Science.gov

Sample records for complex sheet metal

  1. Methodology development for the sustainability process assessment of sheet metal forming of complex-shaped products

    NASA Astrophysics Data System (ADS)

    Pankratov, D. L.; Kashapova, L. R.

    2015-06-01

    A methodology was developed for automated assessment of the reliability of the process of sheet metal forming process to reduce the defects in complex components manufacture. The article identifies the range of allowable values of the stamp parameters to obtain defect-free punching of spars trucks.

  2. Perforating Thin Metal Sheets

    NASA Technical Reports Server (NTRS)

    Davidson, M. E.

    1985-01-01

    Sheets only few mils thick bonded together, punched, then debonded. Three-step process yields perforated sheets of metal. (1): Individual sheets bonded together to form laminate. (2): laminate perforated in desired geometric pattern. (3): After baking, laminate separates into individual sheets. Developed for fabricating conductive layer on blankets that collect and remove ions; however, perforated foils have other applications - as conductive surfaces on insulating materials; stiffeners and conductors in plastic laminates; reflectors in antenna dishes; supports for thermal blankets; lightweight grille cover materials; and material for mockup of components.

  3. Twisting of sheet metals

    NASA Astrophysics Data System (ADS)

    Pham, C. H.; Thuillier, S.; Manach, P. Y.

    2013-12-01

    Twisting of metallic sheets is one particular mode of springback that occurs after drawing of elongated parts, i.e. with one dimension much larger than the two others. In this study, a dedicated device for drawing of elongated part with a U-shaped section has been designed on purpose, in order to obtain reproducible data. Very thin metallic sheet, of thickness 0.15 mm, has been used, so that the maximum length of the part is 100 mm. Two different orientations of the part with respect to the tools have been chosen: either aligned with the tools, or purposefully misaligned by 2°. Several samples were drawn for each configuration, leading to the conclusion that almost no twisting occurs in the first case whereas a significant one can be measured for the second one. In a second step, 2D and 3D numerical simulations within the implicit framework for drawing and springback were carried out. A mixed hardening law associated to von Mises yield criterion represents accurately the mechanical behavior of the material. This paper highlights a comparison of numerical predictions with experiments, e.g. the final shape of the part and the twisting parameter.

  4. On the modelling of complex kinematic hardening and nonquadratic anisotropic yield criteria at finite strains: application to sheet metal forming

    NASA Astrophysics Data System (ADS)

    Grilo, Tiago J.; Vladimirov, Ivaylo N.; Valente, Robertt A. F.; Reese, Stefanie

    2016-02-01

    In the present paper, a finite strain model for complex combined isotropic-kinematic hardening is presented. It accounts for finite elastic and finite plastic strains and is suitable for any anisotropic yield criterion. In order to model complex cyclic hardening phenomena, the kinematic hardening is described by several back stress components. To that end, a new procedure is proposed in which several multiplicative decompositions of the plastic part of the deformation gradient are considered. The formulation incorporates a completely general format of the yield function, which means that any yield function can by employed by following a procedure that ensures the principle of material frame indifference. The constitutive equations are derived in a thermodynamically consistent way and numerically integrated by means of a backward-Euler algorithm based on the exponential map. The performance of the constitutive model is assessed via numerical simulations of industry-relevant sheet metal forming processes (U-channel forming and draw/re-draw of a panel benchmarks), the results of which are compared to experimental data. The comparison between numerical and experimental results shows that the use of multiple back stress components is very advantageous in the description of springback. This holds in particular if one carries out a comparison with the results of using only one component. Moreover, the numerically obtained results are in excellent agreement with the experimental data.

  5. On the modelling of complex kinematic hardening and nonquadratic anisotropic yield criteria at finite strains: application to sheet metal forming

    NASA Astrophysics Data System (ADS)

    Grilo, Tiago J.; Vladimirov, Ivaylo N.; Valente, Robertt A. F.; Reese, Stefanie

    2016-06-01

    In the present paper, a finite strain model for complex combined isotropic-kinematic hardening is presented. It accounts for finite elastic and finite plastic strains and is suitable for any anisotropic yield criterion. In order to model complex cyclic hardening phenomena, the kinematic hardening is described by several back stress components. To that end, a new procedure is proposed in which several multiplicative decompositions of the plastic part of the deformation gradient are considered. The formulation incorporates a completely general format of the yield function, which means that any yield function can by employed by following a procedure that ensures the principle of material frame indifference. The constitutive equations are derived in a thermodynamically consistent way and numerically integrated by means of a backward-Euler algorithm based on the exponential map. The performance of the constitutive model is assessed via numerical simulations of industry-relevant sheet metal forming processes (U-channel forming and draw/re-draw of a panel benchmarks), the results of which are compared to experimental data. The comparison between numerical and experimental results shows that the use of multiple back stress components is very advantageous in the description of springback. This holds in particular if one carries out a comparison with the results of using only one component. Moreover, the numerically obtained results are in excellent agreement with the experimental data.

  6. Horizontal electromagnetic casting of thin metal sheets

    DOEpatents

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1987-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  7. Horizontal electromagnetic casting of thin metal sheets

    DOEpatents

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1988-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  8. Metals Fact Sheet: Yttrium

    SciTech Connect

    1992-09-01

    Yttrium is a metallic element usually included among the rare earth metals, which it resembles chemically and with which it usually occurs in minerals. Yttrium was named after the village of Ytterby in Sweden---the element was discovered in a quarry near the village. This article discusses sources of the element, the world market for the element, and various applications of the material.

  9. Metals fact sheet: Ruthenium

    SciTech Connect

    1996-06-01

    Ruthenium, named after Ruthenia, a province in Western Russia, was discovered in 1827 by Osann in placer ores from Russia`s Ural mountains. A minor platinum group metal (PGM), Ruthenium was the last of the PGMs to be isolated. In 1844, Klaus prepared the first 6 grams of pure ruthenium metal.

  10. Metals fact sheet - lanthanum

    SciTech Connect

    1995-04-01

    Mosander was the first to extract the elusive rare earth, lanthanum, from unrefined cerium nitrate in 1839. The name was derived from the Greek word lanthanein, meaning {open_quotes}to escape notice.{close_quotes} Lanthanum is the lightest rare earth and a very malleable metal-soft enough to be cut with a knife. Used primarily as an additive in steels and non-ferrous metals, lanthanum is the lightest rare earth element and one of four rare earths from which mischmetal is made. Additional applications include advanced batteries, optical fibers, and phosphors.

  11. Metals fact sheet - indium

    SciTech Connect

    1994-01-01

    Indium is generally found in concentrations averaging 10 to 20 ppm in sphalerite and chalcopyrite ores associated with zinc, copper, lead and tin deposits. Indium is recovered as a by-product of base metal mining by open pit, underground and other methods. After the recovery of zinc by the electrolytic process (copper concentrate by flotation, and lead and tin by electrolysis), indium antimonide slimes left on the anode and the indium-containing spent electrolyte become the input material for the processing of indium. Sulfuric acid is combined with the residues and heated to form sulfates which are then leached with water to filter off the remaining tin, lead and antimony. The indium in solution is recovered by cementation on aluminum, washed, melted, and refined into a metal.

  12. Metals fact sheet - uranium

    SciTech Connect

    1996-04-01

    About 147 million pounds of this radioactive element are consumed annually by the worldwide nuclear power and weapons industries, as well as in the manufacture of ceramics and metal products. The heaviest naturally occurring element, uranium is typically found in intrusive granites, igneous and metamorphic veins, tabular sedimentary deposits, and unconformity-related structures. This article discusses the geology, exploitation, market, and applications of uranium and uranium ores.

  13. Sheet Metal Worker: A Training Profile.

    ERIC Educational Resources Information Center

    Ontario Ministry of Skills Development, Toronto.

    This training profile is intended for use by program developers and trainers in the development of training courses and programs for sheet metal workers. It contains 17 modules: safety for sheet metal worker; tools and machinery; materials and gauges; drafting and shop drawing; pattern development; methods of joining sheet metal; shearing and…

  14. Fact Sheet: Range Complex

    NASA Technical Reports Server (NTRS)

    Cornelson, C.; Fretter, E.

    2004-01-01

    NASA Ames has a long tradition in leadership with the use of ballistic ranges and shock tubes for the purpose of studying the physics and phenomena associated with hypervelocity flight. Cutting-edge areas of research run the gamut from aerodynamics, to impact physics, to flow-field structure and chemistry. This legacy of testing began in the NACA era of the 1940's with the Supersonic Free Flight Tunnel, and evolved dramatically up through the late 1950s with the pioneering work in the Ames Hypersonic Ballistic Range. The tradition continued in the mid-60s with the commissioning of the three newest facilities: the Ames Vertical Gun Range (AVGR) in 1964, the Hypervelocity Free Flight Facility (HFFF) in 1965 and the Electric Arc Shock Tube (EAST) in 1966. Today the Range Complex continues to provide unique and critical testing in support of the Nation's programs for planetary geology and geophysics; exobiology; solar system origins; earth atmospheric entry, planetary entry, and aerobraking vehicles; and various configurations for supersonic and hypersonic aircraft.

  15. Aircraft Sheet Metal Practices, Blueprint Reading, Sheet Metal Forming and Heat Treating; Sheet Metal Work 2: 9855.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This course is designed to familiarize vocational students with construction in sheet metal layout. The document outlines goals, specific block objectives, layout practices, blueprint reading, sheet metal forming (by hand and by machine), and heat treatment of metals, and includes posttest samples. Layout techniques and air foil developing are…

  16. Reinforcement for Stretch Formed Sheet Metal

    NASA Technical Reports Server (NTRS)

    Lea, J. B.; Baxter, C. R.

    1983-01-01

    Tearing of aluminum sheet metal durinng stretch forming prevented by flame spraying layer of aluminum on edges held in stretch-forming machine. Technique improves grip of machine on metal and reinforced sheet better able to with stand concentration of force in vicinity of grips.

  17. Synthesis of Metal Phthalocyanine Sheet Polymers

    NASA Technical Reports Server (NTRS)

    Achar, B. N.; Fohlen, G. M.; Parker, J. A.

    1986-01-01

    New method for synthesizing metal phthalocyanine tetracarboxylic acids (MPTCA's) yields high purity end product. In addition, high-purity metal phthalocyanine sheet polymers synthesized from compounds. Monomer formed into sheet polymer by heating. Units of polymer linked in manner similar to phenyl-group linkages in biphenyl: Conjugation extends throughout macromolecule, thereby increasing delocalization of TT-electrons. Increases conductivity and thermal stability of polymer.

  18. Interior view of the Sheet Metal Shop showing the roof ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of the Sheet Metal Shop showing the roof trusses and corrugated metal roof covering, view facing northwest - Kahului Cannery, Plant No. 28, Boiler House, Sheet Metal and Electrical Shops, 120 Kane Street, Kahului, Maui County, HI

  19. Metals Fact Sheet: Gadolinium GD

    SciTech Connect

    1992-10-01

    Gadolinium is a silvery-white, malleable, ductile metallic element used to improve the high-temperature characteristics of iron, chromium, and related metallic alloys. It was named after the French chemist, Gadolin, discoverer of yttrium. This article discusses sources of the element, the world supply and demand, and also a number of applications. With the largest thermal neutron absorption cross section of any element, one of these applications is as a burnable poison in reactors and as neutron absorbers in other nuclear devices.

  20. Structures of Thin Sheet Metal, Their Design and Construction

    NASA Technical Reports Server (NTRS)

    Wagner, Herbert

    1928-01-01

    This report presents a brief survey of the uses of sheet-metal coverings in conjunction with the inner structure. A method of construction is presented as well as a discussion on the strength of sheet metal.

  1. Metals fact sheet--cesium

    SciTech Connect

    1997-03-01

    Cesium, the most alkaline and electropositive metal, is used by several industries for a variety of applications, including chemical catalysis, biomedical, photoelectrical, and glass manufacturing. While the traditional market for cesium has remained small, potential growth areas exist in the chemical catalysis and the oil and gas industry.

  2. Electromagnetic augmentation for casting of thin metal sheets

    DOEpatents

    Hull, J.R.

    1987-10-28

    Thin metal sheets are cast by magnetically levitating molten metal deposited in a model within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. 8 figs.

  3. Introduction to Sheet Metal. Instructor Edition. Introduction to Construction Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructor's guide contains the materials required to teach a competency-based introductory course in sheet metal work to students who have chosen to explore careers in construction. The following topics are covered in the course's three instructional units: sheet metal materials, sheet metal tools, and applied skills. Each unit contains some…

  4. Electromagnetic augmentation for casting of thin metal sheets

    DOEpatents

    Hull, John R.

    1989-01-01

    Thin metal sheets are cast by magnetically levitating molten metal deposited in a mold within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. The magnetic fields associated with the currents in the aforementioned coils levitate the molten metal sheet while the mold provides for its lateral and vertical confinement. A leader sheet having electromagnetic characteristics similar to those of the molten metal sheet is used to start the casing process and precedes the molten metal sheet through the yoke/coil arrangement and mold and forms a continuous sheet therewith. The yoke/coil arrangement may be either U-shaped with a single racetrack coil or may be rectangular with a pair of spaced, facing bedstead coils.

  5. Mississippi Curriculum Framework for Sheet Metal Programs (Program CIP: 48.0506--Sheet Metal Worker). Postsecondary Programs.

    ERIC Educational Resources Information Center

    Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.

    This document provides the framework for a postsecondary sheet metal program of instruction. A foreword provides guidelines that were used in developing the program and should be considered in compiling and revising course syllabi and daily lesson plans at the local level. A description of the sheet metal programs (building trades sheet metal work…

  6. Oligocyclopentadienyl transition metal complexes

    SciTech Connect

    de Azevedo, Cristina G.; Vollhardt, K. Peter C.

    2002-01-18

    Synthesis, characterization, and reactivity studies of oligocyclopentadienyl transition metal complexes, namely those of fulvalene, tercyclopentadienyl, quatercyclopentadienyl, and pentacyclopentadienyl(cyclopentadienyl) are the subject of this account. Thermal-, photo-, and redox chemistries of homo- and heteropolynuclear complexes are described.

  7. Career Preparation Program Curriculum Guide for: Metal Fabrication, Sheet Metal.

    ERIC Educational Resources Information Center

    British Columbia Dept. of Education, Victoria. Curriculum Development Branch.

    This curriculum outline provides secondary and postsecondary instructors with detailed information on student learning outcomes for completion of the sheet metal fabrication program requirements. A program overview discusses the aims of education; secondary school philosophy; and career preparation programs and their goals, organization, and…

  8. Modeling of anisotropic hardening of sheet metals

    NASA Astrophysics Data System (ADS)

    Yoshida, Fusahito; Hamasaki, Hiroshi; Uemori, Takeshi

    2013-12-01

    To describe the evolution of anisotropy of sheet metals, in terms of both r-values and stresses, the present paper proposes anisotropic hardening models, where the shape of yield surface changes with increasing plastic strain. In this framework of modeling, any types of yield functions are able to be used. The evolution of anisotropy is expressed by updating the yield function as an interpolation between two yield functions defined at two different effective plastic strains. In this paper, two types of interpolation models, i.e., nonlinear interpolation model and piecewise interpolation model are presented. These models are validated by comparing the experimental data on 3003-O aluminum sheet (after Hu, Int J Plasticity 23, 620-639, 2007). To describe the Bauschinger effect, the combined anisotropic-kinematic hardening model is formulated based on Yoshida-Uemori kinematic hardening model.

  9. Damage Prediction in Sheet Metal Forming

    NASA Astrophysics Data System (ADS)

    Saanouni, Khémais; Badreddine, Houssem

    2007-05-01

    Ductile (or plastic) damage often occurs during sheet metal forming processes due to the large plastic flow localization. Accordingly, it is crucial for numerical tools, used in the simulation of that processes, to use fully coupled constitutive equations accounting for both hardening and damage. This can be used in both cases, namely to overcome the damage initiation during some sheet metal forming processes as deep drawing, … or to enhance the damage initiation and growth as in sheet metal cutting. In this paper, a fully coupled constitutive equations accounting for combined isotropic and kinematic hardening as well as the ductile damage is implemented into the general purpose Finite Element code for metal forming simulation. First, the fully coupled anisotropic constitutive equations in the framework of Continuum Damage Mechanics are presented. Attention is paid to the strong coupling between the main mechanical fields as elasto-viscoplasticity, mixed hardening, ductile isotropic damage and contact with friction. The anisotropy of the plastic flow is taken into account using various kinds of quadratic or non quadratic yield criteria in the framework of non associative finite plasticity theory with two types of normality rules. The associated numerical aspects concerning both the local integration of the coupled constitutive equations as well as the (global) equilibrium integration schemes are presented. The local integration is outlined thanks to the Newton iterative scheme applied to a reduced system of 2 equations. For the global resolution of the initial and boundary value problem, the classical dynamic explicit (DE) scheme with an adaptive time step control is used. The numerical implementation of the damage is made in such a manner that calculations can be executed with or without damage effect, i.e. fully coupled or uncoupled calculations. For the 2D processes an advanced adaptive meshing procedure is used in order to enhance the numerical solution and

  10. 46. NORTH THROUGH SHEET METAL AND ASSEMBLY AREA IN SOUTHWESTERN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. NORTH THROUGH SHEET METAL AND ASSEMBLY AREA IN SOUTHWESTERN QUADRANT OF FACTORY AS SEEN FROM DOORWAY IN SOUTH FRONT WALL. ALONG WEST INTERIOR WALL ARE SHELVES BEARING WATER PUMPS, PARTS FOR PUMPS AND WATER SUPPLY EQUIPMENT, AND NEW OLD STOCK MERCHANDISE. IN FRONT OF THE WALL ARE THE CIRCA 1900 SHEET METAL SHEAR AND CIRCA 1900 SHEET METAL BRAKE. AT THE RIGHT SIDE OF THE IMAGE ALONGSIDE VERTICAL CEILING SUPPORTS IS METAL-COVERED BENCH FOR SHEET METAL WORK. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE

  11. Sheet metal hydroforming of functional composite structures

    NASA Astrophysics Data System (ADS)

    Ibis, M.; Griesheimer, S.; Salun, L.; Rausch, J.; Groche, P.

    2011-03-01

    This paper studies the formability of functional composite structures, consisting of a metal substrate, insulating plastic foils, flat copper conductors and printable conductive polymers. The aim is the production of smart components in a sheet metal hydroforming process. In addition to their mechanical properties, these components can also transfer energy and data. Conventional boundaries between mechanics and electronics will be relaxed expediently. The challenge of this study is the design of the forming process, so that all elements of the multi-layer composites will withstand the process conditions. In this context, an analytical method for estimating the formability of these smart components is presented. The main objectives are the definition of basic failure modes and the depiction of the process limits.

  12. Theoretical analysis of sheet metal formability

    NASA Astrophysics Data System (ADS)

    Zhu, Xinhai

    Sheet metal forming processes are among the most important metal-working operations. These processes account for a sizable proportion of manufactured goods made in industrialized countries each year. Furthermore, to reduce the cost and increase the performance of manufactured products, in addition to the environmental concern, more and more light weight and high strength materials have been used as a substitute to the conventional steel. These materials usually have limited formability, thus, a thorough understanding of the deformation processes and the factors limiting the forming of sound parts is important, not only from a scientific or engineering viewpoint, but also from an economic point of view. An extensive review of previous studies pertaining to theoretical analyses of Forming Limit Diagrams (FLDs) is contained in Chapter I. A numerical model to analyze the neck evolution process is outlined in Chapter II. With the use of strain gradient theory, the effect of initial defect profile on the necking process is analyzed. In the third chapter, the method proposed by Storen and Rice is adopted to analyze the initiation of localized neck and predict the corresponding FLDs. In view of the fact that the width of the localized neck is narrow, the deformation inside the neck region is constrained by the material in the neighboring homogeneous region. The relative rotation effect may then be assumed to be small and is thus neglected. In Chapter IV, Hill's 1948 yield criterion and strain gradient theory are employed to obtain FLDs, for planar anisotropic sheet materials by using bifurcation analysis. The effects of the strain gradient coefficient c and the material anisotropic parameters R's on the orientation of the neck and FLDs are analyzed in a systematic manner and compared with experiments. In Chapter V, Hill's 79 non-quadratic yield criterion with a deformation theory of plasticity is used along with bifurcation analyses to derive a general analytical

  13. Thin, porous metal sheets and methods for making the same

    SciTech Connect

    Liu, Wei; Li, Xiaohong Shari; Canfield, Nathan L.

    2015-07-14

    Thin, porous metal sheets and methods for forming them are presented to enable a variety of applications and devices. The thin, porous metal sheets are less than or equal to approximately 200 .mu.m thick, have a porosity between 25% and 75% by volume, and have pores with an average diameter less than or equal to approximately 2 .mu.m. The thin, porous metal sheets can be fabricated by preparing a slurry having between 10 and 50 wt % solvent and between 20 and 80 wt % powder of a metal precursor. The average particle size in the metal precursor powder should be between 100 nm and 5 .mu.m.

  14. Laser-assisted sheet metal working in series production

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Emonts, Michael; Eckert, Markus

    2013-02-01

    Based on the demand for a responsible use of natural resources and energy the need for lightweight materials is increasing. The most common materials for lightweight production are high and highest strength steel. These materials are difficult to machine using conventional sheet metal working processes because the high strength leads to a limited formability and high tool wear. The Fraunhofer IPT developed the laser-assisted sheet metal working. Selective laser based heating of the part directly before machining softens the material locally. Thus the quality of the following cut can be increased, for example for shearing 1.4310 the clear cut surface ratio can be increased from 20% up to 100% using a shearing gap of 10% of the sheet thickness. Because of the softening of the material and thus the increased formability, parts with a higher complexity can be produced. For example 1.4310 can be bent laser-assisted with a radius of 0.25 mm instead of 2-3 mm using the conventional process. For the first time spring steel can be embossed with conventional tools up to 50% of the sheet thickness. For the implementation in series production a modular system upgrade "hy-PRESS" has been developed to include laser and scanner technology into existing presses. For decoupling the sensitive optical elements of the machine vibrations an active-passive damping system has been developed. The combination of this new hybrid process and the system technology allows to produce parts of high strength steel with a high complexity and quality.

  15. 43. WEST TO DETAIL OF WHEELED SHEET METAL WORK STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. WEST TO DETAIL OF WHEELED SHEET METAL WORK STATION BEARING ON LEFT CIRCA 1900 ROLLS FOR BENDING STEEL WINDMILL BLADES TO PROPER CURVATURE AND ON RIGHT CIRCA 1900 BEADING MACHINE FOR ADDING STIFFENING CREASES TO THE EDGES OF SHEET METAL PARTS SUCH AS BLADES. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE

  16. 44. SOUTHWEST TO CIRCA 1900 SHEET METAL BRAKE, THE MACHINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. SOUTHWEST TO CIRCA 1900 SHEET METAL BRAKE, THE MACHINE USED TO BEND SHEET METAL TO EXACT ANGLES AS IN STEEL WATER TANK MANUFACTURE. IN THE BACKGROUND IS THE INTERIOR WEST WALL OF THE FACTORY, ITS SHELVES BEARING WATER PUMPS, PARTS FOR PUMPS AND WATER SUPPLY EQUIPMENT, AND NEW OLD STOCK MERCHANDISE. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE

  17. 45. WEST TO CIRCA 1900 SHEET METAL SHEAR, THE MACHINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. WEST TO CIRCA 1900 SHEET METAL SHEAR, THE MACHINE USED TO CUT SHEET METAL USED IN WINDMILLS AND WATER TANKS. IN THE BACKGROUND IS THE INTERIOR WEST WALL OF THE FACTORY, ITS SHELVES BEARING WATER PUMPS, PARTS FOR PUMPS AND WATER SUPPLY EQUIPMENT, AND NEW OLD STOCK MERCHANDISE. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE

  18. Electrical upsetting of metal sheet forms weld edge

    NASA Technical Reports Server (NTRS)

    Scherba, E. S.

    1966-01-01

    Electric gathering of sheet stock edges forms metal sheets in the shape of gore sections with heavier edge areas that can be welded without loss of strength. The edges are gathered by progressive resistance heating and upsetting, and are formed automatically. This process avoids disturbance of the metals internal structure.

  19. Sheet Metal Contract. Project Report Phase I with Research Findings.

    ERIC Educational Resources Information Center

    Kirkpatrick, Thomas; Sappe', Hoyt

    This report provides results of Phase I of a project that researched the occupational area of sheet metal, established appropriate committees, and conducted task verification. These results are intended to guide development of a program designed to train sheet metal workers. Section 1 contains general information: purpose of Phase I; description…

  20. Overview of Boiler House and Sheet Metal and Electrical Shops ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of Boiler House and Sheet Metal and Electrical Shops Building (center - with single large chimney), note the monitor on the original section of the Boiler House Building, view facing north - Kahului Cannery, Plant No. 28, Boiler House, Sheet Metal and Electrical Shops, 120 Kane Street, Kahului, Maui County, HI

  1. Precision Sheet Metal. Progress Record and Theory Outline.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.

    This combination progress record and course outline is designed for use by individuals teaching a course in precision sheet metal. Included among the topics addressed in the course are the following: employment opportunities in metalworking, measurement and layout, orthographic projection, precision sheet metal drafting, simple layout, hand tools,…

  2. Modeling of Sandwich Sheets with Metallic Foam

    SciTech Connect

    Mata, H.; Jorge, R. Natal; Fernandes, A. A.; Parente, M. P. L.; Santos, A.; Valente, R. A. F.

    2011-08-22

    World-wide vehicles safety experts agree that significant further reductions in fatalities and injuries can be achieved as a result of the use of new lightweight and energy absorbing materials. On this work, the authors present the development and evaluation of an innovative system able to perform reliable panels of sandwich sheets with metallic foam cores for industrial applications. The mathematical model used to describe the behavior of sandwich shells with metal cores foam is presented and some numerical examples are presented. In order to validate those results mechanical experiments are carried out. Using the crushable foam constitutive model, available on ABAQUS, a set of different mechanical tests were simulated. There are two variants of this model available on ABAQUS: the volumetric hardening model and the isotropic hardening model. As a first approximation we chose the isotropic hardening variant. The isotropic hardening model available uses a yield surface that is an ellipse centered at the origin in the p-q stress plane. Based on this constitutive model for the foam, numerical simulations of the tensile and bulge test will be conducted. The numerical results will be validated using the data obtained from the experimental results.

  3. Modeling of Sandwich Sheets with Metallic Foam

    NASA Astrophysics Data System (ADS)

    Mata, H.; Jorge, R. Natal; Santos, A.; Fernandes, A. A.; Valente, R. A. F.; Parente, M. P. L.

    2011-08-01

    World-wide vehicles safety experts agree that significant further reductions in fatalities and injuries can be achieved as a result of the use of new lightweight and energy absorbing materials. On this work, the authors present the development and evaluation of an innovative system able to perform reliable panels of sandwich sheets with metallic foam cores for industrial applications. The mathematical model used to describe the behavior of sandwich shells with metal cores foam is presented and some numerical examples are presented. In order to validate those results mechanical experiments are carried out. Using the crushable foam constitutive model, available on ABAQUS, a set of different mechanical tests were simulated. There are two variants of this model available on ABAQUS: the volumetric hardening model and the isotropic hardening model. As a first approximation we chose the isotropic hardening variant. The isotropic hardening model available uses a yield surface that is an ellipse centered at the origin in the p-q stress plane. Based on this constitutive model for the foam, numerical simulations of the tensile and bulge test will be conducted. The numerical results will be validated using the data obtained from the experimental results.

  4. Studies in Cup Drawing Behavior of Polymer Laminated Sheet Metal

    NASA Astrophysics Data System (ADS)

    Elnagmi, M.; Jain, M.; Bruhis, M.; Nielsen, K.

    2011-08-01

    Axisymmetric deep drawing behavior of a polymer laminated sheet metal (PLSM) is investigated using an axisymmetric cup drawing test. PLSMs are of interest as a replacement for painted finishes for automotive applications as they have the potential to achieve good quality long lasting and aesthetically appealing surfaces on stamped parts. However, there is limited understanding of PLSMs in automotive deep drawing situations to produce complex 3-D parts. The tests are carried out using well-controlled, laboratory-based, dual-action, servo-hydraulic forming presses under blank-holder force and punch displacement control conditions. An optical strain mapping system is used to measure the surface strains (and to construct 3D strain maps) from the film side of the deformed samples for a range of forming conditions. Deep drawing characteristics such as punch load versus punch displacement traces, strain distribution along the cup profile, flange wrinkling and fracture characteristics are experimentally assessed for stainless steel-plastic film laminated sheet materials. Also the effect of lamination pressure on wrinkling and delamination is investigated for a decorative pressure sensitive adhesive film affixed to the stainless steel sheet.

  5. Method and apparatus for determining weldability of thin sheet metal

    DOEpatents

    Goodwin, Gene M.; Hudson, Joseph D.

    1988-01-01

    A fixture is provided for testing thin sheet metal specimens to evaluate hot-cracking sensitivity for determining metal weldability on a heat-to-heat basis or through varying welding parameters. A test specimen is stressed in a first direction with a load selectively adjustable over a wide range and then a weldment is passed along over the specimen in a direction transverse to the direction of strain to evaluate the hot-cracking characteristics of the sheet metal which are indicative of the weldability of the metal. The fixture provides evaluations of hot-cracking sensitivity for determining metal weldability in a highly reproducible manner with minimum human error.

  6. Working with Design: A Package for Sheet Metal

    ERIC Educational Resources Information Center

    Fiebich, Paul D.

    1974-01-01

    The author describes a design approach used to study sheet metal layout in junior high and high school mechanical drafting courses. Students observe packaging in stores, study package construction, and design and produce their own packages. (EA)

  7. Selenophene transition metal complexes

    SciTech Connect

    White, C.J.

    1994-07-27

    This research shows that selenophene transition metal complexes have a chemistry that is similar to their thiophene analogs. Selenophene coordination has been demonstrated and confirmed by molecular structure in both the {eta}{sup 5}- and the {eta}{sup 1}(Se)-coordination modes. The reaction chemistry of selenophene complexes closely resembles that of the analogous thiophene complexes. One major difference, however, is that selenophene is a better donor ligand than thiophene making the selenophene complexes more stable than the corresponding thiophene complexes. The {sup 77}Se NMR chemical shift values for selenophene complexes fall within distinct regions primarily depending on the coordination mode of the selenophene ligand. In the final paper, the C-H bond activation of {eta}{sup 1}(S)-bound thiophenes, {eta}{sup 1}(S)-benzothiophene and {eta}{sup 1}(Se)-bound selenophenes has been demonstrated. The deprotonation and rearrangement of the {eta}{sup 1}(E)-bound ligand to the carbon bound L-yl complex readily occurs in the presence of base. Reprotonation with a strong acid gives a carbene complex that is unreactive towards nucleophilic attack at the carbene carbon and is stable towards exposure to air. The molecular structure of [Cp(NO)(PPh{sub 3})Re(2-benzothioenylcarbene)]O{sub 3}SCF{sub 3} was determined and contains a Re-C bond with substantial double bond character. Methyl substitution for the thienylcarbene or selenylcarbene gives a carbene that rearranges thermally to give back the {eta}{sup 1}(E)-bound complex. Based on these model reactions, a new mechanism for the H/D exchange of thiophene over the hydrodesulfurization catalyst has been proposed.

  8. Direct evidence of metallic bands in a monolayer boron sheet

    NASA Astrophysics Data System (ADS)

    Feng, Baojie; Zhang, Jin; Liu, Ro-Ya; Iimori, Takushi; Lian, Chao; Li, Hui; Chen, Lan; Wu, Kehui; Meng, Sheng; Komori, Fumio; Matsuda, Iwao

    2016-07-01

    The search for metallic boron allotropes has attracted great attention in the past decades and recent theoretical works predict the existence of metallicity in monolayer boron. Here, we synthesize the β12-sheet monolayer boron on a Ag(111) surface and confirm the presence of metallic boron-derived bands using angle-resolved photoemission spectroscopy. The Fermi surface is composed of one electron pocket at the S ¯ point and a pair of hole pockets near the X ¯ point, which is supported by the first-principles calculations. The metallic boron allotrope in β12 sheet opens the way to novel physics and chemistry in material science.

  9. First pentahaptofullerene metal complexes

    SciTech Connect

    Masaya, Sawamura; Iikura, Hitoshi; Nakamura, Eiichi

    1996-12-18

    Cyclopentadienyl metal complexes have played important roles in chemistry owing to their unique structures and functional activities. Here we report the synthesis and characterization of an entirely new class of cyclopentadienyl (Cp) metal complexes ({eta}{sup 5}-C{sub 60}Ph{sub 5})MLn (MLn = Li, K, Tl, and Cu.PEt{sub 3}). In these molecules, the five Cp carbons represent one pentagon of C{sub 60}, isolated from the remaining 50 sp{sup 2} carbon atoms by five surrounding sp{sup 3} carbon atoms each bearing a phenyl group. The X-ray crystal structure analysis of the thallium complex Tl({eta}{sup 5}-C{sub 60}Ph{sub 5}).2.5THF revealed its unique and esthetically pleasing C{sub 5} symmetrical molecular structure with the phenyl groups forming a chiral propeller array. The thallium atom is deeply buried in the cavity created by the phenyl groups, bonding to the five Cp carbons ({eta}{sup 5}-coordination) with an averaged Tl-C distance of 2.87 A. The key finding that we made in this research was a remarkable 5-fold addition of an organocopper reagent to C{sub 60}, which stands in contrast to the monoaddition reaction of Grignard or organolithium reagents. 10 refs., 1 fig.

  10. Joining of Thin Metal Sheets by Shot Peening

    NASA Astrophysics Data System (ADS)

    Harada, Yasunori

    2011-01-01

    In shot peening the substrate undergoes large plastic deformation near the surface due to the hit with shots. The plastic flow areas formed by cold working may form the surface layer. Authors have recently proposed new joining methods using shot peening, shot lining and shot caulking. Our approach has been applied to the butt joining of the dissimilar metal sheets. In the present study, joining of thin metal sheets using a shot peening process was investigated to improve the joinability. In the joined section, the edge of sheets is the equally-spaced slits. In this method, the convex edges of the sheet are laid on top of the other sheet. Namely, the two sheets are superimposed in the joining area. When the connection is shot-peened, the material of the convex area undergoes large plastic deformation near the surface due to the collision of shots. In this process, particularly noteworthy is the plastic flow near surface layer. The convex edges of the sheet can be joined to the other sheet, thus two sheets are joined each other. In the experiment, the shot peening treatment was performed by using an air-type peening machine. The shots used were made of high carbon cast steel. Air pressure was 0.6 MPa and peening time was in the range of 30-150s. The peening conditions were controlled in the experiment. The thin sheets were commercial low-carbon steel, stainless steel, pure aluminum, and aluminium alloy. The effects of processing conditions on the joinability were mainly examined. The joint strength increased with the kinetic energy of shots. It was found that the present method was effective for joining of thin metal sheets.

  11. Precision Small Angle Bending of Sheet Metals Using Shear Deformation

    NASA Astrophysics Data System (ADS)

    Hirota, Kenji; Mori, Yorifumi

    This paper deals with a new method to bend sheet metals at a small angle precisely, in which a sheet metal is slightly bent by shear deformation at negative punch-die clearance. Deformation behavior and key factors affecting on the bend angle were studied in detail with pure aluminum sheets. It was proved that the bend angle was changed in proportion to both punch penetration and negative punch-die clearance within a certain range. The same was true for high-strength steel and phosphor bronze, which are difficult to bend precisely by conventional methods due to large springback after unloading. By using this relationship as a control law, four kinds of sheet metals were precisely bent within a few degrees. This method was applied to correct the angular errors in U-bend products of high-strength steel and to bend leaf springs of phosphor bronze at an arbitrary small angle.

  12. Mode I fracture of sheet metal

    NASA Astrophysics Data System (ADS)

    Pardoen, T.; Hachez, F.; Marchioni, B.; Blyth, P. H.; Atkins, A. G.

    2004-02-01

    The perceived wisdom about thin sheet fracture is that (i) the crack propagates under mixed mode I & III giving rise to a slant through-thickness fracture profile and (ii) the fracture toughness remains constant at low thickness and eventually decreases with increasing thickness. In the present study, fracture tests performed on thin DENT plates of various thicknesses made of stainless steel, mild steel, 6082-O and NS4 aluminium alloys, brass, bronze, lead, and zinc systematically exhibit (i) mode I "bath-tub", i.e. "cup & cup", fracture profiles with limited shear lips and significant localized necking (more than 50% thickness reduction), (ii) a fracture toughness that linearly increases with increasing thickness (in the range of 0.5- 5 mm). The different contributions to the work expended during fracture of these materials are separated based on dimensional considerations. The paper emphasises the two parts of the work spent in the fracture process zone: the necking work and the "fracture" work. Experiments show that, as expected, the work of necking per unit area linearly increases with thickness. For a typical thickness of 1 mm, both fracture and necking contributions have the same order of magnitude in most of the metals investigated. A model is developed in order to independently evaluate the work of necking, which successfully predicts the experimental values. Furthermore, it enables the fracture energy to be derived from tests performed with only one specimen thickness. In a second modelling step, the work of fracture is computed using an enhanced void growth model valid in the quasi plane stress regime. The fracture energy varies linearly with the yield stress and void spacing and is a strong function of the hardening exponent and initial void volume fraction. The coupling of the two models allows the relative contributions of necking versus fracture to be quantified with respect to (i) the two length scales involved in this problem, i.e. the void spacing

  13. A New Sheet Metal Forming System Based on Incremental Punching

    NASA Astrophysics Data System (ADS)

    Luo, Yuanxin

    conducted by the mean of computer simulation in consideration of applying a large impulsive force. This study validates the machine stability and accuracy. One of the keys to successful application of sheet metal forming is to be able to predict the deformation and the strain/stress of the part incurred during the forming process. Because of the complexity of the ISMF process, it is not possible to derive an analytical method. The alternative is to use Finite Element Analysis (FEA). However, based on our experience, it takes about one week to solve a simple case. A mechanics model is therefore developed. It consists of two steps. The first step is to computer the final shape: the initial geometric surface is obtained using the punch positions; then using the minimum energy principle, the virtual forces drive the nodes of geometric surface to their lowest energy positions, which gives the final shape of the forming part. The second step is to predict the strain and stress distributions. This is done using the inverse Finite Element Modeling (FEM). An in-house computer software is developed using MATLABRTM. In order to verify the new mechanics model, numerical and experimental studies are conducted using the new incremental punching system. The final shape and thickness distributions of parts are compared to verify the mechanics model. It is found that the model prediction fits the experiment result well. Forming parameters are also investigated. To evaluate the capability of the presented ISMF process, the formability is studied by the means of theory and experiment. A modified M-K model is proposed for predicting the forming limit of the formed part which is undergoing a very complicated strain path. The maximum forming angle is also investigated by experiments.

  14. Thermal conductance of multilayered metallic sheets

    NASA Astrophysics Data System (ADS)

    Fletcher, L. S.; Blanchard, D. G.; Kinnear, K. P.

    1991-06-01

    An experimental investigation was conducted to determine the thermal conductivity, the overall thermal conductance, and the thermal contact conductance between layers of stacked aluminum alloy 3004, 5042, and 5182 sheet. Tests were conducted for aluminum sample thicknesses of 0.0305 to 0.3074 cm (0.012 to 0.121 in.), mean junction temperatures of 79.5 and 165.5 C (175 and 330 F), and contact pressures of 0.689 to 10.34 MPa (100 to 1500 psi). The overall thermal conductance increased with increasing contact pressure and increasing temperature. It decreased as the number of aluminum layers was increased. The experimental data were used to derive thermal contact conductance between layers of stacked aluminum sheet. From these derived values, a correlation for the thermal contact conductance was developed. The resulting expressions are presented as a function of dimensionless parameters for the layer material, apparent contact pressure, and mean junction temperature.

  15. Formability Evaluation of Sheet Metals Based on Global Strain Distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Lin, Jianping; Min, Junying; Ye, You; Kang, Liugen

    2016-04-01

    According to the conventional methods for formability evaluation, e.g., forming limit curve (FLC), limit dome height, and total elongation, inconsistent results are observed when comparing the formability of four advanced high-strength steels (AHSS) with an ultimate tensile strength grade of 1000 MPa. The strain distribution analysis with the aid of digital image correlation technique shows that different uniform deformation capabilities of sheet metals under the same loading conditions are responsible for this inconsistency. In addition, metallurgical analysis suggests that inhomogeneous microstructure distribution and phase transformation during deformation in some materials play important roles in the uniform deformation capability of sheet metal. Limit strains on the commonly used FLC only relate to the major and minor strains of local deforming elements associated with the onset of necking. However, the formability of a sheet metal component is determined by the strain magnitudes of all deforming elements involved during the forming process. Hence, the formability evaluation of sheet metals from a global aspect is more applicable for practical engineering. A new method based on two indices (i.e., which represent global formability and uniform deformation capability, respectively) is proposed to evaluate the formability of sheet metals based on global strain distribution. The formability and evolution of deformation uniformity of the investigated AHSS at different stress states are studied with this new method. Compared with other formability evaluation methods, the new method is demonstrated to be more appropriate for practical engineering, and it is applicable to both in-plane and out-of-plane deformation. Additionally, the global formability of sheet metals can be more comprehensively understood with this new method.

  16. Formability Evaluation of Sheet Metals Based on Global Strain Distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Lin, Jianping; Min, Junying; Ye, You; Kang, Liugen

    2016-06-01

    According to the conventional methods for formability evaluation, e.g., forming limit curve (FLC), limit dome height, and total elongation, inconsistent results are observed when comparing the formability of four advanced high-strength steels (AHSS) with an ultimate tensile strength grade of 1000 MPa. The strain distribution analysis with the aid of digital image correlation technique shows that different uniform deformation capabilities of sheet metals under the same loading conditions are responsible for this inconsistency. In addition, metallurgical analysis suggests that inhomogeneous microstructure distribution and phase transformation during deformation in some materials play important roles in the uniform deformation capability of sheet metal. Limit strains on the commonly used FLC only relate to the major and minor strains of local deforming elements associated with the onset of necking. However, the formability of a sheet metal component is determined by the strain magnitudes of all deforming elements involved during the forming process. Hence, the formability evaluation of sheet metals from a global aspect is more applicable for practical engineering. A new method based on two indices (i.e., which represent global formability and uniform deformation capability, respectively) is proposed to evaluate the formability of sheet metals based on global strain distribution. The formability and evolution of deformation uniformity of the investigated AHSS at different stress states are studied with this new method. Compared with other formability evaluation methods, the new method is demonstrated to be more appropriate for practical engineering, and it is applicable to both in-plane and out-of-plane deformation. Additionally, the global formability of sheet metals can be more comprehensively understood with this new method.

  17. Laser-Assisted Sheet Metal Working of High Strength Steels in Serial Production

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Emonts, Michael; Eckert, Markus

    Within the sheet metal working industry the demand for thinner sheet materials with very high strength is growing due to the increasing need to save energy and a responsible use of natural resources. The high strength and the low ductility restricts using state of art technology to sheer, bend, emboss or deep draw parts with the needed complexity and quality. The Fraunhofer IPT developed a combination of laser-assisted preheating and conventional punching to a new hybrid technology which allows to shear, bend, emboss and draw high strength materials with a high quality and complexity in a serial production.

  18. Bifurcation Instability of sheet metal during spring-back

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Bong; Yang, Dong-Yol; Yoon, Jeong Whan

    2013-05-01

    In automotive and home appliance industries, there are many complex-shaped sheet metal components which need to be fabricated in multiple stamping operations. For example, the manufacturing of an outer case of washing machine consists of stamping followed by a bending operation. After the first stage of the stamping process, a large amount of spring-back takes place, and therefore, it is difficult to proceed to the next stage of the bending process. In the stamping process of that kind of sheet component with low geometric constraint, the forming area is large compared to the forming depth. Therefore, the formed part is in an unstable state and is less geometrically constrained, which causes a large amount of spring-back. To investigate this phenomenon, finite element analyses are carried out. During a spring-back analysis after forming, bifurcation takes place and the finite element solution procedure using the Newton-Raphson scheme becomes unstable. To get a stable post-bifurcation solution, a bifurcation algorithm is introduced at the bifurcation point. The deformed shapes obtained from finite element analyses are in good agreement with the experimental data. From this study, it is shown that the bifurcation behaviour enlarges the spring-back and the degree of dimensional error. To obtain additional possible post-bifurcation solutions, non-bifurcation analyses using initial guesses obtained in a modal analysis are carried. For the initial guesses, lowed four eigenmodes are utilized. Finally, the post-bifurcation behaviour and spring-back amount are investigated for various process parameters including the forming depth, punch width and corner radius.

  19. A Collaborative Design Curriculum for Reviving Sheet Metal Handicraft

    ERIC Educational Resources Information Center

    Chan, Patrick K. C.

    2015-01-01

    Galvanised sheet metal was a popular and important material for producing handmade home utensils in Hong Kong from the 1930s onwards. It was gradually replaced by new materials like stainless steel and plastic because similar goods made with these are cheaper, more standardised, more durable and of much better quality. The handicrafts behind sheet…

  20. Introduction to Sheet Metal. Introduction to Construction Series. Instructor Edition.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This competency-based curriculum guide on the specialty area of sheet metal is part of the Introduction to Construction series. The series is designed with the flexible training requirements of open shop contractors, preapprenticeship programs, multicraft high school programs, technology education programs, and cooperative education programs in…

  1. 17. VIEW OF FORMING EQUIPMENT, DISCS CUT FROM METAL SHEETS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW OF FORMING EQUIPMENT, DISCS CUT FROM METAL SHEETS WERE FORMED INTO SHAPES. (7/2/86) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  2. Formability of porous tantalum sheet-metal

    NASA Astrophysics Data System (ADS)

    Nebosky, Paul S.; Schmid, Steven R.; Pasang, Timotius

    2009-08-01

    Over the past ten years, a novel cellular solid, Trabecular Metal™, has been developed for use in the orthopaedics industry as an ingrowth scaffold. Manufactured using chemical vapour deposition (CVD) on top of a graphite foam substrate, this material has a regular matrix of interconnecting pores, high strength, and high porosity. Manufacturing difficulties encourage the application of bending, stamping and forming technologies to increase CVD reactor throughput and reduce material wastes. In this study, the bending and forming behaviour of Trabecular Metal™ was evaluated using a novel camera-based system for measuring surface strains, since the conventional approach of printing or etching gridded patterns was not feasible. A forming limit diagram was obtained using specially fabricated 1.65 mm thick sheets. A springback coefficient was measured and modeled using effective hexagonal cell arrangements.

  3. Ultrasonic metal sheet thickness measurement without prior wave speed calibration

    NASA Astrophysics Data System (ADS)

    Dixon, S.; Petcher, P. A.; Fan, Y.; Maisey, D.; Nickolds, P.

    2013-11-01

    Conventional ultrasonic mensuration of sample thickness from one side only requires the bulk wave reverberation time and a calibration speed. This speed changes with temperature, stress, and microstructure, limiting thickness measurement accuracy. Often, only one side of a sample is accessible, making in situ calibration impossible. Non-contact ultrasound can generate multiple shear horizontal guided wave modes on one side of a metal plate. Measuring propagation times of each mode at different transducer separations, allows sheet thickness to be calculated to better than 1% accuracy for sheets of at least 1.5 mm thickness, without any calibration.

  4. Systematic Process Improvement of Sheet Metal Forming Processes

    NASA Astrophysics Data System (ADS)

    Carleer, Bart; Stippak, Michael

    2011-08-01

    The design of a forming process of sheet metal forming parts is a complex issue. Many boundary conditions must be fulfilled and many considerations must be made to come to a successful solution. Elimination wrinkles and splits very often need contrary measures. Many times the approach to come to a successful solution is an iterative process which is also dependent on the person who deals with the job. Generally this job has been solved with help of simulation software. AutoForm developed a methodology, systematic process improvement, to systematically approach this job. The systematic process improvement is a standardized way to effectively design forming processes. This systematical approach reduces the number of loops, gives transparency of the different solution statements and makes it easier to pass the work to a colleague. As a result the development of a forming process can be done faster, more reliable and less dependent on individuals. The systematic process improvement will be illustrated on the design of forming process of an automotive part.

  5. Enhancement of Incremental Sheet Metal Forming Technology by Means of Stretch Forming

    NASA Astrophysics Data System (ADS)

    Galdos, L.; Sukia, A.; Otegi, N.; Ortubay, R.; Ruiz De La Torre, A.; Forgas, A.; Rastellini, F.

    2011-01-01

    Incremental Sheet Forming (ISF) is a relatively new flexible sheet metal forming process mainly oriented to small batches production and prototyping. The technology has been conceived to enable flexible forming of sheet metal parts based on CNC governed punch movements, being the use of conventional milling machines possible if vertical maximum force is controlled. During the process, a simple shape punch is moved against the surface of the sheet, such that a localised deformation is caused, and the use of spatial punch movements enables the forming of complex 3D shapes. However, the process has some drawbacks: high geometrical inaccuracies, an emphasised problem in complex non-axisymmetric parts, poor final surface quality due to the friction between the punch and the blank, limitations to obtain steep walls and the need of large process times due to the nature of the process. In this paper, the stretch forming is used together with the Incremental Sheet Forming in order to overcome the process limitations, aiming to optimise the material flow and minimise the thinning. Numerical, Finite Element Modelling, and experimental results are presented using a real case study.

  6. Ductile damage prediction in sheet and bulk metal forming

    NASA Astrophysics Data System (ADS)

    Badreddine, Houssem; Labergère, Carl; Saanouni, Khemais

    2016-04-01

    This paper is dedicated to the presentation of an advanced 3D numerical methodology for virtual sheet and/or bulk metal forming simulation to predict the anisotropic ductile defects occurrence. First, the detailed formulation of thermodynamically-consistent fully coupled and fully anisotropic constitutive equations is given. The proposed constitutive equations account for the main material nonlinearities as the anisotropic plastic flow, the mixed isotropic and kinematic hardening and the anisotropic ductile damage under large inelastic strains. Second, the related numerical aspects required to solve the initial and boundary value problem (IBVP) are very briefly presented in the framework of the 3D finite element method. The global resolution schemes as well as the local integration schemes of the fully coupled constitutive equations are briefly discussed. Finally, some typical examples of sheet and bulk metal forming processes are numerically simulated using the proposed numerical methodology.

  7. Development of sheet-metal parabolic-trough reflector panels

    SciTech Connect

    Biester, A.W.

    1982-06-01

    Efforts to develop accurate, durable, and mass producible sheet metal parabolic trough solar collectors and the associated support for the collectors are described. The design considered is similar to an automobile hood, a two-piece sheet metal structure consisting of a formed steel frame or stiffening panel and a smooth contoured skin. The two pieces may be bonded or welded to form a rigid structure, and a reflective surface applied such as a film, glass mirror, or any of the presently utilized materials. The work encompassed material selection, adhesive selection and testing, tool design and fabrication, prototype panel production, and design and development of torque tube assemblies on which the trough is inclined. Appended are results of adhesive bonding studies. It is found that high volume technology can be used to produce accurate and structurally sound reflector panels, and one configuration has been selected for fabrication in suitable quantities for performance testing. (LEW)

  8. Analysis of large sheet metal tailored tubes

    NASA Astrophysics Data System (ADS)

    Pomazan, V. M.

    2015-11-01

    The present study was triggered by the need to verify and optimize the primary constructive solution, for custom large tubes (section lengths larger than 1000 mm), under the gravity and pressure loads. The cases presented needed to be checked for the reinforcement design. Given the complex tridimensional geometry of the axisymmetric shell structures, the basic shape of the tubes was modelled, with its actual thickness. FEA was used to check the model under static loads and buckling. In order to optimize the weight, an alternative welded reinforcement's grid design was developed and checked for stability. Optimal welding sections along ribs in longitudinal and transversal directions were identified for easier design and further costs reduction.

  9. Warm Hydroforming of Lightweight Metal Sheets

    SciTech Connect

    Aginagalde, A.; Orus, A.; Esnaola, J. A.; Torca, I.; Galdos, L.; Garcia, C.

    2007-05-17

    Hydroforming is well known in steel applications for automotive industry, where complicated shapes can be get with high strength to weight ratios. Nevertheless, the poor formability of light alloys at room temperature has limited the application of hydroforming technology for aluminum and magnesium parts. Increasing the temperature of these materials allows substantially greater elongation without fracture. Warm forming strategy is applied in conventional processes, such as rolling and forging, in order to get complex shapes, but still rare in hydroforming technology. This is the technical base of this research project: the development of the hydroforming process at warm working temperatures. The main tasks of the initial phases of the research were the material characterization, and the heated fluid and tooling system design and set up for warm hydroforming of lightweight alloys. Once these goals were accomplished the present paper shows the obtained results. The uniaxial tensile deformation of 5754H111, 6082-T6, 6082-O and AZ31B at the temperature range of 25 deg. C - 250 deg. C is presented as the output of the material characterization task. Both the system features and the results obtained for a bulge test geometry carried out with a warm hydroforming system are also presented. The selected alloys show an improvement in formability at the studied temperature range under both uniaxial and biaxial state of stress.

  10. Warm Hydroforming of Lightweight Metal Sheets

    NASA Astrophysics Data System (ADS)

    Aginagalde, A.; Orus, A.; Esnaola, J. A.; Torca, I.; Galdos, L.; García, C.

    2007-05-01

    Hydroforming is well known in steel applications for automotive industry, where complicated shapes can be get with high strength to weight ratios. Nevertheless, the poor formability of light alloys at room temperature has limited the application of hydroforming technology for aluminum and magnesium parts. Increasing the temperature of these materials allows substantially greater elongation without fracture. Warm forming strategy is applied in conventional processes, such as rolling and forging, in order to get complex shapes, but still rare in hydroforming technology. This is the technical base of this research project: the development of the hydroforming process at warm working temperatures. The main tasks of the initial phases of the research were the material characterization, and the heated fluid and tooling system design and set up for warm hydroforming of lightweight alloys. Once these goals were accomplished the present paper shows the obtained results. The uniaxial tensile deformation of 5754H111, 6082-T6, 6082-O and AZ31B at the temperature range of 25°C-250°C is presented as the output of the material characterization task. Both the system features and the results obtained for a bulge test geometry carried out with a warm hydroforming system are also presented. The selected alloys show an improvement in formability at the studied temperature range under both uniaxial and biaxial state of stress.

  11. Electromagnetic confinement and movement of thin sheets of molten metal

    SciTech Connect

    Lari, R.J.; Praeg, W.F.; Turner, L.R.

    1990-03-06

    This patent describes an apparatus capable of producing a combination of magnetic fields that can retain a metal in liquid form in a region having a smooth vertical boundary including a levitation magnet that produces low frequency magnetic field traveling waves to retain the metal and a stabilization magnet that produces a high frequency magnetic field to produce a smooth vertical boundary. As particularly adapted to the casting of solid metal sheets, a metal in liquid form can be continuously fed into one end of the confinement region produced by the levitation and stabilization magnets and removed in solid form from the other end of confinement region. An additional magnet may be included for support at the edges of the confinement region where eddy currents loop.

  12. Electromagnetic confinement and movement of thin sheets of molten metal

    SciTech Connect

    Lari, R.J.; Praeg, W.F.; Turner, L.R.

    1988-10-18

    An apparatus capable of producing a combination of magnetic fields that can retain a metal in liquid form in a region having a smooth vertical boundary including a levitation magnet that produces low frequency magnetic field traveling waves to retain the metal and a stabilization magnet that produces a high frequency magnetic field to produce a smooth vertical boundary. As particularly adapted to the casting of solid metal sheets, a metal in liquid form can be continuously fed into one end of the confinement region produced by the levitation and stabilization magnets and removed in solid form from the other end of confinement region. An additional magnet may be included for support at the edges of the confinement region where eddy currents loop.

  13. Electromagnetic confinement and movement of thin sheets of molten metal

    DOEpatents

    Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1990-01-01

    An apparatus capable of producing a combination of magnetic fields that can retain a metal in liquid form in a region having a smooth vertical boundary including a levitation magnet that produces low frequency magnetic field traveling waves to retain the metal and a stabilization magnet that produces a high frequency magnetic field to produce a smooth vertical boundary. As particularly adapted to the casting of solid metal sheets, a metal in liquid form can be continuously fed into one end of the confinement region produced by the levitation and stabilization magnets and removed in solid form from the other end of confinement region. An additional magnet may be included for support at the edges of the confinement region where eddy currents loop.

  14. Electronic and Magnetic Properties of Metal-Doped BN Sheet: A First-Principles Study

    SciTech Connect

    Zhou, Yungang; Xiao-Dong, J.; Wang, Zhiguo; Xiao, Haiyan Y.; Gao, Fei; Zu, Xiaotao T.

    2010-07-21

    Electronic and magnetic properties of BN sheet doped with 3d transition metals (Fe, Co and Ni) have been investigated using ab initio calculations. Our calculations show many interesting physical properties in metal-doped BN sheet. Fe-doped BN sheet is a half-metal with the magnetic moment of 2.0 μB, and Co-doped BN sheet becomes a narrow-gap semiconductor with the magnetic moment of 1.0 μB. However, no magnetic moment is induced on Ni-doped BN sheet, which has the same band gap as pristine BN sheet. Furthermore, Fe atom is easy to form isolated particle on BN sheet, while Ni and Co atoms are likely to form sheet-supported metal nanotemplate. These results are useful for spintronics application and could help in the development of magnetic nanotructures and metallic nanotemplate at room temperature.

  15. Metal complex interactions with DNA.

    PubMed

    Pages, Benjamin J; Ang, Dale L; Wright, Elisé P; Aldrich-Wright, Janice R

    2015-02-28

    Increasing numbers of DNA structures are being revealed using biophysical, spectroscopic and genomic methods. The diversity of transition metal complexes is also growing, as the unique contributions that transition metals bring to the overall structure of metal complexes depend on the various coordination numbers, geometries, physiologically relevant redox potentials, as well as kinetic and thermodynamic characteristics. The vast range of ligands that can be utilised must also be considered. Given this diversity, a variety of biological interactions is not unexpected. Specifically, interactions with negatively-charged DNA can arise due to covalent/coordinate or subtle non-coordinate interactions such as electrostatic attraction, groove binding and intercalation as well as combinations of all of these modes. The potential of metal complexes as therapeutic agents is but one aspect of their utility. Complexes, both new and old, are currently being utilised in conjunction with spectroscopic and biological techniques to probe the interactions of DNA and its many structural forms. Here we present a review of metal complex-DNA interactions in which several binding modes and DNA structural forms are explored. PMID:25427534

  16. Thermographic imaging of cracks in thin metal sheets

    NASA Technical Reports Server (NTRS)

    Cramer, K. E.; Winfree, William P.; Howell, Patricia A.; Syed, Hazari; Renouard, Keith A.

    1992-01-01

    The presence of cracks significantly decreases the structural integrity of thin metal sheets used in aerospace applications. Thermographic detection of surface temperature variations due to these cracks is possible after external heating. An approximate line source of heat is used to produce an inplane flow of heat in the sheet. A crack in the sheet perturbs the inplane flow of heat and can be seen in an image of the surface temperature of the sheet. An effective technique for locating these perturbations is presented which reduces the surface temperature image to an image of variations in the inplane heat flow. This technique is shown to greatly increase the detectability of the cracks. This thermographic method has advantages over other techniques in that it is able to remotely inspect a large area in a short period of time. The effectiveness of this technique depends on the shape, position and orientation of the heat source with respect to the cracks as well as the extent to which the crack perturbs the surface heat flow. The relationship between these parameters and the variation in the heat flow is determined both by experimental and computational techniques. Experimental data is presented for through-the-thickness, subsurface and surface EDM notches. Data for through-the-thickness fatigue cracks are also presented.

  17. Spatial complexity of ice flow across the Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Ng, Felix S. L.

    2015-11-01

    Fast-flowing ice streams carry ice from the interior of the Antarctic Ice Sheet towards the coast. Understanding how ice-stream tributaries operate and how networks of them evolve is essential for developing reliable models of the ice sheet’s response to climate change. A particular challenge is to unravel the spatial complexity of flow within and across tributary networks. Here I define a measure of planimetric flow convergence, which can be calculated from satellite measurements of the ice sheet’s surface velocity, to explore this complexity. The convergence map of Antarctica clarifies how tributaries draw ice from its interior. The map also reveals curvilinear zones of convergence along lateral shear margins of streaming, and abundant ripples associated with nonlinear ice rheology and changes in bed topography and friction. Convergence on ice-stream tributaries and their feeding zones is uneven and interspersed with divergence. For individual drainage basins, as well as the ice sheet as a whole, fast flow cannot converge or diverge as much as slow flow. I therefore deduce that flow in the ice-stream networks is subject to mechanical regulation that limits flow-orthonormal strain rates. These findings provide targets for ice-sheet simulations and motivate more research into the origin and dynamics of tributarization.

  18. Complex Dynamic Flows in Solar Flare Sheet Structures

    NASA Technical Reports Server (NTRS)

    McKenzie, David E.; Reeves, Katharine K.; Savage, Sabrina

    2012-01-01

    Observations of high-energy emission from solar flares often reveal the presence of large sheet-like structures, sometimes extending over a space comparable to the Sun's radius. Given that these structures are found between a departing coronal mass ejection and the post-eruption flare arcade, it is natural to associate the structure with a current sheet; though the relationship is unclear. Moreover, recent high-resolution observations have begun to reveal that the motions in this region are highly complex, including reconnection outflows, oscillations, and apparent wakes and eddies. We present a detailed first look at the complicated dynamics within this supra-arcade plasma, and consider implications for the interrelationship between the plasma and its embedded magnetic field.

