Science.gov

Sample records for complex spatio-temporal order

  1. Clifford algebra-based spatio-temporal modelling and analysis for complex geo-simulation data

    NASA Astrophysics Data System (ADS)

    Luo, Wen; Yu, Zhaoyuan; Hu, Yong; Yuan, Linwang

    2013-10-01

    The spatio-temporal data simulating Ice-Land-Ocean interaction of Antarctic are used to demonstrate the Clifford algebra-based data model construction, spatio-temporal query and data analysis. The results suggest that Clifford algebra provides a powerful mathematical tool for the whole modelling and analysis chains for complex geo-simulation data. It can also help implement spatio-temporal analysis algorithms more clearly and simply.

  2. Synchronization and control in time-delayed complex networks and spatio-temporal patterns

    NASA Astrophysics Data System (ADS)

    Banerjee, S.; Kurths, J.; Schöll, E.

    2016-02-01

    This special topics issue is a collection of contributions on the recent developments of control and synchronization in time delayed systems and space time chaos. The various articles report interesting results on time delayed complex networks; fractional order delayed models; dynamics of spatio-temporal patterns; stochastic models etc. Experimental analysis on synchronization, dynamics and control of chaos are also well investigated using Field Programmable Gate Array (FPGA), circuit realizations and chemical reactions.

  3. SPATIO-TEMPORAL COMPLEXITY OF THE AORTIC SINUS VORTEX

    PubMed Central

    Moore, Brandon; Dasi, Lakshmi Prasad

    2014-01-01

    The aortic sinus vortex is a classical flow structure of significant importance to aortic valve dynamics and the initiation and progression of calific aortic valve disease. We characterize the spatio-temporal characteristics of aortic sinus voxtex dynamics in relation to the viscosity of blood analog solution as well as heart rate. High resolution time-resolved (2KHz) particle image velocimetry was conducted to capture 2D particle streak videos and 2D instantaneous velocity and streamlines along the sinus midplane using a physiological but rigid aorta model fitted with a porcine bioprosthetic heart valve. Blood analog fluids used include a water-glycerin mixture and saline to elucidate the sensitivity of vortex dynamics to viscosity. Experiments were conducted to record 10 heart beats for each combination of blood analog and heart rate condition. Results show that the topological characteristics of the velocity field vary in time-scales as revealed using time bin averaged vectors and corresponding instantaneous streamlines. There exist small time-scale vortices and a large time-scale main vortex. A key flow structure observed is the counter vortex at the upstream end of the sinus adjacent to the base (lower half) of the leaflet. The spatio-temporal complexity of vortex dynamics is shown to be profoundly influenced by strong leaflet flutter during systole with a peak frequency of 200Hz and peak amplitude of 4 mm observed in the saline case. While fluid viscosity influences the length and time-scales as well as the introduction of leaflet flutter, heart rate influences the formation of counter vortex at the upstream end of the sinus. Higher heart rates are shown to reduce the strength of the counter vortex that can greatly influence the directionality and strength of shear stresses along the base of the leaflet. This study demonstrates the impact of heart rate and blood analog viscosity on aortic sinus hemodynamics. PMID:25067881

  4. Unravelling spatio-temporal evapotranspiration patterns in topographically complex landscapes

    NASA Astrophysics Data System (ADS)

    Metzen, Daniel; Sheridan, Gary; Nyman, Petter; Lane, Patrick

    2016-04-01

    Vegetation co-evolves with soils and topography under a given long-term climatic forcing. Previous studies demonstrated a strong eco-hydrologic feedback between topography, vegetation and energy and water fluxes. Slope orientation (aspect and gradient) alter the magnitude of incoming solar radiation resulting in larger evaporative losses and less water availability on equator-facing slopes. Furthermore, non-local water inputs from upslope areas potentially contribute to available water at downslope positions. The combined effect of slope orientation and drainage position creates complex spatial patterns in biological productivity and pedogenesis, which in turn alter the local hydrology. In complex upland landscapes, topographic alteration of incoming radiation can cause substantial aridity index (ratio of potential evapotranspiration to precipitation) variations over small spatial extents. Most of the upland forests in south-east Australia are located in an aridity index (AI) range of 1-2, around the energy limited to water limited boundary, where forested systems are expected to be most sensitive to AI changes. In this research we aim to improve the fundamental understanding of spatio-temporal evolution of evapotranspiration (ET) patterns in complex terrain, accounting for local topographic effects on system properties (e.g. soil depth, sapwood area, leaf area) and variation in energy and water exchange processes due to slope orientation and drainage position. Six measurement plots were set-up in a mixed species eucalypt forest on a polar and equatorial-facing hillslope (AI ˜1.3 vs. 1.8) at varying drainage position (ridge, mid-slope, gully), while minimizing variations in other factors, e.g. geology and weather patterns. Sap flow, soil water content, incoming solar radiation and throughfall were continuously monitored at field sites spanning a wide range of soil depth (0.5 - >3m), maximum tree heights (17 - 51m) and LAI (1.2 - 4.6). Site-specific response curves

  5. Identifying causal gateways and mediators in complex spatio-temporal systems.

    PubMed

    Runge, Jakob; Petoukhov, Vladimir; Donges, Jonathan F; Hlinka, Jaroslav; Jajcay, Nikola; Vejmelka, Martin; Hartman, David; Marwan, Norbert; Paluš, Milan; Kurths, Jürgen

    2015-01-01

    Identifying regions important for spreading and mediating perturbations is crucial to assess the susceptibilities of spatio-temporal complex systems such as the Earth's climate to volcanic eruptions, extreme events or geoengineering. Here a data-driven approach is introduced based on a dimension reduction, causal reconstruction, and novel network measures based on causal effect theory that go beyond standard complex network tools by distinguishing direct from indirect pathways. Applied to a data set of atmospheric dynamics, the method identifies several strongly uplifting regions acting as major gateways of perturbations spreading in the atmosphere. Additionally, the method provides a stricter statistical approach to pathways of atmospheric teleconnections, yielding insights into the Pacific-Indian Ocean interaction relevant for monsoonal dynamics. Also for neuroscience or power grids, the novel causal interaction perspective provides a complementary approach to simulations or experiments for understanding the functioning of complex spatio-temporal systems with potential applications in increasing their resilience to shocks or extreme events. PMID:26443010

  6. Identifying causal gateways and mediators in complex spatio-temporal systems

    NASA Astrophysics Data System (ADS)

    Runge, Jakob; Petoukhov, Vladimir; Donges, Jonathan F.; Hlinka, Jaroslav; Jajcay, Nikola; Vejmelka, Martin; Hartman, David; Marwan, Norbert; Paluš, Milan; Kurths, Jürgen

    2015-10-01

    Identifying regions important for spreading and mediating perturbations is crucial to assess the susceptibilities of spatio-temporal complex systems such as the Earth's climate to volcanic eruptions, extreme events or geoengineering. Here a data-driven approach is introduced based on a dimension reduction, causal reconstruction, and novel network measures based on causal effect theory that go beyond standard complex network tools by distinguishing direct from indirect pathways. Applied to a data set of atmospheric dynamics, the method identifies several strongly uplifting regions acting as major gateways of perturbations spreading in the atmosphere. Additionally, the method provides a stricter statistical approach to pathways of atmospheric teleconnections, yielding insights into the Pacific-Indian Ocean interaction relevant for monsoonal dynamics. Also for neuroscience or power grids, the novel causal interaction perspective provides a complementary approach to simulations or experiments for understanding the functioning of complex spatio-temporal systems with potential applications in increasing their resilience to shocks or extreme events.

  7. Identifying causal gateways and mediators in complex spatio-temporal systems

    PubMed Central

    Runge, Jakob; Petoukhov, Vladimir; Donges, Jonathan F.; Hlinka, Jaroslav; Jajcay, Nikola; Vejmelka, Martin; Hartman, David; Marwan, Norbert; Paluš, Milan; Kurths, Jürgen

    2015-01-01

    Identifying regions important for spreading and mediating perturbations is crucial to assess the susceptibilities of spatio-temporal complex systems such as the Earth's climate to volcanic eruptions, extreme events or geoengineering. Here a data-driven approach is introduced based on a dimension reduction, causal reconstruction, and novel network measures based on causal effect theory that go beyond standard complex network tools by distinguishing direct from indirect pathways. Applied to a data set of atmospheric dynamics, the method identifies several strongly uplifting regions acting as major gateways of perturbations spreading in the atmosphere. Additionally, the method provides a stricter statistical approach to pathways of atmospheric teleconnections, yielding insights into the Pacific–Indian Ocean interaction relevant for monsoonal dynamics. Also for neuroscience or power grids, the novel causal interaction perspective provides a complementary approach to simulations or experiments for understanding the functioning of complex spatio-temporal systems with potential applications in increasing their resilience to shocks or extreme events. PMID:26443010

  8. A Statistical Physics Characterization of the Complex Systems Dynamics: Quantifying Complexity from Spatio-Temporal Interactions

    PubMed Central

    Koorehdavoudi, Hana; Bogdan, Paul

    2016-01-01

    Biological systems are frequently categorized as complex systems due to their capabilities of generating spatio-temporal structures from apparent random decisions. In spite of research on analyzing biological systems, we lack a quantifiable framework for measuring their complexity. To fill this gap, in this paper, we develop a new paradigm to study a collective group of N agents moving and interacting in a three-dimensional space. Our paradigm helps to identify the spatio-temporal states of the motion of the group and their associated transition probabilities. This framework enables the estimation of the free energy landscape corresponding to the identified states. Based on the energy landscape, we quantify missing information, emergence, self-organization and complexity for a collective motion. We show that the collective motion of the group of agents evolves to reach the most probable state with relatively lowest energy level and lowest missing information compared to other possible states. Our analysis demonstrates that the natural group of animals exhibit a higher degree of emergence, self-organization and complexity over time. Consequently, this algorithm can be integrated into new frameworks to engineer collective motions to achieve certain degrees of emergence, self-organization and complexity. PMID:27297496

  9. A Statistical Physics Characterization of the Complex Systems Dynamics: Quantifying Complexity from Spatio-Temporal Interactions.

    PubMed

    Koorehdavoudi, Hana; Bogdan, Paul

    2016-01-01

    Biological systems are frequently categorized as complex systems due to their capabilities of generating spatio-temporal structures from apparent random decisions. In spite of research on analyzing biological systems, we lack a quantifiable framework for measuring their complexity. To fill this gap, in this paper, we develop a new paradigm to study a collective group of N agents moving and interacting in a three-dimensional space. Our paradigm helps to identify the spatio-temporal states of the motion of the group and their associated transition probabilities. This framework enables the estimation of the free energy landscape corresponding to the identified states. Based on the energy landscape, we quantify missing information, emergence, self-organization and complexity for a collective motion. We show that the collective motion of the group of agents evolves to reach the most probable state with relatively lowest energy level and lowest missing information compared to other possible states. Our analysis demonstrates that the natural group of animals exhibit a higher degree of emergence, self-organization and complexity over time. Consequently, this algorithm can be integrated into new frameworks to engineer collective motions to achieve certain degrees of emergence, self-organization and complexity. PMID:27297496

  10. A Statistical Physics Characterization of the Complex Systems Dynamics: Quantifying Complexity from Spatio-Temporal Interactions

    NASA Astrophysics Data System (ADS)

    Koorehdavoudi, Hana; Bogdan, Paul

    2016-06-01

    Biological systems are frequently categorized as complex systems due to their capabilities of generating spatio-temporal structures from apparent random decisions. In spite of research on analyzing biological systems, we lack a quantifiable framework for measuring their complexity. To fill this gap, in this paper, we develop a new paradigm to study a collective group of N agents moving and interacting in a three-dimensional space. Our paradigm helps to identify the spatio-temporal states of the motion of the group and their associated transition probabilities. This framework enables the estimation of the free energy landscape corresponding to the identified states. Based on the energy landscape, we quantify missing information, emergence, self-organization and complexity for a collective motion. We show that the collective motion of the group of agents evolves to reach the most probable state with relatively lowest energy level and lowest missing information compared to other possible states. Our analysis demonstrates that the natural group of animals exhibit a higher degree of emergence, self-organization and complexity over time. Consequently, this algorithm can be integrated into new frameworks to engineer collective motions to achieve certain degrees of emergence, self-organization and complexity.

  11. Identifying causal gateways and mediators in complex spatio-temporal systems

    NASA Astrophysics Data System (ADS)

    Runge, Jakob; Petoukhov, Vladimir; Donges, Jonathan; Hlinka, Jaroslav; Jajcay, Nikola; Vejmelka, Martin; Hartman, David; Marwan, Norbert; Palus, Milan; Kurths, Jürgen

    2016-04-01

    Identifying regions important for spreading and mediating perturbations is crucial to assess the susceptibilities of spatio-temporal complex systems such as the Earth's climate to volcanic eruptions, extreme events or geoengineering. Here a data-driven approach is introduced based on a dimension reduction, causal reconstruction, and novel network measures based on causal effect theory that go beyond standard complex network tools by distinguishing direct from indirect pathways. Applied to a data set of atmospheric dynamics, the method identifies several strongly uplifting regions acting as major gateways of perturbations spreading in the atmosphere. Additionally, the method provides a stricter statistical approach to pathways of atmospheric teleconnections, yielding insights into the Pacific-Indian Ocean interaction relevant for monsoonal dynamics. The novel causal interaction perspective provides a complementary approach to simulations or experiments for understanding the functioning of complex spatio-temporal systems with potential applications in increasing their resilience to shocks or extreme events. Reference: Runge, J., Petoukhov, V., Donges, J. F., Hlinka, J., Jajcay, N., Vejmelka, M., Hartman, D., Marwan, M., Paluš, M., Kurths, J. (2015). Identifying causal gateways and mediators in complex spatio-temporal systems. Nature Communications, 6, 8502. doi:10.1038/ncomms9502

  12. A Fisher-gradient complexity in systems with spatio-temporal dynamics

    NASA Astrophysics Data System (ADS)

    Arbona, A.; Bona, C.; Massó, J.; Miñano, B.; Plastino, A.

    2016-04-01

    We define a benchmark for definitions of complexity in systems with spatio-temporal dynamics and employ it in the study of Collective Motion. We show that LMC's complexity displays interesting properties in such systems, while a statistical complexity model (SCM) based on autocorrelation reasonably meets our perception of complexity. However this SCM is not as general as desirable, as it does not merely depend on the system's Probability Distribution Function. Inspired by the notion of Fisher information, we develop a SCM candidate, which we call the Fisher-gradient complexity, which exhibits nice properties from the viewpoint of our benchmark.

  13. Spatio-Temporal Canopy Complexity and Leaf Acclimation to Variable Canopy Microhabitats.

    NASA Astrophysics Data System (ADS)

    Fotis, A. T.

    2014-12-01

    The theory that forests become carbon (C) neutral with maturity has recently been challenged. While a growing body of evidence shows that net C accumulation continues in forests that are centuries old, the reasons remain poorly known. Increasing canopy structural complexity, quantified by high variability in leaf distribution, has been proposed as a mechanism for sustained rates of C assimilation in mature forests. The goal of our research was to expand on these findings and explore a new idea of spatio-temporal canopy structural complexity as a mechanism linking canopy structure to function (C assimilation).Our work takes place at the UMBS AmeriFlux core facility (US-UMB) in northern Michigan, USA. Canopy structure was quantified over 6 seasons with portable canopy LiDAR (PCL) and canopy spatial microhabitat variability was studied using hemispherical photographs from different heights within the canopy. We found a more even distribution of irradiance in more structurally complex canopies within a single year, and furthermore, that between-year variability of spatial leaf arrangement decreased with increasing canopy complexity. We suggest that in complex canopies less redistribution of leaf material over time may lead to more similar light microhabitats within and among years. Conversely, in less complex canopies this relationship can lead to a year-to-year time lag in morphological leaf acclimation since the effects of the previous-year's light environment are reflected in the morphological characteristics of current-year leaves.Our study harnesses unique spatio-temporal resolution measurements of canopy structure and microhabitat that can inform better management strategies seeking to maximize forest C uptake. Future research quantifying the relationship between canopy structure and light distribution will improve performance of ecosystem models that currently lack spatially explicit canopy structure information.

  14. Research on spatio-temporal ontology based on description logic

    NASA Astrophysics Data System (ADS)

    Huang, Yongqi; Ding, Zhimin; Zhao, Zhui; Ouyang, Fucheng

    2008-10-01

    DL, short for Description Logic, is aimed at getting a balance between describing ability and reasoning complexity. Users can adopt DL to write clear and formalized concept description for domain model, which makes ontology description possess well-defined syntax and semantics and helps to resolve the problem of spatio-temporal reasoning based on ontology. This paper studies on basic theory of DL and relationship between DL and OWL at first. By analyzing spatio-temporal concepts and relationship of spatio-temporal GIS, the purpose of this paper is adopting ontology language based on DL to express spatio-temporal ontology, and employing suitable ontology-building tool to build spatio-temporal ontology. With regard to existing spatio-temporal ontology based on first-order predicate logic, we need to transform it into spatio-temporal ontology based on DL so as to make the best of existing research fruits. This paper also makes a research on translating relationships between DL and first-order predicate logic.

  15. The Voronoi spatio-temporal data structure

    NASA Astrophysics Data System (ADS)

    Mioc, Darka

    2002-04-01

    Current GIS models cannot integrate the temporal dimension of spatial data easily. Indeed, current GISs do not support incremental (local) addition and deletion of spatial objects, and they can not support the temporal evolution of spatial data. Spatio-temporal facilities would be very useful in many GIS applications: harvesting and forest planning, cadastre, urban and regional planning, and emergency planning. The spatio-temporal model that can overcome these problems is based on a topological model---the Voronoi data structure. Voronoi diagrams are irregular tessellations of space, that adapt to spatial objects and therefore they are a synthesis of raster and vector spatial data models. The main advantage of the Voronoi data structure is its local and sequential map updates, which allows us to automatically record each event and performed map updates within the system. These map updates are executed through map construction commands that are composed of atomic actions (geometric algorithms for addition, deletion, and motion of spatial objects) on the dynamic Voronoi data structure. The formalization of map commands led to the development of a spatial language comprising a set of atomic operations or constructs on spatial primitives (points and lines), powerful enough to define the complex operations. This resulted in a new formal model for spatio-temporal change representation, where each update is uniquely characterized by the numbers of newly created and inactivated Voronoi regions. This is used for the extension of the model towards the hierarchical Voronoi data structure. In this model, spatio-temporal changes induced by map updates are preserved in a hierarchical data structure that combines events and corresponding changes in topology. This hierarchical Voronoi data structure has an implicit time ordering of events visible through changes in topology, and it is equivalent to an event structure that can support temporal data without precise temporal

  16. Complex, Dynamic Combination of Physical, Chemical and Nutritional Variables Controls Spatio-Temporal Variation of Sandy Beach Community Structure

    PubMed Central

    Ortega Cisneros, Kelly; Smit, Albertus J.; Laudien, Jürgen; Schoeman, David S.

    2011-01-01

    Sandy beach ecological theory states that physical features of the beach control macrobenthic community structure on all but the most dissipative beaches. However, few studies have simultaneously evaluated the relative importance of physical, chemical and biological factors as potential explanatory variables for meso-scale spatio-temporal patterns of intertidal community structure in these systems. Here, we investigate macroinfaunal community structure of a micro-tidal sandy beach that is located on an oligotrophic subtropical coast and is influenced by seasonal estuarine input. We repeatedly sampled biological and environmental variables at a series of beach transects arranged at increasing distances from the estuary mouth. Sampling took place over a period of five months, corresponding with the transition between the dry and wet season. This allowed assessment of biological-physical relationships across chemical and nutritional gradients associated with a range of estuarine inputs. Physical, chemical, and biological response variables, as well as measures of community structure, showed significant spatio-temporal patterns. In general, bivariate relationships between biological and environmental variables were rare and weak. However, multivariate correlation approaches identified a variety of environmental variables (i.e., sampling session, the C∶N ratio of particulate organic matter, dissolved inorganic nutrient concentrations, various size fractions of photopigment concentrations, salinity and, to a lesser extent, beach width and sediment kurtosis) that either alone or combined provided significant explanatory power for spatio-temporal patterns of macroinfaunal community structure. Overall, these results showed that the macrobenthic community on Mtunzini Beach was not structured primarily by physical factors, but instead by a complex and dynamic blend of nutritional, chemical and physical drivers. This emphasises the need to recognise ocean-exposed sandy

  17. Complex, dynamic combination of physical, chemical and nutritional variables controls spatio-temporal variation of sandy beach community structure.

    PubMed

    Ortega Cisneros, Kelly; Smit, Albertus J; Laudien, Jürgen; Schoeman, David S

    2011-01-01

    Sandy beach ecological theory states that physical features of the beach control macrobenthic community structure on all but the most dissipative beaches. However, few studies have simultaneously evaluated the relative importance of physical, chemical and biological factors as potential explanatory variables for meso-scale spatio-temporal patterns of intertidal community structure in these systems. Here, we investigate macroinfaunal community structure of a micro-tidal sandy beach that is located on an oligotrophic subtropical coast and is influenced by seasonal estuarine input. We repeatedly sampled biological and environmental variables at a series of beach transects arranged at increasing distances from the estuary mouth. Sampling took place over a period of five months, corresponding with the transition between the dry and wet season. This allowed assessment of biological-physical relationships across chemical and nutritional gradients associated with a range of estuarine inputs. Physical, chemical, and biological response variables, as well as measures of community structure, showed significant spatio-temporal patterns. In general, bivariate relationships between biological and environmental variables were rare and weak. However, multivariate correlation approaches identified a variety of environmental variables (i.e., sampling session, the C∶N ratio of particulate organic matter, dissolved inorganic nutrient concentrations, various size fractions of photopigment concentrations, salinity and, to a lesser extent, beach width and sediment kurtosis) that either alone or combined provided significant explanatory power for spatio-temporal patterns of macroinfaunal community structure. Overall, these results showed that the macrobenthic community on Mtunzini Beach was not structured primarily by physical factors, but instead by a complex and dynamic blend of nutritional, chemical and physical drivers. This emphasises the need to recognise ocean-exposed sandy

  18. Time-Resolved and Spatio-Temporal Analysis of Complex Cognitive Processes and their Role in Disorders like Developmental Dyscalculia

    PubMed Central

    Mórocz, István Akos; Janoos, Firdaus; van Gelderen, Peter; Manor, David; Karni, Avi; Breznitz, Zvia; von Aster, Michael; Kushnir, Tammar; Shalev, Ruth

    2012-01-01

    The aim of this article is to report on the importance and challenges of a time-resolved and spatio-temporal analysis of fMRI data from complex cognitive processes and associated disorders using a study on developmental dyscalculia (DD). Participants underwent fMRI while judging the incorrectness of multiplication results, and the data were analyzed using a sequence of methods, each of which progressively provided more a detailed picture of the spatio-temporal aspect of this disease. Healthy subjects and subjects with DD performed alike behaviorally though they exhibited parietal disparities using traditional voxel-based group analyses. Further and more detailed differences, however, surfaced with a time-resolved examination of the neural responses during the experiment. While performing inter-group comparisons, a third group of subjects with dyslexia (DL) but with no arithmetic difficulties was included to test the specificity of the analysis and strengthen the statistical base with overall fifty-eight subjects. Surprisingly, the analysis showed a functional dissimilarity during an initial reading phase for the group of dyslexic but otherwise normal subjects, with respect to controls, even though only numerical digits and no alphabetic characters were presented. Thus our results suggest that time-resolved multi-variate analysis of complex experimental paradigms has the ability to yield powerful new clinical insights about abnormal brain function. Similarly, a detailed compilation of aberrations in the functional cascade may have much greater potential to delineate the core processing problems in mental disorders. PMID:22368322

  19. Decomposition of the complex system into nonlinear spatio-temporal modes: algorithm and application to climate data mining

    NASA Astrophysics Data System (ADS)

    Feigin, Alexander; Gavrilov, Andrey; Loskutov, Evgeny; Mukhin, Dmitry

    2015-04-01

    Proper decomposition of the complex system into well separated "modes" is a way to reveal and understand the mechanisms governing the system behaviour as well as discover essential feedbacks and nonlinearities. The decomposition is also natural procedure that provides to construct adequate and concurrently simplest models of both corresponding sub-systems, and of the system in whole. In recent works two new methods of decomposition of the Earth's climate system into well separated modes were discussed. The first method [1-3] is based on the MSSA (Multichannel Singular Spectral Analysis) [4] for linear expanding vector (space-distributed) time series and makes allowance delayed correlations of the processes recorded in spatially separated points. The second one [5-7] allows to construct nonlinear dynamic modes, but neglects delay of correlations. It was demonstrated [1-3] that first method provides effective separation of different time scales, but prevent from correct reduction of data dimension: slope of variance spectrum of spatio-temporal empirical orthogonal functions that are "structural material" for linear spatio-temporal modes, is too flat. The second method overcomes this problem: variance spectrum of nonlinear modes falls essentially sharply [5-7]. However neglecting time-lag correlations brings error of mode selection that is uncontrolled and increases with growth of mode time scale. In the report we combine these two methods in such a way that the developed algorithm allows constructing nonlinear spatio-temporal modes. The algorithm is applied for decomposition of (i) multi hundreds years globally distributed data generated by the INM RAS Coupled Climate Model [8], and (ii) 156 years time series of SST anomalies distributed over the globe [9]. We compare efficiency of different methods of decomposition and discuss the abilities of nonlinear spatio-temporal modes for construction of adequate and concurrently simplest ("optimal") models of climate systems

  20. High-order Spatio-temporal Schemes for Coupled, Multi-physics Reactor Simulations

    SciTech Connect

    Mr. Vijay S. Mahadevan; Dr. Jean C. Ragusa

    2008-09-01

    This report summarizes the work done in the summer of 08 by the Ph.D. student Vijay Mahadevan. The main focus of the work was to coupled 3-D neutron difusion to 3-D heat conduction in parallel with accuracy greater than or equal to 2nd order in space and time. Results show that the goal was attained.

  1. Spatio-temporal hazard estimation in the Auckland Volcanic Field, New Zealand, with a new event-order model

    NASA Astrophysics Data System (ADS)

    Bebbington, Mark S.; Cronin, Shane J.

    2011-01-01

    The Auckland Volcanic Field (AVF) with 49 eruptive centres in the last c. 250 ka presents many challenges to our understanding of distributed volcanic field construction and evolution. We re-examine the age constraints within the AVF and perform a correlation exercise matching the well-dated record of tephras from cores distributed throughout the field to the most likely source volcanoes, using thickness and location information and a simple attenuation model. Combining this augmented age information with known stratigraphic constraints, we produce a new age-order algorithm for the field, with errors incorporated using a Monte Carlo procedure. Analysis of the new age model discounts earlier appreciations of spatio-temporal clustering in the AVF. Instead the spatial and temporal aspects appear independent; hence the location of the last eruption provides no information about the next location. The temporal hazard intensity in the field has been highly variable, with over 63% of its centres formed in a high-intensity period between 40 and 20 ka. Another, smaller, high-intensity period may have occurred at the field onset, while the latest event, at 504 ± 5 years B.P., erupted 50% of the entire field's volume. This emphasises the lack of steady-state behaviour that characterises the AVF, which may also be the case in longer-lived fields with a lower dating resolution. Spatial hazard intensity in the AVF under the new age model shows a strong NE-SW structural control of volcanism that may reflect deep-seated crustal or subduction zone processes and matches the orientation of the Taupo Volcanic Zone to the south.

  2. Spatio-temporal complexity of chimpanzee food: How cognitive adaptations can counteract the ephemeral nature of ripe fruit.

    PubMed

    Janmaat, Karline R L; Boesch, Christophe; Byrne, Richard; Chapman, Colin A; Goné Bi, Zoro B; Head, Josephine S; Robbins, Martha M; Wrangham, Richard W; Polansky, Leo

    2016-06-01

    Ecological complexity has been proposed to play a crucial role in primate brain-size evolution. However, detailed quantification of ecological complexity is still limited. Here we assess the spatio-temporal distribution of tropical fruits and young leaves, two primary chimpanzee (Pan troglodytes) foods, focusing on the predictability of their availability in individual trees. Using up to 20 years of information on monthly availability of young leaf, unripe and ripe fruit in plant species consumed by chimpanzees from tropical forests in East, Central, and West Africa, we estimated: (1) the forest-wide frequency of occurrence of each food type and (2) the predictability of finding ripe fruit-bearing trees, focusing on the timing, frequency, and amount of ripe fruit present. In all three forests, at least half of all encountered trees belonged to species that chimpanzees were known to feed on. However, the proportion of these trees bearing young leaves and fruit fluctuated widely between months. Ripe fruit was the most ephemeral food source, and trees that had more than half of their crown filled were at least nine times scarcer than other trees. In old growth forests only one large ripe fruit crop was on average encountered per 10 km. High levels of inter-individual variation in the number of months that fruit was present existed, and in some extreme cases individuals bore ripe fruit more than seven times as often as conspecifics. Some species showed substantially less variation in such ripe fruit production frequencies and fruit quantity than others. We hypothesize that chimpanzees employ a suite of cognitive mechanisms, including abilities to: (1) generalize or classify food trees; (2) remember the relative metrics of quantity and frequency of fruit production across years; and (3) flexibly plan return times to feeding trees to optimize high-energy food consumption in individual trees, and efficient travel between them. Am. J. Primatol. 78:626-645, 2016. © 2016

  3. Spatio-Temporal Distribution of Mycobacterium tuberculosis Complex Strains in Ghana

    PubMed Central

    Asare, P.; Asante-Poku, A.; Otchere, I. D.; Osei-Wusu, S.; Danso, E.; Forson, A.; Koram, K. A.; Gagneux, Sebastien

    2016-01-01

    Background There is a perception that genomic differences in the species/lineages of the nine species making the Mycobacterium tuberculosis complex (MTBC) may affect the efficacy of distinct control tools in certain geographical areas. We therefore analyzed the prevalence and spatial distribution of MTBC species and lineages among isolates from pulmonary TB cases over an 8-year period, 2007–2014. Methodology Mycobacterial species isolated by culture from consecutively recruited pulmonary tuberculosis patients presenting at selected district/sub-district health facilities were confirmed as MTBC by IS6110 and rpoß PCR and further assigned lineages and sub lineages by spoligotyping and large sequence polymorphism PCR (RDs 4, 9, 12, 702, 711) assays. Patient characteristics, residency, and risks were obtained with a structured questionnaire. We used SaTScan and ArcMap analyses to identify significantly clustered MTBC lineages within selected districts and spatial display, respectively. Results Among 2,551 isolates, 2,019 (79.1%), 516 (20.2%) and 16 (0.6%) were identified as M. tuberculosis sensu stricto (MTBss), M. africanum (Maf), 15 M. bovis and 1 M. caprae, respectively. The proportions of MTBss and Maf were fairly constant within the study period. Maf spoligotypes were dominated by Spoligotype International Type (SIT) 331 (25.42%), SIT 326 (15.25%) and SIT 181 (14.12%). We found M. bovis to be significantly higher in Northern Ghana (1.9% of 212) than Southern Ghana (0.5% of 2339) (p = 0.020). Using the purely spatial and space-time analysis, seven significant MTBC lineage clusters (p< 0.05) were identified. Notable among the clusters were Ghana and Cameroon sub-lineages found to be associated with north and south, respectively. Conclusion This study demonstrated that overall, 79.1% of TB in Ghana is caused by MTBss and 20% by M. africanum. Unlike some West African Countries, we did not observe a decline of Maf prevalence in Ghana. PMID:27564240

  4. Observation of the Spatio-Temporal Variability of Snowmelt and Runoff Generation During Rain-on-Snow in a Catchment With Complex Terrain

    NASA Astrophysics Data System (ADS)

    Garvelmann, J.; Pohl, S.; Weiler, M.

    2015-12-01

    Rain-on-snow (ROS) is a typical flood type in montane catchments with temperate climates in many parts of the world and their frequency will most likely increase under changing climate conditions. These flood events have been notoriously hard to predict due to their complex nature and the lack of high resolution spatial and temporal data that could be used for model evaluation and detailed investigations of how a ROS event actually develops in a catchment. The presented study will focus on the spatio-temporal variability of the snow cover distribution, snowmelt energy dynamics, and runoff generation during two ROS events in December 2012 by using hourly measurements of 30 standalone snow monitoring stations set-up in a mesoscale montane catchment in the Black Forest region of southwestern Germany. A multiple linear regression analysis using elevation, aspect, and land cover as predictors for the snow water equivalent distribution within the catchment was applied on an hourly basis. The generated snowmelt water, liquid precipitation, as well as the total retention storage of the snow cover were considered in order to estimate the amount of water potentially available for runoff. The study shows in a very high spatial and temporal resolution how the observed ROS floods developed in the catchment. It became evident that the distributed retention capacity of the snow cover is a crucial mechanism during ROS. Due to higher amounts of snow and increased rainfall in the higher parts of the catchment, elevation was the most important terrain feature for runoff generation. South-facing terrain contributed more water to runoff than north-facing slopes, and only slightly more runoff was generated at open compared to forested areas. The results highlight the importance of the combination of snowmelt together with liquid precipitation for the generation of flood runoff during ROS events and the large temporal and spatial variability of the relevant processes.

  5. On the Order of the Fractional Laplacian in Determining the Spatio-Temporal Evolution of a Space-Fractional Model of Cardiac Electrophysiology

    PubMed Central

    Cusimano, Nicole; Bueno-Orovio, Alfonso; Turner, Ian; Burrage, Kevin

    2015-01-01

    Space-fractional operators have been used with success in a variety of practical applications to describe transport processes in media characterised by spatial connectivity properties and high structural heterogeneity altering the classical laws of diffusion. This study provides a systematic investigation of the spatio-temporal effects of a space-fractional model in cardiac electrophysiology. We consider a simplified model of electrical pulse propagation through cardiac tissue, namely the monodomain formulation of the Beeler-Reuter cell model on insulated tissue fibres, and obtain a space-fractional modification of the model by using the spectral definition of the one-dimensional continuous fractional Laplacian. The spectral decomposition of the fractional operator allows us to develop an efficient numerical method for the space-fractional problem. Particular attention is paid to the role played by the fractional operator in determining the solution behaviour and to the identification of crucial differences between the non-fractional and the fractional cases. We find a positive linear dependence of the depolarization peak height and a power law decay of notch and dome peak amplitudes for decreasing orders of the fractional operator. Furthermore, we establish a quadratic relationship in conduction velocity, and quantify the increasingly wider action potential foot and more pronounced dispersion of action potential duration, as the fractional order is decreased. A discussion of the physiological interpretation of the presented findings is made. PMID:26629898

  6. Spatio-temporal change modeling with array data

    NASA Astrophysics Data System (ADS)

    Lu, Meng; Pebesma, Edzer

    2015-04-01

    Spatio-temporal change modeling of our ecosystems is critical for environmental conservation. Open access to remote sensing satellite image archives provides new opportunities for change modeling, such as near real-time change monitoring with long term image time series. Newly developed time series analysis methods allow the detection of quantitative changes in trend and seasonality for each pixel of the image. A drawback of pure time series analysis is that spatial dependence is neglected. There are several spatio-temporal statistical approaches to incorporate spatial context. One method is to build hierarchical models with spatial effects for time series parameters. Other methods include representing regression parameters as spatially correlated random fields, or integrating spatial autoregressive models to time series analysis. Apart from spatio-temporal statistical modeling, the results can be further improved by qualification of detected change points with their spatio-temporal neighbors. Spatio-temporal modeling approaches are typically complex and large in scale, and call for new data management and analysis tools. Remote sensing satellite images, which are continuous and regular in space and time, can naturally be represented as three- or four-dimensional arrays for spatio-temporal data management and analysis. The developed spatio-temporal statistical algorithms can be flexibly applied within array partitions that span the relevant array-based dimensions. This study investigates the potential of array-based Data Data Management and Analytic Software (DMAS) for fast data access, data integration and large-scale complex spatio-temporal analysis. A study case is developed in near-real time deforestation monitoring in Amazonian rainforest with long-term 250 m, 8-day resolution MODIS image time series. A novel spatio-temporal change modeling process is being developed and implemented in DMAS to realize rapid and automated analysis of satellite image time series

  7. A model of photon cell killing based on the spatio-temporal clustering of DNA damage in higher order chromatin structures.

