene RCM process. Mechanistic models that rationalize the origin and the trends in Z selectivity as a function of alterations in the catalyst structure (i.e., Mo vs W and different imido and aryloxide or alkoxide ligands) are provided; we show that reaction time can be critical in retaining the Z selectivity attained not only with MAP complexes but with the original Mo-based bis-alkoxides as well. The W-based catalysts are sufficiently stable to be manipulated in air even with humidity levels of up to 80%; the catalytic Z-selective cyclizations can be performed on gram scale with complex molecule starting materials. PMID:23345004

  16. Cation-induced formation of a macro-glucan synthase complex

    SciTech Connect

    Delmer, D.; Solomon, M.; Andrawis, A.; Amor, Y. (Hebrew Univ., Jerusalem (Israel))

    1990-05-01

    Incubation of Chaps or digitonin-solubilized membrane proteins from cotton fiber with Ca{sup 2+} in combination with Mg{sup 2+}, leads to formation of a complex which can be sedimented within 15 min at 15,000 g. The complex is enriched >10-fold in callose synthase activity and possesses a characteristic pattern of enriched polypeptides when analyzed by SDS-PAGE. Although cation dependent, formation of the complex is not dependent upon the presence of the callose synthase substrate, UDP-glc, indicating that complex formation is not due to entrapment of the enzyme by association with glucan product. The enriched polypeptides include: >200, 50, and 46 kD, all of which have been shown by direct photo-labeling to interact with {sup 92}P-UDP-glc in a Ca{sup 2+} or beta-glucoside dependent reaction are considered likely subunits of callose synthase; a 60-62 kD doublet which is recognized by our MAb 2-1 which can form an immune complex with callose synthase; 74 and 34 kD polypeptides which also interact with UDP-glc, but do not associate with callose synthase in the presence of EDTA. A similar phenomenon is also observed with solubilized membrane proteins from mung beans. Possible functions of each of the enriched polypeptides, the catalytic properties, and ultra-structure of this macro-glucan synthase complex are currently under investigation.

  17. Multiple equilibria in complex chemical reaction networks: extensions to entrapped species models

    E-print Network

    Craciun, Gheorghe

    Multiple equilibria in complex chemical reaction networks: extensions to entrapped species models G of complex chemical reaction networks, taken with mass-action kinetics, to admit multiple equilibria.) In both papers, it was understood that the reactions were taking place in the context of what chemical

  18. Reversible Dissociation and Ligand-Glutathione Exchange Reaction in Binuclear Cationic Tetranitrosyl Iron Complex with Penicillamine

    PubMed Central

    Syrtsova, Lidia; Sanina, Natalia; Lyssenko, Konstantin; Kabachkov, Evgeniy; Psikha, Boris; Shkondina, Natal'ja; Pokidova, Olesia; Kotelnikov, Alexander; Aldoshin, Sergey

    2014-01-01

    This paper describes a comparative study of the decomposition of two nitrosyl iron complexes (NICs) with penicillamine thiolic ligands [Fe2(SC5H11NO2)2(NO)4]SO4·5H2O (I) and glutathione- (GSH-) ligands [Fe2(SC10H17N3O6)2(NO)4]SO4·2H2O (II), which spontaneously evolve to NO in aqueous medium. NO formation was measured by a sensor electrode and by spectrophotometric methods by measuring the formation of a hemoglobin- (Hb-) NO complex. The NO evolution reaction rate from (I)??k1 = (4.6 ± 0.1)·10?3?s?1 and the elimination rate constant of the penicillamine ligand k2 = (1.8 ± 0.2)·10?3?s?1 at 25°C in 0.05?M phosphate buffer, ?pH 7.0, was calculated using kinetic modeling based on the experimental data. Both reactions are reversible. Spectrophotometry and mass-spectrometry methods have firmly shown that the penicillamine ligand is exchanged for GS? during decomposition of 1.5·10?4?M (I) in the presence of 10?3?M GSH, with 76% yield in 24?h. As has been established, such behaviour is caused by the resistance of (II) to decomposition due to the higher affinity of iron to GSH in the complex. The discovered reaction may impede S-glutathionylation of the essential enzyme systems in the presence of (I) and is important for metabolism of NIC, connected with its antitumor activity. PMID:24790592

  19. Effect of ternary complex formation on chromatographic selectivity using in situ complexation chromatography

    SciTech Connect

    O'Riordan, K.P.; Heneghan, G.; Wallace, G.G.

    1985-06-01

    In situ complexation chromatography is a relatively novel form of reversed-phase chromatography. A method for controlling selectivity via ternary complex formation is discussed. This method is potentially useful, not only for controlling separations but also for enhancing detection of metal species. Limitations of the methods are discussed. 30 references, 5 figures, 4 tables.

  20. Disulfide bond formation involves a quinhydrone-type chargetransfer complex

    E-print Network

    Bardwell, James

    Disulfide bond formation involves a quinhydrone-type charge­transfer complex James Regeimbal, September 17, 2003 (received for review July 14, 2003) The chemistry of disulfide exchange in biological to form disulfide bonds in proteins is not clear. In prokaryotic organisms, it is known that DsbB delivers

  1. Paper Number 15736-PA Title Reaction Kinetics of Fuel Formation for In-Situ Combustion

    E-print Network

    Abu-Khamsin, Sidqi

    Paper Number 15736-PA Title Reaction Kinetics of Fuel Formation for In-Situ Combustion Authors Abu believed to cause fuel formation for in-situ combustion have been studied and modeled. A thin, packed bed the approach of a combustion front. Analysis of gases produced from the reaction cell revealed that pyrolysis

  2. 1 INTRODUCTION Delayed Ettringite Formation (DEF) and Alkali-Aggregate Reaction (AAR) are both internal

    E-print Network

    Paris-Sud XI, Université de

    1 INTRODUCTION Delayed Ettringite Formation (DEF) and Alkali-Aggregate Reaction (AAR) are both to produce potentially expansive ettringite in the set concrete. AAR may affect concretes cast with aggregate combined delayed ettringite formation and alkali aggregate reaction R.-P. Martin, J.-C. Renaud & F

  3. Multiscale Informatics for Low-Temperature Propane Oxidation: Further Complexities in Studies of Complex Reactions.

    PubMed

    Burke, Michael P; Goldsmith, C Franklin; Klippenstein, Stephen J; Welz, Oliver; Huang, Haifeng; Antonov, Ivan O; Savee, John D; Osborn, David L; Zádor, Judit; Taatjes, Craig A; Sheps, Leonid

    2015-07-16

    The present paper describes further development of the multiscale informatics approach to kinetic model formulation of Burke et al. (Burke, M. P.; Klippenstein, S. J.; Harding, L. B. Proc. Combust. Inst. 2013, 34, 547-555) that directly incorporates elementary kinetic theories as a means to provide reliable, physics-based extrapolation of kinetic models to unexplored conditions. Here, we extend and generalize the multiscale informatics strategy to treat systems of considerable complexity-involving multiwell reactions, potentially missing reactions, nonstatistical product branching ratios, and non-Boltzmann (i.e., nonthermal) reactant distributions. The methodology is demonstrated here for a subsystem of low-temperature propane oxidation, as a representative system for low-temperature fuel oxidation. A multiscale model is assembled and informed by a wide variety of targets that include ab initio calculations of molecular properties, rate constant measurements of isolated reactions, and complex systems measurements. Active model parameters are chosen to accommodate both "parametric" and "structural" uncertainties. Theoretical parameters (e.g., barrier heights) are included as active model parameters to account for parametric uncertainties in the theoretical treatment; experimental parameters (e.g., initial temperatures) are included to account for parametric uncertainties in the physical models of the experiments. RMG software is used to assess potential structural uncertainties due to missing reactions. Additionally, branching ratios among product channels are included as active model parameters to account for structural uncertainties related to difficulties in modeling sequences of multiple chemically activated steps. The approach is demonstrated here for interpreting time-resolved measurements of OH, HO2, n-propyl, i-propyl, propene, oxetane, and methyloxirane from photolysis-initiated low-temperature oxidation of propane at pressures from 4 to 60 Torr and temperatures from 300 to 700 K. In particular, the multiscale informed model provides a consistent quantitative explanation of both ab initio calculations and time-resolved species measurements. The present results show that interpretations of OH measurements are significantly more complicated than previously thought-in addition to barrier heights for key transition states considered previously, OH profiles also depend on additional theoretical parameters for R + O2 reactions, secondary reactions, QOOH + O2 reactions, and treatment of non-Boltzmann reaction sequences. Extraction of physically rigorous information from those measurements may require more sophisticated treatment of all of those model aspects, as well as additional experimental data under more conditions, to discriminate among possible interpretations and ensure model reliability. PMID:25946172

  4. Thermodynamics and kinetics of aqueous ferric phosphate complex formation

    SciTech Connect

    Wilhelmy, R.B.; Patel, R.C.; Matijevic, E.

    1985-09-25

    The equilibria and kinetics of complexation of iron(III) with phosphoric acid (at pH < 2) were studied at 25 and 50/sup 0/C at ionic strength ..mu.. = 2.5 M by using spectrophotometric and stopped-flow techniques. The results are consistent with the formation of two complexes, FeH/sub 2/PO/sub 4//sup 2 +/ and Fe(H/sub 2/PO/sub 4/)/sub 2//sup +/. The second species could only be detected by the analysis of kinetic data. The equilibrium constants, extinction coefficients, rate constants, and activation parameters for the formation of these complexes are given. A mechanism is proposed to account for the observed hydrogen ion dependency of the apparent forward rate constants. 35 references, 8 figures, 6 tables.

  5. The Copper-nicotinamide complex: sustainable applications in coupling and cycloaddition reactions

    EPA Science Inventory

    Crystalline copper (II)-nicotinamide complex, synthesized via simple mixing of copper chloride and nicotinamide solution at room temperature, catalyzes the C-S, C-N bond forming and cycloaddition reactions under a variety of sustainable reaction conditions....

  6. Frataxin Accelerates [2Fe-2S] Cluster Formation on the Human Fe-S Assembly Complex.

    PubMed

    Fox, Nicholas G; Das, Deepika; Chakrabarti, Mrinmoy; Lindahl, Paul A; Barondeau, David P

    2015-06-30

    Iron-sulfur (Fe-S) clusters function as protein cofactors for a wide variety of critical cellular reactions. In human mitochondria, a core Fe-S assembly complex [called SDUF and composed of NFS1, ISD11, ISCU2, and frataxin (FXN) proteins] synthesizes Fe-S clusters from iron, cysteine sulfur, and reducing equivalents and then transfers these intact clusters to target proteins. In vitro assays have relied on reducing the complexity of this complicated Fe-S assembly process by using surrogate electron donor molecules and monitoring simplified reactions. Recent studies have concluded that FXN promotes the synthesis of [4Fe-4S] clusters on the mammalian Fe-S assembly complex. Here the kinetics of Fe-S synthesis reactions were determined using different electron donation systems and by monitoring the products with circular dichroism and absorbance spectroscopies. We discovered that common surrogate electron donor molecules intercepted Fe-S cluster intermediates and formed high-molecular weight species (HMWS). The HMWS are associated with iron, sulfide, and thiol-containing proteins and have properties of a heterogeneous solubilized mineral with spectroscopic properties remarkably reminiscent of those of [4Fe-4S] clusters. In contrast, reactions using physiological reagents revealed that FXN accelerates the formation of [2Fe-2S] clusters rather than [4Fe-4S] clusters as previously reported. In the preceding paper [Fox, N. G., et al. (2015) Biochemistry 54, DOI: 10.1021/bi5014485], [2Fe-2S] intermediates on the SDUF complex were shown to readily transfer to uncomplexed ISCU2 or apo acceptor proteins, depending on the reaction conditions. Our results indicate that FXN accelerates a rate-limiting sulfur transfer step in the synthesis of [2Fe-2S] clusters on the human Fe-S assembly complex. PMID:26016518

  7. Photochemical reactions of metal nitrosyl complexes. Mechanisms of NO reactions with biologically relevant metal centers

    DOE PAGESBeta

    Ford, Peter C.

    2001-01-01

    The discoveries that nitric oxide (a.k.a. nitrogen monoxide) serves important roles in mammalian bioregulation and immunology have stimulated intense interest in the chemistry and biochemistry of NO and derivatives such as metal nitrosyl complexes. Also of interest are strategies to deliver NO to biological targets on demand. One such strategy would be to employ a precursor which displays relatively low thermal reactivity but is photochemically active to release NO. This proposition led us to investigate laser flash and continuous photolysis kinetics of nitrosyl complexes such as the Roussin's iron-sulfur-nitrosyl cluster anionsFe2S2(NO)42?andmore »alttext='${\\text{Fe}}_{\\text{4}} {\\text{S}}_{\\text{3}} \\left( {{\\text{NO}}} \\right)_7^{ - } $' id='E2'>Fe4S3(NO)7?and several ruthenium salen and porphyrin nitrosyls. These include studies using metal-nitrosyl photochemistry as a vehicle for delivering NO to hypoxic cell cultures in order to sensitize?-radiation damage. Also studied were the rates and mechanisms of NO “on” reactions with model water soluble heme compounds, the ferriheme protein met-myoglobin and various ruthenium complexes using ns laser flash photolysis techniques. An overview of these studies is presented.« less

  8. RCL hydrolyzes 2'-deoxyribonucleoside 5'-monophosphate via formation of a reaction intermediate.

    PubMed

    Doddapaneni, Kiran; Zahurancik, Walter; Haushalter, Adam; Yuan, Chunhua; Jackman, Jane; Wu, Zhengrong

    2011-05-31

    RCL is an enzyme that catalyzes the N-glycosidic bond cleavage of purine 2'-deoxyribonucleoside 5'-monophosphates. Recently, the structures of both free wild type and GMP-bound mutant complex have been determined by multidimensional NMR, revealing a doubly wound ?/? protein existing in a symmetric homodimer. In this work, we investigated the catalytic mechanism by rational site-directed mutagenesis, steady-state and pre-steady-state kinetics, ITC binding analysis, methanolysis, and NMR study. First, we provide kinetic evidence in support of the structural studies that RCL functions in a dimeric form, with an apparent dissociation constant around 0.5 ?M in the presence of substrate dGMP. Second, among the eight residues under investigation, the highly conserved Glu93 is absolutely critical and Tyr13 is also important likely contributing to the chemical step, whereas Ser117 from the neighboring subunit and Ser87 could be the key residues for the phosphate group recognition. Lastly, we demonstrate by methanolysis study that the catalytic reaction proceeds via the formation of a reaction intermediate, which is subsequently hydrolyzed by solvent nucleophile resulting in the formation of normal product deoxyribose monophosphate (dR5P) or methoylated-dR5P. In conclusion, the current study provides mechanistic insights into a new class of nucleotide hydrolase, which resembles nucleoside 2'-deoxyribosyltransferases structurally and functionally but also possesses clear distinction. PMID:21510673

  9. New fluorescence reactions in DNA cytochemistry. 2. Microscopic and spectroscopic studies on fluorescent aluminum complexes

    SciTech Connect

    Del Castillo, P.; Llorente, A.R.; Gomez, A.; Gosalvez, J.; Goyanes, V.J.; Stockert, J.C. (Autonomous Univ., Madrid (Spain))

    1990-02-01

    Metal-dye complexes are widely applied in light microscopic techniques for chromatin staining (e.g., hematoxylin and carmine), but fluorescent complexes between phosphate-binding cations and suitable ligands have been little used. Preformed and postformed Al complexes with different anionic dyes induced strong and selective fluorescence reactions in nuclei from chicken blood smears, frozen sections, paraffin-embedded sections and Epon-embedded sections of mouse and rat tissues, mitotic chromosomes, meiotic chromosomes and kinetoplasts of Trypanosoma cruzi epimastigotes. The DNA-dependent fluorescence of these structures showed a very low fading rate. The emission colors were related to the ligand. The most suitable compounds for forming fluorescent Al chelates were 8-hydroxyquinoline, morin, nuclear fast red and purpurin. Staining with diluted carmine solutions and InCl3 mordanting, followed by 8-hydroxyquinoline, also induced chromatin fluorescence. After treating isolated mouse chromosomes with the preformed complex Al-nuclear fast red, x-ray microanalysis indicated a P:Al:dye binding ratio of about 40:15:1. The selectivity, stability and easy formation of these fluorescent Al complexes are obvious advantages for their use as new cytochemical probes in cytologic studies.

  10. Apparent anti-Woodward-Hoffmann addition to a nickel bis(dithiolene) complex: the reaction mechanism involves reduced, dimetallic intermediates.

    PubMed

    Dang, Li; Shibl, Mohamed F; Yang, Xinzheng; Harrison, Daniel J; Alak, Aiman; Lough, Alan J; Fekl, Ulrich; Brothers, Edward N; Hall, Michael B

    2013-04-01

    Nickel dithiolene complexes have been proposed as electrocatalysts for alkene purification. Recent studies of the ligand-based reactions of Ni(tfd)2 (tfd = S2C2(CF3)2) and its anion [Ni(tfd)2](-) with alkenes (ethylene and 1-hexene) showed that in the absence of the anion, the reaction proceeds most rapidly to form the intraligand adduct, which decomposes by releasing a substituted dihydrodithiin. However, the presence of the anion increases the rate of formation of the stable cis-interligand adduct, and decreases the rate of dihydrodithiin formation and decomposition. In spite of both computational and experimental studies, the mechanism, especially the role of the anion, remained somewhat elusive. We are now providing a combined experimental and computational study that addresses the mechanism and explains the role of the anion. A kinetic study (global analysis) for the reaction of 1-hexene is reported, which supports the following mechanism: (1) reversible intraligand addition, (2) oxidation of the intraligand addition product prior to decomposition, and (3) interligand adduct formation catalyzed by Ni(tfd)2(-). Density functional theory (DFT) calculations were performed on the Ni(tfd)2/Ni(tfd)2(-)/ethylene system to shed light on the selectivity of adduct formation in the absence of anion and on the mechanism in which Ni(tfd)2(-) shifts the reaction from intraligand addition to interligand addition. Computational results show that in the neutral system the free energy of activation for intraligand addition is lower than that for interligand addition, in agreement with the experimental results. The computations predict that the anion enhances the rate of the cis-interligand adduct formation by forming a dimetallic complex with the neutral complex. The [(Ni(tfd)2)2](-) dimetallic complex then coordinates ethylene and isomerizes to form a Ni,S-bound ethylene complex, which then rapidly isomerizes to the stable interligand adduct but not to the intraligand adduct. Thus, the anion catalyzes the formation of the interligand adduct. Significant experimental evidence for dimetallic species derived from nickel bis(dithiolene) complexes has been found. ESI-MS data indicate the presence of a [(Ni(tfd)2)2](-) dimetallic complex as the acetonitrile adduct. A charge-neutral association complex of Ni(tfd)2 with the ethylene adduct of Ni(tfd)2 has been crystallographically characterized. Despite the small driving force for the reversible association, very major structural reorganization (square-planar ? octahedral) occurs. PMID:23484481

  11. On the relation between reactions and complexes of (bio)chemical reaction networks

    E-print Network

    Neigenfind, Jost; Nikoloski, Zoran

    2012-01-01

    Robustness of biochemical systems has become one of the central questions in systems biology although it is notoriously difficult to formally capture its multifaceted nature. Maintenance of normal system function depends not only on the stoichiometry of the underlying interrelated components, but also on a multitude of kinetic parameters. Invariant flux ratios, obtained within flux coupling analysis, as well as invariant complex ratios, derived within chemical reaction network theory, can characterize robust properties of a system at steady state. However, the existing formalisms for the description of these invariants do not provide full characterization as they either only focus on the flux-centric or the concentration-centric view. Here we develop a novel mathematical framework which combines both views and thereby overcomes the limitations of the classical methodologies. Our unified framework will be helpful in analyzing biologically important system properties.

  12. Complex formation of ionic liquid surfactant and ?-cyclodextrin

    Microsoft Academic Search

    Na Li; Jie Liu; Xueyan Zhao; Yan’an Gao; Liqiang Zheng; Jin Zhang; Li Yu

    2007-01-01

    An ionic liquid (IL) surfactant, 1-dodecyl-3-methylimidazolium hexafluorophosphate (C12mimPF6) can form the inclusion complexes (ICs) with ?-cyclodextrin (?-CD). The surface tension measurements revealed that there were two kinds of inclusion formations, 1:1 and 1:2 (?-CD\\/IL) stoichiometry for ?-CD-C12mimPF6 ICs. The inclusion complexation interaction was further confirmed by FT-IR spectra. The inclusion compound was also characterized by Powder X-ray diffraction (XRD), 13C

  13. Formation of Complex and Unstable Chromosomal Translocations in Yeast

    PubMed Central

    Schmidt, Kristina H.; Viebranz, Emilie; Doerfler, Lillian; Lester, Christina; Rubenstein, Aaron

    2010-01-01

    Genome instability, associated with chromosome breakage syndromes and most human cancers, is still poorly understood. In the yeast Saccharomyces cerevisiae, numerous genes with roles in the preservation of genome integrity have been identified. DNA-damage-checkpoint-deficient yeast cells that lack Sgs1, a RecQ-like DNA helicase related to the human Bloom's-syndrome-associated helicase BLM, show an increased rate of genome instability, and we have previously shown that they accumulate recurring chromosomal translocations between three similar genes, CAN1, LYP1 and ALP1. Here, the chromosomal location, copy number and sequence similarity of the translocation targets ALP1 and LYP1 were altered to gain insight into the formation of complex translocations. Among 844 clones with chromosomal rearrangements, 93 with various types of simple and complex translocations involving CAN1, LYP1 and ALP1 were identified. Breakpoint sequencing and mapping showed that the formation of complex translocation types is strictly dependent on the location of the initiating DNA break and revealed that complex translocations arise via a combination of interchromosomal translocation and template-switching, as well as from unstable dicentric intermediates. Template-switching occurred between sequences on the same chromosome, but was inhibited if the genes were transferred to different chromosomes. Unstable dicentric translocations continuously gave rise to clones with multiple translocations in various combinations, reminiscent of intratumor heterogeneity in human cancers. Base substitutions and evidence of DNA slippage near rearrangement breakpoints revealed that translocation formation can be accompanied by point mutations, and their presence in different translocation types within the same clone provides evidence that some of the different translocation types are derived from each other rather than being formed de novo. These findings provide insight into eukaryotic genome instability, especially the formation of translocations and the sources of intraclonal heterogeneity, both of which are often associated with human cancers. PMID:20711256

  14. EXFOR BASICS A SHORT GUIDE TO THE NEUTRON REACTION DATA EXCHANGE FORMAT.

    SciTech Connect

    MCLANE,V.; NUCLEAR DATA CENTER NETWORK

    2000-05-19

    This manual is intended as a guide to users of nuclear reaction data compiled in the EXFOR format, and is not intended as a complete guide to the EXFOR System. EXFOR is the exchange format designed to allow transmission of nuclear reaction data between the Nuclear Reaction Data Centers. In addition to storing the data and its' bibliographic information, experimental information is also compiled. The status (e.g., the source of the data) and history (e.g., date of last update) of the data set is also included. EXFOR is designed for flexibility in order to meet the diverse needs of the nuclear reaction data centers. It was originally conceived for the exchange of neutron data and was developed through discussions among personnel from centers situated in Saclay, Vienna, Livermore and Brookhaven. It was accepted as the official exchange format of the neutron data centers at Saclay, Vienna, Brookhaven and Obninsk, at a meeting held in November 1969.3 As a result of two meetings held in 1975 and 1976 and attended by several charged-particle data centers, the format was further developed and adapted to cover all nuclear reaction data. The exchange format should not be confused with a center-to-user format. Although users may obtain data from the centers in the EXFOR format, other center-to-user formats have been developed to meet the needs of the users within each center's own sphere of responsibility. The EXFOR format, as outlined, allows a large variety of numerical data tables with explanatory and bibliographic information to be transmitted in a format: l that is machine-readable (for checking and indicating possible errors); l that can be read by personnel (for passing judgment on and correcting errors). The data presently included in the EXFOR exchange file include: a complete compilation of experimental neutron-induced reaction data, a selected compilation of charged-particle-induced reaction data, a selected compilation of photon-induced reaction data.

  15. EXFOR BASICS A SHORT GUIDE TO THE NEUTRON REACTION DATA EXCHANGE FORMAT.

    SciTech Connect

    MCLANE,V.; NUCLEAR DATA CENTER NETWORK

    2000-05-19

    This manual is intended as a guide to users of nuclear reaction data compiled in the EXFOR format, and is not intended as a complete guide to the EXFOR System. EXFOR is the exchange format designed to allow transmission of nuclear reaction data between the Nuclear Reaction Data Centers. In addition to storing the data and its' bibliographic information, experimental information is also compiled. The status (e.g., the source of the data) and history (e.g., date of last update) of the data set is also included. EXFOR is designed for flexibility in order to meet the diverse needs of the nuclear reaction data centers. It was originally conceived for the exchange of neutron data and was developed through discussions among personnel from centers situated in Saclay, Vienna, Livermore and Brookhaven. It was accepted as the official exchange format of the neutron data centers at Saclay, Vienna, Brookhaven and Obninsk, at a meeting held in November 1969. As a result of two meetings held in 1975 and 1976 and attended by several charged-particle data centers, the format was further developed and adapted to cover all nuclear reaction data. The exchange format should not be confused with a center-to-user format. Although users may obtain data from the centers in the EXFOR format, other center-to-user formats have been developed to meet the needs of the users within each center's own sphere of responsibility. The EXFOR format, as outlined, allows a large variety of numerical data tables with explanatory and bibliographic information to be transmitted in a format: that is machine-readable (for checking and indicating possible errors); that can be read by personnel (for passing judgment on and correcting errors). The data presently included in the EXFOR exchange file include: a complete compilation of experimental neutron-induced reaction data, a selected compilation of charged-particle-induced reaction data, a selected compilation of photon-induced reaction data.

  16. Hierarchical structure formation of cylindrical brush polymer-surfactant complexes.

    PubMed

    Cong, Yang; Gunari, Nikhil; Zhang, Bin; Janshoff, Andreas; Schmidt, Manfred

    2009-06-01

    The complex formation of cylindrical brush polymers with poly(l-lysine) side chains (PLL) and sodium dodecyl sulfate (SDS) can induce a helical conformation of the cylindrical brush polymer in aqueous solution (Gunari, N.; Cong, Y.; Zhang, B.; Fischer, K.; Janshoff, A.; Schmidt, M. Macromol. Rapid Commun. 2008, 29, 821-825). Herein, we have systematically investigated the influence of surfactant, salt, and pH on the supramolecular structure formation. The cylindrical brush polymers and their complexes with surfactants were directly visualized by atomic force microscopy in air and in aqueous solution. The alkyl chain length (measured by the carbon number, n) of the surfactant plays a key role. While helical structures were formed with n=10, 11, and 12, no helices were observed with n<10 and n>13. Addition of salt destroys the helical structures as do pH conditions below 4 and above 6, most probably because the polymer-surfactant complexes start to disintegrate. Circular dichroism was utilized to monitor the PLL side chain conformation and clearly revealed that beta-sheet formation of the side chains induces the helical conformation of the atactic main chain. PMID:19326944

  17. The Effect of Multiple Formats on Understanding Complex Visual Displays

    NSDL National Science Digital Library

    Holly Taylor

    2004-03-01

    Students in introductory science courses frequently have difficulty comprehending complex graphics such as contour maps. Computer-assisted instruction (CAI), because of its ability to convey the same information in different formats, may help students gain necessary graphic interpretation skills. This article describes a research project in which students practiced reading two temperature maps in either a standard black and white contour or a color-enhanced contour format. They were then divided into groups and tested using only standard contour maps. The tests examined comprehension of the distribution of sea surface temperature, oceanographic phosphate concentration, and brain activation. Results suggest that having students practice with differently formatted maps of the same information improves later comprehension of standard contour maps.

  18. Evaluation of maillard reaction variables and their effect on heterocyclic amine formation in chemical model systems.

    PubMed

    Dennis, Cara; Karim, Faris; Smith, J Scott

    2015-02-01

    Heterocyclic amines (HCAs), highly mutagenic and potentially carcinogenic by-products, form during Maillard browning reactions, specifically in muscle-rich foods. Chemical model systems allow examination of in vitro formation of HCAs while eliminating complex matrices of meat. Limited research has evaluated the effects of Maillard reaction parameters on HCA formation. Therefore, 4 essential Maillard variables (precursors molar concentrations, water amount, sugar type, and sugar amounts) were evaluated to optimize a model system for the study of 4 HCAs: 2-amino-3-methylimidazo-[4,5-f]quinoline, 2-amino-3-methylimidazo[4,5-f]quinoxaline, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, and 2-amino-3,4,8-trimethyl-imidazo[4,5-f]quinoxaline. Model systems were dissolved in diethylene glycol, heated at 175 °C for 40 min, and separated using reversed-phase liquid chromatography. To define the model system, precursor amounts (threonine and creatinine) were adjusted in molar increments (0.2/0.2, 0.4/0.4, 0.6/0.6, and 0.8/0.8 mmol) and water amounts by percentage (0%, 5%, 10%, and 15%). Sugars (lactose, glucose, galactose, and fructose) were evaluated in several molar amounts proportional to threonine and creatinine (quarter, half, equi, and double). The precursor levels and amounts of sugar were significantly different (P < 0.05) in regards to total HCA formation, with 0.6/0.6/1.2 mmol producing higher levels. Water concentration and sugar type also had a significant effect (P < 0.05), with 5% water and lactose producing higher total HCA amounts. A model system containing threonine (0.6 mmol), creatinine (0.6 mmol), and glucose (1.2 mmol), with 15% water was determined to be the optimal model system with glucose and 15% water being a better representation of meat systems. PMID:25597341

  19. Designing metal hydride complexes for water splitting reactions: a molecular electrostatic potential approach.

    PubMed

    Sandhya, K S; Suresh, Cherumuttathu H

    2014-08-28

    The hydridic character of octahedral metal hydride complexes of groups VI, VII and VIII has been systematically studied using molecular electrostatic potential (MESP) topography. The absolute minimum of MESP at the hydride ligand (Vmin) and the MESP value at the hydride nucleus (VH) are found to be very good measures of the hydridic character of the hydride ligand. The increasing/decreasing electron donating feature of the ligand environment is clearly reflected in the increasing/decreasing negative character of Vmin and VH. The formation of an outer sphere metal hydride-water complex showing the HH dihydrogen interaction is supported by the location and the value of Vmin near the hydride ligand. A higher negative MESP suggested lower activation energy for H2 elimination. Thus, MESP features provided a way to fine-tune the ligand environment of a metal-hydride complex to achieve high hydridicity for the hydride ligand. The applicability of an MESP based hydridic descriptor in designing water splitting reactions is tested for group VI metal hydride model complexes of tungsten. PMID:24984110

  20. Mechanism of acyl-enzyme complex formation from the Henry-Michaelis complex of class C ?-lactamases with ?-lactam antibiotics.

    PubMed

    Tripathi, Ravi; Nair, Nisanth N

    2013-10-01

    Bacteria that cause most of the hospital-acquired infections make use of class C ?-lactamase (CBL) among other enzymes to resist a wide spectrum of modern antibiotics and pose a major public health concern. Other than the general features, details of the defensive mechanism by CBL, leading to the hydrolysis of drug molecules, remain a matter of debate, in particular the identification of the general base and role of the active site residues and substrate. In an attempt to unravel the detailed molecular mechanism, we carried out extensive hybrid quantum mechanical/molecular mechanical Car-Parrinello molecular dynamics simulation of the reaction with the aid of the metadynamics technique. On this basis, we report here the mechanism of the formation of the acyl-enzyme complex from the Henry-Michaelis complex formed by ?-lactam antibiotics and CBL. We considered two ?-lactam antibiotics, namely, cephalothin and aztreonam, belonging to two different subfamilies. A general mechanism for the formation of a ?-lactam antibiotic-CBL acyl-enzyme complex is elicited, and the individual roles of the active site residues and substrate are probed. The general base in the acylation step has been identified as Lys67, while Tyr150 aids the protonation of the ?-lactam nitrogen through either the substrate carboxylate group or a water molecule. PMID:24010547

  1. Computational Analyses of Complex Flows with Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Bae, Kang-Sik

    The heat and mass transfer phenomena in micro-scale for the mass transfer phenomena on drug in cylindrical matrix system, the simulation of oxygen/drug diffusion in a three dimensional capillary network, and a reduced chemical kinetic modeling of gas turbine combustion for Jet propellant-10 have been studied numerically. For the numerical analysis of the mass transfer phenomena on drug in cylindrical matrix system, the governing equations are derived from the cylindrical matrix systems, Krogh cylinder model, which modeling system is comprised of a capillary to a surrounding cylinder tissue along with the arterial distance to veins. ADI (Alternative Direction Implicit) scheme and Thomas algorithm are applied to solve the nonlinear partial differential equations (PDEs). This study shows that the important factors which have an effect on the drug penetration depth to the tissue are the mass diffusivity and the consumption of relevant species during the time allowed for diffusion to the brain tissue. Also, a computational fluid dynamics (CFD) model has been developed to simulate the blood flow and oxygen/drug diffusion in a three dimensional capillary network, which are satisfied in the physiological range of a typical capillary. A three dimensional geometry has been constructed to replicate the one studied by Secomb et al. (2000), and the computational framework features a non-Newtonian viscosity model for blood, the oxygen transport model including in oxygen-hemoglobin dissociation and wall flux due to tissue absorption, as well as an ability to study the diffusion of drugs and other materials in the capillary streams. Finally, a chemical kinetic mechanism of JP-10 has been compiled and validated for a wide range of combustion regimes, covering pressures of 1atm to 40atm with temperature ranges of 1,200 K--1,700 K, which is being studied as a possible Jet propellant for the Pulse Detonation Engine (PDE) and other high-speed flight applications such as hypersonic missiles. The comprehensive skeletal mechanism consists of 58 species and 315 reactions including in CPD, Benzene formation process by the theory for polycyclic aromatic hydrocarbons (PAH) and soot formation process on the constant volume combustor, premixed flame characteristics.

  2. Synthesis and reactions of U(III) complexes with tripodal nitrogen and oxygen donor ligands

    NASA Astrophysics Data System (ADS)

    McDonald, Robert; Sun, Yimin; Takats, Josef; Day, Victor W.; Eberspracher, Todd A.

    1994-10-01

    Reaction of UI3(THF)4 (where THF is tetrahydrofuran) with sodium or potassium hydrotris(3,5-dimethylpyrazolyl)borate ligand ((HBpz 3*)(-) in 1:1 and 1:2 ratios gives the corresponding U(HBpz 3*)I2(THF)2(1) and U(HBpz 3*)2I(2) complexes in excellent yields. Iodide abstraction from (2) with TlBPh4 results in the formation of the cationic complex (U(HBpz 3*)2(THF)) BPh4(3). The solid state structures of 1, 2 and 3 have been determined. Similar reactions with the anionic tripodal oxygen donor ligand ((eta (sub 5) - (5H5) Co(P(O)(OC2H5)2)3)(-) (L(sub OEt)) proceeded via oxidation of U(3+) to U(4+) and fragmentation of the ligand. The structures of some key compounds were established by X-ray crystallography. U(HBpz 3*)I2(THF)2 readily reacts with two equivalents of KH2Bpz (pz equivalent to pyrazolyl) to give U(HBpz3*)(H2Bpz2)2, but attempted substitution with other ligands led to mixtures or, in one case, displacement of the (HBpz 3*)(-) ligand.

  3. Reactions of ?-diimine-aluminum complexes with sodium alkynides: versatile structures of aluminum ?-alkynide complexes.

    PubMed

    Zhao, Yanxia; Liu, Yanyan; Wu, Biao; Yang, Xiao-Juan

    2015-07-21

    Reaction of AlCl3 with the monoanionic ?-diimine ligand [NaL] yielded the complex [L?(-)Al(III)Cl2(-)] (, L = [(2,6-iPr2C6H3)NC(Me)]2), and subsequent reduction of by sodium metal afforded the mononuclear [L(2-)Al(III)Cl(-)(THF)] () and binuclear [L(2-)(THF)Al(II)-Al(II)(THF)L(2-)] (). Compounds and exhibit interesting reactivities to sodium alkynides at room temperature. Treatment of dialumane with 1 equiv. of 4-methylphenylacetylene in the presence of sodium metal yielded the asymmetric Al-Al-bonded compound [Na(Et2O)][LAl-Al(C[triple bond, length as m-dash]C(C6H4-Me))L] () containing an alkynyl group attached to one of the Al atoms. The reaction of with 4-methylphenylacetylene and Na (or sodium 4-methylphenylacetylide) resulted in the mononuclear product [L(THF)Al(C[triple bond, length as m-dash]C-(C6H4-Me))] () containing a single terminal acetylide ligand. Precursor reacted with 2 equiv. of phenylacetylene (or 4-methylphenylacetylene, trimethylsilylacetylene) and Na to give the tweezer "ate" complexes, [Na(THF)(DME)][LAl(C[triple bond, length as m-dash]CR)2] (R = C6H5, ; C6H4-Me, ; Si(Me)3, ), [Na(THF)]2[LAl(C[triple bond, length as m-dash]CPh)2]2(?-C7H8) (), [Na(C7H8)][(?-Na)][LAl(C[triple bond, length as m-dash]CSi(Me)3)2]2 (), as well as the polymeric [LAl(C[triple bond, length as m-dash]CPh)2Na]n (). In the products, two alkynyl groups coordinate terminally to one Al center and a sodium ion is embedded between these two alkynyls. Interestingly, both cycloaddition and terminal acetylide coordination of three equiv. of alkyne occurred in the reaction of with 1-hexyne, resulting in the unique dialuminum complex [Na(Et2O)]2[{L(C(C4H9)[double bond, length as m-dash]CH)}Al(C[triple bond, length as m-dash]C(C4H9))2]2 (). Complexes have been characterized by NMR ((1)H, (13)C) and IR spectroscopy, elemental analysis, and X-ray diffraction, and their electronic structures were studied by DFT calculations. PMID:26147659

  4. Functional LH1 antenna complexes influence electron transfer in bacterial photosynthetic reaction centers

    Microsoft Academic Search

    Ronald W. Visschers; Simone I. E. Vulto; Michael R. Jones; Rienk van Grondelle; Ruud Kraayenhof

    1999-01-01

    The effect of the light harvesting 1 (LH1) antenna complex on the driving force for light-driven electron transfer in the Rhodobacter sphaeroides reaction center has been examined. Equilibrium redox titrations show that the presence of the LH1 antenna complex influences the free energy change for the primary electron transfer reaction through an effect on the reduction potential of the primary

  5. Catalytic asymmetric carbon-carbon bond-forming reaction utilizing rare earth metal complexes

    Microsoft Academic Search

    Masakatsu Shibasaki; Hiroaki Sasai

    1996-01-01

    Novel optically active rare earth complexes have made possible a catalytic asymmetric nitroaldol reaction for the first time. Structural elucidation reveals that the complexes consist of one rare earth metal, three lithium atoms, and three BINOL units. Applications of the catalytic asymmetric nitroaldol reaction to syntheses of several p-blockers and erythro-AYA have been also achieved. Although the lithium containing rare

  6. Complex Behavior of Self-Propagating Reaction Waves in Heterogeneous Media

    Microsoft Academic Search

    Arvind Varma; Alexander S. Rogachev; Alexander S. Mukasyan; Stephen Hwang

    1998-01-01

    Self-propagating high temperature reaction waves, leading to the synthesis of advanced materials, are investigated in a variety of heterogeneous reaction systems by using a digital high-speed microscopic video recording technique. It is shown that, although on the macroscopic length and time scales, the reaction appears to move in a steady mode, on the microscopic level it has a complex character

  7. Structural Assessment of D-Regions Affected by Alkali-Silica Reaction/Delayed Ettringite Formation 

    E-print Network

    Liu, Shih-Hsiang 1979-

    2012-11-12

    A combined experimental and analytical program was conducted to investigate the effects of Alkali-Silica Reaction (ASR) and Delayed Ettringite Formation (DEF) on D-regions in reinforced concrete (RC) bridge bents. Four large-scale RC specimens...

  8. Formation of oxidized products from the reaction of gaseous phenanthrene with the OH radical in a reaction chamber

    NASA Astrophysics Data System (ADS)

    Lee, JiYi; Lane, Douglas A.

    2010-07-01

    The reaction of gas phase phenanthrene (Phen) with the OH radical in the presence of NO x was studied in a reaction chamber. A number of oxidation products were identified by two dimensional gas chromatography-time of flight mass spectrometry (GC × GC-TOFMS). Identified products included 9-fluorenone, 1,2-naphthalic anhydride, 2,2'-diformylbiphenyl, dibenzopyranone, 1, 2, 3, 4 and 9-phenanthrols, 2, 3, 4 and 9-nitrophenanthrenes, 1,4-phenanthrenequinone, 9,10-phenanthrenequinone, and 2- and 4-nitrodibenzopyranones. This is the first study to identify 1,2-naphthalic anhydride and 1,4-phenanthrenequinone as products of the gas phase reaction of Phen with the OH radical. Eight more products were tentatively identified by their mass spectral fragmentation patterns and based on the typical OH radical initiated photochemical reaction mechanisms of simple aromatic compounds and naphthalene. In the reaction chamber, particle formation of products as a function of irradiation time was measured. Phenanthrenequinones, phenanthrol, nitrophenanthrene and nitrobenzopyranone were observed predominantly in the particle phase. This implies that these oxidized products formed from the reaction of Phen with the OH radical in the chamber would be associated with particles in the atmosphere and may, therefore, have an impact on human health. Possible pathways for the formation of these products are suggested and discussed.

  9. The function of supplements required for the formate-pyruvate exchange reaction in Streptococcus faecalis 

    E-print Network

    Smith, Gordon Marsh

    1964-01-01

    THE FUNCTION OF SUPPLEMENTS REQUIRED FOR THE FORMATE-FYRUVATE EXCHANGE REACTION IN STREFTOCOCCUS FAECALIS A Thesis By GORDON MARSII SMITH Submitted to the Graduate College of the Texas AS' University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE January l964 Major Subject: Microbiology THE FUNCTION OF SUPPLEMENTS REQUIRED FOR THE FORMATE-PYRUVATE EXCHANGE REACTION I. N STREPTOCOCCUS FAECALIS A Thesis By GORDON MARSH SMITH Approved as to styie...

  10. The formate-pyruvate exchange reaction by Streptococcus faecalis

    E-print Network

    Yeager, Robert Lee

    1960-01-01

    -free retreat FlGUBK lNDLX The effect oi time of LnruLetion of vulture and concentration of glucose on the formats-pyruvate exchange activity (basal med'um). . . , . . . . . . . , . . 16 The influence of time of incubation of culture and concentration... of glucose on ths amount cf growth (basal tnedium). . . . . . . . . . . . . . 18 A comparison of NSC and Difco hydrolyxed casein on the amount of growth and formats-pyruvats exchange activity (0. 1 psr cent glucose and basal medium) . . Ths effect...

  11. Formation of N-nitrosodimethylamine (NDMA) from reaction of monochloramine: a new disinfection by-product.

    PubMed

    Choi, Junghoon; Valentine, Richard L

    2002-02-01

    Studies have been conducted specifically to investigate the hypothesis that N-nitrosodimethylamine (NDMA) can be produced by reactions involving monochloramine. Experiments were conducted using dimethylamine (DMA) as a model precursor. NDMA was formed from the reaction between DMA and monochloramine indicating that it should be considered a potential disinfection by-product. The formation of NDMA increased with increased monochloramine concentration and showed maximum in yield when DMA was varied at fixed monochloramine concentrations. The mass spectra of the NDMA formed from DMA and 15N isotope labeled monochloramine (15NH2Cl) showed that the source of one of the nitrogen atoms in the nitroso group in NDMA was from monochloramine. Addition of 0.05 and 0.5 mM of preformed monochloramine to a secondarily treated wastewater at pH 7.2 also resulted in the formation of 3.6 and 111 ng/L of NDMA, respectively, showing that this is indeed an environmentally relevant NDMA formation pathway. The proposed NDMA formation mechanism consists of (i) the formation of 1,1-dimethylhydrazine (UDMH) intermediate from the reaction of DMA with monochloramine followed by, (ii) the oxidation of UDMH by monochloramine to NDMA, and (iii) the reversible chlorine transfer reaction between monochloramine and DMA which is parallel to (i). We conclude that reactions involving monochloramine in addition to classical nitrosation reactions are potentially important pathways for NDMA formation. PMID:11848351

  12. Redox reaction of the Pd0 complex bearing the Trost ligand with meso-cycloalkene-1,4-biscarbonates leading to a diamidato Pd(II) complex and 1,3-cycloalkadienes: enantioselective desymmetrization versus catalyst deactivation.

    PubMed

    Tsarev, Vasily N; Wolters, Dennis; Gais, Hans-Joachim

    2010-03-01

    The Pd(0) complex 1 that bears the Trost ligand 2 undergoes a facile redox reaction with 1,4-biscarbonates 5b-d and rac-22 under formation of the diamidato-Pd(II) complex 7 and the corresponding 1,3-cycloalkadienes 8b-d. The redox deactivation of complex 1 was the dominating pathway in the reaction of 5b-d with HCO(3)(-) at room temperature. However, at 0 degrees C the six-membered biscarbonate 5b, catalytic amounts of complex 1, and HCO(3)(-) mainly reacted in an allylic alkylation, which led to a highly selective desymmetrization of the substrate and gave alcohol 6b with > or = 99% ee in 66% yield. An increase of the catalyst loading in the reaction of 5b with 1 and HCO(3)(-) afforded the bicyclic carbonate 12b (96% ee, 92%). Formation of carbonate 12b involves two consecutive inter- and intramolecular substitution reactions of the pi-allyl-Pd(II) complexes 16b and 18b, respectively, with O-nucleophiles and presumably proceeds through the hydrogen carbonate 17b as key intermediate. The intermediate formation of 17b is also indicated by the conversion of alcohol rac-6b to carbonate 12b upon treatment with HCO(3)(-) and 1. The Pd(0)-catalyzed desymmetrization of 5b with formation of 12b and its hydrolysis allow an efficient enantioselective synthesis of diol 13b. The reaction of the seven-membered biscarbonate 5c with ent-1 and HCO(3)(-) afforded carbonate ent-12c (99% ee, 39%). The Pd(0) complex 1 is stable in solution and suffers no intramolecular redox reaction with formation of complex 7 and dihydrogen as recently claimed for the similar Pd(0) complex 9. Instead, complex 1 is rapidly oxidized by dioxygen to give the stable Pd(II) complex 7. Thus, formation of the Pd(II) complex 10 from 9 was most likely due to an oxidation by dioxygen. Oxidative workup (air) of the reaction mixture stemming from the desymmetrization of 5c catalyzed by 1 gave the Pd(II) complex 7 in high yield besides carbonate 12c. PMID:20104552

  13. PATTERN FORMATION IN A FLUX LIMITED REACTION-DIFFUSION EQUATION OF POROUS MEDIA TYPE

    E-print Network

    Granada, Universidad de

    PATTERN FORMATION IN A FLUX LIMITED REACTION-DIFFUSION EQUATION OF POROUS MEDIA TYPE J. CALVO, J behavior of some admissible patterns, namely traveling wave solutions, to this singular reaction-diffusion equation. We show the existence and qualitative behavior of different types of traveling waves: classical

  14. Hydrogen storage by the bicarbonate\\/formate reaction. Studies on the activity of Pd catalysts

    Microsoft Academic Search

    H. Kramer; M. Levy; A. Warshawsky

    1995-01-01

    The method of storage and generation of hydrogen by the bicarbonate\\/formate reaction was studied. It was shown that the Pd catalyst used loses its activity with time and can be regenerated by air oxidation. CO was found to be a powerful poison for the catalyst, in both the forward and the back reactions. The activity of the catalyst could be

  15. Metal-organic-frameworks-derived general formation of hollow structures with high complexity.

    PubMed

    Zhang, Lei; Wu, Hao Bin; Lou, Xiong Wen David

    2013-07-24

    Increasing the complexity of hollow structures, in terms of chemical composition and shell architecture, is highly desirable for both fundamental studies and realization of various functionalities. Starting with metal-organic frameworks (MOFs), we demonstrate a general approach toward the large-scale and facile synthesis of complex hollow microboxes via manipulation of the template-engaged reactions between the Prussian blue (PB) template and different alkaline substances. The reaction between PB microcubes with NaOH solution leads to the formation of Fe(OH)3 microboxes with controllable multishelled structure. In addition, PB microcubes will react with the conjugate bases of metal oxide based weak acids, generating multicompositional microboxes (Fe2O3/SnO2, Fe2O3/SiO2, Fe2O3/GeO2, Fe2O3/Al2O3, and Fe2O3/B2O3), which consist of uniformly dispersed oxides/hydroxides of iron and another designed element. Such complex hollow structures and atomically integrated multiple compositions might bring the usual physiochemical properties. As an example, we demonstrate that these complex hollow microboxes, especially the Fe2O3/SnO2 composite microboxes, exhibit remarkable electrochemical performance as anode materials for lithium ion batteries. PMID:23805894

  16. Stable pattern and standing wave formation in a simple isothermal cubic autocatalytic reaction scheme

    Microsoft Academic Search

    R. Hill; J. H. Merkin; D. J. Needham

    1995-01-01

    The formation of stable patterns is considered in a reaction-diffusion system based on the cubic autocatalator, A+2B ? 3B, B ? C, with the reaction taking place within a closed region, the reactant A being replenished by the slow decay of precursor P via the reaction P ? A. The linear stability of the spatially uniform Steady state % MathType!MTEF!2!1!+-%

  17. Photochemical reaction of phosphine hydride complexes of molybdenum and tungsten with molecular nitrogen

    SciTech Connect

    Pivovarov, A.P.; Gak, Y.V.; Doronina, T.N.; Makhaev, V.D.; Borisov, A.P.; Borod'ka, Y.G.

    1981-01-01

    Nitrogen complexes of molybdenum and tungsten react (rapidly when illuminated but slowly in the dark) with halogen-containing organic compounds to form products containing N-C bonds. Phosphine hydride complexes of type MH/sub 4/L/sub 4/ (M = Mo, W; L = PMePh/sub 2/, PEtPh/sub 2/, PEt/sub 2/Ph, PPrPh/sub 2/, PBuPh/sub 2/) take part in a photochemical reaction with N/sub 2/, giving nitrogen-containing products capable of reduction to hydrazine. We have investigated the composition of the nitrogen-containing photoproducts and the kinetic characteristics of their formation for the case of the complexes MoH/sub 4/(dppe)/sub 2/, WH/sub 4/(dppe)/sub 2/, MoH/sub 4/(PMePh/sub 2/)/sub 4/, WH/sub 4/(PMePh/sub 2/)/sub 4/, where dppe = 1,2-bis(diphenylphosphino)ethane.

  18. The ribosome-associated complex antagonizes prion formation in yeast.

    PubMed

    Amor, Alvaro J; Castanzo, Dominic T; Delany, Sean P; Selechnik, Daniel M; van Ooy, Alex; Cameron, Dale M

    2015-01-01

    The number of known fungal proteins capable of switching between alternative stable conformations is steadily increasing, suggesting that a prion-like mechanism may be broadly utilized as a means to propagate altered cellular states. To gain insight into the mechanisms by which cells regulate prion formation and toxicity we examined the role of the yeast ribosome-associated complex (RAC) in modulating both the formation of the [PSI(+)] prion - an alternative conformer of Sup35 protein - and the toxicity of aggregation-prone polypeptides. The Hsp40 RAC chaperone Zuo1 anchors the RAC to ribosomes and stimulates the ATPase activity of the Hsp70 chaperone Ssb. We found that cells lacking Zuo1 are sensitive to over-expression of some aggregation-prone proteins, including the Sup35 prion domain, suggesting that co-translational protein misfolding increases in ?zuo1 strains. Consistent with this finding, ?zuo1 cells exhibit higher frequencies of spontaneous and induced prion formation. Cells expressing mutant forms of Zuo1 lacking either a C-terminal charged region required for ribosome association, or the J-domain responsible for Ssb ATPase stimulation, exhibit similarly high frequencies of prion formation. Our findings are consistent with a role for the RAC in chaperoning nascent Sup35 to regulate folding of the N-terminal prion domain as it emerges from the ribosome. PMID:25739058

  19. GABAergic complex basket formations in the human neocortex.

    PubMed

    Blazquez-Llorca, Lidia; García-Marín, Virginia; DeFelipe, Javier

    2010-12-15

    Certain GABAergic interneurons in the cerebral cortex, basket cells, establish multiple connections with cell bodies that typically outline the somata and proximal dendrites of pyramidal cells. During studies into the distribution of the vesicular GABA transporter (VGAT) in the human cerebral cortex, we were struck by the presence of a very dense, pericellular arrangement of multiple VGAT-immunoreactive (-ir) terminals in certain cortical areas. We called these terminals "Complex basket formations" (Cbk-formations) to distinguish them from the simpler and more typical pericellular GABAergic innervations of most cortical neurons. Here we examined the distribution of these VGAT-ir Cbk-formations in various cortical areas, including the somatosensory (area 3b), visual (areas 17 and 18), motor (area 4), associative frontal (dorsolateral areas 9, 10, 45, 46, and orbital areas 11, 12, 13, 14, 47), associative temporal (areas 20, 21, 22, and 38), and limbic cingulate areas (areas 24, 32). Furthermore, we used dual or triple staining techniques to study the chemical nature of the innervated cells. We found that VGAT-ir Cbk-formations were most frequently found in area 4 followed by areas 3b, 13, and 18. In addition, they were mostly observed in layer III, except in area 17, where they were most dense in layer IV. We also found that 70% of the innervated neurons were pyramidal cells, while the remaining 30% were multipolar cells. Most of these multipolar cells expressed the calcium-binding protein parvalbumin and the lectin Vicia villosa agglutinin. PMID:21031559

  20. Ascorbate-Nitrite Reaction: Possible Means of Blocking the Formation of Carcinogenic N-Nitroso Compounds

    Microsoft Academic Search

    Sidney S. Mirvish; Lawrence Wallcave; Michael Eagen; Philippe Shubik

    1972-01-01

    The formation of carcinogenic N-nitroso compounds by the chemical reaction between nitrous acid and oxytetracycline, morpholine, piperazine, N-methylaniline, methylurea, and (in some experiments) dimethylamine was blocked by ascorbic acid. The extent of blocking depended on the compound nitrosated and on the experimental conditions. Urea and ammonium sulfamate were less effective as blocking agents. The possibility of in vivo formation of

  1. Formation of Carbon Dioxide by Surface Reactions on Ices in the Interstellar Medium

    Microsoft Academic Search

    Joe E. Roser; Gianfranco Vidali; Giulio Manicò; Valerio Pirronello

    2001-01-01

    The formation of carbon dioxide by surface reactions has been investigated experimentally in conditions close to those encountered in the interstellar medium. Carbon monoxide and oxygen atoms have been concurrently deposited on a copper substrate at 5 K. The formation and release in the gas phase of carbon dioxide have been monitored by a mass spectrometer during a programmed desorption.

  2. A Macroscopic Reaction: Direct Covalent Bond Formation between Materials Using a Suzuki-Miyaura Cross-Coupling Reaction

    PubMed Central

    Sekine, Tomoko; Kakuta, Takahiro; Nakamura, Takashi; Kobayashi, Yuichiro; Takashima, Yoshinori; Harada, Akira

    2014-01-01

    Cross-coupling reactions are important to form C–C covalent bonds using metal catalysts. Although many different cross-coupling reactions have been developed and applied to synthesize complex molecules or polymers (macromolecules), if cross-coupling reactions are realized in the macroscopic real world, the scope of materials should be dramatically broadened. Here, Suzuki-Miyaura coupling reactions are realized between macroscopic objects. When acrylamide gel modified with an iodophenyl group (I-gel) reacts with a gel possessing a phenylboronic group (PB-gel) using a palladium catalyst, the gels bond to form a single object. This concept can also be adapted for bonding between soft and hard materials. I-gel or PB-gel selectively bonds to the glass substrates whose surfaces are modified with an electrophile or nucleophile, respectively. PMID:25231557

  3. A Macroscopic Reaction: Direct Covalent Bond Formation between Materials Using a Suzuki-Miyaura Cross-Coupling Reaction

    NASA Astrophysics Data System (ADS)

    Sekine, Tomoko; Kakuta, Takahiro; Nakamura, Takashi; Kobayashi, Yuichiro; Takashima, Yoshinori; Harada, Akira

    2014-09-01

    Cross-coupling reactions are important to form C-C covalent bonds using metal catalysts. Although many different cross-coupling reactions have been developed and applied to synthesize complex molecules or polymers (macromolecules), if cross-coupling reactions are realized in the macroscopic real world, the scope of materials should be dramatically broadened. Here, Suzuki-Miyaura coupling reactions are realized between macroscopic objects. When acrylamide gel modified with an iodophenyl group (I-gel) reacts with a gel possessing a phenylboronic group (PB-gel) using a palladium catalyst, the gels bond to form a single object. This concept can also be adapted for bonding between soft and hard materials. I-gel or PB-gel selectively bonds to the glass substrates whose surfaces are modified with an electrophile or nucleophile, respectively.

  4. The Favored Formation of Threo-3-Pentulose in the Formose Reaction

    Microsoft Academic Search

    Yoshihiro Shigemasa; Shin-ichiro Tanioka; Hiroyuki Furukawa; Hitoshi Sashiwa; Hiroyuki Saimoto

    1991-01-01

    The “formose reaction” is the generic name for the base-catalyzed condensation of formaldehyde to give “formose” which is a complex mixture of sugars, alditols, organic acids, etc. Increasing attention has been recently given to this reaction because of its possible importance in the manufacture of edible carbohydrates from a simple material and its possible role in the prebiotic synthesis of

  5. Reactions of nitric oxide with mitochondrial cytochrome c: a novel mechanism for the formation of nitroxyl anion and peroxynitrite.

    PubMed Central

    Sharpe, M A; Cooper, C E

    1998-01-01

    The aerobic reactions of nitric oxide with cytochrome c were analysed. Nitric oxide (NO) reacts with ferrocytochrome c at a rate of 200 M-1 s-1 to form ferricytochrome c and nitroxyl anion (NO-). Ferricytochrome c was detected by optical spectroscopy; NO- was detected by trapping with metmyoglobin (Mb3+) to form the EPR-detectable Mb-nitrosyl complex, and by the formation of dimers in yeast ferrocytochrome c via cross-linking of the free cysteine residue. The NO- formed subsequently reacted with oxygen to form peroxynitrite, as measured by the oxidation of dihydrorhodamine 123. NO binds to ferricytochrome c to form the ferricytochrome c-NO complex. The on-rate for this reaction is 1.3+/-0.4x10(3) M-1.s-1, and the off-rate is 0.087+/-0.054 s-1. The dissociation constant (Kd) of the complex is 22+/-7 microM. These reactions of NO with cytochrome c are likely to be relevant to mitochondrial metabolism of NO. Ferricytochrome c can act as a reversible sink for excess NO in the mitochondria. The reduction of NO to NO- by ferrocytochrome c may play a role in the irreversible inhibition of mitochondrial oxygen consumption by peroxynitrite. It is generally assumed that peroxynitrite would be formed in mitochondria via the reaction of NO with superoxide. The finding that NO- is formed from the reaction of NO and ferrocytochrome c provides a means of producing peroxynitrite in the absence of superoxide, via the reaction of NO- with oxygen. PMID:9576846

  6. Kinetic study of model reactions in the gas phase at the early stage of coke formation

    SciTech Connect

    Nohara, D.; Sakai, T. (Dept. of Chemical Reaction Engineering, Faculty of Pharmaceutical Sciences, Nagoya City Univ., Mizuho-ku, Nagoya 467 (JP))

    1992-01-01

    This paper reports that the most probable gas-phase reactions at the early stage of coke formation were elucidated by kinetic study on the model reactions adopted for formation of cyclic compounds and growth of ring. It was revealed that the formation and growth of ring proceeded mainly through cycloaddition of butadiene or allyl radicals to unsaturated hydrocarbons at relatively low temperatures ({approximately}600{degrees}C), i.e., through a Diels-Alder type reaction. On the other hand, such growth of ring as formation of biphenyl accompanying dehydrogenation from benzene can proceed only at the higher temperatures. It was also revealed that in the growth of the ring, cycloaddition of butadiene favors a cyclic olefin molecule that possesses a nonconjugated double bond and a nearly planar structure.

  7. Interference-mediated synaptonemal complex formation with embedded crossover designation

    PubMed Central

    Zhang, Liangran; Espagne, Eric; de Muyt, Arnaud; Zickler, Denise; Kleckner, Nancy E.

