Science.gov

Sample records for complex intermetallic compounds

  1. Surfaces of complex intermetallic compounds: insights from density functional calculations.

    PubMed

    Hafner, Jürgen; Kraj?í, Marian

    2014-11-18

    CONSPECTUS: Complex intermetallic compounds are a class of ordered alloys consisting of quasicrystals and other ordered compounds with large unit cells; many of them are approximant phases to quasicrystals. Quasicrystals are the limiting case where the unit cell becomes infinitely large; approximants are series of periodic structures converging to the quasicrystal. While the unique properties of quasicrystals have inspired many investigations of their surfaces, relatively little attention has been devoted to the surface properties of the approximants. In general, complex intermetallic compounds display rather irregular, often strongly corrugated surfaces, making the determination of their atomic structure a very complex and challenging task. During recent years, scanning tunneling microscopy (STM) has been used to study the surfaces of several complex intermetallic compounds. If atomic resolution can be achieved, STM permits visualization of the local atomistic surface structure. However, the interpretation of the STM images is often ambiguous and sometimes even impossible without a realistic model of the structure of the surface and the distribution of the electronic density above the surface. Here we demonstrate that ab initio density functional theory (DFT) can be used to determine the energetics and the geometric and electronic structures of the stable surfaces of complex intermetallic compounds. Calculations for surfaces with different chemical compositions can be performed in the grand canonical ensemble. Simulated cleavage experiments permit us to determine the formation of the cleavage planes requiring the lowest energy. The investigation of the adsorption of molecular species permits a comparison with temperature-programmed thermal desorption experiments. Calculated surface electronic densities of state can be compared with the results of photoelectron spectroscopy. Simulations of detailed STM images can be directly confronted with the experimental results. Detailed results are presented for two intermetallic compounds that have recently attracted much attention as active and highly selective catalysts for the semihydrogenation of alkynes to alkenes, but the identification of the catalytically active surfaces was found to be very difficult. The crystal structure of B20-type GaPd can be interpreted as the lowest order approximant of icosahedral Al-Pd-Mn quasicrystals. Among the low-index surfaces, the {100} surface shows 2-fold symmetry and the {210} surface pseudo-5-fold symmetry; for both the surface stoichiometry is identical to that of the bulk. Because the structure lacks inversion symmetry, the {111} surfaces have polar character and permit terminations of widely different chemical composition. Results for all three surfaces are presented and compared with the available experiments. The crystal structure of orthorhombic Al13Co4 is built by pentagonal clusters similar to those found in decagonal Al-Co and Al-Ni-Co quasicrystals. A simulated cleavage experiment shows that the constituent clusters remain intact upon cleavage, resulting in the formation of a highly corrugated (100) surface. The calculated STM images are found to be in very good agreement with experiment and permit in addition identification of possible surface modifications by the desorption of individual atoms. Pentagonal motifs on the {210} surface of GaPd and on the (100) surface of Al13Co4 consisting of simple- and transition-metal atoms have been identified as the catalytically active centers for the semihydrogenation of acetylene to ethylene. PMID:24741993

  2. Structural and Electronic Investigations of Complex Intermetallic Compounds

    SciTech Connect

    Hyunjin Ko

    2008-08-18

    In solid state chemistry, numerous investigations have been attempted to address the relationships between chemical structure and physical properties. Such questions include: (1) How can we understand the driving forces of the atomic arrangements in complex solids that exhibit interesting chemical and physical properties? (2) How do different elements distribute themselves in a solid-state structure? (3) Can we develop a chemical understanding to predict the effects of valence electron concentration on the structures and magnetic ordering of systems by both experimental and theoretical means? Although these issues are relevant to various compound classes, intermetallic compounds are especially interesting and well suited for a joint experimental and theoretical effort. For intermetallic compounds, the questions listed above are difficult to answer since many of the constituent atoms simply do not crystallize in the same manner as in their separate, elemental structures. Also, theoretical studies suggest that the energy differences between various structural alternatives are small. For example, Al and Ga both belong in the same group on the Periodic Table of Elements and share many similar chemical properties. Al crystallizes in the fcc lattice with 4 atoms per unit cell and Ga crystallizes in an orthorhombic unit cell lattice with 8 atoms per unit cell, which are both fairly simple structures (Figure 1). However, when combined with Mn, which itself has a very complex cubic crystal structure with 58 atoms per unit cell, the resulting intermetallic compounds crystallize in a completely different fashion. At the 1:1 stoichiometry, MnAl forms a very simple tetragonal lattice with two atoms per primitive unit cell, while MnGa crystallizes in a complicated rhombohedral unit cell with 26 atoms within the primitive unit cell. The mechanisms influencing the arrangements of atoms in numerous crystal structures have been studied theoretically by calculating electronic structures of these and related materials. Such calculations allow us to examine various interactions at the atomic scale, interactions which include orbital overlap, two-electron interactions, and Madelung terms. Moreover, these electronic studies also provide links between the angstrom-scale atomic interactions and the macro-scale physical properties, such as magnetism. Over the past few decades, there have been many significant developments toward understanding structure-bonding-property relationships in extended solids in terms of variables including atomic size, valence electron concentration, and electronegativity. However, many simple approaches based on electron counting, e.g., the octet rule, the 18-electron rule, or Wade's rules for boranes, cannot be applied adequately or universally to many of the more complex intermetallic compounds. For intermetallic phases that include late transition metals and post transition main group elements as their constituents, one classification scheme has been developed and effectively applied by using their valence electron count per atom (vec). These compounds are known as Hume-Rothery electron phases, and they have a variety of structure types with vec < 2.0 as shown in Table 1.

  3. Prediction of intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Burkhanov, Gennady S.; Kiselyova, N. N.

    2009-06-01

    The problems of predicting not yet synthesized intermetallic compounds are discussed. It is noted that the use of classical physicochemical analysis in the study of multicomponent metallic systems is faced with the complexity of presenting multidimensional phase diagrams. One way of predicting new intermetallics with specified properties is the use of modern processing technology with application of teaching of image recognition by the computer. The algorithms used most often in these methods are briefly considered and the efficiency of their use for predicting new compounds is demonstrated.

  4. Exploring the structural complexity of intermetallic compounds by an adaptive genetic algorithm.

    PubMed

    Zhao, X; Nguyen, M C; Zhang, W Y; Wang, C Z; Kramer, M J; Sellmyer, D J; Li, X Z; Zhang, F; Ke, L Q; Antropov, V P; Ho, K M

    2014-01-31

    Solving the crystal structures of novel phases with nanoscale dimensions resulting from rapid quenching is difficult due to disorder and competing polymorphic phases. Advances in computer speed and algorithm sophistication have now made it feasible to predict the crystal structure of an unknown phase without any assumptions on the Bravais lattice type, atom basis, or unit cell dimensions, providing a novel approach to aid experiments in exploring complex materials with nanoscale grains. This approach is demonstrated by solving a long-standing puzzle in the complex crystal structures of the orthorhombic, rhombohedral, and hexagonal polymorphs close to the Zr2Co11 intermetallic compound. From our calculations, we identified the hard magnetic phase and the origin of high coercivity in this compound, thus guiding further development of these materials for use as high performance permanent magnets without rare-earth elements. PMID:24580466

  5. Some statistics on intermetallic compounds.

    PubMed

    Dshemuchadse, Julia; Steurer, Walter

    2015-02-01

    It is still largely unknown why intermetallic phases show such a large variety of crystal structures, with unit cell sizes varying between 1 and more than 20?000 atoms. The goal of our study was, therefore, to get a general overview of the symmetries, unit cell sizes, stoichiometries, most frequent structure types, and their stability fields based on the Mendeleev numbers as ordering parameters. A total of 20829 structures crystallizing in 2166 structure types have been studied for this purpose. Thereby, the focus was on a subset of 6441 binary intermetallic compounds, which crystallize in 943 structure types. PMID:25470110

  6. Metastable Cd4Sb3: a complex structured intermetallic compound with semiconductor properties.

    PubMed

    Tengå, Andreas; Lidin, Sven; Belieres, Jean-Philippe; Newman, N; Wu, Yang; Häussermann, Ulrich

    2008-11-19

    The metastable binary intermetallic compound Cd4Sb3 was obtained as polycrystalline ingot by quenching stoichiometric Cd-Sb melts and as mm-sized crystals by employing Bi or Sn fluxes. The compound crystallizes in the monoclinic space group Pn with a = 11.4975(5) A, b = 26.126(1) A, c = 26.122(1) A, beta = 100.77(1) degrees, and V = 7708.2(5) A(3). The actual formula unit of Cd4Sb3 is Cd13Sb10 and the unit cell contains 156 Cd and 120 Sb atoms (Z = 12). Cd4Sb3 displays a reversible order-disorder transition at 373 K and decomposes exothermically into a mixture of elemental Cd and CdSb at around 520 K. Disordered beta-Cd4Sb3 is rhombohedral (space group R3c, a approximately = 13.04 A, c approximately = 13.03 A) with a framework isostructural to beta-Zn4Sb3. The structure of monoclinic alpha-Cd4Sb3 bears resemblance to the low-temperature modifications of Zn4Sb3, alpha- and alpha'-Zn4Sb3, in that randomly distributed vacancies and interstitial atoms of the high-temperature modification aggregate and order into distinct arrays. However, the nature of aggregation and distribution of aggregates is different in the two systems. Cd4Sb3 displays the properties of a narrow gap semiconductor. Between 10 and 350 K the resistivity of melt-quenched samples first increases with increasing temperature until a maximum value at 250 K and then decreases again. The resistivity maximum is accompanied with a discontinuity in the thermopower, which is positive and increasing from 10 to 350 K. The room temperature values of the resistivity and thermopower are about 25 mohms cm and 160 microV/K, respectively. Flux synthesized samples show altered properties due to the incorporation of small amounts of Bi or Sn (less than 1 at. %). Thermopower and resistivity appear drastically increased for Sn doped samples. Characteristic for Cd4Sb3 samples is their low thermal conductivity, which drops below 1 W/mK above 130 K and attains values around 0.75 W/mK at room temperature, which is comparable to vitreous materials. PMID:19006411

  7. Aberration-corrected electron microscopy of nanoparticles and intermetallic compounds

    E-print Network

    Dunin-Borkowski, Rafal E.

    Aberration-corrected electron microscopy of nanoparticles and intermetallic compounds M. Heggen for applications in energy-related catalysis, as well as novel intermetallic compounds, will be presented

  8. New twisted intermetallic compound superconductor: A concept

    NASA Technical Reports Server (NTRS)

    Coles, W. D.; Brown, G. V.; Laurence, J. C.

    1972-01-01

    Method for processing Nb3Sn and other intermetallic compound superconductors produces a twisted, stabilized wire or tube which can be used to wind electromagnetics, armatures, rotors, and field windings for motors and generators as well as other magnetic devices.

  9. Crystal structure analysis of intermetallic compounds

    NASA Technical Reports Server (NTRS)

    Conner, R. A., Jr.; Downey, J. W.; Dwight, A. E.

    1968-01-01

    Study concerns crystal structures and lattice parameters for a number of new intermetallic compounds. Crystal structure data have been collected on equiatomic compounds, formed between an element of the Sc, Ti, V, or Cr group and an element of the Co or Ni group. The data, obtained by conventional methods, are presented in an easily usable tabular form.

  10. More statistics on intermetallic compounds - ternary phases.

    PubMed

    Dshemuchadse, Julia; Steurer, Walter

    2015-05-01

    How many different intermetallic compounds are known so far, and in how many different structure types do they crystallize? What are their chemical compositions, the most abundant ones and the rarest ones? These are some of the questions we are trying to find answers for in our statistical analysis of the structures of the 20,829 intermetallic phases included in the database Pearson's Crystal Data, with the goal of gaining insight into some of their ordering principles. In the present paper, we focus on the subset of 13,026 ternary intermetallics, which crystallize in 1391 different structure types; remarkably, 667 of them have just one representative. What makes these 667 structures so unique that they are not adopted by any other of the known intermetallic compounds? Notably, ternary compounds are known in only 5109 of the 85,320 theoretically possible ternary intermetallic systems so far. In order to get an overview of their chemical compositions we use structure maps with Mendeleev numbers as ordering parameters. PMID:25921502

  11. Oxygen stabilized zirconium vanadium intermetallic compound

    DOEpatents

    Mendelsohn, Marshall H. (Woodridge, IL); Gruen, Dieter M. (Downers Grove, IL)

    1982-01-01

    An oxygen stabilized intermetallic compound having the formula Zr.sub.x OV.sub.y where x=0.7 to 2.0 and y=0.18 to 0.33. The compound is capable of reversibly sorbing hydrogen at temperatures from -196.degree. C. to 450.degree. C. at pressures down to 10.sup.-6 Torr. The compound is also capable of selectively sorbing hydrogen from gaseous mixtures in the presence of CO and CO.sub.2.

  12. SYNTHESIS AND CHARACTERIZATION OF NEW INTERMETALLIC COMPOUNDS

    SciTech Connect

    Professor Monica Sorescu

    2003-05-07

    This six-month work is focused mainly on the properties of novel magnetic intermetallics. In the first project, we synthesized several 2:17 intermetallic compounds, namely Nd{sub 2}Fe{sub 15}Si{sub 2}, Nd{sub 2}Fe{sub 15}Al{sub 2}2, Nd{sub 2}Fe{sub 15}SiAl and Nd{sub 2}Fe{sub 15}SiMn, as well as several 1:12 intermetallic compounds, such as NdFe{sub 10}Si{sub 2}, NdFe{sub 10}Al{sub 2}, NdFe{sub 10}SiAl and NdFe{sub 10}MnAl. In the second project, seven compositions of Nd{sub x}Fe{sub 100-x-y}B{sub y} ribbons were prepared by a melt spinning method with Nd and B content increasing from 7.3 and 3.6 to 11 and 6, respectively. The alloys were annealed under optimized conditions to obtain a composite material consisting of the hard magnetic Nd{sub 2}Fe{sub 14}B and soft magnetic {alpha}-Fe phases, typical of a spring magnet structure. In the third project, intermetallic compounds of the type Zr{sub 1}Cr{sub 1}Fe{sub 1}T{sub 0.8} with T=Al, Co and Fe were subjected to hydrogenation. In the fourth project, we performed three crucial experiments. In the first experiment, we subjected a mixture of Fe{sub 3}O{sub 4} and Fe(80-20 wt%) to mechanochemical activation by high-energy ball milling, for time periods ranging from 0.5 to 14 hours. In the second experiment, we ball-milled Fe{sub 3}O{sub 4}:Co{sup 2+} (x=0.1) for time intervals between 2.5 and 17.5 hours. Finally, we exposed a mixture of Fe{sub 3}O{sub 4} and Co(80-20 wt%) to mechanochemical activation for time periods ranging from 0.5 to 10 hours. In all cases, the structural and magnetic properties of the systems involved were elucidated by X-ray diffraction (XRD), Moessbauer spectroscopy and hysteresis loop measurements. The four projects resulted in four papers, which are currently being considered for publication in Intermetallics, IEEE Transactions on Magnetics, Journal of Materials Science Letters and Journal of Materials Science. The contributions reveal for the first time in literature the effect of substitutions on the hyperfine magnetic field of neodymium-based intermetallics, the correlation between structure and magnetic properties in spring magnets, the unique effects induced by hydrogenation on the hyperfine parameters of iron-rich intermetallics and the characteristics of the ball milling process in systems containing magnetite.

  13. Intermediate valence in Yb Intermetallic compounds Jon Lawrence

    E-print Network

    Lawrence, Jon

    1 Intermediate valence in Yb Intermetallic compounds Jon Lawrence University of California, Irvine-based intermetallics. The ground state is that of a heavy mass Fermi liquid. The d.c. and optical conductivity reflect. Talk at LBL, 12 April 2006 #12;2 Intermediate Valence Compounds CeSn3 Fermi liquid (FL) YbAgCu4, Yb

  14. Interplay between bulk atomic clusters and surface structure in complex intermetallic compounds: The case study of the Al5Co2 (001 ) surface

    NASA Astrophysics Data System (ADS)

    Meier, M.; Ledieu, J.; De Weerd, M.-C.; Huang, Ying-Tzu; Abreu, G. J. P.; Pussi, K.; Diehl, R. D.; Mazet, T.; Fournée, V.; Gaudry, É.

    2015-02-01

    The Al5Co2 crystal is a complex intermetallic compound, whose structure can be described by a stacking of chemically bonded atomic motifs. It is a potentially new catalytic material for heterogeneous hydrogenation. A single crystal of this phase has been grown by the Czochralski technique in order to study the influence of the three-dimensional bulk substructure on the two-dimensional surface using both experimental ultrahigh vacuum surface techniques and ab initio methods based on the density functional theory. Some bulk properties are first presented, focusing on chemical bond strengths, the determination of the Al and Co chemical potentials in Al5Co2 , the vibrational properties, and the specific heat. Then, the combination of experimental and computational approaches allows the identification of the surface structure, which was found to depend on the surface preparation conditions. In all cases, the surface terminates at specific bulk layers (Al-rich puckered layers) where various fractions of specific sets of Al atoms are missing, identified as Al3 atoms left at the surface resulting from cluster truncation. Finally, electron density of states calculations and spectroscopic measurements were compared and indicate a strong s p -d hybridization of the topmost pure Al layer with subsurface Co atoms. This could influence the surface reactivity and the catalytic performances of this material.

  15. Service limitations for oxidation resistant intermetallic compounds

    SciTech Connect

    Smialek, J.L.; Nesbitt, J.A.; Brindley, W.J.; Brady, M.P.; Doychak, J.; Dickerson, R.M.; Hull, D.R.

    1995-07-01

    Oxidation resistant intermetallic compounds based on NiAl, TiAl, and MoSi{sub 2} are of interest for high temperature applications. Each system exhibits different life-limiting degradation modes due to oxidation. {beta}-NiAl forms protective {alpha}-Al{sub 2}O scales. Breakdown follows well-established diffusion controlled processes resulting in survival for thousands of hours. The effect of thermal cycling and spalling is well established. Ti{sub 3}Al and TiAl compounds form less protective mixed TiO{sub 2} and Al{sub 2}O{sub 3} scales. However at realistic use temperatures (600--800 C), scale growth rates are acceptably low. The critical factor is embrittlement due to interstitial oxygen diffusion over a matter of hours. Solutions based on alloy development and coatings have not been satisfactory. MoSi{sub 2} materials exhibit very low oxidation rates at very high temperatures. However, low temperature (500 C) pest oxidation can be a catastrophic transient effect. Material integrity is a key factor. Fracture occurs because of accelerated growth of non-protective mixed MoO{sub 2}-SiO{sub 2} scales in pores and microcracks.

  16. First-principles studies of Al-Ni intermetallic compounds

    SciTech Connect

    Shi Dongmin; Wen Bin; Melnik, Roderick; Yao Shan; Li Tingju

    2009-10-15

    The structural properties, heats of formation, elastic properties, and electronic structures of Al-Ni intermetallic compounds are analyzed here in detail by using density functional theory. Higher calculated absolute values of heats of formation indicate a very strong chemical interaction between Al and Ni for all Al-Ni intermetallic compounds. According to the computational single crystal elastic constants, all the Al-Ni intermetallic compounds considered here are mechanically stable. The polycrystalline elastic modulus and Poisson's ratio have been deduced by using Voigt, Reuss, and Hill (VRH) approximations, and the calculated ratio of shear modulus to bulk modulus indicated that AlNi, Al{sub 3}Ni, AlNi{sub 3} and Al{sub 3}Ni{sub 5} compounds are ductile materials, but Al{sub 4}Ni{sub 3} and Al{sub 3}Ni{sub 2} are brittle materials. With increasing Ni concentration, the bulk modulus of Al-Ni intermetallic compounds increases in a linear manner. The electronic energy band structures confirm that all Al-Ni intermetallic compounds are conductors. - Graphical abstract: Calculated bulk modulus compared to experimental and other theoretical values for the Al-Ni intermetallic compounds.

  17. Containerless automated processing of intermetallic compounds and composites

    NASA Technical Reports Server (NTRS)

    Johnson, D. R.; Joslin, S. M.; Reviere, R. D.; Oliver, B. F.; Noebe, R. D.

    1993-01-01

    An automated containerless processing system has been developed to directionally solidify high temperature materials, intermetallic compounds, and intermetallic/metallic composites. The system incorporates a wide range of ultra-high purity chemical processing conditions. The utilization of image processing for automated control negates the need for temperature measurements for process control. The list of recent systems that have been processed includes Cr, Mo, Mn, Nb, Ni, Ti, V, and Zr containing aluminides. Possible uses of the system, process control approaches, and properties and structures of recently processed intermetallics are reviewed.

  18. First-principles studies of Ni-Ta intermetallic compounds

    SciTech Connect

    Zhou Yi; Wen Bin; Ma Yunqing; Melnik, Roderick; Liu Xingjun

    2012-03-15

    The structural properties, heats of formation, elastic properties, and electronic structures of Ni-Ta intermetallic compounds are investigated in detail based on density functional theory. Our results indicate that all Ni-Ta intermetallic compounds calculated here are mechanically stable except for P21/m-Ni{sub 3}Ta and hc-NiTa{sub 2}. Furthermore, we found that Pmmn-Ni{sub 3}Ta is the ground state stable phase of Ni{sub 3}Ta polymorphs. The polycrystalline elastic modulus has been deduced by using the Voigt-Reuss-Hill approximation. All Ni-Ta intermetallic compounds in our study, except for NiTa, are ductile materials by corresponding G/K values and poisson's ratio. The calculated heats of formation demonstrated that Ni{sub 2}Ta are thermodynamically unstable. Our results also indicated that all Ni-Ta intermetallic compounds analyzed here are conductors. The density of state demonstrated the structure stability increases with the Ta concentration. - Graphical abstract: Mechanical properties and formation heats of Ni-Ta intermetallic compounds are discussed in detail in this paper. Highlights: Black-Right-Pointing-Pointer Ni-Ta intermetallic compounds are investigated by first principle calculations. Black-Right-Pointing-Pointer P21/m-Ni{sub 3}Ta and hc-NiTa{sub 2} are mechanically unstable phases. Black-Right-Pointing-Pointer Pmmn-Ni{sub 3}Ta is ground stable phase of Ni{sub 3}Ta polymorphs. Black-Right-Pointing-Pointer All Ni-Ta intermetallic compounds are conducting materials.

  19. Deformation and defects in Laves-phase intermetallic compounds

    SciTech Connect

    Livingston, J.D.

    1989-01-01

    Most studies of deformation in intermetallic compounds have been on compounds such as Ni{sub 3}Al, NiAl, and Ti{sub 3}Al whose crystal structures are ordered forms of the basic fcc, bcc, and hcp structures. Most intermetallics have more complex structures, and we have chosen to study the largest class of such compounds, the Laves phases, on which information on deformation and mechanical properties is very limited. The approach was to couple basic mechanical property measurements on representative binary and ternary Laves phase with TEM studies of deformation-induced defects. Effects of temperature and strain rate on flow stress in compression were determined for the prototype cubic (C15) Laves phase MgCu{sub 2}. More limited but related data were gathered for hexagonal (C14) MgZn{sub 2}, dihexagonal (C36) MgNi{sub 2}, and two higher-temperature Laves phase, ZrFe{sub 2} (C15) and TiFe{sub 2}(C14). Effects of stoichiometry were studied in ZrFe{sub 2+x} and TiFe{sub 2+x}. Extensive studies by TEM showed the dominant slip systems in C15 and C14 phases, and the deformation-induced dislocation structures, are analogous to those in fcc and hcp metals. Significant solution hardening was demonstrated in C15 Mg(Cu, M){sub 2}, where M = Al,Ni,Si, and Zn. The compositional dependence of solution hardening was characterized in MgCu{sub 2{minus}x}Zn{sub x}, and limited data indicated solution hardening in both C15 and C14 (Zr, Ti)Fe{sub 2} compounds. Room-temperature deformation of a HfV{sub 2}-based C15 phase in two-phase V-Hf-Nb and V-Hf-Nb-Ti alloys was shown to be produced by mechanical twinning and bands of concentrated shear. 64 refs., 52 figs.

  20. Unique intermetallic compounds prepared by shock wave synthesis

    NASA Technical Reports Server (NTRS)

    Otto, G.; Reece, O. Y.; Roy, U.

    1971-01-01

    Technique compresses fine ground metallic powder mixture beyond crystal fusion point. Absence of vapor pressure voids and elimination of incongruous effects permit application of technique to large scale fabrication of intermetallic compounds with specific characteristics, e.g., semiconduction, superconduction, or magnetic properties.

  1. Irradiation-induced disordering and amorphization of Al3Ti-based intermetallic compounds

    E-print Network

    Motta, Arthur T.

    Irradiation-induced disordering and amorphization of Al3Ti-based intermetallic compounds Jeong irradiation-induced disordering and amorphization of Al3Ti-based intermetallic compounds. Thin foil samples intermetallic compounds have been proposed as a poten- tial high-temperature structure material because

  2. Structural and physical properties of the new intermetallic compound P. Solokha a

    E-print Network

    Ryan, Dominic

    Structural and physical properties of the new intermetallic compound Yb3Pd2Sn2 P. Solokha a , I t The crystal structure of the ternary intermetallic compound Yb3Pd2Sn2 has been determined ab initio from between this structure and those of Eu3Pd2Sn2 and Ca3Pd2Sn2, other novel polar intermetallic compounds

  3. Fermi surface properties of AB (A = Y, La; B = Pb, In, Tl) intermetallic compounds under

    E-print Network

    Svane, Axel Torstein

    Fermi surface properties of AB 3 (A = Y, La; B = Pb, In, Tl) intermetallic compounds under pressure surface properties of AB3 (A = Y, La; B = Pb, In, Tl) intermetallic compounds under pressure Swetarekha in colour only in the online journal) 1. Introduction Intermetallic compounds of the form AB3 (where

  4. First-principles studies of NiTa intermetallic compounds , Bin Wen b,n

    E-print Network

    Melnik, Roderick

    First-principles studies of Ni­Ta intermetallic compounds Yi Zhou a , Bin Wen b,n , Yunqing Ma properties, and electronic structures of Ni­Ta intermetallic compounds are investigated in detail based on density functional theory. Our results indicate that all Ni­Ta intermetallic compounds calculated here

  5. MERLINERLIN a versatile optimization environment applied to the design of metallic alloys and intermetallic compounds

    E-print Network

    Lagaris, Isaac

    and intermetallic compounds D.G. Papageorgiou a,*, I.E. Lagaris b , N.I. Papanicolaou c , G. Petsos d , H An important step in the design of alloys and intermetallic compounds using semi-empirical potentials is to de://merlin.cs.uoi.gr/. This was applied to study a particular class of intermetallic compounds and alloys, which are very interesting

  6. Explosive reaction pressing of intermetallic compounds from stoichiometric powder mixtures

    SciTech Connect

    Kochsiek, D.; Pruemmer, R.; Brunold, A.

    1995-09-01

    Intermetallic NiAl, TiAl, and TiAl{sub 3} were synthesized by shock compression experiments from stoichiometric powder mixtures of nickel and aluminium as well as of titanium and aluminium. Good consolidation and complete intermetallic reaction were achieved by the direct method of explosive compaction. For each powder mixture, a certain individual threshold pressure has to be exceeded in order to initiate intermetallic reaction. The reacting compounds melted completely with subsequent rapid solidification during the passage of the shock wave. The new material shows high hardness. Pores are formed by gaseous reaction products in the NiAl and TiAl{sub 3} compacts. The TiAl structure is fully-dense and dendritic.

  7. Chemistry and Properties of Complex Intermetallics from Metallic Fluxes

    SciTech Connect

    Kanatzidis, Mercouri G.

    2015-03-28

    This project investigated the reaction chemistry and synthesis of new intermetallic materials with complex compositions and structures using metallic fluxes as solvents. It was found that the metallic fluxes offer several key advantages in facilitating the formation and crystal growth of new materials. The fluxes mostly explored were liquid aluminum, gallium and indium. The main purpose of this project was to exploit the potential of metallic fluxes as high temperature solvent for materials discovery in the broad class of intermetallics. This work opened new paths to compound formation. We discovered many new Si (or Ge)-based compounds with novel structures, bonding and physicochemical properties. We created new insights about the reaction chemistry that is responsible for stabilizing the new materials. We also studied the structural and compositional relationships to understand their properties. We investigated the use of Group-13 metals Al, Ga and In as solvents and have generated a wide variety of new results including several new ternary and quaternary materials with fascinating structures and properties as well as new insights as to how these systems are stabilized in the fluxes. The project focused on reactions of metals from the rare earth element family in combination with transition metals with Si and Ge. For example molten gallium has serves both as a reactive and non-reactive solvent in the preparation and crystallization of intermetallics in the system RE/M/Ga/Ge(Si). Molten indium behaves similarly in that it too is an excellent reaction medium, but it gives compounds that are different from those obtained from gallium. Some of the new phase identified in the aluminide class are complex phases and may be present in many advanced Al-matrix alloys. Such phases play a key role in determining (either beneficially or detrimentally) the mechanical properties of advanced Al-matrix alloys. This project enhanced our basic knowledge of the solid state chemistry and physics of intermetallics, produced new materials with unusual or enhanced properties and ultimately helped improve our understanding of component/matrix interactions that could lead to better Al-matrix alloys.

  8. Oxygen-stabilized zirconium-vanadium intermetallic compound

    DOEpatents

    Mendelsohn, M.H.; Gruen, D.M.

    1981-10-06

    An oxygen stabilized intermetallic compound having the formula Zr/sub x/OV/sub y/ where x = 0.7 to 2.0 and y = 0.18 to 0.33 is described. The compound is capable of reversibly sorbing hydrogen at temperatures from - 196/sup 0/C to 450/sup 0/C at pressures down to 10/sup -6/ Torr. The compound is also capable of selectively sorbing hydrogen from gaseous mixtures in the presence of CO and CO/sub 2/.

  9. A review of rapid solidification studies of intermetallic compounds

    NASA Technical Reports Server (NTRS)

    Koch, C. C.

    1985-01-01

    A review of rapid solidification studies of high-temperature ordered intermetallic compounds is presented. Emphasis is on the nickel - and iron- aluminides which are of potential interest as structural materials. The nickel-base aluminides which have been rapidly solidified exhibit changes in grain size, compositional segregation, and degree of long range order (as reflected in APB size and distribution) which markedly affect mechanical properties. Some experiments indicate the formation of a metastable L1(2) phase in rapidly solidified Fe-(Ni,Mn)-Al-C alloys, while other work observes only a metastable fcc phase in the same composition range. The metastable phases and/or microstructures in both nickel and iron aluminides are destroyed by annealing at temperatures above 750 K, with subsequent degradation of mechanical properties. Rapid solidification studies of several other intermetallic compounds are briefly noted.

  10. The Shock Hugoniot of the Intermetallic Compound Ni3Al

    SciTech Connect

    Knapp, I.; Millett, J. C. F.; Meziere, Y. J. E.; Gray, G. T. III; Bourne, N. K.

    2006-07-28

    The behaviour of the intermetallic compound, Ni3Al under shock loading conditions has been measured. The Hugoniot Elastic Limit occurs at ca. 530 MPa, which converts to a 1-D yield stress of 273 MPa, in agreement with quasi-static data. In contrast, the ductility at shock-induced strain-rates appears much reduced when compared to lower strain-rates. The Hugoniot in terms of shock velocity and particle velocity suggests that Ni3Al is more compressible than pure nickel. This is in agreement with the greater stiffnesses in nickel, measured using ultrasonic techniques.

  11. Griffiths phase behaviour in a frustrated antiferromagnetic intermetallic compound

    PubMed Central

    Ghosh, Krishanu; Mazumdar, Chandan; Ranganathan, R.; Mukherjee, S.

    2015-01-01

    The rare coexistence of a Griffiths phase (GP) and a geometrically frustrated antiferromagnetism in the non-stoichiometric intermetallic compound GdFe0.17Sn2 (the paramagnetic Weiss temperature ?p?~??59?K) is reported in this work. The compound forms in the Cmcm space group with large structural anisotropy (b/c?~?4). Interestingly, all the atoms in the unit cell possess the same point group symmetry (Wycoff position 4c), which is rather rare. The frustration parameter, f?=?|?p|/TN has been established as 3.6, with the Néel temperature TN and Griffiths temperature TG being 16.5 and 32?K, respectively. The TG has been determined from the heat capacity measurement and also from the magnetocaloric effect (MCE). It is also shown that substantial difference in GP region may exist between zero field and field cooled measurements - a fact hitherto not emphasized so far. PMID:26515256

  12. Griffiths phase behaviour in a frustrated antiferromagnetic intermetallic compound

    NASA Astrophysics Data System (ADS)

    Ghosh, Krishanu; Mazumdar, Chandan; Ranganathan, R.; Mukherjee, S.

    2015-10-01

    The rare coexistence of a Griffiths phase (GP) and a geometrically frustrated antiferromagnetism in the non-stoichiometric intermetallic compound GdFe0.17Sn2 (the paramagnetic Weiss temperature ?p?~??59?K) is reported in this work. The compound forms in the Cmcm space group with large structural anisotropy (b/c?~?4). Interestingly, all the atoms in the unit cell possess the same point group symmetry (Wycoff position 4c), which is rather rare. The frustration parameter, f?=?|?p|/TN has been established as 3.6, with the Néel temperature TN and Griffiths temperature TG being 16.5 and 32?K, respectively. The TG has been determined from the heat capacity measurement and also from the magnetocaloric effect (MCE). It is also shown that substantial difference in GP region may exist between zero field and field cooled measurements - a fact hitherto not emphasized so far.

  13. Development of New Cryocooler Regenerator Materials-Ductile Intermetallic Compounds

    SciTech Connect

    K.A. Gschneidner; A.O. Pecharsky; V.K. Pecharsky

    2004-09-30

    The volumetric heat capacities of a number of binary and ternary Er- and Tm-based intermetallic compounds, which exhibited substantial ductilities, were measured from {approx}3 to {approx}350 K. They have the RM stoichiometry (where R = Er or Tm, and M is a main group or transition metal) and crystallize in the CsCl-type structure. The heat capacities of the Tm-based compounds are in general larger than the corresponding Er-based materials. Many of them have heat capacities which are significantly larger than those of the low temperature (<15 K) prototype cryocooler regenerator materials HoCu{sub 2}, Er{sub 3}Ni and ErNi. Utilization of the new materials as regenerators in the various cryocoolers should improve the performance of these refrigeration units for cooling below 15 K.

  14. Effect of Reflow Profile on Intermetallic Compound Formation

    NASA Astrophysics Data System (ADS)

    Siti Rabiatull Aisha, I.; Ourdjini, A.; Azmah Hanim, M. A.; Saliza Azlina, O.

    2013-06-01

    Reflow soldering in a nitrogen atmosphere is a common process consideration in surface mount technology assembly. This is because the use of nitrogen in reflow equipment may benefit the process as well as the quality of the end product, where it can increase the reliability of the solder joint. So far, many papers have reported effects of cooling speed, type of solder pastes and solder fluxes on the reliability of lead-free solder joints. While the effects of reflow conditions on intermetallic compound (IMC) formation at the solder joint such as the atmosphere during the reflow process are still unclear. The present study investigated thoroughly the effect of different reflow soldering atmosphere, which is air and nitrogen on IMC formation and growth. Several techniques of materials characterization including optical, image analysis, scanning electron microscopy and energy dispersive X-ray analysis will be used to characterise the intermetallics in terms of composition, thickness and morphology. In addition, the effects of cooling rate and isothermal aging were also studied for the solder alloy Sn-4Ag-0.5Cu on electroless nickel/immersion gold (ENIG) surface finish. From the study, it was found that reflowing under nitrogen atmosphere had better effect on IMC formation and growth compared to reflowing under air. Besides, the cooling rate of solder during reflow also appears to have a significant effect on the final structure of the solder joint, and controlling the growth behaviour of the IMC during subsequent isothermal aging.

  15. First-principle studies of CaX (X=Si,Ge,Sn,Pb) intermetallic compounds Zhiwen Yang a

    E-print Network

    Melnik, Roderick

    First-principle studies of Ca­X (X=Si,Ge,Sn,Pb) intermetallic compounds Zhiwen Yang a , Dongmin Shi structures, and densities of states of 20 intermetallic compounds in the Ca­X (X=Si, Ge, Sn, Pb) systems have indicated that with increasing atomic weight of X, the bulk modulus of Ca­X intermetallic compounds

  16. Ab Initio Study of Electronic and Magnetic Structure of Intermetallic RE5Ge3 Compounds

    NASA Astrophysics Data System (ADS)

    Djermouni, M.; Belhadj, M.; Kacimi, S.; Zaoui, A.

    A series of binary rare-earth metal germanides RE5Ge3 (RE = La, Ce, Pr and Nd) adopting the Mn5Si3-type hexagonal structure is studied. These intermetallic phases show a complex magnetic behavior. Using a modification of the local density approximation (LSDA + U) the magnetic and electronic properties of these compounds are calculated. The spin-orbit coupling (SOC) was included using a full relativistic basis. Besides the structural parameters, bonding characters, total and partial densities of state and band structures are analyzed and compared with the experimental findings.

  17. Magnetic and crystallographic structures in UTX intermetallic compounds

    SciTech Connect

    Robinson, R.A.; Lawson, A.C.; Sechovsky, V.; Havela, L.; Kergadallan, Y.; Nakotte, H.; de Boer, F.R.

    1993-08-01

    Uranium, along with other actinides and lanthanides, forms a large group of ternary intermetallic compounds of stoichiometry UTX (T = transition metal, X = p-electron metal). These compounds are formed in several structure types and the occurrence and stability of particular structures with respect to the transition metal content suggests reasonable systematics. The authors have also investigated the magnetic structures of selected UTX compounds and it is revealing to relate the crystallographic and magnetic structures, because of the relationship between the magnetic symmetry and that of the U-atom environment produced by the 5f-ligand hybridization, and the consequent anisotropic exchange. Those of ZrNiAl structure type are collinear, with moments along the hexagonal c-axis. In the orthorhombic NiSiTi structure type, the moments are confined to the b- c plane (perpendicular to the uranium chains) and the structures are often incommensurate. In the hexagonal CaIn{sub 2} (or GaGeLi) structure type, the magnetic structures form in an orthorhombic cell, and at least in the disordered centric group, again the moments lie perpendicular to the nearest-neighbor uranium spacing. This work presents a phenomenology of trends in UTX ternary compounds. It is shown that there is an apparent strong hybridization parallel to nearest neighbor U-U directions, with ferromagnetic coupling in the same directions. There may be a systematic relationship between the hybridization anisotropy and the magnetic anisotropy, in which the quantization axes are the same and the moments point along directions of relatively weak hybridization.

  18. CRYSTALLINE-TO-AMORPHOUS TRANSFORMATION OF INTERMETALLIC COMPOUNDS IN THE ZR-FE-M SYSTEM INDUCED BY IRRADIATION

    E-print Network

    Motta, Arthur T.

    CRYSTALLINE-TO-AMORPHOUS TRANSFORMATION OF INTERMETALLIC COMPOUNDS IN THE ZR-FE-M SYSTEM INDUCED, the damage accumulation mechanisms in the intermetallic compound, and the annealing mechanisms available, Argonne National Laboratory, Argonne, IL 60439, USA. ABSTRACT The binary and ternary intermetallic

  19. Grain structure and strength of a plastically deformed Ni3Al intermetallic compound

    NASA Astrophysics Data System (ADS)

    Ovcharenko, V. E.; Boyangin, E. N.; Myshlyaev, M. M.; Ivanov, Yu. F.; Ivanov, K. V.

    2015-10-01

    The results of investigating the influence of plastic deformation of a high-temperature synthesis product on the grain structure, strength, and plasticity of a Ni3Al intermetallic compound synthesized under pressure are presented.

  20. Preparation of a Ti-Ni intermetallic compound by using a drop shaft

    SciTech Connect

    Suzuki, Y.; Shimokawa, K.; Ueda, Y.; Nagao, J.

    1996-10-01

    A Ti-Ni intermetallic compound could be formed rapidly from Ti and Ni powder compact with SHS process. Microgravity experiments using a drop shaft are carried out. This report shows the effect of microgravity or high gravity on formability of an intermetallic compound. It is concluded that the specimen forms a porous and nearly amorphous alloy by rapid cooling under microgravity, but with rapid cooling under high gravity after microgravity, the specimen forms a uniform and dense structure with better crystallinity.

  1. Intermetallic compound formation at Cu-Al wire bond interface

    NASA Astrophysics Data System (ADS)

    Bae, In-Tae; Young Jung, Dae; Chen, William T.; Du, Yong

    2012-12-01

    Intermetallic compound (IMC) formation and evolution at Cu-Al wire bond interface were studied using focused ion beam /scanning electron microscopy, transmission electron microscopy (TEM)/energy dispersive x-ray spectroscopy (EDS), nano beam electron diffraction (NBED) and structure factor (SF) calculation. It was found that discrete IMC patches were formed at the Cu/Al interface in as-packaged state and they grew toward Al pad after high temperature storage (HTS) environment at 150 °C. TEM/EDS and NBED results combined with SF calculation revealed the evidence of metastable ?'-CuAl2 IMC phase (tetragonal, space group: I4¯m2, a = 0.404 nm, c = 0.580 nm) formed at Cu/Al interfaces in both of the as-packaged and the post-HTS samples. Two feasible mechanisms for the formation of the metastable ?'-CuAl2 phase are discussed based on (1) non-equilibrium cooling of wire bond that is attributed to highly short bonding process time and (2) the epitaxial relationships between Cu and ?'-CuAl2, which can minimize lattice mismatch for ?'-CuAl2 to grow on Cu.

  2. The easy magnetization directions in R6Fe23 intermetallic compounds: A crystal field analysis

    E-print Network

    Ryan, Dominic

    The easy magnetization directions in R6Fe23 intermetallic compounds: A crystal field analysis G. J, Ho, and Tm show that these compounds all magnetize along a 111 easy direction. At first sight of these pairs of compounds are opposite in sign. In this article we show that the crystal field stabilization

  3. X-Ray Diffraction of Intermetallic Compounds: A Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Varberg, Thomas D.; Skakuj, Kacper

    2015-01-01

    Here we describe an experiment for the undergraduate physical chemistry laboratory in which students synthesize the intermetallic compounds AlNi and AlNi3 and study them by X-ray diffractometry. The compounds are synthesized in a simple one-step reaction occurring in the solid state. Powder X-ray diffractograms are recorded for the two compounds

  4. Identification and control of grinding processes for intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Razavi, Hosein Ali

    2000-10-01

    An intermetallic compound (IMC) is a combination of two or more metals with a particular atomic formula by having either ionic and covalent bonds, or metallic bonds with specific crystal structures. They may be thought of as the intermediate between metals and ceramics. These new materials may combine the best of each class: the ductility, heat and electric conductivity of metals with the strength and oxidation resistance of ceramics. Previous study has proposed that the depth of plastic deformation can be used as a parameter to describe the influence of grinding conditions on other physical properties of subsurface layers. Accordingly, the indentation model has been developed to correlate the depth of plastic deformation with the normal component of grinding force. It has been reported that the under certain grinding conditions the depth of plastic deformation does not follow the indentation model. The primary objective of this research is to explain such deviations and to demonstrate that this model can be used to control and predict the depth of plastic deformation. Elements of this research include the development of an open architecture platform to study grinding process, a signal processing algorithm for gap elimination, introducing and implementation of model reference unfalsification and learning concept, development of a mathematical model for grinding gamma-TiAl, a comparison between conventional and superabrasive grinding, control and prediction of the depth of plastic deformation, and initiation of one of the first databases for grinding gamma-TiAl. This work not only serves as a step toward the use of IMCs in future technology but also serves as a step toward autonomous machining systems using intelligent control and advanced monitoring which is a feature of the future abrasive technology.

  5. Electronic structure and magnetic properties of the cubic Laves-phase intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Yamada, H.; Inoue, J.; Shimizu, M.

    1986-02-01

    Electronic structures of d-electrons in intermetallic compounds NbCo 2 and TaCo 2 with the cubic Laves-Phase structure are calculated in the tight-binding approximation. By using the calculated density of states curve and taking into account the effect of spin fluctuations, the temperature dependence of spin susceptibility in these compounds is calculated.

  6. Highly enantioselective adsorption of small prochiral molecules on a chiral intermetallic compound.

    PubMed

    Prinz, Jan; Gröning, Oliver; Brune, Harald; Widmer, Roland

    2015-03-23

    Intrinsically chiral surfaces of intermetallic compounds are shown to be novel materials for enantioselective processes. Their advantage is the significantly higher thermal and chemical stability, and therefore their extended application range for catalyzed chiral reactions compared to surfaces templated with chiral molecular modifiers or auxiliaries. On the Pd1 -terminated PdGa(111) surface, room-temperature adsorption of a small prochiral molecule (9-ethynylphenanthrene) leads to exceptionally high enantiomeric excess ratios of up to 98?%. Our findings highlight the great potential of intrinsically chiral intermetallic compounds for the development of novel, enantioselective catalysts that can be operated at high temperatures and potentially also in harsh chemical environments. PMID:25655521

  7. Modeling of Intermetallic Compounds Growth Between Dissimilar Metals

    NASA Astrophysics Data System (ADS)

    Wang, Li; Wang, Yin; Prangnell, Philip; Robson, Joseph

    2015-09-01

    A model has been developed to predict growth kinetics of the intermetallic phases (IMCs) formed in a reactive diffusion couple between two metals for the case where multiple IMC phases are observed. The model explicitly accounts for the effect of grain boundary diffusion through the IMC layer, and can thus be used to explore the effect of IMC grain size on the thickening of the reaction layer. The model has been applied to the industrially important case of aluminum to magnesium alloy diffusion couples in which several different IMC phases are possible. It is demonstrated that there is a transition from grain boundary-dominated diffusion to lattice-dominated diffusion at a critical grain size, which is different for each IMC phase. The varying contribution of grain boundary diffusion to the overall thickening kinetics with changing grain size helps explain the large scatter in thickening kinetics reported for diffusion couples produced under different conditions.

  8. Synthesis, Characterization and Properties of Nanoparticles of Intermetallic Compounds

    SciTech Connect

    DiSalvo, Francis J.

    2015-03-12

    The research program from 2010 to the end of the grant focused on understanding the factors important to the synthesis of single phase intermetallic nano-particles (NPs), their size, crystalline order, surface properties and electrochemical activity. The synthetic method developed is a co-reduction of mixtures of single metal precursors by strong, soluble reducing agents in a non-protic solvent, tetrahydrofuran (THF). With some exceptions, the particles obtained by room temperature reduction are random alloys that need to be annealed at modest temperatures (200 to 600 oC) in order to develop an ordered structure. To avoid significant particle size growth and agglomeration, the particles must be protected by surface coatings. We developed a novel method of coating the metal nanoparticles with KCl, a by-product of the reduction reaction if the proper reducing agents are employed. In that case, a composite product containing individual metal nanoparticles in a KCl matrix is obtained. The composite can be heated to at least 600 oC without significant agglomeration or growth in particle size. Washing the annealed product in the presence of catalyst supports in ethylene glycol removes the KCl and deposits the particles on the support. Six publications present the method and its application to producing and studying new catalyst/support combinations for fuel cell applications. Three publications concern the use of related methods to explore new lithium-sulfur battery concepts.

  9. Optical properties of Group X-XII intermetallic compounds studied by HR-EELS.

    PubMed

    Sato, Yohei; Terauchi, Masami; Kameoka, Satoshi; Tsai, An-Pang

    2014-11-01

    Electronic structure of d orbital states in transition metals is a key factor for their physical properties and chemical functions. Copper and intermetallic compound PdZn have good catalysis function for the methanol steam reforming reaction. Tsai et al. showed that from results of XPS measurements the d electronic structure of PdZn was similar with that of copper, and the catalysis function should be related to the d electron states [1]. This similarity of d electronic states leads to another view point of the mechanism for coloring the intermetallic compounds. It is well-known that the characteristic red color of copper is caused by interband transition from the d electrons. Therefore, PdZn and Group X-XII intermetallic compounds are expected to be colored and the optical properties should depend on the d electronic states. In this study, the relations between optical properties and d electron states of Group X-XII intermetallic compounds were investigated by using high energy-resolution electron energy-loss spectroscopy (HR-EELS) based on transmission electron microscopy (TEM). From the relation between optical properties and d electronic states, the mechanism of colored intermetallic compounds will be discussed.Figure shows the optical reflectivity of NiZn, PdZn and PtZn, which were derived from EELS spectra by Kramers-Kronig analysis. Intensity drops (arrows) of the reflectivity were observed in visible energy region. These are caused by the interband transitions from d electronic states. The energy positions of the reflectivity drops have tendency of shifting to higher energy side with increasing atomic number of Group X elements (Ni ? Pd ? Pt). This indicates that the transition energies of d electrons become larger with the atomic number of the elements. First principle calculations (WIEN2k) confirmed that the interband transitions of d electronic states were excitations from bonding d states to hybrid states of anti-bonding s, p, and d states of Group X elements. The bonding anti-bonding energy split increase with the atomic numbers because of increasing crossover of wave function. This implies the intermetallic compounds should be colored and the color should be changed gradually depending on the atomic number of Group X elements. PMID:25359811

  10. TiNiSn: A gateway to the (1,1,1) intermetallic compounds

    SciTech Connect

    Cook, B.A.; Harringa, J.L.; Tan, Z.S.; Jesser, W.A.

    1996-06-01

    Recent awareness of the transport properties of Skutterudite pnictides has stimulated an interest in numerous other intermetallic compounds having a gap in the density of states at the Fermi level including the MNiSn compounds where M = (Ti, Zr, Hf). These intermetallic half-Heusler compounds are characterized by high Seebeck coefficients ({minus}150 to {minus}300 {micro}V/deg.) and reasonable carrier mobilities (30 to 50 cm{sup 2}/V-s) at room temperature which make them attractive candidates for intermediate temperature thermoelectric applications. Samples of TiNiSn were prepared by arc melting and homogenized by heat treatment. The temperature dependence of the electrical resistivity, Seebeck coefficient, and thermal diffusivity of these samples was characterized between 22 C and 900 C. The electrical resistivity and thermopower both decrease with temperature although the resistivity decreases at a faster rate. Electrical power factors in excess of 25 {micro}W/cm-C{sup 2} were observed in nearly single phase alloys within a 300 to 600 C temperature range. A brief survey of other selected ternary intermetallic compounds is also presented.

  11. Catalytic properties of intermetallic compounds Ln(NiM)/sub 5/ and their hydrides in hydrogenation reactions

    SciTech Connect

    Konenko, I.R.; Starodubtseva, E.V.; Urazbaeva, K.A.; Fedorovskaya, E.A.; Klabunovskii, E.I.; Slinkin, A.A.; Mordovin, V.P.

    1989-02-01

    The catalytic (hydrogenation of propylene), asymmetric (enantioselective hydrogenation of ethyl acetoacetate), and magnetic properties of intermetallic compounds with the composition Ln(NiM)/sub 5/(IMC), where Ln = La, Sm, Gd; M = Ti, V, Cr, Mn, Cu, and of their hydrides have been studied. The data obtained indicate that the catalytic activity of the above compounds in both reactions is due to structural peculiarities of IMC and to the affinity of IMC to H/sub 2/. The observed changes in the total and the optical yield of the product of hydrogenation in the presence of IMC hydrides, modified with R,R-(+) tartaric acid, as functions of the nature of d-metals and their combinations, in the initial complex catalyst lead to the assumption that different metal tartrate complexes are formed on the hydride surface which act as centers of enantioselective hydrogenation.

  12. Intermetallic compound layer growth kinetics in non-lead bearing solders

    SciTech Connect

    Vianco, P.T.; Kilgo, A.C.; Grant, R.

    1995-04-01

    The introduction of alternative, non-lead bearing solders into electronic assemblies requires a thorough investigation of product manufacturability and reliability. Both of these attributes can be impacted by the excessive growth of intermetallic compound (IMC) layers at the solder/substrate interface. An extensive study has documented the stoichiometry and solid state growth kinetics of IMC layers formed between copper and the lead-free solders: 96.5Sn-3.5Ag (wt.%), 95Sn-5Sb, 100Sn, and 58Bi-42Sn. Aging temperatures were 70--205 C for the Sn-based solders and 55--120 C for the Bi-rich solder. Time periods were 1--400 days for all of the alloys. The Sn/Cu, Sn-Ag/Cu, and Sn-Sb/Cu IMC layers exhibited sub-layers of Cu{sub 6}Sn{sub 5} and Cu{sub 3}Sn; the latter composition was present only following prolonged aging times or higher temperatures. The total layer growth exhibited a time exponent of n = 0.5 at low temperatures and a value of n = 0.42 at higher temperatures in each of the solder/Cu systems. Similar growth kinetics were observed with the low temperature 58Bi-42Sn solder; however, a considerably more complex sub-layer structure was observed. The kinetic data will be discussed with respect to predicting IMC layer growth based upon solder composition.

  13. Crystal electric field in RAgSb{sub 2} (R = Ho, Er, Tm) intermetallic compounds

    SciTech Connect

    Sashin, I. L. Goremychkin, E. A.; Szytula, A.; Clementyev, E. S.

    2007-05-15

    The magnetic scattering spectra of RAgSb{sub 2} (R = Ho, Er, Tm) intermetallic compounds are measured and their crystal electric field parameters are determined using inelastic neutron scattering. It is revealed that the ground state is a nonmagnetic singlet for the HoAgSb{sub 2} compound, a Kramers doublet with a strongly anisotropic g factor for the ErAgSb{sub 2} compound, and a quasi-doublet (random doublet) characterized by an extremely anisotropic g factor for the TmAgSb{sub 2} compound. The exchange interaction is estimated in the molecular field approximation. The magnetic properties of the RAgSb{sub 2} compounds are analyzed in terms of the energy level schemes and eigenfunctions determined in this study. The calculated anisotropic magnetic susceptibilities for all compounds are in good agreement with the experimental data obtained for single crystals.

  14. Massive spalling of intermetallic compounds in solder-substrate reactions due to limited supply of the active element

    SciTech Connect

    Yang, S. C.; Ho, C. E.; Chang, C. W.; Kao, C. R.

    2007-04-15

    Massive spalling of intermetallic compounds has been reported in the literature for several solder/substrate systems, including SnAgCu soldered on Ni substrate, SnZn on Cu, high-Pb PbSn on Cu, and high-Pb PbSn on Ni. In this work, a unified thermodynamic argument is proposed to explain this rather unusual phenomenon. According to this argument, two necessary conditions must be met. The number one condition is that at least one of the reactive constituents of the solder must be present in a limited amount, and the second condition is that the soldering reaction has to be very sensitive to its concentration. With the growth of intermetallic, more and more atoms of this constituent are extracted out of the solder and incorporated into the intermetallic. As the concentration of this constituent decreases, the original intermetallic at the interface becomes a nonequilibrium phase, and the spalling of the original intermetallic occurs.

  15. Low temperature properties of some Er-rich intermetallic compounds

    SciTech Connect

    K.A. Gshneidner,jr; A.O. Pecharsky; L.Hale; V.K. Pecharsky

    2004-09-30

    The low temperature volumetric heat capacity ({approx}3.5 to 350 K) and magnetic susceptibility ({approx}4 to 320 K) of Er{sub 3}Rh, Er{sub 3}Ir, Er{sub 3}Pt, Er{sub 2}Al, and Er{sub 2}Sn have been measured. All of the compounds order antiferromagnetically (or ferrimagnetically), and most exhibit more than one magnetic ordering transition. The volumetric heat capacities in general are smaller than those of the prototype magnetic regenerator materials, except for Er{sub 3}Ir in the 12 to 14 K temperature range.

  16. Degradation behavior of Ca-Mg-Zn intermetallic compounds for use as biodegradable implant materials.

    PubMed

    Hagihara, Koji; Shakudo, Shuhei; Fujii, Kenta; Nakano, Takayoshi

    2014-11-01

    With the goal of developing new biodegradable implant materials, we have investigated the degradation behavior of (Ca, Mg)-based intermetallic compounds. The degradation behavior of the compounds within the Ca-Mg-Zn system was roughly classified into four groups, and their behaviors were strongly influenced by the compositions of the compounds. For example, the Ca3MgxZn(15-x) compound exhibited a large solubility region with varying the Mg/Zn ratio, and the Ca3Mg12Zn3 phase alloy with the lowest Zn content was rapidly broken apart within 6h of immersion. Alternatively, the Ca3Mg4.6Zn10.4 phase alloy with the highest Zn content retained the bulk shape even after 250 h of immersion. These varying degradation behaviors were ascribed to the difference in the formability of Zn oxide as a protective layer against corrosion on the specimen surfaces, depending on the Zn content. The gained results suggest that there is a feasibility on developing new biodegradable materials based on intermetallic compounds in which the degradation rate can be controlled by their compositions. PMID:25280708

  17. The atomic structure of low-index surfaces of the intermetallic compound InPd.

    PubMed

    McGuirk, G M; Ledieu, J; Gaudry, É; de Weerd, M-C; Hahne, M; Gille, P; Ivarsson, D C A; Armbrüster, M; Ardini, J; Held, G; Maccherozzi, F; Bayer, A; Lowe, M; Pussi, K; Diehl, R D; Fournée, V

    2015-08-21

    The intermetallic compound InPd (CsCl type of crystal structure with a broad compositional range) is considered as a candidate catalyst for the steam reforming of methanol. Single crystals of this phase have been grown to study the structure of its three low-index surfaces under ultra-high vacuum conditions, using low energy electron diffraction (LEED), X-ray photoemission spectroscopy (XPS), and scanning tunneling microscopy (STM). During surface preparation, preferential sputtering leads to a depletion of In within the top few layers for all three surfaces. The near-surface regions remain slightly Pd-rich until annealing to ?580 K. A transition occurs between 580 and 660 K where In segregates towards the surface and the near-surface regions become slightly In-rich above ?660 K. This transition is accompanied by a sharpening of LEED patterns and formation of flat step-terrace morphology, as observed by STM. Several superstructures have been identified for the different surfaces associated with this process. Annealing to higher temperatures (?750 K) leads to faceting via thermal etching as shown for the (110) surface, with a bulk In composition close to the In-rich limit of the existence domain of the cubic phase. The Pd-rich InPd(111) is found to be consistent with a Pd-terminated bulk truncation model as shown by dynamical LEED analysis while, after annealing at higher temperature, the In-rich InPd(111) is consistent with an In-terminated bulk truncation, in agreement with density functional theory (DFT) calculations of the relative surface energies. More complex surface structures are observed for the (100) surface. Additionally, individual grains of a polycrystalline sample are characterized by micro-spot XPS and LEED as well as low-energy electron microscopy. Results from both individual grains and "global" measurements are interpreted based on comparison to our single crystals findings, DFT calculations and previous literature. PMID:26298146

  18. The atomic structure of low-index surfaces of the intermetallic compound InPd

    NASA Astrophysics Data System (ADS)

    McGuirk, G. M.; Ledieu, J.; Gaudry, É.; de Weerd, M.-C.; Hahne, M.; Gille, P.; Ivarsson, D. C. A.; Armbrüster, M.; Ardini, J.; Held, G.; Maccherozzi, F.; Bayer, A.; Lowe, M.; Pussi, K.; Diehl, R. D.; Fournée, V.

    2015-08-01

    The intermetallic compound InPd (CsCl type of crystal structure with a broad compositional range) is considered as a candidate catalyst for the steam reforming of methanol. Single crystals of this phase have been grown to study the structure of its three low-index surfaces under ultra-high vacuum conditions, using low energy electron diffraction (LEED), X-ray photoemission spectroscopy (XPS), and scanning tunneling microscopy (STM). During surface preparation, preferential sputtering leads to a depletion of In within the top few layers for all three surfaces. The near-surface regions remain slightly Pd-rich until annealing to ˜580 K. A transition occurs between 580 and 660 K where In segregates towards the surface and the near-surface regions become slightly In-rich above ˜660 K. This transition is accompanied by a sharpening of LEED patterns and formation of flat step-terrace morphology, as observed by STM. Several superstructures have been identified for the different surfaces associated with this process. Annealing to higher temperatures (?750 K) leads to faceting via thermal etching as shown for the (110) surface, with a bulk In composition close to the In-rich limit of the existence domain of the cubic phase. The Pd-rich InPd(111) is found to be consistent with a Pd-terminated bulk truncation model as shown by dynamical LEED analysis while, after annealing at higher temperature, the In-rich InPd(111) is consistent with an In-terminated bulk truncation, in agreement with density functional theory (DFT) calculations of the relative surface energies. More complex surface structures are observed for the (100) surface. Additionally, individual grains of a polycrystalline sample are characterized by micro-spot XPS and LEED as well as low-energy electron microscopy. Results from both individual grains and "global" measurements are interpreted based on comparison to our single crystals findings, DFT calculations and previous literature.

  19. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Heon; Kim, Hansoo; Kim, Nack J.

    2015-02-01

    Although steel has been the workhorse of the automotive industry since the 1920s, the share by weight of steel and iron in an average light vehicle is now gradually decreasing, from 68.1 per cent in 1995 to 60.1 per cent in 2011 (refs 1, 2). This has been driven by the low strength-to-weight ratio (specific strength) of iron and steel, and the desire to improve such mechanical properties with other materials. Recently, high-aluminium low-density steels have been actively studied as a means of increasing the specific strength of an alloy by reducing its density. But with increasing aluminium content a problem is encountered: brittle intermetallic compounds can form in the resulting alloys, leading to poor ductility. Here we show that an FeAl-type brittle but hard intermetallic compound (B2) can be effectively used as a strengthening second phase in high-aluminium low-density steel, while alleviating its harmful effect on ductility by controlling its morphology and dispersion. The specific tensile strength and ductility of the developed steel improve on those of the lightest and strongest metallic materials known, titanium alloys. We found that alloying of nickel catalyses the precipitation of nanometre-sized B2 particles in the face-centred cubic matrix of high-aluminium low-density steel during heat treatment of cold-rolled sheet steel. Our results demonstrate how intermetallic compounds can be harnessed in the alloy design of lightweight steels for structural applications and others.

  20. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility.

    PubMed

    Kim, Sang-Heon; Kim, Hansoo; Kim, Nack J

    2015-02-01

    Although steel has been the workhorse of the automotive industry since the 1920s, the share by weight of steel and iron in an average light vehicle is now gradually decreasing, from 68.1 per cent in 1995 to 60.1 per cent in 2011 (refs 1, 2). This has been driven by the low strength-to-weight ratio (specific strength) of iron and steel, and the desire to improve such mechanical properties with other materials. Recently, high-aluminium low-density steels have been actively studied as a means of increasing the specific strength of an alloy by reducing its density. But with increasing aluminium content a problem is encountered: brittle intermetallic compounds can form in the resulting alloys, leading to poor ductility. Here we show that an FeAl-type brittle but hard intermetallic compound (B2) can be effectively used as a strengthening second phase in high-aluminium low-density steel, while alleviating its harmful effect on ductility by controlling its morphology and dispersion. The specific tensile strength and ductility of the developed steel improve on those of the lightest and strongest metallic materials known, titanium alloys. We found that alloying of nickel catalyses the precipitation of nanometre-sized B2 particles in the face-centred cubic matrix of high-aluminium low-density steel during heat treatment of cold-rolled sheet steel. Our results demonstrate how intermetallic compounds can be harnessed in the alloy design of lightweight steels for structural applications and others. PMID:25652998

  1. Structural plasticity: how intermetallics deform themselves in response to chemical pressure, and the complex structures that result.

    PubMed

    Berns, Veronica M; Fredrickson, Daniel C

    2014-10-01

    Interfaces between periodic domains play a crucial role in the properties of metallic materials, as is vividly illustrated by the way in which the familiar malleability of many metals arises from the formation and migration of dislocations. In complex intermetallics, such interfaces can occur as an integral part of the ground-state crystal structure, rather than as defects, resulting in such marvels as the NaCd2 structure (whose giant cubic unit cell contains more than 1000 atoms). However, the sources of the periodic interfaces in intermetallics remain mysterious, unlike the dislocations in simple metals, which can be associated with the exertion of physical stresses. In this Article, we propose and explore the concept of structural plasticity, the hypothesis that interfaces in complex intermetallic structures similarly result from stresses, but ones that are inherent in a defect-free parent structure, rather than being externally applied. Using DFT-chemical pressure analysis, we show how the complex structures of Ca2Ag7 (Yb2Ag7 type), Ca14Cd51 (Gd14Ag51 type), and the 1/1 Tsai-type quasicrystal approximant CaCd6 (YCd6 type) can all be traced to large negative pressures around the Ca atoms of a common progenitor structure, the CaCu5 type with its simple hexagonal 6-atom unit cell. Two structural paths are found by which the compounds provide relief to the Ca atoms' negative pressures: a Ca-rich pathway, where lower coordination numbers are achieved through defects eliminating transition metal (TM) atoms from the structure; and a TM-rich path, along which the addition of spacer Cd atoms provides the Ca coordination environments greater independence from each other as they contract. The common origins of these structures in the presence of stresses within a single parent structure highlights the diverse paths by which intermetallics can cope with competing interactions, and the role that structural plasticity may play in navigating this diversity. PMID:25238606

  2. Processing, compositional range, and mechanical behavior of the Mo(5)Si(3)C intermetallic compound

    NASA Astrophysics Data System (ADS)

    Ross, Eli Nickerson

    The intermetallic compound Mo5Si3C was studied in order to examine optimal processing methods, elevated temperature mechanical behavior, and the influence of crystal symmetry on the potential for improved room temperature ductility/toughness in ternary silicides. During the course of the investigation, samples were produced using nonconsumable arc melting and vacuum hot pressing of either blended or mechanically alloyed powders. The most significant challenge to the production of single-phase Mo5 Si3C was the significantly narrower range of homogeneity for the ternary compound than originally reported. The primary reason for this discrepancy is thought to be the use of x-ray diffraction (XRD) as the sole means of phase identification in the original study, whereas the current work augmented XRD with other microstructural analysis techniques. Further complicating the processing of Mo5Si3C was the occurrence of composition shifts during powder processing. These shifts in stoichiometry were correlated to observed microstructural features and likely the result of thermodynamically favored reactions between silica present in the starting powders and carbon. Because of these complications, materials for mechanical testing typically contained between one and 6 volume percent of phases other than Mo5Si3C, with samples having the nominal composition Mo4.8Si3C0.87 closest to single phase. An average microhardness value of 13.2 GPa was recorded for the ternary phase at room temperature, and an indentation fracture toughness of approximately 2.5 MPa·m1/2 was determined. In the temperature range 1000 to 1300°C, materials tested in compression displayed properties that were highly strain rate and grain size dependent, indicating the influence of boundary-controlled deformation mechanisms. The behavior of samples tested in four-point bending at 1200°C showed similar behavior, with larger grain size materials failing after limited deformation while finer grain size materials deformed readily. Examination of deformed specimens using transmission electron microscopy indicated that slip in Mo5Si3C occurs through motion of c[0001]-type dislocations at temperatures above 1000°C. This is consistent with the observed lack of improvement in the toughness or ductility of Mo5Si3C, resulting from any positive contributions due to crystal symmetry being nullified by the intrinsically high resistance of the complex Mo5Si3C crystal lattice to the generation and motion of dislocations.

  3. Surface structures of In-Pd intermetallic compounds. II. A theoretical study.

    PubMed

    Gaudry, É; McGuirk, G M; Ledieu, J; Fournée, V

    2014-08-28

    The (110) surface of the InPd intermetallic compound and the In-Pd surface alloy properties are investigated in the framework of the density functional theory, within the projector augmented plane-wave method. Surface segregation is calculated to be energetically unfavorable at stoichiometric InPd(110) surfaces, while indium antisites are shown to segregate to the surface in off-stoichiometric InPd(110) systems. Concerning surface alloys obtained by burying In-doped Pd layers in Pd(111), we demonstrated that the most stable ones are those presenting atomic indium concentrations below 50 at. % (11 at. %, 25 at. %, 33 at. %). According to our calculations, the In-doped Pd layers with concentration above or equal to 50% lead to In-doped Pd multilayers, each presenting an atomic indium concentration below 50 at. %. Alloying and segregation effects in InPd intermetallic compound and In-Pd surface alloys clearly agree with the larger bonding strength of In-Pd (-0.44 eV) compared to In-In (-0.29 eV) and Pd-Pd (-0.31 eV). PMID:25173026

  4. Surface structures of In-Pd intermetallic compounds. II. A theoretical study

    SciTech Connect

    Gaudry, É.; McGuirk, G. M.; Ledieu, J.; Fournée, V.

    2014-08-28

    The (110) surface of the InPd intermetallic compound and the In–Pd surface alloy properties are investigated in the framework of the density functional theory, within the projector augmented plane-wave method. Surface segregation is calculated to be energetically unfavorable at stoichiometric InPd(110) surfaces, while indium antisites are shown to segregate to the surface in off-stoichiometric InPd(110) systems. Concerning surface alloys obtained by burying In-doped Pd layers in Pd(111), we demonstrated that the most stable ones are those presenting atomic indium concentrations below 50 at. % (11 at. %, 25 at. %, 33 at. %). According to our calculations, the In-doped Pd layers with concentration above or equal to 50% lead to In-doped Pd multilayers, each presenting an atomic indium concentration below 50 at. %. Alloying and segregation effects in InPd intermetallic compound and In–Pd surface alloys clearly agree with the larger bonding strength of In–Pd (?0.44 eV) compared to In–In (?0.29 eV) and Pd–Pd (?0.31 eV)

  5. Characterization of second-phase plates in a Gd5Ge3 intermetallic compound

    SciTech Connect

    Cao, Qing; Chumbley, Leonard S.

    2013-05-16

    Rare-earth compounds based on the stoichiometry R5(SixGe1?x)4 (R = rare-earth elements) exhibit many unusual features, including possessing R5(SixGe1?x)3 thin plates which always precipitate from the matrix despite efforts to suppress their formation. In an effort to better understand the unique relationship between these two intermetallic alloy systems, the bulk microstructure of the compound Gd5Ge3 was examined using scanning (SEM) and transmission electron microscopy (TEM) and optical microscopy. Surprisingly, SEM examination revealed a series of thin plates present in the Gd5Ge3 matrix similar to what is seen in Gd5Ge4. TEM observation revealed that a role reversal had occurred, with the thin plates possessing the orthorhombic structure and composition of Gd5Ge4. The orientation relationship between Gd5Ge4 thin plates and the Gd5Ge3 matrix was determined to be Graphic the same relationship reported for Gd5Ge3 plates precipitating from a Gd5Ge4 matrix. However, by exchanging the respective roles of the phases as regards matrix vs. precipitate, the total number of precipitation variants seen can be increased from two to six. The persistence with which these two intermetallic systems co-exist is truly unique. However, understanding exactly the kinetic and thermodynamic conditions that lead to their unique relationship is hampered by the high formation temperatures at which the observed reaction occurs.

  6. The corrosion behavior of the T1 (Al2CuLi) intermetallic compound in aqueous environments

    NASA Technical Reports Server (NTRS)

    Buchheit, R. G.; Stoner, G. E.

    1989-01-01

    The intermetallic compound T1 (Al2CuLi) is suspected to play an important role in the localized corrosion at subgrain boundaries in Al-Li-Cu alloys. The intermetallic was synthesized for characterization of its corrosion behavior. Experiments performed included open circuit potential measurements, potentiodynamic polarization, and corrosion rate vs. pH in solutions whose pH was varied over the range of 3 to 11. Subgrain boundary pitting and continuous subgrain boundary corrosion are discussed in terms of the data obtained. Evidence suggesting the dealloying of copper from this compound is also presented.