    PubMed

    Herr, Lisa; Friedrich, Thomas; Durante, Marco; Scholz, Michael

    2014-01-01

    We present a new approach to model dose rate effects on cell killing after photon radiation based on the spatio-temporal clustering of DNA double strand breaks (DSBs) within higher order chromatin structures of approximately 1-2 Mbp size, so called giant loops. The main concept of this approach consists of a distinction of two classes of lesions, isolated and clustered DSBs, characterized by the number of double strand breaks induced in a giant loop. We assume a low lethality and fast component of repair for isolated DSBs and a high lethality and slow component of repair for clustered DSBs. With appropriate rates, the temporal transition between the different lesion classes is expressed in terms of five differential equations. These allow formulating the dynamics involved in the competition of damage induction and repair for arbitrary dose rates and fractionation schemes. Final cell survival probabilities are computable with a cell line specific set of three parameters: The lethality for isolated DSBs, the lethality for clustered DSBs and the half-life time of isolated DSBs. By comparison with larger sets of published experimental data it is demonstrated that the model describes the cell line dependent response to treatments using either continuous irradiation at a constant dose rate or to split dose irradiation well. Furthermore, an analytic investigation of the formulation concerning single fraction treatments with constant dose rates in the limiting cases of extremely high or low dose rates is presented. The approach is consistent with the Linear-Quadratic model extended by the Lea-Catcheside factor up to the second moment in dose. Finally, it is shown that the model correctly predicts empirical findings about the dose rate dependence of incidence probabilities for deterministic radiation effects like pneumonitis and the bone marrow syndrome. These findings further support the general concepts on which the approach is based. PMID:24392100

  8. Detecting hidden spatial and spatio-temporal structures in glasses and complex physical systems by multiresolution network clustering.

    PubMed

    Ronhovde, P; Chakrabarty, S; Hu, D; Sahu, M; Sahu, K K; Kelton, K F; Mauro, N A; Nussinov, Z

    2011-09-01

    We elaborate on a general method that we recently introduced for characterizing the "natural" structures in complex physical systems via multi-scale network analysis. The method is based on "community detection" wherein interacting particles are partitioned into an "ideal gas" of optimally decoupled groups of particles. Specifically, we construct a set of network representations ("replicas") of the physical system based on interatomic potentials and apply a multiscale clustering ("multiresolution community detection") analysis using information-based correlations among the replicas. Replicas may i) be different representations of an identical static system, ii) embody dynamics by considering replicas to be time separated snapshots of the system (with a tunable time separation), or iii) encode general correlations when different replicas correspond to different representations of the entire history of the system as it evolves in space-time. Inputs for our method are the inter-particle potentials or experimentally measured two (or higher order) particle correlations. We apply our method to computer simulations of a binary Kob-Andersen Lennard-Jones system in a mixture ratio of A(80)B(20) , a ternary model system with components "A", "B", and "C" in ratios of A(88)B(7)C(5) (as in Al(88)Y(7)Fe(5) , and to atomic coordinates in a Zr(80)Pt(20) system as gleaned by reverse Monte Carlo analysis of experimentally determined structure factors. We identify the dominant structures (disjoint or overlapping) and general length scales by analyzing extrema of the information theory measures. We speculate on possible links between i) physical transitions or crossovers and ii) changes in structures found by this method as well as phase transitions associated with the computational complexity of the community detection problem. We also briefly consider continuum approaches and discuss rigidity and the shear penetration depth in amorphous systems; this latter length scale increases as

  9. Bayesian hierarchical models for multivariate nonlinear spatio-temporal dynamical processes in the atmosphere and ocean

    NASA Astrophysics Data System (ADS)

    Leeds, W. B.; Wikle, C. K.

    2012-12-01

    Spatio-temporal statistical models, and in particular Bayesian hierarchical models (BHMs), have become increasingly popular as means of representing natural processes such as climate and weather that evolve over space and time. Hierarchical models make it possible to specify separate, conditional probability distributions that account for uncertainty in the observations, the underlying process, and parameters in situations when specifying these sources of uncertainty in a joint probability distribution may be difficult. As a result, BHMs are a natural setting for climatologists, meteorologists, and other environmental scientists to incorporate scientific information (e.g., PDEs, IDEs, etc.) a priori into a rigorous statistical framework that accounts for error in measurements, uncertainty in the understanding of the true underlying process, and uncertainty in the parameters that describe the process. While much work has been done in the development of statistical models for linear dynamic spatio-temporal processes, statistical modeling for nonlinear (and particularly, multivariate nonlinear) spatio-temporal dynamical processes is still a relatively open area of inquiry. As a result, general statistical models for environmental scientists to model complicated nonlinear processes is limited. We address this limitation in the methodology by introducing a multivariate "general quadratic nonlinear" framework for modeling multivariate, nonlinear spatio-temporal random processes inside of a BHM in a way that is especially applicable for problems in the ocean and atmospheric sciences. We show that in addition to the fact that this model addresses the previously mentioned sources of uncertainty for a wide spectrum of multivariate, nonlinear spatio-temporal processes, it is also a natural framework for data assimilation, allowing for the fusing of observations with computer models, computer model emulators, computer model output, or "mechanistically motivated" statistical

  10. Modeling spatio-temporal field evolution

    NASA Astrophysics Data System (ADS)

    Borštnik Bračič, A.; Grabec, I.; Govekar, E.

    2009-06-01

    Prediction of spatio-temporal field evolution is based on the extraction of a physical law from joint experimental data. This extraction is usually described by a set of differential equations. If the only source of information is a field record, a method of field generators based on nonparametric modeling by conditional average can successfully replace differential equations. In this article we apply the method of field generators to a two-dimensional chaotic field record that describes the asynchronous motion of high-amplitude striations. We show how to choose the model structure in order to optimize the quality of the prediction process.

  11. Spatio-temporal networks: reachability, centrality and robustness

    PubMed Central

    Musolesi, Mirco

    2016-01-01

    Recent advances in spatial and temporal networks have enabled researchers to more-accurately describe many real-world systems such as urban transport networks. In this paper, we study the response of real-world spatio-temporal networks to random error and systematic attack, taking a unified view of their spatial and temporal performance. We propose a model of spatio-temporal paths in time-varying spatially embedded networks which captures the property that, as in many real-world systems, interaction between nodes is non-instantaneous and governed by the space in which they are embedded. Through numerical experiments on three real-world urban transport systems, we study the effect of node failure on a network's topological, temporal and spatial structure. We also demonstrate the broader applicability of this framework to three other classes of network. To identify weaknesses specific to the behaviour of a spatio-temporal system, we introduce centrality measures that evaluate the importance of a node as a structural bridge and its role in supporting spatio-temporally efficient flows through the network. This exposes the complex nature of fragility in a spatio-temporal system, showing that there is a variety of failure modes when a network is subject to systematic attacks. PMID:27429776

  12. Spatio-temporal networks: reachability, centrality and robustness.

    PubMed

    Williams, Matthew J; Musolesi, Mirco

    2016-06-01

    Recent advances in spatial and temporal networks have enabled researchers to more-accurately describe many real-world systems such as urban transport networks. In this paper, we study the response of real-world spatio-temporal networks to random error and systematic attack, taking a unified view of their spatial and temporal performance. We propose a model of spatio-temporal paths in time-varying spatially embedded networks which captures the property that, as in many real-world systems, interaction between nodes is non-instantaneous and governed by the space in which they are embedded. Through numerical experiments on three real-world urban transport systems, we study the effect of node failure on a network's topological, temporal and spatial structure. We also demonstrate the broader applicability of this framework to three other classes of network. To identify weaknesses specific to the behaviour of a spatio-temporal system, we introduce centrality measures that evaluate the importance of a node as a structural bridge and its role in supporting spatio-temporally efficient flows through the network. This exposes the complex nature of fragility in a spatio-temporal system, showing that there is a variety of failure modes when a network is subject to systematic attacks. PMID:27429776

  13. Workload induced spatio-temporal distortions and safety of flight

    SciTech Connect

    Barrett, C.L.; Weisgerber, S.A.; Naval Weapons Center, China Lake, CA )

    1989-01-01

    A theoretical analysis of the relationship between cognitive complexity and the perception of time and distance is presented and experimentally verified. Complex tasks produce high rates of mental representation which affect the subjective sense of duration and, through the subjective time scale, the percept of distance derived from dynamic visual cues (i.e., visual cues requiring rate integration). The analysis of the interrelationship of subjective time and subjective distance yields the prediction that, as a function of cognitive complexity, distance estimates derived from dynamic visual cues will be longer than the actual distance whereas estimates based on perceived temporal duration will be shorter than the actual distance. This prediction was confirmed in an experiment in which subjects (both pilots and non-pilots) estimated distances using either temporal cues or dynamic visual cues. The distance estimation task was also combined with secondary loading tasks in order to vary the overall task complexity. The results indicated that distance estimates based on temporal cues were underestimated while estimates based on visual cues were overestimated. This spatio-temporal distortion effect increased with increases in overall task complexity. 30 refs., 6 figs., 1 tab.

  14. Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors

    NASA Astrophysics Data System (ADS)

    Schöll, Eckehard

    2005-08-01

    Nonlinear transport phenomena are an increasingly important aspect of modern semiconductor research. This volume deals with complex nonlinear dynamics, pattern formation, and chaotic behavior in such systems. It bridges the gap between two well-established fields: the theory of dynamic systems and nonlinear charge transport in semiconductors. This unified approach helps reveal important electronic transport instabilities. The initial chapters lay a general framework for the theoretical description of nonlinear self-organized spatio-temporal patterns, such as current filaments, field domains, fronts, and analysis of their stability. Later chapters consider important model systems in detail: impact ionization induced impurity breakdown, Hall instabilities, superlattices, and low-dimensional structures. State-of-the-art results include chaos control, spatio-temporal chaos, multistability, pattern selection, activator-inhibitor kinetics, and global coupling, linking fundamental issues to electronic device applications. This book will be of great value to semiconductor physicists and nonlinear scientists alike.

  15. Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors

    NASA Astrophysics Data System (ADS)

    Schöll, Eckehard

    2001-02-01

    Nonlinear transport phenomena are an increasingly important aspect of modern semiconductor research. This volume deals with complex nonlinear dynamics, pattern formation, and chaotic behavior in such systems. It bridges the gap between two well-established fields: the theory of dynamic systems and nonlinear charge transport in semiconductors. This unified approach helps reveal important electronic transport instabilities. The initial chapters lay a general framework for the theoretical description of nonlinear self-organized spatio-temporal patterns, such as current filaments, field domains, fronts, and analysis of their stability. Later chapters consider important model systems in detail: impact ionization induced impurity breakdown, Hall instabilities, superlattices, and low-dimensional structures. State-of-the-art results include chaos control, spatio-temporal chaos, multistability, pattern selection, activator-inhibitor kinetics, and global coupling, linking fundamental issues to electronic device applications. This book will be of great value to semiconductor physicists and nonlinear scientists alike.

  16. Spatio-temporal registration of multiple trajectories.

    PubMed

    Padoy, Nicolas; Hager, Gregory D

    2011-01-01

    A growing number of medical datasets now contain both a spatial and a temporal dimension. Trajectories, from tools or body features, are thus becoming increasingly important for their analysis. In this paper, we are interested in recovering the spatial and temporal differences between trajectories coming from different datasets. In particular, we address the case of surgical gestures, where trajectories contain both spatial transformations and speed differences in the execution. We first define the spatio-temporal registration problem between multiple trajectories. We then propose an optimization method to jointly recover both the rigid spatial motions and the non-linear time warpings. The optimization generates also a generic trajectory template, in which spatial and temporal differences have been factored out. This approach can be potentially used to register and compare gestures side-by-side for training sessions, to build gesture trajectory models for automation by a robot, or to register the trajectories of natural or artificial markers which follow similar motions. We demonstrate its usefulness with synthetic and real experiments. In particular, we register and analyze complex surgical gestures performed by tele-manipulation using the da Vinci robot. PMID:22003611

  17. A Bayesian spatio-temporal method for disease outbreak detection

    PubMed Central

    Cooper, Gregory F

    2010-01-01

    A system that monitors a region for a disease outbreak is called a disease outbreak surveillance system. A spatial surveillance system searches for patterns of disease outbreak in spatial subregions of the monitored region. A temporal surveillance system looks for emerging patterns of outbreak disease by analyzing how patterns have changed during recent periods of time. If a non-spatial, non-temporal system could be converted to a spatio-temporal one, the performance of the system might be improved in terms of early detection, accuracy, and reliability. A Bayesian network framework is proposed for a class of space-time surveillance systems called BNST. The framework is applied to a non-spatial, non-temporal disease outbreak detection system called PC in order to create the spatio-temporal system called PCTS. Differences in the detection performance of PC and PCTS are examined. The results show that the spatio-temporal Bayesian approach performs well, relative to the non-spatial, non-temporal approach. PMID:20595315

  18. Spatio-Temporal Multiscale Denoising of Fluoroscopic Sequence.

    PubMed

    Amiot, Carole; Girard, Catherine; Chanussot, Jocelyn; Pescatore, Jeremie; Desvignes, Michel

    2016-06-01

    In the past 20 years, a wide range of complex fluoroscopically guided procedures have shown considerable growth. Biologic effects of the exposure (radiation induced burn, cancer) lead to reduce the dose during the intervention, for the safety of patients and medical staff. However, when the dose is reduced, image quality decreases, with a high level of noise and a very low contrast. Efficient restoration and denoising algorithms should overcome this drawback. We propose a spatio-temporal filter operating in a multi-scales space. This filter relies on a first order, motion compensated, recursive temporal denoising. Temporal high frequency content is first detected and then matched over time to allow for a strong denoising in the temporal axis. We study this filter in the curvelet domain and in the dual-tree complex wavelet domain, and compare those results to state of the art methods. Quantitative and qualitative analysis on both synthetic and real fluoroscopic sequences demonstrate that the proposed filter allows a great dose reduction. PMID:26812705

  19. Efficient Segmentation of Spatio-Temporal Data from Simulations

    SciTech Connect

    Fodor, I K; Kamath, C

    2003-01-15

    Detecting and tracking objects in spatio-temporal datasets is an active research area with applications in many domains. A common approach is to segment the 2D frames in order to separate the objects of interest from the background, then estimate the motion of the objects and track them over time. Most existing algorithms assume that the objects to be tracked are rigid. In many scientific simulations, however, the objects of interest evolve over time and thus pose additional challenges for the segmentation and tracking tasks. We investigate efficient segmentation methods in the context of scientific simulation data. Instead of segmenting each frame separately, we propose an incremental approach which incorporates the segmentation result from the previous time frame when segmenting the data at the current time frame. We start with the simple K-means method, then we study more complicated segmentation techniques based on Markov random fields. We compare the incremental methods to the corresponding sequential ones both in terms of the quality of the results, as well as computational complexity.

  20. Spatio-temporal dynamics in the origin of genetic information

    NASA Astrophysics Data System (ADS)

    Kim, Pan-Jun; Jeong, Hawoong

    2005-04-01

    We study evolutionary processes induced by spatio-temporal dynamics in prebiotic evolution. Using numerical simulations, we demonstrate that hypercycles emerge from complex interaction structures in multispecies systems. In this work, we also find that ‘hypercycle hybrid’ protects the hypercycle from its environment during the growth process. There is little selective advantage for one hypercycle to maintain coexistence with others. This brings the possibility of the outcompetition between hypercycles resulting in the negative effect on information diversity. To enrich the information in hypercycles, symbiosis with parasites is suggested. It is shown that symbiosis with parasites can play an important role in the prebiotic immunology.

  1. Spatio-temporal dynamics induced by competing instabilities in two asymmetrically coupled nonlinear evolution equations

    SciTech Connect

    Schüler, D.; Alonso, S.; Bär, M.; Torcini, A.

    2014-12-15

    Pattern formation often occurs in spatially extended physical, biological, and chemical systems due to an instability of the homogeneous steady state. The type of the instability usually prescribes the resulting spatio-temporal patterns and their characteristic length scales. However, patterns resulting from the simultaneous occurrence of instabilities cannot be expected to be simple superposition of the patterns associated with the considered instabilities. To address this issue, we design two simple models composed by two asymmetrically coupled equations of non-conserved (Swift-Hohenberg equations) or conserved (Cahn-Hilliard equations) order parameters with different characteristic wave lengths. The patterns arising in these systems range from coexisting static patterns of different wavelengths to traveling waves. A linear stability analysis allows to derive a two parameter phase diagram for the studied models, in particular, revealing for the Swift-Hohenberg equations, a co-dimension two bifurcation point of Turing and wave instability and a region of coexistence of stationary and traveling patterns. The nonlinear dynamics of the coupled evolution equations is investigated by performing accurate numerical simulations. These reveal more complex patterns, ranging from traveling waves with embedded Turing patterns domains to spatio-temporal chaos, and a wide hysteretic region, where waves or Turing patterns coexist. For the coupled Cahn-Hilliard equations the presence of a weak coupling is sufficient to arrest the coarsening process and to lead to the emergence of purely periodic patterns. The final states are characterized by domains with a characteristic length, which diverges logarithmically with the coupling amplitude.

  2. Spatio-Temporal Dynamics of Hypoxia during Radiotherapy.

    PubMed

    Kempf, Harald; Bleicher, Marcus; Meyer-Hermann, Michael

    2015-01-01

    Tumour hypoxia plays a pivotal role in cancer therapy for most therapeutic approaches from radiotherapy to immunotherapy. The detailed and accurate knowledge of the oxygen distribution in a tumour is necessary in order to determine the right treatment strategy. Still, due to the limited spatial and temporal resolution of imaging methods as well as lacking fundamental understanding of internal oxygenation dynamics in tumours, the precise oxygen distribution map is rarely available for treatment planing. We employ an agent-based in silico tumour spheroid model in order to study the complex, localized and fast oxygen dynamics in tumour micro-regions which are induced by radiotherapy. A lattice-free, 3D, agent-based approach for cell representation is coupled with a high-resolution diffusion solver that includes a tissue density-dependent diffusion coefficient. This allows us to assess the space- and time-resolved reoxygenation response of a small subvolume of tumour tissue in response to radiotherapy. In response to irradiation the tumour nodule exhibits characteristic reoxygenation and re-depletion dynamics which we resolve with high spatio-temporal resolution. The reoxygenation follows specific timings, which should be respected in treatment in order to maximise the use of the oxygen enhancement effects. Oxygen dynamics within the tumour create windows of opportunity for the use of adjuvant chemotherapeutica and hypoxia-activated drugs. Overall, we show that by using modelling it is possible to follow the oxygenation dynamics beyond common resolution limits and predict beneficial strategies for therapy and in vitro verification. Models of cell cycle and oxygen dynamics in tumours should in the future be combined with imaging techniques, to allow for a systematic experimental study of possible improved schedules and to ultimately extend the reach of oxygenation monitoring available in clinical treatment. PMID:26273841

  3. Spatio-Temporal Dynamics of Hypoxia during Radiotherapy

    PubMed Central

    Kempf, Harald; Bleicher, Marcus; Meyer-Hermann, Michael

    2015-01-01

    Tumour hypoxia plays a pivotal role in cancer therapy for most therapeutic approaches from radiotherapy to immunotherapy. The detailed and accurate knowledge of the oxygen distribution in a tumour is necessary in order to determine the right treatment strategy. Still, due to the limited spatial and temporal resolution of imaging methods as well as lacking fundamental understanding of internal oxygenation dynamics in tumours, the precise oxygen distribution map is rarely available for treatment planing. We employ an agent-based in silico tumour spheroid model in order to study the complex, localized and fast oxygen dynamics in tumour micro-regions which are induced by radiotherapy. A lattice-free, 3D, agent-based approach for cell representation is coupled with a high-resolution diffusion solver that includes a tissue density-dependent diffusion coefficient. This allows us to assess the space- and time-resolved reoxygenation response of a small subvolume of tumour tissue in response to radiotherapy. In response to irradiation the tumour nodule exhibits characteristic reoxygenation and re-depletion dynamics which we resolve with high spatio-temporal resolution. The reoxygenation follows specific timings, which should be respected in treatment in order to maximise the use of the oxygen enhancement effects. Oxygen dynamics within the tumour create windows of opportunity for the use of adjuvant chemotherapeutica and hypoxia-activated drugs. Overall, we show that by using modelling it is possible to follow the oxygenation dynamics beyond common resolution limits and predict beneficial strategies for therapy and in vitro verification. Models of cell cycle and oxygen dynamics in tumours should in the future be combined with imaging techniques, to allow for a systematic experimental study of possible improved schedules and to ultimately extend the reach of oxygenation monitoring available in clinical treatment. PMID:26273841

  4. An Adaptive Organization Method of Geovideo Data for Spatio-Temporal Association Analysis

    NASA Astrophysics Data System (ADS)

    Wu, C.; Zhu, Q.; Zhang, Y. T.; Du, Z. Q.; Zhou, Y.; Xie, X.; He, F.

    2015-07-01

    Public security incidents have been increasingly challenging to address with their new features, including large-scale mobility, multi-stage dynamic evolution, spatio-temporal concurrency and uncertainty in the complex urban environment, which require spatio-temporal association analysis among multiple regional video data for global cognition. However, the existing video data organizational methods that view video as a property of the spatial object or position in space dissever the spatio-temporal relationship of scattered video shots captured from multiple video channels, limit the query functions on interactive retrieval between a camera and its video clips and hinder the comprehensive management of event-related scattered video shots. GeoVideo, which maps video frames onto a geographic space, is a new approach to represent the geographic world, promote security monitoring in a spatial perspective and provide a highly feasible solution to this problem. This paper analyzes the large-scale personnel mobility in public safety events and proposes a multi-level, event-related organization method with massive GeoVideo data by spatio-temporal trajectory. This paper designs a unified object identify(ID) structure to implicitly store the spatio-temporal relationship of scattered video clips and support the distributed storage management of massive cases. Finally, the validity and feasibility of this method are demonstrated through suspect tracking experiments.

  5. Correlation analysis of spatio-temporal images for estimating two-dimensional flow velocity field in a rotating flow condition

    NASA Astrophysics Data System (ADS)

    Yu, Kwonkyu; Kim, Seojun; Kim, Dongsu

    2015-10-01

    Flow velocity estimation in actual rivers using image processing technique has been highlighted for hydrometric communities in the last decades, and this technique is called Large Scale Particle Image Velocimetry (LSPIV). Although LSPIV has been successfully tested in many flow conditions, it has addressed several limitations estimating mean flow field because of difficult flow conditions such as rotating, lack of light and seeds, and noisy flow conditions. Recently, an alternative technique named STIV to use spatio-temporal images based on successively recorded images has been introduced to overcome the limitations of LSPIV. The STIV was successfully applied to obtain one-dimensional flow component in the river for estimating streamflow discharge, where the main flow direction is known. Using the 5th order of central difference scheme, the STIV directly calculated the mean angle of slopes which appeared as strips in the spatio-temporal images and has been proved to be more reliable and efficient for the discharge estimation as compared with the conventional LSPIV. However, yet it has not been sufficiently qualified to derive two-dimensional flow field in the complex flow, such as rotating or locally unsteady flow conditions. We deemed that it was because the strips in the given spatio-temporal images from not properly oriented for main flow direction are not narrow enough or clearly visible, thus the direct estimating strip slope could give erroneous results. Thereby, the STIV has been mainly applied for obtaining one-dimensional flow component. In this regard, we proposed an alternative algorithm to estimate the mean slope angle for enhancing the capability of the STIV, which used correlation coefficient between odd and even image splits from the given spatio-temporal image. This method was named CASTI (Correlation Analysis of Spatio-Temporal Image). This paper described the step-by-step procedure of the CASTI and validated its capability for estimating two

  6. Advanced spatio-temporal filtering techniques for photogrammetric image sequence analysis in civil engineering material testing

    NASA Astrophysics Data System (ADS)

    Liebold, F.; Maas, H.-G.

    2016-01-01

    The paper shows advanced spatial, temporal and spatio-temporal filtering techniques which may be used to reduce noise effects in photogrammetric image sequence analysis tasks and tools. As a practical example, the techniques are validated in a photogrammetric spatio-temporal crack detection and analysis tool applied in load tests in civil engineering material testing. The load test technique is based on monocular image sequences of a test object under varying load conditions. The first image of a sequence is defined as a reference image under zero load, wherein interest points are determined and connected in a triangular irregular network structure. For each epoch, these triangles are compared to the reference image triangles to search for deformations. The result of the feature point tracking and triangle comparison process is a spatio-temporally resolved strain value field, wherein cracks can be detected, located and measured via local discrepancies. The strains can be visualized as a color-coded map. In order to improve the measuring system and to reduce noise, the strain values of each triangle must be treated in a filtering process. The paper shows the results of various filter techniques in the spatial and in the temporal domain as well as spatio-temporal filtering techniques applied to these data. The best results were obtained by a bilateral filter in the spatial domain and by a spatio-temporal EOF (empirical orthogonal function) filtering technique.

  7. Spatio-temporal coupling of EEG signals in epilepsy

    NASA Astrophysics Data System (ADS)

    Senger, Vanessa; Müller, Jens; Tetzlaff, Ronald

    2011-05-01

    Approximately 1% of the world's population suffer from epileptic seizures throughout their lives that mostly come without sign or warning. Thus, epilepsy is the most common chronical disorder of the neurological system. In the past decades, the problem of detecting a pre-seizure state in epilepsy using EEG signals has been addressed in many contributions by various authors over the past two decades. Up to now, the goal of identifying an impending epileptic seizure with sufficient specificity and reliability has not yet been achieved. Cellular Nonlinear Networks (CNN) are characterized by local couplings of dynamical systems of comparably low complexity. Thus, they are well suited for an implementation as highly parallel analogue processors. Programmable sensor-processor realizations of CNN combine high computational power comparable to tera ops of digital processors with low power consumption. An algorithm allowing an automated and reliable detection of epileptic seizure precursors would be a"huge step" towards the vision of an implantable seizure warning device that could provide information to patients and for a time/event specific treatment directly in the brain. Recent contributions have shown that modeling of brain electrical activity by solutions of Reaction-Diffusion-CNN as well as the application of a CNN predictor taking into account values of neighboring electrodes may contribute to the realization of a seizure warning device. In this paper, a CNN based predictor corresponding to a spatio-temporal filter is applied to multi channel EEG data in order to identify mutual couplings for different channels which lead to a enhanced prediction quality. Long term EEG recordings of different patients are considered. Results calculated for these recordings with inter-ictal phases as well as phases with seizures will be discussed in detail.

  8. Event Detection using Twitter: A Spatio-Temporal Approach

    PubMed Central

    Cheng, Tao; Wicks, Thomas

    2014-01-01

    Background Every day, around 400 million tweets are sent worldwide, which has become a rich source for detecting, monitoring and analysing news stories and special (disaster) events. Existing research within this field follows key words attributed to an event, monitoring temporal changes in word usage. However, this method requires prior knowledge of the event in order to know which words to follow, and does not guarantee that the words chosen will be the most appropriate to monitor. Methods This paper suggests an alternative methodology for event detection using space-time scan statistics (STSS). This technique looks for clusters within the dataset across both space and time, regardless of tweet content. It is expected that clusters of tweets will emerge during spatio-temporally relevant events, as people will tweet more than expected in order to describe the event and spread information. The special event used as a case study is the 2013 London helicopter crash. Results and Conclusion A spatio-temporally significant cluster is found relating to the London helicopter crash. Although the cluster only remains significant for a relatively short time, it is rich in information, such as important key words and photographs. The method also detects other special events such as football matches, as well as train and flight delays from Twitter data. These findings demonstrate that STSS is an effective approach to analysing Twitter data for event detection. PMID:24893168

  9. Multiscale recurrence analysis of spatio-temporal data

    NASA Astrophysics Data System (ADS)

    Riedl, M.; Marwan, N.; Kurths, J.

    2015-12-01

    The description and analysis of spatio-temporal dynamics is a crucial task in many scientific disciplines. In this work, we propose a method which uses the mapogram as a similarity measure between spatially distributed data instances at different time points. The resulting similarity values of the pairwise comparison are used to construct a recurrence plot in order to benefit from established tools of recurrence quantification analysis and recurrence network analysis. In contrast to other recurrence tools for this purpose, the mapogram approach allows the specific focus on different spatial scales that can be used in a multi-scale analysis of spatio-temporal dynamics. We illustrate this approach by application on mixed dynamics, such as traveling parallel wave fronts with additive noise, as well as more complicate examples, pseudo-random numbers and coupled map lattices with a semi-logistic mapping rule. Especially the complicate examples show the usefulness of the multi-scale consideration in order to take spatial pattern of different scales and with different rhythms into account. So, this mapogram approach promises new insights in problems of climatology, ecology, or medicine.

  10. The dynamics of spatio-temporal Rho GTPase signaling: formation of signaling patterns

    PubMed Central

    Fritz, Rafael Dominik; Pertz, Olivier

    2016-01-01

    Rho GTPases are crucial signaling molecules that regulate a plethora of biological functions. Traditional biochemical, cell biological, and genetic approaches have founded the basis of Rho GTPase biology. The development of biosensors then allowed measuring Rho GTPase activity with unprecedented spatio-temporal resolution. This revealed that Rho GTPase activity fluctuates on time and length scales of tens of seconds and micrometers, respectively. In this review, we describe Rho GTPase activity patterns observed in different cell systems. We then discuss the growing body of evidence that upstream regulators such as guanine nucleotide exchange factors and GTPase-activating proteins shape these patterns by precisely controlling the spatio-temporal flux of Rho GTPase activity. Finally, we comment on additional mechanisms that might feed into the regulation of these signaling patterns and on novel technologies required to dissect this spatio-temporal complexity. PMID:27158467

  11. Clustering Approach to Quantify Long-Term Spatio-Temporal Interactions in Epileptic Intracranial Electroencephalography

    PubMed Central

    Hegde, Anant; Erdogmus, Deniz; Shiau, Deng S.; Principe, Jose C.; Sackellares, Chris J.

    2007-01-01

    Abnormal dynamical coupling between brain structures is believed to be primarily responsible for the generation of epileptic seizures and their propagation. In this study, we attempt to identify the spatio-temporal interactions of an epileptic brain using a previously proposed nonlinear dependency measure. Using a clustering model, we determine the average spatial mappings in an epileptic brain at different stages of a complex partial seizure. Results involving 8 seizures from 2 epileptic patients suggest that there may be a fixed pattern associated with regional spatio-temporal dynamics during the interictal to pre-post-ictal transition. PMID:18317515

  12. Multiple dipole modeling of spatio-temporal MEG (magnetoencephalogram) data

    SciTech Connect

    Mosher, J.C. . Systems Engineering and Development Div. University of Southern California, Los Angeles, CA . Signal and Image Processing Inst.); Lewis, P.S. ); Leahy, R. . Signal and Image Processing Inst.); Singh, M. (University of Southern Californi

    1990-01-01

    An array of SQUID biomagentometers may be used to measure the spatio-temporal neuromagnetic field produced by the brain in response to a given sensory stimulus. A popular model for the neural activity that produces these fields is a set of current dipoles. We present here a common linear algebraic framework for three common spatio-temporal dipole models: moving and rotating dipoles, rotating dipoles with fixed location, and dipoles with fixed orientation and location. Our intent here is not to argue the merits of one model over another, but rather show how each model may be solved efficiently, and within the same framework as the others. In all cases, we assume that the location, orientation, and magnitude of the dipoles are unknown. We present the parameter estimation problem for these three models in a common framework, and show how, in each case, the problem may be decomposed into the estimation of the dipole locations using nonlinear minimization followed by linear estimation of the associated moment time series. Numerically efficient means of calculating the cost function are presented, and problems of model order selection and missing moments are also investigated. The methods described are demonstrated in a simulated application to a three dipole problem. 21 refs., 2 figs., 1 tab.

  13. Altered spatio-temporal dynamics of RNase H2 complex assembly at replication and repair sites in Aicardi-Goutières syndrome.

    PubMed

    Kind, Barbara; Muster, Britta; Staroske, Wolfgang; Herce, Henry D; Sachse, René; Rapp, Alexander; Schmidt, Franziska; Koss, Sarah; Cardoso, M Cristina; Lee-Kirsch, Min Ae

    2014-11-15

    Ribonuclease H2 plays an essential role for genome stability as it removes ribonucleotides misincorporated into genomic DNA by replicative polymerases and resolves RNA/DNA hybrids. Biallelic mutations in the genes encoding the three RNase H2 subunits cause Aicardi-Goutières syndrome (AGS), an early-onset inflammatory encephalopathy that phenotypically overlaps with the autoimmune disorder systemic lupus erythematosus. Here we studied the intracellular dynamics of RNase H2 in living cells during DNA replication and in response to DNA damage using confocal time-lapse imaging and fluorescence cross-correlation spectroscopy. We demonstrate that the RNase H2 complex is assembled in the cytosol and imported into the nucleus in an RNase H2B-dependent manner. RNase H2 is not only recruited to DNA replication foci, but also to sites of PCNA-dependent DNA repair. By fluorescence recovery after photobleaching, we demonstrate a high mobility and fast exchange of RNase H2 at sites of DNA repair and replication. We provide evidence that recruitment of RNase H2 is not only PCNA-dependent, mediated by an interaction of the B subunit with PCNA, but also PCNA-independent mediated via the catalytic domain of the A subunit. We found that AGS-associated mutations alter complex formation, recruitment efficiency and exchange kinetics at sites of DNA replication and repair suggesting that impaired ribonucleotide removal contributes to AGS pathogenesis. PMID:24986920

  14. Spatio-temporal properties of letter crowding.

    PubMed

    Chung, Susana T L

    2016-04-01

    Crowding between adjacent letters has been investigated primarily as a spatial effect. The purpose of this study was to investigate the spatio-temporal properties of letter crowding. Specifically, we examined the systematic changes in the degradation effects in letter identification performance when adjacent letters were presented with a temporal asynchrony, as a function of letter separation and between the fovea and the periphery. We measured proportion-correct performance for identifying the middle target letter in strings of three lowercase letters at the fovea and 10° in the inferior visual field, for a range of center-to-center letter separations and a range of stimulus onset asynchronies (SOA) between the target and flanking letters (positive SOAs: target preceded flankers). As expected, the accuracy for identifying the target letters reduces with decreases in letter separation. This crowding effect shows a strong dependency on SOAs, such that crowding is maximal between 0 and ∼100 ms (depending on conditions) and diminishes for larger SOAs (positive or negative). Maximal crowding does not require the target and flanking letters to physically coexist for the entire presentation duration. Most importantly, crowding can be minimized even for closely spaced letters if there is a large temporal asynchrony between the target and flankers. The reliance of letter identification performance on SOAs and how it changes with letter separations imply that the crowding effect can be traded between space and time. Our findings are consistent with the notion that crowding should be considered as a spatio-temporal, and not simply a spatial, effect. PMID:27088895

  15. Spatio-temporal properties of letter crowding

    PubMed Central

    Chung, Susana T. L.