    2014-01-01

    Biological systems exhibit complex patterns at length scales ranging from the molecular to the organismic. Along chromosomes, events often occur stochastically at different positions in different nuclei but nonetheless tend to be relatively evenly spaced. Examples include replication origin firings, formation of chromatin loops along chromosome axes and, during meiosis, localization of crossover recombination sites (“crossover interference”). We present evidence in the fungus Sordaria macrospora that crossover interference is part of a broader pattern that includes synaptonemal complex (SC) nucleation. This pattern comprises relatively evenly spaced SC nucleation sites, among which a subset are crossover sites that show a classical interference distribution. This pattern ensures that SC forms regularly along the entire length of the chromosome as required for the maintenance of homolog pairing while concomitantly having crossover interactions locally embedded within the SC structure as required for both DNA recombination and structural events of chiasma formation. This pattern can be explained by a threshold-based designation and spreading interference process. This model can be generalized to give diverse types of related and/or partially overlapping patterns, in two or more dimensions, for any type of object. PMID:25380597

  8. Vectorial charge transfer reactions on the donor side of manganese-depleted and reconstituted photosystem 2 core complexes.

    PubMed

    Petrova, I O; Kurashov, V N; Zaspa, A A; Semenov, A Yu; Mamedov, M D

    2013-04-01

    The light-induced functioning of photosystem 2 (PS 2) is directly linked to the translocation of both electrons and protons across the membrane, which results in the formation of transmembrane electric potential difference (??). Generation of ?? due to S-state transitions of the water oxidation complex was demonstrated for the first time in Mn-depleted and reconstituted PS 2 core complexes incorporated into liposomes. The kinetics and relative amplitudes of the electrogenic reactions in dark-adapted samples during S1?S2, S2?S3, and S4?S0 transitions in response to the first, second and third laser flashes were comparable to those obtained in the intact PS 2 core particles. These results expand current understanding of the nature and mechanisms of electrogenic (vectorial) reactions due to a charge transfer on the donor side of PS 2. PMID:23590442

  9. Molybdenum alkylidene complexes : syntheses and applications to olefin metathesis reactions

    E-print Network

    Pilyugina, Tatiana

    2007-01-01

    Chapter 1. Alkylimido Molybdenum Complexes: Synthesis, Characterization and Activity as Chiral Olefin Metathesis Catalysts. Molybdenum olefin metathesis catalysts that contain previously unexplored aliphatic 1- ...

  10. Incipient species formation in salamanders of the Ensatina?complex

    PubMed Central

    Wake, David B.

    1997-01-01

    The Ensatina eschscholtzii complex of plethodontid salamanders, a well-known “ring species,” is thought to illustrate stages in the speciation process. Early research, based on morphology and coloration, has been extended by the incorporation of studies of protein variation and mitochondrial DNA sequences. The new data show that the complex includes a number of geographically and genetically distinct components that are at or near the species level. The complex is old and apparently has undergone instances of range contraction, isolation, differentiation, and then expansion and secondary contact. While the hypothesis that speciation is retarded by gene flow around the ring is not supported by molecular data, the general biogeographical hypothesis is supported. There is evidence of a north to south range expansion along two axes, with secondary contact and completion of the ring in southern California. Current research targets regions once thought to show primary intergradation, but which molecular markers reveal to be zones of secondary contact. Here emphasis is on the subspecies E. e. xanthoptica, which is involved in four distinct secondary contacts in central California. There is evidence of renewed genetic interactions upon recontact, with greater genetic differentiation within xanthoptica than between it and some of the interacting populations. The complex presents a full array of intermediate conditions between well-marked species and geographically variable populations. Geographically differentiated segments represent a diversity of depths of time of isolation and admixture, reflecting the complicated geomorphological history of California. Ensatina illustrates the continuing difficulty in making taxonomic assignments in complexes studied during species formation. PMID:9223261

  11. Tricyanovinylalkynyl-metal complexes: synthesis and some reactions.

    PubMed

    Bruce, Michael I; Burgun, Aléxandre; Kramarczuk, Kathy A; Nicholson, Brian K; Parker, Christian R; Skelton, Brian W; White, Allan H; Zaitseva, Natasha N

    2009-01-01

    Reactions of Group 8 metal ethynyls with tetracyanoethene afford tricyanovinylethynyl-metal derivatives, M{C[triple bond]CC(CN)=C(CN)(2)}(PP)Cp' [2; M = Ru, Os; PP = (PPh(3))(2), dppe; Cp' = Cp, Cp*; not all combinations]; a similar reaction occurs with the vinylidene RuCl(=C=CHPh)(PPh(3))Cp. Further replacement of a CN group in occurs with nucleophiles, while homo- and hetero-metallic derivatives are obtained by coordination of one of the remaining CN groups to other metal-ligand fragments. PMID:19081968

  12. Formation reaction mechanisms of hydroxide anions from Mg(OH)2 layers

    NASA Astrophysics Data System (ADS)

    Vaiss, Viviane S.; Borges, Itamar; Wypych, Fernando; Leitão, Alexandre A.

    2013-06-01

    DFT calculations with periodic boundary conditions were used to study two formation reaction mechanisms of adsorbed free hydroxide anions on the surface of the brucite, Mg(OH)2. In the first mechanism, we investigated the migration of a hydroxide anion present in the structure of Mg(OH)2 to the layer surface. In the second, a mechanism composed of three elementary reactions was examined for the reaction of H2O molecules with the brucite layer surface. The result in both mechanisms is the formation of hydroxide anions and a hydroxide vacancy in the positively charged Mg(OH)2 layer. The global reaction is the same in both cases and the computed Gibbs free energy variation equals 37.5 kcal/mol at room temperature. The reaction barrier for the formation of hydroxide anion on Mg(OH)2 surface from H2O dissociation (27.6 kcal/mol) is lower than the reaction barrier for the formation of hydroxide anions from Mg(OH)2 dissociation (43.2 kcal/mol).

  13. Formation spectra of light kaonic nuclei by in-flight (K,N) reactions with a chiral unitary amplitude

    SciTech Connect

    Yamagata-Sekihara, J.; Jido, D. [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Nagahiro, H. [Department of Physics, Nara Women's University, Nara 630-8506 (Japan); Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Hirenzaki, S. [Department of Physics, Nara Women's University, Nara 630-8506 (Japan)

    2009-10-15

    We study theoretically the in-flight (K{sup -},N) reactions for the formation of light kaonic nuclear systems to get deeper physical insights on the spectra and to investigate the formation spectra of the reaction that will be observed at new facilities like the Japan Proton Accelerator Research Complex (J-PARC). We show the expected spectra for the formation of the K{sup -}pp, K{sup -}pn, K{sup -}nn, and K{sup -}-{sup 11}B systems that are accessible by the (K{sup -},N) experiments. By considering the conversion part of the Green's function, we show the missing mass spectra of the (K{sup -},N) reactions in coincident with the particle emissions due to K absorption. To calculate the cross sections, we use the so-called T{rho} approximation to evaluate the optical potential. As for the amplitude T, we adopt the chiral unitary amplitude of KN channel in vacuum for simplicity. The effects of the p-wave optical potential of {sigma}(1385) channel and the contributions from K{sup 0} mixing in {sup 3}He(K{sup -},n) reaction are also evaluated numerically. We also study the behavior of the poles of kaon Green's function in nuclear matter. We conclude that {sup 3}He(K{sup -},n) and {sup 3}He(K{sup -},p) reaction spectra in coincident with the {pi}{sigma} emission may show the structure in the kaon bound region indicating the existence of the unstable kaonic nuclear states. As for the {sup 12}C(K{sup -},p) spectra with the {pi}{sigma} emission, we may also observe the structure in the bound region, however, we need to evaluate the medium effects carefully for larger nuclei.

  14. A crystallographic description of experimentally identified formation reactions of Cu(In,Ga)Se{sub 2}

    SciTech Connect

    Hergert, F. [Chair for Crystallography and Structural Physics, University of Erlangen-Nuernberg, Staudtstrasse 3, D-91058 Erlangen (Germany)]. E-mail: frank.hergert@krist.uni-erlangen.de; Jost, S. [Chair for Crystallography and Structural Physics, University of Erlangen-Nuernberg, Staudtstrasse 3, D-91058 Erlangen (Germany); Hock, R. [Chair for Crystallography and Structural Physics, University of Erlangen-Nuernberg, Staudtstrasse 3, D-91058 Erlangen (Germany); Purwins, M. [Crystal Growth Laboratory, Department of Materials Science VI, University of Erlangen-Nuernberg, Martensstr. 7, D-91058 Erlangen (Germany)

    2006-08-15

    This work describes solid-state reactions for the formation of the chalcopyrite compounds CuInSe{sub 2}, CuGaSe{sub 2} and Cu(In,Ga)Se{sub 2} on atomic scale. The most important chalcopyrite formation reactions which were identified by the authors by real-time in situ X-ray diffraction in preceding experiments are (A) CuSe+InSe{sup {yields}}CuInSe{sub 2} (B) Cu{sub 2}Se+2 InSe+Se{sup {yields}}2 CuInSe{sub 2} and (C) Cu{sub 2}Se+In{sub 2}Se{sub 3}{sup {yields}}2 CuInSe{sub 2}. During the selenistaion of a metallic precursor containing gallium a separate fourth reaction occurs: (D) Cu{sub 2}Se+Ga{sub 2}Se{sub 3}{sup {yields}}2 CuGaSe{sub 2}. The quaternary compound is finally formed by interdiffusion of CuInSe{sub 2} with CuGaSe{sub 2} (E). These five reactions differ in their activation energy and reaction speed. We explain these differences qualitatively by analysing the involved crystal structures for each reaction. It turns out that all reactions involved in the formation of Cu(In,Ga)Se{sub 2} are promoted by epitaxial relations, which facilitates the formation of polycrystalline thin films at temperatures much below those necessary for single crystal growth. Recommendations for the growth of larger grains of Cu(In,Ga)Se{sub 2} containing fewer defects are given. - Graphical abstract: The epitaxial connection of the crystal structures of {beta}-Cu{sub 2}Se (bottom) and {beta}-In{sub 2}Se{sub 3} (top) is the initiating step of one possible solid-state reaction for the formation of {alpha}-CuInSe{sub 2}.

  15. Nickel-Catalyzed Reactions Directed toward the Formation of Heterocycles.

    PubMed

    Kurahashi, Takuya; Matsubara, Seijiro

    2015-06-16

    Heterocycles have garnered significant attention because they are important functional building blocks in various useful molecules, such as pharmaceuticals, agricultural chemicals, pesticides, and materials. Several studies have been conducted regarding the preparation of heterocyclic skeletons with an emphasis on selectivity and efficiency. Three strategies are typically employed to construct cyclic molecules, namely, cyclization, cycloaddition, and ring-size alterations. Although each method has certain advantages, cycloaddition may be superior from the viewpoint of divergence. Specifically, cycloadditions enable the construction of rings from several pieces. However, the construction of heterocycles via cycloadditions is more challenging than the construction of carbocycles. For heterocycle construction, simple pericyclic reactions rarely work smoothly because of the large HOMO-LUMO gap unless well-designed combinations, such as electron-rich dienes and aldehydes, are utilized. Thus, a different approach should be employed to prepare heterocycles via cycloadditions. To this end, the use of metallacycles containing heteroatoms is expected to serve as a promising solution. In this study, we focused on the preparation of heteroatom-containing nickelacycles. Because nickel possesses a relatively high redox potential and an affinity for heteroatoms, several methods were developed to synthesize heteronickelacycles from various starting materials. The prepared nickelacycles were demonstrated to be reasonable intermediates in cycloaddition reactions, which were used to prepare various heterocycles. In this Account, we introduce the following four methods to prepare heterocycles via heteronickelacycles. (1) Direct oxidative insertion of Ni(0) to ?,?-unsaturated enone derivatives: treatment of 3-ethoxycarbonyl-4-phenyl-3-buten-2-one with Ni(0) afforded an oxa-nickelacycle, which reacted with alkynes to give pyrans. (2) Substitution of a part of a cyclic compound with low-valent nickel, accompanied by elimination of small molecules such as CO, CO2, and acetophenone: treatment of phthalic anhydride with Ni(0) in the presence of ZnCl2 afforded the oxanickelacycle, which was formed via decarbonylative insertion of Ni(0) and reacted with alkynes to give isocumarins. (3) Cyclization to a nickelacycle, accompanied by two C-C ?-bond activations: insertion of Ni(0) into an arylnitrile, followed by aryl cyanation of an alkyne, gave alkenylnickel as an intermediate. The alkenylnickel species subsequently underwent an intramolecular nucleophilic attack with an arylcarbonyl group to form a cyclized product with concomitant cleavage of the C-C ?-bond between the carbonyl and aryl groups. (4) Assembly of several components to form a heteroatom-containing nickelacycle via cycloaddition: a new [2 + 2 + 1] cyclization reaction was carried out using an ?,?-unsaturated ester, isocyanate, and alkyne via a nickelacycle. On the basis of these four strategies, we developed new methods to prepare heterocyclic compounds using nickelacycles as the key active species. PMID:25989256

  16. Reaction layer formation at the graphite/copper-chromium alloy interface

    NASA Technical Reports Server (NTRS)

    Devincent, Sandra M.; Michal, Gary M.

    1993-01-01

    Sessile drop tests were used to obtain information about copper chromium alloys that suitably wet graphite. Characterization of graphite/copper-chromium alloy interfaces subjected to elevated temperatures were conducted using scanning electron micrography, energy dispersive spectroscopy, Auger electron spectroscopy, and X-ray diffraction analyses. These analyses indicate that during sessile drop tests conducted at 1130 C for one hour, copper alloys containing greater than 0.98 percent chromium form continuous reaction layers of approximately 10 micron thickness. The reaction layers adhere to the graphite surface. The copper wets the reaction layer to form a contact angle of 60 degrees or less. X-ray diffraction results indicate that the reaction layer is chromium carbide. The kinetics of reaction layer formation were modelled in terms of bulk diffusion mechanisms. Reaction layer thickness is controlled initially by the diffusion of Cr out of Cu alloy and later by the diffusion of C through chromium carbide.

  17. Calibration of Complex Subsurface Reaction Models Using a Surrogate-Model Approach

    EPA Science Inventory

    Application of model assessment techniques to complex subsurface reaction models involves numerous difficulties, including non-trivial model selection, parameter non-uniqueness, and excessive computational burden. To overcome these difficulties, this study introduces SAMM (Simult...

  18. Formation of HCN+ in Heterogeneous Reactions of N2+ and N+ with Surface Hydrocarbons

    PubMed Central

    2013-01-01

    A significant increase of the ion yield at m/z 27 in collisions of low-energy ions of N2+ and N+ with hydrocarbon-covered room-temperature or heated surfaces of tungsten, carbon-fiber composite, and beryllium, not observed in analogous collisions of Ar+, is ascribed to the formation of HCN+ in heterogeneous reactions between N2+ or N+ and surface hydrocarbons. The formation of HCN+ in the reaction with N+ indicated an exothermic reaction with no activation barrier, likely to occur even at very low collision energies. In the reaction with N2+, the formation of HCN+ was observed to a different degree on these room-temperature and heated (150 and 300 °C) surfaces at incident energies above about 50 eV. This finding suggested an activation barrier or reaction endothermicity of the heterogeneous reaction of about 3–3.5 eV. The main process in N2+ or N+ interaction with the surfaces is ion neutralization; the probability of forming the reaction product HCN+ was very roughly estimated for both N2+ and N+ ions to about one in 104 collisions with the surfaces. PMID:23614645

  19. Neutral and Cationic Alkyl Tantalum Imido Complexes: Synthesis and Migratory Insertion Reactions

    PubMed Central

    Anderson, Laura L.; Schmidt, Joseph A. R.; Arnold, John; Bergman, Robert G.

    2008-01-01

    The synthesis and reactivity of dibenzyl cationic tantalum imido complexes is described. The trialkyl tantalum imido compounds Bn3Ta=NCMe3 (1) and Np3Ta=NCMe3 (2) were synthesized as starting materials for the study of dialkyl cationic tantalum imido complexes. Compound 1 undergoes insertion reactions with diisopropylcarbodiimide and 2,6-dimethylphenylisocyanide to give (bisamidinate)imido complex 5 and (bisimino-acyl)imido complex 6, respectively. Treatment of compound 1 with B(C6F5)3 gives the zwitterionic tantalum complex [Bn2Ta=NCMe3][BnB(C6F5)3] (7) which is stabilized by ?6-coordination of the benzyl triaryl borate anion. Coordination of the aryl anion can be displaced by three equivalents of pyridine to give the Lewis base complex 8. Treatment of compound 1 with [Ph3C][B(C6F5)4] gives the cationic tantalum imido complex [Bn2Ta=NCMe3][B(C6F5)4] (3). This salt forms insoluble aggregates unless trapped by THF coordination or an insertion reaction with an alkyne or an alkene. Cation 3 undergoes migratory insertion reactions with diphenylacetylene, phenylacetylene, norbornene, and cis-cyclooctene to give the corresponding alkenyl or modified alkyl imido complexes. The characterization of these products and the significance of these insertion reactions with respect to Ziegler-Natta polymerizations and hydroamination reactions are described. PMID:19079787

  20. Neutral and Cationic Alkyl Tantalum Imido Complexes: Synthesis and Migratory Insertion Reactions.

    PubMed

    Anderson, Laura L; Schmidt, Joseph A R; Arnold, John; Bergman, Robert G

    2006-07-01

    The synthesis and reactivity of dibenzyl cationic tantalum imido complexes is described. The trialkyl tantalum imido compounds Bn(3)Ta=NCMe(3) (1) and Np(3)Ta=NCMe(3) (2) were synthesized as starting materials for the study of dialkyl cationic tantalum imido complexes. Compound 1 undergoes insertion reactions with diisopropylcarbodiimide and 2,6-dimethylphenylisocyanide to give (bisamidinate)imido complex 5 and (bisimino-acyl)imido complex 6, respectively. Treatment of compound 1 with B(C(6)F(5))(3) gives the zwitterionic tantalum complex [Bn(2)Ta=NCMe(3)][BnB(C(6)F(5))(3)] (7) which is stabilized by eta(6)-coordination of the benzyl triaryl borate anion. Coordination of the aryl anion can be displaced by three equivalents of pyridine to give the Lewis base complex 8. Treatment of compound 1 with [Ph(3)C][B(C(6)F(5))(4)] gives the cationic tantalum imido complex [Bn(2)Ta=NCMe(3)][B(C(6)F(5))(4)] (3). This salt forms insoluble aggregates unless trapped by THF coordination or an insertion reaction with an alkyne or an alkene. Cation 3 undergoes migratory insertion reactions with diphenylacetylene, phenylacetylene, norbornene, and cis-cyclooctene to give the corresponding alkenyl or modified alkyl imido complexes. The characterization of these products and the significance of these insertion reactions with respect to Ziegler-Natta polymerizations and hydroamination reactions are described. PMID:19079787

  1. Ag-123 composite peritectic reaction and the 123* phase formation

    NASA Astrophysics Data System (ADS)

    Fiscina, Jorge E.; González Oliver, Carlos; Esparza, Daniel A.

    1996-03-01

    Typical 123 ceramic treated with a slow cooling from the peritectic reaction (peritectic tuning) results in a pseudograin morphology. It consists of an arrange of 123 flakes derived from a sympathetic nucleation. BaCuO2 and CuO accompanying phases are observed as the end of a deficient re-absorption process. XRD/SEM-EDAX/experiments were carried out on Ag-123 (˜10% wt Ag) composites obtained from peritectic tuning. The existence of Ag-Ba-Cu compounds at post-peritectic temperatures could be the cause for a better re-absorption of the accompanying phases, with typical Ag particles arrays in a modified 123 (123*) flakes matrix. Resulting 123* phase was characterized by XRD and in a previous work by RT, showing an increase in the c axis and a higher Tc (94K). It could be inferred that there is a higher crystalline coherence for this 123* flakes matrix.

  2. From homogeneously to heterogeneously catalyzed cyclopropanation reactions: New polymeric membranes embedding cobalt chiral schiff base complexes

    Microsoft Academic Search

    Alessandro Caselli; Maria Giovanna Buonomenna; Federico de Baldironi; Luca Laera; Simone Fantauzzi; Fabio Ragaini; Emma Gallo; Giovanni Golemme; Sergio Cenini; Enrico Drioli

    2010-01-01

    In this paper we report the preparation of catalytic polymeric membranes having the complex [(N,N?-bis(3-tert-butyl-5-(heptadecafluorooctyl)salicylidene)-trans-1,2-cyclohexanediamine)Co] embedded into Hyflon AD60X, PES and PSf and their use in the cyclopropanation reaction of olefins with ethyl diazoacetate (EDA). A study of the reaction in the homogeneous phase was also performed. The kinetics of the cyclopropanation reaction is first-order in the diazoacetate and the

  3. Chiral N,N'-dioxide-FeCl3 complex-catalyzed asymmetric intramolecular Cannizzaro reaction.

    PubMed

    Wu, Wangbin; Liu, Xiaohua; Zhang, Yuheng; Ji, Jie; Huang, Tianyu; Lin, Lili; Feng, Xiaoming

    2015-07-25

    An environmentally benign catalyst, the N,N'-dioxide-FeCl3 complex, has been developed for the asymmetric intramolecular Cannizzaro reaction. Aryl and alkyl glyoxal monohydrates were applied to obtain ?-hydroxy acid esters with excellent results. Deuterium-label and control experiments shed light on the reaction mechanism. PMID:26098988

  4. Path Integral Approach to Reaction in Complex Environment:. a Bottleneck Problem

    Microsoft Academic Search

    V. Sa-Yakanit; S. Boribarn

    2001-01-01

    The path integral method for handling the polaron problem, as developed by Feynman [1], is applied to the problem of the rate of reaction of a system coupled to a complex environment consisting of an infinite set of oscillators. After eliminating the harmonic oscillator degrees of freedom, an effective action containing a reaction coordinate coupled to the non-local harmonic oscillator,

  5. Density Functional Theory Study of Redox Pairs. 1. Dinuclear Iron Complexes That Undergo Multielectron Redox Reactions

    E-print Network

    Baik, Mu-Hyun

    Multielectron Redox Reactions Accompanied by a Reversible Structural Change Mu-Hyun Baik, Tom ZieglerDensity Functional Theory Study of Redox Pairs. 1. Dinuclear Iron Complexes That Undergo. The different theoretical models are evaluated by calculating the energy of the disproportionation reaction 2A

  6. Exploration Into Copper Catalyzed and Copper-less Click Reactions with Re(CO)3 Complexes

    E-print Network

    Collins, Gary S.

    Exploration Into Copper Catalyzed and Copper-less Click Reactions with Re(CO)3 Complexes Nicholas that combines a alkyne and an oxime to generate a isoxazole cycloaddtion product. Compared to the copper and then proceeding with the typical copper(I) catalyzed "click" reaction procedure, while the other approach involves

  7. Fischer chromium carbene complexes as nucleophiles in palladium-catalyzed allylic substitution reactions

    Microsoft Academic Search

    Dušan Draho?ovský; Vincent Borgo; Dalimil Dvo?ák

    2002-01-01

    The Pd-catalyzed reaction of carbanions derived from chromium aminocarbene complexes with allylic acetates and carbonates smoothly affords the corresponding allyl-substituted aminocarbenes. On the contrary, the same reaction of the anion derived from pentacarbonyl[(methoxy)methylcarbene]chromium(0) with cinnamyl acetate affords 5-methoxy-1-phenylhexa-1,5-diene, the product of 1-methoxyethen-1-yl group transfer.

  8. Physical volcanology of the Gubisa Formation, Kone Volcanic Complex, Ethiopia

    NASA Astrophysics Data System (ADS)

    Rampey, Michael L.; Oppenheimer, Clive; Pyle, David M.; Yirgu, Gezahegn

    2014-08-01

    Despite their significance for understanding the potential environmental factors involved in hominin evolution in Ethiopia, very few modern volcanologic studies have been carried out on the Quaternary calderas and associated silicic tephra deposits of the Ethiopian Rift. We present here the second of a set of papers reporting the findings of fieldwork and laboratory analyses of one of the largest of these structures, Kone Caldera, located within the Kone Volcanic Complex in the northern Main Ethiopian Rift. The most recent major episode of explosive eruptive activity at Kone Caldera was apparently associated with formation of part of the overall 8-km-diameter collapse area, and deposited a widely-dispersed alkali rhyolite tephra that reaches a thickness of up to 60 m in vent-proximal deposits. We report here the physical characteristics of this unit in order to constrain eruptive conditions. The pumice fall deposit suggests that an abrupt decrease in magma discharge rate occurred part way through the eruption.

  9. Major kinetic features of the formation of the. pi. -complex of cobalt hydrocarbonyl with olefin and its conversion to R'Co(CO)/sub 4/

    SciTech Connect

    Kardashina, L.F.; Sapunov, V.N.

    1986-09-01

    The major kinetic features were studied for the formation of the ..pi..-complex of cobalt hydrocarbonyl with 1-hexene and its conversion to R'Co(CO)/sub 4/. The composition of the catalytically active ..pi..-complex with the olefin was established. The slow steps of the hydroformylation reaction were determined. A procedure was proposed for the preparation of solutions of cobalt hydrocarbonyl containing a ..pi..-complex with an olefin or R'Co(CO)/sub 4/.

  10. The reaction of alkylating agents with bacteriophage R17. Biological effects of phosphotriester formation

    PubMed Central

    Shooter, Kenneth V.; Howse, Ruth; Merrifield, R. Kenneth

    1974-01-01

    The extent of biological inactivation and of the degradation of the RNA after reaction of bacteriophage R17 with ethyl methanesulphonate, isopropyl methanesulphonate and N-ethyl-N-nitrosourea was studied. Formation of breaks in the RNA chain probably results from hydrolysis of phosphotriesters formed in the alkylation reactions. Near neutral pH the ethyl and isopropyl phosphotriesters are sufficiently stable for the kinetics of the hydrolysis reaction to be followed. Results indicate that the rate of hydrolysis increases rapidly as the pH is raised. The evidence shows that a phosphotriester group does not itself constitute a lethal lesion. The extent of phosphotriester formation by the different agents is discussed in terms of reaction mechanism. PMID:4363112

  11. Single Nucleoprotein Residue Modulates Arenavirus Replication Complex Formation

    PubMed Central

    Knopp, Kristeene A.; Ngo, Tuan; Gershon, Paul D.

    2015-01-01

    ABSTRACT The Arenaviridae are enveloped, negative-sense RNA viruses with several family members that cause hemorrhagic fevers. This work provides immunofluorescence evidence that, unlike those of New World arenaviruses, the replication and transcription complexes (RTC) of lymphocytic choriomeningitis virus (LCMV) colocalize with eukaryotic initiation factor 4E (eIF4E) and that eIF4E may participate in the translation of LCMV mRNA. Additionally, we identify two residues in the LCMV nucleoprotein (NP) that are conserved in every mammalian arenavirus and are required for recombinant LCMV recovery. One of these sites, Y125, was confirmed to be phosphorylated by using liquid chromatography-tandem mass spectrometry (LC-MS/MS). NP Y125 is located in the N-terminal region of NP that is disordered when RNA is bound. The other site, NP T206, was predicted to be a phosphorylation site. Immunofluorescence analysis demonstrated that NP T206 is required for the formation of the punctate RTC that are typically observed during LCMV infection. A minigenome reporter assay using NP mutants, as well as Northern blot analysis, demonstrated that although NP T206A does not form punctate RTC, it can transcribe and replicate a minigenome. However, in the presence of matrix protein (Z) and glycoprotein (GP), translation of the minigenome message with NP T206A was inhibited, suggesting that punctate RTC formation is required to regulate viral replication. Together, these results highlight a significant difference between New and Old World arenaviruses and demonstrate the importance of RTC formation and translation priming in RTC for Old World arenaviruses. PMID:25922393

  12. Formation of MgO-BâC composite via a thermite-based combustion reaction

    Microsoft Academic Search

    Lily L. Wang; Zuhair A. Munir; J. Birch Holt

    1995-01-01

    The combustion synthesis of MgO-BâC composites was investigated by coupling a highly exothermic Mg-BâOâ thermite reaction with a weakly exothermic BâC formation reaction. Unlike the case of using Al as the reducing agent, the interaction between Mg and BâOâ depends on the surrounding inert gas pressure due to the high vapor pressure of Mg. The interaction changes from one involving

  13. Formation of hydrocarbons via reaction of HCN with H/sub 2/ on iron catalysts

    SciTech Connect

    Buschmann, H.W.; Ritschel, M.; Vielstich, W.

    1987-08-01

    It is shown that HCN reacts with H/sub 2/ on a Fischer-Tropsch catalyst to form hydrocarbons. As can be concluded from the product spectrum and the olefin contents in the hydrocarbon fractions the mechanism of the HCN-H/sub 2/ reaction is that of the Fischer-Tropsch synthesis. These results strongly support a mechanism which includes the formation of higher hydrocarbons by the reaction of carbidic C species formed by the dissociation of the reactant gas.

  14. MECHANISM OF STRUCTURE FORMATION IN SELF-PROPAGATING THERMITE REACTIONS: THE CASE OF ALUMINA AS DILUENT

    Microsoft Academic Search

    ROBERTO ORRU; BARBARA SIMONCINI; PIER FORTUNATO VIRDIS; GIACOMO CAO

    1998-01-01

    The mechanism of structure formation of the global reaction Fe2O3 + 2Al ? 2Fe + Al2O3 under self-propagating high-temperature synthesis (SHS) conditions in the presence of alumina as diluent is investigated. The reactants in powder form are converted into products by passing through four transformation zones with different structure and composition. Some of the early stages of this reaction are

  15. Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms.

    PubMed

    Rasmussen, Helena; Sørensen, Hanne R; Meyer, Anne S

    2014-02-19

    The degradation compounds formed during pretreatment when lignocellulosic biomass is processed to ethanol or other biorefinery products include furans, phenolics, organic acids, as well as mono- and oligomeric pentoses and hexoses. Depending on the reaction conditions glucose can be converted to 5-(hydroxymethyl)-2-furaldehyde (HMF) and/or levulinic acid, formic acid and different phenolics at elevated temperatures. Correspondingly, xylose can follow different reaction mechanisms resulting in the formation of furan-2-carbaldehyde (furfural) and/or various C-1 and C-4 compounds. At least four routes for the formation of HMF from glucose and three routes for furfural formation from xylose are possible. In addition, new findings show that biomass monosaccharides themselves can react further to form pseudo-lignin and humins as well as a wide array of other compounds when exposed to high temperatures. Hence, several aldehydes and ketones and many different organic acids and aromatic compounds may be generated during hydrothermal treatment of lignocellulosic biomass. The reaction mechanisms are of interest because the very same compounds that are possible inhibitors for biomass processing enzymes and microorganisms may be valuable biobased chemicals. Hence a new potential for industrial scale synthesis of chemicals has emerged. A better understanding of the reaction mechanisms and the impact of the reaction conditions on the product formation is thus a prerequisite for designing better biomass processing strategies and forms an important basis for the development of new biorefinery products from lignocellulosic biomass as well. PMID:24412507

  16. On the reaction mechanism for propene formation in the MTO reaction over SAPO-34

    Microsoft Academic Search

    Ivar M. Dahl; Stein Kolboe

    1993-01-01

    Three different feeds: methanol, methanol\\/ethanol\\/water (2 : 1 : 1 molar ratio) and13C-methanol\\/ethanol\\/water (2 : 1 : 1) have been converted to hydrocarbons over a SAPO-34 catalyst at 420 °C using argon carrier gas. The products were analyzed by GC-MS allowing the determination of the isotopic composition of the reaction products. The experiments show that the majority of the propene

  17. Substitution effects on the formation of T-shaped palladium carbene and thioketone complexes from Li/Cl carbenoids.

    PubMed

    Molitor, Sebastian; Feichtner, Kai-Stephan; Kupper, Claudia; Gessner, Viktoria H

    2014-08-18

    The preparation of palladium thioketone and T-shaped carbene complexes by treatment of thiophosphoryl substituted Li/Cl carbenoids with a Pd(0) precursor is reported. Depending on the steric demand, the anion-stabilizing ability of the silyl moiety (by negative hyperconjugation effects) and the remaining negative charge at the carbenic carbon atom, isolation of a three-coordinate, T-shaped palladium carbene complex is possible. In contrast, insufficient charge stabilization results in the transfer of the sulfur of the thiophosphoryl moiety and thus in the formation of a thioketone complex. While the thioketones are stable compounds the carbene complexes are revealed to be highly reactive and decompose under elimination of Pd metal. Computational studies revealed that both complexes are formed by a substitution mechanism. While the ketone turned out to be the thermodynamically favored product, the carbene is kinetically favored and thus preferentially formed at low reaction temperatures. PMID:24664573

  18. A peroxynitrite complex of copper: formation from a copper–nitrosyl complex, transformation to nitrite and exogenous phenol oxidative coupling or nitration

    PubMed Central

    Park, Ga Young; Deepalatha, Subramanian; Puiu, Simona C.; Lee, Dong-Heon; Mondal, Biplab; Sarjeant, Amy A. Narducci; del Rio, Diego; Pau, Monita Y. M.; Solomon, Edward I.; Karlin, Kenneth D.

    2010-01-01

    Reaction of nitrogen monoxide with a copper(I) complex possessing a tridentate alkylamine ligand gives a Cu(I)–(·NO) adduct, which when exposed to dioxygen generates a peroxynitrite (O=NOO?)–Cu(II) species. This undergoes thermal transformation to produce a copper(II) nitrito (NO2?) complex and 0.5 mol equiv O2. In the presence of a substituted phenol, the peroxynitrite complex effects oxidative coupling, whereas addition of chloride ion to dissociate the peroxynitrite moiety instead leads to phenol ortho nitration. Discussions include the structures (including electronic description) of the copper–nitrosyl and copper–peroxynitrite complexes and the formation of the latter, based on density functional theory calculations and accompanying spectroscopic data. PMID:19662443

  19. Positronium in a liquid phase: formation, bubble state and chemical reactions

    E-print Network

    Stepanov, Sergey V; Zvezhinskiy, Dmitrii S; Duplatre, Gilles; Nurmukhametov, Roman R; Stepanov, Petr S

    2012-01-01

    This chapter reviews the following items: 1. Energy deposition and track structure of fast positrons: ionization slowing down, number of ion-electron pairs, typical sizes, thermalization, electrostatic interaction between e+ and its blob, effect of local heating; 2. Positronium formation in condensed media: the Ore model, quasifree Ps state, intratrack mechanism of Ps formation; 3. Fast intratrack diffusion-controlled reactions: Ps oxidation and ortho-para conversion by radiolytic products, reaction rate constants, interpretation of the PAL spectra in water at different temperatures; 4. Ps bubble models. "Non-point" positronium: wave function, energy contributions, relationship between the pick-off annihilation rate and the bubble radius.

  20. N-Heterocyclic Carbene Complexes in Dehalogenation Reactions

    NASA Astrophysics Data System (ADS)

    Mas-Marzá, Elena; Page, Michael J.; Whittlesey, Michael K.

    Catalytic dehalogenation represents an underdeveloped transformation in M-NHC chemistry with a small number of reports detailing the reactivity of Co, Ru, Ni and Pd catalysts. In situ generated nickel and palladium NHC complexes catalyse the hydrodechlorination of aryl chlorides. Lower coordinate Ni complexes are proposed to operate in the hydrodefluorination of mono- and poly-fluorinated substrates. The single example of Ru-NHC catalysed hydrodefluorination of fully and partially fluorinated aromatic substrates is characterised by an unusual regioselectivity. The highly regioselective dehydrohalogenation of relatively unreactive alkyl halide substrates is achieved with a cobalt NHC catalyst.

  1. Secondary organic aerosol formation from ozone-initiated reactions with nicotine and secondhand tobacco smoke

    NASA Astrophysics Data System (ADS)

    Sleiman, Mohamad; Destaillats, Hugo; Smith, Jared D.; Liu, Chen-Lin; Ahmed, Musahid; Wilson, Kevin R.; Gundel, Lara A.

    2010-11-01

    We used controlled laboratory experiments to evaluate the aerosol-forming potential of ozone reactions with nicotine and secondhand smoke. Special attention was devoted to real-time monitoring of the particle size distribution and chemical composition of SOA as they are believed to be key factors determining the toxicity of SOA. The experimental approach was based on using a vacuum ultraviolet photon ionization time-of-flight aerosol mass spectrometer (VUV-AMS), a scanning mobility particle sizer (SMPS) and off-line thermal desorption coupled to mass spectrometry (TD-GC-MS) for gas-phase byproducts analysis. Results showed that exposure of SHS to ozone induced the formation of ultrafine particles (<100 nm) that contained high molecular weight nitrogenated species ( m/ z 400-500), which can be due to accretion/acid-base reactions and formation of oligomers. In addition, nicotine was found to contribute significantly (with yields 4-9%) to the formation of secondary organic aerosol through reaction with ozone. The main constituents of the resulting SOA were tentatively identified and a reaction mechanism was proposed to elucidate their formation. These findings identify a new component of thirdhand smoke that is associated with the formation of ultrafine particles (UFP) through oxidative aging of secondhand smoke. The significance of this chemistry for indoor exposure and health effects is highlighted.

  2. Modelling formation of complex topography by the seagrass Posidonia oceanica

    NASA Astrophysics Data System (ADS)

    Kendrick, Gary A.; Marbà, Núria; Duarte, Carlos M.

    2005-12-01

    Posidonia oceanica is a slow growing seagrass species that extends via growing rhizomes that grow only centimetres both horizontally and vertically each year. Posidonia oceanica forms topographically complex biogenic reefs of dead rhizome and sediments that are up to 4 m in height that are called "matte". This study investigates the role of slow horizontal and vertical growth of rhizomes in the formation of topographic complexity in P. oceanica matte using agent-based modelling. The simulated infilling of landscapes by P. oceanica was run over 600 iterations (years) for 10 random starts of 150 agents each. Initial infilling rates were very slow and P. oceanica had limited cover after a century of growth. Growth accelerated after 100 years but plateaued after 400 years such that after 600 years only two-thirds of the landscape was occupied by P. oceanica. The pattern of spread of agents was initially random in direction but after larger patches were formed spread was radial from these patches. The seagrass landscape was initially highly fragmented with many small separate patches made up of a few agents each, with a Landscape Division index close to 1. Between 300 and 600 years Landscape Division declined sharply to 0.42, indicating patches had coalesced into larger more continuous meadows forming a less fragmented landscape. Perimeter to area ratio of seagrass patches declined exponentially from >1 to approximately 0.2 over 600 years of simulation. The matte developed from growth of patches and its greatest height occurred in more continuously occupied cells of the grid. The topography of the reef that occupied two-thirds of the landscape after six centuries of growth could be described as a pattern of channels between reef plateaus elevated 1-2 m above channels. These results demonstrate that development in P. oceanica meadows of three-dimensional structure, in the formation of biogenic reefs, can be explained by, and is an emergent property of, slow horizontal and vertical rhizome growth rates combined with the time it takes for the accumulation of rhizomes in any region of the landscape. As such, the model provides a parsimonious explanation for the development of complex matte topography.

  3. Synthesis, characterization and thermodynamics of complex formation of some new Schiff base ligands with some transition metal ions and the adduct formation of zinc Schiff base complexes with some organotin chlorides

    NASA Astrophysics Data System (ADS)

    Asadi, Mozaffar; Asadi, Zahra; Torabi, Susan; Lotfi, Najmeh

    Four new complexes, [M(Salpyr)] where Salpyr = N,N'-bis(Salicylidene)-2,3- and 3,4-diiminopyridine and M = Co, Cu, Mn, Ni and Zn were synthesized and characterized by 1H NMR, IR spectroscopy, elemental analysis and UV-vis spectrophotometry. UV-vis spectrophotometric study of the adduct formation of the zinc(II) complexes, [Zn(2,3-Salpyr)] and [Zn(3,4-Salpyr)], as donor with R2SnCl2 (R = methyl, phenyl, n-butyl), PhSnCl3 and Bu3SnCl as acceptors has been investigated in methanol, as solvent. The formation constants and the thermodynamic free energies were measured using UV-vis spectrophotometry. Titration of the organotin chlorides with Zn(II) complexes at various temperatures (T = 283-313 K) leads to 1:1 adduct formation. The results show that the formation constants were decreased by increasing the temperature. The trend of the reaction of RnSnCl4-n as acceptors toward given zinc complexes was as follows: PhSnCl3 > Me2SnCl2 > Ph2SnCl2 > Bu2SnCl2 > Bu3SnCl By considering the formation constants and the ?G° of the complex formation for the Schiff base as donor and the M(II) as acceptor, the following conclusion was drawn: the formation constant for a given Schiff base changes according to the following trend: Ni > Cu > Co > Zn > Mn

  4. Functional LH1 antenna complexes influence electron transfer in bacterial photosynthetic reaction centers

    Microsoft Academic Search

    Ronald W. Visschers; Simone I. E. Vulto; Michael R. Jones; Rienk van Grondelle; Ruud Kraayenhof

    1999-01-01

    The effect of the light harvesting 1 (LH1) antenna complex on the driving force for light-driven electron transfer in the Rhodobacter sphaeroidesreaction center has been examined. Equilibrium redox titrations show that the presence of the LH1 antenna complex influences the free energy change for the primary electron transfer reaction through an effect on the reduction potential of the primary donor.

  5. Ubiquinol oxidation in the cytochrome bc1 complex: Reaction mechanism and prevention of short-circuiting

    E-print Network

    Steinhoff, Heinz-Jürgen

    Review Ubiquinol oxidation in the cytochrome bc1 complex: Reaction mechanism and prevention This review is focused on the mechanism of ubiquinol oxidation by the cytochrome bc1 complex (bc1­sulfur Rieske protein (FeS protein) and the other goes to cytochrome b. The nature of intermediates

  6. Stimulus complexity and intramodal reaction time in retarded readers

    Microsoft Academic Search

    Marion Blank; Thomas J. Higgins; Wagner H. Bridger

    1971-01-01

    Examined the possible role of stimulus differences in the reported difficulty of cross-modal RT in retarded readers. Using an intramodal paradigm involving a simple and a complex visual stimulus, 20 retarded 3rd grade readers were found to have significantly longer RTs than 20 normal 3rd grade readers. The pattern of response was similar for both reading groups in that the

  7. Temperature dependence of pentyl nitrate formation from the reaction of pentyl peroxy radicals with NO.

    PubMed

    Cassanelli, Paola; Fox, David J; Cox, R Anthony

    2007-08-21

    Alkyl nitrate yields from the reaction of 1-pentyl, 2-pentyl and 2-methyl-2-butyl peroxy radicals with NO have been determined over the temperature range (261-305 K) and at 1 bar pressure from the photo-oxidation of the iodoalkane precursors in air-NO mixtures. Yields were observed to increase with decreasing temperature and, contrary to previous observations, along the series primary < secondary congruent with tertiary. Our results suggests a significant temperature dependence for the formation of nitrates from the reaction of pentyl peroxy radicals with NO and represent an extension in the temperature range over which this reaction has been studied experimentally in the past. PMID:17687480

  8. Substrate decomposition in galvanic displacement reaction: Contrast between gold and silver nanoparticle formation

    NASA Astrophysics Data System (ADS)

    Ghosh, Tapas; Kabiraj, D.; Satpati, Biswarup

    2015-06-01

    We have investigated substrate decomposition during formation of silver and gold nanoparticles in galvanic displacement reaction on germanium surfaces. Silver and gold nanoparticles were synthesized by electroless deposition on sputter coated germanium thin film (˜ 200 nm) grown initially on silicon substrate. The naoparticles formation and the substrate corrosion were studied using scanning transmission electron microscopy (STEM) and the energy dispersive X-ray (EDX) spectroscopy.

  9. Complex chemical zoning in eclogite facies garnet reaction rims: the role of grain boundary diffusion

    NASA Astrophysics Data System (ADS)

    Prenzel, J.; Abart, R.; Keller, L.

    2009-03-01

    In metapelites of the Saualpe complex (Eastern Alps) continuous 10 µm to 20 µm wide garnet reaction rims formed along biotite-plagioclase and biotite-perthite interfaces. The pre-existing mineral assemblages are remnants of low pressure high temperature metamorphism of Permian age. The garnet reaction rims grew during the Cretaceous eclogite facies overprint. Reaction rim growth involved transfer of Fe and Mg components from the garnet-biotite interface to the garnet-feldspar interface and transfer of the Ca component in the opposite direction. The garnets show complex, asymmetrical chemical zoning, which reflects the relative contributions of short circuit diffusion along grain boundaries within the polycrystalline garnet reaction rims and volume diffusion through the grain interiors on bulk mass transfer. It is demonstrated by numerical modelling that the spacing of the grain boundaries, i.e. the grain size of the garnet in the reaction rim is a first order control on its internal chemical zoning.

  10. Study of the dynamic complex formation of pentanoic acid with ?-cyclodextrin by using an ultrasonic relaxation method

    NASA Astrophysics Data System (ADS)

    Bae, Jong-Rim

    2013-07-01

    This study examined the effects of pentanoic acid as a guest molecule on the inclusion complex formation with ?-cyclodextrin ( ?-CD). Ultrasonic absorption measurements were carried out for ?-CD solutions with pentanoic acid over the frequency range from 0.2 to 45 MHz. A single relaxational absorption resulting from the perturbation of chemical equilibrium was observed for the inclusion of pentanoic acid into the ?-CD cavity. The undissociated form of pentanoic acid produced a more stable complex with ?-CD than its dissociated form. An ultrasonic relaxation associated with a protontransfer reaction was also observed when no additive was present in the solution.

  11. In-situ formation of {delta}-NiMo intermetallic by self-propagating reaction synthesis

    SciTech Connect

    Chou, T.C. [BOC Group Technical Center, Murray Hill, NJ (United States); Nieh, T.G. [Lawrence Livermore National Lab., CA (United States); Mardinly, J. [Intel Corp., Santa Clara, CA (United States)

    1995-08-01

    Synthesis of {delta}-NiMo intermetallic was achieved by self-propagating reactions at elevated temperatures. The samples studied were thin-film diffusion couples comprised of Mo film on Ni grid. Annealing of the samples in vacuum at 700 or 800 C produced two distinct reaction zones with a single-phase reaction product {delta}-NiMo. The reaction zones contained equiaxed small grains and columnar large single crystals, respectively. Growth direction of the single crystals was parallel to the direction of Ni diffusion flux. Reaction at 900 C was intense to result in a spider-web-like structure as a result of melting/agglomeration of the reaction product. Based upon a parabolic rate equation, the apparent interdiffusion coefficients in the subject system were calculated and found to be 4 to 5 orders of magnitude greater than literature data. The enhanced diffusion kinetics and anisotropic grain growth of {delta}-NiMo will be discussed on the basis of exothermic reaction during diffusional intermixing. The enthalpy of the formation of {delta}-NiMo was calculated and demonstrated to be sufficient to serve as the driving force for the self-propagating reaction. The amount of thermal energy influx substantiated interfacial melting of the reaction product. Comparison will be made between the results obtained from thin-film and bulk diffusion couples.

  12. Pancreatic beta-cell granule peptides form heteromolecular complexes which inhibit islet amyloid polypeptide fibril formation.

    PubMed Central

    Jaikaran, Emma T A S; Nilsson, Melanie R; Clark, Anne

    2004-01-01

    Islet amyloid polypeptide (IAPP), or 'amylin', is co-stored with insulin in secretory granules of pancreatic islet beta-cells. In Type 2 diabetes, IAPP converts into a beta-sheet conformation and oligomerizes to form amyloid fibrils and islet deposits. Granule components, including insulin, inhibit spontaneous IAPP fibril formation in vitro. To determine the mechanism of this inhibition, molecular interactions of insulin with human IAPP (hIAPP), rat IAPP (rIAPP) and other peptides were examined using surface plasmon resonance (BIAcore), CD and transmission electron microscopy (EM). hIAPP and rIAPP complexed with insulin, and this reaction was concentration-dependent. rIAPP and insulin, but not pro-insulin, bound to hIAPP. Insulin with a truncated B-chain, to prevent dimerization, also bound hIAPP. In the presence of insulin, hIAPP did not spontaneously develop beta-sheet secondary structure or form fibrils. Insulin interacted with pre-formed IAPP fibrils in a regular repeating pattern, as demonstrated by immunoEM, suggesting that the binding sites for insulin remain exposed in hIAPP fibrils. Since rIAPP and hIAPP form complexes with insulin (and each other), this could explain the lack of amyloid fibrils in transgenic mice expressing hIAPP. It is likely that IAPP fibrillogenesis is inhibited in secretory granules (where the hIAPP concentration is in the millimolar range) by heteromolecular complex formation with insulin. Alterations in the proportions of insulin and IAPP in granules could disrupt the stability of the peptide. The increase in the proportion of unprocessed pro-insulin produced in Type 2 diabetes could be a major factor in destabilization of hIAPP and induction of fibril formation. PMID:14565847

  13. SYNTHESES AND REACTIONS OF HALOPHOSPHINE COMPLEXES OF GROUP 7 TRANSITION METALS (Mn AND Re)

    Microsoft Academic Search

    Do W. Lee; Joseph G. Morse

    1995-01-01

    The photochemical reactions of the “piano stool” complexes CpMn(CO)3, CpRe(CO)3, and Cp* Mn(CO)3 (Cp* = ?-C5Me5) with the bidentate halophosphine ligand 1,2-bis(dichlorophosphino)ethane, Cl2PCH2CH2PCl2 (dcpe), gave the chelate complexes CpMn(CO)dcpe (1), CpRe(CO)dcpe (2), and Cp* Mn(CO)dcpe (3), respectively. Reactions of the dihalophosphine complexes 1,2 with excess F and MeO gave the substituted compounds CpM(CO)(R2PCH2CH2PR2) (4, M = Mn, R = F;

  14. Silver(I) Complex formation with Cysteine, Penicillamine and Glutathione

    PubMed Central

    Leung, Bonnie O.; Jalilehvand, Farideh; Mah, Vicky; Parvez, Masood; Wu, Qiao

    2013-01-01

    The complex formation between silver(I) and cysteine (H2Cys), penicillamine (H2Pen) or glutathione (H3Glu) in alkaline aqueous solution was examined using extended X-ray absorption fine structure (EXAFS) and 109Ag NMR spectroscopic techniques. The complexes formed in 0.1 mol·dm?3 Ag(I) solutions with cysteine and penicillamine were investigated for ligand/Ag(I) (L/Ag) mole ratios increasing from 2.0 to 10.0. For the series of cysteine solutions (pH 10 - 11) a mean Ag-S bond distance 2.45 ± 0.02 Å consistently emerged, while for penicillamine (pH 9) the average Ag-S bond distance gradually increased from 2.40 to 2.44 ± 0.02 Å. EXAFS and 109Ag NMR spectra of a concentrated Ag(I)-cysteine solution (CAg(I) = 0.8 mol·dm?3, L/Ag = 2.2) showed the mean Ag-S bond distance 2.47 ± 0.02 Å and ?(109Ag) = 1103 ppm, consistent with prevailing, partially oligomeric AgS3 coordinated species, while for penicillamine (CAg(I) = 0.5 mol·dm?3, L/Ag = 2.0) the mean Ag-S bond distance 2.40 ± 0.02 Å and ?(109Ag) = 922 ppm indicate that mononuclear AgS2 coordinated complexes dominate. For Ag(I)-glutathione solutions (CAg(I) = 0.01 mol·dm?3, pH ~ 11), mononuclear AgS2 coordinated species with the mean Ag-S bond distance 2.36 ± 0.02 Å dominate for L/Ag mole ratios from 2.0 to 10.0. The crystal structure of the silver(I)-cysteine compound (NH4)Ag2(HCys)(Cys)·H2O (1) precipitating at pH ~ 10 was solved and showed a layer structure with both AgS3 and AgS3N coordination to the cysteinate ligands. A redetermination of the crystal structure of Ag(HPen)·H2O (2) confirmed the proposed digonal AgS2 coordination environment to bridging thiolate sulfur atoms in polymeric intertwining chains forming a double helix. A survey of Ag-S bond distances for crystalline Ag(I) complexes with S-donor ligands in different AgS2, AgS2(O/N) and AgS3 coordination environments was used, together with a survey of 109Ag NMR chemical shifts, to assist assignments of the Ag(I) coordination in solution. PMID:23556419

  15. Understanding the chemical dynamics of the reactions of dicarbon with 1-butyne, 2-butyne, and 1,2-butadiene--toward the formation of resonantly stabilized free radicals.

    PubMed

    Parker, Dorian S N; Maity, Surajit; Dangi, Beni B; Kaiser, Ralf I; Landera, Alexander; Mebel, Alexander M

    2014-06-28

    The reaction dynamics of the dicarbon radical C2(a(3)?u/X(1)?g(+)) in the singlet and triplet state with C4H6 isomers 2-butyne, 1-butyne and 1,2-butadiene were investigated at collision energies of about 26 kJ mol(-1) using the crossed molecular beam technique and supported by ab initio and RRKM calculations. The reactions are all indirect, forming C6H6 complexes through barrierless additions by dicarbon on the triplet and singlet surfaces. Isomerization of the C6H6 reaction intermediate leads to product formation by hydrogen loss in a dicarbon-hydrogen atom exchange mechanism forming acyclic C6H5 reaction products through loose exit transition states in overall exoergic reactions. PMID:24829078

  16. [GABA fluophore formation due to ninhydrin reaction in the octanolic milieu. Spectrofluorometric investigation. 1. (author's transl)].

    PubMed

    Pfister, C; Wolny, H J

    1980-01-01

    As a result of the reaction of ninhydrin with gamma-aminobutyric acid and glutamic acid in the octanolic milieu, a fluorescent product, presumably a copper-II-chelat-complex, was formed. This appears analogous to the fluorescence histochemical procedure. the reaction product displays the following spectrofluorometric properties: excitation peak at lambda = 375 nm and emission plaximum at lambda = 445 nm. Spectrofluorometric estimations during performing various steps of the reaction were indicative of possibilities of the improvement of the fluorescence histochemical GABA demonstration. PMID:6776778

  17. Redox reactions of Cu(II)-amine complexes in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Kumbhar, A. G.; Kishore, Kamal

    2003-03-01

    A number of amines can be employed for all volatile treatment (AVT) of steam generator (SG) systems of nuclear power reactors. These amines form complexes with Cu 2+ and Ni 2+ ions which come into water due to corrosion. The redox reactions of a number of Cu(II)-AVT amine complexes and the stability of the transient species formed have been studied by pulse radiolysis technique. Rate constants for the reaction of e aq- with a number of Cu(II)-amine complexes have been determined by following the decay of e aq- absorption. Stability of Cu(I)-amine complexes was studied by following the kinetics of the bleaching signal formed at the ?max of the Cu(II) amine complex. Except for Cu(I)-triethanolamine complex all other Cu(I)-amine complexes were found to be stable. One-electron oxidation of Cu(II) amine complexes was studied using azidyl radicals for the oxidation reaction as OH radicals react with the alcohol groups present in the amines used in this study. Cu(III)-amine complexes were found to be unstable and decayed by second-order kinetics.

  18. Oligomerization reactions of deoxyribonucleotides on montmorillonite clay - The effect of mononucleotide structure on phosphodiester bond formation

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; KAMALUDDIN

    1989-01-01

    The formation of oligomers from deoxynucleotides, catalyzed by Na(+)-montmorillonite, was investigated with special attention given to the effect of the monomer structure on the phosphodiester bond formation. It was found that adenine deoxynucleotides bind more strongly to montmorillonite than do the corresponding ribonucleotides and thymidine nucleotides. Tetramers of 2-prime-dpA were detected in the reaction of 2-prime-d-5-prime-AMP with a water-soluble carbodiimide EDAC in the presence of Na(+)-montmorillonite, illustrating the possible role of minerals in the formation of biopolymers on the primitive earth.

  19. N-Heterocyclic Carbene Complexes in other Transition Metal Mediated Reactions

    NASA Astrophysics Data System (ADS)

    Nixon, Tracy D.; Williams, Jonathan M. J.

    This chapter describes reactions involving NHC-transition metal complexes that have not been considered in previous chapters. The reactions are treated in six sections, presenting borrowing hydrogen reactions where C-C and C-N bonds are formed from alcohols in the first section. Then dehydration reactions either with or without coupling are discussed. The dynamic kinetic resolution of alcohols using a combination of NHC-TM catalysed racemisation coupled with enzyme-catalysed resolution is described. The next section considers the emerging area of dehydrogenation reactions, followed by a section discussing the isomerisation of alkene-containing substrates. The final section details hydrogen/deuterium exchange reactions within aryl and alkyl substrates.

  20. The effects of phytic acid on the Maillard reaction and the formation of acrylamide.

    PubMed

    Wang, Huan; Zhou, Yamin; Ma, Jimei; Zhou, Yuanyuan; Jiang, Hong

    2013-11-01

    Phytic acid, myo-inositol hexaphosphoric acid, exists in substantial (1-5%) amounts in edible plant seeds. In this study the effects of phytic acid on the Maillard reaction and the formation of acrylamide were investigated. Both phytic acid and phosphate enhanced browning in glucose/?-alanine system, but phytic acid was less effective than phosphate. Higher pH favoured the catalytic activities for both of them. The influence of the types of sugar and amino acid on the reaction was also examined. Browning was suppressed by the addition of calcium and magnesium ions, but an additive effect was observed for ferrous ions and phytic acid in glucose/?-alanine solution at pH 8.0. Both phytic acid and phosphate promoted the polymerisation of the reaction intermediates. The kinetics of Maillard reaction was first-ordered reaction in the presence of phytic acid. Phytic acid was less effective than phosphate in the formation of acrylamide. When potato slices were treated with sodium phytate and calcium chloride successively, the formation of acrylamide was greatly suppressed. PMID:23768320

  1. THE OZONE REACTION WITH BUTADIENE: FORMATION OF TOXIC PRODUCTS. (R826236)

    EPA Science Inventory

    Abstract The formation yields of acrolein, 1,2-epoxy-3-butene and OH radicals have been measured from reaction of ozone with 1,3-butadiene at room temperature and atmosphere pressure. 1,3,5-Trimethyl benzene was added to scavenge OH radicals in measurements of product ...

  2. Formation and disappearance of a nanoscale silver cluster realized by solid electrochemical reaction

    Microsoft Academic Search

    K. Terabe; T. Nakayama; T. Hasegawa; M. Aono

    2002-01-01

    We have developed a nanostructuring method using the solid electrochemical reaction induced by a scanning tunneling microscope (STM). This method has some distinctive features that have not previously been obtained by conventional nanostructuring STM methods. The formation and disappearance of the nanostructure are reversible, and the rates can be controlled using STM. These features are realized via a local oxidation\\/reduction

  3. An experimental clarification of the association of delayed ettringite formation with alkali-aggregate reaction

    Microsoft Academic Search

    A. Shayan; I. Ivanusec

    1996-01-01

    The issue of determining the primary cause of damage to concrete elements in the presence of a combination of delayed ettringite formation (DEF) and alkali-aggregate reaction (AAR) is very controversial. Some authors believe that DEF has been the cause of serious damage (cracking) to concrete elements cured at elevated temperatures, and some others attribute the damage to AAR, with a

  4. Human platelet-initiated formation and uptake of the C5-9 complex of human complement.

    PubMed Central

    Zimmerman, T S; Kolb, W P

    1976-01-01

    We have studied the interaction of radiolabeled complement components with normal human platelets, platelets from a patient with paroxysmal nocturnal hemoglobinuria, and rabbit platelets in the absence of known complement activators or in the presence of cobra venom factor (CVF). When unwashed platelets in platelet-rich plasma, or washed platelets suspended in serum or autologous plasma, were incubated for 30 min, C3 and terminal components (C5, C8, and C9) were found to bind to them. The terminal components were shown to be bound as the C5-9 complex, rather than as individual proteins, by eluting them from the platelet membrane and examining their behavior on ultracentrifugation. They cosedimented at a rate characteristic of the stable C5-9 complex (22S). As many as 370-1,380 C5-9 complexes/platelet were calculated to have been bound during the incubation period. The complex so formed did not differ by ultracentrifugational criteria from that binding to rabbit platelets after CVF activation of complement. Though C3 was not included in the complex, it did not appear to be bound by nonspecific absorption. It could not be removed by washing but rather was eluted by the freeze-thaw technique used to elute the C5-9 complex. Incubation of radiolabeled components in platelet-free plasma did not result in C5-9 complex formation, indicating an initiating role for platelets in this reaction. In contrast to platelets, erythrocytes incubated in analogous plasma did not induce detectable C5-9 formation. Neither EDTA, phenylmethylsulfonylfluoride, nor epsilon-amino-N-caproic acid prevented platelet-initiated formation of C5-9, suggesting that the reaction may involve mechanisms of complement activation not previously described. Images PMID:812888

  5. O2/GaAs(110) interface formation at 20 K: Photon-induced reaction and desorption

    NASA Astrophysics Data System (ADS)

    Anderson, Steven G.; Komeda, T.; Seo, J. M.; Capasso, C.; Waddill, G. D.; Benning, P. J.; Weaver, J. H.