  7. First principles calculations of the optical and plasmonic response of Au alloys and intermetallic compounds.

    PubMed

    Keast, V J; Barnett, R L; Cortie, M B

    2014-07-30

    Pure Au is widely used in plasmonic applications even though its use is compromised by significant losses due to damping. There are some elements that are less lossy than Au (e.g. Ag or Al) but they will normally oxidize or corrode under ambient conditions. Here we examine whether alloying Au with a second element would be beneficial for plasmonic applications. In order to evaluate potential alternatives to pure Au, the density of states (DOS), dielectric function and plasmon quality factor have been calculated for alloys and compounds of Au with Al, Cd, Mg, Pd, Pt, Sn, Ti, Zn and Zr. Substitutional alloying of Au with Al, Cd, Mg and Zn was found to slightly improve the plasmonic response. Of the large number of intermetallic compounds studied, only AuAl2, Au3Cd, AuMg, AuCd and AuZn were found to be suitable for plasmonic applications. PMID:25001413

  8. Structural analysis of the intermetallic surface compound CePt5/Pt (111 )

    NASA Astrophysics Data System (ADS)

    Kemmer, Jeannette; Praetorius, Christian; Krönlein, Andreas; Hsu, Pin-Jui; Fauth, Kai; Bode, Matthias

    2014-11-01

    We report on a detailed low-energy electron diffraction (LEED) and low-temperature scanning tunneling microscopy (STM) study of the intermetallic surface compound CePt5 on Pt(111). Depending on the thickness we observe various diffraction patterns and superstructures. In the low-thickness regime a slightly compressed (2 ×2 ) superstructure is aligned along the <1 1 ¯0 > direction of the Pt(111) substrate. STM reveals another, much larger superstructure with a periodicity of (9.02 ±0.45 ) nm presumably responsible for the strongly broadened LEED spots. At about 3 unit cells (u.c.) the surface is dominated by a (3 ?{3 }×3 ?{3 }) R 30? pattern as revealed by LEED satellites and Fourier-transformed high-resolution STM images. It is interpreted as a moiré pattern between the film and the substrate. We precisely determine the superstructure of the intermetallic film to (10/9 ?{3 }×10/9 ?{3 }) R 30? with respect to the Pt(111) substrate. Above 3 u.c. the satellites progressively disappear. A model is developed that consistently describes this thickness-dependent transition. For CePt5 films with a thickness between 6 and 11 u.c. the lattice of the compressed (2 ×2 ) superstructure rotates back into the substrate's <1 1 ¯0 > directions.

  9. Photoemission Study of the Rare Earth Intermetallic Compounds: RNi2Ge2 (R=Eu, Gd)

    SciTech Connect

    Jongik Park

    2004-12-19

    EuNi{sub 2}Ge{sub 2} and GdNi{sub 2}Ge{sub 2} are two members of the RT{sub 2}X{sub 2} (R = rare earth, T = transition metal and X = Si, Ge) family of intermetallic compounds, which has been studied since the early 1980s. These ternary rare-earth intermetallic compounds with the tetragonal ThCr{sub 2}Si{sub 2} structure are known for their wide variety of magnetic properties, Extensive studies of the RT{sub 2}X{sub 2} series can be found in Refs [ 1,2,3]. The magnetic properties of the rare-earth nickel germanides RNi{sub 2}Ge{sub 2} were recently studied in more detail [4]. The purpose of this dissertation is to investigate the electronic structure (both valence band and shallow core levels) of single crystals of EuNi{sub 2}Ge{sub 2} and GdNi{sub 2}Ge{sub 2} and to check the assumptions that the f electrons are non-interacting and, consequently, the rigid-band model for these crystals would work [11], using synchrotron radiation because, to the best of our knowledge, no photoemission measurements on those have been reported. Photoemission spectroscopy has been widely used to study the detailed electronic structure of metals and alloys, and especially angle-resolved photoemission spectroscopy (ARPES) has proven to be a powerful technique for investigating Fermi surfaces (FSs) of single-crystal compounds.

  10. High Temperature Oxidation and Surface Modification of Binary Aluminide Intermetallic Compounds Using Ion Implantation of Oxygen.

    NASA Astrophysics Data System (ADS)

    Hanrahan, Robert Joseph, Jr.

    This work presents a novel approach to the modification of intermetallic compounds to achieve improved oxidation resistance. In order to bypass problems associated with the transient oxidation stage of alloys and intermetallic compounds, high-dose implants of oxygen are used to form a continuous oxygen saturated layer at room temperature. In order to study the implanted layer using secondary ion mass spectrometry ^{18}O is used as the implanted species. Three different aluminides have been investigated. With NbAl_3 it was found that oxidation at 1000^circC resulted in significantly thinner protective alumina scales on the oxygen implanted surfaces. Exposure at 760 ^circC to an atmosphere containing 50 ppm oxygen was used to induce pest. The oxygen implanted surfaces showed significantly improved resistance to pesting. The implanted surfaces were found to have much less oxygen penetration below the surface than the non-implanted surfaces. An interpretation of the controlling mechanism of pest is presented. In TiAl the as-implanted material was found to form a layer containing primarily aluminum oxide. After brief exposures at 1000^circC the implanted surfaces were found to form titanium oxide scales which were thicker than those formed on the non -implanted surfaces. Using specimens implanted with ^{20}Ne this phenomenon was shown to be due to the effect of damage to the surface. In NiAl a well-defined oxide layer was formed by the implanted oxygen after annealing at 1000 ^circC. This layer was shown to be completely stable after exposures of up to 1 hour. The oxide layer appears to recrystallize as NiAl_2 O_4 with an epitaxial relationship to the substrate. The implanted oxide layer was shown to result in significantly improved oxidation resistance under both isothermal and cyclic exposure at 1000 ^circC. This research proves the principal that oxygen implantation can be used as a technique for forming in -situ coatings on aluminide intermetallic compounds that in some cases result in significantly improved oxidation resistance by modifying the initial oxidation kinetics of the material.

  11. Growth of Intermetallic Compounds in Thermosonic Copper Wire Bonding on Aluminum Metallization

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Liu, Changqing; Silberschmidt, Vadim V.; Chen, Zhong

    2010-01-01

    Interface evolution caused by thermal aging under different temperatures and durations was investigated by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that approximately 30-nm-thick and discontinuous Cu-Al intermetallic compounds (IMCs) were present in the initial bonds before aging. Cu-Al IMCs grew under thermal aging with increasing aging time. The growth kinetics of the Cu-Al IMCs was correlated to the diffusion process during aging; their combined activation energy was estimated to be 1.01 eV. Initially, Al-rich Cu-Al IMCs formed in the as-bonded state and early stage of aging treatment. Cu9Al4 was identified by selected-area electron diffraction (SAD) as the only type of Cu-Al IMC present after thermal aging at 250°C for 100 h; this is attributed to the relatively short supply of aluminum to the interfacial reaction.

  12. Gas atomization synthesis of refractory or intermetallic compounds and supersaturated solid solutions

    DOEpatents

    Anderson, I.E.; Lograsso, B.K.; Ellis, T.W.

    1994-11-29

    A metallic melt is atomized using a high pressure atomizing gas wherein the temperature of the melt and the composition of the atomizing gas are selected such that the gas and melt react in the atomization spray zone to form a refractory or intermetallic compound in the as-atomized powder particles. A metallic melt is also atomized using a high pressure atomizing gas mixture gas wherein the temperature of the melt and the ratio of a reactive gas to a carrier gas are selected to form powder particles comprising a supersaturated solid solution of the atomic species of the reactive gas in the particles. The powder particles are then heat treated to precipitate dispersoids in-situ therein to form a dispersion strengthened material. 9 figures.

  13. Microstructural Evolution of Intermetallic Compounds in TCNCP Cu Pillar Solder Joints

    NASA Astrophysics Data System (ADS)

    Liang, Chien-Lung; Lin, Kwang-Lung; Peng-Wei, Jr.

    2015-09-01

    This study investigated the microstructure, especially intermetallic compounds (IMCs), formed between a Cu pillar and Cu trace joined by thermal compression bonding with nonconductive paste (NCP). Continuous, uniform layers of Cu3Sn formed on the surface of both the Cu pillar and Cu trace. However, the growth of Cu6Sn5 was suppressed, forming nonuniformly on the Cu trace due to NCP filler entrapment at the Cu-solder interface that hindered Sn diffusion flux. Multireflow induced rapid growth of IMCs within the Cu pillar solder joint. The combination of multireflow and thermal cycle testing gave rise to asymmetric growth of IMCs between the chip side and substrate side as a result of stress migration induced by thermal cycling.

  14. Free energy of melts and intermetallic compounds of binary alloys determined by a molecular dynamics approach.

    PubMed

    Guerdane, M

    2014-02-01

    We present an atomistic approach aimed at determining the free energy g(liq) of binary alloy liquids, a quantity which governs the thermodynamics of phase transformations and whose evaluation has long been a challenge to modeling methods. Our approach, illustrated here for a metallic system model NiZr, combines two methods: the quasiharmonic approximation, applied for some existing (real or hypothetical) intermetallic compounds, and the liquid-solid coexistence conditions. The underlying equations for g(liq) are solved by means of a subregular-solution approximation. We demonstrate the high reliability of our calculated free energies in determining the phase diagram of a binary system and describing quantitatively the growth kinetics. The latter issue is illustrated by linking molecular dynamics simulations to phase-field modeling with regard to directional solidification and melting in a two-phase system [Ni(x)Zr(1-x)](liq)-Zr(cryst) out of chemical equilibrium. PMID:25353606

  15. Gas atomization synthesis of refractory or intermetallic compounds and supersaturated solid solutions

    DOEpatents

    Anderson, Iver E. (Ames, IA); Lograsso, Barbara K. (Ames, IA); Ellis, Timothy W. (Ames, IA)

    1994-01-01

    A metallic melt is atomized using a high pressure atomizing gas wherein the temperature of the melt and the composition of the atomizing gas are selected such that the gas and melt react in the atomization spray zone to form a refractory or intermetallic compound in the as-atomized powder particles. A metallic melt is also atomized using a high pressure atomizing gas mixture gas wherein the temperature of the melt and the ratio of a reactive gas to a carrier gas are selected to form powder particles comprising a supersaturated solid solution of the atomic species of the reactive gas in the particles. The powder particles are then heat treated to precipitate dispersoids in-situ therein to form a dispersion strengthened material.

  16. Study on Evolution of Ti-containing Intermetallic Compounds in Alloy 2618-Ti during Homogenization

    NASA Astrophysics Data System (ADS)

    Wang, Jianhua; Liu, Tingting; Liu, Ya; Wu, Changjun; Su, Xuping

    2015-11-01

    Dispersive Al3Ti particles introduced into alloy 2618-Ti are enclosed gradually by ternary Al18Mg3Ti2 phase during homogenization, which can be described as a "peritectic reaction". This reaction is sensitive to homogenization temperature and time within 24 h but not so sensitive to homogenization time after 24 h because of its special growth pattern. The evolution of the intermetallic compounds during homogenization process of alloy 2618-Ti is further confirmed by means of diffusion couple of (Al-25Mg)/(Al-10Ti). After homogenization, much Al3Ti particles coexist with Al18Mg3Ti2 which depends on the composition of Al-Mg-Ti system and only a few single Al18Mg3Ti2 appear. The occurrence of single Al18Mg3Ti2 phase, within which Al3Ti disappears, can be attributed to the local fluctuation of alloy compositions.

  17. Intermetallic Compound Formation Mechanisms for Cu-Sn Solid-Liquid Interdiffusion Bonding

    NASA Astrophysics Data System (ADS)

    Liu, H.; Wang, K.; Aasmundtveit, K. E.; Hoivik, N.

    2012-09-01

    Cu-Sn solid-liquid interdiffusion (SLID) bonding is an evolving technique for wafer-level packaging which features robust, fine pitch and high temperature tolerance. The mechanisms of Cu-Sn SLID bonding for wafer-level bonding and three-dimensional (3-D) packaging applications have been studied by analyzing the microstructure evolution of Cu-Sn intermetallic compounds (IMCs) at elevated temperature up to 400°C. The bonding time required to achieve a single IMC phase (Cu3Sn) in the final interconnects was estimated according to the parabolic growth law with consideration of defect-induced deviation. The effect of predominantly Cu metal grain size on the Cu-Sn interdiffusion rate is discussed. The temperature versus time profile (ramp rate) is critical to control the morphology of scallops in the IMC. A low temperature ramp rate before reaching the bonding temperature is believed to be favorable in a SLID wafer-level bonding process.

  18. Intermetallic nanoparticles

    DOEpatents

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.

    2015-11-20

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  19. Intermetallic nanoparticles

    DOEpatents

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  20. Hydrogen occupancy in the RNi{sub 4}Mg (R=Y, La, Ce, and Nd) intermetallic compounds and hydrides

    SciTech Connect

    Hahn-Herrera, Otto; Orgaz, Emilio; Aburto, Andrea

    2009-10-15

    We have investigated the effect of hydrogen on the electronic strtucture of the RNi{sub 4}Mg (R=Y, La, Ce, Pr, and Nd) intermetallics. By means of a two-step approach, the projected plane-wave and linearized plane-waves methods, we studied the hydrogen-insertion energetics on the intermetallic matrix and the H-vacancy formation in the hydride compound. We found that particular interstitial sites in the intermetallics are suitable to allocate hydrogen and form a solid solution. The effect of these interstitials on the electronic structure is discussed. In the other hand, the hydrogen-occupied sites in the hydride are found to be energetically equivalent.

  1. Ab initio calculations of B2 type RHg (R = Ce, Pr, Eu and Gd) intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Devi, Hansa; Pagare, Gitanjali; Jain, Ekta; Sanyal, Sankar P.

    2014-11-01

    Spin polarized ab initio calculations have been carried out to study the structural, electronic, elastic and thermal properties of RHg (R = Ce, Pr, Eu and Gd) intermetallic compounds in B2 structure. The calculations have been performed by using both generalized gradient approximation (GGA) and local spin density approximation (LSDA). The calculated value of lattice constant (a0) for these compounds with GGA is in better agreement with the experimental data than those with LSDA. Bulk modulus (B), first-order pressure derivative of bulk modulus and magnetic moment (?B) are also presented. The energy band structure and electron density of states show the occupancy of 4f states for light as well as heavy rare earth atom. The elastic constants are predicted from which all the related mechanical properties like Poisson's ratio (?), Young's modulus (E), shear modulus (GH) and anisotropy factor (A) are calculated. The ductility or brittleness of these compounds is predicted from Pugh's rule (B/GH) and Cauchy pressure (C12 - C44). The Debye temperature (?D) is estimated from the average sound velocity, which have not been calculated and measured yet.

  2. Targeted crystal growth of rare Earth intermetallics with synergistic magnetic and electrical properties: structural complexity to simplicity.

    PubMed

    Schmitt, Devin C; Drake, Brenton L; McCandless, Gregory T; Chan, Julia Y

    2015-03-17

    The single-crystal growth of extended solids is an active area of solid-state chemistry driven by the discovery of new physical phenomena. Although many solid-state compounds have been discovered over the last several decades, single-crystal growth of these materials in particular enables the determination of physical properties with respect to crystallographic orientation and the determination of properties without possible secondary inclusions. The synthesis and discovery of new classes of materials is necessary to drive the science forward, in particular materials properties such as superconductivity, magnetism, thermoelectrics, and magnetocalorics. Our research is focused on structural characterization and determination of physical properties of intermetallics, culminating in an understanding of the structure-property relationships of single-crystalline phases. We have prepared and studied compounds with layered motifs, three-dimensional magnetic compounds exhibiting anisotropic magnetic and transport behavior, and complex crystal structures leading to intrinsically low lattice thermal conductivity. In this Account, we present the structural characteristics and properties that are important for understanding the magnetic properties of rare earth transition metal intermetallics grown with group 13 and 14 metals. We present phases adopting the HoCoGa5 structure type and the homologous series. We also discuss the insertion of transition metals into the cuboctahedra of the AuCu3 structure type, leading to the synthetic strategy of selecting binaries to relate to ternary intermetallics adopting the Y4PdGa12 structure type. We provide examples of compounds adopting the ThMn12, NaZn13, SmZn11, CeCr2Al20, Ho6Mo4Al43, CeRu2Al10, and CeRu4Al16-x structure types grown with main-group-rich self-flux methods. We also discuss the phase stability of three related crystal structures containing atoms in similar chemical environments: ThMn12, CaCr2Al10, and YbFe2Al10. In addition to dimensionality and chemical environment, complexity is also important in materials design. From relatively common and well-studied intermetallic structure types, we present our motivation to work with complex stannides adopting the Dy117Co57Sn112 structure type for thermoelectric applications and describe a strategy for the design of new magnetic intermetallics with low lattice thermal conductivity. Our quest to grow single crystals of rare-earth-rich complex stannides possessing low lattice thermal conductivity led us to discover the new structure type Ln30Ru4+xSn31-y (Ln = Gd, Dy), thus allowing the correlation of primitive volumes with lattice thermal conductivities. We highlight the observation that Ln30Ru4+xSn31-y gives rise to highly anisotropic magnetic and transport behavior, which is unexpected, illustrating the need to measure properties on single crystals. PMID:25730512

  3. Crystal structure and chemical bonding of novel Li-containing polar intermetallic compound La{sub 11}Li{sub 12}Ge{sub 16}

    SciTech Connect

    Jung, Yaho; Nam, Gnu; Jeon, Jieun; Kim, Youngjo; You, Tae-Soo

    2012-12-15

    A novel Li-containing polar intermetallic compound La{sub 11}Li{sub 12}Ge{sub 16} has been synthesized using the high-temperature reaction method and characterized by both powder and single-crystal X-ray diffractions. The title compound crystallized in the orthorhombic crystal system (space group Immm, Z=2, Pearson symbol oI78) with fifteen crystallographically unique atomic positions in the asymmetric unit, and the lattice parameters are refined as a=4.5244(4) A, b=6.9932(6) A, and c=53.043(5) A. The complex crystal structure of the title compound can be described as a 2:1 intergrowth of two closely related compounds: La{sub 2}Li{sub 2}Ge{sub 3} (Ce{sub 2}Li{sub 2}Ge{sub 3}-type) and La{sub 3}Li{sub 4}Ge{sub 4} (Zr{sub 3}Cu{sub 4}Si{sub 4}-type) acting like 'building-blocks' along the c-axis. Six La sites are categorized into three distinct types based on the local coordination environment showing the coordination numbers of 12-14. Three unique Li sites are placed in the centers of local tetrahedra formed by four Ge atoms which eventually construct Ge{sub 2} dimers or 1-dimensional cis-/trans-Ge chains. Theoretical investigations using the tight-binding linear muffin-tin orbital (LMTO) method provide rationales for an improved structural stability and for unique local coordination geometries established by anionic elements including [LiGe{sub 4}] tetrahedra, cis-/trans-Ge chain and Ge{sub 2} dimers. - Graphical abstract: Reported is a novel ternary Li-containing polar intermetallic compound La{sub 11}Li{sub 12}Ge{sub 16}. The complex crystal structure can be viewed as a simple combination of two closely related known compounds acting as 'building-blocks', La{sub 2}Li{sub 2}G{sub 3} and La{sub 3}Li{sub 4}Ge{sub 4}, in a 2:1 stoichiometric ratio. Highlights: Black-Right-Pointing-Pointer A novel Li-containing polar intermetallic compound La{sub 11}Li{sub 12}Ge{sub 16} was synthesized. Black-Right-Pointing-Pointer The complex crystal structure was easily explained as a combination of two known compounds. Black-Right-Pointing-Pointer Theoretical calculations indicated that the Fermi level was located near the pseudogap.

  4. Growth of a Au-Ni-Sn intermetallic compound on the solder-substrate interface after aging

    SciTech Connect

    Minor, Andrew M.; Morris, J.W., Jr.

    1999-12-16

    Au/Ni metallization has become increasingly common in microelectronic packaging when Cu pads are joined with Pb-Sn solder. The outermost Au layer serves to protect the pad from corrosion and oxidation and the Ni layer provides a diffusion barrier to inhibit detrimental growth of Cu-Sn intermetallics. As a result of reflowing eutectic Pb-Sn on top of Au/Ni metallization, the as-solidified joints have AuSn{sub 4} precipitates distributed throughout the bulk of the solder joint, and Ni{sub 3}Sn{sub 4} intermetallics at the interface. Recent work has shown that the Au-Sn redeposits onto the interface during aging, compromising the strength of the joint. The present work shows that the redeposited intermetallic layer is a ternary compound with stoichiometry Au{sub 0.5}Ni{sub 0.5}Sn{sub 4}. The growth of this intermetallic layer was investigated, and results show that the ternary compound is observed to grow after as little as 3 hours at 150 C and after 3 weeks at 150 C has grown to a thickness of 10 {micro}m. Additionally, methods for inhibiting the growth of the ternary layer were investigated and it was determined that multiple reflows, both with and without additional aging can substantially limit the thickness of the ternary layer.

  5. Chemical Frustration. A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases, Final Report

    SciTech Connect

    Fredrickson, Daniel C

    2015-06-23

    Final technical report for "Chemical Frustration: A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases" funded by the Office of Science through the Materials Chemistry Program of the Office of Basic Energy Sciences.

  6. On the site preferences of ternary additions to triple defect B2 intermetallic compounds

    SciTech Connect

    Pike, L.M.; Chen, S.L.; Chang, Y.A.; Kao, C.R.

    1996-10-01

    Knowledge of the site preference of ternary solute additions is essential to developing an understanding of how these solutes affect the properties of B2 intermetallic compounds. A quasichemical model will be presented which is able to predict the site preferences of dilute solute additions to triple defect B2 compounds. The only parameters required are enthalpies of formation at the stoichiometric composition. General equations are developed which can be used to determine site occupations and defect concentrations for dilute as well as non-dilute solute additions. These equations use atom pair bond enthalpies as the parameters. It is found that the site preferences of dilute additions are not always in agreement with predictions based on the solubility lobes in ternary Gibbs isotherms. Predictions for dilute additions to NiAl and FeAl are compared to experimental results found in the literature. Satisfactory correlation is found between the model and the experimental results. In addition, the predictions from the model on vacancy concentrations in Fe doped NiAl are compared to recent experimental results by the authors.

  7. On the site preferences of ternary additions to triple defect B2 intermetallic compounds

    SciTech Connect

    Pike, L.M.; Chen, S.L.; Chang, Y.A.

    1995-12-31

    Knowledge of the site preference of ternary solute additions is essential to developing an understanding of how these solutes affect the properties of B2 intermetallic compounds. A quasichemical model will be presented which is able to predict the site preferences of dilute solute additions to triple defect B2 compounds. The only parameters required are enthalpies of formation at the stoichiometric composition. General equations are developed which can be used to determine site occupations and defect concentrations for dilute as well as non-dilute solute additions. These equations use atom pair bond enthalpies as the parameters. It is found that the site preferences of dilute additions are not always in agreement with predictions based on the solubility lobes in ternary Gibbs isotherms, Predictions for dilute additions to NiAl and FeAl are compared to experimental results found in the literature. Satisfactory correlation is found between the model and the experimental results. In addition, the predictions from the model on vacancy concentrations in Fe doped NiAl are compared to recent experimental results by the authors.

  8. Irradiation-induced disordering and amorphization of Al3Ti-based intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Yong; Kim, Il-Hyun; Motta, Arthur T.; Ulmer, Christopher J.; Kirk, Marquis A.; Ryan, Edward A.; Baldo, Peter M.

    2015-12-01

    An in situ ion-irradiation study, simultaneously examined using transmission electron microscopy, was performed to investigate irradiation-induced disordering and amorphization of Al3Ti-based intermetallic compounds. Thin foil samples of two crystalline structures: D022-structured Al3Ti and L12-structured (Al,Cr)3Ti were irradiated using 1.0 MeV Kr ions at a temperature range from 40 K to 573 K to doses up to 4.06 × 1015 ions/cm2. The results showed that both the compounds underwent an order-disorder transformation under irradiation, where both Al3Ti and (Al,Cr)3Ti ordered structures were fully transformed to the disordered face-centered cubic (FCC) structure except at the highest irradiation temperature of 573 K. A slightly higher irradiation dose was required for order-disorder transformation in case of Al3Ti as compared to (Al,Cr)3Ti at a given temperature. However, their amorphization resistances were different: while the disordered FCC (Al,Cr)3Ti amorphized at the irradiation dose of 6.25 × 1014 ions/cm2 (0.92 dpa) at 40 K and 100 K, the Al3Ti compound with the same disordered FCC structure maintained crystallinity up to 4.06 × 1015 ions/cm2 (5.62 dpa) at 40 K. The critical temperature for amorphization of (Al,Cr)3Ti under Kr ion irradiation is likely between 100 K and room temperature and the critical temperature for disordering between room temperature and 573 K.

  9. Model-based predictions of solid state intermetallic compound layer growth in hybrid microelectronic circuits

    SciTech Connect

    Vianco, P.T.; Erickson, K.L.; Hopkins, P.L.

    1997-12-31

    A mathematical model was developed to quantitatively describe the intermetallic compound (IMC) layer growth that takes place between a Sn-based solder and a noble metal thick film conductor material used in hybrid microcircuit (HMC) assemblies. The model combined the reaction kinetics of the solder/substrate interaction, as determined from ancillary isothermal aging experiments, with a 2-D finite element mesh that took account of the porous morphology of the thick film coating. The effect of the porous morphology on the IMC layer growth when compared to the traditional 1-D computations was significant. The previous 1-D calculations under-predicted the nominal IMC layer thickness relative to the 2-D case. The 2-D model showed greater substrate consumption by IMC growth and lesser solder consumption that was determined with the 1-D computation. The new 2-D model allows the design engineer to better predict circuit aging and hence, the reliability of HMC hardware that is placed in the field.

  10. Mechanical Strength and Failure Characterization of Sn-Ag-Cu Intermetallic Compound Joints at the Microscale

    NASA Astrophysics Data System (ADS)

    Ladani, Leila; Razmi, Jafar

    2012-03-01

    Continuous miniaturization of microelectronic devices has led the industry to develop interconnects on the order of a few microns for advanced superhigh-density and three-dimensional integrated circuits (3D ICs). At this scale, interconnects that conventionally consist of solder material will completely transform to intermetallic compounds (IMCs) such as Cu6Sn5. IMCs are brittle, unlike conventional solder materials that are ductile in nature; therefore, IMCs do not experience large amounts of plasticity or creep before failure. IMCs have not been fully characterized, and their mechanical and thermomechanical reliability is questioned. This study presents experimental efforts to characterize such material. Sn-based microbonds are fabricated in a controlled environment to assure complete transformation of the bonds to Cu6Sn5 IMC. Microstructural analysis including scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD) is utilized to determine the IMC material composition and degree of copper diffusion into the bond area. Specimens are fabricated with different bond thicknesses and in different configurations for various tests. Normal strength of the bonds is measured utilizing double cantilever beam and peeling tests. Shear tests are conducted to quantify the shear strength of the material. Four-point bending tests are conducted to measure the fracture toughness and critical energy release rate. Bonds are fabricated in different sizes, and the size effect is investigated. The shear strength, normal strength, critical energy release rate, and effect of bond size on bond strength are reported.

  11. Effect of Loading Stress on the Growth of Cn/Sn Intermetallic Compounds at High Temperatures

    NASA Astrophysics Data System (ADS)

    Cheng, Ya-Chi; Wang, Yu-Ting; Hsu, Feng-Chih; Lu, Fang-Ching; Wu, Chung-Lin; Lin, Ming-Tzer

    2015-01-01

    Fabrication of reliable solder joints is crucial in microelectronics. In this study we tested solder joints under different loads and temperature-controlled conditions to investigate the effect of external stress on the growth of interfacial Cu/Sn intermetallic compounds (IMCs). Test specimens were prepared by electroplating a layer of Sn (25 ?m thick) on a copper substrate. Samples were then clamped in a micromechanical testing apparatus integrated within a furnace. Experiments were performed by using load feedback control to ensure a constant load of 25, 50, or 100 MPa at a constant temperature of 200°C for periods of 24, 72, or 120 h. We then compared samples that underwent stress with those that did not to elucidate the effect of stress and aging on the formation of IMCs. Our results indicate that the presence of external stress affects the formation of Cu/Sn IMCs, including the speed of formation and the resulting thickness. Moreover, the micrographic structure of IMCs formed under external stress varied substantially depending on the amount of stress applied.

  12. Machinability of Intermetallic Compound Fe3Al from the Viewpoint of Tool Wear

    NASA Astrophysics Data System (ADS)

    Sasaki, Tomohiro; Yakou, Takao

    The intermetallic compound Fe3Al was processed by a reactive sintering process, and its machinability from the viewpoint of tool wear was investigated using dry turning. In cutting Fe3Al with a cemented carbide tool, the tool life was approximately one tenth that of cutting carbon tool steel SK3 because of intense flank wear. The tool life for cutting Fe3Al using the cemented carbide P20(WC-TiC-TaC-Co) tool was longer than for cemented carbide K10(WC-Co). In addition, a cermet tool reached its tool life limit by chipping for the whole cutting speed range measured. The roughness of the machined surface of Fe3Al cut using a cemented carbide tool was much smaller than for SK3. However, for cutting using the cermet tool, the roughness showed a sharp rise due to chipping. It was found that the wear rate of the WC particles in the tool material is larger than TiC particles. The results of the study suggest that the cemented carbide P20 is suitable for cutting Fe3Al.

  13. Superconductivity in the Zintl intermetallic compound Ca11Bi10-x

    NASA Astrophysics Data System (ADS)

    Sturza, Mihai; Fei, Han; Malliakas, Christos; Claus, Helmut; Chung, Duck Young; Kanatzidis, Mercouri; Department of Chemistry, Northwestern University Collaboration; Materials Science Division, Argonne National Laboratory Team

    2014-03-01

    The recent discovery of the iron-based superconductors with unconventional superconductivity as a new class of superconductors has attracted great attention and triggered extensive research for new compounds. We report the new superconductor Ca11Bi10-x, which is in fact a Zintl phase. The structure of Ca11Bi10 contains three discrete anionic fragments: isolated Bi3- ions, dumbbells of Bi 24-and square planar rings of Bi 44-surrounded by Ca2+cations. The Bi 44-squares and the Bi 24-dumbbells interact with one another through Bi--Bi bonding to form an extended 3D framework. The extended three-dimensional Bi-Bi interactions are responsible for the metallic behavior observed above Tc. Electronic band structure calculations at the density functional theory (DFT) level confirm the metallic character of the material. Defects in the form of vacancies on the Bi-sites were also found using single crystal X-ray analysis. The unexpected finding is that unlike most superconductors Ca11Bi10-x has very low carrier density. The Ca11Bi10-x system is the first member of the intermetallic class M11X10 (M =Ca, Sr, Ba; X =Bi, Sb) that exhibits superconductivity suggesting that a broader family of Bi or Sb-containing superconductors may exist.

  14. Discovery and characterization of magnetism in sigma-phase intermetallic Fe-Re compounds

    SciTech Connect

    Cie?lak, J. Dubiel, S. M.; Tobola, J.; Reissner, M.

    2014-11-14

    Systematic experimental studies (vibrating sample magnetometry) supported by theoretical calculations (electronic structure by spin self-consistent Korringa-Kohn-Rostoker Green's function method) were performed on a series of intermetallic sigma-phase Fe{sub 100?x}Re{sub x} (x?=?43–53) compounds. All investigated samples exhibit magnetism with an ordering temperature ranging between ?65?K for x?=?43 and ?23?K for x?=?53. The magnetism was revealed to be itinerant and identified as a spin-glass (SG) possibly having a re-entrant character. The SG was found to be heterogeneous, viz., two regimes could be distinguished as far as irreversibility in temperature dependence of magnetization is concerned: (1) of a weak irreversibility and (2) of a strong one. According to the theoretical calculations, the main contribution to the magnetism comes from Fe atoms occupying all five sub lattices, while Re atoms have rather small magnetic moments. However, the calculated average magnetic moments highly (ferromagnetic ordering model) or moderately (antiparallel ordering model) overestimate the experimental data.

  15. Growth kinetics of Al–Fe intermetallic compounds during annealing treatment of friction stir lap welds

    SciTech Connect

    Movahedi, M.; Kokabi, A.H.; Seyed Reihani, S.M.; Najafi, H.; Farzadfar, S.A.; Cheng, W.J.; Wang, C.J.

    2014-04-01

    In this study, we explored the growth kinetics of the Al–Fe intermetallic (IM) layer at the joint interface of the St-12/Al-5083 friction stir lap welds during post-weld annealing treatment at 350, 400 and 450 °C for 30 to 180 min. Optical microscope (OM), field emission gun scanning electron microscope (FEG-SEM) and transmission electron microscope (TEM) were employed to investigate the structure of the weld zone. The thickness and composition of the IM layers were evaluated using image analysis system and electron back-scatter diffraction (EBSD), respectively. Moreover, kernel average misorientation (KAM) analysis was performed to evaluate the level of stored energy in the as-welded state. The results showed that the growth kinetics of the IM layer was not governed by a parabolic diffusion law. Presence of the IM compounds as well as high stored energy near the joint interface of the as-welded sample was recognized to be the origin of the observed deviation from the parabolic diffusion law. - Highlights: • This work provided a new insight into growth kinetics of Al–Fe IM thickness. • The growth kinetics of IM layer was not governed by a parabolic diffusion law. • IM near the joint interface was the origin of deviation from the parabolic law. • High stored energy at joint interface was origin of deviation from parabolic law.

  16. Growth Behavior of Intermetallic Compounds at SnAgCu/Ni and Cu Interfaces

    NASA Astrophysics Data System (ADS)

    Qi, Lihua; Huang, Jihua; Zhang, Hua; Zhao, Xingke; Wang, Haitao; Cheng, Donghai

    2010-02-01

    The growth behavior of reaction-formed intermetallic compounds (IMCs) at Sn3.5Ag0.5Cu/Ni and Cu interfaces under thermal-shear cycling conditions was investigated. The results show that the morphology of (Cu x Ni1- x )6Sn5 and Cu6Sn5 IMCs formed both at Sn3.5Ag0.5Cu/Ni and Cu interfaces gradually changed from scallop-like to chunk-like, and different IMC thicknesses developed with increasing thermal-shear cycling time. Furthermore, Cu6Sn5 IMC growth rate at the Sn3.5Ag0.5Cu/Cu interface was higher than that of (Cu x Ni1- x )6Sn5 IMC under thermal-shear cycling. Compared to isothermal aging, thermal-shear cycling led to only one Cu6Sn5 layer at the interface between SnAgCu solder and Cu substrate after 720 cycles. Moreover, Ag3Sn IMC was dispersed uniformly in the solder after reflow. The planar Ag3Sn formed near the interface changed remarkably and merged together to large platelets with increasing cycles. The mechanism of formation of Cu6Sn5, (Cu x Ni1- x )6Sn5 and Ag3Sn IMCs during thermal-shear cycling process was investigated.

  17. Investigation of the Growth of Intermetallic Compounds Between Cu Pillars and Solder Caps

    NASA Astrophysics Data System (ADS)

    Lin, Jui-Ching; Qin, Yi; Woertink, Julia

    2014-11-01

    In flip chip applications, Cu pillars with solder caps are regarded as next-generation electronic interconnection technology, because of high input/output density. However, because of diffusion and reaction of Sn and Cu during the high-temperature reflow process, intermetallic compounds (IMC) are formed, and grow, at the interface between the cap and the pillar. Understanding the growth behavior of interfacial IMC is critical in the design of solder interconnections, because excessive growth of IMC can reduce the reliability of connections. In this study, the growth of IMC during thermal cycling, an accelerated method of testing the service environment of electronic devices, was studied by use of focused ion beam-scanning electron microscopy. Under alternating high and low-temperature extremes, growth of Cu6Sn5 ( ?-phase) and Cu3Sn ( ?-phase) IMC was imaged and measured as a function of the number of cycles. The total IMC layer grew significantly thicker but became more uniform during thermal cycling. The Cu3Sn layer was initially thinner than the Cu6Sn5 layer but outgrew the Cu6Sn5 layer after 1000 cycles. It was found that, with limited Cu and Sn diffusion, consumption of Cu6Sn5 for growth of the Cu3Sn layer can result in a thinner Cu6Sn5 layer after thermal cycling.

  18. Generality of the 18-n Rule: Intermetallic Structural Chemistry Explained through Isolobal Analogies to Transition Metal Complexes.

    PubMed

    Yannello, Vincent J; Fredrickson, Daniel C

    2015-12-01

    Intermetallic phases exhibit a vast structural diversity in which electron count is known to be one controlling factor. However, chemical bonding theory has yet to establish how electron counts and structure are interrelated for the majority of these compounds. Recently, a simple bonding picture for transition metal (T)-main group (E) intermetallics has begun to take shape based on isolobal analogies to molecular T complexes. This bonding picture is summarized in the 18-n rule: each T atom in a T-E intemetallic phase will need 18-n electrons to achieve a closed-shell 18-electron configuration, where n is the number of electron pairs it shares with other T atoms in multicenter interactions isolobal to T-T bonds. In this Article, we illustrate the generality of this rule with a survey over a wide range of T-E phases. First, we illustrate how three structural progressions with changing electron counts can be accounted for, both geometrically and electronically, with the 18-n rule: (1) the transition between the fluorite and complex ?-FeSi2 types for TSi2 phases; (2) the sequence from the marcasite type to the arsenopyrite type and back to the marcasite type for TSb2 compounds; and (3) the evolution from the AuCu3 type to the ZrAl3 and TiAl3 types for TAl3 phases. We then turn to a broader survey of the applicability of the 18-n rule through a study of the following 34 binary structure types: PtHg4, CaF2 (fluorite), Fe3C, CoGa3, Co2Al5, Ru2B3, ?-FeSi2, NiAs, Ni2Al3, Rh4Si5, CrSi2, Ir3Ga5, Mo3Al8, MnP, TiSi2, Ru2Sn3, TiAl3, MoSi2, CoSn, ZrAl3, CsCl, FeSi, AuCu3, ZrSi2, Mn2Hg5, FeS2 (oP6, marcasite), CoAs3 (skutterudite), PdSn2, CoSb2, Ir3Ge7, CuAl2, Re3Ge7, CrP2, and Mg2Ni. Through these analyses, the 18-n rule is established as a framework for interpreting the stability of 341 intermetallic phases and anticipating their properties. PMID:26581113

  19. Highly efficient aerobic oxidation of various amines using Pd3Pb intermetallic compounds as catalysts.

    PubMed

    Furukawa, Shinya; Suga, Akifusa; Komatsu, Takayuki

    2014-03-28

    Intermetallic Pd3Pb supported on Al2O3 can act as a highly efficient heterogeneous catalyst for the oxidation of various amines including primary, secondary, aromatic, aliphatic, and cyclic amines. PMID:24525669

  20. An electronic criterion for the intrinsic embrittlement of structural intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Li, W.; Wang, Y.; Cai, M.; Wang, C. W.

    2005-10-01

    Development of intermetallics for high-temperature structural applications has long been impeded by their brittleness. To overcome the brittleness, efforts have been devoted to understand the atomic bonding nature of intermetallics. However, there are no simple theoretical or experimental means for investigating the electronic origin of the brittleness. We find a simple experimental method, which employs the Kelvin-probe technique to measure the electron work function. The typical intermetallics in three alloy systems (Ni-Al, Fe-Al, and Ti-Al) were chosen as examples. An electronic criterion was therefore proposed for judging intrinsic brittleness. This criterion could provide some principles for improving the ductility of intermetallics and is also expected to be extendable to other materials (e.g., quasicrystalline alloys and metallic glasses).

  1. Effect of Thermal Cycle on the Formation of Intermetallic Compounds in Laser Welding of Aluminum-Steel Overlap Joints

    NASA Astrophysics Data System (ADS)

    Fan, J.; Thomy, C.; Vollertsen, F.

    The intermetallic compound (IMC) (or intermetallic phase layer) has a significant influence on the mechanical properties ofjoints between dissimilar metals obtained by thermal processes such as laser welding. Its formation is basically affected by thermal cycles in the joining or contact zone, where the IMC is formed. Within this study, the influence of the thermal cycle on the formation of the IMC during laser welding of an aluminum-steel (Al99.5-DC01) overlap joint was investigated. The temperature was measured directly by a thermocouple, and the weld seam was analyzed by scanning electron microscope (SEM). The influence of peak temperature, cooling time and the integral of the thermal cycle on the thickness of the IMC was identified and discussed. It was identified that cooling time has the biggest influence on the thickness of the IMC.

  2. Evidence of ferromagnetism in vanadium substituted layered intermetallic compounds RE (Co1-xVx) 2 Si2 (RE=Pr and Nd; 0 ? x ? 0.35)

    NASA Astrophysics Data System (ADS)

    Chowdhury, R. Roy; Dhara, S.; Bandyopadhyay, B.

    2016-03-01

    In intermetallic compounds RECo2Si2 (RE=Pr and Nd), cobalt has been partially substituted by vanadium to obtain RE(Co1-xVx)2Si2 (0 ? x ? 0.35). The parent compounds are antiferromagnetic below about 30 K due to the ordering of localized magnetic moments that are present only on rare-earth ions, cobalt being non-magnetic in the parent compounds. The present study demonstrates that in these compounds where 3 d and 4 f ions occupy different layers in the crystal structure, V substitution and subsequent lattice expansion results in the occurrence of inequivalent magnetic ions and complex interactions that lead to multiple magnetic transitions. At temperatures around 40-50 K, the temperature dependence of magnetization indicates a ferrimagnetic transition which is accompanied by a rapid decrease in the temperature dependence of resistivity. Below temperatures ?30 K, the samples begin to show ferromagnetic-like behavior with the appearance of a coercive field and saturation in the magnetization at magnetic fields above ?2 T. These two magnetic transitions are indicated also by prominent ?-like peaks in specific heat measurements. At around 10 K, a sharp drop in the resistivity indicates another magnetic transition which is followed by a rapid increase in coercive field with decrease in temperature. In a magnetic field of 9 T, the latter transition shifts to a lower temperature and that leads to a positive magnetoresistance. The onset of ferromagnetism at ?30 K is accompanied with an exchange bias field which is observed for the first time in layered intermetallic compounds. The exchange bias field increases rapidly below the transition at ?10 K and reaches ?16% of coercive field at 2 K.

  3. Statistical thermodynamics -- A tool for understanding point defects in intermetallic compounds

    SciTech Connect

    Ipser, H.; Krachler, R.

    1996-10-01

    The principles of the derivation of statistical-thermodynamic models to interpret the compositional variation of thermodynamic properties in non-stoichiometric intermetallic compounds are discussed. Two types of models are distinguished: the Bragg-Williams type, where the total energy of the crystal is taken as the sum of the interaction energies of all nearest-neighbor pairs of atoms, and the Wagner-Schottky type, where the internal energy, the volume, and the vibrational entropy of the crystal are assumed to be linear functions of the numbers of atoms or vacancies on the different sublattices. A Wagner-Schottky type model is used for the description of two examples with different crystal structures: for {beta}{prime}-FeAl (with B2-structure) defect concentrations and their variation with composition are derived from the results of measurements of the aluminum vapor pressure, the resulting values are compared with results of other independent experimental methods; for Rh{sub 3}Te{sub 4} (with an NiAs-derivative structure) the defect mechanism responsible for non-stoichiometry is worked out by application of a theoretical model to the results of tellurium vapor pressure measurements. In addition it is shown that the shape of the activity curve indicates a certain sequence of superstructures. In principle, there are no limitations to the application of statistical thermodynamics to experimental thermodynamic data as long as these are available with sufficient accuracy, and as long as it is ensured that the distribution of the point defects is truly random, i.e. that there are no aggregates of defects.

  4. Formation of GaPd2 and GaPd intermetallic compounds on GaN(0001)

    NASA Astrophysics Data System (ADS)

    Grodzicki, M.; Mazur, P.; Pers, J.; Brona, J.; Zuber, S.; Ciszewski, A.

    2015-09-01

    Palladium was deposited gradually under ultrahigh vacuum onto a well-defined surface of (0001)-oriented n-type GaN, at room temperature. Each deposition step was followed by annealing. Physicochemical properties of the Pd adlayers were in situ investigated prior to and after annealing by the X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, low-energy electron diffraction, scanning tunneling microscopy and atomic force microscopy techniques. Annealing resulted in the formation of GaPd2 and GaPd intermetallic compounds at 550 °C and at 800 °C. Even for thicker layers, the compounds were strongly dispersed, forming 3D nanostructures. The substrate uncovered by the compounds revealed Ga-rich GaN(0001)-(1 × 1) surface. Formation of Ga-Pd-N bonds or Pd nitrides was not detected at the surface. The Ga-Pd intermetallic compound surface engineered on the GaN(0001) substrate can be used as the strongly dispersed catalyst or a model catalyst.

  5. Stability of molybdenum nanoparticles in Sn-3.8Ag-0.7Cu solder during multiple reflow and their influence on interfacial intermetallic compounds

    SciTech Connect

    Haseeb, A.S.M.A. Arafat, M.M. Johan, Mohd Rafie

    2012-02-15

    This work investigates the effects of molybdenum nanoparticles on the growth of interfacial intermetallic compound between Sn-3.8Ag-0.7Cu solder and copper substrate during multiple reflow. Molybdenum nanoparticles were mixed with Sn-3.8Ag-0.7Cu solder paste by manual mixing. Solder samples were reflowed on a copper substrate in a 250 Degree-Sign C reflow oven up to six times. The molybdenum content of the bulk solder was determined by inductive coupled plasma-optical emission spectrometry. It is found that upon the addition of molybdenum nanoparticles to Sn-3.8Ag-0.7Cu solder, the interfacial intermetallic compound thickness and scallop diameter decreases under all reflow conditions. Molybdenum nanoparticles do not appear to dissolve or react with the solder. They tend to adsorb preferentially at the interface between solder and the intermetallic compound scallops. It is suggested that molybdenum nanoparticles impart their influence on the interfacial intermetallic compound as discrete particles. The intact, discrete nanoparticles, by absorbing preferentially at the interface, hinder the diffusion flux of the substrate and thereby suppress the intermetallic compound growth. - Highlights: Black-Right-Pointing-Pointer Mo nanoparticles do not dissolve or react with the SAC solder during reflow. Black-Right-Pointing-Pointer Addition of Mo nanoparticles results smaller IMC thickness and scallop diameter. Black-Right-Pointing-Pointer Mo nanoparticles influence the interfacial IMC through discrete particle effect.

  6. Asymmetric properties of hydrides of intermetallic compounds based on rare-earth metals, Ni, and Co modified by (+)-tartaric acid

    SciTech Connect

    Starodubtseva, E.V.; Konenko, I.R.; Fedorovskaya, E.A.; Klabunovskii, E.I.; Mordovin, V.P.

    1987-03-10

    It has been shown that the hydrides of intermetallic compounds with the general formula LnNi/sub 5-x/Co/sub x/ (Ln = La, Sm, Gd; 0 less than or equal to x less than or equal to 5) are active catalysts in the enantioselective hydrogenation of ethyl acetoacetate (EAA). The influence of the pH of the modifying solution on the asymmetric properties of the catalysts at pH 2-14 has been investigated. The stability of the operation of catalysts under the conditions of the modification step and the hydrogenation of EAA has been studied with the aid of a magnetic method.

  7. Effects of metallic nanoparticle doped flux on the interfacial intermetallic compounds between lead-free solder ball and copper substrate

    SciTech Connect

    Sujan, G.K. Haseeb, A.S.M.A. Afifi, A.B.M.

    2014-11-15

    Lead free solders currently in use are prone to develop thick interfacial intermetallic compound layers with rough morphology which are detrimental to the long term solder joint reliability. A novel method has been developed to control the morphology and growth of intermetallic compound layers between lead-free Sn–3.0Ag–0.5Cu solder ball and copper substrate by doping a water soluble flux with metallic nanoparticles. Four types of metallic nanoparticles (nickel, cobalt, molybdenum and titanium) were used to investigate their effects on the wetting behavior and interfacial microstructural evaluations after reflow. Nanoparticles were dispersed manually with a water soluble flux and the resulting nanoparticle doped flux was placed on copper substrate. Lead-free Sn–3.0Ag–0.5Cu solder balls of diameter 0.45 mm were placed on top of the flux and were reflowed at a peak temperature of 240 °C for 45 s. Angle of contact, wetting area and interfacial microstructure were studied by optical microscopy, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. It was observed that the angle of contact increased and wetting area decreased with the addition of cobalt, molybdenum and titanium nanoparticles to flux. On the other hand, wettability improved with the addition of nickel nanoparticles. Cross-sectional micrographs revealed that both nickel and cobalt nanoparticle doping transformed the morphology of Cu{sub 6}Sn{sub 5} from a typical scallop type to a planer one and reduced the intermetallic compound thickness under optimum condition. These effects were suggested to be related to in-situ interfacial alloying at the interface during reflow. The minimum amount of nanoparticles required to produce the planer morphology was found to be 0.1 wt.% for both nickel and cobalt. Molybdenum and titanium nanoparticles neither appear to undergo alloying during reflow nor have any influence at the solder/substrate interfacial reaction. Thus, doping of flux with appropriate metallic nanoparticles can be successfully used to control the morphology and growth of intermetallic compound layers at the solder/substrate interface which is expected to lead to better reliability of electronic devices. - Highlights: • A novel nanodoped flux method has been developed to control the growth of IMCs. • Ni doped flux improves the wettability, but Co, Mo and Ti deteriorate it. • Ni and Co doped flux gives planer IMC morphology through in-situ alloying effect. • 0.1 wt.% Ni and Co addition into flux gives the lowest interfacial IMC thickness. • Mo and Ti doped flux does not have any influence at the interfacial reaction.

  8. Study on ion-irradiation-induced ferromagnetism in FeRh intermetallic compound by means of magnetic Compton scattering

    SciTech Connect

    Kosugi, S.; Matsui, T.; Aikoh, K.; Shimizu, K.; Tahara, Y.; Hori, F.; Iwase, A.; Ishikawa, N.; Itou, M.; Sakurai, Y.

    2011-04-01

    The magnetic Compton profiles of Fe-50 at. % Rh intermetallic compound were measured to study the ferromagnetism induced by 200 MeV Xe ion irradiation. The magnetic effect at 50 K increases with increasing the ion-fluence. The analysis of the experimental result revealed that the values of spin moment induced by the irradiation were close to the values of magnetization obtained by a superconducting quantum interference device magnetometer, suggesting that the ion irradiation mainly induces the spin magnetic moment. The difference in magnetic Compton profiles between the irradiation-induced ferromagnetism and the intrinsic ferromagnetism in pure Fe is also discussed.

  9. Enthalpies of formation of Cd–Pr intermetallic compounds and thermodynamic assessment of the Cd–Pr system

    PubMed Central

    Reichmann, Thomas L.; Richter, Klaus W.; Delsante, Simona; Borzone, Gabriella; Ipser, Herbert

    2014-01-01

    In the present study standard enthalpies of formation were measured by reaction and solution calorimetry at stoichiometric compositions of Cd2Pr, Cd3Pr, Cd58Pr13 and Cd6Pr. The corresponding values were determined to be ?46.0, ?38.8, ?35.2 and ?24.7 kJ/mol(at), respectively. These data together with thermodynamic data and phase diagram information from literature served as input data for a CALPHAD-type optimization of the Cd–Pr phase diagram. The complete composition range could be described precisely with the present models, both with respect to phase equilibria as well as to thermodynamic input data. The thermodynamic parameters of all intermetallic compounds were modelled following Neumann–Kopp rule. Temperature dependent contributions to the individual Gibbs energies were used for all compounds. Extended solid solubilities are well described for the low- and high-temperature modifications of Pr and also for the intermetallic compound CdPr. A quite good agreement with all viable data available from literature was found and is presented. PMID:25540475

  10. Electronic and high pressure elastic properties of RECd and REHg (RE=Sc, La and Yb) intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Devi, Hansa; Pagare, Gitanjali; Chouhan, Sunil S.; Sanyal, Sankar P.

    2015-01-01

    Structural, electronic, elastic and mechanical properties of Cd and Hg based rare earth intermetallics (RECd and REHg; RE=Sc, La and Yb) have been investigated using the full-potential linearized augmented plane-wave (FP-LAPW) method within the density-functional theory (DFT). The ground state properties such as lattice constant (a0), bulk modulus (B) and its pressure derivative (B?) have been obtained using optimization method and are found in good agreement with the available experimental results. The calculated enthalpy of formation shows that LaHg has the strongest alloying ability and structural stability. The electronic band structures and density of states reveal the metallic character of these compounds. The structural stability mechanism is also explained through the electronic structures of these compounds. The chemical bonding between rare earth atoms and Cd, Hg is interpreted by the charge density plots along (1 1 0) direction. The elastic constants are predicted from which all the related mechanical properties like Poisson's ratio (?), Young's modulus (E), shear modulus (GH) and anisotropy factor (A) are calculated. The ductility/brittleness of these intermetallics is predicted. Chen's method has been used to predict the Vicker's hardness of RECd and REHg compounds. The pressure variation of the elastic constants is also reported in their B2 phase.

  11. The effect of microstructures on mechanical behaviors of Ti2AlNb intermetallic compounds

    SciTech Connect

    Wang, Liming; Yao, Mei; Zou, Dunxu; Zhu, Dong; Cai, Qigong Central Iron and Steel Research Institute, Beijing, )

    1992-03-01

    Ti2AlNb intermetallics are presently heat-treated and subjected to compressive loading at various temperatures, in order to ascertain microstructure-mechanical behavior relationships. Heat-treated and oil-quenched samples exhibit beta phase; the 'O' phase transformation was restrained by quenching. The O phase increased with rising heat-treatment temperature. 10 refs.

  12. Nanocluster model of intermetallic compounds with giant unit cells: beta, beta'-Mg(2)Al(3) polymorphs.

    PubMed

    Blatov, Vladislav A; Ilyushin, Gregory D; Proserpio, Davide M

    2010-02-15

    A novel method for the computational description of intermetallics as an assembly of nanoclusters was improved and applied to extremely complicated crystal structures of beta, beta'-Mg(2)Al(3) polymorphs. Using the TOPOS program package that implements the method, we separated two types of two-shell primary nanoclusters A, A1, A2, and B consisting of 57-63 atoms that completely compose the structures of the polymorphs. The nanocluster model interprets structural disordering in beta-Mg(2)Al(3): the disordered atoms form the inner shell of the nanocluster A, while the outer shells of all nanoclusters are preserved. The self-assembly of the beta, beta'-Mg(2)Al(3) crystal structures was considered within the hierarchical scheme: 0D primary polyhedral clusters (coordination polyhedra) --> 0D two-shell primary nanoclusters A, A1, A2, or B --> 0D supracluster-precursor AB(2) --> 1D primary chain --> 2D microlayer --> 3D microframework. The self-assembly scheme proves the similarity of beta, beta'-Mg(2)Al(3) to other extremely complicated Samson's phases, NaCd(2) and ZrZn(22); the spatial arrangement of the centers of nanoclusters in these structures as well as the topology of the corresponding network conform to the Laves phase MgCu(2). Using the TOPOS procedure of searching for finite fragments in infinite nets we found that nanocluster B is a typical fragment of intermetallic compounds: it exists in intermetallics belonging to 42 Pearson classes. The nanocluster A was found only in two Pearson classes: cF464 and hP238, while the nanoclusters A1 and A2 occur in beta'-Mg(2)Al(3) only. Thus, the nanoclusters A, A1, and A2 can be considered as "determinants" of the corresponding structures. PMID:20063861

  13. FP-LAPW based investigation of structural, electronic and mechanical properties of CePb3 intermetallic compound

    NASA Astrophysics Data System (ADS)

    Pagare, Gitanjali; Abraham, Jisha Annie; Jain, Ekta; Sanyal, Sankar P.

    2015-08-01

    A theoretical study of structural, electronic, elastic and mechanical properties of CePb3 intermetallic compound has been investigated systematically using first principles density functional theory. The calculations are carried out within the three different forms of generalized gradient approximation (GGA) and LSDA for the exchange correlation potential. The ground state properties such as lattice parameter (a0), bulk modulus (B) and its pressure derivative (B') are calculated and obtained lattice parameter of this compound shows well agreement with the experimental results. We have calculated three independent second order elastic constants (C11, C12 and C44), which has not been calculated and measured yet. From energy dispersion curves, it is found that the studied compound is metallic in nature. Ductility of this compound is analyzed using Pugh's criteria and Cauchy's pressure (C11-C12). The mechanical properties such as Young's modulus, shear modulus, anisotropic ratio, Poison's ratio have been calculated for the first time using the Voigt-Reuss-Hill (VRH) averaging scheme. The average sound velocities (vm), density (?) and Debye temperature (?D) of this compound are also estimated from the elastic constants.

  14. Chemistry of intermetallic hydrides

    SciTech Connect

    Reilly, J.J.

    1991-01-01

    Certain intermetallic hydrides are safe, convenient and inexpensive hydrogen storage compounds. A particular advantage of such compounds is the ease with which their properties can be modified by small changes in alloy composition or preparation. This quality can be exploited to optimize their storage properties for particular applications, e.g. as intermetallic hydride electrodes in batteries. We will be concerned herein with the more important aspects of the thermodynamic and structural principles which regulate the behavior of intermetallic hydrogen systems and then illustrate their application using the archetype hydrides of LaNi5, FeTi and Mg alloys. The practical utility of these classes of materials will be briefly noted.

  15. Experimental investigation on the corrosion behavior of Al3Ti-based intermetallic compounds in nuclear reactor normal operation conditions

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Yong; Kim, Il-Hyun; Kim, Hyun-Gil; Jung, Yang-Il; Park, Dong-Jun; Park, Jung-Hwan; Koo, Yang-Hyun

    2015-12-01

    The corrosion behavior of Al3Ti-based intermetallic compounds was investigated under nuclear reactor normal operation conditions. The corrosion test was performed for Al-25Ti-10Cr and Al-21Ti-23Cr (at.%) in 633 K water and 673 K steam. The corroded surface was analyzed to identify the corrosion products. Both alloys showed a weight loss in 633 K water with no appreciable difference between the alloys. The corroded layer formed in water was shown to be the mixture of AlO(OH), TiO2, and Cr2O3. In 673 K steam, the corrosion behaviors of both alloys were similar with a small amount of weight gain. A thin, stable Al2O3 layer was formed on the surface as result of oxidation in 673 K steam.

  16. Plasma-melting and plasma-melt-gas-atomization of high temperature intermetallic compounds (Nb3Al)

    NASA Astrophysics Data System (ADS)

    Kohno, T.; Kohmoto, H.; Murahashi, N.

    There has been much interest in rapidly solidified niobium-aluminides (Nb3Al) as structural materials for ultrahigh temperature applications. Pressurizing melting atmosphere to approximately 0.25 MPa can reduce Al vaporization during plasma melting. A unique plasma-melt-gas-atomization process (PMGA) has been developed for making rapidly-solidified powder of high temperature intermetallic compounds such as Nb3Al. In this technique, we use only water-cooled copper as a tundish for bottom poring, instead of refractories or refractory metals. The crystal structure of PMGA'ed Nb3Al powder consists of an almost Al-saturated solid solution of niobium (bcc). This fact means that the solidification rate of PMGA is sufficiently high.

  17. Energetic ion beam induced crystal phase transformation and resulting hardness change in Ni3Al intermetallic compound

    NASA Astrophysics Data System (ADS)

    Yoshizaki, H.; Hashimoto, A.; Kaneno, Y.; Semboshi, S.; Hori, F.; Saitoh, Y.; Iwase, A.

    2015-07-01

    The Ni3Al bulk intermetallic compound was irradiated with 5.4-MeV Al, 10-MeV I and 16-MeV Au ions at room temperature. The effect of irradiation on the lattice structure was observed by X-ray diffraction (XRD). The change in Vickers hardness by irradiation was estimated. A crystal structure analysis showed that, the Ni3Al lattice structure transforms from an ordered L12 lattice structure to a disordered A1 (fcc) lattice structure by energetic ion irradiation. The relative degree of order correlates well with the density of energy that was elastically deposited by irradiation. The Vickers hardness tends to decrease with an increase in ion fluence. The hardness is not correlated with the elastically deposited energy. The effect of annealing at elevated temperatures on the irradiation induced crystal phase transformation and the Vickers hardness is also discussed.

  18. Nature of the temperature dependence of plasticity in the polycrystalline intermetallic compound Ni{sub 3}Al

    SciTech Connect

    Dudarev, E.F.; Bakach, G.P.; Ovcharenko, V.E.

    1995-05-01

    The effect of temperature on the plasticity, the type of failure, and the fractions of brittle intercrystallite and viscous transcrystallite failure of the intermetallic compound Ni-24 at. % Al have been studied with boron and without boron. A method is proposed for determining the cohesive strength of the grain boundaries by using the parameters of the flow curve and taking account of the local plastic deformation at the tip of the crack. It is shown that the cohesive strength of the grain boundaries is quite high in Ni{sub 3}Al and it is not the cause of the low-temperature embrittlement. The temperature dependence of the plasticity in the Ni-25 at. % Al alloy with boron and without boron in the region of the anomalous temperature dependence of the flow limit is determined by the change in the deformational hardening coefficient and at higher temperatures ;by a lowering of the cohesive strength of the grain boundaries.

  19. Fracture Behaviors of Sn-Cu Intermetallic Compound Layer in Ball Grid Array Induced by Thermal Shock

    NASA Astrophysics Data System (ADS)

    Shen, Jun; Zhai, Dajun; Cao, Zhongming; Zhao, Mali; Pu, Yayun

    2014-02-01

    In this work, thermal shock reliability testing and finite-element analysis (FEA) of solder joints between ball grid array components and printed circuit boards with Cu pads were used to investigate the failure mechanism of solder interconnections. The morphologies, composition, and thickness of Sn-Cu intermetallic compounds (IMC) at the interface of Sn-3.0Ag-0.5Cu lead-free solder alloy and Cu substrates were investigated by scanning electron microscopy and transmission electron microscopy. Based on the experimental observations and FEA results, it can be recognized that the origin and propagation of cracks are caused primarily by the difference between the coefficient of thermal expansion of different parts of the packaged products, the growth behaviors and roughness of the IMC layer, and the grain size of the solder balls.

  20. Formation of amorphous Ni-Zr alloys by mechanical alloying of mixtures of the intermetallic compounds Ni11Zr9 and NiZr2

    NASA Astrophysics Data System (ADS)

    Lee, P. Y.; Koch, C. C.

    1987-06-01

    Amorphous Ni40Zr60 and Ni50Zr50 alloy powders were synthesized by mechanical alloying of mixtures of the intermetallic compounds Ni11Zr9 and NiZr2. Milling these compounds together in the proper proportions resulted in material transfer and amorphization of alloys with compositions Ni40Zr60 and Ni50Zr50. After crystallization in a differential scanning calorimeter, the same products of crystallization were observed as for crystallization of liquid quenched amorphous alloys of the same compositions. The driving force for the amorphization of Ni11Zr9+NiZr2 mixtures is believed to be either the steep rise in free energy of the line compounds as material transfer moves their compositions off stoichiometry, or the creation of a critical defect concentration in the intermetallic compounds.

  1. Ba{sub 5}Ti{sub 12}Sb{sub 19+x}, a polar intermetallic compound with a stuffed gamma-brass structure

    SciTech Connect

    Bie Haiying; Mar, Arthur

    2009-11-15

    The polar intermetallic compound Ba{sub 5}Ti{sub 12}Sb{sub 19+x} (x<=0.2) has been synthesized by reaction of the elements. Single-crystal X-ray diffraction analysis revealed that it adopts a new structure type (Ba{sub 5}Ti{sub 12}Sb{sub 19.102(6)}, space group P43-barm, Z=2, a=12.4223(11) A, V=1916.9(3) A{sup 3}). The set of Ba and Sb sites corresponds to the structure of Cu{sub 9}Al{sub 4}, a gamma-brass type with a primitive cell. A complex three-dimensional framework of Ti atoms, in the form of linked planar Ti{sub 9} clusters, is stuffed within the gamma-brass-type Ba-Sb substructure. Notwithstanding its relationship to the gamma-brass structure, the compound does not appear to conform to the Hume-Rothery electron concentration rules. Band structure calculations on an idealized Ba{sub 5}Ti{sub 12}Sb{sub 19} model suggest that the availability of bonding states above the Fermi level is responsible for the partial occupation, but only to a limited degree, of an additional Sb site within the structure. Magnetic measurements indicated Pauli paramagnetic behaviour. - A gamma-brass substructure built up of Ba-Sb clusters is stuffed with planar Ti{sub 9} clusters.

  2. Effects of Bonding Wires and Epoxy Molding Compound on Gold and Copper Ball Bonds Intermetallic Growth Kinetics in Electronic Packaging

    NASA Astrophysics Data System (ADS)

    Gan, C. L.; Classe, F. C.; Chan, B. L.; Hashim, U.

    2014-04-01

    This paper discusses the influence of bonding wires and epoxy mold compounds (EMC) on intermetallic compound (IMC) diffusion kinetics and apparent activation energies ( E aa) of CuAl and AuAl IMCs in a fineline ball grid array package. The objective of this study is to study the CuAl and AuAl IMC growth rates with different epoxy mold compounds and to determine the apparent activation energies of different combination of package bills of materials. IMC thickness measurement has been carried out to estimate the coefficient of diffusion ( D o) and E aa various aging conditions of different EMCs and bonding wires. Apparent activation energies ( E aa) of both wire types were investigated after high temperature storage life tests (HTSL) for both molding compounds. Au bonds were identified to have faster IMC formation, compared to slower IMC growth of Cu. The E aa obtained for CuAl IMC diffusion kinetics are 1.08 and 1.04 eV with EMC A and EMC B, respectively. For AuAl IMC diffusion kinetics, the E aa obtained are 1.04 and 0.98 eV, respectively, on EMC A and EMC B. These values are close to previous HTSL studies conducted on Au and Cu ball bonds and are in agreement to the theory of HTSL performance of Au and Cu bonding wires.Overall, EMC B shows slightly lower apparent activation energy ( E aa) valueas in CuAl and AuAl IMCs. This proves that the different types of epoxy mold compounds have some influence on IMC growth rates.

  3. Permanent magnetism of intermetallic compounds between light and heavy transition-metal elements.

    PubMed

    Kumar, P; Kashyap, A; Balamurugan, B; Shield, J E; Sellmyer, D J; Skomski, R

    2014-02-12

    First-principle calculations are used to investigate the intrinsic magnetic properties of intermetallic alloys of the type XMn, where X is a 4d or 5d element and M is Fe or Co. Emphasis is on the hexagonal C14 Laves-phase 1:2 and 1:5 alloys, the latter crystallizing in the CaCu5 structure. These series are of interest in permanent magnetism from fundamental and practical viewpoints, respectively. In the former, the unit cells form a prototypical motif where a heavy atom with high spin-orbit coupling and magnetocrystalline anisotropy is surrounded by many somewhat smaller M atoms with high magnetization, and the latter are Laves-phase derivatives of renewed interest in permanent magnetism. Our DFT calculations predict magnetic moments, magnetizations and anisotropies, as well as formation energies. The results are analyzed across the 4d and 5d series, especially with respect to hybridization effects between 3d and 4d/5d bands. PMID:24469225

  4. Permanent magnetism of intermetallic compounds between light and heavy transition-metal elements

    SciTech Connect

    Kumar, P; Kashyap, A; Balamurugan, B; Shield, JE; Sellmyer, DJ; Skomski, R

    2014-01-27

    First-principle calculations are used to investigate the intrinsic magnetic properties of intermetallic alloys of the type XMn, where X is a 4d or 5d element and M is Fe or Co. Emphasis is on the hexagonal C14 Laves-phase 1:2 and 1:5 alloys, the latter crystallizing in the CaCu5 structure. These series are of interest in permanent magnetism from fundamental and practical viewpoints, respectively. In the former, the unit cells form a prototypical motif where a heavy atom with high spin-orbit coupling and magnetocrystalline anisotropy is surrounded by many somewhat smaller M atoms with high magnetization, and the latter are Laves-phase derivatives of renewed interest in permanent magnetism. Our DFT calculations predict magnetic moments, magnetizations and anisotropies, as well as formation energies. The results are analyzed across the 4d and 5d series, especially with respect to hybridization effects between 3d and 4d/5d bands.

  5. Complex fragment emission from hot compound nuclei

    SciTech Connect

    Moretto, L.G.

    1986-03-01

    The experimental evidence for compound nucleus emission of complex fragments at low energies is used to interpret the emission of the same fragments at higher energies. The resulting experimental picture is that of highly excited compound nuclei formed in incomplete fusion processes which decay statistically. In particular, complex fragments appear to be produced mostly through compound nucleus decay. In the appendix a geometric-kinematic theory for incomplete fusion and the associated momentum transfer is outlined. 10 refs., 19 figs.

  6. Alloy Design of Intermetallics for Protective Scale Formation and for Use as Precursors for Complex Ceramic Phase Surfaces

    SciTech Connect

    Brady, Michael P; Tortorelli, Peter F

    2004-01-01

    This paper highlights some evolving new design approaches to developing intermetallic alloys capable of protective scale formation and/or for their use as precursors for functional complex ceramic phase surface synthesis. The unique characteristics of intermetallics present challenges to achieving protective scale formation, but also offer the potential for leveraging novel phenomena not generally observed in conventional alloys. Examples will be drawn from the oxidation of aluminides (Fe{sub 3}Al, Nb{sub 2}Al, NbAl{sub 3}, Ti{sub 3}Al, TiAl), silicides (MoSi{sub 2}, Mo{sub 5}Si{sub 3}, Mo-Si-B, Ti{sub 5}Si{sub 3}), and Laves phases (Cr{sub 2}Nb, Cr{sub 2}Ta, Nb(Cr,Al){sub 2}, Ti(Cr,Al){sub 2}). Recent work also suggests that intermetallics can be used as precursors for the synthesis of functional complex ceramic phase surfaces by gas-metal reactions (oxidation, nitridation, carburization, etc.). The potential for using such reaction phenomena to synthesize layered or composite surfaces of ternary nitrides (carbides, borides, etc.) of technological interest such as Ti{sub 3}AlC{sub 2}, bimetallic nitride and carbide catalysts (e.g. Co{sub 3}Mo{sub 3}N or Co{sub 3}Mo{sub 3}C), and magnetic rare earth nitrides (Fe{sub 17}Sm{sub 2}N{sub x} or Fe{sub 17}Nd{sub 2}N{sub x}), from intermetallic precursors is discussed.

  7. Interdependent Intermetallic Compound Growth in an Electroless Ni-P/Sn-3.5Ag Reaction Couple

    NASA Astrophysics Data System (ADS)

    Kumar, Aditya; Chen, Zhong

    2011-02-01

    The interfacial microstructure of electroless Ni-P/Sn-3.5Ag solder joints was investigated after reflow and high-temperature solid-state aging to understand its interdependent growth mechanism and related kinetics of intermetallic compounds (IMCs) at the interface. The reflow and aging results showed that mainly three IMC layers, Ni3Sn4, Ni2SnP, and Ni3P, formed during the soldering reaction. It was found that the Ni3Sn4 and Ni3P layers grow predominantly as long as the electroless Ni-P layer is present; however, once the Ni-P layer is fully consumed, the Ni2SnP layer grows rapidly at the expense of the Ni3P layer. A transition in the Ni3Sn4 morphology from needle and chunky shape to scallop shape was observed after the solid-state aging of reflowed samples. The kinetics data obtained from the growth of compound layers in the aged samples revealed that initially the growth of the Ni2SnP layer is controlled by diffusion, and subsequently by the rate of reaction after the Ni-P metallization is fully consumed. It was found that complete transformation of the electroless Ni-P layer into a Ni3P layer results in the rapid growth of the Ni2SnP layer due to the dominating reaction of Sn with Ni3P. The apparent activation energies for the growth of Ni3Sn4, Ni2SnP, and Ni3P compound layers were found to be 98.9 kJ/mol, 42.2 kJ/mol, and 94.3 kJ/mol, respectively.

  8. Crystal structure and magnetic properties of the intermetallic compounds La2Co17-xMx (M = Nb, Mo, Mn)

    NASA Astrophysics Data System (ADS)

    Liu, Q. L.; Liang, J. K.; Huang, F.; Chen, Y.; Rao, G. H.; Chen, X. L.; G, Shen B.

    1999-12-01

    Novel ternary intermetallic compounds La2Co17-xMx (M = Nb,Mo,Mn) with Th2Zn17-type structure were synthesized and their homogeneous ranges were determined: 0.3icons/Journals/Common/leq" ALT="leq" ALIGN="TOP"/> xicons/Journals/Common/leq" ALT="leq" ALIGN="TOP"/>0.6 for Nb, 0.6icons/Journals/Common/leq" ALT="leq" ALIGN="TOP"/> xicons/Journals/Common/leq" ALT="leq" ALIGN="TOP"/>1.2 for Mo and 1.0icons/Journals/Common/leq" ALT="leq" ALIGN="TOP"/> xicons/Journals/Common/leq" ALT="leq" ALIGN="TOP"/>4.0 for Mn. The lattice parameters and the unit-cell volume increase with increasing x in all of the systems. The preferential occupancy of 6c crystallographic positions (dumb-bell sites) and the stabilization of these compounds by M atoms are attributed to the atomic-size and enthalpy effects. These compounds exhibit favourable uniaxial anisotropy with M content xicons/Journals/Common/geq" ALT="geq" ALIGN="TOP"/>0.5. The Curie temperature decreases monotonically with increasing x for all of the systems. The saturation moment µs decreases rapidly with increasing x for M = Mo and Nb. In the La2Co17-xMnx system, µs increases slightly with x for xicons/Journals/Common/leq" ALT="leq" ALIGN="TOP"/>2.5 and then decreases for x>2.5.