    2016-01-01

    Crowding between adjacent letters has been investigated primarily as a spatial effect. The purpose of this study was to investigate the spatio-temporal properties of letter crowding. Specifically, we examined the systematic changes in the degradation effects in letter identification performance when adjacent letters were presented with a temporal asynchrony, as a function of letter separation and between the fovea and the periphery. We measured proportion-correct performance for identifying the middle target letter in strings of three lowercase letters at the fovea and 10° in the inferior visual field, for a range of center-to-center letter separations and a range of stimulus onset asynchronies (SOA) between the target and flanking letters (positive SOAs: target preceded flankers). As expected, the accuracy for identifying the target letters reduces with decreases in letter separation. This crowding effect shows a strong dependency on SOAs, such that crowding is maximal between 0 and ∼100 ms (depending on conditions) and diminishes for larger SOAs (positive or negative). Maximal crowding does not require the target and flanking letters to physically coexist for the entire presentation duration. Most importantly, crowding can be minimized even for closely spaced letters if there is a large temporal asynchrony between the target and flankers. The reliance of letter identification performance on SOAs and how it changes with letter separations imply that the crowding effect can be traded between space and time. Our findings are consistent with the notion that crowding should be considered as a spatio-temporal, and not simply a spatial, effect. PMID:27088895

  16. A Flexible Spatio-Temporal Model for Air Pollution with Spatial and Spatio-Temporal Covariates.

    PubMed

    Lindström, Johan; Szpiro, Adam A; Sampson, Paul D; Oron, Assaf P; Richards, Mark; Larson, Tim V; Sheppard, Lianne

    2014-09-01

    The development of models that provide accurate spatio-temporal predictions of ambient air pollution at small spatial scales is of great importance for the assessment of potential health effects of air pollution. Here we present a spatio-temporal framework that predicts ambient air pollution by combining data from several different monitoring networks and deterministic air pollution model(s) with geographic information system (GIS) covariates. The model presented in this paper has been implemented in an R package, SpatioTemporal, available on CRAN. The model is used by the EPA funded Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) to produce estimates of ambient air pollution; MESA Air uses the estimates to investigate the relationship between chronic exposure to air pollution and cardiovascular disease. In this paper we use the model to predict long-term average concentrations of NOx in the Los Angeles area during a ten year period. Predictions are based on measurements from the EPA Air Quality System, MESA Air specific monitoring, and output from a source dispersion model for traffic related air pollution (Caline3QHCR). Accuracy in predicting long-term average concentrations is evaluated using an elaborate cross-validation setup that accounts for a sparse spatio-temporal sampling pattern in the data, and adjusts for temporal effects. The predictive ability of the model is good with cross-validated R (2) of approximately 0.7 at subject sites. Replacing four geographic covariate indicators of traffic density with the Caline3QHCR dispersion model output resulted in very similar prediction accuracy from a more parsimonious and more interpretable model. Adding traffic-related geographic covariates to the model that included Caline3QHCR did not further improve the prediction accuracy. PMID:25264424

  17. A Flexible Spatio-Temporal Model for Air Pollution with Spatial and Spatio-Temporal Covariates

    PubMed Central

    Lindström, Johan; Szpiro, Adam A; Sampson, Paul D; Oron, Assaf P; Richards, Mark; Larson, Tim V; Sheppard, Lianne

    2013-01-01

    The development of models that provide accurate spatio-temporal predictions of ambient air pollution at small spatial scales is of great importance for the assessment of potential health effects of air pollution. Here we present a spatio-temporal framework that predicts ambient air pollution by combining data from several different monitoring networks and deterministic air pollution model(s) with geographic information system (GIS) covariates. The model presented in this paper has been implemented in an R package, SpatioTemporal, available on CRAN. The model is used by the EPA funded Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) to produce estimates of ambient air pollution; MESA Air uses the estimates to investigate the relationship between chronic exposure to air pollution and cardiovascular disease. In this paper we use the model to predict long-term average concentrations of NOx in the Los Angeles area during a ten year period. Predictions are based on measurements from the EPA Air Quality System, MESA Air specific monitoring, and output from a source dispersion model for traffic related air pollution (Caline3QHCR). Accuracy in predicting long-term average concentrations is evaluated using an elaborate cross-validation setup that accounts for a sparse spatio-temporal sampling pattern in the data, and adjusts for temporal effects. The predictive ability of the model is good with cross-validated R2 of approximately 0.7 at subject sites. Replacing four geographic covariate indicators of traffic density with the Caline3QHCR dispersion model output resulted in very similar prediction accuracy from a more parsimonious and more interpretable model. Adding traffic-related geographic covariates to the model that included Caline3QHCR did not further improve the prediction accuracy. PMID:25264424

  18. Spatio-Temporal Clustering of Monitoring Network

    NASA Astrophysics Data System (ADS)

    Hussain, I.; Pilz, J.

    2009-04-01

    Pakistan has much diversity in seasonal variation of different locations. Some areas are in desserts and remain very hot and waterless, for example coastal areas are situated along the Arabian Sea and have very warm season and a little rainfall. Some areas are covered with mountains, have very low temperature and heavy rainfall; for instance Karakoram ranges. The most important variables that have an impact on the climate are temperature, precipitation, humidity, wind speed and elevation. Furthermore, it is hard to find homogeneous regions in Pakistan with respect to climate variation. Identification of homogeneous regions in Pakistan can be useful in many aspects. It can be helpful for prediction of the climate in the sub-regions and for optimizing the number of monitoring sites. In the earlier literature no one tried to identify homogeneous regions of Pakistan with respect to climate variation. There are only a few papers about spatio-temporal clustering of monitoring network. Steinhaus (1956) presented the well-known K-means clustering method. It can identify a predefined number of clusters by iteratively assigning centriods to clusters based. Castro et al. (1997) developed a genetic heuristic algorithm to solve medoids based clustering. Their method is based on genetic recombination upon random assorting recombination. The suggested method is appropriate for clustering the attributes which have genetic characteristics. Sap and Awan (2005) presented a robust weighted kernel K-means algorithm incorporating spatial constraints for clustering climate data. The proposed algorithm can effectively handle noise, outliers and auto-correlation in the spatial data, for effective and efficient data analysis by exploring patterns and structures in the data. Soltani and Modarres (2006) used hierarchical and divisive cluster analysis to categorize patterns of rainfall in Iran. They only considered rainfall at twenty-eight monitoring sites and concluded that eight clusters

  19. Geostatistical Analysis of Spatio-Temporal Forest Fire Data

    NASA Astrophysics Data System (ADS)

    Vega Orozco, Carmen D.; Kanevski, Mikhail; Tonini, Marj; Conedera, Marc

    2010-05-01

    Forest fire is one of the major phenomena causing degradation of environment, landscape, natural ecosystems, human health and economy. One of the main topic in forest fire data studies deals with the detection, analysis and modelling of spatio-temporal patterns of clustering. Spatial patterns of forest fire locations, their sizes and their sequence in time are of great interest for fire prediction and for forest fire management planning and distribution in optimal way necessary resources. Currently, fires can be analyzed and monitored by using different statistical tools, for example, Ripley's k-function, fractals, Allan factor, scan statistics, etc. Some of them are adapted to temporal or spatial data and are either local or global. In the present study the main attention is paid to the application of geostatistical tools - variography and methods for the analysis of monitoring networks (MN) clustering techniques (topological, statistical and fractal measures), in order to detect and to characterize spatio-temporal forest fire patterns. The main studies performed include: a) analysis of forest fires temporal sequences; b) spatial clustering of forest fires; c) geostatistical spatial analysis of burnt areas. Variography was carried out both for temporal and spatial data. Real case study is based on the forest-fire event data from Canton of Ticino (Switzerland) for a period of 1969 to 2008. The results from temporal analysis show the presence of clustering and seasonal periodicities. Comprehensive analysis of the variograms shows an anisotropy in the direction 30° East-North where smooth changes are detected, while on the direction 30° North-West a greater variability was identified. The research was completed with an application of different MN analysis techniques including, analysis of distributions of distances between events, Morisita Index (MI), fractal dimensions (sandbox counting and box counting methods) and functional fractal dimensions, adapted and

  20. Spatio-Temporal Structure of Hooded Gull Flocks

    PubMed Central

    Yomosa, Makoto; Mizuguchi, Tsuyoshi; Hayakawa, Yoshinori

    2013-01-01

    We analyzed the spatio-temporal structure of hooded gull flocks with a portable stereo camera system. The 3-dimensional positions of individuals were reconstructed from pairs of videos. The motions of each individual were analyzed, and both gliding and flapping motions were quantified based on the velocity time series. We analyzed the distributions of the nearest neighbor’s position in terms of coordinates based on each individual’s motion. The obtained results were consistent with the aerodynamic interaction between individuals. We characterized the leader-follower relationship between individuals by a delay time to mimic the direction of a motion. A relation between the delay time and a relative position was analyzed quantitatively, which suggested the basic properties of the formation flight that maintains order in the flock. PMID:24339960

  1. A spatio-temporal extension to the map cube operator

    NASA Astrophysics Data System (ADS)

    Alzate, Juan C.; Moreno, Francisco J.; Echeverri, Jaime

    2012-09-01

    OLAP (On Line Analytical Processing) is a set of techniques and operators to facilitate the data analysis usually stored in a data warehouse. In this paper, we extend the functionality of an OLAP operator known as Map Cube with the definition and incorporation of a function that allows the formulation of spatio-temporal queries. For example, consider a data warehouse about crimes that includes data about the places where the crimes were committed. Suppose we want to find and visualize the trajectory (a trajectory is just the path that an object follows through space as a function of time) of the crimes of a suspect beginning with his oldest crime and ending with his most recent one. In order to meet this requirement, we extend the Map Cube operator.

  2. Spatio-temporal change detection from multidimensional arrays: Detecting deforestation from MODIS time series

    NASA Astrophysics Data System (ADS)

    Lu, Meng; Pebesma, Edzer; Sanchez, Alber; Verbesselt, Jan

    2016-07-01

    Growing availability of long-term satellite imagery enables change modeling with advanced spatio-temporal statistical methods. Multidimensional arrays naturally match the structure of spatio-temporal satellite data and can provide a clean modeling process for complex spatio-temporal analysis over large datasets. Our study case illustrates the detection of breakpoints in MODIS imagery time series for land cover change in the Brazilian Amazon using the BFAST (Breaks For Additive Season and Trend) change detection framework. BFAST includes an Empirical Fluctuation Process (EFP) to alarm the change and a change point time locating process. We extend the EFP to account for the spatial autocorrelation between spatial neighbors and assess the effects of spatial correlation when applying BFAST on satellite image time series. In addition, we evaluate how sensitive EFP is to the assumption that its time series residuals are temporally uncorrelated, by modeling it as an autoregressive process. We use arrays as a unified data structure for the modeling process, R to execute the analysis, and an array database management system to scale computation. Our results point to BFAST as a robust approach against mild temporal and spatial correlation, to the use of arrays to ease the modeling process of spatio-temporal change, and towards communicable and scalable analysis.

  3. STGP: Spatio-temporal Gaussian process models for longitudinal neuroimaging data.

    PubMed

    Hyun, Jung Won; Li, Yimei; Huang, Chao; Styner, Martin; Lin, Weili; Zhu, Hongtu

    2016-07-01

    Longitudinal neuroimaging data plays an important role in mapping the neural developmental profile of major neuropsychiatric and neurodegenerative disorders and normal brain. The development of such developmental maps is critical for the prevention, diagnosis, and treatment of many brain-related diseases. The aim of this paper is to develop a spatio-temporal Gaussian process (STGP) framework to accurately delineate the developmental trajectories of brain structure and function, while achieving better prediction by explicitly incorporating the spatial and temporal features of longitudinal neuroimaging data. Our STGP integrates a functional principal component model (FPCA) and a partition parametric space-time covariance model to capture the medium-to-large and small-to-medium spatio-temporal dependence structures, respectively. We develop a three-stage efficient estimation procedure as well as a predictive method based on a kriging technique. Two key novelties of STGP are that it can efficiently use a small number of parameters to capture complex non-stationary and non-separable spatio-temporal dependence structures and that it can accurately predict spatio-temporal changes. We illustrate STGP using simulated data sets and two real data analyses including longitudinal positron emission tomography data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and longitudinal lateral ventricle surface data from a longitudinal study of early brain development. PMID:27103140

  4. Annotating spatio-temporal datasets for meaningful analysis in the Web

    NASA Astrophysics Data System (ADS)

    Stasch, Christoph; Pebesma, Edzer; Scheider, Simon

    2014-05-01

    More and more environmental datasets that vary in space and time are available in the Web. This comes along with an advantage of using the data for other purposes than originally foreseen, but also with the danger that users may apply inappropriate analysis procedures due to lack of important assumptions made during the data collection process. In order to guide towards a meaningful (statistical) analysis of spatio-temporal datasets available in the Web, we have developed a Higher-Order-Logic formalism that captures some relevant assumptions in our previous work [1]. It allows to proof on meaningful spatial prediction and aggregation in a semi-automated fashion. In this poster presentation, we will present a concept for annotating spatio-temporal datasets available in the Web with concepts defined in our formalism. Therefore, we have defined a subset of the formalism as a Web Ontology Language (OWL) pattern. It allows capturing the distinction between the different spatio-temporal variable types, i.e. point patterns, fields, lattices and trajectories, that in turn determine whether a particular dataset can be interpolated or aggregated in a meaningful way using a certain procedure. The actual annotations that link spatio-temporal datasets with the concepts in the ontology pattern are provided as Linked Data. In order to allow data producers to add the annotations to their datasets, we have implemented a Web portal that uses a triple store at the backend to store the annotations and to make them available in the Linked Data cloud. Furthermore, we have implemented functions in the statistical environment R to retrieve the RDF annotations and, based on these annotations, to support a stronger typing of spatio-temporal datatypes guiding towards a meaningful analysis in R. [1] Stasch, C., Scheider, S., Pebesma, E., Kuhn, W. (2014): "Meaningful spatial prediction and aggregation", Environmental Modelling & Software, 51, 149-165.

  5. High Spatio-Temporal Resolution Bathymetry Estimation and Morphology

    NASA Astrophysics Data System (ADS)

    Bergsma, E. W. J.; Conley, D. C.; Davidson, M. A.; O'Hare, T. J.

    2015-12-01

    In recent years, bathymetry estimates using video images have become increasingly accurate. With the cBathy code (Holman et al., 2013) fully operational, bathymetry results with 0.5 metres accuracy have been regularly obtained at Duck, USA. cBathy is based on observations of the dominant frequencies and wavelengths of surface wave motions and estimates the depth (and hence allows inference of bathymetry profiles) based on linear wave theory. Despite the good performance at Duck, large discrepancies were found related to tidal elevation and camera height (Bergsma et al., 2014) and on the camera boundaries. A tide dependent floating pixel and camera boundary solution have been proposed to overcome these issues (Bergsma et al., under review). The video-data collection is set estimate depths hourly on a grid with resolution in the order of 10x25 meters. Here, the application of the cBathy at Porthtowan in the South-West of England is presented. Hourly depth estimates are combined and analysed over a period of 1.5 years (2013-2014). In this work the focus is on the sub-tidal region, where the best cBathy results are achieved. The morphology of the sub-tidal bar is tracked with high spatio-temporal resolution on short and longer time scales. Furthermore, the impact of the storm and reset (sudden and large changes in bathymetry) of the sub-tidal area is clearly captured with the depth estimations. This application shows that the high spatio-temporal resolution of cBathy makes it a powerful tool for coastal research and coastal zone management.

  6. Spatio-temporal clustering of wildfires in Portugal

    NASA Astrophysics Data System (ADS)

    Costa, R.; Pereira, M. G.; Caramelo, L.; Vega Orozco, C.; Kanevski, M.

    2012-04-01

    Several studies have shown that wildfires in Portugal presenthigh temporal as well as high spatial variability (Pereira et al., 2005, 2011). The identification and characterization of spatio-temporal clusters contributes to a comprehensivecharacterization of the fire regime and to improve the efficiency of fire prevention and combat activities. The main goalsin this studyare: (i) to detect the spatio-temporal clusters of burned area; and, (ii) to characterize these clusters along with the role of human and environmental factors. The data were supplied by the National Forest Authority(AFN, 2011) and comprises: (a)the Portuguese Rural Fire Database, PRFD, (Pereira et al., 2011) for the 1980-2007period; and, (b) the national mapping burned areas between 1990 and 2009. In this work, in order to complement the more common cluster analysis algorithms, an alternative approach based onscan statistics and on the permutation modelwas used. This statistical methodallows the detection of local excess events and to test if such an excess can reasonably have occurred by chance.Results obtained for different simulations performed for different spatial and temporal windows are presented, compared and interpreted.The influence of several fire factors such as (climate, vegetation type, etc.) is also assessed. Pereira, M.G., Trigo, R.M., DaCamara, C.C., Pereira, J.M.C., Leite, S.M., 2005:"Synoptic patterns associated with large summer forest fires in Portugal".Agricultural and Forest Meteorology. 129, 11-25. Pereira, M. G., Malamud, B. D., Trigo, R. M., and Alves, P. I.: The history and characteristics of the 1980-2005 Portuguese rural fire database, Nat. Hazards Earth Syst. Sci., 11, 3343-3358, doi:10.5194/nhess-11-3343-2011, 2011 AFN, 2011: AutoridadeFlorestalNacional (National Forest Authority). Available at http://www.afn.min-agricultura.pt/portal.

  7. Spatio-temporal correlations in Coulomb clusters

    NASA Astrophysics Data System (ADS)

    Ghosal, Amit; Ash, Biswarup; Chakrabarti, Jaydeb

    Dynamical response of Coulomb-particles in nanoclusters are investigated at different temperatures characterizing their solid-like (Wigner molecule) and liquid-like behavior. The density correlations probe spatio-temporal relaxation, uncovering distinct behavior at multiple time scales in these systems. They show a stretched-Gaussian or stretched-exponential spatial decay at long times in circular and irregular traps. Interplay of confinement and long-range nature of interactions yields spatially correlated motion of the particles in string-like paths, leaving the system heterogeneous even at long times. While particles in a `solid' flow producing dynamic heterogeneities, their random motion in `liquid' defies central limit theorem. Distinguishing the two confinements, temperature dependent motional signatures serve as a criterion for the crossover between `solid' and `liquid'. The irregular Wigner molecule turns into a nearly homogeneous liquid over a much wider temperature window compared to the circular case. The temperature dependence of different relaxation time scales builds crucial insights. A phenomenological model, relating the unusual dynamics to the heterogeneous nature of the diffusivities in the system, captures much of the subtleties of our numerical simulations.

  8. A LANGUAGE FOR MODULAR SPATIO-TEMPORAL SIMULATION (R824766)

    EPA Science Inventory

    Creating an effective environment for collaborative spatio-temporal model development will require computational systems that provide support for the user in three key areas: (1) Support for modular, hierarchical model construction and archiving/linking of simulation modules; (2)...

  9. Parallel indexing technique for spatio-temporal data

    NASA Astrophysics Data System (ADS)

    He, Zhenwen; Kraak, Menno-Jan; Huisman, Otto; Ma, Xiaogang; Xiao, Jing

    2013-04-01

    The requirements for efficient access and management of massive multi-dimensional spatio-temporal data in geographical information system and its applications are well recognized and researched. The most popular spatio-temporal access method is the R-Tree and its variants. However, it is difficult to use them for parallel access to multi-dimensional spatio-temporal data because R-Trees, and variants thereof, are in hierarchical structures which have severe overlapping problems in high dimensional space. We extended a two-dimensional interval space representation of intervals to a multi-dimensional parallel space, and present a set of formulae to transform spatio-temporal queries into parallel interval set operations. This transformation reduces problems of multi-dimensional object relationships to simpler two-dimensional spatial intersection problems. Experimental results show that the new parallel approach presented in this paper has superior range query performance than R*-trees for handling multi-dimensional spatio-temporal data and multi-dimensional interval data. When the number of CPU cores is larger than that of the space dimensions, the insertion performance of this new approach is also superior to R*-trees. The proposed approach provides a potential parallel indexing solution for fast data retrieval of massive four-dimensional or higher dimensional spatio-temporal data.

  10. New Fast Fall Detection Method Based on Spatio-Temporal Context Tracking of Head by Using Depth Images

    PubMed Central

    Yang, Lei; Ren, Yanyun; Hu, Huosheng; Tian, Bo

    2015-01-01

    In order to deal with the problem of projection occurring in fall detection with two-dimensional (2D) grey or color images, this paper proposed a robust fall detection method based on spatio-temporal context tracking over three-dimensional (3D) depth images that are captured by the Kinect sensor. In the pre-processing procedure, the parameters of the Single-Gauss-Model (SGM) are estimated and the coefficients of the floor plane equation are extracted from the background images. Once human subject appears in the scene, the silhouette is extracted by SGM and the foreground coefficient of ellipses is used to determine the head position. The dense spatio-temporal context (STC) algorithm is then applied to track the head position and the distance from the head to floor plane is calculated in every following frame of the depth image. When the distance is lower than an adaptive threshold, the centroid height of the human will be used as the second judgment criteria to decide whether a fall incident happened. Lastly, four groups of experiments with different falling directions are performed. Experimental results show that the proposed method can detect fall incidents that occurred in different orientations, and they only need a low computation complexity. PMID:26378540

  11. Nonlinear wave interactions between short pulses of different spatio-temporal extents

    PubMed Central

    Sivan, Y.; Rozenberg, S.; Halstuch, A.; Ishaaya, A. A.

    2016-01-01

    We study the nonlinear wave interactions between short pulses of different spatio-temporal extents. Unlike the well-understood mixing of quasi-monochromatic waves, this configuration is highly non-intuitive due to the complex coupling between the spatial and temporal degrees of freedom of the interacting pulses. We illustrate the process intuitively with transitions between different branches of the dispersion curves and interpret it in terms of spectral exchange between the interacting pulses. We verify our interpretation with an example whereby a spectrally-narrow pulse “inherits” the wide spectrum of a pump pulse centered at a different wavelength, using exact numerical simulations, as well as a simplified coupled mode analysis and an asymptotic analytical solution. The latter also provides a simple and intuitive quantitative interpretation. The complex wave mixing process studied here may enable flexible spatio-temporal shaping of short pulses and is the starting point of the study of more complicated systems. PMID:27381552

  12. Combined optical solitons with parabolic law nonlinearity and spatio-temporal dispersion

    NASA Astrophysics Data System (ADS)

    Zhou, Qin; Zhu, Qiuping

    2015-03-01

    In this work, combined optical solitons are constructed in a weakly nonlocal nonlinear medium. The spatio-temporal dispersion (STD), parabolic law nonlinearity, detuning, nonlinear dispersion as well as inter-modal dispersion are taken into account. The integration tool that is applied is the complex envelope function ansatz. The influences of different parameters on dynamical behavior of combined optical solitons are discussed. The results are useful in describing the propagation of combined optical solitons with STD and parabolic law nonlinearity.

  13. STSE: Spatio-Temporal Simulation Environment Dedicated to Biology

    PubMed Central

    2011-01-01

    Background Recently, the availability of high-resolution microscopy together with the advancements in the development of biomarkers as reporters of biomolecular interactions increased the importance of imaging methods in molecular cell biology. These techniques enable the investigation of cellular characteristics like volume, size and geometry as well as volume and geometry of intracellular compartments, and the amount of existing proteins in a spatially resolved manner. Such detailed investigations opened up many new areas of research in the study of spatial, complex and dynamic cellular systems. One of the crucial challenges for the study of such systems is the design of a well stuctured and optimized workflow to provide a systematic and efficient hypothesis verification. Computer Science can efficiently address this task by providing software that facilitates handling, analysis, and evaluation of biological data to the benefit of experimenters and modelers. Results The Spatio-Temporal Simulation Environment (STSE) is a set of open-source tools provided to conduct spatio-temporal simulations in discrete structures based on microscopy images. The framework contains modules to digitize, represent, analyze, and mathematically model spatial distributions of biochemical species. Graphical user interface (GUI) tools provided with the software enable meshing of the simulation space based on the Voronoi concept. In addition, it supports to automatically acquire spatial information to the mesh from the images based on pixel luminosity (e.g. corresponding to molecular levels from microscopy images). STSE is freely available either as a stand-alone version or included in the linux live distribution Systems Biology Operational Software (SB.OS) and can be downloaded from http://www.stse-software.org/. The Python source code as well as a comprehensive user manual and video tutorials are also offered to the research community. We discuss main concepts of the STSE design and

  14. How spatio-temporal habitat connectivity affects amphibian genetic structure

    USGS Publications Warehouse

    Watts, Alexander G.; Schlichting, P; Billerman, S; Jesmer, B; Micheletti, S; Fortin, M.-J.; Funk, W.C.; Hapeman, P; Muths, Erin L.; Murphy, M.A.

    2015-01-01

    Heterogeneous landscapes and fluctuating environmental conditions can affect species dispersal, population genetics, and genetic structure, yet understanding how biotic and abiotic factors affect population dynamics in a fluctuating environment is critical for species management. We evaluated how spatio-temporal habitat connectivity influences dispersal and genetic structure in a population of boreal chorus frogs (Pseudacris maculata) using a landscape genetics approach. We developed gravity models to assess the contribution of various factors to the observed genetic distance as a measure of functional connectivity. We selected (a) wetland (within-site) and (b) landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics using a unique methodology. Specifically, we developed three networks that quantify wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal. We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from 322 individual frogs. We found that genetic connectivity was related to topographic complexity, within- and between-wetland differences in moisture, and wetland functional connectivity as contributed by stepping-stone wetlands. Our results highlight the role that dynamic environmental factors have on dispersal-limited species and illustrate how complex asynchronous interactions contribute to the structure of spatially-explicit metapopulations.

  15. How spatio-temporal habitat connectivity affects amphibian genetic structure

    PubMed Central

    Watts, Alexander G.; Schlichting, Peter E.; Billerman, Shawn M.; Jesmer, Brett R.; Micheletti, Steven; Fortin, Marie-Josée; Funk, W. Chris; Hapeman, Paul; Muths, Erin; Murphy, Melanie A.

    2015-01-01

    Heterogeneous landscapes and fluctuating environmental conditions can affect species dispersal, population genetics, and genetic structure, yet understanding how biotic and abiotic factors affect population dynamics in a fluctuating environment is critical for species management. We evaluated how spatio-temporal habitat connectivity influences dispersal and genetic structure in a population of boreal chorus frogs (Pseudacris maculata) using a landscape genetics approach. We developed gravity models to assess the contribution of various factors to the observed genetic distance as a measure of functional connectivity. We selected (a) wetland (within-site) and (b) landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics using a unique methodology. Specifically, we developed three networks that quantify wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal. We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from 322 individual frogs. We found that genetic connectivity was related to topographic complexity, within- and between-wetland differences in moisture, and wetland functional connectivity as contributed by stepping-stone wetlands. Our results highlight the role that dynamic environmental factors have on dispersal-limited species and illustrate how complex asynchronous interactions contribute to the structure of spatially-explicit metapopulations. PMID:26442094

  16. Diverse spatio-temporal dynamical patterns of p53 and cell fate decisions

    NASA Astrophysics Data System (ADS)

    Clairambault, Jean; Eliaš, Ján

    2016-06-01

    The protein p53 as a tumour suppressor protein accumulates in cells in response to DNA damage and transactivates a large variety of genes involved in apoptosis, cell cycle regulation and numerous other processes. Recent biological observations suggest that specific spatio-temporal dynamical patterns of p53 may be associated with specific cellular response, and thus the spatio-temporal heterogeneity of the p53 dynamics contributes to the overall complexity of p53 signalling. Reaction-diffusion equations taking into account spatial representation of the cell and motion of the species inside the cell can be used to model p53 protein network and could be thus of some help to biologists and pharmacologists in anticancer treatment.

  17. Spatio-temporal registration in multiplane MRI acquisitions for 3D colon motiliy analysis

    NASA Astrophysics Data System (ADS)

    Kutter, Oliver; Kirchhoff, Sonja; Berkovich, Marina; Reiser, Maximilian; Navab, Nassir

    2008-03-01

    In this paper we present a novel method for analyzing and visualizing dynamic peristaltic motion of the colon in 3D from two series of differently oriented 2D MRI images. To this end, we have defined an MRI examination protocol, and introduced methods for spatio-temporal alignment of the two MRI image series into a common reference. This represents the main contribution of this paper, which enables the 3D analysis of peristaltic motion. The objective is to provide a detailed insight into this complex motion, aiding in the diagnosis and characterization of colon motion disorders. We have applied the proposed spatio-temporal method on Cine MRI data sets of healthy volunteers. The results have been inspected and validated by an expert radiologist. Segmentation and cylindrical approximation of the colon results in a 4D visualization of the peristaltic motion.

  18. Spatio-temporal correlation-based fast coding unit depth decision for high efficiency video coding

    NASA Astrophysics Data System (ADS)

    Zhou, Chengtao; Zhou, Fan; Chen, Yaowu

    2013-10-01

    The exhaustive block partition search process in high efficiency video coding (HEVC) imposes a very high computational complexity on test module of HEVC encoder (HM). A fast coding unit (CU) depth algorithm using the spatio-temporal correlation of the depth information to fasten the search process is proposed. The depth of the coding tree unit (CTU) is predicted first by using the depth information of the spatio-temporal neighbor CTUs. Then, the depth information of the adjacent CU is incorporated to skip some specific depths when encoding the sub-CTU. As compared with the original HM encoder, experimental results show that the proposed algorithm can save more than 20% encoding time on average for intra-only, low-delay, low-delay P slices, and random access cases with almost the same rate-distortion performance.

  19. Out of equilibrium spatio-temporal correlations in the Bose-Hubbard model

    NASA Astrophysics Data System (ADS)

    Kennett, Malcolm; Fitzpatrick, Matthew

    2016-05-01

    The Bose-Hubbard model (BHM) provides a model system to study quench dynamics across a quantum phase transition. Theoretically, it has proven challenging to study spatio-temporal correlations in the BHM in dimensions higher than one. We use the Schwinger-Keldysh technique and a strong-coupling expansion to develop a two-particle irreducible formalism to allow us to study spatio-temporal correlations in both the superfluid (SF) and Mott-insulating (MI) regimes during a quantum quench for dimensions higher than one. We obtain equations of motion for both the superfluid order parameter and two-point correlation functions and present numerical results for the evolution of two-time correlation functions. We relate our results to experiments on cold atoms in optical lattices. Supported by NSERC.

  20. Spatio-temporal action localization for human action recognition in large dataset

    NASA Astrophysics Data System (ADS)

    Megrhi, Sameh; Jmal, Marwa; Beghdadi, Azeddine; Mseddi, Wided

    2015-03-01

    Human action recognition has drawn much attention in the field of video analysis. In this paper, we develop a human action detection and recognition process based on the tracking of Interest Points (IP) trajectory. A pre-processing step that performs spatio-temporal action detection is proposed. This step uses optical flow along with dense speed-up-robust-features (SURF) in order to detect and track moving humans in moving fields of view. The video description step is based on a fusion process that combines displacement and spatio-temporal descriptors. Experiments are carried out on the big data-set UCF-101. Experimental results reveal that the proposed techniques achieve better performances compared to many existing state-of-the-art action recognition approaches.

  1. Sensing Solutions for Collecting Spatio-Temporal Data for Wildlife Monitoring Applications: A Review

    PubMed Central

    Baratchi, Mitra; Meratnia, Nirvana; Havinga, Paul J. M.; Skidmore, Andrew K.; Toxopeus, Bert A. G.

    2013-01-01

    Movement ecology is a field which places movement as a basis for understanding animal behavior. To realize this concept, ecologists rely on data collection technologies providing spatio-temporal data in order to analyze movement. Recently, wireless sensor networks have offered new opportunities for data collection from remote places through multi-hop communication and collaborative capability of the nodes. Several technologies can be used in such networks for sensing purposes and for collecting spatio-temporal data from animals. In this paper, we investigate and review technological solutions which can be used for collecting data for wildlife monitoring. Our aim is to provide an overview of different sensing technologies used for wildlife monitoring and to review their capabilities in terms of data they provide for modeling movement behavior of animals. PMID:23666132

  2. Spatio-Temporal Dynamics in Collective Frog Choruses Examined by Mathematical Modeling and Field Observations

    NASA Astrophysics Data System (ADS)

    Aihara, Ikkyu; Mizumoto, Takeshi; Otsuka, Takuma; Awano, Hiromitsu; Nagira, Kohei; Okuno, Hiroshi G.; Aihara, Kazuyuki

    2014-01-01

    This paper reports theoretical and experimental studies on spatio-temporal dynamics in the choruses of male Japanese tree frogs. First, we theoretically model their calling times and positions as a system of coupled mobile oscillators. Numerical simulation of the model as well as calculation of the order parameters show that the spatio-temporal dynamics exhibits bistability between two-cluster antisynchronization and wavy antisynchronization, by assuming that the frogs are attracted to the edge of a simple circular breeding site. Second, we change the shape of the breeding site from the circle to rectangles including a straight line, and evaluate the stability of two-cluster and wavy antisynchronization. Numerical simulation shows that two-cluster antisynchronization is more frequently observed than wavy antisynchronization. Finally, we recorded frog choruses at an actual paddy field using our sound-imaging method. Analysis of the video demonstrated a consistent result with the aforementioned simulation: namely, two-cluster antisynchronization was more frequently realized.

  3. A spatio-temporal model of housing prices based on individual sales transactions over time

    NASA Astrophysics Data System (ADS)

    Smith, Tony E.; Wu, Peggy

    2009-12-01

    A spatio-temporal model of housing price trends is developed that focuses on individual housing sales over time. The model allows for both the spatio-temporal lag effects of previous sales in the vicinity of each housing sale, and for general autocorrelation effects over time. A key feature of this model is the recognition of the unequal spacing between individual housing sales over time. Hence the residuals are modeled as a first-order autoregressive process with unequally spaced events. The maximum-likelihood estimation of this model is developed in detail, and tested in terms of simulations based on selected data. In addition, the model is applied to a small data set in the Philadelphia area.