  19. Stabilization of ultrafine metal nanocatalysts on thin carbon sheets

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofang; Cui, Xinrui; Liu, Yiding; Yin, Yadong

    2015-10-01

    A novel strategy was proposed to anchor ultrafine metal nanoparticles (NPs) on thin carbon sheets for highly stable and efficient heterogeneous catalysts. In this facile approach, a dense monolayer of ultrafine AuNPs was sandwiched between a silica core and a resin shell, followed by carbonization of the shell at a high temperature and then selective removal of the silica core. The shrinkage of the shells during carbonization facilitates partial embedment of the AuNPs on the carbon shell surface and provides superior stability against particle sintering during high temperature/mechanical post-treatments and catalytic reactions. It was also found that diffusion of reactants to the surface of AuNPs could be maximized by reducing the thickness of the hollow shells or simply by cracking the shells into thin carbon sheets, both significantly benefiting the catalytic efficiency. The advantages of this ultra-stable architecture together with the densely dispersed catalytic sites were demonstrated by their high stability and superior catalytic activity in reducing hydrophilic 4-nitrophenol and hydrophobic nitrobenzene.A novel strategy was proposed to anchor ultrafine metal nanoparticles (NPs) on thin carbon sheets for highly stable and efficient heterogeneous catalysts. In this facile approach, a dense monolayer of ultrafine AuNPs was sandwiched between a silica core and a resin shell, followed by carbonization of the shell at a high temperature and then selective removal of the silica core. The shrinkage of the shells during carbonization facilitates partial embedment of the AuNPs on the carbon shell surface and provides superior stability against particle sintering during high temperature/mechanical post-treatments and catalytic reactions. It was also found that diffusion of reactants to the surface of AuNPs could be maximized by reducing the thickness of the hollow shells or simply by cracking the shells into thin carbon sheets, both significantly benefiting the

  20. RIGGERS LOFT/PAINT SHOP/SHEET METAL SHOP, VIEW TO SOUTHEAST. THE PAINT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    RIGGERS LOFT/PAINT SHOP/SHEET METAL SHOP, VIEW TO SOUTHEAST. THE PAINT SHOP WAS LOCATED IN THE CLOSEST CORNER OF THE BUILDING. THE SHEET METAL SHOP WAS LOCATED IN THE CORNER OF THE BUILDING ON THE RIGHT. THE RIGGERS LOFT WAS LOCATED IN THE PORTION OF THE BUILDING OUT OF VIEW TO THE LEFT - Rosie the Riveter National Historical Park, Riggers Loft/Paint Shop/Sheet Metal Shop, 1322 Canal Boulevard, Richmond, Contra Costa County, CA

  1. Self-Pierce Riveting Through 3 Sheet Metal Combinations

    NASA Astrophysics Data System (ADS)

    Andersson, Roger; Jonason, Paul; Pettersson, Tommy

    2011-05-01

    One way to reduce the CO2 emissions in automotives is to reduce the weight of the Body-In-White. One easy to achieve the weight reduction is to replace steel sheet materials with Al alloys, which is 3 times lighter. One issue is the joining process, especially with combinations between steel grades and AL alloys. Example of combination of mixed material combinations (Al-steel) might be found in the door structure. The reason is because of the AL alloys worthier crash performance so the automotive manufacturer might want to use crash impact beams made by high strength steels in a AL intensive door structure. The joining process between aluminum and steel are problematic due it's not possible to use traditional spot-welding technologies due to the materials total difference in microstructure characteristics as well thermal properties. To overcome this issue then mechanical as well adhesion joining are frequently used. This paper describes a development process and subsequently analysis of a self-pierce rivet (SPR) process between 3 sheet metal combinations. The multi-material combinations in this study were a combination of ultra high strength steels sheets (DP1000) and a Al-alloy (AA 6014). The analysis of the SPR process, in sense of mechanical strengths, has been done by peel- and shear tests. To reduce the amount of future physical tests a virtual FE-model has been developed for the process. This FE model of the process has been subsequently used to analyze the mechanical strength during plastic deformation. By using inverse analysis a correct contact algorithm has been evaluated that would predict the binding force between the rivet and sheet under a deformation process. With this new virtual model it will not only possible to analyze and develop the SPR process but also to achieve the final strength of the joint.

  2. Self-Pierce Riveting Through 3 Sheet Metal Combinations

    SciTech Connect

    Andersson, Roger; Jonason, Paul; Pettersson, Tommy

    2011-05-04

    One way to reduce the CO{sub 2} emissions in automotives is to reduce the weight of the Body-In-White. One easy to achieve the weight reduction is to replace steel sheet materials with Al alloys, which is 3 times lighter. One issue is the joining process, especially with combinations between steel grades and AL alloys. Example of combination of mixed material combinations (Al-steel) might be found in the door structure. The reason is because of the AL alloys worthier crash performance so the automotive manufacturer might want to use crash impact beams made by high strength steels in a AL intensive door structure. The joining process between aluminum and steel are problematic due it's not possible to use traditional spot-welding technologies due to the materials total difference in microstructure characteristics as well thermal properties. To overcome this issue then mechanical as well adhesion joining are frequently used. This paper describes a development process and subsequently analysis of a self-pierce rivet (SPR) process between 3 sheet metal combinations. The multi-material combinations in this study were a combination of ultra high strength steels sheets (DP1000) and a Al-alloy (AA 6014). The analysis of the SPR process, in sense of mechanical strengths, has been done by peel- and shear tests. To reduce the amount of future physical tests a virtual FE-model has been developed for the process. This FE model of the process has been subsequently used to analyze the mechanical strength during plastic deformation. By using inverse analysis a correct contact algorithm has been evaluated that would predict the binding force between the rivet and sheet under a deformation process. With this new virtual model it will not only possible to analyze and develop the SPR process but also to achieve the final strength of the joint.

  3. Application of Six Sigma Robust Optimization in Sheet Metal Forming

    SciTech Connect

    Li, Y.Q.; Cui, Z.S.; Ruan, X.Y.; Zhang, D.J.

    2005-08-05

    Numerical simulation technology and optimization method have been applied in sheet metal forming process to improve design quality and shorten design cycle. While the existence of fluctuation in design variables or operation condition has great influence on the quality. In addition to that, iterative solution in numerical simulation and optimization usually take huge computational time or endure expensive experiment cost In order to eliminate effect of perturbations in design and improve design efficiency, a CAE-based six sigma robust design method is developed in this paper. In the six sigma procedure for sheet metal forming, statistical technology and dual response surface approximate model as well as algorithm of 'Design for Six Sigma (DFSS)' are integrated together to perform reliability optimization and robust improvement. A deep drawing process of a rectangular cup is taken as an example to illustrate the method. The optimization solutions show that the proposed optimization procedure not only improves significantly the reliability and robustness of the forming quality, but also increases optimization efficiency with approximate model.

  4. Lower Restrictions for Sheet Metal Trimming Processes can Reduce Die Costs in The Automotive Industry

    NASA Astrophysics Data System (ADS)

    Hogg, Markus; Rohleder, Martin; Roll, Karl

    2011-05-01

    To reduce costs of trimming dies influencing parameters of the shearing process were identified, new technical approaches for a more cost efficient die design were developed, and comprehensive investigations on a sample tool were done. These approaches will be verified on a trimming die in series production. If this pilot application is successful, many sheet metal forming parts can be trimmed by less die investment in the future. In the automotive industry complex sheet metal forming parts are often trimmed by shearing. Ideally this shearing is done with a 90° angle between the cutting edge and the part surface. Because of complex part geometry different angles always occur. Often shearing angles and the effective sheet thickness increases so much that trimming in the working direction of the press machine is not possible anymore. In these cases sliding cams have to be used. That makes trimming dies expensive and maintenance intensive. For reliable trimming a good understanding of the process and its limitations is necessary. By not considering these limitations the tool can fail after a few operations or/and the resulting edge of the sheet metal part is no longer acceptable. In worst case a new tool has to be built or at least must be reworked. In operational practice so far only empirical values about limitations are known. The stability limit for trimming is not known for all shearing angles and for new high-strength materials. Therefore detailed investigations were done on a sample tool to determine these stability limits for different materials and shearing angles. The basis for starting these principle investigations was empirical values from operational practise. By using a high-quality material and a completely new shape for the trimming die elements both the reliable processable effective sheet thickness respectively the shearing angle as well as the acting forces could be optimized. In the basic investigations trimming in one direction was often still

  5. Process Simulation of Aluminium Sheet Metal Deep Drawing at Elevated Temperatures

    SciTech Connect

    Winklhofer, Johannes; Trattnig, Gernot; Sommitsch, Christof

    2010-06-15

    Lightweight design is essential for an economic and environmentally friendly vehicle. Aluminium sheet metal is well known for its ability to improve the strength to weight ratio of lightweight structures. One disadvantage of aluminium is that it is less formable than steel. Therefore complex part geometries can only be realized by expensive multi-step production processes. One method for overcoming this disadvantage is deep drawing at elevated temperatures. In this way the formability of aluminium sheet metal can be improved significantly, and the number of necessary production steps can thereby be reduced. This paper introduces deep drawing of aluminium sheet metal at elevated temperatures, a corresponding simulation method, a characteristic process and its optimization. The temperature and strain rate dependent material properties of a 5xxx series alloy and their modelling are discussed. A three dimensional thermomechanically coupled finite element deep drawing simulation model and its validation are presented. Based on the validated simulation model an optimised process strategy regarding formability, time and cost is introduced.

  6. Electrically driven rapidly vaporizing foils, wires and strips used for collision welding and sheet metal forming

    SciTech Connect

    Vivek, Anupam; Daehn, Glenn S; Taber, Geoffrey A; Johnson, Jason R

    2015-05-05

    A method for forming a piece of a sheet metal is performed by positioning a consumable body, made of metal, proximate to the piece of the sheet metal. The consumable body is rapidly vaporized, and the gas pressure generated thereby is directed into the piece of the sheet metal. This results in acceleration of the piece of sheet metal, and it is collided into a stationary body at a velocity, generally in excess of 200 m/s. Depending upon the type of stationary body, the piece of sheet metal is deformed into a predetermined shape or is welded onto the stationary body. The vaporization is accomplished by passing a high current of electricity into the consumable body. The effect of the vaporized metal may be augmented by additional components in the consumable body.

  7. Laser-Assisted Sheet Metal Working by the Integration of Scanner System Technology into a Progressive Die

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Emonts, Michael; Eckert, Markus

    Within the sheet metal working industry the demand for thinner sheet materials with very high strength is growing due to the increasing importance for saving energy and responsible usage of natural resources. High strength and low ductility restrict application of state-of-the-art technology to shear, bend or deep draw parts with the needed complexity and quality. The Fraunhofer IPT has developed a "hy-PRESS" system to combine laser-assisted preheating and conventional punching to a hybrid technology in a progressive die, which allows to shear, bend and deep draw high strength materials with a high quality and complexity in progressive dies.

  8. Metal-metal bond lengths in complexes of transition metals*

    PubMed Central

    Pauling, Linus

    1976-01-01

    In complexes of the transition metals containing clusters of metal atoms the cobalt-cobalt bond lengths are almost always within 1 pm of the single-bond value 246 pm given by the enneacovalent radius of cobalt, whereas most of the observed iron-iron bond lengths are significantly larger than the single-bond value 248 pm, the mean being 264 pm, which corresponds to a half-bond. A simple discussion of the structures of these complexes based on spd hybrid orbitals, the electroneutrality principle, and the partial ionic character of bonds between unlike atoms leads to the conclusion that resonance between single bonds and no-bonds would occur for iron and its congeners but not for cobalt and its congeners, explaining the difference in the bond lengths. PMID:16592368

  9. An ice sheet model of reduced complexity for paleoclimate studies

    NASA Astrophysics Data System (ADS)

    Neff, Basil; Born, Andreas; Stocker, Thomas F.

    2016-04-01

    IceBern2D is a vertically integrated ice sheet model to investigate the ice distribution on long timescales under different climatic conditions. It is forced by simulated fields of surface temperature and precipitation of the Last Glacial Maximum and present-day climate from a comprehensive climate model. This constant forcing is adjusted to changes in ice elevation. Due to its reduced complexity and computational efficiency, the model is well suited for extensive sensitivity studies and ensemble simulations on extensive temporal and spatial scales. It shows good quantitative agreement with standardized benchmarks on an artificial domain (EISMINT). Present-day and Last Glacial Maximum ice distributions in the Northern Hemisphere are also simulated with good agreement. Glacial ice volume in Eurasia is underestimated due to the lack of ice shelves in our model. The efficiency of the model is utilized by running an ensemble of 400 simulations with perturbed model parameters and two different estimates of the climate at the Last Glacial Maximum. The sensitivity to the imposed climate boundary conditions and the positive degree-day factor β, i.e., the surface mass balance, outweighs the influence of parameters that disturb the flow of ice. This justifies the use of simplified dynamics as a means to achieve computational efficiency for simulations that cover several glacial cycles. Hysteresis simulations over 5 million years illustrate the stability of the simulated ice sheets to variations in surface air temperature.

  10. Flat sheet metal girders with very thin metal web. Part I : general theories and assumptions

    NASA Technical Reports Server (NTRS)

    Wagner, Herbert

    1931-01-01

    The object of this report was to develop the structural method of sheet metal girders and should for that reason be considered solely from this standpoint. The ensuing methods were based on the assumption of the infinitely low stiffness in bending of the metal web. This simplifies the basis of calculations to such an extent that many questions of great practical importance can be examined which otherwise cannot be included in any analysis of the bending stiffness of the buckled plate. This report refers to such points as the safety in buckling of uprights to the effect of bending flexibility of spars, to spars not set parallel, etc.

  11. Towards Industrial Application of Damage Models for Sheet Metal Forming

    NASA Astrophysics Data System (ADS)

    Doig, M.; Roll, K.

    2011-05-01

    Due to global warming and financial situation the demand to reduce the CO2-emission and the production costs leads to the permanent development of new materials. In the automotive industry the occupant safety is an additional condition. Bringing these arguments together the preferable approach for lightweight design of car components, especially for body-in-white, is the use of modern steels. Such steel grades, also called advanced high strength steels (AHSS), exhibit a high strength as well as a high formability. Not only their material behavior but also the damage behavior of AHSS is different compared to the performances of standard steels. Conventional methods for the damage prediction in the industry like the forming limit curve (FLC) are not reliable for AHSS. Physically based damage models are often used in crash and bulk forming simulations. The still open question is the industrial application of these models for sheet metal forming. This paper evaluates the Gurson-Tvergaard-Needleman (GTN) model and the model of Lemaitre within commercial codes with a goal of industrial application.

  12. Optimization of Forming Processes with Different Sheet Metal Alloys

    NASA Astrophysics Data System (ADS)

    Sousa, Luísa C.; Castro, Catarina F.; António, Carlos C.

    2007-05-01

    Over the past decades relatively heavy components made of steel alloys comprise the majority of many manufactured parts due to steel's low cost, high formability and good strength. The desire to produce lightweight parts has led to studies searching for lighter and stronger materials such as aluminum alloys. However, they exhibit lower elastic stiffness than steel resulting in higher elastic strains causing known distortions such as spring-back and so decreasing accuracy of manufactured net-shape components. This paper presents a developed computational method to optimize the design of sheet metal processes using genetic algorithms. An inverse approach is considered so that the final geometry of the bended blank closely follows a prescribed one. The developed computational method couples a finite element forming simulation and an evolutionary algorithm searching the optimal design parameters of the process. The developed method searches the optimal parameters that ensure a perfect net-shape part. Different aluminum alloys candidates for automotive structural applications are considered and the optimal solutions are analyzed.

  13. Steel--Project Fact Sheet: Recycling Acid and Metal Salts from Pickling Liquors

    SciTech Connect

    Poole, L.; Recca, L.

    1999-01-14

    Regenerating hydrochloric acids from metal finishing pickling baths reduces costs, wastes, and produces a valuable by-product--ferrous sulfate. Order your copy of this OIT project fact sheet and learn more about how your company can benefit.

  14. Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics.

    PubMed

    Csatho, Beata M; Schenk, Anton F; van der Veen, Cornelis J; Babonis, Gregory; Duncan, Kyle; Rezvanbehbahani, Soroush; van den Broeke, Michiel R; Simonsen, Sebastian B; Nagarajan, Sudhagar; van Angelen, Jan H

    2014-12-30

    We present a new record of ice thickness change, reconstructed at nearly 100,000 sites on the Greenland Ice Sheet (GrIS) from laser altimetry measurements spanning the period 1993-2012, partitioned into changes due to surface mass balance (SMB) and ice dynamics. We estimate a mean annual GrIS mass loss of 243 ± 18 Gt ⋅ y(-1), equivalent to 0.68 mm ⋅ y(-1) sea level rise (SLR) for 2003-2009. Dynamic thinning contributed 48%, with the largest rates occurring in 2004-2006, followed by a gradual decrease balanced by accelerating SMB loss. The spatial pattern of dynamic mass loss changed over this time as dynamic thinning rapidly decreased in southeast Greenland but slowly increased in the southwest, north, and northeast regions. Most outlet glaciers have been thinning during the last two decades, interrupted by episodes of decreasing thinning or even thickening. Dynamics of the major outlet glaciers dominated the mass loss from larger drainage basins, and simultaneous changes over distances up to 500 km are detected, indicating climate control. However, the intricate spatiotemporal pattern of dynamic thickness change suggests that, regardless of the forcing responsible for initial glacier acceleration and thinning, the response of individual glaciers is modulated by local conditions. Recent projections of dynamic contributions from the entire GrIS to SLR have been based on the extrapolation of four major outlet glaciers. Considering the observed complexity, we question how well these four glaciers represent all of Greenland's outlet glaciers. PMID:25512537

  15. An ice sheet model of reduced complexity for paleoclimate studies

    NASA Astrophysics Data System (ADS)

    Neff, B.; Born, A.; Stocker, T. F.

    2015-08-01

    IceBern2D is a vertically integrated ice sheet model to investigate the ice distribution on long timescales under different climatic conditions. It is forced by simulated fields of surface temperature and precipitation of the last glacial maximum and present day climate from a comprehensive climate model. This constant forcing is adjusted to changes in ice elevation. Bedrock sinking and sea level are a function of ice volume. Due to its reduced complexity and computational efficiency, the model is well-suited for extensive sensitivity studies and ensemble simulations on extensive temporal and spatial scales. It shows good quantitative agreement with standardized benchmarks on an artificial domain (EISMINT). Present day and last glacial maximum ice distributions on the Northern Hemisphere are also simulated with good agreement. Glacial ice volume in Eurasia is underestimated due to the lack of ice shelves in our model. The efficiency of the model is utilized by running an ensemble of 400 simulations with perturbed model parameters and two different estimates of the climate at the last glacial maximum. The sensitivity to the imposed climate boundary conditions and the positive degree day factor β, i.e., the surface mass balance, outweighs the influence of parameters that disturb the flow of ice. This justifies the use of simplified dynamics as a means to achieve computational efficiency for simulations that cover several glacial cycles. The sensitivity of the model to changes in surface temperature is illustrated as a hysteresis based on 5 million year long simulations.

  16. Magma transport in sheet intrusions of the Alnö carbonatite complex, central Sweden

    PubMed Central

    Andersson, Magnus; Almqvist, Bjarne S. G.; Burchardt, Steffi; Troll, Valentin R.; Malehmir, Alireza; Snowball, Ian; Kübler, Lutz

    2016-01-01

    Magma transport through the Earth’s crust occurs dominantly via sheet intrusions, such as dykes and cone-sheets, and is fundamental to crustal evolution, volcanic eruptions and geochemical element cycling. However, reliable methods to reconstruct flow direction in solidified sheet intrusions have proved elusive. Anisotropy of magnetic susceptibility (AMS) in magmatic sheets is often interpreted as primary magma flow, but magnetic fabrics can be modified by post-emplacement processes, making interpretation of AMS data ambiguous. Here we present AMS data from cone-sheets in the Alnö carbonatite complex, central Sweden. We discuss six scenarios of syn- and post-emplacement processes that can modify AMS fabrics and offer a conceptual framework for systematic interpretation of magma movements in sheet intrusions. The AMS fabrics in the Alnö cone-sheets are dominantly oblate with magnetic foliations parallel to sheet orientations. These fabrics may result from primary lateral flow or from sheet closure at the terminal stage of magma transport. As the cone-sheets are discontinuous along their strike direction, sheet closure is the most probable process to explain the observed AMS fabrics. We argue that these fabrics may be common to cone-sheets and an integrated geology, petrology and AMS approach can be used to distinguish them from primary flow fabrics. PMID:27282420

  17. Magma transport in sheet intrusions of the Alnö carbonatite complex, central Sweden.

    PubMed

    Andersson, Magnus; Almqvist, Bjarne S G; Burchardt, Steffi; Troll, Valentin R; Malehmir, Alireza; Snowball, Ian; Kübler, Lutz

    2016-01-01

    Magma transport through the Earth's crust occurs dominantly via sheet intrusions, such as dykes and cone-sheets, and is fundamental to crustal evolution, volcanic eruptions and geochemical element cycling. However, reliable methods to reconstruct flow direction in solidified sheet intrusions have proved elusive. Anisotropy of magnetic susceptibility (AMS) in magmatic sheets is often interpreted as primary magma flow, but magnetic fabrics can be modified by post-emplacement processes, making interpretation of AMS data ambiguous. Here we present AMS data from cone-sheets in the Alnö carbonatite complex, central Sweden. We discuss six scenarios of syn- and post-emplacement processes that can modify AMS fabrics and offer a conceptual framework for systematic interpretation of magma movements in sheet intrusions. The AMS fabrics in the Alnö cone-sheets are dominantly oblate with magnetic foliations parallel to sheet orientations. These fabrics may result from primary lateral flow or from sheet closure at the terminal stage of magma transport. As the cone-sheets are discontinuous along their strike direction, sheet closure is the most probable process to explain the observed AMS fabrics. We argue that these fabrics may be common to cone-sheets and an integrated geology, petrology and AMS approach can be used to distinguish them from primary flow fabrics. PMID:27282420

  18. Magma transport in sheet intrusions of the Alnö carbonatite complex, central Sweden

    NASA Astrophysics Data System (ADS)

    Andersson, Magnus; Almqvist, Bjarne S. G.; Burchardt, Steffi; Troll, Valentin R.; Malehmir, Alireza; Snowball, Ian; Kübler, Lutz

    2016-06-01

    Magma transport through the Earth’s crust occurs dominantly via sheet intrusions, such as dykes and cone-sheets, and is fundamental to crustal evolution, volcanic eruptions and geochemical element cycling. However, reliable methods to reconstruct flow direction in solidified sheet intrusions have proved elusive. Anisotropy of magnetic susceptibility (AMS) in magmatic sheets is often interpreted as primary magma flow, but magnetic fabrics can be modified by post-emplacement processes, making interpretation of AMS data ambiguous. Here we present AMS data from cone-sheets in the Alnö carbonatite complex, central Sweden. We discuss six scenarios of syn- and post-emplacement processes that can modify AMS fabrics and offer a conceptual framework for systematic interpretation of magma movements in sheet intrusions. The AMS fabrics in the Alnö cone-sheets are dominantly oblate with magnetic foliations parallel to sheet orientations. These fabrics may result from primary lateral flow or from sheet closure at the terminal stage of magma transport. As the cone-sheets are discontinuous along their strike direction, sheet closure is the most probable process to explain the observed AMS fabrics. We argue that these fabrics may be common to cone-sheets and an integrated geology, petrology and AMS approach can be used to distinguish them from primary flow fabrics.

  19. Aminophosphonate metal complexes of biomedical potential.

    PubMed

    Tušek-Božić, L J

    2013-01-01

    Metals and their complexes with organic ligands have an important role in biochemical systems such as enzymatic catalysis, metal ion transfer across the cell membranes, treatment of malignancy, rheumatoid arthritis, ulcer and other types of diseases. Special attention is directed to metal complexes with ligands which are important in biological systems, as their incorporation into metallo-organic compounds offers much scope for design of potential metal-based agents that provide new opportunities in the medicinal chemistry. In view of this, derivatives of aminophosphonic acids, owing to their broad spectrum of biological activities and wide range of applications in the medicinal and agrochemical fields, are very attractive metal-ligand agents that might form biomedical important metal complexes. Thus, a number of aminophosphonate complexes of platinum group metals have been found to possess remarkable antitumor activity while complexes of some other transition and rare-earth metals like technetium, rhenium, samarium and gadolinium have been used either as therapeutic and diagnostic radiopharmaceuticals or as magnetic resonance imaging (MRI) contrast agents. In addition, the high phosphonate affinity towards bone and other calcified tissues may be utilized for the drug targeting based on synthesis of metal complexes linked to bioactive carrier systems, affording better modalities of attack to the site of pathology. In this review article, aminophosphonate metal-based compounds with potential biomedical applications are described. PMID:23432587

  20. A new strategy for stiffness evaluation of sheet metal parts

    NASA Astrophysics Data System (ADS)

    Cai, Q.; Volk, W.; Düster, A.; Rank, E.

    2011-08-01

    In the automotive industry, surfaces of styling models are shaped very often in physical models. For example, in the styling process of a car body important design work is realized by clay models and the resulting geometry information typically comes from optical scans. The scanned data is given in the form of point clouds which is then utilized in the virtual planning process for engineering work, e.g. to evaluate the load-carrying capacity. This is an important measure for the stiffness of the car body panels. In this contribution, the following two issues are discussed: what is the suitable geometric representation of the stiffness of the car body and how it is computed if only discrete point clouds exist. In the first part, the suitable geometric representation is identified by constructing continuous CAD models with different geometric parameters, e.g. Gaussian curvature and mean curvature. The stiffness of models is then computed in LS-DYNA and the influence of different geometric parameters is presented based on the simulation result. In the second part, the point clouds from scanned data, rather than continuous CAD models, are directly utilized to estimate the Gaussian curvature, which is normally derived from continuous surfaces. The discrete Gauss-Bonnet algorithm is applied to estimate the Gaussian curvature of the point clouds and the sensitivity of the algorithm with respect to the mesh quality is analyzed. In this way, the stiffness evaluation process in an early stage can be accelerated since the transformation from discrete data to continuous CAD data is labor-intensive. The discrete Gauss-Bonnet algorithm is finally applied to a sheet metal model of the BMW 3 series.

  1. Electro-Hydraulic Forming of Sheet Metals: Free-forming vs. Conical-die Forming

    SciTech Connect

    Rohatgi, Aashish; Stephens, Elizabeth V.; Davies, Richard W.; Smith, Mark T.; Soulami, Ayoub; Ahzi, Said

    2012-05-01

    This work builds upon our recent advances in quantifying high-rate deformation behavior of sheet metals, during electro-hydraulic forming (EHF), using high-speed imaging and digital image correlation techniques. Following recent publication of an earlier manuscript, resulting from this project, in the Journal of Materials Processing Technology, this manuscript further details our results and compares forming behavior when the process is carried out inside an open-die or a conical die. It is anticipated that quantitative information of the sheet deformation history, made possible by the experimental technique developed in this work, will improve our understanding on the roles of strain-rate and sheet-die interactions in enhancing the sheet metal formability during high-rate forming. This knowledge will be beneficial to the automotive industry and enable them to fabricate light-weight sheet parts out of Al and advanced high strength steels.

  2. Material Models for Accurate Simulation of Sheet Metal Forming and Springback

    NASA Astrophysics Data System (ADS)

    Yoshida, Fusahito

    2010-06-01

    For anisotropic sheet metals, modeling of anisotropy and the Bauschinger effect is discussed in the framework of Yoshida-Uemori kinematic hardening model incorporating with anisotropic yield functions. The performances of the models in predicting yield loci, cyclic stress-strain responses on several types of steel and aluminum sheets are demonstrated by comparing the numerical simulation results with the corresponding experimental observations. From some examples of FE simulation of sheet metal forming and springback, it is concluded that modeling of both the anisotropy and the Bauschinger effect is essential for the accurate numerical simulation.

  3. Freestanding stacked mesh-like hydrogel sheets enable the creation of complex macroscale cellular scaffolds.

    PubMed

    Son, Jaejung; Bae, Chae Yun; Park, Je-Kyun

    2016-03-01

    Hydrogel-based bottom-up tissue engineering depends on assembly of cell-laden modules for complex three-dimensional tissue reconstruction. Though sheet-like hydrogel modules enable rapid and controllable assembly, they have limitations in generating spatial microenvironments and mass transport. Here, we describe a simple method for forming large-scale cell-hydrogel assemblies via stacking cell-embedded mesh-like hydrogel sheets to create complex macroscale cellular scaffolds. Freestanding stacked hydrogel sheets were fabricated for long-term cell culturing applications using a facile stacking process where the micropatterned hydrogel sheets (8.0 mm × 8.7 mm) were aligned using a polydimethylsiloxane drainage well. The stacked hydrogel sheets were precisely aligned so that the openings could facilitate mass transport through the stacked sheets. Despite the relatively large height of the stacked structure (400-700 μm), which is larger than the diffusion limit thickness of 150-200 μm, the freestanding cell-ydrogel assemblies maintained cell viability and exhibited enhanced cellular function compared with single hydrogel sheets. Furthermore, a three-dimensional co-culture system was constructed simply by stacking different cell-containing hydrogel sheets. These results show that stacked hydrogel sheets have significant potential as a macroscale cell-culture and assay platform with complex microenvironments for biologically relevant in vitro tissue-level drug assays and physiological studies. PMID:26627474

  4. Aircraft Assembly, Riveting and Surface Repair 1; Sheet Metal Work 2: 9855.02.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The course outline will serve as a guide to the 11th grade student interested in sheet metal occupations. The course, 135 hours in length, covers the basic techniques of cutting and trimming, drilling and hole preparation of metals. Lecture and demonstration techniques are to be utilized, with emphasis on the use of visual aids, mock-ups,…

  5. Residual Stress In Sheet Metal Parts Made By Incremental Forming Process

    SciTech Connect

    Tanaka, Shigekazu; Nakamura, Tamotsu; Hayakawa, Kunio; Nakamura, Hideo; Motomura, Kazuo

    2007-05-17

    Incremental sheet metal forming, which uses a CNC forming stylus, is new flexible forming process not requiring the use of any expensive dies. We have applied the incremental forming process to dental prosthesis. This new process, however, posed difficult problems. After removing the outer portion of the incremental formed sheet metal part, the inner part is distorted. In this paper, the residual stress in the sheet metal part obtained by incremental forward stretch forming operations has been examined. Numerical simulations were conducted for solid elements. When small rigid ball slides on the metal sheet with a certain vertical feed, tension residual stress is produced in the upper layer of the sheet and compression stress in the lower. Then, the resultant moments throughout the sheet cause negative spring-back when the outer portion is removed. A systematic study of the behavior was conducted in this paper. Parameters considered included the tool radius and the vertical tool feed rate. The tip radius of forming stylus has a significant influence on the residual stress. The smaller radius of forming stylus, the larger bending force becomes. And new process with double forming styluses is examined to reduce the bending force.

  6. Residual Stress In Sheet Metal Parts Made By Incremental Forming Process

    NASA Astrophysics Data System (ADS)

    Tanaka, Shigekazu; Nakamura, Tamotsu; Hayakawa, Kunio; Nakamura, Hideo; Motomura, Kazuo

    2007-05-01

    Incremental sheet metal forming, which uses a CNC forming stylus, is new flexible forming process not requiring the use of any expensive dies. We have applied the incremental forming process to dental prosthesis. This new process, however, posed difficult problems. After removing the outer portion of the incremental formed sheet metal part, the inner part is distorted. In this paper, the residual stress in the sheet metal part obtained by incremental forward stretch forming operations has been examined. Numerical simulations were conducted for solid elements. When small rigid ball slides on the metal sheet with a certain vertical feed, tension residual stress is produced in the upper layer of the sheet and compression stress in the lower. Then, the resultant moments throughout the sheet cause negative spring-back when the outer portion is removed. A systematic study of the behavior was conducted in this paper. Parameters considered included the tool radius and the vertical tool feed rate. The tip radius of forming stylus has a significant influence on the residual stress. The smaller radius of forming stylus, the larger bending force becomes. And new process with double forming styluses is examined to reduce the bending force.

  7. Reduction of Springback of Sheet Metals by Bottoming

    NASA Astrophysics Data System (ADS)

    Ogawa, Takayuki; Hirahara, Atsushi; Yoshida, Fusahito

    2010-06-01

    The effect of bottoming on the reduction of springback is investigated by performing V-air-bending experiment on a high strength steel sheet of TS590MPa and the corresponding FE simulation. From the experiment, it was found that the springback is drastically decreased with increasing bottoming force. This is mainly due to the reduction of bending moment by compressive load acting normally to the sheet. At an early stage of bottoming, springback is also influenced by the change of geometrical rigidity of the bent sheet due to the straightening of ridge line warp. Since bottoming is a process of reverse deformation of tension-compression, the Bauschinger effect of materials should be taken into account for its accurate numerical simulation. 3D FE simulation using Yoshida-Uemori kinematic hardening model predicts well the bottoming effect.

  8. Programming complex shapes in thin nematic elastomer and glass sheets.

    PubMed

    Plucinsky, Paul; Lemm, Marius; Bhattacharya, Kaushik

    2016-07-01

    Nematic elastomers and glasses are solids that display spontaneous distortion under external stimuli. Recent advances in the synthesis of sheets with controlled heterogeneities have enabled their actuation into nontrivial shapes with unprecedented energy density. Thus, these have emerged as powerful candidates for soft actuators. To further this potential, we introduce the key metric constraint which governs shape-changing actuation in these sheets. We then highlight the richness of shapes amenable to this constraint through two broad classes of examples which we term nonisometric origami and lifted surfaces. Finally, we comment on the derivation of the metric constraint, which arises from energy minimization in the interplay of stretching, bending, and heterogeneity in these sheets. PMID:27575067

  9. Study of Microstructure and Mechanical Properties Effects on Workpiece Quality in Sheet Metal Extrusion Process

    PubMed Central

    Suriyapha, Chatkaew; Bubphachot, Bopit; Rittidech, Sampan

    2015-01-01

    Sheet metal extrusion is a metal forming process in which the movement of a punch penetrates a sheet metal surface and it flows through a die orifice; the extruded parts can be deflected to have an extrusion cavity and protrusion on the opposite side. Therefore, this process results in a narrow region of highly localized plastic deformation due to the formation and microstructure effect on the work piece. This research investigated the characteristics of the material-flow behavior during the formation and its effect on the microstructure of the extruded sheet metal using the finite element method (FEM). The actual parts and FEM simulation model were developed using a blank material made from AISI-1045 steel with a thickness of 5 mm; the material's behavior was determined subject to the punch penetration depths of 20%, 40%, 60%, and 80% of the sheet thickness. The results indicated the formation and microstructure effects on the sheet metal extrusion parts and defects. Namely, when increasing penetration, narrowing the die orifice the material flows through, the material was formed by extruding, and defects were visibility, and the microstructure of the material's grains' size was flat and very fine. Extrusion defects were not found in the control material flow. The region of highly localized plastic deformation affected the material gain and mechanical properties. The FEM simulation results agreed with the experimental results. Moreover, FEM could be investigated as a tool to decrease the cost and time in trial and error procedures. PMID:26229979

  10. Resistance Spot Welding of AA5052 Sheet Metal of Dissimilar Thickness

    NASA Astrophysics Data System (ADS)

    Mat Din, N. A.; Zuhailawati, H.; Anasyida, A. S.

    2016-02-01

    Resistance spot welding of dissimilar thickness of AA5052 aluminum alloy was performed in order to investigate the effect of metal thickness on the weldment strength. Resistance spot welding was done using a spot welder machine available in Coraza Systems Sdn Bhd using a hemispherical of chromium copper electrode tip with radius of 6.00 mm under 14 kA of current and 0.02 bar of pressure for all thickness combinations. Lap joint configuration was produced between 2.0 mm thick sheet and 1.2 - 3.2 mm thick sheet, respectively. Microstructure of joint showed asymmetrical nugget shape that was larger on the thicker side indicating larger molten metal volume. Joint 2.0 mm x 3.2 mm sheets has the lowest hardness in both transverse direction and through thickness direction because less heat left in the weld nugget. The microstructure shows that this joint has coarse grains of HAZ. As thickness of sheet metal increased, the failure load of the joints increased. However, there was no linear correlation established between joint strength and metal thickness due to different shape of fusion zone in dissimilar thickness sheet metal.

  11. High Operating Temperature Liquid Metal Heat Transfer Fluids (Fact Sheet)

    SciTech Connect

    Not Available

    2012-12-01

    The University of California, Los Angeles, the University of California, Berkeley, and Yale University is one of the 2012 SunShot CSP R&D awardees for their Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids. This fact sheet explains the motivation, description, and impact of the project.

  12. Investigation of the static and dynamic fragmentation of metallic liquid sheets induced by random surface fluctuations

    NASA Astrophysics Data System (ADS)

    Durand, O.; Soulard, L.; Bourasseau, E.; Filippini, G.

    2016-07-01

    We perform molecular dynamics simulations to investigate the static and dynamic fragmentation of metallic liquid sheets of tin induced by random surface fluctuations. The static regime is analyzed by simulating sheets of different thicknesses, and the dynamic fragmentation is ensured by applying along the longitudinal direction of a sheet an instantaneous expansion velocity per initial unit length (expansion rate) with values ranging from 1 × 109 to 3 × 1010 s-1. The simulations show that the static/dynamic fragmentation becomes possible when the fluctuations of the upper and lower surfaces of the sheets can either overlap or make the local volume density of the system go down below a critical value. These two mechanisms cause locally in the sheet the random nucleation of pores of void, on a timescale that exponentially increases with the sheet thickness. Afterwards, the pores develop following distinct stages of growth, coalescence, and percolation, and later in time aggregates of liquid metal are formed. The simulations also show that the fragmentation of static sheets is characterized by relatively mono-dispersed surface and volume distributions of the pores and aggregates, respectively, whereas in extreme conditions of dynamic fragmentation (expansion rate typically in the range of 1 × 1010 s-1), the distributions are rather poly-dispersed and obey a power law decay with surface (volume). A model derived from the simulations suggests that both dynamic and static regimes of fragmentation are similar for expansion rates below typically 1 × 107 s-1.

  13. Adsorption of alkali and alkaline-earth metal atoms on the reconstructed graphene-like BN single sheet

    NASA Astrophysics Data System (ADS)

    Hao, Jun-Hua; Wang, Zheng-Jia; Wang, Yu-Fang; Yin, Yu-Hua; Jiang, Run; Jin, Qing-Hua

    2015-12-01

    A graphene-like BN single sheet with absorbed alkali and alkaline-earth metal atoms have been investigated by using a first-principles method within the framework of density functional theory (DFT). The electronic structure of BN sheet with adsorbed metal atoms is mainly determined by the metal electronic state which is near to the Fermi level owing to the wide band gap of pure BN sheet. So, we calculated the adsorption energy, charge transfer and work function after the metal adsorbed on BN sheet. We found that the interaction between the metal atoms and BN surface was very strong, and the stable adsorption site for all the adsorbed atoms concluded was high-coordination surface site (H-center) rather than the surface dangling bond sites from the perspective of simple bond-counting arguments. Our results indicate that the interaction of BN sheet with metal atoms could help in the development of metallic nanoscale devices.

  14. Precise assembly of complex beta sheet topologies from de novo designed building blocks

    PubMed Central

    King, Indigo Chris; Gleixner, James; Doyle, Lindsey; Kuzin, Alexandre; Hunt, John F; Xiao, Rong; Montelione, Gaetano T; Stoddard, Barry L; DiMaio, Frank; Baker, David

    2015-01-01

    Design of complex alpha-beta protein topologies poses a challenge because of the large number of alternative packing arrangements. A similar challenge presumably limited the emergence of large and complex protein topologies in evolution. Here, we demonstrate that protein topologies with six and seven-stranded beta sheets can be designed by insertion of one de novo designed beta sheet containing protein into another such that the two beta sheets are merged to form a single extended sheet, followed by amino acid sequence optimization at the newly formed strand-strand, strand-helix, and helix-helix interfaces. Crystal structures of two such designs closely match the computational design models. Searches for similar structures in the SCOP protein domain database yield only weak matches with different beta sheet connectivities. A similar beta sheet fusion mechanism may have contributed to the emergence of complex beta sheets during natural protein evolution. DOI: http://dx.doi.org/10.7554/eLife.11012.001 PMID:26650357

  15. On the formability, geometrical accuracy, and surface quality of sheet metal parts produced by SPIF

    NASA Astrophysics Data System (ADS)

    Alves, M. L.; Silva, M. B.; Alves, L. M.; Martins, P. A. F.

    2008-11-01

    Conventional sheet metal forming processes are not suitable for flexible small-batch production and, therefore, are not appropriate for the growing agile manufacturing trends requiring very short life-cycles, development and production lead times. In fact, the present need for flexible sheet metal forming techniques requires the development of innovative technological solutions that are capable of reducing the fixed and capital costs of sheet metal forming to a level where small-batch production becomes economically feasible. Single point incremental forming (SPIF) is a new sheet metal forming process with a high potential economic payoff for rapid prototyping applications and for small quantity production. In general terms a typical SPIF set-up makes use of a small number of low cost active tools components; (i) a blankholder, (ii) a backing plate and (iii) a single point forming tool. The tool path is generated in a CNC machining center and during the process there is no backup die supporting the back surface of the sheet. Despite the contributions of many researchers on the development of industrial applications and better characterization of the forming limits of the process, several key topics related to the mechanics of deformation, likely mode of failure, geometric accuracy and surface quality of the formed parts remain little understood and scarcely systematized. This paper attempts to provide new contributions about the abovementioned issues by means of a comprehensive experimental investigation performed under laboratory controlled conditions.

  16. Shubnikov de Haas quantum oscillation of the surface states in the metallic Bismuth Telluride sheets

    NASA Astrophysics Data System (ADS)

    Chen, Taishi; Han, Junhao; Li, Zhaoguo; Song, Fengqi; Zhao, Bo; Wang, Xuefeng; Wang, Baigeng; Wan, Jianguo; Han, Min; Zhang, Rong; Wang, Guanghou

    2013-04-01

    Metallic Bi2Te3 crystalline sheets with the room-temperature resistivity of above 10 mΩ cm were prepared and their magnetoresistive transport was measured in a field of up to 9 T. The Shubnikov de Haas oscillations were identified from the secondly-derived magnetoresistance curves. While changing the angle between the field and normal axis of the sheets, we find that the oscillation periods present a cosine dependence on the angle. This indicates a two-dimensional transport due to the surface state. The work reveals a resolvable surface contribution to the overall conduction even in a metallic topological insulator.

  17. Calculation of electromagnetic force in electromagnetic forming process of metal sheet

    NASA Astrophysics Data System (ADS)

    Xu, Da; Liu, Xuesong; Fang, Kun; Fang, Hongyuan

    2010-06-01

    Electromagnetic forming (EMF) is a forming process that relies on the inductive electromagnetic force to deform metallic workpiece at high speed. Calculation of the electromagnetic force is essential to understand the EMF process. However, accurate calculation requires complex numerical solution, in which the coupling between the electromagnetic process and the deformation of workpiece needs be considered. In this paper, an appropriate formula has been developed to calculate the electromagnetic force in metal work-piece in the sheet EMF process. The effects of the geometric size of coil, the material properties, and the parameters of discharge circuit on electromagnetic force are taken into consideration. Through the formula, the electromagnetic force at different time and in different positions of the workpiece can be predicted. The calculated electromagnetic force and magnetic field are in good agreement with the numerical and experimental results. The accurate prediction of the electromagnetic force provides an insight into the physical process of the EMF and a powerful tool to design optimum EMF systems.

  18. Complexity in Transition Metal Oxides

    NASA Astrophysics Data System (ADS)

    Dagotto, Elbio; Alvarez, Gonzalo; Moreo, Adriana

    2004-03-01

    Recent computational results in the context of models for manganites and cuprates will be briefly discussed. It is argued that correlations in quenched disorder -- needed to mimic cooperative Jahn-Teller effects -- are important to have colossal magnetoresistance in 3D. A related recently discussed metal-insulator transition induced by disorder in a one-orbital model with cooperative phonons is intuitively explained [1]. In addition, it is argued that colossal effects should be far more common than currently known, and they may appear in cuprate superconductors as well [2]. [1] J. Burgy et al., cond-mat/0308456; C. Sen, G. Alvarez, and E. Dagotto, preprint. [2] See also Adriana Moreo, invited talk, March APS 04; G. Alvarez, M. Mayr et al., preprint.

  19. Detection of defects in formed sheet metal using medial axis transformation

    NASA Astrophysics Data System (ADS)

    Murmu, Naresh C.; Velgan, Roman

    2003-05-01

    In the metal forming processes, the sheet metals are often prone to various defects such as thinning, dents, wrinkles etc. In the present manufacturing environments with ever increasing demand of higher quality, detecting the defects of formed sheet metal using an effective and objective inspection system is the foremost norm to remain competitive in market. The defect detection using optical techniques aspire to satisfy its needs to be non-contact and fast. However, the main difficulties to achieve this goal remain essentially on the development of efficient evaluation technique and accurate interpretation of extracted data. The defect like thinning is detected by evaluating the deviations of the thickness in the formed sheet metal against its nominal value. The present evaluation procedure for determination of thickness applied on the measurements data is not without deficiency. To improve this procedure, a new evaluation approach based on medial axis transformation is proposed here. The formed sheet metals are digitized using fringe projection systems in different orientations, and afterwards registered into one coordinate frame. The medial axis transformation (MAT) is applied on the point clouds, generating the point clouds of MAT. This data is further processed and medial surface is determined. The thinning defect is detected by evaluating local wall thickness and other defects like wrinkles are determined using the shape recognition on the medial surface. The applied algorithm is simple, fast and robust.

  20. FE-Analysis of the Sheet Metal Forming Processes using Continuous Contact Treatment

    SciTech Connect

    Kim, Tae-Jeong; Yang, Dong-Yol

    2005-08-05

    In general, the sheet metal and die are described by finite elements for the simulation of the metal forming processes. Because the characteristics as continuum of the sheet metal are represented with triangles and rectangles, the errors occur inevitably in finite element analysis. Many contact schemes to describe the deformation modes exactly have been introduced in order to decrease these errors. In this study, a scheme for continuous contact treatment is proposed in order to consider the realistic behavior of contact phenomena during the forming process. The discrete mesh causes stepwise propagation of contact nodes of the sheet even though the contact region of the real forming process is altered very smoothly. It gives rise to convergence problem in case that the process, for example bending process, is sensitive to the contact between the sheet and the tools. For the verification of the proposed method, the compression forming of a tube is simulated and the contact pressures at each integration points are evaluated during deformation of the sheet. The analysis of hemi-spherical punch forming without blank holder is also presented in order to investigate the effects of the proposed algorithm.

  1. Simulation of metal transfer and weld pool development in gas metal arc welding of thin sheet metals

    NASA Astrophysics Data System (ADS)

    Wang, Fang

    Gas metal arc welding (GMAW) is the most commonly used arc welding method in industry for joining steels and aluminum alloys. But due to the mathematical difficulties associated with the free surface motion of the molten droplet and the weld pool, the process is not well understood and the development of new welding procedures in the manufacturing industry highly depends on expensive, time-consuming and experience-based trial and error. In this dissertation, numerical methods are developed to overcome the difficulties and to simulate the metal transfer and weld pool development in the GMAW of sheet metals. The simulations are validated by experiments and used to study an industrial welding process. A numerical procedure is first developed to model the free surface motion in fusion welding processes. Thermal and electromagnetic models are integrated with the fluid models. Recommendations are made on the selection and improvement of publicly available numerical algorithms, while alternative methods are also reviewed. A model combining the enthalpy, effective-viscosity and volume-of-fluid methods is then developed to simulate the metal transfer process in globular, spray and short-circuiting transfer modes. The model not only describes the influence of gravity, electromagnetic force and surface tension on droplet profile and transfer frequency, but also models the nonisothermal phenomena such as heat transfer and phase change. The melting front motion, the droplet detachment and oscillation, the satellite formation and the fluid convection within the droplet are analyzed. It has been found that the taper formation in spray transfer is closely related to the heat input on the unmelted portion of the welding wire, and the taper formation affects the globular-spray transition by decelerating the transfer process. Experiments with a high-speed motion analyzer validate the simulation results. The model is then extended to simulate the initiation, development and

  2. Metal release from stainless steel powders and massive sheets--comparison and implication for risk assessment of alloys.

    PubMed

    Hedberg, Yolanda; Mazinanian, Neda; Odnevall Wallinder, Inger

    2013-02-01

    Industries that place metal and alloy products on the market are required to demonstrate that they are safe for all intended uses, and that any risks to humans, animals or the environment are adequately controlled. This requires reliable and robust in vitro test procedures. The aim of this study is to compare the release of alloy constituents from stainless steel powders of different grades (focus on AISI 316L) and production routes into synthetic body fluids with the release of the same metals from massive sheets in relation to material and surface characteristics. The comparison is justified by the fact that the difference between massive surfaces and powders from a metal release/dissolution and surface perspective is not clearly elucidated within current legislations. Powders and abraded and aged (24 h) massive sheets were exposed to synthetic solutions of relevance for biological settings and human exposure routes, for periods of up to one week. Concentrations of released iron, chromium, nickel, and manganese in solution were measured, and the effect of solution pH, acidity, complexation capacity, and proteins elucidated in relation to surface oxide composition and its properties. Implications for risk assessments based on in vitro metal release data from alloys are elucidated. PMID:25208703

  3. 75 FR 15741 - Sheet Metal Workers Internationl Association, Local 292: Troy, MI; Notice of Termination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration Sheet Metal Workers Internationl Association, Local 292: Troy, MI... investigation was initiated in response to a petition filed on July 13, 2009 on behalf of workers of Steel...

  4. AN INVESTIGATION OF SHEET METAL DEFORMATION BEHAVIOR DURING ELECTRO-HYDRAULIC FORMING (EHF)

    SciTech Connect

    Rohatgi, Aashish; Stephens, Elizabeth V.; Davies, Richard W.; Smith, Mark T.

    2013-06-10

    This presentation will describe the recent advances in our understanding of sheet metal behavior during electro-hydraulic forming (EHF) process. This presentation will describe results of selected experiments that were designed to explore various aspects of the EHF process and how flaws, invariably present in all materials, behave under high-rate forming conditions.

  5. Rubber-induced uniform laser shock wave pressure for thin metal sheets microforming

    NASA Astrophysics Data System (ADS)

    Shen, Zongbao; Wang, Xiao; Liu, Huixia; Wang, Yayuan; Wang, Cuntang

    2015-02-01

    Laser shock microforming of thin metal sheets is a new high velocity forming technique, which employs laser shock wave to deform the thin metal sheets. The spatial distribution of forming pressure is mainly dependent on the laser beam. A new type of laser shock loading method is introduced which gives a uniform pressure distribution. A low density rubber is inserted between the laser beam and the thin metal sheets. The mechanism of rubber-induced smoothing effect on confined laser shock wave is proposed. Plasticine is used to perform the smoothing effect experiments due to its excellent material flow ability. The influence of rubber on the uniformity of laser shock wave pressure is studied by measuring the surface micro topography of the deformed plasticine. And the four holes forming experiment is used to verify the rubber-induced uniform pressure on thin metal sheets surface. The research results show the possibility of smoothing laser shock wave pressure using rubber. And the good surface quality can be obtained under rubber dynamic loading.

  6. On the role of topological complexity in spontaneous development of current sheets

    SciTech Connect

    Kumar, Sanjay; Bhattacharyya, R.; Smolarkiewicz, P. K.

    2015-08-15

    The computations presented in this work aim to asses the importance of field line interlacing on spontaneous development of current sheets. From Parker's magnetostatic theorem, such development of current sheets is inevitable in a topologically complex magnetofluid, with infinite electrical conductivity, at equilibrium. Relevant initial value problems are constructed by superposition of two untwisted component fields, each component field being represented by a pair of global magnetic flux surface. The intensity of field line interlacing is then specified by the relative amplitude of the two superposed fields. The computations are performed by varying this relative amplitude. Also to have a direct visualization of current sheet formation, we follow the evolution of flux surfaces instead of the vector magnetic field. An important finding of this paper is in the demonstration that initial field lines having intense interlacing tend to develop current sheets which are distributed throughout the computational domain with no preference for topologically favorable sites like magnetic nulls or field reversal layers. The onsets of these current sheets are attributed to favorable contortions of magnetic flux surfaces where two oppositely directed parts of the same field line or different field lines come to close proximity. However, for less intensely interlaced field lines, the simulations indicate development of current sheets at sites only where the magnetic topology is favorable. These current sheets originate as two sets of anti-parallel complimentary field lines press onto each other.

  7. On the role of topological complexity in spontaneous development of current sheets

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Bhattacharyya, R.; Smolarkiewicz, P. K.

    2015-08-01

    The computations presented in this work aim to asses the importance of field line interlacing on spontaneous development of current sheets. From Parker's magnetostatic theorem, such development of current sheets is inevitable in a topologically complex magnetofluid, with infinite electrical conductivity, at equilibrium. Relevant initial value problems are constructed by superposition of two untwisted component fields, each component field being represented by a pair of global magnetic flux surface. The intensity of field line interlacing is then specified by the relative amplitude of the two superposed fields. The computations are performed by varying this relative amplitude. Also to have a direct visualization of current sheet formation, we follow the evolution of flux surfaces instead of the vector magnetic field. An important finding of this paper is in the demonstration that initial field lines having intense interlacing tend to develop current sheets which are distributed throughout the computational domain with no preference for topologically favorable sites like magnetic nulls or field reversal layers. The onsets of these current sheets are attributed to favorable contortions of magnetic flux surfaces where two oppositely directed parts of the same field line or different field lines come to close proximity. However, for less intensely interlaced field lines, the simulations indicate development of current sheets at sites only where the magnetic topology is favorable. These current sheets originate as two sets of anti-parallel complimentary field lines press onto each other.

  8. Experimental Investigation of Resistance Spot Welding for Sheet Metals Used in Automotive Industry

    NASA Astrophysics Data System (ADS)

    Jou, Min

    Resistance spot welding (RSW) is used for the fabrication of sheet metal assemblies. The major advantages of spot welding are high speed and adaptability for automation in high-volume and/or high-rate production. Despite these advantages, resistance spot welding suffers from a major problem of inconsistent quality from weld to weld. This problem results from both the complexity of the basic process as well as from numerous sources of variability, noise, and errors. Any or all of these complicate automation, reduce weld quality, demand over welding and drive up production costs. For this reason, ensuring weld quality has been and remains a major challenge and goal. The objective of this research is to explore the phenomenon of how changes in a controllable parameter of % heat input affect a measurable output signal indicative of strength and weld quality for various sheet steels used in the automotive industry. The approach of this research is to create a relationship between a key process input variable and the key process output of a quality weld. The input parameter chosen is % heat input, as this directly effects the size and strength of the resulting weld. The output chosen is electrode displacement, as this has been shown to accurately reflect the formation and growth of a weld nugget. A series of experiments was conducted to explore how changes of % heat input and process variations affect the electrode displacement curve for various sheet steels used in the automotive industry. Experimental results show that the electrode displacement increased when higher % heat input was applied. Weld nugget starts to grow when electrode velocity cube changes from positive to negative. Characteristic electrode displacement curves were developed for process variations. A poor part fit-up condition shifted the electrode displacement curve to the right as a result of a smaller weld nugget being formed. Worn electrode lowers the electrode displacement curve. For bare steel

  9. Alkene epoxidation employing metal nitro complexes

    DOEpatents

    Andrews, M.A.; Cheng, C.W.; Kelley, K.P.

    1982-07-15

    Process for converting alkenes to form epoxides utilizes transition metal nitro complexes of the formula: M(RCN)/sub 2/XNO/sub 2/ wherein M is palladium or platinum, R is an alkyl or aryl group containing up to 12 carbon atoms, and X is a monoanionic, monodentate ligand such as chlorine, optionally in the presence of molecular oxygen.

  10. Sheeting, Mingling, and Up Direction?, Hortavaer Igneous Complex, North-central Norway

    NASA Astrophysics Data System (ADS)

    McCulloch, L. E.; Barnes, C. G.; Prestvik, T.

    2005-12-01

    The c. 456 Ma Hortavaer igneous complex intrudes quartzofeldspathic gneiss, quartzite, marble and calc-silicate gneiss of the Helgeland Nappe Complex of the Uppermost Allochthon. The intrusive rocks may be divided into at least three distinct zones, each of which contains screens/xenoliths of the host rocks. The western "syenitic zone" is predominantly fine- to very coarse-grained syenite. Grain size is variable on the outcrop scale, primarily due to intrusion and mingling of fine-grained syenite in coarser grained syenite. The eastern "dioritic zone" consists of hundreds of mafic sheet-like intrusions (gabbro to monzodiorite), metasomatized calc-silicate rocks (now melanocratic syenite and monzonite), monzonite, and syenite. Cross-cutting relationships, particularly back-veining of syenite in mafic bodies, indicate that syenitic magmas were present throughout emplacement of the mafic magmas. The boundary between syenitic and dioritic zones consists of parallel to subparallel syenite and diorite sheets from cm to c. 10 m wide. The sheets strike N to NE and dip W to NW between 40° and 60°. In this "sheeted zone", possible hybrid rocks are identified by their intermediate color index, their occurrence as enclaves within syenite and diorite, and locally by the presence of syenitic and dioritic enclaves in intermediate rocks. Contacts between sheeted zone syenite and diorite are asymmetric. The western contacts of many diorite sheets are chilled against syenite and locally show flame- and load cast- like structures. In contrast, the eastern contacts range from planar to wispy or crenulate, and dioritic enclaves are common. If this asymmetry is used as a geopetal indicator, then original up direction was to the east and the Hortavaer complex is now overturned. The nearby Leka ophiolite underwent block rotation of about 90° to the east; similar, larger eastward block rotation of the Hortavaer complex would result in overturning of the sheets. Reconstruction of the

  11. The structure of metallic complexes of polyacetylene with alkali metals

    NASA Astrophysics Data System (ADS)

    Baughman, R. H.; Murthy, N. S.; Miller, G. G.

    1983-07-01

    The crystal structures of sodium, potassium, rubidium, and cesium doped polyacetylene have been determined using crystal packing and x-ray diffraction analyses. Each of these metallic complexes is tetragonal, with the polyacetylene chains forming a host lattice in which the alkali metal ions are present in channels. Lithium appears to be too small to stabilize the channel structure and an amorphous structure is observed. Predicted unit cell parameters and x-ray diffraction intensities are in agreement with observed values. Similarities with the alkali metal doped graphite suggest that hybridization between carbon pz orbitals and metal s orbitals occurs. Such hybridization is expected to result in a high conductivity component normal to the chain direction. On the other hand, direct overlap between polymer chains appears small, since alkali metal columns separate polymer chains. Compositions calculated for the channel structures (from meridional diffraction spacings, the intensity of equatorial diffraction lines, measured volume expansion, and distances in model complexes) all range from y=0.12 to 0.18 for (CHMy)x, where M is sodium, potassium, rubidium, or cesium.

  12. A New System for Understanding Mid-crustal Sheeted Complexes in a Tilted Crustal Section, Joshua Tree National Park, California

    NASA Astrophysics Data System (ADS)

    Ianno, A. J.; Paterson, S. R.

    2011-12-01

    The western portion of Joshua Tree National Park exposes a tilted crustal section through continental arc crust from 0-30 km. A significant portion of the middle crust is represented by Mesozoic, tabular, intrusive, igneous bodies ranging from 0.1 to 100 m in thickness. While these igneous bodies range in composition (gabbro to peraluminous granites), texture (equigranular to porphyritic), and grain size (very fine to coarse), patterns emerge between different regions of "sheeted complexes" that may be related to their emplacement and geochemical history. No consistent method of describing and comparing sheeted complexes exists in the literature, so we have developed a method of classifying sheeted complexes at Joshua Tree NP, which may be broadly applicable to all sheeted bodies. We classify these sheeted complexes using the terms homogeneous/heterogeneous and focused/defocused. A homogeneous sheeted complex generally contains magmas within a 10 wt% SiO2 range, although we are still testing the validity of this number. A focused sheeted complex has adjacent sheets or close spacing between sheets and <20% host rock present. Using this classification scheme, we observe three distinct Jurassic to Cretaceous sheeted complexes in western Joshua Tree NP. At Keys View, we observe a heterogeneous, spatially focused sheeted complex with 0.1-2 m thick sheets recording pressures indicating 15-22 km depth from top to bottom. Compositions range from gabbro to peraluminous granite, although tonalites-granodiorites and two-mica garnet granites are volumetrically dominant. A zone of elongate plutons (in map view) lying structurally above this could potentially be considered as a very thickly sheeted, homogeneous, focused sheeted complex and is composed of granodiorites, granites, and two-mica garnet granites. A more thickly sheeted (2-10 m), homogeneous, focused, sheeted granite complex with pressures indicating a depth of approximately 12 km is found along the northern edge of

  13. Optimum Design Of Addendum Surfaces In Sheet Metal Forming Process

    NASA Astrophysics Data System (ADS)

    Debray, K.; Sun, Z. C.; Radjai, R.; Guo, Y. Q.; Dai, L.; Gu, Y. X.

    2004-06-01

    The design of addendum surfaces in sheet forming process is very important for the product quality, but it is very time-consuming and needs tedious trial-error corrections. In this paper, we propose a methodology to automatically generate the addendum surfaces and then to optimize them using a forming modelling solver. The surfaces' parameters are taken as design variables and modified in course of optimization. The finite element mesh is created on the initial addendum surfaces and mapped onto the modified surfaces without remeshing operation. The Feasible Sequential Quadratic Programming (FSQP) is adopted as our algorithm of optimization. Two objective functions are used: the first one is the thickness function to minimize the thickness variation on the workpiece ; the second one is the appearance function aiming to avoid the scratching defects on the external surfaces of panels. The FSQP is combined with our "Inverse Approach" or "One Step Approach" which is a very fast forming solver. This leads to a very efficient optimization procedure. The present methodology is applied to a square box. The addendum surfaces are characterised by four geometrical variables. The influence of optimization criteria is studied and discussed.

  14. Anharmonic Vibrational Spectroscopy on Metal Transition Complexes

    NASA Astrophysics Data System (ADS)

    Latouche, Camille; Bloino, Julien; Barone, Vincenzo

    2014-06-01

    Advances in hardware performance and the availability of efficient and reliable computational models have made possible the application of computational spectroscopy to ever larger molecular systems. The systematic interpretation of experimental data and the full characterization of complex molecules can then be facilitated. Focusing on vibrational spectroscopy, several approaches have been proposed to simulate spectra beyond the double harmonic approximation, so that more details become available. However, a routine use of such tools requires the preliminary definition of a valid protocol with the most appropriate combination of electronic structure and nuclear calculation models. Several benchmark of anharmonic calculations frequency have been realized on organic molecules. Nevertheless, benchmarks of organometallics or inorganic metal complexes at this level are strongly lacking despite the interest of these systems due to their strong emission and vibrational properties. Herein we report the benchmark study realized with anharmonic calculations on simple metal complexes, along with some pilot applications on systems of direct technological or biological interest.