    1990-09-01

    High-resolution synchrotron-radiation photoemission studies of molecular O2 condensed on GaAs(110) at 20 K show that oxidation is a consequence of photon irradiation. Core-level results for 2 L O2 [1 langmuir (L)==10-6 Torr sec] demonstrate that the topmost layer of As atoms is initially involved in a sequential, two-step reaction to produce As1+- and As3+-like oxides. These reactions are mediated by secondary electron capture by O2 which then dissociates to form surface oxides. As5+-like bonding configurations are formed when additional O2 is condensed on the surface and exposed to photon irradiation. O2-GaAs interface reactions slow as transport through the thickening oxides is impeded, and photon-induced desorption of oxygen becomes significant. Studies of Fermi-level movement into the gap as a function of O2 exposure suggest that oxidation at 20 K produces acceptorlike states. Fermi-level evolution for n-type GaAs is strongly dependent on dopant concentration, O2 dose, and light exposure, indicating band flattening for lightly doped samples due to surface photovoltage effects. These effects are not significant for p-type GaAs at 20 K, consistent with the formation of acceptorlike states. Together, these results show a complex dependence of surface chemistry on photon irradiation, but remarkably little dependence of the surface Fermi-level position on the reactions.

  6. Self-sustaining oxidation initiated by rapid formation reactions in multilayer foils

    NASA Astrophysics Data System (ADS)

    Joress, H.; Barron, S. C.; Livi, K. J. T.; Aronhime, N.; Weihs, T. P.

    2012-09-01

    Here we report that a self-sustaining oxidation of a multilayer foil can be ignited by an intermetallic formation reaction, releasing ˜4× the energy of the formation reaction. We examine foils with overall chemistries of 3Al:2Ni, 3Al:Zr, and Al:Zr and find that only the latter experiences significant oxidation. The Al:Zr samples initially react to form intermetallics and reach ˜1500 K in <10 ms. The samples then oxidize in air, absorbing ˜30 at. % O and remaining at ˜1400 K for >2.0 s. The phases within the Al:Zr foils are characterized and temperature-time profiles are examined to predict the heat generated by the oxidation reaction.

  7. Solid-state formation of CO2 via the H2CO + O reaction

    NASA Astrophysics Data System (ADS)

    Minissale, M.; Loison, J.-C.; Baouche, S.; Chaabouni, H.; Congiu, E.; Dulieu, F.

    2015-05-01

    Context. The formation of carbon dioxide ice in quiescent regions of molecular clouds has not yet been fully understood, even though CO2 is one the most abundant species in interstellar ices. Aims: CO2 formation was studied via oxidation of formaldehyde molecules on cold surfaces under conditions close to those encountered in quiescent molecular clouds to evaluate the efficiency and the activation barrier of the H2CO + O reaction. Methods: Formaldehyde ices were exposed to O atoms using a differentially pumped beam line. The H2CO + O reaction experiments were carried out on two different surfaces of astrophysical interest (amorphous water ice and oxidised graphite) held at 10 or 55 K. The products were probed via infrared and mass spectroscopy by using RAIRS and temperature-programmed desorption techniques. Results: In this paper we show that the H2CO + O reaction can efficiently form carbon dioxide in the solid phase. The activation barrier for the reaction, based on a model fit to the experimental data, was estimated to be 335 ± 55 K. Conclusions: The H2CO+O reaction on cold surfaces can be added to the set of pathways that lead to carbon dioxide in the interstellar ices. Astrophysically, the abundance of CO2 in quiescent molecular clouds may potentially be explained by three reactions occurring on cosmic grains: CO + OH,CO + O, and H2CO + O. Appendices are available in electronic form at http://www.aanda.org

  8. Integrin activation and focal complex formation in cardiac hypertrophy

    NASA Technical Reports Server (NTRS)

    Laser, M.; Willey, C. D.; Jiang, W.; Cooper, G. 4th; Menick, D. R.; Zile, M. R.; Kuppuswamy, D.

    2000-01-01

    Cardiac hypertrophy is characterized by both remodeling of the extracellular matrix (ECM) and hypertrophic growth of the cardiocytes. Here we show increased expression and cytoskeletal association of the ECM proteins fibronectin and vitronectin in pressure-overloaded feline myocardium. These changes are accompanied by cytoskeletal binding and phosphorylation of focal adhesion kinase (FAK) at Tyr-397 and Tyr-925, c-Src at Tyr-416, recruitment of the adapter proteins p130(Cas), Shc, and Nck, and activation of the extracellular-regulated kinases ERK1/2. A synthetic peptide containing the Arg-Gly-Asp (RGD) motif of fibronectin and vitronectin was used to stimulate adult feline cardiomyocytes cultured on laminin or within a type-I collagen matrix. Whereas cardiocytes under both conditions showed RGD-stimulated ERK1/2 activation, only collagen-embedded cells exhibited cytoskeletal assembly of FAK, c-Src, Nck, and Shc. In RGD-stimulated collagen-embedded cells, FAK was phosphorylated only at Tyr-397 and c-Src association occurred without Tyr-416 phosphorylation and p130(Cas) association. Therefore, c-Src activation is not required for its cytoskeletal binding but may be important for additional phosphorylation of FAK. Overall, our study suggests that multiple signaling pathways originate in pressure-overloaded heart following integrin engagement with ECM proteins, including focal complex formation and ERK1/2 activation, and many of these pathways can be activated in cardiomyocytes via RGD-stimulated integrin activation.

  9. Adhesion and formation of microbial biofilms in complex microfluidic devices

    SciTech Connect

    Kumar, Aloke [ORNL; Karig, David K [ORNL; Neethirajan, Suresh [University of Guelph; Suresh, Anil K [ORNL; Srijanto, Bernadeta R [ORNL; Mukherjee, Partha P [ORNL; Retterer, Scott T [ORNL; Doktycz, Mitchel John [ORNL

    2012-01-01

    Shewanella oneidensis is a metal reducing bacterium, which is of interest for bioremediation and clean energy applications. S. oneidensis biofilms play a critical role in several situations such as in microbial energy harvesting devices. Here, we use a microfluidic device to quantify the effects of hydrodynamics on the biofilm morphology of S. oneidensis. For different rates of fluid flow through a complex microfluidic device, we studied the spatiotemporal dynamics of biofilms, and we quantified several morphological features such as spatial distribution, cluster formation and surface coverage. We found that hydrodynamics resulted in significant differences in biofilm dynamics. The baffles in the device created regions of low and high flow in the same device. At higher flow rates, a nonuniform biofilm develops, due to unequal advection in different regions of the microchannel. However, at lower flow rates, a more uniform biofilm evolved. This depicts competition between adhesion events, growth and fluid advection. Atomic force microscopy (AFM) revealed that higher production of extra-cellular polymeric substances (EPS) occurred at higher flow velocities.

  10. In vivo analysis of synaptonemal complex formation during yeast meiosis.

    PubMed Central

    White, Eric J; Cowan, Carrie; Cande, W Zacheus; Kaback, David B

    2004-01-01

    During meiotic prophase a synaptonemal complex (SC) forms between each pair of homologous chromosomes and is believed to be involved in regulating recombination. Studies on SCs usually destroy nuclear architecture, making it impossible to examine the relationship of these structures to the rest of the nucleus. In Saccharomyces cerevisiae the meiosis-specific Zip1 protein is found throughout the entire length of each SC. To analyze the formation and structure of SCs in living cells, a functional ZIP1::GFP fusion was constructed and introduced into yeast. The ZIP1::GFP fusion produced fluorescent SCs and rescued the spore lethality phenotype of zip1 mutants. Optical sectioning and fluorescence deconvolution light microscopy revealed that, at zygotene, SC assembly was initiated at foci that appeared uniformly distributed throughout the nuclear volume. At early pachytene, the full-length SCs were more likely to be localized to the nuclear periphery while at later stages the SCs appeared to redistribute throughout the nuclear volume. These results suggest that SCs undergo dramatic rearrangements during meiotic prophase and that pachytene can be divided into two morphologically distinct substages: pachytene A, when SCs are perinuclear, and pachytene B, when SCs are uniformly distributed throughout the nucleus. ZIP1::GFP also facilitated the enrichment of fluorescent SC and the identification of meiosis-specific proteins by MALDI-TOF mass spectroscopy. PMID:15166136

  11. Caffeic acid inhibits the formation of 1-hydroxyethyl radical in the reaction mixture of rat liver microsomes with ethanol partly through its metal chelating activity.

    PubMed

    Ikeda, Hideyuki; Kimura, Yuka; Masaki, Miho; Iwahashi, Hideo

    2011-05-01

    Effect of caffeic acid on the formation of 1-hydroxyethyl radicals via the microsomal ethanol-oxidizing system pathway was examined. The electron spin resonance spin trapping showed that 1-hydroxyethyl radicals form in the control reaction mixture which contained 0.17 M ethanol, 1 mg protein/ml rat river microsomes, 0.1 M ?-(4-pyridyl-1-oxide)-N-tert-butylnitrone, 5 mM nicotinamide adenine dinucleotide phosphate and 30 mM phosphate buffer (pH 7.4). When the electron spin resonance spectra of the control reaction mixtures with caffeic acid were measured, caffeic acid inhibited the formation of 1-hydroxyethyl radicals in a concentration dependent manner. Gallic acid, dopamine, l-dopa, chlorogenic acid and catechin also inhibited the formation of 1-hydroxyethyl radicals. Above results indicated that the catechol moiety is essential to the inhibitory effect. Caffeic acid seems to chelate of iron ion at the catechol moiety. Indeed, the inhibitory effect by caffeic acid was greatly diminished in the presence of desferrioxamine, a potent iron chelator which removes iron ion in the Fe (III)-caffeic acid complex. Since Fe (III)-desferrioxamine complex is active for the 1-hydroxyethyl radicals formation, caffeic acid inhibits the formation of 1-hydroxyethyl radicals in the reaction mixture partly through its metal chelating activity. PMID:21562637

  12. On the formation of aliphatic polycarbonates from epoxides with chromium(III) and aluminum(III) metal-salen complexes.

    PubMed

    Luinstra, Gerrit A; Haas, Gerhard R; Molnar, Ferenc; Bernhart, Volker; Eberhardt, Robert; Rieger, Bernhard

    2005-10-21

    A DFT-based description is given of the CO2/epoxide copolymerization with a catalyst system consisting of metal (chromium, iron, titanium, aluminum)-salen complexes (salen = N,N'-bis(3,5-di-tert-butylsalicyliden-1,6-diaminophenyl) in combination with either chloride, acetate, or dimethylamino pyridine (DMAP) as external nucleophile. Calculations indicate that initiation proceeds through nucleophilic attack at a metal-coordinated epoxide, and the most likely propagation reaction is a bimolecular process in which a metal-bound nucleophile attacks a metal-bound epoxide. Carbon dioxide insertion occurs at a single metal center and is most likely the rate-determining step at low pressure. The prevalent chain terminating/degradation-the so-called backbiting, a reaction leading to formation of cyclic carbonate from the polymer chain-would involve attack of a carbonate nucleophile rather than an alkoxide at the last unit of the growing chain. The backbiting of a free carbonato chain end is particularly efficient. Anion dissociation from six-coordinate aluminum is appreciably easier than from chromium-salen complexes, indicating the reason why in the former case cyclic carbonate is the sole product. Experimental data were gathered for a series of chromium-, aluminum-, iron-, and zinc-salen complexes, which were used in combination with external nucleophiles like DMAP and mainly (tetraalkyl ammonium) chloride/acetate. Aluminum complexes transform PO (propylene oxide) and CO2 to give exclusively propylene carbonate. This is explained by rapid carbonate anion dissociation from a six-coordinate complex and cyclic formation. CO2 insertion or nucleophilic attack of an external nucleophile at a coordinated epoxide (at higher CO2 pressure) are the rate-determining steps. Catalysis with [Cr(salen)(acetate/chloride)] complexes leads to the formation of both cyclic carbonate and polypropylene carbonate with various quantities of ether linkages. The dependence of the activity and selectivity on the CO2 pressure, added nucleophile, reaction temperature, and catalyst concentration is complex. A mechanistic description for the chromium-salen catalysis is proposed comprising a multistep and multicenter reaction cycle. PO and CO2 were also treated with mixtures of aluminum- and chromium-salen complexes to yield unexpected ratios of polypropylene carbonate and cyclic propylene carbonate. PMID:16106457

  13. Mononuclear Phenolate Diamine Zinc Hydride Complexes and Their Reactions With CO2

    PubMed Central

    2014-01-01

    The synthesis, characterization, and zinc coordination chemistry of the three proligands 2-tert-butyl-4-[tert-butyl (1)/methoxy (2)/nitro (3)]-6-{[(2?-dimethylaminoethyl)methylamino]methyl}phenol are described. Each of the ligands was reacted with diethylzinc to yield zinc ethyl complexes 4–6; these complexes were subsequently reacted with phenylsilanol to yield zinc siloxide complexes 7–9. Finally, the zinc siloxide complexes were reacted with phenylsilane to produce the three new zinc hydride complexes 10–12. The new complexes 4–12 have been fully characterized by NMR spectroscopy, mass spectrometry, and elemental analyses. The structures of the zinc hydride complexes have been probed using VT-NMR spectroscopy and X-ray diffraction experiments. These data indicate that the complexes exhibit mononuclear structures at 298 K, both in the solid state and in solution (d8-toluene). At 203 K, the NMR signals broaden, consistent with an equilibrium between the mononuclear and dinuclear bis(?-hydrido) complexes. All three zinc hydride complexes react rapidly and quantitatively with carbon dioxide, at 298 K and 1 bar of pressure over 20 min, to form the new zinc formate complexes 13–15. The zinc formate complexes have been analyzed by NMR spectroscopy and VT-NMR studies, which reveal a temperature-dependent monomer–dimer equilibrium that is dominated by the mononuclear species at 298 K. PMID:24882918

  14. Formation of 9,10-phenanthrenequinone by atmospheric gas-phase reactions of phenanthrene

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Atkinson, Roger; Arey, Janet

    Phenanthrene is a 3-ring polycyclic aromatic hydrocarbon which exists mainly in the gas-phase in the atmosphere. Recent concern over the presence of 9,10-phenanthrenequinone in ambient particles led us to study the products of the gas-phase reactions of phenanthrene with hydroxyl radicals, nitrate radicals and ozone. The formation yields of 9,10-phenanthrenequinone were measured to be ˜3%, 33±9%, and ˜2% from the OH radical, NO 3 radical and O 3 reactions, respectively. Calculations suggest that daytime OH radical-initiated and nighttime NO 3 radical-initiated reactions of gas-phase phenanthrene may be significant sources of 9,10-phenanthrenequinone in ambient atmospheres. In contrast, the ozone reaction with phenanthrene is unlikely to contribute significantly to ambient 9,10-phenanthrenequinone.

  15. Development of an aquacatalytic system based on the formation of vesicles of an amphiphilic palladium NNC-pincer complex.

    PubMed

    Sakurai, Fumie; Hamasaka, Go; Uozumi, Yasuhiro

    2015-04-21

    Two amphiphilic palladium NNC-pincer complexes bearing hydrophilic tri(ethylene glycol) chains and hydrophobic dodecyl chains were designed and prepared for the development of a new aquacatalytic system. In water, these amphiphilic complexes self-assembled to form vesicles, the structures which were established by means of a range of physical techniques. When the catalytic activities of the vesicles were investigated in the arylation of terminal alkynes in water, they were found to catalyze the reaction of aryl iodides with terminal alkynes to give good yields of the corresponding internal alkynes. The formation of a vesicular structure was shown to be essential for efficient promotion of this reaction in water. PMID:25820251

  16. Reactions of cyclohexadienes and cyclohexene in the presence of a polyethylenimine complex of palladium dichloride

    SciTech Connect

    Perchenko, V.N.; Abubakirov, R.Sh.; Nametkin, N.S.; Omaraliev, T.O.; Sitov, G.A.

    1985-11-01

    The authors report the results of a study of the catalytic properties of a macromolecular complex between PEI and palladium dichloride in the hydrogenation and disproportionation reactions of cyclohexene, 1,3-cyclohexadiene, and 1,4cyclohexadiene. The kinetic curves of the disproportionation of 1,3-CHD in the presence of 1-hexyne are given. Cyclohexane and benzene were not detected in the reaction mixture. These results demonstrate that disproportionation does not occur under hydrogenation conditions.

  17. Mercury(II)–methylene blue interactions: Complexation and metallate formation

    Microsoft Academic Search

    Mani Mohan Raj; Allimuthu Dharmaraja; Savaridasson Jose Kavitha; Krishnaswamy Panchanatheswaran; Daniel E. Lynch

    2007-01-01

    Reactions of HgX2 (X=Cl, Br, I) with methylene blue (MB) chloride dihydrate and the reaction of HgCl2 with MB nitrate dihydrate have been undertaken in an attempt to prepare metal derivatives of MB. The products were characterized by elemental analysis, UV–Vis, IR, 1H NMR spectroscopy and X-ray crystallography. The reaction of HgCl2 with MB chloride dihydrate and subsequent crystallization in

  18. Effects of Stabilized Criegee Intermediate and OH Radical Scavengers on Aerosol Formation from Reactions of ?-Pinene with O 3

    Microsoft Academic Search

    Kenneth S. Docherty; Paul J. Ziemann

    2003-01-01

    The formation of secondary organic aerosol (SOA) from reactions of O 3 with g -pinene, an exocyclic monoterpene prominent in the ambient atmosphere, was studied in an environmental chamber using a thermal desorption particle beam mass spectrometer for chemical analysis and a scanning mobility particle sizer for aerosol yield measurements. Potential reaction pathways for SOA formation were investigated in a

  19. Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways

    Microsoft Academic Search

    H. Richter; J. B. Howard

    2000-01-01

    The generation by combustion processes of airborne species of current health concern such as polycyclic aromatic hydrocarbons (PAH) and soot particles necessitates a detailed understanding of chemical reaction pathways responsible for their formation. The present review discusses a general scheme of PAH formation and sequential growth of PAH by reactions with stable and radical species, including single-ring aromatics, other PAH

  20. Interplay of Experiment and Theory in Elucidating Mechanisms of Oxidation Reactions by a Nonheme Ru(IV)O Complex.

    PubMed

    Dhuri, Sunder N; Cho, Kyung-Bin; Lee, Yong-Min; Shin, Sun Young; Kim, Jin Hwa; Mandal, Debasish; Shaik, Sason; Nam, Wonwoo

    2015-07-01

    A comprehensive experimental and theoretical study of the reactivity patterns and reaction mechanisms in alkane hydroxylation, olefin epoxidation, cyclohexene oxidation, and sulfoxidation reactions by a mononuclear nonheme ruthenium(IV)-oxo complex, [Ru(IV)(O)(terpy)(bpm)](2+) (1), has been conducted. In alkane hydroxylation (i.e., oxygen rebound vs oxygen non-rebound mechanisms), both the experimental and theoretical results show that the substrate radical formed via a rate-determining H atom abstraction of alkanes by 1 prefers dissociation over oxygen rebound and desaturation processes. In the oxidation of olefins by 1, the observations of a kinetic isotope effect (KIE) value of 1 and styrene oxide formation lead us to conclude that an epoxidation reaction via oxygen atom transfer (OAT) from the Ru(IV)O complex to the C?C double bond is the dominant pathway. Density functional theory (DFT) calculations show that the epoxidation reaction is a two-step, two-spin-state process. In contrast, the oxidation of cyclohexene by 1 affords products derived from allylic C-H bond oxidation, with a high KIE value of 38(3). The preference for H atom abstraction over C?C double bond epoxidation in the oxidation of cyclohexene by 1 is elucidated by DFT calculations, which show that the energy barrier for C-H activation is 4.5 kcal mol(-1) lower than the energy barrier for epoxidation. In the oxidation of sulfides, sulfoxidation by the electrophilic Ru-oxo group of 1 occurs via a direct OAT mechanism, and DFT calculations show that this is a two-spin-state reaction in which the transition state is the lowest in the S = 0 state. PMID:26075466

  1. Kinetics of OCN- formation from the HNCO + NH3 solid-state thermal reaction

    NASA Astrophysics Data System (ADS)

    Mispelaer, F.; Theule, P.; Duvernay, F.; Roubin, P.; Chiavassa, T.

    2012-04-01

    Context. Solid-state features in infrared astronomical spectra can provide useful information on interstellar ices within different astrophysical environments. Solid OCN- has an absorption feature at 4.62 ?m, which is observed in star formation regions only with a large source-to-source abundance variation. Aims: We aim to investigate the thermal formation mechanism of solid OCN- from HNCO on the basis of kinetic arguments. Methods: We experimentally studied the kinetics of the low-temperature OCN- formation from the purely thermal reaction between HNCO and NH3 in interstellar ice analogs using Fourier transform infrared spectroscopy. We used a rate equation approach, a kinetic Monte Carlo approach and a gamma probability distribution approach to derive kinetic parameters from experimental data. Results: The kinetics can de divided into two-processes, a fast process corresponding to the chemical reaction, and a slow process that we interpret as the spatial orientation of the two reactants within the ice. The three approaches give the same results. The HNCO + NH3 ? OCN- + NH4+ reaction rate follows an Arrhenius law with an activation energy of 0.4 ± 0.1 kJ mol-1 (48 ± 12 K) and a pre-exponential factor of 0.0035 ± 0.0015 s-1. Conclusions: The present experiment has the important implication that the HNCO + NH3 reaction can account for the observed abundances of solid OCN- and the HNCO non detection in young stellar objects.

  2. On the application of complex trajectories to direct heavy-ion reactions

    SciTech Connect

    Vigezzi, E. (The Niels Bohr Institute, Blegdamsvej 17, University of Copenhagen, DK-2100 Copenhagen, Denmark (DK) INFN sez. Milano, Via Celoria 16, 20133 Milan, Italy (IT)); Winther, A. (The Niels Bohr Institute, Blegdamsvej 17, University of Copenhagen, DK-1200 Copenhagen, Denmark)

    1989-06-01

    The semiclassical theory for heavy-ion collisions in a complex, optical potential is studied on the basis of the complex Wentzel--Kramers--Brillouin approximation. A critical survey of earlier work on elastic scattering is followed by application of the theory to inelastic scattering and to transfer reactions. The results which agree well with quantal calculations throw light on the origin of the oscillations in cross sections observed for such reactions and on the possibility of inferring the shape of form factors. {copyright} 1989 Academic Press, Inc.

  3. Early stages of particle formation in precipitation reactions-quinacridone and boehmite as generic examples.

    PubMed

    Haberkorn, H; Franke, D; Frechen, Th; Goesele, W; Rieger, J

    2003-03-01

    For many products, such as nanoparticulate systems, particle formation by precipitation is an essential procedural step. To learn more about the processes involved in precipitation, we investigated particle formation during precipitation reactions by means of online and offline methods. As model systems we chose the catalyst boehmite and the organic pigment quinacridone. The reactants were mixed in a mixing device and led into a reaction tube. At the end of the tube, a free jet of the suspension was produced. By varying the length of the reaction tube the time between mixing the reactants and the moment of observation was varied. Thus a time resolution down to 10 ms from the beginning of the reaction was obtained. Small-angle X-ray scattering on the free jet yielded online information about the structural inhomogeneities within the reacting systems. Transmission electron microscopy patterns obtained from quenched samples, which were taken by shooting copper grids through the free jet into liquid nitrogen, provided complementary information about structural features. Immediately after mixture an emulsion-like structure develops indicating that classical nucleation theory does not apply in the present systems. This finding can be explained by assuming instantaneous reaction at the interfaces of the two reactants that meet in the mixing device. From this preliminary state primary particles form with a size in the nanometer range. The observations can be rationalized by considering the underlying hydrodynamics of turbulent mixing of the reactants. PMID:12651139

  4. Overpressure generated from devolatilization reactions during metamorphism: Implications for breccia pipe formation

    NASA Astrophysics Data System (ADS)

    Aarnes, Ingrid; Podladchikov, Yuri Y.; Svensen, Henrik

    2010-05-01

    Direct solutions to overpressure generated from devolatilization reactions during metamorphism are derived using analytical and numerical solutions. Devolatilization is particularly important during contact metamorphism where high thermal fluxes cause large volumes of fluids to be generated in the intruded host-rocks. The resulting overpressure is manifest by sediment fracturing, brecciation and generation of large vertical breccia pipes originating in the contact zones of magmatic intrusions. We employ a model of conductive heat transfer around a magmatic intrusion with latent heat of crystallization, i.e. contact metamorphism, coupled with overpressure buildup resulting from fluid liberation and diffusive fluid flux. Flow of the generated fluids reduces the pressure at the devolatilizing reaction front. From the model results we have isolated the key factors involved in the pressure build-up: 1) The relative difference between the thermal and hydraulic diffusivities controlling the efficiency of flow relative to the reaction progress, 2) the temperature at which the devolatilization reaction occurs relative to the available heat in the system, and 3) the pressure-dependence of the reaction curve in a P-T space, i.e. the Clapeyron-slope. If the fluid production is more efficient than fluid transport out from the front, the solution simplifies to an isochoric system controlled only by the effective volume change of the reaction. However, significant fluid pressures in the contact aureole can develop even in the presence of fluid flow, and the overpressure will then be proportional to the square root of the ratio of thermal over hydraulic diffusivities times the extent of the reaction progress. If the devolatilization reaction is pressure dependent, the fluid pressure build-up from the reaction will shift the equilibrium conditions for the dehydration reaction towards higher temperatures, which in turn will impede the reaction progress, and may even close the reaction completely. The analysis can be applied to describe a number of geological processes related to dehydration-reactions, like fracturing, breccia-pipe formation, fluidization, reaction progress, and fluid transport.

  5. Chemistry of polycyclic aromatic hydrocarbons formation from phenyl radical pyrolysis and reaction of phenyl and acetylene.

    PubMed

    Comandini, A; Malewicki, T; Brezinsky, K

    2012-03-15

    An experimental investigation of phenyl radical pyrolysis and the phenyl radical + acetylene reaction has been performed to clarify the role of different reaction mechanisms involved in the formation and growth of polycyclic aromatic hydrocarbons (PAHs) serving as precursors for soot formation. Experiments were conducted using GC/GC-MS diagnostics coupled to the high-pressure single-pulse shock tube present at the University of Illinois at Chicago. For the first time, comprehensive speciation of the major stable products, including small hydrocarbons and large PAH intermediates, was obtained over a wide range of pressures (25-60 atm) and temperatures (900-1800 K) which encompass the typical conditions in modern combustion devices. The experimental results were used to validate a comprehensive chemical kinetic model which provides relevant information on the chemistry associated with the formation of PAH compounds. In particular, the modeling results indicate that the o-benzyne chemistry is a key factor in the formation of multi-ring intermediates in phenyl radical pyrolysis. On the other hand, the PAHs from the phenyl + acetylene reaction are formed mainly through recombination between single-ring aromatics and through the hydrogen abstraction/acetylene addition mechanism. Polymerization is the common dominant process at high temperature conditions. PMID:22339468

  6. Quantifying the ionic reaction channels in the Secondary Organic Aerosol formation from glyoxal

    NASA Astrophysics Data System (ADS)

    Maxut, Aurelia; Nozière, Barbara; Rossignol, Stéphanie; George, Christian; Waxman, Eleanor Marie; Laskin, Alexander; Slowik, Jay; Dommen, Josef; Prévôt, André; Baltensperger, Urs; Volkamer, Rainer

    2014-05-01

    Glyoxal, a common organic gas in the atmosphere, has been identified in recent years as an important Secondary Organic Aerosol (SOA) precursor (Volkamer et al., 2007). But, unlike with other precursors, the SOA is largely produced by particle-phase reactions (Volkamer et al., 2009) and equilibria (Kampf et al. 2013) that are still not entirely characterized. Since 2009 series of smog chamber experiments have been performed within the Eurochamp program at the Paul Scherrer Institute, Switzerland, to investigate SOA formation from glyoxal. In these experiments, glyoxal was produced by the gas-phase oxidation of acetylene in the presence of seeds, the seed composition and other conditions being varied. The 2011 campaign resulted in the identification of salting processes controlling the glyoxal partitioning in the seeds (Kampf et al. 2013). This presentation will report results of the 2013 campaign focusing on the identification of the various reactions (ionic or photo-induced) contributing to the SOA mass. In particular, the contribution of the ionic reactions, i.e. mediated by NH4+, were investigated by quantifying the formation of imidazoles (imidazole, imidazole-2-carboxaldehyde, 2,2'-biimidazole) from the small condensation channel of glyoxal with ammonia. For this, the SOA produced were collected on quartz filters and analyzed by Orbitrap LC/MS (Q-Exactive Thermo Fisher). The formation of other products such as organic acids was also investigated to determine potential competing reactions. Time-resolved MOUDI sampling coupled with nano-DESY/ESI-MS/MS analysis was also used to identify nitrogen- and sulphur-containing products from all the reactions. The results obtained for a range of conditions will be presented and compared with recent mechanistic information on the ionic reaction channels (Nozière et al., in preparation, 2013). The implementation of all this new information into a glyoxal-SOA model will be discussed.

  7. High temperature neutron diffraction study of the formation reaction of bismuth superconductors

    SciTech Connect

    Garbauskas, M.F.; Arendt, R.H. (General Electric Co., Schenectady, NY (USA)); Jorgensen, J.D.; Hitterman, R.L. (Argonne National Lab., IL (USA))

    1989-01-01

    High temperature neutron powder diffraction has been used to study the formation of the 110K transition temperature material, Bi{sub 2}Ca{sub 2}Sr{sub 2}Cu{sub 3}O{sub x} (2223), both from synthetic reaction mixtures and after partial melting. The results indicate that the 80K transition temperature material, Bi{sub 2}CaSr{sub 2}Cu{sub 2}O{sub x} (2122), is the precursor to the (2223) material. The reaction to form the (2122) occurs rapidly at 860{degree}C, while the conversion of this material to the (2223) is much slower. 4 refs., 3 figs.

  8. Formation of HO2/+/ by reaction of metastable O2/+/ ions with H2

    NASA Technical Reports Server (NTRS)

    Ajello, J. M.; Huntress, W. T.; Lane, A. L.; Lebreton, P. R.; Williamson, A. D.

    1974-01-01

    The photoionization efficiency curves of H2(+), O2(+), and HO2(+) have been studied in a mixture of hydrogen and oxygen over the wavelength range from 650 to 810 A. The HO2(+) ion appears at 804 A, the threshold for ionization of H2, by the reaction H2(+) + O2 yields HO2(+) + H. The relative photoionization efficiency curves of H2(+) and HO2(+) are the same from 804 to 764 A. Below 764 A production of the 4 Pi u metastable electronic state of O2(+) leads to the formation of HO2(+) by the reaction O2(+)(a 4 Pi u) + H2 yields HO2(+) + H.

  9. Mechanism of production of light complex particles in nucleon-induced reactions

    E-print Network

    Dexian Wei; Ning Wang; Li Ou

    2014-02-10

    The Improved Quantum Molecular Dynamics (ImQMD) model incorporated with the statistical decay model is successful in describing emission of nucleons in the intermediate energy spallation reactions, but not good enough in describing productions of light complex particles, i.e. $d$, $t$, $^3$He and $^4$He. To improve the description on emission of light complex particles, a phenomenological mechanism called surface coalescence and emission is introduced into ImQMD model: nucleon ready to escape from the compound nuclei can coalesce with the other nucleon(s) to form light complex particle and be emitted. With updated ImQMD model, the description on the experimental data of light complex particles produced in nucleon-induced reactions are great improved.

  10. REACTIVE DESORPTION AND RADIATIVE ASSOCIATION AS POSSIBLE DRIVERS OF COMPLEX MOLECULE FORMATION IN THE COLD INTERSTELLAR MEDIUM

    SciTech Connect

    Vasyunin, A. I. [Department of Chemistry, University of Virginia, Charlottesville, VA (United States); Herbst, Eric, E-mail: anton.vasyunin@gmail.com, E-mail: eh2ef@virginia.edu [Departments of Chemistry, Astronomy, and Physics, University of Virginia, Charlottesville, VA (United States)

    2013-05-20

    The recent discovery of terrestrial-type organic species such as methyl formate and dimethyl ether in the cold interstellar gas has proved that the formation of organic matter in the Galaxy begins at a much earlier stage of star formation than was previously thought. This discovery represents a challenge for astrochemical modelers. The abundances of these molecules cannot be explained by the previously developed ''warm-up'' scenario, in which organic molecules are formed via diffusive chemistry on surfaces of interstellar grains starting at 30 K, and then released to the gas at higher temperatures during later stages of star formation. In this article, we investigate an alternative scenario in which complex organic species are formed via a sequence of gas-phase reactions between precursor species formed on grain surfaces and then ejected into the gas via efficient reactive desorption, a process in which non-thermal desorption occurs as a result of conversion of the exothermicity of chemical reactions into the ejection of products from the surface. The proposed scenario leads to reasonable if somewhat mixed results at temperatures as low as 10 K and may be considered as a step toward the explanation of abundances of terrestrial-like organic species observed during the earliest stages of star formation.

  11. New chiral thiophene-salen chromium complexes for the asymmetric Henry reaction.

    PubMed

    Zulauf, Anaïs; Mellah, Mohamed; Schulz, Emmanuelle

    2009-03-01

    Chiral thiophene-salen chromium complexes were investigated in their monomeric form as soluble catalysts in the enantioselective Henry reaction of several aldehydes. The anodic polymerization of one complex led to an insoluble powder that was successfully used as a heterogeneous catalyst for the transformation of 2-methoxybenzaldehyde with enantiomeric excesses up to 77%. The polymerized catalyst was recovered and also recycled in an original multisubstrate procedure. PMID:19209873

  12. Formation of {eta}-mesic nuclei by the ({pi},N) reaction and properties of N*(1535) in medium

    SciTech Connect

    Nagahiro, Hideko [Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka, 567-0047 (Japan); Jido, Daisuke [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Hirenzaki, Satoru [Department of Physics, Nara Women's University, Nara, 630-8506 (Japan)

    2009-08-15

    We calculate formation spectra of the {eta}-nucleus systems in the ({pi},N) reactions with nuclear targets, which can be performed at existing and/or forthcoming facilities, including the Japan Proton Accelerator Research Complex, to investigate the {eta}-nucleus interaction. Based on the N*(1535) dominance in the {eta}N system, the {eta}-mesic nuclei are suitable systems for the study of in-medium properties of the N*(1535) baryon resonance, such as reduction of the mass difference of N and N* in the nuclear medium, which affects the level structure of the {eta} and N*-hole modes. We find that clear information on the in-medium N*- and {eta}-nucleus interactions can be obtained through the formation spectra of the {eta}-mesic nuclei. We also discuss the experimental feasibilities by showing several spectra of the ({pi},N) reactions calculated with possible experimental settings. Coincident measurements of the N{pi} pairs from the N* decays in nuclei help us to reduce backgrounds.

  13. A thermodynamical approach to the formation reactions of sodium-doped Cu(In,Ga)Se 2

    Microsoft Academic Search

    F. Hergert; S. Jost; R. Hock; M. Purwins; J. Palm

    2006-01-01

    This work describes the influence of sodium doping on the formation reactions of the semiconductor material Cu(In,Ga)Se2. Assuming the sodium dopant to act as a surface catalyst by formation of sodium polyselenides, we estimate the shift in the reaction enthalpies for the formation of binary selenides. Since the release of selenium from sodium polyselenides is an endothermic process, five of

  14. Formation of deeply bound kaonic atoms in (K{sup -},N) reactions

    SciTech Connect

    Yamagata, J.; Kimura, R.; Hirenzaki, S. [Department of Physics, Nara Women's University, Nara 630-8506 (Japan); Nagahiro, H. [Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047 (Japan)

    2007-10-15

    We study theoretically the (K{sup -},N) reactions for the formation of the deeply bound kaonic atoms, which were predicted to be quasistable with narrow widths, using the Green's function method. We systematically consider various cases with different target nuclei and energies and find clear signals in the theoretical spectra for all cases considered in this article. The signals show very interesting structures, such as a RESONANCE DIP instead of a resonance peak. We discuss the origins of the interesting structures and the possibilities of obtaining new information on the existence of kaonic nuclei from the spectra of atomic state formations.

  15. Synthesis, Characterization, and Reactions of Isolable (?-Diketiminato)Nb(III) Imido Complexes*

    PubMed Central

    Tomson, Neil C.; Arnold, John; Bergman, Robert G.

    2010-01-01

    We have investigated both the chemical reduction of (BDI)Nb(V) imido complexes (BDI = HC[C(Me)NAr]2; Ar = 2,6-iPr2-C6H3) to the formal Nb(III) oxidation state and the ability of these Nb(III) complexes to behave as two-electron reductants. The reduction of the Nb(V) species was found to depend heavily on the nature of available supporting ligands, but the chemistry of the reduced compounds proceeded cleanly with a number of unsaturated organic reagents. Accordingly, the novel Nb(V) bis(imido) complexes supported by the monoazabutadiene (mad) ligand (mad)Nb(NtBu)(NAr)(L?) (L? = py, thf) were formed by either KC8 reduction of (BDI)Nb(NtBu)Cl2(py) in the absence of strong ?-acids or by H2 reduction of the Nb(V) dimethyl complex (BDI)Nb(NtBu)Me2 in THF. These products are likely formed though an intramolecular, 2 e? reductive C–N bond cleavage, as has been observed previously for related Group 4 systems, suggesting that transient Nb(III) intermediates were present in both cases. In the presence of 1,2-bis(dimethylphosphino)ethane (dmpe), KC8 reduction of (BDI)Nb(NtBu)Cl2(py) was arrested at the Nb(IV) oxidation state to give (BDI)Nb(NtBu)Cl(dmpe), which was characterized by solution-state EPR spectroscopy as a Nb-centered paramagnet with strong coupling to the two equivalent phosphorus nuclei (Aiso{93Nb} = 120.5×10?4 cm?1, Aiso{31P} = 31.0×10?4 cm?1, giso = 1.9815). When strong ?-acids were used to intercept the thermally unstable Nb(III) complex (BDI)Nb(NtBu)(py) prior to reductive cleavage of the ligand C–N bond, the thermally stable Nb(III) species (BDI)Nb(NtBu)(CX)2(L?) (X = O, L? = py; X = NXyl, L? = CNXyl; Xyl = 2,6-Me2-C6H3) were obtained in good yields. The Nb(III) complexes (BDI)Nb(NtBu)py, (BDI)Nb(NtBu)(CO)2(py) and (BDI)Nb(NtBu)(CO)2 were subsequently investigated for their ability to serve as two-electron reducing reagents for both metal-ligand multiple bond formation and for the reduction of organic ?-systems. The reduction of mesityl azide by (BDI)Nb(NtBu)(py) and diphenylsulfoxide by (BDI)Nb(NtBu)(CO)2 led to the monomeric bis(imido) and dimeric oxo complexes (BDI)Nb(NtBu)(NMes)(py) and [(BDI)Nb(NtBu)]2(?2-O)2, respectively. MeLi addition to (BDI)Nb(NtBu)(CO)2(py) resulted in the formation of a Nb-acylate via methide addition to one of the carbonyl carbons. The acylate product was revealed to have a short Nb–Cacylate bond distance (2.059(4) Å), consistent with multiple Nb–C bond character resulting from Nb(III) back-bonding into the acylate carbon. The interaction of (BDI)Nb(NtBu)(CO)2 with two equivalents of 4,4?-dichlorobenzophenone resulted in the clean, quantitative formation of the corresponding pinacol coupling product, but introduction of the ketone in 1: 1 molar ratios resulted in mixtures of the pinacol product and the starting material, suggesting that ketone coordination to the Nb(III) complex may be reversible. Relatedly, addition of 1-phenyl-1-propyne to (BDI)Nb(NtBu)(CO)2 formed a thermally unstable 1: 1 Nb/alkyne complex, as characterized by NMR and IR spectroscopies; reaction of this species with HCl/MeOH yielded a 2: 1 mixture of 1-phenyl-1-propene and the free alkyne, suggesting a high degree of covalency in the Nb–C bonds. PMID:21116450

  16. Formation and growth mechanism of ZrC hexagonal platelets synthesized by self-propagating reaction

    NASA Astrophysics Data System (ADS)

    Song, M. S.; Huang, B.; Zhang, M. X.; Li, J. G.

    2008-08-01

    ZrC hexagonal platelets were fabricated via self-propagating high-temperature synthesis (SHS) reaction from 20 mass% Al-Zr-C powder mixtures and a typical layered structure of the as-products was observed. The field emission scanning electron microscopy (FESEM) reveals that the thick ZrC hexagonal platelets (?1 ?m) grew through the layer-by-layer growth mechanism of thin hexagonal monolayers along [1 1 1] direction, while the thin monolayer (?40 nm) was formed via two-dimensional (2D) nucleation mode along (1 1 1) plane. The formation and growth mechanism of the ZrC platelets have been discussed in detail. Al additive in the compact played an important role in determining the formation and growth of ZrC platelets, serving not only as a diluent to inhibit the ZrC grains from coarsening, but as an intermediate reactant to participate in the reaction process.

  17. Probing hadronic formation times with antiprotons in p+A reactions at AGS energies

    E-print Network

    W. Cassing; E. L. Bratkovskaya; O. Hansen

    2002-03-12

    The production of antiprotons in $p+A$ reactions is calculated in a microscopic transport approach employing hadronic and string degrees of freedom (HSD). It is found that the abundancies of antiprotons as observed by the E910 Collaboration in $p+A$ reactions at 12.3 GeV/c as well as 17.5 GeV/c can approximately be described on the basis of primary proton-nucleon and secondary meson-baryon production channels for all targets. The transport calculations demonstrate that the antiproton rapidity distributions for heavy targets are sensitive to the $\\bar{p}$ (or hadron) formation time in the nuclear medium. Within our analysis the data from the E910 Collaboration are reasonably described with a formation time of $ 0.4-0.8$ fm/c in the hadron rest frame.

  18. Formation of chlorinated hydrocarbons from the reaction of chlorine atoms and activated carbon.

    PubMed

    Khachatryan, Lavrent; Dellinger, Barry

    2003-07-01

    The reactions of chlorine atoms and activated carbon have been studied over the temperature range of 200-400 degrees C using an isothermal flow reactor in conjunction with 337 nm laser photolysis of Cl2. These studies have shown that carbon tetrachloride is the major product, with chloroform, methylene chloride, and methyl chloride being formed in progressively decreasing yields. Trace quantities of methane, ethane, and dichloroethylenes were also observed. Mechanisms of carbon fragmentation by successive addition of chlorine atoms are proposed. The formation of small chlorinated hydrocarbons by the direct reaction of chlorine with carbon may be a key link in both the de novo and precursor pathways of formation of PCDD/F. PMID:12738284

  19. Reaction-diffusion scheme for the clock and wavefront mechanism of pattern formation

    NASA Astrophysics Data System (ADS)

    Dziekan, Piotr; Nowakowski, Bogdan; Lemarchand, Annie

    2014-04-01

    We present a model of pattern formation in reaction-diffusion systems that is based on coupling between a propagating wave front and temporal oscillations. To study effects of internal fluctuations on the spatial structure development we use a chemical master equation for our reaction-diffusion model. First, a model with local, uncoupled oscillators is studied. Based on it we show that synchronization of oscillations in neighboring cells is necessary for the formation of regular patterns. We introduce synchronization through diffusion, but then, to get a stable pattern, it is necessary to add an additional species that represents the local state of the system. Numerical simulations of the master equation show that this extended model is resistant to fluctuations.

  20. Complex formation between chlorine dioxide and 2,2,6,6-tetramethylpiperidin-1-oxyl

    Microsoft Academic Search

    I. M. Ganiev; V. V. Shereshovets; I. A. Grigor'ev; G. A. Tolstikov

    2000-01-01

    The complex formation of ClO2 with 2,2,6,6-tetramethylpiperidin-1-oxyl (TMPO) in acetone, acetonitrile,n-heptane, diethyl ether, carbon tetrachloride, and toluene was studied spectrophotometrically at ?20 to +20 C. The thermodynamic\\u000a parameters of complex formation were determined at 20 C. The transformation of the complex into the oxoammonium salt TMPO+ClO\\u000a 2\\u000a ?\\u000a was found.

  1. Molybdenum Hydride and Dihydride Complexes Bearing Diphosphine Ligands with a Pendant Amine: Formation of Complexes with Bound Amines.

    PubMed

    Zhang, Shaoguang; Bullock, R Morris

    2015-07-01

    CpMo(CO)(PNP)H complexes (PNP = (R2PCH2)2NMe, R = Et or Ph) were synthesized by displacement of two CO ligands of CpMo(CO)3H by the PNP ligand; these complexes were characterized by IR and variable temperature (1)H and (31)P NMR spectroscopy. CpMo(CO)(PNP)H complexes are formed as mixture of cis- and trans-isomers. The structures of both cis-CpMo(CO)(P(Et)N(Me)P(Et))H and trans-CpMo(CO)(P(Ph)N(Me)P(Ph))H were determined by single crystal X-ray diffraction. Electrochemical oxidation of CpMo(CO)(P(Et)N(Me)P(Et))H and CpMo(CO)(P(Ph)N(Me)P(Ph))H in CH3CN are both irreversible at slow scan rates and quasireversible at higher scan rates, with E1/2 = -0.36 V (vs Cp2Fe(+/0)) for CpMo(CO)(P(Et)N(Me)P(Et))H and E1/2 = -0.18 V for CpMo(CO)(P(Ph)N(Me)P(Ph))H. Hydride abstraction from CpMo(CO)(PNP)H with [Ph3C](+)[A](-) (A = B(C6F5)4 or BAr(F)4; [Ar(F) = 3,5-bis(trifluoromethyl)phenyl]) afforded "tuck-in" [CpMo(CO)(?(3)-PNP)](+) complexes that feature the amine bound to the metal. Displacement of the ?(3) Mo-N bond by CD3CN gives [CpMo(CO)(PNP)(CD3CN)](+). The kinetics of this reaction were studied by (31)P{(1)H} NMR spectroscopy for [CpMo(CO)(?(3)-P(Et)N(Me)P(Et))](+), providing the activation parameters ?H(?) = 21.6 ± 2.8 kcal/mol, ?S(?) = -0.3 ± 9.8 cal/(mol K), Ea = 22.1 ± 2.8 kcal/mol. Protonation of CpMo(CO)(P(Et)N(Me)P(Et))H affords the Mo dihydride complex [CpMo(CO)(?(2)-P(Et)N(Me)P(Et))(H)2](+), which loses H2 to generate [CpMo(CO)(?(3)-P(Et)N(Me)P(Et))](+) at room temperature. Our results show that the pendant amine has a strong driving force to form stable "tuck-in" [CpMo(CO)(?(3)-PNP)](+) complexes, and also promotes hydrogen elimination from [CpMo(CO)(PNP)(H)2](+) complexes by formation of a Mo-N dative bond. CpMo(CO)(dppp)H (dppp = 1,3-bis(diphenylphosphino)propane) was studied as a Mo diphosphine analogue without a pendant amine, and the product of protonation of this complex gives [CpMo(CO)(dppp)(H)2](+). PMID:26054002

  2. Atmospheric Reactions of Polycyclic Aromatic Hydrocarbons: Facile Formation of Mutagenic Nitro Derivatives

    Microsoft Academic Search

    James N. Pitts Jr.; Karel A. van Cauwenberghe; Daniel Grosjean; Joachim P. Schmid; Dennis R. Fitz; William L. Belser Jr.; Gregory B. Knudson; Paul M. Hynds

    1978-01-01

    Directly active mutagens are formed on exposure of the promutagen benzo[a]pyrene to gaseous pollutants in smog. In simulated atmospheres containing 1 part per million nitrogen dioxide and traces of nitric acid, directly mutagenic nitro derivatives are readily formed from both benzo[a]pyrene and perylene, a non-mutagen in the Ames reversion assay. Possible formation of direct mutagens by such reactions on sample

  3. Atmospheric reactions of polycyclic aromatic hydrocarbons: facile formation of mutagenic nitro derivatives

    Microsoft Academic Search

    J. N. Jr. Pitts; K. A. Van Cauwenberghe; D. Grosjean; J. P. Schmid; D. R. Fitz; W. L. Belser; G. P. Knudson; P. M. Hynds

    1978-01-01

    Directly active mutagens are formed on exposure of the promutagen benzo(a)pyrene to gaseous pollutants in smog. In simulated atmospheres containing 1 part per million nitrogen dioxide and traces of nitric acid, directly mutagenic nitro derivatives are readily formed from both benzo(a)pyrene and perylene, a non-mutagen in the Ames reversion assay. Possible formation of direct mutagens by such reactions on sample

  4. Fragment Formation in Gev-Energy Proton and Light Heavy-Ion Induced Reactions

    Microsoft Academic Search

    T. Murakami; M. Haga; M. Haseno; Y. Hirai; H. Ito; M. Itoh; T. Kawabata; K. Kimura; F. Kosuge; S. Kouda; R. Kubohara; S. Mihara; K. Miyazaki; S. Morinobu; R. Muramatsu; J. Murata; Y. Nagasaka; K. Nakai; H. Nakamura; H. Ochiishi; Y. Ohkuma; Y. Okuno; T. Shibata; Y. Shibata; Y. Sugaya; E. Takada; H. Takeda; K. H. Tanaka; Y. Tanaka; M. Uchida; K. Ushie; Y. Yamanoi; K. Yasuda

    2002-01-01

    We have investigated similarities and differences among the fragment formation processes in GeV-energy light-ion and light heavy-ion induced reactions. We have newly measured inclusive and exclusive energy spectra of intermediate mass fragments (3<=Z<=30 IMFs) for 8-GeV 16O and 20Ne and 12-GeV 20Ne induced target multifragmentations (TMFs) in order to compare them with those previously measured for 8- and 12-GeV proton

  5. Thermochemistry and reaction barriers for the formation of levoglucosenone from cellobiose.

    SciTech Connect

    Assary, R. S.; Curtiss, L. A. (Center for Nanoscale Materials); ( MSD); (Northwestern Univ.)

    2012-02-06

    Cellobiose jumps the barrier: High-level quantum mechanical studies show that the ether bond cleavage in cellobiose occurs through internal hydrogen transfer in the gas phase and that the activation energy required is similar to that required for activating cellulose. The reaction barriers are computed for various pathways for the formation of levoglucosenone from levoglucosan, and the most likely pathway requires a relatively low activation barrier compared to that for the activation of cellobiose.

  6. Thermochemistry and Reaction Barriers for the Formation of Levoglucosenone from Cellobiose

    SciTech Connect

    Assary, Rajeev S.; Curtiss, Larry A.

    2012-02-06

    Cellobiose jumps the barrier: High-level quantum mechanical studies show that the ether bond cleavage in cellobiose occurs through internal hydrogen transfer in the gas phase and that the activation energy required is similar to that required for activating cellulose. The reaction barriers are computed for various pathways for the formation of levoglucosenone from levoglucosan, and the most likely pathway requires a relatively low activation barrier compared to that for the activation of cellobiose.

  7. Accelerated formation of barium titanate by solid-state reaction in water vapour atmosphere

    Microsoft Academic Search

    Takahiro Kozawa; Ayumu Onda; Kazumichi Yanagisawa

    2009-01-01

    Barium titanate (BaTiO3) powders were synthesized from commercially available raw materials (BaCO3 and rutile) without particular mechanochemical processing by solid-state reactions in water vapour atmosphere. The formation rate of BaTiO3 was accelerated by water vapour and single phase of BaTiO3 was obtained by calcination at 700°C for 4h in water vapour atmosphere, though high temperature (850°C for 2.5h) was required

  8. Low temperature iron- and nickel-catalyzed reactions leading to coalbed gas formation

    Microsoft Academic Search

    Juan Carlos Medina; Steven J. Butala; Calvin H. Bartholomew; Milton L. Lee

    2000-01-01

    Hydrocarbon hydrogenolysis and CO 2 hydrogenation in the presence of Fe\\/SiO 2 and Ni\\/SiO 2 catalysts were evaluated as potential mechanisms contributing to natural gas formation in coalbeds. The hydrocarbons used as reactants in hydrogenolysis included butane, octane, 1-octene, and 1-dodecene. The reactions carried out in a laboratory batch reactor produced gas that contained methane concentrations greater than 90%, which

  9. Low temperature iron- and nickel-catalyzed reactions leading to coalbed gas formation

    Microsoft Academic Search

    Juan Carlos Medina; Steven J Butala; Calvin H Bartholomew; Milton L Lee

    2000-01-01

    Hydrocarbon hydrogenolysis and CO2 hydrogenation in the presence of Fe\\/SiO2 and Ni\\/SiO2 catalysts were evaluated as potential mechanisms contributing to natural gas formation in coalbeds. The hydrocarbons used as reactants in hydrogenolysis included butane, octane, 1-octene, and 1-dodecene. The reactions carried out in a laboratory batch reactor produced gas that contained methane concentrations greater than 90%, which resembles the composition

  10. Reliable Protein Folding on Complex Energy Landscapes: The Free Energy Reaction Path

    E-print Network

    O'Hern, Corey S.

    Reliable Protein Folding on Complex Energy Landscapes: The Free Energy Reaction Path Gregg Lois the dynamics of protein folding. The key insight is that the search for the native protein conformation. In the ``new view'' of protein folding (3,7), statistical fluctuations on an energy landscape give rise

  11. Simplicity in complexity: the photosynthetic reaction center performs as a simple 0.2 V battery

    E-print Network

    van Stokkum, Ivo

    Simplicity in complexity: the photosynthetic reaction center performs as a simple 0.2 V battery life. We show here that it operates in a simple, battery-like manner, with a maximum potential of 0 battery' cannot generate more than a 1.5 V potential, which is its electron motive force O0 e3 . Only when

  12. Catalytic C-N and C-F bond formation by organometallic group 11 complexes

    E-print Network

    Akana, Jennifer Anne

    2007-01-01

    This thesis presents a study of the reaction between an (NHC)gold(I) fluoride complex (NHC = N-heterocyclic carbene) and alkynes (Chapter 1). Gold(I) and fluoride add trans across the triple bond of 3-hexyne and ...

  13. A new multicomponent reaction: unexpected formation of derivatizable cyclic ?-alkoxy isothioureas.

    PubMed

    Brockmeyer, Fabian; Morosow, Valentin; Martens, Jürgen

    2015-03-21

    An unexpected formation of cyclic ?-alkoxy isothioureas has been achieved. As is known, the heterocyclic imines 2,5-dihydro-1,3-thiazoles are convertible to bisamides with the aid of a carboxylic acid and an isocyanide (Ugi reaction). Herein, it is shown that 2,5-dihydro-1,3-thiazole S-monoxides-the respective ?-sulfinyl imines-are characterized by an altered reaction behavior. In a hitherto unknown multicomponent reaction the ?-sulfinyl imines react with an isocyanide under acidic conditions in an alcoholic solution to the respective ?-alkoxy isothioureas in good yields. In addition to the investigations on this unexpected synthesis the regioselectivity of the acylation of the synthesized compounds is described. A rearrangement, which is accelerated by EDC and HOBt, between both possible regioisomers was found. PMID:25655707

  14. The Effect of Complex Formation upon the Redox Potentials of Metallic Ions. Cyclic Voltammetry Experiments.

    ERIC Educational Resources Information Center

    Ibanez, Jorge G.; And Others

    1988-01-01

    Describes experiments in which students prepare in situ soluble complexes of metal ions with different ligands and observe and estimate the change in formal potential that the ion undergoes upon complexation. Discusses student formation and analysis of soluble complexes of two different metal ions with the same ligand. (CW)

  15. Highly reactive nonheme iron(III) iodosylarene complexes in alkane hydroxylation and sulfoxidation reactions.

    PubMed

    Hong, Seungwoo; Wang, Bin; Seo, Mi Sook; Lee, Yong-Min; Kim, Myoung Jin; Kim, Hyung Rok; Ogura, Takashi; Garcia-Serres, Ricardo; Clémancey, Martin; Latour, Jean-Marc; Nam, Wonwoo

    2014-06-16

    High-spin iron(III) iodosylarene complexes bearing an N-methylated cyclam ligand are synthesized and characterized using various spectroscopic methods. The nonheme high-spin iron(III) iodosylarene intermediates are highly reactive oxidants capable of activating strong C-H bonds of alkanes; the reactivity of the iron(III) iodosylarene intermediates is much greater than that of the corresponding iron(IV) oxo complex. The electrophilic character of the iron(III) iodosylarene complexes is demonstrated in sulfoxidation reactions. PMID:24820976

  16. Reactions Between Water Soluble Organic Acids and Nitrates in Atmospheric Aerosols: Recycling of Nitric Acid and Formation of Organic Salts

    SciTech Connect

    Wang, Bingbing; Laskin, Alexander

    2014-03-25

    Atmospheric particles often include a complex mixture of nitrate and secondary organic materials accumulated within the same individual particles. Nitrate as an important inorganic component can be chemically formed in the atmosphere. For instance, formation of sodium nitrate (NaNO3) and calcium nitrate Ca(NO3)2 when nitrogen oxide and nitric acid (HNO3) species react with sea salt and calcite, respectively. Organic acids contribute a significant fraction of photochemically formed secondary organics that can condense on the preexisting nitrate-containing particles. Here, we present a systematic microanalysis study on chemical composition of laboratory generated particles composed of water soluble organic acids and nitrates (i.e. NaNO3 and Ca(NO3)2) investigated using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and Fourier transform infrared micro-spectroscopy (micro-FTIR). The results show that water-soluble organic acids can react with nitrates releasing gaseous HNO3 during dehydration process. These reactions are attributed to acid displacement of nitrate with weak organic acids driven by the evaporation of HNO3 into gas phase due to its relatively high volatility. The reactions result in significant nitrate depletion and formation of organic salts in mixed organic acids/nitrate particles that in turn may affect their physical and chemical properties relevant to atmospheric environment and climate. Airborne nitrate concentrations are estimated by thermodynamic calculations corresponding to various nitrate depletions in selected organic acids of atmospheric relevance. The results indicate a potential mechanism of HNO3 recycling, which may further affect concentrations of gas- and aerosol-phase species in the atmosphere and the heterogeneous reaction chemistry between them.

  17. Zwitterion formation in titan ice analogs: reaction between HC3N and NH3.

    PubMed

    Couturier-Tamburelli, Isabelle; Sessouma, Bintou; Chiavassa, Thierry; Piétri, Nathalie

    2012-11-01

    A zwitterion is formed in the laboratory at low temperatures in the solid phase from the thermal reaction of HC(3)N and NH(3). We report for the first time its infrared spectrum. We study its reaction using Fourier transform infrared spectroscopy. Its reaction rate is estimated to be k(T) = 2.9 × 10(5) exp(-2.3 ± 0.1 (kJ mol(-1))/RT). Calculations using density functional theory (B3LYP/6-31g**) are used to characterize all the species (complexes, zwitterions, and transition states) and are in good agreement with the infrared spectra. The structure of the zwitterion is determined planar and it is characterized by a N-C bond around 1.5 Å. PMID:23075265

  18. TraML--a standard format for exchange of selected reaction monitoring transition lists.

    PubMed

    Deutsch, Eric W; Chambers, Matthew; Neumann, Steffen; Levander, Fredrik; Binz, Pierre-Alain; Shofstahl, Jim; Campbell, David S; Mendoza, Luis; Ovelleiro, David; Helsens, Kenny; Martens, Lennart; Aebersold, Ruedi; Moritz, Robert L; Brusniak, Mi-Youn

    2012-04-01

    Targeted proteomics via selected reaction monitoring is a powerful mass spectrometric technique affording higher dynamic range, increased specificity and lower limits of detection than other shotgun mass spectrometry methods when applied to proteome analyses. However, it involves selective measurement of predetermined analytes, which requires more preparation in the form of selecting appropriate signatures for the proteins and peptides that are to be targeted. There is a growing number of software programs and resources for selecting optimal transitions and the instrument settings used for the detection and quantification of the targeted peptides, but the exchange of this information is hindered by a lack of a standard format. We have developed a new standardized format, called TraML, for encoding transition lists and associated metadata. In addition to introducing the TraML format, we demonstrate several implementations across the community, and provide semantic validators, extensive documentation, and multiple example instances to demonstrate correctly written documents. Widespread use of TraML will facilitate the exchange of transitions, reduce time spent handling incompatible list formats, increase the reusability of previously optimized transitions, and thus accelerate the widespread adoption of targeted proteomics via selected reaction monitoring. PMID:22159873

  19. Crystal structures of complexes of NAD{sup +}-dependent formate dehydrogenase from methylotrophic bacterium Pseudomonas sp. 101 with formate

    SciTech Connect

    Filippova, E. V., E-mail: kostya@eimb.relarn.ru; Polyakov, K. M. [Russian Academy of Sciences, Engelhardt Institute of Molecular Biology (Russian Federation); Tikhonova, T. V.; Stekhanova, T. N.; Boiko, K. M.; Sadykhov, I. G. [Russian Academy of Sciences, Bach Institute of Biochemistry (Russian Federation); Tishkov, V. I. [Moscow State University (Russian Federation); Popov, V. O. [Russian Academy of Sciences, Bach Institute of Biochemistry (Russian Federation); Labru, N. [Agricultural University (Greece)

    2006-07-15

    Formate dehydrogenase (FDH) from the methylotrophic bacterium Pseudomonas sp. 101 catalyzes oxidation of formate to NI{sub 2} with the coupled reduction of nicotinamide adenine dinucleotide (NAD{sup +}). The three-dimensional structures of the apo form (the free enzyme) and the holo form (the ternary FDH-NAD{sup +}-azide complex) of FDH have been established earlier. In the present study, the structures of FDH complexes with formate are solved at 2.19 and 2.28 A resolution by the molecular replacement method and refined to the R factors of 22.3 and 20.5%, respectively. Both crystal structures contain four protein molecules per asymmetric unit. These molecules form two dimers identical to the dimer of the apo form of FDH. Two possible formatebinding sites are found in the active site of the FDH structure. In the complexes the sulfur atom of residue Cys354 exists in the oxidized state.