  4. Impaired Spatio-Temporal Predictive Motor Timing Associated with Spinocerebellar Ataxia Type 6.

    PubMed

    Broersen, Robin; Onuki, Yoshiyuki; Abdelgabar, Abdel R; Owens, Cullen B; Picard, Samuel; Willems, Jessica; Boele, Henk-Jan; Gazzola, Valeria; Van der Werf, Ysbrand D; De Zeeuw, Chris I

    2016-01-01

    Many daily life activities demand precise integration of spatial and temporal information of sensory inputs followed by appropriate motor actions. This type of integration is carried out in part by the cerebellum, which has been postulated to play a central role in learning and timing of movements. Cerebellar damage due to atrophy or lesions may compromise forward-model processing, in which both spatial and temporal cues are used to achieve prediction for future motor states. In the present study we sought to further investigate the cerebellar contribution to predictive and reactive motor timing, as well as to learning of sequential order and temporal intervals in these tasks. We tested patients with spinocerebellar ataxia type 6 (SCA6) and healthy controls for two related motor tasks; one requiring spatio-temporal prediction of dynamic visual stimuli and another one requiring reactive timing only. We found that healthy controls established spatio-temporal prediction in their responses with high temporal precision, which was absent in the cerebellar patients. SCA6 patients showed lower predictive motor timing, coinciding with a reduced number of correct responses during the 'anticipatory' period on the task. Moreover, on the task utilizing reactive motor timing functions, control participants showed both sequence order and temporal interval learning, whereas patients only showed sequence order learning. These results suggest that SCA6 affects predictive motor timing and temporal interval learning. Our results support and highlight cerebellar contribution to timing and argue for cerebellar engagement during spatio-temporal prediction of upcoming events. PMID:27571363

  5. Impaired Spatio-Temporal Predictive Motor Timing Associated with Spinocerebellar Ataxia Type 6

    PubMed Central

    Onuki, Yoshiyuki; Abdelgabar, Abdel R.; Owens, Cullen B.; Picard, Samuel; Willems, Jessica; Boele, Henk-Jan; Gazzola, Valeria; Van der Werf, Ysbrand D.; De Zeeuw, Chris I.

    2016-01-01

    Many daily life activities demand precise integration of spatial and temporal information of sensory inputs followed by appropriate motor actions. This type of integration is carried out in part by the cerebellum, which has been postulated to play a central role in learning and timing of movements. Cerebellar damage due to atrophy or lesions may compromise forward-model processing, in which both spatial and temporal cues are used to achieve prediction for future motor states. In the present study we sought to further investigate the cerebellar contribution to predictive and reactive motor timing, as well as to learning of sequential order and temporal intervals in these tasks. We tested patients with spinocerebellar ataxia type 6 (SCA6) and healthy controls for two related motor tasks; one requiring spatio-temporal prediction of dynamic visual stimuli and another one requiring reactive timing only. We found that healthy controls established spatio-temporal prediction in their responses with high temporal precision, which was absent in the cerebellar patients. SCA6 patients showed lower predictive motor timing, coinciding with a reduced number of correct responses during the ‘anticipatory’ period on the task. Moreover, on the task utilizing reactive motor timing functions, control participants showed both sequence order and temporal interval learning, whereas patients only showed sequence order learning. These results suggest that SCA6 affects predictive motor timing and temporal interval learning. Our results support and highlight cerebellar contribution to timing and argue for cerebellar engagement during spatio-temporal prediction of upcoming events. PMID:27571363

  6. Real-Time Spatio-Temporal Twice Whitening for MIMO Energy Detector

    SciTech Connect

    Humble, Travis S; Mitra, Pramita; Barhen, Jacob; Schleck, Bryan

    2010-01-01

    While many techniques exist for local spectrum sensing of a primary user, each represents a computationally demanding task to secondary user receivers. In software-defined radio, computational complexity lengthens the time for a cognitive radio to recognize changes in the transmission environment. This complexity is even more significant for spatially multiplexed receivers, e.g., in SIMO and MIMO, where the spatio-temporal data sets grow in size with the number of antennae. Limits on power and space for the processor hardware further constrain SDR performance. In this report, we discuss improvements in spatio-temporal twice whitening (STTW) for real-time local spectrum sensing by demonstrating a form of STTW well suited for MIMO environments. We implement STTW on the Coherent Logix hx3100 processor, a multicore processor intended for low-power, high-throughput software-defined signal processing. These results demonstrate how coupling the novel capabilities of emerging multicore processors with algorithmic advances can enable real-time, software-defined processing of large spatio-temporal data sets.

  7. Evaluating the Spatio-Temporal Factors that Structure Network Parameters of Plant-Herbivore Interactions

    PubMed Central

    López-Carretero, Antonio; Díaz-Castelazo, Cecilia; Boege, Karina; Rico-Gray, Víctor

    2014-01-01

    Despite the dynamic nature of ecological interactions, most studies on species networks offer static representations of their structure, constraining our understanding of the ecological mechanisms involved in their spatio-temporal stability. This is the first study to evaluate plant-herbivore interaction networks on a small spatio-temporal scale. Specifically, we simultaneously assessed the effect of host plant availability, habitat complexity and seasonality on the structure of plant-herbivore networks in a coastal tropical ecosystem. Our results revealed that changes in the host plant community resulting from seasonality and habitat structure are reflected not only in the herbivore community, but also in the emergent properties (network parameters) of the plant-herbivore interaction network such as connectance, selectiveness and modularity. Habitat conditions and periods that are most stressful favored the presence of less selective and susceptible herbivore species, resulting in increased connectance within networks. In contrast, the high degree of selectivennes (i.e. interaction specialization) and modularity of the networks under less stressful conditions was promoted by the diversification in resource use by herbivores. By analyzing networks at a small spatio-temporal scale we identified the ecological factors structuring this network such as habitat complexity and seasonality. Our research offers new evidence on the role of abiotic and biotic factors in the variation of the properties of species interaction networks. PMID:25340790

  8. Spatio-temporally smoothed coherence factor for ultrasound imaging.

    PubMed

    Xu, Mengling; Yang, Xin; Ding, Mingyue; Yuchi, Ming

    2014-01-01

    Coherence-factor-like beamforming methods, such as the coherence factor (CF), the phase coherence factor (PCF), or the sign coherence factor (SCF), have been applied to suppress side and/or grating lobes and clutter in ultrasound imaging. These adaptive weighting factors can be implemented effectively with low computational complexity to improve image contrast properties. However, because of low SNR, the resulting images may suffer from deficiencies, including reduced overall image brightness, increased speckle variance, black-region artifacts surrounding hyperechoic objects, and underestimated magnitudes of point targets. To overcome these artifacts, a new spatio-temporal smoothing procedure is introduced to the CF method. It results in a smoothed coherence factor which measures the signal coherence among the beamsums of the divided subarrays over the duration of a transmit pulse. In addition, the procedure is extended to the SCF using the sign bits of the received signals. Simulated and real experimental data sets demonstrate that the proposed methods can improve the robustness of the CF and SCF with reduced speckle variance and significant removal of black-region artifacts, while preserving the ability to suppress clutter. Consequently, image contrast can be enhanced, especially for anechoic cysts. PMID:24402905

  9. Research of spatio-temporal analysis of agricultural pest

    NASA Astrophysics Data System (ADS)

    Wang, Changwei; Li, Deren; Hu, Yueming; Wu, Xiaofang; Qi, Yu

    2009-10-01

    The increase of agricultural pest disasters in recent years has become one of major problems in agriculture harvest; how to predict and control the disasters of agricultural pest has thus attracted great research interest. Although a series of works have been done and some achievements have been attained, the knowledge in this area remains limited. The migration of agricultural pest is not only related to the time variation, but also the space; consequently, the population of agricultural pest has complex spatio-temporal characteristics. The space factor and the temporal factor must be considered at the same time in the research of dynamics changes of the pest population. Using plant hoppers as an object of study, this study employed the biological analogy deviation model to study the distribution of pest population in different periods of time in Guangdong Province. It is demonstrated that the population distribution of plant hoppers is not only related to the space location, but also has a certain direction. The result reported here offers help to the monitor, prevention and control of plant hoppers in Guangdong Provinces.

  10. Spatio-temporal patterns in inclined layer convection

    NASA Astrophysics Data System (ADS)

    Subramanian, Priya; Brausch, Oliver; Daniels, Karen E.; Bodenschatz, Eberhard; Schneider, Tobias M.; Pesch, Werner

    2016-05-01

    This paper reports on a theoretical analysis of the rich variety of spatio-temporal patterns observed recently in inclined layer convection at medium Prandtl number when varying the inclination angle $\\gamma$ and the Rayleigh number $R$. The present numerical investigation of the inclined layer convection system is based on the standard Oberbeck-Boussinesq equations. The patterns are shown to originate from a complicated competition of buoyancy-driven and shear-flow driven pattern forming mechanisms. The former are expressed as \\rm{longitudinal} convection rolls with their axes oriented parallel to the incline, the latter as perpendicular \\rm{transverse} rolls. Along with conventional methods to study roll patterns and their stability, we employ direct numerical simulations in large spatial domains, comparable with the experimental ones. As a result, we determine the phase diagram of the characteristic complex 3D convection patterns above onset of convection in the $\\gamma-R$ plane, and find that it compares very well with the experiments. In particular we demonstrate that interactions of specific Fourier modes, characterized by a resonant interaction of their wavevectors in the layer plane, are key to understanding the pattern morphologies.

  11. Reaction diffusion equation with spatio-temporal delay

    NASA Astrophysics Data System (ADS)

    Zhao, Zhihong; Rong, Erhua

    2014-07-01

    We investigate reaction-diffusion equation with spatio-temporal delays, the global existence, uniqueness and asymptotic behavior of solutions for which in relation to constant steady-state solution, included in the region of attraction of a stable steady solution. It is shown that if the delay reaction function satisfies some conditions and the system possesses a pair of upper and lower solutions then there exists a unique global solution. In terms of the maximal and minimal constant solutions of the corresponding steady-state problem, we get the asymptotic stability of reaction-diffusion equation with spatio-temporal delay. Applying this theory to Lotka-Volterra model with spatio-temporal delay, we get the global solution asymptotically tend to the steady-state problem's steady-state solution.

  12. Spatio-Temporal Matching for Human Pose Estimation in Video.

    PubMed

    Zhou, Feng; Torre, Fernando De la

    2016-08-01

    Detection and tracking humans in videos have been long-standing problems in computer vision. Most successful approaches (e.g., deformable parts models) heavily rely on discriminative models to build appearance detectors for body joints and generative models to constrain possible body configurations (e.g., trees). While these 2D models have been successfully applied to images (and with less success to videos), a major challenge is to generalize these models to cope with camera views. In order to achieve view-invariance, these 2D models typically require a large amount of training data across views that is difficult to gather and time-consuming to label. Unlike existing 2D models, this paper formulates the problem of human detection in videos as spatio-temporal matching (STM) between a 3D motion capture model and trajectories in videos. Our algorithm estimates the camera view and selects a subset of tracked trajectories that matches the motion of the 3D model. The STM is efficiently solved with linear programming, and it is robust to tracking mismatches, occlusions and outliers. To the best of our knowledge this is the first paper that solves the correspondence between video and 3D motion capture data for human pose detection. Experiments on the CMU motion capture, Human3.6M, Berkeley MHAD and CMU MAD databases illustrate the benefits of our method over state-of-the-art approaches. PMID:26863647

  13. Effects on orientation perception of manipulating the spatio-temporal prior probability of stimuli.

    PubMed

    Guo, Kun; Nevado, Angel; Robertson, Robert G; Pulgarin, Maribel; Thiele, Alexander; Young, Malcolm P

    2004-01-01

    Spatial and temporal regularities commonly exist in natural visual scenes. The knowledge of the probability structure of these regularities is likely to be informative for an efficient visual system. Here we explored how manipulating the spatio-temporal prior probability of stimuli affects human orientation perception. Stimulus sequences comprised four collinear bars (predictors) which appeared successively towards the foveal region, followed by a target bar with the same or different orientation. Subjects' orientation perception of the foveal target was biased towards the orientation of the predictors when presented in a highly ordered and predictable sequence. The discrimination thresholds were significantly elevated in proportion to increasing prior probabilities of the predictors. Breaking this sequence, by randomising presentation order or presentation duration, decreased the thresholds. These psychophysical observations are consistent with a Bayesian model, suggesting that a predictable spatio-temporal stimulus structure and an increased probability of collinear trials are associated with the increasing prior expectation of collinear events. Our results suggest that statistical spatio-temporal stimulus regularities are effectively integrated by human visual cortex over a range of spatial and temporal positions, thereby systematically affecting perception. PMID:15246751

  14. Time reversal and the spatio-temporal matched filter

    SciTech Connect

    Lehman, S K; Poggio, A J; Kallman, J S; Meyer, A W; Candy, J V

    2004-03-08

    It is known that focusing of an acoustic field by a time-reversal mirror (TRM) is equivalent to a spatio-temporal matched filter under conditions where the Green's function of the field satisfies reciprocity and is time invariant, i.e. the Green's function is independent of the choice of time origin. In this letter, it is shown that both reciprocity and time invariance can be replaced by a more general constraint on the Green's function that allows a TRM to implement the spatio-temporal matched filter even when conditions are time varying.

  15. Spatio-temporal analysis of brain electrical activity in epilepsy based on cellular nonlinear networks

    NASA Astrophysics Data System (ADS)

    Gollas, Frank; Tetzlaff, Ronald

    2009-05-01

    Epilepsy is the most common chronic disorder of the nervous system. Generally, epileptic seizures appear without foregoing sign or warning. The problem of detecting a possible pre-seizure state in epilepsy from EEG signals has been addressed by many authors over the past decades. Different approaches of time series analysis of brain electrical activity already are providing valuable insights into the underlying complex dynamics. But the main goal the identification of an impending epileptic seizure with a sufficient specificity and reliability, has not been achieved up to now. An algorithm for a reliable, automated prediction of epileptic seizures would enable the realization of implantable seizure warning devices, which could provide valuable information to the patient and time/event specific drug delivery or possibly a direct electrical nerve stimulation. Cellular Nonlinear Networks (CNN) are promising candidates for future seizure warning devices. CNN are characterized by local couplings of comparatively simple dynamical systems. With this property these networks are well suited to be realized as highly parallel, analog computer chips. Today available CNN hardware realizations exhibit a processing speed in the range of TeraOps combined with low power consumption. In this contribution new algorithms based on the spatio-temporal dynamics of CNN are considered in order to analyze intracranial EEG signals and thus taking into account mutual dependencies between neighboring regions of the brain. In an identification procedure Reaction-Diffusion CNN (RD-CNN) are determined for short segments of brain electrical activity, by means of a supervised parameter optimization. RD-CNN are deduced from Reaction-Diffusion Systems, which usually are applied to investigate complex phenomena like nonlinear wave propagation or pattern formation. The Local Activity Theory provides a necessary condition for emergent behavior in RD-CNN. In comparison linear spatio-temporal

  16. Effects of climate change adaptation scenarios on perceived spatio-temporal characteristics of drought events

    NASA Astrophysics Data System (ADS)

    Vidal, J.-P.; Martin, E.; Kitova, N.; Najac, J.; Soubeyroux, J.-M.

    2012-04-01

    " adaptation) or over a 30-year period centred around the date considered ("prospective" adaptation). These adaptation scenarios are translated into local-scale transient drought thresholds, as opposed to a non-adaptation scenario where the drought threshold remains constant. The perceived spatio-temporal characteristics derived from the theoretical adaptation scenarios show much reduced changes, but they call for more realistic scenarios at both the catchment and national scale in order to accurately assess the combined effect of local-scale adaptation and global-scale mitigation. This study thus proposes a proof of concept for using standardized drought indices for (1) assessing projections of spatio-temporal drought characteristics and (2) building theoretical adaptation scenarios and associated perceived changes in hydrological impact studies (Vidal et al., submitted). Vidal J.-P., Martin E., Franchistéguy L., Habets F., Soubeyroux J.-M., Blanchard M. & Baillon M. (2010) Multilevel and multiscale drought reanalysis over France with the Safran-Isba-Modcou hydrometeorological suite. Hydrology and Earth System Sciences, 14, 459-478.doi: 10.5194/hess-14-459-2010 Vidal J.-P., Martin E., Kitova N., Najac J. & Soubeyroux, J. M. (submitted) Evolution of spatio-temporal drought characteristics: validation, projections and effect of adaptation scenarios. Submitted to Hydrology and earth System Sciences

  17. Testing the accuracy ratio of the Spatio-Temporal Epidemiological Modeler (STEM) through Ebola haemorrhagic fever outbreaks.

    PubMed

    Baldassi, F; D'Amico, F; Carestia, M; Cenciarelli, O; Mancinelli, S; Gilardi, F; Malizia, A; DI Giovanni, D; Soave, P M; Bellecci, C; Gaudio, P; Palombi, L

    2016-05-01

    Mathematical modelling is an important tool for understanding the dynamics of the spread of infectious diseases, which could be the result of a natural outbreak or of the intentional release of pathogenic biological agents. Decision makers and policymakers responsible for strategies to contain disease, prevent epidemics and fight possible bioterrorism attacks, need accurate computational tools, based on mathematical modelling, for preventing or even managing these complex situations. In this article, we tested the validity, and demonstrate the reliability, of an open-source software, the Spatio-Temporal Epidemiological Modeler (STEM), designed to help scientists and public health officials to evaluate and create models of emerging infectious diseases, analysing three real cases of Ebola haemorrhagic fever (EHF) outbreaks: Uganda (2000), Gabon (2001) and Guinea (2014). We discuss the cases analysed through the simulation results obtained with STEM in order to demonstrate the capability of this software in helping decision makers plan interventions in case of biological emergencies. PMID:27029910

  18. Robust visual tracking with dual spatio-temporal context trackers

    NASA Astrophysics Data System (ADS)

    Sun, Shiyan; Zhang, Hong; Yuan, Ding

    2015-12-01

    Visual tracking is a challenging problem in computer vision. Recent years, significant numbers of trackers have been proposed. Among these trackers, tracking with dense spatio-temporal context has been proved to be an efficient and accurate method. Other than trackers with online trained classifier that struggle to meet the requirement of real-time tracking task, a tracker with spatio-temporal context can run at hundreds of frames per second with Fast Fourier Transform (FFT). Nevertheless, the performance of the tracker with Spatio-temporal context relies heavily on the learning rate of the context, which restricts the robustness of the tracker. In this paper, we proposed a tracking method with dual spatio-temporal context trackers that hold different learning rate during tracking. The tracker with high learning rate could track the target smoothly when the appearance of target changes, while the tracker with low learning rate could percepts the occlusion occurring and continues to track when the target starts to emerge again. To find the target among the candidates from these two trackers, we adopt Normalized Correlation Coefficient (NCC) to evaluate the confidence of each sample. Experimental results show that the proposed algorithm performs robustly against several state-of-the-art tracking methods.

  19. Fast Spatio-Temporal Data Mining from Large Geophysical Datasets

    NASA Technical Reports Server (NTRS)

    Stolorz, P.; Mesrobian, E.; Muntz, R.; Santos, J. R.; Shek, E.; Yi, J.; Mechoso, C.; Farrara, J.

    1995-01-01

    Use of the UCLA CONQUEST (CONtent-based Querying in Space and Time) is reviewed for performance of automatic cyclone extraction and detection of spatio-temporal blocking conditions on MPP. CONQUEST is a data analysis environment for knowledge and data mining to aid in high-resolution modeling of climate modeling.

  20. Visual Experience Modulates Spatio-Temporal Dynamics of Circuit Activation

    PubMed Central

    Wang, Lang; Fontanini, Alfredo; Maffei, Arianna

    2011-01-01

    Persistent reduction in sensory drive in early development results in multiple plastic changes of different cortical synapses. How these experience-dependent modifications affect the spatio-temporal dynamics of signal propagation in neocortical circuits is poorly understood. Here we demonstrate that brief visual deprivation significantly affects the propagation of electrical signals in the primary visual cortex. The spatio-temporal spread of circuit activation upon direct stimulation of its input layer (Layer 4) is reduced, as is the activation of L2/3 – the main recipient of the output from L4. Our data suggest that the decrease in spatio-temporal activation of L2/3 depends on reduced L4 output, and is not intrinsically generated within L2/3. The data shown here suggest that changes in the synaptic components of the visual cortical circuit result not only in alteration of local integration of excitatory and inhibitory inputs, but also in a significant decrease in overall circuit activation. Furthermore, our data indicate a differential effect of visual deprivation on L4 and L2/3, suggesting that while feedforward activation of L2/3 is reduced, its activation by long range, within layer inputs is unaltered. Thus, brief visual deprivation induces experience-dependent circuit re-organization by modulating not only circuit excitability, but also the spatio-temporal patterns of cortical activation within and between layers. PMID:21743804

  1. Spatio-temporal analysis of environmental radiation in Korea

    SciTech Connect

    Kim, J.Y.; Lee, B.C.; Shin, H.K.

    2007-07-01

    Geostatistical visualization of environmental radiation is a very powerful approach to explore and understand spatio-temporal variabilities of environmental radiation data. Spatial patterns of environmental radiation can be described quantitatively in terms of variogram and kriging, which are based on the idea that statistical variation of data are functions of distance. (authors)

  2. Spatio-temporal evaluation matrices for geospatial data

    NASA Astrophysics Data System (ADS)

    Triglav, Joc; Petrovič, Dušan; Stopar, Bojan

    2011-02-01

    The global geospatial community is investing substantial effort in providing tools for geospatial data-quality information analysis and systematizing the criteria for geospatial data quality. The importance of these activities is increasing, especially in the last decade, which has witnessed an enormous expansion of geospatial data use in general and especially among mass users. Although geospatial data producers are striving to define and present data-quality standards to users and users increasingly need to assess the fitness for use of the data, the success of these activities is still far from what is expected or required. As a consequence, neglect or misunderstanding of data quality among users results in misuse or risks. This paper presents an aid in spatio-temporal quality evaluation through the use of spatio-temporal evaluation matrices (STEM) and the index of spatio-temporal anticipations (INSTANT) matrices. With the help of these two simple tools, geospatial data producers can systematically categorize and visualize the granularity of their spatio-temporal data, and users can present their requirements in the same way using business intelligence principles and a Web 2.0 approach. The basic principles and some examples are presented in the paper, and potential further applied research activities are briefly described.

  3. Finding Spatio-Temporal Patterns in Large Sensor Datasets

    ERIC Educational Resources Information Center

    McGuire, Michael Patrick

    2010-01-01

    Spatial or temporal data mining tasks are performed in the context of the relevant space, defined by a spatial neighborhood, and the relevant time period, defined by a specific time interval. Furthermore, when mining large spatio-temporal datasets, interesting patterns typically emerge where the dataset is most dynamic. This dissertation is…

  4. Cubic map algebra functions for spatio-temporal analysis

    USGS Publications Warehouse

    Mennis, J.; Viger, R.; Tomlin, C.D.

    2005-01-01

    We propose an extension of map algebra to three dimensions for spatio-temporal data handling. This approach yields a new class of map algebra functions that we call "cube functions." Whereas conventional map algebra functions operate on data layers representing two-dimensional space, cube functions operate on data cubes representing two-dimensional space over a third-dimensional period of time. We describe the prototype implementation of a spatio-temporal data structure and selected cube function versions of conventional local, focal, and zonal map algebra functions. The utility of cube functions is demonstrated through a case study analyzing the spatio-temporal variability of remotely sensed, southeastern U.S. vegetation character over various land covers and during different El Nin??o/Southern Oscillation (ENSO) phases. Like conventional map algebra, the application of cube functions may demand significant data preprocessing when integrating diverse data sets, and are subject to limitations related to data storage and algorithm performance. Solutions to these issues include extending data compression and computing strategies for calculations on very large data volumes to spatio-temporal data handling.

  5. Kernel Averaged Predictors for Spatio-Temporal Regression Models.

    PubMed

    Heaton, Matthew J; Gelfand, Alan E

    2012-12-01

    In applications where covariates and responses are observed across space and time, a common goal is to quantify the effect of a change in the covariates on the response while adequately accounting for the spatio-temporal structure of the observations. The most common approach for building such a model is to confine the relationship between a covariate and response variable to a single spatio-temporal location. However, oftentimes the relationship between the response and predictors may extend across space and time. In other words, the response may be affected by levels of predictors in spatio-temporal proximity to the response location. Here, a flexible modeling framework is proposed to capture such spatial and temporal lagged effects between a predictor and a response. Specifically, kernel functions are used to weight a spatio-temporal covariate surface in a regression model for the response. The kernels are assumed to be parametric and non-stationary with the data informing the parameter values of the kernel. The methodology is illustrated on simulated data as well as a physical data set of ozone concentrations to be explained by temperature. PMID:24010051

  6. Spatio-Temporal Patterns of Surface Irradiance in the Himalaya

    NASA Astrophysics Data System (ADS)

    Dobreva, I. D.; Bishop, M. P.

    2014-12-01

    Climate-glacier dynamics in the Himalaya are complex. Research indicates extreme local variability in glacier fluctuations and the presence of regional trends. The glaciers in the Karakoram Himalaya depart from world trends of glacier recession, as many are advancing or surging. Nevertheless, glacier sensitivity to climate change has yet to be quantitatively assessed given numerous controlling factors. We attempt to address part of the problem by evaluating the role of topography in explaining variations in surface irradiance. Specifically, we developed a spectral-based topographic solar radiation model that accounts for multi-scale topographic effects. We evaluate surface irradiance simulations over a multitude of glaciers across the Karakoram and Nepalese Himalaya and examine spatio-temporal patterns to determine which alpine glaciers are more susceptible to radiation forcing. Simulation results reveal that many Nepalese glaciers characterized by rapid downwasting, retreat and expanding proglacial lakes, exhibit relatively high-magnitude daily irradiance patterns spatially focused over the terminus region, while other glacier surface areas received less short-wave irradiance. These results were found to be associated with basin-scale relief conditions and topographic shielding. Altitudinal variation in glacier surface irradiance was found to increase during the later portion of the ablation season, as changes in solar geometry produce more cast shadows that protect glaciers given extreme relief. Topographic effects on surface irradiance vary significantly from glacier to glacier, demonstrating the important role of glacier and mountain geodynamics on glacier sensitivity to climate change. Spatial and altitudinal patterns, coupled with information regarding supraglacial debris distribution, depth and ice-flow velocities, may potentially explain glacier sensitivity to climate change and the local variability of glacier fluctuations in the Himalaya.

  7. Spatio-Temporal Signal Twice-Whitening Algorithms on the hx3100 Ultra-Low Power Multicore Processor

    SciTech Connect

    Humble, Travis S; Mitra, Pramita; Barhen, Jacob; Schleck, Bryan; Polcari, John; Traweek, Michael

    2010-01-01

    While modern signal detection theory fully accounts for spatially distributed sensors, exploiting these techniques for real-time sensing using large, underwater acoustic arrays requires advances in the spatio-temporal signal processing algorithms. In particular, the computational complexity of many spatio-temporal processing techniques is so large that conventional computer processors lack sufficient throughput to provide real-time processing of large spatio-temporal data sets. These limits are exacerbated when constraints, such as power consumption or footprint, reduce the available computational resources. In this report, we demonstrate an implementation of a signal twice-whitening algorithm that is better suited for processing spatio-temporal data in real time. We emphasize these advances by implementing data whitening on the Coherent Logix hx3100 processor, a programmable multicore processor intended for low-power and high-throughput signal processing. These results serve as an example of how the novel capabilities available from emerging multicore processor platforms can provide real-time, software-defined processing of large data sets acquired by spatially distributed sensing.

  8. Anatomical co-registration using spatio-temporal features of a non-contact near-infrared optical scanner

    NASA Astrophysics Data System (ADS)

    Jung, Young-Jin; Gonzalez, Jean; Rodriguez, Suset; Velez Mejia, Maximiliano; Clark, Gabrielle; Godavarty, Anuradha

    2014-02-01

    Non-contact based near-infrared (NIR) optical imaging devices are developed for non-invasive imaging of deep tissues in various clinical applications. Most of these devices focus on obtaining the spatial information for anatomical co-registration of blood vessels as in sub-surface vein localization applications. In the current study, the anatomical co-registration of blood vessels based on spatio-temporal features was performed using NIR optical imaging without the use of external contrast agents. A 710 nm LED source and a compact CCD camera system were employed during simple cuff (0 to 60 mmHg) experiment in order to acquire the dynamic NIR data from the dorsum of a hand. The spatio-temporal features of dynamic NIR data were extracted from the cuff experimental study to localize vessel according to blood dynamics. The blood vessels shape is currently reconstructed from the dynamic data based on spatio-temporal features. Demonstrating the spatio-temporal feature of blood dynamic imaging using a portable non-contact NIR imaging device without external contrast agents is significant for applications such as peripheral vascular diseases.

  9. Mathematical spatio-temporal model of drug delivery from low temperature sensitive liposomes during radiofrequency tumour ablation

    PubMed Central

    GASSELHUBER, ASTRID; DREHER, MATTHEW R.; NEGUSSIE, AYELE; WOOD, BRADFORD J.; RATTAY, FRANK; HAEMMERICH, DIETER

    2010-01-01

    Purpose Studies have demonstrated a synergistic effect between hyperthermia and chemotherapy, and clinical trials in image-guided drug delivery combine high-temperature thermal therapy (ablation) with chemotherapy agents released in the heating zone via low temperature sensitive liposomes (LTSL). The complex interplay between heat-based cancer treatments such as thermal ablation and chemotherapy may require computational models to identify the relationship between heat exposure and pharmacokinetics in order to optimise drug delivery. Materials and methods Spatio-temporal data on tissue temperature and perfusion from heat-transfer models of radiofrequency ablation were used as input data. A spatio-temporal multi-compartmental pharmacokinetic model was built to describe the release of doxorubicin (DOX) from LTSL into the tumour plasma space, and subsequent transport into the extracellular space, and the cells. Systemic plasma and tissue compartments were also included. We compared standard chemotherapy (free-DOX) to LTSL-DOX administered as bolus at a dose of 0.7 mg/kg body weight. Results Modelling LTSL-DOX treatment resulted in tumour tissue drug concentration of ~9.3 μg/g with highest values within 1 cm outside the ablation zone boundary. Free-DOX treatment produced comparably uniform tissue drug concentrations of ~3.0 μg/g. Administration of free-DOX resulted in a considerably higher peak level of drug concentration in the systemic plasma compartment (16.1 μg/g) compared to LTSL-DOX (4.4 μg/g). These results correlate well with a prior in vivo study. Conclusions Combination of LTSL-DOX with thermal ablation allows localised drug delivery with higher tumour tissue concentrations than conventional chemotherapy. Our model may facilitate drug delivery optimisation via investigation of the interplays among liposome properties, tumour perfusion, and heating regimen. PMID:20377363

  10. A semiparametric spatio-temporal model for solar irradiance data

    DOE PAGESBeta

    Patrick, Joshua D.; Harvill, Jane L.; Hansen, Clifford W.

    2016-03-01

    Here, we evaluate semiparametric spatio-temporal models for global horizontal irradiance at high spatial and temporal resolution. These models represent the spatial domain as a lattice and are capable of predicting irradiance at lattice points, given data measured at other lattice points. Using data from a 1.2 MW PV plant located in Lanai, Hawaii, we show that a semiparametric model can be more accurate than simple interpolation between sensor locations. We investigate spatio-temporal models with separable and nonseparable covariance structures and find no evidence to support assuming a separable covariance structure. These results indicate a promising approach for modeling irradiance atmore » high spatial resolution consistent with available ground-based measurements. Moreover, this kind of modeling may find application in design, valuation, and operation of fleets of utility-scale photovoltaic power systems.« less

  11. a Spatio-Temporal Framework for Modeling Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Touyz, J.; Streletskiy, D. A.; Nelson, F. E.; Apanasovich, T. V.

    2015-07-01

    The Arctic is experiencing an unprecedented rate of environmental and climate change. The active layer (the uppermost layer of soil between the atmosphere and permafrost that freezes in winter and thaws in summer) is sensitive to both climatic and environmental changes, and plays an important role in the functioning, planning, and economic activities of Arctic human and natural ecosystems. This study develops a methodology for modeling and estimating spatial-temporal variations in active layer thickness (ALT) using data from several sites of the Circumpolar Active Layer Monitoring network, and demonstrates its use in spatial-temporal interpolation. The simplest model's stochastic component exhibits no spatial or spatio-temporal dependency and is referred to as the naïve model, against which we evaluate the performance of the other models, which assume that the stochastic component exhibits either spatial or spatio-temporal dependency. The methods used to fit the models are then discussed, along with point forecasting. We compare the predicted fit of the various models at key study sites located in the North Slope of Alaska and demonstrate the advantages of space-time models through a series of error statistics such as mean squared error, mean absolute and percent deviance from observed data. We find the difference in performance between the spatio-temporal and remaining models is significant for all three error statistics. The best stochastic spatio-temporal model increases predictive accuracy, compared to the naïve model, of 33.3%, 36.2% and 32.5% on average across the three error metrics at the key sites for a one-year hold out period.

  12. Transient spatio-temporal dynamics of a diffusive plant-herbivore system with Neumann boundary conditions.

    PubMed

    Yu, Fang; Wang, Lin; Watmough, James

    2016-12-01

    In many existing predator-prey or plant-herbivore models, the numerical response is assumed to be proportional to the functional response. In this paper, without such an assumption, we consider a diffusive plant-herbivore system with Neumann boundary conditions. Besides stability of spatially homogeneous steady states, we also derive conditions for the occurrence of Hopf bifurcation and steady-state bifurcation and provide geometrical methods to locate the bifurcation values. We numerically explore the complex transient spatio-temporal behaviours induced by these bifurcations. A large variety of different types of transient behaviours including oscillations in one or both of space and time are observed. PMID:27572052

  13. Brazilian Amazonia Deforestation Detection Using Spatio-Temporal Scan Statistics

    NASA Astrophysics Data System (ADS)

    Vieira, C. A. O.; Santos, N. T.; Carneiro, A. P. S.; Balieiro, A. A. S.