  15. Comparison of Two Commercial FE-Codes for Sheet Metal Forming

    SciTech Connect

    Revuelta, A.; Larkiola, J.; Kanervo, K.; Korhonen, A. S.; Myllykoski, P.

    2007-05-17

    There is urgent need to develop new advanced fast and cost-effective mass-production methods for small sheet metal components. Traditionally progressive dies have been designed by using various CAD techniques. Recent results in mass production of small sheet metal parts using progressive dies and a transfer press showed that the tool design time may be cut in up to a half by using 3D finite element simulation of forming. In numerical simulation of sheet metal forming better constitutive models are required to obtain more accurate results, reduce the time for tool design and cut the production costs further. Accurate models are needed to describe the initial yielding, subsequent work hardening and to predict the formability. In this work two commercially available finite element simulation codes, PAM-STAMP and LS-DYNA, were compared in forming of small austenitic stainless steel sheet part for electronic industry. Several constitutive models were used in both codes and the results were compared. Comparisons were made between the same models in each of the codes and also between different models in the same code. Material models ranged from very simple to advanced ones, which took into account anisotropy and both isotropic and kinematic hardening behavior. In order to make a valid comparison we employed similar finite element meshes. The effects of the material models parameters were studied and the results were compared with experiments. The effects of the computational time were also studied.

  16. Comparison of phosphor bronze metal sheet produced by twin roll casting and horizontal continuous casting

    NASA Astrophysics Data System (ADS)

    Hwang, J. D.; Li, B. J.; Hwang, W. S.; Hu, C. T.

    1998-08-01

    Much effort recently has been expended to study the strip casting process used to produce thin metal strip with a near final thickness. This process eliminates the need for hot rolling, consumes less energy, and offers a feasible method of producing various hard-to-shape alloys. The finer microstructure that results from the high cooling rate used during the casting process enhances mechanical properties. In this study, strips of phosphor bronzes (Cu-Sn-P) metal were produced using a twin roll strip casting process as well as a conventional horizontal continuous casting (HCC) process. The microstructures, macrosegregations, textures, and mechanical properties of the as-cast and as-rolled metal sheet produced by these two methods were examined carefully for comparative purposes. The results indicate that cast strip produced by a twin roll caster exhibit significantly less inverse segregation of tin compared to that produced by the HCC process. The mechanical properties including tensile strength, elongation, and microhardness of the products produced by the twin roll strip casting process are comparable to those of the HCC processed sheet. These properties meet specifications JIS H3110 and ASTM B 103M for commercial phosphor bronze sheet. The texture of the as-rolled sheet from these two processes, as measured from XRD pole figures, were found to be virtually the same, even though a significant difference exists between them in the as-cast condition.

  17. A Model Based Approach to Increase the Part Accuracy in Robot Based Incremental Sheet Metal Forming

    SciTech Connect

    Meier, Horst; Laurischkat, Roman; Zhu Junhong

    2011-01-17

    One main influence on the dimensional accuracy in robot based incremental sheet metal forming results from the compliance of the involved robot structures. Compared to conventional machine tools the low stiffness of the robot's kinematic results in a significant deviation of the planned tool path and therefore in a shape of insufficient quality. To predict and compensate these deviations offline, a model based approach, consisting of a finite element approach, to simulate the sheet forming, and a multi body system, modeling the compliant robot structure, has been developed. This paper describes the implementation and experimental verification of the multi body system model and its included compensation method.

  18. Three-dimensional reconstruction and morphologic characteristics of porous metal fiber sintered sheet

    SciTech Connect

    Wang, Qinghui; Huang, Xiang; Zhou, Wei; Li, Jingrong

    2013-12-15

    This paper presents an approach to achieve morphological characterizing for complex porous materials based on micro X-ray tomography images, with an example of a novel porous metal fiber sheet produced through solid-state sintering method. The geometrical reconstruction was performed after selection of volume of interest and image processing of anisotropic diffusion smooth. The reconstructed gray level images were then transferred into binary images by adjusting binarization threshold according to the actual porosity. Taking into account the tubular structural feature of the fibers, skeleton extraction algorithm based on the distance transform function was applied and further improved by the scale axis transform method. The skeleton was later pruned and segmented according to the contact points to perform morphological characterizing. Compared with actual manufacturing parameters, the style, length, radius, orientation and tortuosity of fiber segments were discussed. The results show that our proposed method can well describe the actual geometrical and morphological characteristics, which will provide a promising method for the structural description of fibrous networks. - Highlights: • Micro-CT technology was used to achieve the 3D geometrical reconstruction. • Skeleton extraction algorithm was modified to get the medial skeleton. • Skeleton filter operation was adopted to deal with the segmented skeleton. • Useful morphological statistics was obtained through skeleton segments. • Relationship between structure and manufacturing processes was discussed.

  19. Studies on the finite element simulation in sheet metal stamping processes

    NASA Astrophysics Data System (ADS)

    Huang, Ying

    The sheet metal stamping process plays an important role in modern industry. With the ever-increasing demand for shape complexity, product quality and new materials, the traditional trial and error method for setting up a sheet metal stamping process is no longer efficient. As a result, the Finite Element Modeling (FEM) method has now been widely used. From a physical point of view, the formability and the quality of a product are influenced by several factors. The design of the product in the initial stage and the motion of the press during the production stage are two of these crucial factors. This thesis focuses on the numerical simulation for these two factors using FEM. Currently, there are a number of commercial FEM software systems available in the market. These software systems are based on an incremental FEM process that models the sheet metal stamping process in small incremental steps. Even though the incremental FEM is accurate, it is not suitable for the initial conceptual design for its needing of detailed design parameters and enormous calculation times. As a result, another type of FEM, called the inverse FEM method or one-step FEM method, has been proposed. While it is less accurate than that of the incremental method, this method requires much less computation and hence, has a great potential. However, it also faces a number of unsolved problems, which limits its application. This motivates the presented research. After the review of the basic theory of the inverse method, a new modified arc-length search method is proposed to find better initial solution. The methods to deal with the vertical walls are also discussed and presented. Then, a generalized multi-step inverse FEM method is proposed. It solves two key obstacles: the first one is to determine the initial solution of the intermediate three-dimensional configurations and the other is to control the movement of nodes so they could only slide on constraint surfaces during the search by

  20. Sheet metal stamping die design for warm forming

    DOEpatents

    Ghosh, Amit K.

    2003-04-22

    In metal stamping dies, by taking advantage of improved material flow by selectively warming the die, flat sections of the die can contribute to the flow of material throughout the workpiece. Local surface heating can be accomplished by placing a heating block in the die. Distribution of heating at the flat lower train central regions outside of the bend region allows a softer flow at a lower stress to enable material flow into the thinner, higher strain areas at the bend/s. The heating block is inserted into the die and is powered by a power supply.

  1. Effect of Forming Speed on Plastic Bending of Adhesively Bonded Sheet Metals

    NASA Astrophysics Data System (ADS)

    Takiguchi, Michihiro; Yoshida, Fusahito

    Using highly ductile acrylic adhesive, the present authors proposed a new technique of plastic bending of adhesively bonded sheet metals. In this process, the suppression of large transverse shear deformation occurring in the adhesive layer, which in some cases would induce the geometrical imperfection (so-called ‘gull-wing bend') and the delamination of the sheet, is one of the most important technical issues. In the present work, the effect of forming speed on bending deformation was investigated. From experimental observations in V-bending experiments of adhesively bonded aluminium sheets, as well as the corresponding numerical simulations which consider the viscoplasticity nature of the adhesive resin, it was found that the large shear deformation and ‘gull-wing bend' are successfully suppressed by high-speed forming since the deformation resistance of the adhesive resin becomes higher at a high strain rate.

  2. Radial stretching of thin sheets: A prototypical model for morphological complexity

    NASA Astrophysics Data System (ADS)

    Davidovitch, Benny

    2012-02-01

    The complex morphologies of thin sheets consist of wrinkles, crumples, folds, creases, and blisters. These descriptive words may sound lucid -- but do they carry any quantitatively distinguishable content? Following the classical approach of pattern formation theory, we seek to impart a universal meaning to these modes of deformation as distinct types of symmetry-breaking instabilities of a flat, featureless sheet. This idea motivates us to consider the general problem of axisymmetric stretching of a sheet. A familiar realization of this problem is the ``map maker's conflict'': projecting a flat sheet onto a foundation of spherical shape. Another representative realization is the Lame' set-up: exerting a radial tension gradient on a sheet, which may be free-standing or resting on a solid or liquid foundation. I will introduce a set of generic parameters: bendability, confinement, stiffness, adhesiveness, that span a phase space for the morphology of radially stretched sheets. In this phase space, wrinkling, crumpling, folding, creasing and blistering could be identified as primary and secondary symmetry-breaking instabilities.

  3. Thermally Sprayed Coatings as Effective Tool Surfaces in Sheet Metal Forming Applications

    NASA Astrophysics Data System (ADS)

    Franzen, V.; Witulski, J.; Brosius, A.; Trompeter, M.; Tekkaya, A. E.

    2011-06-01

    Two approaches to produce wear-resistant effective surfaces for deep drawing tools by thermal arc wire spraying of hard materials are presented. Arc wire spraying is a very economic coating technique due to a high deposition rate. The coated surface is very rough compared to that of conventional sheet metal forming tools. In the first approach, the coated surface is smoothed in a subsequent CNC-based incremental roller burnishing process. In this process, the surface asperities on the surface are flattened, and the roughness is significantly reduced. In the second approach, the hard material coatings are not sprayed directly on the tool but on a negative mould. Afterward, the rough "as-sprayed" side of the coating is backfilled with a polymer. The bonded hard metal shell is removed from the negative mould and acts as the surface of the hybrid sheet metal forming tool. Sheet metal forming experiments using tools based on these two approaches demonstrate that they are suitable to form high-strength steels. Owing to a conventional body of steel or cast iron, the first approach is suitable for large batch sizes. The application of the second approach lies within the range of small up to medium batch size productions.

  4. NREL's System Advisor Model Simplifies Complex Energy Analysis (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    The energy market is diversifying. In addition to traditional power sources, decision makers can choose among solar, wind, and geothermal technologies as well. Each of these technologies has complex performance characteristics and economics that vary with location and other project specifics, making it difficult to analyze the viability of such projects. But that analysis is easier now, thanks to the National Renewable Energy Laboratory (NREL).

  5. Metal complexes as "protein surface mimetics".

    PubMed

    Hewitt, Sarah H; Wilson, Andrew J

    2016-07-28

    A key challenge in chemical biology is to identify small molecule regulators for every single protein. However, protein surfaces are notoriously difficult to recognise with synthetic molecules, often having large flat surfaces that are poorly matched to traditional small molecules. In the surface mimetic approach, a supramolecular scaffold is used to project recognition groups in such a manner as to make multivalent non-covalent contacts over a large area of protein surface. Metal based supramolecular scaffolds offer unique advantages over conventional organic molecules for protein binding, including greater stereochemical and geometrical diversity conferred through the metal centre and the potential for direct assessment of binding properties and even visualisation in cells without recourse to further functionalisation. This feature article will highlight the current state of the art in protein surface recognition using metal complexes as surface mimetics. PMID:27353704

  6. Complexing of metal ions by humic substances

    SciTech Connect

    Bryan, N.D.; Zhang, Y.; Jones, M.N.

    1995-12-31

    The interaction of metal ions with humic substances is being studied using two different techniques. UV-scanning ultracentrifugation is being used to determine molecular weights and to investigate changes in aggregation brought about by metal ion complexation. The relationship between cation charge and conformation of the humic ligands is also being investigated. The complexation of actinide elements (U, Np, Pu, Am) by humic substances from soils contaminated by both natural processes and by low-level effluent releases is also being studied. Gel permeation chromatography has been used to show both that different fractions of humic substances vary greatly in their effectiveness as ligands and that different actinide elements associate with different fractions. These studies have also shown that uranium desorption is kinetically controlled by humic substances.

  7. Antiretroviral activity of thiosemicarbazone metal complexes.

    PubMed

    Pelosi, Giorgio; Bisceglie, Franco; Bignami, Fabio; Ronzi, Paola; Schiavone, Pasqualina; Re, Maria Carla; Casoli, Claudio; Pilotti, Elisabetta

    2010-12-23

    Thiosemicarbazones display a wide antimicrobial activity by targeting bacteria, fungi, and viruses. Here, we report our studies on the antiviral activity of two thiosemicarbazone metal complexes, [bis(citronellalthiosemicarbazonato)nickel(II)] and [aqua(pyridoxalthiosemicarbazonato)copper(II)] chloride monohydrate, against the retroviruses HIV-1 and HTLV-1/-2. Both compounds exhibit antiviral properties against HIV but not against HTLVs . In particular, the copper complex shows the most potent anti-HIV activity by acting at the post-entry steps of the viral cycle. PMID:21121632

  8. Metal-Metal Bonding in Uranium-Group 10 Complexes.

    PubMed

    Hlina, Johann A; Pankhurst, James R; Kaltsoyannis, Nikolas; Arnold, Polly L

    2016-03-16

    Heterobimetallic complexes containing short uranium-group 10 metal bonds have been prepared from monometallic IU(IV)(OAr(P)-κ(2)O,P)3 (2) {[Ar(P)O](-) = 2-tert-butyl-4-methyl-6-(diphenylphosphino)phenolate}. The U-M bond in IU(IV)(μ-OAr(P)-1κ(1)O,2κ(1)P)3M(0), M = Ni (3-Ni), Pd (3-Pd), and Pt (3-Pt), has been investigated by experimental and DFT computational methods. Comparisons of 3-Ni with two further U-Ni complexes XU(IV)(μ-OAr(P)-1κ(1)O,2κ(1)P)3Ni(0), X = Me3SiO (4) and F (5), was also possible via iodide substitution. All complexes were characterized by variable-temperature NMR spectroscopy, electrochemistry, and single crystal X-ray diffraction. The U-M bonds are significantly shorter than any other crystallographically characterized d-f-block bimetallic, even though the ligand flexes to allow a variable U-M separation. Excellent agreement is found between the experimental and computed structures for 3-Ni and 3-Pd. Natural population analysis and natural localized molecular orbital (NLMO) compositions indicate that U employs both 5f and 6d orbitals in covalent bonding to a significant extent. Quantum theory of atoms-in-molecules analysis reveals U-M bond critical point properties typical of metallic bonding and a larger delocalization index (bond order) for the less polar U-Ni bond than U-Pd. Electrochemical studies agree with the computational analyses and the X-ray structural data for the U-X adducts 3-Ni, 4, and 5. The data show a trend in uranium-metal bond strength that decreases from 3-Ni down to 3-Pt and suggest that exchanging the iodide for a fluoride strengthens the metal-metal bond. Despite short U-TM (transition metal) distances, four other computational approaches also suggest low U-TM bond orders, reflecting highly transition metal localized valence NLMOs. These are more so for 3-Pd than 3-Ni, consistent with slightly larger U-TM bond orders in the latter. Computational studies of the model systems (PH3)3MU(OH)3I (M = Ni, Pd) reveal

  9. Electric-Field-Assisted Directed Assembly of Transition Metal Dichalcogenide Monolayer Sheets.

    PubMed

    Deng, Donna D; Lin, Zhong; Elías, Ana Laura; Perea-Lopez, Nestor; Li, Jie; Zhou, Chanjing; Zhang, Kehao; Feng, Simin; Terrones, Humberto; Mayer, Jeffrey S; Robinson, Joshua A; Terrones, Mauricio; Mayer, Theresa S

    2016-05-24

    Directed assembly of two-dimensional (2D) layered materials, such as transition metal dichalcogenides, holds great promise for large-scale electronic and optoelectronic applications. Here, we demonstrate controlled placement of solution-suspended monolayer tungsten disulfide (WS2) sheets on a substrate using electric-field-assisted assembly. Micrometer-sized triangular WS2 monolayers are selectively positioned on a lithographically defined interdigitated guiding electrode structure using the dielectrophoretic force induced on the sheets in a nonuniform field. Triangular sheets with sizes comparable to the interelectrode gap assemble with an observed preferential orientation where one side of the triangle spans across the electrode gap. This orientation of the sheets relative to the guiding electrode is confirmed to be the lowest energy configuration using semianalytical calculations. Nearly all sheets assemble without observable physical deformation, and postassembly photoluminescence and Raman spectroscopy characterization of the monolayers reveal that they retain their as-grown crystalline quality. These results show that the field-assisted assembly process may be used for large-area bottom-up integration of 2D monolayer materials for nanodevice applications. PMID:27082162

  10. Numerical simulation on multi-gripper stretch forming process for sheet metal

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Li, M. Z.; Peng, H. L.; Gu, S. H.

    2013-05-01

    Multi-gripper stretch forming (MGSF) is a new flexible forming process compared to traditional stretching forming process. Two kinds of MGSF process, back-vertical drawing (BVD) and front-vertical drawing (FVD) are compared in this study. Spherical-curved part is selected as the research object, and the finite numerical modes for BVD and FVD have been established, and the simulation results are carried out by dynamic explicit finite element analysis. The numerical results indicated that the sheet metal can get the shape of the die at a lower strain ratio and the stretch strain distribution was more uniform by the FVD, which can improve the forming quality of the formed parts. In addition, the sheet metal can be formed by FVD under smaller hydraulic cylinder strokes. The results may provide useful guidance on optimizing the MGSF equipment structure.

  11. Advanced material testing in support of accurate sheet metal forming simulations

    NASA Astrophysics Data System (ADS)

    Kuwabara, Toshihiko

    2013-05-01

    This presentation is a review of experimental methods for accurately measuring and modeling the anisotropic plastic deformation behavior of metal sheets under a variety of loading paths: biaxial compression test, hydraulic bulge test, biaxial tension test using a cruciform specimen, multiaxial tube expansion test using a closed-loop electrohydraulic testing machine for the measurement of forming limit strains and stresses, combined tension-shear test, and in-plane stress reversal test. Observed material responses are compared with predictions using phenomenological plasticity models to highlight the importance of accurate material testing. Special attention is paid to the plastic deformation behavior of sheet metals commonly used in industry, and to verifying the validity of constitutive models based on anisotropic yield functions at a large plastic strain range. The effects of using appropriate material models on the improvement of predictive accuracy for forming defects, such as springback and fracture, are also presented.

  12. Prediction Of Formability In Sheet Metal Forming Processes Using A Local Damage Model

    SciTech Connect

    Teixeira, P.; Santos, Abel; Cesar Sa, J.; Andrade Pires, F.; Barata da Rocha, A.

    2007-05-17

    The formability in sheet metal forming processes is mainly conditioned by ductile fracture resulting from geometric instabilities due to necking and strain localization. The macroscopic collapse associated with ductile failure is a result of internal degradation described throughout metallographic observations by the nucleation, growth and coalescence of voids and micro-cracks. Damage influences and is influenced by plastic deformation and therefore these two dissipative phenomena should be coupled at the constitutive level. In this contribution, Lemaitre's ductile damage model is coupled with Hill's orthotropic plasticity criterion. The coupling between damaging and material behavior is accounted for within the framework of Continuum Damage Mechanics (CDM). The resulting constitutive equations are implemented in the Abaqus/Explicit code, for the prediction of fracture onset in sheet metal forming processes. The damage evolution law takes into account the important effect of micro-crack closure, which dramatically decreases the rate of damage growth under compressive paths.

  13. An expert system for ensuring the reliability of the technological process of cold sheet metal forming

    NASA Astrophysics Data System (ADS)

    Kashapova, L. R.; Pankratov, D. L.; Utyaganov, P. P.

    2016-06-01

    In order to exclude periodic defects in the parts manufacturing obtained by cold sheet metal forming a method of automated estimation of technological process reliability was developed. The technique is based on the analysis of reliability factors: detail construction, material, mechanical and physical requirements; hardware settings, tool characteristics, etc. In the work the expert system is presented based on a statistical accumulation of the knowledge of the operator (technologist) and decisions of control algorithms.

  14. Matched metal die compression molded structural random fiber sheet molding compound flywheel

    DOEpatents

    Kulkarni, Satish V.; Christensen, Richard M.; Toland, Richard H.

    1985-01-01

    A flywheel (10) is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel (10) has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel (10) may be economically produced by a matched metal die compression molding process. The flywheel (10) makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.

  15. Finite element simulation of sheet metal forming and springback using a crystal plasticity approach

    SciTech Connect

    Bertram, A.; Boehlke, T.; Krawietz, A.; Schulze, V.

    2007-05-17

    In this paper the application of a crystal plasticity model for body-centered cubic crystals in the simulation of a sheet metal forming process is discussed. The material model parameters are identified by a combination of a texture approximation procedure and a conventional parameter identification scheme. In the application of a cup drawing process the model shows an improvement of the strain and earing prediction as well as the qualitative springback results in comparison with a conventional phenomenological model.

  16. Layered SiC sheets: A promising metal-free catalyst for NO reduction.

    PubMed

    Feng, Jing wen; Liu, Yue jie; Zhao, Jing xiang

    2015-07-01

    Recently, the catalytic reduction is shown to be an effective method to remove the harmful NO. In terms of the high cost and limited supply of the traditional transition metal-based catalysts, the novel metal-free catalyst is highly desirable for NO reduction. Here, density functional theory (DFT) computations were performed to explore the potentials of layered SiC sheets as a metal-free catalyst for NO reduction. From our DFT results, it can be predicted that layered SiC sheets exhibit superior catalytic activity toward NO reduction. In particular, a dimer mechanism is shown to be more favorable than the direct dissociation one for NO reduction on this metal-free catalyst and a three-step mechanism is involved in this process: (1) the formation of a (NO)2 dimer on layered SiC sheet, followed by (2) its dissociation into N2O+Oad, and (3) the recovery of catalyst by subsequent NO. The trans-(NO)2 dimer might be a necessary intermediate, in which the calculated barrier for the rate-determining step along the energetically most favorable pathway is 0.722 eV. The high reactivity of layered SiC sheets may be attributed to the certain amount of charge transfer from the catalyst to (NO)2 dimer, which shortens the NN bonding and thus stabilizes these systems due to the extra electrons on the dimers. This excellent catalytic activity provides a useful guidance to design the next generation catalysts for NO reduction with lower cost and higher activity. PMID:26043660

  17. Matched metal die compression molded structural random fiber sheet molding compound flywheel. [Patent application

    DOEpatents

    Kulkarni, S.V.; Christensen, R.M.; Toland, R.H.

    1980-09-24

    A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel may be economically produced by a matched metal die compression molding process. The flywheel makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.

  18. Development of a Prediction Model Based on RBF Neural Network for Sheet Metal Fixture Locating Layout Design and Optimization.

    PubMed

    Wang, Zhongqi; Yang, Bo; Kang, Yonggang; Yang, Yuan

    2016-01-01

    Fixture plays an important part in constraining excessive sheet metal part deformation at machining, assembly, and measuring stages during the whole manufacturing process. However, it is still a difficult and nontrivial task to design and optimize sheet metal fixture locating layout at present because there is always no direct and explicit expression describing sheet metal fixture locating layout and responding deformation. To that end, an RBF neural network prediction model is proposed in this paper to assist design and optimization of sheet metal fixture locating layout. The RBF neural network model is constructed by training data set selected by uniform sampling and finite element simulation analysis. Finally, a case study is conducted to verify the proposed method. PMID:27127499

  19. Development of a Prediction Model Based on RBF Neural Network for Sheet Metal Fixture Locating Layout Design and Optimization

    PubMed Central

    Wang, Zhongqi; Yang, Bo; Kang, Yonggang; Yang, Yuan

    2016-01-01

    Fixture plays an important part in constraining excessive sheet metal part deformation at machining, assembly, and measuring stages during the whole manufacturing process. However, it is still a difficult and nontrivial task to design and optimize sheet metal fixture locating layout at present because there is always no direct and explicit expression describing sheet metal fixture locating layout and responding deformation. To that end, an RBF neural network prediction model is proposed in this paper to assist design and optimization of sheet metal fixture locating layout. The RBF neural network model is constructed by training data set selected by uniform sampling and finite element simulation analysis. Finally, a case study is conducted to verify the proposed method. PMID:27127499

  20. Ultrafast photophysics of transition metal complexes.

    PubMed

    Chergui, Majed

    2015-03-17

    The properties of transition metal complexes are interesting not only for their potential applications in solar energy conversion, OLEDs, molecular electronics, biology, photochemistry, etc. but also for their fascinating photophysical properties that call for a rethinking of fundamental concepts. With the advent of ultrafast spectroscopy over 25 years ago and, more particularly, with improvements in the past 10-15 years, a new area of study was opened that has led to insightful observations of the intramolecular relaxation processes such as internal conversion (IC), intersystem crossing (ISC), and intramolecular vibrational redistribution (IVR). Indeed, ultrafast optical spectroscopic tools, such as fluorescence up-conversion, show that in many cases, intramolecular relaxation processes can be extremely fast and even shorter than time scales of vibrations. In addition, more and more examples are appearing showing that ultrafast ISC rates do not scale with the magnitude of the metal spin-orbit coupling constant, that is, that there is no heavy-atom effect on ultrafast time scales. It appears that the structural dynamics of the system and the density of states play a crucial role therein. While optical spectroscopy delivers an insightful picture of electronic relaxation processes involving valence orbitals, the photophysics of metal complexes involves excitations that may be centered on the metal (called metal-centered or MC) or the ligand (called ligand-centered or LC) or involve a transition from one to the other or vice versa (called MLCT or LMCT). These excitations call for an element-specific probe of the photophysics, which is achieved by X-ray absorption spectroscopy. In this case, transitions from core orbitals to valence orbitals or higher allow probing the electronic structure changes induced by the optical excitation of the valence orbitals, while also delivering information about the geometrical rearrangement of the neighbor atoms around the atom of

  1. 40 CFR 721.4596 - Diazo substituted carbomonocyclic metal complex.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... metal complex. 721.4596 Section 721.4596 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4596 Diazo substituted carbomonocyclic metal complex. (a) Chemical... as a diazo substituted carbomonocyclic metal complex (PMN P-94-1039) is subject to reporting...

  2. 40 CFR 721.4596 - Diazo substituted carbomonocyclic metal complex.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... metal complex. 721.4596 Section 721.4596 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4596 Diazo substituted carbomonocyclic metal complex. (a) Chemical... as a diazo substituted carbomonocyclic metal complex (PMN P-94-1039) is subject to reporting...

  3. 40 CFR 721.10104 - Halophosphate mixed metal complex (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Halophosphate mixed metal complex... Specific Chemical Substances § 721.10104 Halophosphate mixed metal complex (generic). (a) Chemical... as halophosphate mixed metal complex (PMN P-04-254) is subject to reporting under this section...

  4. 40 CFR 721.10104 - Halophosphate mixed metal complex (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Halophosphate mixed metal complex... Specific Chemical Substances § 721.10104 Halophosphate mixed metal complex (generic). (a) Chemical... as halophosphate mixed metal complex (PMN P-04-254) is subject to reporting under this section...

  5. 40 CFR 721.10104 - Halophosphate mixed metal complex (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halophosphate mixed metal complex... Specific Chemical Substances § 721.10104 Halophosphate mixed metal complex (generic). (a) Chemical... as halophosphate mixed metal complex (PMN P-04-254) is subject to reporting under this section...

  6. 40 CFR 721.4596 - Diazo substituted carbomonocyclic metal complex.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... metal complex. 721.4596 Section 721.4596 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4596 Diazo substituted carbomonocyclic metal complex. (a) Chemical... as a diazo substituted carbomonocyclic metal complex (PMN P-94-1039) is subject to reporting...

  7. 40 CFR 721.10104 - Halophosphate mixed metal complex (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Halophosphate mixed metal complex... Specific Chemical Substances § 721.10104 Halophosphate mixed metal complex (generic). (a) Chemical... as halophosphate mixed metal complex (PMN P-04-254) is subject to reporting under this section...

  8. 40 CFR 721.4596 - Diazo substituted carbomonocyclic metal complex.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... metal complex. 721.4596 Section 721.4596 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4596 Diazo substituted carbomonocyclic metal complex. (a) Chemical... as a diazo substituted carbomonocyclic metal complex (PMN P-94-1039) is subject to reporting...

  9. Methyl Complexes of the Transition Metals.

    PubMed

    Campos, Jesús; López-Serrano, Joaquín; Peloso, Riccardo; Carmona, Ernesto

    2016-05-01

    Organometallic chemistry can be considered as a wide area of knowledge that combines concepts of classic organic chemistry, that is, based essentially on carbon, with molecular inorganic chemistry, especially with coordination compounds. Transition-metal methyl complexes probably represent the simplest and most fundamental way to view how these two major areas of chemistry combine and merge into novel species with intriguing features in terms of reactivity, structure, and bonding. Citing more than 500 bibliographic references, this review aims to offer a concise view of recent advances in the field of transition-metal complexes containing M-CH3 fragments. Taking into account the impressive amount of data that are continuously provided by organometallic chemists in this area, this review is mainly focused on results of the last five years. After a panoramic overview on M-CH3 compounds of Groups 3 to 11, which includes the most recent landmark findings in this area, two further sections are dedicated to methyl-bridged complexes and reactivity. PMID:26991740

  10. Tuning carrier density at complex oxide interface with metallic overlayer

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Shi, Y. J.; Jiang, S. W.; Yue, F. J.; Wang, P.; Ding, H. F.; Wu, D.

    2016-06-01

    We have systematically investigated the electronic transport properties of the LaAlO3/SrTiO3 interfaces with several different metal capping layers. The sheet carrier density can be tuned in a wide range by the metallic overlayer without changing the carrier mobility. The sheet carrier density variation is found to be linearly dependent on the size of metal work function. This behavior is explained by the mechanism of the charge transfer between the oxide interface and the metal overlayer across the LaAlO3 layer. Our results confirm the existence of a built-in electric field in LaAlO3 film with an estimated value of 67.7 eV/Å. Since the metallic overlayer is essential for devices, the present phenomena must be considered for future applications.

  11. Validation of formability of laminated sheet metal for deep drawing process using GTN damage model

    NASA Astrophysics Data System (ADS)

    Lim, Yongbin; Cha, Wan-gi; Ko, Sangjin; Kim, Naksoo

    2013-12-01

    In this study, we studied formability of PET/PVC laminated sheet metal which named VCM (Vinyl Coated Metal). VCM offers various patterns and good-looking metal steel used for appliances such as refrigerator and washing machine. But, this sheet has problems which are crack and peeling of film when the material is formed by deep drawing process. To predict the problems, we used finite element method and GTN (Gurson-Tvergaard-Needleman) damage model to represent damage of material. We divided the VCM into 3 layers (PET film, adhesive and steel added PVC) in finite element analysis model to express the crack and peeling phenomenon. The material properties of each layer are determined by reverse engineering based on tensile test result. Furthermore, we performed the simple rectangular deep drawing and simulated it. The simulation result shows good agreement with drawing experiment result in position, punch stroke of crack occurrence. Also, we studied the fracture mechanism of PET film on VCM by comparing the width direction strain of metal and PET film.

  12. Validation of formability of laminated sheet metal for deep drawing process using GTN damage model

    SciTech Connect

    Lim, Yongbin; Cha, Wan-gi; Kim, Naksoo; Ko, Sangjin

    2013-12-16

    In this study, we studied formability of PET/PVC laminated sheet metal which named VCM (Vinyl Coated Metal). VCM offers various patterns and good-looking metal steel used for appliances such as refrigerator and washing machine. But, this sheet has problems which are crack and peeling of film when the material is formed by deep drawing process. To predict the problems, we used finite element method and GTN (Gurson-Tvergaard-Needleman) damage model to represent damage of material. We divided the VCM into 3 layers (PET film, adhesive and steel added PVC) in finite element analysis model to express the crack and peeling phenomenon. The material properties of each layer are determined by reverse engineering based on tensile test result. Furthermore, we performed the simple rectangular deep drawing and simulated it. The simulation result shows good agreement with drawing experiment result in position, punch stroke of crack occurrence. Also, we studied the fracture mechanism of PET film on VCM by comparing the width direction strain of metal and PET film.

  13. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction.

    PubMed

    Lei, Fengcai; Liu, Wei; Sun, Yongfu; Xu, Jiaqi; Liu, Katong; Liang, Liang; Yao, Tao; Pan, Bicai; Wei, Shiqiang; Xie, Yi

    2016-01-01

    Ultrathin metal layers can be highly active carbon dioxide electroreduction catalysts, but may also be prone to oxidation. Here we construct a model of graphene confined ultrathin layers of highly reactive metals, taking the synthetic highly reactive tin quantum sheets confined in graphene as an example. The higher electrochemical active area ensures 9 times larger carbon dioxide adsorption capacity relative to bulk tin, while the highly-conductive graphene favours rate-determining electron transfer from carbon dioxide to its radical anion. The lowered tin-tin coordination numbers, revealed by X-ray absorption fine structure spectroscopy, enable tin quantum sheets confined in graphene to efficiently stabilize the carbon dioxide radical anion, verified by 0.13 volts lowered potential of hydroxyl ion adsorption compared with bulk tin. Hence, the tin quantum sheets confined in graphene show enhanced electrocatalytic activity and stability. This work may provide a promising lead for designing efficient and robust catalysts for electrolytic fuel synthesis. PMID:27585984

  14. Metal complex polymers for electroluminescent applications

    SciTech Connect

    Tao, X.T.; Suzuki, H.; Zhang, Y.D.; Watanabe, T.; Miyata, S.; Wada, T.; Sasabe, H.

    1998-07-01

    The authors report the synthesis and characterization of a soluble metal complex polymer for electroluminescent (EL) applications. The polymer was prepared by the reaction of a zinc Schiff base with 4,4{prime}-diphenylmethane-diisocyanate. The polymer is amorphous and with glass transition temperature of 156 C and is soluble in common organic solvents such as chloroform, tetrahydrofuran (THF), and N-methylpyrrolidinone (NMP). The zinc Schiff base, and the polyurethane (PU) shows strong photoluminescence under a UV-lamp illumination. Single and double layer EL devices consisting ITO/hole transfer layer (HTL)/PU/AL have been fabricated and characterized. The results indicated that the complex polymer could act as both electron transport and emissive layers for EL devices.

  15. Forming Limits in Sheet Metal Forming for Non-Proportional Loading Conditions - Experimental and Theoretical Approach

    SciTech Connect

    Ofenheimer, Aldo; Buchmayr, Bruno; Kolleck, Ralf

    2005-08-05

    The influence of strain paths (loading history) on material formability is well known in sheet forming processes. Sophisticated experimental methods are used to determine the entire shape of strain paths of forming limits for aluminum AA6016-T4 alloy. Forming limits for sheet metal in as-received condition as well as for different pre-deformation are presented. A theoretical approach based on Arrieux's intrinsic Forming Limit Stress Curve (FLSC) concept is employed to numerically predict the influence of loading history on forming severity. The detailed experimental strain paths are used in the theoretical study instead of any linear or bilinear simplified loading histories to demonstrate the predictive quality of forming limits in the state of stress.

  16. Oxygen-induced magnetic properties and metallic behavior of a BN sheet

    SciTech Connect

    Zhou, Yungang; Zu, Xiaotao T.; Yang, Ping; Xiao, Hai Yan; Gao, Fei

    2010-11-24

    In this paper, ab initio method has been employed to study the adsorption energies, electronic structures and magnetic properties of a BN sheet functionalized by oxygen (O) atom. The adsorption process is typically exothermic, and some unusual properties can be revealed with different adsorption sites. The energy gap of BN sheet narrows due to the strong hybridization between O and BN electronic states when O locates above a BN bond or a nitrogen atom. Upon the adsorption of O above a B3N3 ring or a boron atom, the electrons of O-adsorbed BN system are polarized, which gives rise to the magnetic moment of 2.0 μB. In this case, Fermi level crosses the valence band, resulting the O-adsorbed BN system to be metallic. Furthermore, potential energy curves analysis shows that the magnetism and matellic of BN system can be modulated by the external temperature and pressure.

  17. Topometry optimization of sheet metal structures for crashworthiness design using hybrid cellular automata

    NASA Astrophysics Data System (ADS)

    Mozumder, Chandan K.

    The objective in crashworthiness design is to generate plastically deformable energy absorbing structures which can satisfy the prescribed force-displacement (FD) response. The FD behavior determines the reaction force, displacement and the internal energy that the structure should withstand. However, attempts to include this requirement in structural optimization problems remain scarce. The existing commercial optimization tools utilize models under static loading conditions because of the complexities associated with dynamic/impact loading. Due to the complexity of a crash event and the consequent time required to numerically analyze the dynamic response of the structure, classical methods (i.e., gradient-based and direct) are not well developed to solve this undertaking. This work presents an approach under the framework of the hybrid cellular automaton (HCA) method to solve the above challenge. The HCA method has been successfully applied to nonlinear transient topology optimization for crashworthiness design. In this work, the HCA algorithm has been utilized to develop an efficient methodology for synthesizing shell-based sheet metal structures with optimal material thickness distribution under a dynamic loading event using topometry optimization. This method utilizes the cellular automata (CA) computing paradigm and nonlinear transient finite element analysis (FEA) via ls-dyna. In this method, a set field variables is driven to their target states by changing a convenient set of design variables (e.g., thickness). These rules operate locally in cells within a lattice that only know local conditions. The field variables associated with the cells are driven to a setpoint to obtain the desired structure. This methodology is used to design for structures with controlled energy absorption with specified buckling zones. The peak reaction force and the maximum displacement are also constrained to meet the desired safety level according to passenger safety

  18. Koolau dike complex, Oahu: intensity and origin of a sheeted-dike complex high in a Hawaiian volcanic edifice

    SciTech Connect

    Walker, G.P.L.

    1986-04-01

    The dike complex in the eroded Koolau tholeiitic shield volcano is unique among described dike swarms for its coherence, high dike-injection intensity, relatively uniform and non-Gaussian 50% to 65% intensity level, and lack of dike divergence. Parts are like a sheeted-dike complex, though high in an intraplate volcanic edifice. A model is proposed in which highly mobile tholeiitic magma, having considerable freedom to move through the strongly disjointed volcano, seeks zones in which it is gravitationally most stable. These zones are marginal parts of the dike complex, separating lavas having a lower-than-magmatic bulk density from a > 50% dike complex having a higher-than-magmatic bulk density. This model also explains the strong propensity for the magma of Kilauea volcano to remain underground (in a gravitationally stable zone). Magma erupts only when it vesiculates sufficiently; often, when it has degassed, some of it promptly plunges back toward the stable zone again.

  19. Metal encapsulating carbon nanostructures from oligoalkyne metal complexes

    SciTech Connect

    Dosa, P.I.; Erben, C.; Iyer, V.S.; Vollhardt, K.P.C.; Wasser, I.M.

    1999-11-10

    Carbon nanotubes, onions, and related closed-shell carbon particles have commanded extensive recent attention because of their potential applications as unique electronic, magnetic, and mechanically robust materials. When filled with metals, such nanocapsules have additional promise as magnetic particles, contrasting agents, protecting cloaks, and catalysts and in other applications. Among the various methods for their preparation, the transition metal (especially Fe, Co, and Ni) catalyzed pyrolysis of small organic molecules has shown promise for larger scale production and in structural control. While the use of organometallic complexes as solid catalyst precursors or copyrolytic gaseous ingredients has been reported, all of these studies have been limited to gas-phase experiments at relatively high temperatures. There is very little literature that deals with the organic solid-state generation of carbon nanotubes. The latter suffers from extreme conditions, poor yields, or not readily modifiable starting materials. Development of synthetic organic approaches to closed shell large carbon structures is desirable but in its infancy. Here the authors present a significant step in its progress.

  20. Development of Dynamic Explicit Crystallographic Homogenization Finite Element Analysis Code to Assess Sheet Metal Formability

    NASA Astrophysics Data System (ADS)

    Nakamura, Yasunori; Tam, Nguyen Ngoc; Ohata, Tomiso; Morita, Kiminori; Nakamachi, Eiji

    2004-06-01

    The crystallographic texture evolution induced by plastic deformation in the sheet metal forming process has a great influence on its formability. In the present study, a dynamic explicit finite element (FE) analysis code is newly developed by introducing a crystallographic homogenization method to estimate the polycrystalline sheet metal formability, such as the extreme thinning and "earing." This code can predict the plastic deformation induced texture evolution at the micro scale and the plastic anisotropy at the macro scale, simultaneously. This multi-scale analysis can couple the microscopic crystal plasticity inhomogeneous deformation with the macroscopic continuum deformation. In this homogenization process, the stress at the macro scale is defined by the volume average of those of the corresponding microscopic crystal aggregations in satisfying the equation of motion and compatibility condition in the micro scale "unit cell," where the periodicity of deformation is satisfied. This homogenization algorithm is implemented in the conventional dynamic explicit finite element code by employing the updated Lagrangian formulation and the rate type elastic/viscoplastic constitutive equation. At first, it has been confirmed through a texture evolution analyses in cases of typical deformation modes that Taylor's "constant strain homogenization algorithm" yields extreme concentration toward the preferred crystal orientations compared with our homogenization one. Second, we study the plastic anisotropy effects on "earing" in the hemispherical cup deep drawing process of pure ferrite phase sheet metal. By the comparison of analytical results with those of Taylor's assumption, conclusions are drawn that the present newly developed dynamic explicit crystallographic homogenization FEM shows more reasonable prediction of plastic deformation induced texture evolution and plastic anisotropy at the macro scale.

  1. Control the springback of metal sheets by using an artificial neural network

    NASA Astrophysics Data System (ADS)

    Crina, Axinte

    2007-04-01

    One of the greatest challenges of manufacturing sheet metal parts is to obtain consistent parts dimensions. Springback is the major cause of variations and inconsistencies in the final part geometry. Obtaining a consistent and desirable amount of springback is extremely difficult due to the non-linear effects and interactions of process and material parameters. In this work, the ability of an artificial neural network model to predict optimum process parameters and tools geometry which allow to obtain minimum amount of springback is tested, in the case of a cylindrical deep-drawing process.

  2. Control of Springback in Sheet Metal U-bending Through Design Experiment

    SciTech Connect

    Chirita, Bogdan; Brabie, Gheorghe

    2007-05-17

    For the U-bending of sheet metals, springback represents the most important failure mode that is affecting the parts. The purpose of this study was to develop a method for the reduction or the elimination of springback from the designing stage of the forming process. This paper describes a numerical procedure that combines simulation of springback by finite element method with a fractional factorial design and proposes the optimization of the forming parameters and tools geometry for the reduction of springback intensity. At the end of the study we were able to obtain an important improvement of part precision using the parameters predicted by the factorial design.

  3. Effects of Temperature and Forming Speed on Plastic Bending of Adhesively Bonded Sheet Metals

    NASA Astrophysics Data System (ADS)

    Takiguchi, Michihiro; Yoshida, Tetsuya; Yoshida, Fusahito

    This paper deals with the temperature and rate-dependent elasto-viscoplasticity behaviour of a highly ductile acrylic adhesive and its effect on plastic bending of adhesively bonded sheet metals. Tensile lap shear tests of aluminium single-lap joints were performed at various temperature of 10-40°C at several tensile speeds. Based on the experimental results, a new constitutive model of temperature and rate-dependent elasto-viscoplasticity of the adhesive is presented. From V-bending experiments and the corresponding numerical simulation, it was found that the gull-wing bend is suppressed by high-speed forming at a lower temperature.

  4. European Bronze Age Sheet Metal Objects: 3,000 Years of High-Level Bronze Manufacture

    NASA Astrophysics Data System (ADS)

    Mödlinger, Marianne; El Morr, Ziad

    2014-01-01

    This article focuses on the manufacture and usage of selected sheet metal objects from helmets, a vessel, and two shields from the European Bronze Age and Early Iron Age, which date from the thirteenth to seventh centuries BC. Manufacturing traces on the surface, as well as metallographic investigations and the analyses of the alloy composition with scanning electron microscope-energy-dispersive x-ray spectroscopy, provided an insight into the manufacturing techniques and the production of valuable, high-status objects, and highlighted the potential changes in manufacturing techniques and alloys used during different time periods.

  5. Mutual Inductance Problem for a System Consisting of a Current Sheet and a Thin Metal Plate

    NASA Technical Reports Server (NTRS)

    Fulton, J. P.; Wincheski, B.; Nath, S.; Namkung, M.

    1993-01-01

    Rapid inspection of aircraft structures for flaws is of vital importance to the commercial and defense aircraft industry. In particular, inspecting thin aluminum structures for flaws is the focus of a large scale R&D effort in the nondestructive evaluation (NDE) community. Traditional eddy current methods used today are effective, but require long inspection times. New electromagnetic techniques which monitor the normal component of the magnetic field above a sample due to a sheet of current as the excitation, seem to be promising. This paper is an attempt to understand and analyze the magnetic field distribution due to a current sheet above an aluminum test sample. A simple theoretical model, coupled with a two dimensional finite element model (FEM) and experimental data will be presented in the next few sections. A current sheet above a conducting sample generates eddy currents in the material, while a sensor above the current sheet or in between the two plates monitors the normal component of the magnetic field. A rivet or a surface flaw near a rivet in an aircraft aluminum skin will disturb the magnetic field, which is imaged by the sensor. Initial results showed a strong dependence of the flaw induced normal magnetic field strength on the thickness and conductivity of the current-sheet that could not be accounted for by skin depth attenuation alone. It was believed that the eddy current imaging method explained the dependence of the thickness and conductivity of the flaw induced normal magnetic field. Further investigation, suggested the complexity associated with the mutual inductance of the system needed to be studied. The next section gives an analytical model to better understand the phenomenon.

  6. Electrochromic bis(terpyridine)metal complex nanosheets.

    PubMed

    Takada, Kenji; Sakamoto, Ryota; Yi, Shi-Ting; Katagiri, Shunsuke; Kambe, Tetsuya; Nishihara, Hiroshi

    2015-04-15

    A series of electrochromic metal complex nanosheets comprising 1,3,5-tris(4-(2,2':6',2″-terpyridyl)phenyl)benzene or 1,3,5-tris((2,2':6',2″-terpyridyl)ethynyl)benzene and Fe(2+) or Co(2+) was synthesized. The preparation of multilayered nanosheets was achieved by liquid/liquid interfacial synthesis using an organic ligand solution and an aqueous metal-ion solution. The resultant nanosheet had a flat, smooth morphology and was several hundreds of nanometers thick. Upon its deposition on an indium tin oxide (ITO) electrode, the nanosheet underwent a reversible and robust redox reaction (Fe(3+)/Fe(2+) or Co(2+)/Co(+)) accompanied by a distinctive color change. Electrochromism was achieved in a solidified device composed of the nanosheet, a pair of ITO electrodes, and a polymer-supported electrolyte. The combination of Fe(2+) and Co(2+) nanosheets in one device-deposited on each ITO electrode-demonstrated dual-electrochromic behavior. PMID:25789415

  7. Analysis of hot forming of a sheet metal component made of advanced high strength steel

    NASA Astrophysics Data System (ADS)

    Demirkaya, Sinem; Darendeliler, Haluk; Gökler, Mustafa İlhan; Ayhaner, Murat

    2013-05-01

    To provide reduction in weight while maintaining crashworthiness and to decrease the fuel consumption of vehicles, thinner components made of Advanced High Strength Steels (AHSS) are being increasingly used in automotive industry. However, AHSS cannot be formed easily at the room temperature (i.e. cold forming). The alternative process involves heating, hot forming and subsequent quenching. A-pillar upper reinforcement of a vehicle is currently being produced by cold forming of DP600 steel sheet with a thickness of 1.8 mm. In this study, the possible decrease in the thickness of this particular part by using 22MnB5 as appropriate AHSS material and applying this alternative process has been studied. The proposed process involves deep drawing, trimming, heating, sizing, cooling and piercing operations. Both the current production process and the proposed process are analyzed by the finite element method. The die geometry, blank holding forces and the design of the cooling channels for the cooling process are determined numerically. It is shown that the particular part made of 22MnB5 steel sheet with a thickness of 1.2 mm can be successfully produced by applying the proposed process sequence and can be used without sacrificing the crashworthiness. With the use of the 22MnB5 steel with a thickness of 1.2 mm instead of DP600 sheet metal with a thickness of 1.8 mm, the weight is reduced by approximately 33%.

  8. Thin Porous Metal Sheet-Supported NaA Zeolite Membrane for Water/Ethanol Separation

    SciTech Connect

    Zhang, Jian; Liu, Wei

    2011-04-01

    This paper reports preparation and separation testing results of water-selective zeolite membrane, such as NaA (or 4A-type), supported on a robust, porous metal sheet of 50um thickness. The thin sheet support is of large potential for development of a low-cost, inorganic membrane module of high surface area packing density. The porous Ni alloy sheet of micrometer or sub-micrometer mean pore size, which was prepared by a proprietary process, is used to evaluate different zeolite membrane deposition methods and conditions. The membranes are characterized by SEM, XRD and water/ethanol separation tests. Quality NaA zeolite membrane at thickness <2um is obtained with the secondary hydrothermal growth method. This membrane shows water/ethanol separation factor of >10,000 and water permeation flux of about 4 kg/(m2•h) at 75ºC with a feed of 10wt% water in ethanol. The membrane is also demonstrated with good stability in 66-hour continuous testing at 75ºC and 90ºC.

  9. The FE simulation research on roll bending process of complex sheet with padding assisted

    NASA Astrophysics Data System (ADS)

    Wei, Tianhai; Zhao, Yixi; Song, Bo; Chen, Baoguo; Yu, Zhongqi

    2013-05-01

    The roll bending process with padding assisted is a new profile forming method. In this paper, the aluminum sheet 2024-T3 with variable thickness is roll bended through three-roller with padding assisted. The finite element model is established with ABAQUS software, the forming process and springback are successfully simulated. The padding material and the padding thickness are discussed based on FE model. The result showed that the PA6-G, with a higher strength, is a preferred padding material. The good forming result will be obtained if the padding of thicker thickness is chosen among 6mm and 9mm. This research provides some useful references for the real forming process of complex sheet.

  10. First-principles study of electronic and magnetic properties of transition metal adsorbed h-BNC2 sheets.

    PubMed

    Srivastava, Pooja; Deshpande, Mrinalini; Sen, Prasenjit

    2011-12-28

    Adsorption of Fe, Co and Ni atoms on a hybrid hexagonal sheet of graphene and boron nitride is studied using density functional methods. Most favorable adsorption sites for these adatoms are identified for different widths of the graphene and boron nitride regions. Electronic structure and magnetic properties of the TM-adsorbed sheets are then studied in detail. The TM atoms change the electronic structure of the sheet significantly, and the resulting system can be a magnetic semiconductor, semi-metal, or a non-magnetic semiconductor depending on the TM chosen. This gives tunability of properties which can be useful in novel electronics applications. Finally, barriers for diffusion of the adatoms on the sheet are calculated, and their tendency to agglomerate on the sheet is estimated. PMID:22068843

  11. Evidencing the existence of exciting half-metallicity in two-dimensional TiCl3 and VCl3 sheets

    PubMed Central

    Zhou, Yungang; Lu, Haifeng; Zu, Xiaotao; Gao, Fei

    2016-01-01

    Half-metallicity combined with wide half-metallic gap, unique ferromagnetic character and high Curie temperature has become a key driving force to develop next-generation spintronic devices. In previous studies, such half-metallicity always occurred under certain manipulation. Here, we, via examining a series of two-dimensional transition-metal trichlorides, evidenced that TiCl3 and VCl3 sheets could display exciting half-metallicity without involving any external modification. Calculated half-metallic band-gaps for TiCl3 and VCl3 sheets are about 0.60 and 1.10 eV, respectively. Magnetic coupled calculation shows that both sheets favor the ferromagnetic order with a substantial collective character. Estimated Curie temperatures can be up to 376 and 425 K for TiCl3 and VCl3 sheets, respectively. All of these results successfully disclose two new promising two-dimensional half-metallic materials toward the application of next-generation paper-like spintronic devices. PMID:26776358

  12. Evidencing the existence of exciting half-metallicity in two-dimensional TiCl3 and VCl3 sheets.

    PubMed

    Zhou, Yungang; Lu, Haifeng; Zu, Xiaotao; Gao, Fei

    2016-01-01

    Half-metallicity combined with wide half-metallic gap, unique ferromagnetic character and high Curie temperature has become a key driving force to develop next-generation spintronic devices. In previous studies, such half-metallicity always occurred under certain manipulation. Here, we, via examining a series of two-dimensional transition-metal trichlorides, evidenced that TiCl3 and VCl3 sheets could display exciting half-metallicity without involving any external modification. Calculated half-metallic band-gaps for TiCl3 and VCl3 sheets are about 0.60 and 1.10 eV, respectively. Magnetic coupled calculation shows that both sheets favor the ferromagnetic order with a substantial collective character. Estimated Curie temperatures can be up to 376 and 425 K for TiCl3 and VCl3 sheets, respectively. All of these results successfully disclose two new promising two-dimensional half-metallic materials toward the application of next-generation paper-like spintronic devices. PMID:26776358

  13. Energetic characteristics of transition metal complexes.

    PubMed

    Wojewódka, Andrzej; Bełzowski, Janusz; Wilk, Zenon; Staś, Justyna

    2009-11-15

    Ten transition metal nitrate and perchlorate complexes of hydrazine and ethylenediamine were synthesized, namely [Cu(EN)(2)](ClO(4))(2), [Co(EN)(3)](ClO(4))(3), [Ni(EN)(3)](ClO(4))(2), [Hg(EN)(2)](ClO(4))(2), [Cr(N(2)H(4))(3)](ClO(4))(3), [Cd(N(2)H(4))(3)](ClO(4))(2), [Ni(N(2)H(4))(3)](NO(3))(2), [Co(N(2)H(4))(3)](NO(3))(3), [Zn(N(2)H(4))(3)](NO(3))(2), and [Cd(N(2)H(4))(3)](NO(3))(2) based on the lines of the literature reported methods. All of them were tested with applying underwater detonation test and further compared to the typical blasting explosives: RDX, HMX, TNT and PETN. From the above presented complexes [Ni(N(2)H(4))(3)](NO(3))(2) (called NHN) and [Co(N(2)H(4))(3)](NO(3))(3) (called CoHN) are known as primary explosives and can be used as the standard explosives. Explosion parameters, such as shock wave overpressure, shock wave energy equivalent and bubble energy equivalent, were determined. Evaluated energetic characteristics of the tested compounds are comparable to those of the classic high explosives and are even enhanced in some cases. PMID:19631466

  14. Simulation and measurement of melting effects on metal sheets caused by direct lightning strikes

    NASA Technical Reports Server (NTRS)

    Kern, Alexander

    1991-01-01

    Direct lightning strikes melt metal parts of various systems, like fuel and propellant tanks of rockets and airplanes, at the point of strike. Responsible for this melting are the impulse current and, if occurring, the long duration current, both carrying a remarkable charge Q. For studying these meltings the simulation in the laboratory has to be based on the parameters of natural lightnings. International standards exist defining certain threat levels of natural lightnings and giving possible generator circuits for the simulation. The melting caused by both types of lightning currents show different appearance. Their characteristics, their differences in melting and heating of metal sheets are investigated. Nevertheless the simulation of lightning in the laboratory is imperfect. While natural lightning is a discharge without a counter electrode, the simulation always demands a close counter electrode. The influence of this counter electrode is studied.

  15. Fully Integrated EAS-Based Solid-Shell Finite Elements in Implicit Sheet Metal Forming Simulations

    SciTech Connect

    Valente, R.A. Fontes; Cardoso, R.P.R.; Alves de Sousa, R.J.; Parente, M.P.L.; Jorge, R.M. Natal

    2005-08-05

    In this communication sheet metal forming problems are analyzed with the Finite Element Method and a fully-integrated solid-shell element, based on the Enhanced Assumed Strain (EAS) method. Among the solid-shell element's distinguish features, it should be mentioned the solely use of the EAS approach in dealing with either transverse and volumetric-based locking pathologies, thus avoiding the inclusion of other mixed methods into the formulation. The adopted methodology is then able to successfully deal with small thickness shell problems within the incompressible range, aspects commonly appearing in sheet metal forming modeling with solid elements.Simulations of this type of forming processes are mainly solved resorting to membrane and shell-type finite elements, included in explicit commercial programs. Nevertheless, the presented solid-shell formulation, within a fully implicit approach, provides reliable solutions when compared to experimental results. It is also worth mentioning that the present solid-shell formulation encompasses a minimum set of enhancing strain variables, if compared to other fully integrated hexahedral finite elements in the literature.In order to assess the performance of the presented formulation, the S-Rail Forming problem of an aluminum alloy is described and analyzed, with the results being compared to experimental and numerical simulation data.

  16. Tunable color parallel tandem organic light emitting devices with carbon nanotube and metallic sheet interlayers

    NASA Astrophysics Data System (ADS)

    Oliva, Jorge; Papadimitratos, Alexios; Desirena, Haggeo; De la Rosa, Elder; Zakhidov, Anvar A.

    2015-11-01

    Parallel tandem organic light emitting devices (OLEDs) were fabricated with transparent multiwall carbon nanotube sheets (MWCNT) and thin metal films (Al, Ag) as interlayers. In parallel monolithic tandem architecture, the MWCNT (or metallic films) interlayers are an active electrode which injects similar charges into subunits. In the case of parallel tandems with common anode (C.A.) of this study, holes are injected into top and bottom subunits from the common interlayer electrode; whereas in the configuration of common cathode (C.C.), electrons are injected into the top and bottom subunits. Both subunits of the tandem can thus be monolithically connected functionally in an active structure in which each subunit can be electrically addressed separately. Our tandem OLEDs have a polymer as emitter in the bottom subunit and a small molecule emitter in the top subunit. We also compared the performance of the parallel tandem with that of in series and the additional advantages of the parallel architecture over the in-series were: tunable chromaticity, lower voltage operation, and higher brightness. Finally, we demonstrate that processing of the MWCNT sheets as a common anode in parallel tandems is an easy and low cost process, since their integration as electrodes in OLEDs is achieved by simple dry lamination process.

  17. Characterization of the Bauschinger effect in sheet metal undergoing large strain reversals in bending

    NASA Astrophysics Data System (ADS)

    Hanzon, Drew Wyatt

    This work consists on the quantification of sheet metal uniaxial stress-strain reversals from pure bending tests. Bending strains to approximately 10% were measured by strain gages and interferometry. Bending-unbending moments and strains were modeled and compared closely to the experimental data. The reverse uniaxial stress-strains curves were determined from the optimal fit of the model. Bauschinger effects were described by the reverse uniaxial response at the elasto-plastic range, between the elastic and the large strain, power fit ranges. Arc and straight line fittings on the lnsigma-lnepsilon scale proved accurate to describe the elasto-plastic behavior. Reverse uniaxial data determined for DP590 and DP780 steels and two Aluminum alloys showed significant Bauschinger effects with distinct features. For the DP steels the magnitudes of the reverse compressive sigma-epsilon curves compared moderately higher, and merging to a power curve with parameters K, n previously defined by tension testing. Bauschinger effects at small reversed strains were less pronounced for the aluminum alloys. However, at higher strains the reverse elasto-plastic response softened considerably, and during the unbending span the magnitudes of the reverse compressive strains remained below the corresponding K, n tensile values. The results showed pure bending as an efficient, simple to use technique to generate sigma-epsilon data for sheet metal at large reverse strains without the complicating restraining hardware required by direct compression methods.

  18. Method of manufacturing metallic products such as sheet by cold working and flash annealing

    DOEpatents

    Hajaligol, Mohammad R.; Sikka, Vinod K.

    2000-01-01

    A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.

  19. Method of manufacturing metallic products such as sheet by cold working and flash anealing

    DOEpatents

    Hajaligol, Mohammad R.; Sikka, Vinod K.

    2001-01-01

    A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.

  20. Tunable color parallel tandem organic light emitting devices with carbon nanotube and metallic sheet interlayers

    SciTech Connect

    Oliva, Jorge; Desirena, Haggeo; De la Rosa, Elder; Papadimitratos, Alexios; Zakhidov, Anvar A.

    2015-11-21

    Parallel tandem organic light emitting devices (OLEDs) were fabricated with transparent multiwall carbon nanotube sheets (MWCNT) and thin metal films (Al, Ag) as interlayers. In parallel monolithic tandem architecture, the MWCNT (or metallic films) interlayers are an active electrode which injects similar charges into subunits. In the case of parallel tandems with common anode (C.A.) of this study, holes are injected into top and bottom subunits from the common interlayer electrode; whereas in the configuration of common cathode (C.C.), electrons are injected into the top and bottom subunits. Both subunits of the tandem can thus be monolithically connected functionally in an active structure in which each subunit can be electrically addressed separately. Our tandem OLEDs have a polymer as emitter in the bottom subunit and a small molecule emitter in the top subunit. We also compared the performance of the parallel tandem with that of in series and the additional advantages of the parallel architecture over the in-series were: tunable chromaticity, lower voltage operation, and higher brightness. Finally, we demonstrate that processing of the MWCNT sheets as a common anode in parallel tandems is an easy and low cost process, since their integration as electrodes in OLEDs is achieved by simple dry lamination process.

  1. Surrogate POD models for building forming limit diagrams of parameterized sheet metal forming applications

    NASA Astrophysics Data System (ADS)

    Hamdaoui, M.; Le Quilliec, Guénhaël; Breitkopf, Piotr; Villon, Pierre

    2013-05-01

    The aim of this work is to present a surrogate POD (Proper Orthogonal Decomposition) approach for building forming limit diagrams at minimum cost for parameterized sheet metal formed work-pieces. First, a Latin Hypercube Sampling is performed on the design parameter space. Then, at each design site, displacement fields are computed using the popular open-source finite element software Code_Aster. Then, the method of snapshots is used for POD mode determination. POD coefficients are interpolated using kriging. Furthermore, an error analysis of the surrogate POD model is performed on a validation set. It is shown that on the considered use case the accuracy of the surrogate POD model is excellent for the representation of finite element displacement fields. The validated surrogate POD model is then used to build forming limit diagrams (FLD) for any design parameter to assess the quality of stamped metal sheets. Using the surrogate POD model, the Green-Lagrange strain tensor is derived, then major and minor principal deformations are determined at Gauss points for each mesh element. Furthermore, a signed distance between the forming limit curve in rupture and the obtained cloud of points in the plane (ɛ2, ɛ1) is computed to assess the quality of the formed workpiece. The minimization of this signed distance allows determining the safest design for the chosen use case.