  9. A Study on the Effect of Ageing and Intermetallic Compound Growth on the Shear Strength of Surface Mount Technology Solder Joints

    NASA Astrophysics Data System (ADS)

    Nath, Jyotishman; Mallik, Sabuj; Borah, Anil

    2015-04-01

    The effect of ageing and intermetallic compound formation on the surface mount solder joints and its shear strength behavior under extreme mechanical and thermal conditions have been discussed in this paper. The specimens used are solder paste (Sn3.8Ag0.7Cu), bench marker II printed circuit boards (PCB), resistors 1206 and the fabrication of solder joints makes use of conventional surface mount technology (SMT). Reflow process was carried out at a peak temperature of 250 °C and the test samples were exposed to isothermal ageing at a constant temperature of 150 °C for a period of 600 h. Shear test was conducted on the PCB's. The shear strength of the solder joints rapidly increased during isothermal ageing to a certain time period and then started decreasing. Field emission scanning electron microscopy (FESEM) micrograph of the solder joint and energy dispersive X-ray (EDX) was performed on the solder sample to verify the formation of intermetallic compounds.

  10. Micromagnetic analysis of the hardening mechanisms of nanocrystalline MnBi and nanopatterned FePt intermetallic compounds.

    PubMed

    Kronmüller, H; Yang, J B; Goll, D

    2014-02-12

    The uniaxial intermetallic compounds of L10-FePt and the low temperature NiAs structure of MnBi are suitable alloys for application as high-density recording materials or as high-coercivity permanent magnets. Single domain particles of these materials are characterized by coercive fields above 1 T over a large temperature range. In particular MnBi shows a coercive field of 2 T at 450 K. Its extraordinary magnetic properties in the temperature range up to 600 K are due to an increase of the magnetocrystalline anisotropy constant from 1.2 MJ m(-3) at 300 K to 2.4 MJ m(-3) at 450 K. In spite of the large coercivities obtained for both type of materials their experimental values deviate considerably from the theoretical values Hc = 2K1/Js valid for a homogeneous rotation process in spherical particles. As is well known these discrepancies are due to the deteriorating effects of the microstructure. For an analysis of the coercive fields the Stoner-Wohlfarth theory has to be expanded with respect to higher anisotropy constants and to microstructural effects such as misaligned grains and grain surfaces with reduced anisotropy constants. It is shown that the temperature dependence and the angular dependence of Hc for FePt as well as MnBi can be quantitatively interpreted by taking into account the above mentioned intrinsic and microstructural effects. PMID:24469256

  11. Electrical and thermal transport properties of intermetallic RCoGe2 (R = Ce and La) compounds.

    PubMed

    Ramachandran, B; Chang, P C; Kuo, Y K; Lue, C S

    2014-06-25

    To investigate the electronic structure of the intermetallic compound CeCoGe2, we performed electrical resistivity (?), Seebeck coefficient (S), and thermal conductivity (?) measurements in a temperature range of 10-300?K. For comparison, the non-magnetic counterpart LaCoGe2 is also studied. It is found that CeCoGe2 exhibits a broad maximum in the S(T) near 75?K, at which the sudden drop in the ?(T) is observed. Temperature-dependent electrical resistivity and the Seebeck coefficient of CeCoGe2 can be described well by a two-band model, which reveals the signature of Kondo scattering in CeCoGe2. On the other hand, a typical metallic-like behavior is seen in the non-magnetic LaCoGe2 from the ?(T) and S(T) studies. Analysis of the thermal conductivity indicates that the electronic contribution dominates thermal transport above 100?K in both CeCoGe2 and LaCoGe2. In addition, it is found that the variation in low-temperature lattice thermal conductivity of CeCoGe2 as compared to that of LaCoGe2 is most likely due to the phonon-point-defect scattering. PMID:24861445

  12. In situ study on the effect of thermomigration on intermetallic compounds growth in liquid-solid interfacial reaction

    SciTech Connect

    Qu, Lin; Zhao, Ning; Ma, Haitao Zhao, Huijing; Huang, Mingliang

    2014-05-28

    Synchrotron radiation real-time imaging technology was carried out in situ to observe and characterize the effect of thermomigration on the growth behavior of interfacial intermetallic compounds (IMCs) in Cu/Sn/Cu solder joint during soldering. The thermomigration resulted in asymmetrical formation and growth of the interfacial IMCs. Cu{sub 6}Sn{sub 5} and Cu{sub 3}Sn IMCs formed at the cold end and grew rapidly during the whole soldering process. However, only Cu{sub 6}Sn{sub 5} IMC formed at the hot end and remained relatively thin until solidification. The IMCs at the cold end were nearly seven times thicker than that at the hot end after solidification. The Cu dissolution at the cold end was significantly restrained, while that at the hot end was promoted, which supplied Cu atoms to diffuse toward the cold end under thermomigration to feed the rapid IMC growth. Moreover, the thermomigration also caused asymmetrical morphology of the interfacial IMCs at the cooling stage, i.e., the Cu{sub 6}Sn{sub 5} IMC at the cold end transformed into facet structure, while that at the hot end remained scallop-type. The asymmetrical growth behavior of the interfacial IMCs was analyzed from the view point of kinetics.

  13. Synthesis, crystal structure, and magnetic properties of novel intermetallic compounds R2Co2SiC (R = Pr, Nd).

    PubMed

    Zhou, Sixuan; Mishra, Trinath; Wang, Man; Shatruk, Michael; Cao, Huibo; Latturner, Susan E

    2014-06-16

    The intermetallic compounds R2Co2SiC (R = Pr, Nd) were prepared from the reaction of silicon and carbon in either Pr/Co or Nd/Co eutectic flux. These phases crystallize with a new stuffed variant of the W2CoB2 structure type in orthorhombic space group Immm with unit cell parameters a = 3.978(4) Å, b = 6.094(5) Å, c = 8.903(8) Å (Z = 2; R1 = 0.0302) for Nd2Co2SiC. Silicon, cobalt, and carbon atoms form two-dimensional flat sheets, which are separated by puckered layers of rare-earth cations. Magnetic susceptibility measurements indicate that the rare earth cations in both analogues order ferromagnetically at low temperature (TC ? 12 K for Nd2Co2SiC and TC ? 20 K for Pr2Co2SiC). Single-crystal neutron diffraction data for Nd2Co2SiC indicate that Nd moments initially align ferromagnetically along the c axis around ?12 K, but below 11 K, they tilt slightly away from the c axis, in the ac plane. Electronic structure calculations confirm the lack of spin polarization for Co 3d moments. PMID:24898034

  14. In situ study on the effect of thermomigration on intermetallic compounds growth in liquid-solid interfacial reaction

    NASA Astrophysics Data System (ADS)

    Qu, Lin; Zhao, Ning; Ma, Haitao; Zhao, Huijing; Huang, Mingliang

    2014-05-01

    Synchrotron radiation real-time imaging technology was carried out in situ to observe and characterize the effect of thermomigration on the growth behavior of interfacial intermetallic compounds (IMCs) in Cu/Sn/Cu solder joint during soldering. The thermomigration resulted in asymmetrical formation and growth of the interfacial IMCs. Cu6Sn5 and Cu3Sn IMCs formed at the cold end and grew rapidly during the whole soldering process. However, only Cu6Sn5 IMC formed at the hot end and remained relatively thin until solidification. The IMCs at the cold end were nearly seven times thicker than that at the hot end after solidification. The Cu dissolution at the cold end was significantly restrained, while that at the hot end was promoted, which supplied Cu atoms to diffuse toward the cold end under thermomigration to feed the rapid IMC growth. Moreover, the thermomigration also caused asymmetrical morphology of the interfacial IMCs at the cooling stage, i.e., the Cu6Sn5 IMC at the cold end transformed into facet structure, while that at the hot end remained scallop-type. The asymmetrical growth behavior of the interfacial IMCs was analyzed from the view point of kinetics.

  15. Magnetic properties and magnetocaloric effects in Er1 - xGdxCoAl intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Gao, Xin-Qiang; Mo, Zhao-Jun; Shen, Jun; Li, Ke; Dai, Wei; Wu, Jian-Feng; Tang, Cheng-Chun

    2015-09-01

    The magnetism and magnetocaloric effect in Er1 - xGdxCoAl (x = 0, 0.1, 0.2, 0.4, 0.6, 0.8, 1) were investigated. The Er1 - xGdxCoAl compounds were synthesized by arc melting. With the increasing Gd content, the Néel temperature (TN) linearly increases from 14 K to 102 K, while the magnetic entropy change (-?SM) tends to decrease nonmonotonously. Under the field change from 0 T to 5 T, the -?SM of the compounds with x = 0.2-1 are stable around 10 J/kg ·K, then a cooling platform between 20 K and 100 K can be formed by combining these compounds. For x = 0.6, 0.8, 1.0, the compounds undergo two successive magnetic transitions, one antiferromagnetism to ferromagnetism and the other ferromagnetism to paramagnetism, with increasing temperature. The two continuous magnetic transitions in this series are advantageous to broaden the temperature span of half-peak width (?T) in the -?SM-T curve and improve the refrigeration capacity. Project supported by the National Natural Science Foundation of China (Grant Nos. 51322605 and 51271192).

  16. Thermal and Magnetic Properties in Ce1-xErxAl2 Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Ohashi, Masashi; Miyagawa, Hidenori; Nakano, Tomohito; Oomi, Gendo; Sechovský, Vladimir; Satoh, Isamu; Komatsubara, Takemi

    2014-02-01

    The magnetic and thermal properties of Ce1-xErxAl2 compounds have been studied using specific heat, dc magnetization, and ac susceptibility measurements. All these compounds are isomorphic with the MgCu2 Laves phase, and the lattice parameter decreases almost linearly with the increasing Er concentration x. The dc magnetic susceptibility follows the Curie-Weiss law, and the Weiss temperature continuously changes from ? = -24 K for x = 0 to ? = 15 K for x = 1, indicating a change from antiferro-magnetism to ferromagnetism. ? changes from negative to positive at around x = 0.2 where where a field-induced metamagnetic transition disappears. The magnetic ordering state continuously changes with the change in x from antiferromagnetic to ferromagnetic through a spin-glass-like behavior.

  17. Crystal structure of the inter­metallic compound SrCdPt

    PubMed Central

    Gulo, Fakhili; Köhler, Jürgen

    2014-01-01

    The crystal structure of the title compound, strontium cadmium platinum, adopts the TiNiSi structure type with the Sr atoms on the Ti, the Cd atoms on the Ni and the Pt atoms on the Si positions, respectively. The Pt atoms form cadmium-centred tetra­hedra that are condensed into a three-dimensional network with channels parallel to the b-axis direction in which the Sr atoms are located. The latter are bonded to each other in the form of six-membered rings with chair conformations. All atoms in the SrCdPt structure are situated on a mirror plane. PMID:25553000

  18. Polar intermetallic compounds of the silicon and arsenic family elements and their ternary hydrides and fluorides

    SciTech Connect

    Leon-Escamilla, E.A.

    1996-10-17

    An investigation has been made on the effects of hydrogen and fluoride in the solid state chemistry of alkaline-earth and divalent rare-earth metal pnictide (Pn) and tetrelide (Tt) phases A{sub 5}(Pn,Tt,){sub 3}Z{sub x}, where A = Ca, Sr, Ba, Sm, Eu, Yb; Pn = As, Sb, Bi; Tt = Si, Ge, Sn, Pb and Z = H, F. Several trivalent rare-earth-metal pnictides, RE{sub 5}Pn{sub 3} (RE = Y, La, Gd, Tb, Dy, Ho, Er, Tm) and alkaline-earth-metal trielides, A{sub 5}Tr{sub 3}Z{sub x} (Tr = Ga, In, Tl) have been included in an effort to complete observed structural trends. Two main experimental techniques were followed throughout this work, (a) reactions in absence of hydrogen or under continuous high vacuum, and (b) reactions with binary metal hydrides, AH{sub x}, in closed containers. The results demonstrate that all the phases reported with the {beta}-Yb{sub 5}Sb{sub 3}-type structure in the A{sub 5}Pn{sub 3} systems are hydrogen-stabilized compounds. Reactions in absence of hydrogen lead to compounds with the Mn{sub 5}Si{sub 3}-type structure. The structure type {beta}-Yb{sub 5}Sb{sub 3} (= Ca{sub 5}SB{sub 3}F) was found to be characteristic of ternary systems and inaccurately associated with phases that form in the Y{sub 5}Bi{sub 3}-type. A new series of isomorphous Zintl compounds with the Ca{sub 16}Sb{sub 11}-type structure were prepared and studied as well. All the alkaline-earth-metal tetrelides, A{sub 5}Tt{sub 3}, that crystallize in the Cr{sub 5}B{sub 3}-type structure can be interstitially derivatized by hydrogen or fluoride. Binary and ternary compounds were characterized by Guinier powder patterns, single crystal X-ray and powder neutron diffraction techniques. In an effort to establish property-structure relationships, electrical resistivity and magnetic measurements were performed on selected systems, and the results were explained in terms of the Zintl concepts, aided by extended Hueckel band calculations.

  19. Effect of Laser Processing Parameters on the Formation of Intermetallic Compounds in Fe-Al Dissimilar Welding

    NASA Astrophysics Data System (ADS)

    Meco, Sonia; Ganguly, Supriyo; Williams, Stewart; McPherson, Norman

    2014-09-01

    Fusion welding of steel to aluminum is difficult due to formation of different types of Fe-Al intermetallics (IMs). In this work, 2 mm-thick steel was joined to 6 mm aluminum in overlap configuration using a 8 kW CW fiber laser. A defocused laser beam was used to control the energy input and allow melting of the aluminum alone and form the bond by wetting of the steel substrate. Experimentally, the process energy was varied by changing the power density (PD) and interaction time separately to understand the influence of each of these parameters on the IM formation. It was observed that the IM formation is a complex function of PD and interaction time. It was also found that the mechanical strength of such joint could not be simply correlated to the IM layer thickness but also depends on the area of wetting of the steel substrate by molten aluminum. In order to form a viable joint, PD needs to be over a threshold value where although IM growth will increase, the strength will be better due to increased wetting. Any increase in interaction time, with PD over the threshold, will have negative effect on the bond strength.

  20. Ultrarapid formation of homogeneous Cu6Sn5 and Cu3Sn intermetallic compound joints at room temperature using ultrasonic waves.

    PubMed

    Li, Zhuolin; Li, Mingyu; Xiao, Yong; Wang, Chunqing

    2014-05-01

    Homogeneous intermetallic compound joints are demanded by the semiconductor industry because of their high melting point. In the present work, ultrasonic vibration was applied to Cu/Sn foil/Cu interconnection system at room temperature to form homogeneous Cu6Sn5 and Cu3Sn joints. Compared with other studies based on transient-liquid-phase soldering, the processing time of our method was dramatically reduced from several hours to several seconds. This ultrarapid intermetallic phase formation process resulted from accelerated interdiffusion kinetics, which can be attributed to the sonochemical effects of acoustic cavitation at the interface between the liquid Sn and the solid Cu during the ultrasonic bonding process. PMID:24279981

  1. Solid state phase equilibria and intermetallic compounds of the Al-Cr-Ho system

    SciTech Connect

    Pang, Mingjun; SAIC-GM-Wuling Automobile Co., Ltd., Liuzhou, Guangxi 545007 ; Zhan, Yongzhong; Du, Yong

    2013-02-15

    The solid state phase equilibria of the Al-Cr-Ho ternary system at 500 Degree-Sign C were experimentally investigated. The phase relations at 500 Degree-Sign C are governed by 14 three-phase regions, 29 two-phase regions and 15 single-phase regions. The existences of 10 binary compounds and 2 ternary phases have been confirmed. Al{sub 11}Cr{sub 2}, Al{sub 11}Cr{sub 4} and Al{sub 17}Ho{sub 2} were not found at 500 Degree-Sign C. Crystal structures of Al{sub 9}Cr{sub 4} and Al{sub 8}Cr{sub 4}Ho were determined by the Rietveld X-ray powder data refinement. Al{sub 9}Cr{sub 4} was found to exhibit cubic structure with space group I4-bar 3m (no. 217) and lattice parameters a=0.9107(5) nm. Al{sub 8}Cr{sub 4}Ho crystallizes in ThMn{sub 12} structure type with space group I4/mmm (no. 139) and lattice parameters a=0.8909(4) nm, c=0.5120(5) nm. It is concluded that the obtained Al{sub 4}Cr phase in this work should be {mu}-Al{sub 4}Cr by comparing with XRD pattern of the hexagonal {mu}-Al{sub 4}Mn compound. - Graphical abstract: The solid state phase equilibria of the Al-Cr-Ho ternary system at 500 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer Al-Cr-Ho system has been investigated. Black-Right-Pointing-Pointer Al{sub 9}Cr{sub 4} has cubic structure with space group I4-bar 3m. Black-Right-Pointing-Pointer Al{sub 8}Cr{sub 4}Ho crystallizes in ThMn{sub 12} type with space group I4/mmm. Black-Right-Pointing-Pointer Al{sub 4}Cr phase is {mu}-type at 500 Degree-Sign C.

  2. Investigation of strongly correlated electron behavior in uranium- and praseodymium-based intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Bauer, Eric Dietzgen

    The physical properties of several U- and Pr-based heavy fermion compounds have been investigated. Superconductivity has been observed in PrOs4Sb12 at TC = 1.85 K and appears to involve heavy fermion quasiparticles with an effective mass m* ˜ 50me as inferred from the jump in the specific heat at TC, the upper critical field near TC, and the normal state electronic specific heat. Thermodynamic and transport measurements suggest that the heavy fermion state has a quadrupolar origin. Electrical resistivity measurements under pressure have been made on ferromagnetic UGe2, UxPt1- x (0.50 ? x ? 0.54), and UIr compounds. Superconductivity coexists with ferromagnetism in UGe 2 between 8 kbar < P < 14 kbar with a maximum onset temperature of 1.2 K at P ˜ 13 kbar. These polycrystalline specimens have a residual resistivity rho0 up to ˜3 muOcm corresponding to an electron mean free path smaller than or of the order of the superconducting coherence length. These results suggest superconductivity in UGe2 may be s-wave in nature. The U xPt1-x materials order magnetically at TC1 ˜ 18 K and TC2 ˜ 27 K and the ordering temperatures exhibit a small pressure dependence. The Curie temperature of UIr, on the other hand, decreases from 47 K at ambient pressure to 27 K by 19 kbar. The URu2-xRe xSi2 system exhibits ferromagnetic (FM) order for Re concentrations 0.3 < x ? 1.0 and antiferromagnetic order for 0 ? x < 0.15. Magnetic measurements indicate the suppression of FM order occurs at xFMc = 0.3. The specific heat of samples with Re concentrations 0.15 < x ? 0.6 can be described by C/T ? - ln T at low temperatures, typical of many non-Fermi liquid (NFL) systems. The resistivity also exhibits an NFL power law T-dependence (rho(T) ? Tn) with an exponent n < 2 for 0.15 ? x < 0.8. The NFL behavior observed in the URu2- xRexSi2 system appears to be most consistent with proximity to a T = 0 K phase transition.

  3. Competing magnetic interactions in the intermetallic compounds Pr5Ge3 and Nd5Ge3

    NASA Astrophysics Data System (ADS)

    Nirmala, R.; Morozkin, A. V.; Nigam, A. K.; Lamsal, Jagat; Yelon, W. B.; Isnard, O.; Granovsky, S. A.; Bharathi, K. Kamala; Quezado, S.; Malik, S. K.

    2011-04-01

    Magnetic properties of polycrystalline Pr5Ge3 and Nd5Ge3 (hexagonal, Mn5Si3-type) compounds have been studied. Magnetization measurements in 0.5 T field indicate that the Pr5Ge3 orders antiferromagnetically at 18 K (TN). However, in an applied field of 10 mT, the zero-field-cooled and field-cooled magnetization bifurcates below ˜65 K. This and the positive paramagnetic Curie temperature, obtained from the Curie-Weiss fit to the paramagnetic susceptibility, suggest the presence of competing ferromagnetic and antiferromagnetic interactions. The magnetization versus field isotherm at 5 K shows an S-shaped curve and a weak tendency to saturation in fields of 9 T with negligible hysteresis. The magnetic moment attains a value of 1.6 ?B/Pr3+ at 5 K in 9 T. The magnetic entropy change near the magnetic transition has been calculated by measuring magnetization versus field isotherms close to TN. The entropy change is found to be considerably large. Neutron diffraction study indicates that below ˜43 K the Nd5Ge3 has flat spiral ordering with wave vector K = [0, 0, ±1/5] (the flat spiral axis coincides with cell parameter, a). Neutron diffraction study of Pr5Ge3 suggests that the magnetic structure of Pr5Ge3 could be similar to that in Nd5Ge3.

  4. Complex Compound Chemical Heat Pumps 

    E-print Network

    Rockenfeller, U.; Langeliers, J.; Horn, G.

    1987-01-01

    fluid component without heat amplifier and temperature amplifier type. hardware modification. These systems can be configured as single or dual The heat pump design is based on a heat of stage cycles. reaction chemisorption process operating... improvements can be performed as well. Heat Amplifier Cycles. The single-stage heat amplifier cycle Is shOwn in Figure 1. The process can be described as follows: 1->2 Complex B is heated with prime energy or high temperature waste heat at the generator...

  5. Photoemission study of the rare earth intermetallic compounds: (R)nickel-germanium (R) = europium, gadolinium

    NASA Astrophysics Data System (ADS)

    Park, Jongik

    The electronic structures of EuNi2Ge2 and GdNi 2Ge2 have been investigated using photoemission spectroscopy. The majority of the photoemission intensity near EF was due to the mostly Ni 3d states in both materials. CIS spectra were recorded at selected initial-state binding energies (BEs) across the excitation energy range of the Ni 3p threshold in EuNi 2Ge2. It is apparent that there is strong Ni d character throughout the valence band from CIS spectra. Resonance measurements of the Eu 4d?4f excitations in EuNi 2Ge2 reveal that Eu 4f states are localized around 2 eV below EF. It is observed that Gd 4 f peak in GdNi2Ge2 is more tightly bound by 6.4 eV than in Eu 4f peak in EuNi2Ge2. We have seen a resonant enhancement of the Ni 3d satellite at about 7.4 eV BE, indicating Ni 3d character around the Fermi edge in EuNi2Ge2. The Ni 3d partial spectral weights (PSW) from the Ni 3p?3d RPES measurements show that they are very close to the calculated Ni 3 d density of states for both materials. We have measured Constant-Final-State (CFS) and Constant-Initial-State (CIS) spectra in an attempt to check the valence of Eu ion in EuNi2Ge2 and it is verified as 2+. The measured CFS spectra of GdNi2Ge2 was almost same as those of EuNi2Ge2 and Gd metal, indicating that Gd ions in GdNi2Ge2 is trivalent with the same 4 f7 configuration as the Eu ion in EuNi2Ge 2. We present experimental energy bands mapped from normal-emission photoelectron spectra of EuNi2Ge2 and GdNi2Ge2 (001) surfaces using synchrotron radiation with increasing photon energies from 14 eV to 54 eV (to 44 eV in the case of GdNi2Ge2). Four and three major photoemission features disperse along the normal [001] Brillouin zone (BZ) direction in EuNi2Ge2 and GdNi 2Ge2 respectively, in good agreement with the band calculations. We studied quantitatively the effects of band filling on the electronic structures by observing a rigid-band shift of EF corresponding simply to an increase of one conduction electron upon going from EuNi 2Ge2 to GdNi2Ge2. Segments of the Fermi surfaces (FSs) were mapped by ARPES in the GammaXPZ plane of the Brillouin zones (BZs) for both EuNi2Ge2 and GdNi2Ge 2, which are in good agreement with band calculations. We studied how the FS is changed in the GammaXPZ planes of the BZ when one electron is added to EuNi2Ge2, corresponding to GdNi2Ge 2, based on the rigid-band approximation. In conclusion, these compounds which give the same Hund's rule ground state (8S7/2) were one of suitable systems for the study of effects of band filling on electric structure based on a rigid-band model as a first-order approximation.

  6. Physical Properties of the New Intermetallic Compound Pu2Ni3Si5 Paul H. Tobash, E. D. Bauer, F. Ronning, J. N. Mitchell, J. A. Kennison, B. L. Scott, J. D. Thompson

    E-print Network

    Physical Properties of the New Intermetallic Compound Pu2Ni3Si5 Paul H. Tobash, E. D. Bauer, F-containing compounds like in PuSb2 [2], PuCoGa5 [3], and PuRhGa5 [4] offers an avenue to study the origin

  7. Reorganizations of complex networks: Compounding and reducing

    NASA Astrophysics Data System (ADS)

    Shao, Fengjing; Sui, Yi

    2014-12-01

    Real networks interact with each other by different kinds of topological connections, which are usually demonstrated by linking nodes of different networks. Simple connection, such as one-to-one corresponding, random connection and similar connection are adopted for studying the interacted networks. Practical interrelations established between the two networks are ignored. In this study, a generalized framework of multi-subnet composited complex network that allowed us to investigate interrelations among several subnets is developed. Based on that, reorganizations of networks: compounding (compound subnets into a "bigger" one) and reducing (obtain a "smaller" network from a "bigger" one) are proposed. As an empirical evidence, influence of compounding on traffic dynamics is discussed. And the properties of nodes linking two networks are also considered. Onset of compounding between two networks is revealed. Numerical simulations on artificial networks as well as real bus and tube networks of Qingdao in China agree well with our analysis, which show validity of our model.

  8. Surface structures of In-Pd intermetallic compounds. I. Experimental study of In thin films on Pd(111) and alloy formation

    NASA Astrophysics Data System (ADS)

    McGuirk, G. M.; Ledieu, J.; Gaudry, É.; de Weerd, M.-C.; Fournée, V.

    2014-08-01

    A combination of experimental methods was used to study the structure of In thin films deposited on the Pd(111) surface and the alloying behavior. X-ray photoelectron spectroscopy (XPS), low-energy electron diffraction (LEED), and scanning tunneling microscopy results indicate that surface alloying takes place at room temperature. Below 2 monolayer equivalents (MLEs), the LEED patterns show the formation of three rotational domains of InPd(110) of poor structural quality on top of the Pd(111) substrate. Both core-levels and valence band XPS spectra show that the surface alloy does not yet exhibit the electronic structure characteristic of the 1:1 intermetallic compound under these conditions. Annealing the 1 MLE thin film up to 690 K yields to a transition from a multilayer InPd near-surface intermetallic phase to a monolayer-like surface alloy exhibiting a well ordered (?{3}× &sqrt{3}); {R30}° superstructure and an estimated composition close to In2Pd3. Annealing above 690 K leads to further In depletion and a (1 × 1) pattern is recovered. The (?{3}× ?{3}) {R30}° superstructure is not observed for thicker films. Successive annealing of the 2 MLE thin film leads the progressive disappearance of the InPd diffraction spots till a sharp (1 × 1) pattern is recovered above 690 K. In the high coverage regime (from 4 to 35 MLE), the formation of three rotational domains of a bcc-In7Pd3 compound with (110) orientation is observed. This In-rich phase probably grows on top of interfacial InPd(110) domains and is metastable. It transforms into a pure InPd(110) near-surface intermetallic phase in a temperature range between 500 and 600 K depending on the initial coverage. At this stage, the surface alloy exhibits core-level chemical shifts and valence band (VB) spectra identical to those of the 1:1 InPd intermetallic compound and resembling Cu-like density of states. Annealing at higher temperatures yields to a decrease of the In concentration in the near-surface region to about 20 at.% and a (1 × 1) LEED pattern is recovered.

  9. Surface structures of In-Pd intermetallic compounds. I. Experimental study of In thin films on Pd(111) and alloy formation.

    PubMed

    McGuirk, G M; Ledieu, J; Gaudry, É; de Weerd, M-C; Fournée, V

    2014-08-28

    A combination of experimental methods was used to study the structure of In thin films deposited on the Pd(111) surface and the alloying behavior. X-ray photoelectron spectroscopy (XPS), low-energy electron diffraction (LEED), and scanning tunneling microscopy results indicate that surface alloying takes place at room temperature. Below 2 monolayer equivalents (MLEs), the LEED patterns show the formation of three rotational domains of InPd(110) of poor structural quality on top of the Pd(111) substrate. Both core-levels and valence band XPS spectra show that the surface alloy does not yet exhibit the electronic structure characteristic of the 1:1 intermetallic compound under these conditions. Annealing the 1 MLE thin film up to 690 K yields to a transition from a multilayer InPd near-surface intermetallic phase to a monolayer-like surface alloy exhibiting a well ordered (?3×?3) R30(?) superstructure and an estimated composition close to In2Pd3. Annealing above 690 K leads to further In depletion and a (1 × 1) pattern is recovered. The (?3×?3) R30(?) superstructure is not observed for thicker films. Successive annealing of the 2 MLE thin film leads the progressive disappearance of the InPd diffraction spots till a sharp (1 × 1) pattern is recovered above 690 K. In the high coverage regime (from 4 to 35 MLE), the formation of three rotational domains of a bcc-In7Pd3 compound with (110) orientation is observed. This In-rich phase probably grows on top of interfacial InPd(110) domains and is metastable. It transforms into a pure InPd(110) near-surface intermetallic phase in a temperature range between 500 and 600?K depending on the initial coverage. At this stage, the surface alloy exhibits core-level chemical shifts and valence band (VB) spectra identical to those of the 1:1 InPd intermetallic compound and resembling Cu-like density of states. Annealing at higher temperatures yields to a decrease of the In concentration in the near-surface region to about 20 at.% and a (1 × 1) LEED pattern is recovered. PMID:25173025

  10. Surface structures of In-Pd intermetallic compounds. I. Experimental study of In thin films on Pd(111) and alloy formation

    SciTech Connect

    McGuirk, G. M.; Ledieu, J.; Gaudry, É.; Weerd, M.-C. de; Fournée, V.

    2014-08-28

    A combination of experimental methods was used to study the structure of In thin films deposited on the Pd(111) surface and the alloying behavior. X-ray photoelectron spectroscopy (XPS), low-energy electron diffraction (LEED), and scanning tunneling microscopy results indicate that surface alloying takes place at room temperature. Below 2 monolayer equivalents (MLEs), the LEED patterns show the formation of three rotational domains of InPd(110) of poor structural quality on top of the Pd(111) substrate. Both core-levels and valence band XPS spectra show that the surface alloy does not yet exhibit the electronic structure characteristic of the 1:1 intermetallic compound under these conditions. Annealing the 1 MLE thin film up to 690 K yields to a transition from a multilayer InPd near-surface intermetallic phase to a monolayer-like surface alloy exhibiting a well ordered (?(3)×?(3)) R30{sup ?} superstructure and an estimated composition close to In{sub 2}Pd{sub 3}. Annealing above 690 K leads to further In depletion and a (1 × 1) pattern is recovered. The (?(3)×?(3)) R30{sup ?} superstructure is not observed for thicker films. Successive annealing of the 2 MLE thin film leads the progressive disappearance of the InPd diffraction spots till a sharp (1 × 1) pattern is recovered above 690 K. In the high coverage regime (from 4 to 35 MLE), the formation of three rotational domains of a bcc-In{sub 7}Pd{sub 3} compound with (110) orientation is observed. This In-rich phase probably grows on top of interfacial InPd(110) domains and is metastable. It transforms into a pure InPd(110) near-surface intermetallic phase in a temperature range between 500 and 600?K depending on the initial coverage. At this stage, the surface alloy exhibits core-level chemical shifts and valence band (VB) spectra identical to those of the 1:1 InPd intermetallic compound and resembling Cu-like density of states. Annealing at higher temperatures yields to a decrease of the In concentration in the near-surface region to about 20 at.% and a (1 × 1) LEED pattern is recovered.

  11. Complex Magnetism of Lanthanide Intermetallics and the Role of their Valence Electrons: Ab Initio Theory and Experiment.

    PubMed

    Petit, L; Paudyal, D; Mudryk, Y; Gschneidner, K A; Pecharsky, V K; Lüders, M; Szotek, Z; Banerjee, R; Staunton, J B

    2015-11-13

    We explain a profound complexity of magnetic interactions of some technologically relevant gadolinium intermetallics using an ab initio electronic structure theory which includes disordered local moments and strong f-electron correlations. The theory correctly finds GdZn and GdCd to be simple ferromagnets and predicts a remarkably large increase of Curie temperature with a pressure of +1.5?K?kbar^{-1} for GdCd confirmed by our experimental measurements of +1.6??K?kbar^{-1}. Moreover, we find the origin of a ferromagnetic-antiferromagnetic competition in GdMg manifested by noncollinear, canted magnetic order at low temperatures. Replacing 35% of the Mg atoms with Zn removes this transition, in excellent agreement with long-standing experimental data. PMID:26613466

  12. Complex Magnetism of Lanthanide Intermetallics and the Role of their Valence Electrons: Ab Initio Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Petit, L.; Paudyal, D.; Mudryk, Y.; Gschneidner, K. A.; Pecharsky, V. K.; Lüders, M.; Szotek, Z.; Banerjee, R.; Staunton, J. B.

    2015-11-01

    We explain a profound complexity of magnetic interactions of some technologically relevant gadolinium intermetallics using an ab initio electronic structure theory which includes disordered local moments and strong f -electron correlations. The theory correctly finds GdZn and GdCd to be simple ferromagnets and predicts a remarkably large increase of Curie temperature with a pressure of +1.5 K kbar-1 for GdCd confirmed by our experimental measurements of +1.6 K kbar-1 . Moreover, we find the origin of a ferromagnetic-antiferromagnetic competition in GdMg manifested by noncollinear, canted magnetic order at low temperatures. Replacing 35% of the Mg atoms with Zn removes this transition, in excellent agreement with long-standing experimental data.

  13. Structural, stability and electronic properties of C15-AB2 (A = Ti, Zr; B = Cr) intermetallic compounds and their hydrides: An ab initio study

    NASA Astrophysics Data System (ADS)

    Sarhaddi, Reza; Arabi, Hadi; Pourarian, Faiz

    2014-05-01

    The structural, stability and electronic properties of C15-AB2 (A = Ti, Zr; B = Cr) isomeric intermetallic compounds were systematically investigated by using density functional theory (DFT) and plane-wave pseudo-potential (PW-PP) method. The macroscopic properties including the lattice constant, bulk modulus and stability for these compounds were studied before and after hydrogenation. For parent compounds, the enthalpy of formation was evaluated with regard to their bulk modules and electronic structures. After hydrogenation of compounds at different interstitial tetrahedral sites (A2B2, A1B3, B4), a volume expansion was found for hydrides. The stability properties of hydrides characterized the A2B2 sites as the site preference of hydrogen atoms for both compounds. The Miedema's "reverse stability" rule is also satisfied in these compounds as lower the enthalpy of formation for the host compound, the more stable the hydride. Analysis of microscopic properties (electronic structures) after hydrogenation at more stable interstitial site (A2B2) shows that the H atoms interact stronger with the weaker (or non) hydride forming element B (Cr) than the hydride forming element A (Ti/Zr). A correlation was also found between the stability of the hydrides and their electronic structure: the deeper the hydrogen band, the less stable the hydride.

  14. Effect of AL Content on Microstructure and Properties of AN Intermetallic Ni-Ti (Al) COMPOUND/Ni Graded Coating Deposited on Copper Substrate

    NASA Astrophysics Data System (ADS)

    Wang, Hongxing; Chu, Chenglin; Sheng, Xiaobo; Lin, Pinhua; Dong, Yinsheng

    Copper and its alloys with high electrical and thermal conductivity are a group of widely used engineering materials in numerous applications. In order to improve the tribological properties of copper substrate, an electroplating nickel layer was firstly deposited on copper substrate, subsequently these electroplated specimens were treated by slurry pack cementation process at 900°C for 12 h using a slurry mixture composed of TiO2 as titanizing source, pure Al powder as aluminzing source and also a reducer for titanizing, an activator of NH4Cl and albumen (egg white) as cohesive agent. The effect of Al content on the microstructure and the properties of the coating has been studied. The results showed that an intermetallic Ni-Ti (Al) compound/Ni graded layer was formed on copper substrate after slurry pack cementation process. With the rise of Al content in slurry mixture, the microhardness of the graded coating increased and the friction coefficient decreased from 0.35 to 0.18, at the same time, the slurry pack process gradually transited from the titanizing process to an aluminizing one. Correspondingly the main phases of the coating were changed from Ni-Ti intermetallic compounds into Ni-Al ones.

  15. Interfacial reaction of intermetallic compounds of ultrasonic-assisted brazed joints between dissimilar alloys of Ti6Al4V and Al4Cu1Mg.

    PubMed

    Ma, Zhipeng; Zhao, Weiwei; Yan, Jiuchun; Li, Dacheng

    2011-09-01

    Ultrasonic-assisted brazing of Al4Cu1Mg and Ti6Al4V using Zn-based filler metal (without and with Si) has been investigated. Before brazing, the Ti6Al4V samples were pre-treated by hot-dip aluminizing and ultrasonic dipping in a molten filler metal bath in order to control the formation of intermetallic compounds between the Ti6Al4V samples and the filler metal. The results show that the TiAl(3) phase was formed in the interface between the Ti6Al4V substrate and the aluminized coating. For the Zn-based filler metal without Si, the Ti6Al4V interfacial area of the brazed joint did not change under the effect of the ultrasonic wave, and only consisted of the TiAl(3) phase. For the Zn-based filler metal with Si, the TiAl(3) phase disappeared and a Ti(7)Al(5)Si(12) phase was formed at the interfacial area of the brazed joints under the effect of the ultrasonic wave. Due to the TiAl(3) phase completely changing to a Ti(7)Al(5)Si(12) phase, the morphology of the intermetallic compounds changed from a block-like shape into a lamellar-like structure. The highest shear strength of 138MPa was obtained from the brazed joint free of the block-like TiAl(3) phase. PMID:21489846

  16. First-principles characterization of the anisotropy of theoretical strength and the stress-strain relation for a TiAl intermetallic compound.

    PubMed

    Zhou, Hong-Bo; Zhang, Ying; Liu, Yue-Lin; Kohyama, Masanori; Yin, Peng-Gang; Lu, Guang-Hong

    2009-04-29

    We perform first-principles computational tensile and compressive tests (FPCTT and FPCCT) to investigate the intrinsic bonding and mechanical properties of a ?-TiAl intermetallic compound (L 1(0) structure) using a first-principles total energy method. We found that the stress-strain relations and the corresponding theoretical tensile strengths exhibit strong anisotropy in the [001], [100] and [110] crystalline directions, originating from the structural anisotropy of ?-TiAl. Thus, ?-TiAl is a representative intermetallic compound that includes three totally different stress-strain modes. We demonstrate that all the structure transitions in the FPCTT and FPCCT result from the breakage or formation of bonds, and this can be generalized to all the structural transitions. Furthermore, based on the calculations we qualitatively show that the Ti-Al bond should be stronger than the Ti-Ti bond in ?-TiAl. Our results provide a useful reference for understanding the intrinsic bonding and mechanical properties of ?-TiAl as a high-temperature structural material. PMID:21825422

  17. First-principles characterization of the anisotropy of theoretical strength and the stress-strain relation for a TiAl intermetallic compound

    NASA Astrophysics Data System (ADS)

    Zhou, Hong-Bo; Zhang, Ying; Liu, Yue-Lin; Kohyama, Masanori; Yin, Peng-Gang; Lu, Guang-Hong

    2009-04-01

    We perform first-principles computational tensile and compressive tests (FPCTT and FPCCT) to investigate the intrinsic bonding and mechanical properties of a ?-TiAl intermetallic compound (L 10 structure) using a first-principles total energy method. We found that the stress-strain relations and the corresponding theoretical tensile strengths exhibit strong anisotropy in the [001], [100] and [110] crystalline directions, originating from the structural anisotropy of ?-TiAl. Thus, ?-TiAl is a representative intermetallic compound that includes three totally different stress-strain modes. We demonstrate that all the structure transitions in the FPCTT and FPCCT result from the breakage or formation of bonds, and this can be generalized to all the structural transitions. Furthermore, based on the calculations we qualitatively show that the Ti-Al bond should be stronger than the Ti-Ti bond in ?-TiAl. Our results provide a useful reference for understanding the intrinsic bonding and mechanical properties of ?-TiAl as a high-temperature structural material.

  18. Revealing Fe magnetism in lanthanide-iron intermetallic compounds by tuning the rare-earth L{sub 2,3}-edge x-ray absorption edges

    SciTech Connect

    Laguna-Marco, M.A.; Maruyama, H.; Ishimatsu, N.; Kawamura, N.; Takagaki, M.; Suzuki, M.

    2005-08-01

    We present a systematic x-ray magnetic circular dichroism (XMCD) study performed at the rare-earth L{sub 2,3} edges in R(Al{sub 1-x}Fe{sub x}){sub 2} Laves phase compounds. The progressive substitution of Al by Fe reveals the existence of a non-negligible contribution of Fe to the rare-earth XMCD spectra. This contribution has been isolated and shown to be similar to the dichroic spectrum recorded at the Fe K edge. These results open the possibility of monitoring the Fe magnetism in lanthanides-iron intermetallic compounds by probing the rare-earth L{sub 2,3}-edge x-ray absorption edges.

  19. Comparison of Sn-Ag-Cu Solder Alloy Intermetallic Compound Growth Under Different Thermal Excursions for Fine-Pitch Flip-Chip Assemblies

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Liu, Xi; Chow, Justin; Wu, Yi Ping; Sitaraman, Suresh K.

    2013-08-01

    The intermetallic compound (IMC) evolution in Cu pad/Sn-Ag-Cu solder interface and Sn-Ag-Cu solder/Ni pad interface was investigated using thermal shock experiments with 100- ?m-pitch flip-chip assemblies. The experiments show that low standoff height of solder joints and high thermomechanical stress play a great role in the interfacial IMC microstructure evolution under thermal shock, and strong cross-reaction of pad metallurgies is evident in the intermetallic growth. Furthermore, by comparing the IMC growth during thermal aging and thermal shock, it was found that thermal shock accelerates IMC growth and that kinetic models based on thermal aging experiments underpredict IMC growth in thermal shock experiments. Therefore, new diffusion kinetic parameters were determined for the growth of (Cu,Ni)6Sn5 using thermal shock experiments, and the Cu diffusion coefficient through the IMC layer was calculated to be 0.2028 ?m2/h under thermal shock. Finite-element models also show that the solder stresses are higher under thermal shock, which could explain why the IMC growth is faster and greater under thermal shock cycling as opposed to thermal aging.

  20. Magnetic and magnetocaloric properties of rare earth intermetallic compounds HoCo2-xNix (x=0.75 and 1.25)

    NASA Astrophysics Data System (ADS)

    Mondal, Rajib; Nirmala, R.; Arout Chelvane, J.; Nigam, A. K.

    2014-09-01

    Magnetic and magnetocaloric properties of polycrystalline rare earth intermetallic compounds HoCo2-xNix (x=0.75 and 1.25) have been investigated. Both HoCo1.25Ni0.75 and HoCo0.75Ni1.25 compounds crystallize in MgCu2 type, cubic Laves phase structure (space group Fd3barm, no. 227) and order ferromagnetically at ~40 K and ~36 K (TC) respectively. Field dependent magnetization at 5 K shows soft ferromagnetic behavior. The saturation magnetization value is about 8.5 ?B/f.u. for both compounds. Magnetocaloric effect in HoCo2-xNix (x=0.75 and 1.25) compounds has been evaluated in terms of isothermal magnetic entropy change (?Sm) that peaks around TC with maximum values of about -16.7 J/kg K and -15.2 J/kg K, respectively, for a field change of 70 kOe. Substitution of Ni at the Co-site of HoCo2 broadens the magnetic transition and enhances relative cooling power which makes these materials suitable for low temperature magnetic refrigeration applications.

  1. Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn-Ag-Cu/Cu solder joint during different thermal conditions

    NASA Astrophysics Data System (ADS)

    Tan, Ai Ting; Tan, Ai Wen; Yusof, Farazila

    2015-06-01

    Nanocomposite lead-free solders are gaining prominence as replacements for conventional lead-free solders such as Sn-Ag-Cu solder in the electronic packaging industry. They are fabricated by adding nanoparticles such as metallic and ceramic particles into conventional lead-free solder. It is reported that the addition of such nanoparticles could strengthen the solder matrix, refine the intermetallic compounds (IMCs) formed and suppress the growth of IMCs when the joint is subjected to different thermal conditions such as thermal aging and thermal cycling. In this paper, we first review the fundamental studies on the formation and growth of IMCs in lead-free solder joints. Subsequently, we discuss the effect of the addition of nanoparticles on IMC formation and their growth under several thermal conditions. Finally, an outlook on the future growth of research in the fabrication of nanocomposite solder is provided.

  2. Investigation of modification of hydrogenation and structural properties of LaNi{sub 5} intermetallic compound induced by substitution of Ni by Pd

    SciTech Connect

    Prigent, J.; Joubert, J.-M.; Gupta, M.

    2011-01-15

    The hydrogenation properties of the LaNi{sub 5} (CaCu{sub 5} type, hP6, P6/mmm) and Pd substituted derivatives LaNi{sub 5-x}Pd{sub x} compounds have been studied in the whole homogeneity range of the solid solution (0.25{<=}x{<=}1.5). The pressure versus hydrogen content isotherms show several plateaus and an increase of the plateau pressure as a function of palladium concentration. The volume increase of the Pd substituted alloys should have resulted in a lowering, and not an increase, of the plateau pressure, according to the conventional models based on the size effect. In order to elucidate the origin of this anomalous behavior, both an experimental and a theoretical ab initio electronic structure investigation have been carried out. Experimentally, the nature and the structural properties of the hydrides have been studied by both in situ and ex situ neutron diffraction. The crystal structures of the three hydride phases are reported (LaNi{sub 3.5}Pd{sub 1.5}D{sub 1.96}, filled-up CaCu{sub 5} type, P6/mmm; LaNi{sub 4}PdD{sub 2.72}, LaNi{sub 2}(Ni{sub 0.75}Pt{sub 0.25}){sub 3}H{sub 2.61} type, oI128, Ibam; LaNi{sub 4.75}Pd{sub 0.25}D{sub 5.67}, partly ordered CaCu{sub 5} type, P6mm). In addition, the phase diagram of LaNi{sub 5-x}Pd{sub x}-H system has been investigated. The electronic and thermodynamic properties of both intermetallic compounds and the hydrides have been studied by ab initio electronic structure calculations. The theoretical results are in good agreement with our experimental data, and show that electronic interactions play a major role in the hydrogenation behavior of these Pd substituted intermetallic compounds, and that these effects cannot be accounted for by a simplistic model based on the size effect alone. -- Graphical abstract: Phase diagram of the system LaNi{sub 5-x}Pd{sub x}-D{sub 2} (absorption) at 25 {sup o}C and 25 bar. Display Omitted

  3. Anisotropy in the paramagnetic phase of RAl/sub 2/ cubic intermetallic compounds (R = Tb, Dy, and Er)

    SciTech Connect

    del Moral, A.; Ibarra, M.R.; Abell, J.S.; Montenegro, J.F.D.

    1987-05-01

    In this paper it is shown that the anisotropy in the paramagnetic phase is a useful characteristic when used to single out high-rank susceptibility tensor components in the paramagnetic regime of cubic crystals. Application of this technique to RAl/sub 2/ compounds (R = Tb,Dy,Er) allows the determination of longitudinal and transverse (in the form of linear combinations) fourth- and sixth-rank paramagnetic susceptibilities. The use of the fourth-rank longitudinal susceptibility allows quadrupolar pair interactions in these compounds to be probed.

  4. The effect of intermetallic compound evolution on the fracture behavior of Au stud bumps joined with Sn-3.5Ag solder

    NASA Astrophysics Data System (ADS)

    Lee, Young-Kyu; Ko, Yong-Ho; Kim, Jun-Ki; Lee, Chang-Woo; Yoo, Sehoon

    2013-01-01

    The microstructure and joint properties of Au stud bumps joined with Sn-3.5Ag solder were investigated as functions of flip chip bonding temperature and aging time. Au stud bumps were bonded on solder-onpad (SOP) at bonding temperature of 260°C and 300°C for 10 s, respectively. Aging treatment was carried out at 150°C for 100 h, 300 h, and 500 h, respectively. After flip chip bonding, intermetallic compounds (IMCs) of AuSn, AuSn2, and AuSn4 were formed at the interface between the Au stud bump and Sn-3.5Ag solder. At a bonding temperature of 300°C, AuSn2 IMC clusters, which were surrounded by AuSn4 IMCs, were observed in the Sn-3.5Ag solder bump. After flip chip bonding, bonding strength was approximately 220.5mN/bump. As aging time increased, the bonding strength decreased. After 100 h of aging treatment, the bonding strength of the joint bonded at 300°C was lower than that bonded at 260°C due to the fast growth rate of the AuSn2 IMCs. The main failure modes were interface fractures between the AuSn2 IMCs and AuSn4 IMCs, fractures through the AuSn2 IMCs and pad lift. Initial joint microstructures after flip chip bonding strongly affected the bonding strengths of aged samples.

  5. Growth kinetics of Cu6Sn5 intermetallic compound at liquid-solid interfaces in Cu/Sn/Cu interconnects under temperature gradient

    NASA Astrophysics Data System (ADS)

    Zhao, N.; Zhong, Y.; Huang, M. L.; Ma, H. T.; Dong, W.

    2015-08-01

    The growth behavior of intermetallic compounds (IMCs) at the liquid-solid interfaces in Cu/Sn/Cu interconnects during reflow at 250?°C and 280?°C on a hot plate was investigated. Being different from the symmetrical growth during isothermal aging, the interfacial IMCs showed clearly asymmetrical growth during reflow, i.e., the growth of Cu6Sn5 IMC at the cold end was significantly enhanced while that of Cu3Sn IMC was hindered especially at the hot end. It was found that the temperature gradient had caused the mass migration of Cu atoms from the hot end toward the cold end, resulting in sufficient Cu atomic flux for interfacial reaction at the cold end while inadequate Cu atomic flux at the hot end. The growth mechanism was considered as reaction/thermomigration-controlled at the cold end and grain boundary diffusion/thermomigration-controlled at the hot end. A growth model was established to explain the growth kinetics of the Cu6Sn5 IMC at both cold and hot ends. The molar heat of transport of Cu atoms in molten Sn was calculated as?+?11.12?kJ/mol at 250?°C and?+?14.65?kJ/mol at 280?°C. The corresponding driving force of thermomigration in molten Sn was estimated as 4.82?×?10-19 N and 6.80?×?10-19 N.

  6. Hyperfine field at Mn in the intermetallic compound LaMnSi2 measured by PAC using 111Cd nuclear probe

    NASA Astrophysics Data System (ADS)

    Domienikan, C.; Bosch-Santos, B.; Cabrera Pasca, G. A.; Saxena, R. N.; Carbonari, A. W.

    2015-04-01

    Magnetic hyperfine field at Mn site has been measured in the orthorhombic intermetallic compound LaMnSi2 with PAC spectroscopy using radioactive 111In- 111Cd nuclear probe. Samples of LaMnSi2 were prepared by melting pure metallic components in stoichiometric proportion in an arc furnace under argon atmosphere. The samples were sealed in a quartz tube under helium atmosphere, annealed at 1000 °C for 60 h and quenched in water. Samples were analyzed with X-ray diffraction method. 111In was introduced in the samples by thermal diffusion at 1000 °C for 60 h. PAC measurements were carried out with a six BaF2 detector spectrometer at several temperatures between 50 K and 410 K. Results show well defined quadrupole and magnetic interactions at all temperatures. The magnetic hyperfine field (Bhf) measured at 50 K is 7.1(1) T. The temperature dependence of Bhf follows the normal Brillouin-like behavior expected for a simple ferromagnetic ordering. The ferromagnetic transition temperature (Tc) was determined to be 401(1) K.

  7. Growth kinetics of Cu6Sn5 intermetallic compound at liquid-solid interfaces in Cu/Sn/Cu interconnects under temperature gradient

    PubMed Central

    Zhao, N.; Zhong, Y.; Huang, M.L.; Ma, H.T.; Dong, W.

    2015-01-01

    The growth behavior of intermetallic compounds (IMCs) at the liquid-solid interfaces in Cu/Sn/Cu interconnects during reflow at 250?°C and 280?°C on a hot plate was investigated. Being different from the symmetrical growth during isothermal aging, the interfacial IMCs showed clearly asymmetrical growth during reflow, i.e., the growth of Cu6Sn5 IMC at the cold end was significantly enhanced while that of Cu3Sn IMC was hindered especially at the hot end. It was found that the temperature gradient had caused the mass migration of Cu atoms from the hot end toward the cold end, resulting in sufficient Cu atomic flux for interfacial reaction at the cold end while inadequate Cu atomic flux at the hot end. The growth mechanism was considered as reaction/thermomigration-controlled at the cold end and grain boundary diffusion/thermomigration-controlled at the hot end. A growth model was established to explain the growth kinetics of the Cu6Sn5 IMC at both cold and hot ends. The molar heat of transport of Cu atoms in molten Sn was calculated as?+?11.12?kJ/mol at 250?°C and?+?14.65?kJ/mol at 280?°C. The corresponding driving force of thermomigration in molten Sn was estimated as 4.82?×?10?19 N and 6.80?×?10?19 N. PMID:26311323

  8. Perpendicular Growth Characteristics of Cu-Sn Intermetallic Compounds at the Surface of 99Sn-1Cu/Cu Solder Interconnects

    NASA Astrophysics Data System (ADS)

    Chen, Zhiwen; Liu, Changqing; Wu, Yiping; An, Bing

    2015-12-01

    The growth of intermetallic compounds (IMCs) on the free surface of 99Sn-1Cu solder joints perpendicular to the interdiffusion direction has been investigated in this work. The specimens were specifically designed and polished to reveal a flat free surface at the solder/Cu interface for investigation. After aging at 175°C for progressively increased durations, the height of the perpendicular IMCs was examined and found to follow a parabolic law with aging duration that could be expressed as y = 0.11? t, where t is the aging duration in hours and y is the height of the perpendicular IMCs in ?m. For comparison, the planar growth of IMCs along the interdiffusion direction was also investigated in 99Sn-1Cu/Cu solder joints. After prolonged aging at 175°C, the thickness of the planar interfacial IMC layers also increased parabolically with aging duration and could be expressed as h_{{IMC}} = 0.27? t + 4.6, where h is the thickness in ?m and t is the time in hours. It was found that both the planar and perpendicular growth of the IMCs were diffusion-controlled processes, but the perpendicular growth of the IMCs was much slower than their planar growth due to the longer diffusion distance. It is proposed that Cu3Sn forms prior to the formation of Cu6Sn5 in the perpendicular IMCs, being the reverse order compared with the planar IMC growth.

  9. Large magnetic entropy change and relative cooling power in the rare earth intermetallic HoCo0.25Ni1.75 compound

    NASA Astrophysics Data System (ADS)

    Mondal, Rajib; Nirmala, R.; Arout Chelvane, J.; Malik, S. K.

    2015-11-01

    Magnetic and magnetocaloric properties of cubic Laves phase rare earth intermetallic HoCo0.25Ni1.75 compound have been investigated. Magnetization measurements show that HoCo0.25Ni1.75 orders ferromagnetically at 22 K (TC). The magnetization vs field (M-?0H) isotherm at 2 K shows negligible hysteresis. The isothermal magnetic entropy change (?Sm) is calculated from the measured M-?0H data near TC. The maximum value of ?Sm, ?Smmax, is about -18.9 J/kg-K at TC for a field change of 5 T with a refrigerant capacity of 572 J/kg. The material exhibits large ?Smmax of -9.4 J/kg-K even for a low field change of 2 T. Universal master curve is constructed by rescaling ?Sm vs T curves for various fields to confirm the second order nature of the magnetic transition at TC. Large ?Smmax value, wide temperature span of cooling and high relative cooling power make HoCo0.25Ni1.75 a potential magnetic refrigerant for low temperature applications such as hydrogen liquefaction.

  10. Growth kinetics of Cu6Sn5 intermetallic compound at liquid-solid interfaces in Cu/Sn/Cu interconnects under temperature gradient.

    PubMed

    Zhao, N; Zhong, Y; Huang, M L; Ma, H T; Dong, W

    2015-01-01

    The growth behavior of intermetallic compounds (IMCs) at the liquid-solid interfaces in Cu/Sn/Cu interconnects during reflow at 250?°C and 280?°C on a hot plate was investigated. Being different from the symmetrical growth during isothermal aging, the interfacial IMCs showed clearly asymmetrical growth during reflow, i.e., the growth of Cu6Sn5 IMC at the cold end was significantly enhanced while that of Cu3Sn IMC was hindered especially at the hot end. It was found that the temperature gradient had caused the mass migration of Cu atoms from the hot end toward the cold end, resulting in sufficient Cu atomic flux for interfacial reaction at the cold end while inadequate Cu atomic flux at the hot end. The growth mechanism was considered as reaction/thermomigration-controlled at the cold end and grain boundary diffusion/thermomigration-controlled at the hot end. A growth model was established to explain the growth kinetics of the Cu6Sn5 IMC at both cold and hot ends. The molar heat of transport of Cu atoms in molten Sn was calculated as?+?11.12?kJ/mol at 250?°C and?+?14.65?kJ/mol at 280?°C. The corresponding driving force of thermomigration in molten Sn was estimated as 4.82?×?10(-19) N and 6.80?×?10(-19) N. PMID:26311323

  11. Evolution of the Intermetallic Compounds in Ni/Sn-2.5Ag/Ni Microbumps for Three-Dimensional Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Hsu, H. H.; Huang, Y. T.; Huang, S. Y.; Chang, T. C.; Wu, Albert T.

    2015-10-01

    Ni/Sn-2.5Ag/Ni samples were used to simulate the microbumps in three-dimensional (3D) packaging. The annealed test was adopted to observe the microstructure of intermetallic compound formation at 100°C, 125°C, and 150°C up to 1000 h. In the Ni/Sn-2.5Ag/Ni, predominant phases of layer-type Ni3Sn4 and Ag3Sn particles could be seen under the thermal treatment. The formation of Ni3Sn4 followed a parabolic rate law at each aging temperature. Due to the limited solder volume, the remaining solder of the microbump was completely exhausted after long-time annealing at 150°C. The activation energy for Ni3Sn4 formation in the Ni/Sn-2.5Ag/Ni microbump was 171.8 kJ/mol. Furthermore, the consumption of the Ni under bump metallization (UBM) was estimated based on the mass balance of Ni atoms during the interfacial reaction.

  12. Electron diffraction study on the crystal structure of a ternary intermetallic compound Co{sub 3}AlC{sub x}

    SciTech Connect

    Mishima, Yoshinao; Hwang, K.Y.; Wei, F.G.

    1999-07-01

    Intermetallic compound Co{sub 3}AlC{sub x}, or called {kappa}-phase, has been reported to assume the E2{sub 1}, or Perovskite structure. In the present work its crystal structure is critically reinvestigated in the two-phase alloys containing {kappa}-phase in the Co primary solid solution matrix, {alpha}(Co), using conventional electron diffraction. It is shown that the crystal structure of {kappa}-phase is a derivative of E2{sub 1} being a cubic structure composed of eight E2{sub 1} sub-unit cells in a half of which the body center sites are not occupied by carbon atoms. As a result, its space group is Fm3m and the chemical formula should be Co{sub 3}AlC{sub 0.5}. It is also found that the lattice parameter of the phase is about twice as large as that of {alpha}(Co). Orientation relationship of the {kappa}-phase with the matrix {alpha}(Co) is found to be similar to the case for the {gamma}{prime} phase with the fcc {gamma} matrix in a Ni-base superalloy since three orthogonal axes of {kappa}-phase are parallel to those of {alpha}(Co). Lattice misfit under this orientation relationship between the two phases is found to be about 2.5%.

  13. Growth Behavior of Intermetallic Compounds in Cu/Sn3.0Ag0.5Cu Solder Joints with Different Rates of Cooling

    NASA Astrophysics Data System (ADS)

    Yang, Linmei; Zhang, Z. F.

    2015-01-01

    The growth behavior of intermetallic compounds (IMC) in Cu/Sn3.0Ag0.5Cu solder joints, including the interfacial Cu6Sn5 layer and Ag3Sn, and Cu6Sn5 in the solder, were investigated when different cooling methods—quenched water, cooling in air, and cooling in a furnace after reflow—were used. For the solder joint quenched in water, no obvious Cu6Sn5 or Ag3Sn was detected in the solder, and the thickness of interfacial Cu6Sn5 layer was slightly thinner than that of the joint cooled in air. On the basis of results from scanning electron microscopy and energy-dispersive spectrometry, a mechanism is proposed for growth of IMC in Sn3.0Ag0.5Cu solder during solidification. The rate of cooling has a substantial effect on the morphology and size of Ag3Sn, which evolved into large plate-like shapes when the joint was cooled slowly in a furnace. However, the morphology of Ag3Sn was branch-like or particle-like when the joint was cooled in air. This is attributed to re-growth of Ag3Sn grains via substantial atomic diffusion during the high-temperature stage of furnace cooling.

  14. K(23)Au(12)Sn(9)--an intermetallic compound containing a large gold-tin cluster: synthesis, structure, and bonding.

    PubMed

    Li, Bin; Kim, Sung-Jin; Miller, Gordon J; Corbett, John D

    2010-02-15

    A polyanionic unit {Au(12)Sn(9)} with a novel "corrugated sheet" shape occurs in K(23)Au(12)Sn(9). The compound was obtained by fusion of the pure elements in tantalum ampules at high temperatures followed by programmed cooling, and the structure was determined by X-ray diffraction: I42m (No. 121), a = 20.834(3), c = 6.818(1) A, Z = 2. The large heteroatomic cluster has D(2d) point symmetry and features a central four bonded (4b-) Sn, eight 3b- or 2b-Sn on the perimeter, and 24 linking nearly linear Sn-Au bonds at 12 Au atoms. Formula splitting according to the Zintl concept suggests that the compound is one electron deficient, and linear muffin-tin-orbital (LMTO) electronic structure calculations show that the Fermi level (E(F)) lies near a band gap at around 0.5 eV, that is, an incompletely filled valence band in concert with favorable atom packing. Large relative -ICOHP values for Au-Sn are consistent with the observed maximization of the number of heteroatomic bonds, whereas the numerous K-Sn and K-Au contacts contribute approximately 40 % of the total -ICOHP. Extended-Huckel population and molecular orbital analyses indicate that the open band feature originates from 5p states that are associated with the 2b-corner Sn atoms. In accord with the electronic structure calculations, magnetic susceptibility measurements show a nearly temperature-independent paramagnetic property. PMID:20063860

  15. The magnetic behavior of the intermetallic compound NdMn{sub 2}Ge{sub 2} studied by magnetization and hyperfine interactions measurements

    SciTech Connect

    Bosch-Santos, B. Carbonari, A. W.; Cabrera-Pasca, G. A.; Saxena, R. N.; Freitas, R. S.

    2015-05-07

    The magnetic behavior of the intermetallic compound NdMn{sub 2}Ge{sub 2} was investigated by bulk magnetization measurements and measurements of hyperfine interactions using perturbed ?–? angular correlation (PAC) spectroscopy. Magnetization measurements indicate the presence of four magnetic transitions associated with the Mn and Nd magnetic sublattices. At high temperatures, magnetic measurements show a change in the slope of the magnetization due to an antiferromagnetic transition around T{sub N}???425?K and a well defined ferromagnetic transition at T{sub C}???320?K. Moreover, at ?210?K a peak is observed in the magnetization curve, which is assigned to the reorientation of the Mn spin, and at ?25?K an increase in the magnetic moment is also observed, which is ascribed to the ordering of Nd ions. PAC measurements using {sup 140}La({sup 140}Ce) and {sup 111}In({sup 111}Cd) probe nuclei allowed the determination of the temperature dependence of the magnetic hyperfine field (B{sub hf}) at Nd and Mn sites, respectively. PAC results with {sup 111}Cd probe nuclei at Mn sites show that the dependence of B{sub hf} with temperature follows the expected behavior for the host magnetization associated with the magnetic ordering of Mn ions. From these results, the antiferromagnetic transition followed by a ferromagnetic ordering is clearly observed. PAC results with {sup 140}Ce probe nuclei at Nd sites, however, showed a strong deviation from the Brillouin function, which is attributed to the Ce 4f-electron contribution to B{sub hf}.

  16. Complex compound polyvinyl alcohol-titanic acid/titanium dioxide

    NASA Astrophysics Data System (ADS)

    Prosanov, I. Yu.

    2013-02-01

    A complex compound polyvinyl alcohol-titanic acid has been produced and investigated by means of IR and Raman spectroscopy, X-ray diffraction, and synchronous thermal analysis. It is claimed that it represents an interpolymeric complex of polyvinyl alcohol and hydrated titanium oxide.

  17. Point defect energetics in the ZrNi and Zr2Ni intermetallics C.S. Moura a,b

    E-print Network

    Motta, Arthur T.

    of point defects has been conducted in the ZrNi and Zr2Ni intermetallic compounds using molecular dynamics recent interest in the ir- radiation response of intermetallic compounds, especially in regards defects in the ordered compound. In an eort to understand the dynamic recovery of these intermetallic

  18. Low-Temperature Synthesis Routes to Intermetallic Superconductors

    SciTech Connect

    Schaak, Raymond E

    2008-01-08

    Over the past few years, our group has gained expertise at developing low-temperature solution-based synthetic pathways to complex nanoscale solids, with particular emphasis on nanocrystalline intermetallic compounds. Our synthetic capabilities are providing tools to reproducibly generate intermetallic nanostructures with simultaneous control over crystal structure, composition, and morphology. This DOE-funded project aims to expand these capabilities to intermetallic superconductors. This could represent an important addition to the tools that are available for the synthesis and processing of intermetallic superconductors, which traditionally utilize high-temperature, high-pressure, thin film, or gas-phase vacuum deposition methods. Our current knowledge of intermetallic superconductors suggests that significant enhancements could result from the inherent benefits of low-temperature solution synthesis, e.g. metastable phase formation, control over nanoscale morphology to facilitate size-dependent property studies, robust and inexpensive processability, low-temperature annealing and consolidation, and impurity incorporation (for doping, stoichiometry control, flux pinning, and improving the critical fields). Our focus is on understanding the superconducting properties as a function of synthetic route, crystal structure, crystallite size, and morphology, and developing the synthetic tools necessary to accomplish this. This research program can currently be divided into two classes of superconducting materials: intermetallics (transition metal/post transition metal) and metal carbides/borides. Both involve the development and exploitation of low-temperature synthesis routes followed by detailed characterization of structures and properties, with the goal of understanding how the synthetic pathways influence key superconducting properties of selected target materials. Because of the low-temperature methods used to synthesize them and the nanocrystalline morphologies of many of the products, the superconductors and their nanocrystalline precursors are potentially amenable to inexpensive and large-scale solution-based processing into wires, coatings, films, and templated or patterned structures with nanoscale and microscale features. Also, because of the new synthetic variables that play a key role in the low-temperature formation of intermetallics, the possibility exists to discover new superconductors.

  19. Effect of aluminium additions on wettability and intermetallic compound (IMC) growth of lead free Sn (2 wt. % Ag, 5 wt. % Bi) soldered joints

    NASA Astrophysics Data System (ADS)

    Lee, Hee Yul; Sharma, Ashutosh; Kee, Se Ho; Lee, Young Woo; Moon, Jung Tak; Jung, Jae Pil

    2014-09-01

    The effect of a trace Al addition (0, 0.01, 0.05 and 0.1 wt. %) in the Sn-2Ag-5Bi solder alloy on wettability and intermetallic compound (IMC) formation of the alloy was investigated. The interface between the solder and a Cu(17 ?m)/Ni(4 ?m)/Au (0.02 ?m) under bump metallized (UBM) substrate was studied. The microstructure of the bulk solder and the interface of the soldered joints was observed in a scanning electron microscope (SEM), and the thickness of the interface reaction layers was estimated. Various IMC phases were identified by energy dispersive spectroscopy (EDS) and by the electron probe micro analyzer (EPMA). The experimental results indicated that the addition of 0.01 wt. % Al in the Sn-2Ag-5Bi solder alloy significantly improved the wettability of the solder more than the other Al additions did. The IMC layer between the bulk Sn-2Ag5Bi-0.01Al solder and the Cu/Ni/Au UBM substrate was almost uniform and thinner than those between the solders containing 0, 0.05, and 0.1 wt. % Al and their respective Cu/Ni/Au UBM substrates. Furthermore, the growth rate of the IMC layer between the Sn-2Ag-5Bi-0.01Al solder and Cu/Ni/Au UBM after 1 to 10 reflow times was lower than that of the IMC layer between the Sn-2Ag-5Bi solder and Cu/Ni/Au UBM. The IMCs in the solder joint interface (e.g., Ni3Sn4) of the Sn-2Ag-5Bi-0.01Al solder were well distributed near the Bi and fine Ag3Sn. The addition of 0.01 wt. % Al in the Sn-2Ag-5Bi solder yielded the best wetting properties for the solder and the minimum growth rate of the IMCs because it increased the nucleation rate of Ag3Sn and uniformly segregated the Bi phase.

  20. Electromigration enhanced kinetics of copper-tin intermetallic compounds in lead-free solder joints and copper low-k dual damascene processing using step and flash imprint lithography

    NASA Astrophysics Data System (ADS)

    Chao, Huang-Lin

    This dissertation constitutes two major sections. In the first major section, a kinetic analysis was established to investigate the electromigration (EM), enhanced intermetallic compound (IMC) growth and void formation for Sn-based Pb-free solder joints to Cu under bump metallization (UBM). The model takes into account the interfacial intermetallic reaction, Cu-Sn interdiffusion, and current stressing. A new approach was developed to derive atomic diffusivities and effective charge numbers based on Simulated Annealing (SA) in conjunction with the kinetic model. The finite difference (FD) kinetic model based on this approach accurately predicted the intermetallic compound growth when compared to empirical observation. The ultimate electromigration failure of the solder joints was caused by extensive void formation at the intermetallic interface. The void formation mechanism was analyzed by modeling the vacancy transport under electromigration. The effects of current density and Cu diffusivity in Sn solder were also investigated with the kinetic model. The second major section describes the integration of Step and Flash Imprint Lithography (S-FILRTM) into an industry standard Cu/low-k dual damascene process. The yield on a Back End Of the Line (BEOL) test vehicle that contains standard test structures such as via chains with 120 nm vias was established by electrical tests. S-FIL shows promise as a cost effective solution to patterning sub 45 nm features and is capable of simultaneously patterning two levels of interconnect structures, which provides a low cost BEOL process. The critical processing step in the integration is the reactive ion etching (RIE) process that transfers the multilevel patterns to the inter-level dielectrics (ILD). An in-situ, multistep etch process was developed that gives excellent pattern structures in two industry standard Chemical Vapor Deposited (CVD) low-k dielectrics. The etch process showed excellent pattern fidelity and a wide process window. Electrical testing was conducted on the test vehicle to show that this process renders high yield and consistent via resistance. Discussions of the failure behaviors that are characteristic to the use of S-FIL are provided.

  1. FIB-SEM investigation of trapped intermetallic particles in anodic oxide films

    E-print Network

    Dunin-Borkowski, Rafal E.

    , Anodizing, AA1050, Intermetallic particle, FIB-SEM, Oxides, Organometallic compounds Paper type ResearchFIB-SEM investigation of trapped intermetallic particles in anodic oxide films on AA1050 aluminium of this investigation is to understand the structure of trapped intermetallics particles and localized composition

  2. Structural transformations in R3Cu4Sn4 (R Ho, Er, Tm) intermetallic J.M. Cadogan a, *

    E-print Network

    Ryan, Dominic

    Structural transformations in R3Cu4Sn4 (R ¼ Ho, Er, Tm) intermetallic compounds J.M. Cadogan a chemistry F. Diffraction/scaterring a b s t r a c t The family of ternary intermetallic compounds R3T4X4 (R 2014 Available online Keywords: A. Rare-earth intermetallics B. Phase transformation B. Crystal

  3. Reaction synthesis of intermetallics

    SciTech Connect

    Deevi, S.C.; Sikka, V.K.