  20. Crystal structures of complexes of NAD+-dependent formate dehydrogenase from methylotrophic bacterium Pseudomonas sp. 101 with formate

    NASA Astrophysics Data System (ADS)

    Filippova, E. V.; Polyakov, K. M.; Tikhonova, T. V.; Stekhanova, T. N.; Boiko, K. M.; Sadykhov, I. G.; Tishkov, V. I.; Popov, V. O.; Labru, N.

    2006-07-01

    Formate dehydrogenase (FDH) from the methylotrophic bacterium Pseudomonas sp. 101 catalyzes oxidation of formate to NI2 with the coupled reduction of nicotinamide adenine dinucleotide (NAD+). The three-dimensional structures of the apo form (the free enzyme) and the holo form (the ternary FDH-NAD+-azide complex) of FDH have been established earlier. In the present study, the structures of FDH complexes with formate are solved at 2.19 and 2.28 Å resolution by the molecular replacement method and refined to the R factors of 22.3 and 20.5%, respectively. Both crystal structures contain four protein molecules per asymmetric unit. These molecules form two dimers identical to the dimer of the apo form of FDH. Two possible formatebinding sites are found in the active site of the FDH structure. In the complexes the sulfur atom of residue Cys354 exists in the oxidized state.

  1. Reaction of benzophenone UV filters in the presence of aqueous chlorine: kinetics and chloroform formation.

    PubMed

    Duirk, Stephen E; Bridenstine, David R; Leslie, Daniel C

    2013-02-01

    The transformation of two benzophenone UV filters (Oxybenzone and Dioxybenzone) was examined over the pH range 6-11 in the presence of excess aqueous chlorine. Under these conditions, both UV filters were rapidly transformed by aqueous chlorine just above circumneutral pH while transformation rates were significantly lower near the extremes of the pH range investigated. Observed first-order rate coefficients (k(obs)) were obtained at each pH for aqueous chlorine concentrations ranging from 10 to 75 ?M. The k(obs) were used to determine the apparent second-order rate coefficient (k(app)) at each pH investigated as well as determine the reaction order of aqueous chlorine with each UV filter. The reaction of aqueous chlorine with either UV filter was found to be an overall second-order reaction, first-order with respect to each reactant. Assuming elemental stoichiometry described the reaction between aqueous chlorine and each UV filter, models were developed to determine intrinsic rate coefficients (k(int)) from the k(app) as a function of pH for both UV filters. The rate coefficients for the reaction of HOCl with 3-methoxyphenol moieties of oxybenzone (OXY) and dioxybenzone (DiOXY) were k(1,OxY) = 306 ± 81 M?¹s?¹ and k(1,DiOxY) = 154 ± 76 M?¹s?¹, respectively. The k(int) for the reaction of aqueous chlorine with the 3-methoxyphenolate forms were orders of magnitude greater than the un-ionized species, k(2,OxY) = 1.03(±0.52) × 10? M?¹s?¹ and k(2_1,DiOxY) = 4.14(±0.68) × 10? M?¹s?¹. Also, k(int) for the reaction of aqueous chlorine with the DiOXY ortho-substituted phenolate moiety was k(2_2,DiOxY) = 2.17(±0.30) × 10³ M?¹s?¹. Finally, chloroform formation potential for OXY and DiOXY was assessed over the pH range 6-10. While chloroform formation decreased as pH increased for OXY, chloroform formation increased as pH increased from 6 to 10 for DiOXY. Ultimate molar yields of chloroform per mole of UV filter were pH dependent; however, chloroform to UV filter molar yields at pH 8 were 0.221 CHCl?/OXY and 0.212 CHCl?/DiOXY. PMID:23168312

  2. The formation of glycine and other complex organic molecules in exploding ice mantles.

    PubMed

    Rawlings, J M C; Williams, D A; Viti, S; Cecchi-Pestellini, C; Duley, W W

    2014-01-01

    Complex Organic Molecules (COMs), such as propylene (CH3CHCH2) and the isomers of C2H4O2 are detected in cold molecular clouds (such as TMC-1) with high fractional abundances (Marcelino et al., Astrophys. J., 2007, 665, L127). The formation mechanism for these species is the subject of intense speculation, as is the possibility of the formation of simple amino acids such as glycine (NH2CH2COOH). At typical dark cloud densities, normal interstellar gas-phase chemistries are inefficient, whilst surface chemistry is at best ill defined and does not easily reproduce the abundance ratios observed in the gas phase. Whatever mechanism(s) is/are operating, it/they must be both efficient at converting a significant fraction of the available carbon budget into COMs, and capable of efficiently returning the COMs to the gas phase. In our previous studies we proposed a complementary, alternative mechanism, in which medium- and large-sized molecules are formed by three-body gas kinetic reactions in the warm high density gas phase. This environment exists, for a very short period of time, after the total sublimation of grain ice mantles in transient co-desorption events. In order to drive the process, rapid and efficient mantle sublimation is required and we have proposed that ice mantle 'explosions' can be driven by the catastrophic recombination of trapped hydrogen atoms, and other radicals, in the ice. Repeated cycles of freeze-out and explosion can thus lead to a cumulative molecular enrichment of the interstellar medium. Using existing studies we based our chemical network on simple radical addition, subject to enthalpy and valency restrictions. In this work we have extended the chemistry to include the formation pathways of glycine and other large molecular species that are detected in molecular clouds. We find that the mechanism is capable of explaining the observed molecular abundances and complexity in these sources. We find that the proposed mechanism is easily capable of explaining the large abundances of all three isomers of C2H4O2 that are observationally inferred for star-forming regions. However, the model currently does not provide an obvious explanation for the predominance of methyl formate, suggesting that some refinement to our (very simplistic) chemistry is necessary. The model also predicts the production of glycine at a (lower) abundance level, that is consistent with its marginal detection in astrophysical sources. PMID:25302390

  3. Double layer formation at the interface of complex plasmas

    SciTech Connect

    Yaroshenko, V. V.; Thoma, M. H.; Thomas, H. M.; Morfill, G. E. [Max Planck Institute for Extraterrestrial Physics, 85741 Garching (Germany)

    2008-08-15

    Necessary conditions are formulated for the generation of a double layer at the interface of a complex plasma and a particle-free electron-ion plasma in a weakly collisional discharge. Examples are calculated for realistic observed complex plasmas, and it is shown that situations of both ''smooth'' transitions and 'sharp' transitions can exist. The model can explain the abrupt boundaries observed.

  4. Formation of categories for complex novel auditory stimuli

    Microsoft Academic Search

    Daniel Mirman; Lori L. Holt; James L. McClelland

    2002-01-01

    Categorization of complex sounds with multiple, imperfectly valid cues is fundamental to phonetic perception. To study the general perceptual and cognitive processes that support complex sound categories, a novel stimulus set was created that allows tight control of category structure and input distributions. Stimuli were created from 300-ms noise bursts by applying bandstop filters at varying center frequencies and manipulating

  5. Incipient species formation in salamanders of the Ensatina complex

    Microsoft Academic Search

    DAVID B. WAKE

    1997-01-01

    The Ensatina eschscholtzii complex of pleth- odontid salamanders, a well-known ''ring species,'' is thought to illustrate stages in the speciation process. Early research, based on morphology and coloration, has been extended by the incorporation of studies of protein variation and mitochon- drial DNA sequences. The new data show that the complex includes a number of geographically and genetically distinct components

  6. Fission and quasifission modes in heavy-ion-induced reactions leading to the formation of Hs{sup *}

    SciTech Connect

    Itkis, I. M.; Kozulin, E. M.; Itkis, M. G.; Knyazheva, G. N.; Bogachev, A. A.; Chernysheva, E. V.; Krupa, L.; Oganessian, Yu. Ts.; Zagrebaev, V. I.; Rusanov, A. Ya.; Goennenwein, F.; Dorvaux, O.; Stuttge, L.; Hanappe, F.; Vardaci, E.; Goes Brennand, E. de [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Institute of Nuclear Physics of the National Nuclear Center of Kazakhstan, 050032 Almaty (Kazakhstan); Physikalisches Institut, Universitaet Tuebingen, D-72076 Tuebingen (Germany); Institut Pluridisciplinaire Hubert Curien and Universite de Strasbourg, F-67037 Strasbourg (France); Universite Libre de Bruxelles, CP229, B-1050 Bruxelles, Belgique (Belgium); Istituto Nazionale di Fisica Nucleare and Dipartimento di Scienze Fisiche dell'Universita di Napoli, Napoli (Italy); Departamento de Fisica, Universidade Estadual da Paraiba, 58109-753 Campina Grande (Brazil)

    2011-06-15

    Mass and energy distributions of binary reaction products obtained in the reactions {sup 22}Ne+{sup 249}Cf,{sup 26}Mg+{sup 248}Cm, {sup 36}S+{sup 238}U, and {sup 58}Fe+{sup 208}Pb have been measured. All reactions lead to Hs isotopes. At energies below the Coulomb barrier the bimodal fission of Hs{sup *}, formed in the reaction {sup 26}Mg+{sup 248}Cm, is observed. In the reaction {sup 36}S+{sup 238}U, leading to the formation of a similar compound nucleus, the main part of the symmetric fragments arises from the quasifission process. At energies above the Coulomb barrier fusion-fission is the main process leading to the formation of symmetric fragments for both reactions with Mg and S ions. In the case of the {sup 58}Fe+{sup 208}Pb reaction the quasifission process dominates at all measured energies.

  7. On Water Formation in the Interstellar Medium: Laboratory Study of the O+D Reaction on Surfaces

    NASA Astrophysics Data System (ADS)

    Jing, Dapeng; He, Jiao; Brucato, John; De Sio, Antonio; Tozzetti, Lorenzo; Vidali, Gianfranco

    2011-11-01

    In the interstellar medium (ISM), an important channel of water formation is the reaction of atoms on the surface of dust grains. Here, we report on a laboratory study of the formation of water via the O+D reaction network. While prior studies were done on ices, as appropriate to the formation of water in dense clouds, we explored how water formation occurs on bare surfaces, i.e., in conditions mimicking the transition from diffuse to dense clouds (Av ~ 1-5). Reaction products were detected during deposition and afterward when the sample is brought to a high temperature. We quantified the formation of water and intermediary products, such as D2O2, over a range of surface temperatures (15-25 K). The detection of OD on the surface signals the importance of this reactant in the overall scheme of water formation in the ISM.

  8. ON WATER FORMATION IN THE INTERSTELLAR MEDIUM: LABORATORY STUDY OF THE O+D REACTION ON SURFACES

    SciTech Connect

    Jing Dapeng; He Jiao; Vidali, Gianfranco [Physics Department, Syracuse University, Syracuse, NY 13244 (United States); Brucato, John; Tozzetti, Lorenzo [INAF, Astrophysical Observatory of Arcetri, Florence (Italy); De Sio, Antonio [Department of Astronomy and Space Science, University of Florence, Florence (Italy)

    2011-11-01

    In the interstellar medium (ISM), an important channel of water formation is the reaction of atoms on the surface of dust grains. Here, we report on a laboratory study of the formation of water via the O+D reaction network. While prior studies were done on ices, as appropriate to the formation of water in dense clouds, we explored how water formation occurs on bare surfaces, i.e., in conditions mimicking the transition from diffuse to dense clouds (Av {approx} 1-5). Reaction products were detected during deposition and afterward when the sample is brought to a high temperature. We quantified the formation of water and intermediary products, such as D{sub 2}O{sub 2}, over a range of surface temperatures (15-25 K). The detection of OD on the surface signals the importance of this reactant in the overall scheme of water formation in the ISM.

  9. Reaction of sp/sup 2/ C-H bonds in unactivated alkenes with bis(diphosphine) complexes of iron

    SciTech Connect

    Baker, M.V.; Field, L.D.

    1986-11-12

    Over the last 10 years, there has been much interest in the chemistry of coordinatively unsaturated transition-metal complexes, particularly in the activation of alkyl C-H bonds by complexes of Ir, Rh, Re, and W. Some early fundamental work in the area of C-H bond activation involved Fe(DMPE)/sub 2/ (1) (DMPE = 1,2-bis(dimethylphosphino)ethane), a reactive intermediate generated by reductive elimination of naphthalene from cis-FeH(Np)DMPE)/sub 2/ (Np = 2-naphthyl); however, this system was limited in that only substrates with a reactivity greater than (or comparable to) that of the naphthalene byproduct could be examined. In addition, this route to 1 necessarily required reaction temperatures close to room temperature, where any thermally labile products may not have been sufficiently stable to be observed or characterized. An alternative, more versatile route to 1 is by photolysis of the dihydride FeH/sub 2/(DMPE)/sub 2/ (2). The authors have examined the reactions of 1, generated photochemically at low temperature, with hydrocarbons, and report here the formation of products arising from Fe insertion into sp/sup 2/ C-H bonds of unactivated alkenes.

  10. Ferric-transferrin and ferric-transferrin-anion complexes: formation and characterization. 

    E-print Network

    Schlabach, Michael Ray

    1974-01-01

    found to be nonsyn- ergistic. Dihydroxyacetone and glyceraldehyde were also ineffective in promoting ternary complex formation. Dicarboxylic acids were found 3+ to form stable Fe -transferrin ? anion complexes which were only slowly displaced...-TRANSFERRIN BINARY COMPLEXES EXPERIMENTAL PROCEDURES RESULTS AND INTERPRETATION FERRIC-TRANSFERRIN-ANION TERNARY COMPLEXES ~ ~ ~ ~ o ~ ~ EXPERIMENTAL PROCEDURES RESULTS AND INTERPRETATION DISCUSSION 21 21 25 47 VITA 56 viii LIST OF TABLES Table Page A...

  11. Ligand substitution reactions of a phenolic quinolyl hydrazone; oxidovanadium (IV) complexes

    PubMed Central

    2011-01-01

    Background Quinoline ring has therapeutic and biological activities. Quinolyl hydrazones constitute a class of excellent chelating agents. Recently, the physiological and biological activities of quinolyl hydrazones arise from their tendency to form metal chelates with transition metal ions. In this context, we have aimed to study the competency effect of a phenolic quinolyl hydrazone (H2L; primary ligand) with some auxiliary ligands (Tmen, Phen or Oxine; secondary ligands) towards oxidovanadium (IV) ions. Results Mono- and binuclear oxidovanadium (IV) - complexes were obtained from the reaction of a phenolic quinolyl hydrazone with oxidovanadium (IV)- ion in absence and presence of N,N,N',N'- tetramethylethylenediamine (Tmen), 1,10-phenanthroline (Phen) or 8-hydroxyquinoline (Oxine). The phenolic quinolyl hydrazone ligand behaves as monobasic bidentate (NO- donor with O- bridging). All the obtained complexes have the preferable octahedral geometry except the oxinato complex (2) which has a square pyramid geometry with no axial interaction; the only homoleptic complex in this study. Conclusion The ligand exchange (substitution/replacement) reactions reflect the strong competency power of the auxiliary aromatic ligands (Phen/Oxine) compared to the phenolic quinolyl hydrazone (H2L) towards oxidovanadium (IV) ion; (complexes 2 and 3). By contrast, in case of the more flexible aliphatic competitor (Tmen), an adduct was obtained (4). The obtained complexes reflect the strength of the ligand field towards the oxidovanadium (IV)- ion; Oxine or Phen >> phenolic hydrazone (H2L) > Tmen. PMID:21846387

  12. Calculation of Standard Transformed Formation Properties of Biochemical Reactants and Standard Apparent Reduction Potentials of Half Reactions

    Microsoft Academic Search

    Robert A. Alberty

    1998-01-01

    The standard Gibbs energies of formation and standard enthalpies of formation of species involved in biochemical reactions are used to calculate standard transformed Gibbs energies of formation and standard transformed enthalpies of formation of 62 biochemical reactants (sums of species) at 298.15 K, pH 7, and ionic strengths of 0, 0.10, and 0.25 M. It has been possible to put

  13. 'Super Silyl' Group for Diastereoselective Sequential Reactions: Access to Complex Chiral Architecture in One Pot

    SciTech Connect

    Boxer, Matthew B.; Yamamoto, Hisashi (UC)

    2008-04-02

    We have shown that the tris(trimethylsilyl)silyl (TTMSS) silyl enol ether of acetaldehyde undergoes aldehyde cross-aldol reactions with high selectivity and the extremely low catalyst loading (0.05 mol % of HNTf{sub 2}) allows for one-pot sequential reactions where acidic or basic nucleophiles can be subsequently added. Various ketone-derived silyl enol ethers, Grignard reagents, and dienes succeeded, generating relatively complex molecular architectures in a single step. This represents the first case where, in a single pot, highly acidic conditions followed by very basic conditions were tolerated to give products with high diastereoselectivities and good yields.

  14. Characterization of self-propagating formation reactions in Ni/Zr multilayered foils using reaction heats, velocities, and temperature-time profiles

    SciTech Connect

    Barron, S. C.; Knepper, R.; Walker, N.; Weihs, T. P. [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2011-01-01

    We report on intermetallic formation reactions in vapor-deposited multilayered foils of Ni/Zr with 70 nm bilayers and overall atomic ratios of Ni:Zr, 2 Ni:Zr, and 7 Ni:2 Zr. The sequence of alloy phase formation and the stored energy is evaluated at slow heating rates ({approx}1 K/s) using differential scanning calorimetry traces to 725 deg. C. All three chemistries initially form a Ni-Zr amorphous phase which crystallizes first to the intermetallic NiZr. The heat of reaction to the final phase is 34-36 kJ/mol atom for all chemistries. Intermetallic formation reactions are also studied at rapid heating rates (greater than 10{sup 5} K/s) in high temperature, self-propagating reactions which can be ignited in these foils by an electric spark. We find that reaction velocities and maximum reaction temperatures (T{sub max}) are largely independent of foil chemistry at 0.6{+-}0.1 m/s and 1220{+-}50 K, respectively, and that the measured T{sub max} is more than 200 K lower than predicted adiabatic temperatures (T{sub ad}). The difference between T{sub max} and T{sub ad} is explained by the prediction that transformation to the final intermetallic phases occurs after T{sub max} and results in the release of 20%-30% of the total heat of reaction and a delay in rapid cooling.

  15. Characterization of self-propagating formation reactions in Ni/Zr multilayered foils using reaction heats, velocities, and temperature-time profiles

    DOE PAGESBeta

    Barron, S. C.; Knepper, R.; Walker, N.; Weihs, T. P.

    2011-01-11

    We report on intermetallic formation reactions in vapor-deposited multilayered foils of Ni/Zr with 70 nm bilayers and overall atomic ratios of Ni:Zr, 2 Ni:Zr, and 7 Ni:2 Zr. The sequence of alloy phase formation and the stored energy is evaluated at slow heating rates (~1 K/s) using differential scanning calorimetry (DSC) traces to 725ºC. All three chemistries initially form a Ni-Zr amorphous phase which crystallizes first to the intermetallic NiZr. The heat of reaction to the final phase is 34-36 kJ/mol atom for all chemistries. Intermetallic formation reactions are also studied at rapid heating rates (greater than 105 K/s) inmore »high temperature, self-propagating reactions which can be ignited in these foils by an electric spark. We find that reaction velocities and maximum reaction temperatures (Tmax) are largely independent of foil chemistry at 0.6 ± 0.1 m/s and 1220 ± 50 K, respectively, and that the measured Tmax is more than 200 K lower than predicted adiabatic temperatures (Tad). The difference between Tmax and Tad is explained by the prediction that transformation to the final intermetallic phases occurs after Tmax and results in the release of 20-30 % of the total heat of reaction and a delay in rapid cooling.« less

  16. One-electron transfer reactions of diquat radical to different reduction intermediates of oxygen. Formation of hydroxyl radical and electronically excited states

    SciTech Connect

    Mira, D.; Brunk, U.; Boveris, A.; Cadenas, E. (Univ. of Linkoeping (Sweden))

    1988-01-01

    The one-electron transfer activation of DQ++ by microsomal fractions comprises an aerobic phase and an anaerobic phase. The aerobic phase is characterized by O2 consumption, formation of electronically excited states with main emission below 600 nm, and H2O2 formation. The anaerobic phase is characterized by H2O2 consumption, DQ+ accumulation, HO. formation, and also electronically excited state formation with main emission beyond 600 nm. Superoxide dismutase abolishes the photoemission during the aerobic phase, whereas it has no effect on the photoemission originating during the anaerobic phase. The hydroxylation products of the aromatic compound salicylate, mainly 2,3- and 2,5-dihydroxybenzoic acids--indicative of the occurrence of HO.-, were detected by h.p.l.c. with oxidative electrochemical detection during the anaerobic phase, but not during the aerobic phase. Neither H2O2 consumption nor HO. are prevented by desferrioxamine. These experimental observations are interpreted on the grounds of two main electron-transfer reactions of DQ.+: under aerobic conditions, two one-electron transfer steps to molecular O2 and O2.- to yield H2O2. Under anaerobic conditions, one-electron transfer step to contaminating iron or any ferrioxamine formed to a ferrous complex which can support a Fenton-like reduction of H2O2 with formation of HO.. The toxicological relevance for the occurrence of such reactions is also discussed in terms of the formation of electronically excited states.

  17. Asymmetric aldol reactions between acetone and benzaldehydes catalyzed by chiral Zn2+ complexes of aminoacyl 1,4,7,10-tetraazacyclododecane: fine-tuning of the amino-acid side chains and a revised reaction mechanism.

    PubMed

    Itoh, Susumu; Tokunaga, Takuya; Sonoike, Shotaro; Kitamura, Masanori; Yamano, Akihito; Aoki, Shin

    2013-09-01

    We previously reported that chiral Zn(2+) complexes that were designed to mimic the actions of class-I and class-II aldolases catalyzed the enantioselective aldol reactions of acetone and its analogues thereof with benzaldehyde derivatives. Herein, we report the synthesis of new chiral Zn(2+) complexes that contain Zn(2+)-tetraazacyclododecane (Zn(2+)-[12]aneN4) moieties and amino acids that contain aliphatic, aromatic, anionic, cationic, and dipeptide side chains. The chemical and optical yields of the aldol reaction were improved (up to 96?% ee) by using ZnL complexes of L-decanylglycyl-pendant [12]aneN4 (L-ZnL(7)), L-naphthylalanyl-pendant [12]aneN4 (L-ZnL(10)), L-biphenylalanyl-pendant [12]aneN4 (L-ZnL(11)), and L-phenylethylglycyl-pendant [12]aneN4 ligands (L-ZnL(12)). UV/Vis and circular dichroism (CD) titrations of acetylacetone (acac) with ZnL complexes confirmed that a ZnL-(acac)(-) complex was exclusively formed and not the enaminone of ZnL and acac, as we had previously proposed. Moreover, the results of stopped-flow experiments indicated that the complexation of (acac)(-) with ZnL was complete within milliseconds, whereas the formation of an enaminone required several hours. X-ray crystal-structure analysis of L-ZnL(10) and the ZnL complex of L-diphenylalanyl-pendant [12]aneN4 (L-ZnL(13)) shows that the NH2 groups of the amino-acid side chains of these ligands are coordinated to the Zn(2+) center as the fourth coordination site, in addition to three nitrogen atoms of the [12]aneN4 rings. The reaction mechanism of these aldol reactions is discussed and some corrections are made to our previous mechanistic hypothesis. PMID:23780779

  18. Monitoring benzene formation from benzoate in model systems by proton transfer reaction-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Aprea, Eugenio; Biasioli, Franco; Carlin, Silvia; Märk, Tilmann D.; Gasperi, Flavia

    2008-08-01

    The presence of benzene in food and in particular in soft drinks has been reported in several studies and should be considered in fundamental investigations about formation of this carcinogen compound as well as in quality control. Proton transfer reaction-mass spectrometry (PTR-MS) has been used here for rapid, direct quantification of benzene and to monitor its formation in model systems related to the use of benzoate, a common preservative, in presence of ascorbic acid: a widespread situation that yields benzene in, e.g., soft drinks and fruit juices. Firstly, we demonstrate here that PTR-MS allows a rapid determination of benzene that is in quantitative agreement with independent solid phase micro-extraction/gas chromatography (SPME/GC) analysis. Secondly, as a case study, the effect of different sugars (sucrose, fructose and glucose) on benzene formation is investigated indicating that they inhibit its formation and that this effect is enhanced for reducing sugars. The sugar-induced inhibition of benzene formation depends on several parameters (type and concentration of sugar, temperature, time) but can be more than 80% in situations that can be expected in the storage of commercial soft drinks. This is consistent with the reported observations of higher benzene concentrations in sugar-free soft drinks.

  19. FORMATION OF POLYCYCLIC AROMATIC HYDROCARBONS AND THEIR GROWTH TO SOOT -A REVIEW OF CHEMICAL REACTION PATHWAYS. (R824970)

    EPA Science Inventory

    The generation by combustion processes of airborne species of current health concern such as polycyclic aromatic hydrocarbons (PAH) and soot particles necessitates a detailed understanding of chemical reaction pathways responsible for their formation. The present review discus...

  20. Scale-Dependent Rates of Uranyl Surface Complexation Reaction in Sediments

    SciTech Connect

    Liu, Chongxuan; Shang, Jianying; Kerisit, Sebastien N.; Zachara, John M.; Zhu, Weihuang

    2013-03-15

    Scale-dependency of uranyl[U(VI)] surface complexation rates was investigated in stirred flow-cell and column systems using a U(VI)-contaminated sediment from the US Department of Energy, Hanford site, WA. The experimental results were used to estimate the apparent rate of U(VI) surface complexation at the grain-scale and in porous media. Numerical simulations using molecular, pore-scale, and continuum models were performed to provide insights into and to estimate the rate constants of U(VI) surface complexation at the different scales. The results showed that the grain-scale rate constant of U(VI) surface complexation was over 3 to 10 orders of magnitude smaller, dependent on the temporal scale, than the rate constant calculated using the molecular simulations. The grain-scale rate was faster initially and slower with time, showing the temporal scale-dependency. The largest rate constant at the grain-scale decreased additional 2 orders of magnitude when the rate was scaled to the porous media in the column. The scaling effect from the grain-scale to the porous media became less important for the slower sorption sites. Pore-scale simulations revealed the importance of coupled mass transport and reactions in both intragranular and inter-granular domains, which caused both spatial and temporal dependence of U(VI) surface complexation rates in the sediment. Pore-scale simulations also revealed a new rate-limiting mechanism in the intragranular porous domains that the rate of coupled diffusion and surface complexation reaction was slower than either process alone. The results provided important implications for developing models to scale geochemical/biogeochemical reactions.

  1. Pressure dependent product formation in the photochemically initiated allyl + allyl reaction.

    PubMed

    Seidel, Lars; Hoyermann, Karlheinz; Mauß, Fabian; Nothdurft, Jörg; Zeuch, Thomas

    2013-01-01

    Photochemically driven reactions involving unsaturated radicals produce a thick global layer of organic haze on Titan, Saturn's largest moon. The allyl radical self-reaction is an example for this type of chemistry and was examined at room temperature from an experimental and kinetic modelling perspective. The experiments were performed in a static reactor with a volume of 5 L under wall free conditions. The allyl radicals were produced from laser flash photolysis of three different precursors allyl bromide (C3H5Br), allyl chloride (C3H5Cl), and 1,5-hexadiene (CH2CH(CH2)2CHCH2) at 193 nm. Stable products were identified by their characteristic vibrational modes and quantified using FTIR spectroscopy. In addition to the (re-) combination pathway C3H5+C3H5 ? C6H10 we found at low pressures around 1 mbar the highest final product yields for allene and propene for the precursor C3H5Br. A kinetic analysis indicates that the end product formation is influenced by specific reaction kinetics of photochemically activated allyl radicals. Above 10 mbar the (re-) combination pathway becomes dominant. These findings exemplify the specificities of reaction kinetics involving chemically activated species, which for certain conditions cannot be simply deduced from combustion kinetics or atmospheric chemistry on Earth. PMID:24192913

  2. Sensory rhodopsin II\\/transducer complex formation in detergent and in lipid bilayers studied with FRET

    Microsoft Academic Search

    J. Kriegsmann; M. Brehs; J. P. Klare; M. Engelhard; J. Fitter

    2009-01-01

    The photophobic receptor from Natronomonas pharaonis (NpSRII) forms a photo-signalling complex with its cognate transducer (NpHtrII). In order to elucidate the complex formation in more detail, we have studied the intermolecular binding of both constituents (NpSRII and NpHtrII157; truncated at residue 157) in detergent buffers, and in lipid bilayers using FRET. The data for hetero-dimer formation of NpSRII\\/NpHtrII in detergent

  3. The glutathionyl radical formation in the reaction between manganese and glutathione and its neurotoxic implications.

    PubMed

    Shi, X L; Dalal, N S

    1990-10-01

    Electron spin resonance (ESR) spin trapping methodology has been used to study the reactions of manganese dusts with glutathione, employing alpha-(4-pyridyl-1-oxide)-N-tert-butyl-nitrone (PBN) and 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as spin traps. The results show evidence for the glutathionyl radical formation in the reactions of both MnO2 and manganese (III) acetate with glutathione. Based on these experimental observations, we hypothesise that the mechanism of neurotoxic effects of manganese might be due to the fact that the generation of glutathionyl radicals depletes the glutathione pool and reduces the glutathione shield against free radical products of dopamine metabolism and manganese induced reactive oxygenated species. PMID:2175380

  4. The reaction of an iridium PNP complex with parahydrogen facilitates polarisation transfer without chemical change† †Electronic supplementary information (ESI) available: Sample preparation, signal enhancements and raw data. CCDC 1026865. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4dt03088e Click here for additional data file. Click here for additional data file.

    PubMed Central

    Holmes, Arthur J.; Rayner, Peter J.; Cowley, Michael J.; Green, Gary G. R.; Whitwood, Adrian C.

    2015-01-01

    The short lived pincer complex [(C5H3N(CH2P(tBu)2)2)Ir(H)2(py)]BF4 is shown to be active for signal amplification by reversible exchange. This catalyst formulation enables the efficient transfer of polarization from parahydrogen to be placed into just a single molecule of the hyperpolarisation target, pyridine. When the catalysts 1H nuclei are replaced by 2H, increased levels of substrate hyperpolarization result and when the reverse situation is examined the catalyst itself is clearly visible through hyperpolarised signals. The ligand exchange pathways of [(C5H3N(CH2P(tBu)2)2)Ir(H)2(py)]BF4 that are associated with this process are shown to involve the formation of 16-electron [(C5H3N(CH2P(tBu)2)2)Ir(H)2]BF4 and the 18-electron H2 addition product [(C5H3N(CH2P(tBu)2)2)Ir(H)2(H2)]BF4. PMID:25410259

  5. Assessment of the potential for ammonium nitrate formation and reaction in Tank 241-SY-101

    SciTech Connect

    Pederson, L.R.; Bryan, S.A.

    1994-08-01

    Two principal scenarios by which ammonium nitrate may be formed were considered: (a) precipitation of ammonium nitrate in the waste, and (b) ammonium nitrate formation via the gas phase reaction of ammonia and nitrogen dioxide. The first of these can be dismissed because ammonium ions, which are necessary for ammonium nitrate precipitation, can exist only in negligibly small concentrations in strongly alkaline solutions. Gas phase reactions between ammonia, nitrogen dioxide, and water vapor in the gas phase represent the most likely means by which ammonium nitrate aerosols could be formed in Tank 241-SY-101. Predicted ammonium nitrate formation rates are largely controlled by the concentration of nitrogen dioxide. This gas has not been detected among those gases vented from the wastes using Fourier Transform Infrared Spectrometry (FTIR) or mass spectrometry. While detection limits for nitrogen dioxide have not been established experimentally, the maximum concentration of nitrogen dioxide in the gas phase in Tank 241-SY-101 was estimated at 0.1 ppm based on calculations using the HITRAN data base and on FTIR spectra of gases vented from the wastes. At 50 C and with 100 ppm ammonia also present, less than one gram of ammonium nitrate per year is estimated to be formed in the tank. To date, ammonium nitrate has not been detected on HEPA filters in the ventilation system, so any quantity that has been formed in the tank must be quite small, in good agreement with rate calculations. The potential for runaway exothermic reactions involving ammonium nitrate in Tank 241-SY-101 is minimal. Dilution by non-reacting waste components, particularly water, would prevent hazardous exothermic reactions from occurring within the waste slurry, even if ammonium nitrate were present. 41 refs.

  6. Real-Time Analysis of Immunogen Complex Reaction Kinetics Using Surface Plasmon Resonance

    Microsoft Academic Search

    Yong-Yi Yu; Bernard J. Van Wie; Alan R. Koch; David F. Moffett; William C. Davis

    1998-01-01

    Real-time biospecific interactions of immunogens, measured via BIAcore, were used to verify qualitatively a biosensor design which relies on analyte binding competition reactions to open cross-linked receptor channels. The complexes of importance are: (1) cardiac troponin I (TnI) and monoclonal mouse anti-TnI IgG mAb 265, (2) TnI and bispecific antibodies (BsAbs) which on one end recognize TnI while the other

  7. Error Investigations in Complex Automata Models for Reaction-Diffusion Systems

    Microsoft Academic Search

    Alfonso Caiazzo; Jean-luc Falcone; Bastien Chopard; Alfons G. Hoekstra

    2008-01-01

    Complex Automata (CxA) have been recently introduced as a paradigm to simulate multiscale systems as a collection of generalized\\u000a Cellular Automata on different scales. We present a basic mathematical framework to investigate the behavior of a CxA model\\u000a depending on scale separation and modeling choices. In particular, a simple CxA model for a reaction-diffusion system, based\\u000a on the lattice Boltzmann

  8. Visible-light induced isoindoles formation to trigger intermolecular diels-alder reactions in the presence of air.

    PubMed

    Lin, Chao; Zhen, Le; Cheng, Yong; Du, Hong-Jin; Zhao, Hui; Wen, Xiaoan; Kong, Ling-Yi; Xu, Qing-Long; Sun, Hongbin

    2015-06-01

    Visible-light induced isoindole formation triggered an intermolecular Diels-Alder reaction with dienophiles such as acetylenedicarboxylate and maleimides in the presence of air. The reaction resulted in excellent diastereoselctivity and high yields under mild reaction conditions. This protocol provides an atom-economical, transition-metal-free (TM-free) and straightforward approach to structurally diverse bridged-ring heterocycles from easily accessible molecules. PMID:25973634

  9. Physicochemical Controls on the Formation of Polynuclear Metal Complexes at Clay Mineral Surfaces

    E-print Network

    Sparks, Donald L.

    Physicochemical Controls on the Formation of Polynuclear Metal Complexes at Clay Mineral Surfaces R. G. Ford Metal sorption to clay minerals may lead to the formation of secondary precipitates, by enhanced dissolution of the clay mineral structure as indicated by enhanced levels of dissolved silica

  10. Rhodopsin-phospholipid complexes in apolar solvents: Formation and properties

    Microsoft Academic Search

    A. Darszon; M. Philipp; J. Zarco; M. Montal

    1978-01-01

    Summary The extraction of rhodopsin-phospholipid complexes into lipid solvents is described. Two general procedures were developed: (i) the extraction of detergent-solubilized rhodopsin which involved: (a) solubilization of rhodopsin from bovine retinal rod disc membranes in detergent solutions; (b) partial removal of detergent from solubilized rhodopsin; (c) recombination with a defined lipid mixture by sonication of lipid and protein in salt

  11. Interferogram formation in the presence of complex and large deformation

    E-print Network

    's caldera subsided about 5.4 meters. Three hours prior to the onset of the eruption, an earthquake (Mw 5.4) occurred, near the caldera. Because of the large and complex phase gradient due to the huge subsidence and the earthquake, it is difficult to form an interferogram inside the caldera that spans the eruption

  12. Base Flipping in Open Complex Formation at Bacterial Promoters

    PubMed Central

    Karpen, Mary E.; deHaseth, Pieter L.

    2015-01-01

    In the process of transcription initiation, the bacterial RNA polymerase binds double-stranded (ds) promoter DNA and subsequently effects strand separation of 12 to 14 base pairs (bp), including the start site of transcription, to form the so-called “open complex” (also referred to as RPo). This complex is competent to initiate RNA synthesis. Here we will review the role of ?70 and its homologs in the strand separation process, and evidence that strand separation is initiated at the ?11A (the A of the non-template strand that is 11 bp upstream from the transcription start site) of the promoter. By using the fluorescent adenine analog, 2-aminopurine, it was demonstrated that the ?11A on the non-template strand flips out of the DNA helix and into a hydrophobic pocket where it stacks with tyrosine 430 of ?70. Open complexes are remarkably stable, even though in vivo, and under most experimental conditions in vitro, dsDNA is much more stable than its strand-separated form. Subsequent structural studies of other researchers have confirmed that in the open complex the ?11A has flipped into a hydrophobic pocket of ?70. It was also revealed that RPo was stabilized by three additional bases of the non-template strand being flipped out of the helix and into hydrophobic pockets, further preventing re-annealing of the two complementary DNA strands. PMID:25927327

  13. Formation of Vacancy-Impurity Complexes by Kinetic Processes in Highly As-Doped Si

    Microsoft Academic Search

    V. Ranki; J. Nissilä; K. Saarinen

    2002-01-01

    Positron annihilation experiments have been applied to verify the formation mechanism of electrically inactive vacancy-impurity clusters in highly n-type Si. We show that the migration of V-As pairs at 450 K leads to the formation of V-As2 complexes, which in turn convert to stable V-As3 defects at 700 K. These processes manifest the formation of V-As3 as the dominant vacancy-impurity

  14. Formation of BaSO4 fibres with morphological complexity in aqueous polymer solutions.

    PubMed

    Qi, L; Cölfen, H; Antonietti, M; Li, M; Hopwood, J D; Ashley, A J; Mann, S

    2001-08-17

    BaSO4 fibres with morphological complexity were formed in aqueous solution with polyacrylate and partially monophosphonated poly(ethyleneoxide)-block-poly(methacrylic acid) additives by a simple precipitation reaction. For polyacrylate, formation of the fibrous deposits was strongly dependent on the level of supersaturation (S) and Ba2+:polymer molar ratio (R). At S = 60 to 80, and R = 3 to 14, highly anisotropic crystalline fibres consisting of bundles of BaSO4 nanofilaments were formed after several weeks, although the yield was low. The nanofilaments were also organized into cone-shaped aggregates at S = 80, and at lower R values these formed higher-order structures that consisted of multiple cone-on-cone assemblies with remarkable self-similarity. Increasing the supersaturation produced ovoid or cross-shaped dendritic particles for the range of molar ratios studied. In contrast, BaSO4 crystallisation in the presence of a partially phosphonated block copolymer gave a high yield of BaSO4 fibres up to 100 microm in length, and consisting of co-aligned bundles of 30 nm-diameter defect-free single-crystal nanofilaments with a uniform growth tip. A model for the defect-free growth of BaSO4 nanofilaments in aqueous polymer solutions based on amorphous precursor particles, vectorially directing forces and van der Waals attraction is proposed. PMID:11560323

  15. SOLUBILITY AND ION EXCHANGE METHODS FOR DETERMINING THE COMPLEX FORMATION OF PLUTONIUM AND AMERICIUM III IN AQUEOUS SOLUTIONS

    Microsoft Academic Search

    Moskin

    1959-01-01

    The formation of Pu(IV) complexes in phosphoric acid solutions and the ; dissociation constants of Pu(IV) phosphate complexes were studied by solubility ; methods. The Me: addend ratio of various Pu(IV) phosphate complexes and ; complexes of other investigated systems tends to shift, with the increase of ; complex forming agent concentration, toward the side of complexes with larger ;

  16. Functional cooperation between FACT and MCM is coordinated with cell cycle and differential complex formation

    Microsoft Academic Search

    Bertrand Chin-Ming Tan; Hsuan Liu; Chih-Li Lin; Sheng-Chung Lee

    2010-01-01

    BACKGROUND: Functional cooperation between FACT and the MCM helicase complex constitutes an integral step during DNA replication initiation. However, mode of regulation that underlies the proper functional interaction of FACT and MCM is poorly understood. METHODS & RESULTS: Here we present evidence indicating that such interaction is coordinated with cell cycle progression and differential complex formation. We first demonstrate the

  17. Reactivity of Cys4 Zinc Finger Domains with Gold(III) Complexes: Insights into the Formation of "Gold Fingers".

    PubMed

    Jacques, Aurélie; Lebrun, Colette; Casini, Angela; Kieffer, Isabelle; Proux, Olivier; Latour, Jean-Marc; Sénèque, Olivier

    2015-04-20

    Gold(I) complexes such as auranofin or aurothiomalate have been used as therapeutic agents for the treatment of rheumatoid arthritis for several decades. Several gold(I) and gold(III) complexes have also shown in vitro anticancer properties against human cancer cell lines, including cell lines resistant to cisplatin. Because of the thiophilicity of gold, cysteine-containing proteins appear as likely targets for gold complexes. Among them, zinc finger proteins have attracted attention and, recently, gold(I) and gold(III) complexes have been shown to inhibit poly(adenosine diphosphate ribose)polymerase-1 (PARP-1), which is an essential protein involved in DNA repair and in cancer resistance to chemotherapies. In this Article, we characterize the reactivity of the gold(III) complex [Au(III)(terpy)Cl]Cl2 (Auterpy) with a model of Zn(Cys)4 "zinc ribbon" zinc finger by a combination of absorption spectroscopy, circular dichroism, mass spectrometry, high-performance liquid chromatography analysis, and X-ray absorption spectroscopy. We show that the Zn(Cys)4 site of Zn·LZR is rapidly oxidized by Auterpy to form a disulfide bond. The Zn(2+) ion is released, and the two remaining cysteines coordinate the Au(+) ion that is produced during the redox reaction. Subsequent oxidation of these cysteines can take place in conditions of excess gold(III) complex. In the presence of excess free thiols mimicking the presence of glutathione in cells, mixing of the zinc finger model and gold(III) complex yields a different product: complex (Au(I))2·LZR with two Au(+) ions bound to cysteines is formed. Thus, on the basis of detailed speciation and kinetic measurements, we demonstrate herein that the destruction of Zn(Cys)4 zinc fingers by gold(III) complexes to achieve the formation of "gold fingers" is worth consideration, either directly or mediated by reducing agents. PMID:25839236

  18. Characterization of self-propagating formation reactions in Ni\\/Zr multilayered foils using reaction heats, velocities, and temperature-time profiles

    Microsoft Academic Search

    S. C. Barron; R. Knepper; N. Walker; T. P. Weihs

    2011-01-01

    We report on intermetallic formation reactions in vapor-deposited multilayered foils of Ni\\/Zr with 70 nm bilayers and overall atomic ratios of Ni:Zr, 2 Ni:Zr, and 7 Ni:2 Zr. The sequence of alloy phase formation and the stored energy is evaluated at slow heating rates (?1 K\\/s) using differential scanning calorimetry traces to 725 °C. All three chemistries initially form a

  19. Characterization of self-propagating formation reactions in Ni\\/Zr multilayered foils using reaction heats, velocities, and temperature-time profiles

    Microsoft Academic Search

    S. C. Barron; R. Knepper; N. Walker; T. P. Weihs

    2011-01-01

    We report on intermetallic formation reactions in vapor-deposited multilayered foils of Ni\\/Zr with 70 nm bilayers and overall atomic ratios of Ni:Zr, 2 Ni:Zr, and 7 Ni:2 Zr. The sequence of alloy phase formation and the stored energy is evaluated at slow heating rates (~1 K\\/s) using differential scanning calorimetry traces to 725 °C. All three chemistries initially form a

  20. Asymmetric Catalytic Cascade Reactions for Constructing Diverse Scaffolds and Complex Molecules.

    PubMed

    Wang, Yao; Lu, Hong; Xu, Peng-Fei

    2015-07-21

    With the increasing concerns about chemical pollution and sustainability of resources, among the significant challenges facing synthetic chemists are the development and application of elegant and efficient methods that enable the concise synthesis of natural products, drugs, and related compounds in a step-, atom- and redox-economic manner. One of the most effective ways to reach this goal is to implement reaction cascades that allow multiple bond-forming events to occur in a single vessel. This Account documents our progress on the rational design and strategic application of asymmetric catalytic cascade reactions in constructing diverse scaffolds and synthesizing complex chiral molecules. Our research is aimed at developing robust cascade reactions for the systematic synthesis of a range of interesting molecules that contain structural motifs prevalent in natural products, pharmaceuticals, and biological probes. The strategies employed to achieve this goal can be classified into three categories: bifunctional base/Brønsted acid catalysis, covalent aminocatalysis/N-heterocyclic carbene catalysis, and asymmetric organocatalytic relay cascades. By the use of rationally designed substrates with properly reactive sites, chiral oxindole, chroman, tetrahydroquinoline, tetrahydrothiophene, and cyclohexane scaffolds were successfully assembled under bifunctional base/Brønsted acid catalysis from simple and readily available substances such as imines and nitroolefins. We found that some of these reactions are highly efficient since catalyst loadings as low as 1 mol % can promote the multistep sequences affording complex architectures with high stereoselectivities and yields. Furthermore, one of the bifunctional base/Brønsted acid-catalyzed cascade reactions for the synthesis of chiral cyclohexanes has been used as a key step in the construction of the tetracyclic core of lycorine-type alkaloids and the formal synthesis of ?-lycorane. Guided by the principles of covalent aminocatalysis and N-heterocyclic carbene catalysis, we synthesized chiral piperidine, indole, and cyclobutane derivatives. The synthesis of chiral cyclobutanes and pyrroloindolones showed unprecedented reactivity of substrates and catalysts. The development of the strategy of asymmetric organocatalytic relay cascades has provided a useful tool for the controlled synthesis of specific diastereomers in complex molecules. This Account gives a panoramic view and the logic of our research on the design, development, and applications of asymmetric catalytic cascade reactions that will potentially provide useful insights into exploring new reactions. PMID:26099943

  1. Formation of ruthenium thiolates via complexes of molecular hydrogen

    SciTech Connect

    Field, L.D.; Hambley, T.W.; Yau, B.C.K. (Univ. of Sydney, Sydney (Australia))

    1994-04-27

    RuH[sub 2](DMPE)[sub 2][DMPE = 1,2-bis(dimethylphosphino)ethane] was synthesized by reduction of trans-RuCl[sub 2](DMPE)[sub 2] with sodium/2-propanol. Protonation of RuH[sub 2](DMPE)[sub 2] with weak organic acids such as methanol, ethanol, and thiols affords the molecular hydrogen complex trans-[RuH([eta][sup 2]-H[sub 2])(DMPE)[sub 2

  2. Disulphide bond formation by glutathione via the glutathione-trimethylamine- N-oxide complex

    NASA Astrophysics Data System (ADS)

    Brzezinski, Bogumil; Labowski, M.; Zundel, Georg

    1995-07-01

    Glutathione and its diethyl ester complexes (1 : 1) with trimethylamine N-oxide (TMAO) were studied by FTIR and 1H NMR spectrocopy. Immediately after mixing, complexes with strong SH⋯ON ? S -⋯H +ON hydrogen bonds are formed. They show large proton polarizability due to the fluctuation of the proton within these bonds. These complexes are, however, not stable since disulphide bonds are formed. Thus, TMAO regulates the disulphide bond formation in glutathione systems.

  3. The central chirality of the metal atom and configurational relations in asymmetric reactions catalysed by metal complexes

    NASA Astrophysics Data System (ADS)

    Pavlov, Valerii A.

    2004-12-01

    The recently published data on the dependence of the configuration of the reaction product on the structure of a catalytic metal complex (or an intermediate determining the asymmetric induction) in asymmetric catalytic reactions of hydrogen-transfer hydrogenation of acetophenone, hydroformylation of styrene, allylic alkylation of 1,3-diphenylprop-2-enyl acetate and alkylation of benzaldehyde with dialkylzinc are systematised. The applicabilities of octant and quadrant projections of the complexes are compared in order to establish the relationships between their structures and the enantioselectivities of the reactions. The known mechanisms of asymmetric induction in these reactions are discussed with regard to the C1 or C2 symmetry of the catalytic complex. The reasons for a decrease in the enantioselectivities of hydrogen-transfer hydrogenation, hydroformylation and alkylation by dialkylzinc [in the absence of Ti(OPri)4] when performed with complexes with chiral C2-symmetric ligands (as compared with complexes with asymmetric ligands) are considered.

  4. Mononuclear and dinuclear monoperoxovanadium(v) complexes with a hetero ligand. 1.(1) Self-decomposition reaction, detection of reactive oxygen species, and oxidizing ability.

    PubMed

    Kanamori, Kan; Nishida, Kazuya; Miyata, Nanako; Shimoyama, Toshiyuki; Hata, Kaori; Mihara, Chie; Okamoto, Ken-Ichi; Abe, Yuriko; Hayakawa, Shingo; Matsugo, Seiichi

    2004-11-01

    A mononuclear peroxovanadium(V) complex with histamine-N,N-diacetate (histada), K[VO(O(2))(histada)], and a dinuclear peroxovanadium(V) complex with 2-oxo-1,3-diaminopropane-N,N,N',N'-tetraacetate (dpot), Cs(3)[(VO)(2)(O(2))(2)(dpot)], were prepared and characterized. The self-decomposition reaction was examined for these peroxovanadium(V) complexes as well as for K[VO(O(2))(cmhist)] (cmhist = N-carboxymethylhistidinate). The reaction profiles depicted by the absorbance change in the UV-vis spectrum show a sigmoid shape with an induction period. The induction period is reduced by the addition of acid, fluoride, thiocyanate, VO(2+), VO(2)(+), and trolox compared to the solution containing perchlorate. On the other hand, the induction period was elongated by the addition of chloride, bromide, and 2-tert-butyl-p-cresol. These behaviors are discussed on the basis of a radical chain mechanism. The self-decomposition reactions have also been followed by the (1)H and (51)V NMR and EPR spectra. These spectral studies as well as the UV-vis spectral study indicate that vanadium(V) is partly reduced to vanadium(IV) in the self-decomposition process. The histada complex yields a mixed-valence dinuclear complex in a concentrated solution, and the dpot complex yields a mixed-valence tetranuclear complex. The reduction of vanadium ion suggests that the peroxo ligand may act as a reducing agent. In order to know the fate of the peroxo ligand, we tried to detect superoxide anion and hydroxyl radical, which were anticipated to be produced in the self-decomposition process. The formation of superoxide anion was spectrophotometrically confirmed using two independent methods, including the reduction of cytochrome c and the reduction of sodium 4-[3-(iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate (WST-1). The formation of hydroxyl radical was confirmed by an EPR spin trapping technique. The oxidizing abilities of the peroxovanadium(V) complexes toward bovine serum albumin (BSA) were also evaluated. In the protein carbonyl assay, it was found that the total amount of protein carbonyl in BSA was increased by the reaction with the peroxovanadium complexes in the concentration-dependent manner. In addition, the oxidation of sulfhydryl group in BSA induced by the peroxovanadium complexes was confirmed. PMID:15500351

  5. Formation of octahedral iridium(III) dihydrides from the reaction of ortho-chelated aryliridium(I) compounds with dihydrogen

    SciTech Connect

    van der Zeijden, A.A.H.; van Koten, G.; Lujik, R.; Grove, D.M.

    1988-07-01

    The reaction of Ir/sup I/(CH/sub 2/NMe/sub 2/)-2-R/sup 1/-4-R/sup 2/-6)(COD) (COD = cyclooacta-1,5-diene) with dihydrogen in CD/sub 2/Cl/sub 2/ was monitored by /sup 1/H NMR. At -20/sup 0/C quantitative formation of the novel dihydride complexes Ir/sup III/H/sub 2/(C/sub 6/H/sub 2/(CH/sub 2/NMe/sub 2/)-2-R/sup 1/-4-R/sup 2/-6)(COD) (R/sup 1/ = H, R/sup 2/ = CH/sub 2/NMe/sub 2/ (10), Me (11); R/sup 2/ = H, R/sup 1/ = H (12), Me (13), CH/sub 2/NMe/sub 2/ (14); R/sup 1/ = R/sup 2/ = CH/sub 2/NMe/sub 2/ (15)) occurs. Further reactions, the type of which depends on the bulkiness of the R/sup 1/ and R/sup 2/ groups, occur when these solutions are warmed to 0/sup 0/C. Complexes 12-14 (R/sup 2/ = H) lose H/sub 2/ to re-form Ir/sup I/(C/sub 6/H/sub 3/(CH/sub 2/NMe/sub 2/)-2-R/sup 1/-4)(COD). In contrast, complexes 10, 11, and 15 (R/sup 2/ = alkyl) react further by means of C(aryl)-H reductive elimination. For complex 15 (R/sup 1/ = CH/sub 2/NMe/sub 2/) this results in quantitative formation of 1,3,5-(Me/sub 2/NCH/sub 2/)/sub 3/C/sub 6/H/sub 3/ and IrH(COD). In Ir/sup III/H/sub 2/(C/sub 6/H/sub 3/(CH/sub 2/NMe/sub 2/)-2-R-6)(COD) (R = alkyl (10 and 11)), C(aryl)-H reductive elimination is followed by re-addition of another C(aryl)-H bond, which upon subsequent reductive elimination of H/sub 2/, yields the rearranged iridium(I) complexes Ir/sup I/(C/sub 6/H/sub 3/(CH/sub 2/NMe/sub 2/)-2-R-4)(COD). Since the rearrangement of Ir/sup I/(C/sub 6/H/sub 3/-(CH/sub 2/NMe/sub 2/)-2-R-6)(COD) to Ir/sup I/(C/sub 6/H/sub 3/(CH/sub 2/NMe/sub 2/)-2-R-4)(COD) can also be induced thermally at 60/sup 0/C, it is therefore being catalyzed by dihydrogen at 0/sup 0/C. None of these reactions with dihydrogen is attended by hydrogenation of the COD ligand.

  6. Removal of boron from wastewater by the hydroxyapatite formation reaction using acceleration effect of ammonia.

    PubMed

    Yoshikawa, Eishi; Sasaki, Atsushi; Endo, Masatoshi

    2012-10-30

    The mechanism was discussed for the removal of boron by the hydroxyapatite (HAp) formation reaction using Ca(OH)(2) and (NH(4))(2)HPO(4) in room temperature. Time required to remove boron was 20 min by adding Ca(OH)(2) and (NH(4))(2)HPO(4) for the remaining boron to below 1mg/L. The removal rate of boron was controlled by the HAp precipitate formation and the presence of ammonia. From the XRD patterns and SEM images, HAp could be confirmed in the precipitate product. The reaction between borate ions and calcium hydroxide was accelerated by dehydration with ammonia; the borate-calcium hydroxide compound coprecipitated with resulting HAp. Although the removal of boron decreased in the presence of sulfate, phosphate, and aluminum, these effects could be prevented by adding excess Ca(OH)(2). Interference of fluoride ions was eliminated by adding Al(3+). Sodium alpha-olefin sulfonate was the most effective coagulant for HAp precipitation. The proposed boron removal method has several advantages about treating time and ability of boron removal. The method was successfully applied to the real hot spring wastewater. PMID:22981286

  7. Uranium(III)-mediated C-C-coupling of terminal alkynes: formation of dinuclear uranium(IV) vinyl complexes.

    PubMed

    Kosog, Boris; Kefalidis, Christos E; Heinemann, Frank W; Maron, Laurent; Meyer, Karsten

    2012-08-01

    The previously reported uranium(III) complex [(((Ad)ArO)(3)N)U(III)(DME)] (1; Ad = adamantane, DME = 1,2-dimethoxyethane) reacts with the terminal bis-alkynes 1,7-octadiyne or 1,6-heptadiyne in C-C-coupling reactions to form the uranium(IV) vinyl complexes [{(((Ad)ArO)(3)N)U(IV)}(2)(?-?(2):?(1)-1,2-(CH)(2)-cyclohexane)] (2) and [{(((Ad)ArO)(3)N)U(IV)}(2)(?-?(2):?(2)-1,2-(CH)(2)-cyclopentane)] (3). With the monoalkynes 1-hexyne or 4-(t)butyl-phenylacetylene, the complexes [{(((Ad)ArO)(3)N)U(IV)}(2)(?-?(2)(C1):?(1)(C4)-2-(n)Bu-1,3-octadiene)] (4) and [{(((Ad)ArO)(3)N)U(IV)}(2)(?-?(2)(C4):?(1)(C1)-1,3-di-(p-(t)Bu-phenyl)butadiene))] (5), are formed. These are the first four examples of uranium vinyl complexes that are reported and crystallographically characterized. In addition, detailed DFT calculations are presented to establish a possible mechanism for their formation and explain the differences found for the coordination of the hydrocarbon fragments. In contrast to a previously proposed monometallic pathway for catalytic hydroamination of alkynes and alkyne dimerization involving a uranium vinyl intermediate at uranium(III) complexes, the calculations clearly support a bimetallic mechanism, since its transition states are energetically the most favored. PMID:22738030

  8. Gas phase reactions of electrons, negative ions and free-radicals with transition metal complexes

    NASA Astrophysics Data System (ADS)

    Dillow, Glen William

    1986-11-01

    Negative chemical ionization (NCI) mass spectrometry is used as a probe to examine the negative ion chemistry of metal coordination complexes in the gas phase. Reaction of metal complexes with electrons, nucleophiles, and free-radicals in several NCI plasmas are identified. The first phase details the characterization of (M + CnH2n)(-) and (M + CnH2n + 1)(-) (n=1-5) hydrocarbon adduct ions which are observed at m/z values above the molecular ion, (M)(-), in the methane NCI mass spectra of a variety of metal coordination complexes. In the second and major phase of the project, the reagent gases NF3, CF2Cl2, and CF3Br are used as negative channel chemical ionization reagent gases to generate high abundances of fluoride, chloride, and bromide ions respectively, and the gas phase negative ion chemistry of a variety of metal coordination complexes in the presence of these reagent gases is examined. The NCI mass spectra are reported for the zinc (II) complexes of acetylacetone and its fluorinated analogs, as well as the cobalt (II), nickel (II), copper (II), and zinc (II) complexes of acetylacetone, N,N'-ethylenebis (salicylimine), and meso-tetraphenylporphin. Evidence is presented for the occurrence of a variety of ion/molecule and free radical/molecule processes as well as resonance electron capture.

  9. Synthesis and reactions of the first room temperature stable Li/Cl phosphinidenoid complex.

    PubMed

    Nesterov, Vitaly; Schnakenburg, Gregor; Espinosa, Arturo; Streubel, Rainer

    2012-11-19

    P-Trityl substituted Li/Cl phosphinidenoid tungsten(0) complex (OC)5W{Ph3CP(Li/12-crown-4)Cl} (3) was prepared via chlorine/lithium exchange in complex (OC)5W{Ph3CPCl2} (2) using (t)BuLi in the presence of 12-crown-4 in tetrahydrofuran (THF) at low temperature; complex 3 possesses significantly increased thermal stability in contrast to previously reported analogue derivatives. Terminal phosphinidene-like reactivity of 3 was used in reactions with benzaldehyde and isopropyl alcohol as oxaphosphirane complex (OC)5W{Ph3CPC(Ph)O} (5) and phosphinite complex (OC)5W{Ph3CP(H)O(i)Pr} (6) were obtained selectively. Reaction of 3 with phosgene allowed to obtain the first kinetically stabilized chloroformylphosphane complex (OC)5W{Ph3CP(Cl)C(O)Cl} (4). Density functional theory (DFT) calculations revealed remarkable differences in the degree of P-Li bond dissociation 3a-d: using a continuum model 3 displays a covalent character of P-Li bond (COSMO (THF)) (a), which becomes elongated if 12-crown-4 is coordinated to lithium (b) and is cleaved if a dimethylether unit is additionally coordinated to lithium (c). A similar result was obtained for the case of 3(thf)4 in which also a solvent-separated ion pair structure is present (d). All products were unambiguously characterized by various spectroscopic means and, in the case of 2 and 4-6, by single-crystal X-ray diffraction analysis. In all structures very long P-C bonds were determined being in the range from 1.896 to 1.955 Å. PMID:23134468

  10. Carbon Isotopic Fractionation During Formation of Macromolecular Organic Grain Coatings via FTT Reactions

    NASA Technical Reports Server (NTRS)

    Nuth, J. A.; Johnson, N. M.; Elsila-Cook, J.; Kopstein, M.