  2. Explosive Welding of Aluminum, Titanium and Zirconium to Copper Sheet Metal

    NASA Technical Reports Server (NTRS)

    Hegazy, A. A.; Mote, J. D.

    1985-01-01

    The main material properties affecting the explosive weldability of a certain metal combination are the yield strength, the ductility, the density and the sonic velocity of the two metals. Successful welding of the metal combination depends mainly on the correct choice of the explosive welding parameters; i.e., the stand off distance, the weight of the explosive charge relative to the weight of the flyer plate and the detonation velocity of the explosive. Based on the measured and the handbook values of the properties of interest, the explosive welding parameters were calculated and the arrangements for the explosive welding of the Al alloy 6061-T6, titanium and zirconium to OFHC copper were determined. The relatively small sheet metal thickness (1/8") and the fact that the thickness of the explosive layer must exceed a certain minimum value were considered during the determination of the explosive welding conditions. The results of the metallographic investigations and the measurements of the shear strength at the interface demonstrate the usefulness of these calculations to minimize the number of experimental trials.

  3. Unexpected band structure and half-metal in non-metal-doped arsenene sheet

    NASA Astrophysics Data System (ADS)

    Wang, Ya-ping; Zhang, Chang-wen; Ji, Wei-xiao; Wang, Pei-ji

    2015-06-01

    We performed a first-principles study on two-dimensional (2D) arsenene doped with non-magnetic elements. It was found that dopants (groups III, V, and VII) with odd numbers of valence electrons maintained the semiconducting character of the pristine system, while those (groups IV and VI) with even numbers of valence electrons caused the metallic character to change. Remarkably, the C- and O-doped systems were spin-polarized and could be modulated into half-metals by the external electric field. Our findings reveal a potential method of engineering buckled arsenene for applications in nanoelectronics.

  4. 40 CFR 721.4596 - Diazo substituted carbomonocyclic metal complex.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... metal complex. 721.4596 Section 721.4596 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4596 Diazo substituted carbomonocyclic metal complex. (a)...

  5. 40 CFR 721.4594 - Substituted azo metal complex dye.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted azo metal complex dye. 721... Substances § 721.4594 Substituted azo metal complex dye. (a) Chemical substance and significant new uses... dye (PMN P-94-499) is subject to reporting under this section for the significant new uses...

  6. 40 CFR 721.4594 - Substituted azo metal complex dye.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted azo metal complex dye. 721... Substances § 721.4594 Substituted azo metal complex dye. (a) Chemical substance and significant new uses... dye (PMN P-94-499) is subject to reporting under this section for the significant new uses...

  7. 40 CFR 721.4594 - Substituted azo metal complex dye.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted azo metal complex dye. 721... Substances § 721.4594 Substituted azo metal complex dye. (a) Chemical substance and significant new uses... dye (PMN P-94-499) is subject to reporting under this section for the significant new uses...

  8. 40 CFR 721.4594 - Substituted azo metal complex dye.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted azo metal complex dye. 721... Substances § 721.4594 Substituted azo metal complex dye. (a) Chemical substance and significant new uses... dye (PMN P-94-499) is subject to reporting under this section for the significant new uses...

  9. Activation of the C-H bond by metal complexes

    NASA Astrophysics Data System (ADS)

    Shilov, Aleksandr E.; Shul'pin, Georgiy B.

    1990-09-01

    Reactions involving the cleavage of C-H bonds by metal complexes in saturated and aromatic hydrocarbons and also in other compounds are examined. Some of these processes occur with formation of a carbon-metal bond, whilst in others the interaction of the complexes with the hydrocarbon takes place without direct contact between the metal atom and the C-H bonds. Metal compounds are widely used as initiators of the liquid-phase oxidation of hydrocarbons at relatively low temperatures. There is a prospect of creating new technologies for the chemical processing of petroleum and gas hydrocarbons, whereby they can be converted into valuable products, for example, into alcohols, ketones, and carboxylic acids, on the basis of processes involving metal complexes. The study of the metal complex activation of the C-H bond also makes it possible to understand and model the metalloenzyme-catalysed hydrocarbon oxidation reactions in the living cell. The bibliography includes 340 references.

  10. Tool path influence on electric pulse aided deformation during incremental sheet metal forming

    SciTech Connect

    Asgar, J.; Lingam, R. Reddy, V. N.

    2013-12-16

    Titanium and its alloys are difficult to form at room temperature due to their high flow stress. Super plastic deformation of Ti alloys involves low strain rate forming at very high temperatures which need special tooling which can withstand high temperatures. It was observed that when high current density electric pulse is applied during deformation it reduces the flow stress through electron-dislocation interaction. This phenomenon is known as electro-plasticity. In the present work, importance of tool configuration to enhance the formability without much resistive heating is demonstrated for Incremental Sheet Metal Forming (ISMF). Tool configuration is selected to minimize the current carrying zone in DC pulse aided incremental forming to enhance the formability due to electro plasticity and the same is demonstrated by forming two pyramid shaped components of 30° and 45° wall angles using a Titanium alloy sheet of 0.6 mm thickness. Load measurement indicated that a critical current density is essential for the electro-plasticity to be effective and the same is realized with the load and temperature measurements.

  11. Numerical Determination of Sheet Metal Formability under Simultaneous Stretching and Bending

    NASA Astrophysics Data System (ADS)

    Martinezhyphen; Lopez, A.; van den Boogaard, A. H.

    2011-01-01

    The plastic behavior of AHSS is still far from being completely understood, and its prediction is of large importance in reliability of forming simulation in present automotive industry [1]. Conventional techniques have been proven to be not accurate enough, and underestimate the formability limits for AHSS materials in cases where stretching and bending are combined. In order to satisfy industrial requirements more work need to be done to understand the formability behavior of sheet metal, and special attention needs to be directed to the possible reasons of the lower predicted formability limits. In previous work [2], experimental results for different materials confirmed the positive effect of bending in terms of formability, and demonstrated the influence of curvature on the FLC is especially clear in the plane strain region. Using conventionally determined FLC could lead to not optimal material consumption during sheet forming operations. For this reason, in this study 3D Finite Element simulations were developed using the commercial code ABAQUS/Standard to investigate further the effect of the out of plane stress, and punch radii for the FLC determination. Also the investigation of the influence of different lubrication systems was accomplished.

  12. Complexation of Uranium by Cells and S-Layer Sheets of Bacillus sphaericus JG-A12

    PubMed Central

    Merroun, Mohamed L.; Raff, Johannes; Rossberg, André; Hennig, Christoph; Reich, Tobias; Selenska-Pobell, Sonja

    2005-01-01

    Bacillus sphaericus JG-A12 is a natural isolate recovered from a uranium mining waste pile near the town of Johanngeorgenstadt in Saxony, Germany. The cells of this strain are enveloped by a highly ordered crystalline proteinaceous surface layer (S-layer) possessing an ability to bind uranium and other heavy metals. Purified and recrystallized S-layer proteins were shown to be phosphorylated by phosphoprotein-specific staining, inductive coupled plasma mass spectrometry analysis, and a colorimetric method. We used extended X-ray absorption fine-structure (EXAFS) spectroscopy to determine the structural parameters of the uranium complexes formed by purified and recrystallized S-layer sheets of B. sphaericus JG-A12. In addition, we investigated the complexation of uranium by the vegetative bacterial cells. The EXAFS analysis demonstrated that in all samples studied, the U(VI) is coordinated to carboxyl groups in a bidentate fashion with an average distance between the U atom and the C atom of 2.88 ± 0.02 Å and to phosphate groups in a monodentate fashion with an average distance between the U atom and the P atom of 3.62 ± 0.02 Å. Transmission electron microscopy showed that the uranium accumulated by the cells of this strain is located in dense deposits at the cell surface. PMID:16151146

  13. Development of JSTAMP-Works/NV and HYSTAMP for Multipurpose Multistage Sheet Metal Forming Simulation

    NASA Astrophysics Data System (ADS)

    Umezu, Yasuyoshi; Watanabe, Yuko; Ma, Ninshu

    2005-08-01

    Since 1996, Japan Research Institute Limited (JRI) has been providing a sheet metal forming simulation system called JSTAMP-Works packaged the FEM solvers of LS-DYNA and JOH/NIKE, which might be the first multistage system at that time and has been enjoying good reputation among users in Japan. To match the recent needs, "faster, more accurate and easier", of process designers and CAE engineers, a new metal forming simulation system JSTAMP-Works/NV is developed. The JSTAMP-Works/NV packaged the automatic healing function of CAD and had much more new capabilities such as prediction of 3D trimming lines for flanging or hemming, remote control of solver execution for multi-stage forming processes and shape evaluation between FEM and CAD. On the other way, a multi-stage multi-purpose inverse FEM solver HYSTAMP is developed and will be soon put into market, which is approved to be very fast, quite accurate and robust. Lastly, authors will give some application examples of user defined ductile damage subroutine in LS-DYNA for the estimation of material failure and springback in metal forming simulation.

  14. Waste minimization assessment for a manufacturer of iron castings and fabricated sheet metal parts

    SciTech Connect

    Fleischman, M.; Harris, J.J.; Handmaker, A.; Looby, G.P.

    1995-08-01

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at selected universities and procedures were adapted from the EPA Waste Minimization Opportunity Assessment Manual. That document has been superseded by the Facility Pollution Prevention Guide. The WMAC team at the University of Louisville performed an assessment at a plant that manufactures iron castings and fabricated sheet metal parts. Foundry operations include mixing and mold formation, core making, metal pouring, shakeout, finishing, and painting. Cutting, shaping, and welding are the principal metal fabrication operations. The team`s report, detailing findings and recommendations indicated that paint-related wastes are generated in large quantities, and that significant waste reduction and cost savings could be realized by installing a dry powder coating system or by replacing conventional air spray paint guns with high-volume low-pressure spray guns. This research brief was developed by the principal investigators and EPA`s National Risk Management Research Laboratory, Cincinnati, OH, to announce key findings of an ongoing research project that is fully documented in a separate report of the same title available from University City Science Center.

  15. Modeling and FE Simulation of Quenchable High Strength Steels Sheet Metal Hot Forming Process

    NASA Astrophysics Data System (ADS)

    Liu, Hongsheng; Bao, Jun; Xing, Zhongwen; Zhang, Dejin; Song, Baoyu; Lei, Chengxi

    2011-08-01

    High strength steel (HSS) sheet metal hot forming process is investigated by means of numerical simulations. With regard to a reliable numerical process design, the knowledge of the thermal and thermo-mechanical properties is essential. In this article, tensile tests are performed to examine the flow stress of the material HSS 22MnB5 at different strains, strain rates, and temperatures. Constitutive model based on phenomenological approach is developed to describe the thermo-mechanical properties of the material 22MnB5 by fitting the experimental data. A 2D coupled thermo-mechanical finite element (FE) model is developed to simulate the HSS sheet metal hot forming process for U-channel part. The ABAQUS/explicit model is used conduct the hot forming stage simulations, and ABAQUS/implicit model is used for accurately predicting the springback which happens at the end of hot forming stage. Material modeling and FE numerical simulations are carried out to investigate the effect of the processing parameters on the hot forming process. The processing parameters have significant influence on the microstructure of U-channel part. The springback after hot forming stage is the main factor impairing the shape precision of hot-formed part. The mechanism of springback is advanced and verified through numerical simulations and tensile loading-unloading tests. Creep strain is found in the tensile loading-unloading test under isothermal condition and has a distinct effect on springback. According to the numerical and experimental results, it can be concluded that springback is mainly caused by different cooling rats and the nonhomogengeous shrink of material during hot forming process, the creep strain is the main factor influencing the amount of the springback.

  16. Synthesis and characterization of some transition metals polymer complexes

    NASA Astrophysics Data System (ADS)

    Masoud, Mamdouh S.; Abdou, Azza E. H.; Ahmed, Wael M.

    2015-09-01

    Co2+, Ni2+, Cu2+, Cr3+, Mn2+ and Fe3+ complexes of Polyacrylamide are prepared and characterized by elemental analyses, IR, UV-Vis spectra, magnetic measurements, and thermal analyses. The data suggests octahedral geometry for all complexes. The thermal behavior of the complexes has been studied applying TG, DTA, and DSC techniques, and the thermodynamic parameters and mechanisms of the decompositions were evaluated. The ΔS# values of the decomposition steps of the metal complexes indicated that the activated fragments have more ordered structure than the undecomposed complexes. The thermal processes proceeded in complicated mechanisms where the bond between the central metal ion and the ligands dissociates after losing 6(C2H5 N) and 6(CO), the metal complexes are ended with metal as a final product. Viscosity and Shale instability using liner swell meter were carried out. Comparisons of the experimental and theoretical IR spectra were also carried out besides some other theoretical calculations.

  17. Metal complexes of quinolone antibiotics and their applications: an update.

    PubMed

    Uivarosi, Valentina

    2013-01-01

    Quinolones are synthetic broad-spectrum antibiotics with good oral absorption and excellent bioavailability. Due to the chemical functions found on their nucleus (a carboxylic acid function at the 3-position, and in most cases a basic piperazinyl ring (or another N-heterocycle) at the 7-position, and a carbonyl oxygen atom at the 4-position) quinolones bind metal ions forming complexes in which they can act as bidentate, as unidentate and as bridging ligand, respectively. In the polymeric complexes in solid state, multiple modes of coordination are simultaneously possible. In strongly acidic conditions, quinolone molecules possessing a basic side nucleus are protonated and appear as cations in the ionic complexes. Interaction with metal ions has some important consequences for the solubility, pharmacokinetics and bioavailability of quinolones, and is also involved in the mechanism of action of these bactericidal agents. Many metal complexes with equal or enhanced antimicrobial activity compared to the parent quinolones were obtained. New strategies in the design of metal complexes of quinolones have led to compounds with anticancer activity. Analytical applications of complexation with metal ions were oriented toward two main directions: determination of quinolones based on complexation with metal ions or, reversely, determination of metal ions based on complexation with quinolones. PMID:24029748

  18. A three-dimensional porous metal-organic framework constructed from two-dimensional sheets via interdigitation exhibiting dynamic features.

    SciTech Connect

    Ma, S.; Sun, D.; Forster, P. M.; Yuan, D.; Zhuang, W.; Chen, Y. S.; Parise, J. B.; Zhou, H. C.

    2009-04-23

    A three-dimensional porous metal-organic framework (PCN-18) was constructed through interdigitating two-dimensional grid sheets composed of 4,4{prime}-(anthracene-9,10-diyl)dibenzoate and copper paddlewheel secondary building units, and its dynamic features were evidenced by gas sorption isotherms.

  19. Electrical properties of transition metal hydrogen complexes in silicon

    SciTech Connect

    Weber, J.

    1998-12-31

    A summary is given on the electrical properties of transition-metal hydrogen complexes in silicon. Contrary to the general understanding, hydrogen leads not only to passivation of deep defect levels but also creates several new levels in the band gap due to electrically active transition-metal complexes. The author presents detailed data for Pt-H complexes and summarize briefly the results on the transition metals Ti, Co, Ni, Pd, and Ag. The introduction of hydrogen at room temperature by wet chemical etching, followed by specific annealing steps allows us to study the formation of the different complexes. In particular, depth profiles of the defect concentrations give an estimate of the number of hydrogen atoms involved in the complexes. Transition-metals binding up to four hydrogen atoms are identified.

  20. [Advance of studies on bioactivity of flavonoid-metal complexes].

    PubMed

    Liu, Yanji; He, Xiaoyan; Zuo, Hua; Zhang, Qixiong; Li, Zhubo; Shi, Lunyong

    2012-07-01

    The flavonoid-metal complexes showed obviously stronger bioactivities such as antibiosis, antivirus, anti-inflammatory, anti-tumor and anti-free-radical, possibly because of the stronger binding force caused by the change in complex structure and accessibility to target spots, or the synergy effect between flavonoids and metallic ions. This essay summarizes studies on bioactivity and mechanism of flavonoid-metal complexes, in order to provide reference for in-depth study and development on effective constituents contained in flavonoid traditional Chinese medicines. PMID:23019867

  1. Control of sheet-metal forming processes with piezoactuators in smart structures

    NASA Astrophysics Data System (ADS)

    Neugebauer, Reimund; Hoffmann, Michael; Roscher, Hans-Jürgen; Scheffler, Sören; Wolf, Klaus

    2006-03-01

    The most important project in sheet metal forming is streamlining the material flow since each rejects increases production costs. Using the multipoint cushion device together with an elastic blankholder makes it possible to actively manipulate the material flow in the flange range. This allows major enhancements in the deformation ratio, especially with the novel high strength materials in car body production. State-of-the-art is multiple draw pins to initiate the force on selected points on the blankholder. Admittedly, the cushion plate does not allow optimum force allocation because it is situated between hydraulic pressure rollers and draw pins. Replacing selected draw pins with piezoactuators for generating high forces allows systematic control of the force progression at critical forming areas during sheet draw-in. The system, consisting of the piezostack actuator, dynamometer and components for force initiation, was built as a compact unit with low resilience with the intension of using the inherent sensory properties of the piezostack actuator to measure force. Applying this principle throughout allows a reduction of hydraulic components which eventually lead to a less expensive one- point cushion device. Initial finding have already been arrived at in the context of a research project at the Fraunhofer Institute for Machine Tools and Forming Technology in Chemnitz, Germany in cooperation with a partner from the automobile industry. A draw pin was replaced ad hoc with a highly durable piezoactuator integrated in a force control cycle. The force progression during the sheet draw-in could be accurately adjusted according to a predetermined master curve. The master curve was taken up in the unregulated process and represents the quality criteria of a formed useable part. The real-time MATLAB Simulink XPC- Target simulation tool was used to develop an adjustment strategy that connects the specific signals of the press control (such as the tappet path, the die

  2. Antischistosomal Activity of Oxindolimine-Metal Complexes

    PubMed Central

    Dario, Bruno S.; Couto, Ricardo A. A.; Pinto, Pedro L. S.; da Costa Ferreira, Ana M.

    2015-01-01

    In recent years, a class of oxindole-copper and -zinc complex derivatives have been reported as compounds with efficient proapoptotic activity toward different tumor cells (e.g., neuroblastomas, melanomas, monocytes). Here we assessed the efficacy of synthesized oxindole-copper(II), -zinc(II), and -vanadyl (VO2+) complexes against adult Schistosoma mansoni worms. The copper(II) complexes (50% inhibitory concentrations of 30 to 45 μM) demonstrated greater antischistosomal properties than the analogous zinc and vanadyl complexes regarding lethality, reduction of motor activity, and oviposition. PMID:26239976

  3. Antischistosomal Activity of Oxindolimine-Metal Complexes.

    PubMed

    de Moraes, Josué; Dario, Bruno S; Couto, Ricardo A A; Pinto, Pedro L S; da Costa Ferreira, Ana M

    2015-10-01

    In recent years, a class of oxindole-copper and -zinc complex derivatives have been reported as compounds with efficient proapoptotic activity toward different tumor cells (e.g., neuroblastomas, melanomas, monocytes). Here we assessed the efficacy of synthesized oxindole-copper(II), -zinc(II), and -vanadyl (VO(2+)) complexes against adult Schistosoma mansoni worms. The copper(II) complexes (50% inhibitory concentrations of 30 to 45 μM) demonstrated greater antischistosomal properties than the analogous zinc and vanadyl complexes regarding lethality, reduction of motor activity, and oviposition. PMID:26239976

  4. SOLUBILITY AND MOBILITY OF TOXIC METALS UNDER COMPLEX CONDITIONS

    EPA Science Inventory

    EPA Identifier: F8P11069
    Title: Solubility and Mobility of Toxic Metals Under Complex Conditions
    Fellow (Principal Investigator): Brandi N. Clark
    Institution: University of Missouri - Rolla
    EPA GRANT Representative: Georgette Bod...

  5. Porphyrins and metal complexes thereof having haloalkyl side chains

    DOEpatents

    Wijesekera, T.; Lyons, J.E.; Ellis, P.E. Jr.; Bhinde, M.V.

    1997-03-04

    Transition metal complexes of meso-haloalkylporphyrins, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides. 7 figs.

  6. Porphyrins and metal complexes thereof having haloalkyl side chains

    DOEpatents

    Wijesekera, Tilak; Lyons, James E.; Ellis, Jr., Paul E.; Bhinde, Manoj V.

    1997-01-01

    Transition metal complexes of meso-haloalkylporphyrins, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides.

  7. Investigation of metal-polyelectrolyte complex toxicity.

    PubMed

    Karahan, Mesut; Mustafaeva, Zeynep; Koç, Rabia Çakır; Bağırova, Melahat; Allahverdiyev, Adil M

    2014-05-01

    Water-soluble binary and ternary copper complexes of polyelectrolytes were synthesized, and the toxicity of these complexes was tested in mouse fibroblast cell line (L929) in vitro. Both the binary and ternary complexes were prepared at the ratio of 0.4 mole copper(II) ions per monomer of acrylic acid and 0.5 mole copper(II) ions per monomer of methyl vinyl ether maleic anhydride, furthermore at the ratio of 1 and 2 mole bovine serum albumin per mole of polyacrylic acid and poly(methyl vinyl ether-co-maleic anhydride), respectively. Compared to binary copper(II)-polyelectrolyte complexes, these ternary complexes have been determined to be of least toxicity. PMID:22914259

  8. Transition metal complexes of isonicotinic acid (2-hydroxybenzylidene)hydrazide.

    PubMed

    Abou-Melha, Khlood S

    2008-06-01

    A new series of transition metal complexes of Schiff base isonicotinic acid (2-hydroxybenzylidene)hydrazide, HL, have been synthesized. The Schiff base reacted with Cu(II), Ni(II), Co(II), Mn(II), Fe(III) and UO2(II) ions as monobasic tridentate ligand to yield mononuclear complexes of 1:2 (metal:ligand) except that of Cu(II) which form complex of 1:1 (metal:ligand). The ligand and its metal complexes were characterized by elemental analyses, IR, UV-vis, mass and 1H NMR spectra, as well as magnetic moment, conductance measurements, and thermal analyses. All complexes have octahedral configurations except Cu(II) complex which has an extra square planar geometry distorted towards tetrahedral. While, the UO2(II) complex has its favour hepta-coordination. The ligand and its metal complexes were tested against one strain Gram +ve bacteria (Staphylococcus aureus), Gram -ve bacteria (Escherichia coli), and Fungi (Candida albicans). The tested compounds exhibited higher antibacterial activities. PMID:17728178

  9. Transition metal complexes of isonicotinic acid (2-hydroxybenzylidene)hydrazide

    NASA Astrophysics Data System (ADS)

    Abou-Melha, Khlood S.

    2008-06-01

    A new series of transition metal complexes of Schiff base isonicotinic acid (2-hydroxybenzylidene)hydrazide, HL, have been synthesized. The Schiff base reacted with Cu(II), Ni(II), Co(II), Mn(II), Fe(III) and UO 2(II) ions as monobasic tridentate ligand to yield mononuclear complexes of 1:2 (metal:ligand) except that of Cu(II) which form complex of 1:1 (metal:ligand). The ligand and its metal complexes were characterized by elemental analyses, IR, UV-vis, mass and 1H NMR spectra, as well as magnetic moment, conductance measurements, and thermal analyses. All complexes have octahedral configurations except Cu(II) complex which has an extra square planar geometry distorted towards tetrahedral. While, the UO 2(II) complex has its favour hepta-coordination. The ligand and its metal complexes were tested against one strain Gram +ve bacteria ( Staphylococcus aureus), Gram -ve bacteria (Escherichia coli) , and Fungi ( Candida albicans). The tested compounds exhibited higher antibacterial activities.

  10. Electron Capture Dissociation of Trivalent Metal Ion-Peptide Complexes

    NASA Astrophysics Data System (ADS)

    Flick, Tawnya G.; Donald, William A.; Williams, Evan R.

    2013-02-01

    With electrospray ionization from aqueous solutions, trivalent metal ions readily adduct to small peptides resulting in formation of predominantly (peptide + MT - H)2+, where MT = La, Tm, Lu, Sm, Ho, Yb, Pm, Tb, or Eu, for peptides with molecular weights below ~1000 Da, and predominantly (peptide + MT)3+ for larger peptides. ECD of (peptide + MT - H)2+ results in extensive fragmentation from which nearly complete sequence information can be obtained, even for peptides for which only singly protonated ions are formed in the absence of the metal ions. ECD of these doubly charged complexes containing MT results in significantly higher electron capture efficiency and sequence coverage than peptide-divalent metal ion complexes that have the same net charge. Formation of salt-bridge structures in which the metal ion coordinates to a carboxylate group are favored even for (peptide + MT)3+. ECD of these latter complexes for large peptides results in electron capture by the protonation site located remotely from the metal ion and predominantly c/ z fragments for all metals, except Eu3+, which undergoes a one electron reduction and only loss of small neutral molecules and b/ y fragments are formed. These results indicate that solvation of the metal ion in these complexes is extensive, which results in the electrochemical properties of these metal ions being similar in both the peptide environment and in bulk water.

  11. 40 CFR 721.4594 - Substituted azo metal complex dye.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4594 Substituted azo metal complex dye. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a substituted azo metal...

  12. 40 CFR 721.10104 - Halophosphate mixed metal complex (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10104 Halophosphate mixed metal complex (generic). (a) Chemical... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halophosphate mixed metal...

  13. A Simple Method for Drawing Chiral Mononuclear Octahedral Metal Complexes

    ERIC Educational Resources Information Center

    Mohamadou, Aminou; Haudrechy, Arnaud

    2008-01-01

    Octahedral transition-metal complexes are involved in a number of reactions and octahedral coordination geometry, frequently observed for metallic centers, includes important topographical stereochemistry. Depending on the number and nature of different ligands, octahedral coordination units with at least two different monodentate ligands give…

  14. Preparation of porphyrins and their metal complexes

    DOEpatents

    Ellis, Jr., Paul E.; Langdale, Wayne A.

    1997-01-01

    A hydroxyl-containing pyrrolic compound having a hydroxyl group or a hydroxyl-containing group in the 2-position, optionally substituted in the beta positions, is condensed in an acidified two immiscible phase solvent system to produce excellent yields of the corresponding porphyrin or metal porphyrin.

  15. Preparation of porphyrins and their metal complexes

    DOEpatents

    Ellis, P.E. Jr.; Langdale, W.A.

    1997-08-19

    A hydroxyl-containing pyrrolic compound having a hydroxyl group or a hydroxyl-containing group in the 2-position, optionally substituted in the beta positions, is condensed in an acidified two immiscible phase solvent system to produce excellent yields of the corresponding porphyrin or metal porphyrin.

  16. Edge pinch instability of liquid metal sheet in a transverse high-frequency ac magnetic field.

    PubMed

    Priede, Jānis; Etay, Jacqueline; Fautrelle, Yves

    2006-06-01

    We analyze the linear stability of the edge of a thin liquid metal layer subject to a transverse high-frequency ac magnetic field. The layer is treated as a perfectly conducting liquid sheet that allows us to solve the problem analytically for both a semi-infinite geometry with a straight edge and a thin disk of finite radius. It is shown that the long-wave perturbations of a straight edge are monotonically unstable when the wave number exceeds the critical value k(c) = F0/(gamma l0), which is determined by the linear density of the electromagnetic force F0 acting on the edge, the surface tension gamma, and the effective arclength of edge thickness l0. Perturbations with wavelength shorter than critical are stabilized by the surface tension, whereas the growth rate of long-wave perturbations reduces as similar to k for k --> 0. Thus, there is the fastest growing perturbation with the wave number k max = 2/3 k(c). When the layer is arranged vertically, long-wave perturbations are stabilized by the gravity, and the critical perturbation is characterized by the capillary wave number k(c) = square root of (g rho/gamma), where g is the acceleration due to gravity and rho is the density of metal. In this case, the critical linear density of electromagnetic force is F(0,c) = 2k(c)l0 gamma, which corresponds to the critical current amplitude I(0,c) = 4 square root of (pi k(c) l0L gamma/mu 0) when the magnetic field is generated by a straight wire at the distance L directly above the edge. By applying the general approach developed for the semi-infinite sheet, we find that a circular disk of radius R0 placed in a transverse uniform high-frequency ac magnetic field with the induction amplitude B0 becomes linearly unstable with respect to exponentially growing perturbation with the azimuthal wave number m = 2 when the magnetic Bond number exceeds Bm(c) = B(0)2 R(0)2 / (2 mu 0 l0 gamma) = 3 pi. For Bm > Bm(c), the wave number of the fastest growing perturbation is m(max) = [2

  17. Compartmentation and complexation of metals in hyperaccumulator plants

    PubMed Central

    Leitenmaier, Barbara; Küpper, Hendrik

    2013-01-01

    Hyperaccumulators are being intensely investigated. They are not only interesting in scientific context due to their “strange” behavior in terms of dealing with high concentrations of metals, but also because of their use in phytoremediation and phytomining, for which understanding the mechanisms of hyperaccumulation is crucial. Hyperaccumulators naturally use metal accumulation as a defense against herbivores and pathogens, and therefore deal with accumulated metals in very specific ways of complexation and compartmentation, different from non-hyperaccumulator plants and also non-hyperaccumulated metals. For example, in contrast to non-hyperaccumulators, in hyperaccumulators even the classical phytochelatin-inducing metal, cadmium, is predominantly not bound by such sulfur ligands, but only by weak oxygen ligands. This applies to all hyperaccumulated metals investigated so far, as well as hyperaccumulation of the metalloid arsenic. Stronger ligands, as they have been shown to complex metals in non-hyperaccumulators, are in hyperaccumulators used for transient binding during transport to the storage sites (e.g., nicotianamine) and possibly for export of Cu in Cd/Zn hyperaccumulators [metallothioneins (MTs)]. This confirmed that enhanced active metal transport, and not metal complexation, is the key mechanism of hyperaccumulation. Hyperaccumulators tolerate the high amount of accumulated heavy metals by sequestering them into vacuoles, usually in large storage cells of the epidermis. This is mediated by strongly elevated expression of specific transport proteins in various tissues from metal uptake in the shoots up to the storage sites in the leaf epidermis. However, this mechanism seems to be very metal specific. Non-hyperaccumulated metals in hyperaccumulators seem to be dealt with like in non-hyperaccumulator plants, i.e., detoxified by binding to strong ligands such as MTs. PMID:24065978

  18. Compartmentation and complexation of metals in hyperaccumulator plants.

    PubMed

    Leitenmaier, Barbara; Küpper, Hendrik

    2013-01-01

    Hyperaccumulators are being intensely investigated. They are not only interesting in scientific context due to their "strange" behavior in terms of dealing with high concentrations of metals, but also because of their use in phytoremediation and phytomining, for which understanding the mechanisms of hyperaccumulation is crucial. Hyperaccumulators naturally use metal accumulation as a defense against herbivores and pathogens, and therefore deal with accumulated metals in very specific ways of complexation and compartmentation, different from non-hyperaccumulator plants and also non-hyperaccumulated metals. For example, in contrast to non-hyperaccumulators, in hyperaccumulators even the classical phytochelatin-inducing metal, cadmium, is predominantly not bound by such sulfur ligands, but only by weak oxygen ligands. This applies to all hyperaccumulated metals investigated so far, as well as hyperaccumulation of the metalloid arsenic. Stronger ligands, as they have been shown to complex metals in non-hyperaccumulators, are in hyperaccumulators used for transient binding during transport to the storage sites (e.g., nicotianamine) and possibly for export of Cu in Cd/Zn hyperaccumulators [metallothioneins (MTs)]. This confirmed that enhanced active metal transport, and not metal complexation, is the key mechanism of hyperaccumulation. Hyperaccumulators tolerate the high amount of accumulated heavy metals by sequestering them into vacuoles, usually in large storage cells of the epidermis. This is mediated by strongly elevated expression of specific transport proteins in various tissues from metal uptake in the shoots up to the storage sites in the leaf epidermis. However, this mechanism seems to be very metal specific. Non-hyperaccumulated metals in hyperaccumulators seem to be dealt with like in non-hyperaccumulator plants, i.e., detoxified by binding to strong ligands such as MTs. PMID:24065978

  19. Plant rhamnogalacturonan II complexation of heavy metal cations

    DOEpatents

    O`Neill, M.A.; Pellerin, P.J.M.; Warrenfeltz, D.; Vidal, S.; Darvill, A.G.; Albersheim, P.

    1999-03-02

    The present invention provides rhamnogalacturonan-II (RG-II) and relates to its ability to complex specific multivalent heavy metal cations. In the presence of boric acid, RG-II monomers form dimers that are cross-linked by a borate ester. The yield of such borate ester cross-linked dimers of RG-II is enhanced in the presence of specific heavy metal cations. The present invention further relates to the utility of RG-II in assays for the detection of specific heavy metal contamination; as a reagent useful in the removal of specific heavy metal cations contaminating foods and liquids, for example, fish, wines, etc.; as a pharmaceutical composition useful as an antidote in specific heavy metal cation poisoning; as a treatment for the detoxification of specific heavy metal cations from blood and/or tissues; and in a method of remediation of waters and soils contaminated with specific heavy metal cations. 15 figs.

  20. Plant rhamnogalacturonan II complexation of heavy metal cations

    DOEpatents

    O'Neill, Malcolm A.; Pellerin, Patrice J. M.; Warrenfeltz, Dennis; Vidal, Stephane; Darvill, Alan G.; Albersheim, Peter

    1999-01-01

    The present invention provides rhamnogalacturonan-II (RG-II) and relates to its ability to complex specific multivalent heavy metal cations. In the presence of boric acid, RG-II monomers form dimers that are cross-linked by a borate ester. The yield of such borate ester cross-linked dimers of RG-II is enhanced in the presence of specific heavy metal cations. The present invention further relates to the utility of RG-II in assays for the detection of specific heavy metal contamination; as a reagent useful in the removal of specific heavy metal cations contaminating foods and liquids, for example, fish, wines, etc.; as a pharmaceutical composition useful as an antidote in specific heavy metal cation poisoning; as a treatment for the detoxification of specific heavy metal cations from blood and/or tissues; and in a method of remediation of waters and soils contaminated with specific heavy metal cations.

  1. DNA binding and recognition by binuclear transition metal complexes

    NASA Astrophysics Data System (ADS)

    Liu, Changlin; Yan, Rui; Xu, Yan; Yu, Siwang; Liao, Zhanru; Li, Dongfeng; Xu, Hui-Bie F.

    2001-09-01

    The development of small molecules that can bind and recognize DNA with sequence- or stereo-specificity under physiological conditions has been attracting a great interest in chemistry and biochemistry. Here, spectroscopic characterization and gel electrophoresis methods have been utilized to investigate the DNA binding and recognition by a variety of binuclear transition metal complexes. The result indicate that the structures and charges of binuclear transition metal complexes, compositions of coordination spheres, central metal ions and their coordination unsaturation, and separations between two central metal atoms can exert significant effects on the DNA binding and recognition. If there are not intercalative ligands into DNA base pairs or kinetically substitutable ligands by DNA phosphate groups within coordination sphere, the coordination saturation and compact binuclear transition metal complexes weaker bind to DNA than the coordination unsaturation and extended ones to DNA. Since the different transtiometal ions exhibit different affinities to DNA phosphate oxygen atoms, the binding interactions between their binuclear complexes and DNA are controlled by the affinity. He binuclear complexes with one or more negative charges lead to a consequence that they can not efficient associate with DNA, because DNA phosphodiester backbone is negatively charged. Whenthe separations between two central transition metal atoms is more than the distance between two DNA base pairs, the binuclear complexes could bind and recognize the DNA sequence with two or more base pairs. The protonated and positively charged ligands can strengthen the DNA binding and recognition by these binuclear metal complexes. Based on such DNA binding and recognition principles, the binuclear zinc complex designed in the study preferentially bind and recognize the following DNA sequence on pBR322 DNA with binding constant K.

  2. Electronic and magnetic properties of monolayer SiC sheet doped with 3d-transition metals

    NASA Astrophysics Data System (ADS)

    Bezi Javan, Masoud

    2016-03-01

    We theoretically studied the electronic and magnetic properties of the monolayer SiC sheet doped by 3d transition-metal (TM) atoms. The structural properties, induced strain, electronic and magnetic properties were studied for cases that a carbon or silicon of the SiC sheet replaced with TM atoms. We found that the mount of induced strain to the lattice structure of the SiC sheet with substituting TM atoms is different for Si (TMSi) and C (TMC) sites as the TMSi structures have lower value of the strain. Also the TM atoms can be substituted in the lattice of the SiC sheet with different binding energy values for TMSi and TMC structures as the TMSi structures have higher value of the binding energies. Dependent to the structural properties, the TM doped SiC sheets show magnetic or nonmagnetic properties. We found that some structures such as MnSi, CuSi and CoC configurations have significant total magnetic moment about 3 μB.

  3. Technology maturation project on optimization of sheet metal forming of aluminum for use in transportation systems

    NASA Astrophysics Data System (ADS)

    Johnson, Ken I.; Smith, Mark T.; Lavender, Curt A.; Khalell, Mohammad A.

    1994-10-01

    Using aluminum instead of steel in transportation systems could dramatically reduce the weight of vehicles, an effective way of decreasing energy consumption and emissions. The current cost of sheet metal formed (SMF) aluminum alloys (about $4 per pound) and the relatively long forming times of current materials are serious drawbacks to the widespread use of SMF in industry. The interdependence of materials testing and model development is critical to optimizing SMF since the current process is conducted in a heated, pressurized die where direct measurement of critical SMF parameters is extremely difficult. Numerical models provide a means of tracking the forming process, allowing the applied gas pressure to be adjusted to maintain the optimum SMF behavior throughout the forming process. Thus, models can help produce the optimum SMF component in the least amount of time. The Pacific Northwest Laboratory is integrating SMF model development with research in improved aluminum alloys for SMF. The objectives of this research are: develop and characterize competitively priced aluminum alloys for SMF applications in industry; improve numerical models to accurately predict the optimum forming cycle for reduced forming time and improved quality; and verify alloy performance and model accuracy with forming tests conducted in PNL's Superplastic Forming User Facility. The activities performed in this technology maturation project represent a critical first step in achieving these objectives through cooperative research among industry, PNL, and universities.

  4. Electrode Erosion Observed in Electrohydraulic Discharges Used in Pulsed Sheet Metal Forming

    NASA Astrophysics Data System (ADS)

    Bonnen, John J. F.; Golovashchenko, Sergey F.; Dawson, Scott A.; Mamutov, Alexander V.

    2013-12-01

    In this paper, we present results of electrode durability testing and electrode design in a pulsed electrohydraulic discharge environment. Pulsed electrohydraulic forming (EHF) is an electrodynamic process based upon high-voltage discharge of capacitors between two electrodes positioned in a fluid-filled chamber. EHF enables a more uniform distribution of strains, widens the formability window, and reduces elastic springback in the final part when compared to traditional sheet metal stamping. This extended formability allows the fabrication of panels of alternative high strength alloys that are otherwise difficult to make conventionally. It was found that, of the materials tested, steel electrodes not only survived the stresses encountered in the EHF chamber but also had lower erosion rates compared to molybdenum. Erosion rates were found to be constant for low carbon steel at 3.7 mm3/discharge, and they were high enough that the initial tip geometry was rapidly worn away and a more geometrically and thus electrically stable tip geometry had to be selected. Entrained air in the system had little influence on erosion rates but numerical modeling suggests that the erosion process takes place during the very initial stages of the pulse. Lastly, it was determined that the electrodes discussed in this paper can survive 2000 pulses.

  5. A simple method for understanding the triangular growth patterns of transition metal dichalcogenide sheets

    NASA Astrophysics Data System (ADS)

    Zhu, Siya; Wang, Qian

    2015-10-01

    Triangular nanoflake growth patterns have been commonly observed in synthesis of transition metal dichalcogenide sheets and their hybrid structures. Triangular nanoflakes not only show exceptional properties, but also can serve as building blocks for two or three dimensional structures. In this study, taking the MoS2 system as a test case, we propose a Matrix method to understand the mechanism of such unique growth pattern. Nanoflakes with different edge types are mathematically described with configuration matrices, and the total formation energy is calculated as the sum of the edge formation energies and the chemical potentials of sulfur and molybdenum. Based on energetics, we find that three triangular patterns with the different edge configurations are energetically more favorable in different ranges of the chemical potential of sulfur, which are in good agreement with experimental observations. Our algorithm has high efficiency and can deal with nanoflakes in microns which are beyond the ability of ab-initio method. This study not only elucidates the mechanism of triangular nanoflake growth patterns in experiment, but also provides a clue to control the geometric configurations in synthesis.

  6. A simple method for understanding the triangular growth patterns of transition metal dichalcogenide sheets

    SciTech Connect

    Zhu, Siya; Wang, Qian

    2015-10-15

    Triangular nanoflake growth patterns have been commonly observed in synthesis of transition metal dichalcogenide sheets and their hybrid structures. Triangular nanoflakes not only show exceptional properties, but also can serve as building blocks for two or three dimensional structures. In this study, taking the MoS{sub 2} system as a test case, we propose a Matrix method to understand the mechanism of such unique growth pattern. Nanoflakes with different edge types are mathematically described with configuration matrices, and the total formation energy is calculated as the sum of the edge formation energies and the chemical potentials of sulfur and molybdenum. Based on energetics, we find that three triangular patterns with the different edge configurations are energetically more favorable in different ranges of the chemical potential of sulfur, which are in good agreement with experimental observations. Our algorithm has high efficiency and can deal with nanoflakes in microns which are beyond the ability of ab-initio method. This study not only elucidates the mechanism of triangular nanoflake growth patterns in experiment, but also provides a clue to control the geometric configurations in synthesis.

  7. π-Conjugated bis(terpyridine)metal complex molecular wires.

    PubMed

    Sakamoto, Ryota; Wu, Kuo-Hui; Matsuoka, Ryota; Maeda, Hiroaki; Nishihara, Hiroshi

    2015-11-01

    Bottom-up approaches have gained significant attention recently for the creation of nano-sized, ordered functional structures and materials. Stepwise coordination techniques, in which ligand molecules and metal sources are reacted alternatively, offer several advantages. Coordination bonds are stable, reversible, and self-assembling, and the resultant metal complex motifs may contain functionalities unique to their own characteristics. This review focuses on metal complex wire systems, specifically the bottom-up fabrication of linear and branched bis(terpyridine)metal complex wires on electrode surfaces. This system possesses distinct and characteristic electronic functionalities, intra-wire redox conduction and excellent long-range electron transport ability. This series of comprehensive studies exploited the customizability of bis(terpyridine)metal complex wires, including examining the influence of building blocks. In addition, simple yet effective electron transfer models were established for redox conduction and long-range electron transport. A fabrication technique for an ultra-long bis(terpyridine)metal complex wire is also described, along with its properties and functionalities. PMID:25864838

  8. An Experiment on Isomerism in Metal-Amino Acid Complexes.

    ERIC Educational Resources Information Center

    Harrison, R. Graeme; Nolan, Kevin B.

    1982-01-01

    Background information, laboratory procedures, and discussion of results are provided for syntheses of cobalt (III) complexes, I-III, illustrating three possible bonding modes of glycine to a metal ion (the complex cations II and III being linkage/geometric isomers). Includes spectrophotometric and potentiometric methods to distinguish among the…

  9. A new metalation complex for organic synthesis and polymerization reactions

    NASA Technical Reports Server (NTRS)

    Hirshfield, S. M.

    1971-01-01

    Organometallic complex of N,N,N',N' tetramethyl ethylene diamine /TMEDA/ and lithium acts as metalation intermediate for controlled systhesis of aromatic organic compounds and polymer formation. Complex of TMEDA and lithium aids in preparation of various organic lithium compounds.

  10. Metal complexes of substituted Gable porphyrins as oxidation catalysts

    DOEpatents

    Lyons, James E.; Ellis, Jr., Paul E.; Wagner, Richard W.

    1996-01-01

    Transition metal complexes of Gable porphyrins having two porphyrin rings connected through a linking group, and having on the porphyrin rings electron-withdrawing groups, such as halogen, nitro or cyano. These complexes are useful as catalysts for the oxidation of organic compounds, e.g. alkanes.

  11. Metal complexes of substituted Gable porphyrins as oxidation catalysts

    DOEpatents

    Lyons, J.E.; Ellis, P.E. Jr.; Wagner, R.W.

    1996-01-02

    Transition metal complexes of Gable porphyrins are disclosed having two porphyrin rings connected through a linking group, and having on the porphyrin rings electron-withdrawing groups, such as halogen, nitro or cyano. These complexes are useful as catalysts for the oxidation of organic compounds, e.g. alkanes.

  12. A reliability study of springback on the sheet metal forming process under probabilistic variation of prestrain and blank holder force

    NASA Astrophysics Data System (ADS)

    Mrad, Hatem; Bouazara, Mohamed; Aryanpour, Gholamreza

    2013-08-01

    This work deals with a reliability assessment of springback problem during the sheet metal forming process. The effects of operative parameters and material properties, blank holder force and plastic prestrain, on springback are investigated. A generic reliability approach was developed to control springback. Subsequently, the Monte Carlo simulation technique in conjunction with the Latin hypercube sampling method was adopted to study the probabilistic springback. Finite element method based on implicit/explicit algorithms was used to model the springback problem. The proposed constitutive law for sheet metal takes into account the adaptation of plastic parameters of the hardening law for each prestrain level considered. Rackwitz-Fiessler algorithm is used to find reliability properties from response surfaces of chosen springback geometrical parameters. The obtained results were analyzed using a multi-state limit reliability functions based on geometry compensations.

  13. Metal-free Ketjenblack incorporated nitrogen-doped carbon sheets derived from gelatin as oxygen reduction catalysts.

    PubMed

    Nam, Gyutae; Park, Joohyuk; Kim, Sun Tai; Shin, Dong-bin; Park, Noejung; Kim, Youngsik; Lee, Jang-Soo; Cho, Jaephil

    2014-01-01

    Electrocatalysts facilitating oxygen reduction reaction (ORR) are vital components in advanced fuel cells and metal-air batteries. Here we report Ketjenblack incorporated nitrogen-doped carbon sheets derived from gelatin and apply these easily scalable materials as metal-free electrocatalysts for ORR. These carbon nanosheets demonstrate highly comparable catalytic activity for ORR as well as better durability than commercial Vulcan carbon supported Pt catalysts in alkaline media. Physico-chemical characterization and theoretical calculations suggest that proper combination of graphitic and pyridinic nitrogen species with more exposed edge sites effectively facilitates a formation of superoxide, [O2(ad)](-), via one-electron transfer, thus increasing catalytic activities for ORR. Our results demonstrate a novel strategy to expose more nitrogen doped edge sites by irregular stacked small sheets in developing better electrocatalysts for Zn-air batteries. These desirable architectures are embodied by an amphiphlilic gelatin mediated compatible synthetic strategy between hydrophobic carbon and aqueous water. PMID:24635744

  14. Explicit Analysis of Transversely Anisotropic and Axisymmetric Sheet Metal Forming Process Using 6-component Barlat Yield Function

    NASA Astrophysics Data System (ADS)

    Wang, Jin-Yan; Sun, Ji-Xian; Chen, Jun

    2005-08-01

    In most FEM codes, the isotropic-elastic & transversely anisotropic-elastoplastic model using Hill's yield function has been widely adopted in 3D shell elements (modified to meet the plane-stress condition) and 3D solid elements. However, when the 4-node quadrilateral axisymmetric element is used for 2D sheet metal forming simulation, the above transversely anisotropic model is not available in FEM code LS-DYNA3D. A novel approach for the explicit analysis of transversely anisotropic and axisymmetric sheet metal forming using 6-component Barlat yield function is elaborated in detail in this paper. The related formula and parameters are derived directly. Numerical results obtained using the new model fit well with the Hill solution.

  15. Aeromagnetic evidence for a volcanic caldera(?) complex beneath the divide of the West Antarctic Ice Sheet

    USGS Publications Warehouse

    Behrendt, John C.; Finn, C.A.; Blankenship, D.; Bell, R.E.

    1998-01-01

    A 1995-96 aeromagnetic survey over part of the Sinuous Ridge (SR) beneath the West Antarctic Ice Sheet (WAIS) divide shows a 70-km diameter circular pattern of 400-1200-nT anomalies suggesting one of the largest volcanic caldera(?) complexes on earth. Radar-ice-sounding (RIS) shows the northern part of this pattern overlies the SR, and extends south over the Bentley Subglacial Trench (BST). Modeled sources of all but one the caldera(?) anomalies are at the base of <1-2-km thick ice and their volcanic edifices have been glacially removed. The exception is a 700-m high, 15-km wide 'volcano' producing an 800-nT anomaly over the BST. 'Intrusion' of this 'volcano' beneath 3 km of ice probably resulted in pillow basalt rather than easily removed hyaloclastite erupted beneath thinner ice. The background area (-300 to -500-nT) surrounding the caldera(?) is possibly caused by a shallow Curie isotherm. We suggest uplift of the SR forced the advance of the WAIS.A 1995-96 aeromagnetic survey over part of the Sinuous Ridge (SR) beneath the West Antarctic Ice Sheet (WAIS) divide shows a 70-km diameter circular pattern of 400-1200-nT anomalies suggesting one of the largest volcanic caldera(?) complexes on earth. Radar-ice-sounding (RIS) shows the northern part of this pattern overlies the SR, and extends south over the Bentley Subglacial Trench (BST). Modeled sources of all but one the caldera(?) anomalies are at the base of < 1-2-km thick ice and their volcanic edifices have been glacially removed. The exception is a 700-m high, 15-km wide 'volcano' producing an 800-nT anomaly over the BST. 'Intrusion' of this 'volcano' beneath 3 km of ice probably resulted in pillow basalt rather than easily removed hyaloclastite erupted beneath thinner ice. The background area (-300 to -500-nT) surrounding the caldera(?) is possibly caused by a shallow Curie isotherm. We suggest uplift of the SR forced the advance of the WAIS.

  16. Complexed metals in hazardous waste: Limitations of conventional chemical oxidation

    SciTech Connect

    Diel, B.N.; Kuchynka, D.J.; Borchert, J.

    1994-12-31

    In the management of hazardous waste, more is known regarding the treatment of metals than about the fixation, destruction and/or immobilization of any other hazardous constituent group. Metals are the only hazardous constituents which cannot be destroyed, and so must be converted to their least soluble and/or reactive form to prevent reentry into the environment. The occurrence of complexed metals, e.g., metallocyanides, and/or chelated metals, e.g., M{center_dot}EDTA in hazardous waste streams presents formidable challenges to conventional waste treatment practices. This paper presents the results of extensive research into the destruction (chemical oxidation) of metallocyanides and metal-chelates, defines the utility and limitations of conventional chemical oxidation approaches, illustrates some of the waste management difficulties presented by such species, and presents preliminary data on the UV/H{sub 2}O{sub 2} photodecomposition of chelated metals.

  17. Macrocyclic metal complexes for metalloenzyme mimicry and sensor development.

    PubMed

    Joshi, Tanmaya; Graham, Bim; Spiccia, Leone

    2015-08-18

    Examples of proteins that incorporate one or more metal ions within their structure are found within a broad range of classes, including oxidases, oxidoreductases, reductases, proteases, proton transport proteins, electron transfer/transport proteins, storage proteins, lyases, rusticyanins, metallochaperones, sporulation proteins, hydrolases, endopeptidases, luminescent proteins, iron transport proteins, oxygen storage/transport proteins, calcium binding proteins, and monooxygenases. The metal coordination environment therein is often generated from residues inherent to the protein, small exogenous molecules (e.g., aqua ligands) and/or macrocyclic porphyrin units found, for example, in hemoglobin, myoglobin, cytochrome C, cytochrome C oxidase, and vitamin B12. Thus, there continues to be considerable interest in employing macrocyclic metal complexes to construct low-molecular weight models for metallobiosites that mirror essential features of the coordination environment of a bound metal ion without inclusion of the surrounding protein framework. Herein, we review and appraise our research exploring the application of the metal complexes formed by two macrocyclic ligands, 1,4,7-triazacyclononane (tacn) and 1,4,7,10-tetraazacyclododecane (cyclen), and their derivatives in biological inorganic chemistry. Taking advantage of the kinetic inertness and thermodynamic stability of their metal complexes, these macrocyclic scaffolds have been employed in the development of models that aid the understanding of metal ion-binding natural systems, and complexes with potential applications in biomolecule sensing, diagnosis, and therapy. In particular, the focus has been on "coordinatively unsaturated" metal complexes that incorporate a kinetically inert and stable metal-ligand moiety, but which also contain one or more weakly bound ligands, allowing for the reversible binding of guest molecules via the formation and dissociation of coordinate bonds. With regards to mimicking

  18. Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films

    NASA Astrophysics Data System (ADS)

    Orofeo, Carlo M.; Suzuki, Satoru; Sekine, Yoshiaki; Hibino, Hiroki

    2014-08-01

    Transition metal dichalcogenides (TMDs) have emerged as exciting 2D materials beyond graphene due to their promising applications in the field of electronics and optoelectronics. Hence, the ability to produce controllable and uniformly thick TMD sheets over a large area is of utmost important for large-scale applications. Here, a facile method of synthesizing large-area, layer-controlled WS2, and MoS2 sheets by sulfurization of their corresponding thin metal films is reported. A metal film, which is deposited by magnetron sputtering method, can be adjusted to produce, with great control, the desired sheet thickness down to a monolayer. Various characterization techniques, such as Raman, photoluminescence, and transmission electron microscopy, were used to evaluate the grown films. The results confirmed some of the exotic properties of TMDs such as the thickness dependent band-gap transition (indirect to direct band gap) and Raman shift. Devices made directly on the as-grown film showed modest mobility, ranging from 0.005 to 0.01 cm2 V-1s-1. Our synthesis method is simple and could also be used to synthesize other TMDs.

  19. Ductile Damage and Fatigue Behavior of Semi-Finished Tailored Blanks for Sheet-Bulk Metal Forming Processes

    NASA Astrophysics Data System (ADS)

    Besserer, Hans-Bernward; Hildenbrand, Philipp; Gerstein, Gregory; Rodman, Dmytro; Nürnberger, Florian; Merklein, Marion; Maier, Hans Jürgen

    2016-03-01

    To produce parts from sheet metal with thickened functional elements, bulk forming operations can be employed. For this new process class, the term sheet-bulk metal forming has been established recently. Since sheet-bulk metal forming processes such as orbital forming generates triaxial stress and strain states, ductile damage is induced in the form of voids in the microstructure. Typical parts will experience cyclic loads during service, and thus, the influence of ductile damage on the fatigue life of parts manufactured by orbital forming is of interest. Both the formation and growth of voids were characterized following this forming process and then compared to the as-received condition of the ferritic deep drawing steel DC04 chosen for this study. Subsequent to the forming operation, the specimens were fatigued and the evolution of ductile damage and the rearrangement of the dislocation networks occurring during cyclic loading were determined. It was shown, that despite an increased ductile damage due to the forming process, the induced strain hardening has a positive effect on the fatigue life of the material. However, by analyzing the fatigued specimens a development of the ductile damage by an increasing number of voids and a change in the void shape were detected.

  20. Complex Microfiltration Behavior of Metal Hydroxide Slurries

    SciTech Connect

    Shimskey, Rick W.; Schonewill, Philip P.; Daniel, Richard C.; Peterson, Reid A.

    2011-02-28

    Crossflow filtration is to be a key process in the treatment and disposal of approximately 60,000 metric tons of high-level waste stored at the Hanford Site in Richland, Washington. Pacific Northwest National Laboratory is assessing filter performance against waste simulant materials that mimic the chemical and physical properties of Hanford tank waste. Prior simulant studies indicate that waste filtration performance may be limited by pore and cake fouling. To limit the shutdown of waste treatment operations, the pre-treatment facility plans to recover filter flux loses from cake formation and filter fouling by frequently backpulsing the filter elements. The objective of the current research is to develop an understanding of the roles of cake and pore fouling and potential flux recovery through backpulsing of the filters for Hanford waste filtration operations. Metal hydroxide wastes were tested to examine the role of particle-filter interaction on filter performance.

  1. Validity of the sheet demagnetising factor in characterisation of advanced metal particle tapes

    NASA Astrophysics Data System (ADS)

    Cookson, R. D.; Bissell, P. R.; Kay, G. E.; Parker, D. A.

    2002-04-01

    This paper describes a model to test the validity of using the sheet demagnetising factor for advanced particulate tape magnetic measurements. The model predicts that, as the tape thickness and the volume packing fraction are reduced, the effective demagnetising factor deviates from the sheet value and, for a typical commercial advanced double coated MP tape, is in error by ˜6%.

  2. Integral sheet metal design via severe plastic deformation - state of the art and future challenges

    NASA Astrophysics Data System (ADS)

    Bruder, E.; Kaune, V.; Müller, C.

    2014-08-01

    The innovative forming processes Linear Flow Splitting (LFS) and Linear Bend Splitting (LBS) were developed to facilitate the continuous production of branched profiles with tailored sheet thickness by inducing severe plastic strain. In contrast to most SPD processes the stress state in LFS and LBS is very complex and plastic deformation is confined to limited volumes which results in steep strain gradients and consequently ultrafine grained (UFG) gradient microstructures. Even though the processes have been commercialized, the increased lightweight potential that originates from the local grain refinement remains mostly idle since it is neither fully understood nor easily assessable yet. The present work shows the state of the art for the LFS and LBS processes and compares the microstructures and distribution of mechanical properties for different steels processed with different LFS parameters. The data is used to identify characteristic manufacturing induced properties that are insensitive to processing parameters. Based on the experimental results a material flow model for the processing zone is proposed which is discussed with respect to the current understanding of plasticity at severe strains.

  3. Experimental Studies on Flexible Forming of Sheet Metals Assisted by Magnetic Force Transfer Medium

    NASA Astrophysics Data System (ADS)

    Li, Feng; Zhou, Fu Jian; Wang, Mo Nan; Xu, Peng; Jin, Cheng Chuang

    2016-06-01

    To improve the thickness uniformity and increase the forming limit of sheets to enhance their overall quality, a magnetorheological fluid (MRF) was injected into the punch cavity to act as the force transfer medium and fulfill the function of flexible pressing during the sheet bulging process. The rheological properties of the MRF were changed under the influence of a magnetic field produced by loading different currents, which allowed variation of stress states and deformation modes in the 0.75-mm-thick 304 stainless steel sheets. With increasing current (up to 3.5 A), the sheet-forming limit increased by 16.13% at most, and the fracture morphology experienced a certain change. Additionally, both the bulge height and the wall thickness distribution had obvious changes with a punch stroke of 10 mm. According to the experimental analysis, the MRF can be used successfully as a pressure-carrying medium in the sheet forming process.

  4. Endoscopic fringe projection for in-situ inspection of a sheet-bulk metal forming process

    NASA Astrophysics Data System (ADS)

    Matthias, Steffen; Kästner, Markus; Reithmeier, Eduard

    2015-05-01

    Sheet-bulk metal forming is a new production process capable of performing deep-drawing and massive forming steps in a single operation. However, due to the high forming forces of the forming process, continuous process control is required in order to detect wear on the forming tool before production quality is impacted. To be able to measure the geometry of the forming tool in the limited space of forming presses, a new inspection system is being developed within the SFB/TR 73 collaborative research center. In addition to the limited space, the process restricts the amount of time available for inspection. Existing areal optical measurement systems suffer from shadowing when measuring the tool's inner elements, as they cannot be placed in the limited space next to the tool, while tactile measurement systems cannot meet the time restrictions for measuring the areal geometries. The new inspection system uses the fringe projection optical measurement principle to capture areal geometry data from relevant parts of the forming tool in short time. Highresolution image fibers are used to connect the system's compact sensor head to a base unit containing both camera and projector of the fringe projection system, which can be positioned outside of the moving parts of the press. To enable short measurement times, a high intensity laser source is used in the projector in combination with a digital micro-mirror device. Gradient index lenses are featured in the sensor head to allow for a very compact design that can be used in the narrow space above the forming tool inside the press. The sensor head is attached to an extended arm, which also guides the image fibers to the base unit. A rotation stage offers the possibility to capture measurements of different functional elements on the circular forming tool by changing the orientation of the sensor head next to the forming tool. During operation of the press, the arm can be travelled out of the moving parts of the forming press

  5. Electrochemical response of metal complexes in homogeneous solution under photoirradiation

    PubMed Central

    Fukatsu, Arisa; Kondo, Mio; Okamura, Masaya; Yoshida, Masaki; Masaoka, Shigeyuki

    2014-01-01

    The electrochemical detection of metal complexes in the photoexcited state is important for understanding photoinduced electron transfer (PET) processes, which play a central role in photo-energy conversion systems. In general, however, the redox potentials of excited states have been indirectly estimated by a combination of spectroscopic properties and ground-state redox potentials. To establish a simple method for directly determining the redox potentials of the photoexcited states of metal complexes, electrochemical measurements under several conditions were performed. The electrochemical response was largely influenced not only by the generation of photoexcited molecules but also by the convection induced by photoirradiation, even when the global temperature of the sample solution was unchanged. The suppression of these unfavourable electrochemical responses was successfully achieved by adopting well-established electrochemical techniques. Furthermore, as an initial demonstration, the photoexcited state of a Ru-based metal complex was directly detected, and its redox potential was determined using a thin layer electrochemical method. PMID:24937471

  6. An Alkali Metal-Capped Cerium(IV) Imido Complex.

    PubMed

    Solola, Lukman A; Zabula, Alexander V; Dorfner, Walter L; Manor, Brian C; Carroll, Patrick J; Schelter, Eric J

    2016-06-01

    Structurally authenticated, terminal lanthanide-ligand multiple bonds are rare and expected to be highly reactive. Even capped with an alkali metal cation, poor orbital energy matching and overlap of metal and ligand valence orbitals should result in strong charge polarization within such bonds. We expand on a new strategy for isolating terminal lanthanide-ligand multiple bonds using cerium(IV) complexes. In the current case, our tailored tris(hydroxylaminato) ligand framework, TriNOx(3-), provides steric protection against ligand scrambling and metal complex oligomerization and electronic protection against reduction. This strategy culminates in isolation of the first formal Ce═N bonded moiety in the complex [K(DME)2][Ce═N(3,5-(CF3)2C6H3)(TriNOx)], whose Ce═N bond is the shortest known at 2.119(3) Å. PMID:27163651

  7. Preparation of nanoporous metal foam from high nitrogen transition metal complexes

    DOEpatents

    Tappan, Bryce C.; Huynh, My Hang V.; Hiskey, Michael A.; Son, Steven F.; Oschwald, David M.; Chavez, David E.; Naud, Darren L.