    2012-07-01

    The spatio-temporal models, developed for analyses of diseases, can also be used for others fields of study, including concerns about forest and deforestation. The aim of this paper is to quantitatively check priority areas in order to combat deforestation on the Amazon forest, using the space-time scan statistic. The study area location is at the south of the Amazonas State and cover around 297.183 kilometre squares, including the municipality of Boca do Acre, Labrea, Canutama, Humaita, Manicore, Novo Aripuana e Apui County on the north region of Brazil. This area has showed a significant change for land cover, which has increased the number of deforestation's alerts. Therefore this situation becomes a concern and gets more investigation, trying to stop factors that increase the number of cases in the area. The methodology includes the location and year that deforestation's alert occurred. These deforestation's alerts are mapped by the DETER (Detection System of Deforestation in Real Time in Amazonia), which is carry out by the Brazilian Space Agency (INPE). The software SatScanTM v7.0 was used in order to define space-time permutation scan statistic for detection of deforestation cases. The outcome of this experiment shows an efficient model to detect space-time clusters of deforestation's alerts. The model was efficient to detect the location, the size, the order and characteristics about activities at the end of the experiments. Two clusters were considered actives and kept actives up to the end of the study. These clusters are located in Canutama and Lábrea County. This quantitative spatial modelling of deforestation warnings allowed: firstly, identifying actives clustering of deforestation, in which the environment government official are able to concentrate their actions; secondly, identifying historic clustering of deforestation, in which the environment government official are able to monitoring in order to avoid them to became actives again; and finally

  14. Fast multidimensional ensemble empirical mode decomposition for the analysis of big spatio-temporal datasets.

    PubMed

    Wu, Zhaohua; Feng, Jiaxin; Qiao, Fangli; Tan, Zhe-Min

    2016-04-13

    In this big data era, it is more urgent than ever to solve two major issues: (i) fast data transmission methods that can facilitate access to data from non-local sources and (ii) fast and efficient data analysis methods that can reveal the key information from the available data for particular purposes. Although approaches in different fields to address these two questions may differ significantly, the common part must involve data compression techniques and a fast algorithm. This paper introduces the recently developed adaptive and spatio-temporally local analysis method, namely the fast multidimensional ensemble empirical mode decomposition (MEEMD), for the analysis of a large spatio-temporal dataset. The original MEEMD uses ensemble empirical mode decomposition to decompose time series at each spatial grid and then pieces together the temporal-spatial evolution of climate variability and change on naturally separated timescales, which is computationally expensive. By taking advantage of the high efficiency of the expression using principal component analysis/empirical orthogonal function analysis for spatio-temporally coherent data, we design a lossy compression method for climate data to facilitate its non-local transmission. We also explain the basic principles behind the fast MEEMD through decomposing principal components instead of original grid-wise time series to speed up computation of MEEMD. Using a typical climate dataset as an example, we demonstrate that our newly designed methods can (i) compress data with a compression rate of one to two orders; and (ii) speed-up the MEEMD algorithm by one to two orders. PMID:26953173

  15. Fast multidimensional ensemble empirical mode decomposition for the analysis of big spatio-temporal datasets

    PubMed Central

    Wu, Zhaohua; Feng, Jiaxin; Qiao, Fangli; Tan, Zhe-Min

    2016-01-01

    In this big data era, it is more urgent than ever to solve two major issues: (i) fast data transmission methods that can facilitate access to data from non-local sources and (ii) fast and efficient data analysis methods that can reveal the key information from the available data for particular purposes. Although approaches in different fields to address these two questions may differ significantly, the common part must involve data compression techniques and a fast algorithm. This paper introduces the recently developed adaptive and spatio-temporally local analysis method, namely the fast multidimensional ensemble empirical mode decomposition (MEEMD), for the analysis of a large spatio-temporal dataset. The original MEEMD uses ensemble empirical mode decomposition to decompose time series at each spatial grid and then pieces together the temporal–spatial evolution of climate variability and change on naturally separated timescales, which is computationally expensive. By taking advantage of the high efficiency of the expression using principal component analysis/empirical orthogonal function analysis for spatio-temporally coherent data, we design a lossy compression method for climate data to facilitate its non-local transmission. We also explain the basic principles behind the fast MEEMD through decomposing principal components instead of original grid-wise time series to speed up computation of MEEMD. Using a typical climate dataset as an example, we demonstrate that our newly designed methods can (i) compress data with a compression rate of one to two orders; and (ii) speed-up the MEEMD algorithm by one to two orders. PMID:26953173

  16. A bio-inspired system for spatio-temporal recognition in static and video imagery

    NASA Astrophysics Data System (ADS)

    Khosla, Deepak; Moore, Christopher K.; Chelian, Suhas

    2007-04-01

    This paper presents a bio-inspired method for spatio-temporal recognition in static and video imagery. It builds upon and extends our previous work on a bio-inspired Visual Attention and object Recognition System (VARS). The VARS approach locates and recognizes objects in a single frame. This work presents two extensions of VARS. The first extension is a Scene Recognition Engine (SCE) that learns to recognize spatial relationships between objects that compose a particular scene category in static imagery. This could be used for recognizing the category of a scene, e.g., office vs. kitchen scene. The second extension is the Event Recognition Engine (ERE) that recognizes spatio-temporal sequences or events in sequences. This extension uses a working memory model to recognize events and behaviors in video imagery by maintaining and recognizing ordered spatio-temporal sequences. The working memory model is based on an ARTSTORE1 neural network that combines an ART-based neural network with a cascade of sustained temporal order recurrent (STORE)1 neural networks. A series of Default ARTMAP classifiers ascribes event labels to these sequences. Our preliminary studies have shown that this extension is robust to variations in an object's motion profile. We evaluated the performance of the SCE and ERE on real datasets. The SCE module was tested on a visual scene classification task using the LabelMe2 dataset. The ERE was tested on real world video footage of vehicles and pedestrians in a street scene. Our system is able to recognize the events in this footage involving vehicles and pedestrians.

  17. Inverse hydrological modelling of spatio-temporal rainfall patterns

    NASA Astrophysics Data System (ADS)

    Grundmann, Jens; Hörning, Sebastian; Bárdossy, András

    2016-04-01

    Distributed hydrological models are commonly used for simulating the non-linear response of a watershed to rainfall events for addressing different hydrological properties of the landscape. Such models are driven by spatial rainfall patterns for consecutive time steps, which are normally generated from point measurements using spatial interpolation methods. However, such methods fail in reproducing the true spatio-temporal rainfall patterns especially in data scarce regions with poorly gauged catchments or for highly dynamic, small scaled rainstorms which are not well recorded by existing monitoring networks. Consequently, uncertainties are associated with poorly identified spatio-temporal rainfall distribution in distributed rainfall-runoff-modelling since the amount of rainfall received by a catchment as well as the dynamics of the runoff generation of flood waves are underestimated. For addressing these challenges a novel methodology for inverse hydrological modelling is proposed using a Markov-Chain-Monte-Carlo framework. Thereby, potential candidates of spatio-temporal rainfall patterns are generated and selected according their ability to reproduce the observed surface runoff at the catchment outlet for a given transfer function in a best way. The Methodology combines the concept of random mixing of random spatial fields with a grid-based spatial distributed rainfall runoff model. The conditional target rainfall field is obtained as a linear combination of unconditional spatial random fields. The corresponding weights of the linear combination are selected such that the spatial variability of the rainfall amounts as well as the actual observed rainfall values are reproduced. The functionality of the methodology is demonstrated on a synthetic example. Thereby, the known spatio-temporal distribution of rainfall is reproduced for a given number of point observations of rainfall and the integral catchment response at the catchment outlet for a synthetic catchment

  18. Spatio-temporal Modeling of Mosquito Distribution

    NASA Astrophysics Data System (ADS)

    Dumont, Y.; Dufourd, C.

    2011-11-01

    We consider a quasilinear parabolic system to model mosquito displacement. In order to use efficiently vector control tools, like insecticides, and mechanical control, it is necessary to provide density estimates of mosquito populations, taking into account the environment and entomological knowledges. After a brief introduction to mosquito dispersal modeling, we present some theoretical results. Then, considering a compartmental approach, we get a quasilinear system of PDEs. Using the time splitting approach and appropriate numerical methods for each operator, we construct a reliable numerical scheme. Considering vector control scenarii, we show that the environment can have a strong influence on mosquito distribution and in the efficiency of vector control tools.

  19. Low-rank matrix decomposition and spatio-temporal sparse recovery for STAP radar

    DOE PAGESBeta

    Sen, Satyabrata

    2015-08-04

    We develop space-time adaptive processing (STAP) methods by leveraging the advantages of sparse signal processing techniques in order to detect a slowly-moving target. We observe that the inherent sparse characteristics of a STAP problem can be formulated as the low-rankness of clutter covariance matrix when compared to the total adaptive degrees-of-freedom, and also as the sparse interference spectrum on the spatio-temporal domain. By exploiting these sparse properties, we propose two approaches for estimating the interference covariance matrix. In the first approach, we consider a constrained matrix rank minimization problem (RMP) to decompose the sample covariance matrix into a low-rank positivemore » semidefinite and a diagonal matrix. The solution of RMP is obtained by applying the trace minimization technique and the singular value decomposition with matrix shrinkage operator. Our second approach deals with the atomic norm minimization problem to recover the clutter response-vector that has a sparse support on the spatio-temporal plane. We use convex relaxation based standard sparse-recovery techniques to find the solutions. With extensive numerical examples, we demonstrate the performances of proposed STAP approaches with respect to both the ideal and practical scenarios, involving Doppler-ambiguous clutter ridges, spatial and temporal decorrelation effects. As a result, the low-rank matrix decomposition based solution requires secondary measurements as many as twice the clutter rank to attain a near-ideal STAP performance; whereas the spatio-temporal sparsity based approach needs a considerably small number of secondary data.« less

  20. Low-rank matrix decomposition and spatio-temporal sparse recovery for STAP radar

    SciTech Connect

    Sen, Satyabrata

    2015-08-04

    We develop space-time adaptive processing (STAP) methods by leveraging the advantages of sparse signal processing techniques in order to detect a slowly-moving target. We observe that the inherent sparse characteristics of a STAP problem can be formulated as the low-rankness of clutter covariance matrix when compared to the total adaptive degrees-of-freedom, and also as the sparse interference spectrum on the spatio-temporal domain. By exploiting these sparse properties, we propose two approaches for estimating the interference covariance matrix. In the first approach, we consider a constrained matrix rank minimization problem (RMP) to decompose the sample covariance matrix into a low-rank positive semidefinite and a diagonal matrix. The solution of RMP is obtained by applying the trace minimization technique and the singular value decomposition with matrix shrinkage operator. Our second approach deals with the atomic norm minimization problem to recover the clutter response-vector that has a sparse support on the spatio-temporal plane. We use convex relaxation based standard sparse-recovery techniques to find the solutions. With extensive numerical examples, we demonstrate the performances of proposed STAP approaches with respect to both the ideal and practical scenarios, involving Doppler-ambiguous clutter ridges, spatial and temporal decorrelation effects. As a result, the low-rank matrix decomposition based solution requires secondary measurements as many as twice the clutter rank to attain a near-ideal STAP performance; whereas the spatio-temporal sparsity based approach needs a considerably small number of secondary data.

  1. A general science-based framework for dynamical spatio-temporal models

    USGS Publications Warehouse

    Wikle, C.K.; Hooten, M.B.

    2010-01-01

    Spatio-temporal statistical models are increasingly being used across a wide variety of scientific disciplines to describe and predict spatially-explicit processes that evolve over time. Correspondingly, in recent years there has been a significant amount of research on new statistical methodology for such models. Although descriptive models that approach the problem from the second-order (covariance) perspective are important, and innovative work is being done in this regard, many real-world processes are dynamic, and it can be more efficient in some cases to characterize the associated spatio-temporal dependence by the use of dynamical models. The chief challenge with the specification of such dynamical models has been related to the curse of dimensionality. Even in fairly simple linear, first-order Markovian, Gaussian error settings, statistical models are often over parameterized. Hierarchical models have proven invaluable in their ability to deal to some extent with this issue by allowing dependency among groups of parameters. In addition, this framework has allowed for the specification of science based parameterizations (and associated prior distributions) in which classes of deterministic dynamical models (e. g., partial differential equations (PDEs), integro-difference equations (IDEs), matrix models, and agent-based models) are used to guide specific parameterizations. Most of the focus for the application of such models in statistics has been in the linear case. The problems mentioned above with linear dynamic models are compounded in the case of nonlinear models. In this sense, the need for coherent and sensible model parameterizations is not only helpful, it is essential. Here, we present an overview of a framework for incorporating scientific information to motivate dynamical spatio-temporal models. First, we illustrate the methodology with the linear case. We then develop a general nonlinear spatio-temporal framework that we call general quadratic

  2. Homogeneous Geovisualization of Coastal Areas from Heterogeneous Spatio-Temporal Data

    NASA Astrophysics Data System (ADS)

    Masse, A.; Christophe, S.

    2015-08-01

    On coastal areas, recent increase in production of open-access high-quality data over large areas reflects high interests in modeling and geovisualization, especially for applications of sea level rise prediction, ship traffic security and ecological protection. Research interests are due to tricky challenges from the intrinsic nature of the coastal area, which is composed of complex geographical objects of which spatial extents vary in time, especially in the intertidal zone (tides, sands, etc.). Another interest is the complex modeling of this area based on imprecise cartographic objects (coastline, highest/lowest water level, etc.). The challenge of visualizing such specific area comes thus from 3D+t information, i.e. spatio-temporal data, and their visual integration. In this paper, we present a methodology for geovisualization issues over coastal areas. The first challenge consists in integrating multi-source heterogeneous data, i.e. raster and vector, terrestrial and hydrographic data often coming from various `paradigms', while providing a homogeneous geovisualization of the coastal area and in particular the phenomenon of the water depth. The second challenge consists in finding various possibilities to geovisualize this dynamic geographical phenomenon in controlling the level of photorealism in hybrid visualizations. Our approach is based on the use of a high-resolution Digital Terrain Model (DTM) coming from high resolution LiDAR data point cloud, tidal and topographic data. We present and discuss homogeneous hybrid visualizations, based on LiDAR and map, and on, LiDAR and orthoimagery, in order to enhance the realism while considering the water depth.

  3. Working with Spatio-Temporal Data Type

    NASA Astrophysics Data System (ADS)

    Raza, A.

    2012-07-01

    Several aspects of spatiotemporal databases have been explored in past decades, ranging from basic data structure to query processing and indexing. But today, operational temporal GIS does not exist. The key impediments have been the complexity of integrating space and time and the lack of standards. OpenGIS standards for simple feature access (spatial type) do exist, but unlike the spatial type, standards for spatiotemporal data type do not exist. This paper explores a new approach to modeling space and time to provide the basis for implementing a temporal GIS. This approach is based on the concept of data types in databases. A data type provides constructors, accessors, and operators. Most commercial and open source databases provide data types to deal with the spatial component of a GIS, called spatial type. Oracle Spatial, DB2 Spatial Extender and Informix Spatial DataBlade, ST_Geometry for PostgreSQL and Oracle from Esri, PostGIS for PostgreSQL, etc., are some examples. This new spatiotemporal data type is called spatiotemporal type (STT). This STT is implemented in PostgreSQL, an open source relational database management system. The STT is an extension of Esri's ST_Geometry type for PostgreSQL, in which each spatial object has a life span. Constructors, accessors, and relational functions are provided to create STT and support spatial, spatiotemporal, and temporal queries. Some functions are extended based on OpenGIS standards for the spatial type. Examples are provided to demonstrate the application of these functions. The paper concludes with limitations and challenges of implementing STT.

  4. Analysis of Spatio-Temporal Traffic Patterns Based on Pedestrian Trajectories

    NASA Astrophysics Data System (ADS)

    Busch, S.; Schindler, T.; Klinger, T.; Brenner, C.

    2016-06-01

    For driver assistance and autonomous driving systems, it is essential to predict the behaviour of other traffic participants. Usually, standard filter approaches are used to this end, however, in many cases, these are not sufficient. For example, pedestrians are able to change their speed or direction instantly. Also, there may be not enough observation data to determine the state of an object reliably, e.g. in case of occlusions. In those cases, it is very useful if a prior model exists, which suggests certain outcomes. For example, it is useful to know that pedestrians are usually crossing the road at a certain location and at certain times. This information can then be stored in a map which then can be used as a prior in scene analysis, or in practical terms to reduce the speed of a vehicle in advance in order to minimize critical situations. In this paper, we present an approach to derive such a spatio-temporal map automatically from the observed behaviour of traffic participants in everyday traffic situations. In our experiments, we use one stationary camera to observe a complex junction, where cars, public transportation and pedestrians interact. We concentrate on the pedestrians trajectories to map traffic patterns. In the first step, we extract trajectory segments from the video data. These segments are then clustered in order to derive a spatial model of the scene, in terms of a spatially embedded graph. In the second step, we analyse the temporal patterns of pedestrian movement on this graph. We are able to derive traffic light sequences as well as the timetables of nearby public transportation. To evaluate our approach, we used a 4 hour video sequence. We show that we are able to derive traffic light sequences as well as time tables of nearby public transportation.

  5. Rational spatio-temporal strategies for controlling a Chagas disease vector in urban environments

    PubMed Central

    Levy, Michael Z.; Malaga Chavez, Fernando S.; Cornejo del Carpio, Juan G.; Vilhena, Daril A.; McKenzie, F. Ellis; Plotkin, Joshua B.

    2010-01-01

    The rational design of interventions is critical to controlling communicable diseases, especially in urban environments. In the case of the Chagas disease vector Triatoma infestans, successful control is stymied by the return of the insect after the effectiveness of the insecticide wanes. Here, we adapt a genetic algorithm, originally developed for the travelling salesman problem, to improve the spatio-temporal design of insecticide campaigns against T. infestans, in a complex urban environment. We find a strategy that reduces the expected instances of vector return 34-fold compared with the current strategy of sequential insecticide application to spatially contiguous communities. The relative success of alternative control strategies depends upon the duration of the effectiveness of the insecticide, and it shows chaotic fluctuations in response to unforeseen delays in a control campaign. We use simplified models to analyse the outcomes of qualitatively different spatio-temporal strategies. Our results provide a detailed procedure to improve control efforts for an urban Chagas disease vector, as well as general guidelines for improving the design of interventions against other disease agents in complex environments. PMID:20061346

  6. Diffusive spatio-temporal noise in a first-passage time model for intracellular calcium release

    NASA Astrophysics Data System (ADS)

    Flegg, Mark B.; Rüdiger, Sten; Erban, Radek

    2013-04-01

    The intracellular release of calcium from the endoplasmic reticulum is controlled by ion channels. The resulting calcium signals exhibit a rich spatio-temporal signature, which originates at least partly from microscopic fluctuations. While stochasticity in the gating transition of ion channels has been incorporated into many models, the distribution of calcium is usually described by deterministic reaction-diffusion equations. Here we test the validity of the latter modeling approach by using two different models to calculate the frequency of localized calcium signals (calcium puffs) from clustered IP3 receptor channels. The complexity of the full calcium system is here limited to the basic opening mechanism of the ion channels and, in the mathematical reduction simplifies to the calculation of a first passage time. Two models are then studied: (i) a hybrid model, where channel gating is treated stochastically, while calcium concentration is deterministic and (ii) a fully stochastic model with noisy channel gating and Brownian calcium ion motion. The second model utilises the recently developed two-regime method [M. B. Flegg, S. J. Chapman, and R. Erban, "The two-regime method for optimizing stochastic reaction-diffusion simulations," J. R. Soc., Interface 9, 859-868 (2012)], 10.1098/rsif.2011.0574 in order to simulate a large domain with precision required only near the Ca2+ absorbing channels. The expected time for a first channel opening that results in a calcium puff event is calculated. It is found that for a large diffusion constant, predictions of the interpuff time are significantly overestimated using the model (i) with a deterministic non-spatial calcium variable. It is thus demonstrated that the presence of diffusive noise in local concentrations of intracellular Ca2+ ions can substantially influence the occurrence of calcium signals. The presented approach and results may also be relevant for other cell-physiological first-passage time problems with

  7. Macroscopic hotspots identification: A Bayesian spatio-temporal interaction approach.

    PubMed

    Dong, Ni; Huang, Helai; Lee, Jaeyoung; Gao, Mingyun; Abdel-Aty, Mohamed

    2016-07-01

    This study proposes a Bayesian spatio-temporal interaction approach for hotspot identification by applying the full Bayesian (FB) technique in the context of macroscopic safety analysis. Compared with the emerging Bayesian spatial and temporal approach, the Bayesian spatio-temporal interaction model contributes to a detailed understanding of differential trends through analyzing and mapping probabilities of area-specific crash trends as differing from the mean trend and highlights specific locations where crash occurrence is deteriorating or improving over time. With traffic analysis zones (TAZs) crash data collected in Florida, an empirical analysis was conducted to evaluate the following three approaches for hotspot identification: FB ranking using a Poisson-lognormal (PLN) model, FB ranking using a Bayesian spatial and temporal (B-ST) model and FB ranking using a Bayesian spatio-temporal interaction (B-ST-I) model. The results show that (a) the models accounting for space-time effects perform better in safety ranking than does the PLN model, and (b) the FB approach using the B-ST-I model significantly outperforms the B-ST approach in correctly identifying hotspots by explicitly accounting for the space-time variation in addition to the stable spatial/temporal patterns of crash occurrence. In practice, the B-ST-I approach plays key roles in addressing two issues: (a) how the identified hotspots have evolved over time and (b) the identification of areas that, whilst not yet hotspots, show a tendency to become hotspots. Finally, it can provide guidance to policy decision makers to efficiently improve zonal-level safety. PMID:27110645

  8. Assessing global vegetation activity using spatio-temporal Bayesian modelling

    NASA Astrophysics Data System (ADS)

    Mulder, Vera L.; van Eck, Christel M.; Friedlingstein, Pierre; Regnier, Pierre A. G.

    2016-04-01

    This work demonstrates the potential of modelling vegetation activity using a hierarchical Bayesian spatio-temporal model. This approach allows modelling changes in vegetation and climate simultaneous in space and time. Changes of vegetation activity such as phenology are modelled as a dynamic process depending on climate variability in both space and time. Additionally, differences in observed vegetation status can be contributed to other abiotic ecosystem properties, e.g. soil and terrain properties. Although these properties do not change in time, they do change in space and may provide valuable information in addition to the climate dynamics. The spatio-temporal Bayesian models were calibrated at a regional scale because the local trends in space and time can be better captured by the model. The regional subsets were defined according to the SREX segmentation, as defined by the IPCC. Each region is considered being relatively homogeneous in terms of large-scale climate and biomes, still capturing small-scale (grid-cell level) variability. Modelling within these regions is hence expected to be less uncertain due to the absence of these large-scale patterns, compared to a global approach. This overall modelling approach allows the comparison of model behavior for the different regions and may provide insights on the main dynamic processes driving the interaction between vegetation and climate within different regions. The data employed in this study encompasses the global datasets for soil properties (SoilGrids), terrain properties (Global Relief Model based on SRTM DEM and ETOPO), monthly time series of satellite-derived vegetation indices (GIMMS NDVI3g) and climate variables (Princeton Meteorological Forcing Dataset). The findings proved the potential of a spatio-temporal Bayesian modelling approach for assessing vegetation dynamics, at a regional scale. The observed interrelationships of the employed data and the different spatial and temporal trends support

  9. Spontaneous bursting: From temporal to spatio-temporal intermittency

    SciTech Connect

    Platt, N.; Hammel, S.M.

    1996-06-01

    A simple model for temporal bursting is introduced. This model invokes either dynamic or random forcing of a bifurcation parameter of some simple dynamical system in a way that makes the bifurcation parameter spend suitable amounts of time below and above the bifurcation threshold. This model is extended to coupled map lattices to produce spontaneous spatio-temporal burstings. It models physical systems which are embedded in a random background that is statistically homogeneous in space and time. An application of this model to optical turbulence is discussed. {copyright} {ital 1996 American Institute of Physics.}

  10. Chaotic itinerancy, temporal segmentation and spatio-temporal combinatorial codes

    NASA Astrophysics Data System (ADS)

    Dias, Juliana R.; Oliveira, Rodrigo F.; Kinouchi, Osame

    2008-01-01

    We study a deterministic dynamics with two time scales in a continuous state attractor network. To the usual (fast) relaxation dynamics towards point attractors (“patterns”) we add a slow coupling dynamics that makes the visited patterns lose stability, leading to an itinerant behavior in the form of punctuated equilibria. One finds that the transition frequency matrix for transitions between patterns shows non-trivial statistical properties in the chaotic itinerant regime. We show that mixture input patterns can be temporally segmented by the itinerant dynamics. The viability of a combinatorial spatio-temporal neural code is also demonstrated.

  11. Spatio-Temporal Equalizer for a Receiving-Antenna Feed Array

    NASA Technical Reports Server (NTRS)

    Mukai, Ryan; Lee, Dennis; Vilnrotter, Victor

    2010-01-01

    A spatio-temporal equalizer has been conceived as an improved means of suppressing multipath effects in the reception of aeronautical telemetry signals, and may be adaptable to radar and aeronautical communication applications as well. This equalizer would be an integral part of a system that would also include a seven-element planar array of receiving feed horns centered at the focal point of a paraboloidal antenna that would be nominally aimed at or near the aircraft that would be the source of the signal that one seeks to receive (see Figure 1). This spatio-temporal equalizer would consist mostly of a bank of seven adaptive finite-impulse-response (FIR) filters one for each element in the array - and the outputs of the filters would be summed (see Figure 2). The combination of the spatial diversity of the feedhorn array and the temporal diversity of the filter bank would afford better multipath-suppression performance than is achievable by means of temporal equalization alone. The seven-element feed array would supplant the single feed horn used in a conventional paraboloidal ground telemetry-receiving antenna. The radio-frequency telemetry signals re ceiv ed by the seven elements of the array would be digitized, converted to complex baseband form, and sent to the FIR filter bank, which would adapt itself in real time to enable reception of telemetry at a low bit error rate, even in the presence of multipath of the type found at many flight test ranges.

  12. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence.

    PubMed

    Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude

    2016-01-01

    The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain. PMID:27282108

  13. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence

    PubMed Central

    Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude

    2016-01-01

    The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain. PMID:27282108

  14. Evaluation of spatio-temporal variability in Land Surface Temperature: A case study of Zonguldak, Turkey.

    PubMed

    Sekertekin, Aliihsan; Kutoglu, Senol Hakan; Kaya, Sinasi

    2016-01-01

    The aim of this study is to analyze spatio-temporal variability in Land Surface Temperature (LST) in and around the city of Zonguldak as a result of the growing urbanization and industrialization during the last decade. Three Landsat 5 data and one Landsat 8 data acquired on different dates were exploited in acquiring LST maps utilizing mono-window algorithm. The outcomes obtained from this study indicate that there exists a significant temperature rise in the region for the time period between 1986 and 2015. Some cross sections were selected in order to examine the relationship between the land use and LST changes in more detail. The mean LST difference between 1986 and 2015 in ERDEMIR iron and steel plant (6.8 °C), forestland (3 °C), city and town centers (4.2 °C), municipal rubbish tip (-3.9 °C), coal dump site (12.2 °C), and power plants' region (7 °C) were presented. In addition, the results indicated that the mean LST difference between forestland and city centers was approximately 5 °C, and the difference between forestland and industrial enterprises was almost 8 °C for all years. Spatio-temporal variability in LST in Zonguldak was examined in that study and due to the increase in LST, policy makers and urban planners should consider LST and urban heat island parameters for sustainable development. PMID:26666659

  15. A geomatic methodology for spatio-temporal analysis of climatologic variables and water related diseases

    NASA Astrophysics Data System (ADS)

    Quentin, E.; Gómez Albores, M. A.; Díaz Delgado, C.

    2009-04-01

    The main objective of this research is to propose, by the way of geomatic developments, an integrated tool to analyze and model the spatio-temporal pattern of human diseases related to environmental conditions, in particular the ones that are linked to water resources. The geomatic developments follows four generic steps : requirement analysis, conceptual modeling, geomatic modeling and implementation (in Idrisi GIS software). A first development consists of the preprocessing of water, population and health data in order to facilitate the conversion and validation of tabular data into the required structure for spatio-temporal analysis. Three parallel developments follow : water balance, demographic state and evolution, epidemiological measures (morbidity and mortality rates, diseases burden). The new geomatic modules in their actual state have been tested on various regions of Mexico Republic (Lerma watershed, Chiapas state) focusing on diarrhea and vector borne diseases (dengue and malaria) and considering records over the last decade : a yearly as well as seasonal spreading trend can be observed in correlation with precipitation and temperature data. In an ecohealth perspective, the geomatic approach results particularly appropriate since one of its purposes is the integration of the various spatial themes implied in the study problem, environmental as anthropogenic. By the use of powerful spatial analysis functions, it permits the detection of spatial trends which, combined to the temporal evolution, can be of particularly use for example in climate change context, if sufficiently valid historical data can be obtain.

  16. Stochastic Spatio-Temporal Dynamic Model for Gene/Protein Interaction Network in Early Drosophila Development

    PubMed Central

    Li, Cheng-Wei; Chen, Bor-Sen

    2009-01-01

    In order to investigate the possible mechanisms for eve stripe formation of Drosophila embryo, a spatio-temporal gene/protein interaction network model is proposed to mimic dynamic behaviors of protein synthesis, protein decay, mRNA decay, protein diffusion, transcription regulations and autoregulation to analyze the interplay of genes and proteins at different compartments in early embryogenesis. In this study, we use the maximum likelihood (ML) method to identify the stochastic 3-D Embryo Space-Time (3-DEST) dynamic model for gene/protein interaction network via 3-D mRNA and protein expression data and then use the Akaike Information Criterion (AIC) to prune the gene/protein interaction network. The identified gene/protein interaction network allows us not only to analyze the dynamic interplay of genes and proteins on the border of eve stripes but also to infer that eve stripes are established and maintained by network motifs built by the cooperation between transcription regulations and diffusion mechanisms in early embryogenesis. Literature reference with the wet experiments of gene mutations provides a clue for validating the identified network. The proposed spatio-temporal dynamic model can be extended to gene/protein network construction of different biological phenotypes, which depend on compartments, e.g. postnatal stem/progenitor cell differentiation. PMID:20054403

  17. Spatio-temporal Granger causality: a new framework

    PubMed Central

    Luo, Qiang; Lu, Wenlian; Cheng, Wei; Valdes-Sosa, Pedro A.; Wen, Xiaotong; Ding, Mingzhou; Feng, Jianfeng

    2015-01-01

    That physiological oscillations of various frequencies are present in fMRI signals is the rule, not the exception. Herein, we propose a novel theoretical framework, spatio-temporal Granger causality, which allows us to more reliably and precisely estimate the Granger causality from experimental datasets possessing time-varying properties caused by physiological oscillations. Within this framework, Granger causality is redefined as a global index measuring the directed information flow between two time series with time-varying properties. Both theoretical analyses and numerical examples demonstrate that Granger causality is a monotonically increasing function of the temporal resolution used in the estimation. This is consistent with the general principle of coarse graining, which causes information loss by smoothing out very fine-scale details in time and space. Our results confirm that the Granger causality at the finer spatio-temporal scales considerably outperforms the traditional approach in terms of an improved consistency between two resting-state scans of the same subject. To optimally estimate the Granger causality, the proposed theoretical framework is implemented through a combination of several approaches, such as dividing the optimal time window and estimating the parameters at the fine temporal and spatial scales. Taken together, our approach provides a novel and robust framework for estimating the Granger causality from fMRI, EEG, and other related data. PMID:23643924

  18. Standards-Based Services for Big Spatio-Temporal Data

    NASA Astrophysics Data System (ADS)

    Baumann, P.; Merticariu, V.; Dumitru, A.; Misev, D.

    2016-06-01

    With the unprecedented availability of continuously updated measured and generated data there is an immense potential for getting new and timely insights - yet, the value is not fully leveraged as of today. The quest is up for high-level service interfaces for dissecting datasets and rejoining them with other datasets - ultimately, to allow users to ask "any question, anytime, on any size" enabling them to "build their own product on the go". With OGC Coverages, a concrete, interoperable data model has been established which unifies n-D spatio-temporal regular and irregular grids, point clouds, and meshes. The Web Coverage Service (WCS) suite provides versatile streamlined coverage functionality ranging from simple access to flexible spatio-temporal analytics. Flexibility and scalability of the WCS suite has been demonstrated in practice through massive services run by large-scale data centers. We present the current status in OGC Coverage data and service models, contrast them to related work, and describe a scalable implementation based on the rasdaman array engine.

  19. Mining fuzzy association rules in spatio-temporal databases

    NASA Astrophysics Data System (ADS)

    Shu, Hong; Dong, Lin; Zhu, Xinyan

    2008-12-01

    A huge amount of geospatial and temporal data have been collected through various networks of environment monitoring stations. For instance, daily precipitation and temperature are observed at hundreds of meteorological stations in Northeastern China. However, these massive raw data from the stations are not fully utilized for meeting the requirements of human decision-making. In nature, the discovery of geographical data mining is the computation of multivariate spatio-temporal correlations through the stages of data mining. In this paper, a procedure of mining association rules in regional climate-changing databases is introduced. The methods of Kriging interpolation, fuzzy cmeans clustering, and Apriori-based logical rules extraction are employed subsequently. Formally, we define geographical spatio-temporal transactions and fuzzy association rules. Innovatively, we make fuzzy data conceptualization by means of fuzzy c-means clustering, and transform fuzzy data items with membership grades into Boolean data items with weights by means ofλ-cut sets. When the algorithm Apriori is executed on Boolean transactions with weights, fuzzy association rules are derived. Fuzzy association rules are more nature than crisp association rules for human cognition about the reality.

  20. Gait recognition using spatio-temporal silhouette-based features

    NASA Astrophysics Data System (ADS)

    Sabir, Azhin; Al-jawad, Naseer; Jassim, Sabah

    2013-05-01

    This paper presents a new algorithm for human gait recognition based on Spatio-temporal body biometric features using wavelet transforms. The proposed algorithm extracts the Gait cycle depending on the width of boundary box from a sequence of Silhouette images. Gait recognition is based on feature level fusion of three feature vectors: the gait spatio-temporal feature represented by the distances between (feet, knees, hands, shoulders, and height); binary difference between consecutive frames of the silhouette for each leg detected separately based on hamming distance; a vector of statistical parameters captured from the wavelet low frequency domain. The fused feature vector is subjected to dimension reduction using linear discriminate analysis. The Nearest Neighbour with a certain threshold used for classification. The threshold is obtained by experiment from a set of data captured from the CASIA database. We shall demonstrate that our method provides a non-traditional identification based on certain threshold to classify the outsider members as non-classified members.

  1. Spatio-temporal statistical models with applications to atmospheric processes

    SciTech Connect

    Wikle, C.K.

    1996-12-31

    This doctoral dissertation is presented as three self-contained papers. An introductory chapter considers traditional spatio-temporal statistical methods used in the atmospheric sciences from a statistical perspective. Although this section is primarily a review, many of the statistical issues considered have not been considered in the context of these methods and several open questions are posed. The first paper attempts to determine a means of characterizing the semiannual oscillation (SAO) spatial variation in the northern hemisphere extratropical height field. It was discovered that the midlatitude SAO in 500hPa geopotential height could be explained almost entirely as a result of spatial and temporal asymmetries in the annual variation of stationary eddies. It was concluded that the mechanism for the SAO in the northern hemisphere is a result of land-sea contrasts. The second paper examines the seasonal variability of mixed Rossby-gravity waves (MRGW) in lower stratospheric over the equatorial Pacific. Advanced cyclostationary time series techniques were used for analysis. It was found that there are significant twice-yearly peaks in MRGW activity. Analyses also suggested a convergence of horizontal momentum flux associated with these waves. In the third paper, a new spatio-temporal statistical model is proposed that attempts to consider the influence of both temporal and spatial variability. This method is mainly concerned with prediction in space and time, and provides a spatially descriptive and temporally dynamic model.