    2011-01-01

    Observations of carbon isotopic fractionation of various organic compounds found in meteorites may provide useful diagnostic information concerning the environments and mechanisms that were responsible for their formation. Unfortunately, carbon has only two stable isotopes, making interpretation of such observations quite problematic. Chemical reactions can increase or decrease the C-13/C-12 ratio by various amounts, but the final ratio will depend on the total reaction pathway followed from the source carbon to the final product, a path not readily discernable after 4.5 billion years. In 1970 Libby showed that the C-13/C-12 ratios of terrestrial and meteoritic carbon were similar by comparing carbon from the Murchison meteorite to that of terrestrial sediments. More recent studies have shown that the C-13/C-12 ratio of the Earth and meteorites may be considerably enriched in C-13 compared to the ratio observed in the solar wind [2], possibly suggesting that carbon produced via ion-molecule reactions in cold dark clouds could be an important source of terrestrial and meteoritic carbon. However, meteoritic carbon has been subjected to parent body processing that could have resulted in significant changes to the C-13/C-12 ratio originally present while significant variation has been observed in the C-13/C-12 ratio of the same molecule extracted from different terrestrial sources. Again we must conclude that understanding the ratio found in meteorites may be difficult.

  11. Prompt HO2 formation following the reaction of OH with aromatic compounds under atmospheric conditions.

    PubMed

    Nehr, Sascha; Bohn, Birger; Wahner, Andreas

    2012-06-21

    The secondary formation of HO(2) radicals following OH + aromatic hydrocarbon reactions in synthetic air under normal pressure and temperature was investigated in the absence of NO after pulsed production of OH radicals. OH and HO(x) (=OH + HO(2)) decay curves were recorded using laser-induced fluorescence after gas-expansion. The prompt HO(2) yields (HO(2) formed without preceding NO reactions) were determined by comparison to results obtained with CO as a reference compound. This approach was recently introduced and applied to the OH + benzene reaction and was extended here for a number of monocyclic aromatic hydrocarbons. The measured HO(2) formation yields are as follows: toluene, 0.42 ± 0.11; ethylbenzene, 0.53 ± 0.10; o-xylene, 0.41 ± 0.08; m-xylene, 0.27 ± 0.06; p-xylene, 0.40 ± 0.09; 1,2,3-trimethylbenzene, 0.31 ± 0.06; 1,2,4-trimethylbenzene, 0.37 ± 0.09; 1,3,5-trimethylbenzene, 0.29 ± 0.08; hexamethylbenzene, 0.32 ± 0.08; phenol, 0.89 ± 0.29; o-cresol, 0.87 ± 0.29; 2,5-dimethylphenol, 0.72 ± 0.12; 2,4,6-trimethylphenol, 0.45 ± 0.13. For the alkylbenzenes HO(2) is the proposed coproduct of phenols, epoxides, and possibly oxepins formed in secondary reactions with O(2). In most product studies the only quantified coproducts were phenols whereas only a few studies reported yields of epoxides. Oxepins have not been observed so far. Together with the yields of phenols from other studies, the HO(2) yields determined in this work set an upper limit to the combined yields of epoxides and oxepins that was found to be significant (?0.3) for all investigated alkylbenzenes except m-xylene. For the hydroxybenzenes the currently proposed HO(2) coproducts are dihydroxybenzenes. For phenol and o-cresol the determined HO(2) yields are matching the previously reported dihydroxybenzene yields, indicating that these are the only HO(2) forming reaction channels. For 2,5-dimethylphenol and 2,4,6-trimethylphenol no complementary product studies are available. PMID:22195640

  12. Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes.

    PubMed

    Szczelkun, Mark D; Tikhomirova, Maria S; Sinkunas, Tomas; Gasiunas, Giedrius; Karvelis, Tautvydas; Pschera, Patrizia; Siksnys, Virginijus; Seidel, Ralf

    2014-07-01

    Clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems protect bacteria and archaea from infection by viruses and plasmids. Central to this defense is a ribonucleoprotein complex that produces RNA-guided cleavage of foreign nucleic acids. In DNA-targeting CRISPR-Cas systems, the RNA component of the complex encodes target recognition by forming a site-specific hybrid (R-loop) with its complement (protospacer) on an invading DNA while displacing the noncomplementary strand. Subsequently, the R-loop structure triggers DNA degradation. Although these reactions have been reconstituted, the exact mechanism of R-loop formation has not been fully resolved. Here, we use single-molecule DNA supercoiling to directly observe and quantify the dynamics of torque-dependent R-loop formation and dissociation for both Cascade- and Cas9-based CRISPR-Cas systems. We find that the protospacer adjacent motif (PAM) affects primarily the R-loop association rates, whereas protospacer elements distal to the PAM affect primarily R-loop stability. Furthermore, Cascade has higher torque stability than Cas9 by using a conformational locking step. Our data provide direct evidence for directional R-loop formation, starting from PAM recognition and expanding toward the distal protospacer end. Moreover, we introduce DNA supercoiling as a quantitative tool to explore the sequence requirements and promiscuities of orthogonal CRISPR-Cas systems in rapidly emerging gene-targeting applications. PMID:24912165

  13. Lewis acid-water/alcohol complexes as hydrogen atom donors in radical reactions.

    PubMed

    Povie, Guillaume; Renaud, Philippe

    2013-01-01

    Water or low molecular weight alcohols are, due to their availability, low price and low toxicity ideal reagents for organic synthesis. Recently, it was reported that, despite the very strong BDE of the O-H bond, they can be used as hydrogen atom donors in place of expensive and/or toxic group 14 metal hydrides when boron and titanium(III) Lewis acids are present. This finding represents a considerable innovation and uncovers a new perspective on the paradigm of hydrogen atom transfers to radicals. We discuss here the influence of complex formation and other association processes on the efficacy of the hydrogen transfer step. A delicate balance between activation by complex formation and deactivation by further hydrogen bonding is operative. PMID:23967699

  14. The formation and study of titanium, zirconium, and hafnium complexes

    NASA Technical Reports Server (NTRS)

    Wilson, Bobby; Sarin, Sam; Smith, Laverne; Wilson, Melanie

    1989-01-01

    Research involves the preparation and characterization of a series of Ti, Zr, Hf, TiO, and HfO complexes using the poly(pyrazole) borates as ligands. The study will provide increased understanding of the decomposition of these coordination compounds which may lead to the production of molecular oxygen on the Moon from lunar materials such as ilmenite and rutile. The model compounds are investigated under reducing conditions of molecular hydrogen by use of a high temperature/pressure stainless steel autoclave reactor and by thermogravimetric analysis.

  15. Ganymede and Callisto - Complex crater formation and planetary crusts

    NASA Technical Reports Server (NTRS)

    Schenk, Paul M.

    1991-01-01

    Results are presented on measurements of crater depths and other morphological parameters (such as central peak and terrace frequency) of fresh craters on Ganymede and Callisto, two geophysically very similar but geologically divergent large icy satellites of Jupiter. These data were used to investigate the crater mechanics on icy satellites and the intersatellite crater scaling and crustal properties. The morphological transition diameters of and complex crater depths on Ganymede and Callisto were found to be similar, indicating that the crusts of both satellites are dominated by water ice with only a minor rocky component.

  16. Complex experience promotes capillary formation in young rat visual cortex.

    PubMed

    Black, J E; Sirevaag, A M; Greenough, W T

    1987-12-29

    The metabolic support of neural plasticity was examined by comparing cerebral vasculature of weanling rats reared in complex environments (EC) to littermates reared individually (IC) or socially in pairs (SC). EC rats have a thicker occipital cortex, more synaptic contacts per neuron and larger dendritic arbors compared to SC or IC rats, potentially increasing local metabolic demands on microvasculature. Capillaries of EC rats were closer together than those of SC or IC rats and potentially filled a greater fraction of cortex with blood. The closer capillary spacing in young EC rats suggests compensatory angiogenesis in response to increased metabolic demand. PMID:2450317

  17. Chemically activated formation of organic acids in reactions of the Criegee intermediate with aldehydes and ketones.

    PubMed

    Jalan, Amrit; Allen, Joshua W; Green, William H

    2013-10-21

    Reactions of the Criegee intermediate (CI, ?CH2OO?) are important in atmospheric ozonolysis models. In this work, we compute the rates for reactions between ?CH2OO? and HCHO, CH3CHO and CH3COCH3 leading to the formation of secondary ozonides (SOZ) and organic acids. Relative to infinitely separated reactants, the SOZ in all three cases is found to be 48-51 kcal mol(-1) lower in energy, formed via 1,3-cycloaddition of ?CH2OO? across the C=O bond. The lowest energy pathway found for SOZ decomposition is intramolecular disproportionation of the singlet biradical intermediate formed from cleavage of the O-O bond to form hydroxyalkyl esters. These hydroxyalkyl esters undergo concerted decomposition providing a low energy pathway from SOZ to acids. Geometries and frequencies of all stationary points were obtained using the B3LYP/MG3S DFT model chemistry, and energies were refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. RRKM calculations were used to obtain microcanonical rate coefficients (k(E)) and the reservoir state method was used to obtain temperature and pressure dependent rate coefficients (k(T, P)) and product branching ratios. At atmospheric pressure, the yield of collisionally stabilized SOZ was found to increase in the order HCHO < CH3CHO < CH3COCH3 (the highest yield being 10(-4) times lower than the initial ?CH2OO? concentration). At low pressures, chemically activated formation of organic acids (formic acid in the case of HCHO and CH3COCH3, formic and acetic acid in the case of CH3CHO) was found to be the major product channel in agreement with recent direct measurements. Collisional energy transfer parameters and the barrier heights for SOZ reactions were found to be the most sensitive parameters determining SOZ and organic acid yield. PMID:23958859

  18. A common intermediate for N2 formation in enzymes and zeolites: side-on Cu-nitrosyl complexes

    SciTech Connect

    Kwak, Ja Hun; Lee, Jong H.; Burton, Sarah D.; Lipton, Andrew S.; Peden, Charles HF; Szanyi, Janos

    2013-09-16

    Understanding the mechanisms of catalytic processes requires the identification of reaction centers and key intermediates, both of which are often achieved by the use of spectroscopic characterization tools. Due to the heterogeneity of active centers in heterogeneous catalysts, it is frequently difficult to identify the specific sites that are responsible for the overall activity. Furthermore, the simultaneous presence of a large number of surface species on the catalyst surface often poses a great challenge for the unambiguous determination of the relevant species in the reaction mechanism. In contrast, enzymes possess catalytically active centers with precisely defined coordination environments that are only able to accommodate intermediates relevant to the specific catalytic process. Here we show that side-on Cu+-NO+ complexes characterized by high magnetic field solid state magic angle spinning nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopies are the key intermediates in the selective catalytic reduction of NO over Cu-SSZ-13 zeolite catalysts. Analogous intermediates have been observed and characterized in nitrite reductase enzymes, and shown to be the critical intermediates in the formation of N2 for anaerobic ammonium oxidation reactions.[1] The identification of this key reaction intermediate, combined with the results of our prior kinetic studies, allows us to propose a new reaction mechanism for the selective catalytic reduction of NO with NH3 under oxygen-rich environments over Cu-SSZ-13 zeolites, a key reaction in automotive emission control. The authors acknowledge the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy/Vehicle Technologies Program for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle Memorial Institute.

  19. Landscape complexity influences route-memory formation in navigating pigeons

    PubMed Central

    Mann, Richard P.; Armstrong, Chris; Meade, Jessica; Freeman, Robin; Biro, Dora; Guilford, Tim

    2014-01-01

    Observations of the flight paths of pigeons navigating from familiar locations have shown that these birds are able to learn and subsequently follow habitual routes home. It has been suggested that navigation along these routes is based on the recognition of memorized visual landmarks. Previous research has identified the effect of landmarks on flight path structure, and thus the locations of potentially salient sites. Pigeons have also been observed to be particularly attracted to strong linear features in the landscape, such as roads and rivers. However, a more general understanding of the specific characteristics of the landscape that facilitate route learning has remained out of reach. In this study, we identify landscape complexity as a key predictor of the fidelity to the habitual route, and thus conclude that pigeons form route memories most strongly in regions where the landscape complexity is neither too great nor too low. Our results imply that pigeons process their visual environment on a characteristic spatial scale while navigating and can explain the different degrees of success in reproducing route learning in different geographical locations. PMID:24451267

  20. Formation of Au and tetrapyridyl porphyrin complexes in superfluid helium.

    PubMed

    Feng, Cheng; Latimer, Elspeth; Spence, Daniel; Al Hindawi, Aula M A A; Bullen, Shem; Boatwright, Adrian; Ellis, Andrew M; Yang, Shengfu

    2015-06-24

    Binary clusters containing a large organic molecule and metal atoms have been formed by the co-addition of 5,10,15,20-tetra(4-pyridyl)porphyrin (H2TPyP) molecules and gold atoms to superfluid helium nanodroplets, and the resulting complexes were then investigated by electron impact mass spectrometry. In addition to the parent ion H2TPyP yields fragments mainly from pyrrole, pyridine and methylpyridine ions because of the stability of their ring structures. When Au is co-added to the droplets the mass spectra are dominated by H2TPyP fragment ions with one or more Au atoms attached. We also show that by switching the order in which Au and H2TPyP are added to the helium droplets, different types of H2TPyP-Au complexes are clearly evident from the mass spectra. This study suggests a new route for the control over the growth of metal-organic compounds inside superfluid helium nanodroplets. PMID:26059415

  1. DNA Polymerase ? Subunit Residues and Interactions Required for Efficient Initiation Complex Formation Identified by a Genetic Selection.

    PubMed

    Lindow, Janet C; Dohrmann, Paul R; McHenry, Charles S

    2015-07-01

    Biophysical and structural studies have defined many of the interactions that occur between individual components or subassemblies of the bacterial replicase, DNA polymerase III holoenzyme (Pol III HE). Here, we extended our knowledge of residues and interactions that are important for the first step of the replicase reaction: the ATP-dependent formation of an initiation complex between the Pol III HE and primed DNA. We exploited a genetic selection using a dominant negative variant of the polymerase catalytic subunit that can effectively compete with wild-type Pol III ? and form initiation complexes, but cannot elongate. Suppression of the dominant negative phenotype was achieved by secondary mutations that were ineffective in initiation complex formation. The corresponding proteins were purified and characterized. One class of mutant mapped to the PHP domain of Pol III ?, ablating interaction with the ? proofreading subunit and distorting the polymerase active site in the adjacent polymerase domain. Another class of mutation, found near the C terminus, interfered with ? binding. A third class mapped within the known ?-binding domain, decreasing interaction with the ?2 processivity factor. Surprisingly, mutations within the ? binding domain also ablated interaction with ?, suggesting a larger ? binding site than previously recognized. PMID:25987558

  2. Molecular factors affecting the complex formation between deferiprone (L1) and Cu(II). Possible implications on efficacy and toxicity.

    PubMed

    Pashalidis, I; Kontoghiorghes, G J

    2001-01-01

    Deferiprone (1,2-dimethyl-3-hydroxypyrid-4-one, L1, CAS 30652-11-0) is a new chelating drug used worldwide for the treatment of iron overloading conditions. Spectrophotometric and potentiometric measurements were carried out to investigate the interaction of L1 with Cu(II) ions under different conditions. The complexation of Cu(II) ions with L1 in aqueous solution leads predominantly to the formation of the Cu(L1)2 species at a pH range of 4-9. The experimental results indicate that L1 has high affinity for Cu(II) with stability constants log beta 11 = 10.3 +/- 0.9 and log beta 12 = 19.2 +/- 0.6. The effect of Cu(II) ions on the affinity of L1 for Fe(III) ions by competition reactions in vitro indicate displacement of Fe(III) in a concentration dependent manner by Cu(II). Similarly, the presence of different buffers at various pH values resulted in the formation of different stoichiometry L1 complexes with Cu(II) and of mixed complexes with buffer anions. The strong interaction of L1 with Cu(II) may have implications on the therapeutic and toxicological properties of this chelating drug. In particular, L1 may be used in the treatment of copper overloading conditions, such as Wilson's disease or other conditions where copper toxicity is implicated. PMID:11799848

  3. Ligand exchange and complex formation kinetics studied by NMR exemplified on fac-[(CO) 3M(H 2O)] + (M = Mn, Tc, Re)

    Microsoft Academic Search

    Lothar Helm

    2008-01-01

    In this review ligand exchange and complex formation reactions on fac-[(CO)3M(H2O)3]+ (M=Mn, Tc, Re) and on fac-[(CO)2(NO)Re(H2O)3]2+ are presented. A variety of experimental NMR techniques are described and it is shown that sometimes combinations of techniques applied at variable temperature or variable pressure allowed to measure exchange rate constants and their activation parameters as well as thermodynamic parameters. Furthermore, the

  4. Complex Particle and Light Fragment Emission in the Cascade-Exciton Model of Nuclear Reactions

    E-print Network

    Stepan G. Mashnik; Arnold J. Sierk; Konstantin K. Gudima

    2002-08-23

    A brief description of our improvements and refinements that led from the CEM95 version of the Cascade-Exciton Model (CEM) code to CEM97 and to CEM2k is given. The increased accuracy and predictive power of the code CEM2k are shown by several examples. To describe fission and light-fragment (heavier than 4He) production, the CEM2k code has been merged with the GEM2 code of Furihata. We present some results on proton-induced fragmentation and fission reactions predicted by this extended version of CEM2k. We show that merging CEM2k with GEM2 allows us to describe many fission and fragmentation reactions in addition to the spallation reactions which are already relatively well described. We have initiated another approach to describe fission, complex particles and fragment emission by developing further our CEM2k code addressing specifically these problems. In this effort, we have developed our own universal approximation for inverse cross sections, new routines to calculate Coulomb barriers and widths of emitted particles and to simulate their kinetic energy using arbitrary approximations for the inverse cross sections. To describe fission-fragment production, we have incorporated into CEM2k a thermodynamical model of fission by Stepanov. This extended version of CEM2k allows us to describe much better complex particle emission and many fission fragments, but it is still incomplete and needs further work.

  5. Formation of the diphenyl molecule in the crossed beam reaction of phenyl radicals with benzene

    SciTech Connect

    Zhang Fangtong; Gu Xibin; Kaiser, Ralf I. [Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822 (United States)

    2008-02-28

    The chemical dynamics to form the D5-diphenyl molecule, C{sub 6}H{sub 5}C{sub 6}D{sub 5}, via the neutral-neutral reaction of phenyl radicals (C{sub 6}H{sub 5}) with D6-benzene (C{sub 6}D{sub 6}), was investigated in a crossed molecular beams experiment at a collision energy of 185 kJ mol{sup -1}. The laboratory angular distribution and time-of-flight spectra of the C{sub 6}H{sub 5}C{sub 6}D{sub 5} product were recorded at mass to charge m/z of 159. Forward-convolution fitting of our data reveals that the reaction dynamics are governed by an initial addition of the phenyl radical to the {pi} electron density of the D6-benzene molecule yielding a short-lived C{sub 6}H{sub 5}C{sub 6}D{sub 6} collision complex. The latter undergoes atomic deuterium elimination via a tight exit transition state located about 30 kJ mol{sup -1} above the separated reactants; the overall reaction to form D5-diphenyl from phenyl and D6-benzene was found to be weakly exoergic. The explicit identification of the D5-biphenyl molecules suggests that in high temperature combustion flames, a diphenyl molecule can be formed via a single collision event between a phenyl radical and a benzene molecule.

  6. Kinetics and Thermochemistry of ClCO Formation from the Cl + CO Association Reaction

    NASA Technical Reports Server (NTRS)

    Nicovich, J. M.; Kreutter, K. D.; Wine, P. H.

    1997-01-01

    Laser flash photolysis of Cl2/CO/M mixtures (M = N2, CO, Ar, CO2) has been employed in conjunction with Cl((sup 2)P(sub J)) detection by time-resolved resonance fluorescence spectroscopy to investigate equilibration kinetics in the reactions Cl((sup 2)P(sub J)) + CO ClCO as a function of temperature (185-260 K) and pressure (14-200 Torr). The association and dissociation reactions are found to be in the low-pressure limit over the range of experimental conditions investigated. In N2 and/or CO buffer gases, the temperature dependences of the ClCO formation and dissociation reaction rate constants are described by the Arrhenius expressions k(sub 1) = (1.05 +/- 0.36) x 10(exp -34) exp[(810 +/- 70)/T] cm(exp 6)/molecules(exp 2).s and k(sub -1) = (4.1 +/- 3.1) x 10(exp -10) exp[(-2960 +/- 60)/T]cu cm/(molecule.s) (errors are 2 sigma). Second- and third-law analyses of the temperature dependence of the equilbrium constant (k/k-1) lead to the following thermodynamic parameters for the association reaction: Delta-H(sub 298) = -7.7 +/- 0.6 kcal/mol, Delta-H(sub 0) = -6.9 +/- 0.7 kcal/mol, Delta-S(sub 298) = -23.8 +/- 2.0 cal/mole.K, Delta-H(sub f,298)(ClCO) = 5.2 +/- 0.6 kcal/mol (errors are 2 sigma). The results repported in this study significantly reduce the uncertainties in all reported kinetic and thermodynamic parameters.

  7. Inhibitory mechanism of pancreatic amyloid fibril formation: formation of the complex between tea catechins and the fragment of residues 22-27.

    PubMed

    Kamihira-Ishijima, Miya; Nakazawa, Hiromi; Kira, Atsushi; Naito, Akira; Nakayama, Tsutomu

    2012-12-21

    Islet amyloid polypeptide (IAPP) is a major component of pancreatic amyloid deposits associated with type 2 diabetes. Polyphenols contained in plant foods have been found to inhibit amyloid fibril formation of proteins and/or peptides. However, the inhibition mechanism is not clear for a variety of systems. Here the inhibition mechanism of green tea polyphenols, catechins, on amyloid fibril formation of the IAPP fragment (IAPP22-27), which is of sufficient length for formation of ?-sheet-containing amyloid fibrils, was investigated by means of kinetic analysis. A quartz crystal microbalance (QCM) determined that the association constants of gallate-type catechins [epicatechin 3-gallate (ECg) and epigallocatechin 3-gallate] for binding to IAPP22-27 immobilized on the gold plate in QCM were 1 order of magnitude larger than those of the free IAPP22-27 peptide, and also those of epicatechin and epigallocatechin. Kinetic analysis using a two-step autocatalytic reaction mechanism revealed that ECg significantly reduced the rate constants of the first nucleation step of amyloid fibril formation, while the rate of autocatalytic growth was less retarded. (1)H nuclear magnetic resonance studies clarified that a IAPP22-27/ECg complex clearly forms as viewed from the (1)H chemical shift changes and line broadening. Our study suggests that tea catechins specifically inhibit the early stages of amyloid fibril formation to form amyloid nuclei by interacting with the unstructured peptide and that this inhibition mechanism is of great therapeutic value because stabilization of the native state could delay the pathogenesis of amyloid diseases and also the toxicity of the small oligomer (protofibril) is reported to be greater than that of the mature fibril. PMID:23205879

  8. Ion wake formation with dust charge fluctuation in complex plasma

    SciTech Connect

    Bhattacharjee, Saurav; Das, Nilakshi [Department of Physics, Tezpur University, Tezpur, Assam, 784 028 (India)] [Department of Physics, Tezpur University, Tezpur, Assam, 784 028 (India)

    2013-11-15

    In complex plasma, the interaction mechanism among dust grains near the plasma sheath is significantly influenced by the downward ion flow towards the sheath and dust charge fluctuation over grain surface. Asymmetric ion flow towards the sheath gives rise to well known attractive wake potential in addition to repulsive Yukawa type of potential. The present work shows that the charging dynamics play a significant role in modification of plasma dielectric response function and hence the interaction mechanism among test dust particulates. The effective Debye length is found to be a characteristic of dust size and background plasma response towards the grain along with ion flow speed. The potentials thus obtained show a damping in strength of interaction in the presence of dynamical charging of dust as compared to that of constant charge dust grains. The result also shows decrease in focal length of ion lensing with increase in grain size.

  9. Stereoselective synthesis of highly functionalized indanes and dibenzocycloheptadienes through complex radical cascade reactions.

    PubMed

    Kong, Wangqing; Fuentes, Noelia; García-Domínguez, Andres; Merino, Estíbaliz; Nevado, Cristina

    2015-02-16

    Two highly stereoselective radical-mediated syntheses of densely functionalized indanes and dibenzocycloheptadienes from ortho-vinyl- and ortho-vinylaryl-substituted N-(arylsulfonyl)-acrylamides, respectively, are presented here. The chemoselective addition of in?situ generated radicals (X(·)) onto the styrene moieties triggers an unprecedented reaction cascade, resulting in the formation of one new C-X bond and two new C-C bonds, a formal 1,4-aryl migration, and the extrusion of SO2 to generate an amidyl radical intermediate. This intermediate, upon H?abstraction, leads to the observed 5- and 7-membered ring carbocyclic products, respectively, in a highly efficient manner. PMID:25597296

  10. Reactions of iron atoms with benzene and cyclohexadienes in argon matrices: iron-benzene complexes and photolytic dehydrogenation of cyclohexadiene

    SciTech Connect

    Ball, D.W.; Kafafi, Z.H.; Hauge, R.H.; Margrave, J.L.

    1986-10-15

    Three cyclic C/sub 6/ hydrocarbons-benzene (C/sub 6/H/sub 6/), 1,4-cyclohexadiene, and 1,3-cyclohexadiene (both C/sub 6/H/sub 8/)-were codeposited with iron atoms in argon matrices at 12-14 K.When iron atoms were cocondensed with benzene, infrared spectra showed the formation of Fe(C/sub 6/H/sub 6/), Fe(C/sub 6/H/sub 6/)/sub 2/, and Fe/sub 2/(C/sub 6/H/sub 6/) complexes. When iron atoms were codeposited with 1,4-cyclohexadiene, IR spectra showed the formation of Fe(C/sub 6/H/sub 8/) and Fe/sub 2/(C/sub 6/H/sub 8/) adducts. On photolysis with ultraviolet light the monoiron adduct rearranged to form FeH/sub 2/ and benzene in either isolated or adducted states. A similar dehydrogenation reaction was also thought to be observed upon photolysis of the diiron-cyclohexadiene adduct with visible light. 1,3-cyclohexadiene has been shown to react with iron atoms and dimers in a similar manner. Deuterium isotopic substitution of the three C/sub 6/ hydrocarbons was used to obtain confirmatory evidence.

  11. SEPALLATA3: the 'glue' for MADS box transcription factor complex formation

    PubMed Central

    Immink, Richard GH; Tonaco, Isabella AN; de Folter, Stefan; Shchennikova, Anna; van Dijk, Aalt DJ; Busscher-Lange, Jacqueline; Borst, Jan W; Angenent, Gerco C

    2009-01-01

    Background Plant MADS box proteins play important roles in a plethora of developmental processes. In order to regulate specific sets of target genes, MADS box proteins dimerize and are thought to assemble into multimeric complexes. In this study a large-scale yeast three-hybrid screen is utilized to provide insight into the higher-order complex formation capacity of the Arabidopsis MADS box family. SEPALLATA3 (SEP3) has been shown to mediate complex formation and, therefore, special attention is paid to this factor in this study. Results In total, 106 multimeric complexes were identified; in more than half of these at least one SEP protein was present. Besides the known complexes involved in determining floral organ identity, various complexes consisting of combinations of proteins known to play a role in floral organ identity specification, and flowering time determination were discovered. The capacity to form this latter type of complex suggests that homeotic factors play essential roles in down-regulation of the MADS box genes involved in floral timing in the flower via negative auto-regulatory loops. Furthermore, various novel complexes were identified that may be important for the direct regulation of the floral transition process. A subsequent detailed analysis of the APETALA3, PISTILLATA, and SEP3 proteins in living plant cells suggests the formation of a multimeric complex in vivo. Conclusions Overall, these results provide strong indications that higher-order complex formation is a general and essential molecular mechanism for plant MADS box protein functioning and attribute a pivotal role to the SEP3 'glue' protein in mediating multimerization. PMID:19243611

  12. Low-valent iron(i) amido olefin complexes as promotors for dehydrogenation reactions.

    PubMed

    Lichtenberg, Crispin; Viciu, Liliana; Adelhardt, Mario; Sutter, Jörg; Meyer, Karsten; de Bruin, Bas; Grützmacher, Hansjörg

    2015-05-01

    Fe(I) compounds including hydrogenases show remarkable properties and reactivities. Several iron(I) complexes have been established in stoichiometric reactions as model compounds for N2 or CO2 activation. The development of well-defined iron(I) complexes for catalytic transformations remains a challenge. The few examples include cross-coupling reactions, hydrogenations of terminal olefins, and azide functionalizations. Here the syntheses and properties of bimetallic complexes [MFe(I) (trop2 dae)(solv)] (M=Na, solv=3?thf; M=Li, solv=2?Et2 O; trop=5H-dibenzo[a,d]cyclo-hepten-5-yl, dae=(N-CH2 -CH2 -N) with a d(7) Fe low-spin valence-electron configuration are reported. Both compounds promote the dehydrogenation of N,N-dimethylaminoborane, and the former is a precatalyst for the dehydrogenative alcoholysis of silanes. No indications for heterogeneous catalyses were found. High activities and complete conversions were observed particularly with [NaFe(I) (trop2 dae)(thf)3 ]. PMID:25765487

  13. Is there an entrance complex for the F+NH3 reaction?

    PubMed

    Feng, Hao; Sun, Weiguo; Xie, Yaoming; Schaefer, Henry F

    2011-11-01

    Challenges associated with the theoretical and experimental kinetics of the F+NH(3)?HF+NH(2) reaction suggest the need for a more-precise potential surface. We have investigated the reactants and the products of the reaction, as well as the transition state and two complexes, with rather rigorous ab initio methods. The F·····NH(3) complex existing in the entrance valley is predicted to lie 13.7 kcal mol(-1) below the reactants. A small classical barrier of 2.0 kcal mol(-1) separates this entrance well from products HF+NH(2). These results explain the observation by Persky of unprecedented inverse temperature dependence for the F+NH(3) rate constants. The strong hydrogen-bonded complex FH·····NH(2) exists in the exit valley, and with a binding energy of 9.9 kcal mol(-1) relative to separated products. The vibrational frequencies of all stationary points are predicted with the CCSD(T)/aug-cc-pVQZ method. PMID:21928432

  14. Accelerating the Computation of Detailed Chemical Reaction Kinetics for Simulating Combustion of Complex Fuels

    SciTech Connect

    Sankaran, R.; Grout, R.

    2012-01-01

    Combustion of hydrocarbon fuels has been a very challenging scientific and engineering problem due to the complexity of turbulent flows and hydrocarbon reaction kinetics. There is an urgent need to develop an efficient modeling capability to accurately predict the combustion of complex fuels. Detailed chemical kinetic models for the surrogates of fuels such as gasoline, diesel and JP-8 consist of thousands of chemical species and Arrhenius reaction steps. Oxygenated fuels such as bio-fuels and heavier hydrocarbons, such as from newer fossil fuel sources, are expected to have a much more complex chemistry requiring increasingly larger chemical kinetic models. Such models are beyond current computational capability, except for homogeneous or partially stirred reactor type calculations. The advent of highly parallel multi-core processors and graphical processing units (GPUs) promises a steep increase in computational performance in the coming years. This paper will present a software framework that translates the detailed chemical kinetic models to high-performance code targeted for GPU accelerators.

  15. Growth dynamics and intracluster reactions in Ni+(CO2)n complexes via infrared spectroscopy.

    PubMed

    Walker, N R; Walters, R S; Grieves, G A; Duncan, M A

    2004-12-01

    Ni(+)(CO(2))(n), Ni(+)(CO(2))(n)Ar, Ni(+)(CO(2))(n)Ne, and Ni(+)(O(2))(CO(2))(n) complexes are generated by laser vaporization in a pulsed supersonic expansion. The complexes are mass-selected in a reflectron time-of-flight mass spectrometer and studied by infrared resonance-enhanced photodissociation (IR-REPD) spectroscopy. Photofragmentation proceeds exclusively through the loss of intact CO(2) molecules from Ni(+)(CO(2))(n) and Ni(+)(O(2))(CO(2))(n) complexes, and by elimination of the noble gas atom from Ni(+)(CO(2))(n)Ar and Ni(+)(CO(2))(n)Ne. Vibrational resonances are identified and assigned in the region of the asymmetric stretch of CO(2). Small complexes have resonances that are blueshifted from the asymmetric stretch of free CO(2), consistent with structures having linear Ni(+)-O=C=O configurations. Fragmentation of larger Ni(+)(CO(2))(n) clusters terminates at the size of n=4, and new vibrational bands assigned to external ligands are observed for n> or =5. These combined observations indicate that the coordination number for CO(2) molecules around Ni(+) is exactly four. Trends in the loss channels and spectra of Ni(+)(O(2))(CO(2))(n) clusters suggest that each oxygen atom occupies a different coordination site around a four-coordinate metal ion in these complexes. The spectra of larger Ni(+)(CO(2))(n) clusters provide evidence for an intracluster insertion reaction assisted by solvation, producing a metal oxide-carbonyl species as the reaction product. PMID:15549932

  16. Probing Complex Free-Radical Reaction Pathways of Fuel Model Compounds

    SciTech Connect

    Buchanan III, A C [ORNL; Kidder, Michelle [ORNL; Beste, Ariana [ORNL; Britt, Phillip F [ORNL

    2012-01-01

    Fossil (e.g. coal) and renewable (e.g. woody biomass) organic energy resources have received considerable attention as possible sources of liquid transportation fuels and commodity chemicals. Knowledge of the reactivity of these complex materials has been advanced through fundamental studies of organic compounds that model constituent substructures. In particular, an improved understanding of thermochemical reaction pathways involving free-radical intermediates has arisen from detailed experimental kinetic studies and, more recently, advanced computational investigations. In this presentation, we will discuss our recent investigations of the fundamental pyrolysis pathways of model compounds that represent key substructures in the lignin component of woody biomass with a focus on molecules representative of the dominant beta-O-4 aryl ether linkages. Additional mechanistic insights gleaned from DFT calculations on the kinetics of key elementary reaction steps will also be presented, as well as a few thoughts on the significant contributions of Jim Franz to this area of free radical chemistry.

  17. Characterization of self-propagating formation reactions in Ni/Zr multilayered foils using reaction heats, velocities, and temperature-time profiles

    SciTech Connect

    Barron, S. C.; Knepper, R.; Walker, N.; Weihs, T. P.

    2011-01-11

    We report on intermetallic formation reactions in vapor-deposited multilayered foils of Ni/Zr with 70 nm bilayers and overall atomic ratios of Ni:Zr, 2 Ni:Zr, and 7 Ni:2 Zr. The sequence of alloy phase formation and the stored energy is evaluated at slow heating rates (~1 K/s) using differential scanning calorimetry (DSC) traces to 725ºC. All three chemistries initially form a Ni-Zr amorphous phase which crystallizes first to the intermetallic NiZr. The heat of reaction to the final phase is 34-36 kJ/mol atom for all chemistries. Intermetallic formation reactions are also studied at rapid heating rates (greater than 105 K/s) in high temperature, self-propagating reactions which can be ignited in these foils by an electric spark. We find that reaction velocities and maximum reaction temperatures (Tmax) are largely independent of foil chemistry at 0.6 ± 0.1 m/s and 1220 ± 50 K, respectively, and that the measured Tmax is more than 200 K lower than predicted adiabatic temperatures (Tad). The difference between Tmax and Tad is explained by the prediction that transformation to the final intermetallic phases occurs after Tmax and results in the release of 20-30 % of the total heat of reaction and a delay in rapid cooling.

  18. A cell-mediated reaction against glomerular-bound immune complexes

    PubMed Central

    1979-01-01

    Lewis rats were given a single i.v. injection of soluble immune complexes containing human serum albumin (HSA) and rabbit anti-HSA antibodies, prepared in antigen excess. This resulted in localization of HSA and rabbit gamma globulin (RGG) in glomerular mesangial regions without producing definite histologic changes. 24 h after the injection of immune complexes, groups of these rats received lymph node cells or T-cell preparations from syngeneic donors sensitized to RGG, HSA, or ovalbumin; another group received no cells. All of these groups and a group of normal control rats were given injections of [3H]thymidine at 18, 27, and 44 h. The animals were killed 48 h after the time of cell transfer. In histologic sections, glomerular abnormalities were found only in some of the animals that had received immune complexes and lymph node cells or T-cell populations from donors sensitized to HSA or RGG; the lesions were characterized by focal and segmental increase in cells in mesangial regions. Autoradiographs revealed significantly greater numbers of labeled cells in mesangial regions and glomerular capillaries in the groups that had received immune complexes and cells from HSA- or RGG-sensitized donors than in any of the other groups. Electronmicroscopic studies suggested that the increase in cellularity in mesangial regions resulted from an influx of mononuclear phagocytes. The findings indicate that cell-mediated reactions can be initiated by the interaction between sensitized T lymphocytes and antigens present in immune complexes within mesangial regions. PMID:315992

  19. Cleavage and formation of molecular dinitrogen in a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine.

    PubMed

    Miyazaki, Takamasa; Tanaka, Hiromasa; Tanabe, Yoshiaki; Yuki, Masahiro; Nakajima, Kazunari; Yoshizawa, Kazunari; Nishibayashi, Yoshiaki

    2014-10-20

    The N?N bond of molecular dinitrogen bridging two molybdenum atoms in the pentamethylcyclopentadienyl molybdenum complexes that bear ferrocenyldiphosphine as an auxiliary ligand is homolytically cleaved under visible light irradiation at room temperature to afford two molar molybdenum nitride complexes. Conversely, the bridging molecular dinitrogen is reformed by the oxidation of the molybdenum nitride complex at room temperature. This result provides a successful example of the cleavage and formation of molecular dinitrogen induced by a pair of two different external stimuli using a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine under ambient conditions. PMID:25214300

  20. Phosphonato complexes of platinum(II): kinetics of formation and phosphorus-31 NMR characterization studies.

    PubMed

    Slavin, L L; Bose, R N

    1990-12-01

    Reactions of cis-diamminedichloroplatinum(II) with phosphonoformic acid (PFA), phosphonoacetic acid (PAA), and methylenediphosphonic acid (MDP) yield various phosphonatoplatinum(II) chelates which were characterized by phosphorus-31 NMR spectroscopy. The P-31 resonances for the chelates appear at 6-12 ppm downfield as compared to the uncomplexed ligands. All complexes exhibit monoprotic acidic behavior in the pH range 2-10. The chemical shift-pH profiles yielded acidity constants, 1.0 x 10(-4), 1.5 x 10(-4), and 1.3 x 10(-6) M-1, for the PFA, PAA, and MDP chelates. In addition to the monomeric chelate, MDP formed a bridged diplatinum(II,II) complex when it reacted with cis-Pt (NH3)2(H2O)2(2)+. The P-31 resonance for this binuclear complex appears at 22 ppm downfield from the unreacted ligand. Rate data for the complexation reactions of the phosphonate ligands with the dichloroplatinum complex are consistent with a mechanism in which a monodentate complex is formed initially through rate-limiting aquation process of the platinum complex, followed by a rapid chelation. For the PFA and PAA complexes, initial binding sites are the carboxylato oxygens. Implications of the various binding modes of the phosphonates in relationship to their antiviral activities are discussed. PMID:2150856

  1. Phosphonato complexes of platinum(II): kinetics of formation and phosphorus-31 NMR characterization studies

    SciTech Connect

    Slavin, L.L.; Bose, R.N. (Chemistry Department, Kent State University, OH (USA))

    1990-12-01

    Reactions of cis-diamminedichloroplatinum(II) with phosphonoformic acid (PFA), phosphonoacetic acid (PAA), and methylenediphosphonic acid (MDP) yield various phosphonatoplatinum(II) chelates which were characterized by phosphorus-31 NMR spectroscopy. The P-31 resonances for the chelates appear at 6-12 ppm downfield as compared to the uncomplexed ligands. All complexes exhibit monoprotic acidic behavior in the pH range 2-10. The chemical shift-pH profiles yielded acidity constants, 1.0 x 10(-4), 1.5 x 10(-4), and 1.3 x 10(-6) M-1, for the PFA, PAA, and MDP chelates. In addition to the monomeric chelate, MDP formed a bridged diplatinum(II,II) complex when it reacted with cis-Pt (NH3)2(H2O)2(2)+. The P-31 resonance for this binuclear complex appears at 22 ppm downfield from the unreacted ligand. Rate data for the complexation reactions of the phosphonate ligands with the dichloroplatinum complex are consistent with a mechanism in which a monodentate complex is formed initially through rate-limiting aquation process of the platinum complex, followed by a rapid chelation. For the PFA and PAA complexes, initial binding sites are the carboxylato oxygens. Implications of the various binding modes of the phosphonates in relationship to their antiviral activities are discussed.

  2. Reactions of heteroatom and carbon nucleophiles with the cationic bridging methylidyne complex

    SciTech Connect

    Casey, C.P.; Crocker, M.; Vosejpka, P.C.; Fagan, P.J.; Marder, S.R.; Gohdes, M.A.

    1988-03-01

    The reaction of the ..mu..-methylidyne complex /((C/sub 5/H/sub 5/)(CO)Fe)/sub 2/(..mu..-CO)(..mu..-CH)//sup +/PF/sub 6//sup -/ (1) with NMe/sub 3/ and (C/sub 6/H/sub 5/)/sub 2/C=NH gave the cationic 1:1 adducts /((C/sub 5/H/sub 5/)(CO)Fe)/sub 2/(..mu..-CO)(..mu..-CHNMe/sub 3/)//sup +/PF/sub 6//sup -/ (3) and /((C/sub 5/H/sub 5/)(CO)Fe)/sub 2/(..mu..-CHNH=C(C/sub 6/H/sub 5/)/sub 2/)//sup +/PF/sub 6//sup -/ (9), respectively, arising from attack of nitrogen on the methylidyne carbon. The reaction of 1 with KOC(CH/sub 3/)/sub 3/ gave the neutral ..mu..-carbene complex ((C/sub 5/H/sub 5/)(CO)Fe)/sub 2/(..mu..-CO)(..mu..-CHOC(CH/sub 3/)P/sub 3/) (4). Reaction of 1 with water afforded a 1:1 mixture of ..mu..methylene complex ((C/sub 5/H/sub 5/)(CO)Fe)/sub 2/(..mu..-CO)(..mu..-CH/sub 2/) (2) and ((C/sub 5/H/sub 5/)(CO)Fe)/sub 2/(..mu..-CO)/sub 2/; these products are proposed to arise from disproportionation of an initially formed hydroxy carbene species. Reaction of 1 with Et/sub 4/N/sup +/Br/sup -/ gave the unstable /sup +/-carbene complex ((C/sub 5/H/sub 5/)(CO)Fe)/sub 2/(..mu..-CO)(..mu..-CHBr) (6). Reaction of 1 with the carbon nucleophiles CH/sub 3/Li and Li(C/sub 6/H/sub 5/CuCN) gave the ..mu..-carbene complexes ((C/sub 5/H/sub 5/)(CO)Fe/sub 2/(..mu..-CO)(..mu..-CHCH/sub 3/) (11) and ((C/sub 5/H/sub 5/)(CO)Fe)/sub 2/(..mu..-CO)(..mu..-CHC/sub 6/H/sub 5/ (12), while reaction of 1 with HFe(CO)/sub 4//sup -/ afforded 2. 1 reacted with acetone via nucleophilic addition of the enol affording the neutral ..mu..-carbene complex (C/sub 5/H/sub 5/)-(CO)Fe)/sub 2/(..mu..-CO)(..mu..-CHCH/sub 2/COCH/sub 3/)) (13). 1 also reacted with cyclohexanone, 2-butanone, 4-methyl-2-pentanone, 2,4-pentanedione, 5,5-dimethyl-1,3-cyclohexanedione, ethyl acetoacetate, and the sodium salt of diethyl malonate to give similar ..mu..-carbene products.

  3. Synthesis, Properties, and Reactions of Trinuclear Macrocyclic Nickel(II) and Nickel(I) Complexes: Electrocatalytic Reduction of CO2 by Nickel(II) Complex

    E-print Network

    Paik Suh, Myunghyun

    FULL PAPER Synthesis, Properties, and Reactions of Trinuclear Macrocyclic Nickel(II) and Nickel(I) Complexes: Electrocatalytic Reduction of CO2 by Nickel(II) Complex Eun Young Lee,[a] Daewon Hong,[a] Han Woong Park,[a] and Myunghyun Paik Suh*[a] Keywords: Nickel / Macrocyclic compounds / Carbon dioxide

  4. Oxidative peptide /and amide/ formation from Schiff base complexes

    NASA Technical Reports Server (NTRS)

    Strehler, B. L.; Li, M. P.; Martin, K.; Fliss, H.; Schmid, P.

    1982-01-01

    One hypothesis of the origin of pre-modern forms of life is that the original replicating molecules were specific polypeptides which acted as templates for the assembly of poly-Schiff bases complementary to the template, and that these polymers were then oxidized to peptide linkages, probably by photo-produced oxidants. A double cycle of such anti-parallel complementary replication would yield the original peptide polymer. If this model were valid, the Schiff base between an N-acyl alpha mino aldehyde and an amino acid should yield a dipeptide in aqueous solution in the presence of an appropriate oxidant. In the present study it is shown that the substituted dipeptide, N-acetyl-tyrosyl-tyrosine, is produced in high yield in aqueous solution at pH 9 through the action of H2O2 on the Schiff-base complex between N-acetyl-tyrosinal and tyrosine and that a great variety of N-acyl amino acids are formed from amino acids and aliphatic aldehydes under similar conditions.

  5. Interferogram formation in the presence of complex and large deformation

    USGS Publications Warehouse

    Yun, S.-H.; Zebker, H.; Segall, P.; Hooper, A.; Poland, M.

    2007-01-01

    Sierra Negra volcano in Isabela island, Gala??pagos, erupted from October 22 to October 30 in 2005. During the 8 days of eruption, the center of Sierra Negra's caldera subsided about 5.4 meters. Three hours prior to the onset of the eruption, an earthquake (Mw 5.4) occurred, near the caldera. Because of the large and complex phase gradient due to the huge subsidence and the earthquake, it is difficult to form an interferogram inside the caldera that spans the eruption. The deformation is so large and spatially variable that the approximations used in existing InSAR software (ROI, ROI_PAC, DORIS, GAMMA) cannot properly coregister SAR image pairs spanning the eruption. We have developed here a two-step algorithm that can form intra-caldera interferograms from these data. The first step involves a "rubber-sheeting" SAR image coregistration. In the second step we use range offset estimates to mitigate the steep phase gradient. Using this new algorithm, we retrieve an interferogram with the best coverage to date inside the caldera of Sierra Negra. Copyright 2007 by the American Geophysical Union.

  6. An illustration of the complexity of continent formation

    NASA Technical Reports Server (NTRS)

    Burke, Kevin

    1988-01-01

    It was pointed out that a consensus may be emerging in crustal growth models, considering the clustering of most growth curves and their uncertainties. Curves most distant from this clustering represent models involving extensive recycling of continental material back into the mantle, but the author wondered if geochemical signatures for this would be recognizable considering the lack of evidence from seismic tomography for discrete mantle reservoirs, and the likelihood of core-mantle interaction based on recent high pressure experiments. Unreactivated Archean rocks represent only 2 percent of present continental area, and the author was uncomfortable about basing inferences on what the early Earth was like on such a small amount of information. He feels that the hypothesis of continental assembly that needs testing is that of banging together of island arcs, such as in Indonesia today. As an example of how complex this process can be, the author described the geology of the Caribbean arc system, which shows evidence for reversals of subduction polarity, numerous collisional events, and substantial strike-slip movements. It seemed unlikely to the author that Archean examples would have been less complicated.

  7. Composition and optical properties of reaction centre core complexes from the green sulfur bacteria Prosthecochloris aestuarii and Chlorobium tepidum

    Microsoft Academic Search

    Hjalmar P. Permentier; Kristiane A. Schmidt; Masami Kobayashi; Machiko Akiyama; Christine Hager-Braun; Sieglinde Neerken; Mette Miller; Jan Amesz

    2000-01-01

    Photosynthetically active reaction centre core (RCC) complexes were isolated from two species of green sulfur bacteria, Prosthecochloris (Ptc.) aestuarii strain 2K and Chlorobium (Chl.) tepidum, using the same isolation procedure. Both complexes contained the main reaction centre protein PscA and the iron–sulfur protein\\u000a PscB, but were devoid of Fenna–Matthews–Olson (FMO) protein. The Chl. tepidum RCC preparation contained in addition PscC

  8. Time-dependent insulin oligomer reaction pathway prior to fibril formation: Cooling and seeding

    PubMed Central

    Sorci, Mirco; Grassucci, Robert A.; Hahn, Ingrid; Frank, Joachim; Belfort, Georges

    2009-01-01

    The difficulty in identifying the toxic agents in all amyloid-related diseases is likely due to the complicated kinetics and thermodynamics of the nucleation process and subsequent fibril formation. The slow progression of these diseases suggests that the formation, incorporation and/or action of toxic agents is possibly rate limiting. Candidate toxic agents include precursors (some at very low concentrations), also called oligomers and protofibrils, and the fibrils. Here, we investigate the kinetic and thermodynamic behavior of human insulin oligomers (imaged by cryo-EM) under fibril forming conditions (pH 1.6 and 65°C) by probing the reaction pathway to insulin fibril formation using two different types of experiments – cooling and seeding – and confirm the validity of the nucleation model and its effect on fibril growth. The results from both the cooling and seeding studies confirm the existence of a time-changing oligomer reaction process prior to fibril formation that likely involves a rate-limiting nucleation process followed by structural rearrangements of intermediates (into ?-sheet rich entities) to form oligomers that then form fibrils. The latter structural rearrangement step occurs even in the absence of nuclei (i.e. with added heterologous seeds). Nuclei are formed at the fibrillation conditions (pH 1.6 and 65°C) but are also continuously formed during cooling at pH 1.6 and 25°C. Within the time-scale of the experiments, only after increasing the temperature to 65°C are the trapped insulin nuclei and resultant structures able to induce the structural rearrangement step and overcome the energy barrier to form fibrils. This delay in fibrillation and accumulation of nuclei at low temperature (25°C), result in a decrease in the mean length of the fibers when placed at 65°C. Fits of an empirical model to the data provide quantitative measures of the delay in the lag-time during the nucleation process and subsequent reduction in fibril growth rate resulting from the cooling. Also the seeding experiments, within the time-scale of the measurements, demonstrate that fibers can initiate fast fibrillation with dissolved insulin (fresh or taken during the lag-period) but not with other fibers. Qualitatively this is explained with a conjectual free energy-space plot. PMID:19408310

  9. Wavelength-dependent photoproduct formation of phycocyanobilin in solution - Indications for competing reaction pathways

    NASA Astrophysics Data System (ADS)

    Dietzek, Benjamin; Fey, Sonja; Matute, Ricardo A.; González, Leticia; Schmitt, Michael; Popp, Jürgen; Yartsev, Arkady; Hermann, Gudrun

    2011-10-01

    Phycocyanobilin (PCB), an open-chain tetrapyrrole, makes up - slightly modified - the chromophore in phytochromes, the importance of which triggered model studies on the photochemistry of PCB in solution. We use pump-wavelength dependent femtosecond transient absorption spectroscopy including the near-IR region for probing to gain new insight into the photoreaction. The data reveal the coexistence of three ground state species: The dominant species PCB A undergoes photoreaction into PCB B and PCB C indicating a branching of the initial reaction path leading to formation of PCB B and PCB C. On this basis the photoreaction involves fast structural rearrangements within the tetrapyrrolic macrocycle, which are followed by slower rate-limiting changes in the protonation state of the pyrrolenine/pyrrole rings.

  10. Formation of porous surface layers in reaction bonded silicon nitride during processing

    NASA Technical Reports Server (NTRS)

    Shaw, N. J.; Glasgow, T. K.

    1979-01-01

    Microstructural examination of reaction bonded silicon nitride (RBSN) has shown that there is often a region adjacent to the as-nitrided surfaces that is even more porous than the interior of this already quite porous material. Because this layer of large porosity is considered detrimental to both the strength and oxidation resistance of RBSN, a study was undertaken to determine if its formation could be prevented during processing. All test bars studied were made from a single batch of Si powder which was milled for 4 hours in heptane in a vibratory mill using high density alumina cylinders as the grinding media. After air drying the powder, bars were compacted in a single acting die and hydropressed.

  11. Medium corrections in the formation of light charged particles in heavy ion reactions

    E-print Network

    C. Kuhrts; M. Beyer; P. Danielewicz; G. Roepke

    2000-09-14

    Within a microscopic statistical description of heavy ion collisions, we investigate the effect of the medium on the formation of light clusters. The dominant medium effects are self-energy corrections and Pauli blocking that produce the Mott effect for composite particles and enhanced reaction rates in the collision integrals. Microscopic description of composites in the medium follows the Dyson equation approach combined with the cluster mean-field expansion. The resulting effective few-body problem is solved within a properly modified Alt-Grassberger-Sandhas formalism. The results are incorporated in a Boltzmann-Uehling-Uhlenbeck simulation for heavy ion collisions. The number and spectra of light charged particles emerging from a heavy ion collision changes in a significant manner in effect of the medium modification of production and absorption processes.

  12. Alumina plate containing photosystem I reaction center complex oriented inside plate-penetrating silica nanopores.

    PubMed

    Kamidaki, Chihiro; Kondo, Toru; Noji, Tomoyasu; Itoh, Tetsuji; Yamaguchi, Akira; Itoh, Shigeru

    2013-08-22

    The photosynthetic photosystem I reaction center complex (PSI-RC), which has a molecular diameter of 21 nm with 100 pigments, was incorporated into silica nanopores with a 100-nm diameter that penetrates an alumina plate of 60-?m thickness to make up an inorganic-biological hybrid photocell. PSI-RCs, purified from a thermophilic cyanobacterium, were stable inside the nanopores and rapidly photoreduced a mediator dye methyl viologen. The reduced dye was more stable inside nanopores suggesting the decrease of dissolved oxygen. The analysis by a cryogenic electron spin paramagnetic resonance indicated the oriented arrangement of RCs inside the 100-nm nanopores, with their surface parallel to the silica wall and perpendicular to the plane of the alumina plate. PSI RC complex in the semicrystalline orientation inside silica nanopores can be a new type of light energy conversion unit to supply strong reducing power selectively to other molecules inside or outside nanopores. PMID:23888886

  13. Kinetics and mechanisms of the reactions of alkyl radicals with oxygen and with complexes of Co(III), Ru(III), and Ni(III)

    SciTech Connect

    Kelley, D.

    1990-10-08

    The kinetics of the reactions of C{sub 2}H{sub 5} radical with Co(NH{sub 3}){sub 5}X{sup 2+}, Ru(NH{sub 3}){sub 5}X{sup 2+}, and Co(dmgH){sub 2} (X) (Y) (X = Br, Cl, N{sub 3}, SCN; Y = H{sub 2}O, CH{sub 3}CN) complexes were studied using laser flash photolysis of ethylcobalt complexes. The kinetics were obtained by the kinetic probe method. Some relative rate constants were also determined by a competition method based on ethyl halide product ratios. The kinetics of colligation reactions of a series of alkyl radicals with {beta}-Ni(cyclam){sup 2+} were studied using flaser flash photolysis of alkylcobalt complexes. Again, the kinetics were obtained by employing the kinetic probe competition method. The kinetics of the unimolecular homolysis of a series of RNi(cyclam)H{sub 2}O{sup 2+} were studied. Activation parameters were obtained for the unimolecular homolysis of C{sub 2}H{sub 5}Ni(cyclam)H{sub 2}O{sup 2+}. Kinetic and thermodynamic data obtained from these reactions were compared with those for the {sigma}-bonded organometallic complexes. The kinetics of the unimolecular homolysis of a series of RNi(cyclam)H{sub 2}O{sup 2+} complexes were studied by monitoring the formation of the oxygen insertion product RO{sub 2}Ni(cyclam)H{sub 2}O{sup 2+}. The higher rate constants for the reactions of alkyl radicals with oxygen in solution, as compared with those measured in the gas phase, were discussed. 30 refs.

  14. Complex Formation and Functional Versatility of Mre11 of Budding Yeast in Recombination

    Microsoft Academic Search

    Takehiko Usui; Tsutomu Ohta; Hiroyuki Oshiumi; Jun-ichi Tomizawa; Hideyuki Ogawa; Tomoko Ogawa

    1998-01-01

    Meiotic recombination of S. cerevisiae contains two temporally coupled processes, formation and processing of double-strand breaks (DSBs). Mre11 forms a complex with Rad50 and Xrs2, acting as the binding core, and participates in DSB processing. Although these proteins are also involved in DSB formation, Mre11 is not necessarily holding them. The C-terminal region of Mre11 is required only for DSB

  15. Preparation, spectroscopic and thermal characterization of charge-transfer molecular complexes formed in the reaction of 4-dimethylaminopyridine with ?-electron acceptors

    NASA Astrophysics Data System (ADS)

    Mostafa, Adel; Benjamin Cieslinski, G.; Bazzi, Hassan S.

    2015-02-01

    The interactions of the electron donor 4-dimethylaminopyridine (4DMAP) with the ?-acceptors tetracyanoethylene (TCNE), 7,7,8,8-tetracyanoquinodimethane (TCNQ) and 2,4,4,6-tetrabromo-2,5-cyclohexadienone (TBCHD) were studied spectrophotometrically in chloroform at room temperature. The electronic and infrared spectra of the formed molecular charge-transfer (CT) complexes were recorded. Photometric titration showed that the stoichiometries of the reactions were not fixed and depended on the nature of both the donor and the acceptor. The molecular structures of the CT-complexes were, however, affected by the amino group in 4-dimethylaminopyridine and the two methyl groups and were formulated as [(4DMAP)(TCNE)2], [(4DMAP)(TCNQ)2] and [(4DMAP)(TBCHD)]. The formation constant (KCT), charge transfer energy (ECT), molar extinction coefficients (?CT) and free energy change of the formed CT-complexes were obtained.

  16. Autocatalytic formation of an iron(IV)-oxo complex via scandium ion-promoted radical chain autoxidation of an iron(II) complex with dioxygen and tetraphenylborate.