    2006-11-28

    Nanoporous metal foams are prepared by ignition of high nitrogen transition metal complexes. The ammonium salts of iron(III) tris[bi(tetrazolato)-amine], cobalt(III) tris(bi(tetrazolato)amine), and high nitrogen compounds of copper and silver were prepared as loose powders, pressed into pellets and wafers, and ignited under an inert atmosphere to form nanoporous metal foam monoliths having very high surface area and very low density.

  8. Magnetite-sulfide-metal complexes in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Haggerty, S. E.; Mcmahon, B. M.

    1979-01-01

    A model of liquid immiscibility is presented that seemingly accounts for the sulfide-oxide-metal complexes that are present in olivine-rich chondrules in the Allende meteorite. The four major assemblages that are identified are: (1) magnetite + Ni-Fe metal; (2) magnetite + troilite + Ni-Fe metal; (3) magnetite + troilite + pentlandite + Ni-Fe metal; and (4) troilite + or - pentlandite. Specific attention is focused on oxide-metal associations and experimental data confirm earlier suggestions that magnetite results from the oxidation of an initially high-Fe-content metal alloy. Oxidation decreases the modal abundance of the Fe metal and this is accompanied by substantial increases in Ni contents which reach a maximum of approximately 70 wt % Ni. The proposed oxidation mechanism is entirely consistent with condensation of Fe-metal + olivine (Fa5) that subsequently reequilibrated at lower temperatures. Although the sulfide constituents could also have formed by the reaction of Fe-Ni metal + gaseous H2S, sulfide immiscibility under increased conditions of partial O2 pressure is the preferred process.

  9. Experimental, Statistical and Simulation Study on Spring-back Behavior in Incremental Sheet Metal Forming (ISMF) Process

    NASA Astrophysics Data System (ADS)

    Vahdati, Alireza; Vahdati, Mehdi

    2011-01-01

    Recently, considerable attention has been paid for the many kinds of flexible production processes. Most concerned one is the incremental sheet metal forming (ISMF) process, which does not require any high capacity press machine and a set of dies with specified shape for the product. ISMF process apparatus requires a traveling tool with simple shape and a holder which holds the sheet stationary at its periphery. In this research, spring-back and its effect on dimensional precision of ISMF process has been studied. The influence of process parameters such as: vertical step size (ν), sheet thickness (t), tool diameter (d), feed rate (f) and spindle speed (n) have been investigated. A series of experimental tests have been implemented for a straight groove bead-shape part made of aluminum sheets (Al 1050-O). In first section, a reliable statistical analysis has been carried out to extract the importance of each parameter. The obtained model permits to select appropriate process parameters to reduce spring-back effectively. In second section, simulation process has been implemented by FEM software. In final, experimental results confirm the results of simulation and comparisons between experimental and simulation results of spring-back have shown good agreement.

  10. Complexation-induced supramolecular assembly drives metal-ion extraction.

    PubMed

    Ellis, Ross J; Meridiano, Yannick; Muller, Julie; Berthon, Laurence; Guilbaud, Philippe; Zorz, Nicole; Antonio, Mark R; Demars, Thomas; Zemb, Thomas

    2014-09-26

    Combining experiment with theory reveals the role of self-assembly and complexation in metal-ion transfer through the water-oil interface. The coordinating metal salt Eu(NO3)3 was extracted from water into oil by a lipophilic neutral amphiphile. Molecular dynamics simulations were coupled to experimental spectroscopic and X-ray scattering techniques to investigate how local coordination interactions between the metal ion and ligands in the organic phase combine with long-range interactions to produce spontaneous changes in the solvent microstructure. Extraction of the Eu(3+)-3(NO3(-)) ion pairs involves incorporation of the "hard" metal complex into the core of "soft" aggregates. This seeds the formation of reverse micelles that draw the water and "free" amphiphile into nanoscale hydrophilic domains. The reverse micelles interact through attractive van der Waals interactions and coalesce into rod-shaped polynuclear Eu(III) -containing aggregates with metal centers bridged by nitrate. These preorganized hydrophilic domains, containing high densities of O-donor ligands and anions, provide improved Eu(III) solvation environments that help drive interfacial transfer, as is reflected by the increasing Eu(III) partitioning ratios (oil/aqueous) despite the organic phase approaching saturation. For the first time, this multiscale approach links metal-ion coordination with nanoscale structure to reveal the free-energy balance that drives the phase transfer of neutral metal salts. PMID:25169678

  11. Designing the Color of Hot-Dip Galvanized Steel Sheet Through Destructive Light Interference Using a Zn-Ti Liquid Metallic Bath

    NASA Astrophysics Data System (ADS)

    Levai, Gabor; Godzsák, Melinda; Török, Tamas I.; Hakl, Jozsef; Takáts, Viktor; Csik, Attila; Vad, Kalman; Kaptay, George

    2016-07-01

    The color of hot-dip galvanized steel sheet was adjusted in a reproducible way using a liquid Zn-Ti metallic bath, air atmosphere, and controlling the bath temperature as the only experimental parameter. Coloring was found only for samples cooled in air and dipped into Ti-containing liquid Zn. For samples dipped into a 0.15 wt pct Ti-containing Zn bath, the color remained metallic (gray) below a 792 K (519 °C) bath temperature; it was yellow at 814 K ± 22 K (541 °C ± 22 °C), violet at 847 K ± 10 K (574 °C ± 10 °C), and blue at 873 K ± 15 K (600 °C ± 15 °C). With the increasing bath temperature, the thickness of the adhered Zn-Ti layer gradually decreased from 52 to 32 micrometers, while the thickness of the outer TiO2 layer gradually increased from 24 to 69 nm. Due to small Al contamination of the Zn bath, a thin (around 2 nm) alumina-rich layer is found between the outer TiO2 layer and the inner macroscopic Zn layer. It is proven that the color change was governed by the formation of thin outer TiO2 layer; different colors appear depending on the thickness of this layer, mostly due to the destructive interference of visible light on this transparent nano-layer. A complex model was built to explain the results using known relationships of chemical thermodynamics, adhesion, heat flow, kinetics of chemical reactions, diffusion, and optics. The complex model was able to reproduce the observations and allowed making predictions on the color of the hot-dip galvanized steel sample, as a function of the following experimental parameters: temperature and Ti content of the Zn bath, oxygen content, pressure, temperature and flow rate of the cooling gas, dimensions of the steel sheet, velocity of dipping the steel sheet into the Zn-Ti bath, residence time of the steel sheet within the bath, and the velocity of its removal from the bath. These relationships will be valuable for planning further experiments and technologies on color hot-dip galvanization of steel

  12. Designing the Color of Hot-Dip Galvanized Steel Sheet Through Destructive Light Interference Using a Zn-Ti Liquid Metallic Bath

    NASA Astrophysics Data System (ADS)

    Levai, Gabor; Godzsák, Melinda; Török, Tamas I.; Hakl, Jozsef; Takáts, Viktor; Csik, Attila; Vad, Kalman; Kaptay, George

    2016-05-01

    The color of hot-dip galvanized steel sheet was adjusted in a reproducible way using a liquid Zn-Ti metallic bath, air atmosphere, and controlling the bath temperature as the only experimental parameter. Coloring was found only for samples cooled in air and dipped into Ti-containing liquid Zn. For samples dipped into a 0.15 wt pct Ti-containing Zn bath, the color remained metallic (gray) below a 792 K (519 °C) bath temperature; it was yellow at 814 K ± 22 K (541 °C ± 22 °C), violet at 847 K ± 10 K (574 °C ± 10 °C), and blue at 873 K ± 15 K (600 °C ± 15 °C). With the increasing bath temperature, the thickness of the adhered Zn-Ti layer gradually decreased from 52 to 32 micrometers, while the thickness of the outer TiO2 layer gradually increased from 24 to 69 nm. Due to small Al contamination of the Zn bath, a thin (around 2 nm) alumina-rich layer is found between the outer TiO2 layer and the inner macroscopic Zn layer. It is proven that the color change was governed by the formation of thin outer TiO2 layer; different colors appear depending on the thickness of this layer, mostly due to the destructive interference of visible light on this transparent nano-layer. A complex model was built to explain the results using known relationships of chemical thermodynamics, adhesion, heat flow, kinetics of chemical reactions, diffusion, and optics. The complex model was able to reproduce the observations and allowed making predictions on the color of the hot-dip galvanized steel sample, as a function of the following experimental parameters: temperature and Ti content of the Zn bath, oxygen content, pressure, temperature and flow rate of the cooling gas, dimensions of the steel sheet, velocity of dipping the steel sheet into the Zn-Ti bath, residence time of the steel sheet within the bath, and the velocity of its removal from the bath. These relationships will be valuable for planning further experiments and technologies on color hot-dip galvanization of steel

  13. Luminescent molecular rods - transition-metal alkynyl complexes.

    PubMed

    Yam, Vivian Wing-Wah; Wong, Keith Man-Chung

    2005-01-01

    A number of transition-metal complexes have been reported to exhibit rich luminescence, usually originating from phosphorescence. Such luminescence properties of the triplet excited state with a large Stoke's shift, long lifetime, high luminescence quantum yield as well as lower excitation energy, are envisaged to serve as an ideal candidate in the area of potential applications for chemosensors, dye-sensitized solar cells, flat panel displays, optics, new materials and biological sciences. Organic alkynes (poly-ynes), with extended or conjugatedπ-systems and rigid structure with linear geometry, have become a significant research area due to their novel electronic and physical properties and their potential applications in nanotechnology. Owing to the presence of unsaturated sp-hybridized carbon atoms, the alkynyl unit can serve as a versatile building block in the construction of alkynyl transition-metal complexes, not only throughσ-bonding but also viaπ-bonding interactions. By incorporation of linear alkynyl groups into luminescent transition-metal complexes, the alkynyl moiety with goodσ-donor,π-donor andπ-acceptor abilities is envisaged to tune or perturb the emission behaviors, including emission energy (color), intensity and lifetime by its role as an auxiliary ligand as well as to govern the emission origin from its direct involvement. This review summarizes recent efforts on the synthesis of luminescent rod-like alkynyl complexes with different classes of transition metals and details the effects of the introduction of alkynyl groups on the luminescence properties of the complexes. PMID:22179333

  14. Properties- and applications of quasicrystals and complex metallic alloys.

    PubMed

    Dubois, Jean-Marie

    2012-10-21

    This article aims at an account of what is known about the potential for applications of quasicrystals and related compounds, the so-called family of Complex Metallic Alloys (CMAs‡). Attention is focused at aluminium-based CMAs, which comprise a large number of crystalline compounds and quasicrystals made of aluminium alloyed with transition metals (like Fe or Cu) or normal metals like Mg. Depending on composition, the structural complexity varies from a few atoms per unit cell up to thousands of atoms. Quasicrystals appear then as CMAs of ultimate complexity and exhibit a lattice that shows no periodicity anymore in the usual 3-dimensional space. Properties change dramatically with lattice complexity and turn the metal-type behaviour of simple Al-based crystals into a far more complex behaviour, with a fingerprint of semi-conductors that may be exploited in various applications, potential or realised. An account of the ones known to the author is given in the light of the relevant properties, namely light absorption, reduced adhesion and friction, heat insulation, reinforcement of composites for mechanical devices, and few more exotic ones. The role played by the search for applications of quasicrystals in the development of the field is briefly addressed in the concluding section. PMID:22933085

  15. Effect of Individual Layer Shape on the Mechanical Properties of Dissimilar Al Alloys Laminated Metal Composite Sheets

    NASA Astrophysics Data System (ADS)

    Chen, Zejun; Wu, Xia; Hu, Hongbo; Chen, Quanzhong; Liu, Qing

    2014-03-01

    For the dissimilar laminated metal composite sheets (LMCS) fabricated by roll bonding technology, the great differences of mechanical properties between the constituent metals lead to the non-uniform deformation and individual layer necking. The individual layer shape affects the mechanical properties and microstructure of dissimilar LMCS. The Al/Al alloy (1100/7075) LMCS with the same thickness and ratio of dissimilar metals, but different individual layer shapes, have been successfully fabricated by hot accumulative roll bonding in conjunction with cold rolling technology. Some effective methods (such as sheet crown, warp degree, and slant angle) were presented to quantitatively evaluate the individual layer shape and necking of constituent metals. The microstructure and mechanical properties of 1100/7075 LMCS with different individual layer shapes were investigated. The effects of bonding interface on the mechanical properties were obtained based on the assessment of individual layer shapes and necking. The strength and elongation of LMCS decrease with the increase of variation of individual layer shapes and necking when the number of layers keeps constant. The research results offer some theoretical guides and references for adjusting the control measures of compatibility deformation, optimizing the hot roll bonding technologies, and designing the novel high-performance dissimilar LMCS.

  16. A general and efficient method for decorating graphene sheets with metal nanoparticles based on the non-covalently functionalized graphene sheets with hyperbranched polymers.

    PubMed

    Li, Haiqing; Han, Lina; Cooper-White, Justin J; Kim, Il

    2012-02-21

    Multipyrene terminated hyperbranched polyglycidol (mPHP) has been synthesized and used to non-covalently functionalize pristine graphene sheets (GSs) through π-π stacking interactions. Mediated by the mPHP layer, a variety of metal nanoparticles (Au, Ag and Pt) were in situ generated and deposited onto the surface-modified GS, yielding versatile GS/mPHP/metal nanohybrids. As typical examples, by simply controlling the concentration of HAuCl(4) used, Au nanostructures ranging from isolated spheres to a continuous film were created and coated onto the surface-modified GS. The studies on the fluorescence properties of resulting GS/mPHP/Au hybrid nanostructures reveal that the GS and controllable content of Au components in the hybrids can effectively quench the fluorescence emission of mPHP in a controlled manner. Further investigation indicates that GS/mPHP/Au hybrids are promising surface enhanced Raman scattering (SERS) substrates. The SERS activities of these hybrids depend on the contents and form of the Au. The GS/mPHP/Au hybrid containing continuous Au films exhibits the strongest SERS activity. GS/mPHP/Au hybrids are also used as efficient heterogeneous catalysts for the reduction of 4-NP, and demonstrate excellent catalytic performance. The detailed reaction kinetics and the reusability of such catalysts have also been investigated. PMID:22278595

  17. Epidotisation and fluid flow in sheeted dyke complex : new field and experimental constraints

    NASA Astrophysics Data System (ADS)

    Coelho, Gabriel; Sizaret, Stanislas; Arbaret, Laurent; Branquet, Yannick; Champallier, Rémi

    2013-04-01

    Hydrothermal system in oceanic crust is usually studied via dredge samples and drilled holes but their equivalent are also found in ophiolitic complexes (Oman, Cyprus). In the deepest zone, the fluids react with the sheeted diabase dikes at 400°C and 400 bars to form epidosites by enrichment in epidote and quartz [1]. Mineralogy and chemistry of epidosites have been widely studied on fields [1] and hydrology is generally studied using numerical models [2]. However, the relations and the timing of the emplacement of diabase dikes, their alteration in epidosite and the regional deformation remain unclear. We performed experiments on diabase sampled in the Troodos complex (Cyprus), 1) to stress the P-T-fO2-fluid composition conditions of the reaction of epidotisation and, 2) to quantify interrelations between the permeability and the epidotisation during deformation. In Troodos, we observed two major types of epidosite: 1) a pervasive epidosite in the core of dikes and a banding which is parallel to chilled margins and, 2) assemblages of epidote and quartz as alteration fronts in cooling joints or in the form of veins cross-cutting non-epidotised dikes. This last type of epidotisation clearly appears to be a hydrothermal veining process. We synthesized epidote in a static autoclave with external heating at 500°C and 2500 bars. Epidote was formed by the following reaction: 6 albite + 2 hematite + anorthite + 7 Ca2+ + 6 H2O → 4 epidote + 8 quartz + 6 Na+ + 8 H+. The calculated variation of the molar volume is about -3% (creation of porosity). Two parameters are essential to synthesize epidote from diabase: the oxygen fugacity and the composition of the fluid (enriched in Ca and Fe). However, there is an obvious problem of nucleation at 400°C and 400 bars. In order to understand how fluid flows throughout sheeted dikes, in situ measurements of permeability during coaxial deformation have been performed in a Paterson apparatus by infiltration of Argon and water. The

  18. First-principles study of half-metallicity in semi-hydrogenated BC3, BC5, BC7, and B-doped graphone sheets

    PubMed Central

    2011-01-01

    Using first principles calculations, we investigate the electronic structures of semi-hydrogenated BC3, BC5, BC7, and B-doped graphone sheets. We find that all the semi-hydrogenated boron-carbon sheets exhibit half-metallic behaviors. The magnetism originates from the non-bonding pz orbitals of carbon atoms, which cause the flat bands to satisfy the Stoner criterion. On the other hand, boron atoms weaken the magnetic moments of nearby carbon atoms and act as holes doped in the sheets. It induces the down shift of the Fermi level and the half-metallicity in semi-hydrogenated sheets. Our studies demonstrate that the semi-hydrogenation is an effective route to achieve half-metallicity in the boron-carbon systems. PMID:21711690

  19. Late transition metal. mu. -oxo and. mu. -imido complexes

    SciTech Connect

    Sharp, P.R.

    1990-01-01

    The synthesis and reactions of late-transition-metal oxo and imido complexes was explored. The deprotonation of platinum(II) hydroxo complexes yielded new oxo complexes. Attempted deprotonation of Cp*Rh(III) hydroxo complexes did not give oxo complexes but complex mixtures probably resulting from reduction of the Rh(III) center. The reaction of Na/Hg with (Cp*RhCl{sub 2}){sub 2} gave the very reactive Rh(II) dimer, (Cp*RhCl){sub 2}. Rhodium(I) imido complexes with the bis(dimethylphosphino)methane ligand were prepared and found to be similar to the previously prepared bis(diphenylphosphino)methane complexes. Attempts to prepare bis(diphenylphosphino)methylamine, bis(diphenylphosphino)phenylamine, PMe{sub e} and NO{sup +} analogues were not successful. Attempts to prepare Cp*Rh(III) imido complexes resulted in amido complexes and reduction. Rhodium (III) tris(3.5-dimethylpyrazoyl)borate analogues are reduction resistant but have not yet yielded imido complexes. The first imido complexes of Au were prepared by treating a Au oxo complex with amines or isocyanates. Dimeric Cp*Rh dioxygen and nitrosobenzene complexes were prepared by insertion into the Rh-Rh bond of (Cp*RhCl){sub 2}. The dioxygen complex activates a C-H bond of the Cp* ligand on treatment with PMe{sub 3}. Imido and oxo complexes nitrene and oxygen atom transfer product in reactions with CO. A novel electrophilic ring addition was observed with sterically protected aryl imido complexes. 15 refs.

  20. Thermo Physics Facilities Branch Brochure ARC Jet Complex Fact Sheets, Hypervelocity Free-Flight Aerodynamic Facility Fact Sheets, Ames Vertical Gun Range Fact Sheets

    NASA Technical Reports Server (NTRS)

    Fretter, E. F. (Editor); Kuhns, Jay (Editor); Nuez, Jay (Editor)

    2003-01-01

    The Ames Arc Jet Complex has a rich heritage of over 40 years in Thermal Protection System (TPS) development for every NASA Space Transportation and Planetary program, including Apollo, Space Shuttle, Viking, Pioneer-Venus, Galileo, Mars Pathfinder,Stardust, NASP,X-33,X-34,SHARP-B1 and B2,X-37 and Mars Exploration Rovers. With this early TPS history came a long heritage in the development of the arc jet facilities. These are used to simulate the aerodynamic heating that occurs on the nose cap, wing leading edges and on other areas of the spacecraft requiring thermal protection. TPS samples have been run in the arc jets from a few minutes to over an hour,from one exposure to multiple exposures of the same sample, in order t o understand the TPS materials response to a hot gas flow environment (representative of real hyperthermal environments experienced in flight). The Ames Arc l e t Complex is a key enabler for customers involved in the three major areas of TPS development: selection, validation, and qualification. The arc jet data are critical for validating TPS thermal models, heat shield designs and repairs, and ultimately for flight qualification.

  1. Strain fabric evolution within and near deformed igneous sheets: The Sudbury Igneous Complex, Canada

    NASA Astrophysics Data System (ADS)

    Lenauer, Iris; Riller, Ulrich

    2012-08-01

    Deformation structures differing in style and orientation within a given terrane are often attributed to distinct tectono-metamorphic events. However, mechanical heterogeneities may locally cause strain perturbations that can have a profound effect on the geometry of such structures. Here we document highly variable orientations of planar structures, metre- to kilometre-scale folds and shortening directions inferred from brittle fault analysis within the synclinal and layered Sudbury Igneous Complex (SIC) and its Huronian host rocks. NW-SE shortening during Palaeoproterozoic deformation led to the formation of planar structures in the host rocks that are parallel to the NE-SW striking contact of the southern SIC. During deformation, local contact-parallel shortening became more important than regional NW-SE shortening and generated contact-orthogonal planar mineral fabrics and folds. Local contact-parallel shortening is attributed to the shape change of the southern SIC from a convex outward to a concave inward curvi-planar geometry. Contact-parallel shortening accounts for the formation of a previously unidentified kilometre-scale buckle fold in the SIC and respective axial-planar mineral fabrics in Huronian host rocks. This buckle fold shares similar structural characteristics with known higher-order buckle folds of the eastern SIC. We suggest that non-cylindrical buckling and associated mineral fabric development accommodated the shape change of the SIC. This resulted in mutually perpendicular fabric orientations, which are compatible with overall NW-SE shortening. The original shape of the SIC seems to have had a profound influence particularly on the geometry of metamorphic foliations. Our structural analysis supports earlier structural studies advocating that highly discordant planar strain fabrics can be generated by local strain perturbations near igneous sheets under uniform regional shortening.

  2. The relationship between microstructure and damage evolution in hot-rolled complex-phase steel sheet

    NASA Astrophysics Data System (ADS)

    Bell, Grant A. S.

    Complex-phase (CP) steels are employed in applications that require high-strength and good edge formability. These steels derive their strength from a fine-grained bainite-ferrite microstructure, and alloying to provide solid-solution and precipitation strengthening. CP steels are produced industrially through a process of controlled rolling and cooling to produce desirable microstructures. Hole-expansion tests are typically used as a measure of edge formability for applications such as stretch-flanges. It has been shown that CP microstructures are susceptible to large fluctuations in hole-expansion performance with little change in processing or resulting tensile properties. The steel's characteristics of damage evolution are critical to the hole-expansion performance. This study investigates the role of microstructure in the development of damage in CP microstructural variants. Two variant pairs of different thicknesses were produced from the leading and trailing edge of industrially produced hot-rolled sheet. Each pair consisted of a variant with poor hole-expansion performance, and a variant with good hole-expansion performance. Each variant was tested via interrupted double-notched uniaxial tension testing to induce damage. Damage evolution in each variant was quantified by X-ray micro-computed tomography (XmicroCT), and supplementary optical micrography. The damage results were correlated with microstructural characteristics. It was shown that poor hole-expansion variants failed by intergranular fracture. In these variants, void damage induced by hard martensite and retained austenite was not critical in producing failure. Purely void-damaged microstructures failed by ductile fracture, whereas cracked microstructures failed in a mixed brittle-ductile failure initiated by planar cracks. Microstructural banding of large elongated ferrite grains correlated with the existence of intergranular planar fractures.

  3. Metal ion adsorption to complexes of humic acid and metal oxides: Deviations from the additivity rule

    SciTech Connect

    Vermeer, A.W.P.; McCulloch, J.K.; Van Riemsdijk, W.H.; Koopal, L.K.

    1999-11-01

    The adsorption of cadmium ions to a mixture of Aldrich humic acid and hematite is investigated. The actual adsorption to the humic acid-hematite complex is compared with the sum of the cadmium ion adsorptivities to each of the isolated components. It is shown that the sum of the cadmium ion adsorptivities is not equal to the adsorption to the complex. In general, the adsorption of a specific metal ion to the complex can be understood and qualitatively predicted using the adsorptivities to each of the pure components and taking into account the effect of the pH on the interaction between humic acid and iron oxide on the metal ion adsorption. Due to the interaction between the negatively charged humic acid and the positively charged iron oxide, the adsorption of metal ions on the mineral oxide in the complex will increase as compared to that on the isolated oxide, whereas the adsorption to the humic acid will decrease as compared to that on the isolated humic acid. As a result, the overall adsorption of a specific metal ion to the complex will be smaller than predicted by the additivity rule when this metal ion has a more pronounced affinity for the humic acid than for the mineral oxide, whereas it will be larger than predicted by the additivity rule when the metal ion has a higher affinity for the oxide than for the humic acid.

  4. Coinage metal complexes supported by the tri- and tetraphosphine ligands.

    PubMed

    Dau, Minh Thuy; Shakirova, Julia R; Karttunen, Antti J; Grachova, Elena V; Tunik, Sergey P; Melnikov, Alexey S; Pakkanen, Tapani A; Koshevoy, Igor O

    2014-05-01

    A series of tri- and tetranuclear phosphine complexes of d(10) metal ions supported by the polydentate ligands, bis(diphenylphosphinomethyl)phenylphosphine (PPP) and tris(diphenylphosphinomethyl)phosphine (PPPP), were synthesized. All the compounds under study, [AuM2(PPP)2](3+) (M = Au (1), Cu (2), Ag (3)), [M4(PPPP)2](4+) (M = Ag (4), Au (5)), [AuAg3(PPPP)2](4+) (6), and [Au2Cu2(PPPP)2(NCMe)4](4+) (7), were characterized crystallographically. The trinuclear clusters 1-3 contain a linear metal core, while in the isostructural tetranuclear complexes 4-6 the metal framework has a plane star-shaped arrangement. Cluster 7 adopts a structural motif that involves a digold unit bridged by two arms of the PPPP phosphines and decorated two spatially separated Cu(I) ions chelated by the remaining P donors. The NMR spectroscopic investigation in DMSO solution revealed the heterometallic clusters 2, 3, and 6 are stereochemically nonrigid and undergo reversible metal ions redistribution between several species, accompanied by their solvation-desolvation. The complexes 1-3 and 5-7 exhibit room temperature luminescence in the solid state (Φem = 6-64%) in the spectral region from 450 to 563 nm. The phosphorescence observed originates from the triplet excited states, determined by the metal cluster-centered dσ* → pσ transitions. PMID:24750114

  5. Anticancer Activity of Metal Complexes: Involvement of Redox Processes

    PubMed Central

    Jungwirth, Ute; Kowol, Christian R.; Keppler, Bernhard K.; Hartinger, Christian G.; Berger, Walter; Heffeter, Petra

    2012-01-01

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of “activation by reduction” as well as the “hard and soft acids and bases” theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology. PMID:21275772

  6. Control of cerium oxidation state through metal complex secondary structures

    SciTech Connect

    Levin, Jessica R.; Dorfner, Walter L.; Carroll, Patrick J.; Schelter, Eric J.

    2015-08-11

    A series of alkali metal cerium diphenylhydrazido complexes, Mx(py)y[Ce(PhNNPh)4], M = Li, Na, and K, x = 4 (Li and Na) or 5 (K), and y = 4 (Li), 8 (Na), or 7 (K), were synthesized to probe how a secondary coordination sphere would modulate electronic structures at a cerium cation. The resulting electronic structures of the heterobimetallic cerium diphenylhydrazido complexes were found to be strongly dependent on the identity of the alkali metal cations. When M = Li+ or Na+, the cerium(III) starting material was oxidized with concomitant reduction of 1,2-diphenylhydrazine to aniline. Reduction of 1,2-diphenylhydrazine was not observed when M = K+, and the complex remained in the cerium(III) oxidation state. Oxidation of the cerium(III) diphenylhydrazido complex to the Ce(IV) diphenylhydrazido one was achieved through a simple cation exchange reaction of the alkali metals. As a result, UV-Vis spectroscopy, FTIR spectroscopy, electrochemistry, magnetic susceptibility, and DFT studies were used to probe the oxidation state and the electronic changes that occurred at the metal centre.

  7. Control of cerium oxidation state through metal complex secondary structures

    DOE PAGESBeta

    Levin, Jessica R.; Dorfner, Walter L.; Carroll, Patrick J.; Schelter, Eric J.

    2015-08-11

    A series of alkali metal cerium diphenylhydrazido complexes, Mx(py)y[Ce(PhNNPh)4], M = Li, Na, and K, x = 4 (Li and Na) or 5 (K), and y = 4 (Li), 8 (Na), or 7 (K), were synthesized to probe how a secondary coordination sphere would modulate electronic structures at a cerium cation. The resulting electronic structures of the heterobimetallic cerium diphenylhydrazido complexes were found to be strongly dependent on the identity of the alkali metal cations. When M = Li+ or Na+, the cerium(III) starting material was oxidized with concomitant reduction of 1,2-diphenylhydrazine to aniline. Reduction of 1,2-diphenylhydrazine was not observedmore » when M = K+, and the complex remained in the cerium(III) oxidation state. Oxidation of the cerium(III) diphenylhydrazido complex to the Ce(IV) diphenylhydrazido one was achieved through a simple cation exchange reaction of the alkali metals. As a result, UV-Vis spectroscopy, FTIR spectroscopy, electrochemistry, magnetic susceptibility, and DFT studies were used to probe the oxidation state and the electronic changes that occurred at the metal centre.« less

  8. Method for synthesizing metal bis(borano) hypophosphite complexes

    DOEpatents

    Cordaro, Joseph G.

    2013-06-18

    The present invention describes the synthesis of a family of metal bis(borano) hypophosphite complexes. One procedure described in detail is the syntheses of complexes beginning from phosphorus trichloride and sodium borohydride. Temperature, solvent, concentration, and atmosphere are all critical to ensure product formation. In the case of sodium bis(borano) hypophosphite, hydrogen gas was evolved upon heating at temperatures above 150.degree. C. Included in this family of materials are the salts of the alkali metals Li, Na and K, and those of the alkaline earth metals Mg and Ca. Hydrogen storage materials are possible. In particular the lithium salt, Li[PH.sub.2(BH.sub.3).sub.2], theoretically would contain nearly 12 wt % hydrogen. Analytical data for product characterization and thermal properties are given.

  9. Occupational exposure to dust and lung disease among sheet metal workers.

    PubMed Central

    Hunting, K L; Welch, L S

    1993-01-01

    A previous large medical survey of active and retired sheet metal workers with 20 or more years in the trade indicated an unexpectedly high prevalence of obstructive pulmonary disease among both smokers and non-smokers. This study utilised interviews with a cross section of the previously surveyed group to explore occupational risk factors for lung disease. Four hundred and seven workers were selected from the previously surveyed group on the basis of their potential for exposure to fibreglass and asbestos. Selection was independent of health state, and excluded welders. A detailed history of occupational exposure was obtained by telephone interview for 333 of these workers. Exposure data were analysed in relation to previously collected data on chronic bronchitis, obstructive lung disease, and personal characteristics. Assessment of the effects of exposure to fibreglass as distinct from the effects of exposure to asbestos has been difficult in previous studies of construction workers. The experienced workers studied here have performed a diversity of jobs involving exposure to many different types of materials, and this enabled exposure to each dust to be evaluated separately. The risk of chronic bronchitis increased sharply by pack-years of cigarettes smoked; current smokers had a double risk compared with those who had never smoked or had stopped smoking. The occurrence of chronic bronchitis also increased with increasing duration of exposure to asbestos. Workers with a history of high intensity exposure to fibreglass had a more than doubled risk of chronic bronchitis. Obstructive lung disease, defined by results of pulmonary function tests at the medical survey, was also related to both smoking and occupational risk factors. Number of pack years smoked was the strongest predictor of obstructive lung disease. Duration of direct and indirect exposure to welding fume was also a positive predictor of obstructive lung disease. Duration of exposure to asbestos was

  10. Transition metal complexes of an isatinic quinolyl hydrazone

    PubMed Central

    2011-01-01

    Background The importance of the isatinic quinolyl hydrazones arises from incorporating the quinoline ring with the indole ring in the same compound. Quinoline ring has therapeutic and biological activities. On the other hand, isatin (1H-indole-2,3-dione) and its derivatives exhibit a wide range of biological activities. Also, the indole ring occurs in Jasmine flowers and Orange blossoms. Recently, the physiological and biological activities of quinolyl hydrazones arise from their tendency to form metal chelates with transition metal ions. In this context, we have reported to isolate, characterize and study the biological activity of some transition metal complexes of an isatinic quinolyl hydrazone; 3-[2-(4-methyl quinolin-2-yl)hydrazono] indolin-2-one. Results Mono- and binuclear as well as dimeric chelates were obtained from the reaction of a new isatinic quinolyl hydrazone with Fe(III), Co(II), Ni(II), Cu(II), VO(II) and Pd(II) ions. The ligand showed a variety of modes of bonding viz. (NNO)2-, (NO)- and (NO) per each metal ion supporting its ambidentate and flexidentate characters. The mode of bonding and basicity of the ligand depend mainly on the type of the metal cation and its counter anion. All the obtained Pd(II)- complexes have the preferable square planar geometry (D4h- symmetry) and depend mainly on the mole ratio (M:L). Conclusion The effect of the type of the metal ion for the same anion (Cl-) is obvious from either structural diversity of the isolated complexes (Oh, Td and D4h) or the various modes of bonding. The isatinic hydrazone uses its lactim form in all complexes (Cl-) except complex 5 (SO42-) in which it uses its lactam form. The obtained Pd(II)- complexes (dimeric, mono- and binuclear) are affected by the mole ratio (M:L) and have the square planar (D4h) geometry. Also, the antimicrobial activity is highly influenced by the nature of the metal ion and the order for S. aureus bacteria is as follows: Nickel(II) > Vanadyl(II) > Cobalt

  11. Finite Element Simulation of Sheet Metal Forming Process Using Local Interpolation for Tool Surfaces

    SciTech Connect

    Hama, Takayuki; Takuda, Hirohiko; Takamura, Masato; Makinouchi, Akitake; Teodosiu, Cristian

    2005-08-05

    Treatment of contact between a sheet and tools is one of the most difficult problems to deal with in finite-element simulations of sheet forming processes. In order to obtain more accurate tool models without increasing the number of elements, this paper describes a new formulation for contact problems using interpolation proposed by Nagata for tool surfaces. A contact search algorithm between sheet nodes and the interpolated tool surfaces was developed and was introduced into the static-explicit elastoplastic finite-element method code STAMP3D. Simulations of a square cup deep drawing process with a very coarsely discretized punch model were carried out. The simulated results showed that the proposed algorithm gave the proper drawn shape, demonstrating the validity of the proposed algorithm.

  12. Electric relaxation processes in chemodynamics of aqueous metal complexes: from simple ligands to soft nanoparticulate complexants.

    PubMed

    van Leeuwen, Herman P; Buffle, Jacques; Town, Raewyn M

    2012-01-10

    The chemodynamics of metal complexes with nanoparticulate complexants can differ significantly from that for simple ligands. The spatial confinement of charged sites and binding sites to the nanoparticulate body impacts on the time scales of various steps in the overall complex formation process. The greater the charge carried by the nanoparticle, the longer it takes to set up the counterion distribution equilibrium with the medium. A z+ metal ion (z > 1) in a 1:1 background electrolyte will accumulate in the counterionic atmosphere around negatively charged simple ions, as well as within/around the body of a soft nanoparticle with negative structural charge. The rate of accumulation is often governed by diffusion and proceeds until Boltzmann partition equilibrium between the charged entity and the ions in the medium is attained. The electrostatic accumulation proceeds simultaneously with outer-sphere and inner-sphere complex formation. The rate of the eventual inner-sphere complex formation is generally controlled by the rate constant of dehydration of the metal ion, k(w). For common transition metal ions with moderate to fast dehydration rates, e.g., Cu(2+), Pb(2+), and Cd(2+), it is shown that the ionic equilibration with the medium may be the slower step and thus rate-limiting in their overall complexation with nanoparticles. PMID:22126743

  13. Ternary metal complexes of guaifenesin drug: Synthesis, spectroscopic characterization and in vitro anticancer activity of the metal complexes.

    PubMed

    Mahmoud, W H; Mahmoud, N F; Mohamed, G G; El-Sonbati, A Z; El-Bindary, A A

    2015-01-01

    The coordination behavior of a series of transition metal ions named Cr(III), Fe(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with a mono negative tridentate guaifenesin ligand (GFS) (OOO donation sites) and 1,10-phenanthroline (Phen) is reported. The metal complexes are characterized based on elemental analyses, IR, (1)H NMR, solid reflectance, magnetic moment, molar conductance, UV-vis spectral studies, mass spectroscopy, ESR, XRD and thermal analysis (TG and DTG). The ternary metal complexes were found to have the formulae of [M(GFS)(Phen)Cl]Cl·nH2O (M=Cr(III) (n=1) and Fe(III) (n=0)), [M(GFS)(Phen)Cl]·nH2O (M=Mn(II) (n=0), Zn(II) (n=0) and Cu(II) (n=3)) and [M(GFS)(Phen)(H2O)]Cl·nH2O (M=Co(II) (n=0), Ni(II) (n=0) and Cd(II) (n=4)). All the chelates are found to have octahedral geometrical structures. The ligand and its ternary chelates are subjected to thermal analyses (TG and DTG). The GFS ligand, in comparison to its ternary metal complexes also was screened for their antibacterial activity on gram positive bacteria (Bacillus subtilis and Staphylococcus aureus), gram negative bacteria (Escherichia coli and Neisseria gonorrhoeae) and for in vitro antifungal activity against (Candida albicans). The activity data show that the metal complexes have antibacterial and antifungal activity more than the parent GFS ligand. The complexes were also screened for its in vitro anticancer activity against the Breast cell line (MFC7) and the results obtained show that they exhibit a considerable anticancer activity. PMID:26067934

  14. Experimental Characterization of Sheet Metal Deformation During Electro-Hydraulic Forming

    SciTech Connect

    Rohatgi, Aashish; Stephens, Elizabeth V.; Soulami, Ayoub; Davies, Richard W.; Smith, Mark T.

    2011-11-01

    This manuscripts reports results of the last 2-3 years work pertaining to DOE-OVT funded project on pulse-pressure forming of light-weight materials. We report experimental results of electrohydraulically formed sheets where data is determined using a pair of high-speed cameras and analyzed using a digital image correlation technique. These results are relevant to the formability of sheet materials and of importance to the automotive industry. To the authors’ knowledge, such results have not been published in the literature.

  15. Photoinduced energy transfer in transition metal complex oligomers

    SciTech Connect

    1997-06-01

    The work done over the past three years has been directed toward the preparation, characterization and photophysical examination of mono- and bimetallic diimine complexes. The work is part of a broader project directed toward the development of stable, efficient, light harvesting arrays of transition metal complex chromophores. One focus has been the synthesis of rigid bis-bidentate and bis-tridentate bridging ligands. The authors have managed to make the ligand bphb in multigram quantities from inexpensive starting materials. The synthetic approach used has allowed them to prepare a variety of other ligands which may have unique applications (vide infra). They have prepared, characterized and examined the photophysical behavior of Ru(II) and Re(I) complexes of the ligands. Energy donor/acceptor complexes of bphb have been prepared which exhibit nearly activationless energy transfer. Complexes of Ru(II) and Re(I) have also been prepared with other polyunsaturated ligands in which two different long lived (> 50 ns) excited states exist; results of luminescence and transient absorbance measurements suggest the two states are metal-to-ligand charge transfer and ligand localized {pi}{r_arrow}{pi}* triplets. Finally, the authors have developed methods to prepare polymetallic complexes which are covalently bound to various surfaces. The long term objective of this work is to make light harvesting arrays for the sensitization of large band gap semiconductors. Details of this work are provided in the body of the report.

  16. Photoinduced energy transfer in transition metal complex oligomers

    SciTech Connect

    1997-04-01

    The work we have done over the past three years has been directed toward the preparation, characterization and photophysical examination of mono- and bimetallic diimine complexes. The work is part of a broader project directed toward the development of stable, efficient, light harvesting arrays of transition metal complex chromophores. One focus has been the synthesis of rigid bis-bidentate and bis-tridentate bridging ligands. We have managed to make the ligand bphb in multigram quantities from inexpensive starting materials. The synthetic approach used has allowed us prepare a variety of other ligands which may have unique applications (vide infra). We have prepared, characterized and examined the photophysical behavior of Ru(II) and Re(I) complexes of the ligands. Energy donor/acceptor complexes of bphb have been prepared which exhibit nearly activationless energy transfer. Complexes of Ru(II) and Re(I) have also been prepared with other polyunsaturated ligands in which two different long lived ( > 50 ns) excited states exist; results of luminescence and transient absorbance measurements suggest the two states are metal-to-ligand charge transfer and ligand localized {pi}{r_arrow}{pi}* triplets. Finally, we have developed methods to prepare polymetallic complexes which are covalently bound to various surfaces. The long term objective of this work is to make light harvesting arrays for the sensitization of large band gap semiconductors. Details of this work are provided in the body of the report.

  17. Metal complexes of 4,5-dimethylpyrazole-3-carboxaldehyde phenylthiosemicarbazone

    NASA Astrophysics Data System (ADS)

    El-Dissouky, Ali

    Several new transition metal complexes derived from 4,5-dimethyl-3-carboxaldehyde phenyl- thiosemicarbazone, LH, have been synthesized. The complexes are of stoichiometry, [CoL 2]X, X = Cl -, Br -, ClO -4 or NO -3, [MnL 2] and [CuX nL m], X = Cl -, Br -, NCS - or N -3; n = 1 or 0; m = 1 or 2 and L = the anion of LH. All complexes have been characterized by elemental analysis, spectral (i.r., electronic, NMR, ESR) and magnetic measurements. The ligand acts as tridentate monobasic co-ordinated to the metal ion via azomethine, pyrazole (N 2) nitrogen atoms and the thiolo-sulphur. The ligand field and ESR parameters are used to interpret the nature of bonding of LH with the metal ion, ground state and the ligand field strength of LH and the various co-ordinated simple ions. The coupling constants of various co-ordinated nuclei with copper (II) are estimated from ESR spectra of copper (II) complexes.

  18. A laser-sheet flow visualization technique for the large wind tunnels of the National Full-Scale Aerodynamics Complex

    NASA Technical Reports Server (NTRS)

    Reinath, M. S.; Ross, J. C.

    1990-01-01

    A flow visualization technique for the large wind tunnels of the National Full Scale Aerodynamics Complex (NFAC) is described. The technique uses a laser sheet generated by the NFAC Long Range Laser Velocimeter (LRLV) to illuminate a smoke-like tracer in the flow. The LRLV optical system is modified slightly, and a scanned mirror is added to generate the sheet. These modifications are described, in addition to the results of an initial performance test conducted in the 80- by 120-Foot Wind Tunnel. During this test, flow visualization was performed in the wake region behind a truck as part of a vehicle drag reduction study. The problems encountered during the test are discussed, in addition to the recommended improvements needed to enhance the performance of the technique for future applications.

  19. Characterization of metal complexation in multiligand systems with lanthanide luminescence

    SciTech Connect

    Martinez, G.A.; Traina, S.J.; Logan, T.J.

    1998-08-01

    The effectiveness of an Eu{sup 3+} luminescence technique to describe metal complexation reactions in humic substances was evaluated. The molecular uncertainties intrinsic to humic substances were circumvented by using polyacrylic acid (PAA) and polyvinylsulfonic acid (PVS) as probes. An adequate determination of the Eu{sup 3+}-citrate affinity constant suggested that this technique could potentially be used to characterize metal binding reactions in polyelectrolytes. Various mixtures of PAA and PVS were then evaluated. The commonly adopted assumption of a single metal binding environment in those systems proved ineffective and resulted in a misleading representation of the Eu-PAA binding isotherm. The evidence indicates that prior knowledge about the number of binding environments, as well as their relative contribution to the overall sorption, is needed to describe metal binding on humic substances appropriately through this approach. The effect of metal competition on Eu{sup 3+} binding by a mixed polymer system (1:1 PAA:PVS) was also ascertained. The affinity series obtained (Cu{sup 2+} > Pb{sup 2+} {much_gt} Cd{sup 2+} {ge} Co{sup 2+} {approx_equal} Mg{sup 2+} {approx_equal} Ni{sup 2+} > Ca{sup 2+}) was similar to that frequently observed in humic substances, which reinforces the utility of these polymers as their surrogates in metal sorption studies.

  20. Inhomogeneous complexation of trace metals in water with organic nano-complexants

    NASA Astrophysics Data System (ADS)

    Dolgin, Bella; Bulatov, Valery; Hadar-Abuhatzira, Hodayah; Japarov, Julia; Schechter, Israel

    2011-12-01

    The complexation of heavy metals, such as Cd 2+ and Ni 2+, with organic complexants such as 1-(2-pyridylazo)-2-naphthol (PAN) and 1-(2-thiazolylazo)-2-naphthol (TAN) in water has been investigated. Under such conditions, both the reagents and the products form nano-particulates. These materials are important because their spectrum changes upon exposure to heavy metals and they may be used for design of new optical detectors. The kinetic schemes so far suggested for these complexation reactions are not valid for such experimental conditions, since they assume homogeneous behavior. We provide evidences to the inhomogeneous nature of these reactions. The complexation has been studied using TEM imaging, zeta-potentiometry, time-dependent particulate size analysis and time-dependent spectroscopy. Many of the experimental results are explained in terms of the nature of the nano-particulates of these two complexants. Several processes were identified, including crystal growing of the complexant, its reaction with metal ions in solution and on the surface area, chemical erosion of complexant crystallites and their decomposition, re-crystallization of the formed complexes and long term aggregation of both the complexant and the resulted complex. It was found that the needle-like nano-structures on the surface of the TAN particulates governs its reaction and particulate behavior. The known optimal complexation conditions, such as pH, and delay time are now understood in terms of the zeta-potential minima of the suspensions and in terms of the kinetic parameters. Also the interferences of some ions in the Ni-TAN complexation are now quantified and the kinetic data indicate the best delay time when the interfering effects are minimal.

  1. Binding energies of exciton complexes in transition metal dichalcogenide monolayers and effect of dielectric environment

    NASA Astrophysics Data System (ADS)

    Kylänpää, Ilkka; Komsa, Hannu-Pekka

    2015-11-01

    Excitons, trions, biexcitons, and exciton-trion complexes in two-dimensional transition metal dichalcogenide sheets of MoS2, MoSe2, MoTe2, WS2, and WSe2 are studied by means of density functional theory and path-integral Monte Carlo method in order to accurately account for the particle-particle correlations. In addition, the effect of dielectric environment on the properties of these exciton complexes is studied by modifying the effective interaction potential between particles. Calculated exciton and trion binding energies are consistent with previous experimental and computational studies, and larger systems such as biexciton and exciton-trion complex are found highly stable. Binding energies of biexcitons are similar to or higher than those of trions, but the binding energy of the trion depends significantly stronger on the dielectric environment than that of biexciton. Therefore, as a function of an increasing dielectric constant of the environment the exciton-trion complex "dissociates" to a biexciton rather than to an exciton and a trion.

  2. Laser processing for strengthening of the self-restoring metal-elastomer interface on a silicone sheet

    NASA Astrophysics Data System (ADS)

    Yasuda, Kiyokazu

    2012-08-01

    A self-restoring microsystem is a unique concept which realizes the sensing functionality and robust interface which mechanically and electrically connects a deformable object such as a human body with printed electronic devices. For this purpose, the formation of conductive wiring on an elastomer substrate was attempted using the nickel ink printing process. Before the wiring process, surface patterning of a silicone sheet by a galvano-scanned infrared laser was conducted for the enhancement of interface adhesion of the metal deposit and polymer. Characterization of the fabricated pattern was conducted by optical microscopy. The novel method was successfully demonstrated as a fabrication of selective patterns of metal particles on self-restoring MEMS.

  3. Polynuclear transition metal complexes with thiocarbohydrazide and dithiocarbamates

    NASA Astrophysics Data System (ADS)

    Siddiqi, K. S.; Khan, Sadaf; Nami, Shahab A. A.; El-ajaily, M. M.

    2007-07-01

    Sn(tch) 2{MCl 2} 2 was prepared from the precursor Sn(tch) 2 and MCl 2. It was subsequently allowed to react with diethyldithiocarbamate which yielded the trinuclear complexes of the type Sn(tch) 2{M 2(dtc) 4}, where tch = thiocarbohydrazide, M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and dtc = diethyldithiocarbamate. They were characterized on the basis of microanalytical, thermal (TGA/DSC), spectral (IR, UV-vis, EPR, 1H NMR) studies, conductivity measurement and magnetic moment data. On the basis of spectral data a tetrahedral geometry has been proposed for the halide complexes, Sn(tch) 2{MCl 2} 2 except for Cu(II) which exhibits a square planar coordination although the transition metal ion in Sn(tch) 2{M 2(dtc) 4} achieves an octahedral geometry where the dithiocarbamato moiety acts as a symmetrical bidentate ligand. The bidentate nature has been established by the appearance of a sharp single ν(C-S) around 1000 cm -1. A downfield shift observed in NH a and NH b protons on moving from Sn(tch) 2 to Sn(tch) 2{MCl 2} 2 is due to the drift of electrons toward metal atoms. A two-step pyrolysis has been observed in the Sn(tch) 2{MCl 2} 2 complexes while their dithiocarbamato derivatives exhibit a three-stage degradation pattern. Finally, the in vitro antibacterial activity of Sn(tch) 2{M 2(dtc) 4} and the mononuclear Sn(tch) 2 has been carried out on bacterial strains Escherichia coli and Salmonella typhi. The compounds were found to be active against the test organisms. The activity of the complexes is enhanced with increasing concentration. The maximum activity in both the strains was achieved by cobalt(II) dithiocarbamate complex. Minimum activity was found for Sn(tch) 2 which generally increases with the introduction of transition metal ion in the complex.

  4. Equilibrium modeling of trace metal transport from Duluth complex rockpile

    SciTech Connect

    Kelsey, P.D.; Klusman, R.W.; Lapakko, K.

    1996-12-31

    Geochemical modeling was used to predict weathering processes and the formation of trace metal-adsorbing secondary phases in a waste rock stockpile containing Cu-Ni ore mined from the Duluth Complex, MN. Amorphous ferric hydroxide was identified as a secondary phase within the pile, from observation and geochemical modeling of the weathering process. Due to the high content of cobalt, copper, nickel, and zinc in the primary minerals of the waste rock and in the effluent, it was hypothesized that the predicted and observed precipitant ferric hydroxide would adsorb small quantities of these trace metals. This was verified using sequential extractions and simulated using adsorption geochemical modeling. It was concluded that the trace metals were adsorbed in small quantities, and adsorption onto the amorphous ferric hydroxide was in decreasing order of Cu > Ni > Zn > Co. The low degree of adsorption was due to low pH water and competition for adsorption sites with other ions in solution.

  5. Mono- and Dinuclear Macrocyclic Calcium Complexes as Platforms for Mixed-Metal Complexes and Clusters.

    PubMed

    Connolly, Emma A; Leeland, James W; Love, Jason B

    2016-01-19

    Mono- and dinuclear calcium complexes of the Schiff-base macrocycles H4L have been prepared and characterized spectroscopically and crystallographically. In the formation of Ca(THF)2(H2L(1)), Ca2(THF)2(μ-THF)(L(1)), and Ca2(THF)4(L(2)), the ligand framework adopts a bowl-shaped conformation instead of the conventional wedge, Pacman-shaped structure as seen with the anthracenyl-hinged complex Ca2(py)5(L(3)). The mononuclear calcium complex Ca(THF)2(H2L(1)) reacts with various equivalents of LiN(SiMe3)2 to form calcium/alkali metal clusters and dinuclear transition metal complexes when reacted subsequently with transition metal salts. The dinuclear calcium complex Ca2(THF)2(μ-THF)(L(1)), when reacted with various equivalents of NaOH, is shown to act as a platform for the formation of calcium/alkali metal hydroxide clusters, displaying alternate wedged and bowl-shaped conformations. PMID:26709870

  6. Dynamics and Control in Complex Transition Metal Oxides

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Averitt, R. D.

    2014-07-01

    Advances in the synthesis, growth, and characterization of complex transition metal oxides coupled with new experimental techniques in ultrafast optical spectroscopy have ushered in an exciting era of dynamics and control in these materials. Experiments utilizing femtosecond optical pulses can initiate and probe dynamics of the spin, lattice, orbital, and charge degrees of freedom. Major goals include (a) determining how interaction and competition between the relevant degrees of freedom determine macroscopic functionality in transition metal oxides (TMOs) and (b) searching for hidden phases in TMOs by controlling dynamic trajectories in a complex and pliable energy landscape. Advances in creating intense pulses from the far-IR spectrum through the visible spectrum enable mode-selective excitation to facilitate exploration of these possibilities. This review covers recent developments in this emerging field and presents examples that include the cuprates, manganites, and vanadates.

  7. Blue metal complex pigments involved in blue flower color

    PubMed Central

    Takeda, Kosaku

    2006-01-01

    The blue pigment of cornflower, protocyanin, has been investigated for a long time, but its precise structure was not entirely explained until recently. The molecular structure of the pigment was recently shown to be a metal complex of six molecules each of anthocyanin and flavone glycoside, with one ferric iron, one magnesium and two calcium ions by X-ray crystallographic analysis. The studies provided the answer to the question posed in the early part of the last century, “why is the cornflower blue and rose red when both flowers contain the same anthocyanin?” This work was achieved on the basis of the results of long years of the studies made by many researchers. In this review, the author focuses on the investigations of the blue metal complex pigments involved in the bluing of flowers, commelinin from Commelina commusis, protocyanin from Centaurea cyanus, protodelphin from Salvia patens and hydrangea blue pigment. PMID:25792777

  8. A simple, general route to 2-pyridylidene transition metal complexes.

    PubMed

    Roselló-Merino, Marta; Díez, Josefina; Conejero, Salvador

    2010-12-28

    Pyridinium 2-carboxylates decompose thermally in the presence of a variety of late transition metal precursors to yield the corresponding 2-pyridylidene-like complexes. The mild reaction conditions and structural diversity that can be generated in the heterocyclic ring make this method an attractive alternative for the synthesis of 2-pyridylidene complexes. IR spectra of the Ir(i) carbonyl compounds [IrCl(NHC)(CO)(2)] indicate that these N-heterocyclic carbene ligands are among the strongest σ-electron donors. PMID:21052586

  9. mer and fac isomerism in tris chelate diimine metal complexes.

    PubMed

    Dabb, Serin L; Fletcher, Nicholas C

    2015-03-14

    In this perspective, we highlight the issue of meridional (mer) and facial (fac) orientation of asymmetrical diimines in tris-chelate transition metal complexes. Diimine ligands have long been the workhorse of coordination chemistry, and whilst there are now good strategies to isolate materials where the inherent metal centered chirality is under almost complete control, and systematic methodologies to isolate heteroleptic complexes, the conceptually simple geometrical isomerism has not been widely investigated. In systems where the two donor atoms are significantly different in terms of the σ-donor and π-accepting ability, the fac isomer is likely to be the thermodynamic product. For the diimine complexes with two trigonal planar nitrogen atoms there is much more subtlety to the system, and external factors such as the solvent, lattice packing and the various steric considerations play a delicate role in determining the observed and isolable product. In this article we discuss the possibilities to control the isomeric ratio in labile systems, consider the opportunities to separate inert complexes and discuss the observed differences in their spectroscopic properties. Finally we report on the ligand orientation in supramolecular systems where facial coordination leads to simple regular structures such as helicates and tetrahedra, but the ability of the ligand system to adopt a mer orientation enables self-assembled structures of considerable beauty and complexity. PMID:25600485

  10. Reductive dechlorination of trichloroethene mediated by humic-metal complexes

    SciTech Connect

    O`Loughlin, E.J.; Burris, D.R.; Delcomyn, C.A.

    1999-04-01

    Experiments were conducted to determine if transition metal-humic acid complexes can act as e{sup {minus}} transfer mediators in the reductive dechlorination of trichloroethene (TCE) using Ti(III) citrate as the bulk reductant. In the presence of Ni-Aldrich humic acid (AHA) complexes, TCE reduction was rapid, with complete removal of TCE in less than 23 h. Cu-AHA complexes were less effective as e{sup {minus}} mediators than Ni-AHA complexes; only 60% of TCE was reduced after 150 h. Partially dechlorinated intermediates were observed during TCE reduction; however, they were transitory, and at no time accounted for more than 2% of the initial TCE mass on a mole C basis. Ethane and ethene were the primary end products of TCE reduction; however, a suite of other non-chlorinated hydrocarbons consisting of methane and C{sub 3} to C{sub 6} alkanes and alkenes were also observed. The results suggest that humic-metal complexes may represent a previously unrecognized class of electron mediators in natural environments.

  11. In-situ stress analysis with X-Ray diffraction for yield locus characterization of sheet metals

    NASA Astrophysics Data System (ADS)

    Güner, A.; Zillmann, B.; Lampke, T.; Tekkaya, A. E.

    2013-12-01

    A main problem in the field of sheet metal characterization is the inhomogeneous plastic deformation in the gauge regions of specimens which causes the analytically calculated stresses to differ from the sought state of stress acting in the middle of the gauge region. To overcome this problem, application of X-Ray diffraction is analyzed. For that purpose a mobile X-ray diffractometer and an optical strain measurement system are mounted on a universal tensile testing machine. This enables the recording of the whole strain and stress history of a material point. The method is applied to uniaxial tension tests, plane strain tension tests and shear tests to characterize the interstitial free steel alloy DC06. The applicability of the concepts of stress factors is verified by uniaxial tension tests. The experimentally obtained values are compared with the theoretical values calculated with crystal elasticity models utilizing the orientation distribution functions (ODF). The relaxation problem is addressed which shows itself as drops in the stress values with the strain kept at a constant level. This drop is analyzed with elasto-viscoplastic material models to correct the measured stresses. Results show that the XRD is applicable to measure the stresses in sheet metals with preferred orientation. The obtained yield locus is expressed with the Yld2000-2D material model and an industry oriented workpiece is analyzed numerically. The comparison of the strain distribution on the workpiece verifies the identified material parameters.

  12. In-situ stress analysis with X-Ray diffraction for yield locus characterization of sheet metals

    SciTech Connect

    Güner, A.; Tekkaya, A. E.; Zillmann, B.; Lampke, T.

    2013-12-16

    A main problem in the field of sheet metal characterization is the inhomogeneous plastic deformation in the gauge regions of specimens which causes the analytically calculated stresses to differ from the sought state of stress acting in the middle of the gauge region. To overcome this problem, application of X-Ray diffraction is analyzed. For that purpose a mobile X-ray diffractometer and an optical strain measurement system are mounted on a universal tensile testing machine. This enables the recording of the whole strain and stress history of a material point. The method is applied to uniaxial tension tests, plane strain tension tests and shear tests to characterize the interstitial free steel alloy DC06. The applicability of the concepts of stress factors is verified by uniaxial tension tests. The experimentally obtained values are compared with the theoretical values calculated with crystal elasticity models utilizing the orientation distribution functions (ODF). The relaxation problem is addressed which shows itself as drops in the stress values with the strain kept at a constant level. This drop is analyzed with elasto-viscoplastic material models to correct the measured stresses. Results show that the XRD is applicable to measure the stresses in sheet metals with preferred orientation. The obtained yield locus is expressed with the Yld2000–2D material model and an industry oriented workpiece is analyzed numerically. The comparison of the strain distribution on the workpiece verifies the identified material parameters.

  13. Growth of Hollow Transition Metal (Fe, Co, Ni) Oxide Nanoparticles on Graphene Sheets through Kirkendall Effect as Anodes for High-Performance Lithium-Ion Batteries.

    PubMed

    Yu, Xianbo; Qu, Bin; Zhao, Yang; Li, Chunyan; Chen, Yujin; Sun, Chunwen; Gao, Peng; Zhu, Chunling

    2016-01-26

    A general strategy based on the nanoscale Kirkendall effect has been developed to grow hollow transition metal (Fe, Co or Ni) oxide nanoparticles on graphene sheets. When applied as lithium-ion battery anodes, these hollow transition metal oxide-based composites exhibit excellent electrochemical performance, with high reversible capacities and long-term stabilities at a high current density, superior to most transition metal oxides reported to date. PMID:26502895

  14. Metal-Dioxygen and Metal-Dinitrogen Complexes: Where Are The Electrons?

    PubMed Central

    Holland, Patrick L.

    2011-01-01

    Transition-metal complexes of O2 and N2 play an important role in the environment, chemical industry, and metalloenzymes. This Perspective compares and contrasts the binding modes, reduction levels, and electronic influences on the nature of the bound O2 or N2 group in these complexes. The charge distribution between the metal and the diatomic ligand is variable, and different models for describing the adducts have evolved. In some cases, single resonance structures (e.g. M-superoxide = M–O2−) are accurate descriptions of the adducts. Recent studies have shown that the magnetic coupling in certain N22− complexes differs between resonance forms, and can be used to distinguish experimentally between resonance structures. On the other hand, many O2 and N2 complexes cannot be described well with a simple valence-bond model. Defining the situations where ambiguities occur is a fertile area for continued study. PMID:20361098

  15. Interplay of metal-allyl and metal-metal bonding in dimolybdenum allyl complexes

    SciTech Connect

    John, Kevin D; Martin, Richard L; Obrey, Steven J; Scott, Brian L

    2008-01-01

    Addition of PMe{sub 3} to Mo{sub 2}(allyl){sub 4} afforded Mo{sub 2}(allyl){sub 4}(PMe{sub 3}){sub 2}, in which two of the allyl groups adopt an unprecedented {mu}{sub 2{sup -}}{eta}{sup 1}, {eta}{sup 3} bonding mode; theoretical studies elucidate the role sof the {sigma}- and {pi}-donor ligands in the interplay of metal-allyl and metal-metal bonding.

  16. Integration of Paramagnetic Diruthenium Complexes into an Extended Chain by Heterometallic Metal-Metal Bonds with Diplatinum Complexes.