    1994-12-31

    Exothermicity associated with the synthesis of aluminides was utilized to obtain nickel, iron, and cobalt aluminides. Combustion synthesis, extrusion, and hot pressing were utilized to obtain intermetallics and their composites. Extrusion conditions, reduction ratios, and hot-pressing conditions of the intermetallics and their composites are discussed.

  4. Atomistic simulations of point defects in ZrNi intermetallic C.S. Moura a,b,*, A.T. Motta b

    E-print Network

    Motta, Arthur T.

    Atomistic simulations of point defects in ZrNi intermetallic compounds C.S. Moura a,b,*, A.T. Motta energies, and migration mechanisms, in the ZrNi and Zr2Ni intermetallic compounds were simulated using the properties of vacancies and interstitials in the intermetallic compounds ZrNi and Zr2Ni for which realistic

  5. First principles studies on the structural, elastic, electronic properties and heats of formation of MgeAE (AE Ca, Sr, Ba) intermetallics

    E-print Network

    Melnik, Roderick

    of states of eight MgeAE (AE ¼ Ca, Sr, Ba) intermetallic compounds. The ob- tained results indicate ¼ Ca, Sr, Ba) systems intermetallic compounds have generated significant interests over the past fewe9] for the eight Mg intermetallic compounds. Moreover, investigations focused on the elastic

  6. Integrating giant microwave absorption with magnetic refrigeration in one multifunctional intermetallic compound of LaFe11.6Si1.4C0.2H1.7

    PubMed Central

    Song, Ning-Ning; Ke, Ya-Jiao; Yang, Hai-Tao; Zhang, Hu; Zhang, Xiang-Qun; Shen, Bao-Gen; Cheng, Zhao-Hua

    2013-01-01

    Both microwave absorption and magnetocaloric effect (MCE) are two essential performances of magnetic materials. We observe that LaFe11.6Si1.4C0.2H1.7 intermetallic compound exhibits the advantages of both giant microwave absorption exceeding ?42?dB and magnetic entropy change of ?20?Jkg?1K?1. The excellent electromagnetic wave absorption results from the large magnetic loss and dielectric loss as well as the efficient complementarity between relative permittivity and permeability. The giant MCE effect in this material provides an ideal technique for cooling the MAMs to avoid temperature increase and infrared radiation during microwave absorption. Our finding suggests that we can integrate the giant microwave absorption with magnetic refrigeration in one multifunctional material. This integration not only advances our understanding of the correlation between microwave absorption and MCE, but also can open a new avenue to exploit microwave devices and electromagnetic stealth. PMID:23887357

  7. SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6} - two new Ae-Zn-Sn polar intermetallic compounds (Ae: alkaline earth metal)

    SciTech Connect

    Stegmaier, Saskia; Faessler, Thomas F.

    2012-08-15

    SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6}, two closely related new polar intermetallic compounds, were obtained by high temperature reactions of the elements. Their crystal structures were determined with single crystal XRD methods, and their electronic structures were analyzed by means of DFT calculations. The Zn-Sn structure part of SrZn{sub 2}Sn{sub 2} comprises (anti-)PbO-like {l_brace}ZnSn{sub 4/4}{r_brace} and {l_brace}SnZn{sub 4/4}{r_brace} layers. Ca{sub 2}Zn{sub 3}Sn{sub 6} shows similar {l_brace}ZnSn{sub 4/4}{r_brace} layers and {l_brace}Sn{sub 4}Zn{r_brace} slabs constructed of a covalently bonded Sn scaffold capped by Zn atoms. For both phases, the two types of layers are alternatingly stacked and interconnected via Zn-Sn bonds. SrZn{sub 2}Sn{sub 2} adopts the SrPd{sub 2}Bi{sub 2} structure type, and Ca{sub 2}Zn{sub 3}Sn{sub 6} is isotypic to the R{sub 2}Zn{sub 3}Ge{sub 6} compounds (R=La, Ce, Pr, Nd). Band structure calculations indicate that both SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6} are metallic. Analyses of the chemical bonding with the electron localization function (ELF) show lone pair like basins at Sn atoms and Zn-Sn bonding interactions between the layers for both title phases, and covalent Sn-Sn bonding within the {l_brace}Sn{sub 4}Zn{r_brace} layers of Ca{sub 2}Zn{sub 3}Sn{sub 6}. - Graphical abstract: Crystal structures of the new Ae-Zn-Sn polar intermetallic phases SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6}. Highlights: Black-Right-Pointing-Pointer New polar intermetallic phases SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6}. Black-Right-Pointing-Pointer Obtained by high temperature reactions of the elements. Black-Right-Pointing-Pointer Single crystal XRD structure determination and DFT electronic structure calculations. Black-Right-Pointing-Pointer Closely related crystal and electronic structures. Black-Right-Pointing-Pointer Metallic conductivity coexisting with lone pairs and covalent bonding features.

  8. Waste-Heat-Driven Cooling Using Complex Compound Sorbents

    NASA Technical Reports Server (NTRS)

    Rocketfeller, Uwe; Kirol, Lance; Khalili, Kaveh

    2004-01-01

    Improved complex-compound sorption pumps are undergoing development for use as prime movers in heat-pump systems for cooling and dehumidification of habitats for humans on the Moon and for residential and commercial cooling on Earth. Among the advantages of sorption heat-pump systems are that they contain no moving parts except for check valves and they can be driven by heat from diverse sources: examples include waste heat from generation of electric power, solar heat, or heat from combustion of natural gas. The use of complex compound sorbents in cooling cycles is not new in itself: Marketing of residential refrigerators using SrCl2 was attempted in the 1920s and 30s and was abandoned because heat- and mass-transfer rates of the sorbents were too low. Addressing the issue that gave rise to the prior abandonment of complex compound sorption heat pumps, the primary accomplishment of the present development program thus far has been the characterization of many candidate sorption media, leading to large increases in achievable heat- and mass-transfer rates. In particular, two complex compounds (called "CC260-1260" and "CC260-2000") were found to be capable of functioning over the temperature range of interest for the lunar-habitat application and to offer heat- and mass-transfer rates and a temperature-lift capability adequate for that application. Regarding the temperature range: A heat pump based on either of these compounds is capable of providing a 95-K lift from a habitable temperature to a heat-rejection (radiator) temperature when driven by waste heat at an input temperature .500 K. Regarding the heat- and mass-transfer rates or, more precisely, the power densities made possible by these rates: Power densities observed in tests were 0.3 kilowatt of cooling per kilogram of sorbent and 2 kilowatts of heating per kilogram of sorbent. A prototype 1-kilowatt heat pump based on CC260-2000 has been built and demonstrated to function successfully.

  9. Discontinuous coarsening behavior of Ni(2)MnAl intermetallic compound during isothermal aging treatment of Fe-Mn-Ni-Al alloys.

    PubMed

    Heo, Yoon-Uk; Takeguchi, Masaki; Furuya, Kazuo; Lee, Hu-Chul

    2010-08-01

    The discontinuous reaction of the Ni(2)MnAl intermetallic phase was investigated during the aging of a solution-treated Fe-8.3Mn-8.2Ni-4.2Al alloy. During aging, Ni(2)MnAl lamellae formed at the prior austenite grain boundaries and twin boundaries and grew into the neighboring grains. The presence of continuously precipitated fine Ni(2)MnAl particles before the growth of the discontinuously precipitated lamellae was confirmed by dark-field transmission electron microscopy, and it was concluded that the present reaction is a type of discontinuous coarsening process, alpha' + Ni(2)MnAl (continuous precipitation) --> alpha + Ni(2)MnAl (discontinuous coarsening). The chemical driving force and the reduction of the total coherent strain energy were suggested to be the driving force for the discontinuous coarsening reaction. PMID:20551447

  10. Efficient mechanochemical complexation of various steroid compounds with ?-, ?- and ?-cyclodextrin.

    PubMed

    Rinaldi, Laura; Binello, Arianna; Stolle, Achim; Curini, Massimo; Cravotto, Giancarlo

    2015-06-01

    Mechanochemical technology enables solvent-free micronized solid dispersions and efficient molecular host-guest inclusion complexes to be formed in matrices which contain cyclodextrins (CDs). This type of complexation has been studied using ?-, ?- and ?-cyclodextrin with the dual aims of improving overall solubility and enhancing the bioavailability of common steroid compounds, such as cholic acids and ?-sitosterols or lowering cholesterol content in products of animal origin. Several parameters have been studied and optimized: CD/compound molar ratio (1:1, 1:2, 2:1 and 3:1) in function of the cavity sizes of the three different CDs, milling time (from 5 to 40 min) and rotation speed (from 100 to 300 rpm). DSC (differential scanning calorimetry) analyses have revealed that inclusion complexes were efficiently formed after 40 min milling (200 rpm) for ?-CD/cholesterol and ?-CD/ugrsodeoxycholic acid (encapsulation efficiency 96% and 77% respectively). Besides steroid encapsulation/vehiculation, the mechanochemical technique may pave the way for new ideas in solventless steroid extraction from vegetal matrices with CDs. PMID:25725254

  11. Microstructure study of the rare-earth intermetallic compounds R5(SixGe1-x)4 and R5(SixGe1-x)3

    SciTech Connect

    Cao, Qing

    2012-07-26

    The unique combination of magnetic properties and structural transitions exhibited by many members of the R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} family (R = rare earths, 0 ? x ? 1) presents numerous opportunities for these materials in advanced energy transformation applications. Past research has proven that the crystal structure and magnetic ordering of the R{sub 5(Si{sub x}Ge{sub 1-x}){sub 4} compounds can be altered by temperature, magnetic field, pressure and the Si/Ge ratio. Results of this thesis study on the crystal structure of the Er{sub 5}Si{sub 4} compound have for the first time shown that the application of mechanical forces (i.e. shear stress introduced during the mechanical grinding) can also result in a structural transition from Gd{sub 5}Si{sub 4}-type orthorhombic to Gd{sub 5}Si{sub 2}Ge{sub 2}-type monoclinic. This structural transition is reversible, moving in the opposite direction when the material is subjected to low-temperature annealing at 500 ?C. Successful future utilization of the R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} family in novel devices depends on a fundamental understanding of the structure-property interplay on the nanoscale level, which makes a complete understanding of the microstructure of this family especially important. Past scanning electron microscopy (SEM) observation has shown that nanometer-thin plates exist in every R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} (“5:4”) phase studied, independent of initial parent crystal structure and composition. A comprehensive electron microscopy study including SEM, energy dispersive spectroscopy (EDS), selected area diffraction (SAD), and high resolution transmission electron microscopy (HRTEM) of a selected complex 5:4 compound based on Er rather than Gd, (Er{sub 0.9Lu{sub 0.1}){sub 5}Si{sub 4}, has produced data supporting the assumption that all the platelet-like features present in the R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} family are hexagonal R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 3} (“5:3”) phase and possess the same reported orientation relationship that exists for the Gd{sub 5}Ge{sub 4} and Gd{sub 5}Si{sub 2}Ge{sub 2} compounds, i.e. [010](102?){sub m} || [101?0](12?11){sub p}. Additionally, the phase identification in (Er{sub 0.9}Lu{sub 0.1}){sub 5}Si{sub 4} carried out using X-ray powder diffraction (XRD) techniques revealed that the low amount of 5:3 phase is undetectable in a conventional laboratory Cu K? diffractometer due to detection limitations, but that extremely low amounts of the 5:3 phase can be detected using high resolution powder diffraction (HRPD) employing a synchrotron source. These results suggest that use of synchrotron radiation for the study of R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} compounds should be favored over conventional XRD for future investigations. The phase stability of the thin 5:3 plates in a Gd{sub 5}Ge{sub 4} sample was examined by performing long-term annealing at very high temperature. The experimental results indicate the plates are thermally unstable above 1200?C. While phase transformation of 5:3 to 5:4 occurs during the annealing, the phase transition is still fairly sluggish, being incomplete even after 24 hours annealing at this elevated temperature. Additional experiments using laser surface melting performed on the surface of a Ho{sub 5}(Si{sub 0.8}Ge{sub 0.}2){sub 4} sample showed that rapid cooling will suppress the precipitation of 5:3 plates. Bulk microstructure studies of polycrystalline and monocrystalline Gd{sub 5}Ge{sub 3} compounds examined using optical microscopy, SEM and TEM also show a series of linear features present in the Gd{sub 5}Ge{sub 3} matrix, similar in appearance in many ways to the 5:3 plates observed in R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} compounds. A systematic microscopy analysis of these linear features revealed they also are thin plates with a stoichiometric composition of Gd{sub 5}Ge{sub 4} with an orthorhombic structure. The orientation relationship between the 5:3 matrix and the precipitate 5:4 thin plates was determined as [101?0] (12?11){s

  12. Considerable rise in the stability of combined superconductors doped by intermetallic compounds with an extremely high low-temperature specific heat

    NASA Astrophysics Data System (ADS)

    Keilin, V. E.; Alekseev, P. A.; Kovalev, I. A.; Kruglov, S. L.; Lazukov, V. N.; Medvedev, M. I.; Shutova, D. I.

    2007-09-01

    The influence of doping intermetallics based on rare-earth elements and ceramics with an extremely high low-temperature specific heat on the stability of combined NbTi superconductors against electromagnetic disturbances is studied experimentally and theoretically. The objects of investigation are standard NbTi conductors (0.85 mm in diameter) in a copper matrix that are soldered to copper wires containing high-specific-heat dopants. CeCu6, HoCu2, CeAl2, and PrB6 intermetallics (at 4.2 K, their specific heat is on average 150 times that of copper) or Cd2O2S ceramics (at 4.2 K, its specific heat is higher than that of copper by 600 times) are introduced into combined superconductor samples in the form of fine powder. The powder is placed into the copper wire either as one thick (0.6 mm in diameter) strand or as 19 thin (0.1 mm in diameter) strands. An undoped reference sample contains a solid conductor. Samples with a transport current placed in an external transverse magnetic field are subjected to longitudinal magnetic disturbances causing pulsed heating of the samples by eddy currents. The disturbance time is varied in a wide range: from 50 ?s to 1.2 ms. To compare the critical energy densities of the disturbances in differently shaped samples, a mathematical technique is developed that is based on analytical solution of the equation of electromagnetic diffusion into the sample. It is found that the critical energy density of doped samples is much higher (by several times) than that of the reference sample. Upon direct cooling of the samples by liquid helium in a vertical channel (the most intense heat removal under steady-state conditions), the effect of stability improvement for the doped samples persists. Moreover, it is shown that the high-specific-heat dopants, raising the heat needed to warm the sample, restrict the heat flux into the liquid and thereby increase the energy removed by the coolant during unsteady heat transfer.

  13. FIRST PRINCIPLES SIMULATION OF IRON-BASED INTERMETALLIC ALLOYS Michael Widom1

    E-print Network

    Widom, Michael

    . In a many-component alloy, phase segregation needed to grow thermodynamically stable intermetallic compoundsFIRST PRINCIPLES SIMULATION OF IRON-BASED INTERMETALLIC ALLOYS Michael Widom1 , Libo Xie1 is on glass-forming compounds including up to six different metal and metalloid elements, and calculations

  14. Effects of Annealing, Thermomigration, and Electromigration on the Intermetallic Compounds Growth Kinetics of Cu/Sn-2.5Ag Microbump.

    PubMed

    Kim, Seung-Hyun; Park, Gyu-Tae; Park, Jong-Jin; Park, Young-Bae

    2015-11-01

    The effects of annealing, thermomigration (TM), and electromigration (EM) on the intermetallic com- pound (IMC) growth kinetics of Cu/Sn-2.5Ag microbumps were investigated using in-situ scanning electron microscopy at 120-165 degrees C with a current density of 1.5 x 10(5) A/cm2. The IMC growth kinetics was controlled by a diffusion-dominant mechanism and a chemical-reaction-dominant mechanism with annealing and current-stressing conditions, respectively. Before all of the Sn was fully transformed into IMCs, the activation energies of the Cu3Sn IMCs were 0.54 eV, 0.50 eV, and 0.40 eV for annealing, TM, and EM, respectively, which is closely related to the acceleration effect of the interfacial reaction by electron wind force under current stressing. After all of the Sn was fully transformed into IMCs by reacting with Cu, the Cu3Sn IMC growth rates of the three structures became similar due to the reduced and similar diffusion rates inside the IMCs with and without current stressing. PMID:26726558

  15. Novel Hard Magnets J. F. Herbst, Chairman New rare-earth intermetallic phases 3(Fe,M)29X,,: (R=Ce, Pr, Nd, Sm, Gd;

    E-print Network

    Ryan, Dominic

    interest in the structural and magnetic properties of rare-earth (R), iron- rich intermetallic compounds.' Two families of intermetallics, the rhombohe- dral R,(Fe,M)r7 and tetragonal R(Fe,M),, compounds, haveNovel Hard Magnets J. F. Herbst, Chairman New rare-earth intermetallic phases 3(Fe,M)29X,,: (R

  16. Intermetallic insertion anodes for lithium batteries.

    SciTech Connect

    Johnson, C. S.; Kahaian, A. J.; Kepler, K. D.; Scott, M.; Thackerary, M. M.; Vaughey, J.

    1999-07-19

    Intermetallic alloys have been investigated for many years as anode materials for lithium batteries and, more recently, as alternative electrodes to carbon, because of several intrinsic advantages including high capacity and safety. Some of the most studied alloys utilize tin as the active component because of its high theoretical capacity (996 mAh/g) and its slightly higher operating voltage (<400 mV) compared to metallic lithium. To date, the use of binary lithium alloys as anodes has been limited to the select number of main group elements (e.g. Sn) that can be lithiated at an appropriate voltage with acceptable kinetics. A major disadvantage of binary Li{sub x}M alloy systems is that major phase changes occur during the electrochemical cycling of lithium. Severe volume expansion and contraction of the metal matrix, which limit the cycle life of the lithium cell, normally accompany these phase changes. The. most successful approach to overcoming this limitation has been the use of intermetallic alloys MM{prime} consisting of two (or more) metals, at least one of which is an ''active'' alloying element (M) and the other an ''inactive'' (M{prime}) element. During the reaction with lithium, such a system breaks up into regions of Li{sub x}M and inactive M{prime}. In our work, we have extended the concept of intermetallic electrodes to include topotactic reactions in which the intermetallic compound provides a host structure for lithium.

  17. Electronic structure, phase stability, and vibrational properties of Ir-based intermetallic compound IrX (X=Al, Sc, and Ga)

    NASA Astrophysics Data System (ADS)

    Ar?kan, N.; Charifi, Z.; Baaziz, H.; U?ur, ?.; Ünver, H.; U?ur, G.

    2015-02-01

    The phase stability and mechanical properties of B2 type IrX (X=Al, Sc and Ga) compounds are investigated. Self-consistenttotal-energy calculations in the framework of density functional theory using the Generalized Gradient Approximation (GGA) to determine the equations of state and the elastic constants of IrX (X=Al, Sc, and Ga) in the B2 phase have been performed. The calculations predicted the equilibrium lattice constants, which are about 1% greater than experiments for IrAl, 1.81% for IrGa, and 0.71% for IrSc compound. IrAl is shown to be the least compressible, and it is followed by IrGa and the IrSc compound. The phase stability of the studied compounds is checked. The brittleness and ductility properties of IrX (X=Al, Sc, and Ga) are determined by Poisson's ratio ? criterion and Pugh's criterion. IrGa compound is a ductile material; however, IrAl and IrSc show brittleness. The band structure and density of states (DOS), and phonon dispersion curves have been obtained and analyzed. The position of the Fermi level and the contribution of d electrons to the density of states near EF is studied and discussed in detail. We also used the phonon density of states and quasiharmonic approximation to calculate and predict some thermodynamic properties such as constant-volume specific heat capacity of the B2 phase of IrX (X=Al, Sc and Ga) compounds.

  18. New icosahedral nanoclusters in crystal structures of intermetallic compounds: Topological types of 50-atom deltahedra D50 in samson phases ?-Mg2Al3 and ?-Mg23Al30

    NASA Astrophysics Data System (ADS)

    Blatov, V. A.; Ilyushin, G. D.

    2012-12-01

    A database of intermetallic compounds has been compiled using the TOPOS program package. This database includes 514 topological types, containing 12- and 13-atom icosahedral i clusters. An isolated group of 1649 i clusters is described by 14 point groups and their maximum symmetry D 3 d (bar 3 m) and T h ( m bar 3) is established, respectively, in 47 and 25 types of crystal structures. A structural analysis of the outer quasispherical shells showed that local 63-atom i configurations 1@12@50, which contain 50 atoms in the second layer, are implemented in 8 out of 19 cases. Examples of new topologically different types of 50-atom D50 deltahedra in the Samson phases ?-Mg23Al30 and ?-Mg2Al3 are presented. Four topologically different sites with coordination numbers of 5, 6, 6, or 7 are established in the ? shell and seven sites with coordination numbers of 5, 5, 6, 6, 6, 6, or 7 are found in the ? shell. The inner i clusters for the ?-Mg2Al3 structure (with the symmetry bar 3 m) and the ?-Mg23Al30 structure (with the symmetry bar 3) have a similar chemical composition, i.e., Mg7Al6 and Mg6Al7, and their 50-atom shells are chemically identical to 18Mg + 32Al. The configurations found supplement the series of known two-layer icosahedral Bergman and Mackay clusters in the form of deltahedra with 32- and 42-atom shells.

  19. Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity

    SciTech Connect

    Mosher, Daniel A.; Opalka, Susanne M.; Tang, Xia; Laube, Bruce L.; Brown, Ronald J.; Vanderspurt, Thomas H.; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Anton, Donald L.; Zidan, Ragaiy; Berseth, Polly

    2008-02-18

    The United Technologies Research Center (UTRC), in collaboration with major partners Albemarle Corporation (Albemarle) and the Savannah River National Laboratory (SRNL), conducted research to discover new hydride materials for the storage of hydrogen having on-board reversibility and a target gravimetric capacity of ? 7.5 weight percent (wt %). When integrated into a system with a reasonable efficiency of 60% (mass of hydride / total mass), this target material would produce a system gravimetric capacity of ? 4.5 wt %, consistent with the DOE 2007 target. The approach established for the project combined first principles modeling (FPM - UTRC) with multiple synthesis methods: Solid State Processing (SSP - UTRC), Solution Based Processing (SBP - Albemarle) and Molten State Processing (MSP - SRNL). In the search for novel compounds, each of these methods has advantages and disadvantages; by combining them, the potential for success was increased. During the project, UTRC refined its FPM framework which includes ground state (0 Kelvin) structural determinations, elevated temperature thermodynamic predictions and thermodynamic / phase diagram calculations. This modeling was used both to precede synthesis in a virtual search for new compounds and after initial synthesis to examine reaction details and options for modifications including co-reactant additions. The SSP synthesis method involved high energy ball milling which was simple, efficient for small batches and has proven effective for other storage material compositions. The SBP method produced very homogeneous chemical reactions, some of which cannot be performed via solid state routes, and would be the preferred approach for large scale production. The MSP technique is similar to the SSP method, but involves higher temperature and hydrogen pressure conditions to achieve greater species mobility. During the initial phases of the project, the focus was on higher order alanate complexes in the phase space between alkaline metal hydrides (AmH), Alkaline earth metal hydrides (AeH2), alane (AlH3), transition metal (Tm) hydrides (TmHz, where z=1-3) and molecular hydrogen (H2). The effort started first with variations of known alanates and subsequently extended the search to unknown compounds. In this stage, the FPM techniques were developed and validated on known alanate materials such as NaAlH4 and Na2LiAlH6. The coupled predictive methodologies were used to survey over 200 proposed phases in six quaternary spaces, formed from various combinations of Na, Li Mg and/or Ti with Al and H. A wide range of alanate compounds was examined using SSP having additions of Ti, Cr, Co, Ni and Fe. A number of compositions and reaction paths were identified having H weight fractions up to 5.6 wt %, but none meeting the 7.5 wt%H reversible goal. Similarly, MSP of alanates produced a number of interesting compounds and general conclusions regarding reaction behavior of mixtures during processing, but no alanate based candidates meeting the 7.5 wt% goal. A novel alanate, LiMg(AlH4)3, was synthesized using SBP that demonstrated a 7.0 wt% capacity with a desorption temperature of 150°C. The deuteride form was synthesized and characterized by the Institute for Energy (IFE) in Norway to determine its crystalline structure for related FPM studies. However, the reaction exhibited exothermicity and therefore was not reversible under acceptable hydrogen gas pressures for on-board recharging. After the extensive studies of alanates, the material class of emphasis was shifted to borohydrides. Through SBP, several ligand-stabilized Mg(BH4)2 complexes were synthesized. The Mg(BH4)2*2NH3 complex was found to change behavior with slightly different synthesis conditions and/or aging. One of the two mechanisms was an amine-borane (NH3BH3) like dissociation reaction which released up to 16 wt %H and more conservatively 9 wt%H when not including H2 released from the NH3. From FPM, the stability of the Mg(BH4)2*2NH3 compound was found to increase with the inclusion of NH3 groups in the inner-Mg coordination

  20. A {sup 151}Eu Moessbauer spectroscopic and magnetic susceptibility investigation of the intermetallic compounds EuTIn (T = Zn, Pd, Pt, Au)

    SciTech Connect

    Muellmann, R.; Mosel, B.D.; Eckert, H.; Kotzyba, G.; Poettgen, R.

    1998-04-01

    The title compounds were investigated by magnetic susceptibility measurements and {sup 151}Eu Moessbauer spectroscopy. EuZnIn and EuPtIn show Curie-Weiss behavior above 60 K with experimental magnetic moments of 7.80(5) and 8.0(1) {mu}{sub B}/Eu, respectively, indicating divalent europium. The zinc compound orders antiferromagnetically at T{sub N} = 8.0(5) k and two metamagnetic transitions are detected at the critical field strengths B{sub C1} = 1.1(1) T and B{sub C2} = 2.6(2) T. At 5 K the saturation magnetic moment amounts to 7.0(1) {mu}{sub B}/Eu, suggesting a full parallel spin alignment. EuPdIn and EuAuIn order antiferromagnetically at 13.0(5) and 21.0(5) K in low external magnetic fields, respectively. The four compounds are metallic conductors. The Moessbauer measurements of the EuTIn compounds show {sup 151}Eu isomer shifts typical of divalent europium. The isomer shifts are found to linearly correlated with the closest Eu-Eu distance in the structure. Based on the Moessbauer data the onset of magnetic order is observed at T{sub N}(EuZnIn) = 9.5(5) K, T{sub N}(EuPdIn) = 15.5(5) K, T{sub N}(EuAuIn) = 20.0(5) K, and T{sub N}(EuPtIn) = 20.0(5) K, respectively. The magnetically split spectrum of EuZnIn reveals evidence of Eu site inequivalence.

  1. Materials Science and Engineering A 443 (2007) 115 Damage evolution in Ti6Al4VAl3Ti metal-intermetallic

    E-print Network

    Meyers, Marc A.

    2007-01-01

    behavior; Damage evolution; Crack density 1. Introduction Intermetallics are phases or compounds formedMaterials Science and Engineering A 443 (2007) 1­15 Damage evolution in Ti6Al4V­Al3Ti metal-intermetallic May 2006; accepted 5 May 2006 Abstract The crack propagation and damage evolution in metal (Ti6Al4V)-intermetallic

  2. A set of 150 pictures with morphologically complex English compound names: Norms for name agreement, familiarity,

    E-print Network

    Caramazza, Alfonso

    A set of 150 pictures with morphologically complex English compound names: Norms for name agreement (percentage and H), familiarity, image agreement, and visual complexity norms, as well as frequency estimates for the whole compound word and its first and second constituents. These pictures and their corresponding norms

  3. Undercooling Behavior and Intermetallic Compound Coalescence in Microscale Sn-3.0Ag-0.5Cu Solder Balls and Sn-3.0Ag-0.5Cu/Cu Joints

    NASA Astrophysics Data System (ADS)

    Zhou, M. B.; Ma, X.; Zhang, X. P.

    2012-11-01

    The microstructure of microscale solder interconnects and soldering defects have long been known to have a significant influence on the reliability of electronic packaging, and both are directly related to the solidification behavior of the undercooled solder. In this study, the undercooling behavior and solidification microstructural evolution of Sn-3.0Ag-0.5Cu solder balls with different diameters (0.76 mm, 0.50 mm, and 0.30 mm) and the joints formed by soldering these balls on Cu open pads of two diameters (0.48 mm and 0.32 mm) on a printed circuit board (PCB) substrate were characterized by differential scanning calorimetry (DSC) incorporated into the reflow process. Results show that the decrease in diameter of the solder balls leads to an obvious increase in the undercooling of the balls, while the undercooling of the solder joints shows a dependence on both the diameter of the solder balls and the diameter ratio of solder ball to Cu pad (i.e., D s/ D p), and the diameter of the solder balls has a stronger influence on the undercooling of the joints than the dimension of the Cu pad. Coarse primary intermetallic compound (IMC) solidification phases were formed in the smaller solder balls and joints. The bulk Ag3Sn IMC is the primary solidification phase in the as-reflowed solder balls. Due to the interfacial reaction and dissolution of Cu atoms into the solder matrix, the primary Ag3Sn phase can be suppressed and the bulk Cu6Sn5 IMC is the only primary solidification phase in the as-reflowed solder joints.

  4. Equiatomic intermetallic compounds YTX (T = Ni, Ir; X = Si, Ge, Sn, Pb): a systematic study by ??Y solid state NMR and ¹¹?Sn Mössbauer spectroscopy.

    PubMed

    Höting, Christoph; Eckert, Hellmut; Haarmann, Frank; Winter, Florian; Pöttgen, Rainer

    2014-06-01

    The equiatomic TiNiSi type tetrelides YTX (space group Pnma) with T = Ni, Ir and X = Si, Ge, Sn, Pb were synthesized from the elements by arc-melting or via high-frequency-melting of the elements in sealed niobium ampoules. All samples were characterized by powder X-ray diffraction using the Guinier technique. The structures of YNiGe, YNiPb, YIrSi, YIrGe, and YIrSn were refined from single crystal X-ray diffractometer data. The YTX tetrelides are characterized by a three-dimensional [TX] network that consists of puckered T3X3 hexagons with T-X distances in the order of the sums of the covalent radii. YIrSi and YIrGe show a reverse occupancy of the T and X sites with respect to the remaining YTX compounds, which is most likely a size effect. Solid state NMR studies reveal the sensitivity of (89)Y Knight shifts to electronic structure details. A monotonic dependence on the tetrelide Pauling electronegativity is observed in addition. The stannides YTSn (T = Ni, Rh, Ir, Pt) were further characterized by (119)Sn Mössbauer spectroscopy. They show single signals that are subjected to quadrupole splitting. Comparison of the isomer shifts with the whole series of YTSn stannides gives no hint of obvious correlations as a consequence of the valence electron count but reveals a systematic decrease with atomic number within a given group. PMID:24718868

  5. Magnetic and magnetocaloric properties of the new rare-earth-transition-metal intermetallic compound Gd3Co29Ge4B10

    NASA Astrophysics Data System (ADS)

    Hill, P.; Dubenko, Igor; Samanta, Tapas; Quetz, Abdiel; Ali, Naushad

    2012-04-01

    The compounds Gd3-xYxCo29Ge4B10 (x = 0, 0.5, 1.0, 1.5, and 3.0), Gd3Co29Al4B10, and Gd3Co29Al4B10 were synthesized by arc melting, and their magnetic properties investigated as a function of temperature and applied magnetic field. X-ray measurements showed primarily single-phase samples with the tetragonal crystal structure P4/nmm. It was found that Gd3Co29Ge4B10 orders ferromagnetically at TC = 212 K and shows a compensation point at 128 K, indicating a ferrimagnetic ordering of the Co and Gd moments. An entropy change of -?S = 0.5 J/kgK was observed in a 5-T field at TC for this sample, while a change in sign for this quantity was observed both at the maximum value of magnetization (around 200 K) and then again at the compensation point. Substitution of Y for Gd in Gd3Co29Ge4B10 does not affect the Curie temperature, but shifts the compensation point to lower temperatures. This indicates that a decrease in Gd concentration does not affect the d-d exchange interaction, but has a pronounced effect on the f-d exchange interaction.

  6. Synthesis, structure, and bonding in K12Au21Sn4. A polar intermetallic compound with dense Au20 and open AuSn4 layers

    SciTech Connect

    Li, Bin; Kim, Sung-Jin; Miller, Gordon J.; and Corbett, John D.

    2009-10-29

    The new phase K{sub 12}Au{sub 21}Sn{sub 4} has been synthesized by direct reaction of the elements at elevated temperatures. Single crystal X-ray diffraction established its orthorhombic structure, space group Pmmn (No. 59), a = 12.162(2); b = 18.058(4); c = 8.657(2) {angstrom}, V = 1901.3(7) {angstrom}{sup 3}, and Z = 2. The structure consists of infinite puckered sheets of vertex-sharing gold tetrahedra (Au{sub 20}) that are tied together by thin layers of alternating four-bonded-Sn and -Au atoms (AuSn{sub 4}). Remarkably, the dense but electron-poorer blocks of Au tetrahedra coexist with more open and saturated Au-Sn layers, which are fragments of a zinc blende type structure that maximize tetrahedral heteroatomic bonding outside of the network of gold tetrahedra. LMTO band structure calculations reveal metallic properties and a pseudogap at 256 valence electrons per formula unit, only three electrons fewer than in the title compound and at a point at which strong Au-Sn bonding is optimized. Additionally, the tight coordination of the Au framework atoms by K plays an important bonding role: each Au tetrahedra has 10 K neighbors and each K atom has 8-12 Au contacts. The appreciably different role of the p element Sn in this structure from that in the triel members in K{sub 3}Au{sub 5}In and Rb{sub 2}Au{sub 3}Tl appears to arise from its higher electron count which leads to better p-bonding (valence electron concentrations = 1.32 versus 1.22).

  7. Recent advances in ordered intermetallics

    SciTech Connect

    Liu, C.T.

    1994-12-31

    Ordered intermetallic alloys based on aluminides and silicides offer many advantages for structural use at high temperatures in hostile environments. Attractive properties include excellent oxidation and corrosion resistance, light weight, and superior strength at high temperatures. The major concern for structural use of intermetallics was their low ductility and poor fracture resistance at ambient temperatures. For the past 10 years, considerable effort was devoted to R&D of ordered intermetallic alloys, and progress has been made on understanding intrinsic and extrinsic factors controlling brittle fracture in intermetallic alloys based on aluminides and silicides. Parallel effort on alloy design has led to the development of a number of ductile and strong intermetallic alloys based on Ni{sub 3}Al, NiAl, Fe{sub 3}Al, FeAl, Ti{sub 3}Al, and TiAl systems for structural applications.

  8. Recent advances in ordered intermetallics

    SciTech Connect

    Liu, C.T.

    1992-12-31

    This paper briefly summarizes recent advances in intermetallic research and development. Ordered intermetallics based on aluminides and silicides possess attractive properties for structural applications at elevated temperatures in hostile environments; however, brittle fracture and poor fracture resistance limit their use as engineering materials in many cases. In recent years, considerable efforts have been devoted to the study of the brittle fracture behavior of intermetallic alloys; as a result, both intrinsic and extrinsic factors governing brittle fracture have been identified. Recent advances in first-principles calculations and atomistic simulations further help us in understanding atomic bonding, dislocation configuration, and alloying effects in intermetallics. The basic understanding has led to the development of nickel, iron, and titanium aluminide alloys with improved mechanical and metallurgical properties for structural use. Industrial interest in ductile intermetallic alloys is high, and several examples of industrial involvement are mentioned.

  9. A Ring Distortion Strategy to Construct Stereochemically Complex and Structurally Diverse Compounds from Natural Products

    PubMed Central

    Huigens, Robert W.; Morrison, Karen C.; Hicklin, Robert W.; Flood, Timothy A.; Richter, Michelle F.; Hergenrother, Paul J.

    2014-01-01

    High-throughput screening is the dominant method to identify lead compounds in drug discovery. As such, the makeup of screening libraries will largely dictate the biological targets that can be modulated and the therapeutics that can be developed. Unfortunately, most compound screening collections consist principally of planar molecules with little structural or stereochemical complexity, compounds that do not offer the arrangement of chemical functionality necessary for modulation of many drug targets. Here we describe a novel, general, and facile strategy for the creation of diverse compounds with high structural and stereochemical complexity using readily available natural products as synthetic starting points. We show, through evaluation of chemical properties including fraction of sp3 carbons, ClogP, and the number of stereogenic centers, that these compounds are significantly more complex and diverse than those in standard screening collections, and guidelines are given for the application of this strategy to any suitable natural product. PMID:23422561

  10. High temperature oxidation behavior of TiAl-based intermetallics

    SciTech Connect

    Stroosnijder, M.F.; Sunderkoetter, J.D.; Haanappel, V.A.C.

    1996-10-01

    TiAl-based intermetallic compounds have attracted considerable interest as structural materials for high-temperature applications due to their low density and substantial mechanical strength at high temperatures. However, one major drawback hindering industrial application arises from the insufficient oxidation resistance at temperatures beyond 700 C. In the present contribution some general aspects of high temperature oxidation of TiAl-based intermetallics will be presented. This will be followed by a discussion of the influence of alloying elements, in particular niobium, and of the effect of nitrogen in the oxidizing environment on the high temperature oxidation behavior of such materials.

  11. Delivery of complex organic compounds from evolved stars to the solar system.

    PubMed

    Kwok, Sun

    2011-12-01

    Stars in the late stages of evolution are able to synthesize complex organic compounds with aromatic and aliphatic structures over very short time scales. These compounds are ejected into the interstellar medium and distributed throughout the Galaxy. The structures of these compounds are similar to the insoluble organic matter found in meteorites. In this paper, we discuss to what extent stellar organics has enriched the primordial Solar System and possibly the early Earth. PMID:22139515

  12. Intermetallic Layers in Soldered Joints

    Energy Science and Technology Software Center (ESTSC)

    1998-12-10

    ILAG solves the one-dimensional partial differential equations describing the multiphase, multicomponent, solid-state diffusion-controlled growth of intermetallic layers in soldered joints. This software provides an analysis capability for materials researchers to examine intermetallic growth mechanisms in a wide variety of defense and commercial applications involving both traditional and advanced materials. ILAG calculates the interface positions of the layers, as well as the spatial distribution of constituent mass fractions, and outputs the results at user-prescribed simulation times.

  13. Intermetallic insertion anodes for lithium batteries.

    SciTech Connect

    Thackeray, M. M.; Vaughey, J.; Johnson, C. S.; Kepler, K. D.

    1999-11-12

    Binary intermetallic compounds containing lithium, or lithium alloys, such as Li{sub x}Al, Li{sub x}Si and Li{sub x}Sn have been investigated in detail in the past as negative electrode materials for rechargeable lithium batteries. It is generally acknowledged that the major limitation of these systems is the large volumetric expansion that occurs when lithium reacts with the host metal. Such large increases in volume limit the practical use of lithium-tin electrodes in electrochemical cells. It is generally recognized that metal oxide electrodes, MO{sub y}, in lithium-ion cells operate during charge and discharge by means of a reversible lithium insertion/extraction process, and that the cells offer excellent cycling behavior when the crystallographic changes to the unit cell parameters and unit cell volume of the Li{sub x}MO{sub y} electrode are kept to a minimum. An excellent example of such an electrode is the spinel Li{sub 4}Ti{sub 5}O{sub 12}, which maintains its cubic symmetry without any significant change to the lattice parameter (and hence unit cell volume) during lithium insertion to the rock-salt composition Li{sub 7}Ti{sub 5}O{sub 12}. This spinel electrode is an example of a ternary Li{sub x}MO{sub y} system in which a binary MO{sub y} framework provides a stable host structure for lithium. With this approach, the authors have turned their attention to exploring ternary intermetallic systems Li{sub x}MM{prime} in the hope of finding a system that is not subject to the high volumetric expansion that typifies many binary systems. In this paper, the authors present recent data of their investigations of lithium-copper-tin and lithium-indium-antimonide electrodes in lithium cells. The data show that lithium can be inserted reversibly into selected intermetallic compounds with relatively small expansion of the lithiated intermetallic structures.

  14. Multi-component intermetallic electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M; Trahey, Lynn; Vaughey, John T

    2015-03-10

    Multi-component intermetallic negative electrodes prepared by electrochemical deposition for non-aqueous lithium cells and batteries are disclosed. More specifically, the invention relates to composite intermetallic electrodes comprising two or more compounds containing metallic or metaloid elements, at least one element of which can react with lithium to form binary, ternary, quaternary or higher order compounds, these compounds being in combination with one or more other metals that are essentially inactive toward lithium and act predominantly, but not necessarily exclusively, to the electronic conductivity of, and as current collection agent for, the electrode. The invention relates more specifically to negative electrode materials that provide an operating potential between 0.05 and 2.0 V vs. metallic lithium.

  15. Journal of Alloys and Compounds 524 (2012) 5358 Contents lists available at SciVerse ScienceDirect

    E-print Network

    Melnik, Roderick

    2012-01-01

    concentration, the bulk moduli and shear moduli of Ca­Zn intermetallic compounds increase monoton- ically. Our Ca­Zn intermetallic compounds, considered in this work, are all conductors and thermodynamically that the Ca­Zn system contains eight intermetallic compounds, namely Ca3Zn, Ca7Zn4, CaZn, CaZn2, Ca7Zn20, Ca

  16. High Throughput Computational Discovery of Intermetallic Anodes for Li Batteries

    NASA Astrophysics Data System (ADS)

    Kirklin, Scott; Wolverton, Chris

    2011-03-01

    We have developed a framework to perform high-throughput computational screening of intermetallic compounds as candidates for Li battery anodes. We have used our method to calculate, from density functional theory (DFT), more than 5000 anode lithiation reactions, based on more than 100 intermetallic compounds. We have specifically focused on the 3d-transition metal silicides, nidtrides and phosphides. Given the set of DFT total energies for all compounds, the reaction path upon lithiation is predicted using the recently-developed grand canonical linear programming (GCLP) method. The anode performance is then characterized by the cell potential vs lithium metal, energy density and volume expansion. The accuracy of this approach is first validated for pure silicon, and then extended to binary intermetallic compounds. Based on the results of these calculations, future experimental study can be guided toward systems with promising thermodynamic properties. Center for Electrical Energy Storage, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  17. Zone leveling and solution growth of complex compound semiconductors in space

    NASA Technical Reports Server (NTRS)

    Bachmann, K. J.

    1986-01-01

    A research program on complex semiconducting compounds and alloys was completed that addressed the growth of single crystals of CdSe(y)Te(1-y), Zn(x)Cd(1-x)Te, Mn(x)Cd(1-x)Te, InP(y)As(1-y) and CuInSe2 and the measurement of fundamental physico-chemical properties characterizing the above materials. The purpose of this ground based research program was to lay the foundations for further research concerning the growth of complex ternary compound semiconductors in a microgravity environment.

  18. To distinguish between complex compounds such as coffee aromas, researchers use a

    E-print Network

    Suslick, Kenneth S.

    To distinguish between complex compounds such as coffee aromas, researchers use a printed array the Coffee « All 2010 News « News « College of Liberal Arts & Sciences « University of Illinois CHEMISTRY Wake Up and Smell the Coffee Artificial nose can detect problems in coffee batches. Advertisers have

  19. An Analysis of "Rank-Shift" of Compound Complex Sentence Translation

    ERIC Educational Resources Information Center

    Widarwati, Nunun Tri

    2015-01-01

    The focus of the research is to describe the "rank-shift" of compound complex sentence translation in Harry Potter and the Order of the Phoenix novel translation by Listiana Srisanti and also to describe the accuracy of those translation. This research belongs to qualitative descriptive research which document and informants are being…

  20. ION COMPOSITION ELUCIDATION (ICE): A HIGH RESOLUTION MASS SPECTROMETRIC TECHNIQUE FOR IDENTIFYING COMPOUNDS IN COMPLEX MIXTURES

    EPA Science Inventory

    When tentatively identifying compounds in complex mixtures using mass spectral libraries, multiple matches or no plausible matches due to a high level of chemical noise or interferences can occur. Worse yet, most analytes are not in the libraries. In each case, Ion Composition El...

  1. Natural products as starting points for the synthesis of complex and diverse compounds

    E-print Network

    Hergenrother, Paul J.

    Natural products as starting points for the synthesis of complex and diverse compounds Karen C. Morrison and Paul J. Hergenrother* Covering: up to 2013 Natural products and their derivatives are used with the isolation of large numbers of novel natural products, lead discovery efforts over the last two decades have

  2. Reversible carbon-carbon bond formation between carbonyl compounds and a ruthenium pincer complex.

    PubMed

    Huff, Chelsea A; Kampf, Jeff W; Sanford, Melanie S

    2013-08-18

    This communication describes the reversible reaction of a ruthenium pincer complex with a variety of carbonyl compounds. Both NMR spectroscopic and X-ray crystallographic characterization of isomeric carbonyl adducts are reported, and the equilibrium constants for carbonyl binding have been determined. PMID:23832007

  3. Interstitial and substitutional solute effects in intermetallics

    SciTech Connect

    Baker, I.; Noebe, R.D.; George, E.P.

    1998-01-01

    This volume addresses recent developments in the understanding of the effects of interstitial and substitutional solute atoms on the physical and mechanical properties of intermetallic compounds. Topics discussed include the theory, modeling, and experimental verification of such effects as static and dynamic strain aging, the Portevin-le Chatelier effect, solid solution hardening behavior, dislocation-solute interactions, and related topics such as the amelioration of environmental embrittlement by various solutes. Topics covered include: (1) Vacancy-solute interactions in FeAl-based alloys; (2) Static and dynamic strain aging in microalloyed NiAl-based alloys; (3) Design fundamentals for Gamma TiAl alloys; and (4) Strain rate sensitivity of Cr-stabilized cubic titanium trialuminides.

  4. Synthesis and study of the heavy-fermion compound Yb5Pt9 M. S. Kim,1 M. C. Bennett,1 D. A. Sokolov,1 M. C. Aronson,1 J. N. Millican,2 Julia Y. Chan,2 Q. Huang,3

    E-print Network

    Aronson, Meigan

    , 71.27. a I. INTRODUCTION Heavy-fermion systems based on Ce and U intermetallic compounds have focused on Yb-based compounds, because the synthesis of Yb-intermetallic compounds is difficult due the synthesis of a Yb-based intermetallic compound, Yb5Pt9, and present the results of transport, magnetic

  5. Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating

    SciTech Connect

    Eglinton, T.I.; Aluwihare, L.I.; McNichol, A.P.; Bauer, J.E.; Druffel, E.R.M.

    1996-03-01

    This paper describes the application of a novel, practical approach for isolation of individual compounds from complex organic matrices for natural abundance radiocarbon measurement. This is achieved through the use of automated pereparative capillary gas chromatography (PCGC) to separate and recover sufficient quantities of individual target compounds for {sup 14}C analysis by accelerator mass spectrometry (AMS). We developed and tested this approach using a suite of samples (plant lipids, petroleums) whose ages spanned the {sup 14}C time scale and which contained a variety of compound types (fatty acids, sterols, hydrocarbons). Comparison of individual compound and bulk radiocarbon signatures for the isotopically homogeneous samples studied revealed that {Delta}{sup 14}C values generally agreed well ({+-}10%). Background contamination was assessed at each stage of the isolation procedure, and incomplete solvent removal prior to combustion was the only significant source of additional carbon. Isotope fractionation was addressed through compound-specific stable carbon isotopic analyses. Fractionation of isotopes during isolation of individual compounds was minimal (<5% for {delta}{sup 13}C), provided the entire peak was collected during PCGC. Trapping of partially coeluting peaks did cause errors, and these results highlight the importance of conducting stable carbon isotopic measurements of each trapped compound in concert with AMS for reliable radiocarbon measurements. 29 refs., 9 figs., 2 tabs.

  6. Nonstoichiometry of Al-Zr intermetallic phases

    SciTech Connect

    Radmilovic, V.; Thomas, G.

    1994-06-01

    Nonstoichiometry of metastable cubic {beta}{prime} and equilibrium tetragonal {beta} Al-Zr intermetallic phases of the nominal composition Al{sub 3}Zr in Al-rich alloys has been extensively studied. It is proposed that the ``dark contrast`` of {beta}{prime} core in {beta}{prime}/{sigma}{prime} complex precipitates, in Al-Li-Zr based alloys, is caused by incorporation of Al and Li atoms into the {beta}{prime} phase on Zr sublattice sites, forming nonstoichiometric Al-Zr intermetallic phases, rather than by Li partitioning only. {beta}{prime} particles contain very small amounts of Zr, approximately 5 at.%, much less than the stoichiometric 25 at.% in the Al{sub 3}Zr metastable phase. These particles are, according to simulation of high resolution images, of the Al{sub 3}(Al{sub 0.4}Li{sub 0.4}Zr{sub 0.2}) type. Nonstoichiometric particles of average composition Al{sub 4}Zr and Al{sub 6}Zr are observed also in the binary Al-Zr alloy, even after annealing for several hours at 600{degree}C.

  7. [Mn(en)3]CdSnTe4 and [Mn(en)3]Ag6Sn2Te8: New Intermetallic Tellurides Synthesized in Superheated

    E-print Network

    Li, Jing

    this route, we have recently begun to investigate intermetallic compounds that contain more than one type[Mn(en)3]CdSnTe4 and [Mn(en)3]Ag6Sn2Te8: New Intermetallic Tellurides Synthesized in Superheated intermetallic tellurides, Mn(en)3]CdSnTe4 (I) and [Mn(en)3]Ag6Sn2Te8 (II), have been synthesized in superheated

  8. An anthelmintic compound, nafuredin, shows selective inhibition of complex I in helminth mitochondria

    PubMed Central

    ?mura, Satoshi; Miyadera, Hiroko; Ui, Hideaki; Shiomi, Kazuro; Yamaguchi, Yuuichi; Masuma, Rokuro; Nagamitsu, Tohru; Takano, Daisuke; Sunazuka, Toshiaki; Harder, Achim; Kölbl, Heinz; Namikoshi, Michio; Miyoshi, Hideto; Sakamoto, Kimitoshi; Kita, Kiyoshi

    2001-01-01

    Infections with parasitic helminths are important causes of morbidity and mortality worldwide. New drugs that are parasite specific and minimally toxic to the host are needed to counter these infections effectively. Here we report the finding of a previously unidentified compound, nafuredin, from Aspergillus niger. Nafuredin inhibits NADH-fumarate reductase (complexes I + II) activity, a unique anaerobic electron transport system in helminth mitochondria, at nM order. It competes for the quinone-binding site in complex I and shows high selective toxicity to the helminth enzyme. Moreover, nafuredin exerts anthelmintic activity against Haemonchus contortus in in vivo trials with sheep. Thus, our study indicates that mitochondrial complex I is a promising target for chemotherapy, and nafuredin is a potential lead compound as an anthelmintic isolated from microorganisms. PMID:11120889

  9. Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications

    NASA Astrophysics Data System (ADS)

    Bochenek, Kamil; Basista, Michal

    2015-11-01

    Over the last few decades intermetallic compounds such as NiAl have been considered as potential high temperature structural materials for aerospace industry. A large number of investigations have been reported describing complex fabrication routes, introducing various reinforcing/alloying elements along with theoretical analyses. These research works were mainly focused on the overcoming of main disadvantage of nickel aluminides that still restricts their application range, i.e. brittleness at room temperature. In this paper we present an overview of research on NiAl processing and indicate methods that are promising in solving the low fracture toughness issue at room temperature. Other material properties relevant for high temperature applications are also addressed. The analysis is primarily done from the perspective of NiAl application in aero engines in temperature regimes from room up to the operating temperature (over 1150 °C) of turbine blades.

  10. Pressure tuning of competing magnetic interactions in intermetallic CeFe2

    SciTech Connect

    Wang, Jiyang; Feng, Yejun; Jaramillo, R.; van Wezel, Jasper; Canfield, Paul C.; Rosenbaum, T.F.

    2012-07-20

    We use high-pressure magnetic x-ray diffraction and numerical simulation to determine the low-temperature magnetic phase diagram of stoichiometric CeFe2. Near 1.5 GPa we find a transition from ferromagnetism to antiferromagnetism, accompanied by a rhombohedral distortion of the cubic Laves crystal lattice. By comparing pressure and chemical substitution we find that the phase transition is controlled by a shift of magnetic frustration from the Ce-Ce to the Fe-Fe sublattice. Notably the dominant Ce-Fe magnetic interaction, which sets the temperature scale for the onset of long-range order, remains satisfied throughout the phase diagram but does not determine the magnetic ground state. Our results illustrate the complexity of a system with multiple competing magnetic energy scales and lead to a general model for magnetism in cubic Laves phase intermetallic compounds.

  11. Modeling of Substitutional Site Preference in Ordered Intermetallic Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Honecy, Frank

    1998-01-01

    We investigate the site substitution scheme of specific alloying elements in ordered compounds and the dependence of site occupancy on compound stoichiometry, alloy concentration. This basic knowledge, and the interactions with other alloying additions are necessary in order to predict and understand the effect of various alloying schemes on the physical properties of a material, its response to various temperature treatments, and the resulting mechanical properties. Many theoretical methods can provide useful but limited insight in this area, since most techniques suffer from constraints in the type of elements and the crystallographic structures that can be modeled. With this in mind, the Bozzolo-Ferrante-Smith (BFS) method for alloys was designed to overcome these limitations, with the intent of providing an useful tool for the theoretical prediction of fundamental properties and structure of complex systems. After a brief description of the BFS method, its use for the determination of site substitution schemes for individual as well as collective alloying additions to intermetallic systems is described, including results for the concentration dependence of the lattice parameter. Focusing on B2 NiAl, FeAl and CoAl alloys, the energetics of Si, Ti, V, Cr, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Hf, Ta and W alloying additions are surveyed. The effect of single additions as well as the result of two simultaneous additions, discussing the interaction between additions and their influence on site preference schemes is considered. Finally, the BFS analysis is extended to ternary L1(sub 2) (Heusler phase) alloys. A comparison between experimental and theoretical results for the limited number of cases for which experimental data is available is also included.

  12. Compressed sensing approach for calculating lattice thermal conductivity of complex thermoelectric compounds

    NASA Astrophysics Data System (ADS)

    Ozolins, Vidvuds; Xia, Yi; Nielson, Weston; Zhou, Fei

    2015-03-01

    Earth-abundant minerals such as tetrahedrite Cu12Sb4S13 have recently received attention as promising thermoelectrics due to a combination of a relatively high figure of merit (ZT > 1 at T = 700 K in tetrahedrite), good mechanical properties and inexpensive bulk processing methods. Like many large unit-cell thermoelectrics, these compounds often have complex chemical formulas with very large unit cells that pose challenges to our ability to study their lattice dynamical properties theoretically. Here we show that a recently introduced approach, compressive sensing lattice dynamics (CSLD) [F. Zhou et al., Phys. Rev. Lett. 113, 185501 (2014)] provides an accurate and computationally efficient platform for investigating anharmonic lattice dynamics in complex materials. We will discuss the basic ideas and illustrate the performance of CSLD for the lattice thermal conductivity ?L of tetrahedrite, collusite, pyrite, and other earth-abundant mineral compounds.

  13. Study of bulk ground state properties of cerium intermetallics by linear dichroism in 4f resonant inelastic X-ray scattering

    E-print Network

    Marcon, Marco

    Study of bulk ground state properties of cerium intermetallics by linear dichroism in 4f resonant resonant inelastic X-ray scattering in the M5 region of intermetallic compounds of cerium (CeRh2, CePd3, Ce the measured dichroism integrated along the emitted energies, and the radius of the cerium ion in different

  14. Volatile compounds in cryptic species of the Aneura pinguis complex and Aneura maxima (Marchantiophyta, Metzgeriidae).

    PubMed

    Wawrzyniak, Rafa?; Wasiak, Wies?aw; B?czkiewicz, Alina; Buczkowska, Katarzyna

    2014-09-01

    Aneura pinguis is one of the liverwort species complexes that consist of several cryptic species. Ten samples collected from different regions in Poland are in the focus of our research. Eight of the A. pinguis complex belonging to four cryptic species (A, B, C, E) and two samples of closely related species Aneura maxima were tested for the composition of volatile compounds. The HS-SPME technique coupled to GC/FID and GC/MS analysis has been applied. The fiber coated with DVB/CAR/PDMS has been used. The results of the present study, revealed the qualitative and quantitative differences in the composition of the volatile compounds between the studied species. Mainly they are from the group of sesquiterpenoids, oxygenated sesquiterpenoids and aliphatic hydrocarbons. The statistical methods (CA and PCA) showed that detected volatile compounds allow to distinguish cryptic species of A. pinguis. All examined cryptic species of the A. pinguis complex differ from A. maxima. Species A and E of A. pinguis, in CA and PCA, form separate clusters remote from two remaining cryptic species of A. pinguis (B and C) and A. maxima. Relationship between the cryptic species appeared from the chemical studies are in accordance with that revealed on the basis of DNA sequences. PMID:25034615

  15. One-Step, Facile and Ultrafast Synthesis of Phase- and Size-Controlled Pt-Bi Intermetallic Nanocatalysts through Continuous-Flow Microfluidics.

    PubMed

    Zhang, Dongtang; Wu, Fuxiang; Peng, Manhua; Wang, Xiayan; Xia, Dingguo; Guo, Guangsheng

    2015-05-20

    Ordered intermetallic nanomaterials are of considerable interest for fuel cell applications because of their unique electronic and structural properties. The synthesis of intermetallic compounds generally requires the use of high temperatures and multiple-step processes. The development of techniques for rapid phase- and size-controlled synthesis remains a formidable challenge. The intermetallic compound Pt1Bi2 is a promising candidate catalyst for direct methanol fuel cells because of its high catalytic activity and excellent methanol tolerance. In this work, we explored a one-step, facile and ultrafast phase- and size-controlled process for synthesizing ordered Pt-Bi intermetallic nanoparticles (NPs) within seconds in microfluidic reactors. Single-phase Pt1Bi1 and Pt1Bi2 intermetallic NPs were prepared by tuning the reaction temperature, and size control was achieved by modifying the solvents and the length of the reaction channel. The as-prepared Pt-Bi intermetallic NPs exhibited excellent methanol tolerance capacity and high electrocatalytic activity. Other intermetallic nanomaterials, such as Pt3Fe intermetallic nanowires with a diameter of 8.6 nm and Pt1Sn1 intermetallic nanowires with a diameter of 6.3 nm, were also successfully synthesized using this method, thus demonstrating its feasibility and generality. PMID:25932623

  16. Compound

    NASA Astrophysics Data System (ADS)

    Suzumura, Akitoshi; Watanabe, Masaki; Nagasako, Naoyuki; Asahi, Ryoji

    2014-06-01

    Recently, Cu-based chalcogenides such as Cu3SbSe4, Cu2Se, and Cu2SnSe3 have attracted much attention because of their high thermoelectric performance and their common feature of very low thermal conductivity. However, for practical use, materials without toxic elements such as selenium are preferable. In this paper, we report Se-free Cu3SbS4 thermoelectric material and improvement of its figure of merit ( ZT) by chemical substitutions. Substitutions of 3 at.% Ag for Cu and 2 at.% Ge for Sb lead to significant reductions in the thermal conductivity by 37% and 22%, respectively. These substitutions do not sacrifice the power factor, thus resulting in enhancement of the ZT value. The sensitivity of the thermal conductivity to chemical substitutions in these compounds is discussed in terms of the calculated phonon dispersion and previously proposed models for Cu-based chalcogenides. To improve the power factor, we optimize the hole carrier concentration by substitution of Ge for Sb, achieving a power factor of 16 ?W/cm K2 at 573 K, which is better than the best reported for Se-based Cu3SbSe4 compounds.

  17. High-temperature ordered intermetallic alloys II; Proceedings of the Second Symposium, Boston, MA, Dec. 2-4, 1986

    NASA Technical Reports Server (NTRS)

    Stoloff, N. S. (editor); Koch, C. C. (editor); Liu, C. T. (editor); Izumi, O. (editor)

    1987-01-01

    The papers presented in this volume provide on overview of recent theoretical and experimental research in the field of high-temperature ordered intermetallic alloys. The papers are gouped under the following headings: ordering behavior and theory, microstructures, mechanical behavior, alloy design and microstructural control, and metallurgical properties. Specific topics discussed include antiphase domains, disordered films and the ductility of ordered alloys based on Ni3Al; kinetics and mechanics of formation of Al-Ni intermetallics; deformability improvements of L1(2)-type intermetallic compounds; B2 aluminides for high-temperature applications; and rapidly solidified binary TiAl alloys.

  18. Method for making devices having intermetallic structures and intermetallic devices made thereby

    DOEpatents

    Paul, Brian Kevin (Oregon State University, Corvallis, OR); Wilson, Rick D.; Alman, David E.

    2004-01-06

    A method and system for making a monolithic intermetallic structure are presented. The structure is made from lamina blanks which comprise multiple layers of metals which are patternable, or intermetallic lamina blanks that are patternable. Lamina blanks are patterned, stacked and registered, and processed to form a monolithic intermetallic structure. The advantages of a patterned monolithic intermetallic structure include physical characteristics such as melting temperature, thermal conductivity, and corrosion resistance. Applications are broad, and include among others, use as a microreactor, heat recycling device, and apparatus for producing superheated steam. Monolithic intermetallic structures may contain one or more catalysts within the internal features.

  19. Determination of potentially bioaccumulating complex mixtures of organochlorine compounds in wastewater: a review.

    PubMed

    Contreras López, M Concepción

    2003-03-01

    Organic chlorine compounds can be persistent environmental contaminants and may be accumulated through the food chain to the aquatic organisms, to fish and humans, depending basically on their hydrophobic properties. Consequently, there is an interest to measure these organic compounds from both the scientific and regulatory communities. The analytical essays have been improved for measuring specific organic chlorine compounds that present the most toxicological potential (polychlorinated biphenyls [PCBs], certain pesticides and dioxins), although they are tedious and time-consuming procedures. The existing tests to measure adsorbable organic halogens (AOX) or extractable organic halogens (EOX) do not distinguish the more hydrophobic organic chlorine matter. The intention of this paper is to make a review of the existing methods to measure the potentially bioaccumulating organochlorine compounds (OCs) from wastewater and propose a methodology to a standardisation procedure for complex mixtures of OCs in wastewater, such as pulp mill effluents. A new method has been proposed for determining the most hydrophobic part of the extractable organic halogens (EOX(fob)), the lowest reported value is 0.6 microg/l, expressed as chloride, and the relative standard deviation at 20 microg/l is 7% on laboratory samples and 30% on real effluents. This new procedure could be a valuable tool to complement environmental risk assessment studies of wastewater discharges. PMID:12605924

  20. Phosphorylation of C–H bonds of aromatic compounds using metals and metal complexes

    NASA Astrophysics Data System (ADS)

    Budnikova, Yu H.; Sinyashin, O. G.

    2015-09-01

    Key achievements and current trends in the development of methods for phosphorylation of aromatic C–H bonds catalyzed by metal salts and complexes are considered. The most important and promising approaches of the last decade, including those concerning the synthesis and properties of arylphosphonates, are distinguished. Methods for the introduction of a phosphonate group into non-activated and functionally substituted aromatic compounds and heteroaromatic molecules and phosphorylation–cyclization reactions involving acetylenes, 2-isocyanobiphenyls and alkynoates are analyzed. The possibilities of ligand-directed phosphorylation of compounds with aromatic C–H bonds and presumed mechanisms and intermediates in the C–P bond formation reactions are considered. The potential of this extensively developing research trend in organic and organoelement chemistry is highlighted. The bibliography includes 263 references.

  1. Probing Complex Free-Radical Reaction Pathways of Fuel Model Compounds

    SciTech Connect

    Buchanan III, A C; Kidder, Michelle; Beste, Ariana; Britt, Phillip F

    2012-01-01

    Fossil (e.g. coal) and renewable (e.g. woody biomass) organic energy resources have received considerable attention as possible sources of liquid transportation fuels and commodity chemicals. Knowledge of the reactivity of these complex materials has been advanced through fundamental studies of organic compounds that model constituent substructures. In particular, an improved understanding of thermochemical reaction pathways involving free-radical intermediates has arisen from detailed experimental kinetic studies and, more recently, advanced computational investigations. In this presentation, we will discuss our recent investigations of the fundamental pyrolysis pathways of model compounds that represent key substructures in the lignin component of woody biomass with a focus on molecules representative of the dominant beta-O-4 aryl ether linkages. Additional mechanistic insights gleaned from DFT calculations on the kinetics of key elementary reaction steps will also be presented, as well as a few thoughts on the significant contributions of Jim Franz to this area of free radical chemistry.

  2. Suppressors made from intermetallic materials

    DOEpatents

    Klett, James W; Muth, Thomas R; Cler, Dan L

    2014-11-04

    Disclosed are several examples of apparatuses for suppressing the blast and flash produced as a projectile is expelled by gases from a firearm. In some examples, gases are diverted away from the central chamber to an expansion chamber by baffles. The gases are absorbed by the expansion chamber and desorbed slowly, thus decreasing pressure and increasing residence time of the gases. In other examples, the gases impinge against a plurality of rods before expanding through passages between the rods to decrease the pressure and increase the residence time of the gases. These and other exemplary suppressors are made from an intermetallic material composition for enhanced strength and oxidation resistance at high operational temperatures.

  3. [Optical properties of DNA complexes with antitumor compounds of bivalent platinum].

    PubMed

    Akimenko, N M; Balcarová, Z; Kleinwächter, V; Evdokimov, Iu M

    1984-10-01

    The optical properties of the DNA complexes with the compounds of bivalent platinum were studied. The compounds differed by the nature of the anionic and neutral ligands and their spatial arrangement about the platinum atom. It was shown that the same as cis-[Pt (NH3)2Cl2] the platinum compounds with the biological activity, i.e. [Pt (en) Cl2], cis-[PtNH3 (Bz) Cl2] and cis-[Pt (NH3)2NO2Cl] induced at low values of r (a ratio of the number of the platinum moles added to the number of the DNA nucleotide moles in the solution) an increase in the amplitude of the positive band in the spectrum of the circular dichroism (CD) of the linear DNA and a marked decrease in the amplitude of the negative band in the spectrum of the CD of the liquid crystalline microphase of DNA formed in the presence of polyethyleneglycol. By the character of the action on the CD spectrum of the linear and condensed DNA [Pt (tetrameen)Cl2] which had no selective antimitotic effect might be referred to the above platinum compounds. Trans-[Pt (NH3)2NO2Cl], [PtNH3PyCl2], cis-[Pt (NH3)2(NO2)2] and [Pt (NH3)3Cl]Cl having no biological activity either induced only a decrease in the amplitude of the positive band in the CD spectrum of the linear DNA or had no effect on the CD spectrum. The effect of these compounds on the CD spectrum of the liquid crystalline microphase of DNA was slightly pronounced or not observed. PMID:6508249

  4. Detection and Differentiation of Neutral Organic Compounds by [superscript 19]F NMR with a Tungsten Calix[4]arene Imido Complex

    E-print Network

    Zhao, Yanchuan

    Fluorinated tungsten calix[4]arene imido complexes were synthesized and used as receptors to detect and differentiate neutral organic compounds. It was found that the binding of specific neutral organic molecules to the ...

  5. Complex fragment emission from low energy compound nucleus decay to multifragmentation

    SciTech Connect

    Moretto, L.G.; Jing, K.X.; Phair, L.; Tso, K.; Wozniak, G.J.

    1994-09-01

    In the first of these lectures, the experimental emission probabilities of complex fragments by low energy compound nuclei and their dependence upon energy and Z value are compared to the transition state rates. In the second part, the high energy multi-fragment emission probabilities are shown to be reducible to the single fragment emission probability through the binomial distribution. The extracted one-fragment emission probabilities have a thermal dependence of the form p = e{sup {minus}B/T}. This suggests that multifragmentation is a sequence of thermal binary decays.

  6. Synthesis and properties of ZnS-EuS films grown from volatile complex compounds

    SciTech Connect

    Bessergenev, V.G.; Ivanova, E.N.; Kovalevskaya, Y.A.

    1997-10-01

    Deposition and characterization of films of ZnS, EuS and ZnS:Eu are described. The films have been prepared by chemical vapor deposition using new volatile complex compounds, dithiocarbamates of Zn and Eu, as precursors. Characterization includes X-ray diffraction, chemical analysis of the film composition, Raman spectroscopy, ellipsometry, and spectrophotometry. The spatial chemical homogeneity of the films has been determined using a recently developed method of differential dissolution and found to be uniform. Doping of ZnS by Eu with dopant concentration up to 0.3 at.% has been achieved. Effects of Eu doping on structural and optical properties of the films are presented.

  7. Rare-Earth Transition-Metal Intermetallics: Structure-bonding-Property Relationships

    SciTech Connect

    Mi-Kyung Han

    2006-05-01

    Our explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding-property relationships. Our work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe{sub 13-x}Si{sub x} system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn{sub 13}-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides RE{sub 2-x}Fe{sub 4}Si{sub 14-y} and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi{sub 2}: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb{sub 3}Zn{sub 3.6}Al{sub 7.4}: Partially ordered structure of Tb{sub 3}Zn{sub 3.6}Al{sub 7.4} compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn{sub 39}(Cr{sub x}Al{sub 1-x}){sub 81}: These layered structures are similar to icosahedral Mn-Al quasicrystalline compounds. Therefore, this compound may provide new insights into the formation, composition and structure of quasicrystalline materials.

  8. Rare-earth transition-metal intermetallics: Structure-bonding-property relationships

    SciTech Connect

    Han, M.K.

    2006-05-06

    The explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding property relationships. The work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe{sub 13-x}Si{sub x} system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn{sub 13}-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides Re{sub 2-x}Fe{sub 4}Si{sub 14-y} and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi{sub 2}: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb{sub 3}Zn{sub 3.6}Al{sub 7.4}: Partially ordered structure of Tb{sub 3}Zn{sub 3.6}Al{sub 7.4} compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn{sub 39}(Cr{sub x}Al{sub 1-x}){sub 81}: These layered structures are similar to icosahedral Mn-Al quasicrystalline compounds. Therefore, this compound may provide new insights into the formation, composition and structure of quasicrystalline materials.

  9. High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides

    SciTech Connect

    Daniel A. Mosher; Xia Tang; Ronald J. Brown; Sarah Arsenault; Salvatore Saitta; Bruce L. Laube; Robert H. Dold; Donald L. Anton

    2007-07-27

    This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchanger optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.

  10. Investigations of intermetallic alloy hydriding mechanisms. Annual progress report, May 1 1979-April 30, 1980

    SciTech Connect

    Livesay, B.R.; Larsen, J.W.

    1980-05-01

    Investigations are being conducted on mechanisms involved with the hydrogen-metal interactions which control the absorption and desorption processes in intermetallic compounds. The status of the following investigations is reported: modeling of hydride formation; microbalance investigations; microstructure investigations; flexure experiments; resistivity experiments; and nuclear backscattering measurements. These investigations concern fundamental hydrogen interaction mechanisms involved in storage alloys.

  11. Cannabis, a complex plant: different compounds and different effects on individuals.

    PubMed

    Atakan, Zerrin

    2012-12-01

    Cannabis is a complex plant, with major compounds such as delta-9-tetrahydrocannabinol and cannabidiol, which have opposing effects. The discovery of its compounds has led to the further discovery of an important neurotransmitter system called the endocannabinoid system. This system is widely distributed in the brain and in the body, and is considered to be responsible for numerous significant functions. There has been a recent and consistent worldwide increase in cannabis potency, with increasing associated health concerns. A number of epidemiological research projects have shown links between dose-related cannabis use and an increased risk of development of an enduring psychotic illness. However, it is also known that not everyone who uses cannabis is affected adversely in the same way. What makes someone more susceptible to its negative effects is not yet known, however there are some emerging vulnerability factors, ranging from certain genes to personality characteristics. In this article we first provide an overview of the biochemical basis of cannabis research by examining the different effects of the two main compounds of the plant and the endocannabinoid system, and then go on to review available information on the possible factors explaining variation of its effects upon different individuals. PMID:23983983

  12. Bioaccumulation of fossil fuel components during single-compound and complex-mixture exposures of Daphnia magna

    SciTech Connect

    Dauble, D.D.; Carlile, D.W.; Hanf, R.W. Jr.