  2. The spatio-temporal spectrum of turbulent flows.

    PubMed

    Clark di Leoni, P; Cobelli, P J; Mininni, P D

    2015-12-01

    Identification and extraction of vortical structures and of waves in a disorganised flow is a mayor challenge in the study of turbulence. We present a study of the spatio-temporal behavior of turbulent flows in the presence of different restitutive forces. We show how to compute and analyse the spatio-temporal spectrum from data stemming from numerical simulations and from laboratory experiments. Four cases are considered: homogeneous and isotropic turbulence, rotating turbulence, stratified turbulence, and water wave turbulence. For homogeneous and isotropic turbulence, the spectrum allows identification of sweeping by the large-scale flow. For rotating and for stratified turbulence, the spectrum allows identification of the waves, precise quantification of the energy in the waves and in the turbulent eddies, and identification of physical mechanisms such as Doppler shift and wave absorption in critical layers. Finally, in water wave turbulence the spectrum shows a transition from gravity-capillary waves to bound waves as the amplitude of the forcing is increased. PMID:26701711

  3. Spatio-temporal Granger causality: a new framework.

    PubMed

    Luo, Qiang; Lu, Wenlian; Cheng, Wei; Valdes-Sosa, Pedro A; Wen, Xiaotong; Ding, Mingzhou; Feng, Jianfeng

    2013-10-01

    That physiological oscillations of various frequencies are present in fMRI signals is the rule, not the exception. Herein, we propose a novel theoretical framework, spatio-temporal Granger causality, which allows us to more reliably and precisely estimate the Granger causality from experimental datasets possessing time-varying properties caused by physiological oscillations. Within this framework, Granger causality is redefined as a global index measuring the directed information flow between two time series with time-varying properties. Both theoretical analyses and numerical examples demonstrate that Granger causality is a monotonically increasing function of the temporal resolution used in the estimation. This is consistent with the general principle of coarse graining, which causes information loss by smoothing out very fine-scale details in time and space. Our results confirm that the Granger causality at the finer spatio-temporal scales considerably outperforms the traditional approach in terms of an improved consistency between two resting-state scans of the same subject. To optimally estimate the Granger causality, the proposed theoretical framework is implemented through a combination of several approaches, such as dividing the optimal time window and estimating the parameters at the fine temporal and spatial scales. Taken together, our approach provides a novel and robust framework for estimating the Granger causality from fMRI, EEG, and other related data. PMID:23643924

  4. Stochastic spatio-temporal modelling with PCRaster Python

    NASA Astrophysics Data System (ADS)

    Karssenberg, D.; Schmitz, O.; de Jong, K.

    2012-04-01

    PCRaster Python is a software framework for building spatio-temporal models of land surface processes (Karssenberg, Schmitz, Salamon, De Jong, & Bierkens, 2010; PCRaster, 2012). Building blocks of models are spatial operations on raster maps, including a large suite of operations for water and sediment routing. These operations, developed in C++, are available to model builders as Python functions. Users create models by combining these functions in a Python script. As construction of large iterative models is often difficult and time consuming for non-specialists in programming, the software comes with a set of Python framework classes that provide control flow for static modelling, temporal modelling, stochastic modelling using Monte Carlo simulation, and data assimilation techniques including the Ensemble Kalman filter and the Particle Filter. A framework for integrating model components with different time steps and spatial discretization is currently available as a prototype (Schmitz, de Jong, & Karssenberg, in review). The software includes routines for visualisation of stochastic spatio-temporal data for prompt, interactive, visualisation of model inputs and outputs. Visualisation techniques include animated maps, time series, probability distributions, and animated maps with exceedance probabilities. The PCRaster Python software is used by researchers from a large range of disciplines, including hydrology, ecology, sedimentology, and land use change studies. Applications include global scale hydrological modelling and error propagation in large-scale land use change models. The software runs on MS Windows and Linux operating systems, and OS X (under development).

  5. A GRASS GIS based Spatio-Temporal Algebra for Raster-, 3D Raster- and Vector Time Series Data

    NASA Astrophysics Data System (ADS)

    Leppelt, Thomas; Gebbert, Sören

    2015-04-01

    Enhancing the well known and widely used map algebra proposed by Dr. Charles Dana Tomlin [1] with the time dimension is an ongoing research topic. The efficient processing of large time series of raster, 3D raster and vector datasets, e. g. raster datasets for temperature or precipitations on continental scale, requires a sophisticated spatio-temporal algebra that is capable of handling datasets with different temporal granularities and spatio-temporal extents. With the temporal enabled GRASS GIS [2] and the GRASS GIS Temporal Framework new spatio-temporal data types are available in GRASS GIS 7, called space time datasets. These space time datasets represent time series of raster, 3D raster and vector map layers. Furthermore the temporal framework provides a wide range of functionalities to support the implementation of a temporal algebra. While spatial capabilities of GRASS GIS are used to perform the spatial processing of the time stamped map layers that are registered in a space time dataset, the temporal processing is provided by the GRASS GIS temporal framework that supports time intervals and time instances. Mixing time instance and time intervals as well as gaps, overlapping or inclusion of intervals and instances is possible. Hence this framework allows an arbitrary layout of the time dimension. We implemented two ways to process space time datasets with arbitrary temporal layout, the temporal topology and the granularity based spatio-temporal algebra. The algebra provides the functionality to define complex spatio-temporal topological operators that process time and space in a single expression. The algebra includes methods to select map layers from space time datasets based on their temporal relations, to temporally shift time stamped map layers, to create temporal buffer and to snap time instances of time stamped map layers to create a valid temporal topology. In addition spatio-temporal operations can be evaluated within conditional statements. These

  6. Spatio-temporal imaging of light transport in scattering media using white light illumination (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Badon, Amaury; Li, Dayan; Lerosey, Geoffroy; Boccara, Claude; Fink, Mathias; Aubry, Alexandre

    2016-03-01

    We recently showed how the correlations of a broadband and incoherent wave-field can directly yield the time-dependent Green's functions between scatterers of a complex medium [Badon et al., Phys. Rev. Lett., 2015]. In this study, we apply this approach to the imaging of optical transport properties in complex media. A parallel measurement of millions of Green's functions at the surface of several strongly scattering samples (ZnO, TiO2, Teflon tape) is performed. A statistical analysis of this Green's matrix allows to investigate locally the spatio-temporal evolution of the diffusive halo within the scattering sample. An image of diffusion tensor is then obtained. It allows to map quantitatively the local concentration of scatterers and their anisotropy within the scattering medium. The next step of this work is to test this approach on biological tissues and illustrate how it can provide an elegant and powerful alternative to diffuse optical imaging techniques.

  7. Multilevel Methodology for Simulation of Spatio-Temporal Systems with Heterogeneous Activity; Application to Spread of Valley Fever Fungus

    USGS Publications Warehouse

    Jammalamadaka, Rajanikanth

    2009-01-01

    This report consists of a dissertation submitted to the faculty of the Department of Electrical and Computer Engineering, in partial fulfillment of the requirements for the degree of Doctor of Philosophy, Graduate College, The University of Arizona, 2008. Spatio-temporal systems with heterogeneity in their structure and behavior have two major problems associated with them. The first one is that such complex real world systems extend over very large spatial and temporal domains and consume so many computational resources to simulate that they are infeasible to study with current computational platforms. The second one is that the data available for understanding such systems is limited because they are spread over space and time making it hard to obtain micro and macro measurements. This also makes it difficult to get the data for validation of their constituent processes while simultaneously considering their global behavior. For example, the valley fever fungus considered in this dissertation is spread over a large spatial grid in the arid Southwest and typically needs to be simulated over several decades of time to obtain useful information. It is also hard to get the temperature and moisture data (which are two critical factors on which the survival of the valley fever fungus depends) at every grid point of the spatial domain over the region of study. In order to address the first problem, we develop a method based on the discrete event system specification which exploits the heterogeneity in the activity of the spatio-temporal system and which has been shown to be effective in solving relatively simple partial differential equation systems. The benefit of addressing the first problem is that it now makes it feasible to address the second problem. We address the second problem by making use of a multilevel methodology based on modeling and simulation and systems theory. This methodology helps us in the construction of models with different resolutions (base and

  8. Spatio-temporal characteristics of Trichel pulse at low pressure

    NASA Astrophysics Data System (ADS)

    He, Shoujie; Jing, Ha

    2014-01-01

    Trichel pulses are investigated using a needle-to-plane electrode geometry at low pressure. The evolution of current and voltage, the spatio-temporal discharge images of Trichel pulse are measured. The rising time and duration time in a pulse are about 10 μs and several tens of microseconds, respectively. One period of pulse can be divided into three stages: the stage preceding cathode breakdown, cathode glow formation, and discharge decaying process. Besides a cathode glow and a dark space, an anode glow is also observed. The emission spectra mainly originate from the C3Пu → B3Пg transition for nitrogen. In addition, the capacitances in parallel connected with the discharge cell have important influence on the pulsing frequency.

  9. Target tracking based on spatio-temporal fractal error

    NASA Astrophysics Data System (ADS)

    Allen, Brian S.

    2007-04-01

    This paper presents a novel approach to target tracking using a measurement process based on spatio-temporal fractal error. Moving targets are automatically detected using one-dimensional temporal fractal error. A template derived from the two-dimensional spatial fractal error is then extracted for a designated target to allow for correlation-based template matching in subsequent frames. The outputs of both the spatial and temporal fractal error components are combined and presented as input to a kinematic tracking filter. It is shown that combining the two outputs provides improved tracking performance in the presence of noise, occlusion, other moving objects, and when the target of interest stops moving. Furthermore, reconciliation of the spatial and temporal components also provides a useful mechanism for detecting occlusion and avoiding template drift, a problem typically present in correlation-based trackers. Results are demonstrated using airborne MWIR sequences from the DARPA VIVID dataset.

  10. Spatio-temporal characteristics of Trichel pulse at low pressure

    SciTech Connect

    He, Shoujie; Jing, Ha

    2014-01-15

    Trichel pulses are investigated using a needle-to-plane electrode geometry at low pressure. The evolution of current and voltage, the spatio-temporal discharge images of Trichel pulse are measured. The rising time and duration time in a pulse are about 10 μs and several tens of microseconds, respectively. One period of pulse can be divided into three stages: the stage preceding cathode breakdown, cathode glow formation, and discharge decaying process. Besides a cathode glow and a dark space, an anode glow is also observed. The emission spectra mainly originate from the C{sup 3}Π{sub u} → B{sup 3}Π{sub g} transition for nitrogen. In addition, the capacitances in parallel connected with the discharge cell have important influence on the pulsing frequency.

  11. Numerical spatio-temporal characterization of Listeria monocytogenes biofilms.

    PubMed

    Mosquera-Fernández, M; Rodríguez-López, P; Cabo, M L; Balsa-Canto, E

    2014-07-16

    As the structure of biofilms plays a key role in their resistance and persistence, this work presents for the first time the numerical characterization of the temporal evolution of biofilm structures formed by three Listeria monocytogenes strains on two types of stainless-steel supports, AISI 304 SS No. 2B and AISI 316 SS No. 2R. Counting methods, motility tests, fluorescence microscopy and image analysis were combined to study the dynamic evolution of biofilm formation and structure. Image analysis was performed with several well-known parameters as well as a newly defined parameter to quantify spatio-temporal distribution. The results confirm the interstrain variability of L. monocytogenes species regarding biofilm structure and structure evolution. Two types of biofilm were observed: homogeneous or flat and heterogeneous or clustered. Differences in clusters and in attachment and detachment processes were due mainly to the topography and composition of the two surfaces although an effect due to motility was also found. PMID:24858448

  12. A spatio-temporal filter approach to synchronous brain activities.

    PubMed

    Nakagawa, T; Ohashi, A

    1980-01-01

    This paper presents a mathematical mechanism for neuronal synchronization in oscillatory brain activities on the basis of the layer structures with recurrent inhibition. To begin with, a linear theory reveals that the recurrent inhibition tends to cause a synchronous uniform oscillation if the loop delay increases, and that an oscillating neuron recruits neighboring neurons by delivering synchronous inputs through the recurrent inhibition loop if the frequency is that of the selfexcitatory oscillation. Then, a quasilinearized dual wave model (DWM), employing the two-sinusoids plus bias input describing functions (TSBDF), shows the competitive relationship between the synchronous oscillation and a spatial wave that is introduced to represent normal brain activity patterns. Results of computer simulations conform well to the predictions of the DWM. Thus, synchronous brain activities are suggested to be the result of the spatio-temporal filter characteristics of the brain layer structures, modified by the neural nonlinearity. PMID:7353063

  13. Sparse cortical source localization using spatio-temporal atoms.

    PubMed

    Korats, Gundars; Ranta, Radu; Le Cam, Steven; Louis-Dorr, Valérie

    2015-08-01

    This paper addresses the problem of sparse localization of cortical sources from scalp EEG recordings. Localization algorithms use propagation model under spatial and/or temporal constraints, but their performance highly depends on the data signal-to-noise ratio (SNR). In this work we propose a dictionary based sparse localization method which uses a data driven spatio-temporal dictionary to reconstruct the measurements using Single Best Replacement (SBR) and Continuation Single Best Replacement (CSBR) algorithms. We tested and compared our methods with the well-known MUSIC and RAP-MUSIC algorithms on simulated realistic data. Tests were carried out for different noise levels. The results show that our method has a strong advantage over MUSIC-type methods in case of synchronized sources. PMID:26737185

  14. Spatio-temporal population estimates for risk management

    NASA Astrophysics Data System (ADS)

    Cockings, Samantha; Martin, David; Smith, Alan; Martin, Rebecca

    2013-04-01

    Accurate estimation of population at risk from hazards and effective emergency management of events require not just appropriate spatio-temporal modelling of hazards but also of population. While much recent effort has been focused on improving the modelling and predictions of hazards (both natural and anthropogenic), there has been little parallel advance in the measurement or modelling of population statistics. Different hazard types occur over diverse temporal cycles, are of varying duration and differ significantly in their spatial extent. Even events of the same hazard type, such as flood events, vary markedly in their spatial and temporal characteristics. Conceptually and pragmatically then, population estimates should also be available for similarly varying spatio-temporal scales. Routine population statistics derived from traditional censuses or surveys are usually static representations in both space and time, recording people at their place of usual residence on census/survey night and presenting data for administratively defined areas. Such representations effectively fix the scale of population estimates in both space and time, which is unhelpful for meaningful risk management. Over recent years, the Pop24/7 programme of research, based at the University of Southampton (UK), has developed a framework for spatio-temporal modelling of population, based on gridded population surfaces. Based on a data model which is fully flexible in terms of space and time, the framework allows population estimates to be produced for any time slice relevant to the data contained in the model. It is based around a set of origin and destination centroids, which have capacities, spatial extents and catchment areas, all of which can vary temporally, such as by time of day, day of week, season. A background layer, containing information on features such as transport networks and landuse, provides information on the likelihood of people being in certain places at specific times

  15. Spatio-temporal activity of lightnings over Greece

    NASA Astrophysics Data System (ADS)

    Nastos, P. T.; Matsangouras, I. T.; Chronis, T. G.

    2012-04-01

    Extreme precipitation events are always associated with convective weather conditions driving to intense lightning activity: Cloud to Ground (CG), Ground to Cloud (GC) and Cloud to Cloud (CC). Thus, the study of lightnings, which typically occur during thunderstorms, gives evidence of the spatio-temporal variability of intense precipitation. Lightning is a natural phenomenon in the atmosphere, being a major cause of storm related with deaths and main trigger of forest fires during dry season. Lightning affects the many electrochemical systems of the body causing nerve damage, memory loss, personality change, and emotional problems. Besides, among the various nitrogen oxides sources, the contribution from lightning likely represents the largest uncertainty. An operational lightning detection network (LDN) has been established since 2007 by HNMS, consisting of eight time-of-arrival sensors (TOA), spatially distributed across Greek territory. In this study, the spatial and temporal variability of recorded lightnings (CG, GC and CC) are analyzed over Greece, during the period from January 14, 2008 to December 31, 2009, for the first time. The data for retrieving the location and time-of-occurrence of lightning were acquired from Hellenic National Meteorological Service (HNMS). In addition to the analysis of spatio-temporal activity over Greece, the HNMS-LDN characteristics are also presented. The results of the performed analysis reveal the specific geographical sub-regions associated with lightnings incidence. Lightning activity occurs mainly during the autumn season, followed by summer and spring. Higher frequencies of flashes appear over Ionian and Aegean Sea than over land during winter period against continental mountainous regions during summer period.

  16. Hirarchical Bayesian Spatio-Temporal Interpolation including Covariates

    NASA Astrophysics Data System (ADS)

    Hussain, Ijaz; Mohsin, Muhammad; Spoeck, Gunter; Pilz, Juergen

    2010-05-01

    The space-time interpolation of precipitation has significant contribution to river control,reservoir operations, forestry interest and flash flood watches etc. The changes in environmental covariates and spatial covariates make space-time estimation of precipitation a challenging task. In our earlier paper [1], we used transformed hirarchical Bayesian sapce-time interpolation method for predicting the amount of precipiation. In present paper, we modified the [2] method to include covarites which varaies with respect to space-time. The proposed method is applied to estimating space-time monthly precipitation in the monsoon periods during 1974 - 2000. The 27-years monthly average data of precipitation, temperature, humidity and wind speed are obtained from 51 monitoring stations in Pakistan. The average monthly precipitation is used response variable and temperature, humidity and wind speed are used as time varying covariates. Moreovere the spatial covarites elevation, latitude and longitude of same monitoring stations are also included. The cross-validation method is used to compare the results of transformed hierarchical Bayesian spatio-temporal interpolation with and without including environmental and spatial covariates. The software of [3] is modified to incorprate enviornmental covariates and spatil covarites. It is observed that the transformed hierarchical Bayesian method including covarites provides more accuracy than the transformed hierarchical Bayesian method without including covarites. Moreover, the five potential monitoring cites are selected based on maximum entropy sampaling design approach. References [1] I.Hussain, J.Pilz,G. Spoeck and H.L.Yu. Spatio-Temporal Interpolation of Precipitation during Monsoon Periods in Pakistan. submitted in Advances in water Resources,2009. [2] N.D. Le, W. Sun, and J.V. Zidek, Bayesian multivariate spatial interpolation with data missing by design. Journal of the Royal Statistical Society. Series B (Methodological

  17. A Spatio-temporal Model of African Animal Trypanosomosis Risk

    PubMed Central

    Dicko, Ahmadou H.; Percoma, Lassane; Sow, Adama; Adam, Yahaya; Mahama, Charles; Sidibé, Issa; Dayo, Guiguigbaza-Kossigan; Thévenon, Sophie; Fonta, William; Sanfo, Safietou; Djiteye, Aligui; Salou, Ernest; Djohan, Vincent; Cecchi, Giuliano; Bouyer, Jérémy

    2015-01-01

    Background African animal trypanosomosis (AAT) is a major constraint to sustainable development of cattle farming in sub-Saharan Africa. The habitat of the tsetse fly vector is increasingly fragmented owing to demographic pressure and shifts in climate, which leads to heterogeneous risk of cyclical transmission both in space and time. In Burkina Faso and Ghana, the most important vectors are riverine species, namely Glossina palpalis gambiensis and G. tachinoides, which are more resilient to human-induced changes than the savannah and forest species. Although many authors studied the distribution of AAT risk both in space and time, spatio-temporal models allowing predictions of it are lacking. Methodology/Principal Findings We used datasets generated by various projects, including two baseline surveys conducted in Burkina Faso and Ghana within PATTEC (Pan African Tsetse and Trypanosomosis Eradication Campaign) national initiatives. We computed the entomological inoculation rate (EIR) or tsetse challenge using a range of environmental data. The tsetse apparent density and their infection rate were separately estimated and subsequently combined to derive the EIR using a “one layer-one model” approach. The estimated EIR was then projected into suitable habitat. This risk index was finally validated against data on bovine trypanosomosis. It allowed a good prediction of the parasitological status (r2 = 67%), showed a positive correlation but less predictive power with serological status (r2 = 22%) aggregated at the village level but was not related to the illness status (r2 = 2%). Conclusions/Significance The presented spatio-temporal model provides a fine-scale picture of the dynamics of AAT risk in sub-humid areas of West Africa. The estimated EIR was high in the proximity of rivers during the dry season and more widespread during the rainy season. The present analysis is a first step in a broader framework for an efficient risk management of climate

  18. Challenges for modelling spatio-temporal variations of malaria risk in Malawi

    NASA Astrophysics Data System (ADS)

    Lowe, R.; Chirombo, J.; Tompkins, A. M.

    2012-04-01

    Malaria is the leading cause of morbidity and mortality in Malawi with more than 6 million episodes reported each year. Malaria poses a huge economic burden to Malawi in terms of the direct cost of treating malaria patients and also indirect costs resulting from workdays lost in agriculture and industry and absenteeism from school. Malawi implements malaria control activities within the Roll Back Malaria framework, with the objective to provide those most at risk (i.e. children under five years, pregnant woman and individuals with suppressed immune systems) access to personal and community protective measures. However, at present there is no mechanism by which to target the most 'at risk' populations ahead of an impending epidemic. Malaria transmission is influenced by variations in meteorological conditions, which impact the biology of the mosquito and the availability of breeding sites, but also socio-economic conditions such as levels of urbanisation, poverty and education, which influence human vulnerability and vector habitat. The many potential drivers of malaria, both extrinsic, such as climate, and intrinsic, such as population immunity are often difficult to disentangle. This presents a challenge for modelling of malaria risk in space and time. Using an age-stratified spatio-temporal dataset of malaria cases at the district level from July 2004 - June 2011, we use a spatio-temporal modelling framework to model variations in malaria risk in Malawi. Climatic and topographic variations are accounted for using an interpolation method to relate gridded products to administrative districts. District level data is tested in the model to account for confounding factors, including the proportion of the population living in urban areas; residing in traditional housing; with no toilet facilities; who do not attend school, etc, the number of health facilities per population and yearly estimates of insecticide-treated mosquito net distribution. In order to account for

  19. Holographic frequency resolved optical gating for spatio-temporal characterization of ultrashort optical pulse

    NASA Astrophysics Data System (ADS)

    Mehta, Nikhil; Yang, Chuan; Xu, Yong; Liu, Zhiwen

    2014-09-01

    We introduce a novel method for characterizing the spatio-temporal evolution of ultrashort optical field by recording the spectral hologram of frequency resolved optical gating (FROG) trace. We show that FROG holography enables the measurement of phase (up to an overall constant) and group delay of the pulse which cannot be measured by conventional FROG method. To illustrate our method, we perform numerical simulation to generate holographic collinear FROG (cFROG) trace of a chirped optical pulse and retrieve its complex profile at multiple locations as it propagates through a hypothetical dispersive medium. Further, we experimentally demonstrate our method by retrieving a 67 fs pulse at three axial locations in the vicinity of focus of an objective lens and compute its group delay.

  20. Spatio-temporal modelling of foot-and-mouth disease outbreaks.

    PubMed

    Malesios, C; Demiris, N; Kostoulas, P; Dadousis, K; Koutroumanidis, T; Abas, Z

    2016-09-01

    We present and analyse data collected during a severe epidemic of foot-and-mouth disease (FMD) that occurred between July and September 2000 in a region of northeastern Greece with strategic importance since it represents the southeastern border of Europe and Asia. We implement generic Bayesian methodology, which offers flexibility in the ability to fit several realistically complex models that simultaneously capture the presence of 'excess' zeros, the spatio-temporal dependence of the cases, assesses the impact of environmental noise and controls for multicollinearity issues. Our findings suggest that the epidemic was mostly driven by the size and the animal type of each farm as well as the distance between farms while environmental and other endemic factors were not important during this outbreak. Analyses of this kind may prove useful to informing decisions related to optimal control measures for potential future FMD outbreaks as well as other acute epidemics such as FMD. PMID:27150839

  1. MobilityGraphs: Visual Analysis of Mass Mobility Dynamics via Spatio-Temporal Graphs and Clustering.

    PubMed

    von Landesberger, Tatiana; Brodkorb, Felix; Roskosch, Philipp; Andrienko, Natalia; Andrienko, Gennady; Kerren, Andreas

    2016-01-01

    Learning more about people mobility is an important task for official decision makers and urban planners. Mobility data sets characterize the variation of the presence of people in different places over time as well as movements (or flows) of people between the places. The analysis of mobility data is challenging due to the need to analyze and compare spatial situations (i.e., presence and flows of people at certain time moments) and to gain an understanding of the spatio-temporal changes (variations of situations over time). Traditional flow visualizations usually fail due to massive clutter. Modern approaches offer limited support for investigating the complex variation of the movements over longer time periods. PMID:26529684

  2. Spatio-temporal pattern recognizers using spiking neurons and spike-timing-dependent plasticity.

    PubMed

    Humble, James; Denham, Susan; Wennekers, Thomas

    2012-01-01

    It has previously been shown that by using spike-timing-dependent plasticity (STDP), neurons can adapt to the beginning of a repeating spatio-temporal firing pattern in their input. In the present work, we demonstrate that this mechanism can be extended to train recognizers for longer spatio-temporal input signals. Using a number of neurons that are mutually connected by plastic synapses and subject to a global winner-takes-all mechanism, chains of neurons can form where each neuron is selective to a different segment of a repeating input pattern, and the neurons are feed-forwardly connected in such a way that both the correct input segment and the firing of the previous neurons are required in order to activate the next neuron in the chain. This is akin to a simple class of finite state automata. We show that nearest-neighbor STDP (where only the pre-synaptic spike most recent to a post-synaptic one is considered) leads to "nearest-neighbor" chains where connections only form between subsequent states in a chain (similar to classic "synfire chains"). In contrast, "all-to-all spike-timing-dependent plasticity" (where all pre- and post-synaptic spike pairs matter) leads to multiple connections that can span several temporal stages in the chain; these connections respect the temporal order of the neurons. It is also demonstrated that previously learnt individual chains can be "stitched together" by repeatedly presenting them in a fixed order. This way longer sequence recognizers can be formed, and potentially also nested structures. Robustness of recognition with respect to speed variations in the input patterns is shown to depend on rise-times of post-synaptic potentials and the membrane noise. It is argued that the memory capacity of the model is high, but could theoretically be increased using sparse codes. PMID:23087641

  3. Spatio-temporal Contrast Sensitivity in the Cardinal Directions of the Colour Space. A Review

    PubMed Central

    Díez-Ajenjo, Maria Amparo; Capilla, Pascual

    2010-01-01

    We review the psychophysics of the spatio-temporal contrast sensitivity in the cardinal directions of the colour space and their correlation with those neural characteristics of the visual system that limit the ability to perform contrast detection or pattern-resolution tasks. We focus our attention particularly on the influence of luminance level, spatial extent and spatial location of the stimuli - factors that determine the characteristics of the physiological mechanisms underlying detection. Optical factors do obviously play a role, but we will refer to them only briefly. Contrast sensitivity measurements are often used in clinical practice as a method to detect, at their early stages, a variety of pathologies affecting the visual system, but their usefulness is very limited due to several reasons. We suggest some considerations about stimuli characteristics that should be taken into account in order to improve the performance of this kind of measurement.

  4. Hydrodynamic Model of Spatio-Temporal Evolution of Two-Plasmon Decay

    SciTech Connect

    Dimitrijevic, D. R.; Maluckov, A. A.

    2010-01-21

    A hydrodynamic model of two-plasmon decay in a homogeneous plasma slab near the quarter-critical density is constructed in order to gain better insight into the spatio-temporal evolution of the daughter electron plasma waves in plasma in the course of the instability. The influence of laser and plasma parameters on the evolution of the amplitudes of the participating waves is discussed. The secondary coupling of two daughter electron plasma waves with an ion-acoustic wave is assumed to be the principal mechanism of saturation of the instability. The impact of the inherently nonresonant nature of this secondary coupling on the development of TPD is investigated and it is shown to significantly influence the electron plasma wave dynamics. Its inclusion leads to nonuniformity of the spatial profile of the instability and causes the burst-like pattern of the instability development, which should result in the burst-like hot-electron production in homogeneous plasma.

  5. Assessing the spatio-temporal variations of the completeness magnitude for seismic events in Venezuela

    NASA Astrophysics Data System (ADS)

    Vasquez, R.; Bravo, L.

    2013-05-01

    We investigate the spatio temporal variation of the completeness magnitude Mc, for a set of 18774 well localized earthquakes registered by the Venezuelan Seismological Network over the period 2000-2010. In the entire seismicity region we defined two-dimensional grids of different sizes in order to map the Mc: 11 km, 22 km, 55 km and 111 km. We calculated the completeness magnitude using the Maximum Curvature method (MAXC) for every particular cell taking at least 15 earthquakes to perform computations. The results show an overall variation from 2.0 to 3.6. We found different thresholds and ranges of Mc depending on the dimension of the seismicity zone: western region from 2.2 to 2.8, north central from 2.0 to 3.2 and eastern region from 2.2 to 3.2. We also include remarks in border seismicity, close to Colombia and Trinidad, where the largest Mc values are estimated.

  6. Neural field simulator: two-dimensional spatio-temporal dynamics involving finite transmission speed

    PubMed Central

    Nichols, Eric J.; Hutt, Axel

    2015-01-01

    Neural Field models (NFM) play an important role in the understanding of neural population dynamics on a mesoscopic spatial and temporal scale. Their numerical simulation is an essential element in the analysis of their spatio-temporal dynamics. The simulation tool described in this work considers scalar spatially homogeneous neural fields taking into account a finite axonal transmission speed and synaptic temporal derivatives of first and second order. A text-based interface offers complete control of field parameters and several approaches are used to accelerate simulations. A graphical output utilizes video hardware acceleration to display running output with reduced computational hindrance compared to simulators that are exclusively software-based. Diverse applications of the tool demonstrate breather oscillations, static and dynamic Turing patterns and activity spreading with finite propagation speed. The simulator is open source to allow tailoring of code and this is presented with an extension use case. PMID:26539105

  7. A Hybrid Spatio-Temporal Data Indexing Method for Trajectory Databases

    PubMed Central

    Ke, Shengnan; Gong, Jun; Li, Songnian; Zhu, Qing; Liu, Xintao; Zhang, Yeting

    2014-01-01

    In recent years, there has been tremendous growth in the field of indoor and outdoor positioning sensors continuously producing huge volumes of trajectory data that has been used in many fields such as location-based services or location intelligence. Trajectory data is massively increased and semantically complicated, which poses a great challenge on spatio-temporal data indexing. This paper proposes a spatio-temporal data indexing method, named HBSTR-tree, which is a hybrid index structure comprising spatio-temporal R-tree, B*-tree and Hash table. To improve the index generation efficiency, rather than directly inserting trajectory points, we group consecutive trajectory points as nodes according to their spatio-temporal semantics and then insert them into spatio-temporal R-tree as leaf nodes. Hash table is used to manage the latest leaf nodes to reduce the frequency of insertion. A new spatio-temporal interval criterion and a new node-choosing sub-algorithm are also proposed to optimize spatio-temporal R-tree structures. In addition, a B*-tree sub-index of leaf nodes is built to query the trajectories of targeted objects efficiently. Furthermore, a database storage scheme based on a NoSQL-type DBMS is also proposed for the purpose of cloud storage. Experimental results prove that HBSTR-tree outperforms TB*-tree in some aspects such as generation efficiency, query performance and query type. PMID:25051028

  8. A hybrid spatio-temporal data indexing method for trajectory databases.

    PubMed

    Ke, Shengnan; Gong, Jun; Li, Songnian; Zhu, Qing; Liu, Xintao; Zhang, Yeting

    2014-01-01

    In recent years, there has been tremendous growth in the field of indoor and outdoor positioning sensors continuously producing huge volumes of trajectory data that has been used in many fields such as location-based services or location intelligence. Trajectory data is massively increased and semantically complicated, which poses a great challenge on spatio-temporal data indexing. This paper proposes a spatio-temporal data indexing method, named HBSTR-tree, which is a hybrid index structure comprising spatio-temporal R-tree, B*-tree and Hash table. To improve the index generation efficiency, rather than directly inserting trajectory points, we group consecutive trajectory points as nodes according to their spatio-temporal semantics and then insert them into spatio-temporal R-tree as leaf nodes. Hash table is used to manage the latest leaf nodes to reduce the frequency of insertion. A new spatio-temporal interval criterion and a new node-choosing sub-algorithm are also proposed to optimize spatio-temporal R-tree structures. In addition, a B*-tree sub-index of leaf nodes is built to query the trajectories of targeted objects efficiently. Furthermore, a database storage scheme based on a NoSQL-type DBMS is also proposed for the purpose of cloud storage. Experimental results prove that HBSTR-tree outperforms TB*-tree in some aspects such as generation efficiency, query performance and query type. PMID:25051028

  9. Spatio-temporal pollution features in Seoul, Korea using magnetic measurements of roadside dusts

    NASA Astrophysics Data System (ADS)

    Doh, S.; Kim, W.; Lee, J.; Park, Y.