    PubMed

    Uemura, Kazuhiro; Uesugi, Naoyuki; Matsuyama, Akina; Ebihara, Masahiro; Yoshikawa, Hirofumi; Awaga, Kunio

    2016-07-18

    We successfully obtained a paramagnetic one-dimensional (1D) chain complex [{Ru2(O2CCH3)4}{Pt2(piam)2(NH3)4}2]n(PF6)4n·4nH2O (2; piam = pivalamidate) extended by metal-metal bonds. Compound 2 comprises two types of metal species, ruthenium and platinum, where an acetate-bridged dinuclear ruthenium complex (i.e., [Ru2]) and a pivalamidate-bridged platinum complex (i.e., [Pt2]) are connected by axial metal-metal bonds, forming an attractive quasi-1D infinite chain that can be expressed as -{[Pt2]-[Ru2]-[Pt2]}n-. Such axial metal-metal bonds are attributed to the interaction between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) along the z axis, where both the HOMO in [Pt2(II,II)] and the LUMO in [Ru2(II,II)] are σ* orbitals associated with metal cores. The crystal structure and X-ray photoelectron spectrum for 2 reveal that metal oxidation states are -{[Pt2(II,II)]-[Ru2(II,II)]-[Pt2(II,II)]}n-, where [Ru2(II,II)] can have an electronic configuration of σ(2)π(4)δ(2)δ*(2)π*(2) or σ(2)π(4)δ(2)π*(4). The magnetic susceptibility of 2 has a μeff [∝(χT)(1/2)] value of 2.77 μB per [Pt2(II,II)]-[Ru2(II,II)]-[Pt2(II,II)] unit at 300 K, showing that two unpaired electrons lie on π*(Ru2). Magnetic measurements performed at temperatures of 2-300 K indicate that S = 1 Ru2(II,II) units are weakly antiferromagnetically coupled (zJ = -1.4 cm(-1)) with a large zero-field splitting (D = 221 cm(-1)). PMID:27348516

  17. Asymmetric Schiff bases derived from diaminomaleonitrile and their metal complexes

    NASA Astrophysics Data System (ADS)

    Yang, Jianjie; Shi, Rufei; Zhou, Pei; Qiu, Qiming; Li, Hui

    2016-02-01

    Asymmetric Schiff bases, due to its asymmetric structure, can be used as asymmetric catalyst, antibacterial, and mimic molecules during simulate biological processes, etc. In recent years, research on synthesis and properties of asymmetric Schiff bases have become an increase interest of chemists. This review summarizes asymmetric Schiff bases derived from diaminomaleonitrile (DAMN) and DAMN-based asymmetric Schiff bases metal complexes. Applications of DAMN-based asymmetric Schiff bases are also discussed in this review.

  18. Trianionic pincer and pincer-type metal complexes and catalysts.

    PubMed

    O'Reilly, Matthew E; Veige, Adam S

    2014-09-01

    Trianionic pincer and pincer-type ligands are the focus of this review. Metal ions from across the periodic table, from main group elements, transition metals, and the rare earths, are combined with trianionic pincer ligands to produce some of the most interesting complexes to appear in the literature over the past decade. This review provides a comprehensive examination of the synthesis, characterization, properties, and catalytic applications of trianionic pincer metal complexes. Some of the interesting applications employing trianionic pincer and pincer-type complexes include: (1) catalyzed aerobic oxidation, (2) alkene isomerization, (3) alkene and alkyne polymerization, (4) nitrene and carbene group transfer, (5) fundamental transformations such as oxygen-atom transfer, (6) nitrogen-atom transfer, (7) O2 activation, (8) C-H bond activation, (9) disulfide reduction, and (10) ligand centered storage of redox equivalents (i.e. redox active ligands). Expansion of the architecture, type of donor atoms, chelate ring size, and steric and electronic properties of trianionic pincer ligands has occurred rapidly over the past ten years. This review is structured according to the type of pincer donor atoms that bind to the metal ion. The type of donor atoms within trianionic pincer and pincer-type ligands to be discussed include: NCN(3-), OCO(3-), CCC(3-), redox active NNN(3-), NNN(3-), redox active ONO(3-), ONO(3-), and SNS(3-). Since this is the first review of trianionic pincer and pincer-type ligands, an emphasis is placed on providing the reader with in-depth discussion of synthetic methods, characterization data, and highlights of these complexes as catalysts. PMID:24927219

  19. Group 9 Metal Complexes of meso-Aryl-Substituted Rubyrin.

    PubMed

    Soya, Takanori; Osuka, Atsuhiro

    2015-07-20

    Invited for the cover of this issue are Takanori Soya and Atsuhiro Osuka at Kyoto University. The image depicts Group 9 metal (Co, Rh, and Ir) complexes of meso-aryl-substituted rubyrin and a meteorite approaching to the atmosphere. A large amount of Iridium is often contained in meteorites. Read the full text of the article at 10.1002/chem.201501080. PMID:26042817

  20. Interaction of PiB-derivative metal complexes with beta-amyloid peptides: selective recognition of the aggregated forms.

    PubMed

    Martins, André F; Dias, David M; Morfin, Jean-François; Lacerda, Sara; Laurents, Douglas V; Tóth, Éva; Geraldes, Carlos F G C

    2015-03-27

    Metal complexes are increasingly explored as imaging probes in amyloid peptide related pathologies. We report the first detailed study on the mechanism of interaction between a metal complex and both the monomer and the aggregated form of Aβ1-40 peptide. We have studied lanthanide(III) chelates of two PiB-derivative ligands (PiB=Pittsburgh compound B), L(1) and L(2), differing in the length of the spacer between the metal-complexing DO3A macrocycle (DO3A=1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid) and the peptide-recognition PiB moiety. Surface plasmon resonance (SPR) and saturation transfer difference (STD) NMR spectroscopy revealed that they both bind to aggregated Aβ1-40 (KD =67-160 μM), primarily through the benzothiazole unit. HSQC NMR spectroscopy on the (15) N-labeled, monomer Aβ1-40 peptide indicates nonsignificant interaction with monomeric Aβ. Time-dependent circular dichroism (CD), dynamic light scattering (DLS), and TEM investigations of the secondary structure and of the aggregation of Aβ1-40 in the presence of increasing amounts of the metal complexes provide coherent data showing that, despite their structural similarity, the two complexes affect Aβ fibril formation distinctly. Whereas GdL(1), at higher concentrations, stabilizes β-sheets, GdL(2) prevents aggregation by promoting α-helical structures. These results give insight into the behavior of amyloid-targeted metal complexes in general and contribute to a more rational design of metal-based diagnostic and therapeutic agents for amyloid- associated pathologies. PMID:25712142

  1. Efficiently engineered cell sheet using a complex of polyethylenimine–alginate nanocomposites plus bone morphogenetic protein 2 gene to promote new bone formation

    PubMed Central

    Jin, Han; Zhang, Kai; Qiao, Chunyan; Yuan, Anliang; Li, Daowei; Zhao, Liang; Shi, Ce; Xu, Xiaowei; Ni, Shilei; Zheng, Changyu; Liu, Xiaohua; Yang, Bai; Sun, Hongchen

    2014-01-01

    Regeneration of large bone defects is a common clinical problem. Recently, stem cell sheet has been an emerging strategy in bone tissue engineering. To enhance the osteogenic potential of stem cell sheet, we fabricated bone morphogenetic protein 2 (BMP-2) gene-engineered cell sheet using a complex of polyethylenimine–alginate (PEI–al) nanocomposites plus human BMP-2 complementary(c)DNA plasmid, and studied its osteogenesis in vitro and in vivo. PEI–al nanocomposites carrying BMP-2 gene could efficiently transfect bone marrow mesenchymal stem cells. The cell sheet was made by culturing the cells in medium containing vitamin C for 10 days. Assays on the cell culture showed that the genetically engineered cells released the BMP-2 for at least 14 days. The expression of osteogenesis-related gene was increased, which demonstrated that released BMP-2 could effectively induce the cell sheet osteogenic differentiation in vitro. To further test the osteogenic potential of the cell sheet in vivo, enhanced green fluorescent protein or BMP-2-producing cell sheets were treated on the cranial bone defects. The results indicated that the BMP-2-producing cell sheet group was more efficient than other groups in promoting bone formation in the defect area. Our results suggested that PEI–al nanocomposites efficiently deliver the BMP-2 gene to bone marrow mesenchymal stem cells and that BMP-2 gene-engineered cell sheet is an effective way for promoting bone regeneration. PMID:24855355

  2. Metal Complexes And Free Radical Toxins Produced By Pfiesteria Piscicida

    SciTech Connect

    Moeller, P.D.R.; Beauchesne, K.R.; Huncik, K.M.; Davis, W.C.; Christopher, S.J.; Riggs-Gelasco, P.; Gelasco, A.K.

    2009-06-03

    Metal-containing organic toxins produced by Pfiesteria piscicida were characterized, for the first time, by corroborating data obtained from five distinct instrumental methods: nuclear magnetic resonance spectroscopy (NMR), inductively coupled plasma mass spectrometry (ICPMS), liquid chromatography particle beam glow discharge mass spectrometry (LC/PB-GDMS), electron paramagnetic resonance spectroscopy (EPR), and X-ray absorption spectroscopy (XAS). The high toxicity of the metal-containing toxins is due to metal-mediated free radical production. This mode of activity explains the toxicity of Pfiesteria, as well as previously reported difficulty in observing the molecular target, due to the ephemeral nature of radical species. The toxins are highly labile in purified form, maintaining activity for only 2-5 days before all activity is lost. The multiple toxin congeners in active extracts are also susceptible to decomposition in the presence of white light, pH variations, and prolonged heat. These findings represent the first formal isolation and characterization of a radical forming toxic organic-ligated metal complex isolated from estuarine/marine dinoflagellates. These findings add to an increased understanding regarding the active role of metals interacting with biological systems in the estuarine environment, as well as their links and implications to human health.

  3. Metal Complexes and Free Radical Toxins Produced by Pfiesteria piscicida

    SciTech Connect

    Moeller,P.; Beauchesne, K.; Huncik, K.; Davis, W.; Christopher, S.; Riggs-Gelasco, P.; Gelasco, A.

    2007-01-01

    Metal-containing organic toxins produced by Pfiesteria piscicida were characterized, for the first time, by corroborating data obtained from five distinct instrumental methods: nuclear magnetic resonance spectroscopy (NMR), inductively coupled plasma mass spectrometry (ICP-MS), liquid chromatography particle beam glow discharge mass spectrometry (LC/PB-GDMS), electron paramagnetic resonance spectroscopy (EPR), and X-ray absorption spectroscopy (XAS). The high toxicity of the metal-containing toxins is due to metal-mediated free radical production. This mode of activity explains the toxicity of Pfiesteria, as well as previously reported difficulty in observing the molecular target, due to the ephemeral nature of radical species. The toxins are highly labile in purified form, maintaining activity for only 2-5 days before all activity is lost. The multiple toxin congeners in active extracts are also susceptible to decomposition in the presence of white light, pH variations, and prolonged heat. These findings represent the first formal isolation and characterization of a radical forming toxic organic-ligated metal complex isolated from estuarine/marine dinoflagellates. These findings add to an increased understanding regarding the active role of metals interacting with biological systems in the estuarine environment, as well as their links and implications to human health.

  4. Mechanics of metal-catecholate complexes: the roles of coordination state and metal types.

    PubMed

    Xu, Zhiping

    2013-01-01

    There have been growing evidences for the critical roles of metal-coordination complexes in defining structural and mechanical properties of unmineralized biological materials, including hardness, toughness, and abrasion resistance. Their dynamic (e.g. pH-responsive, self-healable, reversible) properties inspire promising applications of synthetic materials following this concept. However, mechanics of these coordination crosslinks, which lays the ground for predictive and rational material design, has not yet been well addressed. Here we present a first-principles study of representative coordination complexes between metals and catechols. The results show that these crosslinks offer stiffness and strength near a covalent bond, which strongly depend on the coordination state and type of metals. This dependence is discussed by analyzing the nature of bonding between metals and catechols. The responsive mechanics of metal-coordination is further mapped from the single-molecule level to a networked material. The results presented here provide fundamental understanding and principles for material selection in metal-coordination-based applications. PMID:24107799

  5. Battery with a microcorrugated, microthin sheet of highly porous corroded metal

    DOEpatents

    LaFollette, Rodney M.

    2005-09-27

    Microthin sheet technology is disclosed by which superior batteries are constructed which, among other things, accommodate the requirements for high load rapid discharge and recharge, mandated by electric vehicle criteria. The microthin sheet technology has process and article overtones and can be used to form thin electrodes used in batteries of various kinds and types, such as spirally-wound batteries, bipolar batteries, lead acid batteries silver/zinc batteries, and others. Superior high performance battery features include: (a) minimal ionic resistance; (b) minimal electronic resistance; (c) minimal polarization resistance to both charging and discharging; (d) improved current accessibility to active material of the electrodes; (e) a high surface area to volume ratio; (f) high electrode porosity (microporosity); (g) longer life cycle; (h) superior discharge/recharge characteristics; (i) higher capacities (A.multidot.hr); and (j) high specific capacitance.

  6. Numerical Modeling of Magnesium Alloy Sheet Metal Forming at Elevated Temperature

    SciTech Connect

    Lee, Myeong-Han; Oh, Soo-Ik; Kim, Heon-Young; Kim, Hyung-Jong; Choi, Yi-Chun

    2007-05-17

    The development of light-weight vehicle is in great demand for enhancement of fuel efficiency and dynamic performance. The vehicle weight can be reduced effectively by using lightweight materials such as magnesium alloys. However, the use of magnesium alloys in sheet forming processes is still limited because of their low formability at room temperature and the lack of understanding of the forming process of magnesium alloys at elevated temperatures. In this study, uniaxial tensile tests of the magnesium alloy AZ31B-O at various temperatures were performed to evaluate the mechanical properties of this alloy relevant for forming of magnesium sheets. To construct a FLD (forming limit diagram), a forming limit test were conducted at temperature of 100 and 200 deg. C. For the evaluation of the effects of the punch temperature on the formability of a rectangular cup drawing with AZ31B-O, numerical modelling was conducted. The experiment results indicate that the stresses and possible strains of AZ31B-O sheets largely depend on the temperature. The stress decreases with temperature increase. Also, the strain increase with temperature increase. The numerical modelling results indicate that formability increases with the decrease in the punch temperature at the constant temperature of the die and holder.

  7. Acute metal toxicology of olfaction in coho salmon: behavior, receptors, and odor-metal complexation

    SciTech Connect

    Rehnberg, B.C.; Schreck, C.B.

    1986-04-01

    The objective of this research was to determine the acute toxicities of mercury (Hg), copper (Cu), and zinc (Zn) to coho salmon olfaction. The authors used a behavioral assay of olfaction based on an avoidance reaction to L-serine in a two-choice Y-trough. A second objective was to gain some understanding of the mechanism of metal-induced olfactory inhibition by observing how metals affect the binding of L-serine to its olfactory cell membrane receptor. They have also taken the novel approach of addressing olfactory toxicology from the perspective of the odor molecule by considering metal speciation and metal-serpine complexation chemistry on the basis of chemical equilibrium computations.

  8. Microstructural and failure characteristics of metal-lntermetallic layered sheet composites

    NASA Astrophysics Data System (ADS)

    Alman, D. E.; Rawers, J. C.; Hawk, J. A.

    1995-03-01

    A processing technique for the fabrication of layered metal-intermetallic composites is presented, in which a self-propagating, high-temperature synthesis reaction (SHS) was initiated at the interface between dissimilar elemental metal foils. The resultant composite microstructure consisted of a fully dense, well-bonded metal-intermetallic layered composite. In this United States Bureau of Mines study, metal (Fe, Ni, or Ti) foils were reacted with Al foils to produce metal-metal aluminide layered composites. Tensile tests conducted at room temperature revealed that composites could be designed to behave in a high-strength and high-toughness manner by altering the thicknesses of the starting elemental foils. Failure characteristics revealed that the processes that govern ductile vs brittle behavior of the composites occur early in the fracture.

  9. Metal-dithiocarbamate complexes: chemistry and biological activity.

    PubMed

    Hogarth, Graeme

    2012-10-01

    Dithiocarbamates are highly versatile mono-anionic chelating ligands which form stable complexes with all the transition elements and also the majority of main group, lanthanide and actinide elements. They are easily prepared from primary or secondary amines and depending upon the nature of the cation can show good solubility in water or organic solvents. They are related to the thiuram disulfides by a one-electron redox process (followed by dimerisation via sulfur-sulfur bond formation) which is easily carried out upon addition of iodide or ferric salts. Dithiocarbamates are lipophilic and generally bind to metals in a symmetrical chelate fashion but examples of other coordination modes are known, the monodentate and anisobidentate modes being most prevalent. They are planar sterically non-demanding ligands which can be electronically tuned by judicious choice of substituents. They stabilize metals in a wide range of oxidation states, this being attributed to the existence of soft dithiocarbamate and hard thioureide resonance forms, the latter formally resulting from delocalization of the nitrogen lone pair onto the sulfurs, and consequently their complexes tend to have a rich electrochemistry. Tetraethyl thiuramdisulfide (disulfiram or antabuse) has been used as a drug since the 1950s but it is only recently that dithiocarbamate complexes have been explored within the medicinal domain. Over the past two decades anti-cancer activity has been noted for gold and copper complexes, technetium and copper complexes have been used in PET-imaging, dithiocarbamates have been used to treat acute cadmium poisoning and copper complexes also have been investigated as SOD inhibitors. PMID:22931592

  10. Water clusters in mixed ionic complexes with metal dipicolinate anions

    NASA Astrophysics Data System (ADS)

    Das, Babulal; Baruah, Jubaraj B.

    2013-02-01

    Formations of three different types of hydrogen-bonded water clusters in the interstices of mixed ionic complexes with metal dipicolinate anions are reported. In the complex [Co(phen)2(H2O)2][Zn(dpa)2]ṡ7H2O (1) (where phen = 1,10-phenanthroline, dpa = dipicolinate), both the cation and anion is hydrophilic in nature, exhibits an unusual 2D infinite cyclic water decamers (H2O)10 stabilized by four identical zinc dipicolinato complex anions. Modulating the cationic unit to a hydrophobic environment by replacing the aqua ligand with 2,2'-bipyridine ligand the water cluster can be modified. The complex [Ni(phen)2ṡbpy][Co(dpa)2]ṡ8H2O (2) (where bpy = 2,2'-bipyridine) has unprecedented discrete hydrogen bonded hexadecameric (H2O)16 water clusters encapsulated between eight anionic units. A rare wavelike infinite water chain (H2O)n is observed in complex [Co(phen)3][Mn(dpa)2]ṡ12H2O (3), in this case the water chain fills the interstitial space created by packing of large hydrophilic anionic units and hydrophobic cationic units. The reported clusters are indefinitely stable in their respective complex at ambient temperature, but the water loss is irreversible when thermally decomposed.

  11. Heinrich events modeled with a coupled complex ice sheet-climate model

    NASA Astrophysics Data System (ADS)

    Ziemen, Florian; Rodehacke, Christian; Mikolajewicz Mikolajewicz, Uwe

    2013-04-01

    We investigate glacial climate variability with a coupled ice sheet model (ISM) - atmosphere-ocean-vegetation general circulation model (AOVGCM) system, focusing on one of the most prominent features of glacial climate variability, the Heinrich events. Modeling past climates and periods of past climate change is an important test of the capability of climate models to correctly represent future climate changes. Only if we can correctly represent past climates and climate changes, we can be confident about our predictions of future climate changes. We show results from two experiments: (1) a steady-state LGM experiment where the ice sheet model is accelerated by a factor of 10 compared to the climate model covering 30 kyrs in the ISM (3 kyrs in the AOVGCM) and (2) a synchronously coupled experiment focusing in on one ice sheet collapse covering 3.2 kyrs in both models. For the experiments, we coupled a modified version of the Parallel Ice Sheet Model (mPISM) bidirectionally with the AOVGCM ECHAM5/MPIOM/LPJ. ECHAM5 and LPJ were run in T31 resolution (~ 3.75°), MPIOM on a grid with a nominal resolution of 3° and poles over Greenland and Antarctica, mPISM on a 20 km grid covering most of the northern hemisphere. In the models, as well as in the coupling, no flux correction or anomaly maps are applied. The ice sheet surface mass balance is computed using a positive degree day scheme with lapse rate correction and height desertification effect. In the experiments, the surges of the Hudson Strait Ice Stream reach discharge rates of 60000 m3/s and show a typical recurrence interval of 7 kyrs, matching the basic characteristics for Heinrich events inferred from proxy data. The surges are consequences of an internal instability mechanism suggested by MacAyeal (1993) and various parts of the ice sheets show repeated surging. The large ice discharge during a surge of the Hudson Strait Ice Stream causes an expansion of the sea ice cover in the Labrador Sea and the adjacent

  12. Preparation of molecule-based magnets from metal thiocyanate complexes

    NASA Astrophysics Data System (ADS)

    Shurdha, Endrit

    2011-07-01

    The study of magnetism has enabled many technological applications that are ubiquitous in our daily life. Presently, most of the magnetic applications use metal/metal oxide magnets, which are readily available. In the last few decades, research has focused on a new class of magnetic materials, molecule-based magnets. This class of materials has diverse physical and chemical properties, which can be controlled by synthetic methods. Utilizing a variety of metals and ligands, researchers can control and fine tune various aspects of these magnetic materials, such as structural connections and possibly magnetic properties. Tetracyanoethylene (TCNE) is widely used in the preparation of molecule-based magnets due to its unique electronic and connectivity properties. TCNE has multiple binding sites, which gives it a diverse range of structural connectivity. Also, TCNE can be reduced easily to form a radical anion, which facilitates spin communication between metal centers allowing isolation of magnetically ordered systems such as V(TCNE)2 (a room temperature molecule-based magnet). M-TCNE magnets are prepared from solvated MII complexes or a metal carbonyl and TCNE in dichloromethane. The reaction involves the oxidation of the MII to MIII and the reduction of TCNE. More coordinating solvents used to prepare TCNE molecule-based magnets facilitate the dimerization of the radical TCNE, which does not allow for long-range ordering. The work presented herein will show the synthesis of MII thiocyanate complexes and their reaction with TCNE radical anion to yield M(TCNE)[C4(CN)8]1/2, which is obtained through ligand substitution between TCNE and thiocyanate. The development of new MII thiocyanate complexes through MII(NCMe)x(BF4)2 (x = 4, 6) in acetone, acetonitrile, and tetrahydrofuran will be the focus of Chapter 2. Also, in Chapter 2, structural and magnetic characterization will be discussed. Few of the metal thiocyanate complexes exhibit antiferromagnetic ordering at

  13. Metal–Metal Bonding in Uranium–Group 10 Complexes

    PubMed Central

    2016-01-01

    Heterobimetallic complexes containing short uranium–group 10 metal bonds have been prepared from monometallic IUIV(OArP-κ2O,P)3 (2) {[ArPO]− = 2-tert-butyl-4-methyl-6-(diphenylphosphino)phenolate}. The U–M bond in IUIV(μ-OArP-1κ1O,2κ1P)3M0, M = Ni (3–Ni), Pd (3–Pd), and Pt (3–Pt), has been investigated by experimental and DFT computational methods. Comparisons of 3–Ni with two further U–Ni complexes XUIV(μ-OArP-1κ1O,2κ1P)3Ni0, X = Me3SiO (4) and F (5), was also possible via iodide substitution. All complexes were characterized by variable-temperature NMR spectroscopy, electrochemistry, and single crystal X-ray diffraction. The U–M bonds are significantly shorter than any other crystallographically characterized d–f-block bimetallic, even though the ligand flexes to allow a variable U–M separation. Excellent agreement is found between the experimental and computed structures for 3–Ni and 3–Pd. Natural population analysis and natural localized molecular orbital (NLMO) compositions indicate that U employs both 5f and 6d orbitals in covalent bonding to a significant extent. Quantum theory of atoms-in-molecules analysis reveals U–M bond critical point properties typical of metallic bonding and a larger delocalization index (bond order) for the less polar U–Ni bond than U–Pd. Electrochemical studies agree with the computational analyses and the X-ray structural data for the U–X adducts 3–Ni, 4, and 5. The data show a trend in uranium–metal bond strength that decreases from 3–Ni down to 3–Pt and suggest that exchanging the iodide for a fluoride strengthens the metal–metal bond. Despite short U–TM (transition metal) distances, four other computational approaches also suggest low U–TM bond orders, reflecting highly transition metal localized valence NLMOs. These are more so for 3–Pd than 3–Ni, consistent with slightly larger U–TM bond orders in the latter. Computational studies of the model systems (PH3)3MU(OH)3I

  14. Infrared Spectroscopy of Metal Ion Complexes: Models for Metal Ligand Interactions and Solvation

    NASA Astrophysics Data System (ADS)

    Duncan, Michael

    2006-03-01

    Weakly bound complexes of the form M^+-Lx (M=Fe, Ni, Co, etc.; L=CO2, C2H2, H2O, benzene, N2) are prepared in supersonic molecular beams by laser vaporization in a pulsed-nozzle cluster source. These species are mass analyzed and size-selected in a reflectron time-of-flight mass spectrometer. Clusters are photodissociated at infrared wavelengths with a Nd:YAG pumped infrared optical parametric oscillator/amplifier (OPO/OPA) laser or with a tunable infrared free-electron laser. M^+-(CO2)x complexes absorb near the free CO2 asymmetric stretch near 2349 cm-1 but with an interesting size dependent variation in the resonances. Small clusters have blue-shifted resonances, while larger complexes have additional bands due to surface CO2 molecules not attached to the metal. M^+(C2H2)n complexes absorb near the C-H stretches in acetylene, but resonances in metal complexes are red-shifted with repect to the isolated molecule. Ni^+ and Co^+ complexes with acetylene undergo intracluster cyclization reactions to form cyclobutadiene. Transition metal water complexes are studied in the O-H stretch region, and partial rotational structure can be measured. M^+(benzene) and M^+(benzene)2 ions (M=V, Ti, Al) represent half-sandwich and sandwich species, whose spectra are measured near the free benzene modes. These new IR spectra and their assignments will be discussed as well as other new IR spectra for similar complexes.

  15. Structural models for alkali-metal complexes of polyacetylene

    NASA Astrophysics Data System (ADS)

    Murthy, N. S.; Shacklette, L. W.; Baughman, R. H.

    1990-02-01

    Structural models for a stage-2 complex are proposed for polyacetylene doped with less than about 0.1 potassium or rubidium atoms per carbon. These structures utilize as a basic motif an alkali-metal column surrounded by four planar-zig-zag polyacetylene chains, a structure found at the highest dopant levels. In the new stage-2 structures, each polyacetylene chain neighbors only one alkali-metal column, so the phase contains four polymer chains per alkali-metal column. Basic structural aspects for stage-1 and stage-2 structures are now established for both potassium- and rubidium-doped polyacetylene. X-ray-diffraction and electrochemical data show that undoped and doped phases coexist at low dopant concentrations (<0.06 K atom per C). X-ray-diffraction data, down to a Bragg spacing of 1.3 Å, for polyacetylene heavily doped with potassium (0.125-0.167 K atom per C) is fully consistent with our previously proposed stage-1 tetragonal unit cell containing two polyacetylene chains per alkali-metal column. There is no evidence for our samples requiring a distortion to a monoclinic unit cell as reported by others for heavily doped samples. The nature of structural transformations and the relationship between structure and electronic properties are discussed for potassium-doped polyacetylene.

  16. 40 CFR 721.4680 - Metal salts of complex inorganic oxyacids (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Metal salts of complex inorganic... New Uses for Specific Chemical Substances § 721.4680 Metal salts of complex inorganic oxyacids... substances identified generically as metal salts of complex inorganic oxyacids (PMNs P-89-576 and...

  17. 40 CFR 721.4680 - Metal salts of complex inorganic oxyacids (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Metal salts of complex inorganic... New Uses for Specific Chemical Substances § 721.4680 Metal salts of complex inorganic oxyacids... substances identified generically as metal salts of complex inorganic oxyacids (PMNs P-89-576 and...

  18. 40 CFR 721.4680 - Metal salts of complex inorganic oxyacids (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Metal salts of complex inorganic... New Uses for Specific Chemical Substances § 721.4680 Metal salts of complex inorganic oxyacids... substances identified generically as metal salts of complex inorganic oxyacids (PMNs P-89-576 and...

  19. Chemical bonding of hydrogen molecules to transition metal complexes

    SciTech Connect

    Kubas, G.J.

    1990-01-01

    The complex W(CO){sub 3}(PR{sub 3}){sub 2}(H{sub 2}) (CO = carbonyl; PR{sub 3} = organophosphine) was prepared and was found to be a stable crystalline solid under ambient conditions from which the hydrogen can be reversibly removed in vacuum or under an inert atmosphere. The weakly bonded H{sub 2} exchanges easily with D{sub 2}. This complex represents the first stable compound containing intermolecular interaction of a sigma-bond (H-H) with a metal. The primary interaction is reported to be donation of electron density from the H{sub 2} bonding electron pair to a vacant metal d-orbital. A series of complexes of molybdenum of the type Mo(CO)(H{sub 2})(R{sub 2}PCH{sub 2}CH{sub 2}PR{sub 2}){sub 2} were prepared by varying the organophosphine substitutent to demonstrate that it is possible to bond either dihydrogen or dihydride by adjusting the electron-donating properties of the co-ligands. Results of infrared and NMR spectroscopic studies are reported. 20 refs., 5 fig.

  20. Complex metal borohydrides: multifunctional materials for energy storage and conversion.

    PubMed

    Mohtadi, Rana; Remhof, Arndt; Jena, Puru

    2016-09-01

    With the limited supply of fossil fuels and their adverse effect on the climate and the environment, it has become a global priority to seek alternate sources of energy that are clean, abundant, and sustainable. While sources such as solar, wind, and hydrogen can meet the world's energy demand, considerable challenges remain to find materials that can store and/or convert energy efficiently. This topical review focuses on one such class of materials, namely, multi-functional complex metal borohydrides that not only have the ability to store sufficient amount of hydrogen to meet the needs of the transportation industry, but also can be used for a new generation of metal ion batteries and solar cells. We discuss the material challenges in all these areas and review the progress that has been made to address them, the issues that still need to be resolved and the outlook for the future. PMID:27384871

  1. Exciton complexes in low dimensional transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Thilagam, A.

    2014-08-01

    We examine the excitonic properties of layered configurations of low dimensional transition metal dichalcogenides (LTMDCs) using the fractional dimensional space approach. The binding energies of the exciton, trion, and biexciton in LTMDCs of varying layers are analyzed, and linked to the dimensionality parameter α, which provides insight into critical electro-optical properties (relative oscillator strength, absorption spectrum, exciton-exciton interaction) of the material systems. The usefulness of α is highlighted by its independence of the physical mechanisms underlying the confinement effects of geometrical structures. Our estimates of the binding energies of exciton complexes for the monolayer configuration of transition metal dichalcogenides suggest a non-collinear structure for the trion and a positronium-molecule-like square structure for the biexciton.

  2. Exciton complexes in low dimensional transition metal dichalcogenides

    SciTech Connect

    Thilagam, A.

    2014-08-07

    We examine the excitonic properties of layered configurations of low dimensional transition metal dichalcogenides (LTMDCs) using the fractional dimensional space approach. The binding energies of the exciton, trion, and biexciton in LTMDCs of varying layers are analyzed, and linked to the dimensionality parameter α, which provides insight into critical electro-optical properties (relative oscillator strength, absorption spectrum, exciton-exciton interaction) of the material systems. The usefulness of α is highlighted by its independence of the physical mechanisms underlying the confinement effects of geometrical structures. Our estimates of the binding energies of exciton complexes for the monolayer configuration of transition metal dichalcogenides suggest a non-collinear structure for the trion and a positronium-molecule-like square structure for the biexciton.

  3. Coordination Programming of Two-Dimensional Metal Complex Frameworks.

    PubMed

    Maeda, Hiroaki; Sakamoto, Ryota; Nishihara, Hiroshi

    2016-03-22

    Since the discovery of graphene, two-dimensional materials with atomic thickness have attracted much attention because of their characteristic physical and chemical properties. Recently, coordination nanosheets (CONASHs) came into the world as new series of two-dimensional frameworks, which can show various functions based on metal complexes formed by numerous combinations of metal ions and ligands. This Feature Article provides an overview of recent progress in synthesizing CONASHs and in elucidating their intriguing electrical, sensing, and catalytic properties. We also review recent theoretical studies on the prediction of the unique electronic structures, magnetism, and catalytic ability of materials based on CONASHs. Future prospects for applying CONASHs to novel applications are also discussed. PMID:26915925

  4. Complex metal borohydrides: multifunctional materials for energy storage and conversion

    NASA Astrophysics Data System (ADS)

    Mohtadi, Rana; Remhof, Arndt; Jena, Puru

    2016-09-01

    With the limited supply of fossil fuels and their adverse effect on the climate and the environment, it has become a global priority to seek alternate sources of energy that are clean, abundant, and sustainable. While sources such as solar, wind, and hydrogen can meet the world’s energy demand, considerable challenges remain to find materials that can store and/or convert energy efficiently. This topical review focuses on one such class of materials, namely, multi-functional complex metal borohydrides that not only have the ability to store sufficient amount of hydrogen to meet the needs of the transportation industry, but also can be used for a new generation of metal ion batteries and solar cells. We discuss the material challenges in all these areas and review the progress that has been made to address them, the issues that still need to be resolved and the outlook for the future.

  5. Visualization of internal flows of complex geometry using three-dimensional dynamical laser sheets

    NASA Astrophysics Data System (ADS)

    Prenel, J.-P.; Porcar, R.; Diemunsch, G.; Hostache, G.

    1986-12-01

    An extension of a previous visualization method (Prenel et al., 1986) is described in which three-dimensional light sheets obtained by sweeping of a laser beam are used to analyze internal flows of arbitrary geometry, with application to the testing of the ducts of thermal machines. The example of a variable circular test section with an elbow bend demonstrates the ability of the present method to successfully follow the evolution of a fluid in a channel of arbitrary form. Various aerodynamic parameters including position and dimension of the vortex flow, and dead zones and recirculations, are easily analyzed.

  6. Metal complex modified azo polymers for multilevel organic memories

    NASA Astrophysics Data System (ADS)

    Ma, Yong; Chen, Hong-Xia; Zhou, Feng; Li, Hua; Dong, Huilong; Li, You-Yong; Hu, Zhi-Jun; Xu, Qing-Feng; Lu, Jian-Mei

    2015-04-01

    Multilevel organic memories have attracted considerable interest due to their high capacity of data storage. Despite advances, the search for multilevel memory materials still remains a formidable challenge. Herein, we present a rational design and synthesis of a class of polymers containing an azobenzene-pyridine group (PAzo-py) and its derivatives, for multilevel organic memory storage. In this design, a metal complex (M(Phen)Cl2, M = Cu, Pd) is employed to modify the HOMO-LUMO energy levels of azo polymers, thereby converting the memory state from binary to ternary. More importantly, this approach enables modulating the energy levels of azo polymers by varying the coordination metal ions. This makes the achievement of high performance multilevel memories possible. The ability to tune the bandgap energy of azo polymers provides new exciting opportunities to develop new materials for high-density data storage.Multilevel organic memories have attracted considerable interest due to their high capacity of data storage. Despite advances, the search for multilevel memory materials still remains a formidable challenge. Herein, we present a rational design and synthesis of a class of polymers containing an azobenzene-pyridine group (PAzo-py) and its derivatives, for multilevel organic memory storage. In this design, a metal complex (M(Phen)Cl2, M = Cu, Pd) is employed to modify the HOMO-LUMO energy levels of azo polymers, thereby converting the memory state from binary to ternary. More importantly, this approach enables modulating the energy levels of azo polymers by varying the coordination metal ions. This makes the achievement of high performance multilevel memories possible. The ability to tune the bandgap energy of azo polymers provides new exciting opportunities to develop new materials for high-density data storage. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00871a

  7. Investigations of charge-separation processes in metal complexes

    SciTech Connect

    Crosby, G.A.

    1991-02-18

    The major thrust of the research has been the quantification of the excited states of inorganic complexes that display potential for mediating charge-separation processes. Investigations of copper(1) mixed-ligand complexes have been completed. Non-equilibrated emitting states have been assigned. Chemical tuning of the emission energy by modifying the basicity of the donor ligand on the metal has been achieved. Structure-property relationships have been defined for crystalline complexes of zinc containing both diimine and monothiol ligands. Correlation of the spectral shifts with the rotations of the thiol phenyl rings in different crystal phases has been shown by comparing with extended Huckel calculations and x-ray structures. Complexes of zinc containing diimine and dithiol ligands are shown to be polynuclear species. A trinuclear species can be forced to assume a binuclear structure by incorporating other non-coordinating ligands into the lattice. The transformation is accompanied by substantial photophysical changes. Syntheses and x-ray structure determinations of platinum(2) complexes containing diimine ligands only, both diimine and dithiol ligands, and dithiol ligands only have been completed. An unusual platinum(3) bis(dithiol) species has been obtained and its structure determined. Investigations of the emission spectra of bis(bipyridine)platinum(2) have revealed the existence of multiple emitting states with both ligand-localized and charge- transfer characteristics.

  8. Springback control in sheet metal bending by laser-assisted bending: Experimental analysis, empirical and neural network modelling

    NASA Astrophysics Data System (ADS)

    Gisario, A.; Barletta, M.; Conti, C.; Guarino, S.

    2011-12-01

    The present investigation deals with the control of springback phenomena in the bending process of aluminium sheets by hybrid forming process. Metal substrates were pre-bent to nominal shapes on a built-ad-hoc mould after being constrained on it. Then, they were post-treated by high power diode laser to prevent the deformation of the pre-bent sheets after the release of the constraints. The extent of springback phenomena were estimated by measuring the difference between the nominal bending angles and those achieved on the unconstrained substrates after laser post-treatments. Analytical models, aimed at predicting the springback by varying the setting of the operational parameters of the forming process, were developed. Neural network solutions were also proposed to improve the matching between experimental and numerical data, with the Multi-Layer Perceptrons trained by Back-Propagation algorithm being the fittest one. On this basis, a control modulus very useful to practitioners for automation and simulation purposes was built-on.

  9. Oxygen activation with transition metal complexes in aqueous solution

    SciTech Connect

    Bakac, Andreja

    2010-04-12

    Coordination to transition-metal complexes changes both the thermodynamics and kinetics of oxygen reduction. Some of the intermediates (superoxo, hydroperoxo, and oxo species) are close analogues of organic oxygen-centered radicals and peroxides (ROO{sm_bullet}, ROOH, and RO{sm_bullet}). Metal-based intermediates are typically less reactive, but more persistent, than organic radicals, which makes the two types of intermediates similarly effective in their reactions with various substrates. The self-exchange rate constant for hydrogen-atom transfer for the couples Cr{sub aq}OO{sup 2+}/Cr{sub aq}OOH{sup 2+} and L{sup 1}(H{sub 2}O)RhOO{sup 2+}/L{sup 1}(H{sub 2}O)RhOOH{sup 2+} was estimated to be 10{sup 1 {+-} 1} M{sup -1} s{sup -1}. The use of this value in the simplified Marcus equation for the Cr{sub aq}O{sup 2+}/Cr{sub aq}OOH{sup 2+} cross reaction provided an upper limit k{sub CrO,CrOH} {le} 10{sup (-2{+-}1)} M{sup -1} s{sup -1} for Cr{sub aq}O{sup 2+}/Cr{sub aq}OH{sup 2+} self-exchange. Even though superoxo complexes react very slowly in bimolecular self-reactions, extremely fast cross reactions with organic counterparts, i.e., acylperoxyl radicals, have been observed. Many of the intermediates generated by the interaction of O{sub 2} with reduced metal complexes can also be accessed by alternative routes, both thermal and photochemical.

  10. Chemistry and Properties of Complex Intermetallics from Metallic Fluxes

    SciTech Connect

    Kanatzidis, Mercouri G.

    2015-03-28

    This project investigated the reaction chemistry and synthesis of new intermetallic materials with complex compositions and structures using metallic fluxes as solvents. It was found that the metallic fluxes offer several key advantages in facilitating the formation and crystal growth of new materials. The fluxes mostly explored were liquid aluminum, gallium and indium. The main purpose of this project was to exploit the potential of metallic fluxes as high temperature solvent for materials discovery in the broad class of intermetallics. This work opened new paths to compound formation. We discovered many new Si (or Ge)-based compounds with novel structures, bonding and physicochemical properties. We created new insights about the reaction chemistry that is responsible for stabilizing the new materials. We also studied the structural and compositional relationships to understand their properties. We investigated the use of Group-13 metals Al, Ga and In as solvents and have generated a wide variety of new results including several new ternary and quaternary materials with fascinating structures and properties as well as new insights as to how these systems are stabilized in the fluxes. The project focused on reactions of metals from the rare earth element family in combination with transition metals with Si and Ge. For example molten gallium has serves both as a reactive and non-reactive solvent in the preparation and crystallization of intermetallics in the system RE/M/Ga/Ge(Si). Molten indium behaves similarly in that it too is an excellent reaction medium, but it gives compounds that are different from those obtained from gallium. Some of the new phase identified in the aluminide class are complex phases and may be present in many advanced Al-matrix alloys. Such phases play a key role in determining (either beneficially or detrimentally) the mechanical properties of advanced Al-matrix alloys. This project enhanced our basic knowledge of the solid state chemistry

  11. APPROACHING THE HARTREE-FOCK LIMIT FOR ORGANOTRANSITION METAL COMPLEXES

    SciTech Connect

    Schaefer, III., Henry F.

    1980-09-01

    In theoretical studies of the electronic structure of organometallic complexes, the choice of basis set is critical, much more so than for analogous studies of molecules containing only H, C, N, and O. This problem is discussed in light of structural predictions for the transition metal hydrides MH, MH{sub 2}, and MH{sub 4}, for the fluorides MF{sub 2} and MF{sub 3}, for Ni(CO){sub 4}, Ni(C{sub 2}H{sub 4}){sub 3}, (CO){sub 3}NiCH{sub 2} , and Ni(C{sub 5}H{sub 5}){sub 2}.

  12. Long tailed cage amines: Synthesis, metal complexation, and structure

    SciTech Connect

    Dittrich, Birger; Harrowfield, Jack M.; Koutsantonis, George A.; Nealon, Gareth L.; Skelton, Brian W.

    2011-12-09

    The generation of amphiphiles derived from macrobicyclic hexamines of the 'sarcophagine' class can be prepared through efficient and selective reactions involving the reductive alkylation, using long-chain aldehydes, of amino-functionalized sarcophagines when bound to Cu(II) or Mg(II). The Mg(II) pathway is particularly convenient for the ultimate isolation of the free ligands, which can then be used to form metalloamphiphiles with a variety of metal ions. Structural studies have been made of one of the free (protonated) ligands and some of their complexes.

  13. Combined crystal plasticity and phase-field method for recrystallization in a process chain of sheet metal production

    NASA Astrophysics Data System (ADS)

    Vondrous, Alexander; Bienger, Pierre; Schreijäg, Simone; Selzer, Michael; Schneider, Daniel; Nestler, Britta; Helm, Dirk; Mönig, Reiner

    2015-02-01

    In sheet metal production, a typical process chain contains hot rolling, cold rolling and annealing as a sequence of consecutive processing steps. We investigate the grain structure evolution of body centered cubic low carbon steel and focus on recrystallization, by employing different computational methods which operate across the process chain and across length scales. In particular, we combine finite element crystal plasticity with phase-field simulations to study the effect of deformation of the grain structure by hot and cold rolling on recrystallization during annealing. The overall goal is to represent the most important technological quantities such as texture evolution and the fraction of recrystallization. The results of grain quantities are validated by a comparison of the orientation distribution functions with experimental electron backscatter measurements. The coupling of the simulation methods has shown that the effects of recrystallization can be recovered well, depending on the preceding processing conditions.

  14. Analysis of hardening behavior of sheet metals by a new simple shear test method taking into account the Bauschinger effect

    NASA Astrophysics Data System (ADS)

    Bang, Sungsik; Rickhey, Felix; Kim, Minsoo; Lee, Hyungyil; Kim, Naksoo

    2013-12-01

    In this study we establish a process to predict hardening behavior considering the Bauschinger effect for zircaloy-4 sheets. When a metal is compressed after tension in forming, the yield strength decreases. For this reason, the Bauschinger effect should be considered in FE simulations of spring-back. We suggested a suitable specimen size and a method for determining the optimum tightening torque for simple shear tests. Shear stress-strain curves are obtained for five materials. We developed a method to convert the shear load-displacement curve to the effective stress-strain curve with FEA. We simulated the simple shear forward/reverse test using the combined isotropic/kinematic hardening model. We also investigated the change of the load-displacement curve by varying the hardening coefficients. We determined the hardening coefficients so that they follow the hardening behavior of zircaloy-4 in experiments.

  15. A Straightforward Electrochemical Approach to Imine- and Amine-bisphenolate Metal Complexes with Facile Control Over Metal Oxidation State.

    PubMed

    Chapman, Michael R; Henkelis, Susan E; Kapur, Nikil; Nguyen, Bao N; Willans, Charlotte E

    2016-08-01

    Synthetic methods to prepare organometallic and coordination compounds such as Schiff-base complexes are diverse, with the route chosen being dependent upon many factors such as metal-ligand combination and metal oxidation state. In this work we have shown that electrochemical methodology can be employed to synthesize a variety of metal-salen/salan complexes which comprise diverse metal-ligand combinations and oxidation states. Broad application has been demonstrated through the preparation of 34 complexes under mild and ambient conditions. Unprecedented control over metal oxidation state (M(II/III/IV) where M=Fe, Mn) is presented by simple modification of reaction conditions. Along this route, a general protocol-switch is described which allows access to analytically pure Fe(II/III)-salen complexes. Tuning electrochemical potential, selective metalation of a Mn/Ni alloy is also presented which exclusively delivers Mn(II/IV)-salen complexes in high yield. PMID:27547645

  16. Photophysical investigation of palladium(II) ortho-metalated complexes

    SciTech Connect

    Craig, C.A.; Watts, R.J. )

    1989-01-25

    Syntheses and structural characterizations of four complexes of Pd(II) with ortho-metalated 2-phenylpyridinate (ppy{sup minus}) are reported. These complexes include a parent dimer, (Pd(ppy)Cl){sub 2}, and three derivative monomers, (Pd(ppy)(bpy))Cl, (Pd(ppy)(en))Cl, and (Pd(ppy)(CO)Cl), whereby = 2,2'-bipyridine and en = ethylenediamine. Photophysical characterizations of these species indicate low-energy absorption bands ({approximately}360 nm) and emission bands at 77 K ({approximately}460 nm) that are assigned to transitions located on the ppy{sup {minus}} ligand. Some evidence for low-energy charge-transfer states is found in trends in luminescence lifetimes. 2 tabs., 5 figs., 21 refs.

  17. Metal Complexes of meso-meso Linked Corrole Dimers.

    PubMed

    Ooi, Shota; Tanaka, Takayuki; Osuka, Atsuhiro

    2016-09-01

    Cobalt, gallium, silver, and copper complexes of 5,5'-linked corrole dimer 1 and 10,10'-linked corrole dimer 2 were synthesized by metalations with Co(OAc)2·4H2O, GaCl3, AgOAc, and Cu(OAc)2·H2O, respectively, in good yields. The structures of cobalt(III), gallium(III), and silver(III) complexes have been unambiguously revealed by X-ray diffraction analysis. Their optical and electrochemical properties have been studied, which revealed different electronic interactions between the two corrole units depending upon the positions of meso-meso linkage and axial-ligand coordination modes. PMID:27533780

  18. Structural, electronic and magnetic properties of 3d transition metals embedded graphene-like carbon nitride sheet: A DFT + U study

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Chi, Runze; Li, Chong; Jia, Yu

    2016-03-01

    Using first-principles calculations, we have investigated the structural, electronic and magnetic properties of 3d transition-metals (TMs) embedded two dimensional graphene-like carbon nitride sheet (TMs@g-CN). Our results show that TMs embed in the cavity of g-CN sheet regularly and keep intact of the planar structure, though there is Jahn-Teller distortion inevitably. Additionally, the nonmagnetic and semiconducting sheet can be significantly modulated to be magnetic and metallic behaviors induced by the resonant impurity states between TMs 3d and g-CN 2p orbitals. Moreover, we also explore the magnetic coupling of TMs@g-CN and find that it varies dramatically with the change of the distance between TMs, i.e., from ferromagnetic (FM) to antiferromagnetic (AFM) transition. Finally, the underlying physical mechanism of the above findings is discussed.

  19. Simulation of the mobility of metal - EDTA complexes in groundwater: The influence of contaminant metals

    USGS Publications Warehouse

    Friedly, J.C.; Kent, D.B.; Davis, J.A.

    2002-01-01

    Reactive transport simulations were conducted to model chemical reactions between metal - EDTA (ethylenediaminetetraacetic acid) complexes during transport in a mildly acidic quartz - sand aquifer. Simulations were compared with the results of small-scale tracer tests wherein nickel-, zinc-, and calcium - EDTA complexes and free EDTA were injected into three distinct chemical zones of a plume of sewage-contaminated groundwater. One zone had a large mass of adsorbed, sewage-derived zinc; one zone had a large mass of adsorbed manganese resulting from mildly reducing conditions created bythe sewage plume; and one zone had significantly less adsorbed manganese and negligible zinc background. The chemical model assumed that the dissolution of iron(III) from metal - hydroxypolymer coatings on the aquifer sediments by the metal - EDTA complexes was kinetically restricted. All other reactions, including metal - EDTA complexation, zinc and manganese adsorption, and aluminum hydroxide dissolution were assumed to reach equilibrium on the time scale of transport; equilibrium constants were either taken from the literature or determined independently in the laboratory. A single iron(III) dissolution rate constant was used to fit the breakthrough curves observed in the zone with negligible zinc background. Simulation results agreed well with the experimental data in all three zones, which included temporal moments derived from breakthrough curves at different distances downgradient from the injections and spatial moments calculated from synoptic samplings conducted at different times. Results show that the tracer cloud was near equilibrium with respect to Fe in the sediment after 11 m of transport in the Zn-contaminated region but remained far from equilibrium in the other two zones. Sensitivity studies showed that the relative rate of iron(III) dissolution by the different metal - EDTA complexes was less important than the fact that these reactions are rate controlled. Results

  20. Radical AdoMet enzymes in complex metal cluster biosynthesis.

    PubMed

    Duffus, Benjamin R; Hamilton, Trinity L; Shepard, Eric M; Boyd, Eric S; Peters, John W; Broderick, Joan B

    2012-11-01

    Radical S-adenosylmethionine (AdoMet) enzymes comprise a large superfamily of proteins that engage in a diverse series of biochemical transformations through generation of the highly reactive 5'-deoxyadenosyl radical intermediate. Recent advances into the biosynthesis of unique iron-sulfur (FeS)-containing cofactors such as the H-cluster in [FeFe]-hydrogenase, the FeMo-co in nitrogenase, as well as the iron-guanylylpyridinol (FeGP) cofactor in [Fe]-hydrogenase have implicated new roles for radical AdoMet enzymes in the biosynthesis of complex inorganic cofactors. Radical AdoMet enzymes in conjunction with scaffold proteins engage in modifying ubiquitous FeS precursors into unique clusters, through novel amino acid decomposition and sulfur insertion reactions. The ability of radical AdoMet enzymes to modify common metal centers to unusual metal cofactors may provide important clues into the stepwise evolution of these and other complex bioinorganic catalysts. This article is part of a Special Issue entitled: Radical SAM enzymes and Radical Enzymology. PMID:22269887

  1. Manganese Complexes of 1,3,5-triaza-7-phosphaadamantane (PTA): The First Nitrogen Bound Transition Metal Complex of PTA

    SciTech Connect

    Frost,B.; Bautista, C.; Huang, R.; Shearer, J.

    2006-01-01

    The structures of two manganese(II) complexes of 1,3,5-triaza-7-phosphaadamantane (PTA) reveal the first transition-metal complexes of PTA in which the metal preferentially coordinates to a nitrogen and not the phosphorus of PTA. The coordination environment about the manganese was probed using X-ray crystallography (solid state) and EXAFS spectroscopy (solution).

  2. Fatigue properties of sheet, bar, and cast metallic materials for cryogenic applications

    NASA Technical Reports Server (NTRS)

    Green, E. F.

    1970-01-01

    Cryogenic fatigue and tensile properties for metallic materials are determined in the operating life-time range of ten thousand to ten million cycles at room temperature, at minus 320 degrees F, and at minus 423 degrees F. Results are presented as stress versus number of cycles to failure.

  3. Continuous process for forming sheet metal from an alloy containing non-dendritic primary solid

    DOEpatents

    Flemings, Merton C.; Matsuniya, Tooru

    1983-01-01

    A homogeneous mixture of liquid-solid metal is shaped by passing the composition from an agitation zone onto a surface moving relative to the exit of the agitation zone. A portion of the composition contacting the moving surface is solidified and the entire composition then is formed.

  4. Numerical Method to Analyze Local Stiffness of the Workpiece to avoid Rebound During Electromagnetic Sheet Metal Forming

    SciTech Connect

    Risch, Desiree; Brosius, Alexander; Psyk, Verena; Kleiner, Matthias

    2007-04-07

    Electromagnetic sheet metal forming is a high speed forming process using pulsed magnetic fields to form metals with high electrical conductivity such as aluminum. Thereby, workpiece velocities of more than 300 m/s are achievable, which can cause difficulties when forming into a die: the kinetic energy, which is related to the workpiece velocity, must dissipate in a short time slot when the workpiece hits the die; otherwise undesired effects, for example rebound, can occur. One possibility to handle this shortcoming is to locally increase the stiffness of the workpiece. In order to be able to estimate the local stiffness a method is presented which is based on a modal analysis by means of the Finite-Element-Method. For this reason, it is necessary to fractionize the considered geometries into a part-dependent number of segments. These are subsequently analyzed separately to determine regions of low geometrical stiffness. Combined with the process knowledge concerning the velocity distribution within the workpiece over the time, a prediction of the feasibility of the forming process and a target-oriented design of the workpiece geometry will be possible. Numerical results are compared with experimental investigations.

  5. The electronic properties of bare and alkali metal adsorbed two-dimensional GeSi alloy sheet

    NASA Astrophysics Data System (ADS)

    Qiu, Wenhao; Ye, Han; Yu, Zhongyuan; Liu, Yumin

    2016-09-01

    In this paper, the structural and electronic properties of both bare and alkali metal (AM) atoms adsorbed two-dimensional GeSi alloy sheet (GeSiAS) are investigated by means of first-principles calculations. The band gaps of bare GeSiAS are shown slightly opened at Dirac point with the energy dispersion remain linear due to the spin-orbit coupling effect at all concentrations of Ge atoms. For metal adsorption, AM atoms (including Li, Na and K) prefer to occupy the hexagonal hollow site of GeSiAS and the primary chemical bond between AM adatom and GeSiAS is ionic. The adsorption energy has an increase tendency with the increase of the Ge concentration in supercell. Besides, single-side adsorption of AM atoms introduces band gap at Dirac point, which can be tuned by the Ge concentration and the species of AM atoms. The strong relation between the band gaps and the distribution of Si and Ge atoms inside GeSiAS are also demonstrated. The opened band gaps of AM covered GeSiAS range from 14.8 to 269.1 meV along with the effective masses of electrons ranging from 0.013 to 0.109 me, indicating the high tunability of band gap as well as high mobility of carriers. These results provide a development in two-dimensional alloys and show potential applications in novel micro/nano-electronic devices.

  6. Strong metal-support interaction between mononuclear and polynuclear transition metal complexes and oxide supports which dramatically affects catalytic activity

    SciTech Connect

    Hucul, D.A.; Brenner, A.

    1981-03-05

    The interaction of carbonyl complexes with catalyst supports, primarily ..gamma..-alumina, has been studied by temperature-programmed decomposition. In all cases, including cluster complexes and complexes of noble metals, after heating to 600/sup 0/C in flowing He the catalysts are significantly oxidized due to a redox reaction between surface hydroxyl groups and the initially zero-valent metal. Contrary reports are probably incorrect and likely reflect the insensitivity of the experimental techniques used. For all but the most thermally unstable complexes, the oxidation occurs during the latter stages of decarbonylation indicating that there is no significant accumulation of bare zero-valent metal. Hence, decomposition does not in general provide a direct route to supported metals and, contrary to some claims, molecular cluster complexes cannot necessarily be used as precursors to supported metal clusters. Further, knowledge of this redox reaction is critical for understanding patterns of activity and for the development of improved catalysts.

  7. A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA.

    PubMed Central

    Allen, M D; Yamasaki, K; Ohme-Takagi, M; Tateno, M; Suzuki, M

    1998-01-01

    The 3D solution structure of the GCC-box binding domain of a protein from Arabidopsis thaliana in complex with its target DNA fragment has been determined by heteronuclear multidimensional NMR in combination with simulated annealing and restrained molecular dynamic calculation. The domain consists of a three-stranded anti-parallel beta-sheet and an alpha-helix packed approximately parallel to the beta-sheet. Arginine and tryptophan residues in the beta-sheet are identified to contact eight of the nine consecutive base pairs in the major groove, and at the same time bind to the sugar phosphate backbones. The target DNA bends slightly at the central CG step, thereby allowing the DNA to follow the curvature of the beta-sheet. PMID:9736626

  8. Complexities of high temperature metal fatigue: Some steps toward understanding

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Halford, G. R.

    1983-01-01

    After pointing out many of the complexities that attend high temperature metal fatigue beyond those already studied in the sub-creep range, a description of the micromechanisms of deformation and fracture is presented for several classes of materials that were studied over the past dozen years. Strainrange Partitioning (SRP) is used as a framework for interpreting the results. Several generic types of behavior were observed with regard both to deformation and fracture and each is discussed in the context of the micromechanisms involved. Treatment of cumulative fatigue damage and the possibility of ""healing'' of damage in successive loading loops, has led to a new interpretation of the Interaction Damage Rule of SRP. Using the concept of ""equivalent micromechanistic damage'' -- that the same damage on a microscopic scale is induced if the same hysteresis loops are generated, element for element -- it turns out the Interaction Damage Rule essentially compounds a number of variants of hysteresis loops, all of which have the same damage according to SRP concepts, into a set of loops each containing only one of the generic SRP strainranges. Thus the damage associcated with complex loops comprising several types of strainrange is analyzed by considering a combination of loops each containing only one type of strainrange. This concept is expanded to show how several independent loops can combine to ""heal'' creep damage in a complex loading history.

  9. Composite of liposome and metal complexes: Toward creating a new chemical reaction space

    NASA Astrophysics Data System (ADS)

    Koshiyama, Tomomi; Ohba, Masaaki

    2015-12-01

    The purpose of our research is to construct a novel functional space by fixation of various metal complexes into the liposome space. For the functionalization of liposome surface, we designed lipophilic metal complexes and succeeded in the fixation of various metal complexes such as oxidation catalysts. In addition, reactivities of metal complexes on the liposome surface were optimized by controlling their surrounding environment using various types of phospholipids. Furthermore, we succeeded in the incorporation of coordination polymers in inner water phase of liposomes using antibiotic ion channel, and the composites showed absorption of metal ions through antibiotic ion channels.

  10. Comparative Study of Remote Fiber Laser and Water-Jet Guided Laser Cutting of Thin Metal Sheets

    NASA Astrophysics Data System (ADS)

    Hock, Klaus; Adelmann, Benedikt; Hellmann, Ralf

    This article presents a comparison between remote laser cutting with a fiber laser and water-jet guided laser cutting using a 532 nm solid state laser. Complex contours are processed in stainless steel and brass sheets (thickness ≤ 100 μm), respectively. Results for achievable quality and productivity as well as possible applications for both systems are shown and discussed. We sustained dross free cuts with almost no heat affected zone and small kerf width for the water-jet guided process, whereas small dross, notable heat affected zone and varying kerf width where observed for remote cutting. However, process times for the water-jet guided process where considerably higher than those for remote cutting.

  11. π-Extended dipyrrins capable of highly fluorogenic complexation with metal ions

    PubMed Central

    Filatov, Mikhail A.; Lebedev, Artem Y.; Mukhin, Sergei N.; Vinogradov, Sergei A.; Cheprakov, Andrei V.

    2010-01-01

    Synthesis and properties of a new family of π-extended dipyrrins, capable of forming brightly fluorescent complexes with metal ions, are reported. The metal complexes posses tunable spectral bands and exhibit different emission properties depending on the mode of metal coordination. PMID:20583759

  12. Excited-state properties of a triply ortho-metalated iridium(III) complex

    SciTech Connect

    King, K.A.; Spellane, P.J.; Watts, R.J.

    1985-03-06

    The characterization of the ground and luminescent excited states of a triply ortho-metalated complex of ppy, fac-Ir(ppy)/sub 3/ (ppy = 2-phenylpyridine) is effected. This complex, which is the first triply ortho-metalated ppy species to be characterized, is one of the strongest transition-metal photoreductants thus far reported. 20 references, 2 figures.

  13. An investigation on co-axial water-jet assisted fiber laser cutting of metal sheets

    NASA Astrophysics Data System (ADS)

    Madhukar, Yuvraj K.; Mullick, Suvradip; Nath, Ashish K.

    2016-02-01

    Water assisted laser cutting has received significant attention in recent times with assurance of many advantages than conventional gas assisted laser cutting. A comparative study between co-axial water-jet and gas-jet assisted laser cutting of thin sheets of mild steel (MS) and titanium (Ti) by fiber laser is presented. Fiber laser (1.07 μm wavelength) was utilised because of its low absorption in water. The cut quality was evaluated in terms of average kerf, projected dross height, heat affected zone (HAZ) and cut surface roughness. It was observed that a broad range process parameter could produce consistent cut quality in MS. However, oxygen assisted cutting could produce better quality only with optimised parameters at high laser power and high cutting speed. In Ti cutting the water-jet assisted laser cutting performed better over the entire range of process parameters compared with gas assisted cutting. The specific energy, defined as the amount of laser energy required to remove unit volume of material was found more in case of water-jet assisted laser cutting process. It is mainly due to various losses associated with water assisted laser processing such as absorption of laser energy in water and scattering at the interaction zone.