    1986-07-01

    The authors conducted tests with the water flea (Daphnia magna) to compare the bioaccumulation of compounds presented alone with the bioaccumulation of these same compounds when they were presented within a complex coal liquid, water-soluble fraction. Phenol and aniline were used as representative compounds because they are highly soluble, moderately toxic, and common to many fossil fuel liquid products and corresponding wastes. The tests were primarily designed to aid in development of predictive models relating to the transport and fate of components from complex mixtures in aquatic biota.

  13. Complex-compound heat pump: Topical report on phase 1 results

    NASA Astrophysics Data System (ADS)

    Rockenfeller, U.; Kirol, L. D.; Dooley, W. T.; Langeliers, J.; Sarkisian, P.

    1992-08-01

    A gas-fired heat pump using complex compound chemisorption media and ammonia refrigerant is being developed. Complex compounds are advantageous because they adsorb large amounts of refrigerant (up to 80 percent of the adsorbent dry weight), exhibit vapor pressure independent of refrigerant concentration, can be made to adsorb very rapidly, and can be formulated to have different vapor pressures. The heat pump being developed has three stages, each using a different formulation. Multiple stages are used to increase efficiency, giving cooling COPs near one. Heating-mode operation at ambient temperatures of -20 F and below can also be achieved. The report presents results from Phase 1 of the development project. Phase 1 efforts focused on generation of engineering data to ensure that no major obstacles would be met in future development, and to provide data necessary for design of a breadboard system. Work included the following: (1) optimization of the sorbers internal heat and mass transfer hardware to maximize sorption rates and minimize cost, (2) qualification of sorbent media with respect to stability and corrosion, (3) estimation of manufacturing and operating costs, and (4) development of preliminary designs for heat pump and AC systems.

  14. Abrasive wear of intermetallic-based alloys and composites

    SciTech Connect

    Hawk, Jeffrey A.; Alman, David E.

    1997-12-01

    In this study, the abrasive wear behavior of Fe3Al, TiAl, Ti3Al, Al3Ti, NiAl, Ni3Al and MoSi2, and composites based on these compounds, were assessed and compared to the behavior of selected metals, alloys and ceramics. Under the wear conditions used for these tests, the softer intermetallic compounds (e.g. TiAl and Fe3Al) behaved in a manner similar to the metals and alloys, whereas, the harder intermetallic compound (i.e. MoSi2) behaved more like a ceramic. The influence of Al atomic fraction, superlattice structure and ternary alloying additions on the wear behavior of Fe3Al was investigated. Controlling the Al content and third element additions affected wear resistance more than superlattice structure. Composite strengthening was also explored as a method for improving wear resistance. The addition of hard second phase particles (i.e. TiB2 to NiAl and SiC to MoSi2) was also very effective improving wear resistance. Surprisingly, the addition of softer Nb particles did not significantly degrade the wear resistance of a MoSi2 matrix, even at Nb additions of 40%.

  15. Molecular identification of organic compounds in atmospheric complex mixtures and relationship to atmospheric chemistry and sources.

    PubMed Central

    Mazurek, Monica A

    2002-01-01

    This article describes a chemical characterization approach for complex organic compound mixtures associated with fine atmospheric particles of diameters less than 2.5 m (PM2.5). It relates molecular- and bulk-level chemical characteristics of the complex mixture to atmospheric chemistry and to emission sources. Overall, the analytical approach describes the organic complex mixtures in terms of a chemical mass balance (CMB). Here, the complex mixture is related to a bulk elemental measurement (total carbon) and is broken down systematically into functional groups and molecular compositions. The CMB and molecular-level information can be used to understand the sources of the atmospheric fine particles through conversion of chromatographic data and by incorporation into receptor-based CMB models. Once described and quantified within a mass balance framework, the chemical profiles for aerosol organic matter can be applied to existing air quality issues. Examples include understanding health effects of PM2.5 and defining and controlling key sources of anthropogenic fine particles. Overall, the organic aerosol compositional data provide chemical information needed for effective PM2.5 management. PMID:12634131

  16. Copper Complexation Screen Reveals Compounds with Potent Antibiotic Properties against Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Haeili, Mehri; Moore, Casey; Davis, Christopher J. C.; Cochran, James B.; Shah, Santosh; Shrestha, Tej B.; Zhang, Yaofang; Bossmann, Stefan H.; Benjamin, William H.

    2014-01-01

    Macrophages take advantage of the antibacterial properties of copper ions in the killing of bacterial intruders. However, despite the importance of copper for innate immune functions, coordinated efforts to exploit copper ions for therapeutic interventions against bacterial infections are not yet in place. Here we report a novel high-throughput screening platform specifically developed for the discovery and characterization of compounds with copper-dependent antibacterial properties toward methicillin-resistant Staphylococcus aureus (MRSA). We detail how one of the identified compounds, glyoxal-bis(N4-methylthiosemicarbazone) (GTSM), exerts its potent strictly copper-dependent antibacterial properties on MRSA. Our data indicate that the activity of the GTSM-copper complex goes beyond the general antibacterial effects of accumulated copper ions and suggest that, in contrast to prevailing opinion, copper complexes can indeed exhibit species- and target-specific activities. Based on experimental evidence, we propose that copper ions impose structural changes upon binding to the otherwise inactive GTSM ligand and transfer antibacterial properties to the chelate. In turn, GTSM determines target specificity and utilizes a redox-sensitive release mechanism through which copper ions are deployed at or in close proximity to a putative target. According to our proof-of-concept screen, copper activation is not a rare event and even extends to already established drugs. Thus, copper-activated compounds could define a novel class of anti-MRSA agents that amplify copper-dependent innate immune functions of the host. To this end, we provide a blueprint for a high-throughput drug screening campaign which considers the antibacterial properties of copper ions at the host-pathogen interface. PMID:24752262

  17. Intermetallic Frameworks: Synthesis, Characterization, and Bonding of K0.4Cd2 and Na26Cd141

    E-print Network

    Intermetallic Frameworks: Synthesis, Characterization, and Bonding of K0.4Cd2 and Na26Cd141 Evgeny, Indiana 46556 ReceiVed July 7, 1998 Two new compounds have been synthesized and characterized different structures. The potassium compound, K0.368(9)Cd2 (tetragonal, I4/mcm, a ) 9.169(1), c ) 2

  18. Organic compounds as indicators for transport in an urban characterized complex karst system

    NASA Astrophysics Data System (ADS)

    Reh, R.; Licha, T.; Nödler, K.; Geyer, T.; Sauter, M.

    2012-04-01

    In northern Hesse (Germany), sediments of the Upper Permian (Zechstein-Formations) are outcropping in a coastal facies along the western rim of the Rhenish Massif. The geologic section is characterized by a sequence of carbonate rocks (carbonates of the Werra-, Staßfurt- and Leine-Formations) and predominantly fine clastic sediments. The carbonate aquifers of the Werra-Formation and the Leine-Formation are used for drinking water abstraction of a provincial town and surrounding communities. Concurrently, the urban area is characterized by industrial and commercial uses. The groundwater flow system is composed of three potential karst aquifers, aquitards and aquicludes within a complex tectonically faulted area. The study area is divided into three spring catchment areas. However, the locations of the subsurface water divides are unknown. Traditional methods to determine the catchment areas (e.g. artificial tracer tests) are difficult to apply, due to a lack of adequate injection points. The presented work deals with the use of organic compounds as indicators for subsurface flow paths. Medical drugs, pesticides, corrosion inhibitors and such typical waste water compounds as caffeine (NÖDLER ET AL. 2010) are observed in approximately fifty groundwater observation points by regular sampling. The seasonal variability of the distribution pattern of organic compounds is low. The most common compounds are atrazine and its metabolites desethylatrazine and desisopropylatrazine, as well as the corrosion inhibitor 1H-benzotriazole. Since these substances are applied in different regions different input functions can be assumed. However, the highest concentrations are detected along a North-orientated axis, which also exhibits the greatest compound variety. This distribution pattern indicates preferential flow and transport pathways in the subsurface. The absence of organic compounds in other parts of the investigation area implies the existence of a water divide between these areas. The occurence of atrazine in groundwater samples denotes the existence of a water component with a transit time of more than 20 years because the use of atrazine as a pesticide has been banned in Germany since 1991. Furthermore, since atrazine and 1H-benzotriazole are found in all investigated aquifers, the presence of hydraulic connections between the aquifers (e.g. associated to faults) is likely. In addition to the long-term flow component, the periodic detection of such antibiotics as erythromycine, after strong recharge events (for example snow-melt events), suggests also the presence of a short-term flow component in the aquifer system. Consequently, the observation of organic compounds is an appropriate method to determine subsurface flow paths within complex aquifer systems. Furthermore, such a method can also be employed in the subsurface to approximate transit times and to identify mixing zones. Lecture NÖDLER, K., LICHA, T., BESTER, B., K. SAUTER, M. (2010): Development of a multi-residue analytical method, based on liquid chromatography-tandem mass spectrometry, for the simultaneous determination of 46 micro-contaminants in aqueous samples.- Journal of Chromatography A, 1217 (2010) 6511-6521.

  19. Method of making sintered ductile intermetallic-bonded ceramic composites

    DOEpatents

    Plucknett, K.; Tiegs, T.N.; Becher, P.F.

    1999-05-18

    A method of making an intermetallic-bonded ceramic composite involves combining a particulate brittle intermetallic precursor with a particulate reactant metal and a particulate ceramic to form a mixture and heating the mixture in a non-oxidizing atmosphere at a sufficient temperature and for a sufficient time to react the brittle intermetallic precursor and the reactant metal to form a ductile intermetallic and sinter the mixture to form a ductile intermetallic-bonded ceramic composite. 2 figs.

  20. Process for synthesizing compounds from elemental powders and product

    DOEpatents

    Rabin, Barry H. (Idaho Falls, ID); Wright, Richard N. (Idaho Falls, ID)

    1993-01-01

    A process for synthesizing intermetallic compounds from elemental powders. The elemental powders are initially combined in a ratio which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe.sub.3 Al and FeAl.

  1. Ion binding compounds, radionuclide complexes, methods of making radionuclide complexes, methods of extracting radionuclides, and methods of delivering radionuclides to target locations

    DOEpatents

    Chen, Xiaoyuan (Syracuse, NY); Wai, Chien M. (Moscow, ID); Fisher, Darrell R. (Richland, WA)

    2000-01-01

    The invention pertains to compounds for binding lanthanide ions and actinide ions. The invention further pertains to compounds for binding radionuclides, and to methods of making radionuclide complexes. Also, the invention pertains to methods of extracting radionuclides. Additionally, the invention pertains to methods of delivering radionuclides to target locations. In one aspect, the invention includes a compound comprising: a) a calix[n]arene group, wherein n is an integer greater than 3, the calix[n]arene group comprising an upper rim and a lower rim; b) at least one ionizable group attached to the lower rim; and c) an ion selected from the group consisting of lanthanide and actinide elements bound to the ionizable group. In another aspect, the invention includes a method of extracting a radionuclide, comprising: a) providing a sample comprising a radionuclide; b) providing a calix[n]arene compound in contact with the sample, wherein n is an integer greater than 3; and c) extracting radionuclide from the sample into the calix[n]arene compound. In yet another aspect, the invention includes a method of delivering a radionuclide to a target location, comprising: a) providing a calix[n]arene compound, wherein n is an integer greater than 3, the calix[n]arene compound comprising at least one ionizable group; b) providing a radionuclide bound to the calix[n]arene compound; and c) providing an antibody attached to the calix[n]arene compound, the antibody being specific for a material found at the target location.

  2. A well-balanced FV scheme for compound channels with complex geometry and movable bed

    NASA Astrophysics Data System (ADS)

    Minatti, L.

    2015-08-01

    This work focuses on the implementation of a Shallow Water-Exner model for compound natural channels with complex geometry and movable bed within the finite volume framework. The model is devised for compound channels modeling: cross-section overbanks are treated with fixed bed conditions, while the main channel is left free to modify its morphology. A capacitive approach is used for bed load transport modeling, in which the solid flow rates are estimated with bed load transport formulas. The model equations pose some numerical issues in the case of natural channels, where bed load transport may occur for both subcritical and supercritical flows and geometry varies in space. An explicit path-conservative scheme, designed to overcome all these issues, is presented in the paper. The scheme solves liquid and solid phases dynamics in a coupled manner, in order to correctly model near critical currents/channel interactions and is well-balanced, that is able to properly reproduce steady states. The Roe and Osher Riemann solvers are implemented, so as to take into account the spatial geometry variations of natural channels. The scheme reaches up to second-order accuracy. Validation is performed with fixed and movable bed test cases whose analytical solution is known, and with flume experimental data. An application of the model to a real case study is also shown.

  3. Forming metal-intermetallic or metal-ceramic composites by self-propagating high-temperature reactions

    DOEpatents

    Rawers, James C. (Albany Research Center, Bureau of Mines, Department of the Interior, 1450, Albany, OR 97321); Alman, David E. (Albany Research Center, Bureau of Mines, Department of the Interior, 1450, Albany, OR 97321); Petty, Jr., Arthur V. (Albany Research Center, Bureau of Mines, Department of the Interior, 1450, Albany, OR 97321)

    1996-01-01

    Industrial applications of composites often require that the final product have a complex shape. In this invention intermetallic or ceramic phases are formed from sheets of unreacted elemental metals. The process described in this invention allows the final product shape be formed prior to the formation of the composite. This saves energy and allows formation of shaped articles of metal-intermetallic composites composed of brittle materials that cannot be deformed without breaking.

  4. Dislocations in Complex Materials Matthew F. Chisholm,1

    E-print Network

    Pennycook, Steve

    are the Laves phases, the most common class of intermetallic compounds and exist with ordered cubic, hexagonal atoms have an ideal radius ratio of 1.225, are the most commonly occurring intermetallic compounds, and rhombohedral structures. These compounds are usually brittle at low temperatures, and transformation from one

  5. Nickel and iron pincer complexes as catalysts for the reduction of carbonyl compounds.

    PubMed

    Chakraborty, Sumit; Bhattacharya, Papri; Dai, Huiguang; Guan, Hairong

    2015-07-21

    The reductions of aldehydes, ketones, and esters to alcohols are important processes for the synthesis of chemicals that are vital to our daily life, and the reduction of CO2 to methanol is expected to provide key technology for carbon management and energy storage in our future. Catalysts that affect the reduction of carbonyl compounds often contain ruthenium, osmium, or other precious metals. The high and fluctuating price, and the limited availability of these metals, calls for efforts to develop catalysts based on more abundant and less expensive first-row transition metals, such as nickel and iron. The challenge, however, is to identify ligand systems that can increase the thermal stability of the catalysts, enhance their reactivity, and bypass the one-electron pathways that are commonly observed for first-row transition metal complexes. Although many other strategies exist, this Account describes how we have utilized pincer ligands along with other ancillary ligands to accomplish these goals. The bis(phosphinite)-based pincer ligands (also known as POCOP-pincer ligands) create well-defined nickel hydride complexes as efficient catalysts for the hydrosilylation of aldehydes and ketones and the hydroboration of CO2 to methanol derivatives. The hydride ligands in these complexes are substantially nucleophilic, largely due to the enhancement by the strongly trans-influencing aryl groups. Under the same principle, the pincer-ligated nickel cyanomethyl complexes exhibit remarkably high activity (turnover numbers up to 82,000) for catalytically activating acetonitrile and the addition of H-CH2CN across the C?O bonds of aldehydes without requiring a base additive. Cyclometalation of bis(phosphinite)-based pincer ligands with low-valent iron species "Fe(PR3)4" results in diamagnetic Fe(II) hydride complexes, which are active catalysts for the hydrosilylation of aldehydes and ketones. Mechanistic investigation suggests that the hydride ligand is not delivered to the carbonyl substrates but is important to facilitate ligand dissociation prior to substrate activation. In the presence of CO, the amine-bis(phosphine)-based pincer ligands are also able to stabilize low-spin Fe(II) species. Iron dihydride complexes supported by these ligands are bifunctional as both the FeH and NH moieties participate in the reduction of C?O bonds. These iron pincer complexes are among the first iron-based catalysts for the hydrogenation of esters, including fatty acid methyl esters, which find broad applications in industry. Our studies demonstrate that pincer ligands are promising candidates for promoting the first-row transition metal-catalyzed reduction of carbonyl compounds with high efficiency. Further efforts in this research area are likely to lead to more efficient and practical catalysts. PMID:26098431

  6. Effect of Y2O3 and TiC Reinforcement Particles on Intermetallic Formation and Hardness of Al6061 Composites via Mechanical Alloying and Sintering

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Liang; Lin, Chen-Han

    2015-08-01

    Al6061-based composites reinforced with 2 wt pctY2O3 and 2 wt pctTiC particles produced by mechanical alloying were investigated. The reinforced particles play important roles in the microstructural development and in determining the properties of the alloys. High-energy ball milling can facilitate a solid-state reaction between reinforced particles and the Al matrix, and the reaction kinetics of atomic diffusion can be accelerated enormously by subsequent sintering processing. As a result, complex intermetallic compounds and oxide particles can be formed in the alloy. In this study, the effect of reinforcement on phase formation and mechanical properties of Al6061-based composites has been examined. The results suggest that nano-Y2O3 particles can act as nucleation sites to facilitate formation of Al-Si-Y-O-based oxide particles. The addition of TiC particles can effectively refine the grain structure and encourage formation of iron-rich intermetallic compounds. Nanoindentation was used to understand the local variations in mechanical properties of the Al6061-based composites.

  7. Air monitoring for volatile organic compounds at the Pilot Plant Complex, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Schneider, J.F.; O`Neill, H.J.; Raphaelian, L.A.; Tomczyk, N.A.; Sytsma, L.F.; Cohut, V.J.; Cobo, H.A.; O`Reilly, D.P.; Zimmerman, R.E.

    1995-03-01

    The US Army`s Aberdeen Proving Ground has been a test site for a variety of munitions, including chemical warfare agents (CWA). The Pilot Plant Complex (PPC) at Aberdeen was the site of development, manufacture, storage, and disposal of CWA. Deterioration of the buildings and violations of environmental laws led to closure of the complex in 1986. Since that time, all equipment, piping, and conduit in the buildings have been removed. The buildings have been declared free of surface CWA contamination as a result of air sampling using the military system. However, no air sampling has been done to determine if other hazardous volatile organic compounds are present in the PPC, although a wide range of toxic and/or hazardous materials other than CWA was used in the PPC. The assumption has been that the air in the PPC is not hazardous. The purpose of this air-monitoring study was to screen the indoor air in the PPC to confirm the assumption that the air does not contain volatile organic contaminants at levels that would endanger persons in the buildings. A secondary purpose was to identify any potential sources of volatile organic contaminants that need to be monitored in subsequent sampling efforts.

  8. Dislocation sources in ordered intermetallics

    SciTech Connect

    Yoo, M.H.; Appel, F.; Wagner, R.; Mecking, H.

    1996-09-01

    An overview on the current understanding of dislocation sources and multiplication mechanisms is made for ordered intermetallic alloys of the L1{sub 2}, B2, and D0{sub 19} structures. In L1{sub 2} alloys, a large disparity of edge/screw segments in their relative mobility reduces the efficiency of a Frank-Read Type multiplication mechanism. In Fe-40%Al of the B2 structure, a variety of dislocation sources are available for <111> slip, including ones resulting from condensation of thermal vacancies. In NiAl with the relatively high APB energy, <100> dislocations may result from the dislocation decomposition reactions, the prismatic punching out from inclusion particles, and/or steps and coated layers of the surface. Internal interfaces often provide sites for dislocation multiplication, e.g., grain boundaries, sub-boundaries in Ni{sub 3}Ga, NiAl and Ti{sub 3}Al, and antiphase domain boundaries in Ti{sub 3}Al. As for the crack tip as a dislocation source, extended SISFs trailed by super-Shockley partials emanating form the cracks in Ni{sub 3}Al and Co{sub 3}Ti are discussed in view of a possible toughening mechanism.

  9. Effect of intermetallic phases on the anodic oxidation and corrosion of 5A06 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Li, Song-mei; Li, Ying-dong; Zhang, You; Liu, Jian-hua; Yu, Mei

    2015-02-01

    Intermetallic phases were found to influence the anodic oxidation and corrosion behavior of 5A06 aluminum alloy. Scattered intermetallic particles were examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) after pretreatment. The anodic film was investigated by transmission electron microscopy (TEM), and its corrosion resistance was analyzed by electrochemical impedance spectroscopy (EIS) and Tafel polarization in NaCl solution. The results show that the size of Al-Fe-Mg-Mn particles gradually decreases with the iron content. During anodizing, these intermetallic particles are gradually dissolved, leading to the complex porosity in the anodic film beneath the particles. After anodizing, the residual particles are mainly silicon-containing phases, which are embedded in the anodic film. Electrochemical measurements indicate that the porous anodic film layer is easily penetrated, and the barrier plays a dominant role in the overall protection. Meanwhile, self-healing behavior is observed during the long immersion time.

  10. Structure and mechanical properties of the engine valves with intermetallic disk

    SciTech Connect

    Kodess, B.N.; Teterin, G.P.; Kommel, L.A.; Ovcharov, V.K.

    1999-07-01

    The bimetallic valves were produced using a new technique, IFFM (Impact Fused-Forging Modeling). Distribution of the alloy components as well as phase composition across the valve section was obtained by means of energy-dispersive analysis and X-ray diffraction. Optic and electron microscopy research of macro- and microstructure was conducted. High quality of the joint between the intermetallic (TiAl) head and the titanium (VT-9 and VT-6 alloys) stem was demonstrated. As a result of the contact of the stem with the semi-solid intermetallics at the temperature above T{sub c}, a polymorphous transformation was obtained in the upper part of the Ti-based stem. The globular microstructure in the intermetallic head in the area near to the joint of the two alloys was achieved. The results proved that the process allows production of complex shaped parts based on advanced alloys of high quality, featuring extra wear-resistance and strength.

  11. Elastic anisotropy, vibrational, and thermodynamic properties of U{sub 2}Ti intermetallic compound with AlB{sub 2}-type structure under high pressure up to 100?GPa

    SciTech Connect

    Yang, Jinwen; Gao, Tao; Liu, Benqiong; Sun, Guangai; Chen, Bo

    2015-03-28

    Structural, elastic anisotropy, dynamical, and thermodynamic properties of U{sub 2}Ti have been studied by employing density functional theory and density functional perturbative theory. The optimized lattice parameters a, c, unit volume V, bulk modulus B, and bond lengths d{sub U-U}, d{sub U-Ti} of U{sub 2}Ti are in favorable agreement with the available experimental data and other theoretical values. The elastic constants under pressure were obtained using “energy-strain” method. The polycrystalline modulus, Poisson's ratio, brittle/ductile characteristics, Debye temperature and the integration of elastic wave velocities over different directions, and hardness under pressure are also evaluated successfully. The anisotropy of the directional bulk modulus and the Young's modulus is systematically predicted for the first time. It turns out that U{sub 2}Ti should be stabilized mechanically up to 100?GPa, this compound just possesses slightly elastic anisotropy at zero pressure; however, the anisotropy becomes more and more significant with the increasing pressure. In particular, the phonon dispersion curves and phonon density of state under pressure are reported for the first time. The Raman and infrared-active phonon modes at ? point are further assigned. Our results indicate that U{sub 2}Ti is also stable dynamically up to 100?GPa. Additionally, within the calculated phonon density of states, the thermodynamic properties are predicted.

  12. Pathways for tailoring the magnetostructural response of FeRh-based compounds

    E-print Network

    in FeRh and related intermetallic compounds. Further, it is anticipated that computational studies aimedPathways for tailoring the magnetostructural response of FeRh-based compounds A Dissertation the magnetostructural phenomena in intermetallic alloys due to its relatively simple crystal structure (cubic with B2

  13. Wet chemical synthesis of intermetallic Pt3Zn nanocrystals via weak reduction reaction together with UPD process and their excellent electrocatalytic performances.

    PubMed

    Chen, Qiaoli; Zhang, Jiawei; Jia, Yanyan; Jiang, Zhiyuan; Xie, Zhaoxiong; Zheng, Lansun

    2014-06-21

    Platinum based alloy nanocrystals are promising catalysts for a variety of important practical process. However, it remains a great challenge to synthesize platinum-based intermetallic compound nanocrystals with well-defined surface structures. In this communication, taking the synthesis of concave cubic intermetallic Pt3Zn nanocrystals with {hk0} facets as an example, we proposed a new synthesis strategy for intermetallic compounds by reduction of noble metal precursors via a slow reduction process and reduction of transition metal ions via an underpotential deposition (UPD) process in wet chemical synthesis. The as-prepared intermetallic Pt3Zn nanocrystals exhibited superior CO poisoning tolerance and high electro-catalytic activity in both methanol and formic acid oxidation reactions in comparison with solid solution Pt3Zn nanocrystals and Pt/C. PMID:24841616

  14. INTERNATIONAL TOXICITY EQUIVALENCY FACTOR (I-TEF) METHOD OF RISK ASSESSMENT FOR COMPLEX MIXTURES OF DIOXINS AND RELATED COMPOUNDS

    EPA Science Inventory

    The International Toxicity Equivalency Factor (I-TEF) Method of Risk Assessment for Complex Mixtures of Dioxins and Related Compounds is a revised interim procedure for estimating the risks considered with exposures to mixtures of dioxins and furons such as incinerator fly ash, c...

  15. Complex Organic and Inorganic Compounds in Shells of Lithium-rich K Giant Stars

    E-print Network

    de la Reza, Ramiro; Oliveira, Isa; Rengaswamy, Sridharan

    2015-01-01

    Hydrocarbon organic material, as found in the interstellar medium, exists in complex mixtures of aromatic and aliphatic forms. It is considered to be originated from carbon enriched giant stars during their final stages of evolution, when very strong mass loss occurs in a few thousand years on their way to become planetary nebulae. We show here that the same organic compounds appear to be formed in previous stages of the evolution of giant stars. More specifically, during the first ascending giant branch K-type stars. According to our model this happens only when these stars are being abruptly enriched with lithium together with the formation of a circumstellar shell with a strong mass loss during just a few thousand years. This sudden mass loss is, on an average, a thousand times larger than that of normal Li-poor K giant stars. This shell would later be detached, specially when the star stops its Li enrichment and a rapid photospheric Li depletion occurs. In order to gain extra carbon-based material to form...

  16. Identification of plant compounds that disrupt the insect juvenile hormone receptor complex

    PubMed Central

    Lee, Seok-Hee; Oh, Hyun-Woo; Fang, Ying; An, Saes-Byeol; Park, Doo-Sang; Song, Hyuk-Hwan; Oh, Sei-Ryang; Kim, Soo-Young; Kim, Seonghyun; Kim, Namjung; Raikhel, Alexander S.; Je, Yeon Ho; Shin, Sang Woon

    2015-01-01

    Insects impact human health through vector-borne diseases and cause major economic losses by damaging crops and stored agricultural products. Insect-specific growth regulators represent attractive control agents because of their safety to the environment and humans. We identified plant compounds that serve as juvenile hormone antagonists (PJHANs). Using the yeast two-hybrid system transformed with the mosquito JH receptor as a reporter system, we demonstrate that PJHANs affect the JH receptor, methoprene-tolerant (Met), by disrupting its complex with CYCLE or FISC, formation of which is required for mediating JH action. We isolated five diterpene secondary metabolites with JH antagonist activity from two plants: Lindera erythrocarpa and Solidago serotina. They are effective in causing mortality of mosquito larvae at relatively low LD50 values. Topical application of two diterpenes caused reduction in the expression of Met target genes and retardation of follicle development in mosquito ovaries. Hence, the newly discovered PJHANs may lead to development of a new class of safe and effective pesticides. PMID:25624480

  17. Chemical speciation and equilibria of some nucleic acid compounds and their iron(III) complexes

    NASA Astrophysics Data System (ADS)

    Masoud, Mamdouh S.; Abd El-Kaway, Marwa Y.; Hindawy, Ahmed M.; Soayed, Amina A.

    The pH effect on electronic absorption spectra of some biologically active nucleic acid constituents have been studied at room temperature and the mechanism of ionization was explained. These compounds are of two categories (pyrimidines: [barbital; 5,5'-diethyl-barbituric acid], [SBA; 4,6-dihydroxy-2-mercapto-pyrimidin], [NBA; 5-nitro-2,4,6(1H,3H,5H)-pyrimidine trione] and [TU; 2,3-dihydro-2-thioxo-pyrimidin-4(1H)-one]) and (purines: [adenine; 6-amino purine], its [Schiff bases derived from adenine-acetylacetone; (Z)-4-(7H-purin-6-ylimino)pentan-2-one) and adenine-salicylaldehyde; 2-((7H-purin-6-ylimino) methyl) phenol] and its [Azo derived from adenine-resorcinol; 4-((7H-purin-6-yl)-diazenyl) benzene-1,3-diol]. The phenomena of tautomerization assigned different tautomers. Different spectrophotometric methods are applied to evaluate the pK's values that explained with their molecular structures. The interaction of Fe3+ with some selected pyrimidines (barbital, NBA and SBA) was explained using familiar six spectrophotometric methods. The data typified the existence of different absorbing species with the different stoichiometries 1:1, 1:2, 1:3 and 2:3. The stability constant of the complexes was computed. More approach was deduced to assign the existence of different species applying the distribution diagrams.

  18. Spark plasma sintering of titanium aluminide intermetallics and its composites

    NASA Astrophysics Data System (ADS)

    Aldoshan, Abdelhakim Ahmed

    Titanium aluminide intermetallics are a distinct class of engineering materials having unique properties over conventional titanium alloys. gamma-TiAl compound possesses competitive physical and mechanical properties at elevated temperature applications compared to Ni-based superalloys. gamma-TiAl composite materials exhibit high melting point, low density, high strength and excellent corrosion resistance. Spark plasma sintering (SPS) is one of the powder metallurgy techniques where powder mixture undergoes simultaneous application of uniaxial pressure and pulsed direct current. Unlike other sintering techniques such as hot iso-static pressing and hot pressing, SPS compacts the materials in shorter time (< 10 min) with a lower temperature and leads to highly dense products. Reactive synthesis of titanium aluminide intermetallics is carried out using SPS. Reactive sintering takes place between liquid aluminum and solid titanium. In this work, reactive sintering through SPS was used to fabricate fully densified gamma-TiAl and titanium aluminide composites starting from elemental powders at different sintering temperatures. It was observed that sintering temperature played significant role in the densification of titanium aluminide composites. gamma-TiAl was the predominate phase at different temperatures. The effect of increasing sintering temperature on microhardness, microstructure, yield strength and wear behavior of titanium aluminide was studied. Addition of graphene nanoplatelets to titanium aluminide matrix resulted in change in microhardness. In Ti-Al-graphene composites, a noticeable decrease in coefficient of friction was observed due to the influence of self-lubrication caused by graphene.

  19. Intelligent processing of intermetallic composite consolidation

    NASA Astrophysics Data System (ADS)

    Wadley, H. N. G.; Elzey, D. M.; Hsiung, L. M.; Lu, Y.; Duva, J. M.

    Intermetallic composites based upon titanium aluminide matrices and silicon carbide of aluminum oxide fibers are emerging candidates for future hypersonic vehicle airframes and engines. To tailor the properties of these 'engineered' materials for specific application, to increase process yield, and to reduce costs, 'intelligent processing of materials' (IPM) control strategies are being explored for their processing. Recent progress is evaluated in the development of predictive process models, advanced sensors and control methodologies (the components of the IPM approach) for the critical near net-shape consolidation process step of continuous fiber reinforced intermetallic composite manufacture.

  20. PdGa intermetallic hydrogenation catalyst: an NMR and physical property study.

    PubMed

    Klanjšek, M; Gradišek, A; Kocjan, A; Bobnar, M; Jegli?, P; Wencka, M; Jagli?i?, Z; Pop?evi?, P; Ivkov, J; Smontara, A; Gille, P; Armbrüster, M; Grin, Yu; Dolinšek, J

    2012-02-29

    The PdGa intermetallic compound is a highly selective and stable heterogeneous hydrogenation catalyst for the semi-hydrogenation of acetylene. We have studied single crystals of PdGa grown by the Czochralski technique. The (69)Ga electric-field-gradient (EFG) tensor was determined by means of NMR spectroscopy, giving experimental confirmation of both the recently refined structural model of PdGa and the theoretically predicted Pd-Ga covalent bonding scheme. The hydrogenation experiment has detected no hydrogen uptake in the PdGa, thus preventing in situ hydride formation that leads to a reduction of the catalytic selectivity. We have also determined bulk physical properties (the magnetic susceptibility, the electrical resistivity, the thermoelectric power, the Hall coefficient, the thermal conductivity and the specific heat) of single-crystalline PdGa. The results show that PdGa is a diamagnet with metallic electrical resistivity and moderately high thermal conductivity. The thermoelectric power is negative with complicated temperature dependence, whereas the Hall coefficient is positive and temperature-dependent, indicating complexity of the Fermi surface. Partial fulfillment of the NMR Korringa relation reveals that the charge carriers are weakly correlated. Specific heat measurements show that the density of electronic states (DOS) at the Fermi energy of PdGa is reduced to 15% of the DOS of the elemental Pd metal. PMID:22310701

  1. The intra-annular acylamide chelate-coordinated compound: The keto-tautomer of metal (II) milrinone complex

    NASA Astrophysics Data System (ADS)

    Gong, Yun; Liu, Jinzhi; Tang, Wang; Hu, Changwen

    2008-03-01

    In the presence of N, N'-dimethyllformamide (DMF), two isostructural metal (II)-milrinone complexes formulated as M(C 12H 8N 3O) 2 (M = Co 1 and Ni 2) have been synthesized and characterized by elemental analysis, IR, TG and single crystal X-ray diffraction. The two compounds crystallize in the tetragonal system, chiral space group P4 32 12. They exhibit similar two dimensional (2D) square grid-like framework, in which milrinone acts as a ditopic ligand with its terminal pyridine and intra-annular acylamide groups covalently bridging different metal centers. The intra-annular acylamide ligand shows a chelate-coordinated mode. Compounds 1 and 2 are stable under 200 °C. Compound 3 formulated as (C 12H 9N 3O) 4·H 2O was obtained in the presence of water, the water molecule in the structure leads to the racemization of compound 3 and it crystallizes in the monoclinic system, non-chiral space group P2 1/ c. Milrinone exhibits a keto-form in the three compounds and compounds 1- 3 exhibit different photoluminescence properties.

  2. On the nature of the magnetic phase transition of the HoCo{sub 2} intermetallic

    SciTech Connect

    von Ranke, P.J.; de Oliveira, N.A.

    1998-06-01

    In this work we calculate the itinerant and localized magnetization curves of the Laves phase intermetallic compound HoCo{sub 2} and discuss the nature of its magnetic phase transition. The numerical results were calculated from the self-consistent solution of magnetic coupled equations obtained through the combination of functional integral methods with molecular field approximation. {copyright} {ital 1998 American Institute of Physics.}

  3. DNA Cleavage, Cytotoxic Activities, and Antimicrobial Studies of Ternary Copper(II) Complexes of Isoxazole Schiff Base and Heterocyclic Compounds.

    PubMed

    Chityala, Vijay Kumar; Sathish Kumar, K; Macha, Ramesh; Tigulla, Parthasarathy; Shivaraj

    2014-01-01

    Novel mixed ligand bivalent copper complexes [Cu. L. A. ClO 4 ] and [Cu. L. A] where "L" is Schiff bases, namely 2-((3,4-dimethylisoxazol-5-ylimino)methyl)-4-bromophenol (DMIIMBP)/2-((3,4-dimethylisoxazol-5-ylimino)methyl)-4-chlorophenol (DMIIMCP), and "A" is heterocyclic compound, such as 1,10-phenanthroline (phen)/2,2(1)-bipyridyl (bipy)/8-hydroxyquinoline (oxine)/5-chloro-8-hydroxyquinoline (5-Cl-oxine), have been synthesized. These complexes have been characterized by IR, UV-Vis, ESR, elemental analysis, magnetic moments, TG, and DTA. On the basis of spectral studies and analytical data, five-coordinated square pyramidal/four-coordinated square planar geometry is assigned to all complexes. The ligands and their ternary complexes with Cu(II) have been screened for antimicrobial activity against bacteria and fungi by paper disc method. The antimicrobial studies of Schiff bases and their metal complexes showed significant activity and further it is observed that the metal complexes showed more activity than corresponding Schiff bases. In vitro antitumor activity of Cu(II) complexes was assayed against human cervical carcinoma (HeLa) cancer cells and it was observed that few complexes exhibit good antitumor activity on HeLa cell lines. The DNA cleavage studies have also been carried out on pBR 322 and it is observed that these Cu(II) complexes are capable of cleaving supercoiled plasmid DNA in the presence of H2O2 and UV light. PMID:24895493

  4. Quaternary borocarbides: New class of intermetallic superconductors

    NASA Technical Reports Server (NTRS)

    Nagarajan, R.; Gupta, L. C.; Dhar, S. K.; Mazumdar, Chandan; Hossain, Zakir; Godart, C.; Levy-Clement, C.; Padalia, B. D.; Vijayaraghavan, R.

    1995-01-01

    Our recent discovery of superconductivity (SC) in the four-element multiphase Y-Ni-B-C system at an elevated temperature (TC approximately 12 K) has opened up great possibilities of identifying new superconducting materials and generating new physics. Superconductivity with Tc (greater than 20 K) higher than that known so far in bulk intermetallics has been observed in multiphase Y-Pd-B-C and Th-Pd-B-C systems and a family of single phase materials RENi2B2C (RE= Y, rare earth) have been found. Our investigations show YNi2B2C to be a strong coupling hard type-II SC. HC2(T) exhibits an unconventional temperature dependence. Specific heat and magnetization studies reveal coexistence of SC and magnetism in RNi2B2C (R = Ho, Er, Tm) with magnetic ordering temperatures (Tc approximately 8 K, 10.5 K, 11 K and Tm approximately 5 K, approximately 7K, approximately 4 K respectively) that are remarkably higher than those in known magnetic superconductors . Mu-SR studies suggest the possibility of Ni atoms carrying a moment in TmNi2B2C. Resistivity results suggests a double re-entrant transition (SC-normal-SC) in HoNi2B2C. RENi2B2C (RE = Ce, Nd, Gd) do not show SC down to 4.2 K. The Nd- and Gd-compounds order magnetically at approximately 4.5 K and approximately 19.5 K, respectively. Two SC transitions are observed in Y-Pd-B-C (Tc approximately 22 K, approximately 10 K) and in Th-Pd-B-C (Tc approximately 20 K, approximately 14 K) systems, which indicate that there are at least two structures which support SC in these borocarbides. In our multiphase ThNi2B2C we observe SC at approximately 6 K. No SC was seen in multiphase UNi2B2C, UPd2B2C, UOs2Ge2C and UPd5B3C(0.35) down to 4.2 K. Tc in YNi2B2C is depressed by substitutions (Gd, Th and U at Y-sites and Fe, Co at Ni-sites).

  5. Surfaces of Intermetallics: Quasicrystals and Beyond

    SciTech Connect

    Yuen, Chad

    2012-10-26

    The goal of this work is to characterize surfaces of intermetallics, including quasicrystals. In this work, surface characterization is primarily focused on composition and structure using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM) performed under ultrahigh vacuum (UHV) conditions.

  6. Bergman Clusters, Multiple Bonds, and Defect Planes: Synthetic Outcomes of Chemical Frustration in Ternary Intermetallic Systems

    NASA Astrophysics Data System (ADS)

    Hadler, Amelia Beth

    Intermetallics crystallize in a variety of complex structures, many of which show unusual bonding or intriguing properties. Understanding what factors drive this structural chemistry would be a valuable step towards designing new intermetallics with specific structures or properties. One pathway towards understanding and predicting the structures of complex intermetallics is chemical frustration, a design tool which harnesses competition between incompatible bonding or packing modes to induce complexity in ternary intermetallic systems. The research outlined in this thesis focuses on developing chemical frustration through exploratory synthesis in ternary systems designed to induce frustration between the tetrahedral close packing of many intermetallics and the simple cubic packing seen for ionic salts or elemental metals. Syntheses in three systems yielded six new ternary intermetallics, four of which crystallize in novel structure types. Three were discovered in the Ca-Cu-Cd system: Ca5Cu2Cd and Ca2Cu 2Cd9, which adopt ternary variants of binary structures, and Ca10Cu2Cd27, which crystallizes in a new structure built from Bergman clusters. All three structures can be traced to electronic packing frustration induced by the similar electronegativities but different metallic radii of Cu and Cd. The Gd-Fe-C system yielded the new carbometalate Gd13Fe 10C13 and an oxycarbide derivative. These phases crystallize in structures built from Gd tricapped trigonal prisms interpenetrated by an Fe-C network. Theoretical analyses reveal that Fe-Fe and Fe-C multiple bonding is found throughout this network. A theoretical investigation of similar carbides uncovers additional metal-metal, metal-carbon, and carbon-carbon multiple bonding. This unusual bonding stabilizes the carbides by satisfying preferred electron counts for their transition metal sites. One new phase, Mg4.5Pd5Ge1.5, was found in the Mg-Pd-Ge system. Its structure is closely related to the CsCl-type structure of MgPd, with defect layers that break its cubic symmetry and introduce positional disorder. These defects can be traced to the Pd sites' preference for 18-electron configurations in MgPd, and the additional valence electrons introduced via Ge substitution. These new intermetallic structures can all be understood in terms of balancing the competing electronic requirements of different elements. These results have led to a revised picture of how chemical frustration is manifested and suggested new synthetic routes to investigate.

  7. Synthesis and characterization of nanocrystalline binary and ternary intermetallic compounds 

    E-print Network

    Leonard, Brian Matthew

    2009-05-15

    bromide DSC Differential scanning calorimetry EDS Energy dispersive x-ray spectroscopy Fcc Face centered cubic Hcp Hexagonal close packed ICP-MS Inductively coupled plasma ? mass spectrometry Oe Oersted PVP Polyvinylpyrrolidone SAED Selected area....99%), and poly(vinylpyrrolidone) (PVP; MW = 40000, 114 mg) were added to 25 mL of distilled, deionized water (NANOpure, 18.2 M?). (Note that water was the only solvent used in the synthesis of these materials.) After the mixture was stirred for at least 30 min...

  8. Addressing Machining Issues for the Intermetallic Compound 60-NITINOL

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.; Wozniak, Walter A.; McCue, Terry R.

    2012-01-01

    60-NITINOL (60 wt.% Ni - 40 wt.% Ti) is being studied as a material for advanced aerospace components. Frequent wire breakage during electrical-discharge machining of this material was investigated. The studied material was fabricated from hot isostatically pressed 60-NITINOL powder obtained through a commercial source. Bulk chemical analysis of the material showed that the composition was nominal but had relatively high levels of certain impurities, including Al and O. It was later determined that Al2O3 particles had contaminated the material during the hot isostatic pressing procedure and that these particles were the most likely cause of the wire breakage. The results of this investigation highlight the importance of material cleanliness to its further implementation.

  9. Trace elements and the mechanical properties of intermetallic compounds

    SciTech Connect

    Lin, Hui; Pope, D.P.; George, E.P.

    1995-02-01

    In this paper the brittleness of grain boundaries in Ni{sub 3}Al is discussed with special emphasis on the effects of B. The effects of alloy stoichiometry, environment (hydrogen), grain boundary character and B levels are described and interpreted in terms of current theories. It is shown that the grain boundaries in Ni{sub 3}Al are intrinsically weaker than the bulk (the weakness is not an impurity effect), the weakness is exacerbated by atmospheric moisture, and that B in the boundaries both increases the intrinsic strength of the boundaries and reduces the deleterious effects of atmospheric moisture. Only low angle boundaries and twin boundaries are intrinsically strong in Ni{sub 3}Al, even in the absence of B.

  10. Ion-pair extraction of multi-OH compounds by complexation with organoboronate

    SciTech Connect

    Randel, L.A.; Chow, T.K.F.; King, C.J. Univ. of California, Berkeley, CA )

    1994-08-01

    Ion-pair extraction with organoboronate has been investigated as a regenerable means of removal and recovery of multi -OH compounds from aqueous solution. The extractant utilized was 3-nitrophenylboronate (NPB[sup [minus

  11. (Hydroxyacetyl)iridium and -rhodium complexes: model compounds for CO hydrogenation

    SciTech Connect

    Milstein, D.; Fultz, W.C.; Calabrese, J.C.

    1986-03-19

    Hydroxyacetyl complexes are postulated as intermediates in the direct conversion of synthesis gas to oxygenated products and in the hydroformylation of formaldehyde to glycolaldehyde, an ethylene glycol precursor. Whereas various hydroxymethyl complexes are now known, Fe(COCH/sub 2/OH)(P(OMe)/sub 3/)/sub 2/(CO)Cl obtained as an isomeric mixture is the only hydroxyacetyl complex reported and no (hydroxyacetyl)metal hydrides are known. A chelate-stabilized hydroxyacyl complex has been reported very recently. The lack of hydroxyacetyl complexes is perhaps due in part to difficulties in carbonylation of hydroxymethyl complexes. Here the synthesis of such complexes by oxidative addition reactions of 2,5-dihydroxy-1,4-dioxane (glycol aldehyde dimer) to Ir(I) and Rh(I) complexes is reported. This is the reversal of the postulated product-forming step in formaldehyde hydroformylation. 20 references, 2 figures.

  12. The sequence of intermetallic formation and solidification pathway of an Al–13Mg–7Si–2Cu in-situ composite

    SciTech Connect

    Farahany, Saeed; Nordin, Nur Azmah; Ourdjini, Ali; Abu Bakar, TutyAsma; Hamzah, Esah; Idris, Mohd Hasbullah; Hekmat-Ardakan, Alireza

    2014-12-15

    The phase transformation sequence and solidification behaviour of an Al–13Mg–7Si–2Cu in-situ composite was examined using a combination of computer-aided cooling curve thermal analysis and interrupted quenching techniques. Five different phases were identified by analysing the derivative cooling curves, the X-ray diffraction profile, optical and scanning electron microscopy images and the corresponding energy dispersive spectroscopy. It has been found that the solidification of this alloy begins with primary Mg{sub 2}Si precipitation and continues with the formation of eutectic Al–Mg{sub 2}Si, followed by Al{sub 5}FeSi and simultaneous precipitation of Al{sub 5}Cu{sub 2}Mg{sub 8}Si{sub 6} and Al{sub 2}Cu complex intermetallic phases. The formation of the last three intermetallic compounds changes the solidification behaviour of these composites remarkably due to their complex eutectic formation reactions. The solidification of the alloy, calculated using the Factsage thermochemical analysis software, has demonstrated a good agreement with the experiments in terms of compound prediction, their weight fractions and reaction temperatures. - Highlights: • Solidification path of a commercial Al-13Mg-7Si-2Cu composite was characterized. • Five different phases were identified and then confirmed with EDS and XRD results. • Mg{sub 2}Si, Al-Mg{sub 2}Si,Al{sub 5}FeSi (?),Al{sub 5}Cu{sub 2}Mg{sub 8}Si{sub 6} (Q) and Al{sub 2}Cu(?) precipitated respectively. • Solidification was predicted using the Factsage thermochemical analysis software.

  13. Spectral studies and thermal analysis of new vanadium complexes of ethanolamine and related compounds

    NASA Astrophysics Data System (ADS)

    Masoud, Mamdouh S.; Ali, Alaa E.; Ahmed, Hytham M.; Mohamed, Essam A.

    2013-10-01

    The electronic absorption spectral behaviors of newly synthesized complexes of VIII, VIV and VO2+ with Ethanolamine, Diethanolamine and Triethanolamine were described. The complexes have been characterized by elemental analyses, magnetic moment measurements, IR and UV-Vis spectroscopy. Absorption spectra in seven different solvents were recorded. The solvatochromism was examined and discussed. Dipolar interactions between the solvent and the complexes were used to correlate the observed spectral shifts to solvent polarity. Some of the obtained complexes were studied by thermal analysis using DTA and TG techniques.

  14. Crystal structures of multidrug-resistant HIV-1 protease in complex with two potent anti-malarial compounds

    SciTech Connect

    Yedidi, Ravikiran S.; Liu, Zhigang; Wang, Yong; Brunzelle, Joseph S.; Kovari, Iulia A.; Woster, Patrick M.; Kovari, Ladislau C.; Gupta, Deepak

    2012-06-19

    Two potent inhibitors (compounds 1 and 2) of malarial aspartyl protease, plasmepsin-II, were evaluated against wild type (NL4-3) and multidrug-resistant clinical isolate 769 (MDR) variants of human immunodeficiency virus type-1 (HIV-1) aspartyl protease. Enzyme inhibition assays showed that both 1 and 2 have better potency against NL4-3 than against MDR protease. Crystal structures of MDR protease in complex with 1 and 2 were solved and analyzed. Crystallographic analysis revealed that the MDR protease exhibits a typical wide-open conformation of the flaps (Gly48 to Gly52) causing an overall expansion in the active site cavity, which, in turn caused unstable binding of the inhibitors. Due to the expansion of the active site cavity, both compounds showed loss of direct contacts with the MDR protease compared to the docking models of NL4-3. Multiple water molecules showed a rich network of hydrogen bonds contributing to the stability of the ligand binding in the distorted binding pockets of the MDR protease in both crystal structures. Docking analysis of 1 and 2 showed a decrease in the binding affinity for both compounds against MDR supporting our structure-function studies. Thus, compounds 1 and 2 show promising inhibitory activity against HIV-1 protease variants and hence are good candidates for further development to enhance their potency against NL4-3 as well as MDR HIV-1 protease variants.

  15. Crystal structures of multidrug-resistant HIV-1 protease in complex with two potent anti-malarial compounds

    PubMed Central

    Yedidi, Ravikiran S.; Liu, Zhigang; Wang, Yong; Brunzelle, Joseph S.; Kovari, Iulia A.; Woster, Patrick M.; Kovari, Ladislau C.; Gupta, Deepak

    2012-01-01

    Two potent inhibitors (compounds 1 and 2) of malarial aspartyl protease, plasmepsin-II, were evaluated against wild type (NL4-3) and multidrug-resistant clinical isolate 769 (MDR) variants of human immunodeficiency virus type-1 (HIV-1) aspartyl protease. Enzyme inhibition assays showed that both 1 and 2 have better potency against NL4-3 than against MDR protease. Crystal structures of MDR protease in complex with 1 and 2 were solved and analyzed. Crystallographic analysis revealed that the MDR protease exhibits a typical wide-open conformation of the flaps (Gly48 to Gly52) causing an overall expansion in the active site cavity, which, in turn caused unstable binding of the inhibitors. Due to the expansion of the active site cavity, both compounds showed loss of direct contacts with the MDR protease compared to the docking models of NL4-3. Multiple water molecules showed a rich network of hydrogen bonds contributing to the stability of the ligand binding in the distorted binding pockets of the MDR protease in both crystal structures. Docking analysis of 1 and 2 showed a decrease in the binding affinity for both compounds against MDR supporting our structure-function studies. Thus, compounds 1 and 2 show promising inhibitory activity against HIV-1 protease variants and hence are good candidates for further development to enhance their potency against NL4-3 as well as MDR HIV-1 protease variants. PMID:22469467

  16. Arc Casting Intermetallic Alloy (Materials Preparation Center)

    SciTech Connect

    2010-01-01

    Arc casting of intermetallic (La-Ni-Sn) AB5 alloy used for metal hydride hydrogen storage. Upon solidification the Sn is partially rejected and increases in concentration in the remaining liquid. Upon completing solidification there is a great deal of internal stress in the ingot. As the ingot cools further the stress is relieved. This material was cast at the Ames Laboratorys Materials Preparation Center http://www.mpc.ameslab.gov

  17. Plasma spray forming metals, intermetallics, and composites

    NASA Astrophysics Data System (ADS)

    Sampath, Sanjay; Herman, Herbert

    1993-07-01

    Plasma spray processing is a droplet deposition method that combines the steps of melting, rapid solidification, and consolidation into a single step. The versatility of the technology enables the processing of freestanding bulk, near-net shapes of a wide range of alloys, intermetallics, ceramics, and composites, while still retaining the benefits of rapid solidification processing. In particular, it is possible to produce dense forms through vacuum plasma spraying.

  18. A NEW MASS SPECTROMETRIC TECHNIQUE FOR IDENTIFYING TRACE-LEVEL ORGANIC COMPOUNDS IN COMPLEX MIXTURES

    EPA Science Inventory



    Most organic compounds are not found in mass spectral libraries and cannot be easily identified from low resolution mass spectra. Ion Composition Elucidation (ICE) utilizes selected ion recording with a double focusing mass spectrometer in a new way to determine exact mas...

  19. Multinomial and Compound Multinomial Error Models for Tests with Complex Item Scoring

    ERIC Educational Resources Information Center

    Lee, Won-Chan

    2007-01-01

    This article introduces a multinomial error model, which models an examinee's test scores obtained over repeated measurements of an assessment that consists of polytomously scored items. A compound multinomial error model is also introduced for situations in which items are stratified according to content categories and/or prespecified numbers of…

  20. Separation of compounds with multiple -OH groups from dilute aqueous solutions via complexation with organoboronate

    SciTech Connect

    Chow, Tina Kuo Fung

    1992-05-01

    The complexing extractant agent investigated in this work is 3-nitrophenylboronic acid (NPBA) in its anionic form (NPB). NPBA and Aliquat 336 (quaternary amine) is dissolved in 2-ethyl-l-hexanol, and the extractant is contacted with aq. NaOH. Solutes investigated were 1,2-propanediol, glycerol, fructose, sorbitol and lactic acid. Batch extraction experiments were performed at 25{degree}C. Partition coefficients, distribution ratios and loadings are reported for varying concentrations of solute and NPB. All solutes complexed with NPB{sup {minus}}, with all complexes containing only one NPB{sup {minus}} per complex. The 1:1 complexation constants for the solutes glycerol, fructose and sorbitol follow trends similar to complexation with B(OH){sub 4}{sup {minus}} (aq.), i.e. the complexation constants increase with increasing number of {minus}OH groups available for complexation. Assumption of 1:1 complex is not valid for 1, 2-propanediol, which showed overloading (more than one mole of solute complexed to one mole NPB{sup {minus}}) at higher concentrations. The {minus}OH group on the NPB{sup {minus}} which is left uncomplexed after one solute molecule had bound to the other two {minus}OH groups may be responsible for the overloading. Overloading is also observed in extraction of tactic acid, but through a different mechanism. It was found that TOMA{sup +} can extract lactic acid to an extent comparable to the uptake of lactic acid by NPB{sup {minus}}. The complexation is probably through formation of an acid-base ion pair. Losses of NPBA into the aqueous phase could lead to problems, poor economics in industrial separation processes. One way of overcoming this problem would be to incorporate the NPBA onto a solid support.

  1. Surface-driven, one-step chemical vapor deposition of ?-Al4Cu9 complex metallic alloy film

    NASA Astrophysics Data System (ADS)

    Prud'homme, Nathalie; Duguet, Thomas; Samélor, Diane; Senocq, François; Vahlas, Constantin

    2013-10-01

    The present paper is a paradigm for the one-step formation of complex intermetallic coatings by chemical vapor deposition. It genuinely addresses the challenge of depositing an intermetallic coating with comparable contents of Cu and Al. Depending on processing conditions, a pure ?-Al4Cu9 and multi-phase Al-Cu films are grown with wetting properties of the former being similar to its bulk counterpart. The deposition process and its parametric investigation are detailed. Two metalorganic precursors are used taking into account their transport and chemical properties, and deposition temperature ranges. On line and ex situ characterizations enlighten the competition which occurs at the growing surface between molecular fragments, and which limits growth rates. Notably, introducing a partial pressure of hydrogen gas during deposition reduces Al growth rate from dimethylethylamine alane (DMEAA), by displacing the hydrogen desorption equilibrium. This Al partial growth rate decrease is not sufficient to achieve a Cu/Al atomic ratio that is high enough for the formation of intermetallics with close Al and Cu compositions. A fivefold increase of the flux of the gaseous copper(I) cyclopentadienyl triethylphosphine CpCuPEt3, whereas the DMEAA flux remains constant, results in the targeted Al/Cu atomic ratio equal to 44/56. Nevertheless, the global growth rate is rendered extremely low by the deposition inhibition caused by a massive phosphine adsorption (-PEt3). Despite these limitations, the results pave the way towards the conformal coating of complex surface geometries by such intermetallic compounds.

  2. Implications for complex cognition from the hafting of tools with compound adhesives in the Middle Stone Age, South Africa

    PubMed Central

    Wadley, Lyn; Hodgskiss, Tamaryn; Grant, Michael

    2009-01-01

    Compound adhesives made from red ochre mixed with plant gum were used in the Middle Stone Age (MSA), South Africa. Replications reported here suggest that early artisans did not merely color their glues red; they deliberately effected physical transformations involving chemical changes from acidic to less acidic pH, dehydration of the adhesive near wood fires, and changes to mechanical workability and electrostatic forces. Some of the steps required for making compound adhesive seem impossible without multitasking and abstract thought. This ability suggests overlap between the cognitive abilities of modern people and people in the MSA. Our multidisciplinary analysis provides a new way to recognize complex cognition in the MSA without necessarily invoking the concept of symbolism. PMID:19433786

  3. Brushing up on the history of intermetallics in dentistry

    NASA Astrophysics Data System (ADS)

    Waterstrat, Richard M.

    1990-03-01

    Employing a silver-tin-mercury intermetallic to repair cavities may seem a little unusual, but intermetallics are quite common in dentistry, ranging from gold crowns to braces. Although the human mouth can be unfriendly territory for a brittle intermetallic alloy, dental amalgam has been around since 659 A.D., and its technology has been developed to the point where a filling can be expected to last 30 years or more.

  4. Tandem Extraction/Liquid Chromatography-Mass Spectrometry Protocol for the Analysis of Acrylamide and Surfactant-related Compounds in Complex Aqueous Environmental Samples

    EPA Science Inventory

    The development of a liquid chromatography?mass spectrometry (LC?MS)?based strategy for the detection and quantitation of acrylamide and surfactant?related compounds in aqueous complex environmental samples.

  5. THEORY OF VALENCE TRANSITIONS IN YTTERBIUM-BASED COMPOUNDS

    E-print Network

    Freericks, Jim

    . INTRODUCTION The intermetallic compounds of the YbInCu§ family exhibit an isostructural transition from highChapter 1 THEORY OF VALENCE TRANSITIONS IN YTTERBIUM-BASED COMPOUNDS V. Zlati´c ¢¡ £ , and J. K of YbInCu¦ and similar compounds is modeled by the exact solution of the spin one-half Falicov

  6. Cluster Compounds DOI: 10.1002/anie.200601805

    E-print Network

    of the two types of atoms, as in a true intermetallic compound. The novel cluster was synthesized duringCluster Compounds DOI: 10.1002/anie.200601805 [Zn9Bi11]5À : A Ligand-Free Intermetalloid Cluster species and solid-state compounds with extended structures.[1] Small, cage-like clusters have been

  7. Design and synthesis of novel complexes containing N-phenyl-1H-pyrazole moiety: Ni complex as potential antifungal and antiproliferative compound

    NASA Astrophysics Data System (ADS)

    El-Gamel, Nadia E. A.; Farghaly, Thoraya A.

    2013-11-01

    Cu(II) (1), Ni(II) (2), Cr(III) (3) and Fe(III) (4) complexes with 3-acetyl-4-benzoyl-1-phenyl-1H-pyrazole (L1) were prepared and structurally characterized. Usual coordination of L1 was achieved through nitrogen of pyrazole moiety and carbonyl acetyl group. Electronic spectra of the complexes indicate that the geometry of the metal center was six coordinate octahedral. In vitro antimicrobial activity of the ligand and complex compounds was screened in terms of antibacterial effect on Staphylococcus aureus (Gram-positive), Escherichia coli (Gram-negative) and antifungal effect on the fungi Aspergillus flavus and candida albicans using the modified Kirby-Bauer disc diffusion and minimum inhibitory concentrations (MIC) methods. Ni(II) complex (2) exhibited remarkable antifungal inhibition against Candida albicans equal to the standard antifungal agent. To continue our study some structural modifications are formed by adding 4-fluoro-benzoyl moiety to L1 in different forms to produce different ligands, 3-acetyl-4-(4-flourobenzoyl)-1-phenyl-1H-pyrazole (L2) and 3-[(3-acetyl-1-phenyl-1H-4-pyrazolyl)carbonyl]-1-phenyl-4-(4-flourobenzoyl)-1H-pyrazole (L3), Ni complexes (5 and 6) are prepared and comparable in vitro antimicrobial study is evaluated. In vitro cytotoxicity of the Ni(II) complex (2) is studied using MTT assay. The analysis of the cell test showed that (2) displayed quite small cytotoxic response at the higher concentration level which indeed would further enable us for more opportunities in therapeutic and biomedical challenges. Both of the capability as a potent in vitro antifungal agent and the cell test analysis show Ni(II) complex (2) as a promising material in the translation of observed in vitro biological phenomenon into clinical therapies settings.

  8. Determination of solubility products of complex compounds of certain lanthanide and actinide diiodies with 18-crown-6 in tetrahydrofuran

    SciTech Connect

    Mikheev, N.B.; Kamenskaya, A.N.; Kulyukhin, S.A.

    1988-09-01

    The existence of divalent americium in a tetrahydrofuran (THF) solution was proved for the first time. The values of the solubility products (SP) of the complex compounds with the composition of MeI{sub 2}{centered dot}18-crown-6 (Me = Sm, Eu, Yb, Am, Cf, Es, Fm) in the THF solutions were determined by the cocrystallization method. The SP values obtained are within (5.9-7.9){centered dot}10{sup {minus}12} and are close to the SP value for SrI{sub 2}{centered dot}10{sup {minus}12}, which indicates a similarity in the properties of these elements.

  9. Chiral phosphites as ligands in asymmetric metal complex catalysis and synthesis of coordination compounds

    NASA Astrophysics Data System (ADS)

    Gavrilov, Konstantin N.; Bondarev, Oleg G.; Polosukhin, Aleksei I.

    2004-07-01

    The data published during the last five years on the application of chiral derivatives of phosphorous acid in coordination chemistry and enantioselective catalysis are summarised and discussed. The effect of the nature of these ligands on the structure of metal complexes and on the efficiency of catalytic organic syntheses is shown. Hydroformylation, hydrogenation, allylic substitution and conjugate addition catalysed by transition metal complexes with optically active phosphites and hydrophosphoranes are considered. The prospects for the development of this field of research are demonstrated.

  10. Radionuclide-binding compound, a radionuclide delivery system, a method of making a radium complexing compound, a method of extracting a radionuclide, and a method of delivering a radionuclide

    DOEpatents

    Fisher, Darrell R. (Richland, WA); Wai, Chien M. (Moscow, ID); Chen, Xiaoyuan (Moscow, ID)

    2000-01-01

    The invention pertains to compounds which specifically bind radionuclides, and to methods of making radionuclide complexing compounds. In one aspect, the invention includes a radionuclide delivery system comprising: a) a calix[n]arene-crown-[m]-ether compound, wherein n is an integer greater than 3, and wherein m is an integer greater than 3, the calix[n]arene-crown-[m]-ether compound comprising at least two ionizable groups; and b) an antibody attached to the calix[n]arene-crown-[m]-ether compound. In another aspect, the invention includes a method of making a radium complexing compound, comprising: a) providing a calix[n]arene compound, wherein n is an integer greater than 3, the calix[n]arene compound comprising n phenolic hydroxyl groups; b) providing a crown ether precursor, the crown ether precursor comprising a pair of tosylated ends; c) reacting the pair of tosylated ends with a pair of the phenolic hydroxyl groups to convert said pair of phenolic hydroxyl groups to ether linkages, the ether linkages connecting the crown ether precursor to the calix[n]arene to form a calix[n]arene-crown-[m]-ether compound, wherein m is an integer greater than 3; d) converting remaining phenolic hydroxyl groups to esters; e) converting the esters to acids, the acids being proximate a crown-[m]-ether portion of the calix[n]arene-crown-[m]-ether compound; and f) providing a Ra.sup.2+ ion within the crown-[m]-ether portion of the calix[n]arene-crown-[m]-ether compound.

  11. An exploratory investigation of polar organic compounds in waters from a lead–zinc mine and mill complex

    USGS Publications Warehouse

    Rostad, Colleen E.; Schmitt, Christopher J.; Schumacher, John G.; Leiker, Thomas J.

    2011-01-01

    Surface water samples were collected in 2006 from a lead mine-mill complex in Missouri to investigate possible organic compounds coming from the milling process. Water samples contained relatively high concentrations of dissolved organic carbon (DOC; greater than 20 mg/l) for surface waters but were colorless, implying a lack of naturally occurring aquatic humic or fulvic acids. Samples were extracted by three different types of solid-phase extraction and analyzed by electrospray ionization/mass spectrometry. Because large amounts of xanthate complexation reagents are used in the milling process, techniques were developed to extract and analyze for sodium isopropyl xanthate and sodium ethyl xanthate. Although these xanthate reagents were not found, trace amounts of the degradates, isopropyl xanthyl thiosulfonate and isopropyl xanthyl sulfonate, were found in most locations sampled, including the tailings pond downstream. Dioctyl sulfosuccinate, a surfactant and process filtering aid, was found at concentrations estimated at 350 ?g/l at one mill outlet, but not downstream. Release of these organic compounds downstream from lead-zinc mine and milling areas has not previously been reported. A majority of the DOC remains unidentified.

  12. Crystal growth, complex phase diagram and high pressure studies of layer compound PdBi2

    NASA Astrophysics Data System (ADS)

    Zhao, Kui; Zhu, Xiyu; Lv, Bing; Xue, Yuyi; Chu, Paul

    2013-03-01

    Among the different Pd-Bi Alloys, ?-PdBi2, which is crystallized in a layered tetragonal (I4/mmm) structure, has been identified as a superconductor with transition temperature at ~ 5.4K. Band structure calculation indicates that the interlayer Bi-Bi bonds are weak but not negligible, which implies the 3D bonding character of this compound. In order to enhance or weaken the interlayer bonding and ultimately increase the Tc in this system, high pressure measurement, isovalent chemical substitution of Bi with Sb, and chemical intercalation using transition metal Cu and alkali metal Na, are applied to the system. Meanwhile, aliovalent chemical substitution on the Bi site by Pb is also carried out. The magnetic, electrical, and calorimetric properties of these compounds are determined at ambient pressure and compared. The detailed high pressure results and the complete phase diagram of chemical substitution and intercalation will be presented and discussed. Work in Houston is supported in part by US AFOSR, the State of Texas, T. L. L. Temple Foundation and John and Rebecca Moores Endowment.

  13. Preparation and study on the inclusion complexes of two tanshinone compounds with ?-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Yuexian, Fan; Junfen, Li; Chuan, Dong

    2005-01-01

    Solid inclusion complexes of two tanshinones (Tans): tanshinone IIA (Tan IIA), tanshinone I (Tan I) with ?-cyclodextrin (?-CD) were synthesized by coprecipitation method. The solid inclusion complexes were characterized by using several analytical techniques: 1H NMR spectra, IR spectra and thermal analysis. Stoichiometry of the inclusion complexes of Tans with ?-CD or HP-?-CD is 1:1 which was investigated in solution. The formation constants of the complexes were determined by UV spectrophotometry. For same kind of CD, the stability was in the order: Tan IIA > Tan I; for same guest, the stability was in the order: HP-?-CD > ?-CD. The effect of temperature on the inclusion interaction was examined and the thermodynamic parameters of inclusion process, ? G, ? H, ? S were determined as well. The experimental results indicate that the inclusion process was an exothermic and enthalpy-driven process accompanied with a negative entropic contribution. The inclusion interaction between CD and Tans satisfied the law of enthalpy-entropy compensation.

  14. Classification Consistency and Accuracy for Complex Assessments under the Compound Multinomial Model

    ERIC Educational Resources Information Center

    Lee, Won-Chan; Brennan, Robert L.; Wan, Lei

    2009-01-01

    For a test that consists of dichotomously scored items, several approaches have been reported in the literature for estimating classification consistency and accuracy indices based on a single administration of a test. Classification consistency and accuracy have not been studied much, however, for "complex" assessments--for example, those that…

  15. Investigations of mechanical and electronic properties for Al-based intermetallics with different Ti content

    NASA Astrophysics Data System (ADS)

    Feng, Xiang-Zheng; Peng, Jin-Zhang; Xu, Zhong-Fei; Ouyang, Shi-Liang

    2015-01-01

    Electronic structure, mechanical properties and work function of Al-based intermetallic compounds with different content of Ti (AlCu3, AlCu2Ti and AlTi3) are investigated by using first-principles method. Our calculated lattice constants agree well with the experimental data. Effects of different Ti content on the electronic structures and mechanical properties of Al-based intermetallics are further analyzed and discussed in view of the density of states and charge density. Since the decreasing of cohesive energy has been observed when Ti content increases, work function calculations present the same tendency. Moreover, the ratio of the bulk modulus to shear modulus was calculated to account for good ductility of these three crystals and we obtained that AlCu3 has the best ductility. Finally, our results of DOS indicate that AlTi3 has the most intense chemical bonds among these three Al-based intermetallics because of its strongest hybridization. This is a disadvantage for its ductility. Charge density distributions also provide an evident of the strong binding in AlTi3.

  16. Evaluations of an Enhanced Total Hydrocarbon Analyzer With Complex Mixtures of Volatile Organic Compounds

    NASA Technical Reports Server (NTRS)

    Cross, John H.; Limero, Thomas F.; James, John T.; Breach, James; Hinton, Mark

    1995-01-01

    From the earliest manned missions, the volatile organic compound (VOC) content of spacecraft air has been a concern because of a much greater potential for contamination than air in most terrestrial settings. First, the volume of air is small compared to the mass of man- made materials comprising the interior furnishings of the spacecraft. These man-made materials offgas VOCs trapped during manufacture. Second, the nitrogen fraction of the air is recycled. Any VOCs not scrubbed out with charcoal filters or aqueous condensate (mainly water expired by the crew) will accumulate in the air. Third, the crew emits metabolic VOCs. Fourth, experimental payloads can also offgas or accidentally release a VOC; in fact a major organic constituent of the atmosphere is the disinfectant isopropanol released from swabs used in medical experiments.

  17. Mycobacterium tuberculosis IMPDH in Complexes with Substrates, Products and Antitubercular Compounds

    PubMed Central

    Makowska-Grzyska, Magdalena; Kim, Youngchang; Gorla, Suresh Kumar; Wei, Yang; Mandapati, Kavitha; Zhang, Minjia; Maltseva, Natalia; Modi, Gyan; Boshoff, Helena I.; Gu, Minyi; Aldrich, Courtney; Cuny, Gregory D.; Hedstrom, Lizbeth; Joachimiak, Andrzej

    2015-01-01

    Tuberculosis (TB) remains a worldwide problem and the need for new drugs is increasingly more urgent with the emergence of multidrug- and extensively-drug resistant TB. Inosine 5’-monophosphate dehydrogenase 2 (IMPDH2) from Mycobacterium tuberculosis (Mtb) is an attractive drug target. The enzyme catalyzes the conversion of inosine 5’-monophosphate into xanthosine 5’-monophosphate with the concomitant reduction of NAD+ to NADH. This reaction controls flux into the guanine nucleotide pool. We report seventeen selective IMPDH inhibitors with antitubercular activity. The crystal structures of a deletion mutant of MtbIMPDH2 in the apo form and in complex with the product XMP and substrate NAD+ are determined. We also report the structures of complexes with IMP and three structurally distinct inhibitors, including two with antitubercular activity. These structures will greatly facilitate the development of MtbIMPDH2-targeted antibiotics. PMID:26440283

  18. New 3,4-diaminobenzoic acid Schiff base compounds and their complexes: Synthesis, characterization and thermodynamics

    NASA Astrophysics Data System (ADS)

    Mohammadi, Khosro; Niad, Mahmood; Jafari, Tahereh

    2014-03-01

    Some new tetradentate Schiff base ligands (H3L) were prepared via condensation of 3,4-diaminobenzoic acid with 2-hydroxybenzaldehyde derivatives, such as 3,4-bis((E)-2,4-dihydroxybenzylideneamino)benzoic acid (H3L1), 3,4-bis((E)-2-hydroxy-3-methoxybenzylideneamino)benzoic acid (H3L2) and 3,4-bis((E)-5-bromo-2-hydroxybenzylideneamino)benzoic acid (H3L4). Additionally, a tetradentate Schiff base ligand 3,4-bis((E)-2-hydroxybenzylideneamino)benzoic acid (H3L3) and its complexes were synthesized. Their metal complexes of Co(II), Ni(II), Cu(II) and Zn(II) were prepared in good yields from the reaction of the ligands with the corresponding metal acetate. They were characterized based on IR, 1H NMR, Mass spectroscopy and UV-Vis spectroscopy. Also, the formation constants of the complexes were measured by UV-Vis spectroscopic titration at constant ionic strength 0.1 M (NaClO4), at 25 °C in dimethylformamide (DMF) as a solvent.