    2006-12-01

    Recently, rapid and non-destructive magnetic measurements have been increasingly used as a proxy method for the assessment of heavy metal pollution in urban areas. The spatio-temporal variations of anthropogenic particulate matter in roadside dust of the Seoul metropolitan area have been investigated using 1,353 dust samples collected monthly from 33 locations during 13 months period (February 2002 through February 2003). The S-ratio values and the acquisition patterns of isothermal remanent magnetization indicate that low- coercivity ferrimagnetic minerals are dominant in these roadside dusts. The similar spatial distributions between the magnetic susceptibility values (magnetic concentration) and the reported heavy metal concentrations indicate that magnetic susceptibility can be a useful proxy indicator for heavy metal pollution. Spatially, samples from industrial areas show relatively higher magnetic concentration than those from heavy traffic areas. Samples from residential and park areas reveal the lowest magnetic concentration in this study. Mapping of magnetic susceptibility shows highly polluted areas to be around southwestern, central and northeastern part of Seoul throughout the year. It is considered that anthropogenic materials from industrial complex may be transported along the southwestern part of the city to northeastward because of dominant westerly wind and topographic highs located in the north-northwestern and southern regions of the city. Temporally, the magnetic concentration in winter is higher than that in summer, indicating the seasonal fluctuation of anthropogenic magnetic material influx. It is interpreted that high magnetic concentration during cold and dry winter season might be caused from increased fossil fuel combustion. This interpretation can be supported by that residential areas also show relatively higher magnetic concentration in winter compared to the other seasons. The present study indicates that pollution in the city of

  10. Spatio-temporal patterns of soil erosion and suspended sediment dynamics in the Mekong River Basin.

    PubMed

    Suif, Zuliziana; Fleifle, Amr; Yoshimura, Chihiro; Saavedra, Oliver

    2016-10-15

    Understanding of the distribution patterns of sediment erosion, concentration and transport in river basins is critically important as sediment plays a major role in river basin hydrophysical and ecological processes. In this study, we proposed an integrated framework for the assessment of sediment dynamics, including soil erosion (SE), suspended sediment load (SSL) and suspended sediment concentration (SSC), and applied this framework to the Mekong River Basin. The Revised Universal Soil Loss Equation (RUSLE) model was adopted with a geographic information system to assess SE and was coupled with a sediment accumulation and a routing scheme to simulate SSL. This framework also analyzed Landsat imagery captured between 1987 and 2000 together with ground observations to interpolate spatio-temporal patterns of SSC. The simulated SSL results from 1987 to 2000 showed the relative root mean square error of 41% and coefficient of determination (R(2)) of 0.89. The polynomial relationship of the near infrared exoatmospheric reflectance and the band 4 wavelength (760-900nm) to the observed SSC at 9 sites demonstrated the good agreement (overall relative RMSE=5.2%, R(2)=0.87). The result found that the severe SE occurs in the upper (China and Lao PDR) and lower (western part of Vietnam) regions. The SSC in the rainy season (June-November) showed increasing and decreasing trends longitudinally in the upper (China and Lao PDR) and lower regions (Cambodia), respectively, while the longitudinal profile of SSL showed a fluctuating trend along the river in the early rainy season. Overall, the results described the unique spatio-temporal patterns of SE, SSL and SSC in the Mekong River Basin. Thus, the proposed integrated framework is useful for elucidating complex process of sediment generation and transport in the land and river systems of large river basins. PMID:27338846

  11. Approach to analysis of multiscale space-distributed time series: separation of spatio-temporal modes with essentially different time scales

    NASA Astrophysics Data System (ADS)

    Feigin, Alexander; Mukhin, Dmitry; Gavrilov, Andrey; Volodin, Evgeny; Loskutov, Evgeny

    2014-05-01

    Natural systems are in general space-distributed, and their evolution represents a broad spectrum of temporal scales. The multiscale nature may be resulted from multiplicity of mechanisms governing the system behaviour, and a large number of feedbacks and nonlinearities. A way to reveal and understand the underlying mechanisms as well as to model corresponding sub-systems is decomposition of the full (complex) system into well separated spatio-temporal patterns ("modes") that evolve with essentially different time scales. In the report a new method of a similar decomposition is discussed. The method is based on generalization of the MSSA (Multichannel Singular Spectral Analysis) [1] for expanding space-distributed time series in basis of spatio-temporal empirical orthogonal functions (STEOF), which makes allowance delayed correlations of the processes recorded in spatially separated points. The method is applied to decomposition of the Earth's climate system: on the base of 156 years time series of SST anomalies distributed over the globe [2] two climatic modes possessing by noticeably different time scales (3-5 and 9-11 years) are separated. For more accurate exclusion of "too slow" (and thus not represented correctly) processes from real data the numerically produced STEOF basis is used. For doing this the time series generated by the INM RAS Coupled Climate Model [3] is utilized. Relations of separated modes to ENSO and PDO are investigated. Possible development of the suggested approach in order to the separation of the modes that are nonlinearly uncorrelated is discussed. 1. Ghil, M., R. M. Allen, M. D. Dettinger, K. Ide, D. Kondrashov, et al. (2002) "Advanced spectral methods for climatic time series", Rev. Geophys. 40(1), 3.1-3.41. 2. http://iridl.ldeo.columbia.edu/SOURCES/.KAPLAN/.EXTENDED/.v2/.ssta/ 3. http://83.149.207.89/GCM_DATA_PLOTTING/GCM_INM_DATA_XY_en.htm

  12. Spatio-Temporal Variability of Aquatic Vegetation in Taihu Lake over the Past 30 Years.

    PubMed

    Zhao, Dehua; Lv, Meiting; Jiang, Hao; Cai, Ying; Xu, Delin; An, Shuqing

    2013-01-01

    It is often difficult to track the spatio-temporal variability of vegetation distribution in lakes because of the technological limitations associated with mapping using traditional field surveys as well as the lack of a unified field survey protocol. Using a series of Landsat remote sensing images (i.e. MSS, TM and ETM+), we mapped the composition and distribution area of emergent, floating-leaf and submerged macrophytes in Taihu Lake, China, at approximate five-year intervals over the past 30 years in order to quantify the spatio-temporal dynamics of the aquatic vegetation. Our results indicated that the total area of aquatic vegetation increased from 187.5 km(2) in 1981 to 485.0 km(2) in 2005 and then suddenly decreased to 341.3 km(2) in 2010. Similarly, submerged vegetation increased from 127.0 km(2) in 1981 to 366.5 km(2) in 2005, and then decreased to 163.3 km(2). Floating-leaf vegetation increased continuously through the study period in both area occupied (12.9 km(2) in 1981 to 146.2 km(2) in 2010) and percentage of the total vegetation (6.88% in 1981 to 42.8% in 2010). In terms of spatial distribution, the aquatic vegetation in Taihu Lake has spread gradually from the East Bay to the surrounding areas. The proportion of vegetation in the East Bay relative to that in the entire lake has decreased continuously from 62.3% in 1981, to 31.1% in 2005 and then to 21.8% in 2010. Our findings have suggested that drastic changes have taken place over the past 30 years in the spatial pattern of aquatic vegetation as well as both its relative composition and the amount of area it occupies. PMID:23823189

  13. Adaptive OFDM waveform design for spatio-temporal-sparsity exploited STAP radar

    NASA Astrophysics Data System (ADS)

    Sen, Satyabrata; Barhen, Jacob

    2015-05-01

    We propose a sparsity-based space-time adaptive processing (STAP) algorithm to detect a slowly-moving target using an orthogonal frequency division multiplexing (OFDM) radar. The motivation of employing an OFDM signal is that it improves the target-detectability from the interfering signals by increasing the frequency diversity of the system. However, due to the addition of one extra dimension in terms of frequency, the adaptive degrees-of- freedom in an OFDM-STAP also increases. Therefore, to avoid the construction a fully-adaptive OFDM-STAP, we propose a sparsity-based STAP algorithm. We observe that the interference spectrum is inherently sparse in the spatio-temporal domain, as the clutter responses occupy only a diagonal ridge on the spatio-temporal plane and the jammer signals interfere only from a few spatial directions. Hence, we exploit that sparsity to develop an efficient STAP technique that utilizes considerably lesser number of secondary data compared to the other existing STAP techniques, and produces nearly optimum STAP performance. In addition to designing the STAP filter, we propose to optimally design the transmit OFDM signals by maximizing the output signal- to-interference-plus-noise ratio (SINR) in order to improve the STAP-performance. The computation of output SINR depends on the estimated value of the interference covariance matrix, which we obtain by applying the sparse recovery algorithm. Therefore, we analytically assess the effects of the synthesized OFDM coefficients on the sparse recovery of the interference covariance matrix by computing the coherence measure of the sparse measurement matrix. Our numerical examples demonstrate the achieved STAP-performance due to sparsity- based technique and adaptive waveform design.

  14. Spatio-Temporal Variability of Aquatic Vegetation in Taihu Lake over the Past 30 Years

    PubMed Central

    Zhao, Dehua; Lv, Meiting; Jiang, Hao; Cai, Ying; Xu, Delin; An, Shuqing

    2013-01-01

    It is often difficult to track the spatio-temporal variability of vegetation distribution in lakes because of the technological limitations associated with mapping using traditional field surveys as well as the lack of a unified field survey protocol. Using a series of Landsat remote sensing images (i.e. MSS, TM and ETM+), we mapped the composition and distribution area of emergent, floating-leaf and submerged macrophytes in Taihu Lake, China, at approximate five-year intervals over the past 30 years in order to quantify the spatio-temporal dynamics of the aquatic vegetation. Our results indicated that the total area of aquatic vegetation increased from 187.5 km2 in 1981 to 485.0 km2 in 2005 and then suddenly decreased to 341.3 km2 in 2010. Similarly, submerged vegetation increased from 127.0 km2 in 1981 to 366.5 km2 in 2005, and then decreased to 163.3 km2. Floating-leaf vegetation increased continuously through the study period in both area occupied (12.9 km2 in 1981 to 146.2 km2 in 2010) and percentage of the total vegetation (6.88% in 1981 to 42.8% in 2010). In terms of spatial distribution, the aquatic vegetation in Taihu Lake has spread gradually from the East Bay to the surrounding areas. The proportion of vegetation in the East Bay relative to that in the entire lake has decreased continuously from 62.3% in 1981, to 31.1% in 2005 and then to 21.8% in 2010. Our findings have suggested that drastic changes have taken place over the past 30 years in the spatial pattern of aquatic vegetation as well as both its relative composition and the amount of area it occupies. PMID:23823189

  15. Spatio-temporal analysis techniques for detailed investigations of space storm dynamics

    NASA Astrophysics Data System (ADS)

    Vassiliadis, D.; Daglis, I. A.; Klimas, A. J.; Clauer, C. R.

    2001-09-01

    We present several spatio-temporal analysis techniques, which integrate mid-latitude ground magnetogram data and are useful in identifying key features in the ring current response. In this way we can quantify a) the intensity and spatial extent of inner magnetosphere convection, b) the intensity of the geomagnetic response to interplanetary pressure pulses, c) the penetration of the substorm current wedge to lower latitudes and d) the effect of particle injections on the ring current. The first technique creates a spatio-temporal storm "portrait" based on the axial component of the ground magnetic field H(UT;LT) [Clauer and McPherron, 1974]. Displaying the field data in UT-LT coordinates allows comparison of the activity in the inner magnetosphere. In addition to visual identification of the above features, we introduce a second technique that uses principal component analysis (PCA) of the storm portrait. PCA peaks correspond, in order of decreasing eigenvalue, to symmetric ring current, asymmetric ring current and substorm current wedge, and injections into the ring current, typically during substorms. Identification of the major PCA peaks with large-scale current systems is confirmed by correlation with and timing relative to geomagnetic indices (Dst, AL, etc). The intensity and direction of ring current injections is estimated by a bandpass filter technique for individual magnetograms. Examples using the storms of June 4, 1991, and September 26, 1998, are given. In these cases the asymmetric ring current can have a geomagnetic effect as strong as the azimuthally symmetric part meaning the majority of plasma sheet particles convecting deep into the inner magnetosphere are quickly (~2-3 hours) lost at the dayside magnetopause. On the other hand, the estimate for particle injections compared to slow convection reaches up to 30% in terms of the average geomagnetic field amplitude. Thus, individual substorms can have a significant influence on the storm-time ring

  16. Spatio-temporal generation regimes in quasi-CW Raman fiber lasers.

    PubMed

    Tarasov, Nikita; Sugavanam, Srikanth; Churkin, Dmitry

    2015-09-21

    We present experimental measurements of intensity spatio-temporal dynamics in quasi-CW Raman fiber laser. Depending on the power, the laser operates in different spatio-temporal regimes varying from partial mode-locking near the generation threshold to almost stochastic radiation and a generation of short-lived pulses at high power. The transitions between the generation regimes are evident in intensity spatio-temporal dynamics. Two-dimensional auto-correlation functions provide an additional insight into temporal and spatial properties of the observed regimes. PMID:26406625

  17. Spatio-Temporal Self-Organization in Mudstones (Invited)

    NASA Astrophysics Data System (ADS)

    Dewers, T. A.

    2010-12-01

    Shales and other mudstones are the most abundant rock types in sedimentary basins, yet have received comparatively little attention. Common as hydrocarbon seals, these are increasingly being targeted as unconventional gas reservoirs, caprocks for CO2 sequestration, and storage repositories for waste. The small pore and grain size, large specific surface areas, and clay mineral structures lend themselves to rapid reaction rates, high capillary pressures, and semi-permeable membrane behavior accompanying changes in stress, pressure, temperature and chemical conditions. Under far from equilibrium conditions, mudrocks display a variety of spatio-temporal self-organized phenomena arising from nonlinear thermo-mechano-chemo-hydro coupling. Beginning with a detailed examination of nano-scale pore network structures in mudstones, we discuss the dynamics behind such self-organized phenomena as pressure solitons in unconsolidated muds, chemically-induced flow self focusing and permeability transients, localized compaction, time dependent well-bore failure, and oscillatory osmotic fluxes as they occur in clay-bearing sediments. Examples are draw from experiments, numerical simulation, and the field. These phenomena bear on the ability of these rocks to serve as containment barriers. This work is funded by the US Department of Energy, Office of Basic Energy Sciences. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000

  18. Spatio-temporal distribution of human lifespan in China

    PubMed Central

    Wang, Shaobin; Luo, Kunli; Liu, Yonglin

    2015-01-01

    Based on the data of latest three Chinese population censuses (1990–2010), four lifespan indicators were calculated: centenarians per one hundred thousand inhabitants (CH); longevity index (LI); the percentage of the population aged at least 80 years (ultra-octogenarian index, UOI) and life expectancy at birth (LEB). The spatio-temporal distributions of data at Chinese county level show that high-longevity areas (high values of CH and LI) and low-longevity areas (low CH and LI values) both exhibit clear non-uniformity of spatial distribution and relative immobility through time. Contrarily, the distribution of UOI and LEB shows a decline from the east to the west. The spatial autocorrelation analyses indicate less spatial dependency and several discontinuous clusters regions of high-CH and LI areas. The factors of temperature, topography and wet/dry climate lack of significant influence on CH and LI. It can be inferred that, in addition to genetic factor and living custom, some unique and long-term environmental effects may be related with high or low values of CH and LI. PMID:26346713

  19. Response-mode decomposition of spatio-temporal haemodynamics.

    PubMed

    Pang, J C; Robinson, P A; Aquino, K M

    2016-05-01

    The blood oxygen-level dependent (BOLD) response to a neural stimulus is analysed using the transfer function derived from a physiologically based poroelastic model of cortical tissue. The transfer function is decomposed into components that correspond to distinct poles, each related to a response mode with a natural frequency and dispersion relation; together these yield the total BOLD response. The properties of the decomposed components provide a deeper understanding of the nature of the BOLD response, via the components' frequency dependences, spatial and temporal power spectra, and resonances. The transfer function components are then used to separate the BOLD response to a localized impulse stimulus, termed the Green function or spatio-temporal haemodynamic response function, into component responses that are explicitly related to underlying physiological quantities. The analytical results also provide a quantitative tool to calculate the linear BOLD response to an arbitrary neural drive, which is faster to implement than direct Fourier transform methods. The results of this study can be used to interpret functional magnetic resonance imaging data in new ways based on physiology, to enhance deconvolution methods and to design experimental protocols that can selectively enhance or suppress particular responses, to probe specific physiological phenomena. PMID:27170653

  20. Spatio-temporal self-organization in mudstones.

    SciTech Connect

    Dewers, Thomas A.

    2010-12-01

    Shales and other mudstones are the most abundant rock types in sedimentary basins, yet have received comparatively little attention. Common as hydrocarbon seals, these are increasingly being targeted as unconventional gas reservoirs, caprocks for CO2 sequestration, and storage repositories for waste. The small pore and grain size, large specific surface areas, and clay mineral structures lend themselves to rapid reaction rates, high capillary pressures, and semi-permeable membrane behavior accompanying changes in stress, pressure, temperature and chemical conditions. Under far from equilibrium conditions, mudrocks display a variety of spatio-temporal self-organized phenomena arising from nonlinear thermo-mechano-chemo-hydro coupling. Beginning with a detailed examination of nano-scale pore network structures in mudstones, we discuss the dynamics behind such self-organized phenomena as pressure solitons in unconsolidated muds, chemically-induced flow self focusing and permeability transients, localized compaction, time dependent well-bore failure, and oscillatory osmotic fluxes as they occur in clay-bearing sediments. Examples are draw from experiments, numerical simulation, and the field. These phenomena bear on the ability of these rocks to serve as containment barriers.

  1. Nonlinear spatio-temporal interactions and neural connections in human vision using transient and M-sequence stimuli

    SciTech Connect

    Chen, H.W.; Aine, C.J.; Flynn, E.R.; Wood, C.C.

    1996-02-01

    Reciprocal connections, in essence, are the dynamic wiring (connections) of the neural network circuitry. Given the high complexity of the neural circuitry in the human brain, it is quite a challenge to study the dynamic wiring of highly parallel and widely distributed neural networks. The measurements of stimulus evoked coherent oscillations provide indirect evidence of dynamic wiring. In this study, in addition to the coherent oscillation measurements, two more techniques are discussed for testing possible dynamic wiring: measurements of spatio-temporal interactions beyond the classical receptive fields, and neural structural testing using nonlinear systems analysis.

  2. Demand-supply dynamics in tourism systems: A spatio-temporal GIS analysis. The Alberta ski industry case study

    NASA Astrophysics Data System (ADS)

    Bertazzon, Stefania

    The present research focuses on the interaction of supply and demand of down-hill ski tourism in the province of Alberta. The main hypothesis is that the demand for skiing depends on the socio-economic and demographic characteristics of the population living in the province and outside it. A second, consequent hypothesis is that the development of ski resorts (supply) is a response to the demand for skiing. From the latter derives the hypothesis of a dynamic interaction between supply (ski resorts) and demand (skiers). Such interaction occurs in space, within a range determined by physical distance and the means available to overcome it. The above hypotheses implicitly define interactions that take place in space and evolve over time. The hypotheses are tested by temporal, spatial, and spatio-temporal regression models, using the best available data and the latest commercially available software. The main purpose of this research is to explore analytical techniques to model spatial, temporal, and spatio-temporal dynamics in the context of regional science. The completion of the present research has produced more significant contributions than was originally expected. Many of the unexpected contributions resulted from theoretical and applied needs arising from the application of spatial regression models. Spatial regression models are a new and largely under-applied technique. The models are fairly complex and a considerable amount of preparatory work is needed, prior to their specification and estimation. Most of this work is specific to the field of application. The originality of the solutions devised is increased by the lack of applications in the field of tourism. The scarcity of applications in other fields adds to their value for other applications. The estimation of spatio-temporal models has been only partially attained in the present research. This apparent limitation is due to the novelty and complexity of the analytical methods applied. This opens new

  3. Mapping the spatio-temporal structure of motor cortical LFP and spiking activities during reach-to-grasp movements

    PubMed Central

    Riehle, Alexa; Wirtssohn, Sarah; Grün, Sonja; Brochier, Thomas

    2013-01-01

    Grasping an object involves shaping the hand and fingers in relation to the object’s physical properties. Following object contact, it also requires a fine adjustment of grasp forces for secure manipulation. Earlier studies suggest that the control of hand shaping and grasp force involve partially segregated motor cortical networks. However, it is still unclear how information originating from these networks is processed and integrated. We addressed this issue by analyzing massively parallel signals from population measures (local field potentials, LFPs) and single neuron spiking activities recorded simultaneously during a delayed reach-to-grasp task, by using a 100-electrode array chronically implanted in monkey motor cortex. Motor cortical LFPs exhibit a large multi-component movement-related potential (MRP) around movement onset. Here, we show that the peak amplitude of each MRP component and its latency with respect to movement onset vary along the cortical surface covered by the array. Using a comparative mapping approach, we suggest that the spatio-temporal structure of the MRP reflects the complex physical properties of the reach-to-grasp movement. In addition, we explored how the spatio-temporal structure of the MRP relates to two other measures of neuronal activity: the temporal profile of single neuron spiking activity at each electrode site and the somatosensory receptive field properties of single neuron activities. We observe that the spatial representations of LFP and spiking activities overlap extensively and relate to the spatial distribution of proximal and distal representations of the upper limb. Altogether, these data show that, in motor cortex, a precise spatio-temporal pattern of activation is involved for the control of reach-to-grasp movements and provide some new insight about the functional organization of motor cortex during reaching and object manipulation. PMID:23543888

  4. Spatio-Temporal Measurements of Short Wind Water Waves

    NASA Astrophysics Data System (ADS)

    Rocholz, Roland; Jähne, Bernd

    2010-05-01

    Spatio-temporal measurements of wind-driven short-gravity capillary waves are reported for a wide range of experimental conditions, including wind, rain and surface slicks. The experiments were conducted in the Hamburg linear wind/wave flume in cooperation with the Institute of Oceanography at the University of Hamburg, Germany. Both components of the slope field were measured optically at a fetch of 14.4 m using a color imaging slope gauge (CISG) with a footprint of 223 x 104 mm and a resolution of 0.7 mm. The instrument was improved versus earlier versions (Jähne and Riemer (1990), Klinke (1992)) to achieve a sampling rate of 312.5 Hz, which now allows for the computation of 3D wavenumber-frequency spectra (see Rocholz (2008)). This made it possible to distinguish waves traveling in and against wind direction, which proved useful to distinguish wind waves from ring waves caused by rain drop impacts. Using a new calibration method it was possible to correct for the intrinsic nonlinearities of the instrument in the slope range up to ±1. In addition, the Modulation Transfer Function (MTF) was measured and employed for the restoration of the spectral amplitudes for wavenumbers in the range from 60 to 2300 rad/m. The spectra for pure wind conditions are generally consistent with previous measurements. But, the shape of the saturation spectra in the vicinity of k~1000 rad/m (i.e. pure capillary waves) stands in contradiction to former investigations where a sharp spectral cutoff (k^(-2) or k^(-3)) is commonly reported (e.g. Jähne and Riemer (1990)). This cutoff is reproduced by almost all semi-empirical models of the energy flux in the capillary range (e.g. Kudryavtsev et al. (1999), Apel (1994)). However, the new MTF corrected spectra show only a gentle decrease (between k^(-0.5) and k^(-1)) for k > 1000 rad/m. Therefore the question for the relative importance of different dissipation mechanisms might need a new assessment. References: J. R. Apel. An improved

  5. Spatio-temporal microseismicity clustering in the Cretan region

    NASA Astrophysics Data System (ADS)

    Becker, Dirk; Meier, Thomas; Rische, Martina; Bohnhoff, Marco; Harjes, Hans-Peter

    2006-09-01

    Spatio-temporal clustering of microseismicity in the central forearc of the Hellenic Subduction Zone in the area of Crete is investigated. Data for this study were gathered by temporary short period networks which were installed on the islands of Crete and Gavdos between 1996 and 2004. The similarity of waveforms is quantified systematically to identify clusters of microseismicity. Waveform similarities are calculated using an adaptive time window containing both the P- and S-wave onsets. The cluster detection is performed by applying a single linkage approach. Clusters are found in the interplate seismicity as well as in the intraplate seismicity of the continental crust in the region of the transtensional Ptolemy structure. The majority of the clusters are off the southern coast of Crete, in a region of elevated intraplate microseismic activity within the Aegean plate. Clusters in the Gavdos region are located at depths compatible with the plate interface while cluster activity in the region of the Ptolemy trench is distributed along a nearly vertical structure throughout the crust extending down to the plate interface. Most clusters show swarm-like behaviour with seismic activity confined to only a few hours or days, without a dominant earthquake and with a power law distribution of the interevent times. For the largest cluster, precise relocations of the events using travel time differences of P- and S-waves derived from waveform cross correlations reveal migration of the hypocenters. This cluster is located in the region of the Ptolemy trench and migration occurs along the strike of the trench at ˜ 500 m/day. Relocated hypocenters as well as subtle differences in the waveforms suggest an offset between the hypocenters and thus the activation of distinct patches on the rupture surface. The observed microseismicity patterns may be related to fluids being transported along the plate interface and escaping towards the surface in zones of crustal weakness (Ptolemy

  6. Ultrashort relativistic electron bunches and spatio-temporal radiation biology

    NASA Astrophysics Data System (ADS)

    Gauduel, Y. A.; Faure, J.; Malka, V.

    2008-08-01

    The intensive developments of terawatt Ti:Sa lasers permit to extend laser-plasma interactions into the relativistic regime, providing very-short electron or proton bunches. Experimental researches developed at the interface of laser physics and radiation biology, using the combination of sub-picosecond electron beams in the energy range 2-15 MeV with femtosecond near-IR optical pulses might conjecture the real-time investigation of penetrating radiation effects. A perfect synchronization between the particle beam (pump) and optical beam at 820 nm (probe) allows subpicosecond time resolution. This emerging domain involves high-energy radiation femtochemistry (HERF) for which the early spatial energy deposition is decisive for the prediction of cellular and tissular radiation damages. With vacuum-focused intensities of 2.7 x 1019 W cm-2 and a high energy electron total charge of 2.5 nC, radiation events have been investigated in the temporal range 10-13 - 10-10s. The early radiation effects of secondary electron on biomolecular sensors may be investigated inside sub-micrometric ionisation, considering the radial direction of Gaussian electron bunches. It is shown that short range electron-biosensor interactions lower than 10 A take place in nascent track structures triggered by penetrating radiation bunches. The very high dose delivery 1013 Gy s-1 performed with laser plasma accelerator may challenge our understanding of nanodosimetry on the time scale of molecular target motions. High-quality ultrashort penetrating radiation beams open promising opportunities for the development of spatio-temporal radiation biology, a crucial domain of cancer therapy, and would favor novating applications in nanomedicine such as highly-selective shortrange pro-drug activation.

  7. Modeling sediment transport as a spatio-temporal Markov process.

    NASA Astrophysics Data System (ADS)

    Heyman, Joris; Ancey, Christophe

    2014-05-01

    Despite a century of research about sediment transport by bedload occuring in rivers, its constitutive laws remain largely unknown. The proof being that our ability to predict mid-to-long term transported volumes within reasonable confidence interval is almost null. The intrinsic fluctuating nature of bedload transport may be one of the most important reasons why classical approaches fail. Microscopic probabilistic framework has the advantage of taking into account these fluctuations at the particle scale, to understand their effect on the macroscopic variables such as sediment flux. In this framework, bedload transport is seen as the random motion of particles (sand, gravel, pebbles...) over a two-dimensional surface (the river bed). The number of particles in motion, as well as their velocities, are random variables. In this talk, we show how a simple birth-death Markov model governing particle motion on a regular lattice accurately reproduces the spatio-temporal correlations observed at the macroscopic level. Entrainment, deposition and transport of particles by the turbulent fluid (air or water) are supposed to be independent and memoryless processes that modify the number of particles in motion. By means of the Poisson representation, we obtained a Fokker-Planck equation that is exactly equivalent to the master equation and thus valid for all cell sizes. The analysis shows that the number of moving particles evolves locally far from thermodynamic equilibrium. Several analytical results are presented and compared to experimental data. The index of dispersion (or variance over mean ratio) is proved to grow from unity at small scales to larger values at larger scales confirming the non Poisonnian behavior of bedload transport. Also, we study the one and two dimensional K-function, which gives the average number of moving particles located in a ball centered at a particle centroid function of the ball's radius.

  8. Spatio-Temporal Oscillations in Predator-Prey Systems

    NASA Astrophysics Data System (ADS)

    Tomé, T.; de Carvalho, K. Cristina

    2005-10-01

    In recent years a particularly great effort has been made to understand the role of space given by a spatial structure and local interactions in the characterization of the dynamics of competing biological species. Irreversible stochastic lattice models have been studied to mimic predator-prey systems with Markovian local rules based in the Lotka-Volterra model. One of the problems being studied is the stability of the temporal oscillations of the population of two-species systems-whether they are synchronized. Here we study the temporal oscillations of a two-species system by considering two probabilistic cellular automata defined in regular lattices where each site can be in three states: empty, occupied by a prey, or occupied by a predator. One of them, the isotropic model, has local rules similar to those of the contact process and try to mimic the Lotka-Volterra model mechanisms. The other automaton, the anisotropic model, is based in rules that are similar to the isotropic model, but a anisotropic neighborhood is considered. This model was introduced to explore the effect of spatial anisotropy in temporal oscillations. In fact, it has been pointed out that temporally periodic states can be stable in spatial anisotropic irreversible systems whose anisotropy is exploited conveniently. We show Monte Carlo simulations performed on square lattices for both automata. Our results indicate that, in the thermodynamic limit, oscillations can occur only at a local level, even in the anisotropic model. We observe that for given sets of control parameters a spatio-temporal oscillation occurs in the system. These structures are analyzed.

  9. Spatio-temporal representativeness of aerosol remote sensing observations

    NASA Astrophysics Data System (ADS)

    Schutgens, Nick; Gryspeerdt, Edward; Tsyro, Svetlana; Goto, Daisuke; Watson-Parris, Duncan; Weigum, Natalie; Schulz, Michael; Stier, Philip

    2016-04-01

    One characteristic of remote sensing observations is the strong intermittency with which they observe the same scene. Due to unfavourable conditions (due to e.g. low visible light, cloudiness or high surface albedo), sampling constraints (due to e.g. polar orbits) or instrument malfunction or maintenance, gaps in the observing record of hours to months exist. At the same time, satellite L3 products often are spatial aggregates over considerable distances (e.g. 1 by 1 degree). We study the impact of spatio-temporal sampling of observations on their representativeness: i.e. how well can satellite products represent the large scale (~ 100 by 100 km) aerosol field over periods of days, months, or years. This study was conducted by using diverse global and regional aerosol models as a truth and sub-sample them according to actual observations. In this way, we have been able to study the representativeness of different observing systems like MODIS, CALIOP and AERONET. Monthly and yearly averages allow serious sampling errors, that may still be present in multi-year climatologies due to recurring observing patterns. Even daily averages are affected as diurnal cycles can often not be observed. We discuss the implications these representativeness errors have for e.g. model evaluation or the construction of climatologies. We also assess similar representativeness issues in ground site in-situ observations from e.g. EMEP or IMPROVE and show that satellite datasets have distinct advantages due to their better spatial coverage provided temporal sampling is dealt with properly (i.e. through collocation of datasets). Finally, we briefly introduce a software tool (the Community Intercomparison Suite or CIS) that is designed to improve representativeness of datasets in intercomparion studies through aggregation and collocation of data.

  10. Automatic calibration of a parsimonious ecohydrological model in a sparse basin using the spatio-temporal variation of the NDVI

    NASA Astrophysics Data System (ADS)

    Ruiz-Pérez, Guiomar; Manfreda, Salvatore; Caylor, Kelly; Francés, Félix

    2016-04-01

    Drylands are extensive, covering 30% of the Earth's land surface and 50% of Africa. In these water-controlled areas, vegetation plays a key role in the water cycle. Ecohydrological models provide a tool to investigate the relationships between vegetation and water resources. However, studies in Africa often face the problem that many ecohydrological models have quite extensive parametrical requirements, while available data are scarce. Therefore, there is a need for searching new sources of information such as satellite data. The advantages of the use of satellite data in dry regions has been deeply demonstrated and studied. But, the use of this kind of data forces to introduce the concept of spatio-temporal information. In this context, we have to deal with the fact that there is a lack in terms of statistics and methodologies to incorporate the spatio-temporal data during the calibration and validation processes. This research wants to be a contribution in that sense. The used ecohydrological model was calibrated in the Upper Ewaso river basin in Kenya only using NDVI (Normalized Difference Vegetation Index) data from MODIS. An automatic calibration methodology based on Singular Value Decomposition techniques was proposed in order to calibrate the model taking into account the temporal variation and, also, the spatial pattern of the observed NDVI and the simulated LAI. The obtained results have demonstrated: (1) the satellite data is an extraordinary useful tool of information and it can be used to implement ecohydrological models in dry regions; (2) the proposed model calibrated only using satellite data is able to reproduce the vegetation dynamics (in time and in space) and, also, the observed discharge at the outlet point; and (3) the proposed automatic calibration methodology works satisfactorily and it includes spatio-temporal data, in other words, it takes into account the temporal variation and the spatial pattern of the analyzed data.

  11. A generic regional spatio-temporal co-occurrence pattern mining model: a case study for air pollution

    NASA Astrophysics Data System (ADS)

    Akbari, Mohammad; Samadzadegan, Farhad; Weibel, Robert

    2015-07-01

    Spatio-temporal co-occurrence patterns represent subsets of object types which are located together in both space and time. Existing algorithms for co-occurrence pattern mining cannot handle complex applications such as air pollution in several ways. First, the existing models assume that spatial relationships between objects are explicitly represented in the input data, while the new method allows extracting implicitly contained spatial relationships algorithmically. Second, instead of extracting co-occurrence patterns of only point data, the proposed method deals with different feature types that is with point, line and polygon data. Thus, it becomes relevant for a wider range of real applications. Third, it also allows mining a spatio-temporal co-occurrence pattern simultaneously in space and time so that it illustrates the evolution of patterns over space and time. Furthermore, the proposed algorithm uses a Voronoi tessellation to improve efficiency. To evaluate the proposed method, it was applied on a real case study for air pollution where the objective is to find correspondences of air pollution with other parameters which affect this phenomenon. The results of evaluation confirm not only the capability of this method for co-occurrence pattern mining of complex applications, but also it exhibits an efficient computational performance.

  12. Dying like rabbits: general determinants of spatio-temporal variability in survival.

    PubMed

    Tablado, Zulima; Revilla, Eloy; Palomares, Francisco

    2012-01-01

    1. Identifying general patterns of how and why survival rates vary across space and time is necessary to truly understand population dynamics of a species. However, this is not an easy task given the complexity and interactions of processes involved, and the interpopulation differences in main survival determinants. 2. Here, using European rabbits (Oryctolagus cuniculus) as a model and information from local studies, we investigated whether we could make inferences about trends and drivers of survival of a species that are generalizable to large spatio-temporal scales. To do this, we first focused on overall survival and then examined cause-specific mortalities, mainly predation and diseases, which may lead to those patterns. 3. Our results show that within the large-scale variability in rabbit survival, there exist general patterns that are explained by the integration of factors previously known to be important at the local level (i.e. age, climate, diseases, predation or density dependence). We found that both inter- and intrastudy survival rates increased in magnitude and decreased in variability as rabbits grow old, although this tendency was less pronounced in populations with epidemic diseases. Some causes leading to these higher mortalities in young rabbits could be the stronger effect of rainfall at those ages, as well as, other death sources like malnutrition or infanticide. 4. Predation is also greater for newborns and juveniles, especially in population without diseases. Apart from the effect of diseases, predation patterns also depended on factors, such as, density, season, and type and density of predators. Finally, we observed that infectious diseases also showed general relationships with climate, breeding (i.e. new susceptible rabbits) and age, although the association type varied between myxomatosis and rabbit haemorrhagic disease. 5. In conclusion, large-scale patterns of spatio-temporal variability in rabbit survival emerge from the combination

  13. Somatic growth dynamics of West Atlantic hawksbill sea turtles: a spatio-temporal perspective

    USGS Publications Warehouse

    Bjorndal, Karen A.; Chaloupka, Milani; Saba, Vincent S.; Diez, Carlos E.; van Dam, Robert P.; Krueger, Barry H.; Horrocks, Julia A.; Santos, Armando J. B.; Bellini, Cláudio; Marcovaldi, Maria A. G.; Nava, Mabel; Willis, Sue; Godley, Brendan J.; Gore, Shannon; Hawkes, Lucy A.; McGowan, Andrew; Witt, Matthew J.; Stringell, Thomas B.; Sanghera, Amdeep; Richardson, Peter B.; Broderick, Annette C.; Phillips, Quinton; Calosso, Marta C.; Claydon, John A. B.; Blumenthal, Janice; Moncada, Felix; Nodarse, Gonzalo; Medina, Yosvani; Dunbar, Stephen G.; Wood, Lawrence D.; Lagueux, Cynthia J.; Campbell, Cathi L.; Meylan, Anne B.; Meylan, Peter A.; Burns Perez, Virginia R.; Coleman, Robin A.; Strindberg, Samantha; Guzmán-H, Vicente; Hart, Kristen M.; Cherkiss, Michael S.; Hillis-Starr, Zandy; Lundgren, Ian; Boulon, Ralf H., Jr.; Connett, Stephen; Outerbridge, Mark E.; Bolten, Alan B.