  14. Current Sheets in the Corona and the Complexity of Slow Wind

    NASA Technical Reports Server (NTRS)

    Antiochos, Spiro

    2010-01-01

    The origin of the slow solar wind has long been one of the most important problems in solar/heliospheric physics. Two observational constraints make this problem especially challenging. First, the slow wind has the composition of the closed-field corona, unlike the fast wind that originates on open field lines. Second, the slow wind has substantial angular extent, of order 30 degrees, which is much larger than the widths observed for streamer stalks or the widths expected theoretically for a dynamic heliospheric current sheet. We propose that the slow wind originates from an intricate network of narrow (possibly singular) open-field corridors that emanate from the polar coronal hole regions. Using topological arguments, we show that these corridors must be ubiquitous in the solar corona. The total solar eclipse in August 2008, near the lowest point of cycle 23 affords an ideal opportunity to test this theory by using the ultra-high resolution Predictive Science's (PSI) eclipse model for the corona and wind. Analysis of the PSI eclipse model demonstrates that the extent and scales of the open-field corridors can account for both the angular width of the slow wind and its closed-field composition. We discuss the implications of our slow wind theory for the structure of the corona and heliosphere at solar minimum and describe further observational and theoretical tests.

  15. Proton-coupled electron transfer with photoexcited metal complexes.

    PubMed

    Wenger, Oliver S

    2013-07-16

    Proton-coupled electron transfer (PCET) plays a crucial role in many enzymatic reactions and is relevant for a variety of processes including water oxidation, nitrogen fixation, and carbon dioxide reduction. Much of the research on PCET has focused on transfers between molecules in their electronic ground states, but increasingly researchers are investigating PCET between photoexcited reactants. This Account describes recent studies of excited-state PCET with d(6) metal complexes emphasizing work performed in my laboratory. Upon photoexcitation, some complexes release an electron and a proton to benzoquinone reaction partners. Others act as combined electron-proton acceptors in the presence of phenols. As a result, we can investigate photoinduced PCET involving electron and proton transfer in a given direction, a process that resembles hydrogen-atom transfer (HAT). In other studies, the photoexcited metal complexes merely serve as electron donors or electron acceptors because the proton donating and accepting sites are located on other parts of the molecular PCET ensemble. We and others have used this multisite design to explore so-called bidirectional PCET which occurs in many enzymes. A central question in all of these studies is whether concerted proton-electron transfer (CPET) can compete kinetically with sequential electron and proton transfer steps. Short laser pulses can trigger excited-state PCET, making it possible to investigate rapid reactions. Luminescence spectroscopy is a convenient tool for monitoring PCET, but unambiguous identification of reaction products can require a combination of luminescence spectroscopy and transient absorption spectroscopy. Nevertheless, in some cases, distinguishing between PCET photoproducts and reaction products formed by simple photoinduced electron transfer (ET) (reactions that don't include proton transfer) is tricky. Some of the studies presented here deal directly with this important problem. In one case study we

  16. Metal-Metal Interactions in Heterobimetallic Complexes with Dinucleating Redox-Active Ligands.

    PubMed

    Broere, Daniël L J; Modder, Dieuwertje K; Blokker, Eva; Siegler, Maxime A; van der Vlugt, Jarl Ivar

    2016-02-12

    The tuning of metal-metal interactions in multinuclear assemblies is a challenge. Selective P coordination of a redox-active PNO ligand to Au(I) followed by homoleptic metalation of the NO pocket with Ni(II) affords a unique trinuclear Au-Ni-Au complex. This species features two antiferromagnetically coupled ligand-centered radicals and a double intramolecular d(8)-d(10) interaction, as supported by spectroscopic, single-crystal X-ray diffraction, and computational data. A corresponding cationic dinuclear Au-Ni analogue with a stronger d(8)-d(10) interaction is also reported. Although both heterobimetallic structures display rich electrochemistry, only the trinuclear Au-Ni-Au complex facilitates electrocatalytic C-X bond activation of alkyl halides in its doubly reduced state. Hence, the presence of a redox-active ligand framework, an available coordination site at gold, and the nature of the nickel-gold interaction appear to be essential for this reactivity. PMID:26762546

  17. Oligomeric rare-earth metal cluster complexes with endohedral transition metal atoms

    SciTech Connect

    Steinberg, Simon; Zimmermann, Sina; Brühmann, Matthias; Meyer, Eva; Rustige, Christian; Wolberg, Marike; Daub, Kathrin; Bell, Thomas; Meyer, Gerd

    2014-11-15

    Comproportionation reactions of rare-earth metal trihalides (RX{sub 3}) with the respective rare-earth metals (R) and transition metals (T) led to the formation of 22 oligomeric R cluster halides encapsulating T, in 19 cases for the first time. The structures of these compounds were determined by single-crystal X-ray diffraction and are composed of trimers ((T{sub 3}R{sub 11})X{sub 15}-type, P6{sub 3}/m), tetramers ((T{sub 4}R{sub 16})X{sub 28}(R{sub 4}) (P-43m), (T{sub 4}R{sub 16})X{sub 20} (P4{sub 2}/nnm), (T{sub 4}R{sub 16})X{sub 24}(RX{sub 3}){sub 4} (I4{sub 1}/a) and (T{sub 4}R{sub 16})X{sub 23} (C2/m) types of structure) and pentamers ((Ru{sub 5}La{sub 14}){sub 2}Br{sub 39}, Cc) of (TR{sub r}){sub n} (n=2–5) clusters. These oligomers are further enveloped by inner (X{sup i}) as well as outer (X{sup a}) halido ligands, which possess diverse functionalities and interconnect like oligomers through i–i, i–a and/or a–i bridges. The general features of the crystal structures for these new compounds are discussed and compared to literature entries as well as different structure types with oligomeric T centered R clusters. Dimers and tetramers originating from the aggregation of (TR{sub 6}) octahedra via common edges are more frequent than trimers and pentamers, in which the (TR{sub r}) clusters share common faces. - Graphical abstract: Rare earth-metal cluster complexes with endohedral transition metal atoms (TR{sub 6}) may connect via common edges or faces to form dimers, trimers, tetramers and pentamers of which the tetramers are the most prolific. Packing effects and electron counts play an important role. - Highlights: • Rare-earth metal cluster complexes encapsulate transition metal atoms. • Oligomers are built via connection of octahedral clusters via common edges or faces. • Dimers through pentamers with closed structures are known. • Tetramers including a tetrahedron of endohedral atoms are the most prolific.

  18. A DFT investigation of CO adsorption on VIIIB transition metal-doped graphene sheets

    NASA Astrophysics Data System (ADS)

    Wanno, Banchob; Tabtimsai, Chanukorn

    2014-03-01

    Adsorptions of CO on pristine, Fe-, Ru-, Os-, Co-, Rh-, Ir-, Ni-, Pd-, and Pt-doped graphene were investigated, using density functional theory calculation at B3LYP/LanL2DZ theoretical level. This work revealed that the transition metal doped graphenes were more highly sensitive to CO adsorption than that of pristine graphene. The Os- and Fe-doped graphenes displayed the strongest interaction with C and O atoms of CO molecule, respectively.

  19. A Study on Flexural Properties of Sandwich Structures with Fiber/Metal Laminate Face Sheets

    NASA Astrophysics Data System (ADS)

    Dariushi, S.; Sadighi, M.

    2013-10-01

    In this work, a new family of sandwich structures with fiber metal laminate (FML) faces is investigated. FMLs have benefits over both metal and fiber reinforced composites. To investigate the bending properties of sandwich beams with FML faces and compare with similar sandwich beams with fibrous composite faces, 6 groups of specimen with different layer arrangements were made and tested. Results show that FML faces have good resistance against transverse local loads and minimize stress concentration and local deformations of skin and core under the loading tip. In addition, FML faces have a good integrity even after plateau region of foam cores and prevent from catastrophic failures, which cannot be seen in fibrous composite faces. Also, FML faces are lighter than metal faces and have better connection with foam cores. Sandwich beams with FML faces have a larger elastic region because of simultaneous deformation of top and bottom faces and larger failure strain thanks to good durability of FMLs. A geometrical nonlinear classical theory is used to predict force-deflection behavior. In this model an explicit formula between symmetrical sandwich beams deflections and applied force which can be useful for designers, is derived. Good agreement is obtained between the analytical predictions and experimental results. Also, analytical results are compared with small deformation solution in a parametric study, and the effects of geometric parameters on difference between linear and nonlinear results are discussed.

  20. Modeling platinum group metal complexes in aqueous solution.

    PubMed

    Lienke, A; Klatt, G; Robinson, D J; Koch, K R; Naidoo, K J

    2001-05-01

    We construct force fields suited for the study of three platinum group metals (PGM) as chloranions in aqueous solution from quantum chemical computations and report experimental data. Density functional theory (DFT) using the local density approximation (LDA), as well as extended basis sets that incorporate relativistic corrections for the transition metal atoms, has been used to obtain equilibrium geometries, harmonic vibrational frequencies, and atomic charges for the complexes. We found that DFT calculations of [PtCl(6)](2-).3H(2)O, [PdCl(4)](2-).2H(2)O, and [RhCl(6)](3-).3H(2)O water clusters compared well with molecular mechanics (MM) calculations using the specific force field developed here. The force field performed equally well in condensed phase simulations. A 500 ps molecular dynamics (MD) simulation of [PtCl(6)](2-) in water was used to study the structure of the solvation shell around the anion. The resulting data were compared to an experimental radial distribution function derived from X-ray diffraction experiments. We found the calculated pair correlation functions (PCF) for hexachloroplatinate to be in good agreement with experiment and were able to use the simulation results to identify and resolve two water-anion peaks in the experimental spectrum. PMID:11327912

  1. Photochemical reactions of metal nitrosyl complexes. Mechanisms of NO reactions with biologically relevant metal centers

    DOE PAGESBeta

    Ford, Peter C.

    2001-01-01

    Tmore » he discoveries that nitric oxide (a.k.a. nitrogen monoxide) serves important roles in mammalian bioregulation and immunology have stimulated intense interest in the chemistry and biochemistry of NO and derivatives such as metal nitrosyl complexes. Also of interest are strategies to deliver NO to biological targets on demand. One such strategy would be to employ a precursor which displays relatively low thermal reactivity but is photochemically active to release NO.his proposition led us to investigate laser flash and continuous photolysis kinetics of nitrosyl complexes such as the Roussin's iron-sulfur-nitrosyl cluster anions Fe 2 S 2 ( NO ) 4 2 − and Fe 4 S 3 ( NO ) 7 − and several ruthenium salen and porphyrin nitrosyls.hese include studies using metal-nitrosyl photochemistry as a vehicle for delivering NO to hypoxic cell cultures in order to sensitize γ -radiation damage. Also studied were the rates and mechanisms of NO “on” reactions with model water soluble heme compounds, the ferriheme protein met-myoglobin and various ruthenium complexes using ns laser flash photolysis techniques. An overview of these studies is presented.« less

  2. Cyclic Bending and Stationary Drawing Deformation of Metal Sheets : Experiments and Associated Numerical Simulations

    SciTech Connect

    Moreira, L.P.; Romao, E.C.; Vieira, L.C.A.; Ferron, G.; Sampaio, A.P.

    2005-08-05

    A simple bend-draw experimental device is employed to analyze the behavior of narrow strips submitted to a nearly cyclic bending deformation mode followed by a steady state drawing. In this bending-drawing experiment, the strip is firstly bent over a central bead and two lateral beads by applying a controlled holding load and then is pulled out of device throughout the bead radii by a drawing load. The apparatus is mounted in a standard tensile test machine where the holding and drawing loads are recorded with an acquisition data system. The specimen is a rectangular strip cut with 320 mm long and 7 mm wide. The longitudinal (1) and width (w) strip plastic strains are determined from two hardness marks 120 mm spaced whereas the corresponding thickness (t) strain is obtained by volume conservation. Previous experiments showed a correlation between the plastic strain ({epsilon}w/{epsilon}t)BD resulting from the bending-drawing and the Lankford R-values obtained from the uniaxial tensile test. However, previous 3D numerical simulations based upon Hill's quadratic and Ferron's yield criteria revealed a better correlation between the ({epsilon}w/{epsilon}t)BD and the stress ratio {sigma}PS/{sigma}({alpha}), where {sigma}PS stands for the plane-strain tension yield stress and {sigma}({alpha}) for the uniaxial yield stress in uniaxial tension along the drawing direction making an angle {alpha} with the rolling direction. In the present work, the behavior of an IF steel sheet is firstly evaluated by means of uniaxial tensile and drawing-bending experiments conducted at every 15 degrees with respect to the rolling direction. Afterwards, the bending-drawing experiment is investigated with the commercial finite element (FE) code ABAQUS/Standard in an attempt to assess the influence of cyclic loadings upon the bending-drawing strain-ratios.

  3. Change and anisotropy of elastic modulus in sheet metals due to plastic deformation

    NASA Astrophysics Data System (ADS)

    Ishitsuka, Yuki; Arikawa, Shuichi; Yoneyama, Satoru

    2015-03-01

    In this study, the effect of the plastic deformation on the microscopic structure and the anisotropy of the elastic modulus in the cold-rolled steel sheet (SPCC) is investigated. Various uniaxial plastic strains (0%, 2.5%, 5%, 7.5%, and 10%) are applied to the annealed SPCC plates, then, the specimens for the tensile tests are cut out from them. The elastic moduli in the longitudinal direction and the transverse direction to the direction that are pre-strained are measured by the tensile tests. Cyclic tests are performed to investigate the effects of the internal friction caused by the movable dislocations in the elastic deformation. Also, the movable dislocations are quantified by the boundary tracking for TEM micrographs. In addition, the behaviors of the change of the elastic modulus in the solutionized and thermal aged aluminum alloy (A5052) are measured to investigate the effect on the movable dislocations with the amount of the depositions. As a result in SPCC, the elastic moduli of the 0° and 90° directions decrease more than 10% as 10% prestrain applied. On the other hand, the elastic modulus shows the recovery behavior after the strain aging and the annealing. The movable dislocation and the internal friction show a tendency to increase as the plastic strain increases. The marked anisotropy is not observed in the elastic modulus and the internal friction. The elastic modulus in A5052 with many and few depositions decreases similarly by the plastic deformation. From the above, the movable dislocations affect the elastic modulus strongly without depending on the deposition amount. Moreover, the elastic modulus recovers after the plastic deformation by reducing the effects of them with the strain aging and the heat treatment.

  4. The Effect of Complex Formation upon the Redox Potentials of Metallic Ions. Cyclic Voltammetry Experiments.

    ERIC Educational Resources Information Center

    Ibanez, Jorge G.; And Others

    1988-01-01

    Describes experiments in which students prepare in situ soluble complexes of metal ions with different ligands and observe and estimate the change in formal potential that the ion undergoes upon complexation. Discusses student formation and analysis of soluble complexes of two different metal ions with the same ligand. (CW)

  5. Resonant Ultrasound Studies of Complex Transition Metal Oxides

    SciTech Connect

    Dr. Henry Bass; Dr. J. R. Gladden

    2008-08-18

    Department of Energy EPSCoR The University of Mississippi Award: DE-FG02-04ER46121 Resonant Ultrasound Spectroscopy Studies of Complex Transition Metal Oxides The central thrust of this DOE funded research program has been to apply resonant ultrasound spectroscopy (RUS), an elegant and efficient method for determining the elastic stiffness constants of a crystal, to the complex and poorly understood class of materials known as transition metal oxides (TMOs). Perhaps the most interesting and challenging feature of TMOs is their strongly correlated behavior in which spin, lattice, and charge degrees of freedom are strongly coupled. Elastic constants are a measure of the interatomic potentials in a crystal and are thus sensitive probes into the atomic environment. This sensitivity makes RUS an ideal tool to study the coupling of phase transition order parameters to lattice strains. The most significant result of the project has been the construction of a high temperature RUS apparatus capable of making elastic constant measurements at temperatures as high as 1000 degrees Celsius. We have designed and built novel acoustic transducers which can operate as high as 600 degrees Celsius based on lithium niobate piezoelectric elements. For measurement between 600 to 1000 C, a buffer rod system is used in which the samples under test and transducers are separated by a rod with low acoustic attenuation. The high temperature RUS system has been used to study the charge order (CO) transition in transition metal oxides for which we have discovered a new transition occurring about 35 C below the CO transition. While the CO transition exhibits a linear coupling between the strain and order parameter, this new precursor transition shows a different coupling indicating a fundamentally different mechanism. We have also begun a study, in collaboration with the Jet Propulsion Laboratory, to study novel thermoelectric materials at elevated temperatures. These materials include silicon

  6. Search for giant magnetic anisotropy in transition-metal dimers on defected hexagonal boron nitride sheet.

    PubMed

    Li, J; Wang, H; Hu, J; Wu, R Q

    2016-05-28

    Structural and magnetic properties of many transition-metal dimers embedded in a defected hexagonal boron nitride monolayer are investigated through density functional calculations to search for systems with magnetic anisotropy energies (MAEs) larger than 30meV. In particular, Ir-Ir@Dh-BN is found to have both large MAE (∼126 meV) and high structural stability against dissociation and diffusion, and it hence can serve as magnetic unit in spintronics and quantum computing devices. This giant MAE mainly results from the spin orbit coupling and the magnetization of the upper Ir atom, which is in a rather isolated environment. PMID:27250322

  7. Multi-level modeling for sensitivity assessment of springback in sheet metal forming

    NASA Astrophysics Data System (ADS)

    Lebon, J.; Lequilliec, G.; Coelho, R. Filomeno; Breitkopf, P.; Villon, P.

    2013-05-01

    In this work, we highlight that sensitivity analysis of metal forming process requires both high precision and low cost numerical models. We propose a two-pronged methodology to address these challenges. The deep drawing simulation process is performed using an original low cost semi-analytical approach based on a bending under tension model (B-U-T) with a good accuracy for small random perturbations of the physical and process parameters. The springback sensitivity analysis is based on the Sobol indices approach and performed using an non intrusive efficient methodology based on the post-treatment of the polynomial chaos coefficients.

  8. Magnetic Exchange Couplings in Transition Metal Complexes from DFT

    NASA Astrophysics Data System (ADS)

    Peralta, Juan

    In this talk I will review our current efforts for the evaluation of magnetic exchange couplings in transition metal complexes from density functional theory. I will focus on the performance of different DFT approximations, including a variety of hybrid density functionals, and show that hybrid density functionals containing approximately 30% Hartree-Fock type exchange are in general among the best choice in terms of accuracy. I will also describe a novel computational method to evaluate exchange coupling parameters using analytic self-consistent linear response theory. This method avoids the explicit evaluation of energy differences, which can become impractical for large systems. Our approach is based on the evaluation of the transversal magnetic torque between two magnetic centers for a given spin configuration using explicit constraints of the local magnetization direction via Lagrange multipliers. This method is applicable in combination with any modern density functional with a noncollinear spin generalization and can be utilized as a ``black-box''. I will show proof-of-concept calculations in frustrated Fe7IIIdisk-shaped clusters, and dinuclear CuII, FeIII, and heteronuclear complexes. NSF DMR-1206920.

  9. Effects of humic acid-metal complexes on hepatic carnitine palmitoyltransferase, carnitine acetyltransferase and catalase activities

    SciTech Connect

    Fungjou Lu; Youngshin Chen . Dept. of Biochemistry); Tienshang Huang . Dept. of Medicine)

    1994-03-01

    A significant increase in activities of hepatic carnitine palmitoyltransferase and carnitine acetyltransferase was observed in male Balb/c mice intraperitoneally injected for 40 d with 0.125 mg/0.1 ml/d humic acid-metal complexes. Among these complexes, the humic acid-As complex was relatively effective, whereas humic acid-25 metal complex was more effective, and humic acid-26 metal complex was most effective. However, humic acid or metal mixtures, or metal such as As alone, was not effective. Humic acid-metal complexes also significantly decreased hepatic catalase activity. A marked decrease of 60-kDa polypeptide in liver cytoplasm was also observed on SDS-polyacrylamide gel electrophoresis after the mice had been injected with the complexes. Morphological analysis of a histopathological biopsy of such treated mice revealed several changes in hepatocytes, including focal necrosis and cell infiltration, mild fatty changes, reactive nuclei, and hypertrophy. Humic acid-metal complexes affect activities of metabolic enzymes of fatty acids, and this results in accumulation of hydrogen peroxide and increase of the lipid peroxidation. The products of lipid peroxidation may be responsible for liver damage and possible carcinogenesis. Previous studies in this laboratory had shown that humic acid-metal complex altered the coagulation system and that humic acid, per se, caused vasculopathy. Therefore, humic acid-metal complexes may be main causal factors of not only so-called blackfoot disease, but also the liver cancer prevailing on the southwestern coast of Taiwan.

  10. Metal complex-based electron-transfer mediators in dye-sensitized solar cells

    DOEpatents

    Elliott, C. Michael; Sapp, Shawn A.; Bignozzi, Carlo Alberto; Contado, Cristiano; Caramori, Stefano

    2006-03-28

    This present invention provides a metal-ligand complex and methods for using and preparing the same. In particular, the metal-ligand complex of the present invention is of the formula: L.sub.a-M-X.sub.b where L, M, X, a, and b are those define herein. The metal-ligand complexes of the present invention are useful in a variety of applications including as electron-transfer mediators in dye-sensitized solar cells and related photoelectrochromic devices.

  11. Antimicrobial Activity of Metal & Metal Oxide Nanoparticles Interfaced With Ligand Complexes Of 8-Hydroxyquinoline And α-Amino Acids

    NASA Astrophysics Data System (ADS)

    Bhanjana, Gaurav; Kumar, Neeraj; Thakur, Rajesh; Dilbaghi, Neeraj; Kumar, Sandeep

    2011-12-01

    Antimicrobial nanotechnology is a recent addition to the fight against disease causing organisms, replacing heavy metals and toxins. In the present work, mixed ligand complexes of metals like zinc, silver etc. and metal oxide have been synthesized using 8-hydroxyquinoline (HQ) as a primary ligand and N-and/O-donor amino acids such as L-serine, L-alanine, glycine, cysteine and histidine as secondary ligands. These complexes were characterized using different spectroscopic techniques. The complexes were tested for antifungal and antibacterial activity by using agar well diffusion bioassay.

  12. Group 4 Metalloporphyrin diolato Complexes and Catalytic Application of Metalloporphyrins and Related Transition Metal Complexes

    SciTech Connect

    Guodong Du

    2004-12-19

    products, including mono-, bis-alkoxo, and chelating diolato complexes, depending on the identity of diols and the stoichiometry employed. It was also found that tin porphyrin complexes promoted the oxidative cleavage of vicinal diols and the oxidation of {alpha}-ketols to {alpha}-diketones with dioxygen. In extending the chemistry of metalloporphyrins and analogous complexes, a series of chiral tetraaza macrocyclic ligands and metal complexes were designed and synthesized. Examination of iron(II) complexes showed that they were efficient catalysts for the cyclopropanation of styrene by diazo reagents. Good yields and high diastereoselectivity were obtained with modest enantioselectivity. A rationalization of the stereoselectivity was presented on the basis of structural factors in a carbene intermediate.

  13. Mica sheets with embedded metal nanorods: Chemical imaging in a topographically smooth structure

    SciTech Connect

    Graca, Malgorzata; Turner, Jeff; Marshall, Michael; Granick, Steve

    2007-09-15

    We demonstrate the concept to combine topographical smoothness and plasmonic properties to produce flat substrates with surface enhanced Raman spectroscopy activity--properties that may find use in nanotribology and other thin film applications. Preliminary findings to this end are described. A dual-beam focused ion beam (FIB) system is used to drill large arrays of small pores in single crystals of mica, 2-6 {mu}m thick, yielding controlled cross sections (squares, triangles, and circles), sizes (100 nm to many microns), and arrangements (square, hexagonal, and random). When filled with metals, arrays result to embedded nanorods with their long axis oriented normal to the surface. As an extension of this method, arrays of nanorods standing perpendicular to a supporting surface can also be produced.

  14. Search for giant magnetic anisotropy in transition-metal dimers on defected hexagonal boron nitride sheet

    NASA Astrophysics Data System (ADS)

    Li, Jie; Wang, Hui; Hu, Jun; Wu, Ruqian

    For a magnetic units at the nanometer scale, one of the most important issues is how to hold thermal fluctuation of its magnetization, i.e., how to enhance its blocking temperature (TB) to above 300K. Through systematic density functional calculations, the structural stability and magnetic properties of many transition-metal dimers embedded in a defected hexagonal boron nitride monolayer are investigated. We find twelve cases that may have magnetic anisotropy energies (MAEs) larger than 30 meV. In particular, Ir-Ir@Dh-BN has both large MAE (~126 meV) and high structural stability, which makes it a promising candidate of magnetic unit in spintronics and quantum computing devices. Work at Fudan was supported by the Chinese National Science Foundation (11474056) and National Basic Research Program of China (2015CB921400). Work at UCI was supported by DOE-BES (Grant No. DE-FG02-05ER46237).

  15. Effect of strain rate on shear properties and fracture characteristics of DP600 and AA5182-O sheet metal alloys

    NASA Astrophysics Data System (ADS)

    Rahmaan, Taamjeed; Butcher, Cliff; Abedini, Armin; Worswick, Michael

    2015-09-01

    Shear tests were performed at strain rates ranging from quasi-static (.01 s-1) to 600 s-1 for DP600 steel and AA5182-O sheet metal alloys at room temperature. A miniature sized shear specimen was modified and validated in this work to perform high strain rate shear testing. Digital image correlation (DIC) techniques were employed to measure the strains in the experiments, and a criterion to detect the onset of fracture based on the hardening rate of the materials is proposed. At equivalent strains greater than 20%, the DP600 and AA5182 alloys demonstrated a reduced work hardening rate at elevated strain rates. At lower strains, the DP600 shows positive rate sensitivity while the AA5182 was not sensitive to strain rate. For both alloys, the equivalent fracture strain and elongation to failure decreased with strain rate. A conversion of the shear stress to an equivalent stress using the von Mises yield criterion provided excellent agreement with the results from tensile tests at elevated strain rates. Unlike the tensile test, the shear test is not limited by the onset of necking so the equivalent stress can be determined over a larger range of strain.

  16. DPP dyes as ligands in transition-metal complexes.

    PubMed

    Lorenz, Ingo-Peter; Limmert, Michael; Mayer, Peter; Piotrowski, Holger; Langhals, Heinz; Poppe, Martin; Polborn, Kurt

    2002-09-01

    The DPP dyes (=diketopyrrolopyrrole) 1 are deprotonated to give the corresponding dianions 2. These are treated with two moles of the transition-metal complexes [L(n)MX]=[(Ph(3)P)(2)MX] (M=Cu, Ag; X=Cl, NO(3)), [(Ph(3)P)AuCl], [(Et(3)P)AuCl], [(tBuNC)AuCl], [(Ph(3)P)(2)PdCl(2)], and [(Ph(3)P)(2)PtCl(2)] to give the novel bismetalated DPP dyes [L(n)MN[C(3)R(1)(O)](2)NML(n)] (4-10). In comparison with the starting materials, these compounds show better solubilities, high fluorescence quantum yields (Phi > or = 80 %), and bathochromic absorptions. The compounds 4 c, 5 a, 6 b, 6 c, 6 e, 7 c, and 8 c were characterized by X-ray crystallography. The copper and silver atoms in 4 c and 5 a are trigonal planar and are surrounded by the P atoms of the phosphane ligands and the N atom of the DPP dianion 2. Both metals are somewhat forced out-of-plane, and the P(2)M plane and the phenyl planes of R1 are twisted by > or = 70 degrees and < or = 25 degrees, respectively, towards the chromophore plane. The gold atoms in 6-8 are linearly coordinated to one N and one P (6 b, c, e, 7 c) or one C atom (8 c), respectively. The gold atoms are only slightly pressed out-of-plane, and the P substituents are staggered so that there is enough space for the planarization of R(1) into the plane of the chromophore. Compound 8 c shows intermolecular d(10)-d(10) interactions between Au(I) centers of different molecules, and these interactions lead to infinite chains of parallel orientated molecules in a gauche conformation of neighbors (torsion angle=150 degrees) in the crystal. PMID:12360946

  17. Study on the Hemisphere Deep Drawing Process of Metal Sheet Based on the FEM Simulation

    SciTech Connect

    Tzou, G.-Y.; Hwang, Y.-M.; Hu, H.-L.; Chien, W.-T.; Hu, J.-J.

    2007-05-17

    Deep drawing is a manner of the metal forming, and the most important position in the industry has been occupied because of its high efficiency. In the past, people often used a trial-and-error method and experiences to complete the deep drawing processes. However the time is consuming and the cost is high by this way, so this study adopts the finite element method to simulate the deep drawing forming in order to reduce the processing cost and time, furthermore to predict the thickness distribution of the product and to find the suitable forming parameters. The material properties and forming parameters have the significant influences to the deep drawing forming, such as strain hardening, plastic strain rate, friction and lubrication, blank holder force, radii of die and punch etc. In this study, two popular commercial FEA software, SUPERFORM and DEFORM, have been used to simulate hemisphere deep drawing forming, and the analysis results will be in comparison with experiment results published to verify the correctness of FEM simulations. Throughout this study, the effects of the blank holder force, the radii of die and punch, the gap between punch and die, the frictional coefficient etc upon the maximum forming force and the minimum thickness, are discussed systematically. After a series of simulations, the comparisons between the SUPERFORM and DEFORM show a good agreement with the experiment and the error is very small.

  18. Fluorescent metal ion chemosensors via cation exchange reactions of complexes, quantum dots, and metal-organic frameworks.

    PubMed

    Cheng, Jinghui; Zhou, Xiangge; Xiang, Haifeng

    2015-11-01

    Due to their wide range of applications and biological significance, fluorescent sensors have been an active research area in the past few years. In the present review, recent research developments on fluorescent chemosensors that detect metal ions via cation exchange reactions (transmetalation, metal displacement, or metal exchange reactions) of complexes, quantum dots, and metal-organic frameworks are described. These complex-based chemosensors might have a much better selectivity than the corresponding free ligands/receptors because of the shielding function of the filled-in metal ions. Moreover, not only the chemical structure of the ligands/receptors but also the identity of the central metal ions have a tremendous impact on the sensing performances. Therefore, sensing via cation exchange reactions potentially provides a new, simple, and powerful way to design fluorescent chemosensors. PMID:26375420

  19. Digermylene Oxide Stabilized Group 11 Metal Iodide Complexes.

    PubMed

    Yadav, Dhirendra; Siwatch, Rahul Kumar; Sinhababu, Soumen; Karwasara, Surendar; Singh, Dharmendra; Rajaraman, Gopalan; Nagendran, Selvarajan

    2015-12-01

    Use of a substituted digermylene oxide as a ligand has been demonstrated through the isolation of a series of group 11 metal(I) iodide complexes. Accordingly, the reactions of digermylene oxide [{(i-Bu)2ATIGe}2O] (ATI = aminotroponiminate) (1) with CuI under different conditions afforded [({(i-Bu)2ATIGe}2O)2(Cu4I4)] (2) with a Cu4I4 octahedral core, [({(i-Bu)2ATIGe}2O)2(Cu3I3)] (3) with a Cu3I3 core, and [{(i-Bu)2ATIGe}2O(Cu2I2)(C5H5N)2] (4) with a butterfly-type Cu2I2 core. The reactions of compound 1 with AgI and AuI produced [({(i-Bu)2ATIGe}2O)2(Ag4I4)] (5) with a Ag4I4 octahedral core and [{(i-Bu)2ATIGe}2O(Au2I2)] (6) with a Au2I2 core, respectively. The presence of metallophilic interactions in these compounds is shown through the single-crystal X-ray diffraction and atom-in-molecule (AIM) studies. Preliminary photophysical studies on compound 6 are also carried out. PMID:26558406

  20. Capillary electrophoresis application in metal speciation and complexation characterization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Capillary electrophoresis is amenable to the separation of metal ionic species and the characterization of metal-ligand interactions. This book chapter reviews and discusses three representative case studies in applications of CE technology in speciation and reactions of metal with organic molecules...

  1. Scalable synthesis of layer-controlled WS{sub 2} and MoS{sub 2} sheets by sulfurization of thin metal films

    SciTech Connect

    Orofeo, Carlo M.; Suzuki, Satoru; Sekine, Yoshiaki; Hibino, Hiroki

    2014-08-25

    Transition metal dichalcogenides (TMDs) have emerged as exciting 2D materials beyond graphene due to their promising applications in the field of electronics and optoelectronics. Hence, the ability to produce controllable and uniformly thick TMD sheets over a large area is of utmost important for large-scale applications. Here, a facile method of synthesizing large-area, layer-controlled WS{sub 2}, and MoS{sub 2} sheets by sulfurization of their corresponding thin metal films is reported. A metal film, which is deposited by magnetron sputtering method, can be adjusted to produce, with great control, the desired sheet thickness down to a monolayer. Various characterization techniques, such as Raman, photoluminescence, and transmission electron microscopy, were used to evaluate the grown films. The results confirmed some of the exotic properties of TMDs such as the thickness dependent band-gap transition (indirect to direct band gap) and Raman shift. Devices made directly on the as-grown film showed modest mobility, ranging from 0.005 to 0.01 cm{sup 2} V{sup −1}s{sup −1}. Our synthesis method is simple and could also be used to synthesize other TMDs.

  2. Forced crumpling of self-avoiding elastic sheets

    NASA Astrophysics Data System (ADS)

    Vliegenthart, G. A.; Gompper, G.

    2006-03-01

    Thin elastic sheets are important materials across length scales ranging from mesoscopic (polymerized membranes, clay platelets, virus capsids) to macroscopic (paper, metal foils). The crumpling of such sheets by external forces is characterized by the formation of a complex pattern of folds. We have investigated the role of self-avoidance, the fact that the sheets cannot self-intersect, for the crumpling process by large-scale computer simulations. At moderate compression, the force-compression relations of crumpled sheets for both self-avoiding and phantom sheets are found to obey universal power-law behaviours. However, self-avoiding sheets are much stiffer than phantom sheets and, for a given compression, develop many more folds. Moreover, self-avoidance is relevant already at very small volume fractions. The fold-length distribution for crumpled sheets is determined, and is found to be well-described by a log-normal distribution. The stiffening owing to self-avoidance is reflected in the changing nature of the sheet-to-sheet contacts from line-like to two-dimensionally extended with increasing compression.

  3. Proposing late transition metal complexes as frustrated Lewis pairs--a computational investigation.

    PubMed

    Pal, Amrita; Vanka, Kumar

    2013-10-14

    There has been considerable interest in recent times to develop transition metal complex systems that can demonstrate metal-ligand cooperativity. It has recently been shown (Wass et al., J. Am. Chem. Soc., 2011, 133, 18463) that early transition metals can cooperate with ligands carrying phosphines as pendant groups, working as metal analogues to frustrated Lewis pairs (FLPs) to mediate in a variety of important reactions. What the current work attempts to do is to show how this concept of metal containing FLPs can be expanded to include late transition metal complexes as well: complexes that have been modified from existing systems that serve as efficient catalysts for homogeneous polymerization. A modified palladium complex has been considered in this regard as an example of a potential late transition metal FLP and studied with full quantum mechanical calculations. The calculations indicate that this complex would be effective at catalyzing ammonia borane dehydrogenation. The possibility of competing side reactions such as reductive elimination have also been considered, and it has been found that such processes would also yield stable products which could act as an FLP in catalyzing reactions such as the dehydrogenation of ammonia borane. The current work therefore expands the scope of metal containing FLPs to include late transition metals and demonstrates computationally the potential of such complexes for exhibiting metal-ligand cooperativity. PMID:23912196

  4. A Straightforward Electrochemical Approach to Imine‐ and Amine‐bisphenolate Metal Complexes with Facile Control Over Metal Oxidation State

    PubMed Central

    Chapman, Michael R.; Henkelis, Susan E.; Kapur, Nikil

    2016-01-01

    Abstract Synthetic methods to prepare organometallic and coordination compounds such as Schiff‐base complexes are diverse, with the route chosen being dependent upon many factors such as metal–ligand combination and metal oxidation state. In this work we have shown that electrochemical methodology can be employed to synthesize a variety of metal–salen/salan complexes which comprise diverse metal–ligand combinations and oxidation states. Broad application has been demonstrated through the preparation of 34 complexes under mild and ambient conditions. Unprecedented control over metal oxidation state (MII/III/IV where M=Fe, Mn) is presented by simple modification of reaction conditions. Along this route, a general protocol‐switch is described which allows access to analytically pure FeII/III–salen complexes. Tuning electrochemical potential, selective metalation of a Mn/Ni alloy is also presented which exclusively delivers MnII/IV–salen complexes in high yield. PMID:27547645

  5. Metallophore mapping in complex matrices by metal isotope coded profiling of organic ligands.

    PubMed

    Deicke, Michael; Mohr, Jan Frieder; Bellenger, Jean-Philippe; Wichard, Thomas

    2014-12-01

    Metal isotope coded profiling (MICP) introduces a universal discovery platform for metal chelating natural products that act as metallophores, ion buffers or sequestering agents. The detection of cation and oxoanion complexing ligands is facilitated by the identification of unique isotopic signatures created by the application of isotopically pure metals. PMID:25298978

  6. Summary of Laboratory Capabilities Fact Sheets Waste Sampling and Characterization Facility and 222-S Laboratory Complex

    SciTech Connect

    HADLEY, R.M.

    2002-09-12

    This summary of laboratory capabilities is provided to assist prospective responders to the CH2M HILL Hanford Group, Inc. (CHG) Requests for Proposal (RFP) issued or to be issued. The RFPs solicit development of treatment technologies as categorized in the CHG Requests for Information (RFI): Solid-Liquid Separations Technology - SOL: Reference-Number-CHG01; Cesium and Technetium Separations Technology - SOL: Reference-Number-CHG02; Sulfate Removal Technology - SOL: Reference-Number-CHG03; Containerized Grout Technology - SOL: Reference-Number-CHG04; Bulk Vitrification Technology - SOL: Reference-Number-CHG05; and TRU Tank Waste Solidification for Disposal at the Waste Isolation Pilot Plant - SOL: Reference-Number-CHG06 Hanford Analytical Services, Technology Project Management (TPM), has the capability and directly related experience to provide breakthrough innovations and solutions to the challenges presented in the requests. The 222-S Complex includes the 70,000 sq ft 222-S Laboratory, plus several support buildings. The laboratory has 11 hot cells for handling and analyzing highly radioactive samples, including tank farm waste. Inorganic, organic, and radiochemical analyses are performed on a wide variety of air, liquid, soil, sludge, and biota samples. Capabilities also include development of process technology and analytical methods, and preparation of analytical standards. The TPM staff includes many scientists with advanced degrees in chemistry (or closely related fields), over half of which are PhDs. These scientists have an average 20 years of Hanford experience working with Hanford waste in a hot cell environment. They have hundreds of publications related to Hanford tank waste characterization and process support. These would include, but are not limited to, solid-liquid separations engineering, physical chemistry, particle size analysis, and inorganic chemistry. TPM has had revenues in excess of $1 million per year for the past decade in above

  7. Superconductors and Complex Transition Metal Oxides for Tunable THz Plasmonic Metamaterials

    SciTech Connect

    Singh, Ranjan; Xiong, Jie; Azad, Md A.; Yang, Hao; Trugman, Stuart A.; Jia, Quanxi; Taylor, Antoinette; Chen, Houtong

    2012-07-13

    The outline of this presentation are: (1) Motivation - Non-tunability of metal metamaterials; (2) Superconductors for temperature tunable metamaterials; (3) Ultrafast optical switching in superconductor metamaterials; (4) Controlling the conductivity with infrared pump beam; (5) Complex metal oxides as active substrates - Strontium Titanate; and (6) Conclusion. Conclusions are: (1) High Tc superconductors good for tunable and ultrafast metamaterials; (2) Large frequency and amplitude tunability in ultrathin superconductor films; (3) Such tunable properties cannot be accessed using metals; (4) Complex metal oxides can be used as active substrates - large tunability; (5) Complex oxides fail to address the issue of radiation losses in THz metamaterials.

  8. Assigning Oxidation States to Some Metal Dioxygen Complexes of Biological Interest.

    ERIC Educational Resources Information Center

    Summerville, David A.; And Others

    1979-01-01

    The bonding of dioxygen in metal-dioxygen complexes is discussed, paying particular attention to the problems encountered in assigning conventional oxidation numbers to both the metal center and coordinated dioxygen. Complexes of iron, cobalt, chromium, and manganese are considered. (BB)

  9. 40 CFR Appendix B to Part 414 - Complexed Metal-Bearing Waste Streams

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Complexed Metal-Bearing Waste Streams B Appendix B to Part 414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Pt. 414, App. B Appendix B to Part 414—Complexed Metal-Bearing...

  10. 40 CFR Appendix B to Part 414 - Complexed Metal-Bearing Waste Streams

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Complexed Metal-Bearing Waste Streams B Appendix B to Part 414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Pt. 414, App. B Appendix B to Part 414—Complexed Metal-Bearing...

  11. Infrared Spectroscopic Analysis of Linkage Isomerism in Metal-Thiocyanate Complexes

    ERIC Educational Resources Information Center

    Baer, Carl; Pike, Jay

    2010-01-01

    We developed an experiment suitable for an advanced inorganic chemistry laboratory that utilizes a cooperative learning environment, which allows students to develop an empirical method of determining the bonding mode of a series of unknown metal-thiocyanate complexes. Students synthesize the metal-thiocyanate complexes and obtain the FT-IR…

  12. Complex transition metal hydrides: linear correlation of countercation electronegativity versus T-D bond lengths.

    PubMed

    Humphries, T D; Sheppard, D A; Buckley, C E

    2015-06-30

    For homoleptic 18-electron complex hydrides, an inverse linear correlation has been established between the T-deuterium bond length (T = Fe, Co, Ni) and the average electronegativity of the metal countercations. This relationship can be further employed towards aiding structural solutions and predicting physical properties of novel complex transition metal hydrides. PMID:26077621

  13. 40 CFR 721.4680 - Metal salts of complex inorganic oxyacids (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4680 Metal salts of complex inorganic oxyacids... substances identified generically as metal salts of complex inorganic oxyacids (PMNs P-89-576 and...

  14. Toxicity of chlortetracycline and its metal complexes to model microorganisms in wastewater sludge.

    PubMed

    Pulicharla, Rama; Das, Ratul Kumar; Brar, Satinder Kaur; Drogui, Patrick; Sarma, Saurabh Jyoti; Verma, Mausam; Surampalli, Rao Y; Valero, Jose R

    2015-11-01

    Complexation of antibiotics with metals is a well-known phenomenon. Wastewater treatment plants contain metals and antibiotics, thus it is essential to know the effect of these complexes on toxicity towards microorganisms, typically present in secondary treatment processes. In this study, stability constants and toxicity of chlortetracycline (CTC) and metal (Ca, Mg, Cu and Cr) complexes were investigated. The calculated stability constants of CTC-metal complexes followed the order: Mg-CTC>Ca-CTC>Cu-CTC>Cr-CTC. Gram positive Bacillus thuringiensis (Bt) and Gram negative Enterobacter aerogenes (Ea) bacteria were used as model microorganisms to evaluate the toxicity of CTC and its metal complexes. CTC-metal complexes were more toxic than the CTC itself for Bt whereas for Ea, CTC and its metal complexes showed similar toxicity. In contrast, CTC spiked wastewater sludge (WWS) did not show any toxic effect compared to synthetic sewage. This study provides evidence that CTC and its metal complexes are toxic to bacteria when they are biologically available. As for WWS, CTC was adsorbed to solid part and was not biologically available to show measurable toxic effects. PMID:26119381

  15. Solid State Pathways to Complex Shape Evolution and Tunable Porosity during Metallic Crystal Growth

    PubMed Central

    Valenzuela, Carlos Díaz; Carriedo, Gabino A.; Valenzuela, María L.; Zúñiga, Luis; O'Dwyer, Colm

    2013-01-01

    Growing complex metallic crystals, supported high index facet nanocrystal composites and tunable porosity metals, and exploiting factors that influence shape and morphology is crucial in many exciting developments in chemistry, catalysis, biotechnology and nanoscience. Assembly, organization and ordered crystallization of nanostructures into complex shapes requires understanding of the building blocks and their association, and this relationship can define the many physical properties of crystals and their assemblies. Understanding crystal evolution pathways is required for controlled deposition onto surfaces. Here, complex metallic crystals on the nano- and microscale, carbon supported nanoparticles, and spinodal porous noble metals with defined inter-feature distances in 3D, are accomplished in the solid-state for Au, Ag, Pd, and Re. Bottom-up growth and positioning is possible through competitive coarsening of mobile nanoparticles and their site-specific crystallization in a nucleation-dewetted matrix. Shape evolution, density and growth mechanism of complex metallic crystals and porous metals can be imaged during growth. PMID:24026532

  16. Novel Route to Transition Metal Isothiocyanate Complexes Using Metal Powders and Thiourea

    NASA Technical Reports Server (NTRS)

    Harris, Jerry D.; Eckles, William E.; Hepp, Aloysius F.; Duraj, Stan A.; Hehemann, David G.; Fanwick, Phillip E.; Richardson, John

    2003-01-01

    A new synthetic route to isothiocyanate-containing materials is presented. Eight isothiocyanate- 4-methylpyridine (y-picoline) compounds were prepared by refluxing metal powders (Mn, Fe, Co, Ni, and Cu) with thiourea in y-picoline. With the exception of compound 5,prepared with Co, the isothiocyanate ligand was generated in situ by the isomerization of thiourea to NH4+SCN- at reflux temperatures. The complexes were characterized by x-ray crystallography. Compounds 1,2, and 8 are the first isothiocyanate- 4-methylpyridine anionic compounds ever prepared and structurally characterized. Compounds 1 and 2 are isostructural with four equatorially bound isothiocyanate ligands and two axially bound y-picoline molecules. Compound 8 is a five-coordinate copper(II) molecule with a distorted square-pyramidal geometry. Coordinated picoline and two isothiocyanates form the basal plane and the remaining isothiocyanate is bound at the apex. Structural data are presented for all compounds.

  17. Heterobimetallic coordination polymers involving 3d metal complexes and heavier transition metals cyanometallates

    SciTech Connect

    Peresypkina, Eugenia V.; Samsonenko, Denis G.; Vostrikova, Kira E.

    2015-04-15

    The results of the first steps in the design of coordination polymers based on penta- and heptacyanometallates of heavier d transitions metals are presented. The 2D structure of the coordination polymers: [(Mn(acacen)){sub 2}Ru(NO)(CN){sub 5}]{sub n} and two complexes composed of different cyanorhenates, [Ni(cyclam)]{sub 2}[ReO(OH)(CN){sub 4}](ClO{sub 4}){sub 2}(H{sub 2}O){sub 1.25} and [Cu(cyclam)]{sub 2}[Re(CN){sub 7}](H{sub 2}O){sub 12}, was confirmed by single crystal XRD study, the rhenium oxidation state having been proved by the magnetic measurements. An amorphism of [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2} (M=Ni, Cu) polymers does not allow to define strictly their dimensionality and to model anisotropic magnetic behavior of the compounds. However, with high probability a honey-comb like layer structure could be expected for [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2} complexes, studied in this work, because such an arrangement is the most common among the bimetallic assemblies of hexa- and octacyanometallates with a ratio [M(cyclam)]/[M(CN){sub n}]=3/2. For the first time was prepared and fully characterized a precursor (n-Bu{sub 4}N){sub 2}[Ru(NO)(CN){sub 5}], soluble in organic media. - Graphical abstract: The very first results in the design of 2D coordination polymers based on penta- and heptacyanometallates of 4d and5d transitions metals are presented. - Highlights: • Design of coordination polymers based on penta- and heptacyanometallates. • New Ru and Re cyanide based heterobimetallic coordination complexes. • Hydrolysis and ox/red processes involving [Re(CN){sub 7}]{sup 3+} during crystallization. • High magnetic anisotropy of [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2}(H{sub 2}O){sub n}, M=Cu, Ni, complexes.

  18. Sensitivity Analysis of the Sheet Metal Stamping Processes Based on Inverse Finite Element Modeling and Monte Carlo Simulation

    SciTech Connect

    Yu Maolin; Du, R.

    2005-08-05

    Sheet metal stamping is one of the most commonly used manufacturing processes, and hence, much research has been carried for economic gain. Searching through the literatures, however, it is found that there are still a lots of problems unsolved. For example, it is well known that for a same press, same workpiece material, and same set of die, the product quality may vary owing to a number of factors, such as the inhomogeneous of the workpice material, the loading error, the lubrication, and etc. Presently, few seem able to predict the quality variation, not to mention what contribute to the quality variation. As a result, trial-and-error is still needed in the shop floor, causing additional cost and time delay. This paper introduces a new approach to predict the product quality variation and identify the sensitive design / process parameters. The new approach is based on a combination of inverse Finite Element Modeling (FEM) and Monte Carlo Simulation (more specifically, the Latin Hypercube Sampling (LHS) approach). With an acceptable accuracy, the inverse FEM (also called one-step FEM) requires much less computation load than that of the usual incremental FEM and hence, can be used to predict the quality variations under various conditions. LHS is a statistical method, through which the sensitivity analysis can be carried out. The result of the sensitivity analysis has clear physical meaning and can be used to optimize the die design and / or the process design. Two simulation examples are presented including drawing a rectangular box and drawing a two-step rectangular box.

  19. DFT study of metal-complex structural variation on tensile force profiles

    NASA Astrophysics Data System (ADS)

    Rinderspacher, B. Christopher; Andzelm, Jan W.; Lambeth, Robert H.

    2012-12-01

    We present calculations on metal-ligand complexes for the evaluation of mechanical properties as they pertain to the inclusion in polymer-linked supramolecular complexes. To this end, we investigate the energy profiles of stretching various complexes according to external forces exerted on each complex via the attached polymer strands. Zn2+ and Fe2+ complexated by 2,6-bisbenzimidazolyl-pyridine (BP) were considered in the presence of tetrafluoro borate. We find that the yield characteristics are subject to a complex interplay of steric and electronic effects of the ligands and metal center.

  20. Transition Metal d-Orbital Splitting Diagrams: An Updated Educational Resource for Square Planar Transition Metal Complexes

    ERIC Educational Resources Information Center

    Bo¨rgel, Jonas; Campbell, Michael G.; Ritter, Tobias

    2016-01-01

    The presentation of d-orbital splitting diagrams for square planar transition metal complexes in textbooks and educational materials is often inconsistent and therefore confusing for students. Here we provide a concise summary of the key features of orbital splitting diagrams for square planar complexes, which we propose may be used as an updated…

  1. Solvation-Driven Charge Transfer and Localization in Metal Complexes

    PubMed Central

    2016-01-01

    stabilization of CT states in an important group of molecules such as transition metal complexes is inaccurate. In particular, we proved that the solvent molecules are not just spectators of intramolecular electron density redistribution but significantly modulate it. Our results solicit further development of quantum mechanics computational methods to treat the solute and (at least) the closest solvent molecules including the nonperturbative treatment of the effects of local electrostatics and direct solvent–solute interactions to describe the dynamical changes of the solute excited states during the solvent response. PMID:25902015

  2. Antimalarial and antimicrobial activities of 8-Aminoquinoline-Uracils metal complexes

    PubMed Central

    Phopin, Kamonrat; Sinthupoom, Nujarin; Treeratanapiboon, Lertyot; Kunwittaya, Sarun; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong

    2016-01-01

    8-Aminoquinoline (8AQ) derivatives have been reported to have antimalarial, anticancer, and antioxidant activities. This study investigated the potency of 8AQ-5-substituted (iodo and nitro) uracils metal (Mn, Cu, Ni) complexes (1-6) as antimalarial and antimicrobial agents. Interestingly, all of these metal complexes (1-6) showed fair antimalarial activities. Moreover, Cu complexes 2 (8AQ-Cu-5Iu) and 5 (8AQ-Cu-5Nu) exerted antimicrobial activities against Gram-negative bacteria including P. shigelloides and S. dysenteriae. The results reveal application of 8AQ and its metal complexes as potential compounds to be further developed as novel antimalarial and antibacterial agents. PMID:27103894

  3. Modified electronic population analysis for transition-metal complexes

    SciTech Connect

    Noell, J.O.

    1982-01-01

    A modification to the Mulliken electronic population analysis designed primarily for use on transition-metal systems is presented. All terms arising from the metal basis functions including diagonal terms are repartioned between the metal and the ligands. This reapportionment is an attempt to reflect more accurately the actual electron density in well-defined areas of space, which characterize the metal and the ligand. This modified analysis appears to yield more reasonable charge assignments than a conventional Mulliken analysis. The cost of the analysis is negligible in comparison with that of calculating the wave function.

  4. The mechanism of alkene addition to a nickel bis(dithiolene) complex: the role of the reduced metal complex.

    PubMed

    Dang, Li; Shibl, Mohamed F; Yang, Xinzheng; Alak, Aiman; Harrison, Daniel J; Fekl, Ulrich; Brothers, Edward N; Hall, Michael B

    2012-03-14

    The binding of an alkene by Ni(tfd)(2) [tfd = S(2)C(2)(CF(3))(2)] is one of the most intriguing ligand-based reactions. In the presence of the anionic, reduced metal complex, the primary product is an interligand adduct, while in the absence of the anion, dihydrodithiins and metal complex decomposition products are preferred. New kinetic (global analysis) and computational (DFT) data explain the crucial role of the anion in suppressing decomposition and catalyzing the formation of the interligand product through a dimetallic complex that appears to catalyze alkene addition across the Ni-S bond, leading to a lower barrier for the interligand adduct. PMID:22364208

  5. Synthesis, spectral studies and biological evaluation of 2-aminonicotinic acid metal complexes.

    PubMed

    Nawaz, Muhammad; Abbasi, Muhammad Waseem; Hisaindee, Soleiman; Zaki, Muhammad Javed; Abbas, Hira Fatima; Mengting, Hu; Ahmed, M Arif

    2016-05-15

    We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica. PMID:26945123

  6. Synthesis, spectral studies and biological evaluation of 2-aminonicotinic acid metal complexes

    NASA Astrophysics Data System (ADS)

    Nawaz, Muhammad; Abbasi, Muhammad Waseem; Hisaindee, Soleiman; Zaki, Muhammad Javed; Abbas, Hira Fatima; Mengting, Hu; Ahmed, M. Arif

    2016-05-01

    We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica.

  7. Heterobimetallic coordination polymers involving 3d metal complexes and heavier transition metals cyanometallates

    NASA Astrophysics Data System (ADS)

    Peresypkina, Eugenia V.; Samsonenko, Denis G.; Vostrikova, Kira E.

    2015-04-01

    The results of the first steps in the design of coordination polymers based on penta- and heptacyanometallates of heavier d transitions metals are presented. The 2D structure of the coordination polymers: [{Mn(acacen)}2Ru(NO)(CN)5]n and two complexes composed of different cyanorhenates, [Ni(cyclam)]2[ReO(OH)(CN)4](ClO4)2(H2O)1.25 and [Cu(cyclam)]2[Re(CN)7](H2O)12, was confirmed by single crystal XRD study, the rhenium oxidation state having been proved by the magnetic measurements. An amorphism of [M(cyclam)]3[Re(CN)7]2 (M=Ni, Cu) polymers does not allow to define strictly their dimensionality and to model anisotropic magnetic behavior of the compounds. However, with high probability a honey-comb like layer structure could be expected for [M(cyclam)]3[Re(CN)7]2 complexes, studied in this work, because such an arrangement is the most common among the bimetallic assemblies of hexa- and octacyanometallates with a ratio [M(cyclam)]/[M(CN)n]=3/2. For the first time was prepared and fully characterized a precursor (n-Bu4N)2[Ru(NO)(CN)5], soluble in organic media.

  8. Forming of fiber reinforced thermoplastic sheets

    SciTech Connect

    Bhattacharyya, D.; Burt, C.R.; Martin, T.A.

    1993-12-31

    The development of fiber reinforced thermoplastic (FRTP) sheets has added a new dimension to the manufacturing industry. The ability of the thermoplastic matrix to soften and melt with the application of heat allows secondary processing of these composites. The material can be formed into components using conventional sheet metal forming processes with necessary modification. Ideally this opens the way for low cycle-time, non-labor intensive manufacturing processes. However, before there can be any wide scale application of the fiber reinforced sheet material, a better understanding is required regarding the formability of these reinforced sheets and the parameters influencing their forming characteristics. In sheet metal industry the term formability is described as the ease of forming and can be judged by various factors which may vary with the needs of a particular manufacturer. It is not always easy to prejudge formability as in many instances the actual sheet forming mechanism is quite complex. However, often a reasonable understanding of the process characteristics can be obtained through some relatively simple laboratory experiments. The present paper describes the results of a series of such tests namely hemispherical dome forming, cup drawing and vee bending using mainly polypropylene/glass fiber composite sheets with various fiber architecture, forming temperature and speed. Grid strain analysis has been applied to measure the magnitudes and directions of the principal strains and how they are influenced by fiber orientation. A kinematic approach has been shown to theoretically predict the deformation pattern with reasonable accuracy. Some salient features such as fiber buckling, sheet wrinkling, springback have been discussed in the context of forming process variables.

  9. COMPLEX FLUORIDES OF PLUTONIUM AND AN ALKALI METAL

    DOEpatents

    Seaborg, G.T.

    1960-08-01

    A method is given for precipitating alkali metal plutonium fluorides. such as KPuF/sub 5/, KPu/sub 2/F/sub 9/, NaPuF/sub 5/, and RbPuF/sub 5/, from an aqueous plutonium(IV) solution by adding hydrogen fluoride and alkali-metal- fluoride.

  10. Identification of metal species by ESI-MS/MS through release of free metals from the corresponding metal-ligand complexes

    PubMed Central

    Tsednee, Munkhtsetseg; Huang, Yu-Chen; Chen, Yet-Ran; Yeh, Kuo-Chen

    2016-01-01

    Electrospray ionization-mass spectrometry (ESI-MS) is used to analyze metal species in a variety of samples. Here, we describe an application for identifying metal species by tandem mass spectrometry (ESI-MS/MS) with the release of free metals from the corresponding metal–ligand complexes. The MS/MS data were used to elucidate the possible fragmentation pathways of different metal–deoxymugineic acid (–DMA) and metal–nicotianamine (–NA) complexes and select the product ions with highest abundance that may be useful for quantitative multiple reaction monitoring. This method can be used for identifying different metal–ligand complexes, especially for metal species whose mass spectra peaks are clustered close together. Different metal–DMA/NA complexes were simultaneously identified under different physiological pH conditions with this method. We further demonstrated the application of the technique for different plant samples and with different MS instruments. PMID:27240899

  11. Multiheteromacrocycles that Complex Metal Ions. Sixth Progress Report, 1 May 1979-30 April 1980

    DOE R&D Accomplishments Database

    Cram, D. J.

    1980-01-15

    Objective is to design synthesize, and evaluate cyclic and polycyclic host organic compounds for their abilities to complex and lipophilize guest metal ions, their complexes, and their clusters. Host organic compounds consist of strategically placed solvating, coordinating, and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions or by metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; number of binding sites; character of binding sites; and valences. During this period, hemispherands based on an aryloxy or cyclic urea unit, spherands based on aryloxyl units only, and their complexes with alkali metals and alkaline earths were investigated. An attempt to separate {sup 6}Li and {sup 7}Li by gel permeation chromatography of lithiospherium chloride failed. (DLC)

  12. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, Michael A.; Hallen, Richard T.

    1990-01-01

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the produce gas from coal gasification processes.

  13. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, Michael A.; Hallen, Richard T.

    1991-01-01

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the product gas from coal gasification processes.

  14. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, M.A.; Hallen, R.T.

    1990-08-28

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the producer gas from coal gasification processes. 3 figs.

  15. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, M.A.; Hallen, R.T.

    1991-10-15

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the product gas from coal gasification processes. 3 figures.

  16. Process for the displacement of cyanide ions from metal-cyanide complexes

    DOEpatents

    Smith, Barbara F.; Robinson, Thomas W.

    1997-01-01

    The present invention relates to water-soluble polymers and the use of such water-soluble polymers in a process for the displacement of the cyanide ions from the metal ions within metal-cyanide complexes. The process waste streams can include metal-cyanide containing electroplating waste streams, mining leach waste streams, mineral processing waste streams, and related metal-cyanide containing waste streams. The metal ions of interest are metals that give very strong complexes with cyanide, mostly iron, nickel, and copper. The physical separation of the water-soluble polymer-metal complex from the cyanide ions can be accomplished through the use of ultrafiltration. Once the metal-cyanide complex is disrupted, the freed cyanide ions can be recovered for reuse or destroyed using available oxidative processes rendering the cyanide nonhazardous. The metal ions are released from the polymer, using dilute acid, metal ion oxidation state adjustment, or competing chelating agents, and collected and recovered or disposed of by appropriate waste management techniques. The water-soluble polymer can then be recycled. Preferred water-soluble polymers include polyethyleneimine and polyethyleneimine having a catechol or hydroxamate group.