  19. New 3,4-diaminobenzoic acid Schiff base compounds and their complexes: synthesis, characterization and thermodynamics.

    PubMed

    Mohammadi, Khosro; Niad, Mahmood; Jafari, Tahereh

    2014-03-25

    Some new tetradentate Schiff base ligands (H3L) were prepared via condensation of 3,4-diaminobenzoic acid with 2-hydroxybenzaldehyde derivatives, such as 3,4-bis((E)-2,4-dihydroxybenzylideneamino)benzoic acid (H3L(1)), 3,4-bis((E)-2-hydroxy-3-methoxybenzylideneamino)benzoic acid (H3L(2)) and 3,4-bis((E)-5-bromo-2-hydroxybenzylideneamino)benzoic acid (H3L(4)). Additionally, a tetradentate Schiff base ligand 3,4-bis((E)-2-hydroxybenzylideneamino)benzoic acid (H3L(3)) and its complexes were synthesized. Their metal complexes of Co(II), Ni(II), Cu(II) and Zn(II) were prepared in good yields from the reaction of the ligands with the corresponding metal acetate. They were characterized based on IR, (1)H NMR, Mass spectroscopy and UV-Vis spectroscopy. Also, the formation constants of the complexes were measured by UV-Vis spectroscopic titration at constant ionic strength 0.1M (NaClO4), at 25 °C in dimethylformamide (DMF) as a solvent. PMID:24309180

  20. Electromigration effects on intermetallic growth at wire-bond interfaces

    NASA Astrophysics Data System (ADS)

    Orchard, H. T.; Greer, A. L.

    2006-11-01

    At a bimetallic interface, excessive intermetallic growth can cause device failure. For each intermetallic phase, a direct current flowing normal to the interface can change its thickening rate, increasing the rate for current in one direction and decreasing it for the reverse direction. In this paper, we present electrical resistance measurements on single wire-bond/bond-pad interfaces under the influence of current. Resistance increases are correlated with the growth of intermetallics observed in cross section of the wire bonds, providing a sensitive probe of microstructural evolution. The form of resistance change is clearly altered under applied current and depends on polarity. The resistance changes demonstrate key aspects of the effects of electromigration on intermetallic growth, but a fully quantitative interpretation of the changes is hampered by the appearance of more than one intermetallic phase and by the development of voids.

  1. Toxic effects of bis(thiosemicarbazone) compounds and its palladium(II) complexes on herpes simplex virus growth.

    PubMed

    Genova, Petia; Varadinova, Tatiana; Matesanz, Ana I; Marinova, Desislava; Souza, Pilar

    2004-06-01

    Here, we present data on the activity of benzyl bis(thiosemicarbazone); 3,5-diacyl-1,2,4-triazole bis(4-methylthiosemicarbazone) and their Pd(II) complexes against the replication of wild type and of acyclovir (ACV)-resistant, herpes simplex virus type 1 (HSV 1) and type 2 (HSV 2) strains. The data were compared to those under the action of acyclovir. The testing of cytotoxic activity suggests that these compounds may be endowed with important antiviral properties. It is interesting to note that the Pd(II)-benzyl bis(thiosemicarbazone) complex, 2, exhibits a significant activity against acyclovir-resistant viruses R-100 (HSV 1) and PU (HSV 2) with an in vitro selectivity index (SI) of 8.0 vs. 0.01 for acyclovir. This complex also negatively influenced the expression of key structural HSV 1 proteins (VP23, gH and gG/gD), thus suppressing simultaneously virus entry, transactivation of virus genome, capsid assembly, and cell-to-cell spread of infectious HSV progeny. PMID:15163546

  2. Synthesis, characterization and thermal studies on metal complexes of new azo compounds derived from sulfa drugs

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; Gad-Elkareem, Mohamed A. M.

    2007-12-01

    Four new azo ligands, L1 and HL2-4, of sulfa drugs have been prepared and characterized. [MX 2(L1)(H 2O) m]· nH 2O; [(MX 2) 2(HL2 or HL3)(H 2O) m]· nH 2O and [M 2X 3(L4)(H 2O)]· nH 2O; M = Co(II), Ni(II) and Cu(II) (X = Cl) and Zn(II) (X = AcO); m = 0-4 and n = 0-3, complexes were prepared. Elemental and thermal analyses (TGA and DTA), IR, solid reflectance spectra, magnetic moment and molar conductance measurements have accomplished characterization of the complexes. The IR data reveal that HL1 and HL2-3 ligands behave as a bidentate neutral ligands while HL4 ligand behaves as a bidentate monoionic ligand. They coordinated to the metal ions via the carbonyl O, enolic sulfonamide sbnd S(O)OH, pyrazole or thiazole N and azo N groups. The molar conductance data reveal that the chelates are non-electrolytes. From the solid reflectance spectra and magnetic moment data, the complexes were found to have octahedral, tetrahedral and square planar geometrical structures. The thermal behaviour of these chelates shows that the water molecules (hydrated and coordinated) and the anions are removed in a successive two steps followed immediately by decomposition of the ligand in the subsequent steps. The activation thermodynamic parameters, such as, E*, ? H*, ? S* and ? G* are calculated from the TG curves applying Coats-Redfern method.

  3. Hydrolysis activities of the particle of agarose-Ce4+ complex for compounds containing phosphodiester or peptide bonds

    NASA Astrophysics Data System (ADS)

    Yu, Lina; Wang, Dongfeng; Su, Lin; Luo, Yi; Sun, Liping; Xue, Changhu

    2005-07-01

    Hydrolysis activities of PACC (particle of agarose-Ce4+ complex, newly made through double emulsification) for compounds containing phosphodiester or peptide bonds were studied. The results showed that PACC could hydrolyze organophosphorous pesticides not only in water but also in vegetable juice or tea extract. Hydrolysis rates of methamidophos, omethoate and chlorpyrifos in water are 32.39%, 27.12% and 46.62% respectively, those of chlorpyrifos and methamidophos in mung sprout juice 38.28% and 35.45% respectively, and that of chlorpyrifos in tea extract 59.76%. Hydrolysis rates of BSA (bovine serum albumin) in water and protein in tea extract by PACC increase by 54.30% and 86.46% respectively as compared with the control.

  4. [High pressure self-propagating synthesis applied to intermetallics of the nickel-aluminum type

    SciTech Connect

    Dumez, M.C.; Marin-Ayral, R.M.; Tedenac, J.C. . Lab. de Physicochimie des Materiaux Solides)

    1994-06-01

    High pressure self-propagating high-temperature synthesis (SHS) between nickel and aluminum powders (mixed in NiAl stoichiometry) is used for the synthesis of the intermetallic compound NiAl and NiAl-AlN composites. It is shown that the nature of the products is influenced by the morphology of the starting powders, the heating rate of the reaction and the nature of the pressure gas. This paper explains the effect of various material and processing parameters on the final sintered density. The products of combustion were examined by using DTA analysis, X-ray diffraction, scanning electron microscopy and hardness tests.

  5. Platinum metal silicides and germanides: superconductivity in non-centrosymmetric intermetallics

    NASA Astrophysics Data System (ADS)

    Miliyanchuk, K.; Kneidinger, F.; Blaas-Schenner, C.; Reith, D.; Podloucky, R.; Rogl, P.; Khan, T.; Salamakha, L.; Hilscher, G.; Michor, H.; Bauer, E.; Hillier, A. D.

    2011-01-01

    The family of intermetallics crystallizing in the BaAl4 type is rich in sub-groups with different ordered variants. Novel ternary compounds EpTMX3 (Ep = Ba,Sr; TM = Pt,Pd; X = Si,Ge) crystallizes in the body-centred tetragonal BaNiSn3 structure (space group I4mm) which does not possess a centre of inversion. Superconductivity in terms of a fully gapped s-wave type occurs for SrPdGe3 at Tc = 1.49 K and SrPtGe3 at Tc = 1.0 K.

  6. Local and bulk susceptibilities of Np intermetallics in their paramagnetic state

    NASA Astrophysics Data System (ADS)

    Gal, J.; Litterst, F. J.; Potzel, W.; Moser, J.; Potzel, U.; Fredo, S.; Tapuchi, S.; Shani, G.; Jove, J.; Cousson, A.; Pages, M.; Kalvius, G. M.

    1989-11-01

    Mössbauer-effect investigations under applied magnetic field and magnetization studies of neptunium intermetallics in their paramagnetic state are reported. It is shown that the bulk and local susceptibilities at 4.2 K (?B and ?L, respectively) agree even for highly hybridized 5f-electron systems. The results indicate dominant orbital contributions to the magnetic moment also for paramagnetic neptunium heavy-fermion compounds. For these Np systems proportionalities between ?L, ?B, density of states at the Fermi energy, and the isomer shift are pointed out.

  7. Saturation fluorimetry of complex organic compounds with a high local concentration of fluorophores (by the example of phytoplankton)

    SciTech Connect

    Maslov, D V; Ostroumov, E E; Fadeev, V V

    2006-02-28

    Saturation of fluorescence of complex organic compounds with a high local concentration of fluorescing molecules (fluorophores), when singlet-singlet annihilation makes a noticeable contribution to saturation, is considered. The fluorescence saturation curve is obtained analytically for the case of a rectangular temporal and spatial distribution of photons in a laser pulse. It is shown that the fluorescence saturation curve depends on the parameter {Phi}{sub 0}, which is proportional to the concentration of fluorescing molecules, and on the parameters A, B, and {alpha} describing the influence of singlet-singlet annihilation, bleaching of an optically thin layer, and nonstationarity of excitation, respectively. The fluorescence saturation curves are studied experimentally for compounds with a high local concentration of fluorescing molecules such as molecules of a monoculture of diatomic alga Thalassiosira weissflogii. The experimental fluorescence saturation curves are well described by the obtained analytic expression. The values of the parameter {Phi}{sub 0}, proportional to the concentration of chlorophyll a, and the parameter A (for the first time) are obtained from the alga fluorescence saturation curves. (laser applications and other topics in quantum electronics)

  8. Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: prooxidant and antioxidant properties.

    PubMed

    Moran, J F; Klucas, R V; Grayer, R J; Abian, J; Becana, M

    1997-01-01

    The low-molecular-mass fraction of the soybean nodule cytosol contains Fe capable of catalyzing free radical production through Fenton chemistry. A large portion of the pool of catalytic Fe, measured as bleomycin-detectable Fe, was characterized as complexes of Fe with phenolic compounds of three classes: phenolic acids, cinnamic acids, and flavonoids. Many of these compounds, along with other phenolics present in legume tissues, were used for a systematic structure-activity relationship study. All phenolics tested were able to chelate Fe, as judged from their inhibitory effect on site-specific deoxyribose degradation (minus EDTA assay). However, only those having catechol, pyrogallol, or 3-hydroxy-4-carbonyl groupings were potent chelators and reductants of Fe3+ at pH 5.5. The same phenolics promoted oxidative damage to DNA (bleomycin assay) and to deoxyribose (plus EDTA assay), but inhibited linolenic acid peroxidation by chelating and reducing Fe3+ and by neutralizing lipid radicals. Also, phenolics having a pyrogallol nucleus attenuated the free radical-mediated inactivation of glutamine synthetase, which was used as a model system, by chelating Fe2+. It is reasoned that under the microaerobic (10-20 nM O2) and acidic (pH 5.5-6.4) conditions prevailing in nodules, phenolics are likely to act primarily as antioxidants, decreasing oxidative damage to biomolecules. PMID:9119255

  9. Photodissociation dynamics of organometallic compounds: Study of the dihydride complex H2Fe(CO)4

    SciTech Connect

    Heitz, M. C.; Daniel, C.

    1996-04-01

    The photodissociation of the dihydride complex H2Fe(CO)4 has been investigated by a theoretical approach, involving time-dependent wave packet propagations on potential energy surfaces (PES) obtained from CASSCF-MRCI calculations. A two dimensions simulation is proposed, allowing the study of two concurrents processes, namely photoinduced elimination of molecular hydrogen vs loss of a carbonyl ligand. Three singlet excited states {sup 1}bA1(x{sup 2}-y{sup 2}{yields}{sigma}g*), {sup 1}aB2(x{sup 2}-y{sup 2}{yields}{sigma}u*), {sup 1}aB1(yz{yields}{sigma}g*) has been identified in the range of energy corresponding to the experimental absorption spectrum. Wave packets propagations performed separately on the three PES describe the elementary processes contributing to the photochemical behavior of the molecule. The absorption spectrum reflecting these different processes, has been calculated, using the time dependent formalism.

  10. Process for synthesizing compounds from elemental powders and product

    DOEpatents

    Rabin, B.H.; Wright, R.N.

    1993-12-14

    A process for synthesizing intermetallic compounds from elemental powders is described. The elemental powders are initially combined in a ratio which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe[sub 3] Al and FeAl. 25 figures.

  11. Novel dimetal bridging carbene complexes derived from a terminal carbonyl dimetal compound. Syntheses, structures and reactivities of 7H-indene-coordinated diiron bridging carbene complexes.

    PubMed

    Zhang, Lei; Sun, Jie; Zhu, Huping; Xu, Qiang; Tsumori, Nobuko; Chen, Jiabi

    2006-09-28

    Pentacarbonyl-7H-indenediiron, [Fe2(CO)5(eta3,eta5-C9H8)] (1), reacts with aryllithium, ArLi (Ar = C6H5, p-C6H5C6H4), followed by alkylation with Et3OBF4 to give novel 7H-indene-coordinated diiron bridging alkoxycarbene complexes [Fe2{mu-C(OC2H5)Ar}(CO)4(eta4,eta4-C9H8)] (2, Ar = C6H5; 3, Ar = p-C6H5C6H4). Complexes 2 and 3 react with HBF4.Et2O at low temperature to yield cationic bridging carbyne complexes [Fe2(mu-CAr)(CO)4(eta4,eta4-C9H8)]BF4 (4, Ar = C6H5; 5, Ar = p-C6H5C6H4). Cationic 4 and 5 react with NaBH4 in THF at low temperature to afford diiron bridging arylcarbene complexes [Fe2{mu-C(H)Ar}(CO)4(eta4,eta4-C9H8)] (6, Ar = C6H5; 7, Ar = p-C6H5C6H4). The similar reactions of 4 and 5 with NaSC6H4CH3-p produce the bridging arylthiocarbene complexes [Fe2{mu-C(Ar)SC6H4CH3-p}(CO)4(eta4,eta4-C9H8)] (8, Ar = C6H5; 9, Ar = p-C6H5C6H4). Cationic 4 and 5 can also react with anionic carbonylmetal compounds Na[M(CO)5(CN)] (M = Cr, Mo, W) to give the diiron bridging aryl(pentacarbonylcyanometal)carbene complexes [Fe2{mu-C(Ar)NCM(CO)5}(CO)4(eta4,eta4-C9H8)] (10, Ar = C6H5, M = Cr; 11, Ar = p-C6H5C6H4, M = Cr; 12, Ar = C6H5, M = Mo; 13, Ar = p-C6H5C6H4, M = Mo; 14, Ar = C6H5, M = W; 15, Ar = p-C6H5C6H4, M = W). Interestingly, in CH2Cl2 solution at room temperature complexes 10-15 were transformed into the isomerized 7H-indene-coordinated monoiron complexes [Fe(CO)2(eta5-C9H8)C(Ar)NCM(CO)5] (16, Ar = C6H5, M = Cr; 17, Ar = p-C6H5C6H4, M = Cr; 18, Ar = C6H5, M = Mo; 19, Ar = p-C6H5C6H4, M = Mo; 20, Ar = C6H5, M = W; 21, Ar = p-C6H5C6H4, M = W), while complex 3 was converted into a novel ring addition product [Fe2{C(OC2H5)C6H4C6H5-p-(eta2,eta5-C9H8)}(CO)5] (22) under the same conditions. The structures of complexes 2, 6, 8, 14, 18 and 22 have been established by X-ray diffraction studies. PMID:16967119

  12. A Nanocrystalline Ni2(Cr,Mo) Intermetallic with Potentially Useful Combination of Properties for Gas Turbine Seal Ring Applications

    NASA Astrophysics Data System (ADS)

    Tawancy, H. M.; Al-Hadhrami, Luai M.

    2012-07-01

    Seal rings are installed for each turbine stage in gas turbine engines to minimize the loss in gas pressure and maintain engine efficiency. During service, seal rings become susceptible to failure by thermal fatigue as demonstrated by a case study. Therefore, a lower coefficient of thermal expansion is among the most important requirements for these applications. We show that long-range ordering in a Ni-Cr-Mo alloy can be used to synthesize a nanocrystalline intermetallic compound combining high strength, high ductility, low coefficient of thermal expansion, and an adequate oxidation resistance up to at least 700 °C. Twinning rather than slip is found to be the predominant deformation mechanism of the intermetallic compound, which is correlated with the crystallography of the disorder-to-order transformation and microstructure evolution. This could explain the enhanced plasticity of the intermetallic compound. The combination of enhanced plasticity, low-thermal expansion, and nano-sized crystals is expected to improve the resistance to thermal fatigue failure.

  13. Dislocations in complex materials.

    PubMed

    Chisholm, Matthew F; Kumar, Sharvan; Hazzledine, Peter

    2005-02-01

    Deformation of metals and alloys by dislocations gliding between well-separated slip planes is a well-understood process, but most crystal structures do not possess such simple geometric arrangements. Examples are the Laves phases, the most common class of intermetallic compounds and exist with ordered cubic, hexagonal, and rhombohedral structures. These compounds are usually brittle at low temperatures, and transformation from one structure to another is slow. On the basis of geometric and energetic considerations, a dislocation-based mechanism consisting of two shears in different directions on adjacent atomic planes has been used to explain both deformation and phase transformations in this class of materials. We report direct observations made by Z-contrast atomic resolution microscopy of stacking faults and dislocation cores in the Laves phase Cr2Hf. These results show that this complex dislocation scheme does indeed operate in this material. Knowledge gained of the dislocation core structure will enable improved understanding of deformation mechanisms and phase transformation kinetics in this and other complex structures. PMID:15692046

  14. Dislocations in Complex Materials

    SciTech Connect

    Chisholm, Matthew F; Kumar, K. S.; Hazzledine, P. M.

    2005-01-01

    Deformation of metals and alloys by dislocations gliding between well-separated slip planes is a well-understood process, but most crystal structures do not possess such simple geometric arrangements. Examples are the Laves phases, the most common class of intermetallic compounds and exist with ordered cubic, hexagonal, and rhombohedral structures. These compounds are usually brittle at low temperatures, and transformation from one structure to another is slow. On the basis of geometric and energetic considerations, a dislocation-based mechanism consisting of two shears in different directions on adjacent atomic planes has been used to explain both deformation and phase transformations in this class of materials. We report direct observations made by Z-contrast atomic resolution microscopy of stacking faults and dislocation cores in the Laves phase Cr{sub 2}Hf. These results show that this complex dislocation scheme does indeed operate in this material. Knowledge gained of the dislocation core structure will enable improved understanding of deformation mechanisms and phase transformation kinetics in this and other complex structures.

  15. Characteristics of odorous carbonyl compounds in the ambient air around a fishery industrial complex of Yeosu, Korea.

    PubMed

    Ma, Zhongkun; Jeon, Junmin; Kim, Sangchai; Jung, Sangchul; Lee, Woobum; Seo, Seonggyu

    2012-01-01

    In this study, the amounts of odorous carbonyl compounds (OCCs) including acetaldehyde (Acet-A), propionaldehyde (Pron-A), butylaldehyde (Buty-A), iso-valeric aldehyde (Iso-Vale-A) and n-valeric aldehyde (N-Vale-A) emitted from a fishery industrial complex near the exhibition facilities of "Expo 2012 Yeosu Korea" were measured. Acet-A was found to be the most abundant OCC, and the total concentrations of the OCCs were the highest in the summer. However, due to vehicular exhaust and photochemical reactions, the concentrations of some of the OCCs presented their highest levels in the fall. A significant correlation between Acet-A and Buty-A was found at the major fishery facilities (r = 0.816, p = 1.87E-15, n = 60) and at the border areas (r = 0.809, p = 3.40E-12, n = 48) of this fishery industrial complex. The concentrations of OCCs at the border areas were not worse than those at the urban areas in other places, indicating that the concentrations of ambient OCCs at the border areas were not greatly influenced by manmade activities. PMID:23520848

  16. Binding in transition metal complexes: Reduced multireference coupled-cluster study of the MCH2+ (M =Sc to Cu) compounds

    NASA Astrophysics Data System (ADS)

    Li, Xiangzhu; Paldus, Josef

    2007-06-01

    The recently developed reduced multireference coupled-cluster method with singles and doubles (RMR CCSD), which is perturbatively corrected for triples [RMR CCSD(T)], is employed to compute binding energies of nine transition metal ions with CH2. Unlike analogous compounds involving main-group elements, the MCH2+ (M =Sc to Cu) transition metal complexes often exhibit a non-negligible multireference character. The authors thus employ the RMR CCSD(T) method, which represents an extension of the standard single-reference (SR) CCSD(T) method and can account for multireference effects, while employing only small reference spaces. In this way the role of quasidegeneracy effects on the binding energies of these complexes can be assessed at a higher SD(T) level than is possible with the widely used ab initio methods, namely, with the standard SR CCSD(T) approach, and provide a new benchmark for these quantities. The difference between the RMR and the standard CCSD(T) methods becomes particularly evident when considering nonequilibrium geometries.

  17. Titanium aluminide intermetallic alloys with improved wear resistance

    DOEpatents

    Qu, Jun; Lin, Hua-Tay; Blau, Peter J.; Sikka, Vinod K.

    2014-07-08

    The invention is directed to a method for producing a titanium aluminide intermetallic alloy composition having an improved wear resistance, the method comprising heating a titanium aluminide intermetallic alloy material in an oxygen-containing environment at a temperature and for a time sufficient to produce a top oxide layer and underlying oxygen-diffused layer, followed by removal of the top oxide layer such that the oxygen-diffused layer is exposed. The invention is also directed to the resulting oxygen-diffused titanium aluminide intermetallic alloy, as well as mechanical components or devices containing the improved alloy composition.

  18. Lanthanide-to-lanthanide energy-transfer processes operating in discrete polynuclear complexes: can trivalent europium be used as a local structural probe?

    PubMed

    Zaïm, Amir; Eliseeva, Svetlana V; Guénée, Laure; Nozary, Homayoun; Petoud, Stéphane; Piguet, Claude

    2014-09-15

    This work, based on the synthesis and analysis of chemical compounds, describes a kinetic approach for identifying intramolecular intermetallic energy-transfer processes operating in discrete polynuclear lanthanide complexes, with a special emphasis on europium-containing entities. When all coordination sites are identical in a (supra)molecular complex, only heterometallic communications are experimentally accessible and a Tb ? Eu energy transfer could be evidenced in [TbEu(L5)(hfac)6] (hfac = hexafluoroacetylacetonate), in which the intermetallic separation amounts to 12.6?Å. In the presence of different coordination sites, as found in the trinuclear complex [Eu3(L2)(hfac)9], homometallic communication can be induced by selective laser excitation and monitored with the help of high-resolution emission spectroscopy. The narrow and non-degenerated character of the Eu((5)D0 ? (7)F0) transition excludes significant spectral overlap between donor and acceptor europium cations. Intramolecular energy-transfer processes in discrete polynuclear europium complexes are therefore limited to short distances, in agreement with the Fermi golden rule and with the kinetic data collected for [Eu3(L2)(hfac)9] in the solid state and in solution. Consequently, trivalent europium can be considered as a valuable local structural probe in discrete polynuclear complexes displaying intermetallic separation in the sub-nanometric domain, a useful property for probing lanthanido-polymers. PMID:25099883

  19. Thermomechanical processing of plasma sprayed intermetallic sheets

    DOEpatents

    Hajaligol, Mohammad R. (Midlothian, VA); Scorey, Clive (Cheshire, CT); Sikka, Vinod K. (Oak Ridge, TN); Deevi, Seetharama C. (Midlothian, VA); Fleischhauer, Grier (Midlothian, VA); Lilly, Jr., A. Clifton (Chesterfield, VA); German, Randall M. (State College, PA)

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  20. Journal of Alloys and Compounds 436 (2007) 18 Magnetic ordering in the HfFe6Ge6-type TbFe6Sn4Ge2 compound

    E-print Network

    Ryan, Dominic

    2007-01-01

    is unique among the intermetallic compounds: the Fe and rare earth sublattices order independently [1Journal of Alloys and Compounds 436 (2007) 1­8 Magnetic ordering in the HfFe6Ge6-type TbFe6Sn4Ge2 compound Laura K. Perrya, D.H. Ryana,, G. Venturinib, B. Malamanb a Centre for the Physics of Materials

  1. Results on powder injection molding of Ni{sub 3}Al and application to other intermetallic compositions

    SciTech Connect

    Cooper, R.M.

    1992-12-31

    Net forming processes are under development to allow affordable production of intermetallic components. Powder injection molding (PIM) mav be employed for the production of complex-shaped intermetallic geometries. Proper choice of powder parameters and processing conditions can lead to the formation of fullv dense structures through pressure-less sintering. In this study, Ni{sub 3}Al with 0.04 wt.-% boron has been successfully injection molded and sintered to full density. A yield strength of 340 MPa, ultimate tensile strength (UTS) of 591 MPa, and 8% elongation were attained for injection molded and sintered tensile bars. Powder characteristics and sintering behavior are given for the nickel aluminide employed in this study to highlight the powder attributes needed for injection molding. Molding parameters, debinding and sintering schedules, along, with mechanical properties are presented to indicate the viability of PIM for intermetallics. This approach based on the understanding of key powder characteristics and use of the reactive synthesis powder process mav be extended to the successful injection molding of other intermetallic systems.

  2. Results on powder injection molding of Ni[sub 3]Al and application to other intermetallic compositions

    SciTech Connect

    Cooper, R.M.

    1992-01-01

    Net forming processes are under development to allow affordable production of intermetallic components. Powder injection molding (PIM) mav be employed for the production of complex-shaped intermetallic geometries. Proper choice of powder parameters and processing conditions can lead to the formation of fullv dense structures through pressure-less sintering. In this study, Ni[sub 3]Al with 0.04 wt.-% boron has been successfully injection molded and sintered to full density. A yield strength of 340 MPa, ultimate tensile strength (UTS) of 591 MPa, and 8% elongation were attained for injection molded and sintered tensile bars. Powder characteristics and sintering behavior are given for the nickel aluminide employed in this study to highlight the powder attributes needed for injection molding. Molding parameters, debinding and sintering schedules, along, with mechanical properties are presented to indicate the viability of PIM for intermetallics. This approach based on the understanding of key powder characteristics and use of the reactive synthesis powder process mav be extended to the successful injection molding of other intermetallic systems.

  3. ION COMPOSITION ELUCIDATION (ICE): A HIGH RESOLUTION MASS SPECTROMETRIC TOOL FOR IDENTIFYING ORGANIC COMPOUNDS IN COMPLEX EXTRACTS OF ENVIRONMENTAL SAMPLES

    EPA Science Inventory


    Unidentified Organic Compounds. For target analytes, standards are purchased, extraction and clean-up procedures are optimized, and mass spectra and retention times for the chromatographic separation are obtained for comparison to the target compounds in environmental sample ...

  4. Evaluation of the antioxidant capacity of natural polyphenolic compounds using a macrocyclic Ni-(II) complex-catalysed Briggs-Rauscher reaction.

    PubMed

    Li, Mengshuo; Hu, Gang; Chen, Yangyang

    2016-04-15

    This paper reports a method for evaluating antioxidant capacity based on the inhibitory effects of a macrocyclic Ni(II) complex-catalysed Briggs-Rauscher reaction. The macrocyclic Ni(II) complex NiL(ClO4)2, in which L is 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene, is a porphyrin-like compound, the structure of which can be found in certain enzymes. The experiments indicated that three natural compounds could temporarily quench the oscillations for a period of time prior to regeneration of oscillations. The inhibition time was related to the compound type and concentration; thus, procedures for evaluating the antioxidant activities of polyphenolic compounds were successfully established. Three polyphenolic compounds were tested to evaluate their antioxidant activities: protocatechuic acid, rutin hydrate and procyanidin. Of these three naturally occurring compounds, procyanidin was found to be the most efficient antioxidant. We have also discussed the reaction of the antioxidant with the hydroperoxyl radical (HOO) present in the oscillating system. PMID:26617044

  5. The conversion of solar energy to the chemical energy of organic compounds is a complex process that includes electron transport and

    E-print Network

    Ehleringer, Jim

    The conversion of solar energy to the chemical energy of organic compounds is a complex process discussions of the photochemical and biochemical reactions of pho- tosynthesis should not overshadow the fact- pend strongly on prevailing photosynthetic rates in a dynamic en- vironment. To the ecologist, the fact

  6. Data on pigments and long-chain fatty compounds identified in Dietzia sp. A14101 grown on simple and complex hydrocarbons

    PubMed Central

    Hvidsten, Ina; Mjøs, Svein Are; Bødtker, Gunhild; Barth, Tanja

    2015-01-01

    This data article provides: 1. An overview of tentatively identified long chain compounds in Dietzia sp. A14101 grown on simple and complex hydrocarbons; 2. Preliminary Identification of pigments in bacterial material obtained from incubation with a hydrocarbon (dodecane, n-C12) as the only carbon and energy source; 3. Some pictures to illustrate the cell surface charge test. PMID:26442286

  7. Supramolecular Potential of Vanadium ?-Diketonate and Picolinate Compounds and The First One-dimensional Oxidovanadium(IV) Complex with ?-Diketonate Ligand.

    PubMed

    Koleša Dobravc, Tanja; Meden, Anton; Perdih, Franc

    2015-01-01

    Three vanadium compounds with ?-diketonato or picolinato ligands were prepared and structurally characterized. In compounds [VO(tfpb)2]? (1) (tfpb = 4,4,4-trifluoro-1-phenylbutane-1,3-dionate) and [VO(acac)2(2-pyridone)] (2) the coordination of vanadium atom is octahedral and in the compound Hpy[VO2(pic)Cl] (3) the central atom is pentacoordinated. X-Ray crystallographic studies reveal infinite chain formation due to V=O···V=O interactions in 1, while 2 and 3 are mononuclear compounds. Centrosymmetric hydrogen-bonded dimers are formed in 2 via N-H···O interactions due to the 2-pyridone ligand. In 3 the Hpy+ cation is hydrogen bonded to the complex anion and crystal structure is further stabilized by ?···? and C-H···O interactions. PMID:26085406

  8. Nano-encapsulation of olive leaf phenolic compounds through WPC-pectin complexes and evaluating their release rate.

    PubMed

    Mohammadi, Adeleh; Jafari, Seid Mahdi; Assadpour, Elham; Faridi Esfanjani, Afshin

    2016-01-01

    In this study, W/O micro-emulsions as primary emulsions and a complex of whey protein concentrate (WPC) and pectin in the external aqueous phase were used to produce W/O/W emulsions. Average droplet size of primary W/O emulsion and multiple emulsions stabilized by WPC or WPC-pectin after one day of production was 6.16, 675.7 and 1443nm, respectively, which achieved to 22.97, 347.7 and, 1992.4nm after 20 days storage without any sedimentation. The encapsulation efficiency of phenolic compounds for stabilized W/O/W emulsions with WPC and WPC-pectin were 93.34% and 96.64%, respectively, which was decreased to 72.73% and 88.81% at 20th storage day. The lowest release of phenolics observed in multiple emulsions of WPC-pectin. These results suggest that nano-encapsulation of olive leaf extract within inner aqueous phase of W/O/W emulsions was successful, and there could be a high potential for the application of olive leaf extract in fortification of food products. PMID:26459167

  9. Intermetallic and ceramic matrix composites for 815 to 1370 C (1500 to 2500 F) gas turbine engine applications

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.

    1989-01-01

    Light weight and potential high temperature capability of intermetallic compounds, such as the aluminides, and structural ceramics, such as the carbides and nitrides, make these materials attractive for gas turbine engine applications. In terms of specific fuel consumption and specific thrust, revolutionary improvements over current technology are being sought by realizing the potential of these materials through their use as matrices combined with high strength, high temperature fibers. The U.S. along with other countries throughout the world have major research and development programs underway to characterize these composites materials; improve their reliability; identify and develop new processing techniques, new matrix compositions, and new fiber compositions; and to predict their life and failure mechanisms under engine operating conditions. The status is summarized of NASA's Advanced High Temperature Engine Materials Technology Program (HITEMP) and the potential benefits are described to be gained in 21st century transport aircraft by utilizing intermetallic and ceramic matrix composite materials.

  10. Reactivity of platinum alkyne complexes towards N-fluorobenzenesulfonimide: formation of platinum compounds bearing a ?-fluorovinyl ligand.

    PubMed

    Berger, Josefine; Braun, Thomas; Herrmann, Roy; Braun, Beatrice

    2015-12-01

    The platinum(0) alkyne complexes [Pt(L)(?(2)-PhC[triple bond, length as m-dash]CPh)] 1-4 were synthesized by reactions of [Pt(cod)2] with diphenylacetylene and a phosphine ligand precursor (1: L = dcpe, 2: L = xantphos, 3: L = ?(2)-(P,N)-iPr2PC3H6NMe2, 4: L = ?(2)-(P,N)-iPr2PC2H4NMe2). Treatment of 1 or 4 with NFSI gave the complexes [Pt(F){N(SO2Ph)2}(dcpe)] (5) and [Pt(PhC[double bond, length as m-dash]CFPh){N(SO2Ph)2}{?(2)-(P,N)-iPr2PC2H4NMe2}] (8), whereas the reactivity of 2 and 3 towards NFSI led to product mixtures. The compounds [Pt(F){N(SO2Ph)2}(xantphos)] (6a) as well as [Pt(PhC[double bond, length as m-dash]CFPh){N(SO2Ph)2}{?(2)-(P,N)-iPr2PC2H4NMe2}] (7a) and [Pt(PhC[double bond, length as m-dash]CFPh)(F){?(2)-(P,N)-iPr2PC2H4NMe2}] (7b) were clearly identified. Ligand exchange reactions at 8 resulted in the formation of the ?-fluorovinyl platinum(ii) complexes [Pt(PhC[double bond, length as m-dash]CFPh){OC(O)CF3}{?(2)-(P,N)-iPr2PC2H4NMe2}] (9), [Pt(PhC[double bond, length as m-dash]CFPh)(FHF){?(2)-(P,N)-iPr2PC2H4NMe2}] (10) and [Pt(PhC[double bond, length as m-dash]CFPh)(F){?(2)-(P,N)-iPr2PC2H4NMe2}] (11). Treatment of 8 with dihydrogen yielded the fluorinated olefin (Z)-(1-fluoroethene-1,2-diyl)dibenzene and [Pt{N(SO2Ph)2}(H){?(2)-(P,N)-iPr2PC2H4NMe2}] (12). PMID:26308149

  11. Interfacial reactions in high temperature metallic and intermetallic matrix composites - A status review

    NASA Technical Reports Server (NTRS)

    Tien, J. K.; Kopp, M. W.

    1990-01-01

    Interdiffusion and interdiffusion-related phenomena in metal and intermetallic matrix composites can be of crucial interest for the prolonged application of these systems at high temperature. The level of complication that these effects can have can vary significantly from system to system. Reviewed herein are recent efforts to address interdiffusion and reaction kinetics for both a simple system, the single phase W/Nb system, and more complex systems such as tungsten fiber reinforced superalloys (TFRS) and beryllide reinforced aluminides. Additionally, recent work on inhibiting interdiffusion in MMCs via ion-implanted diffusion barriers will be presented.

  12. Multiconfigurational nature of 5f orbitals in uranium and plutonium intermetallics

    PubMed Central

    Booth, C.H.; Jiang, Yu; Wang, D.L.; Mitchell, J.N.; Tobash, P.H.; Bauer, E.D.; Wall, M.A.; Allen, P.G.; Sokaras, D.; Nordlund, D.; Weng, T.-C.; Torrez, M.A.; Sarrao, J.L.

    2012-01-01

    Uranium and plutonium’s 5f electrons are tenuously poised between strongly bonding with ligand spd-states and residing close to the nucleus. The unusual properties of these elements and their compounds (e.g., the six different allotropes of elemental plutonium) are widely believed to depend on the related attributes of f-orbital occupancy and delocalization for which a quantitative measure is lacking. By employing resonant X-ray emission spectroscopy (RXES) and X-ray absorption near-edge structure (XANES) spectroscopy and making comparisons to specific heat measurements, we demonstrate the presence of multiconfigurational f-orbital states in the actinide elements U and Pu and in a wide range of uranium and plutonium intermetallic compounds. These results provide a robust experimental basis for a new framework toward understanding the strongly-correlated behavior of actinide materials. PMID:22706643

  13. First-principles theoretical prediction of structural and elastic properties of some AlX intermetallics

    NASA Astrophysics Data System (ADS)

    Pagare, Gitanjali; Jain, Ekta; Abraham, Jisha Annie; Sanyal, S. P.

    2015-08-01

    The structural and elastic properties of aluminum based some intermetallics, AlX (X = Mg, Co, Rh, Pd and Ir) have been investigated using full potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT). The exchange-correlation term was treated within generalized gradient approximation (GGA). Grounds state properties i.e. lattice constants (a0), bulk modulus (B) and first-order pressure derivative of bulk modulus (B') are presented. Our calculated results for C11, C12 and C44 have been compared with available previous theoretical data. The Young's modulus (G), shear modulus (E), sound wave velocities and Debye temperature are the first theoretical prediction for these compounds. Using Pugh's rule and Cauchy pressure the ductile/brittle character of these compounds are satisfied.

  14. Intermetallic alloys: patterns and complexity. Final technical report

    SciTech Connect

    Chakraborty, Bulbul

    2001-11-07

    This report summarizes the research accomplishment of the P.I. and her collaborators. The major findings are (a) in the area of ordering in metallic alloys, the interplay between chemical and structural short-range order and (b) in the area of glassy dynamics in frustrated spin models. In the context of alloys, the development of a theoretical framework for incorporating the correlation between chemical and structural degrees of freedom has been a major accomplishment. The work on frustrated spin models has had a major impact on the understanding of the glass transition.

  15. SCB ignition of pyrotechnics, thermites and intermetallics

    SciTech Connect

    Bickes, R.W. Jr.; Grubelich, M.C.

    1996-09-01

    We investigated ignition of pyrotechnics, metal-fuel/metal-oxide compositions (thermites), and exothermic alloy compositions (intermetallics) using a semiconductor bridge (SCB). It was shown that these materials could be ignited at low energy levels with an appropriately designed SCB, proper loading density, and good thermal isolation. Materials tested included Al/CuO, B/BaCrO{sub 4}, TiH{sub 1.65}/KClO{sub 4}, Ti/KClO{sub 4}, Zr/BaCrO{sub 4}, Zr/CuO, Zr/Fe{sub 2}O{sub 3}, Zr/KClO{sub 4}, and 100-mesh Al/Pd. Firing set was a capacitor discharge unit with charge capacitors ranging from 3 to 20,000 {mu}F at charge voltages 5-50 V. Devices functioned a few miliseconds after onset of current pulse at input energies as low as 3 mJ. We also report on a thermite torch design.

  16. High temperature intermetallic binders for HVOF carbides

    SciTech Connect

    Shaw, K.G.; Gruninger, M.F.; Jarosinski, W.J.

    1994-12-31

    Gas turbines technology has a long history of employing the desirable high temperature physical attributes of ceramic-metallic (cermet) materials. The most commonly used coatings incorporate combinations of WC-Co and Cr{sub 3}C{sub 2}-NiCr, which have also been successfully utilized in other non-turbine coating applications. Increased turbine operating temperatures and other high temperature service conditions have made apparent the attractive notion of increasing the temperature capability and corrosion resistance of these coatings. In this study the intermetallic binder NiAl has been used to replace the cobalt and NiCr constituents of conventional WC and Cr{sub 3}C{sub 2} cermet powders. The composite carbide thermal spray powders were fabricated for use in the HVOF coating process. The structure of HVOF deposited NiAl-carbide coatings are compared directly to the more familiar WC-Co and Cr{sub 3}C{sub 2}-NiCr coatings using X-ray diffraction, back-scattered electron imaging (BEI) and electron dispersive spectroscopy (EDS). Hardness variations with temperature are reported and compared between the NiAl and Co/NiCr binders.

  17. Thermal stress effects in intermetallic matrix composites

    NASA Technical Reports Server (NTRS)

    Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.

    1993-01-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  18. Ground state searches in fcc intermetallics

    SciTech Connect

    Wolverton, C.; de Fontaine, D.; Ceder, G.; Dreysse, H.

    1991-12-01

    A cluster expansion is used to predict the fcc ground states, i.e., the stable phases at zero Kelvin as a function of composition, for alloy systems. The intermetallic structures are not assumed, but derived regorously by minimizing the configurational energy subject to linear constraints. This ground state search includes pair and multiplet interactions which spatially extend to fourth nearest neighbor. A large number of these concentration-independent interactions are computed by the method of direct configurational averaging using a linearized-muffin-tin orbital Hamiltonian cast into tight binding form (TB-LMTO). The interactions, derived without the use of any adjustable or experimentally obtained parameters, are compared to those calculated via the generalized perturbation method extention of the coherent potential approximation within the context of a KKR Hamiltonian (KKR-CPA-GPM). Agreement with the KKR-CPA-GPM results is quite excellent, as is the comparison of the ground state results with the fcc-based portions of the experimentally-determined phase diagrams under consideration.

  19. Crystal structure, chemical bonding and magnetism studies for three quinary polar intermetallic compounds in the (Eu(1-x)Ca(x))9In8(Ge(1-y)Sn(y))8 (x = 0.66, y = 0.03) and the (Eu(1-x)Ca(x))3In(Ge(3-y)Sn(1+y)) (x = 0.66, 0.68; y = 0.13, 0.27) phases.

    PubMed

    Woo, Hyein; Jang, Eunyoung; Kim, Jin; Lee, Yunho; Kim, Jongsik; You, Tae-Soo

    2015-01-01

    Three quinary polar intermetallic compounds in the (Eu(1-x)Ca(x))9In8(Ge(1-y)Sn(y))8 (x = 0.66, y = 0.03) and the (Eu(1-x)Ca(x))3In(Ge(3-y)Sn(1+y)) (x = 0.66, 0.68; y = 0.13, 0.27) phases have been synthesized using the molten In-metal flux method, and the crystal structures are characterized by powder and single-crystal X-ray diffractions. Two orthorhombic structural types can be viewed as an assembly of polyanionic frameworks consisting of the In(Ge/Sn)4 tetrahedral chains, the bridging Ge2 dimers, either the annulene-like "12-membered rings" for the (Eu(1-x)Ca(x))9In8(Ge(1-y)Sn(y))8 series or the cis-trans Ge/Sn-chains for the (Eu(1-x)Ca(x))3In(Ge(3-y)Sn(1+y)) series, and several Eu/Ca-mixed cations. The most noticeable difference between two structural types is the amount and the location of the Sn-substitution for Ge: only a partial substitution (11%) occurs at the In(Ge/Sn)4 tetrahedron in the (Eu(1-x)Ca(x))9In8(Ge(1-y)Sn(y))8 series, whereas both a complete and a partial substitution (up to 27%) are observed, respectively, at the cis-trans Ge/Sn-chain and at the In(Ge/Sn)4 tetrahedron in the (Eu(1-x)Ca(x))3In(Ge(3-y)Sn(1+y)) series. A series of tight-binding linear muffin-tin orbital calculations is conducted to understand overall electronic structures and chemical bonding among components. Magnetic susceptibility measurement indicates a ferromagnetic ordering of Eu atoms below 5 K for Eu1.02(1)Ca1.98InGe2.87(1)Sn1.13. PMID:25913380

  20. Crystal Structure, Chemical Bonding and Magnetism Studies for Three Quinary Polar Intermetallic Compounds in the (Eu1?xCax)9In8(Ge1?ySny)8 (x = 0.66, y = 0.03) and the (Eu1?xCax)3In(Ge3?ySn1+y) (x = 0.66, 0.68; y = 0.13, 0.27) Phases

    PubMed Central

    Woo, Hyein; Jang, Eunyoung; Kim, Jin; Lee, Yunho; Kim, Jongsik; You, Tae-Soo

    2015-01-01

    Three quinary polar intermetallic compounds in the (Eu1?xCax)9In8(Ge1?ySny)8 (x = 0.66, y = 0.03) and the (Eu1?xCax)3In(Ge3-ySn1+y) (x = 0.66, 0.68; y = 0.13, 0.27) phases have been synthesized using the molten In-metal flux method, and the crystal structures are characterized by powder and single-crystal X-ray diffractions. Two orthorhombic structural types can be viewed as an assembly of polyanionic frameworks consisting of the In(Ge/Sn)4 tetrahedral chains, the bridging Ge2 dimers, either the annulene-like “12-membered rings” for the (Eu1?xCax)9In8(Ge1?ySny)8 series or the cis-trans Ge/Sn-chains for the (Eu1?xCax)3In(Ge3?ySn1+y) series, and several Eu/Ca-mixed cations. The most noticeable difference between two structural types is the amount and the location of the Sn-substitution for Ge: only a partial substitution (11%) occurs at the In(Ge/Sn)4 tetrahedron in the (Eu1?xCax)9In8(Ge1?ySny)8 series, whereas both a complete and a partial substitution (up to 27%) are observed, respectively, at the cis-trans Ge/Sn-chain and at the In(Ge/Sn)4 tetrahedron in the (Eu1?xCax)3In(Ge3?ySn1+y) series. A series of tight-binding linear muffin-tin orbital calculations is conducted to understand overall electronic structures and chemical bonding among components. Magnetic susceptibility measurement indicates a ferromagnetic ordering of Eu atoms below 5 K for Eu1.02(1)Ca1.98InGe2.87(1)Sn1.13. PMID:25913380

  1. Non-covalent interactions of nitrous oxide with aromatic compounds: Spectroscopic and computational evidence for the formation of 1:1 complexes

    SciTech Connect

    Cao, Qian; School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 ; Gor, Gennady Y.; Krogh-Jespersen, Karsten; Khriachtchev, Leonid

    2014-04-14

    We present the first study of intermolecular interactions between nitrous oxide (N{sub 2}O) and three representative aromatic compounds (ACs): phenol, cresol, and toluene. The infrared spectroscopic experiments were performed in a Ne matrix and were supported by high-level quantum chemical calculations. Comparisons of the calculated and experimental vibrational spectra provide direct identification and characterization of the 1:1 N{sub 2}O-AC complexes. Our results show that N{sub 2}O is capable of forming non-covalently bonded complexes with ACs. Complex formation is dominated by dispersion forces, and the interaction energies are relatively low (about ?3 kcal mol{sup ?1}); however, the complexes are clearly detected by frequency shifts of the characteristic bands. These results suggest that N{sub 2}O can be bound to the amino-acid residues tyrosine or phenylalanine in the form of ? complexes.

  2. Non-covalent interactions of nitrous oxide with aromatic compounds: Spectroscopic and computational evidence for the formation of 1:1 complexes

    NASA Astrophysics Data System (ADS)

    Cao, Qian; Gor, Gennady Y.; Krogh-Jespersen, Karsten; Khriachtchev, Leonid

    2014-04-01

    We present the first study of intermolecular interactions between nitrous oxide (N2O) and three representative aromatic compounds (ACs): phenol, cresol, and toluene. The infrared spectroscopic experiments were performed in a Ne matrix and were supported by high-level quantum chemical calculations. Comparisons of the calculated and experimental vibrational spectra provide direct identification and characterization of the 1:1 N2O-AC complexes. Our results show that N2O is capable of forming non-covalently bonded complexes with ACs. Complex formation is dominated by dispersion forces, and the interaction energies are relatively low (about -3 kcal mol-1); however, the complexes are clearly detected by frequency shifts of the characteristic bands. These results suggest that N2O can be bound to the amino-acid residues tyrosine or phenylalanine in the form of ? complexes.

  3. Cyclometalated Iminophosphorane Gold(III) and Platinum(II) Complexes. A Highly Permeable Cationic Platinum(II) Compound with Promising Anticancer Properties

    PubMed Central

    2015-01-01

    New organometallic gold(III) and platinum(II) complexes containing iminophosphorane ligands are described. Most of them are more cytotoxic to a number of human cancer cell lines than cisplatin. Cationic Pt(II) derivatives 4 and 5, which differ only in the anion, Hg2Cl62– or PF6– respectively, display almost identical IC50 values in the sub-micromolar range (25–335-fold more active than cisplatin on these cell lines). The gold compounds induced mainly caspase-independent cell death, as previously reported for related cycloaurated compounds containing IM ligands. Cycloplatinated compounds 3, 4, and 5 can also activate alternative caspase-independent mechanisms of death. However, at short incubation times cell death seems to be mainly caspase dependent, suggesting that the main mechanism of cell death for these compounds is apoptosis. Mercury-free compound 5 does not interact with plasmid (pBR322) DNA or with calf thymus DNA. Permeability studies of 5 by two different assays, in vitro Caco-2 monolayers and a rat perfusion model, have revealed a high permeability profile for this compound (comparable to that of metoprolol or caffeine) and an estimated oral fraction absorbed of 100%, which potentially makes it a good candidate for oral administration. PMID:26147404

  4. Uptake and fate of phenol and aniline in rainbow trout and daphnids during single-compound and complex-mixture exposures

    SciTech Connect

    Dauble, D.D.; Riley, R.G.; Bean, R.M.; Lusty, E.W.; Hanf, R.W. Jr.

    1984-10-01

    Studies were conducted of the potential for uptake and mobilization of phenol and aniline when presented as single compounds to the biouptake of these compounds within a complex water-soluble fraction (WSF) of a coal liquid. Estimated bioconcentration factors (BCF) of phenol-only exposures differed from BCFs obtained in the presence of the WSF. Differences in uptake could be due to competitive interactions among similar molecules for uptake and absorption, since phenolic compounds comprised nearly 90% of the soluble components in the complex mixture. Observed differences in unextractable /sup 14/C residues suggested selective binding of phenol or metabolites to trout tissue storage sites. Differences in potential for bioaccumulation of phenol in complex mixtures were not consistent with estimates of BCF as determined by measured octanol/water coefficient values. In contrast to phenol, presence of coal-liquid water solubles did not significantly influence either the uptake or elimination of /sup 14/C aniline by daphnids or trout. Identification of metabolites would provide useful information on potential differences in biotransformation and elimination mechanisms in complex organic mixtures. 15 references, 2 figures, 6 tables.

  5. Strength and ductility of L1{sub 2}-based intermetallics. Final report

    SciTech Connect

    Schulson, E. M.

    2002-01-18

    For the first time a complete and systematic study has been made of the strength and ductility of the L1{sub 2}-based intermetallic compounds Ni{sub 3}X (X=Al,Ga,Ge,Ga), w/wo boron and w/wo notches. Variables included grain size, boron concentration, deviation from stoichiometry, temperature, strain rate, and notch geometry. Approaches included tensile, compression, hardness and Bauchinger tests; optical microscopy; scanning, transmission and high-resolution scanning-transmission electron microscopy; and numerical modeling. The hypothesis tested was that the increase in ductility induced by boron is caused largely by an increase in the accommodation of slip at grain boundaries. The results and interpretations were published in 41 papers. Every result obtained over the course of the study is consistent with this hypothesis. Indeed, every result obtained by other investigators on the same alloy systems is also consistent with the hypothesis. Thus, we conclude the study by saying that the grain boundary accommodation of slip is a major factor in accounting for the beneficial effect of boron on the strength and ductility of Ni{sub 3}X-based L1{sub 2} intermetallics.

  6. Observations of a dynamical-to-kinematic diffraction transition in plastically deformed polycrystalline intermetallic YCu

    SciTech Connect

    Williams, Scott H.; Brown, Donald W.; Clausen, Bjorn; Russell, Alan; Gschneidner Jr., Karl A.

    2014-03-01

    Unlike most intermetallic compounds, polycrystalline YCu, a B2 (CsCl-type) intermetallic, is ductile at room temperature. The mechanisms for this behavior are not fully understood. In situ neutron diffraction was used to investigate whether a stress-induced phase transformation or twinning contribute to the ductility; however, neither mechanism was found to be active in YCu. Surprisingly, this study revealed that the intensities of the diffraction peaks increased after plastic deformation. It is thought that annealing the samples created nearly perfect crystallinity, and subsequent deformation reduced this high degree of lattice coherency, resulting in a modified mosaic structure that decreased or eliminated the extinction effect. Analysis of changes in diffraction peak intensity showed a region of primary plasticity that exhibits significant changes in diffraction behavior. Fully annealed samples initially contain diffracting volumes large enough to follow the dynamical theory of diffraction. When loaded beyond the yield point, dislocation motion disrupts the lattice perfection, and the diffracting volume is reduced to the point that diffraction follows the kinematic theory of diffraction. Since the sample preparation and deformation mechanisms present in this study are common in numerous material systems, this dynamical to kinematic diffraction transition should also be considered in other diffraction experiments. These measurements also suggest the possibility of a new method of investigating structural characteristics. (C) 2014 Published by Elsevier Ltd. on behalf of Acta Materialia Inc.

  7. The study of new complex compounds of Ni (II) and Co (II) with N- hydroxy-succinimide and their potential applications as sensors

    NASA Astrophysics Data System (ADS)

    Sibiescu, Doina; Tutulea, Mihaela-Dana; Mî??, Carmen; Stan, Corneliu; Ro?ca, Ioan; Vizitiu, Mihaela

    2010-11-01

    In this paper, the study of obtaining new coordination compounds of Ni (II) and Co(II) using as ligand, N-hydroxy-succinimide, was presented. Also, the stability constants of these compounds in aqueous medium were determined. The obtaining conditions and the stability of the new compounds were accomplished in aqueous solutions using characteristic methods for coordination compounds: pH-metry, conductometry and UV-VIS absorption spectroscopy. The combination ratios and the stability constants were determined with methods characteristic for studies in solutions. From experimental data resulted that the combination ratio of central metallic atoms with the ligand N-hydroxy-succinimide was: 1:1 and respectively 1:2. In the experiments were used salts of NiCl2.6H2O and CoCl2.6H2O. The optimal domain of pH stability of the studied compounds is limited between 5.74 - 5.86 for Co- N-hydroxy-succinimide (for molar ratio 1:1 and 1:2) and respectively 5.69 - 5.87 for Ni-N-hydroxysuccinimide( for molar ratio 1:1 and 1:2, too). It is important to mention that these compounds were used with very good results in determination of wastewaters from textile, metallurgical, chemical and food industry. Complexion reactions with this ligand are very sensitive for the cations in this paper mentioned. Therefore it is used most often with success in analytical chemistry and also it is posibil to use as sensors. The new complex compounds has electronics transitions at ? = 517 nm for both complexes Co-N-hydroxy-succinimide at molar ratio 1:1 and 1:2 and also at the same ? = 397nm for Ni-N-hydroxysuccinimide at molar ratio 1:1 and 1:2. These complexes compounds was separated and recrystallized from aqueous solution. From the spectrophotometric data it was determined the type and the nature of the electronics transitions by Dq parameters.

  8. Intermetallic alloy welding wires and method for fabricating the same

    DOEpatents

    Santella, M.L.; Sikka, V.K.

    1996-06-11

    Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined. 4 figs.

  9. Intermetallic alloy welding wires and method for fabricating the same

    DOEpatents

    Santella, Michael L. (Knoxville, TN); Sikka, Vinod K. (Oak Ridge, TN)

    1996-01-01

    Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined.

  10. Petroleum-collecting and dispersing complexes based on oleic acid and nitrogenous compounds as surface-active agents for removing thin petroleum films from water surface.

    PubMed

    Asadov, Ziyafaddin H; Tantawy, Ahmed H; Zarbaliyeva, Ilhama A; Rahimov, Ravan A

    2012-01-01

    Petroleum-collecting and dispersing complexes were synthesized on the basis of oleic acid and nitrogen-containing compounds. Surface-active properties (interfacial tension) of the obtained complexes were investigated by stalagmometric method. Petroleum-collecting and dispersing properties of the oleic acid complexes in diluted (5% wt. water or alcoholic solution) and undiluted form have been studied in waters of varying salinity (distilled, fresh and sea waters). Some of physico-chemical indices of the prepared compounds such as solubility, acid and amine numbers as well as electrical conductivity have been determined. The ability of oleic acid complex with ethylenediamine as petro-collecting and dispersing agent towards different types of petroleum has been studied. The influence of thickness and "age" of the petroleum slick on collecting and dispersing capacity of this complex has been clarified. Surface properties studied included critical micelle concentration (CMC), maximum surface excess (?(max)), and minimum surface area (A(min)). Free energies of micellization (?G°(mic)) and adsorption (?G°(ads)) were calculated. PMID:23138251

  11. Intermetallic crystal structures as foams. Beyond Frank-Kasper.

    PubMed

    Bonneau, Charlotte; O'Keeffe, Michael

    2015-02-01

    In many intermetallic structures, the atoms and bonds divide space into tilings by tetrahedra. The well-known Frank-Kasper phases are examples. The dual tilings divide space into a tiling by polyhedra that is topologically a foam. The number of faces of the dual polyhedron corresponds to the atom coordination number in the direct structure, and face sharing by adjacent polyhedra corresponds to bonds in the direct structure. A number of commonly occurring intermetallic crystal structures are shown as their duals. A major advantage of this alternative mode of depiction is that coordination of all of the atoms can be seen simultaneously. PMID:25247234

  12. Nickel-catalyzed asymmetric arylations of [alpha]-halocarbonyl compounds and studies of boratabenzene-containing transition metal complexes

    E-print Network

    Lundin, Pamela M. (Pamela Marie)

    2010-01-01

    Chapter 1 begins with a review of the current literature on cross-coupling methods to generate a-arylcarbonyl compounds, with a special emphasis on asymmetric arylations. The second section of chapter 1 describes the ...

  13. Facile route for the preparation of ordered intermetallic Pt3Pb-PtPb core-shell nanoparticles and its enhanced activity for alkaline methanol and ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Gunji, Takao; Tanabe, Toyokazu; Jeevagan, Arockiam John; Usui, Sho; Tsuda, Takashi; Kaneko, Shingo; Saravanan, Govindachetty; Abe, Hideki; Matsumoto, Futoshi

    2015-01-01

    Pt3Pb(core)-PtPb(shell) intermetallic compound nanoparticles (NPs) were synthesized on carbon black (CB) by converting nanocrystalline Pt to an ordered intermetallic compound with the reduction of Pb ions. The Pt3Pb-PtPb core-shell NPs were characterized by analyzing their crystal structures with powder X-ray diffraction (pXRD), hard X-ray photoemission spectroscopy (HX-PES), and transmission electron microscopy (TEM). The synthesized NPs exhibited enhanced catalytic activity and relatively stable cycle performance towards methanol (MeOH) and ethanol (EtOH) oxidation in an alkaline aqueous solution. The improved catalytic performance of the Pt3Pb-PtPb core-shell NPs might be attributed to both the enhancement of EtOH dehydrogenation and the higher concentration of surface OHads at lower potential on the modified PtPb surface in the Pt3Pb-PtPb core-shell NPs.

  14. Post-heat treatment of arc-sprayed coating prepared by the wires combination of Mg-cathode and Al-anode to form protective intermetallic layers

    NASA Astrophysics Data System (ADS)

    Xu, Rongzheng; Song, Gang

    2011-01-01

    A Mg-Al intermetallic compounds coating was prepared on the surface of Mg-steel lap joint by arc-sprayed Al-Mg composite coating (Mg-cathode and Al-anode) and its post-heat treatment (PHT). The effect of PHT temperature on the phase transition, microstructure and mechanical properties of the coating was investigated by X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscopy, optical microscope and microhardness test. The result shows that the intermetallic compounds layer that is mainly composed of Al3Mg2 and Mg17Al12 is formed by the self-diffusion reaction of Mg and Al splats in the coating after PHT for 4 h at 430 °C.

  15. A theoretical analysis of the extraction of heterocyclic organic compounds from an organic phase using chemically mediated electrochemically modulated complexation in ion exchange polymer beads

    SciTech Connect

    Ozekin, K.; Noble, R.D.; Koval, C.A.

    1991-01-01

    A cyclical electrochemical process for the removal of heterocyclic organic compounds (pollutants) from an organic solvent using an ion-exchange polymer is analyzed. In this analysis, there are three main steps: In the first step, the polymer beads containing the active form of the complexing agent are contacted with the contaminated (feed) hydrocarbon phase. The pollutant diffuses into the beads and binds with the complexing agent which is in the reduced state. It is a fast reversible reaction. For the second step, the beads which contain a pollutant are contacted with a waste (receiving) phase and a chemical mediator is then used to oxidize the complexing agent and to reduce its affinity towards the pollutant so that it can be released. The oxidation of the complexing agent is an irreversible reaction. This is a moving boundary problem with countercurrent diffusion. For each mole of mediator that goes into the bead, one mole of pollutant exits since each complexing agent binds one pollutant. In the third step, the waste hydrocarbon phase is removed and a second chemical mediator is then used to reduce the complexing agent. The reduction of the complexing agent is also an irreversible reaction. Partial differential equations are used to analyze this process. 26 refs., 9 figs.

  16. Magnetocaloric effect of a series of remarkably isostructural intermetallic [Ni(II)3Ln(III)] cubane aggregates.

    PubMed

    Wang, Pei; Shannigrahi, Santiranjan; Yakovlev, Nikolai L; Hor, T S Andy

    2014-01-01

    A new series of remarkably isostructural 3d-4f compounds, [Ni3Ln(hmp)4(OAc)5]·H2O·CH2Cl2 (Ln = Gd (1), Tb (2), Dy (3), Ho (4), Y (5)) were synthesized based on a simple one-pot self-assembly method. Magnetic measurements demonstrated the ferromagnetic property of the [Ni3Ln] cores and the heterometallic influence on the magnetocaloric properties. This study suggested that robust and discrete intermetallic cubanes can be an alternative to other magnetically active materials such as high-nuclearity aggregates or clusters whose structures are not generally controlled by common synthetic methodological designs. PMID:24131937

  17. Oxidation of high-temperature intermetallics; Proceedings of the Workshop, Cleveland, OH, Sept. 22, 23, 1988

    NASA Technical Reports Server (NTRS)

    Grobstein, Toni (editor); Doychak, Joseph (editor)

    1989-01-01

    The present conference on the high-temperature oxidation behavior of aerospace structures-applicable intermetallic compounds discusses the influence of reactive-element additions on the oxidation of Ni3Al base alloys, the effect of Ni3Al oxidation below 850 C on fracture behavior, the oxidation of FeAl + Hf, Zr, and B, the synergistic effect of Al and Si on the oxidation resistance of Fe alloys, and pack cementation coatings of Cr-Al on Fe, Ni, and Co alloys. Also discussed are the formation of alumina on Nb- and Ti-base alloys, the oxidation behavior of titanium aluminide alloys, silicide coatings for refractory metals, the oxidation of chromium disilicide, and the oxidation behavior of nickel beryllides.

  18. Transmission electron microscopy characterization of thermomechanically treated Al?Ti-(8, 10, 15)% Cr intermetallics.

    PubMed

    Jang, Ok Jun; Yang, Cheol-Woong; Lee, Dong Bok

    2013-08-01

    The ordered L1?-type Al?Ti-(8, 10, 15)% Cr intermetallic compounds, namely, Al??Ti??Cr?, Al??Ti??Cr??, and Al??Ti??Cr??, were prepared by induction melting followed by thermomechanical treatment. Their microstructure, compositional variation, and crystal structure were characterized using X-ray diffraction, optical microscopy, and scanning and transmission electron microscopy equipped with energy-dispersive spectroscopy. The Al??Ti??Cr? alloy consisted of the L1?-Al?Ti matrix and precipitates of ??-Ti?Al, D0??-Al?Ti, and ?-TiAl. The Al??Ti??Cr?? and Al??Ti??Cr?? alloys consisted of the L1?-Al?Ti matrix and grains of ?-TiAl and ?-Cr. PMID:23920182

  19. Numerical simulations of interfacial debonding in ductile-phase reinforced intermetallic matrix composites

    SciTech Connect

    Henshall, G.A.; Zywicz, E.; Strum, M.J.

    1993-08-10

    The fracture toughness of brittle intermetallic compounds can be improved by ductile-phase reinforcements. Effectiveness of the ductile phase in bridging cracks, and therefore increasing, the composite toughness, is known qualitatively to depend upon the extent of debonding, between the two phases. Numerical crack-growth simulations are used here to provide semi-quantitative predictions of the influence of interfacial debonding on the macroscopic stress-displacement behavior and, hence, the fracture toughness of an idealized Pb/glass composite. The interfacial toughness required to cause debonding, characterized by a constant critical energy release rate, is varied parametrically. As expected, higher interfacial toughness results in less interphase debonding, higher composite strength, and greater ductile-phase constraint. Consequently, the increase in ductile-phase triaxiality can potentially accelerate internal void formation and growth or facilitate cleavage fracture, either of which would likely decrease the toughness of the composite.

  20. Geometrically unprecedented 3-, 5- and 7-membered Hg(II)-Cu(I) and Hg(II)-Ag(I) thiolate clusters: precursors to intermetallics.

    PubMed

    Gupta, Geetika; Chaturvedi, Jyotsna; Bhattacharya, Subrato

    2015-05-21

    The syntheses of three polynuclear heterobimetallic complexes through the use of a homoleptic mercuric thiolate anion as a template for the assembly of coinage metal are presented. The complexes, [(PPh3)3Ag3(?-SPh)7Hg2] (1), [Hg(?-SPh)4{Cu(PPh3)2}2] (2) and [(dppe)2Cu5(?-SPh)7Hg2(SPh)2] (3) were utilized as precursors for the fabrication of Hg-Ag and Hg-Cu intermetallics. PMID:25873179

  1. Thermophysical properties of some thermite and intermetallic systems

    SciTech Connect

    Butakova, E.A.; Strunina, A.G.

    1985-07-01

    Data is presented on thermal conductivity and thermal diffusivity of a number of thermite and intermetallic systems having differing dilutions by reaction products, densities and component forms and dispersities. The thermophysical parameters were determined by the high-speed two temperature-time interval method. The dependence of thermophysical parameters on size of the particles of various forms must be considered specifically.

  2. Magnetic properties of some neptunium heavy-fermion intermetallics

    NASA Astrophysics Data System (ADS)

    Gal, J.; Fredo, S.; Tapuchi, S.; Jové, J.; Pagés, M.; Cousson, A.; Potzel, W.; Litterst, F. J.; Moser, J.; Kalvius, G. M.

    1988-12-01

    For the Np intermetallics NpBe 13, NpRu 2, NpIr 2 and NpOs 2 we find that at low temperature the following proportionalities hold between local (? L) and bulk susceptibilities (? B), electronic specific heat ?(0) and isomer shift S: ?L = ?B?? (0) ?S.

  3. A heterocyclic compound CE-103 inhibits dopamine reuptake and modulates dopamine transporter and dopamine D1-D3 containing receptor complexes.

    PubMed

    Sase, Ajinkya; Aher, Yogesh D; Saroja, Sivaprakasam R; Ganesan, Minu Karthika; Sase, Sunetra; Holy, Marion; Höger, Harald; Bakulev, Vasiliy; Ecker, Gerhard F; Langer, Thierry; Sitte, Harald H; Leban, Johann; Lubec, Gert

    2016-03-01

    A series of compounds have been reported to enhance memory via the DA system and herein a heterocyclic compound was tested for working memory (WM) enhancement. 2-((benzhydrylsulfinyl)methyl)thiazole (CE-103) was synthesized in a six-step synthesis. Binding of CE-103 to the dopamine (DAT), serotonin (SERT) and norepinephrine (NET) transporters and dopamine reuptake inhibition was tested as well as blood brain permeation and a screen for GPCR targets. 60 male Sprague Dawley rats were divided into six groups: CE-103 treated 1-10 mg/kg body weight, trained (TDI) and yoked (YDI) and vehicle treated, trained (TVI) and yoked (YVI) rats. Daily single intraperitoneal injections for a period of 10 days were administered and rats were tested in a radial arm maze (RAM). Hippocampi were taken 6 h following the last day of training and complexes containing the unphosphorylated or phosphorylated dopamine transporter (DAT) and complexes containing the D1-3 dopamine receptor subunits were determined. CE-103 was binding to the DAT but insignificantly to SERT or NET and dopamine reuptake was blocked specifically (IC50 = 14.73 ?M). From day eight the compound was decreasing WM errors in the RAM significantly at both doses tested as compared to the vehicle controls. In the trained CE-103-treated group levels of the complex containing the phosphorylated dopamine transporter (pDAT) as well as D1R were decreased while levels of complexes containing D2R and D3R were significantly increased. CE-103 was shown to enhance spatial WM and DA reuptake inhibition with subsequent modulation of D1-3 receptors is proposed as a possible mechanism of action. PMID:26407764

  4. The significance of ACTH for the process of formation of complex heparin compounds in the blood during immobilization stress

    NASA Technical Reports Server (NTRS)

    Kudryashov, B. A.; Shapiro, F. B.; Lomovskaya, F. B.; Lyapina, L. A.

    1979-01-01

    Adrenocorticotropin (ACTH) was administered to rats at different times following adrenalectomy. Adrenocorticotropin caused a significant increase in the formation of heparin complexes even in the absence of stress factor. When ACTH secretion is blocked, immobilization stress is not accompanied by an increase in the process of complex formation. The effect of ACTH on the formation of heparin complexes was mediated through its stimulation of the adrenal cortex.

  5. Synthesis and characterization of some metal complexes derived from azo compound of 4,4?-methylenedianiline and antipyrine: Evaluation of their biological activity on some land snail species

    NASA Astrophysics Data System (ADS)

    AbouEl-Enein, Saeyda A.; Emam, Sanaa M.; Polis, Magdy W.; Emara, Esam M.

    2015-11-01

    A novel series of metal complexes of the azo dye; bis-(1,5-dimethyl-4-[(E)-(3-methylphenyl)diazenyl]-2-phenyl-1,2-dihydro-3H-pyrazol-3-one) derived from 4,4?-methylenedianiline and antipyrine was synthesized and characterized by different spectral, thermal and analytical methods. The tetradentate ligand reacts with the metal ions as a half unit. All complexes display an octahedral geometry, except Pd(II) complex (7) which has a square planar one. The thermal studies reveal that the complexes have higher thermal stability comparable with that of the free ligand. The activation thermodynamic parameters, such as activation energy (E*), enthalpy of activation (?H*), entropy of activation (?S*) and Gibbs free energy (?G*) have been calculated using DTG curves. The ESR spectra of the solid Cu(II) complexes showed an axial symmetry with 2B1g as a ground state and hyperfine structure. The biological activities of the ligand, as well as its metal complexes have been tested in vitro against two land snail species; Eobania vermiculata and Monacha obstructa. The results show that all the tested compounds have significant biological activities against the two tested land snail species with different sensitivity levels.

  6. Separation of compounds with multiple -OH groups from dilute aqueous solutions via complexation with organoboronate. [1,2-propanediol

    SciTech Connect

    Chow, Tina Kuo Fung.

    1992-05-01

    The complexing extractant agent investigated in this work is 3-nitrophenylboronic acid (NPBA) in its anionic form (NPB). NPBA and Aliquat 336 (quaternary amine) is dissolved in 2-ethyl-l-hexanol, and the extractant is contacted with aq. NaOH. Solutes investigated were 1,2-propanediol, glycerol, fructose, sorbitol and lactic acid. Batch extraction experiments were performed at 25{degree}C. Partition coefficients, distribution ratios and loadings are reported for varying concentrations of solute and NPB. All solutes complexed with NPB{sup {minus}}, with all complexes containing only one NPB{sup {minus}} per complex. The 1:1 complexation constants for the solutes glycerol, fructose and sorbitol follow trends similar to complexation with B(OH){sub 4}{sup {minus}} (aq.), i.e. the complexation constants increase with increasing number of {minus}OH groups available for complexation. Assumption of 1:1 complex is not valid for 1, 2-propanediol, which showed overloading (more than one mole of solute complexed to one mole NPB{sup {minus}}) at higher concentrations. The {minus}OH group on the NPB{sup {minus}} which is left uncomplexed after one solute molecule had bound to the other two {minus}OH groups may be responsible for the overloading. Overloading is also observed in extraction of tactic acid, but through a different mechanism. It was found that TOMA{sup +} can extract lactic acid to an extent comparable to the uptake of lactic acid by NPB{sup {minus}}. The complexation is probably through formation of an acid-base ion pair. Losses of NPBA into the aqueous phase could lead to problems, poor economics in industrial separation processes. One way of overcoming this problem would be to incorporate the NPBA onto a solid support.