    PubMed

    Nishida, Yusuke; Lee, Yong-Min; Nam, Wonwoo; Fukuzumi, Shunichi

    2014-06-01

    A non-heme iron(IV)-oxo complex, [(TMC)Fe(IV)(O)](2+) (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), was formed by oxidation of an iron(II) complex ([(TMC)Fe(II)](2+)) with dioxygen (O2) and tetraphenylborate (BPh4(-)) in the presence of scandium triflate (Sc(OTf)3) in acetonitrile at 298 K via autocatalytic radical chain reactions rather than by a direct O2 activation pathway. The autocatalytic radical chain reaction is initiated by scandium ion-promoted electron transfer from BPh4(-) to [(TMC)Fe(IV)(O)](2+) to produce phenyl radical (Ph(•)). The chain propagation step is composed of the addition of O2 to Ph(•) and the reduction of the resulting phenylperoxyl radical (PhOO(•)) by scandium ion-promoted electron transfer from BPh4(-) to PhOO(•) to produce phenyl hydroperoxide (PhOOH), accompanied by regeneration of phenyl radical. PhOOH reacts with [(TMC)Fe(II)](2+) to yield phenol (PhOH) and [(TMC)Fe(IV)(O)](2+). Biphenyl (Ph-Ph) was formed via the radical chain autoxidation of BPh3 by O2. The induction period of the autocatalytic radical chain reactions was shortened by addition of a catalytic amount of [(TMC)Fe(IV)(O)](2+), whereas addition of a catalytic amount of ferrocene that can reduce [(TMC)Fe(IV)(O)](2+) resulted in elongation of the induction period. Radical chain autoxidation of BPh4(-) by O2 also occurred in the presence of Sc(OTf)3 without [(TMC)Fe(IV)(O)](2+), initiating the autocatalytic oxidation of [(TMC)Fe(II)](2+) with O2 and BPh4(-) to yield [(TMC)Fe(IV)(O)](2+). Thus, the general view for formation of non-heme iron(IV)-oxo complexes via O2-binding iron species (e.g., Fe(III)(O2(•-))) without contribution of autocatalytic radical chain reactions should be viewed with caution. PMID:24809677

  17. Formation of cysteine-S-conjugates in the Maillard reaction of cysteine and xylose.

    PubMed

    Cerny, Christoph; Guntz-Dubini, Renée

    2013-11-15

    Cysteine-S-conjugates (CS-conjugates) occur in foods derived from plant sources like grape, passion fruit, onion, garlic, bell pepper and hops. During eating CS-conjugates are degraded into aroma-active thiols by ?-lyases that originate from oral microflora. The present study provides evidence for the formation of the CS-conjugates S-furfuryl-l-cysteine (FFT-S-Cys) and S-(2-methyl-3-furyl)-l-cysteine (MFT-S-Cys) in the Maillard reaction of xylose with cysteine at 100°C for 2h. The CS-conjugates were isolated using cationic exchange and reversed-phase chromatography and identified by (1)H NMR, (13)C NMR and LC-MS(2). Spectra and LC retention times matched those of authentic standards. To the best of our knowledge, this is the first time that CS-conjugates are described as Maillard reaction products. Furfuryl alcohol (FFA) is proposed as an intermediate which undergoes a nucleophilic substitution with cysteine. Both FFT-S-Cys and MFT-S-Cys are odourless but produce strong aroma when tasted in aqueous solutions, supposedly induced by ? -lyases from the oral microflora. The perceived aromas resemble those of the corresponding aroma-active thiols 2-furfurylthiol (FFT) and 2-methyl-3-furanthiol (MFT) which smell coffee-like and meaty, respectively. PMID:23790889

  18. Low temperature iron- and nickel-catalyzed reactions leading to coalbed gas formation

    SciTech Connect

    Medina, J.C.; Butala, S.J.; Bartholomew, C.H.; Lee, M.L.

    2000-02-01

    Hydrocarbon hydrogenolysis and CO{sub 2} hydrogenation in the presence of Fe/SiO{sub 2} and Ni/SiO{sub 2} catalysts were evaluated as potential mechanisms contributing to natural gas formation in coalbeds. The hydrocarbons used as reactants in hydrogenolysis included butane, octane, 1-octene, and 1-dodecene. The reactions carried out in a laboratory batch reactor produced gas that contained methane concentrations greater than 90%, which resembles the composition of natural gas. Reaction temperatures were selected to resemble natural coalbed conditions. Evidence is presented to show that iron and nickel minerals, which can be present in coals at levels of 2,000 and 10 ppm, respectively, can become active under geologic conditions. The oxides (Fe{sub 2}O{sub 3} and NiO) used as precursors of the active catalysts (Fe and Ni metals) were reduced at 200 C under a hydrogen atmosphere. Moessbauer spectroscopy showed that ca. 6% of the iron oxide was converted to the metal; in the case of nickel, oxygen titration showed that the extent of reduction to the metal was ca. 29%. The resultant fractions of the active metals in coals are adequate to catalyze generation of appreciable amounts of methane over geologic time.

  19. Efficient and directed peptide bond formation in the gas phase via ion/ion reactions

    PubMed Central

    McGee, William M.; McLuckey, Scott A.

    2014-01-01

    Amide linkages are among the most important chemical bonds in living systems, constituting the connections between amino acids in peptides and proteins. We demonstrate the controlled formation of amide bonds between amino acids or peptides in the gas phase using ion/ion reactions in a mass spectrometer. Individual amino acids or peptides can be prepared as reagents by (i) incorporating gas phase–labile protecting groups to silence otherwise reactive functional groups, such as the N terminus; (ii) converting the carboxyl groups to the active ester of N-hydroxysuccinimide; and (iii) incorporating a charge site. Protonation renders basic sites (nucleophiles) unreactive toward the N-hydroxysuccinimide ester reagents, resulting in sites with the greatest gas phase basicities being, in large part, unreactive. The N-terminal amines of most naturally occurring amino acids have lower gas phase basicities than the side chains of the basic amino acids (i.e., those of histidine, lysine, or arginine). Therefore, reagents may be directed to the N terminus of an existing “anchor” peptide to form an amide bond by protonating the anchor peptide’s basic residues, while leaving the N-terminal amine unprotonated and therefore reactive. Reaction efficiencies of greater than 30% have been observed. We propose this method as a step toward the controlled synthesis of peptides in the gas phase. PMID:24474750

  20. Low temperature iron- and nickel-catalyzed reactions leading to coalbed gas formation

    NASA Astrophysics Data System (ADS)

    Medina, Juan Carlos; Butala, Steven J.; Bartholomew, Calvin H.; Lee, Milton L.

    2000-02-01

    Hydrocarbon hydrogenolysis and CO 2 hydrogenation in the presence of Fe/SiO 2 and Ni/SiO 2 catalysts were evaluated as potential mechanisms contributing to natural gas formation in coalbeds. The hydrocarbons used as reactants in hydrogenolysis included butane, octane, 1-octene, and 1-dodecene. The reactions carried out in a laboratory batch reactor produced gas that contained methane concentrations greater than 90%, which resembles the composition of natural gas. Reaction temperatures were selected to resemble natural coalbed conditions. Evidence is presented to show that iron and nickel minerals, which can be present in coals at levels of 2000 and 10 ppm, respectively, can become active under geologic conditions. The oxides (Fe 2O 3 and NiO) used as precursors of the active catalysts (Fe and Ni metals) were reduced at 200°C under a hydrogen atmosphere. Mössbauer spectroscopy showed that ca. 6% of the iron oxide was converted to the metal; in the case of nickel, oxygen titration showed that the extent of reduction to the metal was ca. 29%. The resultant fractions of the active metals in coals are adequate to catalyze generation of appreciable amounts of methane over geologic time.

  1. Human RNase P ribonucleoprotein is required for formation of initiation complexes of RNA polymerase III.

    PubMed

    Serruya, Raphael; Orlovetskie, Natalie; Reiner, Robert; Dehtiar-Zilber, Yana; Wesolowski, Donna; Altman, Sidney; Jarrous, Nayef

    2015-06-23

    Human RNase P is implicated in transcription of small non-coding RNA genes by RNA polymerase III (Pol III), but the precise role of this ribonucleoprotein therein remains unknown. We here show that targeted destruction of HeLa nuclear RNase P inhibits transcription of 5S rRNA genes in whole cell extracts, if this precedes the stage of initiation complex formation. Biochemical purification analyses further reveal that this ribonucleoprotein is recruited to 5S rRNA genes as a part of proficient initiation complexes and the activity persists at reinitiation. Knockdown of RNase P abolishes the assembly of initiation complexes by preventing the formation of the initiation sub-complex of Pol III. Our results demonstrate that the structural intactness, but not the endoribonucleolytic activity per se, of RNase P is critical for the function of Pol III in cells and in extracts. PMID:25953854

  2. Human RNase P ribonucleoprotein is required for formation of initiation complexes of RNA polymerase III

    PubMed Central

    Serruya, Raphael; Orlovetskie, Natalie; Reiner, Robert; Dehtiar-Zilber, Yana; Wesolowski, Donna; Altman, Sidney; Jarrous, Nayef

    2015-01-01

    Human RNase P is implicated in transcription of small non-coding RNA genes by RNA polymerase III (Pol III), but the precise role of this ribonucleoprotein therein remains unknown. We here show that targeted destruction of HeLa nuclear RNase P inhibits transcription of 5S rRNA genes in whole cell extracts, if this precedes the stage of initiation complex formation. Biochemical purification analyses further reveal that this ribonucleoprotein is recruited to 5S rRNA genes as a part of proficient initiation complexes and the activity persists at reinitiation. Knockdown of RNase P abolishes the assembly of initiation complexes by preventing the formation of the initiation sub-complex of Pol III. Our results demonstrate that the structural intactness, but not the endoribonucleolytic activity per se, of RNase P is critical for the function of Pol III in cells and in extracts. PMID:25953854

  3. Petrological and geochemical constraints on granitoid formation: The Waldoboro Pluton Complex, Maine

    SciTech Connect

    Barton, M. (Ohio State Univ., Columbus, OH (United States). Dept. of Geological Science); Sidle, W.S. (Oak Ridge National Lab., TN (United States))

    1992-01-01

    The Waldoboro Pluton Complex (WPC) comprises seven units ranging from qtz-diorite to aplite. The country rocks are biotite-rich metagraywackes with minor shales mostly belonging to the Proterozoic Z-Ordovician Bucksport Formation. Field evidence strongly suggests that the WPC formed in-situ: contacts with the country rock are cryptic, transitional and concordant; restitic minerals in the granitoids are identical to those in the country rocks; prolific metasedimentary enclaves in the WPC are locally derived. Major and trace element data for country rock and the most voluminous units of the WPC define consistent linear trends suggesting limited melt segregation and retention of a high proportion of restite. Mixing models and partial melting models require 54--76% melting for generation of the gneissic granites and two-mica granites. Garnet-biotite geothermometry and garnet-Al[sub 2]SiO[sub 5]-SiO[sub 2]-plagioclase geobarometry indicate that the WPC formed at T = 740--780 C and P = 0.4--0.7 GPa. Published experimental data show that < 50% melting is likely under these conditions if melting is controlled by dehydration reactions. Bucksport lithologies contain < 20% biotite, suggesting that the maximum amount of melt that could have formed by dehydration melting is < 20%, even if all biotite was consumed during melting. It seems probable that a free fluid phase was required to generate the WPC. Migmatization is apparent in all lithologies (including amphibolites) in the vicinity of the WPC, consistent with fluid-present melting. Fluid may have ingressed along the St. George thrust, but the source of the fluid is unknown.

  4. Americium(iii) and europium(iii) complex formation with lactate at elevated temperatures studied by spectroscopy and quantum chemical calculations.

    PubMed

    Barkleit, Astrid; Kretzschmar, Jerome; Tsushima, Satoru; Acker, Margret

    2014-08-01

    Thermodynamic parameters for the complex formation of Am(iii) and Eu(iii) with lactate were determined with UV-vis and time-resolved laser-induced fluorescence spectroscopy (TRLFS) in a temperature range between 25 and 70 °C. The reaction enthalpy decreased with increasing ionic strength. ATR FT-IR and NMR spectroscopy in combination with density functional theory (DFT) calculations revealed structural details of the Eu(iii) lactate 1?:?1 complex: a chelating coordination mode of the lactate with a monodentate binding carboxylate group and the hydroxyl group being deprotonated. PMID:24828353

  5. Thermodynamics of cationic lipid-DNA complex formation as studied by isothermal titration calorimetry.

    PubMed Central

    Pozharski, Edwin; MacDonald, Robert C

    2002-01-01

    The detailed analysis of the cationic lipid-DNA complex formation by means of isothermal titration calorimetry is presented. Most experiments were done using 1,2-dioleyl-sn-glycero-3-ethylphosphocholine (EDOPC), but basic titrations were also done using DOTAP, DOTAP:DOPC, and DOTAP:DOPE mixtures. Complex formation was endothermic with less than 1 kcal absorbed per mole of lipid or DNA charge. This enthalpy change was attributed to DNA-DNA mutual repulsion within the lamellar complex. The exception was DOTAP:DOPE-containing lipoplex for which the enthalpy of formation was exothermic, presumably because of DOPE amine group protonation. Experimental conditions, namely, direction and titration increment as well as concentration of titrant, which dictate the structure of resulting lipoplex (whether lamellar complex or DNA-coated vesicle), were found to affect the apparent thermodynamics of complex formation. The structure, in turn, influences the biological properties of the lipoplex. If the titration of lipid into DNA was carried out in large increments, the DeltaH was larger than when the injection increments were smaller, a finding that is consistent with increased vesicle disruption under large increments and which is expected theoretically. Cationic lipid-DNA binding was weak in high ionic strength solutions, however, the effective binding constant is within micromolar range because of macromolecular nature of the interaction. PMID:12080142

  6. Complexes in the Photocatalytic Reaction of CO2 and H2O: Theoretical Studies

    PubMed Central

    Luo, Dongmei; Zhang, Ning; Hong, Sanguo; Wu, Huanwen; Liu, Zhihua

    2010-01-01

    Complexes (H2O/CO2, e–(H2O/CO2) and h+–(H2O/CO2)) in the reaction system of CO2 photoreduction with H2O were researched by B3LYP and MP2 methods along with natural bond orbital (NBO) analysis. Geometries of these complexes were optimized and frequencies analysis performed. H2O/CO2 captured photo-induced electron and hole produced e–(H2O/CO2) and h+–(H2O/CO2), respectively. The results revealed that CO2 and H2O molecules could be activated by the photo-induced electrons and holes, and each of these complexes possessed two isomers. Due to the effect of photo-induced electrons, the bond length of C=O and H-O were lengthened, while H-O bonds were shortened, influenced by holes. The infrared (IR) adsorption frequencies of these complexes were different from that of CO2 and H2O, which might be attributed to the synergistic effect and which could not be captured experimentally. PMID:21152274

  7. A theoretical and experimental study of the formation mechanism of 4-X-chalcones by the Claisen–Schmidt reaction

    Microsoft Academic Search

    E. I. Gasull; J. J. Silber; S. E. Blanco; F. Tomas; F. H. Ferretti

    2000-01-01

    A theoretical and experimental study on the formation of 4-X-chalcones (X=H, Cl, F, OCH3, N(CH3)2) was carried out by the Claisen–Schmidt reaction. The influence of pH and temperature was analyzed. Under the adopted experimental conditions 4-X-chalcones were the only reaction products. In the theoretical study, the thermodynamic magnitudes and the reactivity indexes calculated with the AM1 method were used. The

  8. Synthesis of titanium carbide by self-propagating powder reactions. 1: Enthalpy of formation of TiC

    Microsoft Academic Search

    D. L. Vrel; J. M. Lihrmann; J. P. Petitet

    2009-01-01

    In order to solve the heat equation which describes self-propagating high temperature synthesis (SHS) of refractory materials, a set of experiments have been performed to measure the enthalpy of reaction which accompanies the formation of titanium carbide in direct powder reactions. In air, the measured value is [minus]139 [+-] 6 kJ\\/mol, whereas in argon it becomes [minus]129 [+-] 6 kJ\\/mol

  9. Systematics of complex fragment emission from La induced reactions at E/A = 47 MeV

    SciTech Connect

    Kehoe, W.L.; Mignerey, A.C.; Bradley, S.; Marchetti, A.; Bowman, D.R.; Charity, R.J.; Colonna, N.; Han, H.; Jing, K.; McDonald, R.J.

    1989-03-01

    Complex fragment (Z > 2) emission was studied in the reverse kinematics reactions of /sup 139/La on /sup 27/Al and /sup nat./Cu at a bombarding energy of E/A = 47 MeV. Experimental results from inclusive and coincidence measurements for two- and three-fold complex fragments events are presented. Measured cross sections and Z/sub 1/-Z/sub 2/ correlations show a predominately binary-decay process for the La + Al reaction, while the La + Cu reaction is dominated by multi-body decay. 18 refs., 9 figs., 1 tab.

  10. SEPALLATA3: the 'glue' for MADS box transcription factor complex formation

    Microsoft Academic Search

    Isabella AN Tonaco; Stefan de Folter; Anna Shchennikova; Aalt DJ van Dijk; Jacqueline Busscher-Lange; Jan W Borst; Gerco C Angenent

    2009-01-01

    BACKGROUND: Plant MADS box proteins play important roles in a plethora of developmental processes. In order to regulate specific sets of target genes, MADS box proteins dimerize and are thought to assemble into multimeric complexes. In this study a large-scale yeast three-hybrid screen is utilized to provide insight into the higher-order complex formation capacity of the Arabidopsis MADS box family.

  11. A permeability transition in liposomes induced by the formation of Ca 2+\\/palmitic acid complexes

    Microsoft Academic Search

    Alexey Agafonov; Elena Gritsenko; Konstantin Belosludtsev; Alexandr Kovalev; Odile Gateau-Roesch; Nils-Erik L. Saris; Galina D. Mironova

    2003-01-01

    Formation of palmitic acid\\/Ca2+ (PA\\/Ca2+) complexes was suggested to play a key role in the non-classical permeability transition in mitochondria (NCPT), which seems to be involved in the PA-induced apoptosis of cardiomyocytes. Our previous studies of complexation of free fatty acids (FFA) with Ca2+ showed that long-chain (C:16–C:22) saturated FFA had an affinity to Ca2+, which was much higher than

  12. Formation and alteration of complex amino acid precursors in cosmic dusts and their relevance to origins of life

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Kaneko, Takeo; Mita, Hajime; Obayashi, Yumiko; Kawamoto, Yukinori; Kanda, Kazuhiro; Takayama, Ken; Shibata, Hiromi

    A wide variety of organic compounds including many kinds of amino acids have been detected in carbonaceous chondrites. It has been known that comets also bring complex organic compounds. The relevance of extraterrestrial organics to the origin of life is extensively discussed. There have been many scenarios of the origin of amino acids found in meteorites or comets, including the Strecker synthesis in the parent bodies of meteorites, the Fischer-Tropsch type reaction in the solar nebula and reactions in cosmic dusts. We examined possible formation of amino acids or their precursors in interstellar dust environments. When possible interstellar media (a mixture of carbon monoxide, ammonia and water) was irradiated with high energy protons, complex organic compounds whose molecular weights are thousands were formed [1], which gave amino acids after acid hydrolysis: Hereafter we will refer them simulated interstellar organics. It was suggested that complex amino acid precursors could be formed in ice mantles of interstellar dust particles in prior to the formation of the solar system. We are planning to irradiate simulated interstellar ices with high-energy heavy ions from the Digital Accelerator (KEK) to confirm the scenario. The simulated interstellar oraganics were so hydrophilic that they were easy to dissolve in water. Complex organics found in meteorites are generally so hydrophobic and are insoluble to water. Organics found in cometary dusts sampled by the Stardust Mission contains organics with various hydrophobicity. We irradiated the simulated interstellar organics with UV and/or soft X-rays. Soft X-rays irradiation of the simulated interstellar organics resulted in the formation of more hydrophobic compounds as seen in some of cometary dusts. It was suggested that organics of interstellar origin on dusts were altered when the solar system was being formed with soft X-rays from the young Sun in prior to the incorporation to planetesimals or comets. Dusts have another important role: Delivery of extraterrestrial organics to the primitive Earth. We are planning a novel astrobiology mission named Tanpopo by utilizing the Exposed Facility of Japan Experimental Module (JEM/EF) of the International Space Station (ISS). We will collect cosmic dusts by using ultra-low density silica gel (aerogel), and will analyze them after returning them to the Earth. Details will be presented in the other session of COSPAR 2014 [2]. [1] Y. Takano et al., Appl. Phys. Lett., 84 (2004) 1410-1412. [2] K. Kobayashi et al., COSPAR 2014, Session F31, #14256, Moscow, Russia.

  13. Formation of Stable Cationic Lipid/DNA Complexes for Gene Transfer

    NASA Astrophysics Data System (ADS)

    Hofland, Hans E. J.; Shephard, Lee; Sullivan, Sean M.

    1996-07-01

    Stable cationic lipid/DNA complexes were formed by solubilizing cationic liposomes with 1% octylglucoside and complexing a DNA plasmid with the lipid in the presence of detergent. Removal of the detergent by dialysis yielded a lipid/DNA suspension that was able to transfect tissue culture cells up to 90 days after formation with no loss in activity. Similar levels of gene transfer were obtained by mixing the cationic lipid in a liposome form with DNA just prior to cell addition. However, expression was completely lost 24 hr after mixing. The transfection efficiency of the stable complex in 15% fetal calf serum was 30% of that obtained in the absence of serum, whereas the transient complex was completely inactivated with 2% fetal calf serum. A 90-day stability study comparing various storage conditions showed that the stable complex could be stored frozen or as a suspension at 4 degrees C with no loss in transfection efficiency. Centrifugation of the stable complex produced a pellet that contained approximately 90% of the DNA and 10% of the lipid. Transfection of cells with the resuspended pellet and the supernatant showed that the majority of the transfection activity was in the pellet and all the toxicity was in the supernatant. Formation of a stable cationic lipid/DNA complex has produced a transfection vehicle that can be stored indefinitely, can be concentrated with no loss in transfection efficiency, and the toxicity levels can be greatly reduced when the active complex is isolated from the uncomplexed lipid.

  14. Formation of carriers in Ti-oxide thin films by substitution reactions

    SciTech Connect

    Liu, Y. S.; Lin, Y. H.; Wei, Y. S.; Liu, C. Y. [Department of Chemical and Materials Engineering, National Central University, Jhong-Li, Taiwan (China)

    2012-02-15

    Conductive Ti-oxide thin films are produced using a reactive sputtering and post-annealing process. The lowest resistivity of Ti-oxide thin films (2.30 x 10{sup -2}{Omega}-cm) can be achieved after annealing for 1 h at 400 deg. C in ambient O{sub 2}. Additionally, the Hall measurement results indicate that the carrier concentration increases during the initial 1-h annealing process before decreasing during subsequent annealing. By curve fitting the O{sub ls} core-level peaks in the x ray photoelectron spectroscopy (XPS) spectrum of the annealed Ti-oxide thin films, we found that the oxygen (O) vacancy concentration monotonically increases with annealing time, which differs from the behavior of the carrier concentration regarding annealing time. This means that the O-vacancy mechanism alone cannot explain the formation of carriers in Ti-oxide thin films. By curve-fitting core-level Ti peaks in the XPS spectrum of annealed Ti-oxide thin films, a Ti{sup 3+}-to-Ti{sup 4+} substitution reaction in the TiO{sub 2} phase of the Ti-oxide thin film after annealing plays the dominant role in the formation of conduction carriers. Instead of the O-vacancy mechanism, the Ti{sup 3+}-to-Ti{sup 4+} substitution mechanism can explain the concentration of carriers in Ti-oxide thin films following annealing.

  15. Photochemical reactions of divalent mercury with thioglycolic acid: formation of mercuric sulfide particles.

    PubMed

    Si, Lin; Ariya, Parisa A

    2015-01-01

    Mercury (Hg) is a key toxic global pollutant. Studies in aquatic environment have suggested that thiols could be important for mercury speciation. Thioglycolic acid has been detected in various natural water systems and used as a model compound to study the complicated interaction between mercury and polyfunctional dissolved organic matter (DOM). We herein presented the first evidence for mercury particle formation during kinetic and product studies on the photochemistry of divalent mercury (Hg(2+)) with thioglycolic acid at near environmental conditions. Mercuric sulfide (HgS) particles formed upon photolysis were identified by high-resolution transmission electron microscopy coupled with energy dispersive spectrometry and select area electron diffraction. Kinetic data were obtained using UV-visible spectrophotometry and cold vapour atomic fluorescent spectrometry. The apparent first-order reaction rate constant under our experimental conditions was calculated to be (2.3±0.4)×10(-5) s(-1) at T=296±2 K and pH 4.0. It was found that (89±3)% of the reactants undergo photoreduction to generate elemental mercury (Hg(0)). The effects of ionic strengths, pH and potassium ion were also investigated. The formation of HgS particles pointed to the possible involvement of heterogeneous processes. Our kinetic results indicated the importance of weak binding sites on DOM to Hg in photoreduction of Hg(2+) to Hg(0). The potential implications of our data on environmental mercury transformation were discussed. PMID:25094064

  16. Intramolecular condensation reactions of {alpha}, {omega}- bis(triethoxy-silyl)alkanes. Formation of cyclic disilsesquioxanes

    SciTech Connect

    Loy, D.A.; Carpenter, J.P.; Myers, S.A.; Assink, R.A.; Small, J.H. [Sandia National Labs., Albuquerque, NM (United States); Greaves, J.; Shea, K.J. [California Univ., Irvine, CA (United States). Dept. of Chemistry

    1996-08-01

    Under acidic sol-gel polymerization conditions, 1,3-bis(triethoxysilyl)-propane (1) and 1,4-bis(triethoxysilyl)butane (2) were shown to preferentially form cyclic disilsesquioxanes 3 and 4 rather than the expected 1,3-propylene- and 1,4-butylene-bridged polysilsesquioxane gels. Formation of 3 and 4 is driven by a combination of an intramolecular cyclization to six and seven membered rings, and a pronounced reduction in reactivity under acidic conditions as a function of increasing degree of condensation. The ease with which these relatively unreactive cyclic monomers and dimers are formed (under acidic conditions) helps to explain the difficulties in forming gels from 1 and 2. The stability of cyclic disilsesquioxanes was confirmed withe the synthesis of 3 and 4 in gram quantities; the cyclic disilsesquioxanes react slowly to give tricyclic dimers containing a thermodynamically stable eight membered siloxane ring. Continued reactions were shown to perserve the cyclic structure, opening up the possibility of utilizing cyclic disilsesquioxanes as sol-gel monomers. Preliminary polymerization studies with these new, carbohydrate-like monomers revealed the formation of network poly(cyclic disilsesquioxanes) under acidic conditions and polymerization with ring-opening under basic conditions.

  17. Crystallographic snapshots of the reaction of aromatic C-H with O(2) catalysed by a protein-bound iron complex.

    PubMed

    Cavazza, Christine; Bochot, Constance; Rousselot-Pailley, Pierre; Carpentier, Philippe; Cherrier, Mickaël V; Martin, Lydie; Marchi-Delapierre, Caroline; Fontecilla-Camps, Juan C; Ménage, Stéphane

    2010-12-01

    Chemical reactions inside single crystals are quite rare because crystallinity is difficult to retain owing to atomic rearrangements. Protein crystals in general have a high solvent content. This allows for some molecular flexibility, which makes it possible to trap reaction intermediates of enzymatic reactions without disrupting the crystal lattice. A similar approach has not yet been fully implemented in the field of inorganic chemistry. Here, we have combined model chemistry and protein X-ray crystallography to study the intramolecular aromatic dihydroxylation by an arene-containing protein-bound iron complex. The bound complex was able to activate dioxygen in the presence of a reductant, leading to the formation of catechol as the sole product. The structure determination of four of the catalytic cycle intermediates and the end product showed that the hydroxylation reaction implicates an iron peroxo, generated by reductive O(2) activation, an intermediate already observed in iron monooxygenases. This strategy also provided unexpected mechanistic details such as the rearrangement of the iron coordination sphere on metal reduction. PMID:21107372

  18. Crystal Structure of an EAL Domain in Complex with Reaction Product 5?-pGpG

    PubMed Central

    Robert-Paganin, Julien; Nonin-Lecomte, Sylvie; Réty, Stéphane

    2012-01-01

    FimX is a large multidomain protein containing an EAL domain and involved in twitching motility in Pseudomonas aeruginosa. We present here two crystallographic structures of the EAL domain of FimX (residues 438–686): one of the apo form and the other of a complex with 5?-pGpG, the reaction product of the hydrolysis of c-di-GMP. In both crystal forms, the EAL domains form a dimer delimiting a large cavity encompassing the catalytic pockets. The ligand is trapped in this cavity by its sugar phosphate moiety. We confirmed by NMR that the guanine bases are not involved in the interaction in solution. We solved here the first structure of an EAL domain bound to the reaction product 5?-pGpG. Though isolated FimX EAL domain has a very low catalytic activity, which would not be significant compared to other catalytic EAL domains, the structure with the product of the reaction can provides some hints in the mechanism of hydrolysis of the c-di-GMP by EAL domains. PMID:23285035

  19. Electron transfer reactions in the alkene mono-oxygenase complex from Nocardia corallina B-276.

    PubMed Central

    Gallagher, S C; Cammack, R; Dalton, H

    1999-01-01

    Nocardia corallina B-276 possesses a multi-component enzyme, alkene mono-oxygenase (AMO), that catalyses the stereoselective epoxygenation of alkenes. The reductase component of this system has been shown by EPR and fluorescence spectroscopy to contain two prosthetic groups, an FAD centre and a [2Fe-2S] cluster. The role of these centres in the epoxygenation reaction was determined by midpoint potential measurements and electron transfer kinetics. The order of potentials of the prosthetic groups of the reductase were FAD/FAD.=-216 mV, [2Fe-2S]/[2Fe-2S].=-160 mV and FAD./FAD.=-134 mV. Combined, these data implied that the reductase component supplied the energy required for the epoxygenation reaction and allowed a prediction of the mechanism of electron transfer within the AMO complex. The FAD moiety was reduced by bound NADH in a two-electron reaction. The electrons were then transported to the [2Fe-2S] centre one at a time, which in turn reduced the di-iron centre of the epoxygenase. Reduction of the di-iron centre is required for oxygen binding and substrate oxidation. PMID:10085230

  20. Crystal structure of an EAL domain in complex with reaction product 5'-pGpG.

    PubMed

    Robert-Paganin, Julien; Nonin-Lecomte, Sylvie; Réty, Stéphane

    2012-01-01

    FimX is a large multidomain protein containing an EAL domain and involved in twitching motility in Pseudomonas aeruginosa. We present here two crystallographic structures of the EAL domain of FimX (residues 438-686): one of the apo form and the other of a complex with 5'-pGpG, the reaction product of the hydrolysis of c-di-GMP. In both crystal forms, the EAL domains form a dimer delimiting a large cavity encompassing the catalytic pockets. The ligand is trapped in this cavity by its sugar phosphate moiety. We confirmed by NMR that the guanine bases are not involved in the interaction in solution. We solved here the first structure of an EAL domain bound to the reaction product 5'-pGpG. Though isolated FimX EAL domain has a very low catalytic activity, which would not be significant compared to other catalytic EAL domains, the structure with the product of the reaction can provides some hints in the mechanism of hydrolysis of the c-di-GMP by EAL domains. PMID:23285035

  1. Formation of Vacancy-Impurity Complexes by Kinetic Processes in Highly As-Doped Si

    NASA Astrophysics Data System (ADS)

    Ranki, V.; Nissilä, J.; Saarinen, K.

    2002-03-01

    Positron annihilation experiments have been applied to verify the formation mechanism of electrically inactive vacancy-impurity clusters in highly n-type Si. We show that the migration of V-As pairs at 450 K leads to the formation of V-As2 complexes, which in turn convert to stable V-As3 defects at 700 K. These processes manifest the formation of V-As3 as the dominant vacancy-impurity cluster in highly n-type Si. They further explain the electrical deactivation and clustering of As in epitaxial or ion-implanted Si during postgrowth heat treatment at 700 K.

  2. Quantum chemical approach for condensed-phase thermochemistry (II): Applications to formation and combustion reactions of liquid organic molecules

    NASA Astrophysics Data System (ADS)

    Ishikawa, Atsushi; Nakai, Hiromi

    2015-03-01

    The harmonic solvation model (HSM), which was recently developed for evaluating condensed-phase thermodynamics by quantum chemical calculations (Nakai and Ishikawa, 2014), was applied to formation and combustion reactions of simple organic molecules. The conventional ideal gas model (IGM) considerably overestimated the entropies of the liquid molecules. The HSM could significantly improve this overestimation; mean absolute deviations for the Gibbs energies of the formation and combustion reactions were (49.6, 26.7) for the IGM and (9.7, 5.4) for the HSM in kJ/mol.

  3. High-pressure rate rules for alkyl + O2 reactions. 2. The isomerization, cyclic ether formation, and ?-scission reactions of hydroperoxy alkyl radicals.

    PubMed

    Villano, Stephanie M; Huynh, Lam K; Carstensen, Hans-Heinrich; Dean, Anthony M

    2012-05-31

    The unimolecular reactions of hydroperoxy alkyl radicals (QOOH) play a central role in the low-temperature oxidation of hydrocarbons as they compete with the addition of a second O(2) molecule, which is known to provide chain-branching. In this work we present high-pressure rate estimation rules for the most important unimolecular reactions of the ?-, ?-, and ?-QOOH radicals: isomerization to RO(2), cyclic ether formation, and selected ?-scission reactions. These rate rules are derived from high-pressure rate constants for a series of reactions of a given reaction class. The individual rate expressions are determined from CBS-QB3 electronic structure calculations combined with canonical transition state theory calculations. Next we use the rate rules, along with previously published rate estimation rules for the reactions of alkyl peroxy radicals (RO(2)), to investigate the potential impact of falloff effects in combustion/ignition kinetic modeling. Pressure effects are examined for the reaction of n-butyl radical with O(2) by comparison of concentration versus time profiles that were obtained using two mechanisms at 10 atm: one that contains pressure-dependent rate constants that are obtained from a QRRK/MSC analysis and another that only contains high-pressure rate expressions. These simulations reveal that under most conditions relevant to combustion/ignition problems, the high-pressure rate rules can be used directly to describe the reactions of RO(2) and QOOH. For the same conditions, we also address whether the various isomers equilibrate during reaction. These results indicate that equilibrium is established between the alkyl, RO(2), and ?- and ?-QOOH radicals. PMID:22548467

  4. Synthesis and structures of doubly-bridged dicyclopentadienyl dinuclear rhenium complexes, and their photochemical reactions with aromatic halides in benzene.

    PubMed

    Zhu, Bolin; Huang, Xinwei; Hao, Xiaoting

    2014-11-28

    Reaction of the doubly-bridged biscyclopentadienes (C5H4(EMe2))(C5H4(SiMe2)) (E = Si(1a), or C(1b)) with Re2(CO)10 in refluxing mesitylene gave the corresponding dirhenium carbonyl complexes [(?(5)-C5H3)2(EMe2)(SiMe2)][Re(CO)3]2 (trans-2a,b and cis-2a,b), and the desilylated products [(?(5)-C5H4)2(EMe2)][Re(CO)3]2 (3a,b). Photolysis of trans-2a,b with a series of aryl halides in benzene results in the formation of biphenyl, together with the corresponding rhenium dihalide complexes trans-[(?(5)-C5H3)2(EMe2)(SiMe2)][Re(CO)3][Re(CO)2X2] (X = Cl, Br, I) (4, 6, 8, or 10) and trans-[(?(5)-C5H3)2(EMe2)(SiMe2)][Re(CO)2X2]2 (5, 7, or 9). Additional experiments indicate that one phenyl ring in the resulting biphenyl comes from aryl halides and the other phenyl ring comes from the solvent benzene. However, photolysis of trans-2a with benzyl chloride and n-hexyl chloride in benzene afforded the corresponding bibenzyl and n-dodecane, as well as the rhenium dichlorides 8 and 9. In addition, complex trans-2a can also activate the C-F bond on C6F6 to form the pentafluorophenyl rhenium fluoride trans-[(?(5)-C5H3)2(SiMe2)2][Re(CO)3][Re(CO)2(C6F5)F] (11). Molecular structures of cis-2a, cis-2b, trans-2b, 3b, 6, 7, 8, 11, and 12 determined by X-ray diffraction are also presented. PMID:25274024

  5. Quantum-Chemical Calculations of the Structure of the Triplet Reaction Complexes in Anionic Polymerization of Butadiene

    Microsoft Academic Search

    K. K. Kalninsh; A. F. Podolskii

    2001-01-01

    A new mechanism of anionic polymerization of butadiene, radically changing the existing concepts on the structure and properties of the reaction complex, is suggested. It is stated that an elementary chemical process involves excitation into the low-lying triplet state of the “living” polymer–monomer complex, characterized as a transfer of a charge (electron) and cation (Li+ or Na+) from the terminal

  6. The dimeric structure of the cytochrome bc1 complex prevents center P inhibition by reverse reactions at center N

    E-print Network

    Trumpower, Bernard L.

    The dimeric structure of the cytochrome bc1 complex prevents center P inhibition by reverse in the cytochrome bc1 complex is achieved by catalyzing opposite oxido-reduction reactions at two different quinone binding sites. We have determined the pre-steady state kinetics of cytochrome b and c1 reduction

  7. Nup155 regulates nuclear envelope and nuclear pore complex formation in nematodes and vertebrates

    PubMed Central

    Franz, Cerstin; Askjaer, Peter; Antonin, Wolfram; Iglesias, Carmen López; Haselmann, Uta; Schelder, Malgorzata; de Marco, Ario; Wilm, Matthias; Antony, Claude; Mattaj, Iain W

    2005-01-01

    Nuclear envelope (NE) formation during cell division in multicellular organisms is a central yet poorly understood biological process. We report that the conserved nucleoporin Nup155 has an essential function in NE formation in Caenorhabditis elegans embryos and in Xenopus laevis egg extracts. In vivo depletion of Nup155 led to failure of nuclear lamina formation and defects in chromosome segregation at anaphase. Nup155 depletion inhibited accumulation of nucleoporins at the nuclear periphery, including those recruited to chromatin early in NE formation. Electron microscopy analysis revealed that Nup155 is also required for the formation of a continuous nuclear membrane in vivo and in vitro. Time-course experiments indicated that Nup155 is recruited to chromatin at the time of NE sealing, suggesting that nuclear pore complex assembly has to progress to a relatively late stage before NE membrane assembly occurs. PMID:16193066

  8. Theoretical studies on C 2H+NO reactions: mechanism for HCN+CO and HCO+CN formation

    NASA Astrophysics Data System (ADS)

    Sengupta, Debasis; Peeters, Jozef; Nguyen, Minh Tho

    1998-01-01

    In order to investigate HCN+CO and/or HCO+CN formation during the reaction of the ethynyl radical with nitric oxide we explore the potential energy surface of [C 2HNO] isomers via density functional theory. Product formation takes place via several isomerization steps after the initial adduct formation. We identified one reaction pathway resulting in fragmentation that is accessible without activation of the initial reactants; this path forms HCN+CO and involves a four-membered cyclic structure. Other pathways, involving formyl cyanide and leading to HCN+CO and/or HCO+CN, require initial activation. Wherever possible, our calculated energies are compared with higher level ab initio results. The heat of formation of formyl cyanide is calculated to be 14.4 kcal/mol which compares reasonably well with the reported value of 11.6 kcal/mol at the G2 level of theory.

  9. ?-Diimines as nitrogen ligands for ruthenium-catalyzed allylation reactions and related (pentamethylcyclopentadienyl) ruthenium complexes

    Microsoft Academic Search

    Mbaye D. Mbaye; Bernard Demerseman; Jean-Luc Renaud; Christian Bruneau

    2005-01-01

    The new Cp*Ru(II) (Cp*: pentamethylcyclopentadienyl) complexes Cp*(dab-R)RuCl, [Cp*(dab-R)(MeCN)Ru][PF6] (dab-R: RNCH–CHNR; R: iso-propyl, mesityl), and [Cp*(cod)(MeCN)Ru][PF6], are synthesized in high yields by reacting the corresponding ?-diimine or 1,5-cyclooctadiene with [Cp*RuCl]4 and [Cp*(MeCN)3Ru][PF6], respectively. The ?-diimine ligands are strongly bonded to the ruthenium centre as shown by the subsequent formation of the alkynyl derivatives Cp*(dab-R)RuCCR? (R?=tert-butyl or phenyl) and of the cationic

  10. Effects of tungsten and aluminum additions on the formation of molybdenum disilicide by mechanically-induced self-propagating reaction

    Microsoft Academic Search

    Xiaohong Wang; Peizhong Feng; Farid Akhtar; Jie Wu; Weisheng Liu; Yinghuai Qiang; Zhenzhong Wang

    2010-01-01

    The effects of tungsten and aluminum additions to Mo–Si system on the formation of MoSi2 by mechanically-induced self-propagating reaction in a high-energy ball mill were investigated by X-ray diffraction. The incubation time for mechanically-induced self-propagating reaction to form MoSi2 was 90min in Mo–Si system. With the addition of tungsten to Mo–Si system, the incubation time of mechanically-induced self-propagating reaction of

  11. Large Ground-State Entropy Changes for Hydrogen Atom Transfer Reactions of Iron Complexes

    PubMed Central

    Mader, Elizabeth A.; Davidson, Ernest R.

    2008-01-01

    Reported herein are the hydrogen atom transfer (HAT) reactions of two closely related dicationic iron tris ?-diimine complexes. FeII(H2bip) (iron(II) tris[2,2?-bi-1,4,5,6-tetra-hydropyrimidine]diperchlorate) and FeII(H2bim) (iron(II) tris[2,2?-bi-2-imidazoline]diperchlorate) both transfer H• to TEMPO (2,2,6,6-tetramethyl-1-piperidinoxyl) to yield the hydroxylamine, TEMPO-H, and the respective deprotonated iron(III) species, FeIII(Hbip) or FeIII(Hbim). The ground-state thermodynamic parameters in MeCN were determined for both systems using both static and kinetic measurements. For FeII(H2bip) + TEMPO: ?G° = ?0.3 ± 0.2 kcal mol?1, ?H° =?9.4 ± 0.6 kcal mol?1, ?S° = ?30 ± 2 cal mol?1 K?1. For FeII(H2bim) + TEMPO: ?G° = 5.0 ± 0.2 kcal mol?1, ?H° = ?4.1 ± 0.9 kcal mol?1, ?S° = ?30 ± 3 cal mol?1 K?1. The large entropy changes for these reactions, |T?S°| = 9 kcal mol?1 at 298 K, are exceptions to the traditional assumption that ?S° ? 0 for simple HAT reactions. Various studies indicate that hydrogen-bonding, solvent effects, ion-pairing, and iron spin-equilibria do not make major contributions to the observed ?S°HAT. Instead, this effect arises primarily from changes in vibrational entropy upon oxidation of the iron center. Measurement of the electron transfer half-reaction entropy, |?S° Fe(H2bim)/ET| = 29 ± 3 cal mol?1 K?1, is consistent with a vibrational origin. This conclusion is supported by UHF/6-31G* calculations on the simplified reaction [FeII(H2N=CHCH=NH2)2(H2bim)]2+•••ONH2 ? [FeII(H2N=CHCH=NH2)2(Hbim)]2+•••HONH2. The discovery that ?S°HAT can deviate significantly from zero has important implications on the study of HAT and proton-coupled electron transfer (PCET) reactions. For instance, these results indicate that free energies, rather than enthalpies, should be used to estimate the driving force for HAT when transition metal centers are involved. PMID:17402735

  12. Complex formation of Zn-, Ni-, and Pd-derivatives of purpurin-18 with serum albumin

    NASA Astrophysics Data System (ADS)

    Golovina, G. V.; Novikov, F. N.; Ol'shevskaya, V. A.; Kalinin, V. N.; Shtil, A. A.; Kuzmin, V. A.

    2012-11-01

    We analyzed the spectral characteristics of the complexes of Zn2+, Ni2+, and Pd2+ derivatives of purpurin-18 with human serum albumin (HSA) in aqueous buffer at pH 7.0. Pd2+ in the coordination sphere of purpurin-18 decreased the affinity to HSA compared to the respective complexes of zinc and nickel derivatives. Since the formation of complexes with HSA is an important parameter of photodynamic activity of tetrapyrrolic compounds, the differential affinity of metal derivatives of purpurin-18 to this protein should be considered for the optimization of photosensitizers.

  13. Use of fast HPLC multiple reaction monitoring cubed for endogenous retinoic acid quantification in complex matrices.

    PubMed

    Jones, Jace W; Pierzchalski, Keely; Yu, Jianshi; Kane, Maureen A

    2015-03-17

    Retinoic acid (RA), an essential active metabolite of vitamin A, controls numerous physiological processes. In addition to the analytical challenges owing to its geometric isomers, low endogenous abundance, and often localized occurrence, nonspecific interferences observed during liquid chromatography (LC) multiple reaction monitoring (MRM) quantification methods have necessitated lengthy chromatography to obtain accurate quantification free of interferences. We report the development and validation of a fast high performance liquid chromatography (HPLC) multiplexing multiple reaction monitoring cubed (MRM(3)) assay for selective and sensitive quantification of endogenous RA from complex matrices. The fast HPLC separation was achieved using an embedded amide C18 column packed with 2.7 ?m fused-core particles which provided baseline resolution of endogenous RA isomers (all-trans-RA, 9-cis-RA, 13-cis-RA, and 9,13-di-cis-RA) and demonstrated significant improvements in chromatographic efficiency compared to porous particle stationary phases. Multiplexing technology further enhanced sample throughput by a factor of 2 by synchronizing parallel HPLC systems to a single mass spectrometer. The fast HPLC multiplexing MRM(3) assay demonstrated enhanced selectivity for endogenous RA quantification in complex matrices and had comparable analytical performance to robust, validated LC-MRM methodology for RA quantification. The quantification of endogenous RA using the described assay was validated on a number of mouse tissues, nonhuman primate tissues, and human plasma samples. The combined integration of fast HPLC, MRM(3), and multiplexing yields an analysis workflow for essential low-abundance endogenous metabolites that has enhanced selectivity in complex matrices and increased throughput that will be useful in efficiently interrogating the biological role of RA in larger study populations. PMID:25704261

  14. Transcription by RNA polymerase II: initiator-directed formation of transcription-competent complexes

    Microsoft Academic Search

    LISA WEIS; DANNY REINBERG

    1992-01-01

    Studies of transcription by RNA polymer- ase II have revealed two promoter elements, the TATA motif and the initiator (Inr), capable of directing specific transcription initiation. Although binding to the TATA motif by one of the components of the transcription machinery has been shown to be the initial recognition step in transcription complex formation, many promoters that lack a traditional

  15. Monte Carlo simulations of complex formation between a mixed fluid vesicle and a charged colloid

    E-print Network

    Iglic, Ales

    Monte Carlo simulations of complex formation between a mixed fluid vesicle and a charged colloid fluidlike vesicle to adhere to and encapsulate an oppositely charged spherical colloidal particle. The vesicle contains mobile charges that interact with the colloid and among themselves through a screened

  16. The effect of an ?-globulin preparation and of polyribonuclease complexes on humoral antibody formation

    PubMed Central

    Pullar, Diane M.; James, K.; Naysmith, J. D.

    1968-01-01

    The effects of bovine ?-globulin (BAG), bovine-ribonuclease serum albumin (BSA-RNase) and polyribonuclease (poly-RNase) complexes on the primary response of rodents to sheep erythrocytes have been investigated. These preparations frequently failed to cause marked suppression of humoral antibody formation. PMID:4173925

  17. STUDY USING A THREE-DIMENSIONAL SMOG FORMATION MODEL UNDER CONDITIONS OF COMPLEX FLOW

    EPA Science Inventory

    To clarify the photochemical smog formation mechanisms under conditions of complex flow, the SAI Urban Airshed Model was evaluated using a 1981 field observed data base. In the Tokyo Metropolitan Area higher O3 concentrations are usually observed near the shore in the morning. As...

  18. Dynamics of cadherin\\/catenin complex formation: novel protein interactions and pathways of complex assembly

    Microsoft Academic Search

    Lindsay Hinck; Inke S. Ntithke; Jackie Papkoff; W. James Nelson

    1994-01-01

    Calcium-dependent cell-cell adhesion is mediated by the cadherin family of cell adhesion pro- teins. Transduction of cadherin adhesion into cellular reorganization is regulated by cytosolic proteins, termed ct-, ~-, and qc-catenin (plakoglobin), that bind to the cytoplasmic domain of cadherins and link them to the cytoskeleton. Previous studies of cadherin\\/cate- nin complex assembly and organization relied on the coimmunoprecipitation of

  19. First evidence for the formation of technetium oxosulfide complexes: synthesis, structure and characterization.

    PubMed

    Ferrier, Maryline; Weck, Philippe F; Poineau, Frederic; Kim, Eunja; Stebbins, Alan; Ma, Longzhou; Sattelberger, Alfred P; Czerwinski, Kenneth R

    2012-05-28

    The reaction of tetrabutylammonium pertechnetate with bis(trimethylsilyl) sulfide in solution was studied by UV-Visible spectroscopy and mass spectrometry. Experimental results and density functional calculations provide the first evidence for the formation of a TcO(3)S(-) precursor. Larger scale synthesis afforded a solid that was characterized by EDX and XANES spectroscopy. XANES showed the presence of technetium in tetravalent state. EDX indicated the solid contained technetium, sulfur and oxygen. PMID:22495730

  20. Complexes of dextran sulfate and anthocyanins from Vaccinium myrtillus: Formation and stability.

    PubMed

    Klimaviciute, Rima; Navikaite, Vesta; Jakstas, Valdas; Ivanauskas, Liudas

    2015-09-20

    To improve the stability and antioxidant activity of anthocyanins (ATC), complexes of dextran sulfate (DESU) and ATC extracted from Vaccinium myrtillus were formed during electrostatic interaction between sulfo groups of DESU and cationic moieties of ATC. At the optimal weight ratio DESU/ATC=0.4g/g, the amount of ATC introduced into a complex depended on the total concentration of the reagents. About 1.7g of ATC per g of DESU could be incorporated into a complex. The formation of DESU/ATC complexes was confirmed by HPLC and FT-IR spectroscopy. According to HPLC analysis, the amount of individual ATC incorporated into a complex varied from 73.7% in the case of malvidin-3-O-glucoside to 90.8% in the case of delphinidin-3-arabinoside. PMID:26050890

  1. Vibrational mode-selected differential scattering of NH3+ methanol (d1, d3, d4): Control of product branching by hydrogen-bonded complex formation

    NASA Astrophysics Data System (ADS)

    Fu, Hungshin; Qian, Jun; Green, Richard J.; Anderson, Scott L.

    1998-02-01

    We report a study of vibrational mode effects and differential scattering in reaction of NH3+ with CD3OD, CD3OH, and CH3OD over the collision energy range from 0.1 to 5 eV. At low collision energies, abstraction of both methyl and hydroxyl D atoms is observed with roughly equal probability, even though methyl D-abstraction should be favored on both energetic and statistical grounds. Branching between the two abstraction reactions is controlled by two different hydrogen-bonded complexes. Formation of these complexes is enhanced by NH3+ umbrella bending, unaffected by the NH3+ symmetric stretch, and inhibited by collision energy. Endoergic proton transfer is mediated at low energies by a third hydrogen-bonded complex, formation of which is enhanced by both umbrella bending and the symmetric stretch. Charge transfer (CT) has a significant cross section only when the NH3+ umbrella bend excitation exceeds the endoergicity. Collision energy and symmetric stretching appear to have no effect on CT. At high collision energies all reactions become direct, with near spectator stripping dynamics. In this energy range product branching appears to be controlled by collision geometry and there are no significant vibrational effects.

  2. Specific antagonist of platelet-activating factor suppresses edema formation in an Arthus reaction but not edema induced by leukocyte chemoattractants in rabbit skin

    SciTech Connect

    Hellewell, P.G.; Williams, T.J.

    1986-07-15

    The properties of a novel platelet-activating factor (PAF) antagonist, L-652731, on edema responses in rabbit skin induced by exogenous inflammatory mediators and by mediators generated endogenously in a reversed passive Arthus reaction have been investigated. Edema responses in the skin were measured by using the local accumulation of i.v. injected /sup 125/I-albumin. The antagonist, mixed with mediators before intradermal injection, caused a dose-dependent suppression of edema responses to PAF. In contrast, responses induced by other directly acting mediators (bradykinin and histamine) and responses induced by PMN leukocyte-dependent mediators (C5a des Arg, N-formyl-methionyl-leucyl-phenylalanine, and keukotriene B/sub 4/) were not suppressed. Thus, a secondary release of PAF does not appear to be involved in mediating the actions of these agents. In a reversed passive Arthus reaction, intradermal injection of L-652731 together with antibody resulted in a significant inhibition of the edema formation measured for 2 hr after i.v. antigen challenge. In contrast, edema responses induced by intradermal injection of performed immune complexes were not affected by the antagonist. These results suggest that the endogenous production of PAF, in close proximity to microvascular endothelial cells, appears to be an important step in the development of an Arthus reaction. The cellular source of PAF is unknown, but one possibility is the PMN leukocyte, which releases PAF during phagocytosis of immune complexes.

  3. [Ultraviolet spectral characteristics of charge-transfer reaction complex in micellar system and its application].

    PubMed

    Du, Li-ming; Chen, Cai-ping; Li, Jian-hua

    2005-02-01

    Charge-transfer (CT) reaction of chloranil (TCBQ) as a pi-electron acceptor with fleroxacin (FLX) as an electron donor has been studied by ultraviolet spectrophotometry method. Experiment showed that FLX reacted with TCBQ in sodium dodecyl sulfate (SDS) micellar systems, and a stable complex was formed and the absorbency was remarkably enhanced. Therefore, a simple, rapid, accurate and sensitive method for the determination of FLX has been developed. Beer's law is obeyed in the range of 0.6-24 mg x L(-1) of FLX and r = 0.9993. The apparent molar absorptivity of CT complexes at 326 nm is 3.3 x 10(4) L x mol(-1) x cm(-1). The composition of CT complex was found to be 1:1 by Bent-French and curved intersection methods. The proposed method has been applied to the determination of ESL in tablets. The recoveries are 99.2%-99.7%. The relative standard deviation is 0.7%-2.1%. The proposed methods are suitable for the routine quality control of drug alone and in tablets or capsules without fear of interference caused by the excipients expected to be present in tablets or capsules. PMID:15852876

  4. Effect of torsional isomerization and inclusion complex formation with cucurbit[7]uril on the fluorescence of 6-methoxy-1-methylquinolinium.

    PubMed

    Miskolczy, Zsombor; Harangozó, József G; Biczók, László; Wintgens, Véronique; Lorthioir, Cédric; Amiel, Catherine

    2014-03-01

    Inclusion of 6-methoxy-1-methylquinolinium (C1MQ) in the cavity of cucurbit[7]uril (CB7) was studied by absorption, fluorescence, NMR and isothermal calorimetric methods in aqueous solution at 298 K. The free C1MQ exhibited dual-exponential fluorescence decay kinetics due to the two torsional isomers differing in the orientation of the methoxy moiety relative to the heterocyclic ring. The enthalpy-driven encapsulation of the heterocycle in CB7 led to a very stable 1?:?1 complex with a binding constant of (2.0 ± 0.4) × 10(6) M(-1). The rate of C1MQ-CB7 complex dissociation was found to be comparable to the NMR timescale. Because the methoxy moiety is oriented outward from the host, its s-cis-s-trans isomerization is slightly affected by the confinement. Inclusion complex formation significantly slowed down the photoinduced electron transfer from I(-) and N3(-) to the singlet-excited C1MQ, but did not preclude the reaction because long distance electron transfer occurred through the wall of the CB7 macrocycle. Due to the large difference in the quenching rate constant for free and encapsulated forms, C1MQ is an excellent probe for the study of the inclusion of nonfluorescent compounds in CB7 in the presence of Cl(-) or Br(-). PMID:24346633

  5. Validated Stability indicating Spectrophotometric Method for the Determination of Acetazolamide in Dosage Forms through Complex Formation with Palladium (II)

    PubMed Central

    Walash, M. I.; El-Brashy, A.; El-Enany, N.; Wahba, M. E. K.

    2010-01-01

    A simple and sensitive spectrophotometric method was developed for the determination of acetazolamide (ACM) in pure form and pharmaceutical preparations. The proposed method is based on the complex formation of acetazolamide with Palladium (II) chloride in acetate buffer pH5.4 and measuring the absorbance at 308 nm. The absorbance- concentration plot was rectilinear over the concentration range of 5-70 ?g/ml with a minimum detection limit (LOD) of 0.98 ?g/ml, limit of quantification (LOQ) of 2.96 ?g/ml, and a molar absorptivity ?=2.7 × 103 L/mol.cm. The factors affecting the absorbance of the formed complex were carefully studied and optimized. The composition of the complex as well as its stability constant was also investigated. The proposed method was applied for the determination of acetazolamide in its tablets and the results obtained were favorably compared with those obtained using the official method. A proposal of the reaction pathway was postulated. PMID:23675188

  6. Organic photolysis reactions in tropospheric aerosols: effect on secondary organic aerosol formation and lifetime

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Madronich, S.; Kasibhatla, P. S.; Tyndall, G.; Aumont, B.; Jimenez, J. L.; Lee-Taylor, J.; Orlando, J.

    2015-03-01

    This study presents the first modeling estimates of the potential effect of gas- and particle-phase organic photolysis reactions on the formation and lifetime of secondary organic aerosols (SOA). Typically only photolysis of smaller organic molecules (e.g. formaldehyde) for which explicit data exist is included in chemistry-climate models. Here, we specifically examine the photolysis of larger molecules that actively partition between the gas and particle phases. The chemical mechanism generator GECKO-A is used to explicitly model SOA formation from ?-pinene, toluene, and C12 and C16 n-alkane reactions with OH at low- and high-NOx. Simulations are conducted for typical mid-latitude conditions and a solar zenith angle of 45° (permanent daylight). The results show that after four days of chemical aging under those conditions (equivalent to eight days in the summer mid-latitudes), gas-phase photolysis leads to a moderate decrease in SOA yields i.e ~15% (low-NOx) to ~45% (high-NOx) for ?-pinene, ~15% for toluene, ~25% for C12-alkane, and ~10% for C16-alkane. The small effect on low volatility n-alkanes such as C16-alkane is due to the rapid partitioning of early-generation products to the particle phase where they are assumed to be protected from gas-phase photolysis. Minor changes are found in the volatility distribution of organic products and in oxygen to carbon ratios. The decrease in SOA mass seems increasingly more important after a day of chemical processing, suggesting that most laboratory experiments are likely too short to quantify the effect of gas-phase photolysis on SOA yields. Our results also suggest that many molecules containing chromophores are preferentially partitioned into the particle phase before they can be photolyzed in the gas-phase. Given the growing experimental evidence that these molecules can undergo in-particle photolysis, we performed sensitivity simulations using an estimated SOA photolysis rate of JSOA=4 x 10-4JNO2. Modeling results indicate that this photolytic loss rate would decrease SOA mass by 40-60% for most species after ten days of equivalent atmospheric aging at mid-latitudes in the summer. It should be noted that in our simulations we do not consider in-particle or aqueous-phase reactions which could modify the chemical composition of the particle, and thus the amount of photolabile species. The atmospheric implications of our results are significant for both the SOA global distribution and lifetime. GEOS-Chem global model results suggest that particle-phase photolytic reactions could be an important loss process for SOA in the atmosphere, removing aerosols from the troposphere on timescales (less than 7 days) that are comparable to wet deposition.

  7. Scope and Mechanistic Investigations on the Solvent-Controlled Regio- and Stereoselective Formation of Enol Esters from the Ruthenium-Catalyzed Coupling Reaction of Terminal Alkynes and Carboxylic Acids

    PubMed Central

    Yi, Chae S.; Gao, Ruili

    2009-01-01

    The ruthenium-hydride complex (PCy3)2(CO)RuHCl was found to be a highly effective catalyst for the alkyne-to-carboxylic acid coupling reaction to give synthetically useful enol ester products. Strong solvent effect was observed for the ruthenium catalyst in modulating the activity and selectivity; the coupling reaction in CH2Cl2 led to the regioselective formation of gem-enol ester products, while the stereoselective formation of (Z)-enol esters was obtained in THF. The coupling reaction was found to be strongly inhibited by PCy3. The coupling reaction of both PhCO2H/PhC?CD and PhCO2D/PhC?CH led to the extensive deuterium incorporation on the vinyl positions of the enol ester products. An opposite Hammett value was observed when the correlation of a series of para-substituted p-X-C6H4CO2H (X = OMe, CH3, H, CF3, CN) with phenylacetylene was examined in CDCl3 (? = +0.30) and THF (? = ?0.68). Catalytically relevant Ru-carboxylate and –vinylidene-carboxylate complexes, (PCy3)2(CO)(Cl)Ru(?2-O2CC6H4-p-OMe) and (PCy3)2(CO)(Cl)RuC(=CHPh)O2CC6H4-p-OMe, were isolated, and the structure of both complexes was completely established by X-ray crystallography. A detailed mechanism of the coupling reaction involving a rate-limiting C-O bond formation step was proposed on the basis of these kinetic and structural studies. The regioselective formation of the gem-enol ester products in CH2Cl2 was rationalized by a direct migratory insertion of the terminal alkyne via a Ru-carboxylate species, whereas the stereoselective formation of (Z)-enol ester products in THF was explained by invoking a Ru-vinylidene species. PMID:20161379

  8. Lethal synergism between organic and inorganic wood preservatives via formation of an unusual lipophilic ternary complex

    SciTech Connect

    Sheng, Zhi-Guo; Li, Yan; Fan, Rui-Mei; Chao, Xi-Juan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085 (China)] [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085 (China); Zhu, Ben-Zhan, E-mail: bzhu@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085 (China) [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085 (China); Linus Pauling Institute, Oregon State University, Corvallis, OR 97331 (United States)

    2013-02-01

    We have shown previously that exposing bacteria to wood preservatives pentachlorophenol (PCP) and copper-containing compounds together causes synergistic toxicity. However, it is not clear whether these findings also hold true in mammalian cells; and if so, what is the underlying molecular mechanism? Here we show that PCP and a model copper complex bis-(1,10-phenanthroline) cupric (Cu(OP){sub 2}), could also induce synergistic cytotoxicity in human liver cells. By the single crystal X-ray diffraction and atomic absorption spectroscopy assay, the synergism was found to be mainly due to the formation of a lipophilic ternary complex with unusual structural and composition characteristics and subsequent enhanced cellular copper uptake, which markedly promoted cellular reactive oxygen species (ROS) production, leading to apoptosis by decreasing mitochondrial membrane potential, increasing pro-apoptotic protein expression, releasing cytochrome c from mitochondria and activating caspase-3, and -9. Analogous results were observed with other polychlorinated phenols (PCPs) and Cu(OP){sub 2}. Synergistic cytotoxicity could be induced by PCP/Cu(OP){sub 2} via formation of an unusual lipophilic complex in HepG2 cells. The formation of ternary complexes with similar lipophilic character could be of relevance as a general mechanism of toxicity, which should be taken into consideration especially when evaluating the toxicity of environmental pollutants found at currently-considered non- or sub-toxic concentrations. -- Highlights: ? The combination of PCP/Cu(OP){sub 2} induces synergistic cytotoxicity in HepG2 cells. ? The synergism is mainly due to forming a lipophilic ternary complex between them. ? The formation of lipophilic ternary complex enhances cellular copper uptake. ? PCP/Cu(OP){sub 2} stimulates the cellular ROS production. ? The ROS promoted by PCP/Cu(OP){sub 2} induces mitochondria-dependent apoptosis.