  17. Modelling of trace metal uptake by roots taking into account complexation by exogenous organic ligands

    NASA Astrophysics Data System (ADS)

    Jean-Marc, Custos; Christian, Moyne; Sterckeman, Thibault

    2010-05-01

    The context of this study is phytoextraction of soil trace metals such as Cd, Pb or Zn. Trace metal transfer from soil to plant depends on physical and chemical processes such as minerals alteration, transport, adsorption/desorption, reactions in solution and biological processes including the action of plant roots and of associated micro-flora. Complexation of metal ions by organic ligands is considered to play a role on the availability of trace metals for roots in particular in the event that synthetic ligands (EDTA, NTA, etc.) are added to the soil to increase the solubility of the contaminants. As this role is not clearly understood, we wanted to simulate it in order to quantify the effect of organic ligands on root uptake of trace metals and produce a tool which could help in optimizing the conditions of phytoextraction.We studied the effect of an aminocarboxilate ligand on the absorption of the metal ion by roots, both in hydroponic solution and in soil solution, for which we had to formalize the buffer power for the metal. We assumed that the hydrated metal ion is the only form which can be absorbed by the plants. Transport and reaction processes were modelled for a system made up of the metal M, a ligand L and the metal complex ML. The Tinker-Nye-Barber model was adapted to describe the transport of solutes M, L and ML in the soil and absorption of M by the roots. This allowed to represent the interactions between transport, chelating reactions, absorption of the solutes at the root surface, root growth with time, in order to simulate metal uptake by a whole root system.Several assumptions were tested such as i) absorption of the metal by an infinite sink and according to a Michaelis-Menten kinetics, solutes transport by diffusion with and without ii) mass flow and iii) soil buffer power for the ligand L. In hydroponic solution (without soil buffer power), ligands decreased the trace metal flux towards roots, as they reduced the concentration of hydrated

  18. Heavy-metal complexation by de novo peptide design.

    PubMed

    Farrer, Brian T; Pecoraro, Vincent L

    2002-11-01

    From poisoning caused by lead-based paint on domestic buildings to groundwater contamination by naturally occurring arsenic deposits in India, heavy-metal toxicity is a global health problem. Contaminated ground water and acute cases of heavy-metal poisoning are treated with chelators to remove the heavy metals from the contaminated site or person. This review discusses the effort to generate heavy-metal chelators through peptide de novo design. De novo design entails the design of a primary sequence that will precisely fold into a predetermined secondary and tertiary protein structure. The first-generation peptide chelator used to initiate this investigation is the three-stranded coild coil containing Cys. Cys provides a potential trigonal binding site with soft thiolate ligands, which has been proposed to provide specific interactions with heavy metals. This hypothesis derives from the observation that similar sites on natural proteins show selectivity for heavy metals over other essential metals, such as Zn or Mg. A description of two systems, the TRI series and the IZ-AC peptide, is given, highlighting the interaction of these peptides with Hg, Cd, As and Pb. Arguments are also presented for the potential use of three-helix bundles as a second-generation design. PMID:12478724

  19. Structures and energetics of complexation of metal ions with ammonia, water, and benzene: A computational study.

    PubMed

    Sharma, Bhaskar; Neela, Y Indra; Narahari Sastry, G

    2016-04-30

    Quantum chemical calculations have been performed at CCSD(T)/def2-TZVP level to investigate the strength and nature of interactions of ammonia (NH3 ), water (H2 O), and benzene (C6 H6 ) with various metal ions and validated with the available experimental results. For all the considered metal ions, a preference for C6 H6 is observed for dicationic ions whereas the monocationic ions prefer to bind with NH3 . Density Functional Theory-Symmetry Adapted Perturbation Theory (DFT-SAPT) analysis has been employed at PBE0AC/def2-TZVP level on these complexes (closed shell), to understand the various energy terms contributing to binding energy (BE). The DFT-SAPT result shows that for the metal ion complexes with H2 O electrostatic component is the major contributor to the BE whereas, for C6 H6 complexes polarization component is dominant, except in the case of alkali metal ion complexes. However, in case of NH3 complexes, electrostatic component is dominant for s-block metal ions, whereas, for the d and p-block metal ion complexes both electrostatic and polarization components are important. The geometry (M(+) -N and M(+) -O distance for NH3 and H2 O complexes respectively, and cation-π distance for C6 H6 complexes) for the alkali and alkaline earth metal ion complexes increases down the group. Natural population analysis performed on NH3 , H2 O, and C6 H6 complexes shows that the charge transfer to metal ions is higher in case of C6 H6 complexes. PMID:26833683

  20. Metal-isonitrile adducts for preparing radionuclide complexes for labelling and imaging agents

    DOEpatents

    Jones, Alun G.; Davison, Alan; Abrams, Michael J.

    1987-01-01

    A method for preparing a coordination complex of an isonitrile ligand and radionuclide such as Tc, Ru, Co, Pt, Fe, Os, Ir, W, Re, Cr, Mo, Mn, Ni, Rh, Pd, Nb and Ta is disclosed. The method comprises preparing a soluble metal adduct of said isonitrile ligand by admixing said ligand with a salt of a displaceable metal having a complete d-electron shell selected from the group consisting of Zn, Ga, Cd, In, Sn, Hg, Tl, Pb and Bi to form a soluble metal-isonitrile salt, and admixing said metal isonitrile salt with a salt comprising said radioactive metal in a suitable solvent to displace said displaceable metal with the radioactive metal thereby forming said coordination. The complex is useful as a diagnostic agent for labelling liposomes or vesicles, and selected living cells containing lipid membranes, such as blood clots, myocardial tissue, gall bladder tissue, etc.

  1. Metals fact sheet - Dysprosium

    SciTech Connect

    1997-01-01

    The article contains a summary of factors pertinent to dysprosium use. Geology and exploitation, mineral sources, production processes, global production,applications, and the dysprosium market are reviewed. Applications very briefly described include use as a cooling agent in nuclear control rods, magnets, magnetostrictive devices, phosphors, photoelectric devices, and glass. Current and historical market prices are given.

  2. Effect of entropy-packing fraction relation on the formation of complex metallic materials

    NASA Astrophysics Data System (ADS)

    Tourki Samaei, Arash; Mohammadi, Ehsan

    2015-09-01

    By combining a number of elements to form complex metallic materials without a base element, it was recently shown that one can obtain rather complex structures, including random solute solutions, multi-phased mixtures and amorphous structures with/without nano-precipitations. Compared to conventional metallic materials, these complex ones could show excellent mechanical and physical properties across a wide range of temperatures, therefore being a promising advanced material for high-temperature applications; however, designing these complex materials, at present, still lacks a unified physical approach but relies on the choice of a few metallurgical parameters, such as atomic size mismatch, heat of mixing and valence electron concentration. Here, we identify a physical mechanism through the optimization of the excess configurational entropy of mixing in the control of phase formation in these metallic materials. The theoretical framework herein established is expected to provide a new paradigm in pursuit of complex metallic materials with superior properties.

  3. Determination of stability constants of aminoglycoside antibiotics with their metal complexes

    NASA Astrophysics Data System (ADS)

    Tiwow, Vanny M. A.

    2014-03-01

    One group of aminoglycoside antibiotics contains aminosugars. The aminosugar neomycin B with its derivate product neamine (2-Deoxy-4-0-(2,6-diamino-2,6-dideoxy-α-D-glucopyranosyl)-D-Streptamine) was identified as a free ligands and metal complexes. In particular, the stability constants of metal complexes by potentiometric titration techniques were investigated. Our previous study had determined the acid dissociation constants of these aminosugars with few metal complexes in fair depth. In this work, the complexation of two pyridine-containing amino alcohols and an amino sugar (neamine) have been measured potentiometrically. For instance, the stability constant of copper(II) complexation were determine and the model system generated an excellent fit. Stability constants with several metals have been determined and will be reported.

  4. DETERMINATION OF METALS IN SOLID SAMPLES BY COMPLEXATION-SFE AND GC-ATOMIC EMISSION DETECTION

    EPA Science Inventory

    Complexation followed by SFE has been investigated for the extraction of Cu2+, Co2+, Cd2+, and Zn2+ ions from solid samples. ithium bis(trifluoroethyl)dithiocarbamate (FDDC) was used as the complexing agent in this study. he metal-FDDC complexes in the SFE extracts were determine...

  5. Cutting Guide for Fibrous Sheets

    NASA Technical Reports Server (NTRS)

    Warren, A., D.

    1985-01-01

    Tool facilitates repetitive cutting of fibrous sheets. Flexible aluminum tape allows metal strips folded back on themselves, exposing fresh material for cutting. More than one strip folded back, and cutting width therefore increased in multiples of strip width. Developed for cutting strips of alumina-fiber matting, tool also used on such materials as felts, textiles, and sheet metals.

  6. The occurrence of heavy metals in the vicinity of industrial complexes in Nigeria

    SciTech Connect

    Ndiokwere, C.L.; Ezihe, C.A. )

    1990-01-01

    The accumulation of Cd, Cr, Cu, Ni, Pb, and Zn in soils, crops, and plants as a result of industrial activities has been examined at various locations in the vicinities of steel and refinery complexes. High concentrations of the metals were recorded in all the samples from the sites close to the emission sources and the levels decreased with distance away from the sources. Considerable amounts of the metals found in the crops and plants were mainly due to aerial deposition. Soil and crop contamination by the metals was generally higher in the steel complex than the refinery. Cadmium and lead levels were particularly high in all the samples from both complexes.

  7. Transition metal complexes of neocryptolepine analogues. Part I: Synthesis, spectroscopic characterization, and invitro anticancer activity of copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Emam, Sanaa Moustafa; El Sayed, Ibrahim El Tantawy; Nassar, Nagla

    2015-03-01

    New generation of copper(II) complexes with aminoalkylaminoneocryptolepine as bidentate ligands has been synthesized and it is characterized by elemental analyses, magnetic moment, spectra (IR, UV-Vis, 1H NMR and ESR) and thermal studies. The IR data suggest the coordination modes for ligands which behave as a bidentate with copper(II) ion. Based on the elemental analysis, magnetic studies, electronic and ESR data, binuclear square planar geometry was proposed for complexes 7a, 7b, square pyramidal for 9a, 9b and octahedral for 8a, 8b, 10a, 10b. The molar conductance in DMF solution indicates that all complexes are electrolyte except 7a and 7b. The ESR spectra of solid copper(II) complexes in powder form showed an axial symmetry with 2B1g as a ground state and hyperfine structure. The thermal stability and degradation of the ligands and their metal complexes were studied employing DTA and TG methods. The metal-free ligands and their copper(II) complexes were tested for their in vitro anticancer activity against human colon carcinoma (HT-29). The results showed that the synthesized copper(II) complexes exhibited higher anticancer activity than their free ligands. Of all the studied copper(II) complexes, the bromo-substituted complex 9b exhibited high anticancer activity at low micromolar inhibitory concentrations (IC50 = 0.58 μM), compared to the other complexes and the free ligands.

  8. Characterization of metal-peptide complexes in feed supplements of essential trace elements.

    PubMed

    Yiannikouris, Alexandros; Connolly, Cathal; Power, Ronan; Lobinski, Ryszard

    2009-01-01

    Metal chelates with biomolecules are increasingly used in animal supplementation to increase the bioavailability of essential trace elements. However, the transfer of the chelates is not well understood and speciation studies may bring a comprehensive insight to further investigate the biological uptake mechanism(s) implicated. An analytical method was developed for the characterization of the water-soluble metal complexes in animal feed supplements obtained by reaction of a metal salt with a non-GMO soybean enzymatic digest. The method was based on fractionation of the extract by size-exclusion chromatography followed by the analysis of the metal-containing fraction by reversed-phase nanoHPLC with parallel ICP MS and electrospray MS/MS detection. The metal complexes were identified in the mass spectra owing to the Cu characteristic isotopic pattern; the complexation was corroborated by the presence of a peak corresponding to the non-metallated peptide. The study demonstrated the feasibility of SEC-ICP MS to produce characteristic metal (Cu, Zn, Mn, Fe) distribution patterns, which can be of interest to test batch-to-batch reproducibility and to determine the origin of the supplement. The use of the method could be extended to animal feeds prepared using the metal-chelated complexes. Electrospray MS/MS allowed the identification of a number of Cu complexes with peptides. Four different structure conformations were modeled by means of molecular mechanics investigations to assess the chelation stability. PMID:21305120

  9. Self-Assembly of Discrete Metal Complexes in Aqueous Solution via Block Copolypeptide Amphiphiles

    PubMed Central

    Kuroiwa, Keita; Masaki, Yoshitaka; Koga, Yuko; Deming, Timothy J.

    2013-01-01

    The integration of discrete metal complexes has been attracting significant interest due to the potential of these materials for soft metal-metal interactions and supramolecular assembly. Additionally, block copolypeptide amphiphiles have been investigated concerning their capacity for self-assembly into structures such as nanoparticles, nanosheets and nanofibers. In this study, we combined these two concepts by investigating the self-assembly of discrete metal complexes in aqueous solution using block copolypeptides. Normally, discrete metal complexes such as [Au(CN)2]−, when molecularly dispersed in water, cannot interact with one another. Our results demonstrated, however, that the addition of block copolypeptide amphiphiles such as K183L19 to [Au(CN)2]− solutions induced one-dimensional integration of the discrete metal complex, resulting in photoluminescence originating from multinuclear complexes with metal-metal interactions. Transmission electron microscopy (TEM) showed a fibrous nanostructure with lengths and widths of approximately 100 and 20 nm, respectively, which grew to form advanced nanoarchitectures, including those resembling the weave patterns of Waraji (traditional Japanese straw sandals). This concept of combining block copolypeptide amphiphiles with discrete coordination compounds allows the design of flexible and functional supramolecular coordination systems in water. PMID:23337202

  10. Binding of dihydromyricetin and its metal ion complexes with bovine serum albumin

    PubMed Central

    Guo, Qingquan; Yuan, Juan; Zeng, Jinhua

    2014-01-01

    The binding mechanisms of the interaction of three dihydromyricetin (DMY)–metal complexes (DMY–Cu (II) complex, DMY–Mn (II) complex, DMY–Zn (II) complex) and DMY with bovine serum albumin (BSA) were investigated using fluorescence and ultraviolet spectroscopy at different temperatures. The results indicated some differences in the binding process between different DMY–metal complexes and BSA compared with that of free DMY. All of the complexes and DMY quenched the fluorescence of BSA based on static mode combined with radiationless energy transfer, yet having different binding distance based on the Förster theory. Different DMY–metal complexes can change the binding constants. The binding constants increase for DMY–Cu (II) and DMY–Mn (II) complexes, whereas the opposite is true for the DMY–Zn (II) complex compared to the one with free DMY. The DMY–metal complexes can also affect the types of the interaction. The van der Waals forces and hydrogen bonding may play a major role in the interaction of free DMY with BSA, while for the three complexes, the nature of the binding forces lies in hydrophobic forces and hydrogen bonding based on the thermodynamic parameters. PMID:26019518

  11. Ultrasonic Additive Manufacturing: Weld Optimization for Aluminum 6061, Development of Scarf Joints for Aluminum Sheet Metal, and Joining of High Strength Metals

    NASA Astrophysics Data System (ADS)

    Wolcott, Paul J.

    Ultrasonic additive manufacturing (UAM) is a low temperature, solid-state manufacturing process that enables the creation of layered, solid metal structures with designed anisotropies and embedded materials. As a low temperature process, UAM enables the creation of active composites containing smart materials, components with embedded sensors, thermal management devices, and many others. The focus of this work is on the improvement and characterization of UAM aluminum structures, advancing the capabilities of ultrasonic joining into sheet geometries, and examination of dissimilar material joints using the technology. Optimized process parameters for Al 6061 were identified via a design of experiments study indicating a weld amplitude of 32.8 synum and a weld speed of 200 in/min as optimal. Weld force and temperature were not significant within the levels studied. A methodology of creating large scale builds is proposed, including a prescribed random stacking sequence and overlap of 0.0035 in. (0.0889 mm) for foils to minimize voids and maximize mechanical strength. Utilization of heat treatments is shown to significantly increase mechanical properties of UAM builds, within 90% of bulk material. The applied loads during the UAM process were investigated to determine the stress fields and plastic deformation induced during the process. Modeling of the contact mechanics via Hertzian contact equations shows that significant stress is applied via sonotrode contact in the process. Contact modeling using finite element analysis (FEA), including plasticity, indicates that 5000 N normal loads result in plastic deformation in bulk aluminum foil, while at 3000 N no plastic deformation occurs. FEA studies on the applied loads during the process, specifically a 3000 N normal force and 2000 N shear force, show that high stresses and plastic deformation occur at the edges of a welded foil, and base of the UAM build. Microstructural investigations of heat treated foils confirms

  12. Experimental investigation of the effect of the material damage induced in sheet metal forming process on the service performance of 22MnB5 steel

    NASA Astrophysics Data System (ADS)

    Zhuang, Weimin; Xie, Dongxuan; Chen, Yanhong

    2016-06-01

    The use of ultra-high strength steels through sheet metal forming process offers a practical solution to the lightweight design of vehicles. However, sheet metal forming process not only produces desirable changes in material properties but also causes material damage that may adversely influence the service performance of the material formed. Thus, an investigation is conducted to experimentally quantify such influence for a commonly used steel (the 22MnB5 steel) based on the hot and cold forming processes. For each process, a number of samples are used to conduct a uniaxial tensile test to simulate the forming process. After that, some of the samples are trimmed into a standard shape and then uniaxially extended until fracture to simulate the service stage. Finally, a microstructure test is conducted to analyze the microdefects of the remaining samples. Based on the results of the first two tests, the effect of material damage on the service performance of 22MnB5 steel is analyzed. It is found that the material damages of both the hot and cold forming processes cause reductions in the service performance, such as the failure strain, the ultimate stress, the capacity of energy absorption and the ratio of residual strain. The reductions are generally lower and non-linear in the former process but higher and linear in the latter process. Additionally, it is found from the microstructure analysis that the difference in the reductions of the service performance of 22MnB5 by the two forming processes is driven by the difference in the micro damage mechanisms of the two processes. The findings of this research provide a useful reference in terms of the selection of sheet metal forming processes and the determination of forming parameters for 22MnB5.

  13. Structure Characterization and Properties of Metal-Surfactant Complexes Dispersed in Organic Solvents.

    PubMed

    de la Iglesia, Pablo; Jaeger, Vance W; Xi, Yuyin; Pfaendtner, Jim; Pozzo, Lilo D

    2015-08-25

    This work describes the synthesis and characterization of metal-surfactant complexes. Dioctyl sulfosuccinate and dodecylbenzenesulfonate are associated with multivalent aluminum, iron, and vanadium ions using an ion exchange reaction. The metal complexes are dispersible in various organic solvents. In solvents with low polarity, the complexes form "inverse" macromolecular structures with multiple metal ions. In contrast, in alcohols, the complex size is reduced, showing a more disperse conformation. The metal and surfactant ions are still strongly bonded to each other in all the solvents probed. Small-angle X-ray and neutron scattering (SAXS and SANS) are used to characterize the structures. Simultaneous fitting of neutron and X-ray scattering spectra is performed in order to obtain an accurate description of the system. Scattering results are also validated by performing molecular dynamics (MD) simulations. The conductive and electrochemical properties of the complexes in solution are also evaluated. The dispersion of metal-organic complexes significantly increases electric conductivity, and some metal ions in the core of the complexes are shown to be electrochemically active in apolar solvents. PMID:26212253

  14. Dinuclear first-row transition metal complexes with a naphthyridine-based dinucleating ligand.

    PubMed

    Davenport, T C; Tilley, T D

    2015-07-21

    A series of dinuclear and tetranuclear first-row transition metal complexes were synthesized with the dinucleating ligand 2,7-bis(di(2-pyridyl)fluoromethyl)-1,8-naphthyridine (DPFN). The coordination pocket and rigidity of the DPFN ligand enforces pseudo-octahedral geometries about the metal centers that contain chloro, hydroxo, and aqua bridging ligands forming a "diamond" shaped configuration with metal-metal distances varying from 2.7826(5) to 3.2410(11) Å. Each metal center in the dinuclear complexes has an additional open coordination site that accommodates terminal ligands in a syn geometry of particular interest in catalyst design. The complexes are characterized by electronic spectroscopy, electrochemistry and potentiometric titration methods. PMID:25420206

  15. Behavior of Ti-5Al-2.5Sn ELI titanium alloy sheet parent and weld metal in the presence of cracks at 20 K

    NASA Technical Reports Server (NTRS)

    Sullivan, T. L.

    1971-01-01

    Through- and surface-cracked specimens of two thicknesses were tested in uniaxial tension. Surface-cracked specimens were generally found to be stronger than through-cracked specimens with the same crack length. Apparent surface-crack fracture toughness calculated using the Anderson modified Irwin equation remained relatively constant for cracks as deep as 90 percent of the sheet thickness. Subcritical growth of surface cracks was investigated. Comparison of chamber and open air welds showed chamber welds to be slightly tougher. Both methods produced welds with toughness that compared favorably with that of the parent metal. Weld efficiencies were above 94 percent.

  16. Density functional study of isoguanine tetrad and pentad sandwich complexes with alkali metal ions.

    PubMed

    Meyer, Michael; Steinke, Thomas; Sühnel, Jürgen

    2007-02-01

    Isoguanine tetraplexes and pentaplexes contain two or more stacked polyads with intercalating metal ions. We report here the results of a density functional study of sandwiched isoguanine tetrad and pentad complexes consisting of two polyads with Na(+), K(+) and Rb(+) ions at the B3LYP level. In comparison to single polyad metal ion complexes, there is a trend towards increased non-planarity of the polyads in the sandwich complexes. In general, the pentad sandwiches have relatively planar polyad structures, whereas the tetrad complexes contain highly non-planar polyad building blocks. As in other sandwich complexes and in metal ion complexes with single polyads, the metal ion-base interaction energy plays an essential role. In iG sandwich structures, this interaction energy is slightly larger than in the corresponding guanine sandwich complexes. Because the base-base interaction energy is even more increased in passing from guanine to isoguanine, the isoguanine sandwiches are thus far the only examples where the base-base interaction energy is larger than the base-metal ion interaction energy. Stacking interactions have been studied in smaller models consisting of two bases, retaining the geometry from the complete complex structures. From the data obtained at the B3LYP and BH&H levels and with Møller-Plesset perturbation theory, one can conclude that the B3LYP method overestimates the repulsion in stacked base dimers. For the complexes studied in this work, this is only of minor importance because the direct inter-tetrad or inter-pentad interaction is supplemented by a strong metal ion-base interaction. Using a microsolvation model, the metal ion preference K(+) approximately Rb(+) > Na(+) is found for tetrad complexes. On the other hand, for pentads the ordering is Rb(+) > K(+) > Na(+). In the latter case experimental data are available that agree with this prediction. PMID:17013632

  17. The diastereoselective synthesis of octahedral cationic iridium hydride complexes with a stereogenic metal centre.

    PubMed

    Humbert, Nicolas; Mazet, Clément

    2016-08-23

    We report herein the highly diastereoselective synthesis of octahedral cationic Ir(iii) hydride complexes with a stereogenic metal centre following various strategies. The configurational stability of these compounds has also been investigated. PMID:27498763

  18. Reactivity of halide and pseudohalide ligands in transition-metal complexes

    SciTech Connect

    Kukushkin, Yu.N.; Kukushkin, V.Yu.

    1985-10-01

    The experimental material on the reactions of coordinated halide ligands, as well as cyanide, azido, thiocyanato, and cyanato ligands, in transition-metal complexes has been generalized in this review.

  19. Alkane oxidation with porphyrins and metal complexes thereof having haloalkyl side chains

    DOEpatents

    Wijesekera, T.; Lyons, J.E.; Ellis, P.E. Jr.; Bhinde, M.V.

    1998-06-23

    Transition metal complexes of meso-haloalkylporphyrins are disclosed, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides. 7 figs.

  20. Alkane oxidation with porphyrins and metal complexes thereof having haloalkyl side chains

    DOEpatents

    Wijesekera, Tilak; Lyons, James E.; Ellis, Jr., Paul E.; Bhinde, Manoj V.

    1998-01-01

    Transition metal complexes of meso-haloalkylporphyrins, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides.

  1. Metal-metal interactions in weakly coupled mixed-valence E- and Z-diferrocenylethylene complexes.

    PubMed

    Chen, Y J; Pan, D S; Chiu, C F; Su, J X; Lin, S J; Kwan, K S

    2000-03-01

    To study metal-to-metal interactions in mixed-valence states of two weakly coupling ferrocenyl groups assembled in E or Z conformation on an ethylenic double bond, E-1,2-dimethyldiferrocenylethylene (1), Z-1,2-dimethyldi-ferrocenylethylene (2), and 1,2-diferrocenylcyclohexene (3) were synthesized and structurally characterized. Crystals of 1 are triclinic, P1, with a = 7.494(9) A, b = 10.801(3) A, c = 11.971(2) A, alpha = 102.17(2) degrees, beta = 106.12(9) degrees, gamma = 90.42(2) degrees, V = 907.8 A3, and Z = 2. Crystals of 2 are monoclinic, P2(1)/c, with a = 13.601(8) A, b = 11.104(4) A, c = 13.732(1) A, beta = 114.26(7) degrees, V = 1890.8(3) A3, and Z = 4. Crystals of 3 are orthorhombic, P2(1)2(1)2(1), with a = 5.766(2) A, b = 13.090(1) A, c = 26.695(2) A, V = 2014.9(3) A3, and Z = 4. Intervalence transition spectra (IT) and electrochemical data have been determined and compared with those of diferrocenyl-benzene (para, ortho, and meta). The comproportionation constants in nitrobenzene at 25 degrees C were found to be 490 and 813 for 1 and 3, respectively. That of 2 was not measured because of the fact that 2+ isomerizes rapidly in all solvents tested, yielding nearly a racemic mixture of E and Z conformers. This finding helps to clear the paradoxical phenomenon between experimental results of mixed-valence complexes of E- and Z-1,2-bis(1'-ethyl-1-ferrocenyl)-1,2-dimethylethylene and theories. The stability of the mixed-valence species was discussed in terms of resonance delocalization, Coulomb repulsion energy, inductive effect, magnetic interaction, structural factors, and statistical factor. According to our analysis based on the Hush formalism, the contribution due to Coulomb repulsion energy dominates the overall stability of the mixed-valence state in 1+, 2+, and 3+. Stabilization that arises from resonance delocalization is only minor and contributes less than 4% to the overall stability, even in 3+ where linked Cp rings and the ethylenic plane are

  2. New directions in the science and technology of advanced sheet explosive formulations and the key energetic materials used in the processing of sheet explosives: Emerging trends.

    PubMed

    Talawar, M B; Jangid, S K; Nath, T; Sinha, R K; Asthana, S N

    2015-12-30

    This review presents the work carried out by the international community in the area of sheet explosive formulations and its applications in various systems. The sheet explosive is also named as PBXs and is a composite material in which solid explosive particles like RDX, HMX or PETN are dispersed in a polymeric matrix, forms a flexible material that can be rolled/cut into sheet form which can be applied to any complex contour. The designed sheet explosive must possess characteristic properties such as flexible, cuttable, water proof, easily initiable, and safe handling. The sheet explosives are being used for protecting tanks (ERA), light combat vehicle and futuristic infantry carrier vehicle from different attacking war heads etc. Besides, sheet explosives find wide applications in demolition of bridges, ships, cutting and metal cladding. This review also covers the aspects such as risks and hazard analysis during the processing of sheet explosive formulations, effect of ageing on sheet explosives, detection and analysis of sheet explosive ingredients and the R&D efforts of Indian researchers in the development of sheet explosive formulations. To the best of our knowledge, there has been no review article published in the literature in the area of sheet explosives. PMID:26196849

  3. Molecular Orientation Enhancement of Silk by the Hot-Stretching-Induced Transition from α-Helix-HFIP Complex to β-Sheet.

    PubMed

    Yoshioka, Taiyo; Tashiro, Kohji; Ohta, Noboru

    2016-04-11

    Enhancing the molecular orientation of the regenerated silk fibroin (RF) up to a level comparable to the native silk is highly challenging. Our novel and promising strategy for the poststretching process is (1) creating at first an α-helix-HFIP complex with a hexagonal packing as an intermediate state and then (2) stretching it at a high temperature to induce the helix-to-sheet structural phase transition. Here we show for the first time the significantly high stretching efficiency of the proposed technique compared with the conventional wet-stretching techniques and the successful achievement of higher crystalline orientation and higher Young's modulus compared even with the native silk. The detailed structural analysis based on the time-resolved simultaneous measurement of stress-strain curve, synchrotron X-ray scatterings, and FTIR has revealed the structural transition mechanism from the hexagonally packed α-helix-HFIP complex to the highly oriented β-sheet crystalline state as well as the critical level of crystal orientation needed for the helix-to-sheet transition. PMID:26974170

  4. Manipulation of a Schlenk Line: Preparation of Tetrahydrofuran Complexes of Transition-Metal Chlorides

    ERIC Educational Resources Information Center

    Davis, Craig M.; Curran, Kelly A.

    2007-01-01

    Before taking an inorganic laboratory course few students have experience handling air-sensitive materials using Schlenk techniques. This exercise introduces them to techniques they will employ in later syntheses. The procedure involves the formation of anhydrous tetrahydrofuran complexes of transition-metal chlorides from metal-chloride hydrates;…

  5. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, Toshifumi; Kukacka, Lawrence E.; Horn, William H.

    1985-01-01

    Quick setting polymer concrete compositions with excellent structural properties are disclosed; these polymer concrete compositions are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate, which may be wet, and with a source of bivalent metallic ions.

  6. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, T.; Kukacka, L.E.; Horn, W.H.

    1981-11-04

    Quick setting polymer concrete compositions which are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate which may be wet and a source of bivalent metallic ions which will set to polymer concrete with excellent structural properties.

  7. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, T.; Kukacka, L.E.; Horn, W.H.

    1983-05-13

    Quick setting polymer concrete compositions are described which are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate which may be wet and a source of bivalent metallic ions which will set to polymer concrete with excellent structural properties.

  8. Recovery of nickel and cobalt from organic acid complexes: adsorption mechanisms of metal-organic complexes onto aminophosphonate chelating resin.

    PubMed

    Deepatana, A; Valix, M

    2006-09-21

    This study examined the recovery of nickel and cobalt from organic acid complexes using a chelating aminophosphonate Purolite S950 resin. These metal complexes are generated by bioleaching nickel laterite ores, a commercial nickel and cobalt mineral oxide, with heterotrophic organism and their metabolites or organic acid products. Equilibrium adsorption tests were conducted as a function of Ni and Co concentrations (15-2000 mg/L), solution pH (0.01 and 0.1 M acids) and three metabolic complexing agents (citrate, malate and lactate). It was shown that the adsorption of the various Ni- and Co-complexes on Purolite were quite low, 16-18 and 5.4-9 mg/g of resin, respectively, in comparison to the smaller nickel ions and nickel sulfate. This was attributed to the bulky organic ligands which promoted crowding effect or steric hindrance. The adsorption of these complexes was further hampered by the strong affinity of the resin to H+ ions under acidic conditions. Mechanisms of adsorption, as inferred from the fitted empirical Langmuir and Freundlich models, were correlated to the proposed steric hindrance and competitive adsorption effects. Nickel and cobalt elution from the resin were found be effective and were independent of the type of metal complexes and metal concentrations. This study demonstrated the relative challenges involved in recovering nickel and cobalt from bioleaching solutions. PMID:16698178

  9. Using metal complex-labeled peptides for charge transfer-based biosensing with semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Medintz, Igor L.; Pons, Thomas; Trammell, Scott A.; Blanco-Canosa, Juan B.; Dawson, Philip E.; Mattoussi, Hedi

    2009-02-01

    Luminescent colloidal semiconductor quantum dots (QDs) have unique optical and photonic properties and are highly sensitive to charge transfer in their surrounding environment. In this study we used synthetic peptides as physical bridges between CdSe-ZnS core-shell QDs and some of the most common redox-active metal complexes to understand the charge transfer interactions between the metal complexes and QDs. We found that QD emission underwent quenching that was highly dependent on the choice of metal complex used. We also found that quenching traces the valence or number of metal complexes brought into close proximity of the nanocrystal surface. Monitoring of the QD absorption bleaching in the presence of the metal complex provided insight into the charge transfer mechanism. The data suggest that two distinct charge transfer mechanisms can take place. One directly to the QD core states for neutral capping ligands and a second to surface states for negatively charged capping ligands. A basic understanding of the proximity driven charge-transfer and quenching interactions allowed us to construct proteolytic enzyme sensing assemblies with the QD-peptide-metal complex conjugates.

  10. Development of the aza-crown ether metal complexes as artificial hydrolase.

    PubMed

    Yu, Lan; Li, Fang-zhen; Wu, Jiao-yi; Xie, Jia-qing; Li, Shuo

    2016-01-01

    Hydrolases play a crucial role in the biochemical process, which can catalyze the hydrolysis of various compounds like carboxylic esters, phosphoesters, amides, nucleic acids, peptides, and so on. The design of artificial hydrolases has attracted extensive attention due to their scientific significance and potential applications in the field of gene medicine and molecular biology. Numerous macrocyclic metal complexes have been used as artificial hydrolase in the catalytic hydrolysis of the organic substrate. Aza-crown ether for this comment is a special class of the macrocyclic ligand containing both the nitrogen atoms and oxygen atoms in the ring. The studies showed that the aza-crown complexes exhibited high activity of hydrolytic enzyme. However, the aza-crown ether metal complex as artificial hydrolase is still very limited because of its difficulty in synthesis. This review summarizes the development of the aza-crown ether metal complexes as the artificial hydrolase, including the synthesis and catalysis of the transition metal complexes and lanthanide metal complexes of aza-crown ethers. The purpose of this review is to highlight: (1) the relationship between the structure and hydrolytic activity of synthetic hydrolase; (2) the synergistic effect of metal sites and ligands in the course of organic compound hydrolysis; and (3) the design strategies of the aza-crown ethers as hydrolase. PMID:26460062

  11. Prebiotic coordination chemistry: The potential role of transition-metal complexes in the chemical evolution

    NASA Technical Reports Server (NTRS)

    Beck, M.

    1979-01-01

    In approaching the extremely involved and complex problem of the origin of life, consideration of the coordination chemistry appeared not only as a possibility but as a necessity. The first model experiments appear to be promising because of prebiotic-type synthesis by means of transition-metal complexes. It is especially significant that in some instances various types of vitally important substances (nucleic bases, amino acids) are formed simultaneously. There is ground to hope that systematic studies in this field will clarify the role of transition-metal complexes in the organizatorial phase of chemical evolution. It is obvious that researchers working in the fields of the chemistry of cyano and carbonyl complexes, and of the catalytic effect of transition-metal complexes are best suited to study these aspects of the attractive and interesting problem of the origin of life.

  12. Docking of ethanamine Schiff base imines & metal (II) complexes, cytotoxicity & DNA interaction studies

    NASA Astrophysics Data System (ADS)

    Sujarani, S.; Ramu, A.

    2015-01-01

    The present study deals with a series of biologically and stereo chemically important novel transition metal (II) Schiff base chelates. The Cu (II), Co (II), Mn (II) and Ni (II) ions containing complexes were synthesized by using diphenylethanamine and 2-hydroxy/2, 4-dihydroxy/2-hydroxy-4-methoxybenzaldehydes. The synthesized complexes were characterized using micro analytical, IR, NMR, ESI-Mass, UV-Visible, cyclic voltammetry and the EPR spectroscopic techniques. The spectral data evidenced the action of ligands as a neutral bidentate Schiff bases, coordinating through azomethine nitrogen and oxygen atom of hydroxyl group. The interaction studies revealed the groove binding nature of complexes with CT-DNA. The ligand and synthesized metal complexes showed cytotoxicity against cancerous cells. The strong binding affinity of the imine and metal complexes was also confirmed by molecular docking studies.

  13. Molecular modelling, spectroscopic characterization and biological studies of tetraazamacrocyclic metal complexes

    NASA Astrophysics Data System (ADS)

    Rathi, Parveen; Sharma, Kavita; Singh, Dharam Pal

    2014-09-01

    Macrocyclic complexes of the type [MLX]X2; where L is (C30H28N4), a macrocyclic ligand, M = Cr(III) and Fe(III) and X = Cl-, CH3COO- or NO3-, have been synthesized by template condensation reaction of 1,8-diaminonaphthalene and acetylacetone in the presence of trivalent metal salts in a methanolic medium. The complexes have been formulated as [MLX]X2 due to 1:2 electrolytic nature of these complexes. The complexes have been characterized with the help of elemental analyses, molar conductance measurements, magnetic susceptibility measurements, electronic, infrared, far infrared, Mass spectral studies and molecular modelling. Molecular weight of these complexes indicates their monomeric nature. On the basis of all these studies, a five coordinated square pyramidal geometry has been proposed for all these complexes. These metal complexes have also been screened for their in vitro antimicrobial activities.

  14. Cyclometalated complexes of platinum metals - the new luminescent sensors

    NASA Astrophysics Data System (ADS)

    Nikolaeva, M. V.; Katlenok, E. A.; Khakhalina, M. S.; Puzyk, M. V.; Balashev, K. P.

    2015-11-01

    The influence of the environment on the cyclometalated Pt(II), Pd(II), Ir(III) complexes' optical properties in the presence of various organic and inorganic compounds in solution and the gas phase is studied. The feasibility of complexes' using as optical sensors for molecular oxygen, halides ions, hydrogen and Hg(II) cations in the liquid phase, as well as for water and some organic solvents' vapor in the immobilized state in the MF-4SK membrane.

  15. Facile Synthesis of Functionalized Carbene Metal Complexes from Coordinated Isonitriles.

    PubMed

    Lothschütz, Christian; Wurm, Thomas; Zeiler, Anna; Freiherr V Falkenhausen, Alexander; Rudolph, Matthias; Rominger, Frank; Hashmi, A Stephen K

    2016-02-01

    The scope and limitations of the isonitrile-based NHC template synthesis were investigated with a series of precursors containing a nucleophilic amine in combination with tethered electrophiles. In the case of alkynes and phosphonic esters as electrophiles no ring closure was observed and new functionalized NAC gold complexes were obtained. By the use of unsaturated esters and phosphonic esters as Michael acceptors in the amine precursors, ester-modified gold and palladium NHC complexes were accessible in high efficiency. PMID:26033484

  16. Labile Low-Molecular-Mass Metal Complexes in Mitochondria: Trials and Tribulations of a Burgeoning Field.

    PubMed

    Lindahl, Paul A; Moore, Michael J

    2016-08-01

    Iron, copper, zinc, manganese, cobalt, and molybdenum play important roles in mitochondrial biochemistry, serving to help catalyze reactions in numerous metalloenzymes. These metals are also found in labile "pools" within mitochondria. Although the composition and cellular function of these pools are largely unknown, they are thought to be comprised of nonproteinaceous low-molecular-mass (LMM) metal complexes. Many problems must be solved before these pools can be fully defined, especially problems stemming from the lability of such complexes. This lability arises from inherently weak coordinate bonds between ligands and metals. This is an advantage for catalysis and trafficking, but it makes characterization difficult. The most popular strategy for investigating such pools is to detect them using chelator probes with fluorescent properties that change upon metal coordination. Characterization is limited because of the inevitable destruction of the complexes during their detection. Moreover, probes likely react with more than one type of metal complex, confusing analyses. An alternative approach is to use liquid chromatography (LC) coupled with inductively coupled plasma mass spectrometry (ICP-MS). With help from a previous lab member, the authors recently developed an LC-ICP-MS approach to analyze LMM extracts from yeast and mammalian mitochondria. They detected several metal complexes, including Fe580, Fe1100, Fe1500, Cu5000, Zn1200, Zn1500, Mn1100, Mn2000, Co1200, Co1500, and Mo780 (numbers refer to approximate masses in daltons). Many of these may be used to metalate apo-metalloproteins as they fold inside the organelle. The LC-based approach also has challenges, e.g., in distinguishing artifactual metal complexes from endogenous ones, due to the fact that cells must be disrupted to form extracts before they are passed through chromatography columns prior to analysis. Ultimately, both approaches will be needed to characterize these intriguing complexes and to

  17. Inherent structure length in metallic glasses: simplicity behind complexity

    PubMed Central

    Wu, Yuan; Wang, Hui; Cheng, Yongqiang; Liu, Xiongjun; Hui, Xidong; Nieh, Taigang; Wang, Yandong; Lu, Zhaoping

    2015-01-01

    One of the central themes in materials science is the structure-property relationship. In conventional crystalline metals, their mechanical behaviour is often dictated by well-defined structural defects such as dislocations, impurities, and twins. However, the structure-property relationship in amorphous alloys is far from being understood, due to great difficulties in characterizing and describing the disordered atomic-level structure. Herein, we report a universal, yet simple, correlation between the macroscopic mechanical properties (i.e., yield strength and shear modulus) and a unique characteristic structural length in metallic glasses (MGs). Our analysis indicates that this characteristic length can incorporate effects of both the inter-atomic distance and valence electron density in MGs, and result in the observed universal correlation. The current findings shed lights on the basic understanding of mechanical properties of MGs from their disordered atomic structures. PMID:26245801

  18. Inherent structure length in metallic glasses: Simplicity behind complexity

    DOE PAGESBeta

    Wu, Yuan; Wang, Hui; Cheng, Yongqiang; Liu, Xiongjun; Hui, Xidong; Nieh, Taigang; Wang, Yandong; Lu, Zhaoping

    2015-08-06

    One of the central themes in materials science is the structure-property relationship. In conventional crystalline metals, their mechanical behaviour is often dictated by well-defined structural defects such as dislocations, impurities, and twins. However, the structure-property relationship in amorphous alloys is far from being understood, due to great difficulties in characterizing and describing the disordered atomic-level structure. Here, we report a universal, yet simple, correlation between the macroscopic mechanical properties (i.e., yield strength and shear modulus) and a unique characteristic structural length in metallic glasses (MGs). Lastly, our analysis indicates that this characteristic length can incorporate effects of both the inter-atomicmore » distance and valence electron density in MGs, and result in the observed universal correlation. The current findings shed lights on the basic understanding of mechanical properties of MGs from their disordered atomic structures.« less

  19. Inherent structure length in metallic glasses: Simplicity behind complexity

    SciTech Connect

    Wu, Yuan; Wang, Hui; Cheng, Yongqiang; Liu, Xiongjun; Hui, Xidong; Nieh, Taigang; Wang, Yandong; Lu, Zhaoping

    2015-08-06

    One of the central themes in materials science is the structure-property relationship. In conventional crystalline metals, their mechanical behaviour is often dictated by well-defined structural defects such as dislocations, impurities, and twins. However, the structure-property relationship in amorphous alloys is far from being understood, due to great difficulties in characterizing and describing the disordered atomic-level structure. Here, we report a universal, yet simple, correlation between the macroscopic mechanical properties (i.e., yield strength and shear modulus) and a unique characteristic structural length in metallic glasses (MGs). Lastly, our analysis indicates that this characteristic length can incorporate effects of both the inter-atomic distance and valence electron density in MGs, and result in the observed universal correlation. The current findings shed lights on the basic understanding of mechanical properties of MGs from their disordered atomic structures.

  20. Inherent structure length in metallic glasses: simplicity behind complexity.

    PubMed

    Wu, Yuan; Wang, Hui; Cheng, Yongqiang; Liu, Xiongjun; Hui, Xidong; Nieh, Taigang; Wang, Yandong; Lu, Zhaoping

    2015-01-01

    One of the central themes in materials science is the structure-property relationship. In conventional crystalline metals, their mechanical behaviour is often dictated by well-defined structural defects such as dislocations, impurities, and twins. However, the structure-property relationship in amorphous alloys is far from being understood, due to great difficulties in characterizing and describing the disordered atomic-level structure. Herein, we report a universal, yet simple, correlation between the macroscopic mechanical properties (i.e., yield strength and shear modulus) and a unique characteristic structural length in metallic glasses (MGs). Our analysis indicates that this characteristic length can incorporate effects of both the inter-atomic distance and valence electron density in MGs, and result in the observed universal correlation. The current findings shed lights on the basic understanding of mechanical properties of MGs from their disordered atomic structures. PMID:26245801

  1. Synthesis, characterization and antimicrobial investigation of some moxifloxacin metal complexes

    NASA Astrophysics Data System (ADS)

    Sadeek, Sadeek A.; El-Shwiniy, Walaa H.; El-Attar, Mohamed S.

    2011-12-01

    The new complexes of moxifloxacin (MOX), with Ti(IV), Y(III), Pd(II) and Ce(IV) have been synthesized. These complexes were then characterized by melting point, magnetic studies and spectroscopic techniques involving infrared spectra (IR), UV-Vis, 1H NMR. C, H, N and halogen elemental analysis and thermal behavior of complexes also investigated. The results suggested that the molar ratio for all complexes is M: MOX = 1:2 where moxifloxacin acts as a bidentate via one of the oxygen atoms of the carboxylate group and through the ring carbonyl group and the complexes have the following formula [Ti(MOX) 2](SO 4) 2·7H 2O, [Y(MOX) 2Cl 2]Cl·12H 2O, [Pd(MOX) 2(H 2O) 2]Cl 2·6H 2O and [Ce(MOX) 2](SO 4) 2·2H 2O. The activation energies, E*, enthalpies, Δ H*, entropies, Δ S* and Gibbs free energies, Δ G*, of the thermal decomposition reactions have been derived from thermogravimetric (TGA) and differential thermogravimetric (DrTG) curves, using Coats-Redfern (CR) and Horowitz-Metzger (HM) methods. The antimicrobial activity of these complexes has been evaluated against three Gram-positive and three Gram-negative bacteria and compared with the reference drug moxifloxacin. The antibacterial activity of Ti(IV) complex is significant for E. coli K32 and highly significant for S. aureus K1, B. subtilis K22, Br. otitidis K76, P. aeruginosa SW1 and K. oxytoca K42 compared with free moxifloxacin.

  2. Evaluation and optimization of the metal-binding properties of a complex ligand for immobilized metal affinity chromatography.

    PubMed

    Chen, Bin; Li, Rong; Li, Shiyu; Chen, Xiaoli; Yang, Kaidi; Chen, Guoliang; Ma, Xiaoxun

    2016-02-01

    The simultaneous determination of two binding parameters for metal ions on an immobilized metal affinity chromatography column was performed by frontal chromatography. In this study, the binding parameters of Cu(2+) to l-glutamic acid were measured, the metal ion-binding characteristics of the complex ligand were evaluated. The linear correlation coefficients were all greater than 99%, and the relative standard deviations of two binding parameters were 0.58 and 0.059%, respectively. The experiments proved that the frontal chromatography method was accurate, reproducible, and could be used to determine the metal-binding parameters of the affinity column. The effects of buffer pH, type, and concentration on binding parameters were explored by uniform design experiment. Regression, matching and residual analyses of the models were performed. Meanwhile, the optimum-binding conditions of Cu(2+) on the l-glutamic acid-silica column were obtained. Under these binding conditions, observations and regression values of two parameters were similar, and the observation values were the best. The results demonstrated that high intensity metal affinity column could be effectively prepared by measuring and evaluating binding parameters using frontal chromatography combined with a uniform design experiment. The present work provided a new mode for evaluating and preparing immobilized metal affinity column with good metal-binding behaviors. PMID:26632098

  3. Quantitative Interpretation of Multifrequency Multimode EPR Spectra of Metal Containing Proteins, Enzymes, and Biomimetic Complexes.

    PubMed

    Petasis, Doros T; Hendrich, Michael P

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy has long been a primary method for characterization of paramagnetic centers in materials and biological complexes. Transition metals in biological complexes have valence d-orbitals that largely define the chemistry of the metal centers. EPR spectra are distinctive for metal type, oxidation state, protein environment, substrates, and inhibitors. The study of many metal centers in proteins, enzymes, and biomimetic complexes has led to the development of a systematic methodology for quantitative interpretation of EPR spectra from a wide array of metal containing complexes. The methodology is now contained in the computer program SpinCount. SpinCount allows simulation of EPR spectra from any sample containing multiple species composed of one or two metals in any spin state. The simulations are quantitative, thus allowing determination of all species concentrations in a sample directly from spectra. This chapter will focus on applications to transition metals in biological systems using EPR spectra from multiple microwave frequencies and modes. PMID:26478486

  4. Complexations of polyoligothiophenes films with transition metals, and their use for electrocatalysis of ascorbic acid

    NASA Astrophysics Data System (ADS)

    Maouche, N.; Chelli, S.; Nessark, B.; Aeiyach, S.

    2009-11-01

    Chemically modified electrodes prepared by electropolymerization of oligothiophenes such as: 2,2'-bithiophene (BT), 2,2'-bithiophene-5-carboxylic acid (BTCA) and terthiophene aldehyde (TTCHO) on platinum (Pt) electrodes, in acetonitrile solution containing 0.1 M tetrabutylammonium perchlorate (TBAP) and 0.01 M of monomer, are characterized by cyclic volammetry (CV), and X-ray photoelectron spectroscopy (XPS) measurements. By immersing the prepared modified electrodes in transition metals (Cu2+, Co2+ and Ag+) solutions, the metal ions were complexed with films. The electrochemical response shows clearly, the presence of oxidation and reduction peaks corresponding to metallic couple redox. XPS technique reveal that the films complexed with metal ions and determine the mode of the connection with film's atoms. The obtained polyoligothiophenes-metal modified electrodes exhibited good electrocatalytic properties towards ascorbic acid (AA) oxidation after their complexation with metallic ions. The electrocatalytic response was evaluated by cyclic voltammetry with regard to the film nature, the metallic ion nature, immersion time, ascorbic acid concentration, and other variables. The results reveal that the catalytic activity of Ag+ complexed with BTCA thin-film is the best toward AA oxidation and it can be detected a very low concentration (∼1 μM), of AA in a solution which can be utilized as an efficient electrochemical sensor.

  5. Complexation of trace metals by adsorbed natural organic matter

    USGS Publications Warehouse

    Davis, J.A.

    1984-01-01

    The adsorption behavior and solution speciation of Cu(II) and Cd(II) were studied in model systems containing colloidal alumina particles and dissolved natural organic matter. At equilibrium a significant fraction of the alumina surface was covered by adsorbed organic matter. Cu(II) was partitioned primarily between the surface-bound organic matter and dissolved Cu-organic complexes in the aqueous phase. Complexation of Cu2+ with the functional groups of adsorbed organic matter was stronger than complexation with uncovered alumina surface hydroxyls. It is shown that the complexation of Cu(II) by adsorbed organic matter can be described by an apparent stability constant approximately equal to the value found for solution phase equilibria. In contrast, Cd(II) adsorption was not significantly affected by the presence of organic matter at the surface, due to weak complex formation with the organic ligands. The results demonstrate that general models of trace element partitioning in natural waters must consider the presence of adsorbed organic matter. ?? 1984.

  6. Switchable Fermi surface sheets in greigite

    NASA Astrophysics Data System (ADS)

    Zhang, B.; de Wijs, G. A.; de Groot, R. A.

    2012-07-01

    Greigite (Fe3S4) and magnetite (Fe3O4) are isostructural and isoelectronic ferrimagnets with quite distinct properties. Electronic structure calculations reveal greigite is a normal metal in contrast to half-metallic magnetite. Greigite shows a complex Fermi surface with a unique influence of relativistic effects: The existence of sheets of the Fermi surface depends on the direction of the magnetization. This enables spinorbitronics, spintronics on the level of a single compound rather than a device. Due to its relativistic origin, spin contamination is irrelevant in spinorbitronics and the entire periodic table is available for optimizations.

  7. N-heterocyclic carbene metal complexes as bio-organometallic antimicrobial and anticancer drugs.

    PubMed

    Patil, Siddappa A; Patil, Shivaputra A; Patil, Renukadevi; Keri, Rangappa S; Budagumpi, Srinivasa; Balakrishna, Geetha R; Tacke, Matthias

    2015-01-01

    Late transition metal complexes that bear N-heterocyclic carbene (NHC) ligands have seen a speedy growth in their use as both, metal-based drug candidates and potentially active homogeneous catalysts in a plethora of C-C and C-N bond forming reactions. This review article focuses on the recent developments and advances in preparation and characterization of NHC-metal complexes (metal: silver, gold, copper, palladium, nickel and ruthenium) and their biomedical applications. Their design, syntheses and characterization have been reviewed and correlated to their antimicrobial and anticancer efficacies. All these initial discoveries help validate the great potential of NHC-metal derivatives as a class of effective antimicrobial and anticancer agents. PMID:26144266

  8. Metal ion complexation by ionizable crown ethers. Progress report, January 1, 1991--December 31, 1993

    SciTech Connect

    Bartsch, R.A.

    1993-07-01

    Cyclic and acyclic polyether compounds with pendent carboxylic acid, phosphonic acid monoethyl ester, sulfonic acid, phosphinic acid and hydroxamic acid groups have been synthesized. The proton-ionizable polyethers can come with and without lipophilic groups. Two types of lipophilic di-ionizable lariat ethers have been prepared. Conformations of proton-ionizable lariat ethers have been probed. Competitive alkali metal cation transport by syn-(decyl)dibenzo-16-crown-5-oxyacetic acid and lipophilic proton-ionizable dibenzo lariat ethers in polymer-supported liquid membranes was studied. Complexation of alkali metal cations with ionized lariat ethers was studied. Condensation polymerization of cyclic and acyclic dibenzo polyethers containing pendent mono-ionizable groups with formaldehyde produces novel ion exchange resins with both ion exchange sites for metal ion complexation and polyether binding sites for metal ion recognition. Resins prepared from lariat ether dibenzo phosphonic acid monoethyl esters show strong sorption of divalent heavy metal cations with selectivity for Pb{sup 2+}.

  9. Reverse-phase HPLC of benzylpropionitrile dithiocarbamate complexes for the determination of priority pollutant metals

    SciTech Connect

    Park, Y.J.

    1990-01-01

    A new dithiocarbamate, benzylpropionitrile dithiocarbamate (BPDTC), has been synthesized for use in metal analysis. The HPLC behavior of metal chelates of BPDTC has been investigated for the simultaneous determination of antimony, cadmium, chromium, copper, mercury, nickel, lead, selenium, thallium, and zinc, all of which are on the Environmental Protection Agency's list of priority pollutant metals. Metals are extracted into dichloromethane as BPDTC chelates, and then separated on a C-18 column. Cobalt is added as an internal standard. The effects of pH and of three organic modifiers (methanol, acetonitrile, tetrahydrofuran) of the mobile phase on retention time have been investigated. Addition of dichloromethane to the mobile phase increases solubility and chelate stability, and improves the separation of metal BPDTC complexes. BPDTC is added to the aqueous mobile phase to reduce on-column dissociation of the complexes. Detection limits at 260 nm are in the range of 0.1 to 3 ppb using a 1 liter sample.

  10. Evaluation of the tratment of metal-EDTA complexes using Ti0{sub 2} photocatalysis

    SciTech Connect

    Madden, T.; Datyte, A.K.; Prairie, M.R.; Stange, B.M.

    1996-03-01

    This study has demonstrated the feasibility of TiO{sub 2} photocatalysis to treat EDTA and several metal-EDTA complexes that can be found in industrial wastewaters. For the EDTA complexes of metals capable of photodeposition, such as Cu and Pb, certain reaction conditions were shown to facilitate the simultaneous complex degradation and photodeposition of these metals onto the catalyst. With metals that do not easily photodeposit, such as Ni and Cd, it is shown that the complex degradation is still facilitated, and can enhance other metals removal processes after photocatalytic treatment. Because the treatment of these metal-EDTA complexes typically requires special measures, there may exist situations where TiO{sub 2} photocatalysis could actually be the preferred method of treatment. However, its use should be compared economically to other more established advanced oxidation technologies. This necessity is demonstrated in the economic comparison to ozone treatment for EDTA degradation alone, where ozone treatment appears to be the clear choice in this application.

  11. Correlation between oxygen adsorption energy and electronic structure of transition metal macrocyclic complexes

    SciTech Connect

    Liu, Kexi; Lei, Yinkai; Wang, Guofeng

    2013-11-28

    Oxygen adsorption energy is directly relevant to the catalytic activity of electrocatalysts for oxygen reduction reaction (ORR). In this study, we established the correlation between the O{sub 2} adsorption energy and the electronic structure of transition metal macrocyclic complexes which exhibit activity for ORR. To this end, we have predicted the molecular and electronic structures of a series of transition metal macrocyclic complexes with planar N{sub 4} chelation, as well as the molecular and electronic structures for the O{sub 2} adsorption on these macrocyclic molecules, using the density functional theory calculation method. We found that the calculated adsorption energy of O{sub 2} on the transition metal macrocyclic complexes was linearly related to the average position (relative to the lowest unoccupied molecular orbital of the macrocyclic complexes) of the non-bonding d orbitals (d{sub z{sup 2}}, d{sub xy}, d{sub xz}, and d{sub yz}) which belong to the central transition metal atom. Importantly, our results suggest that varying the energy level of the non-bonding d orbitals through changing the central transition metal atom and/or peripheral ligand groups could be an effective way to tuning their O{sub 2} adsorption energy for enhancing the ORR activity of transition metal macrocyclic complex catalysts.

  12. Composition, removal, redox, and metal complexation properties of dissolved organic nitrogen in composting leachates.

    PubMed

    He, Xiao-Song; Xi, Bei-Dou; Zhang, Zong-Yong; Gao, Ru-Tai; Tan, Wen-Bing; Cui, Dong-Yu; Yuan, Ying

    2015-01-01

    This study investigated the composition, removal, redox, and metal complexation characteristics of dissolved organic nitrogen (DON) in composting leachates. Results showed that the leachate-derived DON comprised proteinaceous compounds and amines, and most of them were integrated into the fulvic- and humic-like substances. Neutral, basic, acidic, hydroxylic, aromatic, and sulfuric amino acids all were detected in the influent leachates. However, most of them were removed by the biological and physical processes, and only neutral amino acids were detected in the effluent. The DON was not the main contributor to the redox capability of the leachate dissolved organic matter (DOM). However, it exhibited a strong capability for metal complexation. The amines formed strong complexes with the metals Mo, Co, Cr, and Ni, while the proteinaceous matter interacted with the metals Cr and Ni. PMID:25282175

  13. Catalytic hydrogenation using complexes of base metals with tridentate ligands

    DOEpatents

    Vasudevan, Kalyan V.; Zhang, Guoqi; Hanson, Susan K.

    2016-09-06

    Complexes of cobalt and nickel with tridentate ligand PNHP.sup.R are effective for hydrogenation of unsaturated compounds. Cobalt complex [(PNHP.sup.Cy)Co(CH.sub.2SiMe.sub.3)]BAr.sup.F.sub.4 (PNHP.sup.Cy=bis[2-(dicyclohexylphosphino)ethyl]amine, BAr.sup.F.sub.4=B(3,5-(CF.sub.3).sub.2C.sub.6H.sub.3).sub.4)) was prepared and used with hydrogen for hydrogenation of alkenes, aldehydes, ketones, and imines under mild conditions (25-60.degree. C., 1-4 atm H.sub.2). Nickel complex [(PNHP.sup.Cy)Ni(H)]BPh.sub.4 was used for hydrogenation of styrene and 1-octene under mild conditions. (PNP.sup.Cy)Ni(H) was used for hydrogenating alkenes.

  14. Propentdyopent: the scaffold of a heme metabolite as an electron reservoir in transition metal complexes.

    PubMed

    Gautam, R; Chang, T M; Astashkin, A V; Lincoln, K M; Tomat, E

    2016-05-01

    The dipyrrin-1,9-dione scaffold of heme metabolite propendyopent coordinates late transition metals (Co, Ni, Cu, and Zn) forming homoleptic, pseudo-tetrahedral complexes. Electrochemical and spectroscopic studies reveal that the monoanionic, bidentate ligands behave as electron reservoirs as the complexes reversibly host one or two ligand-based radicals. PMID:27109437

  15. Bivalent transition metal complexes of coumarin-3-yl thiosemicarbazone derivatives: Spectroscopic, antibacterial activity and thermogravimetric studies

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; El-Deen, Ibrahim M.; Anwer, Zeinab M.; El-Ghol, Samir

    2009-02-01

    Schiff base complexes of Cu(II), Co(II) and Ni(II) with two coumarin-3-yl thiosemicarbazone derivatives (1E)-1-(1-(2-oxo-2H-chromen-3-yl)ethylidene)thiosemicarbazide (OCET) and (1E)-1-(1-(6-bromo-2-oxo-2H-chromen-3-yl)ethylidene)thiosemicarbazide (BOCET) were synthesized by the reaction of Cu(II), Co(II) and Ni(II) chlorides with each mentioned ligand with molar ratio 1:2 metal-to-ligand. Both ligands and their metal complexes were characterized by different physicochemical methods, elemental analysis, molar conductivity, (UV-vis, Mass, Infrared, 1H NMR spectra) and also thermal analysis (TG and DTG) techniques. The discussion of the outcome data of the prepared complexes indicate that the coumarin-3-yl thiosemicarbazone derivatives ligands behave as a bidentate ligand through both thione sulphur and azomethine nitrogen with 1:2 (metal:ligand) stoichiometry for all complexes. The molar conductance measurements proved that the complexes are electrolytes. The kinetic thermodynamic parameters such as: E∗, Δ H∗, Δ S∗and Δ G∗are calculated from the DTG curves, all complexes are more ordered except Ni(II) complexes. The antibacterial activity of the coumarin-3-yl thiosemicarbazone derivatives and their metal complexes was evaluated against some kinds of Gram positive and Gram negative bacteria.

  16. Molecular magnets based on metal complexes with spin-labeled imidazoles

    NASA Astrophysics Data System (ADS)

    Fursova, E.; Romanenko, G.; Ikorskii, V.; Ovcharenko, V.

    2004-04-01

    New heterospin systems based on Cu(II) and Mn(II) complexes with spin-labeled imidazol-4-yl derivatives were synthesized. Magneto-structural correlations inherent in their nature were investigated. Key words. Nitroxides metal complexes structure magnetic properties.

  17. Enhancing electrocatalytic hydrogen evolution by nickel salicylaldimine complexes with alkali metal cations in aqueous media.

    PubMed

    Shao, Haiyan; Muduli, Subas K; Tran, Phong D; Soo, Han Sen

    2016-02-18

    New salicylaldimine nickel complexes, comprising only earth-abundant elements, have been developed for electrocatalytic hydrogen evolution in aqueous media. The second-sphere ether functionalities on the periphery of the complexes enhance the electrocatalytic activity in the presence of alkali metal cations. The electrocatalysts demonstrate improved performances especially in the economical and sustainable seawater reaction medium. PMID:26779580

  18. Characterization of lanthanide(III) DOTP complexes: Thermodynamics, protonation, and coordination to alkali metal ions

    SciTech Connect

    Sherry, A.D.; Ren, J.; Huskens, J.

    1996-07-31

    The chemical and thermodynamic characterization of Lanthanide(III) DOTP complexes was performed. Spectrophotometry, potentiometry, osmometry, and NMR spectroscopy were used in this characterization. Stability constants, protonation equilibria, and interactions of the complexes with alkali metal ions were measured and summarized.

  19. Hydrogen storage material and process using graphite additive with metal-doped complex hydrides

    DOEpatents

    Zidan, Ragaiy; Ritter, James A.; Ebner, Armin D.; Wang, Jun; Holland, Charles E.

    2008-06-10

    A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

  20. Light induced electron transfer reactions of metal complexes

    SciTech Connect

    Sutin, N.; Creutz, C.

    1980-01-01

    Properties of the excited states of tris(2,2'-bipyridine) and tris(1,10-phenanthroline) complexes of chromium(III), iron(II), ruthenium(II), osmium(II), rhodium(III), and iridium(III) are described. The electron transfer reactions of the ground and excited states are discussed and interpreted in terms of the driving force for the reaction and the distortions of the excited states relative to the corresponding ground states. General considerations relevant to the conversion of light into chemical energy are presented and progress in the use of polypyridine complexes to effect the light decomposition of water into hydrogen and oxygen is reviewed.