  7. Metal complexes of ONO donor Schiff base ligand as a new class of bioactive compounds; Synthesis, characterization and biological evolution

    NASA Astrophysics Data System (ADS)

    Kumar Naik, K. H.; Selvaraj, S.; Naik, Nagaraja

    2014-10-01

    Present work reviews that, the synthesis of (E)-N";-((7-hydroxy-4-methyl-2-oxo-2H-chromen-8-yl)methylene)benzohydrazide [L] ligand and their metal complexes. The colored complexes were prepared of type [M2+L]X2, where M2+ = Mn, Co, Ni, Cu, Sr and Cd, L = (7-hydroxy-4-methyl-2-oxo-2H-chromen-8-yl)methylene)benzohydrazide, X = Cl-. Ligand derived from the condensation of 8-formyl-7-hydroxy-4-methylcoumarin and benzohydrazide in the molar ratio 1:1 and in the molar ratio 1:2 for metal complexes have been prepared. The chelation of the ligand to metal ions occurs through the both oxygen groups, as well as the nitrogen atoms of the azomethine group of the ligand. Reactions of the Schiff base ligand with Manganese(II), Cobalt(II), Nickel(II), Copper(II), Strontium(II), and Cadmium(II) afforded the corresponding metal complexes. The structures of the obtained ligand and their respective metal complexes were elucidated by infra-red, elemental analysis, Double beam UV-visible spectra, conductometric measurements, magnetic susceptibility measurements and also thermochemical studies. The metal complex exhibits octahedral coordination geometrical arrangement. Schiff base ligand and their metal complexes were tested against antioxidants, antidiabetic and antimicrobial activities have been studied. The Schiff base metal complexes emerges effective ?-glucosidase inhibitory activity than free Schiff base ligand.

  8. Synthesis, Ligational and Biological Properties of Cobalt(II), Copper(II), Nickel(II) and Zinc(II) Complexes With Pyrazinedicarboxaimide Derived Furanyl, Thienyl and Pyrrolyl Compounds

    PubMed Central

    Sherazi, S. K. A.; Praveen, M.; Iqbal, M. S.

    1998-01-01

    Preparation, ligational and biological properties of some pyrazinedicarboxaimide derived furanyl, thienyl and pyrrolyl compounds with Co(ll), Cu(ll), Ni(ll) and Zn(ll) metals are described. Magnetic moments, electronic, infrared, nuclear magnetic resonance spectra and elemental analysis data indicate that co-ordination of the ligands with the metal ions take place through the pyrazine ring nitrogen, azomethine nitrogen and heteroatom of heterocyclic ring system. The compounds are all novel and are proposed to possess an octahedral geometry for Co(ll) and Ni(ll), and a distorted octahedral geometry for Cu(ll) and Zn(ll) complexes. The comparative biological properties of the title ligands and their metal chelates against different bacterial species are also described. PMID:18475871

  9. From the Cover: Implications for complex cognition from the hafting of tools with compound adhesives in the Middle Stone Age, South Africa.

    PubMed

    Wadley, Lyn; Hodgskiss, Tamaryn; Grant, Michael

    2009-06-16

    Compound adhesives made from red ochre mixed with plant gum were used in the Middle Stone Age (MSA), South Africa. Replications reported here suggest that early artisans did not merely color their glues red; they deliberately effected physical transformations involving chemical changes from acidic to less acidic pH, dehydration of the adhesive near wood fires, and changes to mechanical workability and electrostatic forces. Some of the steps required for making compound adhesive seem impossible without multitasking and abstract thought. This ability suggests overlap between the cognitive abilities of modern people and people in the MSA. Our multidisciplinary analysis provides a new way to recognize complex cognition in the MSA without necessarily invoking the concept of symbolism. PMID:19433786

  10. Author's personal copy Journal of Alloys and Compounds 509 (2011) 560567

    E-print Network

    Hart, Gus

    2011-01-01

    Author's personal copy Journal of Alloys and Compounds 509 (2011) 560­567 Contents lists available at ScienceDirect Journal of Alloys and Compounds journal homepage: www.elsevier.com/locate/jallcom Density transitions Jahn­Teller Electronic structure Density functional theory Ordered intermetallic alloys a b s t r

  11. The effect of the amphoteric properties of amino acids in the zwitterionic form on the structure of iodine complex compounds in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Yuldasheva, Gulnara A.; Zhidomirov, Georgii M.; Leszczynski, Jerzy; Ilin, Aleksandr I.

    2013-02-01

    The donor-acceptor interactions in three model systems: water-glycine (a), water-glycine-KI3 (b), water-glycine-KI3-LiCl-ethanol (c) were investigated by UV-, IR-spectroscopy, and the quantum-chemical DFT-B3PW91/midi method. UV- and IR spectrum data for the considered systems agree well with the results of calculations of the spectral characteristics of glycine cluster that consists of six molecules, and models that simulate the influence of the zwitterionic form of glycine on the structure of complex iodine compounds in the systems (b-c). Localization of a negative and a positive charge at the ends of a zwitterion makes it possible for a cluster of glycine zwitterions to be formed in water. In such cluster glycine molecules are located under each other so that the protonated group is always under (or above) the carboxy group. Glycine fragments are bound by strong hydrogen bonds and also by hydrogen bonding interactions with water molecules. In the water-glycine-KI3-LiCl-ethanol system the cluster of glycine zwitterions splits the iodide ion into I- and I2 (I- reacts with the protonated amino group, and I2 with the carboxy group). This creates conditions for the formation of an iodine complex compound, in which molecular iodine reveals the acceptor properties towards glycine, and the donor properties towards the LiCl-ethanol complex.

  12. Magnetic phase transitions in Y1-xTbxMn6Sn6, La1-xSmxMn2Si2, Lu2(Fe1-xMnx)17, and La(Fe0.88SixAl0.12-x)13 intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Mushnikov, N. V.; Kuchin, A. G.; Gerasimov, E. G.; Terentev, P. B.; Gaviko, V. S.; Serikov, V. V.; Kleinerman, N. M.; Vershinin, A. V.

    2015-06-01

    Magnetic properties have been measured for the Y1-xTbxMn6Sn6, La1-xSmxMn2Si2, Lu2(Fe1-xMnx)17, and La(Fe0.88SixAl0.12-x)13 systems which show up transitions from antiferromagnetic to ferromagnetic state upon changing concentration of the constituents or application of magnetic field. We determined the concentrations and temperatures of the magnetic phase transitions and plotted magnetic phase diagrams. Near a critical concentration, the AF-F transition can be realized in low magnetic fields, which makes these compounds attractive for magnetothermal applications. Using the data of the magnetization measurement, we determined the isothermal magnetic entropy change in a wide temperature range. All the studied systems have a layered magnetic structure with the positive intralayer exchange interaction and the interlayer exchange integrals of different signs depending on the composition and temperature. For the compounds La(Fe0.88SixAl0.12-x)13 with the cubic crystal structure, the origin of formation of a layered magnetic structure is discussed based on the data of Mössbauer studies which revealed a difference in the local surrounding of resonant atoms in the compounds with different magnetic orders.

  13. Magnetoelastic properties of substituted Er1-xGdxMn6Sn6 intermetallic system

    NASA Astrophysics Data System (ADS)

    Tabatabai Yazdi, Sh.; Tajabor, N.; Roknabadi, M. Rezaee; Behdani, M.; Pourarian, F.

    2014-06-01

    The forced magnetostriction of polycrystalline samples of Er1-xGdxMn6Sn6 (0?x?1) intermetallics with hexagonal HfFe6Ge6-type structure is investigated in the temperature range of 77-480 K. Gd substitution has a significant effect on interatomic distances and especially on inter-sublattice R-Mn couplings. The replacement of Er by Gd results in increasing the ordering temperature followed by reinforcement of the R-Mn coupling, as well as decreasing the magnetostriction values owing to the S-state character of Gd3+ ions. The results show that the contribution of Er sublattice to anisotropic magnetoelastic effects is positive, while that of Gd and Mn is negative. All the examined samples exhibit considerable magnetovolume anomalies at the ordering temperature (TC=338, 381, 412 and 434 K for the samples with x=0, 0.2, 0.6 and 1.0, respectively). While the unsubstituted sample exhibits metamagnetic transitions, Gd-contained compounds do not show this behavior, owing to the strong Gd-Mn coupling. The experimental results obtained are discussed in the framework of the two-magnetic sublattice by bearing in mind the lattice parameter dependence of the interlayer Mn-Mn exchange interaction in these layered compounds. From the temperature dependence of magnetostriction values and considering the magnetostriction equation for a hexagonal structure, we attempt to determine the signs of some of the magnetostriction constants for these compounds and the influence of Gd substitution on them.

  14. Mixed-ligand complex compounds of rare-earth elements (REE) with acetylacetone and fumaric or maleic acid

    SciTech Connect

    Panyushkin, V.T.; Akhrimenko, N.V.

    1994-10-01

    Previously the authors investigated the possibility of synthesis of the f-block element mixed complexes with {beta}-diketones and organic unsaturated acids. The mixed-ligand complexes of lanthanides [Ln = Nd(III), Sm(III), Eu(III), Tb(III), Dy(III), Ho(III), and Yb(III)] with acetylacetone (acac) and fumaric or maleic acid (AcidH{sub 2}) were synthesized. The mixed-ligand complexes were prepared by the interaction of REE tris(acetylacetonates) [Ln(acac){sub 3}{center_dot} 3H{sub 2}O] with half as much excess of the organic acid in a solution of diethyl ether. According to the data of elemental analysis and thermogravimetric and spectroscopic investigations, the mixed complexes studied are of composition Ln(acac){sub 2}(AcidH){center_dot}H{sub 2}O.

  15. Alloying Effects on Creep and Oxidation Resistance of Austenitic Stainless Steel Alloys Employing Intermetallic Precipitates

    SciTech Connect

    Yamamoto, Yukinori; Takeyama, Masao; Lu, Zhao Ping; Liu, Chain T; Evans, Neal D; Maziasz, Philip J; Brady, Michael P

    2008-01-01

    Microstructure evolution during creep testing at 750 C and 100 MPa of Fe-20Cr-30Ni-2Nb (at.%) alloys with and without 0.4 Si, 0.2 Zr or 5.0 Al additions has been studied, in order to explore the viability of Fe-rich austenitic stainless alloys strengthened by intermetallic phases. Fine Fe{sub 2}Nb Laves phase dispersions with the size of less than 1 {micro}m within the {gamma}-Fe matrix were obtained in the base and Si-modified alloys after aging at 800 C. The addition of Si helped to refine and stabilize the size of particles, resulting in finer and denser Fe{sub 2}Nb dispersion than that in the base alloy. The alloys with only solution heat-treatment exhibited superior creep resistance to the aged ones, which is due to dynamic precipitation of the Fe{sub 2}Nb Laves phase during creep testing with a size of 300-400 nm, resulting in more effective pinning of dislocations. The base alloy also showed the meta-stable {gamma}*-Ni{sub 3}Nb phase with a size of 50 nm during the transient state of the creep testing. The Zr-modified alloy achieved significant improvement of creep properties. This is hypothesized to be due to the stabilization of {delta}-Ni{sub 3}Nb phase relative to Fe{sub 2}Nb, resulting in the formation of multiple fine dispersions of stable intermetallic compounds of {delta} and Fe{sub 2}Nb within the {gamma}-Fe matrix. A small amount of a (Ni, Zr and Nb)-enriched unidentified phase was also observed. The addition of Al significantly improved the oxidation resistance because of the formation of protective alumina scales on the surface. The alloy also showed superior creep resistance to that of the base alloy due to the formation of a dense dispersion of spherical Ni{sub 3}Al, typically 30 nm in diameter. Collectively, these findings provide the alloy design basis for creep and oxidation-resistant austenitic stainless steel alloys via intermetallic precipitates.

  16. Sublattice effect on topological surface states in complex (SnTe )n>1(Bi2Te3)m=1 compounds

    NASA Astrophysics Data System (ADS)

    Eremeev, S. V.; Menshchikova, T. V.; Silkin, I. V.; Vergniory, M. G.; Echenique, P. M.; Chulkov, E. V.

    2015-06-01

    An exotic type of topological spin-helical surface state was found in layered van der Waals bonded (SnTe) n =2 ,3(Bi2Te3)m =1 compounds which comprise two covalently bonded band inverted sublattices, SnTe and Bi2Te3 , within a building block. This topological state demonstrates unusual dispersion within the band gap. The dispersion of the surface state has two linear sections of different slope with a shoulder feature between them. Such a dispersion of the topological surface state enables an effective switch of the velocity of topological carriers by means of applying an external electric field.

  17. Identifying vacancy complexes in compound semiconductors with positron annihilation spectroscopy: a case study of InN

    E-print Network

    Rauch, Christian; Tuomisto, Filip

    2011-01-01

    We present a comprehensive study of vacancy and vacancy-impurity complexes in InN combining positron annihilation spectroscopy and ab-initio calculations. Positron densities and annihilation characteristics of common vacancy-type defects are calculated using density functional theory and the feasibility of their experimental detection and distinction with positron annihilation methods is discussed. The computational results are compared to positron lifetime and conventional as well as coincidence Doppler broadening measurements of several representative InN samples. The particular dominant vacancy-type positron traps are identified and their characteristic positron lifetimes, Doppler ratio curves and lineshape parameters determined. We find that In vacancies and their complexes with N vacancies or impurities act as efficient positron traps, inducing distinct changes in the annihilation parameters compared to the InN lattice. Neutral or positively charged N vacancies and pure N vacancy complexes on the other h...

  18. Theoretical energy release of thermites, intermetallics, and combustible metals

    SciTech Connect

    Fischer, S.H.; Grubelich, M.C.

    1998-06-01

    Thermite (metal oxide) mixtures, intermetallic reactants, and metal fuels have long been used in pyrotechnic applications. Advantages of these systems typically include high energy density, impact insensitivity, high combustion temperature, and a wide range of gas production. They generally exhibit high temperature stability, and possess insensitive ignition properties. In this paper, the authors review the applications, benefits, and characteristics of thermite mixtures, intermetallic reactants, and metal fuels. Calculated values for reactant density, heat of reaction (per unit mass and per unit volume), and reaction temperature (without and with consideration of phase changes and the variation of specific heat values) are tabulated. These data are ranked in several ways, according to density, heat of reaction, reaction temperature, and gas production.

  19. The effects of adrenalectomy and corticsteroid injection on the fibrinolytic activity of complex heparin compounds in the blood during immobilization

    NASA Technical Reports Server (NTRS)

    Kudryashov, B. A.; Lomovskaya, E. G.; Shapiro, F. B.; Lyapina, L. Y.

    1980-01-01

    Total non-enzymatic fibrinolytic activity in the blood of rats increased three times in response to stress caused by 30 minute immobilization, and the activity of epinephrine-heparin complex increased nine times. In adrenalectomized animals, which showed a weak response to the same stress, intraperitoneal injection of hydrocortisone 30 minutes prior to immobilization normalized the response. Obtained results indicate that adrenalectomy leads to sharp reduction of heparin complexing with thromogenic proteins and epinephrine, while substitution therapy with hydrocortisone restores anticoagulation system function.

  20. Delivery of Exogenous Complex Organic Compounds by Solar System Small Bodies and Space Dusts and Its Relevance to Origins of Life

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Fushimi, Hidehiko; Motoyama, Takuya; Kaneko, Takeo; Obayashi, Yumiko; Yoshida, Satoshi; Mita, Hajime; Yabuta, Hikaru; Okudaira, Kyoko; Hashimoto, Hirofumi; Yokobori, Shin-Ichi; Yamagishi, Akihiko

    A wide variety of organic compounds including amino acid precursors have been detected in such extraterrestrial bodies as carbonaceous chondrites and comets. It was suggested that these organics were formed in quite cold environments. We irradiated frozen mixtures of possible constituents of ice mantles of interstellar dust particles including water, methanol and ammonia with high-energy heavy ions from HIMAC, National Institute of Radiological Science, Japan. Amino acid precursors with complex structures were detected whose molecular weights are up to a few thousands. Such complex amino acid precursors are much stronger than free amino acids against radiation. Such organics could have been incorporated in solar system small bodies after the formation of the solar system and delivered to the primitive Earth. Possible carriers of such organics are meteorites, comets and interplanetary dust particles (IDPs) that were formed from comets and meteorites. It is suggested that IDPs brought much more organics than meteorites and comets. However, nature of organics in IDPs is little known, since they have been collected only in terrestrial biosphere. We are planning a space experiments named Tanpopo, where IDPs would be collected in aerogel equipped on the Exposure Facility of the International Space Station. In addition, amino acids and their relating compounds would be exposed to space environments to see their possible alteration processes in the interplanetary space. We will report some preliminary results for the preparation of the mission including the capture of amino acid-containing particles at high velocity with ultra-low density aerogel.

  1. Elastic crack bridging in ceramic and intermetallic matrix composites

    NASA Technical Reports Server (NTRS)

    Dharani, L. R.; Chai, L.

    1989-01-01

    A micromechanics analytical model based on the consistent shear lag theory is developed for predicting the failure modes in a fiber reinforced unidirectional ceramic and intermetallic matrix composite. The model accounts for the relatively large matrix stiffness. The fiber and matrix stresses are established as functions of the applied stress, crack geometry, and most importantly, the microstructural properties of the constituents. From the predicted stress, the mode of failure is established based on the point stress criterion.

  2. Positron-annihilation studies of the influence of nanodimensional intermetallic precipitates on the evolution of radiation defects in the Fe–Ni–Al alloy

    NASA Astrophysics Data System (ADS)

    Perminov, D. A.; Druzhkov, A. P.; Arbuzov, V. L.

    2015-11-01

    The influence of precipitates of the Ni3Al intermetallic compound on the accumulation of vacancy defects in the aged Fe-Ni-Al alloy upon electron irradiation has been studied by the method of positron annihilation spectroscopy. The samples of the alloy with different initial microstructures (quenched, aged under different conditions) were irradiated at temperatures of 300 and 423 K to a damaging dose of 5 × 10-4 displacements per atom (dpa), after which they were isochronously annealed in the temperature range of 300-850 K. The results obtained have shown that the presence of particles of the intermetallic precipitates leads to the retardation of the accumulation of vacancy defects. The rate of accumulation substantially depends on the irradiation temperature. Furthermore, the effect of precipitates depends on the size, density, and type of particles. An analysis of the experimental data has shown that this effect is caused by the presence of elastic stresses at the precipitate-matrix boundaries.

  3. Laves intermetallics in stainless steel-zirconium alloys

    SciTech Connect

    Abraham, D.P.; McDeavitt, S.M.; Richardson, J.W. Jr.

    1997-05-01

    Laves intermetallics have a significant effect on properties of metal waste forms being developed at Argonne National Laboratory. These waste forms are stainless steel-zirconium alloys that will contain radioactive metal isotopes isolated from spent nuclear fuel by electrometallurgical treatment. The baseline waste form composition for stainless steel-clad fuels is stainless steel-15 wt.% zirconium (SS-15Zr). This article presents results of neutron diffraction measurements, heat-treatment studies and mechanical testing on SS-15Zr alloys. The Laves intermetallics in these alloys, labeled Zr(Fe,Cr,Ni){sub 2+x}, have both C36 and C15 crystal structures. A fraction of these intermetallics transform into (Fe,Cr,Ni){sub 23}Zr{sub 6} during high-temperature annealing; the authors have proposed a mechanism for this transformation. The SS-15Zr alloys show virtually no elongation in uniaxial tension, but exhibit good strength and ductility in compression tests. This article also presents neutron diffraction and microstructural data for a stainless steel-42 wt.% zirconium (SS-42Zr) alloy.

  4. Group 6 complexes with iron and zinc heterometals: understanding the structural, spectroscopic, and electrochemical properties of a complete series of M?M···M' compounds.

    PubMed

    Nippe, Michael; Bill, Eckhard; Berry, John F

    2011-08-15

    Binuclear quadruply bonded complexes Cr(2)(dpa)(4) (1, dpa = 2,2'-dipyridylamide), Mo(2)(dpa)(4) (2), and W(2)(dpa)(4) (3) react with anhydrous FeCl(2), yielding heterometallic compounds CrCrFe(dpa)(4)Cl(2) (4), MoMoFe(dpa)(4)Cl(2) (5), and WWFe(dpa)(4)Cl(2) (6). These molecules are structurally similar, having a linear M?M···Fe chain that is axially capped by chloride ions and is equatorially supported by the helically twisted dpa ligands. A structurally related zinc analog, CrCrZn(dpa)(4)Cl(2) (7), can be prepared upon metalation of 1 with ZnCl(2). This reaction also persistently produces a 2:1 adduct of ZnCl(2) with 1, [Cr(2)(dpa)(4)](ZnCl(2))(2) (8), which is in equilibrium with 7 and has the two zinc ions bound externally to the Cr(2) core and axial bridging chloro ligands attached to each Cr ion. The sole isolable product of the addition of ZnCl(2) to 3 is a 1:1 adduct, [W(2)(dpa)(4)]ZnCl(2) (9). The structurally related chain complexes 4, 5, 6, and 7 are characterized by X-ray crystallography, UV-vis spectroscopy, cyclic voltammetry, and (57)Fe Mo?ssbauer spectroscopy for the iron complexes in order to gain insights into the nature of heterometallic interactions, electronic excited states, and redox properties of these compounds, which have implications for all other M?M···M' molecules. Additionally, NMR spectroscopy has been used to gain insight into the mechanism of the metalation of 1 by Zn(II). PMID:21755922

  5. Complex formation in aqueous solution and in the solid state of the potent insulin-enhancing V(IV)O2+ compounds formed by picolinate and quinolinate derivatives.

    PubMed

    Lodyga-Chruscinska, Elzbieta; Micera, Giovanni; Garribba, Eugenio

    2011-02-01

    The complexation of V(IV)O(2+) ion with 10 picolinate and quinolinate derivatives, provided with the donor set (N, COO(-)), was studied in aqueous solution and in the solid state through the combined application of potentiometric (pH-titrations), spectroscopic (EPR, UV/vis and IR spectroscopy), and computational (density functional theory (DFT) calculations) methods. Such derivatives, that form potent insulin-enhancing V(IV)O(2+) compounds, are picolinic (picH), 6-methylpicolinic (6-mepicH), 3-methylpicolinic (3-mepicH), 5-butylpicolinic or fusaric (fusarH), 6-methyl-2,3-pyridindicarboxylic (6-me-2,3-pdcH(2)), 2-pyridylacetic (2-pyacH), 2-quinolinecarboxylic or quinaldic (quinH), 4-hydroxyquinoline-2-carboxylic or kynurenic (kynurH), 1-isoquinolinecarboxylic (1-iqcH) and 3-isoquinolinecarboxylic (3-iqcH) acid. On the basis of the potentiometric, spectroscopic, and DFT results, they were divided into the classes A, B, and C. The ligands belonging to class A (3-mepicH, 1-iqcH, 2-pyacH) form square pyramidal complexes in aqueous solution and in the solid state, and those belonging to class B (picH, fusarH, 3-iqcH) form cis-octahedral species, in which the two ligands adopt an (equatorial-equatorial) and an (equatorial-axial) arrangement and one water molecule occupies an equatorial site in cis position with respect to the V?O bond. Class C ligands (6-mepicH, 6-me-2,3-pdcH(2), quinH, kynurH) yield bis chelated species, that in water are in equilibrium between the square pyramidal and trans-octahedral form, where both the ligand molecules adopt an (equatorial-equatorial) arrangement and one water is in trans position with respect to the V?O group. The trans-octahedral compounds are characterized by an anomalous electron paramagnetic resonance (EPR) response, with A(z) value being reduced by about 10% with respect to the prediction of the "additivity rule". DFT methods allow to calculate the structure, (51)V hyperfine coupling constant (A(z)), the stretching frequency of V?O bond (?(V?O)), the relative stability in aqueous solution, and the electronic structure and molecular orbital composition of bis chelated complexes. The results were used to explain the biotransformation of these potent insulin-enhancing compounds in blood serum. PMID:21226475

  6. Preparation and characterization of a new harmine-based antiproliferative compound in complex with cyclodextrin: Increasing solubility while maintaining biological activity.

    PubMed

    Meinguet, Céline; Masereel, Bernard; Wouters, Johan

    2015-09-18

    The trisubstituted harmine derivative, 2, present a submicromolar antiproliferative activity on 5 cancer cell lines but a moderate kinetic solubility in pH 7.4 buffer. The aim of this work was to develop a 2-cyclodextrin complex in order to increase the drug solubility while maintaining the biological activity. Firstly, the 2 increasing solubility in presence of several cyclodextrins (CDs) has been shown, with a maximum for 7 glucose subunit CD (?CD and 2 HP-?CD). Phase solubility experiment in presence of 2 HP-?CD has underline an AL-type profile until 80 mM which suggest a 1:1 stoichiometry and a K1:1 of 116 M(-1) and a CE of 0.28 have been calculated. This 1:1 stoichiometry was confirmed by Job Plot experiment, following the CD H-3 proton by (1)H NMR. Secondly, (1)H NMR study of compound 2 in presence of ?CD and geometry optimization of the complex has underline an inclusion of 2 into the CD, via the indole part of the drug. Finally, the efficiency of the 2 antiproliferative effect is not affected by the complexation, as shown by viability test. PMID:26079738

  7. Titania modification with a ruthenium(ii) complex and gold nanoparticles for photocatalytic degradation of organic compounds.

    PubMed

    Zheng, Shuaizhi; Wei, Zhishun; Yoshiiri, Kenta; Braumüller, Markus; Ohtani, Bunsho; Rau, Sven; Kowalska, Ewa

    2016-01-01

    Titania of fine anatase nanoparticles (ST01) was modified successively with two components, i.e., a ruthenium(ii) complex with phosphonic anchoring groups [Ru(bpy)2(4,4'-(CH2PO3H2)2bpy)](2+) bpy = 2,2'-bipyridine (Ru(II)CP) and gold nanoparticles (Au). Various compositions of two titania modifiers were investigated, i.e., Au, Au + Ru(II)CP, Au + 0.5Ru(II)CP, Ru(II)CP, 0.5Ru(II)CP and 0.25Ru(II)CP, where Au and Ru(II)CP correspond to 0.81 mol% and 0.34 mol% (with respect to titania), respectively. In the case of hybrid photocatalysts, the sequence of modification (ruthenium(ii) complex adsorption or gold deposition) was investigated to check its influence on the resultant properties and thus photocatalytic performance. Diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and scanning transmission electron microscopy (STEM) were applied to characterize the structural properties of the prepared photocatalysts, which confirmed the successful introduction of modifiers of the ruthenium(ii) complex and/or gold NPs. Different distributions of gold particle sizes and chemical compositions were obtained for the hybrid photocatalysts prepared with an opposite sequence. It was found that photocatalytic activities depended on the range of used irradiation (UV/vis or vis) and the kind of modifier in different ways. Gold NPs improved the photocatalytic activities, while Ru(II)CP inhibited the reactions under UV/vis irradiation, i.e., methanol dehydrogenation and acetic acid degradation. Oppositely, Ru(II)CP greatly enhanced the photocatalytic activities for 2-propanol oxidation under visible light irradiation. PMID:26661372

  8. Organometallic chemistry of bimetallic compounds

    SciTech Connect

    Casey, C.P.

    1991-07-01

    This report consists of six sections: heterobimetallic dihydrides, early-late transition metal heterobimetallic compounds, amphiphilic carbene complexes and hydroxycarbene complexes, diiron compounds with bridging hydrocarbon ligands, diphosphine chelates with natural bite angles near 120 degrees, and synthesis and reactions of M=M compounds. (WET)

  9. Complex physiology and compound stress responses during fermentation of alkali-pretreated corn stover hydrolysate by an Escherichia coli ethanologen.

    PubMed

    Schwalbach, Michael S; Keating, David H; Tremaine, Mary; Marner, Wesley D; Zhang, Yaoping; Bothfeld, William; Higbee, Alan; Grass, Jeffrey A; Cotten, Cameron; Reed, Jennifer L; da Costa Sousa, Leonardo; Jin, Mingjie; Balan, Venkatesh; Ellinger, James; Dale, Bruce; Kiley, Patricia J; Landick, Robert

    2012-05-01

    The physiology of ethanologenic Escherichia coli grown anaerobically in alkali-pretreated plant hydrolysates is complex and not well studied. To gain insight into how E. coli responds to such hydrolysates, we studied an E. coli K-12 ethanologen fermenting a hydrolysate prepared from corn stover pretreated by ammonia fiber expansion. Despite the high sugar content (?6% glucose, 3% xylose) and relatively low toxicity of this hydrolysate, E. coli ceased growth long before glucose was depleted. Nevertheless, the cells remained metabolically active and continued conversion of glucose to ethanol until all glucose was consumed. Gene expression profiling revealed complex and changing patterns of metabolic physiology and cellular stress responses during an exponential growth phase, a transition phase, and the glycolytically active stationary phase. During the exponential and transition phases, high cell maintenance and stress response costs were mitigated, in part, by free amino acids available in the hydrolysate. However, after the majority of amino acids were depleted, the cells entered stationary phase, and ATP derived from glucose fermentation was consumed entirely by the demands of cell maintenance in the hydrolysate. Comparative gene expression profiling and metabolic modeling of the ethanologen suggested that the high energetic cost of mitigating osmotic, lignotoxin, and ethanol stress collectively limits growth, sugar utilization rates, and ethanol yields in alkali-pretreated lignocellulosic hydrolysates. PMID:22389370

  10. Simple and Excellent Selective Chemiluminescence-Based CS2 On-Line Detection System for Rapid Analysis of Sulfur-Containing Compounds in Complex Samples.

    PubMed

    Zhang, Runkun; Li, Gongke; Hu, Yufei

    2015-06-01

    To study the interesting chemical reaction phenomenon can greatly contribute to the development of an innovative analytical method. In this paper, a simple CL reaction cell was constructed to study the chemiluminescence (CL) emission from the thermal oxidation of carbon disulfide (CS2). We found that the CL detection of CS2 exhibits unique characteristics of excellent selectivity and rapid response capacity. Experimental investigations together with theoretical calculation were performed to study the mechanism behind the CL reaction. The results revealed that the main luminous intermediates generated during the thermal degradation of CS2 are SO2* and CO2*. Significantly, this CL emission phenomenon has a wide application due to many sulfur-containing compounds that can convert to CS2 under special conditions. On the basis of this scheme, a CS2-generating and detection system was developed for rapid measurement of CS2 or other compounds that can convert to CS2. The usefulness of the system was demonstrated by measuring dithiocarbamate (DTC) pesticides (selected mancozeb as a representative analyte) based on the evolution of CS2 in spiked agricultural products. Results showed that the system allows online and large volume detection of CS2 under nonequilibrium condition, which greatly reduces the analytical time. The concentrations of mancozeb in the spiked samples were well-quantified with satisfied recoveries of 76.9-97.3%. The system not only addresses the urgent need for rapid in-field screening of DTC residues in foodstuffs but also opens a new opportunity for the fast, convenient, and cost-effective detection of CS2 and some other sulfur-containing compounds in complex samples. PMID:25913203

  11. Molecularly Imprinted Polymers for Selective Analysis of Chemical Warfare Surrogate and Nuclear Signature Compounds in Complex Matrices

    SciTech Connect

    Harvey, Scott D.

    2005-08-01

    This paper describes the preparation and evaluation of molecularly imprinted polymers (MIPs) that display specificity toward diisopropyl methylphosphonate (DIMP) and tributyl phosphate (TBP). Polymer activity was assessed by solid-phase extraction and high-performance liquid chromatography experiments. Both DIMP- and TBP-specific MIPs selectively retained their targets relative to a nonimprinted control. Proof-of-principle experiments demonstrated highly selective analysis of the targets from fortified complex matrix samples (diesel fuel, gasoline, and air extract concentrate). The retained MIP fractions gave near quantitative recovery of the target analytes with very low matrix background content. The same fraction from the control sorbent was less pure and recovered only about half of the analyte.

  12. Activated charcoal-mediated RNA extraction method for Azadirachta indica and plants highly rich in polyphenolics, polysaccharides and other complex secondary compounds

    PubMed Central

    2013-01-01

    Background High quality RNA is a primary requisite for numerous molecular biological applications but is difficult to isolate from several plants rich in polysaccharides, polyphenolics and other secondary metabolites. These compounds either bind with nucleic acids or often co-precipitate at the final step and many times cannot be removed by conventional methods and kits. Addition of vinyl-pyrollidone polymers in extraction buffer efficiently removes polyphenolics to some extent, but, it failed in case of Azadirachta indica and several other medicinal and aromatic plants. Findings Here we report the use of adsorption property of activated charcoal (0.03%–0.1%) in RNA isolation procedures to remove complex secondary metabolites and polyphenolics to yield good quality RNA from Azadirachta indica. We tested and validated our modified RNA isolation method across 21 different plants including Andrographis paniculata, Aloe vera, Rosa damascena, Pelargonium graveolens, Phyllanthus amarus etc. from 13 other different families, many of which are considered as tough system for isolating RNA. The A260/280 ratio of the extracted RNA ranged between 1.8-2.0 and distinct 28S and 18S ribosomal RNA bands were observed in denaturing agarose gel electrophoresis. Analysis using Agilent 2100 Bioanalyzer revealed intact total RNA yield with very good RNA Integrity Number. Conclusions The RNA isolated by our modified method was found to be of high quality and amenable for sensitive downstream molecular applications like subtractive library construction and RT-PCR. This modified RNA isolation procedure would aid and accelerate the biotechnological studies in complex medicinal and aromatic plants which are extremely rich in secondary metabolic compounds. PMID:23537338

  13. pH-controlled dispersive liquid-liquid microextraction for the analysis of ionisable compounds in complex matrices: Case study of ochratoxin A in cereals.

    PubMed

    Campone, Luca; Piccinelli, Anna Lisa; Celano, Rita; Rastrelli, Luca

    2012-11-19

    A new sample preparation procedure, termed pH-controlled dispersive liquid-liquid microextraction (pH-DLLME), has been developed for the analysis of ionisable compounds in highly complex matrices. This DLLME mode, intended to improve the selectivity and to expand the application range of DLLME, is based on two successive DLLMEs conducted at opposite pH values. pH-DLLME was applied to determination of ochratoxin A (OTA) in cereals. The hydrophobic matrix interferences in the raw methanol extract (disperser, 1mL) were removed by a first DLLME (I DLLME) performed at pH 8 to reduce the solubility of OTA in the extractant (CCl(4), 400?L). The pH of the aqueous phase was then adjusted to 2, and the analyte was extracted and concentrated by a second DLLME (extractant, 150?L C(2)H(4)Br(2)). The main factors influencing the efficiency of pH-DLLME including type and volume of I DLLME extractant, as well as the parameters affecting the OTA extraction by II DLLME, were studied in detail. Under optimum conditions, the method has detection and quantification limits of 0.019 and 0.062?g kg(-1), respectively, with OTA recoveries in the range of 81.2-90.1% (n=3). The accuracy of the analytical procedure, evaluated with a reference material (cereal naturally contaminated with OTA), is acceptable (accuracy of 85.6%±1.7, n=5). The applicability of pH-DLLME to the selective extraction of other ionisable compounds, such as acidic and basic pharmaceutical products was also demonstrated. The additional advantages of pH-DLLME are a higher selectivity and the extension of this microextraction technique to highly complex matrices. PMID:23140955

  14. Exposure to volatile organic compounds and health risks among residents in an area affected by a petrochemical complex in Rayong, Thailand.

    PubMed

    Tanyanont, W; Vichit-Vadakan, N

    2012-01-01

    In Thailand, there is a growing concern regarding the possible effects of air pollution on the health of residents living near a petrochemical complex in Map Ta Phut Industrial Estate (MTPIE), Rayong Province, Thailand. We studied exposure to selected volatile organic compounds (VOCs) in Map Ta Phut and the association between residing near the petrochemical complex and respiratory ailments. We carried out a population-based cross-sectional study, utilizing health data regarding respiratory problems among adults collected as part of a Health Effects of Air Pollution study of residents living in Map Ta Phut Municipality, Thailand, using a standardized questionnaire. The distance from the subject's residence to the center of the MTPIE was mapped using a geographical information system (GIS). A total of 15,441 adults aged > or = 13 years who lived in Map Ta Phut Municipality for at least 1 year were included in the study. Multiple logistic regression models were used to examine the relationship between the distance between the subject's residence and the MTPIE and the presence of the respiratory problems during the previous 12 months. A 5 km distance was chosen as the maximum study radius. Volatile organic compounds were observed higher concentrations at sites downwind from the MTPIE, and closer to the MTPIE. Study subjects who lived closer to the MTPIE reported an odor more frequently than subjects who lived farther from the MTPIE. Living closer to the MTPIE was associated with more acute respiratory problems, but not more chronic respiratory problems than living farther from the MTPIE. Adults aged > or = 40 years were more likely to have respiratory symptoms and eye irritation than those aged < 40 years. Females were more likely to have dyspnea, wheezing and upper respiratory symptoms than males. Living near the MTPIE for more than 5 years was associated with an increased risk of wheezing and upper respiratory symptoms. PMID:23082571

  15. Complex structures in the Au - Cd alloy system: Hume-Rothery mechanism as origin

    NASA Astrophysics Data System (ADS)

    Degtyareva, Valentina F.; Afonikova, Nataliya S.

    2015-11-01

    The binary (simple metal) phase diagram Au-Cd contains a number of intermetallic compounds with various distortions, superlattices and vacancies. To understand the reasons of these structural complexities and their phase stability, we analyze these crystal structures within the nearly free-electron model in the frame of Fermi sphere - Brillouin zone interactions. Examination of the Brillouin-Jones configuration in relation to the nearly-free electron Fermi sphere provides insights for significance of the valence electron energy contribution to the phase stability. Representation of these complex structures in the reciprocal space clarifies their relationship to simple basic cells. This approach shows the importance of the additional planes for the stability of superlattices. The AuCd-hP18, AuCd3-hP24 and AuCd4-hP273 structures are shown to be related to the AuCd-cP2 via rhombohedral distortion with superlattices and vacancies.

  16. A survey of combustible metals, thermites, and intermetallics for pyrotechnic applications

    SciTech Connect

    Fischer, S.H.; Grubelich, M.C.

    1996-08-01

    Thermite mixtures, intermetallic reactants, and metal fuels have long been used in pyrotechnics. Advantages include high energy density, impact insensitivity, high combustion temperature, and a wide range of gas production. They generally exhibit high temperature stability and possess insensitive ignition properties. This paper reviews the applications, benefits, and characteristics of thermite mixtures, intermetallic reactants, and metal fuels. 50 refs, tables.

  17. New approach to complex organic compounds mixtures analysis based on gas chromatography-atmospheric pressure photoionization-mass-spectrometry.

    PubMed

    Revelsky, I A; Yashin, Yu S

    2012-12-15

    The mass-spectra of a number of different hydrocarbons were obtained using atmospheric pressure photoionization (APPhI) and photochemical ionization (APPhCI) mass-spectrometry. The respective mass-spectra consisted mainly of molecular (M(+)) or quasimolecular (MH(+)) ion peaks or both. The composition of aromatic hydrocarbons in straight-run gasoline was investigated using standard PIONA method, based on capillary GC and retention time indexes, and GC/MS (APPhI). 56 aromatic hydrocarbons were identified using GC/MS (APPhI) and 43-using standard PIONA method. The opportunities of MS (APPHCI) for determination of impurities in pure hydrocarbons and for direct analysis of complex mixtures without separation were demonstrated when MS (APPhCI) analysis for GC standards of benzene and toluene was carried out (main component vapor was reagent gas). The targeted PAHs and phtalates were registered selectively in 44 component model mixture of semivolatiles with partial or without separation of the components, using GC/MS (APPhI). PMID:23182582

  18. Intermetallic growth and mechanical behavior of low and high melting temperature solder alloys

    SciTech Connect

    Frear, D.R.; Vianco, P.T. )

    1994-07-01

    The presence of an intermetallic is often an indication of good wetting in a solder joint. However, excessive intermetallic growth and the brittleness of the intermetallic layer may be detrimental to joint reliability. This study examined the growth and mechanical behavior of interfacial intermetallics between copper and six solder alloys commonly used in electronics assembly. The solder alloys tested were 60Sn-40Pb, 63Sn-37Pb, 95Sn-5Sb, 96.5Sn-3.5Ag, 50Pb-50In, 50Sn-50In, and 40In-40Sn-20Pb. The 50Sn-50In and 40In-40Sn-20Pb exhibited faster solid state growth of the intermetallic layer at 100 C as compared to the near-eutectic Sn-Pb control solder. The 50In-50Pb had a slower growth rate, relative to 63Sn-37Pb, at the aging temperature of 170 C due to slower reaction rate kinetics of indium with copper. The 96.5Sn-3.5Ag and 95Sn-5Sb had similar intermetallic growth rates at 170 C and 205 C, and the aging was comparable to that of the 63Sn-37Pb alloy. The 95Sn-5Sb solder/copper intermetallic had a faster growth rate of the Cu[sub 3]Sn layer than was observed in the Sn-Ag or Sn-Pb alloys. Modified fracture toughness and low load indentation tests were used to characterize the mechanical behavior of the intermetallics. The intermetallics were harder than both the base metal and the solder alloy. The fracture behavior of the joints in tension was dependent upon the strength of the solder alloy. Solders with low strengths failed in the solder by plastic deformation. The failure of solders with higher strengths was dependent upon intermetallic thickness. When the intermetallic was thin, fracture occurred in the solder or at the solder/intermetallic interface. As the interfacial intermetallic thickened, the fracture path moved into the intermetallic layer.

  19. Thermal Aging Effects on Cu Ball Shear Strength and Cu/Al Intermetallic Growth

    NASA Astrophysics Data System (ADS)

    Amistoso, Jose Omar S.; Amorsolo, Alberto V.

    2010-10-01

    Intermetallic growth and ball shear behavior of annealed Cu wire bonds on Al have been studied. The shear strength of Cu ball bonds decreased with time, and ductile fracture was the dominant failure mode from 125°C to 150°C. Al pad peel-off occurred as the aging temperature was increased above 150°C. The overall Cu/Al intermetallic thickness exhibited parabolic behavior as a function of time. A linear correlation was established between ball shear strength, metal peel-off occurrence, and intermetallic growth. The Cu/Al intermetallic growth activation energy was 0.23 eV, and the intermetallics identified in the experiment were CuAl2 and CuAl.

  20. Superconducting compounds and alloys research

    NASA Technical Reports Server (NTRS)

    Otto, G.

    1975-01-01

    Resistivity measurements as a function of temperature were performed on alloys of the binary material system In sub(1-x) Bi sub x for x varying between 0 and 1. It was found that for all single-phase alloys (the pure elements, alpha-In, and the three intermetallic compounds) at temperatures sufficiently above the Debye-temperature, the resistivity p can be expressed as p = a sub o T(n), where a sub o and n are composition-dependent constants. The same exponential relationship can also be applied for the sub-system In-In2Bi, when the two phases are in compositional equilibrium. Superconductivity measurements on single and two-phase alloys can be explained with respect to the phase diagram. There occur three superconducting phases (alpha-In, In2Bi, and In5Bi3) with different transition temperatures in the alloying system. The magnitude of the transition temperatures for the various intermetallic phases of In-Bi is such that the disappearance or occurrence of a phase in two component alloys can be demonstrated easily by means of superconductivity measurements.

  1. New promising bulk thermoelectrics: intermetallics, pnictides and chalcogenides

    NASA Astrophysics Data System (ADS)

    Gonçalves, Antonio P.; Godart, Claude

    2014-02-01

    The need of alternative "green" energy sources has recently renewed the interest in thermoelectric (TE) materials, which can directly convert heat to electricity or, conversely, electric current to cooling. The thermoelectric performance of a material can be estimated by the so-called figure of merit, zT = ? ? 2 T/ ? ( ? the Seebeck coefficient, ? ? 2 the power factor, ? and ? the electrical and thermal conductivity, respectively), that depends only on the material. In the middle 1990s the "phonon glass and electron crystal" concept was developed, which, together with a better understanding of the parameters that affect zT and the use of new synthesis methods and characterization techniques, has led to the discovery of improved bulk thermoelectric materials that start being implemented in applications. During last decades, special focus has been made on skutterudites, clathrates, half-Heusler alloys, Si1- x Ge x-, Bi2Te3- and PbTe-based materials. However, many other materials, in particular based on intermetallics, pnictides, chalcogenides, oxides, etc. are now emerging as potential advanced bulk thermoelectrics. Herein we discuss the current understanding in this field, with special emphasis on the strategies to reduce the lattice part of the thermal conductivity and maximize the power factor, and review those new potential thermoelectric bulk materials, in particular based on intermetallics, pnictides and chalcogenides. A final chapter, discussing different shaping techniques leading to bulk materials (eventually from nanostructured TE materials), is also included.

  2. Intermetallic superconductors: The state of development in 1991

    NASA Astrophysics Data System (ADS)

    Forsyth, E. B.

    The commercial fabrication of intermetallic superconductors has reached a high degree of maturity in the past thirty years. The only significant, commercial requirement for superconducting wire is the construction of magnetic resonance imaging (MRI) devices for medical diagnosis. In addition to this demand there are one-time projects such as high energy particle accelerators which often need considerable quantities of superconducting material over the few years of construction. R and D projects also provide a fluctuating market for superconducting materials, in the past the projects have included power apparatus such as generators, motors, energy storage and transmission cables, and magnets for experimental fusion reactors. Superconducting magnetically levitated trains have undergone full scale trials in Japan and Germany. This is by no means a comprehensive list of all the possible applications. Virtually all the devices requiring a magnetic field to be produced by superconducting windings have used NbTi wire, but a few experimental Nb3Sn high field magnets have been constructed. This report briefly discusses development of intermetallic superconductors.

  3. SURFACE MODIFICATION OF ZIRCALOY-4 SUBSTRATES WITH NICKEL ZIRCONIUM INTERMETALLICS

    SciTech Connect

    Luscher, Walter G.; Gilbert, Edgar R.; Pitman, Stan G.; Love, Edward F.

    2013-02-01

    Surfaces of Zircaloy-4 (Zr-4) substrates were modified with nickel-zirconium (NiZr) intermetallics to tailor oxidation performance for specialized applications. Surface modification was achieved by electroplating Zr-4 substrates with nickel (Ni) and then performing thermal treatments to fully react the Ni plating with the substrates, which resulted in a coating of NiZr intermetallics on the substrate surfaces. Both plating thickness and thermal treatment were evaluated to determine the effects of these fabrication parameters on oxidation performance and to identify an optimal surface modification process. Isothermal oxidation tests were performed on surface-modified materials at 290°, 330°, and 370°C under a constant partial pressure of oxidant (i.e., 1 kPa D2O in dry Ar at 101 kPa) for 64 days. Test results revealed an enhanced, transient oxidation rate that decreased asymptotically toward the rate of the Zr-4 substrate. Oxidation kinetics were analyzed from isothermal weight gain data, which were correlated with microstructure, hydrogen pickup, strength, and hardness.

  4. Creep of fully lamellar near {gamma}-TiAl intermetallics

    SciTech Connect

    Beddoes, J.; Zhao, L.; Chen, W.R.; Du, X.

    1999-07-01

    The influence of the fully lamellar morphology and third phase {beta} on the creep properties of near {gamma}-TiAl intermetallics is presented. Specifically, the effect of improved microstructural control obtainable by a stepped cool, involving furnace cooling and air cooling from the {alpha} single phase, on creep resistance is demonstrated for three near {gamma}-TiAl intermetallics: binary Ti-48Al, ternary Ti-48Al-2W and Ti-47Al-2Nb-1Mn-0.5W-0.5Mo-0.2Si. The results indicate that appropriate stepped cooling can be used to reduce the lamellar interface spacing without the formation of Widmanstaetten, feathery {gamma} or {gamma}{sub M} structures, leading to longer creep life and reduced creep strain rates. A second benefit of stepped cooling is prevention of {beta} formation during cooling from the {alpha} phase, allowing controlled {beta} precipitation during aging at 950 C. Creep tests on variously aged Ti-48Al-2W indicate that {beta} precipitation along lamellar grain boundaries improves creep resistance. Development of a uniform fully lamellar structure in Ti-47Al-2Nb-1Mn-0.5W-0.5Mo-0.2Si significantly improves creep resistance. Applying the stepped cool to this alloy allows the precipitation of {beta} and silicides to be controlled during lower temperature aging.

  5. Theoretical Energy Release of Thermites, Intermetallics, and Combustible Metals

    SciTech Connect

    Fischer, S.H.; Grubelich, M.C.

    1999-05-14

    Thermite mixtures, intermetallic reactants, and metal fuels have long been used in pyrotechnic applications. Advantages of these systems typically include high energy density, high combustion temperature, and a wide range of gas production. They generally exhibit high temperature stability and possess insensitive ignition properties. For the specific applications of humanitarian demining and disposal of unexploded ordnance, these pyrotechnic formulations offer additional benefits. The combination of high thermal input with low brisance can be used to neutralize the energetic materials in mines and other ordnance without the "explosive" high-blast-pressure events that can cause extensive collateral damage to personnel, facilities, and the environment. In this paper, we review the applications, benefits, and characteristics of thermite mixtures, intermetallic reactants, and metal fuels. Calculated values for reactant density, heat of reaction (per unit mass and per unit volume), and reaction temperature (without and with consideration of phase changes and the variation of specific heat values) are tabulated. These data are ranked in several ways, according to density, heat of reaction, reaction temperature, and gas production.

  6. Crystal structure, electrical resistivity and Curie temperature of Ho(MnFex)2 and Ho(CoNix)2 intermetallics

    NASA Astrophysics Data System (ADS)

    Bednarski, M.; Chmist, J.; Pszczo?a, J.

    2013-05-01

    Synthesis of Ho(MnFex)2 and Ho(CoNix)2 intermetallic compounds, studies of their crystal structure and electrical resistivity were carried out. A pure cubic Fd3m, C15, MgCu2-type Laves phase was evidenced by X-ray measurements for all compounds. The unit cell parameter decreases nonlinearly with composition parameter x (or the average number n of 3d electrons per transition metal atom). Electrical resistivities for Ho(MnFex)2 and Ho(CoNix)2 compounds were measured in a wide temperature range (13-1000 K) and, for most of them, the component resistivities: residual, phonon and magnetic were separated. The parameters characterising the dependence of resistivity on temperature and composition, including the Debye temperature, were determined. The differential of the magnetic part of electrical resistivity against temperature was used to estimate Curie temperatures. The Curie temperature grows with an increasing amount of iron for Ho(MnFex)2 compounds, and for Ho(CoNix)2 it reduces with an increasing amount of nickel. All results are summarized together with those for the Ho(FeCox)2 series, which have been presented previously.

  7. Influence of Al grain boundaries segregations and La-doping on embrittlement of intermetallic NiAl

    NASA Astrophysics Data System (ADS)

    Kovalev, Anatoly I.; Wainstein, Dmitry L.; Rashkovskiy, Alexander Yu.

    2015-11-01

    The microscopic nature of intergranular fracture of NiAl was experimentally investigated by the set of electron spectroscopy techniques. The paper demonstrates that embrittlement of NiAl intermetallic compound is caused by ordering of atomic structure that leads to formation of structural aluminum segregations at grain boundaries (GB). Such segregations contain high number of brittle covalent interatomic bonds. The alloying by La increases the ductility of material avoiding Al GB enrichment and disordering GB atomic structure. The influence of La alloying on NiAl mechanical properties was investigated. GB chemical composition, atomic and electronic structure transformations after La doping were investigated by AES, XPS and EELFS techniques. To qualify the interatomic bonds metallicity the Fermi level (EF) position and electrons density (neff) in conduction band were determined in both undoped and doped NiAl. Basing on experimental results the physical model of GB brittleness formation was proposed.

  8. Ab Initio Study of Binary and Ternary Nb3(X,Y) A15 Intermetallic Phases (X,Y = Al, Ge, Si, Sn)

    NASA Astrophysics Data System (ADS)

    Papadimitriou, Ioannis; Utton, Claire; Scott, Andrew; Tsakiropoulos, Panos

    2015-02-01

    Elastic and thermodynamic properties of binary and ternary A15 phases containing Al, Ge, Si, and Sn were studied using the first-principles pseudopotential plane-wave method based on density functional theory. The temperature dependence of the enthalpy of formation for the A15 intermetallics is reported using the quasiharmonic approximation. Elastic properties of the studied compounds were calculated at T = 0 K and were in agreement with the measured values reported in the literature. The elastic properties and thermodynamic data for the metastable A15-Nb3Si are reported for the first time. The Nb3Si has the highest bulk, shear, and Young's modulus values and is predicted to be less ductile than the other three binary A15 intermetallics. The calculations suggest (i) that Al and Sn have a positive effect on the ductility of the A15 compounds of this study, (ii) that Ge as a ternary addition has a ductilizing effect only in the A15-Nb3Si, and (iii) that Si as a ternary addition has a negative effect on the ductility of all the A15 compounds of the present study. The linear thermal expansion coefficients of the Nb, Al, the A15 Nb3Al, Nb3Ge, Nb3Sn, and Nb3Si (A15) phases are reported. The Sn and Al additions in the Nb3Si stabilize the A15 structure, while the Ge addition has the opposite effect, stabilizing the tP32 Nb3Si.

  9. Characterization of ceramics and intermetallics fabricated by self-propagating high-temperature synthesis

    NASA Technical Reports Server (NTRS)

    Hurst, Janet B.

    1989-01-01

    Three efforts aimed at investigating the process of self-propagating high temperature synthesis (SHS) for the fabrication of structural ceramics and intermetallics are summarized. Of special interest was the influence of processing variables such as exothermic dopants, gravity, and green state morphology in materials produced by SHS. In the first effort directed toward the fabrication of SiC, exothermic dopants of yttrium and zirconium were added to SiO2 or SiO2 + NiO plus carbon powder mix and processed by SHS. This approach was unsuccessful since it did not produce the desired product of crystalline SiC. In the second effort, the influence of gravity was investigated by examining Ni-Al microstructures which were produced by SHS combustion waves traveling with and opposite the gravity direction. Although final composition and total porosities of the combusted Ni-Al compounds were found to be gravity independent, larger pores were created in those specimens which were combusted opposite to the gravity force direction. Finally, it was found that green microstructure has a significant effect on the appearance of the combusted piece. Severe pressing laminations were observed to arrest the combustion front for TiC samples.

  10. Microstructure evolution and hardness change in ordered Ni3V intermetallic alloy by energetic ion irradiation

    NASA Astrophysics Data System (ADS)

    Hashimoto, A.; Kaneno, Y.; Semboshi, S.; Yoshizaki, H.; Saitoh, Y.; Okamoto, Y.; Iwase, A.

    2014-11-01

    Ni3V bulk intermetallic compounds with ordered D022 structure were irradiated with 16 MeV Au ions at room temperature. The irradiation induced phase transformation was examined by means of the transmission electron microscope (TEM), the extended X-ray absorption fine structure measurement (EXAFS) and the X-ray diffraction (XRD). We also measured the Vickers hardness for unirradiated and irradiated specimens. The TEM observation shows that by the Au irradiation, the lamellar microstructures and the super lattice spot in diffraction pattern for the unirradiated specimen disappeared. This TEM result as well as the result of XRD and EXAFS measurements means that the intrinsic D022 structure of Ni3V changes into the A1 (fcc) structure which is the lattice structure just below the melting point in the thermal equilibrium phase diagram. The lattice structure change from D022 to A1 (fcc) accompanies a remarkable decrease in Vickers microhardness. The change in crystal structure was discussed in terms of the thermal spike and the sequential atomic displacements induced by the energetic heavy ion irradiation.

  11. Innovative processing to produce advanced intermetallic materials. Phase 1 final report

    SciTech Connect

    Loutfy, R.O.

    1989-09-01

    The program demonstrates the technical feasibility of synthesizing submicron titanium aluminide in a thermal rf plasma. Micron and submicron spherical titanium aluminide particles are produced in argon, hydrogen, and argon/hydrogen plasmas from the reaction of TiCl4(g), and Al(g). The ratio of Ti and Al is varied to produce the compounds Ti3Al, TiAl, and TiAl3. Microalloying with boron and macroalloying with niobium is demonstrated. Ti3Al whiskers can be produced, as well as other intermetallics of niobium aluminide, nickel aluminide, and molybdenum disilicide in the plasma synthesis process. Since submicron particles are produced, they have a high surface area and are sensitive to oxidation if not treated with a fugitive protective coating or utilized in a nonoxidizing atmosphere. Ti3Al particles are consolidated and utilized as a matrix for TiC and AlN composites. The submicron AlTi3 has significantly higher strength at room temperature than reported for commercial Ti3Al-11Nb alloy and useable strength is maintained up to 1000 C. The elongation is about the same as for commercial material because of possible oxide contamination in powder handling. However, dimpling and nacking is evident in the fracture surface, which suggests true room temperature ductility. Titanium aluminides have the potential to replace superalloys and become the dominant material for aerospace engines, air frames and skins for hypersonic vehicles.

  12. Synthesis, Structure and bonding Analysis of the Polar Intermetallic Phase Ca2Pt2Cd

    SciTech Connect

    Samal, Saroj L.; Corbett, John D.

    2012-08-14

    The polar intermetallic phase Ca2Pt2Cd was discovered during explorations of the Ca-Pt-Cd system. The compound was synthesized by high temperature reactions, and its structure refined by single-crystal X-ray diffraction as orthorhombic, Immm, a = 4.4514(5), b = 5.8415(6), c = 8.5976(9) Å, Z = 2. The structure formally contains infinite, planar networks of [Pt2Cd]4– along the ab plane, which can be described as tessellation of six and four-member rings of the anions, with cations stuffed between the anion layers. The infinite condensed platinum chains show a substantial long–short distortion of 0.52 Å, an appreciable difference between Ca2Pt2Cd (26 valence electrons) and the isotypic but regular Ca2Cu2Ga (29 VE). The relatively large cation proportion diminishes the usual dominance of polar (Pt–Cd) and 5d–5d (Pt–Pt) contributions to the total Hamilton populations.

  13. Intermetallic Formation at Interface of Al/Cu Clad Fabricated by Hydrostatic Extrusion and Its Properties.

    PubMed

    Lee, Jongbeom; Jeong, Haguk

    2015-11-01

    Al/Cu clad composed of Al core and Cu sheath has been produced by hydrostatic extrusion at 523 K, at an extrusion rate of 27. The prepared specimen was post-annealed at temperatures of 673 K and 773 K for various time durations, and the effect of annealing conditions have been analyzed. The hardness at the interface between Al and Cu matrix of the Al/Cu bimetal clad increases because of annealing. Results indicate that the hardness is more sensitive to annealing temperature than the annealing time. Three kinds of intermetallic compounds (IMC), namely, CuAl, Cu3Al2, and CuAl2, are formed at the Al-Cu interface, upon annealing at 673 K. On the other hand, four kinds of IMCs, namely, Cu4Al3, CuAl, Cu3Al2, CuAl2, are formed at the annealing temperature of 773 K. The growth of each IMC follows the parabolic law as a function of annealing times at certain annealing temperature. The growth rate of each IMC is limited to its interdiffusion rate constant. The IMC Cu4Al3 appears upon annealing at 773 K, and not during annealing at 673 K, because of the higher value of activation energy associated with its formation, when compared to other IMCs. PMID:26726557

  14. Disturbing the dimers: Electron and hole doping in the intermetallic insulator FeGa3

    NASA Astrophysics Data System (ADS)

    Botana, Antia S.; Quan, Yundi; Pickett, Warren E.

    2015-10-01

    Insulating FeGa3 poses peculiar puzzles beyond the occurrence of an electronic gap in an intermetallic compound. This Fe-based material has a very distinctive structural characteristic with the Fe atoms occurring in dimers. The insulating gap can be described comparably well in either the weakly correlated limit or the strongly correlated limit within density functional theory viewpoints, where the latter corresponds to singlet formation on the Fe2 dimers. Though most of the calculated occupied Wannier functions are an admixture of Fe 3 d and Ga 4 s or 4 p states, there is a single bonding-type Wannier function per spin centered on each Fe2 dimer. Density functional theory methods have been applied to follow the evolution of the magnetic properties and electronic spectrum with doping, where unusual behavior is observed experimentally. Both electron and hole doping are considered, by Ge and Zn on the Ga site, and by Co and Mn on the Fe site, the latter introducing direct disturbance of the Fe2 dimer. Results from weakly and strongly correlated pictures are compared. Regardless of the method, magnetism including itinerant phases appears readily with doping. The correlated picture suggests that in the low doping limit Mn (for Fe) produces an in-gap hole state, while Co (for Fe) introduces a localized electronic gap state.

  15. Joining of Ni-TiC FGM and Ni-Al Intermetallics by Centrifugal Combustion Synthesis

    SciTech Connect

    Ohmi, Tatsuya; Matsuura, Kiyotaka; Iguchi, Manabu; Mizuma, Kiminori

    2008-02-15

    A centrifugal combustion synthesis (CCS) process has been investigated to join a Ni-Al intermetallic compound and a Ni-TiC cermet. The cermet, a tubular graphite mold, and a green compact of reactants consisting of Al, Ni and NiO were set in a centrifugal caster. When the combustion synthesis reaction was induced in the centrifugal force field, a synthesized molten Ni-Al alloy flowed into the graphite mold and joined to the cermet. The soundness of the joint interface depended on the volume percentage of TiC phase in the cermet. A lot of defects were formed near the interface between the Ni-TiC cermet and the cast Ni-Al alloy when the volume percentage of TiC was 50% or higher. For this kind of cermet system, using a functionally graded cermet such as Ni-10 vol.%TiC/Ni-25 vol.%TiC/Ni-50 vol.%TiC overcame this difficulty. The four-point bending strength of the joined specimen consisting of the three-layered FGM cermet and cast Ni-29 mol%Al alloy was 1010 MPa which is close to the result for a Ni-29 mol%Al alloy specimen.

  16. Scope and Mechanistic Analysis for Chemoselective Hydrogenolysis of Carbonyl Compounds Catalyzed by a Cationic Ruthenium Hydride Complex with a Tunable Phenol Ligand.

    PubMed

    Kalutharage, Nishantha; Yi, Chae S

    2015-09-01

    A cationic ruthenium hydride complex, [(C6H6)(PCy3)(CO)RuH](+)BF4(-) (1), with a phenol ligand was found to exhibit high catalytic activity for the hydrogenolysis of carbonyl compounds to yield the corresponding aliphatic products. The catalytic method showed exceptionally high chemoselectivity toward the carbonyl reduction over alkene hydrogenation. Kinetic and spectroscopic studies revealed a strong electronic influence of the phenol ligand on the catalyst activity. The Hammett plot of the hydrogenolysis of 4-methoxyacetophenone displayed two opposite linear slopes for the catalytic system 1/p-X-C6H4OH (? = -3.3 for X = OMe, t-Bu, Et, and Me; ? = +1.5 for X = F, Cl, and CF3). A normal deuterium isotope effect was observed for the hydrogenolysis reaction catalyzed by 1/p-X-C6H4OH with an electron-releasing group (kH/kD = 1.7-2.5; X = OMe, Et), whereas an inverse isotope effect was measured for 1/p-X-C6H4OH with an electron-withdrawing group (kH/kD = 0.6-0.7; X = Cl, CF3). The empirical rate law was determined from the hydrogenolysis of 4-methoxyacetophenone: rate = kobsd[Ru][ketone][H2](-1) for the reaction catalyzed by 1/p-OMe-C6H4OH, and rate = kobsd[Ru][ketone][H2](0) for the reaction catalyzed by 1/p-CF3-C6H4OH. Catalytically relevant dinuclear ruthenium hydride and hydroxo complexes were synthesized, and their structures were established by X-ray crystallography. Two distinct mechanistic pathways are presented for the hydrogenolysis reaction on the basis of these kinetic and spectroscopic data. PMID:26235841

  17. Enhanced Fenton-like degradation of refractory organic compounds by surface complex formation of LaFeO(3) and H(2)O(2).

    PubMed

    Nie, Yulun; Zhang, Lili; Li, Yu-You; Hu, Chun

    2015-08-30

    Nanoscale LaFeO(3) was prepared via sol-gel method and characterized by XRD, FTIR and N2 adsorption/desorption experiment. The results indicated that, LaFeO(3) had a typical perovskite structure with a BET area of 8.5m(2)/g. LaFeO(3) exhibited excellent Fenton activity and stability for the degradation of pharmaceuticals and herbicides in water, as demonstrated with sulfamethoxazole, phenazone, phenytoin, acyclovir and 2,4-dichlorophenoxyacetic acid, 2-chlorophenol. Among them, sulfamethoxazole (SMX) could be completely removed in LaFeO(3)-H(2)O(2) system after reaction for 120 min at neutral pH. Based on the ATR-FTIR analysis, the surface complex of LaFeO(3) and H(2)O(2). was formed, which was important and essential for the enhanced Fenton reaction by accelerating the cycle of Fe(3+)/Fe(2+). Hence, more OH and O(2)(-)/HO(2)(-) were then produced in LaFeO(3)-H(2)O(2) system, resulting in more efficient removal of refractory organic compounds. Based on the surface interaction of LaFeO(3) and H(2)O(2), a heterogeneous Fenton reaction mechanism was proposed. PMID:25867592

  18. Increased Survivorship and Altered Cytokine Profile from Treatment of Influenza A H1N1-Infected Mice with Ekybion: A Drug Complex of Natural Extracts and Inorganic Compounds

    PubMed Central

    Lupfer, Christopher; Besnouin, Didier; Tepper, Samuel E.; Maselko, Maciej; Patton, Kristin M.; Pastey, Manoj

    2011-01-01

    Ekybion is a drug complex of 16 natural extracts and inorganic compounds designed to treat a variety of respiratory pathogens of bacterial and viral origin. It is licensed throughout Europe for the treatment of respiratory tract infections from equine parainfluenza type 3 and equine herpes virus type 1 in equine stables. The purpose of this paper was to test the efficacy of Ekybion on a well-developed animal model of influenza A infection and determine a mode of action. Experiments were performed with Balb/c mice infected with a lethal dose of influenza A/PR/8/34 H1N1 virus and treated with nebulized Ekybion every 8?h in a time-dependant or dose-dependant fashion. These experiments showed that mice treated prior to infection with Ekybion had a higher survival rates (~46%) compared with untreated animals (~0%). Paradoxically, these mice showed no significant difference in lung virus titer or weight loss. There was, however, a decrease in the level of GM-CSF, IL-6, and G-CSF cytokines in the lungs of Ekybion-treated, infected mice. It is possible that decreases in proinflammatory cytokines may have contributed to increased survivorship in Ekybion-treated influenza-infected mice. PMID:20981272

  19. Comparison of the manganese oxygen-evolving complex in photosystem II of spinach and Synechococcus sp. with multinuclear manganese model compounds by X-ray absorption spectroscopy

    SciTech Connect

    DeRose, V.J.; Mukerji, I.; Latimer, M.J. ); Yachandra, V.K.; Klein, M.P. ); Sauer, K. Lawrence Berkeley Lab., CA )

    1994-06-15

    The evaluation of Mn X-ray absorption fine structure (EXAFS) studies on the oxygen-evolving complex (OEC) from photosystem II is described for preparations from both spinach and the cyanobacterium Synechococcus sp. poised in the S[sub 1] and S[sub 2] states. In addition to reproducing previous results suggesting the presence of bis([mu]-oxo)-bridged Mn centers in the OEC, a Fourier transform peak due to scatterers at an average distance of > 3 [angstrom] is detected in both types of preparation. In addition, subtle but reproducible changes are found in the relative amplitudes of the Fourier transform peaks due to mainly O ([approximately]1.8 [angstrom]) and Mn ([approximately] 2.7 [angstrom]) neighbors upon cryogenic advance from the S[sub 1] to the S[sub 2] state. Analysis of the peak due to scatterers at [approximately] 3 [angstrom] favors assignment to (per 4 Mn in the OEC) 1-2 heavy atom (Mn, Ca) scatterers at an average distance of 3.3-3.4 [angstrom]. The EXAFS data of several multinuclear Mn model compounds containing such scattering interactions are analyzed and compared with the data for the OEC. Structural models for the OEC are evaluated on the basis of these results. 40 refs., 9 figs., 5 tabs.

  20. Low-temperature solution synthesis of alloys and intermetallic compounds as nanocrystals 

    E-print Network

    Vasquez, Yolanda

    2009-05-15

    by sequential addition of Pb(Ac) 2 followed by K 2 PtCl 6 ........... 25 Figure 9 (a) Synthesis of PbPt nanoparticles with 200 mg of PVP. PbPt synthesized with (b) 20 mg of NaBH 4 , (c) 20 mg of NaBH 4 and 200 mg of PVP, (d) 50 mg of PVP, (e...) 20 mg of NaBH 4 , 22 mg x of Pb(Ac) 2 and 200 mg PVP, and (f) 100 mg of PVP....................... 27 Figure 10 (a) PbPt nanoparticles synthesized at 120?C using Pt(acac) 2 as the Pt source. PbPt particles synthesized by (b) addition...

  1. Synthesis and characterization of patterned surfaces and catalytically relevant binary nanocrystalline intermetallic compounds 

    E-print Network

    Cable, Robert E.

    2009-05-15

    in (a) diethyleneglycol (DEG), and (b) triethyleneglycol (TrEG).............. 29 2.9 Powder XRD data of AuPd 4 synthesized in TrEG with and without the use of the surface stabilizing agent PVP. Dashed lines indicate positions of Au reflections... and solid indicate those for Pd . 31 2.10 Powder XRD data of AuPd 4 synthesized by the direct polyol process in TrEG without the addition of PVP or NaBH 4 . Dashed lines indicate positions of Au reflections and solid indicate those for Pd...

  2. Processing Issues for Preliminary Melts of the Intermetallic Compound 60-NITINOL

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.; Thomas, Fransua; DellaCorte, Christopher

    2012-01-01

    The effect of various high temperature heat treatments and cooling rates on the hardness of cast 60-NITINOL (60wt%Ni- 40wt%Ti) was studied. The hardness ranged from approximately 33 HRC for annealed specimens to 63 HRC for water quenched specimens. Aging did not have a further effect on the hardness of the heat-treated and quenched material. The issue of material contamination and its possible effect on quench cracking during heat treatment above 1000 C was explored. The Charpy impact energy of the material was found to be relatively low (ranging from 0.4 to 1.0 J) and comparable to that of cast magnesium. Selection of service environments and applications for this material based on these findings should consider the processing route by which it was produced.

  3. Magnetism on the surface of the bulk paramagnetic intermetallic compound YCo2.

    PubMed

    Khmelevskyi, S; Mohn, P; Redinger, J; Weinert, M

    2005-04-15

    Using full-potential electronic structure calculations, we predict that the (111) surface of the cubic Laves phase Pauli paramagnet YCo2 is ferromagnetic. The magnetism of the (111) surface is independent of the termination of the surface, does not extend beyond two Co layers, and is related to the field-induced metamagnetism of the bulk. YCo2 appears to be a prominent candidate to demonstrate the phenomenon of surface-induced itinerant magnetism localized in two dimensions. PMID:15904086

  4. Point defect behavior in B2-type intermetallic compound FeAl

    SciTech Connect

    Haraguchi, T.; Kogachi, M.

    1999-07-01

    Point defect behavior in B2-type FeAl alloys is investigated from a thermodynamic point of view, based on the Bragg-Williams method. The model is developed by taking new defect formation mechanisms, random vacancy distribution (RVD), and antisite atom recovering (ASAR), into consideration, which were proposed based on the current findings in in situ neutron and X-ray diffraction studies for the B2 FeAl. The condition for appearance of the RVD and ASAR states is given. Application of this model to B2 FeAl alloys shows that the RVD-like behavior is reproduced in the Fe-rich composition region and also a rapid increase in vacancy concentration observed in the Al-rich region can be interpreted by the ASAR process by antisite Al atoms.

  5. Molding compound trends in a denser packaging world: Qualification tests and reliability concerns

    NASA Astrophysics Data System (ADS)

    Nguyen, L. T.; Lo, R. H. Y.; Chen, A. S.; Belani, J. G.