  9. Iron and xanthine oxidase catalyze formation of an oxidant species distinguishable from OH. : comparison with the Haber-Weiss reaction

    SciTech Connect

    Winterbourn, C.C.; Sutton, H.C.

    1986-01-01

    O2- was produced by gamma irradiation of formate solutions, by the action of xanthine oxidase on hypoxanthine and O2, and by the action of ferredoxin reductase on NADPH and paraquat in the presence of O2. Its reaction with H2O2 and various iron chelates was studied. Oxidation of deoxyribose to thiobarbituric acid-reactive products that was appropriately inhibited by OH. scavengers, or formate oxidation to CO2, was used to detect OH(.). With each source of O2-, and by these criteria, Fe(EDTA) efficiently catalyzed this (Haber-Weiss) reaction, but little catalysis was detectable with iron bound to DTPA, citrate, ADP, ATP, or pyrophosphate, or without chelator in phosphate buffer. O2- produced from xanthine oxidase, but not from the other sources, underwent another iron-dependent reaction with H2O2, to produce an oxidant that did not behave as free OH(.). It was formed in phosphate or bicarbonate buffer, and caused deoxyribose oxidation that was readily inhibited by mannitol or Tris, but not by benzoate, formate, or dimethyl sulfoxide. It did not oxidize formate to CO2. Addition of EDTA changed the pattern of inhibition to that expected for a reaction of OH(.). The other chelators all inhibited deoxyribose oxidation, provided their concentrations were high enough. The results are compatible with iron bound to xanthine oxidase catalyzing production of a strong oxidant (which is not free OH.) from H2O2 and O2- produced by the enzyme.

  10. N-nitrosamine and N-nitramine Formation from NOx Reactions with Amines during Amine-Based CO2

    E-print Network

    Mitch, William A.

    Capture for Post-combustion Carbon Sequestration Background! Generation of electricity and heat from power- combustion carbon sequestration, the capture and underground storage of CO2 from the exhaust gases of power formation from NOx reactions with amines during amine-based carbon dioxide capture for postcombustion carbon

  11. THE GAS PHASE REACTION OF OZONE WITH 1,3-BUTADIENE: FORMATION YIELDS OF SOME TOXIC PRODUCTS. (R826236)

    EPA Science Inventory

    The formation yields of acrolein, 1,2-epoxy-3-butene and OH radicals have been measured from reaction of ozone with 1,3-butadiene at room temperature and atmosphere pressure. 1,3,5-Trimethyl benzene was added to scavenge OH radicals in measurements of product yields. In separa...

  12. More efficient iterative uses of tricarbonyliron complexes are possible by diastereoselective formation of ? 5-cyclohexadienyl complexes

    Microsoft Academic Search

    Christopher E. Anson; Michael R. Attwood; Tony M. Raynham; Donald G. Smyth; R. Richard Stephenson

    1997-01-01

    Diastereoselective addition of nucleophiles to 1-(RCO)-substituted tricarbony?4-cyclohexadiene)iron(0) complexes, and a diastereoselective acid-induced rearrangement to form 1-(branched alkyl)-substituted tricarbonyl(?5-cyclohexadienyl)iron(1+) salts, are described. Stereocontrol in the rearrangement has been studied, and HPF6, Ac2O has been shown to be the most suitable acid to promote diastereoselectivity. The product was reacted with LiCH(SO2Ph)2, completing one turn of an iterative cycle which formed a chiral

  13. Insertion reactions into Pd[bond]O and Pd[bond]N bonds: preparation of alkoxycarbonyl, carbonato, carbamato, thiocarbamate, and thioureide complexes of palladium(II).

    PubMed

    Ruiz, José; Martínez, M Teresa; Florenciano, Félix; Rodríguez, Venancio; López, Gregorio; Pérez, José; Chaloner, Penny A; Hitchcock, Peter B

    2003-06-01

    Mononuclear palladium hydroxo complexes of the type [Pd(N[bond]N)(C(6)F(5))(OH)] [(N[bond]N = 2,2'-bipyridine (bipy), 4,4'-dimethyl-2,2'-bipyridine (Me(2)bipy), 1,10-phenanthroline (phen), or N,N,N',N'-tetramethylethylenediamine (tmeda)] have been prepared by reaction of [Pd(N[bond]N)(C(6)F(5))(acetone)]ClO(4) with KOH in methanol. These hydroxo complexes react, in methanol, with CO (1 atm, room temperature) to yield the corresponding methoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)Me)]. Similar alkoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)R)] (N[bond]N = bis(3,5-dimethylpyrazol-1-yl)methane); R = Me, Et, or (i)Pr) are obtained when [Pd(N[bond]N)(C(6)F(5))Cl] is treated with KOH in the corresponding alcohol ROH and CO is bubbled through the solution. The reactions of [Pd(N[bond]N)(C(6)F(5))(OH)] (N[bond]N = bipy or Me(2)bipy) with CO(2), in tetrahydrofuran, lead to the formation of the binuclear carbonate complexes [(N[bond]N)(C(6)F(5))Pd(mu-eta(2)-CO(3))Pd(C(6)F(5))(N[bond]N)]. Complexes [Pd(N[bond]N)(C(6)F(5))(OH)] react in alcohol with PhNCS to yield the corresponding N-phenyl-O-alkylthiocarbamate complexes [Pd(N[bond]N)(C(6)F(5))[SC(OR)NPh

  14. Passive and active control of a complex flexible structure using reaction mass actuators

    NASA Astrophysics Data System (ADS)

    Garcia, E.; Webb, S.; Duke, J.

    Passive and active control have been performed on a flexible structure possessing complex modal behavior. Specifically, the structure has closely spaced modes which creates a beat phenomena in the structure's vibrations. Reaction mass actuators (RMAs) were used to suppress the structural vibrations with both passive and active control schemes. The results of using both types of control systems were compared both analytically and experimentally. It was determined that, although passive tuning of the RMAs did suppress the structure's vibrations, applying active control to the optimally tuned RMAs did not significantly increase the system's vibration suppression performance. However, by choosing the actuator's characteristics from active control considerations, an active control strategy utilizing a local velocity feedback controller suppressed structural vibrations and reduced the active system's settling time to 20 percent of the settling time with passive damping. Both the passive and the active control were found to be a significant improvement over the structure's open loop response.

  15. Single-Molecule Analysis of the Target Cleavage Reaction by the Drosophila RNAi Enzyme Complex.

    PubMed

    Yao, Chunyan; Sasaki, Hiroshi M; Ueda, Takuya; Tomari, Yukihide; Tadakuma, Hisashi

    2015-07-01

    Small interfering RNAs (siRNAs) direct cleavage of complementary target RNAs via an RNA-induced silencing complex (RISC) that contains Argonatute2 protein at its core. However, what happens after target cleavage remains unclear. Here we analyzed the cleavage reaction by Drosophila Argonaute2-RISC using single-molecule imaging and revealed a series of intermediate states in target recognition, cleavage, and product release. Our data suggest that, after cleavage, RISC generally releases the 5' cleavage fragment from the guide 3' supplementary region first and then the 3' fragment from the seed region, highlighting the reinforcement of the seed pairing in RISC. However, this order can be reversed by extreme stabilization of the 3' supplementary region or mismatches in the seed region. Therefore, the release order of the two cleavage fragments is influenced by the stability in each region, in contrast to the unidirectional base pairing propagation from the seed to the 3' supplementary region upon target recognition. PMID:26140368

  16. Stereoselectivity in reactions of metal complexes part XXI. Kinetics and mechanism of electron transfer between rac-[Co(L)H 2O] + (L = N,N?-[(pyridine-2,6-diyl)-bis(methylene)]bis[amino acid]) and optically active iron (II) complexes

    Microsoft Academic Search

    Klaus Bernauer; Deirdre Hugi-Cleary; Hermann Josef Hilgers; Habib Abd-el-Khalek; Nadia Brügger; Claudia Kressl

    1998-01-01

    The kinetics of electron-transfer reactions between chiral CoIII and optically active FeII complexes has been studied using circular dichroism (CD) spectroscopy. The ligands used all have the same basics structure of N,N?-[(pyridine-2,6-diyl)bis(methylene)]bis[amino acid]. According to the substitution pattern on this linear pentadentate framework, the complex formation with inert CoIII and FeII is considered to be stereospecific. The substituents were systematically

  17. Phosphonato complexes of platinum(II): kinetics of formation and phosphorus-31 NMR characterization studies

    Microsoft Academic Search

    L. L. Slavin; R. N. Bose

    1990-01-01

    Reactions of cis-diamminedichloroplatinum(II) with phosphonoformic acid (PFA), phosphonoacetic acid (PAA), and methylenediphosphonic acid (MDP) yield various phosphonatoplatinum(II) chelates which were characterized by phosphorus-31 NMR spectroscopy. The P-31 resonances for the chelates appear at 6-12 ppm downfield as compared to the uncomplexed ligands. All complexes exhibit monoprotic acidic behavior in the pH range 2-10. The chemical shift-pH profiles yielded acidity constants,

  18. Final Report for: "Bis-pi-allylpalladium Complexes in Catalysis of Multicomponent Reactions"

    SciTech Connect

    Malinakova, H. C.; Shiota, Atsushi

    2012-06-29

    The research project involved the development of new and functionally improved Pd(II) catalyst for a three-component reaction of boronic acids, allenes and imines to afford homoallylic amines that are useful in synthesis of biologically active heterocycles. Furthermore, insights into the reaction mechanism and the structure and reactivity of the catalytically active intermediates involved in this process were sought. As a result of this work, a new type of Pd-catalysts possessing an auxiliary ligand attached to the Pd center via a C-Pd and N-Pd bonds were identified, and found to be more active than the traditional catalysts derived from Pd(OAc)2. The new catalysts provided an access to a broader range of homoallylic amine products. Although the final unequivocal evidence regarding the structure of the Pd(II) complex involved in the nucleophilic transfer of the allyl fragment from the palladium center to the imine could not be obtained, mechanistic insights into the events that are detrimental to the activity of the originally reported Pd(OAc)2-based catalytic systems were uncovered.

  19. Elucidation of reaction mechanism involved in the formation of LaNiO3 from XRD and TG analysis

    NASA Astrophysics Data System (ADS)

    Dharmadhikari, Dipti V.; Athawale, Anjali A.

    2013-06-01

    The present work is focused on the synthesis and elucidation of reaction mechanism involved in the formation of LaNiO3 with the help of X-ray diffraction (XRD) and thermogravimetric (TG) analysis. LaNiO3 was synthesized by hydrothermal method by heating at 160°C under autogenous pressure for 6h. Pure phase product was obtained after calcining the hydrothermally activated product for 6h at 700°C. The various phases of the product obtained after hydrothermal treatment and calcination followed by the formation of pure phase nanocrystalline lanthanum nickel oxide could be determined from XRD analysis of the samples. The reaction mechanism and phase formation temperature has been interpreted by thermogravimetric analysis of the hydrothermally synthesized product and XRD analysis.

  20. (Salen)tin complexes: syntheses, characterization, crystal structures, and catalytic activity in the formation of propylene carbonate from CO(2) and propylene oxide.

    PubMed

    Jing, Huanwang; Edulji, Smita K; Gibbs, Julianne M; Stern, Charlotte L; Zhou, Hongying; Nguyen, SonBinh T

    2004-07-12

    A series of (salen)tin(II) and (salen)tin(IV) complexes was synthesized. The (salen)tin(IV) complexes, (salen)SnX(2) (X = Br and I), were prepared in good yields via the direct oxidation reaction of (salen)tin(II) complexes with Br(2) or I(2). (Salen)SnX(2) successfully underwent the anion-exchange reaction with AgOTf (OTf = trifluoromethanesulfonate) to form (salen)Sn(OTf)(2) and (salen)Sn(X)(OTf) (X = Br). The (salen)Sn(OTf)(2) complex was easily converted to any of the dihalide (salen)SnX(2) compounds using halide salts. All complexes were fully characterized by (1)H NMR spectroscopy, mass spectrometry, and elemental analysis, while some were characterized by (13)C, (19)F, and (119)Sn NMR spectroscopy. Several crystal structures of (salen)tin(II) and (salen)tin(IV) were also determined. Finally, both (salen)tin(II) and (salen)tin(IV) complexes were shown to efficiently catalyze the formation of propylene carbonate from propylene oxide and CO(2). Of the series, (3,3',5,5'-Br(4)-salen)SnBr(2), 3i, was found to be the most effective catalyst (TOF = 524 h(-)(1)). PMID:15236545

  1. Effect of citrate on the local Fe coordination in ferrihydrite, arsenate binding, and ternary arsenate complex formation

    NASA Astrophysics Data System (ADS)

    Mikutta, Christian; Frommer, Jakob; Voegelin, Andreas; Kaegi, Ralf; Kretzschmar, Ruben

    2010-10-01

    In oxic environments contaminated with arsenate (As(V)), small polyhydroxycarboxylates such as citrate may impact the structure of precipitating ferrihydrite (Fh) and thus the surface speciation of As(V). In this study, '2-line' Fh was precipitated from ferric nitrate solutions that were neutralized to pH 6.5 in the presence of increasing citrate concentrations and in the absence or presence of As(V). The initial citrate/Fe and As/Fe ratios were 0-50 mol% and 5 mol%, respectively. The reaction products, enriched with up to 0.32 mol citrate per mole Fe, were characterized by X-ray diffraction, transmission electron microscopy, and Fe and As K-edge X-ray absorption spectroscopy. Citrate decreased the particle size of Fh by impairing the polymerization of Fe(O,OH) 6 octahedra via edge and corner linkages. In the presence of citrate and As(V), coordination numbers of Fe decreased by up to 28% relative to pure Fh. Citrate significantly reduced the static disorder of Fe-O bonds, implying a decreased octahedral distortion in Fh. Mean bond distances in Fh were not affected by citrate and remained constant within error at 1.98 Å for Fe-O, 3.03 Å for Fe-Fe1, and 3.45 Å for Fe-Fe2. Likewise, citrate had no effect on the As-Fe (3.31 Å) bond distance in As(V) coprecipitated with Fh. The As K-edge EXAFS data comply with the formation of (i) only monodentate binuclear ( 2C) As(V) surface complexes and (ii) combinations of 2C, monodentate mononuclear ( 1V), and outersphere As(V) surface complexes. Our results suggest that increasing citrate concentrations led to a decreasing 1V/ 2C ratio and/or that citrate increasingly impaired the formation of outersphere As(V) complexes. Moreover, citrate stabilized colloidal suspensions of Fh (pH 4.3-6.6, I ˜0.45 M) and reduced Fh formation at the expense of soluble Fe(III)-citrate complexes. At initial citrate/Fe ratios ?25 mol%, between 8% and 41% of total Fe was bound in Fe(III)-citrate complexes after Fh formation. Polynuclear Fe(III)-citrate species were found to bind As(V) via surface complexes indistinguishable by EXAFS from those of As(V) adsorbed to or coprecipitated with Fh. Our study implies that low molecular weight polyhydroxycarboxylates may enhance the mobility of As(V) in aqueous systems of high ionic strength (e.g., neutralizing acid mine drainage) by colloidal stabilization of suspended Fh particles and the formation of ternary As(V) complexes.

  2. Complexation and precipitation reactions in the ternary As(V)-Fe(III)-OM (organic matter) system

    NASA Astrophysics Data System (ADS)

    Sundman, Anneli; Karlsson, Torbjörn; Sjöberg, Staffan; Persson, Per

    2014-11-01

    The predominant forms of arsenic (As) in anoxic and oxic environments are As(III) and As(V), respectively, and the fate of these forms is influenced by interactions with mineral surfaces and organic matter (OM). Interactions between As(V) and OM are believed to occur mainly via iron(Fe)-bridges in ternary Fe-arsenate complexes, but direct evidence for these interactions are scarce. Furthermore, since the speciation of Fe in the presence of organic matter varies as a function of pH and Fe concentration, a central question is how different chemical conditions will affect the As-Fe-OM interactions. In order to answer this, the As(V)-Fe(III)-OM system have been studied under a large range of experimental conditions (6485-67,243 ppm Fe(III) and Fe(III):As(V) ratios of 0.5-20 at pH 3-7), with Suwannee River natural organic matter and Suwannee River fulvic acid as sources of OM, using Fe and As K-edge X-ray absorption spectroscopy (XAS), infrared (IR) spectroscopy and chemical equilibrium modeling. Our collective results showed that interactions in the ternary As(V)-Fe(III)-OM system were strongly influenced by pH, total concentrations and ratios among the reactive species. In particular, the high stability of the Fe(III)-OM complexes exerted a strong control on the speciation. The predominant species identified were mononuclear Fe(III)-OM complexes, Fe(III) (hydr)oxides and FeAsO4 solids. The experimental results also showed that at low concentrations the Fe(III)-OM complexes were sufficiently stable to prevent reaction with arsenate. The chemical equilibrium models developed corroborated the spectroscopic results and indicated that As(V) was distributed over two solid phases, namely FeAsO4(s) and Fe(OH)1.5(AsO4)0.5(s). Thus, neither ternary As(V)-Fe(III)-OM complexes nor As(V) surface complexes on Fe(III) (hydr)oxides were necessary to explain the collective results presented in this study.

  3. Isotopic evidence from an Antarctic carbonaceous chondrite for two reaction pathways of extraterrestrial PAH formation

    NASA Astrophysics Data System (ADS)

    Naraoka, Hiroshi; Shimoyama, Akira; Harada, Kaoru

    2000-12-01

    Polycyclic aromatic hydrocarbons (PAHs) are one of the most ubiquitous organic compounds in the universe. PAHs are sometimes used as a molecular marker for biological activity, however, they are also formed by abiogenic processes. Carbon isotopic compositions of individual PAHs have important clues to clarify their origins and formation mechanisms for the better understanding in organic cosmogeochemistry of PAHs. In the Asuka-881458 carbonaceous chondrite which was recovered from Antarctica in 1989, more than 70 PAHs were identified from naphthalene to benzo(ghi)perylene, where fluoranthene and pyrene are the most abundant. Carbon isotopic compositions of individual PAHs range from -26 to 8‰ (relative to PDB). More condensed PAHs are more depleted in 13C as the H/C ratio decreases. The carbon isotope distribution of PAHs containing more than three rings is similar to that from the Murchison meteorite, but clearly different from that of the terrestrial PAHs. The isotope distribution suggests that the PAHs in carbonaceous chondrites are formed under kinetic control rather than by thermodynamic equilibrium. In particular, two reaction pathways ('pyrene series' and 'fluoranthene series') can be distinguished assuming kinetic control. The relatively large isotopic fractionation could occur during cyclization and/or carbon addition in the interstellar or meteorite parent body environment.

  4. Topoisomerase II? promotes activation of RNA polymerase I transcription by facilitating pre-initiation complex formation

    PubMed Central

    Ray, Swagat; Panova, Tatiana; Miller, Gail; Volkov, Arsen; Porter, Andrew C. G.; Russell, Jackie; Panov, Konstantin I.; Zomerdijk, Joost C. B. M.

    2013-01-01

    Type II DNA topoisomerases catalyse DNA double-strand cleavage, passage and re-ligation to effect topological changes. There is considerable interest in elucidating topoisomerase II roles, particularly as these proteins are targets for anti-cancer drugs. Here we uncover a role for topoisomerase II? in RNA polymerase I-directed ribosomal RNA gene transcription, which drives cell growth and proliferation and is upregulated in cancer cells. Our data suggest that topoisomerase II? is a component of the initiation-competent RNA polymerase I? complex and interacts directly with RNA polymerase I-associated transcription factor RRN3, which targets the polymerase to promoter-bound SL1 in pre-initiation complex formation. In cells, activation of rDNA transcription is reduced by inhibition or depletion of topoisomerase II, and this is accompanied by reduced transient double-strand DNA cleavage in the rDNA-promoter region and reduced pre-initiation complex formation. We propose that topoisomerase II? functions in RNA polymerase I transcription to produce topological changes at the rDNA promoter that facilitate efficient de novo pre-initiation complex formation. PMID:23511463

  5. Sensory rhodopsin II/transducer complex formation in detergent and in lipid bilayers studied with FRET.

    PubMed

    Kriegsmann, J; Brehs, M; Klare, J P; Engelhard, M; Fitter, J

    2009-02-01

    The photophobic receptor from Natronomonas pharaonis (NpSRII) forms a photo-signalling complex with its cognate transducer (NpHtrII). In order to elucidate the complex formation in more detail, we have studied the intermolecular binding of both constituents (NpSRII and NpHtrII157; truncated at residue 157) in detergent buffers, and in lipid bilayers using FRET. The data for hetero-dimer formation of NpSRII/NpHtrII in detergent agrees well with KD values (approximately 200 nM) described in the literature. In lipid bilayers, the binding affinity between proteins in the NpSRII/NpHtrII complex is at least one order of magnitude stronger. In detergent the strength of binding is similar for both homo-dimers (NpSRII/NpSRII and NpHtrII/NpHtrII) but significantly weaker (KD approximately 16 microM) when compared to the hetero-dimer. The intermolecular binding is again considerably stronger in lipid bilayers; however, it is not as strong as that observed for the hetero-dimer. At a molar transducer/lipid ratio of 1:2000, which is still well above physiological concentrations, only 40% homo-dimers are formed. Apparently, in cell membranes the formation of the assumed functionally active oligomeric 2:2 complex depends on the full-length transducer including the helical cytoplasmic part, which is thought to tighten the transducer-dimer association. PMID:19094962

  6. Impact of metamorphic reactions limited by water content on MCC formation and exhumation along detachment faults

    NASA Astrophysics Data System (ADS)

    Mezri, Leila; Le Pourhiet, Laetitia; Wolf, Sylvie; Burov, Evgenii

    2015-04-01

    Metamorphic phase changes impact both the buoyancy (volume forces) and the rheology (surface forces) of rocks. As such, they play an important dynamic control on the tectonic processes. It is generally assumed that phase changes are mostly controlled by pressure and temperature conditions. Yet, this supposes some assumptions on the amount of water available in the system. In geodynamic community, it is systematically assumed that water is always available in sufficient quantities to minimize Gibbs energy for given P,T conditions and a constant chemical composition. So that, as a matter of fact, the influence of water on the system is completely neglected. Yet, many petrological studies point out that water, as a limiting reactant, is responsible for the lack of retrograde metamorphic reactions observed in the rocks exhumed in typical MCC contexts. In order to study the impact of fluid content on the structure of metamorphic core complexes, we have implemented fluid transport and water limited thermodynamic for phase transition, in a thermomechanical code. We describe a parametrisation of Darcy flow that is able to capture source/sink and transport aspects of fluids at the scale of the whole crust with a minimum of complexity. Using this model, phase transitions are controlled by pressure temperature and the local amount of free fluid that comes from both external meteoric and local dehydration sources. The numerical experiments imply a strong positive feedback between the asymmetry of the tectonic structures and the depth of penetration of meteoric fluid. Bending stress pattern in asymmetric detachment zone indeed drives the penetration of meteoric fluids to greater depth, where they can in turn lubricate the deep ductile part of the detachment. However, thermal weakening and/or slow re-equilibration of the protolith rocks at depth with time tends to decrease the asymmetry of structure, changing the orientation of the bending stress and to shut down the activity of asymmetric detachments in favor of spreading structures which forms double-domes.

  7. Stochastic Modeling of CO2 Migrations and Chemical Reactions in Deep Saline Formations

    NASA Astrophysics Data System (ADS)

    Ni, C.; Lee, I.; Lin, C.

    2013-12-01

    Carbon capture and storage (CCS) has been recognized the feasible technology that can significant reduce the anthropogenic CO2 emissions from large point sources. The CO2 injection in geological formations is one of the options to permanently store the captured CO2. Based on this concept a large number of target formations have been identified and intensively investigated with different types of techniques such as the hydrogeophysical experiments or numerical simulations. The numerical simulations of CO2 migrations in saline formations recently gather much attention because a number of models are available for this purpose and there are potential sites existing in many countries. The lower part of Cholan Formation (CF) near Changhua Coastal Industrial Park (CCIP) in west central Taiwan was identified the largest potential site for CO2 sequestration. The top elevations of the KF in this area varies from 1300 to 1700m below the sea level. Laboratory experiment showed that the permeability of CF is 10-14 to 10-12 m2. Over the years the offshore seismic survey and limited onshore borehole logs have provided information for the simulation of CO2 migration in the CF although the original investigations might not focus on the purpose of CO2 sequestration. In this study we modify the TOUGHREACT model to consider the small-scale heterogeneity in target formation and the cap rock of upper CF. A Monte Carlo Simulation (MCS) approach based on the TOUGHREACT model is employed to quantify the effect of small-scale heterogeneity on the CO2 migrations and hydrochemical reactions in the CF. We assume that the small-scale variability of permeability in KF can be described with a known Gaussian distribution. Therefore, the Gaussian type random field generator such as Sequential Gaussian Simulation (SGSIM) in Geostatistical Software Library (GSLIB) can be used to provide the random permeability realizations for the MCS. A variety of statistical parameters such as the variances and correlation lengths in a Gaussian covariance model are varied in the MCS and the uncertainty of the CO2 and other chemical concentrations are evaluated based on 144 random realizations. In this study a constant injection rate of100Mt/year supercritical CO2 is applied in the bottom of CF. The continuous injection time is 20 years and the uncertainty results are evaluated at 100 years. By comparing with the case without small-scale variability simulation results show that the CO2 plume sizes in the horizontal direction increase from tens of meters to hundreds of meters when the variances of small-scale variability are varied from 1.0 to 4.0. The changes of correlation lengths (i.e., from 100m, 200m, to 400m) show small contribution on the size increases of CO2 plumes. Other uncertainties of chemical concentrations show behaviors similar to the CO2 plume patterns.

  8. Computational termochemistry study of the C?? isomers and their endo lanthanum complexes by applying homodesmotic and isodesmic reactions.

    PubMed

    Rios, Citlalli; Salcedo, Roberto

    2012-01-01

    C?? is a fullerene species which appears in different isomeric configurations. A general homodesmotic reaction previously designed to study the energy of fullerenes was implemented, in order to analyze the energy of this family of isomers. These results concur with some of the experimental data, but energy differences referring to all the configurations yield novel propositions about their particular behavior. The corresponding lanthanum complexes are also analyzed here and a new isodesmic reaction was designed for this particular case. PMID:23222905

  9. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    SciTech Connect

    Sarantites, D.G.

    1990-01-01

    This report discusses research in the following areas: nuclear structure; fusion reactions near and below the barrier; incomplete fusion and fragmentation reactions; and instrumentation and analysis. (LSP).

  10. Reactions of monodithiolene tungsten(VI) sulfido complexes with copper(I) in relation to the structure of the active site of carbon monoxide dehydrogenase.

    PubMed

    Groysman, Stanislav; Majumdar, Amit; Zheng, Shao-Liang; Holm, R H

    2010-02-01

    Reactions directed at the synthesis of structural analogues of the active site of molybdenum-containing carbon monoxide dehydrogenase have been investigated utilizing [WO(2)S(bdt)](2-) (1) and [WOS(2)(bdt)](2-) (2) and sterically hindered [Cu(R)L] or [Cu(SSiR'(3))(2)](-) as reactants. All successful reactions of 2 afford the binuclear W(VI)/Cu(I) products [WO(bdt)(mu(2)-S)(2)Cu(L)](2-/-) with L = carbene (3), Ar*S (4), Ar* (7), SSiR(3) (R = Ph (5), Pr(i) (6)). Similarly, [W(bdt)(OSiPh(3))S(2)](-) leads to [W(bdt)(OSiPh(3))(mu(2)-S)(2)Cu(SAr*)](-) (8). These complexes, with apical oxo and basal dithiolato and sulfido coordination (excluding 8), terminal thiolate ligation at Cu(I) (4-6, 8), and W-(mu(2)-S)-Cu bridging, bear a structural resemblance to the enzyme site. Differences include two bridges instead of one and the absence of basal oxo/hydroxo ligation. Complex 8 differs from the others by utilizing apical and basal sulfido ligands in bridge formation. Related reaction systems based on 1 gave 4 in small yield or product mixtures in which the desired monobridged complex [WO(2)(bdt)(mu(2)-S)Cu(R)](2-) was not detected. Mass spectrometric analysis of the reaction system with L = carbene suggests that any monobridged species forms may converted to the dibridged form by disproportionation. In these experiments, the use of W(VI) preserves the structural integrity of Mo(VI), whose analogues of 1 and 2 have not been isolated. (Ar* = 2,6-bis(2,4,6-triisopropylphenyl)phenyl, bdt = benzene-1,2-dithiolate(2-)). PMID:20030373

  11. Mechanical Loading in Osteocytes Induces Formation of a Src/Pyk2/MBD2 Complex That Suppresses Anabolic Gene Expression

    PubMed Central

    Hum, Julia M.; Day, Richard N.; Bidwell, Joseph P.; Wang, Yingxiao; Pavalko, Fredrick M.

    2014-01-01

    Mechanical stimulation of the skeleton promotes bone gain and suppresses bone loss, ultimately resulting in improved bone strength and fracture resistance. The molecular mechanisms directing anabolic and/or anti-catabolic actions on the skeleton during loading are not fully understood. Identifying molecular mechanisms of mechanotransduction (MTD) signaling cascades could identify new therapeutic targets. Most research into MTD mechanisms is typically focused on understanding the signaling pathways that stimulate new bone formation in response to load. However, we investigated the structural, signaling and transcriptional molecules that suppress the stimulatory effects of loading. The high bone mass phenotype of mice with global deletion of either Pyk2 or Src suggests a role for these tyrosine kinases in repression of bone formation. We used fluid shear stress as a MTD stimulus to identify a novel Pyk2/Src-mediated MTD pathway that represses mechanically-induced bone formation. Our results suggest Pyk2 and Src function as molecular switches that inhibit MTD in our mechanically stimulated osteocyte culture experiments. Once activated by oscillatory fluid shear stress (OFSS), Pyk2 and Src translocate to and accumulate in the nucleus, where they associate with a protein involved in DNA methylation and the interpretation of DNA methylation patterns –methyl-CpG-binding domain protein 2 (MBD2). OFSS-induced Cox-2 and osteopontin expression was enhanced in Pyk2 KO osteoblasts, while inhibition of Src enhanced osteocalcin expression in response to OFSS. We found that Src kinase activity increased in the nucleus of osteocytes in response to OFSS and an interaction activated between Src (Y418) and Pyk2 (Y402) increased in response to OFSS. Thus, as a mechanism to prevent an over-reaction to physical stimulation, mechanical loading may induce the formation of a Src/Pyk2/MBD2 complex in the nucleus that functions to suppress anabolic gene expression. PMID:24841674

  12. Detection of Mycobacterium tuberculosis complex by nested polymerase chain reaction in pulmonary and extrapulmonary specimens* ,**

    PubMed Central

    Furini, Adriana Antônia da Cruz; Pedro, Heloisa da Silveira Paro; Rodrigues, Jean Francisco; Montenegro, Lilian Maria Lapa; Machado, Ricardo Luiz Dantas; Franco, Célia; Schindler, Haiana Charifker; Batista, Ida Maria Foschiani Dias; Rossit, Andrea Regina Baptista

    2013-01-01

    OBJECTIVE: To compare the performance of nested polymerase chain reaction (NPCR) with that of cultures in the detection of the Mycobacterium tuberculosis complex in pulmonary and extrapulmonary specimens. METHODS: We analyzed 20 and 78 pulmonary and extrapulmonary specimens, respectively, of 67 hospitalized patients suspected of having tuberculosis. An automated microbial system was used for the identification of Mycobacterium spp. cultures, and M. tuberculosis IS6110 was used as the target sequence in the NPCR. The kappa statistic was used in order to assess the level of agreement among the results. RESULTS: Among the 67 patients, 6 and 5, respectively, were diagnosed with pulmonary and extrapulmonary tuberculosis, and the NPCR was positive in all of the cases. Among the 98 clinical specimens, smear microscopy, culture, and NPCR were positive in 6.00%, 8.16%, and 13.26%, respectively. Comparing the results of NPCR with those of cultures (the gold standard), we found that NPCR had a sensitivity and specificity of 100% and 83%, respectively, in pulmonary specimens, compared with 83% and 96%, respectively, in extrapulmonary specimens, with good concordance between the tests (kappa, 0.50 and 0.6867, respectively). CONCLUSIONS: Although NPCR proved to be a very useful tool for the detection of M. tuberculosis complex, clinical, epidemiological, and other laboratory data should also be considered in the diagnosis and treatment of pulmonary and extrapulmonary tuberculosis. PMID:24473765

  13. Catalytic formation of monosaccharides: from the formose reaction towards selective synthesis.

    PubMed

    Delidovich, Irina V; Simonov, Alexandr N; Taran, Oxana P; Parmon, Valentin N

    2014-07-01

    The formose reaction (FR) has been long the focus of intensive investigations as a simple method for synthesis of complex biologically important monosaccharides and other sugar-like molecules from the simplest organic substrate-formaldehyde. The fundamental importance of the FR is predominantly connected with the ascertainment of plausible scenarios of chemical evolution which could have occurred on the prebiotic Earth to produce the very first molecules of carbohydrates, amino- and nucleic acids, as well as other vitally important substances. The practical importance of studies on the FR is the elaboration of catalytic methods for the synthesis of rare and non-natural monosaccharides and polyols. This Minireview considers the FR from the point of view of chemists working in the field of catalysis with emphasis on the mechanisms of numerous parallel and consequent catalytic transformations that take place during the FR. Based on its kinetics, the FR may be considered as a non-radical chain process with degenerate branching. The Minireview also considers different approaches to the control of selectivity of carbohydrate synthesis from formaldehyde and lower monosaccharides. PMID:24930572

  14. Metal-exchange reactions between the uranyl-18-crown-6 complex and Na/sup +/ ion in propylene carbonate

    SciTech Connect

    Fux, P.; Lagrange, J.; Lagrange, P.

    1988-01-13

    An intermediate complex, UO/sub 2/L/sup 2+/, is proposed to help explain the metal-exchange reaction between the uranyl-18-crown-6 and Na/sup +/ ion in propylene carbonate. This intermediate is thought to be an outer-sphere complex where the coordinating center UO/sub 2//sup 2+/ is partially enclosed in the ligand cavity and where the Na/sup +/ ion is completely desolvated. A total reaction scheme is proposed, and mathematical treatment of the data is presented. 20 refs., 2 figs.

  15. Thermodynamics of cesium complexes formation with 18-crown-6 in ionic liquids

    Microsoft Academic Search

    A. G. Vendilo; H. Rönkkömäki; M. Hannu-Kuure; M. Lajunen; J. Asikkala; V. G. Krasovsky; E. A. Chernikova; P. Oksman; L. H. J. Lajunen; T. Tuomi; K. I. Popov

    2010-01-01

    Thermodynamic data for cesium complexes formation with 18-crown-6 (18C6, L) [Cs(18C6)]+ in N-butyl-4-methyl-pyridinium tetrafluoroborate ([BMPy][BF4], I), in 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4], II) and in 1-butyl-3-methylimidazolium dicyanamide ([BMIM][N(CN)2], III) were measured with NMR 133Cs technique at 23–50 °C. The stability of cesium complex in RTILs is estimated to be in the range between water and DMFA.\\u000a Stability constants for [Cs(18C6)]+ are found to

  16. Formation of light exotic nuclei in low-energy multinucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Zagrebaev, V. I.; Fornal, B.; Leoni, S.; Greiner, Walter

    2014-05-01

    Low-energy multinucleon transfer reactions are shown to comprise a very effective tool for the production and spectroscopic study of light exotic nuclei. The corresponding cross sections are found to be significantly larger as compared with high-energy fragmentation reactions. Several optimal reactions for the production of extremely neutron-rich isotopes of elements with Z =6-14 are proposed.

  17. Formation of light exotic nuclei in low-energy multinucleon transfer reactions

    E-print Network

    V. I. Zagrebaev; B. Fornal; S. Leoni; Walter Greiner

    2014-04-17

    Low-energy multinucleon transfer reactions are shown to be very effective tool for the production and spectroscopic study of light exotic nuclei. The corresponding cross sections are found to be significantly larger as compared with high energy fragmentation reactions. Several optimal reactions for the production of extremely neutron rich isotopes of elements with Z=6-14 are proposed.

  18. Reaction pathways of glucose during esterification: Effects of reaction parameters on the formation of humin type polymers

    Microsoft Academic Search

    Xun Hu; Caroline Lievens; Alfons Larcher; Chun-Zhu Li

    2011-01-01

    The formation of humin-type polymers and other products during exposure of glucose to methanol\\/water mixtures with methanol\\/water mass ratios from 10 to 0.22 in the presence of the acid catalyst Amberlyst 70 was investigated. In water-rich medium (methanol\\/water mass ratio: 0.22), dehydration of glucose produced 5-(hydroxymethyl)furfural (HMF), furfural, and substantial amounts of polymer. In methanol-rich medium (methanol\\/water mass ratio: 10),

  19. Formation equilibria of nickel complexes with glycyl-histidyl-lysine and two synthetic analogues.

    PubMed

    Conato, Chiara; Koz?owski, Henryk; Swiatek-Koz?owska, Jolanta; M?ynarz, Piotr; Remelli, Maurizio; Silvestri, Sergio

    2004-01-01

    Complex-formation equilibria between the Ni(II) ion and the natural tripeptide glycyl-L-histidyl-L-lysine have been investigated. Two synthetic analogues, where the histidine residue has been substituted with L-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid (L-Spinacine) and L-1,2,3,4-tetrahydro-isoquinolin-3-carboxylic acid (Tic), respectively, have been considered, as well. Different experimental techniques have been employed: potentiometry, calorimetry, visible spectrophotometry and CD spectroscopy. Structural hypotheses on the main complex species are suggested. Evidences on the formation of tetrameric species with the first ligand are shown. No involvement of the side-chain amino group of lysine residue in metal ion coordination was found. PMID:14659644

  20. Improved production of 3-hydroxypropionaldehyde by complex formation with bisulfite during biotransformation of glycerol.

    PubMed

    Sardari, Roya R R; Dishisha, Tarek; Pyo, Sang-Hyun; Hatti-Kaul, Rajni

    2013-04-01

    3-Hydroxypropionaldehyde (3HPA) is an important specialty chemical which can be produced from glycerol using resting cells of Lactobacillus reuteri. This biocatalytic route, however, suffers from substrate- and product-mediated loss of enzyme activity within 2 h of biotransformation. In order to overcome the inhibitory effects of 3HPA, complex formation with sodium bisulfite was investigated, optimized and applied for in situ capture of the aldehyde during biotransformation of glycerol in a fed-batch process. As a result, the activity of the cells was maintained for at least 18 h. The 3HPA produced per gram cell dry weight was increased 5.7 times compared to the batch production process, and 2.2 times compared to fed-batch process without in situ complex formation. This approach may have potential for production and in situ removal of 3HPA after further process development. PMID:23172314

  1. A rapid and quantitative coat protein complex II vesicle formation assay using luciferase reporters.

    PubMed

    Fromme, J Chris; Kim, Jinoh

    2012-02-15

    The majority of protein export from the endoplasmic reticulum (ER) is facilitated by coat protein complex II (COPII). The COPII proteins deform the ER membrane into vesicles at the ER exit sites. During the vesicle formation step, the COPII proteins load cargo molecules into the vesicles. Formation of COPII vesicles has been reconstituted in vitro in yeast and in mammalian systems. These in vitro COPII vesicle formation assays involve incubation of microsomal membranes and purified COPII proteins with nucleotides. COPII vesicles are separated from the microsomes by differential centrifugation. Interestingly, the efficiency of the COPII vesicle formation with purified recombinant mammalian COPII proteins is lower than that with cytosol, suggesting that an additional cytosolic factor(s) is involved in this process. Indeed, other studies have also implicated additional factors. To facilitate biochemical identification of such regulators, a rapid and quantitative COPII vesicle formation assay is necessary because the current assay is lengthy. To expedite this assay, we generated luciferase reporter constructs. The reporter proteins were packaged into COPII vesicles and yielded quantifiable luminescent signals, resulting in a rapid and quantitative COPII vesicle formation assay. PMID:22244805

  2. Factor Xa dimerization competes with prothrombinase complex formation on platelet-like membrane surfaces.

    PubMed

    Koklic, Tilen; Chattopadhyay, Rima; Majumder, Rinku; Lentz, Barry R

    2015-04-01

    Exposure of phosphatidylserine (PS) molecules on activated platelet membrane surface is a crucial event in blood coagulation. Binding of PS to specific sites on factor Xa (fXa) and factor Va (fVa) promotes their assembly into a complex that enhances proteolysis of prothrombin by approximately 10?. Recent studies demonstrate that both soluble PS and PS-containing model membranes promote formation of inactive fXa dimers at 5 mM Ca²?. In the present study, we show how competition between fXa dimerization and prothrombinase formation depends on Ca²? and lipid membrane concentrations. We used homo-FRET measurements between fluorescein-E-G-R-chloromethylketone (CK)-Xa [fXa irreversibly inactivated by alkylation of the active site histidine residue with FEGR (FEGR-fXa)] and prothrombinase activity measurements to reveal the balance between fXa dimer formation and fXa-fVa complex formation. Changes in FEGR-fXa dimer homo-FRET with addition of fVa to model-membrane-bound FEGR-fXa unambiguously demonstrated that formation of the FEGR-fXa-fVa complex dissociated the dimer. Quantitative global analysis according to a model for protein interaction equilibria on a surface provided an estimate of a surface constant for fXa dimer dissociation (K(fXa×fXa)(d, ?)) approximately 10-fold lower than K(fXa×fVa)(d,?) for fXa-fVa complex. Experiments performed using activated platelet-derived microparticles (MPs) showed that competition between fXa dimerization and fXa-fVa complex formation was even more prominent on MPs. In summary, at Ca²? concentrations found in the maturing platelet plug (2-5 mM), fVa can compete fXa off of inactive fXa dimers to significantly amplify thrombin production, both because it releases dimer inhibition and because of its well-known cofactor activity. This suggests a hitherto unanticipated mechanism by which PS-exposing platelet membranes can regulate amplification and propagation of blood coagulation. PMID:25572019

  3. The reaction of flavanols with nitrous acid protects against N-nitrosamine formation and leads to the formation of nitroso derivatives which inhibit cancer cell growth.

    PubMed

    Lee, Stephanie Y H; Munerol, Bibiana; Pollard, Susan; Youdim, Kuresh A; Pannala, Ananth S; Kuhnle, Gunter G C; Debnam, Edward S; Rice-Evans, Catherine; Spencer, Jeremy P E

    2006-01-15

    Studies have suggested that diets rich in polyphenols such as flavonoids may lead to a reduced risk of gastrointestinal cancers. We demonstrate the ability of monomeric and dimeric flavanols to scavenge reactive nitrogen species derived from nitrous acid. Both epicatechin and dimer B2 (epicatechin dimer) inhibited nitrous acid-induced formation of 3-nitrotyrosine and the formation of the carcinogenic N-nitrosamine, N-nitrosodimethylamine. The reaction of monomeric and dimeric epicatechin with nitrous acid led to the formation of mono- and di-nitroso flavanols, whereas the reaction with hesperetin resulted primarily in the formation of nitrated products. Although, epicatechin was transferred across the jejunum of the small intestine yielding metabolites, its nitroso form was not absorbed. Dimer B2 but not epicatechin monomer inhibited the proliferation of, and triggered apoptosis in, Caco-2 cells. The latter was accompanied by caspase-3 activation and reductions in Akt phosphorylation, suggesting activation of apoptosis via inhibition of prosurvival signaling. Furthermore, the dinitroso derivative of dimer B2, and to a lesser extent the dinitroso-epicatechin, also induced significant toxic effects in Caco-2 cells. The inhibitory effects on cellular proliferation were paralleled by early inhibition of ERK 1/2 phosphorylation and later reductions in cyclin D1 levels, indicating modulation of cell cycle regulation in Caco-2 cells. These effects highlight multiple routes in which dietary derived flavanols may exert beneficial effects in the gastrointestinal tract. PMID:16413414

  4. How important is polyelectrolyte complex formation in biomimetic mineralisation? Manipulation via alcohol addition.

    PubMed

    Munro, Natasha H; McGrath, Kathryn M

    2013-06-21

    Understanding the formation of biominerals like nacre can lead to the fabrication of more advanced biomimetic materials. Several factors are known to influence the final form of both native nacre and biomimetic synthetic variants. Two important components in calcium carbonate biominerals such as nacre are the organic scaffold and the acidic proteins. Interactions between these two components may also influence final composite characteristics. In this investigation chitosan hydrogels were prepared from acidic aqueous solution using four alcohols as cosolvents. The addition of alcohol enables direct modification of the network of the chitosan hydrogel (and thereby the nanometre and micrometre length-scale structure of the hydrogel). Both alcohol-modified chitosan and subsequently reacetylated chitin scaffolds were then mineralised with a combined soaking mineralisation method in the presence of poly(acrylic acid), the latter of which mimics the role of the acidic proteins in the native system. The effects of these structural variations of the hydrogel, induced by the presence of alcohol during fabrication, on (1) the formation of a polyelectrolyte complex between the chitosan or chitin and the poly(acrylic acid) and (2) the subsequent polymorph and morphology of calcium carbonate crystals mineralised within the hydrogel scaffold were investigated. Increasing the amount of the alcohols 1,2-propanediol or 1,3-propanediol led to increased disruption of the hydrogen bonding of the hydrogel scaffold and significant changes to, or reduced formation of, the polyelectrolyte complex formed between the scaffold carbohydrate and the poly(acrylic acid). The disruption of the polyelectrolyte complex in turn led to a loss of control over which polymorph of calcium carbonate is nucleated. These results show that the physical form of the polymer scaffold in these organic/inorganic composites, and the formation of the polyelectrolyte complex play a crucial role in determining the final composite structure and the calcium carbonate polymorphs and morphologies. PMID:23595573

  5. ACID DISSOCIATION CONSTANTS AND COMPLEX FORMATION CONSTANTS OF SEVERAL PYRIMIDINE DERIVATIVES

    Microsoft Academic Search

    Edmond R. Tucci; E. Doody; Norman C. Li

    1961-01-01

    Acid disscciation constants of uracil-5-carboxylic acid (isoorotic ; acid), 2-ethylthio-isoorotic acid, uracil-6carboxylic acid (orotic acid), 5-; nitroorotic acid, and adenosine-5' -monophosphate were determined at an ionic ; strength of 0.1, 25 deg . The formation constants of the Cu(II), Ni(II), Co(II), ; Zn(II), Mn(II), and Cd(II) complexes of some of these pyrimdine derivatives were ; determined using pH and ion-exchange

  6. Aluminum ion complex formation with 3-hydroxyflavone in Langmuir and Langmuir–Blodgett films

    Microsoft Academic Search

    J. P Santos; M. E. D Zaniquelli; W. F De Giovani; S. E Galembeck

    2002-01-01

    The flavonoid 3-hydroxyflavone (3HF) is insoluble in water at room temperature and it presents a poor spreading behavior at the air–water interface. The strategy used in this work for preparation of liquid monolayers was to spread pure 3HF and 3HF\\/hexadecanol mixtures on aluminum aqueous solution. The flavonoid is spontaneously spread at the air–liquid interface by its complex formation with aluminum

  7. Anthrax Lethal Toxin Triggers the Formation of a Membrane-Associated Inflammasome Complex in Murine Macrophages

    Microsoft Academic Search

    Adel M. Nour; Laura Santambrogio; Eric D. Boyden; E. Richard Stanley; Jurgen Brojatsch

    2009-01-01

    Multiple microbial components trigger the formation of an inflammasome complex that contains pathogen- specific nucleotide oligomerization and binding domain (NOD)-like receptors (NLRs), caspase-1, and in some cases the scaffolding protein ASC. The NLR protein Nalp1b has been linked to anthrax lethal toxin (LT)- mediated cytolysis of murine macrophages. Here we demonstrate that in unstimulated J774A.1 macrophages, caspase-1 and Nalp1b are

  8. Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber

    NASA Astrophysics Data System (ADS)

    Platt, S. M.; El Haddad, I.; Zardini, A. A.; Clairotte, M.; Astorga, C.; Wolf, R.; Slowik, J. G.; Temime-Roussel, B.; Marchand, N.; Ježek, I.; Drinovec, L.; Mo?nik, G.; Möhler, O.; Richter, R.; Barmet, P.; Bianchi, F.; Baltensperger, U.; Prévôt, A. S. H.

    2012-10-01

    We present a new mobile environmental reaction chamber for the simulation of the atmospheric aging of aerosols from different emissions sources without limitation from the instruments or facilities available at any single site. The chamber can be mounted on a trailer for transport to host facilities or for mobile measurements. Photochemistry is simulated using a set of 40 UV lights (total power 4 KW). Characterisation of the emission spectrum of these lights shows that atmospheric photochemistry can be accurately simulated over a range of temperatures from -7-25 °C. A photolysis rate of NO2, JNO2, of (8.0 ± 0.7) × 10-3 molecules cm-3 s-1 was determined at 25 °C. Further, we present the first application of the mobile chamber and demonstrate its utility by quantifying primary organic aerosol (POA) emission and secondary organic aerosol (SOA) production from a Euro 5 light duty gasoline vehicle. Exhaust emissions were sampled during the New European Driving Cycle (NEDC), the standard driving cycle for European regulatory purposes, and injected into the chamber. The relative concentrations of oxides of nitrogen (NOx) and total hydrocarbon (THC) during the aging of emissions inside the chamber were controlled using an injection system developed as a part of the new mobile chamber set up. Total OA (POA + SOA) emission factors of (370 ± 18) × 10-3 g kg-1 fuel, or (14.6 ± 0.8) × 10-3 g km-1, after aging, were calculated from concentrations measured inside the smog chamber during two experiments. The average SOA/POA ratio for the two experiments was 15.1, a much larger increase than has previously been seen for diesel vehicles, where smog chamber studies have found SOA/POA ratios of 1.3-1.7. Due to this SOA formation, carbonaceous particulate matter (PM) emissions from a gasoline vehicle may approach those of a diesel vehicle of the same class. Furthermore, with the advent of emission controls requiring the use of diesel particle filters, gasoline vehicle emissions could become a far larger source of ambient PM than diesel vehicles. Therefore this large increase in the PM mass of gasoline vehicle aerosol emissions due to SOA formation has significant implications for our understanding of the contribution of on-road vehicles to ambient aerosols and merits further study.

  9. The mechanisms of substitution reactions in octahedral complexes from the point of view of ligand field theory

    Microsoft Academic Search

    K. B. Yatsimirskii

    1968-01-01

    Two possible mechanisms for substitution reactions in octahedral complexes, ML6, are discussed in terms of molecular orbital theory. Jorgensen's model with angular parameters is used to calculate the change in activation energy on forming complexes of the type ML5 (D3h symmetry), ML5 (C4v symmetry), and ML7 D5h symmetry). Analysis of the quantities obtained (Table 4) shows that high spin ML6

  10. A histone H3 lysine-27 methyltransferase complex represses lateral root formation in Arabidopsis thaliana.

    PubMed

    Gu, Xiaofeng; Xu, Tongda; He, Yuehui

    2014-06-01

    Root branching or lateral root formation is crucial to maximize a root system acquiring nutrients and water from soil. A lateral root (LR) arises from asymmetric cell division of founder cells (FCs) in a pre-branch site of the primary root, and FC establishment is essential for lateral root formation. FCs are known to be specified from xylem pole pericycle cells, but the molecular genetic mechanisms underlying FC establishment are unclear. Here, we report that, in Arabidopsis thaliana, a PRC2 (for Polycomb repressive complex 2) histone H3 lysine-27 (H3K27) methyltransferase complex, functions to inhibit FC establishment during LR initiation. We found that functional loss of the PRC2 subunits EMF2 (for EMBRYONIC FLOWER 2) or CLF (for CURLY LEAF) leads to a great increase in the number of LRs formed in the primary root. The CLF H3K27 methyltransferase binds to chromatin of the auxin efflux carrier gene PIN FORMED 1 (PIN1), deposits the repressive mark H3K27me3 to repress its expression, and functions to down-regulate auxin maxima in root tissues and inhibit FC establishment. Our findings collectively suggest that EMF2-CLF PRC2 acts to down-regulate root auxin maxima and show that this complex represses LR formation in Arabidopsis. PMID:24711289

  11. True boundary for the formation of homoleptic transition-metal hydride complexes.

    PubMed

    Takagi, Shigeyuki; Iijima, Yuki; Sato, Toyoto; Saitoh, Hiroyuki; Ikeda, Kazutaka; Otomo, Toshiya; Miwa, Kazutoshi; Ikeshoji, Tamio; Aoki, Katsutoshi; Orimo, Shin-Ichi

    2015-05-01

    Despite many exploratory studies over the past several decades, the presently known transition metals that form homoleptic transition-metal hydride complexes are limited to the Groups?7-12. Here we present evidence for the formation of Mg3 CrH8 , containing the first Group?6 hydride complex [CrH7 ](5-) . Our theoretical calculations reveal that pentagonal-bipyramidal H coordination allows the formation of ?-bonds between H and Cr. The results are strongly supported by neutron diffraction and IR spectroscopic measurements. Given that the Group?3-5 elements favor ionic/metallic bonding with H, along with the current results, the true boundary for the formation of homoleptic transition-metal hydride complexes should be between Group?5 and 6. As the H coordination number generally tends to increase with decreasing atomic number of transition metals, the revised boundary suggests high potential for further discovery of hydrogen-rich materials that are of both technological and fundamental interest. PMID:25773066

  12. Rapid formation of cell-particle complexes via dielectrophoretic manipulation for the detection of surface antigens.

    PubMed

    Horii, Takuma; Yamamoto, Masashi; Yasukawa, Tomoyuki; Mizutani, Fumio

    2014-11-15

    A rapid and simple method for the fabrication of the island patterns with particles and cells was applied to detect the presence of specific antigens on the cell surface. An upper interdigitated microband array (IDA) electrode was mounted on a lower substrate with the same design to fabricate a microfluidic-channel device for dielectrophoretic manipulation. The electrode grid structure was fabricated by rotating the upper template IDA by 90° relative to the lower IDA. A suspension of anti-CD33 modified particles and HL-60 cells was introduced into the channel. An AC electrical signal (typically 20 V peak-to-peak, 100 kHz) was then applied to the bands of the upper and lower IDAs, resulting in the formation of island patterns at the intersections with low electric fields. Immunoreactions between the antibodies immobilized on the accumulated particles and the CD33 present on the surface of the cells led to the formation of complexes comprising corresponding antigen-antibody pairs. Non-specific pairs accumulated at the intersection, which did not form complexes, were then dispersed after removal of the applied field. The time required for the detection of the formation/dispersion of the complexes is as short as 6 min in the present procedure. Furthermore, this novel cell binding assay does not require pretreatment such as target labeling or washing of the unbound cells. PMID:24892783

  13. Display format and highlight validity effects on search performance using complex visual displays

    NASA Technical Reports Server (NTRS)

    Donner, Kimberly A.; Mckay, Tim; O'Brien, Kevin M.; Rudisill, Marianne

    1991-01-01

    Display format and highlight validity were shown to affect visual display search performance; however, these studies were conducted on small, artificial displays of alphanumeric stimuli. A study manipulating these variables was conducted using realistic, complex Space Shuttle information displays. A 2x2x3 within-subjects analysis of variance found that search times were faster for items in reformatted displays than for current displays. The significant format by highlight validity interaction showed that there was little difference in response time to both current and reformatted displays when the highlight validity was applied; however, under the non or invalid highlight conditions, search times were faster with reformatted displays. Benefits of highlighting and reformatting displays to enhance search and the necessity to consider highlight validity and format characteristics in tandem for predicting search performance are discussed.

  14. The Toca-1-N-WASP complex links filopodial formation to endocytosis.

    PubMed

    Bu, Wenyu; Chou, Ai Mei; Lim, Kim Buay; Sudhaharan, Thankiah; Ahmed, Sohail

    2009-04-24

    The transducer of Cdc42-dependent actin assembly (Toca-1)-N-WASP complex was isolated as an essential cofactor for Cdc42-driven actin polymerization in vitro. Toca-1 consists of an N-terminal F-BAR domain, followed by a Cdc42 binding site (HR1 domain) and an SH3 domain, (the N-WASP interacting site). N-WASP is an activator of actin nucleation through the Arp2/3 complex. The aim of the present study was to investigate the cellular function of the Toca-1-N-WASP complex. We report that Toca-1 induces filopodia and neurites as does N-WASP in N1E115 neuroblastoma cells. Toca-1 requires the F-BAR domain, Cdc42 binding site, and SH3 domain to induce filopodia. Toca-1 and N-WASP both require each other to induce filopodia. The expression of Toca-1 and N-WASP affects the distribution, size, and number of Rab5 positive membranes. Toca-1 interacts directly with N-WASP in filopodia and Rab5 membrane as seen by Forster resonance energy transfer. Thus the Toca-1-N-WASP complex localizes to and induces the formation of filopodia and endocytic vesicles. Last, three inhibitors of endocytosis, Dynamin-K44A, Eps15Delta95/295, and clathrin heavy chain RNA interference, block Toca-1-induced filopodial formation. Taken together, these data suggest that the Toca-1-N-WASP complex can link filopodial formation to endocytosis. PMID:19213734

  15. Origin of Fast Catalysis in Allylic Amination Reactions Catalyzed by Pd-Ti Heterobimetallic Complexes.

    PubMed

    Walker, Whitney K; Kay, Benjamin M; Michaelis, Scott A; Anderson, Diana L; Smith, Stacey J; Ess, Daniel H; Michaelis, David J

    2015-06-17

    Experiments and density functional calculations were used to quantify the impact of the Pd-Ti interaction in the cationic heterobimetallic Cl2Ti(N(t)BuPPh2)2Pd(?(3)-methallyl) catalyst 1 used for allylic aminations. The catalytic significance of the Pd-Ti interaction was evaluated computationally by examining the catalytic cycle for catalyst 1 with a conformation where the Pd-Ti interaction is intact versus one where the Pd-Ti interaction is severed. Studies were also performed on the relative reactivity of the cationic monometallic (CH2)2(N(t)BuPPh2)2Pd(?(3)-methallyl) catalyst 2 where the Ti from catalyst 1 was replaced by an ethylene group. These computational and experimental studies revealed that the Pd-Ti interaction lowers the activation barrier for turnover-limiting amine reductive addition and accelerates catalysis up to 10(5). The Pd-Ti distance in 1 is the result of the N(t)Bu groups enforcing a boat conformation that brings the two metals into close proximity, especially in the transition state. The turnover frequency of classic Pd ? allyl complexes was compared to that of 1 to determine the impact of P-Pd-P coordination angle and ligand electronic properties on catalysis. These experiments identified that cationic (PPh3)2Pd(?(3)-CH2C(CH3)CH2) catalyst 3 performs similarly to 1 for allylic aminations with diethylamine. However, computations and experiment reveal that the apparent similarity in reactivity is due to very fast reaction kinetics. The higher reactivity of 1 versus 3 was confirmed in the reaction of methallyl chloride and 2,2,6,6-tetramethylpiperidine (TMP). Overall, experiments and calculations demonstrate that the Pd-Ti interaction induces and is responsible for significantly lower barriers and faster catalysis for allylic aminations. PMID:25946518

  16. Amidrazone complexes from a cascade platinum(II)-mediated reaction between amidoximes and dialkylcyanamides.

    PubMed

    Bolotin, Dmitrii S; Bokach, Nadezhda A; Kritchenkov, Andreii S; Haukka, Matti; Kukushkin, Vadim Yu

    2013-06-01

    The aryl amidoximes R'C6H4C(NH2)?NOH (R' = Me, 2a; H, 2b; CN, 2c; NO2, 2d) react with the dialkylcyanamide platinum(II) complexes trans-[PtCl2(NCNAlk2)2] (Alk2 = Me2, 1a; C5H10, 1b) in a 1:1 molar ratio in CHCl3 to form chelated mono-addition products [3a-h]Cl, viz. [PtCl(NCNAlk2){NH?C(NR2)ON?C(C6H4R')NH2}]Cl (Alk2 = Me2; R' = Me, a; H, b; CN, c; NO2, d; Alk2 = C5H10; R' = Me, e; H, f; CN, g; NO2, h). In the solution, these species spontaneously transform to the amidrazone complexes [PtCl2{NH?C(NR2)NC(C6H4R')NNH2}] (7a-h; 36-47%); this conversion proceeds more selectively (49-60% after column chromatography) in the presence of the base (PhCH2)3N. The observed reactivity pattern is specific for NCNAlk2 ligands, and it is not realized for conventional alkyl- and arylnitrile ligands. The mechanism of the cascade reaction was studied by trapping the isocyanate intermediates [PtCl(NCO){NH?C(NR2)NC(C6H4R')NNH2}] (5a-h) and also by ESI-MS identification of the ammonia complexes [PtCl(NH3){NH?C(NR2)NC(C6H4R')NNH2}](+) ([6a-h](+)) in solution. The complexes [3a]Cl, [3c-h]Cl, 5a-h and 7a-h were characterized by elemental analyses, high resolution ESI-MS, IR, and (1)H NMR techniques, while 5b, 5d, 5g, 7b, and 7e were also studied using single-crystal X-ray diffraction. PMID:23688349

  17. Selectively enhanced silicide formation by a gold interlayer: Probing the dominant diffusing species and reaction mechanisms during thin-film reactions

    NASA Astrophysics Data System (ADS)

    Chang, Chin-An; Song, Jerng-Sik

    1987-08-01

    Formation of silicides in the presence of a thin gold interlayer is studied, making use of the rapid outdiffusion of Si through gold. With Si being the dominant diffusing species, an enhanced rate is expected, as observed for PtSi, Fe3Si, CoSi, and MoSi2. No enhancement is expected when metal is the dominant diffusing species, in agreement with the results on Pt2Si, Co2Si, and Ni2Si. Such studies thus provide valuable information regarding reaction mechanisms.

  18. Chemical and Enzymatic Footprint Analyses of R-Loop Formation by Cascade-crRNA Complex.

    PubMed

    Pul, Ümit

    2015-01-01

    Cascade-crRNA complexes mediate the identification of the invading foreign DNA and initiate its neutralization by formation of an R-loop (RNA-induced DNA-loop) at the crRNA-complementary sequence (protospacer). After initial unspecific binding to the double-stranded DNA, Cascade-crRNA complex slides along the DNA to find the protospacer. Once the target site is detected, the crRNA hybridizes to the complementary strand with subsequent displacement of the non-complementary strand to form an R-loop structure. Here, we describe how Cascade-DNA complexes and the Cascade-induced strand separation can be characterized in detail by combining chemical and enzymatic footprint analyses. Selective modification of unpaired thymines by permanganate (KMnO4) and the specific cleavage of single-stranded DNA by Nuclease P1 can be used to probe an R-loop formation by Cascade. Localization of the Cascade-crRNA complex on the DNA can be achieved by an Exonuclease III protection assay. PMID:25981481

  19. Actomyosin-dependent formation of the mechanosensitive talin-vinculin complex reinforces actin anchoring.

    PubMed

    Ciobanasu, Corina; Faivre, Bruno; Le Clainche, Christophe

    2014-01-01

    The force generated by the actomyosin cytoskeleton controls focal adhesion dynamics during cell migration. This process is thought to involve the mechanical unfolding of talin to expose cryptic vinculin-binding sites. However, the ability of the actomyosin cytoskeleton to directly control the formation of a talin-vinculin complex and the resulting activity of the complex are not known. Here we develop a microscopy assay with pure proteins in which the self-assembly of actomyosin cables controls the association of vinculin to a talin-micropatterned surface in a reversible manner. Quantifications indicate that talin refolding is limited by vinculin dissociation and modulated by the actomyosin network stability. Finally, we show that the activation of vinculin by stretched talin induces a positive feedback that reinforces the actin-talin-vinculin association. This in vitro reconstitution reveals the mechanism by which a key molecular switch senses and controls the connection between adhesion complexes and the actomyosin cytoskeleton. PMID:24452080

  20. Reaction between atomic N(4S) and molecular CO at very low temperature: possible formation of HNCO in the Oort cloud

    NASA Astrophysics Data System (ADS)

    Nourry, Sendres; Zins, Emilie-Laure; Krim, Lahouari

    2015-07-01

    Beyond the Kuiper belt, the Oort cloud is characterized by particularly cold temperatures and the absence of energetic particles. Specific chemical processes involving cold radicals may occur in this reservoir of comets. A microwave-driven atomic source can be used to generate cold atomic nitrogen (N (4S)) for reactivity study of ices relevant to the Oort cloud. Without any additional source of energy, atomic nitrogen does not react with CO molecules to form NCO. This is consistent with a previous theoretical investigation carried out by Yazidi et al., who have shown that the potential energy surface for the CO (X1?+) + N (4S) system is purely dissociative. On the other hand, a very small amount of water is sufficient to induce a reaction between these two species. This three-body reaction leads to the formation of the HNCO monomer, the (HNCO)(H2O) complex, and the hydroxyl radical. Such reactions, leading to prebiotic molecules, may take place in the Oort cloud and in the Kuiper belt, from which most of the comets come.

  1. Real-time nonlinear feedback control of pattern formation in (bio)chemical reaction-diffusion processes: a model study.

    PubMed

    Brandt-Pollmann, U; Lebiedz, D; Diehl, M; Sager, S; Schlöder, J

    2005-09-01

    Theoretical and experimental studies related to manipulation of pattern formation in self-organizing reaction-diffusion processes by appropriate control stimuli become increasingly important both in chemical engineering and cellular biochemistry. In a model study, we demonstrate here exemplarily the application of an efficient nonlinear model predictive control (NMPC) algorithm to real-time optimal feedback control of pattern formation in a bacterial chemotaxis system modeled by nonlinear partial differential equations. The corresponding drift-diffusion model type is representative for many (bio)chemical systems involving nonlinear reaction dynamics and nonlinear diffusion. We show how the computed optimal feedback control strategy exploits the system inherent physical property of wave propagation to achieve desired control aims. We discuss various applications of our approach to optimal control of spatiotemporal dynamics. PMID:16252992

  2. Projection structure of the photosynthetic reaction centre–antenna complex of Rhodospirillum rubrum at 8.5 ? resolution

    PubMed Central

    Jamieson, Stuart J.; Wang, Peiyi; Qian, Pu; Kirkland, John Y.; Conroy, Matthew J.; Hunter, C.Neil; Bullough, Per A.

    2002-01-01

    Two-dimensional crystals of the reaction-centre–light-harvesting complex I (RC–LH1) of the purple non- sulfur bacterium Rhodospirillum rubrum have been formed from detergent-solubilized and purified protein complexes. Unstained samples of this intrinsic membrane protein complex have been analysed by electron cryomicroscopy (cryo EM). Projection maps were calculated to 8.5 ? from two different crystal forms, and show a single reaction centre surrounded by 16 LH1 subunits in a ring of ?115 ? diameter. Within each LH1 subunit, densities for the ?- and ?-polypeptide chains are clearly resolved. In one crystal form the LH1 forms a circular ring, and in the other form the ring is significantly ellipsoidal. In each case, the reaction centre adopts preferred orientations, suggesting specific interactions between the reaction centre and LH1 subunits rather than a continuum of possible orientations with the antenna ring. This experimentally determined structure shows no evidence of any other protein components in the closed LH1 ring. The demonstration of circular or elliptical forms of LH1 indicates that this complex is likely to be flexible in the bacterial membrane. PMID:12145194

  3. Coordinatively saturated cationic ruthenium(II) complexes. Preparation, characterization, and reaction with potassium superoxide

    SciTech Connect

    Oshima, N.; Suzuki, H.; Moro-oka, Y.

    1986-09-10

    Coordinatively saturated cationic ruthenium(II) complexes, (eta/sup 5/-C/sub 5/H/sub 5/)(eta/sup 6/-C/sub 6/H/sub 6/)Ru/sup II/)(BF/sub 4/) (1), (eta/sup 5/-C/sub 5/Me/sub 5/)(eta/sup 6/-C/sub 66/)Ru/sup II/)(BF/sub 4/) (2), ((1-5-eta/sup 5/-C/sub 6/H/sub 7/)(eta/sup 6/-C/sub 6/H/sub 6/)Ru/sup II/)(BF/sub 4/) (3), ((1-5-eta/sup 5/-C/sub 7/H/sub 9/)(eta/sup 6/-C/sub 6/H/sub 7/)Ru/sup II/)(BF/sub 4/) (4), ((1-3:5,6-eta/sup 5/-C/sub 8/H/sub 1/exclamation)(eta/sup 6/-C/sub 6/H/sub 6/)Ru/sup II/)(BG/sub 4/)(5), and ((6-EtO-1-5-eta /sup 5/-C/sub 7/H/sub 8/)(eta/sup 6/-C/sub 6/H/sub 6/)Ru/sup II/)(BF/sub 4/) (7), are prepared by the reaction of (eta/sup 6/-C/sub 6/H/sub 6/)RuCl/sub 2/)/sub 2/ with cyclopentadiene, pentamethylcyclopentadiene, 1,3-cyclohexadiene, 1,3-cycloheptadiene, 1,5-cyclooctadiene, and 1,3,5-cycloheptatriene, respectively, in ethanol in the presence of AgBF/sub 4/. Superoxide anion attacks at the terminal position of the dienyl moiety of 3-5 to yield ruthenium(0) complexes 8-10, containing cyclic dienone ligand. 25 references, 4 figures, 4 tables.

  4. A theoretical rationale why furan-side monoadduct is more favorable toward diadduct formation in 8-methoxypsoralen and thymine complexes.

    PubMed

    Huang, Xuebin; Zhang, Rubo

    2013-01-01

    The photoinduced mechanism of formation of mono- and diadducts between 8-MOP and thymine bases is studied using the ONIOM(MPWB1K/6-31 + G(d,p):B3LYP/6-31G(d,p):UFF) and B3LYP/6-31 + G(d,p) methods. The relevant cycloaddition displays favorable energy barriers and reaction energies in the triplet excited state, which involves the initial formation of a diradical followed by ring closure via singlet-triplet interaction. The monoadduct on the pyrone side is favored over the furan side when comparing reaction energies. The distinguishing feature in the formation of the monoadducts is that the furan-side adduct displays a better photostability, which is a relatively high-barrier exothermic reaction, and thus the energy balance of the monoadduct on the furan side toward final diadduct formation is favored. PMID:23461738

  5. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    SciTech Connect

    Bhattacharjee, Rajesh [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States)] [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Xiang, Wenpei [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States) [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China (China); Wang, Yinna [Vascular Medicine Institute, University of Pittsburgh School of Medicine, 10051-5A BST 3, 3501 Fifth Avenue, Pittsburgh, PA 15261 (United States)] [Vascular Medicine Institute, University of Pittsburgh School of Medicine, 10051-5A BST 3, 3501 Fifth Avenue, Pittsburgh, PA 15261 (United States); Zhang, Xiaoying [Department of Medicine/Endocrinology Division, University of Pittsburgh Medical Center, 200 Lothrop St., Pittsburgh, PA 15213 (United States)] [Department of Medicine/Endocrinology Division, University of Pittsburgh Medical Center, 200 Lothrop St., Pittsburgh, PA 15213 (United States); Billiar, Timothy R., E-mail: billiartr@upmc.edu [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. Black-Right-Pointing-Pointer cAMP blocks NF-{kappa}B activation induced by TNF and actinomycin D. Black-Right-Pointing-Pointer cAMP blocks DISC formation following TNF and actinomycin D exposure. Black-Right-Pointing-Pointer cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor {alpha} (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found that cAMP exerts its affect at the proximal level of TNF signaling by inhibiting the formation of the DISC complex upon the binding of TNF to TNFR1. In conclusion, our study shows that cAMP prevents TNF + ActD-induced apoptosis in rat hepatocytes by inhibiting DISC complex formation.

  6. Formation of heavy and superheavy elements by reactions with massive nuclei

    Microsoft Academic Search

    G. Fazio; G. Giardina; A. Lamberto; R. Ruggeri; C. Saccá; R. Palamara; A. I. Muminov; A. K. Nasirov; U. T. Yakhshiev; F. Hanappe; T. Materna; L. Stuttgé

    2004-01-01

    The effects of the entrance channel and shell structure on the experimental evaporation residues have been studied by analyzing the 32S + 182W, 48Ti + 166Er and 60Ni + 154Sm reactions leading to 214Th *; the 40Ar + 181Ta reaction leading to 221Pa *; the 48Ca + 243Am, 248Cm, 249Cf reactions leading to the 291115, 296116 and 297118 superheavy compound

  7. The chemical mechanism of the limonene ozonolysis reaction in the SOA formation: A quantum chemistry and direct dynamic study

    Microsoft Academic Search

    Tingli Sun; Yudong Wang; Chenxi Zhang; Xiaomin Sun; Wenxing Wang

    2011-01-01

    The ozonolysis of limonene is one of the most important processes for secondary organic aerosol formation and a detailed understanding of the atmospheric chemistry of d-limonene is highly urgent. In this paper, the reaction of d-limonene with O3 has been studied using high level molecular orbital theory. A detailed description of the possible ozonolysis mechanism in the presence of H2O

  8. The reaction of superoxide with cinnamyl bromide: The surprising formation of an ether and an epoxy acetal

    Microsoft Academic Search

    Aryeh A Frimer; Gila Strul; Pessia Gilinsky-Sharon

    1995-01-01

    The reaction of O2?• (KO218-crown-6 in toluene) with cinnamyl bromide yielded neither the expected cinnamyl peroxide nor its Kornblum-DeLaMare fragmentation products, cinnamaldehyde (4) and cinnamyl alcohol. Instead we observed the novel formation of dicinnamyl ether and 2,3-epoxycinnamylaldehyde dicinnamyl acetal (88% yield). Benzyl bromide reacted with O2?• in the presence of 4 yielding dibenzyl ether and epoxycinnamaldehyde dibenzyl acetal. When the

  9. Formation of medical radioisotopes 111In, 117 m Sn, 124Sb, and 177Lu in photonuclear reactions

    NASA Astrophysics Data System (ADS)

    Danagulyan, A. S.; Hovhannisyan, G. H.; Bakhshiyan, T. M.; Avagyan, R. H.; Avetisyan, A. E.; Kerobyan, I. A.; Dallakyan, R. K.

    2015-06-01

    The possibility of the photonuclear production of radioisotopes 111In, 117 m Sn, 124Sb, and 177Lu is discussed. Reaction yields were measured by the gamma-activation method. The enriched tin isotopes 112, 118Sn and Te and HfO2 of natural isotopic composition were used as targets. The targets were irradiated at the linear electron accelerator of Alikhanian National Science Laboratory (Yerevan) at the energy of 40 MeV. The experimental results obtained in this way reveal that the yield and purity of radioisotopes 111In and 117 mSn are acceptable for their production via photonuclear reactions. Reactions proceeding on targets from Te and HfO2 of natural isotopic composition and leading to the formation of 124Sb and 177Lu have small yields and are hardly appropriate for the photoproduction of these radioisotopes even in the case of enriched targets.

  10. Reaction of Water-Saturated Supercritical CO2 with Forsterite: Evidence for Magnesite Formation at Low Temperatures

    SciTech Connect

    Felmy, Andrew R.; Qafoku, Odeta; Arey, Bruce W.; Hu, Jian Z.; Hu, Mary Y.; Schaef, Herbert T.; Ilton, Eugene S.; Hess, Nancy J.; Pearce, Carolyn I.; Feng, Ju; Rosso, Kevin M.

    2012-08-01

    The nature of the reaction products that form on the surfaces of nanometer-sized forsterite particles during reaction with H2O saturated supercritical CO2 (scCO2) at 35 C and 50 C were examined under in situ conditions and ex situ following reaction. The in situ analysis was conducted by X-ray diffraction (XRD). Ex situ analysis consisted of scanning electron microscopy (SEM) examination of the surface phases and chemical characterization of precipitates using a combination of confocal Raman spectroscopy, 13C and 29Si NMR spectroscopy, and energy-dispersive X-ray Spectroscopy (EDS). The results show that the forsterite surface is highly reactive with the primary reaction products being a mixture of nesquehonite (MgCO3.3H2O) and magnesite (MgCO3) at short reaction times ({approx}3-4 days) and then magnesite (MgCO3) and a highly porous amorphous silica phase at longer reaction times (14 days). After 14 days of reaction most of the original forsterite transformed to reaction products. Importantly, the formation of magnesite was observed at temperatures much lower (35 C) than previously thought needed to overcome its well known sluggish precipitation kinetics. The conversion of nesquehonite to magnesite liberates H2O which can potentially facilitate further metal carbonation, as postulated by previous investigators, based upon studies at higher temperature (80 C). The observation that magnesite can form at lower temperatures implies that water recycling may also be important in determining the rate and extent of mineral carbonation in a wide range of potential CO2 storage reservoirs.

  11. Influence of dominant HIV-1 epitopes on HLA-A3/peptide complex formation

    PubMed Central

    Racape, Judith; Connan, Francine; Hoebeke, Johan; Choppin, Jeannine; Guillet, Jean-Gérard

    2006-01-01

    The binding of peptides to MHC class I molecules induces MHC/peptide complexes that have specific conformational features. Little is known about the molecular and structural bases required for an optimal MHC/peptide association able to induce a dominant T cell response. We sought to characterize the interaction between purified HLA-A3 molecules and four well known CD8 epitopes from HIV-1 proteins. To define the characteristics of HLA–peptide complex formation and to identify potential structural changes, we used biochemical assays that detect well formed complexes. We tested the amplitude, stability, and kinetic parameters of the interaction between HLA-A3, peptides, and anti-HLA mAbs. Our results show that the four epitopes Nef73–82, Pol325–333, Env37–46, and Gag20–28 bind strongly to HLA-A3 molecules and form very stable complexes that are detected with differential patterns of mAb reactivity. The most striking result is the nonrecognition of the HLA-A3/Gag20–28 complex by the A11.1M mAb specific to HLA-A3/-A11 alleles. To explain this observation, from the data published on HLA-A11 crystallographic structure, we propose molecular models of the HLA-A3 molecule complexed with Nef73–82, Pol325–333, and Gag20–28 epitopes. In the HLA-A3/Gag20–28 complex, we suggest that Arg at position P1 of the peptide may push the ?2 helix residue Trp-167 of HLA-A3 and affect mAb recognition. Such observations may have great implications for T cell antigen receptor recognition and the immunogenicity of HLA/peptide complexes. PMID:17116886

  12. Coordinatively saturated cationic ruthenium(II) complexes. Preparation, characterization, and reaction with potassium superoxide

    Microsoft Academic Search

    Noriaki Oshima; Hiroharu Suzuki; Yoshihiko Moro-oka

    1986-01-01

    Coordinatively saturated cationic ruthenium(II) complexes, (eta⁵-CâHâ)(eta⁶-CâHâ)Ru\\/sup II\\/)(BFâ) (1), (eta⁵-CâMeâ)(eta⁶-Cââ)Ru\\/sup II\\/)(BFâ) (2), ((1-5-eta⁵-CâHâ)(eta⁶-CâHâ)Ru\\/sup II\\/)(BFâ) (3), ((1-5-eta⁵-CâHâ)(eta⁶-CâHâ)Ru\\/sup II\\/)(BFâ) (4), ((1-3:5,6-eta⁵-CâHâexclamation)(eta⁶-CâHâ)Ru\\/sup II\\/)(BGâ)(5), and ((6-EtO-1-5-eta ⁵-CâHâ)(eta⁶-CâHâ)Ru\\/sup II\\/)(BFâ) (7), are prepared by the reaction of (eta⁶-CâHâ)RuClâ)â with cyclopentadiene, pentamethylcyclopentadiene, 1,3-cyclohexadiene, 1,3-cycloheptadiene, 1,5-cyclooctadiene, and 1,3,5-cycloheptatriene, respectively, in ethanol in the presence of AgBFâ. Superoxide anion attacks at the terminal position of the dienyl moiety of 3-5

  13. Charge-transfer complex formation in gelation: the role of solvent molecules with different electron-donating capacities.

    PubMed

    Basak, Shibaji; Bhattacharya, Sumantra; Datta, Ayan; Banerjee, Arindam

    2014-05-01

    A naphthalenediimide (NDI)-based synthetic peptide molecule forms gels in a particular solvent mixture (chloroform/aromatic hydrocarbon, 4:1) through charge-transfer (CT) complex formation; this is evident from the corresponding absorbance and fluorescence spectra at room temperature. Various aromatic hydrocarbon based solvents, including benzene, toluene, xylene (ortho, meta and para) and mesitylene, have been used for the formation of the CT complex. The role of different solvent molecules with varying electron-donation capacities in the formation of CT complexes has been established through spectroscopic and computational studies. PMID:24677404

  14. NADP-Specific Electron-Bifurcating [FeFe]-Hydrogenase in a Functional Complex with Formate Dehydrogenase in Clostridium autoethanogenum Grown on CO

    PubMed Central

    Wang, Shuning; Huang, Haiyan; Kahnt, Jörg; Mueller, Alexander P.; Köpke, Michael

    2013-01-01

    Flavin-based electron bifurcation is a recently discovered mechanism of coupling endergonic to exergonic redox reactions in the cytoplasm of anaerobic bacteria and archaea. Among the five electron-bifurcating enzyme complexes characterized to date, one is a heteromeric ferredoxin- and NAD-dependent [FeFe]-hydrogenase. We report here a novel electron-bifurcating [FeFe]-hydrogenase that is NADP rather than NAD specific and forms a complex with a formate dehydrogenase. The complex was found in high concentrations (6% of the cytoplasmic proteins) in the acetogenic Clostridium autoethanogenum autotrophically grown on CO, which was fermented to acetate, ethanol, and 2,3-butanediol. The purified complex was composed of seven different subunits. As predicted from the sequence of the encoding clustered genes (fdhA/hytA-E) and from chemical analyses, the 78.8-kDa subunit (FdhA) is a selenocysteine- and tungsten-containing formate dehydrogenase, the 65.5-kDa subunit (HytB) is an iron-sulfur flavin mononucleotide protein harboring the NADP binding site, the 51.4-kDa subunit (HytA) is the [FeFe]-hydrogenase proper, and the 18.1-kDa (HytC), 28.6-kDa (HytD), 19.9-kDa (HytE1), and 20.1-kDa (HytE2) subunits are iron-sulfur proteins. The complex catalyzed both the reversible coupled reduction of ferredoxin and NADP+ with H2 or formate and the reversible formation of H2 and CO2 from formate. We propose the complex to have two functions in vivo, namely, to normally catalyze CO2 reduction to formate with NADPH and reduced ferredoxin in the Wood-Ljungdahl pathway and to catalyze H2 formation from NADPH and reduced ferredoxin when these redox mediators get too reduced during unbalanced growth of C. autoethanogenum on CO (E0? = ?520 mV). PMID:23893107

  15. DFT approach to reaction mechanisms through molecular complexes. The case of an organo-catalysed nucleosidation reaction

    Microsoft Academic Search

    Antonio J. Mota; Luis Álvarez de Cienfuegos; Rafael Robles; Jesús E. Perea-Buceta; Enrique Colacio; Vicente Timón; Alfonso Hernández-Laguna

    2010-01-01

    The treatment of 3,5-di-O-benzyl-?-d-xylo-furanose 1,2-thiocarbonate with O,O?-bis(trimethylsilyl)uracil (persilylated nucleobase) under organo-catalytic conditions irreversibly leads to the corresponding ?-nucleoside derivative in a highly stereoselective manner. The proposed mechanism for such a reaction has been supported by density functional theory (DFT) calculations. Two different functionals (B3LYP and M05) with two different basis sets [6-31G? and 6-311+G(d,p)] have been applied in order to

  16. Factors affecting hydrogen-tunneling contribution in hydroxylation reactions promoted by oxoiron(IV) porphyrin ?-cation radical complexes.

    PubMed

    Cong, Zhiqi; Kinemuchi, Haruki; Kurahashi, Takuya; Fujii, Hiroshi

    2014-10-01

    Hydrogen atom transfer with a tunneling effect (H-tunneling) has been proposed to be involved in aliphatic hydroxylation reactions catalyzed by cytochrome P450 and synthetic heme complexes as a result of the observation of large hydrogen/deuterium kinetic isotope effects (KIEs). In the present work, we investigate the factors controlling the H-tunneling contribution to the H-transfer process in hydroxylation reaction by examining the kinetics of hydroxylation reactions at the benzylic positions of xanthene and 1,2,3,4-tetrahydronaphthalene by oxoiron(IV) 5,10,15,20-tetramesitylporphyrin ?-cation radical complexes ((TMP(+•))Fe(IV)O(L)) under single-turnover conditions. The Arrhenius plots for these hydroxylation reactions of H-isotopomers have upwardly concave profiles. The Arrhenius plots of D-isotopomers, clear isosbestic points, and product analysis rule out the participation of thermally dependent other reaction processes in the concave profiles. These results provide evidence for the involvement of H-tunneling in the rate-limiting H-transfer process. These profiles are simulated using an equation derived from Bell's tunneling model. The temperature dependence of the KIE values (k(H)/k(D)) determined for these reactions indicates that the KIE value increases as the reaction temperature becomes lower, the bond dissociation energy (BDE) of the C-H bond of a substrate becomes higher, and the reactivity of (TMP(+•))Fe(IV)O(L) decreases. In addition, we found correlation of the slope of the ln(k(H)/k(D)) - 1/T plot and the bond strengths of the Fe?O bond of (TMP(+•))Fe(IV)O(L) estimated from resonance Raman spectroscopy. These observations indicate that these factors modulate the extent of the H-tunneling contribution by modulating the ratio of the height and thickness of the reaction barrier. PMID:25222493

  17. Reversible sequence of intramolecular associative and dissociative electron-transfer reactions in hydrotris(pyrazolylborate) complexes of rhodium.

    PubMed

    Geiger, William E; Ohrenberg, Nicole Camire; Yeomans, Brett; Connelly, Neil G; Emslie, David J H

    2003-07-16

    The one-electron chemically reversible oxidation of four neutral [RhLL'(kappa(2)-Tp(Me2))]complexes [Tp(Me2) = hydrotris(3,5-dimethylpyrazolyl)borate], which leads to kappa(3)-Tp(Me2) bonding in the corresponding monocations, has been studied by cyclic voltammetry (CV) and other electrochemical methods. The CV behavior of [Rh(CO)[P(OPh)(3)]Tp(Me2)] (1) and [Rh(CO)(PPh(3))Tp(Me2)] (2) is quasi-nernstian at slow CV scan rates, with heterogeneous charge-transfer rates, k(s), of 0.025 cm s(-1) and 0.015 cm s(-1) (at 273 K), respectively. By contrast, [Rh(CO)(PCy(3))Tp(Me2)] (3, Cy = cyclohexyl) and [Rh(PPh(3))(2)Tp(Me2)] (4) display electrochemically irreversible CV curves that arise from rate-limiting slow electron-transfer reactions. Both the oxidation of 3 (or 4) and the rereduction of 3(+) (or 4(+)) have two-step (EC-type) mechanisms in which the electron transfer (e.t.) process is followed by a separate structural change, leading to an overall square scheme with irreversible charge-transfer kinetics. Homogeneous redox catalysis was used to determine the E(1/2) value of the oxidation of 3 to an intermediate 3C(+) which is postulated to have a pseudo-square pyramidal structure. Digital simulations gave k(s) = 9 x 10(-3) cm s(-1) for the heterogeneous charge-transfer rate of 3/3C(+). The close-to-nernstian CV behavior of 1 is ascribed to the fact that, unlike the sterically constrained derivatives 3 and 4, the third pyrazolyl ring in 1 is already in a configuration which favors formation of the Rh-N(2) bond in 1(+). The overall redox mechanism for this series of compounds involves an associative oxidative e.t. reaction followed by a dissociative reductive e.t. process. PMID:12848576

  18. Formation and reactions of alkylzinc reagents in room-temperature ionic liquids.

    PubMed

    Law, Man Chun; Wong, Kwok-Yin; Chan, Tak Hang

    2005-12-01

    [reaction: see text] The presence of a suitable amount of bromide or chloride ions was found to be critical in forming the alkylzinc reagents from alkyl iodides and zinc metal in the room-temperature ionic liquid, N-butylpyridinium tetrafluoroborate. Beta-hydride transfer in the reactions of butylzinc reagents with aldehydes can also be reduced by a bromide ion. PMID:16323854

  19. A Graph-Theoretical Approach for the Analysis and Model Reduction of Complex-Balanced Chemical Reaction Networks

    E-print Network

    Rao, Shodhan; Jayawardhana, Bayu

    2012-01-01

    In this paper we derive a compact mathematical formulation describing the dynamics of chemical reaction networks that are complex-balanced and are governed by mass action kinetics. The formulation is based on the graph of (substrate and product) complexes and the stoichiometric information of these complexes, and crucially uses a balanced weighted Laplacian matrix. It is shown that this formulation leads to elegant methods for characterizing the space of all equilibria for complex-balanced networks and for deriving stability properties of such networks. We propose a method for model reduction of complex-balanced networks, which is similar to the Kron reduction method for electrical networks and involves the computation of Schur complements of the balanced weighted Laplacian matrix.

  20. Structural and Thermodynamic Characterization of Cadherin·?-Catenin·?-Catenin Complex Formation*

    PubMed Central

    Pokutta, Sabine; Choi, Hee-Jung; Ahlsen, Goran; Hansen, Scott D.; Weis, William I.

    2014-01-01

    The classical cadherin·?-catenin·?-catenin complex mediates homophilic cell-cell adhesion and mechanically couples the actin cytoskeletons of adjacent cells. Although ?-catenin binds to ?-catenin and to F-actin, ?-catenin significantly weakens the affinity of ?-catenin for F-actin. Moreover, ?-catenin self-associates into homodimers that block ?-catenin binding. We investigated quantitatively and structurally ?E- and ?N-catenin dimer formation, their interaction with ?-catenin and the cadherin·?-catenin complex, and the effect of the ?-catenin actin-binding domain on ?-catenin association. The two ?-catenin variants differ in their self-association properties: at physiological temperatures, ?E-catenin homodimerizes 10× more weakly than does ?N-catenin but is kinetically trapped in its oligomeric state. Both ?E- and ?N-catenin bind to ?-catenin with a Kd of 20 nm, and this affinity is increased by an order of magnitude when cadherin is bound to ?-catenin. We describe the crystal structure of a complex representing the full ?-catenin·?N-catenin interface. A three-dimensional model of the cadherin·?-catenin·?-catenin complex based on these new structural data suggests mechanisms for the enhanced stability of the ternary complex. The C-terminal actin-binding domain of ?-catenin has no influence on the interactions with ?-catenin, arguing against models in which ?-catenin weakens actin binding by stabilizing inhibitory intramolecular interactions between the actin-binding domain and the rest of ?-catenin. PMID:24692547

  1. Presenilin and nicastrin regulate each other and determine amyloid ?-peptide production via complex formation

    PubMed Central

    Edbauer, Dieter; Winkler, Edith; Haass, Christian; Steiner, Harald

    2002-01-01

    Amyloid ?-peptide (A?) is generated by the consecutive cuts of two membrane-bound proteases. ?-Secretase cuts at the N terminus of the A? domain, whereas ?-secretase mediates the C-terminal cut. Recent evidence suggests that the presenilin (PS) proteins, PS1 and PS2, may be ?-secretases. Because PSs principally exist as high molecular weight protein complexes, biologically active ?-secretases likely require other cofactors such as nicastrin (Nct) for their activities. Here we show that preferentially mature Nct forms a stable complex with PSs. Furthermore, we have down-regulated Nct levels by using a highly specific and efficient RNA interference approach. Very similar to a loss of PS function, down-regulation of Nct levels leads to a massive accumulation of the C-terminal fragments of the ?-amyloid precursor protein. In addition, A? production was markedly reduced. Strikingly, down-regulation of Nct destabilized PS and strongly lowered levels of the high molecular weight PS1 complex. Interestingly, absence of the PS1 complex in PS1?/? cells was associated with a strong down-regulation of the levels of mature Nct, suggesting that binding to PS is required for trafficking of Nct through the secretory pathway. Based on these findings we conclude that Nct and PS regulate each other and determine ?-secretase function via complex formation. PMID:12048259

  2. Inhibition of human amylin fibril formation by insulin-mimetic vanadium complexes.

    PubMed

    He, Lei; Wang, Xuesong; Zhao, Cong; Zhu, Dengsen; Du, Weihong

    2014-05-01

    The toxicity of amyloid-forming proteins can be linked to many degenerative and systemic diseases. Human islet amyloid polypeptide (hIAPP, amylin) has been associated with type II diabetes. Methods for efficient inhibition of amyloid fibril formation are highly clinically important. This study demonstrated the significant inhibitory effects of six vanadium complexes on hIAPP aggregation. Vanadium complexes, such as bis(maltolato)-oxovanadium (BMOV), have been used as insulin-mimetic agents for the treatment of diabetes for many years. Different biophysical methods were applied to investigate the interaction between V complexes and hIAPP. The results indicated that the selected compounds affected the peptide aggregation by different action modes and protected the cells from the cytotoxicity induced by hIAPP. Both the high binding affinity and the ligand spatial effect on inhibiting hIAPP aggregation are significant. Although some of these compounds undergo biotransformation under the conditions of the experiments, and the active species are not identified, it is understood that the effect results from a particular compound and its conversion products. Importantly, our work provided information on the effects of the selected V complexes on hIAPP and demonstrated multiple levels of effects of V complexes against amyloid-related diseases. PMID:24714786

  3. Young stellar population and ongoing star formation in the H II complex Sh2-252

    NASA Astrophysics Data System (ADS)

    Jose, Jessy; Pandey, A. K.; Samal, M. R.; Ojha, D. K.; Ogura, K.; Kim, J. S.; Kobayashi, N.; Goyal, A.; Chauhan, N.; Eswaraiah, C.

    2013-07-01

    In this paper, an extensive survey of the star-forming complex Sh2-252 has been undertaken with an aim to explore its hidden young stellar population as well as to understand the structure and star formation history for the first time. This complex is composed of five prominent embedded clusters associated with the subregions A, C, E, NGC 2175s and Teu 136. We used Two Micron All Sky Survey-near-infrared and Spitzer-Infrared Array Camera, Multiband Imaging Photometer for Spitzer photometry to identify and classify the young stellar objects (YSOs) by their infrared (IR) excess emission. Using the IR colour-colour criteria, we identified 577 YSOs, of which, 163 are Class I, 400 are Class II and 14 are transition disc YSOs, suggesting a moderately rich number of YSOs in this complex. Spatial distribution of the candidate YSOs shows that they are mostly clustered around the subregions in the western half of the complex, suggesting enhanced star formation activity towards its west. Using the spectral energy distribution and optical colour-magnitude diagram-based age analyses, we derived probable evolutionary status of the subregions of Sh2-252. Our analysis shows that the region A is the youngest (˜0.5 Myr), the regions B, C and E are of similar evolutionary stage (˜1-2 Myr) and the clusters NGC 2175s and Teu 136 are slightly evolved (˜2-3 Myr). Morphology of the region in the 1.1 mm map shows a semicircular shaped molecular shell composed of several clumps and YSOs bordering the western ionization front of Sh2-252. Our analyses suggest that next generation star formation is currently under way along this border and that possibly fragmentation of the matter collected during the expansion of the H II region as one of the major processes is responsible for such stars. We observed the densest concentration of YSOs (mostly Class I, ˜0.5 Myr) at the western outskirts of the complex, within a molecular clump associated with water and methanol masers and we suggest that it is indeed a site of cluster formation at a very early evolutionary stage, sandwiched between the two relatively evolved CH II regions A and B.

  4. Microcalorimetric determination of thermodynamic parameters for ionophore-siderophore host-guest complex formation.

    PubMed

    Trzaska, S M; Toone, E J; Crumbliss, A L

    2000-03-20

    Thermodynamic parameters (delta H, delta S, and delta G) were determined by microcalorimetry in wet chloroform for host-guest assembly formation involving second-sphere complexation of the siderophore ferrioxamine B by crown ether (18-crown-6, cis-dicyclohexano-18-crown-6, benzo-18-crown-6) and cryptand (2.2.2 cryptand) hosts. Similar data were also collected for the same hosts with the pentylammonium ion guest, which corresponds to the pendant pentylamine side chain of ferroxamine B. Host-guest assembly formation constants (Ka) obtained from microcalorimetry agree with values obtained indirectly from chloroform/water extraction studies in those cases where comparable data are available. On the basis of a trend established by the pentylammonium guest, an enhanced stability relative to the crown ethers is observed for the assembly composed of ferrioxamine B and 2.2.2 cryptand that is due to entropic effects. Trends in delta H and delta S with changes in host and guest structure are discussed and attributed directly to host-guest complex formation, as solvation effects were determined to be insignificant (delta Cp = 0). PMID:12526393

  5. Ligand field considerations for the reactivity of high valent metal-oxo complexes and of bimetallic HX splitting photocatalysts

    E-print Network

    Chambers, Matthew Burke

    2013-01-01

    Inorganic molecular complexes are used to probe mechanistic steps in two reaction reactions related to energy storage. The first reaction considered is the O-O bond formation step required for water oxidation to oxygen. ...

  6. Arp2/3 Complex Is Important for Filopodia Formation, Growth Cone Motility, and Neuritogenesis in Neuronal Cells

    PubMed Central

    Korobova, Farida

    2008-01-01

    A role of Arp2/3 complex in lamellipodia is well established, whereas its roles in filopodia formation remain obscure. We addressed this question in neuronal cells, in which motility is heavily based on filopodia, and we found that Arp2/3 complex is involved in generation of both lamellipodia and filopodia in growth cones, and in neuritogenesis, the processes thought to occur largely in Arp2/3 complex-independent manner. Depletion of Arp2/3 complex in primary neurons and neuroblastoma cells by small interfering RNA significantly decreased the F-actin contents and inhibited lamellipodial protrusion and retrograde flow in growth cones, but also initiation and dynamics of filopodia. Using electron microscopy, immunochemistry, and gene expression, we demonstrated the presence of the Arp2/3 complex-dependent dendritic network of actin filaments in growth cones, and we showed that individual actin filaments in filopodia originated at Arp2/3 complex-dependent branch points in lamellipodia, thus providing a mechanistic explanation of Arp2/3 complex functions during filopodia formation. Additionally, Arp2/3 complex depletion led to formation of multiple neurites, erratic pattern of neurite extension, and excessive formation of stress fibers and focal adhesions. Consistent with this phenotype, RhoA activity was increased in Arp2/3 complex-depleted cells, indicating that besides nucleating actin filaments, Arp2/3 complex may influence cell motility by altering Rho GTPase signaling. PMID:18256280

  7. Isolation and Characterization of FORMATE/NI(CYCLAM)^{2+} Complexes with Cryogenic Ion Vibrational Predissociation

    NASA Astrophysics Data System (ADS)

    Wolk, Arron B.; Fournier, Joseph A.; Wolke, Conrad T.; Johnson, Mark A.

    2013-06-01

    Transition metal-based organometallic catalysts are a promising means of converting CO_{2} to transportable fuels. Ni(cyclam)^{2+}(cyclam = 1,4,8,11-tetraazacyclotetradecane), a Ni^{II} complex ligated by four nitrogen centers, has shown promise as a catalyst selective for CO_{2} reduction in aqueous solutions. The cyclam ligand has four NH hydrogen bond donors that can adopt five conformations, each offering distinct binding motifs for coordination of CO_{2} close to the metal center. To probe the ligand conformation and the role of hydrogen bonding in adduct binding, we extract Ni(cyclam)^{2+} complexes with the formate anion and some of its analogs from solution using electrospray ionization, and characterize their structures using cryogenic ion vibrational predissociation spectroscopy. Using the signature vibrational features of the embedded carboxylate anion and the NH groups as reporters, we compare the binding motifs of oxalate, benzoate, and formate anions to the Ni(cyclam)^{2+} framework. Finally, we comment on possible routes to generate the singly charged Ni(cyclam)^{+} complex, a key intermediate that has been invoked in the catalytic CO_{2} reduction cycle, but has never been isolated through ion processing techniques.

  8. Complex conductivity response to microbial growth and biofilm formation on phenanthrene spiked medium

    NASA Astrophysics Data System (ADS)

    Albrecht, Remy; Gourry, Jean Christophe; Simonnot, Marie-Odile; Leyval, Corinne

    2011-11-01

    Several laboratory studies have recently demonstrated the utility of geophysical methods for the investigation of microbial-induced changes over contaminated sites. However, it remains difficult to distinguish the effects due to the new physical properties imparted by microbial processes, to bacterial growth, or to the development of bacterial biofilm. We chose to study the influence of biofilm formation on geophysical response using complex conductivity measurements (0.1-1000 Hz) in phenanthrene-contaminated media. Biotic assays were conducted with two phenanthrene (PHE) degrading bacterial strains: Burkholderia sp (NAH1), which produced biofilm and Stenophomonas maltophilia (MATE10), which did not, and an abiotic control. Results showed that bacterial densities for NAH1 and MATE10 strains continuously increased at the same rate during the experiment. However, the complex conductivity signature showed noticeable differences between the two bacteria, with a phase shift of 50 mrad at 4 Hz for NAH1, which produced biofilm. Biofilm volume was quantified by Scanning Confocal Laser Microscopy (SCLM). Significant correlations were established between phase shift decrease and biofilm volume for NAH1 assays. Results suggest that complex conductivity measurements, specifically phase shift, can be a useful indicator of biofilm formation inside the overall signal of microbial activity on contaminated sites.

  9. Gas phase uranyl activation: formation of a uranium nitrosyl complex from uranyl azide.

    PubMed

    Gong, Yu; de Jong, Wibe A; Gibson, John K

    2015-05-13

    Activation of the oxo bond of uranyl, UO2(2+), was achieved by collision induced dissociation (CID) of UO2(N3)Cl2(-) in a quadrupole ion trap mass spectrometer. The gas phase complex UO2(N3)Cl2(-) was produced by electrospray ionization of solutions of UO2Cl2 and NaN3. CID of UO2(N3)Cl2(-) resulted in the loss of N2 to form UO(NO)Cl2(-), in which the "inert" uranyl oxo bond has been activated. Formation of UO2Cl2(-) via N3 loss was also observed. Density functional theory computations predict that the UO(NO)Cl2(-) complex has nonplanar Cs symmetry and a singlet ground state. Analysis of the bonding of the UO(NO)Cl2(-) complex shows that the side-on bonded NO moiety can be considered as NO(3-), suggesting a formal oxidation state of U(VI). Activation of the uranyl oxo bond in UO2(N3)Cl2(-) to form UO(NO)Cl2(-) and N2 was computed to be endothermic by 169 kJ/mol, which is energetically more favorable than formation of NUOCl2(-) and UO2Cl2(-). The observation of UO2Cl2(-) during CID is most likely due to the absence of an energy barrier for neutral ligand loss. PMID:25906363

  10. Octacoordinated Dioxo-Molybdenum Complex via Formal Oxidative Addition of Molecular Oxygen. Studies of Chemical Reactions Between M(CO)6 (M = Cr, Mo) and 2,4-Di-tert-butyl-6-(pyridin-2-ylazo)-phenol.

    PubMed

    Chatterjee, Ipsita; Saha Chowdhury, Nabanita; Ghosh, Pradip; Goswami, Sreebrata

    2015-06-01

    Reactions of M(CO)6 (M = Mo, Cr) and 2 mol of 2,4-di-tert-butyl-6-(pyridin-2-ylazo)-phenol ligand (HL) in air yielded [Mo(VI)O2(L(1)¯)2], 1, and [Cr(III)(L(1)¯)(L(•2)¯)], 2, respectively, in high yields. Formation of the Cr-complex is a substitution reaction, which is associated with electron transfer, while that of Mo is an example of molecular oxygen activation. Isolated monoradical chromium complex 2 is susceptible to oxidation. Accordingly the reaction of 2 with the oxidant, I2 produces a cationic nonradical complex of chemical composition [Cr(III)(L(1)¯)2]I3, [2]I3 in almost quantitative yield. All the isolated complexes are primarily characterized by various spectroscopic techniques and magnetic measurements. While the molybdenum complex is diamagnetic, the two chromium complexes behave as simple paramagnets: ?eff (295 K), 2.81 ?B and 3.79 ?B for 2 and [2]I3, respectively. Single-crystal three-dimensional X-ray structures of 1, 2, [2]I3 are reported. The geometry of the Mo-complex is square antiprism (octacoordination), and that of the Cr-complexes is distorted octahedral. Redox properties of the complexes are studied by cyclic voltammetry and constant potential coulometry. The data are analyzed based on density functional theoretical calculations of molecular orbitals of redox isomers of the Cr complexes. The results indicated that the redox events in the complexes occur at the ligand center. The oxidation state of Cr in 2 is further assessed by XPS measurements and compared with the reported systems. PMID:25978689

  11. Surface reactions of brominated arenes as a model for the formation of chlorinated dibenzodioxins and -furans in incineration: Inhibition by ethanolamine

    SciTech Connect

    Lippert, T.; Wokaun, A.; Lenoir, D. (Univ. of Bayreuth (West Germany))

    1991-08-01

    The aryl coupling reaction of bromobenzene on alumina-supported copper catalysts has been studied as model for dioxin formation. The reaction was monitored in situ by transmittance FTIR spectroscopy. Time-dependent changes in the spectra were recorded during addition of bromobenzene to the carrier gas stream. Both coupling of phenyl intermediates to yield biphenyls and formation of phenol and phenolate were observed. Novel approaches to inhibit the coupling reaction or aryl halides by addition of ethanolamine to the catalyst surface were studied. The resulting inhibition was attributed to site blocking and irreversible deactivation of the copper surface due to imine and nitride formation.

  12. RAPID ASSOCIATION REACTIONS AT LOW PRESSURE: IMPACT ON THE FORMATION OF HYDROCARBONS ON TITAN

    SciTech Connect

    Vuitton, V. [UJF-Grenoble 1/CNRS-INSU, Institut de Planetologie et d'Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble F-38041 (France); Yelle, R. V.; Lavvas, P. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Klippenstein, S. J., E-mail: veronique.vuitton@obs.ujf-grenoble.fr, E-mail: yelle@lpl.arizona.edu, E-mail: lavvas@lpl.arizona.edu, E-mail: sjk@anl.gov [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2012-01-01

    Photochemical models of Titan's atmosphere predict that three-body association reactions are the main production route for several major hydrocarbons. The kinetic rate constants of these reactions strongly depend on density and are therefore only important in Titan's lower atmosphere. However, radiative association reactions do not depend on pressure. The possible existence of large rates at low density suggests that association reactions could significantly affect the chemistry of Titan's upper atmosphere and better constraints for them are required. The kinetic parameters of these reactions are extremely difficult to constrain by experimental measurements as the low pressure of Titan's upper atmosphere cannot be reproduced in the laboratory. However, in the recent years, theoretical calculations of kinetics parameters have become more and more reliable. We therefore calculated several radical-radical and radical-molecule association reaction rates using transition state theory. The calculations indicate that association reactions are fast even at low pressure for adducts having as few as four C atoms. These drastic changes have however only moderate consequences for Titan's composition. Locally, mole fractions can vary by as much as one order of magnitude but the column-integrated production and condensation rates of hydrocarbons change only by a factor of a few. We discuss the impact of these results for the organic chemistry. It would be very interesting to check the impact of these new rate constants on other environments, such as giant and extrasolar planets as well as the interstellar medium.

  13. Reactions of SIV species with organic compounds: formation mechanisms of organo-sulfur derivatives in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Passananti, Monica; Shang, Jing; Dupart, Yoan; Perrier, Sébastien; George, Christian

    2015-04-01

    Secondary organic aerosol (SOA) have an important impact on climate, air quality and human health. However the chemical reactions involved in their formation and growth are not fully understood or well-constrained in climate models. It is well known that inorganic sulfur (mainly in oxidation states (+IV) and (+VI)) plays a key role in aerosol formation, for instance sulfuric acid is known to be a good nucleating gas. In addition, acid-catalyzed heterogeneous reactions of organic compounds has shown to produce new particles, with a clear enhancement in the presence of ozone (Iinuma 2013). Organosulfates have been detected in tropospheric particles and aqueous phases, which suggests they are products of secondary organic aerosol formation process (Tolocka 2012). Originally, the production of organosulfates was explained by the esterification reaction of alcohols, but this reaction in atmosphere is kinetically negligible. Other formation pathways have been suggested such as hydrolysis of peroxides and reaction of organic matter with sulfite and sulfate radical anions (SO3-, SO4-) (Nozière 2010), but it remains unclear if these can completely explain atmospheric organo-sulfur aerosol loading. To better understand the formation of organo-sulfur compounds, we started to investigate the reactivity of SIV species (SO2 and SO32-) with respect to specific functional groups (organic acids and double bonds) on atmospherically relevant carboxylic acids and alkenes. The experiments were carried out in the homogeneous aqueous phase and at the solid-gas interface. A custom built coated-wall flow tube reactor was developed to control relativity humidity, SO2 concentration, temperature and gas flow rate. Homogeneous and heterogeneous reaction kinetics were measured and resulting products were identified using liquid chromatography coupled with an orbitrap mass spectrometer (LC-HR-MS). The experiments were performed with and without the presence of ozone in order to evaluate any impact on the SIV oxidation and product formation. Preliminary results reveal that oxidation of SIV species can occur under a variety of atmospherically relevant conditions. Furthermore, LC-HR-MS analysis confirms the formation of organo-sulfur compounds that could derive from sulfate and/or the sulfite radical anion. These results elucidate the role of organo-sulfates aqueous and interfacial chemistry, important for our scientific understanding of atmospheric SOA formation. Iinuma Y., Kahnt A., Mutzel A., Böge O., Herrmann H., Environ. Sci. Technol., 2013, (47), 3639-3647, DOI: 10.1021/es305156z. Mauldin III R. L., Berndt T., Sipilä M., Paasonen P., Petäjä T., Kim S., Kurtén T., Stratmann F., Kerminen V.-M., Kulmala M., Nature, 2012, (488), 193-196, DOI: 10.1038/nature11278. Nozière B., Ekström S., AlsbergT., Holmström S., Geophys. Res. Lett., 2010, (37), 1-6, DOI: 10.1029/2009GL041683. Tolocka M.P., Turpin B., Environ. Sci. Technol., 2012, (46), 7978-7983, DOI: 10.1021/es300651v.

  14. Volume 245, number 1,2, 43-46 FEB 06871 March 1989 Transfer of ubiquinol from the reaction center to the bc, complex

    E-print Network

    Steinhoff, Heinz-Jürgen

    to the amount of ubiquinol produced nor to the number of active bc, complexes. It is concluded that the reactionVolume 245, number 1,2, 43-46 FEB 06871 March 1989 Transfer of ubiquinol from the reaction center to the bc, complex in Rhodobacter sphaeroides chromatophores under oxidizing conditions L.A. Drachev, M

  15. Two quorum sensing systems control biofilm formation and virulence in members of the Burkholderia cepacia complex.

    PubMed

    Suppiger, Angela; Schmid, Nadine; Aguilar, Claudio; Pessi, Gabriella; Eberl, Leo

    2013-07-01

    The Burkholderia cepacia complex (Bcc) consists of 17 closely related species that are problematic opportunistic bacterial pathogens for cystic fibrosis patients and immunocompromised individuals. These bacteria are capable of utilizing two different chemical languages: N-acyl homoserine lactones (AHLs) and cis-2-unsaturated fatty acids. Here we summarize the current knowledge of the underlying molecular architectures of these communication systems, showing how they are interlinked and discussing how they regulate overlapping as well as specific sets of genes. A particular focus is laid on the role of these signaling systems in the formation of biofilms, which are believed to be highly important for chronic infections. We review genes that have been implicated in the sessile lifestyle of this group of bacteria. The new emerging role of the intracellular second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) as a downstream regulator of the fatty acid signaling cascade and as a key factor in biofilm formation is also discussed. PMID:23799665

  16. Formation of polyelectrolyte complexes with diethylaminoethyl dextran: charge ratio and molar mass effect.

    PubMed

    Le Cerf, Didier; Pepin, Anne Sophie; Niang, Pape Momar; Cristea, Mariana; Karakasyan-Dia, Carole; Picton, Luc

    2014-11-26

    The formation of polyelectrolyte complexes (PECs) between carboxymethyl pullulan and DEAE Dextran, was investigated, in dilute solution, with emphasis on the effect of charge density (molar ratio or pH) and molar masses. Electrophoretic mobility measurements have evidenced that insoluble PECs (neutral electrophoretic mobility) occurs for charge ratio between 0.6 (excess of polycation) and 1 (stoichiometry usual value) according to the pH. This atypical result is explained by the inaccessibility of some permanent cationic charge when screened by pH dependant cationic ones (due to the Hoffman alkylation). Isothermal titration calorimetry (ITC) indicates an endothermic formation of PEC with a binding constant around 10(5) L mol(-1). Finally asymmetrical flow field flow fractionation coupled on line with static multi angle light scattering (AF4/MALS) evidences soluble PECs with very large average molar masses and size around 100 nm, in agreement with scrambled eggs multi-association between various polyelectrolyte chains. PMID:25256478

  17. Struvite crystal growth inhibition by trisodium citrate and the formation of chemical complexes in growth solution

    NASA Astrophysics Data System (ADS)

    Prywer, Jolanta; Mielniczek-Brzóska, Ewa; Olszynski, Marcin

    2015-05-01

    Effect of trisodium citrate on the crystallization of struvite was studied. To evaluate such an effect an experiment of struvite growth from artificial urine was performed. The investigations are related to infectious urinary stones formation. The crystallization process was induced by the addition of aqueous ammonia solution to mimic the bacterial activity. The spectrophotometric results demonstrate that trisodium citrate increases induction time with respect to struvite formation and decreases the growth efficiency of struvite. The inhibitory effect of trisodium citrate on the nucleation and growth of struvite is explained in base of chemical speciation analysis. Such an analysis demonstrates that the inhibitory effect is related with the fact that trisodium citrate binds NH4 + and Mg2+ ions in the range of pH from 7 to 9.5 characteristic for struvite precipitation. The most important is the MgCit- complex whose concentration strongly depends on an increase in pH rather than on an increase in citrate concentrations.

  18. Complexes of HNO3 and NO3 - with NO2 and N2O4, and their potential role in atmospheric HONO formation.

    PubMed

    Kamboures, Michael A; Raff, Jonathan D; Miller, Yifat; Phillips, Leon F; Finlayson-Pitts, Barbara J; Gerber, R Benny

    2008-10-21

    Calculations were performed to determine the structures, energetics, and spectroscopy of the atmospherically relevant complexes (HNO(3)).(NO(2)), (HNO(3)).(N(2)O(4)), (NO(3)(-)).(NO(2)), and (NO(3)(-)).(N(2)O(4)). The binding energies indicate that three of the four complexes are quite stable, with the most stable (NO(3)(-)).(N(2)O(4)) possessing binding energy of almost -14 kcal mol(-1). Vibrational frequencies were calculated for use in detecting the complexes by infrared and Raman spectroscopy. An ATR-FTIR experiment showed features at 1632 and 1602 cm(-1) that are attributed to NO(2) complexed to NO(3)(-) and HNO(3), respectively. The electronic states of (HNO(3)).(N(2)O(4)) and (NO(3)(-)).(N(2)O(4)) were investigated using an excited state method and it was determined that both complexes possess one low-lying excited state that is accessible through absorption of visible radiation. Evidence for the existence of (NO(3)(-)).(N(2)O(4)) was obtained from UV/vis absorption spectra of N(2)O(4) in concentrated HNO(3), which show a band at 320 nm that is blue shifted by 20 nm relative to what is observed for N(2)O(4) dissolved in organic solvents. Finally, hydrogen transfer reactions within the (HNO(3)).(NO(2)) and (HNO(3)).(N(2)O(4)) complexes leading to the formation of HONO, were investigated. In both systems the calculated potential profiles rule out a thermal mechanism, but indicate the reaction could take place following the absorption of visible radiation. We propose that these complexes are potentially important in the thermal and photochemical production of HONO observed in previous laboratory and field studies. PMID:18825290

  19. Superoxide-mediated Fe(II) formation from organically complexed Fe(III) in coastal waters

    NASA Astrophysics Data System (ADS)

    Fujii, Manabu; Ito, Hiroaki; Rose, Andrew L.; Waite, T. David; Omura, Tatsuo

    2008-12-01

    Fe(III) complexed by organic ligands (Fe(III)L) is the primary form of dissolved Fe in marine and coastal environments. Superoxide, typically produced in biological and photochemical processes, is one of the reducing agents that contributes to transformation of Fe(III)L to bioavailable, free dissolved Fe(II) (Fe(II)'). In this work, the kinetics of superoxide-mediated Fe(II)' formation from Fe(III)L in a simulated coastal water system were investigated and a comprehensive kinetic model was developed using citrate and fulvic acid as exemplar Fe-binding ligands. To simulate a coastal environment in laboratory experiments, Fe(III)L samples with various ligand/Fe ratios were incubated for 5 min to 1 week in seawater medium. At each ratio and incubation time, the rate of superoxide-mediated Fe(II)' formation was determined in the presence of the strong Fe(II) binding ligand ferrozine by spectrophotometrically measuring the ferrous-ferrozine complex generated at a constant concentration of superoxide. The Fe(II)' formation rate generally decreased with incubation time, as Fe(III)L gradually dissociated to form less reactive Fe(III) oxyhydroxide. However, when the ligand/Fe ratio was sufficiently high, the dissociation of Fe(III)L (and subsequent Fe precipitation) was suppressed and Fe(II)' was formed at a higher rate. The rate of Fe(II)' produced during the experiment was explained by the kinetic model. The model confirmed that both the ligand/Fe ratio and incubation time have a significant effect on the pathway via which Fe(II)' is formed from Fe(III)-fulvic acid complexes.

  20. Formation spectra of light kaonic nuclei by in-flight (${\\bar K},N$) reactions with chiral unitary amplitude

    E-print Network

    J. Yamagata-Sekihara; D. Jido; H. Nagahiro; S. Hirenzaki

    2009-09-08

    We study theoretically the in-flight ($K^-,N$) reactions for the formation of light kaonic nuclear systems to get deeper physical insights on the expected spectra, and to investigate the experimental feasibility of the reaction at new facilities like J-PARC. We show the expected spectra for the formation of the $K^-pp, K^-pn$, $K^-nn$ and $K^-$-$^{11}$B systems which are accessible by the ($K^-,N$) experiments. By considering the conversion part of the Green's function, we can show the missing mass spectra of the ($K^-,N$) reactions coincidence with the particle emissions due to ${\\bar K}$ absorption in ${\\bar K}N\\to \\pi Y$ processes. To calculate the cross sections, we use the so-called $T\\rho$ approximation to evaluate the optical potential. As for the amplitude $T$, we adopt the chiral unitary amplitude of ${\\bar K}N$ channel in vacuum for simplicity, and we also check the medium effects by applying the chiral amplitude at finite density. The effects of the p-wave optical potential of $\\Sigma$(1385) channel and the contribution from ${\\bar K^0}$ mixing in $^3$He($K^-,n$) reaction are also evaluated numerically. To understand the meanings of the spectrum shape, we also study the behavior of the poles of kaon Green's function in nuclear matter. We conclude that $^3$He($K^-,n$) and $^3$He($K^-,p$) reactions coincident with the $\\pi\\Sigma$ emission due to ${\\bar K}$ absorption may show the certain structure in the bound region spectra indicating the existence of the unstable kaonic nuclear bound states. As for the $^{12}$C($K^-,p$) spectra with the $\\pi\\Sigma$ emission, we may also observe the structure in the bound region, however, we need to evaluate the medium effects carefully for larger nuclei.