    1993-12-01

    Molding compound development has traditionally been driven by the memory market, then subsequent applications filter down to other IC technologies such as logic, analog, and ASIC. However, this strategy has changed lately with the introduction of thin packages such as PQFP & TSOP. Rather than targeting a compound for a family of IC such as DRAM or SRAM, compound development efforts are now focused at specific classes of packages. The configurations of these thin packages impose new functional requirements that need to be revisited to provide the optimized combination of properties. The evolution of qualification tests mirrors the advances in epoxy and compounding technologies. From the first standard novolac-based epoxies of the 1970s to the latest 3(sup rd)-generation ultra-low stress materials, longer test times at increasingly harsher environments were achieved. This paper benchmarks the current reliability tests used by the electronic industry, examines those tests that affect and are affected by the molding compounds, discusses the relevance of accelerated testing, and addresses the major reliability issues facing current molding compound development efforts. Six compound-related reliability concerns were selected: moldability, package stresses, package cracking, halogen-induced intermetallic growth at bond pads, moisture-induced corrosion, and interfacial delamination. Causes of each failure type are surveyed and remedies are recommended. Accelerated tests are designed to apply to a limited quantity of devices, bias, or environmental conditions larger than usual ratings, to intensify failure mechanisms that would occur under normal operating conditions. The observed behavior is then extrapolated from the lot to the entire population. Emphasis is on compressing the time necessary to obtain reliability data. This approach has two main drawbacks. With increasingly complex devices, even accelerated tests are expensive. And with new technologies, it becomes difficult to ascertain that the applied stress 1) induces the failure phenomenon linked with usual field conditions, and 2) does not create any new ones. Technology evolution and reliability testing are interdependent. Devices get larger with increasingly smaller features and more complex geometries. Molding compounds have evolved considerably over the past decade to provide ultra-low stress levels and moldability for thin packages. compounds from SEMI & ASTM have thus far focused on material purity and flow characteristics, both of which affect the long-term reliability of the final molded packages. &Current test standards were developed for hermetic packages under the auspices of the US Department of Defense culminating in Mil-Std-883. The only two accelerated test specifications for plastic packages, JESD-22 & JESD-26, are targeted for automotive environments. This lack of consensus forces each system-house to develop its own internal version of stress tests to simulate assembly requirements or field conditions.

  6. Investigating the differences between receptor and dispersion modeling for concentration prediction and health risk assessment of volatile organic compounds from petrochemical industrial complexes.

    PubMed

    Chen, Wei-Hsiang; Chen, Zheng-Bin; Yuan, Chung-Shin; Hung, Chung-Hsuang; Ning, Shu-Kuang

    2016-01-15

    Receptor and dispersion models both provide important information to help understand the emissions of volatile organic compounds (VOCs) and develop effective management strategies. In this study, differences between the predicted concentrations of two models and the associated impacts on the estimated health risks due to different theories behind two models were investigated. Two petrochemical industrial complexes in Kaohsiung city of southern Taiwan were selected as the sites for this comparison. Although the study compares the approaches by applying the methods to this specific area, the results are expected to be adopted for other areas or industries. Ninety-nine VOC concentrations at eight monitoring sites were analyzed, with the effects of diurnal temperature and seasonal humidity variations being considered. The Chemical Mass Balance (CMB) receptor model was used for source apportionment, while the Industrial Source Complex (ISC) dispersion model was used to predict the VOC concentrations at receptor sites. In the results of receptor modeling, 54% ± 11% and 49% ± 20% of the monitored concentrations were contributed by process emissions in two complexes, whereas the numbers increased to 78% ± 41% and 64% ± 44% in the results of dispersion modeling. Significant differences were observed between two model predictions (p < 0.05). The receptor model was more reproducible given the smaller variances of its results. The effect of seasonal humidity variation on two model predictions was not negligible. Similar findings were observed given that the cancer and non-cancer risks estimated by the receptor model were lower but more reproducible. The adverse health risks estimated by the dispersion model exceeded and were 75.3%-132.4% of the values estimated by using the monitored data, whereas the percentages were lowered to the range from 27.4% to 53.8% when the prediction was performed by using the receptor model. As the results of different models could be significantly different and affect the final health risk assessment, it is important to carefully choose an appropriate model for prediction and to evaluate by monitoring to avoid providing false information for appropriate management. PMID:26555100

  7. Compton Profile Study of Intermetallic Ti{sub 3}Al

    SciTech Connect

    Vyas, V.; Sharma, G.; Mishra, M. C.; Sharma, B. K.; Joshi, K. B.

    2011-10-20

    The Compton scattering measurement on intermetallic alloy Ti{sub 3}Al is reported in this work. The measurement is made using 59.54 keV gamma-rays from Am{sup 241} source. Theoretical calculation of Compton profile is also performed employing CRYSTAL code within the framework of density functional theory to compare with the measurement. The theoretical profile of the alloy is also synthesized following the superposition model taking the published Compton profiles of elemental solids from the APW method. The experimental study of charge transfer in the alloys has also been done by performing the experimental Compton profile measurements on Ti and Al following the superposition model and charge transfer from Al to Ti is clearly seen on the alloy formation.

  8. Fundamentals of SHS-joining for ceramics, intermetallics and metals

    SciTech Connect

    Orling, T.T.; Messler, R.W.

    1994-12-31

    The same process of self-propagating high-temperature synthesis (SHS) that allows production of a wide variety of refractory ceramics and intermetallics has also been successfully used for simultaneous net-shape production through a process that uses the exothermic heat of reaction to accomplish reactive sintering. Now the SHS process is being evaluated for its potential for joining similar or dissimilar combinations of heat-resisting or refractory metals, ceramics, or intermetallics. The process offers particular promise for the practical production of functionally gradient material joints and/or reinforced composite joints. The Gleeble thermal-mechanical simulation and test apparatus is being employed for the systematic evaluation of key parameters for SHS joining. Effects of reaction/processing temperature (500, 650, 1000, and 1300{degrees}C), hold time (2, 15, and 50 min), heating rate (0.5, 1.0 and 2.0{degrees}C/s), applied pressure (8.6, 41.4 and 82.7 MPa), and reactant composition (65Ni35AI and 80Ni20AI versus normal 75Ni25AI) on rate and degree of reaction, bond integrity, and filler density have been evaluated in a model system of Ni-base (IN600) end elements joined using the in-situ reaction of 3Ni + AI> Ni{sub 3}AI. Reaction atmosphere has been Ar, although future tests with vacuum and active gases will be conducted. For all temperatures above 650{degrees}C, where some liquid phase was formed in the AI-Ni phase diagram, bond integrity was good irrespective of heating rate, hold time, or applied pressure. The degree of reaction and product homogeneity were clearly dependent on temperature and hold time, with temperature having a much greater effect, as expected. Heating rate had little effect. Detailed studies of bonding mechanics and evaluation of joint properties are continuing, along with production of functionally gradient material joints between dissimilar materials.

  9. Studies of obtaining and stability in aqueous medium of new complex compounds of Ti(IV) and Zr(IV) used in ecological leather tanning

    NASA Astrophysics Data System (ADS)

    Crudu, Marian; Sibiescu, Doina; Rosca, Ioan; Sutiman, Daniel; Vizitiu, Mihaela

    2009-01-01

    In this paper, the study of obtaining new coordination compounds of Ti(IV) and Zr(IV) using as ligand: D,L-?-iso-butyric acid, is presented. Also, the stability of these compounds in aqueous medium is studied. The studies of obtaining and of stability of the new compounds were accomplished in aqueous solutions using methods characteristic for coordination compounds: conductance and pH measurements. The combination ratios and the stability were determined with methods characteristic for studies in solutions. From experimental data resulted that the combination ratio of central metallic atoms with the ligand derived from D,L-?-iso-butyric acid was 1:2. From experimental data resulted that in strong acid and strong basic mediums, the coordination compounds could not be obtained. The optimal stability of the studied compounds is limited between 3-6, pH - values. This fact is in accordance with the conditions of using these compounds in ecological leather tanning. Of great importance is that these compounds were used with very good results in tanning processes of different types of leather. This fact evidenced that the ecological alternative of tanning is better than non-ecological tanning using chrome compounds. The importance of this paper consists in obtaining new coordination compounds that can be used in ecological leather tanning.

  10. The role of ALCHEMI in understanding the properties of ordered intermetallic alloys

    SciTech Connect

    Anderson, I.M.

    1998-11-01

    After one and one-half decades of development, ALCHEMI is approaching the status of an established analytical technique. Many of the problems that have plagued ALCHEMI, especially for the analysis of ordered intermetallic alloys, are now well understood, and accurate site-distributions can be extracted from a variety of intermetallic alloys. This paper begins with an overview of the factors that can lead to large systematic errors or gross misinterpretations of ALCHEMI data, with illustrations from a variety of ordered intermetallic alloys. The paper concludes with a discussion of ALCHEMI in the broader context of understanding the properties of ordered intermetallic alloys. The results of systematic studies are used to illustrate the role of ALCHEMI in determining the competing effects of thermodynamic and kinetic factors during alloy processing and the correlation of alloy properties with the atomic site distributions on which the properties ultimately depend.

  11. Imido-pyridine Ti(IV) compounds: synthesis of unusual imido-amido heterobimetallic derivatives.

    PubMed

    Pedrosa, Sergio; Vidal, Fernando; Lee, Lucia Myongwon; Vargas-Baca, Ignacio; Gómez-Sal, Pilar; Mosquera, Marta E G

    2015-06-28

    The reaction of lithiated picolines and [TiCl3(?(5)-C5Me5)] leads to several bridging or terminal imido compounds, each of which can be selectively formed by controlling the stoichiometry and temperature. Specifically, the dinuclear imido-bridged [TiCl(?(5)-C5Me5)(?-NR)]2 (1a, NR = 2-imido-3-picoline; 1b, NR = 2-imido-5-picoline) species and the unusual Ti-Li imido-amido heterobimetallic complex [{Li(THF)}{Ti(?(5)-C5Me5)(NR)(NHR)2}] (2a, NR = 2-imido-3-picoline; 2b, NR = 2-imido-5-picoline) were isolated. Compounds 2 are in effect the first structurally characterized examples of titanium(IV) coordinated to terminal imido-pyridines. DFT-D calculations for 2a denote a multiple bond character between titanium and the imido ligand and a strong polarization of the electron density by the alkali cation in spite of the lack of intermetallic bonding. PMID:25997565

  12. Electromigration enhanced intermetallic growth and void formation in Pb-free solder joints

    NASA Astrophysics Data System (ADS)

    Chao, Brook; Chae, Seung-Hyun; Zhang, Xuefeng; Lu, Kuan-Hsun; Ding, Min; Im, Jay; Ho, Paul S.

    2006-10-01

    A kinetic analysis was formulated for electromigration enhanced intermetallic evolution of a Cu-Sn diffusion couple in the Sn-based Pb-free solder joints with Cu under bump metallurgy. The simulated diffusion couple comprised the two terminal phases, Cu and Sn, as well as the two intermetallic phases, Cu3Sn and Cu6Sn5, formed between them. The diffusion and electromigration parameters were obtained by solving the inverse problem of the electromigration enhanced intermetallic growth, and they were compatible with the literature values. Finite difference method was applied to the whole simulated domain to solve for the mass transport kinetics within the intermetallic phases and across each interface of interest. Simulation showed that, when electromigration effect was absent (zero current), intermetallic growth followed a parabolic law, suggesting a diffusion controlled mechanism for thermal aging. However, under significant current stressing (4×104A/cm2), the growth of the dominant intermetallic Cu6Sn5 clearly followed a linear law, suggesting a reaction controlled mechanism for electromigration. Simulation results were consistent with the experimental observations. The analysis of vacancy transport was also incorporated with the model, and the results showed substantial increase in vacancy concentration at the Cu6Sn5 phase near the Cu3Sn/Cu6Sn5 interface. The peaking of the vacancy concentration explains the substantial Kirkendall void formation under electromigration at this region.

  13. Structural refinement and luminescent property of a novel europium(III) complex with a proton transfer compound containing 2,6-pyridinedicarboxylate and 2,6-pyridinediammonium ligands synthesized by ultrasonic method

    NASA Astrophysics Data System (ADS)

    Cai, Mengjun; Gao, Xie; Chen, Jianding

    2015-04-01

    In this paper, we reports on the structure of europium(III) complex, in short (H5O2)(pydaH)2Eu(pydc)3?2H2O (pyda = 2,6-pyridinediamine, pydc = 2,6-pyridinedicarboxylate), obtained from europium(III) nitrate with a proton transfer compound containing 2,6-pyridinedicarboxylate and 2,6-pyridinediammonium by ultrasonic method. This complex was characterized by means of single-crystal X-ray diffraction, Rietveld refinement, elemental analysis, infrared spectroscopy, thermogravimetric analysis and fluorescence spectra. The X-ray crystal structure analysis reveals that the 3D networks of complex (H5O2)(pydaH)2Eu(pydc)3?2H2O are held together by ion pairing, H-bonding, and ?-? stacking interactions. Moreover, the solid-state fluorescence spectra of complex exhibit a red emission under ultraviolet light.

  14. Isolobal analogies in intermetallics: the reversed approximation MO approach and applications to CrGa4- and Ir3Ge7-type phases.

    PubMed

    Yannello, Vincent J; Kilduff, Brandon J; Fredrickson, Daniel C

    2014-03-01

    Intermetallic phases offer a wealth of unique and unexplained structural features, which pose exciting challenges for the development of new bonding concepts. In this article, we present a straightforward approach to rapidly building bonding descriptions of such compounds: the reversed approximation Molecular Orbital (raMO) method. In this approach, we reverse the usual technique of using linear combinations of simple functions to approximate true wave functions and employ the fully occupied crystal orbitals of a compound as a basis set for the determination of the eigenfunctions of a simple, chemically transparent model Hamiltonian. The solutions fall into two sets: (1) a series of functions representing the best-possible approximations to the model system's eigenstates constructible from the occupied crystal orbitals and (2) a second series of functions that are orthogonal to the bonding picture represented by the model Hamiltonian. The electronic structure of a compound is thus quickly resolved into a series of orthogonal bonding subsystems. We first demonstrate the raMO analysis on a familiar molecule, 1,3-butadiene, and then move to illustrating its use in discovering new bonding phenomena through applications to three intermetallic phases: the PtHg4-type CrGa4 and the Ir3Ge7-type compounds Os3Sn7 and Ir3Sn7. For CrGa4, a density of states (DOS) minimum coinciding with its Fermi energy is traced to 18-electron configurations on the Cr atoms. For Os3Sn7 and Ir3Sn7, 18-electron configurations also underlie DOS pseudogaps. This time, however, the 18-electron counts involve multicenter interactions isolobal with classical Ir-Ir or Os-Os covalent bonds, as well as Sn-Sn single bonds serving as electron reservoirs. Our results are based on DFT-calibrated Hückel calculations, but in principle the raMO analysis can be implemented in any method employing one-electron wave functions. PMID:24555770

  15. Dual-directional regulation of drug permeating amount by combining the technique of ion-pair complexation with chemical enhancers for the synchronous permeation of indapamide and bisoprolol in their compound patch through rabbit skin.

    PubMed

    Song, Wenting; Cun, Dongmei; Quan, Peng; Liu, Nannan; Chen, Yang; Cui, Hongxia; Xiang, Rongwu; Fang, Liang

    2015-04-01

    To achieve the synchronous skin permeation of indapamide (IND) and bisoprolol (BSP) in their compound patch, the techniques of ion-pair complexation and chemical enhancers were combined to dual-directionally regulate drug permeating amounts. Ion-pair complexes of BSP and various organic acids were formed by the technique of ion-pair complexation. Among the complexes formed, bisoprolol tartrate (BSP.T) down-regulated the permeating amount of BSP to the same extent as that of IND. Then, to simultaneously up-regulate the amounts of the two drugs, an enhancer combination of 15.8% Span80 (SP), 6.0% Azone (AZ) and 2.2% N-methyl pyrrolidone (NMP) was obtained by central composite design and exhibited an outstanding and simultaneous enhancement on IND and BSP with enhancing ratio (ER) of 4.52 and 3.49, respectively. The effect of the dual-directional regulation was evaluated by in vitro permeation experiments and in vivo pharmacokinetic studies. For IND and BSP, their observed permeation profiles were comparable and their MAT (mean absorption time) showed no significant difference, which both demonstrated these two drugs achieved the synchronous skin permeation in their compound patch by the dual-directional regulation strategy of combining the technique of ion-pair complexation with chemical enhancers. PMID:25660911

  16. Molecular Dynamics Study of Thermal Properties of Intermetallic Alloys

    NASA Astrophysics Data System (ADS)

    Kart, H. H.; Tomak, Mehmet; Ça?in, Tahír

    2006-07-01

    Molecular dynamics simulations of bulk copper, gold pure metals and their ordered intermetallics alloys of Cu3Au(L12) and CuAu3(L12) have been carried out between above 0 K and below the their melting points of the materials for predicting their temperature-dependent thermophysical properties. The effects of temperature and concentration on the physical properties such as enthalpy, volume, heat capacity, thermal expansion and density of CuxAu1-x are studied. Especially, temperature-dependent polynomial functions of enthalpy, volume and density are obtained. Sutton-Chen (SC) and Quantum Sutton-Chen (Q-SC) many-body potentials are used in the constant enthalpy-constant pressure ensemble (HPN) and constant pressure-constant temperature ensemble (TPN). Three important properties such as the coefficient of thermal volume expansion, heat capcity and density are correctly found to increase with temperature. Q-SC potential parameter results are usually closer to experimental values than the ones predicted from SC potential parameters.

  17. Determination of site-occupancies in aluminide intermetallics by ALCHEMI

    SciTech Connect

    Anderson, I.M.; Bentley, J.; Duncan, A.J.

    1995-04-01

    The site-distributions of Fe in four B2-ordered NiAl-based alloys with Fe concentrations of 10%, 2%, and 0.5% have been determined by ALCHEMI (atom-location by channeling-enhanced microanalysis). Site-distributions have been extracted with standard errors between {approximately} 1.5% (10% Fe concentration) and {approximately} 6% (0.5% Fe concentration). The results show that Fe has no strong site-preference in NiAl and tends to reside on the site of the stoichiometrically deficient host element. An improved ALCHEMI analysis procedure is outlined. The analysis explicitly addresses the phenomenon of ionization delocalization, which previously complicated the determination of site-distributions in aluminide intermetallics, leading to inaccurate and oftentimes nonphysical results. The improved ALCHEMI analysis also addresses the presence of anti-site defects. The data acquisition conditions have been optimized to minimize the sources of statistical and systematic error. This optimized procedure should be suitable for all analyses of B2-ordered alloys. Several analyses at different channeling orientations show that the extracted site-occupancies are robust as long as the data are acquired at orientations that are remote from any major pole of the crystal.

  18. Processing and properties of molybdenum silicide intermetallics containing boron

    SciTech Connect

    Schneibel, J.H.; Liu, C.T.; Heatherly, L. Jr.; Carmichael, C.A.

    1998-11-01

    The processing and mechanical properties of Mo-Si-B intermetallic alloys with compositions Mo-26.7Si-7.3B and Mo-12Si-8.5B (at.%) were investigated. The first alloy consisted of the phases Mo{sub 3}Si, Mo{sub 5}Si{sub 3} (T1) and Mo{sub 5}SiB{sub 2} (T2). Attempts to extrude castings of this alloy at 1700 or 1800 C were not successful. Hot isostatic pressing of elemental powders was more promising and room temperature flexure strengths on the order of 200 MPa were reached. The second alloy with the composition Mo-12Si-8.5B could be readily cast and consisted of {alpha}-Mo inclusion in a brittle matrix of Mo{sub 3}Si and T2. A heat treatment of 1 day at 1600C in vacuum improved the room temperature strength and fracture toughness. Values on the order of 500 MPa and 10 MPa m{sup 1/2}, respectively, were obtained. Consistent with ductile phase toughening, limited plastic deformation as well as debonding of the {alpha}-Mo inclusions were seen on fracture surfaces.

  19. Processing and properties of molybdenum silicide intermetallics containing boron

    SciTech Connect

    Schneibel, J.H.; Liu, C.T.; Heatherly, L.; Wright, J.L.; Carmichael, C.A.

    1997-08-01

    Molybdenum-silicon-boron intermetallics with the composition Mo-10.5 Si-1.1 B, wt% (Mo-26.7 Si-7.3 B, at. %) were fabricated by several processing techniques. Powder processing (PM) resulted in macrocrack-free material containing no or only few microcracks. The PM materials contained quasi-equilibrium pores and large concentrations of oxygen. Average room temperature flexure strengths of 270 MPa were obtained. At 1,200 C in air, flexure strengths as high as 600 MPa were observed. These high values are attributed to crack healing and incipient plasticity. Ingot metallurgy (IM) materials contained much less oxygen than their PM counterparts. Depending on the cooling rate during solidification, they developed either mostly macrocracks or mostly microcracks. Due to the high flaw densities, the room temperature flexure strengths were only of the order of 100 MPa. However, the flexure strengths at 1,200 C were up to 3 times higher than those at room temperature. Again, this is attributed to crack healing and incipient plasticity. The IM materials will require secondary processing to develop their full potential. A preliminary examination of secondary processing routes included isothermal forging and hot extrusion.

  20. Study on the Formation and Characterization of the Intermetallics in Friction Stir Welding of Aluminum Alloy to Coated Steel Sheet Lap Joint

    NASA Astrophysics Data System (ADS)

    Das, H.; Ghosh, R. N.; Pal, T. K.

    2014-10-01

    Multimaterial fabrication such as joining of steel and aluminum is currently prominent in a variety of industries. Friction stir welding is a novel solid-state welding process that causes good joint strength between steel and aluminum. However, the phenomenon contributing significant strength at the interface is not yet clear. In the present study, the interface of the friction stir lap-welded aluminum and coated steel sheet having joint strength maximum (71.4 pct of steel base metal) and minimum, respectively, under two parameter combinations, i.e., 1000 rpm 50 mm min-1 and 500 rpm 100 mm min-1, was exclusively characterized by X-ray diffraction, transmission electron microscopy (TEM), concentration profile, and elemental mapping by electron-probe microanalysis. A TEM-assisted EDS study identifies the morphologies of large size Al13Fe4 and small size Fe3Al-type intermetallic compounds at the interface. The diffusion-induced intermetallic growth (thickness) measured from a backscattered image and concentration profile agreed well with the numerically calculated one. The growth of these two phases at 1000 rpm 50 mm min-1 is attributed to the slower cooling rate (~3.5 K/s) with higher diffusion time (44 seconds) along the interface in comparison to the same for 500 rpm 100 mm min-1 with faster cooling rate (~10 K/s) and less diffusion time (13.6 seconds). The formation of thermodynamically stable and hard intermetallic phase Al13Fe4 at 1000 rpm and travel speed 50 mm min-1 in amounts higher than 500 rpm and a travel speed of 100 mm min-1 results in better joint strength, i.e., 71.4 pct, of the steel base metal.

  1. Hierarchy of Carbon Source Utilization in Soil Bacteria: Hegemonic Preference for Benzoate in Complex Aromatic Compound Mixtures Degraded by Cupriavidus pinatubonensis Strain JMP134

    PubMed Central

    Pérez-Pantoja, Danilo; Leiva-Novoa, Pablo; Donoso, Raúl A.; Little, Cedric; Godoy, Margarita; Pieper, Dietmar H.

    2015-01-01

    Cupriavidus pinatubonensis JMP134, like many other environmental bacteria, uses a range of aromatic compounds as carbon sources. Previous reports have shown a preference for benzoate when this bacterium grows on binary mixtures composed of this aromatic compound and 4-hydroxybenzoate or phenol. However, this observation has not been extended to other aromatic mixtures resembling a more archetypal context. We carried out a systematic study on the substrate preference of C. pinatubonensis JMP134 growing on representative aromatic compounds channeled through different catabolic pathways described in aerobic bacteria. Growth tests of nearly the entire set of binary combinations and in mixtures composed of 5 or 6 aromatic components showed that benzoate and phenol were always the preferred and deferred growth substrates, respectively. This pattern was supported by kinetic analyses that showed shorter times to initiate consumption of benzoate in aromatic compound mixtures. Gene expression analysis by real-time reverse transcription-PCR (RT-PCR) showed that, in all mixtures, the repression by benzoate over other catabolic pathways was exerted mainly at the transcriptional level. Additionally, inhibition of benzoate catabolism suggests that its multiple repressive actions are not mediated by a sole mechanism, as suggested by dissimilar requirements of benzoate degradation for effective repression in different aromatic compound mixtures. The hegemonic preference for benzoate over multiple aromatic carbon sources is not explained on the basis of growth rate and/or biomass yield on each single substrate or by obvious chemical or metabolic properties of these aromatic compounds. PMID:25795675

  2. Modeling non-isothermal intermetallic layer growth in the 63Sn-37Pb/Cu system

    SciTech Connect

    Vianco, P.T.; Hopkins, P.L.; Erickson, K.L.; Frear, D.R.; Davidson, R.

    1996-12-31

    A model describing diffusion-controlled growth of multiple intermetallic layers and the displacement of the interfaces between layers was developed and implemented in a 1-D computer code based on method-of-lines. The code was applied to analysis of intermetallic layer growth in isothermal solder aging experiments performed with 100 Sn/Cu and 63Sn-37Pb/Cu solder-substrate systems. Analyses indicated that intermetallic layer growth was consistent with a bulk diffusion mechanism involving Cu and/or Sn. In this work, nonisothermal solder-aging experiments were done with the 63Sn- 37Pb/Cu system using two temperature histories (4 cycles/day between 223-443 K, and 72 cycles/day between 223-443 K). Isothermal experiments were also done at 443 K. Thickness of Cu{sub 3}Sn and Cu{sub 6}Sn{sub 5} intermetallic layers were determined vs time for each temperature history. An updated version of the model and code were used to predict the intermetallic layer growth. Arrhenius expressions for diffusion coefficients in both Cu3Sn and Cu6Sn5 layers were determined. Agreement between prediction and experiment was generally good. In some cases, predicted layer growth was less than experiment, but within error. This paper describes the nonisothermal experiments and a comparison of predicted and observed layer growth vs time.

  3. Thermal Stability of Intermetallic Phases in Fe-rich Fe-Cr-Ni-Mo Alloys

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Tan, Lizhen; Busby, Jeremy T.

    2015-09-01

    Understanding the thermal stability of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys is critical to alloy design and application of Mo-containing austenitic steels. Coupled with thermodynamic modeling, the thermal stability of intermetallic Chi and Laves phases in two Fe-Cr-Ni-Mo alloys was investigated at 1273 K, 1123 K, and 973 K (1000 °C, 850 °C, and 700 °C) for different annealing times. The morphologies, compositions, and crystal structures of the precipitates of the intermetallic phases were carefully examined by scanning electron microscopy, electron probe microanalysis, X-ray diffraction, and transmission electron microscopy. Two key findings resulted from this study. First, the Chi phase is stable at high temperature, and with the decreasing temperature it transforms into the Laves phase that is stable at low temperature. Secondly, Cr, Mo, and Ni are soluble in both the Chi and Laves phases, with the solubility of Mo playing a major role in the relative stability of the intermetallic phases. The thermodynamic models that were developed were then applied to evaluating the effect of Mo on the thermal stability of intermetallic phases in type 316 and NF709 stainless steels.

  4. An MHD heat source based on intermetallic reactions

    SciTech Connect

    Sadjian, H.; Zavitsanos, P. ); Marston, C.H. )

    1991-05-06

    The main objective of this program was the development of an MHD heat source of potential use in Space - Based Multi Megawatt, MHD Power Systems. The approach is based on extension of high temperature chemical/ion release technology developed by the General Sciences, Incorporated (GSI) team and successfully applied in other Space Applications. Solid state reactions have been identified which can deliver energy densities and electrons in excess of those from high energy explosives as well as other conventional fuels. The use of intermetallic reactions can be used to generate hot hydrogen plasma from the reaction, to create a high level of seedant ionization, can be packaged as a cartridge type fuels for discrete pulses. The estimated weight for energizing a (100 MW - 1000 sec) Pulsed MHD Power System can range from 12 to 25 {times} 10{sup 3} kg depending on reaction system and strength of the magnetic field. The program consisted of two major tasks with eight subtasks designed to systematically evaluate these concepts in order to reduce fuel weight requirements. Laboratory measurements on energy release, reaction product identification and levels of ionization were conducted in the first task to screen candidate fuels. The second task addressed the development of a reaction chamber in which conductivity, temperature and pressure were measured. Instrumentation was developed to measure these parameters under high temperature pulsed conditions in addition to computer programs to reduce the raw data. Measurements were conducted at GSI laboratories for fuel weights of up to 120 grams and at the Franklin Research Center* for fuel weights up to 1 kilogram. The results indicate that fuel weight can be scaled using modular packaging. Estimates are presented for fuel weight requirements. 15 refs.

  5. Pressure-Induced Valance change in Ytterbium Organometallic Molecule Cp*2Yb(4,4'-Me2-bipy) and Ytterbium intermetallic YbCuGa

    NASA Astrophysics Data System (ADS)

    Nasreen, Farzana; Antonio, Daniel; Cornelius, Andrew; Booth, Corwin; Torikachvili, Milton; Xiao, Yuming

    2013-06-01

    We report on high pressure (0-15.3 GPa) x-ray absorption measurements in partial fluorescence yield mode (PFY-XAS) on two different kinds of Kondo systems - an organometallic molecular system Cp*2Yb(4,4'-Me2-bipy)[Cp*=C5Me5, bipy=(NC5H4)2 and Me = CH3] and an intermetallic YbCuGa system. In the organometallic system, similar to the mixed valency in intermetallic Yb Kondo systems, the CASSCF calculations indicate that the intermediate valence in the ground state is due to a configuration interaction between the open-shell [4f?13??* 1 ] and the closed-shell [4f??14?*0 ] spin-singlet states. Our analysis for Cp*2Yb(4,4'-Me2-bipy) shows that with increase in pressure the overall valency increases from 2.77 at 2.7 GPa to 2.97 at 15.3 GPa. A considerable change in the slope of valency as function of pressure is observed at ~3.26 GPa suggesting a valance transition. The Kondo effect in such molecular compounds is intrinsic and provides a well defined nanoscale system to test the effect of size on the strongly correlated behavior. In the YbCuGa bulk system, the increase in pressure delocalizes the system and pushes it from valency of ~2.68 at ambient pressure to ~2.9 at 14.0 GPa.

  6. Li{sub x}Cu{sub 6}Sn{sub 5} (0intermetallic insertion electrode for rechargeable lithium batteries.

    SciTech Connect

    Kepler, K. D.; Vaughey, J. T.; Thackeray, M.; Chemical Engineering

    1999-07-01

    It has been discovered that lithium can be inserted into the intermetallic compound Cu{sub 6}Sn{sub 5} in a two-phase reaction to yield the product Li{sub x}Cu{sub 6}Sn{sub 5} (x{approx}13). This finding has important implications for designing new intermetallic insertion electrodes (anodes) for rechargeable lithium batteries. The theoretical capacity of Li{sub x}Cu{sub 6}Sn{sub 5} derived from the eta-phase, {eta}-Cu{sub 6}Sn{sub 5}, with a NiAs-type structure is 358 mAh/g for x{sub max}=13, which corresponds to a fully lithiated composition Li{sub 2.17}CuSn{sub 0.83}; this capacity is close to the theoretical capacity of lithiated graphite LiC{sub 6} (372 mAh/g). The reaction occurs at approximately 0.4 V vs. lithium metal. The best cycling efficiency is obtained when the end voltage is restricted to 200 mV above the potential of lithium metal. A mechanism is proposed for the insertion of lithium into {eta}-Cu{sub 6}Sn{sub 5}.

  7. Insight into structural, mechanical, electronic and thermodynamic properties of intermetallic phases in Zr-Sn system from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Liu, Shuai; Zhan, Yongzhong; Wu, Junyan; Wei, Xuanchen

    2015-11-01

    The structural, phase stabilities, mechanical, electronic and thermodynamic properties of intermetallic phases in Zr-Sn system are investigated by using first-principles method. The equilibrium lattice constants, enthalpy of formation (?Hform) and elastic constants are obtained and compared with available experimental and theoretical data. The configuration of Zr4Sn is measured with reasonable precision. The ?Hform of five hypothetical structures are obtained in order to find possible metastable phase for Zr-Sn system. The mechanical properties, including bulk modulus, shear modulus, Young's modulus and Poisson's ratio, are calculated by Voigt-Reuss-Hill approximation and the Zr5Sn4 and Zr5Sn3 show excellent mechanical properties. The electronic density of states for Zr5Sn4, Zr5Sn3 and cP8-Zr3Sn are calculated to further investigate the stability of intermetallic compounds. Through the quasi-harmonic Debye model, the Debye temperature, heat capacity and thermal expansion coefficient under temperature of 0-300 K and pressure of 0-50 GPa for Zr5Sn3 and Zr5Sn4 are deeply investigated.

  8. Chemical bonding in equiatomic cerium intermetallics - The case of CeMgSn, CePdSn, and CeMgPb

    NASA Astrophysics Data System (ADS)

    Matar, Samir F.; Pöttgen, Rainer

    2015-10-01

    The electronic and magnetic structures and the properties of chemical bonding in isopointal CeMgSn and CePdSn (both phases belong to the family of TiNiSi related intermetallics, space group Pnma) and CeMgPb belonging to the family of CeScSi intermetallics, space group I4/mmm, have been investigated within the density functional theory (DFT). The charge analyses indicate negatively charged tin and lead leading to assign the compounds as stannides and plumbides, as also illustrated by the mapping of the electron localization function ELF. Calculations within spin-degenerate non-magnetic spin-polarized ferro- (SP-F) and SP-antiferromagnetic configurations led to assign a major role of Ce 4f states in the onset of ordered moments within SP-AF ground states from energy differences. Chemical bonding analyses from crystal orbital overlap populations revealed the strongest interactions for Ce-Sn in CeMgSn, Ce-Pb in CeMgPb, and Ce-Pd in CePdSn.

  9. Mechanical properties of the cast intermetallic alloy Ti-43Al-7(Nb,Mo)-0.2B (at %) after heat treatment

    NASA Astrophysics Data System (ADS)

    Imayev, V. M.; Imayev, R. M.; Khismatullin, T. G.

    2008-05-01

    A new approach to obtaining fine-grained structure in intermetallic-compound alloys such as ?-TiAl + ?2-Ti3Al has been suggested. This approach is based on the use of alloys that solidify as the ? phase, which contain ?-stabilizing additives such as Nb and Mo and are characterized by the small size of crystallites already in the cast state; in these alloys, a simple heat treatment makes it possible to substantially decrease the fraction of the lamellar component and to increase the content of the ?( B2) phase. It is shown on the example of the Ti-43Al-7(Nb,Mo)-0.2B (at %) alloy that this heat treatment ensures superplastic properties in the material in the temperature range of T = 1050-1130°C at a deformation rate dot \\varepsilon = 1.7 × 10-4 K-1. Under these temperature-strain-rate conditions, relative elongations such as ? = 160-230% and low flow stresses such as ? = 36-100 MPa characteristic of superplastic flow have been obtained. It has been shown for the first time for the intermetallic ?-TiAl + ga2-Ti3Al alloy that a sheet semifinished product cut out from an ingot subjected only to heat treatment can have plasticity acceptable for press forming.

  10. Intermetallic insertion electrodes with a zinc blende-type structure for Li batteries : a study of Li{sub x}InSb (0 {le} x {lt} 3).

    SciTech Connect

    Vaughey, J. T.; O'Hara, J.; Thackeray, M. M.; Chemical Engineering

    2000-01-01

    The intermetallic compound InSb with a zinc blende-type (diamond) structure has been investigated as a host structure for lithium. After one break-in cycle, it appears that lithium can be inserted electrochemically into the structure in a two-step process to the approximate composition Li{sub 2}InSb. X-ray diffraction analysis showed that further lithiation of Li{sub 2}InSb displaces In from the structure to yield a closely related Li{sub 3}Sb-type structure. The electrochemical reaction that occurs between 1.2 and 0.5 V is reversible. The cubic unit cell expands isotropically by only 5.6% upon Li insertion to the end member Li{sub 2+x}In{sub 1-x}Sb at x{approx}0.5. This finding has implications for developing commercially attractive intermetallic insertion electrodes with zinc blende-type structures for lithium-ion batteries.

  11. Distinction between Nominal Compounds and Nominal Phrases 

    E-print Network

    Chen, Xiaoming

    2012-11-28

    Compounding in English is a rather complex word-formation process and it is intensively discussed in the linguistic literature. However, there remain several unsolved problems: the definition of ‘compound’, the classifications ...

  12. 4f bands in Ce heavy fermions and mixed valent compounds at T {much_gt} T{sub K}

    SciTech Connect

    Andrews, A.B.; Joyce, J.J.; Arko, A.J.; Thompson, J.D.; Tang, J.; Fisk, Z.; Lawrence, J.M.; Riseborough, P.; Canfield, P.C.

    1994-08-01

    We report evidence of 4f band character in Ce 4f states at {Tau}{much_gt}{Tau}{sub K} using the technique of high-resolution angle-resolved resonant photoemission. The Ce intermetallic compound CePt{sub +x} was grown and studied in situ by the method of MBE and was characterized by LEED, XPS and XAS. These new findings would suggest a need for a reexamination of 4f photoemission in Ce compounds.

  13. Method of treating intermetallic alloy hydrogenation/oxidation catalysts for improved impurity poisoning resistance, regeneration and increased activity

    DOEpatents

    Wright, Randy B. (Idaho Falls, ID)

    1992-01-01

    Alternate, successive high temperature oxidation and reduction treatments, in either order, of intermetallic alloy hydrogenation and intermetallic alloy oxidation catalysts unexpectedly improves the impurity poisoning resistance, regeneration capacity and/or activity of the catalysts. The particular alloy, and the final high temperature treatment given alloy (oxidation or reduction) will be chosen to correspond to the function of the catalyst (oxidation or hydrogenation).

  14. Intermetallic negative electrodes for non-aqueous lithium cells and batteries

    DOEpatents

    Thackeray, Michael M.; Vaughey, John T.; Johnson, Christopher S.; Fransson, Linda M.; Edstrom, Ester Kristina; Henriksen, Gary

    2004-05-04

    A method of operating an electrochemical cell is disclosed. The cell has an intermetallic negative electrode of Cu.sub.6-x M.sub.x Sn.sub.5, wherein x is .ltoreq.3 and M is one or more metals including Si and a positive electrode containing Li in which Li is shuttled between the positive electrode and the negative electrode during charge and discharge to form a lithiated intermetallic negative electrode during charge. The voltage of the electrochemical cell is controlled during the charge portion of the charge-discharge cycles so that the potential of the lithiated intermetallic negative electrode in the fully charged electrochemical cell is less than 0.2 V but greater than 0 V versus metallic lithium.

  15. Formation of Intermetallic Ni-Al Coatings by Mechanical Alloying with Different Intensities

    NASA Astrophysics Data System (ADS)

    Zadorozhnyy, V. Yu.; Kaloshkin, S. D.; Churyukanova, M. N.; Borisova, Yu. V.

    2013-04-01

    Intermetallic Ni-Al coatings on the Ni substrate were prepared by the mechanical alloying (MA) method in mechanical activators of vibratory and planetary type. It was found that coatings that were fabricated in a high-energy (planetary) activator in comparison with those fabricated in a low-energy (vibratory) activator are more homogeneous, have higher density, and experience better adhesion to the substrate. It was shown that different intermetallic phases (NiAl, NiAl3, and Ni2Al3) can form directly during the MA treatment in the planetary activator.

  16. Microstructure and Mechanical Properties of the Ti-45Al-5Fe Intermetallic Alloy

    NASA Astrophysics Data System (ADS)

    Nazarova, T. I.; Imayev, V. M.; Imayev, R. M.

    2015-10-01

    Microstructure including changes in the phase composition and mechanical compression properties of the Ti-45Al-5Fe (at.%) intermetallic alloy manufactured by casting and subjected to homogenization annealing are investigated as functions of the temperature. The initial alloy has a homogeneous predominantly lamellar structure with relatively small size of colonies of three intermetallic phases: ?(TiAl), ?2(Al2FeTi), and ?2(Ti3Al) in the approximate volume ratio 75:20:5. Compression tests have revealed the enhanced strength at room temperature and the improved hot workability at 800°C compared to those of TNM alloys of last generation.

  17. High-Strength, Superelastic Compounds

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm; Noebe, Ronald; Dellacorte, Christopher; Bigelow, Glen; Thomas, Fransua

    2013-01-01

    In a previous disclosure, the use of 60- NiTiNOL, an ordered intermetallic compound composed of 60 weight percent nickel and 40 weight percent titanium, was investigated as a material for advanced aerospace bearings due to its unique combination of physical properties. Lessons learned during the development of applications for this material have led to the discovery that, with the addition of a ternary element, the resulting material can be thermally processed at a lower temperature to attain the same desirable hardness level as the original material. Processing at a lower temperature is beneficial, not only because it reduces processing costs from energy consumption, but because it also significantly reduces the possibility of quench cracking and thermal distortion, which have been problematic with the original material. A family of ternary substitutions has been identified, including Hf and Zr in various atomic percentages with varying concentrations of Ni and Ti. In the present innovation, a ternary intermetallic compound consisting of 57.6 weight percent Ni, 39.2 weight percent Ti, and 3.2 weight percent Hf (54Ni-45Ti-1Hf atomic percent) was prepared by casting. In this material, Hf substitutes for some of the Ti atoms in the material. In an alternate embodiment of the innovation, Zr, which is close in chemical behavior to Hf, is used as the substitutional element. With either substitution, the solvus temperature of the material is reduced, and lower temperatures can be used to obtain the necessary hardness values. The advantages of this innovation include the ability to solution-treat the material at a lower temperature and still achieve the required hardness for bearings (at least 50 Rockwell C) and superelastic behavior with recoverable strains greater than 2%. Most structural alloys will not return to their original shape after being deformed as little as 0.2% (a tenth of that possible with superelastic materials like 60 NiTiNOL). Because lower temperatures can be used in the heat treatment process, less energy will be consumed, and there will be less dimensional distortion and quench cracking. This results in fewer scrap parts, less material waste from large amounts of material removal, and fewer machining steps to rework parts that are out of specification. This material has a combination of properties that have been previously unobtainable. The material has a Young s modulus of approximately 95 GPa (about half that of conventional steels), moderate density (10 to 15% lower than conventional steels), excellent corrosion resistance, and high hardness (58 to 62 HRC). These properties make this material uniquely suited for advanced bearings.

  18. Bio-sensitive activities of coordination compounds containing 1,10-phenanthroline as co-ligand: Synthesis, structural elucidation and DNA binding properties of metal(II) complexes

    NASA Astrophysics Data System (ADS)

    Raman, Natarajan; Mahalakshmi, Rajkumar; Mitu, Liviu

    2014-10-01

    Present work reports the DNA binding and cleavage characteristics of a series of mixed-ligand complexes having the composition [M(L)(phen)2]Cl2 (where M = Cu(II), Ni(II), Co(II) and Zn(II) and phen as co-ligand) in detail. Their structural features and other properties have been deduced from their elemental analyses, magnetic susceptibility and molar conductivity as well as from IR, UV-Vis, 1H NMR and EPR spectral studies. The UV-Vis, magnetic susceptibility and EPR spectral data of metal complexes suggest an octahedral geometry. The binding properties of these complexes with calf thymus DNA (CT-DNA) have been explored using electronic absorption spectroscopy, viscosity measurement, cyclic voltammetry and differential pulse voltammetry. The DNA-binding constants for Cu(II), Ni(II), Co(II), and Zn(II) complexes are 6.14 × 105 M-1, 1.8 × 105 M-1, 6.7 × 104 M-1 and 2.5 × 104 M-1 respectively. Detailed analysis reveals that these complexes interact with DNA through intercalation binding. Nuclease activity has also been investigated by gel electrophoresis. Moreover, the synthesized Schiff base and its mixed-ligand complexes have been screened for antibacterial and antifungal activities. The data reveal that the complexes exhibit higher activity than the parent ligand.

  19. Quaternary borocarbides: Relatively high Tc intermetallic superconductors and magnetic superconductors

    NASA Astrophysics Data System (ADS)

    Mazumdar, Chandan; Nagarajan, R.

    2015-07-01

    Discovery of superconductivity in Y-Ni-B-C (Tc ? 13 K) gave rise to the class of quaternary rare earth transition metal borocarbide superconductors. Before the discovery of Fe-based arsenide superconductors, this was the only class of materials containing a magnetic element, viz., Ni, yet exhibiting Tcs > 5 K. Many members of this class have high Tc (>10 K). Tc of ?23 K in Y-Pd-B-C system equaled the record Tc known then, for intermetallics. Another feature that sets this class apart, is the occurrence of the exotic phenomenon of coexistence of superconductivity and magnetism at temperatures >5 K. Availability of large and electronically 'clean' single crystals and large Ginzburg-Landau (G-L) parameter, ?, have enabled detailed investigation of nonlocal effects of superconductivity. Intermediate value of upper critical field Hc2, has enabled detailed investigation of superconductivity in this class, over the complete H-T plane. This has revealed details of anisotropy of superconductivity (e.g., a fourfold symmetry in the square a-b plane is found) and raised questions on the symmetry of order parameter. After a brief outline of the discovery, this article gives a summary of the materials and highlights of superconducting properties of this class of materials. Interesting results from studies, using various techniques, on YNi2B2C (Tc ? 15 K) and LuNi2B2C (Tc ? 16 K) are presented, including observation of unusual square vortex lattice and its structural transformation with H and T. With conduction electrons involved in the magnetic order of this class of superconductors, the interplay of superconductivity and magnetism is intimate in these magnetic superconductors. With Tc (?11 K) > TN (?6 K) in ErNi2B2C, Tc (?8 K) = TN (?8 K) in HoNi2B2C and Tc (?6 K) < TN (?11 K) in DyNi2B2C, and with other parameters being favorable as mentioned earlier, this class of magnetic superconductors have become ideal materials to investigate the coexistence phenomenon. A few major results on these are presented.

  20. Polybenzimidazole compounds

    DOEpatents

    Klaehn, John R. (Idaho Falls, ID); Peterson, Eric S. (Idaho Falls, ID); Wertsching, Alan K. (Idaho Falls, ID); Orme, Christopher J. (Shelley, ID); Luther, Thomas A. (Idaho Falls, ID); Jones, Michael G. (Pocatello, ID)

    2010-08-10

    A PBI compound that includes imidazole nitrogens, at least a portion of which are substituted with an organic-inorganic hybrid moiety. At least 85% of the imidazole nitrogens may be substituted. The organic-inorganic hybrid moiety may be an organosilane moiety, for example, (R)Me.sub.2SiCH.sub.2--, where R is selected from among methyl, phenyl, vinyl, and allyl. The PBI compound may exhibit similar thermal properties in comparison to the unsubstituted PBI. The PBI compound may exhibit a solubility in an organic solvent greater than the solubility of the unsubstituted PBI. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may occur at about room temperature and/or at about atmospheric pressure. Substituting may use at least five equivalents in relation to the imidazole nitrogens to be substituted or, preferably, about fifteen equivalents.

  1. Polybenzimidazole compounds

    DOEpatents

    Klaehn, John R. (Idaho Falls, ID); Peterson, Eric S. (Idaho Falls, ID); Orme, Christopher J. (Shelley, ID); Jones, Michael G. (Chubbuck, ID); Wertsching, Alan K. (Idaho Falls, ID); Luther, Thomas A. (Idaho Falls, ID); Trowbridge, Tammy L. (Idaho Falls, ID)

    2011-11-22

    A PBI compound includes imidazole nitrogens at least a portion of which are substituted with a moiety containing a carbonyl group, the substituted imidazole nitrogens being bonded to carbon of the carbonyl group. At least 85% of the nitrogens may be substituted. The carbonyl-containing moiety may include RCO--, where R is alkoxy or haloalkyl. The PBI compound may exhibit a first temperature marking an onset of weight loss corresponding to reversion of the substituted PBI that is less than a second temperature marking an onset of decomposition of an otherwise identical PBI compound without the substituted moiety. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may use more than 5 equivalents in relation to the imidazole nitrogens to be substituted.

  2. New members of a class of iron-thiolate-nitrosyl compounds: trinuclear iron-thiolate-nitrosyl complexes containing Fe(3)S(6) core.

    PubMed

    Hsu, I-Jui; Hsieh, Chung-Hung; Ke, Shyue-Chu; Chiang, Kuo-An; Lee, Jenn-Min; Chen, Jin-Ming; Jang, Ling-Yun; Lee, Gene-Hsiang; Wang, Yu; Liaw, Wen-Feng

    2007-02-01

    The neutral trinuclear iron-thiolate-nitrosyl, [(ON)Fe(mu-S,S-C(6)H(4))](3) (1), and its oxidation product, [(ON)Fe(mu-S,S-C(6)H(4))](3)[PF(6)] (2), were synthesized and characterized by IR, X-ray diffraction, X-ray absorption, electron paramagnetic resonance (EPR), and magnetic measurement. The five-coordinated, square pyramidal geometry around each iron atom in complex 1 remains intact when complex 1 is oxidized to yield complex 2. Magnetic measurements and EPR results show that there is only one unpaired electron in complex 1 (S(total) = 1/2) and no unpaired electron (S(total) = 0) in 2. The detailed geometric comparisons between complexes 1 and 2 provide understanding of the role that the unpaired electron plays in the chemical bonding of this trinuclear complex. Significant shortening of the Fe-Fe, Fe-N, and Fe-S distances around Fe(1) is observed when complex 1 is oxidized to 2. This result implicates that the removal of the unpaired electron does induce the strengthening of the Fe-Fe, Fe-N, and Fe-S bonds in the Fe(1) fragment. A significant shift of the nuNO stretching frequency from 1751 cm(-1) (1) to 1821, 1857 cm(-1) (2) (KBr) also indicates the strengthening of the N-O bonds in complex 2. The EPR, X-ray absorption, magnetic measurements, and molecular orbital calculations lead to the conclusion that the unpaired electron in complex 1 is mainly allocated in the Fe(1) fragment and is best described as {Fe(1)NO}7, so that the unpaired electron is delocalized between Fe and NO via d-pi* orbital interaction; some contributions from [Fe(2)NO] and [Fe(3)NO] as well as the thiolates associated with Fe (1) are also realized. According to MO calculations, the spin density of complex 1 is predominantly located at the Fe atoms with 0.60, -0.15, and 0.25 at Fe(1), Fe(2), and Fe(3), respectively. PMID:17263396

  3. Reliable and cost effective design of intermetallic Ni2Si nanowires and direct characterization of its mechanical properties.

    PubMed

    Han, Seung Zeon; Kang, Joonhee; Kim, Sung-Dae; Choi, Si-Young; Kim, Hyung Giun; Lee, Jehyun; Kim, Kwangho; Lim, Sung Hwan; Han, Byungchan

    2015-01-01

    We report that a single crystal Ni2Si nanowire (NW) of intermetallic compound can be reliably designed using simple three-step processes: casting a ternary Cu-Ni-Si alloy, nucleate and growth of Ni2Si NWs as embedded in the alloy matrix via designing discontinuous precipitation (DP) of Ni2Si nanoparticles and thermal aging, and finally chemical etching to decouple the Ni2Si NWs from the alloy matrix. By direct application of uniaxial tensile tests to the Ni2Si NW we characterize its mechanical properties, which were rarely reported in previous literatures. Using integrated studies of first principles density functional theory (DFT) calculations, high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDX) we accurately validate the experimental measurements. Our results indicate that our simple three-step method enables to design brittle Ni2Si NW with high tensile strength of 3.0?GPa and elastic modulus of 60.6?GPa. We propose that the systematic methodology pursued in this paper significantly contributes to opening innovative processes to design various kinds of low dimensional nanomaterials leading to advancement of frontiers in nanotechnology and related industry sectors. PMID:26456769

  4. Characterization of Nanostructured NbSi2 Intermetallic Coatings Obtained by Plasma Spraying of Mechanically Alloyed Powders

    NASA Astrophysics Data System (ADS)

    Yazdani, Zohreh; Karimzadeh, Fathallah; Abbasi, Mohammad-Hasan

    2015-08-01

    Nanostructured NbSi2 powders plasma sprayed on to Ti-6Al-4V substrates were characterized in this research. After preparation of the nanostructured NbSi2 powders by mechanical alloying of an Nb-Si powder mixture, agglomeration was performed to obtain a particle size suitable for spraying. The agglomerated powders were then sprayed by atmospheric plasma spraying. Structural transformation of the powders and morphological and mechanical changes of the coatings were examined by use of x-ray diffraction analysis, scanning electron microscopy, energy dispersive spectroscopy, and microhardness testing. During milling, NbSi2 intermetallic with a grain size of approximately 15 nm was gradually formed. After plasma spraying, a coating of hardness 550 ± 8 HV with a uniform nanocrystalline structure, low oxide content, low porosity, and a good adhesion to the substrate was obtained. No phase change occurred after spraying and the NbSi2 compound remained nanostructured with a grain size of approximately 82 nm.

  5. Reliable and cost effective design of intermetallic Ni2Si nanowires and direct characterization of its mechanical properties

    NASA Astrophysics Data System (ADS)

    Han, Seung Zeon; Kang, Joonhee; Kim, Sung-Dae; Choi, Si-Young; Kim, Hyung Giun; Lee, Jehyun; Kim, Kwangho; Lim, Sung Hwan; Han, Byungchan

    2015-10-01

    We report that a single crystal Ni2Si nanowire (NW) of intermetallic compound can be reliably designed using simple three-step processes: casting a ternary Cu-Ni-Si alloy, nucleate and growth of Ni2Si NWs as embedded in the alloy matrix via designing discontinuous precipitation (DP) of Ni2Si nanoparticles and thermal aging, and finally chemical etching to decouple the Ni2Si NWs from the alloy matrix. By direct application of uniaxial tensile tests to the Ni2Si NW we characterize its mechanical properties, which were rarely reported in previous literatures. Using integrated studies of first principles density functional theory (DFT) calculations, high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDX) we accurately validate the experimental measurements. Our results indicate that our simple three-step method enables to design brittle Ni2Si NW with high tensile strength of 3.0?GPa and elastic modulus of 60.6?GPa. We propose that the systematic methodology pursued in this paper significantly contributes to opening innovative processes to design various kinds of low dimensional nanomaterials leading to advancement of frontiers in nanotechnology and related industry sectors.

  6. A Density Functional Investigation of the Structural, Elastic and Thermodynamic Properties of the Au-Sn Intermetallics

    NASA Astrophysics Data System (ADS)

    Tian, Yali; Zhou, Wei; Wu, Ping

    2015-11-01

    The structural, elastic and thermodynamic properties of AuSn, AuSn2, AuSn4 and Au5Sn are investigated by first-principles calculations. Through calculation, the four intermetallic compounds are all thermodynamically stable and AuSn has the largest negative formation energy. They are all ductile, anisotropic and have low stiffness. In addition, Au5Sn is different from the others, since it is elastically unstable and possesses the highest anisotropy and hardness, mainly due to the strong Au-Au covalent bonds. Based on the quasi-harmonic Debye model, the thermodynamic properties of AuSn, such as the volume, thermal expansion coefficient, bulk modulus, Debye temperature and heat capacity with temperature variation in the range of 0-20 GPa, are obtained. The results indicate the increments of both the volume and thermal expansion coefficient with temperature become slow when the pressure is more than 10 GPa, and the bulk modulus and Debye temperature are almost constant below 100 K and then become linear decreasing as temperature increases. It is found that the influence of temperature on heat capacity is much more obvious than that of pressure.

  7. Reliable and cost effective design of intermetallic Ni2Si nanowires and direct characterization of its mechanical properties

    PubMed Central

    Han, Seung Zeon; Kang, Joonhee; Kim, Sung-Dae; Choi, Si-Young; Kim, Hyung Giun; Lee, Jehyun; Kim, Kwangho; Lim, Sung Hwan; Han, Byungchan

    2015-01-01

    We report that a single crystal Ni2Si nanowire (NW) of intermetallic compound can be reliably designed using simple three-step processes: casting a ternary Cu-Ni-Si alloy, nucleate and growth of Ni2Si NWs as embedded in the alloy matrix via designing discontinuous precipitation (DP) of Ni2Si nanoparticles and thermal aging, and finally chemical etching to decouple the Ni2Si NWs from the alloy matrix. By direct application of uniaxial tensile tests to the Ni2Si NW we characterize its mechanical properties, which were rarely reported in previous literatures. Using integrated studies of first principles density functional theory (DFT) calculations, high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDX) we accurately validate the experimental measurements. Our results indicate that our simple three-step method enables to design brittle Ni2Si NW with high tensile strength of 3.0?GPa and elastic modulus of 60.6?GPa. We propose that the systematic methodology pursued in this paper significantly contributes to opening innovative processes to design various kinds of low dimensional nanomaterials leading to advancement of frontiers in nanotechnology and related industry sectors. PMID:26456769

  8. Ab initio studies of the structural, elastic, electronic and thermal properties of NiTi2 intermetallic

    NASA Astrophysics Data System (ADS)

    Toprek, Dragan; Belosevic-Cavor, Jelena; Koteski, Vasil

    2015-10-01

    First principles calculations were performed in the framework of the density functional theory (DFT) using the Full Potential-Linear Augment Plane Wave method (FP-LAPW) within the generalized gradient approximation (GGA) to predict the structural, electronic, elastic and thermal properties of NiTi2 intermetallic compound. By using the Wien2k all-electron code, calculations of the ground state and electronic properties such as lattice constants, bulk modulus, presure derivative of bulk modulus, total energies and density of states were also included. The elastic constants and mechanical properties such as Poisson's ratio, Young's modulus and shear modulus are estimated from the calculated elastic constants of the single crystal. Through the quasi-harmonic Debye model, the preasure and temperature dependences of the linear expansion coefficient, bulk modulus and heat capacity have been investigated. Finally, the Debye temperature has been estimated from the average sound velocity according to the predicted polycrystal bulk properties and from the single crystal elastic constants.

  9. Intermetallic Growth Studies on Sn-Ag-Cu Lead-Free Solder Joints

    E-print Network

    Zhou, Wei

    Intermetallic Growth Studies on Sn-Ag-Cu Lead-Free Solder Joints JOHN H.L. PANG,1,2 LUHUA XU,1 X (IMC) growth behavior plays an important role in solder joint reliability of electronic packaging solders and nickel/gold (Ni/Au) surface finish on BGA solder joint specimen is reported. Digital imaging

  10. Design fundamentals of high temperature composites, intermetallics, and metal-ceramics systems

    SciTech Connect

    Lin, R.Y.; Chang, Y.A.; Reddy, R.G.; Liu, C.T.

    1996-10-01

    Papers collected in this volume contain the most recent findings worldwide on composites, intermetallics, joining of advanced materials and processing of materials. Fundamental issues which are valuable for industrial applications in designing engineering components are addressed. Separate abstracts were prepared for 32 papers in this volume.

  11. Ni.sub.3 Al-based intermetallic alloys having improved strength above 850.degree. C.

    DOEpatents

    Liu, Chain T. (Oak Ridge, TN)

    2000-01-01

    Intermetallic alloys composed essentially of: 15.5% to 17.0% Al, 3.5% to 5.5% Mo, 4% to 8% Cr, 0.04% to 0.2% Zr, 0.04% to 1.5% B, balance Ni, are characterized by melting points above 1200.degree. C. and superior strengths at temperatures above 1000.degree. C.

  12. Investigation of Laser Generation and Detection of Ultrasound in Ceramic Matrix Composites and Intermetallics

    NASA Technical Reports Server (NTRS)

    Ehrlich, Michael J.

    1998-01-01

    The goal of this program is to assess the feasibility of using laser based ultrasonic techniques for inspecting and characterizing materials of interest to NASA, specifically those used in propulsion and turbomachinery applications, such as ceramic composites, metal matrix composites, and intermetallics.

  13. Advances in nanoscale alloys and intermetallics: low temperature solution chemistry synthesis and application in catalysis.

    PubMed

    Jana, Subhra

    2015-10-27

    Based on the bottom-up chemistry techniques, the size, shape, and composition controlled synthesis of nanoparticles can now be achieved uniformly, which is of great importance to the nanoscience community as well as in modern catalysis research. The low-temperature solution-phase synthesis approach represents one of the most attractive strategies and has been utilized to synthesize nanoscale metals, alloys and intermetallics, including a number of new metastable phases. This perspective will highlight the solution-based nanoparticle synthesis techniques, a low-temperature platform, for the synthesis of size and shape-tunable nanoscale transition metals, alloys, and intermetallics from the literature, keeping a focus on the utility of these nanomaterials in understanding the catalysis. For each solution-based nanoparticle synthesis technique, a comprehensive overview has been given for the reported nanoscale metals, alloys, and intermetallics, followed by critical comments. Finally, their enhanced catalytic activity and durability as novel catalysts have been discussed towards several hydrogenation/dehydrogenation reactions and also for different inorganic to organic reactions. Hence, the captivating advantages of this controllable low-temperature solution chemistry approach have several important implications and together with them this approach provides a promising route to the development of next-generation nanostructured metals, alloys, and intermetallics since they possess fascinating properties as well as outstanding catalytic activity. PMID:26477400

  14. Bipolar Mass Spectrometry of Labile Coordination Complexes, Redox Active Inorganic Compounds, and Proteins Using a Glass Nebulizer for Sonic-Spray Ionization

    NASA Astrophysics Data System (ADS)

    Antonakis, Manolis M.; Tsirigotaki, Alexandra; Kanaki, Katerina; Milios, Constantinos J.; Pergantis, Spiros A.

    2013-08-01

    In this study, we report on the development of a novel nebulizer configuration for sonic-spray ionization (SSI) mass spectrometry (MS), more specifically for a version of SSI that is referred to as Venturi easy ambient sonic-spray ionization (V-EASI) MS. The developed nebulizer configuration is based on a commercially available pneumatic glass nebulizer that has been used extensively for aerosol formation in atomic spectrometry. In the present study, the nebulizer was modified in order to achieve efficient V-EASI-MS operation. Upon evaluating this system, it has been demonstrated that V-EASI-MS offers some distinct advantages for the analysis of coordination compounds and redox active inorganic compounds over the predominantly used electrospray ionization (ESI) technique. Such advantages, for this type of compounds, are demonstrated here for the first time. More specifically, a series of labile heptanuclear heterometallic [CuII 6LnIII] clusters held together with artificial amino acid ligands, in addition to easily oxidized inorganic oxyanions of selenium and arsenic, were analyzed. The observed advantages pertain to V-EASI appearing to be a "milder" ionization source than ESI, not requiring electrical potentials for gas phase ion formation, thus eliminating the possibility of unwanted redox transformations, allowing for the "simultaneous" detection of negative and positive ions (bipolar analysis) without the need to change source ionization conditions, and also not requiring the use of syringes and delivery pumps. Because of such features, especially because of the absence of ionization potentials, EASI can be operated with minimal requirements for source parameter optimization. We observed that source temperature and accelerating voltage do not seem to affect labile compounds to the extent they do in ESI-MS. In addition, bipolar analysis of proteins was demonstrated here by acquiring both positive and negative ion mass spectra from the same protein solutions, without the need to independently adjust solution and source conditions in each mode. Finally, the simple and efficient operation of a dual-nebulizer configuration was demonstrated for V-EASI-MS for the first time.

  15. Complex interactions between dioxin-like and non-dioxin-like compounds for in vitro cellular responses: implications for the identification of dioxin exposure biomarkers.

    PubMed

    O'Kane, Anthony A; Elliott, Chris T; Mooney, Mark H

    2014-02-17

    Despite considerable advances in reducing the production of dioxin-like toxicants in recent years, contamination of the food chain still occasionally occurs resulting in huge losses to the agri-food sector and risk to human health through exposure. Dioxin-like toxicity is exhibited by a range of stable and bioaccumulative compounds including polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs), produced by certain types of combustion, and man-made coplanar polychlorinated biphenyls (PCBs), as found in electrical transformer oils. While dioxinergic compounds act by a common mode of action making exposure detection biomarker based techniques a potentially useful tool, the influence of co-contaminating toxicants on such approaches needs to be considered. To assess the impact of possible interactions, the biological responses of H4IIE cells to challenge by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in combination with PCB-52 and benzo-a-pyrene (BaP) were evaluated by a number of methods in this study. Ethoxyresorufin-O-deethylase (EROD) induction in TCDD exposed cells was suppressed by increasing concentrations of PCB-52, PCB-153, or BaP up to 10 ?M. BaP levels below 1 ?M suppressed TCDD stimulated EROD induction, but at higher concentrations, EROD induction was greater than the maximum observed when cells were treated with TCDD alone. A similar biphasic interaction of BaP with TCDD co-exposure was noted in the AlamarBlue assay and to a lesser extent with PCB-52. Surface enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI-TOF) profiling of peptidomic responses of cells exposed to compound combinations was compared. Cells co-exposed to TCDD in the presence of BaP or PCB-52 produced the most differentiated spectra with a substantial number of non-additive interactions observed. These findings suggest that interactions between dioxin and other toxicants create novel, additive, and non-additive effects, which may be more indicative of the types of responses seen in exposed animals than those of single exposures to the individual compounds. PMID:24397434

  16. Involvement of 5f-orbitals in the bonding and reactivity of organoactinide compounds: thorium(IV) and uranium(IV) bis (hydrazonato) complexes

    SciTech Connect

    Cantat, Thibault; Graves, Christopher R; Morris, David E; Kiplinger, Jaqueline L

    2008-01-01

    Migratory insertion of diphenyldiazomethane into both metal-carbon bonds of the bis(alkyl) and bis(aryl) complexes (C5Me5)2AnR2 yields the first f-element bis(hydrazonato) complexes (C5Me5)2An[2-(N,N')-R-N-NCPh2]2 [An = Th, R = CH3 (18), PhCH2 (15), Ph (16); An = U, R = CH3 (17), PhCH2 (14)], which have been characterized by a combination of spectroscopy, electrochemistry, and X-ray crystallography. The two hydrazonato ligands adopt an 2-coordination mode leading to 20-electron (for Th) and 22-electron (for U) complexes that have no transition-metal analogues. In fact, reaction of (C5H5)2Zr(CH3)2 or (C5Me5)2Hf(CH3)2 with diphenyldiazomethane is limited to the formation of the corresponding mono(hydrazonato) complex (C5R5)2M[2-(N,N')-CH3-N-NCPh2](CH3) (M = Zr, R = H or M = Hf, R = CH3). The difference in the reactivities of the group 4 metal complexes and the actinides was used as a unique platform for investigating in depth the role of 5f orbitals on the reactivity and bonding in actinide organometallic complexes. The electronic structure of the (C5H5)2M[2-(N,N')-CH3-N-NCH2]2 (M = Zr, Th, U) model complexes was studied using density functional theory (DFT) calculations and compared to experimental structural, electrochemical, and spectroscopic results. Whereas transition-metal bis(cyclopentadienyl) complexes are known to stabilize three ligands in the metallocene girdle to form saturated (C5H5)2ML3 species, in a bis(hydrazonato) system, a fourth ligand is coordinated to the metal center to give (C5H5)2ML4. DFT calculations have shown that 5f orbitals in the actinide complexes play a crucial role in stabilizing this fourth ligand by stabilizing both the s and p electrons of the two 2-coordinated hydrazonato ligands. In contrast, the stabilization of the hydrazonato ligands was found to be significantly less effective for the putative bis(hydrazonato) zirconium(IV) complex, yielding a higher energy structure. However, the difference in the reactivities of the group 4 metal and actinide complexes does not arise on thermodynamic grounds but is primarily of kinetic origin. Unfavorable steric factors have been ruled out as the sole influence to explain these different behaviors, and electronic factors were shown to govern the reactivity. For the actinides, both the C5H5 and more realistic C5Me5 ligands have been taken into account in computing the energy surface. The reaction profile for the C5Me5 system differs from that with the C5H5 ligand by a uniform shift of 5 kcal/mol in the relative energies of the transition state and products. The insertion of a second diazoalkane molecule into the sole metal-carbon bond in the mono(hydrazonato) complexes involves a high energy barrier (20 kcal/mol) for the zirconium(IV) system, whereas the actinides can facilitate the approach of the diazoalkane by coordination (formation of an adduct) and its insertion into the An-C bond with a very low barrier on the potential energy surface.

  17. [Comparative study of the action of O-phenanthroline metal complexes and a number of other compounds on the activity of brain arginase isoforms].

    PubMed

    Navasardiants, D G; Trapeznikova, S S; Novodarova, G N; Davtian, M A

    1985-01-01

    Two isoforms of arginase were isolated from rat brain tissue: isoform I-adsorbed on CM-Sephadex and isoform II-unadsorbed on the sorbent. In samples with arginine as a substrate Km values for isoforms I and II constituted 1.7 X 10(-3) M and 3.8 X 10(-3) M, respectively. EDTA and o-phenanthroline inhibited these both brain arginase isoforms. As shown in experiments with o-phenanthroline metal complex affecting the brain arginase activity some copper complexes were able to inhibit most effectively the activity of the isoform II. Activity of both these isoforms was inhibited also by dithiothreitol, proline and acetaldehyde. Complexes of o-phenanthroline with Co2+ and Fe2+ inhibited only slightly the activity of the isoform II and did not affect the isoform I. These data showed that brain arginase isoforms were markedly distinct in their properties from the ureotelic liver tissue arginase. PMID:4002662

  18. Compound Droplets on Fibers.

    PubMed

    Weyer, Floriane; Ben Said, Marouen; Hötzer, Johannes; Berghoff, Marco; Dreesen, Laurent; Nestler, Britta; Vandewalle, Nicolas

    2015-07-21

    Droplets on fibers have been extensively studied in the recent years. Although the equilibrium shapes of simple droplets on fibers are well established, the situation becomes more complex for compound fluidic systems. Through experimental and numerical investigations, we show herein that compound droplets can be formed on fibers and that they adopt specific geometries. We focus on the various contact lines formed at the meeting of the different phases and we study their equilibrium state. It appears that, depending on the surface tensions, the triple contact lines can remain separate or merge together and form quadruple lines. The nature of the contact lines influences the behavior of the compound droplets on fibers. Indeed, both experimental and numerical results show that, during the detachment process, depending on whether the contact lines are triple or quadruple, the characteristic length is the inner droplet radius or the fiber radius. PMID:26090699

  19. Compound droplets on fibers

    E-print Network

    Weyer, Floriane; Hötzer, Johannes; Berghoff, Marco; Dreesen, Laurent; Nestler, Britta; Vandewalle, Nicolas

    2015-01-01

    Droplets on fibers have been extensively studied in the recent years. Although the equilibrium shapes of simple droplets on fibers are well established, the situation becomes more complex for compound fluidic systems. Through experimental and numerical investigations, we show herein that compound droplets can be formed on fibers and that they adopt specific geometries. We focus on the various contact lines formed at the meeting of the different phases and we study their equilibrium state. It appears that, depending on the surface tensions, the triple contact lines can remain separate or merge together and form quadruple lines. The nature of the contact lines influences the behavior of the compound droplets on fibers. Indeed, both experimental and numerical results show that, during the detachment process, depending on whether the contact lines are triple or quadruple, the characteristic length is the inner droplet radius or the fiber radius.

  20. Activation of Homolytic Si-Zn and Si-Hg Bond Cleavage, Mediated by a Pt(0) Complex, via Novel Pt-Zn and Pt-Hg Compounds.

    PubMed

    Kratish, Yosi; Molev, Gregory; Kostenko, Arseni; Sheberla, Dennis; Tumanskii, Boris; Botoshansky, Mark; Shimada, Shigeru; Bravo-Zhivotovskii, Dmitry; Apeloig, Yitzhak

    2015-09-28

    The thermally stable [(tBuMe2 Si)2 M] (M=Zn, Hg) generate R3 Si(.) radicals in the presence of [(dmpe)Pt(PEt3 )2 ] at 60-80 °C. The reaction proceeds via hexacoordinate Pt complexes, (M=Zn (2 a and 2 b), M=Hg (3 a and 3 b)) which were isolated and characterized. Mild warming or photolysis of 2 or 3 lead to homolytic dissociation of the Pt-MSiR3 bond generating silyl radicals and novel unstable pentacoordinate platinum paramagnetic complexes (M=Zn (5), Hg (6)) whose structures were determined by EPR spectroscopy and DFT calculations. PMID:26288342