    2016-01-01

    Somatic growth dynamics are an integrated response to environmental conditions. Hawksbill sea turtles (Eretmochelys imbricata) are long-lived, major consumers in coral reef habitats that move over broad geographic areas (hundreds to thousands of kilometers). We evaluated spatio-temporal effects on hawksbill growth dynamics over a 33-yr period and 24 study sites throughout the West Atlantic and explored relationships between growth dynamics and climate indices. We compiled the largest ever data set on somatic growth rates for hawksbills – 3541 growth increments from 1980 to 2013. Using generalized additive mixed model analyses, we evaluated 10 covariates, including spatial and temporal variation, that could affect growth rates. Growth rates throughout the region responded similarly over space and time. The lack of a spatial effect or spatio-temporal interaction and the very strong temporal effect reveal that growth rates in West Atlantic hawksbills are likely driven by region-wide forces. Between 1997 and 2013, mean growth rates declined significantly and steadily by 18%. Regional climate indices have significant relationships with annual growth rates with 0- or 1-yr lags: positive with the Multivariate El Niño Southern Oscillation Index (correlation = 0.99) and negative with Caribbean sea surface temperature (correlation = −0.85). Declines in growth rates between 1997 and 2013 throughout the West Atlantic most likely resulted from warming waters through indirect negative effects on foraging resources of hawksbills. These climatic influences are complex. With increasing temperatures, trajectories of decline of coral cover and availability in reef habitats of major prey species of hawksbills are not parallel. Knowledge of how choice of foraging habitats, prey selection, and prey abundance are affected by warming water temperatures is needed to understand how climate change will affect productivity of consumers that live in association with coral reefs. Main

  14. Spatio-temporal Trends in Hydrology at the Turkey Lakes Watershed: Insights from 35 Years of Monitoring

    NASA Astrophysics Data System (ADS)

    Webster, K. L.; Beall, F.; Semkin, R.

    2014-12-01

    The Turkey Lake Watershed (TLW) is located on the Precambrian Shield in central Ontario, Canada and has been the site of multi-discipline ecosystem research since 1979. The 10.5 km2 watershed is within the Great Lakes - St. Lawrence forest region with an uneven-aged tolerant hardwood forest having 90% of the basal area as mature to over-mature sugar maple. Podzolic soils and small forested wetlands have developed in the complex topography of the watershed where variable glacial till deposits occur over predominantly metamorphic silicate bedrock. Within the watershed, 13 first-order catchments that vary in size and topography have been monitored to elucidate spatio-temporal processes controlling run-off patterns. Over the 35 year period mean annual air temperatures at the TLW have increased at a rate of 0.75 oC per decade, with large inter-annual climate variability due to the influence of regional climate oscillations. As a result of warmer climate there has been a decline in annual export of water, as well as, changes in the seasonal distribution of runoff, Snowmelt has been occurring earlier and the number of zero-flow days are increasing. Declines in runoff were greater for catchments with steep slopes and less for those with shallow slopes and wetland areas. The large year to year variability in weather conditions made detecting the impacts on runoff from different harvesting treatments in 1997 difficult. These changes and fluctuations in water yields induced by fluctuating and changing climate have been shown to have had large consequences on element (carbon, nitrogen and sulphur) cycling within and export from catchments.

  15. A Spatio-Temporal Downscaler for Output From Numerical Models

    PubMed Central

    Berrocal, Veronica J.; Gelfand, Alan E.; Holland, David M.

    2010-01-01

    Often, in environmental data collection, data arise from two sources: numerical models and monitoring networks. The first source provides predictions at the level of grid cells, while the second source gives measurements at points. The first is characterized by full spatial coverage of the region of interest, high temporal resolution, no missing data but consequential calibration concerns. The second tends to be sparsely collected in space with coarser temporal resolution, often with missing data but, where recorded, provides, essentially, the true value. Accommodating the spatial misalignment between the two types of data is of fundamental importance for both improved predictions of exposure as well as for evaluation and calibration of the numerical model. In this article we propose a simple, fully model-based strategy to downscale the output from numerical models to point level. The static spatial model, specified within a Bayesian framework, regresses the observed data on the numerical model output using spatially-varying coefficients which are specified through a correlated spatial Gaussian process. As an example, we apply our method to ozone concentration data for the eastern U.S. and compare it to Bayesian melding (Fuentes and Raftery 2005) and ordinary kriging (Cressie 1993; Chilès and Delfiner 1999). Our results show that our method outperforms Bayesian melding in terms of computing speed and it is superior to both Bayesian melding and ordinary kriging in terms of predictive performance; predictions obtained with our method are better calibrated and predictive intervals have empirical coverage closer to the nominal values. Moreover, our model can be easily extended to accommodate for the temporal dimension. In this regard, we consider several spatio-temporal versions of the static model. We compare them using out-of-sample predictions of ozone concentration for the eastern U.S. for the period May 1–October 15, 2001. For the best choice, we present a

  16. Hydrograph transposition to ungauged basin accounting for spatio-temporal rainfall variability

    NASA Astrophysics Data System (ADS)

    de Lavenne, Alban; Cudennec, Christophe

    2013-04-01

    Lack of measurements is one of the main issues in hydrological modelling. However, neighbours and nested gauged catchment are precious sources of information to understand the catchment behaviours within one region. Extracting the maximum of information from those points of measurements, that could be then transposed to ungauged catchment, is still a great challenge. We propose a methodology to transpose hydrological information from gauged catchments to ungauged ones, in order to simulate streamflow hydrographs. It uses geomorphology-based hydrological modelling, which is particularly well adapted to ungauged basins thanks to its robustness, generality and flexibility. We develop a geomorphology-based model on the gauged catchment which has been built in order to capture the main behaviour of the basin. Its transfer function considers the different dynamics of the catchment through the combination of velocities and width functions. Moreover, the explicit structure of the model enables to easily create a map of isochrone areas describing the time to the outlet. Therefore, spatially distributed rainfall can then be split into those isochrone areas, permitting the transfer function to deal with spatio-temporal variability of rainfall. Once the model calibrated, using a particle swarm optimisation algorithm, its transfer function is inversed to assess the net rainfall time series. In this way, we obtained a standardized variable which is used to estimate discharge in ungauged basin. Therefore, net rainfall time series is transposed and convoluted on the ungauged catchment using its own transfer function. Spatio-temporal rainfall variability between basins is considered through a correction of this net rainfall time series. This correction is based on differences between mean gross rainfall observation among those two catchments. This methodology is applied on pairs of basins among 6 gauged basins (from 5km² to 316km²) located in Brittany, France. For the benefit of

  17. Disentangling multidimensional spatio-temporal data into their common and aberrant responses.

    PubMed

    Chang, Young Hwan; Korkola, James; Amin, Dhara N; Moasser, Mark M; Carmena, Jose M; Gray, Joe W; Tomlin, Claire J

    2015-01-01

    With the advent of high-throughput measurement techniques, scientists and engineers are starting to grapple with massive data sets and encountering challenges with how to organize, process and extract information into meaningful structures. Multidimensional spatio-temporal biological data sets such as time series gene expression with various perturbations over different cell lines, or neural spike trains across many experimental trials, have the potential to acquire insight about the dynamic behavior of the system. For this potential to be realized, we need a suitable representation to understand the data. A general question is how to organize the observed data into meaningful structures and how to find an appropriate similarity measure. A natural way of viewing these complex high dimensional data sets is to examine and analyze the large-scale features and then to focus on the interesting details. Since the wide range of experiments and unknown complexity of the underlying system contribute to the heterogeneity of biological data, we develop a new method by proposing an extension of Robust Principal Component Analysis (RPCA), which models common variations across multiple experiments as the lowrank component and anomalies across these experiments as the sparse component. We show that the proposed method is able to find distinct subtypes and classify data sets in a robust way without any prior knowledge by separating these common responses and abnormal responses. Thus, the proposed method provides us a new representation of these data sets which has the potential to help users acquire new insight from data. PMID:25901353

  18. Disentangling multidimensional spatio-temporal data into their common and aberrant responses

    SciTech Connect

    Chang, Young Hwan; Korkola, James; Amin, Dhara N.; Moasser, Mark M.; Carmena, Jose M.; Gray, Joe W.; Tomlin, Claire J.; Lisacek, Frederique

    2015-04-22

    With the advent of high-throughput measurement techniques, scientists and engineers are starting to grapple with massive data sets and encountering challenges with how to organize, process and extract information into meaningful structures. Multidimensional spatio-temporal biological data sets such as time series gene expression with various perturbations over different cell lines, or neural spike trains across many experimental trials, have the potential to acquire insight about the dynamic behavior of the system. For this potential to be realized, we need a suitable representation to understand the data. A general question is how to organize the observed data into meaningful structures and how to find an appropriate similarity measure. A natural way of viewing these complex high dimensional data sets is to examine and analyze the large-scale features and then to focus on the interesting details. Since the wide range of experiments and unknown complexity of the underlying system contribute to the heterogeneity of biological data, we develop a new method by proposing an extension of Robust Principal Component Analysis (RPCA), which models common variations across multiple experiments as the lowrank component and anomalies across these experiments as the sparse component. We show that the proposed method is able to find distinct subtypes and classify data sets in a robust way without any prior knowledge by separating these common responses and abnormal responses. Thus, the proposed method provides us a new representation of these data sets which has the potential to help users acquire new insight from data.

  19. Spatio-temporal source modeling of evoked potentials to acoustic and cochlear implant stimulation.

    PubMed

    Ponton, C W; Don, M; Waring, M D; Eggermont, J J; Masuda, A

    1993-01-01

    Spatio-temporal source modeling (STSM) of event-related potentials was used to estimate the loci and characteristics of cortical activity evoked by acoustic stimulation in normal hearing subjects and by electrical stimulation in cochlear implant (CI) subjects. In both groups of subjects, source solutions obtained for the N1/P2 complex were located in the superior half of the temporal lobe in the head model. Results indicate that it may be possible to determine whether stimulation of different implant channels activates different regions of cochleotopically organized auditory cortex. Auditory system activation can be assessed further by examining the characteristics of the source wave forms. For example, subjects whose cochlear implants provided auditory sensations and normal hearing subjects had similar source activity. In contrast, a subject in whom implant activation evoked eyelid movements exhibited different source wave forms. STSM analysis may provide an electrophysiological technique for guiding rehabilitation programs based on the capabilities of the individual implant user and for disentangling the complex response patterns to electrical stimulation of the brain. PMID:7694834

  20. A spatio-temporal detective quantum efficiency and its application to fluoroscopic systems

    SciTech Connect

    Friedman, S. N.; Cunningham, I. A.

    2010-11-15

    Purpose: Fluoroscopic x-ray imaging systems are used extensively in spatio-temporal detection tasks and require a spatio-temporal description of system performance. No accepted metric exists that describes spatio-temporal fluoroscopic performance. The detective quantum efficiency (DQE) is a metric widely used in radiography to quantify system performance and as a surrogate measure of patient ''dose efficiency.'' It has been applied previously to fluoroscopic systems with the introduction of a temporal correction factor. However, the use of a temporally-corrected DQE does not provide system temporal information and it is only valid under specific conditions, many of which are not likely to be satisfied by suboptimal systems. The authors propose a spatio-temporal DQE that describes performance in both space and time and is applicable to all spatio-temporal quantum-based imaging systems. Methods: The authors define a spatio-temporal DQE (two spatial-frequency axes and one temporal-frequency axis) in terms of a small-signal spatio-temporal modulation transfer function (MTF) and spatio-temporal noise power spectrum (NPS). Measurements were made on an x-ray image intensifier-based bench-top system using continuous fluoroscopy with an RQA-5 beam at 3.9 {mu}R/frame and hardened 50 kVp beam (0.8 mm Cu filtration added) at 1.9 {mu}R/frame. Results: A zero-frequency DQE value of 0.64 was measured under both conditions. Nonideal performance was noted at both larger spatial and temporal frequencies; DQE values decreased by {approx}50% at the cutoff temporal frequency of 15 Hz. Conclusions: The spatio-temporal DQE enables measurements of decreased temporal system performance at larger temporal frequencies analogous to previous measurements of decreased (spatial) performance. This marks the first time that system performance and dose efficiency in both space and time have been measured on a fluoroscopic system using DQE and is the first step toward the generalized use of DQE on

  1. Spatio-Temporal Dynamics of Yeast Mitochondrial Biogenesis: Transcriptional and Post-Transcriptional mRNA Oscillatory Modules

    PubMed Central

    Lelandais, Gaëlle; Saint-Georges, Yann; Geneix, Colette; Al-Shikhley, Liza; Dujardin, Geneviève; Jacq, Claude

    2009-01-01

    Examples of metabolic rhythms have recently emerged from studies of budding yeast. High density microarray analyses have produced a remarkably detailed picture of cycling gene expression that could be clustered according to metabolic functions. We developed a model-based approach for the decomposition of expression to analyze these data and to identify functional modules which, expressed sequentially and periodically, contribute to the complex and intricate mitochondrial architecture. This approach revealed that mitochondrial spatio-temporal modules are expressed during periodic spikes and specific cellular localizations, which cover the entire oscillatory period. For instance, assembly factors (32 genes) and translation regulators (47 genes) are expressed earlier than the components of the amino-acid synthesis pathways (31 genes). In addition, we could correlate the expression modules identified with particular post-transcriptional properties. Thus, mRNAs of modules expressed “early” are mostly translated in the vicinity of mitochondria under the control of the Puf3p mRNA-binding protein. This last spatio-temporal module concerns mostly mRNAs coding for basic elements of mitochondrial construction: assembly and regulatory factors. Prediction that unknown genes from this module code for important elements of mitochondrial biogenesis is supported by experimental evidence. More generally, these observations underscore the importance of post-transcriptional processes in mitochondrial biogenesis, highlighting close connections between nuclear transcription and cytoplasmic site-specific translation. PMID:19521515

  2. Bayesian Spatio-Temporal Analysis and Geospatial Risk Factors of Human Monocytic Ehrlichiosis

    PubMed Central

    Raghavan, Ram K.; Neises, Daniel; Goodin, Douglas G.; Andresen, Daniel A.; Ganta, Roman R.

    2014-01-01

    Variations in spatio-temporal patterns of Human Monocytic Ehrlichiosis (HME) infection in the state of Kansas, USA were examined and the relationship between HME relative risk and various environmental, climatic and socio-economic variables were evaluated. HME data used in the study was reported to the Kansas Department of Health and Environment between years 2005–2012, and geospatial variables representing the physical environment [National Land cover/Land use, NASA Moderate Resolution Imaging Spectroradiometer (MODIS)], climate [NASA MODIS, Prediction of Worldwide Renewable Energy (POWER)], and socio-economic conditions (US Census Bureau) were derived from publicly available sources. Following univariate screening of candidate variables using logistic regressions, two Bayesian hierarchical models were fit; a partial spatio-temporal model with random effects and a spatio-temporal interaction term, and a second model that included additional covariate terms. The best fitting model revealed that spatio-temporal autocorrelation in Kansas increased steadily from 2005–2012, and identified poverty status, relative humidity, and an interactive factor, ‘diurnal temperature range x mixed forest area’ as significant county-level risk factors for HME. The identification of significant spatio-temporal pattern and new risk factors are important in the context of HME prevention, for future research in the areas of ecology and evolution of HME, and as well as climate change impacts on tick-borne diseases. PMID:24992684

  3. Bayesian spatio-temporal analysis and geospatial risk factors of human monocytic ehrlichiosis.

    PubMed

    Raghavan, Ram K; Neises, Daniel; Goodin, Douglas G; Andresen, Daniel A; Ganta, Roman R

    2014-01-01

    Variations in spatio-temporal patterns of Human Monocytic Ehrlichiosis (HME) infection in the state of Kansas, USA were examined and the relationship between HME relative risk and various environmental, climatic and socio-economic variables were evaluated. HME data used in the study was reported to the Kansas Department of Health and Environment between years 2005-2012, and geospatial variables representing the physical environment [National Land cover/Land use, NASA Moderate Resolution Imaging Spectroradiometer (MODIS)], climate [NASA MODIS, Prediction of Worldwide Renewable Energy (POWER)], and socio-economic conditions (US Census Bureau) were derived from publicly available sources. Following univariate screening of candidate variables using logistic regressions, two Bayesian hierarchical models were fit; a partial spatio-temporal model with random effects and a spatio-temporal interaction term, and a second model that included additional covariate terms. The best fitting model revealed that spatio-temporal autocorrelation in Kansas increased steadily from 2005-2012, and identified poverty status, relative humidity, and an interactive factor, 'diurnal temperature range x mixed forest area' as significant county-level risk factors for HME. The identification of significant spatio-temporal pattern and new risk factors are important in the context of HME prevention, for future research in the areas of ecology and evolution of HME, and as well as climate change impacts on tick-borne diseases. PMID:24992684

  4. A Spatio-Temporally Explicit Random Encounter Model for Large-Scale Population Surveys.

    PubMed

    Jousimo, Jussi; Ovaskainen, Otso

    2016-01-01

    Random encounter models can be used to estimate population abundance from indirect data collected by non-invasive sampling methods, such as track counts or camera-trap data. The classical Formozov-Malyshev-Pereleshin (FMP) estimator converts track counts into an estimate of mean population density, assuming that data on the daily movement distances of the animals are available. We utilize generalized linear models with spatio-temporal error structures to extend the FMP estimator into a flexible Bayesian modelling approach that estimates not only total population size, but also spatio-temporal variation in population density. We also introduce a weighting scheme to estimate density on habitats that are not covered by survey transects, assuming that movement data on a subset of individuals is available. We test the performance of spatio-temporal and temporal approaches by a simulation study mimicking the Finnish winter track count survey. The results illustrate how the spatio-temporal modelling approach is able to borrow information from observations made on neighboring locations and times when estimating population density, and that spatio-temporal and temporal smoothing models can provide improved estimates of total population size compared to the FMP method. PMID:27611683

  5. Spatio-temporal Hotelling observer for signal detection from image sequences

    PubMed Central

    Caucci, Luca; Barrett, Harrison H.; Rodríguez, Jeffrey J.

    2010-01-01

    Detection of signals in noisy images is necessary in many applications, including astronomy and medical imaging. The optimal linear observer for performing a detection task, called the Hotelling observer in the medical literature, can be regarded as a generalization of the familiar prewhitening matched filter. Performance on the detection task is limited by randomness in the image data, which stems from randomness in the object, randomness in the imaging system, and randomness in the detector outputs due to photon and readout noise, and the Hotelling observer accounts for all of these effects in an optimal way. If multiple temporal frames of images are acquired, the resulting data set is a spatio-temporal random process, and the Hotelling observer becomes a spatio-temporal linear operator. This paper discusses the theory of the spatio-temporal Hotelling observer and estimation of the required spatio-temporal covariance matrices. It also presents a parallel implementation of the observer on a cluster of Sony PLAYSTATION 3 gaming consoles. As an example, we consider the use of the spatio-temporal Hotelling observer for exoplanet detection. PMID:19550494

  6. Spatio-temporal Hotelling observer for signal detection from image sequences.

    PubMed

    Caucci, Luca; Barrett, Harrison H; Rodriguez, Jeffrey J

    2009-06-22

    Detection of signals in noisy images is necessary in many applications, including astronomy and medical imaging. The optimal linear observer for performing a detection task, called the Hotelling observer in the medical literature, can be regarded as a generalization of the familiar prewhitening matched filter. Performance on the detection task is limited by randomness in the image data, which stems from randomness in the object, randomness in the imaging system, and randomness in the detector outputs due to photon and readout noise, and the Hotelling observer accounts for all of these effects in an optimal way. If multiple temporal frames of images are acquired, the resulting data set is a spatio-temporal random process, and the Hotelling observer becomes a spatio-temporal linear operator. This paper discusses the theory of the spatio-temporal Hotelling observer and estimation of the required spatio-temporal covariance matrices. It also presents a parallel implementation of the observer on a cluster of Sony PLAYSTATION 3 gaming consoles. As an example, we consider the use of the spatio-temporal Hotelling observer for exoplanet detection. PMID:19550494

  7. Retrieval of Spatio-temporal Distributions of Particle Parameters from Multiwavelength Lidar Measurements Using the Linear Estimation Technique and Comparison with AERONET

    NASA Technical Reports Server (NTRS)

    Veselovskii, I.; Whiteman, D. N.; Korenskiy, M.; Kolgotin, A.; Dubovik, O.; Perez-Ramirez, D.; Suvorina, A.

    2013-01-01

    The results of the application of the linear estimation technique to multiwavelength Raman lidar measurements performed during the summer of 2011 in Greenbelt, MD, USA, are presented. We demonstrate that multiwavelength lidars are capable not only of providing vertical profiles of particle properties but also of revealing the spatio-temporal evolution of aerosol features. The nighttime 3 Beta + 1 alpha lidar measurements on 21 and 22 July were inverted to spatio-temporal distributions of particle microphysical parameters, such as volume, number density, effective radius and the complex refractive index. The particle volume and number density show strong variation during the night, while the effective radius remains approximately constant. The real part of the refractive index demonstrates a slight decreasing tendency in a region of enhanced extinction coefficient. The linear estimation retrievals are stable and provide time series of particle parameters as a function of height at 4 min resolution. AERONET observations are compared with multiwavelength lidar retrievals showing good agreement.

  8. Kabbalah: On Spatio-Temporal Database Visualization With Historical Events: A Case Study of History Flow of Chia-Yi Beimen Station

    NASA Astrophysics Data System (ADS)

    Hsu, T. W.; Chiou, S. C.; Lee, J. H.

    2015-08-01

    This system is made for researchers who study pattern of city or spatial transformation by using computational way to interpret data logically. In order to make use of all historical data with GIS in system, an exact metadata is necessary and needed to build first. The Cubism project is aimed to presume how different historical data normalized to become information in spatio-temporal database. To make temporal map have higher capability with presentation of history context.

  9. Identifying regional cardiac abnormalities from myocardial strains using nontracking-based strain estimation and spatio-temporal tensor analysis.

    PubMed

    Qian, Zhen; Liu, Qingshan; Metaxas, Dimitris N; Axel, Leon

    2011-12-01

    Myocardial strain is a critical indicator of many cardiac diseases and dysfunctions. The goal of this paper is to extract and use the myocardial strain pattern from tagged magnetic resonance imaging (MRI) to identify and localize regional abnormal cardiac function in human subjects. In order to extract the myocardial strains from the tagged images, we developed a novel nontracking-based strain estimation method for tagged MRI. This method is based on the direct extraction of tag deformation, and therefore avoids some limitations of conventional displacement or tracking-based strain estimators. Based on the extracted spatio-temporal strain patterns, we have also developed a novel tensor-based classification framework that better conserves the spatio-temporal structure of the myocardial strain pattern than conventional vector-based classification algorithms. In addition, the tensor-based projection function keeps more of the information of the original feature space, so that abnormal tensors in the subspace can be back-projected to reveal the regional cardiac abnormality in a more physically meaningful way. We have tested our novel methods on 41 human image sequences, and achieved a classification rate of 87.80%. The regional abnormalities recovered from our algorithm agree well with the patient's pathology and clinical image interpretation, and provide a promising avenue for regional cardiac function analysis. PMID:21606022

  10. Spatio-temporal variability of the deposited radioactive materials in forest environments after the Fukushima Daiichi NPP accident

    NASA Astrophysics Data System (ADS)

    Kato, H.; Onda, Y.; Komatsu, Y.; Yoda, H.

    2012-12-01

    Soil, vegetation and other ecological compartments are expected to be highly contaminated by the deposited radionuclides after the Fukushima Daiichi nuclear power plant (NPP) accident triggered by a magnitude 9.1 earthquake and the resulting tsunami on Marchi 11, 2011. Study site have been established in Yamakiya district, Kawamata Town, Fukushima prefecture, located about 35 km from Fukushima power plant, and designated as the evacuated zone. The total deposition of radioactive materials at the study site ranged from 0.02to >10 M Bq/m2 for Cs-137. The mature cedar, young cedar, and broad-leaf stands were selected as experimental site for the monitoring of spatio-temporal variability of the deposited radionuclides after the accidental release of radioactive materials. In order to measure the vertical distribution of radioactivity in forest, a tower with the same height of tree have been established at each experimental site. The measurement of radioactivity by using a portable Ge gamma-ray detector (Detective-DX-100, Ortec) and radionuclide analysis of leaf samples at different height revealed that a large proportion of radionuclides which deposited on forest were trapped by canopies of the cedar forests. In contrast, in the broad-leaf forest highest radioactivity was found at the forest floor. Furthermore, spatio-temporal variability of radioactivity at the forest floor indicated that huge amount of caesium still remains on the canopy of coniferous forest, and subsequently transfers to forest floor in association with throughfall, stemflow, and litter fall.

  11. The Homeobox Genes of Caenorhabditis elegans and Insights into Their Spatio-Temporal Expression Dynamics during Embryogenesis.

    PubMed

    Hench, Jürgen; Henriksson, Johan; Abou-Zied, Akram M; Lüppert, Martin; Dethlefsen, Johan; Mukherjee, Krishanu; Tong, Yong Guang; Tang, Lois; Gangishetti, Umesh; Baillie, David L; Bürglin, Thomas R

    2015-01-01

    Homeobox genes play crucial roles for the development of multicellular eukaryotes. We have generated a revised list of all homeobox genes for Caenorhabditis elegans and provide a nomenclature for the previously unnamed ones. We show that, out of 103 homeobox genes, 70 are co-orthologous to human homeobox genes. 14 are highly divergent, lacking an obvious ortholog even in other Caenorhabditis species. One of these homeobox genes encodes 12 homeodomains, while three other highly divergent homeobox genes encode a novel type of double homeodomain, termed HOCHOB. To understand how transcription factors regulate cell fate during development, precise spatio-temporal expression data need to be obtained. Using a new imaging framework that we developed, Endrov, we have generated spatio-temporal expression profiles during embryogenesis of over 60 homeobox genes, as well as a number of other developmental control genes using GFP reporters. We used dynamic feedback during recording to automatically adjust the camera exposure time in order to increase the dynamic range beyond the limitations of the camera. We have applied the new framework to examine homeobox gene expression patterns and provide an analysis of these patterns. The methods we developed to analyze and quantify expression data are not only suitable for C. elegans, but can be applied to other model systems or even to tissue culture systems. PMID:26024448

  12. The Homeobox Genes of Caenorhabditis elegans and Insights into Their Spatio-Temporal Expression Dynamics during Embryogenesis

    PubMed Central

    Abou-Zied, Akram M.; Lüppert, Martin; Dethlefsen, Johan; Mukherjee, Krishanu; Tong, Yong Guang; Tang, Lois; Gangishetti, Umesh; Baillie, David L.; Bürglin, Thomas R.

    2015-01-01

    Homeobox genes play crucial roles for the development of multicellular eukaryotes. We have generated a revised list of all homeobox genes for Caenorhabditis elegans and provide a nomenclature for the previously unnamed ones. We show that, out of 103 homeobox genes, 70 are co-orthologous to human homeobox genes. 14 are highly divergent, lacking an obvious ortholog even in other Caenorhabditis species. One of these homeobox genes encodes 12 homeodomains, while three other highly divergent homeobox genes encode a novel type of double homeodomain, termed HOCHOB. To understand how transcription factors regulate cell fate during development, precise spatio-temporal expression data need to be obtained. Using a new imaging framework that we developed, Endrov, we have generated spatio-temporal expression profiles during embryogenesis of over 60 homeobox genes, as well as a number of other developmental control genes using GFP reporters. We used dynamic feedback during recording to automatically adjust the camera exposure time in order to increase the dynamic range beyond the limitations of the camera. We have applied the new framework to examine homeobox gene expression patterns and provide an analysis of these patterns. The methods we developed to analyze and quantify expression data are not only suitable for C. elegans, but can be applied to other model systems or even to tissue culture systems. PMID:26024448

  13. Quantifying the spatio-temporal dynamics of woody plant encroachment using an integrative remote sensing, GIS, and spatial modeling approach

    NASA Astrophysics Data System (ADS)

    Buenemann, Michaela

    Despite a longstanding universal concern about and intensive research into woody plant encroachment (WPE)---the replacement of grasslands by shrub- and woodlands---our accumulated understanding of the process has either not been translated into sustainable rangeland management strategies or with only limited success. In order to increase our scientific insights into WPE, move us one step closer toward the sustainable management of rangelands affected by or vulnerable to the process, and identify needs for a future global research agenda, this dissertation presents an unprecedented critical, qualitative and quantitative assessment of the existing literature on the topic and evaluates the utility of an integrative remote sensing, GIS, and spatial modeling approach for quantifying the spatio-temporal dynamics of WPE. Findings from this research suggest that gaps in our current understanding of WPE and difficulties in devising sustainable rangeland management strategies are in part due to the complex spatio-temporal web of interactions between geoecological and anthropogenic variables involved in the process as well as limitations of presently available data and techniques. However, an in-depth analysis of the published literature also reveals that aforementioned problems are caused by two further crucial factors: the absence of information acquisition and reporting standards and the relative lack of long-term, large-scale, multi-disciplinary research efforts. The methodological framework proposed in this dissertation yields data that are easily standardized according to various criteria and facilitates the integration of spatially explicit data generated by a variety of studies. This framework may thus provide one common ground for scientists from a diversity of fields. Also, it has utility for both research and management. Specifically, this research demonstrates that the application of cutting-edge remote sensing techniques (Multiple Endmember Spectral Mixture

  14. NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data.

    PubMed

    Kasabov, Nikola K

    2014-04-01

    The brain functions as a spatio-temporal information processing machine. Spatio- and spectro-temporal brain data (STBD) are the most commonly collected data for measuring brain response to external stimuli. An enormous amount of such data has been already collected, including brain structural and functional data under different conditions, molecular and genetic data, in an attempt to make a progress in medicine, health, cognitive science, engineering, education, neuro-economics, Brain-Computer Interfaces (BCI), and games. Yet, there is no unifying computational framework to deal with all these types of data in order to better understand this data and the processes that generated it. Standard machine learning techniques only partially succeeded and they were not designed in the first instance to deal with such complex data. Therefore, there is a need for a new paradigm to deal with STBD. This paper reviews some methods of spiking neural networks (SNN) and argues that SNN are suitable for the creation of a unifying computational framework for learning and understanding of various STBD, such as EEG, fMRI, genetic, DTI, MEG, and NIRS, in their integration and interaction. One of the reasons is that SNN use the same computational principle that generates STBD, namely spiking information processing. This paper introduces a new SNN architecture, called NeuCube, for the creation of concrete models to map, learn and understand STBD. A NeuCube model is based on a 3D evolving SNN that is an approximate map of structural and functional areas of interest of the brain related to the modeling STBD. Gene information is included optionally in the form of gene regulatory networks (GRN) if this is relevant to the problem and the data. A NeuCube model learns from STBD and creates connections between clusters of neurons that manifest chains (trajectories) of neuronal activity. Once learning is applied, a NeuCube model can reproduce these trajectories, even if only part of the input

  15. Similarity-Based Fusion of MEG and fMRI Reveals Spatio-Temporal Dynamics in Human Cortex During Visual Object Recognition.

    PubMed

    Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude

    2016-08-01

    Every human cognitive function, such as visual object recognition, is realized in a complex spatio-temporal activity pattern in the brain. Current brain imaging techniques in isolation cannot resolve the brain's spatio-temporal dynamics, because they provide either high spatial or temporal resolution but not both. To overcome this limitation, we developed an integration approach that uses representational similarities to combine measurements of magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) to yield a spatially and temporally integrated characterization of neuronal activation. Applying this approach to 2 independent MEG-fMRI data sets, we observed that neural activity first emerged in the occipital pole at 50-80 ms, before spreading rapidly and progressively in the anterior direction along the ventral and dorsal visual streams. Further region-of-interest analyses established that dorsal and ventral regions showed MEG-fMRI correspondence in representations later than early visual cortex. Together, these results provide a novel and comprehensive, spatio-temporally resolved view of the rapid neural dynamics during the first few hundred milliseconds of object vision. They further demonstrate the feasibility of spatially unbiased representational similarity-based fusion of MEG and fMRI, promising new insights into how the brain computes complex cognitive functions. PMID:27235099

  16. Similarity-Based Fusion of MEG and fMRI Reveals Spatio-Temporal Dynamics in Human Cortex During Visual Object Recognition

    PubMed Central

    Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude

    2016-01-01

    Every human cognitive function, such as visual object recognition, is realized in a complex spatio-temporal activity pattern in the brain. Current brain imaging techniques in isolation cannot resolve the brain's spatio-temporal dynamics, because they provide either high spatial or temporal resolution but not both. To overcome this limitation, we developed an integration approach that uses representational similarities to combine measurements of magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) to yield a spatially and temporally integrated characterization of neuronal activation. Applying this approach to 2 independent MEG–fMRI data sets, we observed that neural activity first emerged in the occipital pole at 50–80 ms, before spreading rapidly and progressively in the anterior direction along the ventral and dorsal visual streams. Further region-of-interest analyses established that dorsal and ventral regions showed MEG–fMRI correspondence in representations later than early visual cortex. Together, these results provide a novel and comprehensive, spatio-temporally resolved view of the rapid neural dynamics during the first few hundred milliseconds of object vision. They further demonstrate the feasibility of spatially unbiased representational similarity-based fusion of MEG and fMRI, promising new insights into how the brain computes complex cognitive functions. PMID:27235099

  17. Taming of Modulation Instability by Spatio-Temporal Modulation of the Potential

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Herrero, R.; Botey, M.; Staliunas, K.

    2015-08-01

    Spontaneous pattern formation in a variety of spatially extended nonlinear systems always occurs through a modulation instability, sometimes called Turing instability: the homogeneous state of the system becomes unstable with respect to growing modulation modes. Therefore, the manipulation of the modulation instability is of primary importance in controlling and manipulating the character of spatial patterns initiated by that instability. We show that a spatio-temporal periodic modulation of the potential of spatially extended systems results in a modification of its pattern forming instability. Depending on the modulation character the instability can be partially suppressed, can change its spectrum (for instance the long wave instability can transform into short wave instability), can split into two, or can be completely eliminated. The latter result is of special practical interest, as it can be used to stabilize the intrinsically unstable system. The result bears general character, as it is shown here on a universal model of the Complex Ginzburg-Landau equation in one and two spatial dimensions (and time). The physical mechanism of the instability suppression can be applied to a variety of intrinsically unstable dissipative systems, like self-focusing lasers, reaction-diffusion systems, as well as in unstable conservative systems, like attractive Bose Einstein condensates.

  18. Spatio-temporal Kinetics of Nontypeable Haemophilus influenzae(NTHi) Biofilms

    NASA Astrophysics Data System (ADS)

    Dhanji, Aleya; Rosas, Lucia; Ray, William; Jayaprakash, Ciriyam; Bakaletz, Lauren; Das, Jayajit

    2014-03-01

    Bacteria can form complex spatial structures known as biofilms. Biofilm formation is frequently associated with chronic infections due to the greatly enhanced antibiotic resistance of resident bacteria. However, our understanding of the role of basic processes, such as bacteria replication and resource consumption, in controlling the development and temporal change of the spatial structure remains rudimentary. Here, we examine the growth of cultured biofilms by the opportunistic pathogen NTHi. Through spatial information extracted from confocal microscopy images, we quantitatively characterize the biofilm structure as it evolves over time. We find that the equal-time height-height pair correlation function decreases with distance and scales with time for small length scales. Furthermore, both the surface roughness and the correlation length perpendicular to the surface growth direction increase with time initially and then decrease. We construct a spatially resolved agent based model beginning with the simplest possible case of a single bacteria species Fisher-Kolmogorov-Petrovsky-Piscounov equation. We show that it cannot describe the observed spatio-temporal behavior and suggest an improved two-species model that better captures the dynamics of the NTHi system. Supported by The Research Institute at Nationwide Children's Hospital.

  19. Characterizing the spatio-temporal and energy-dependent response of riometer absorption to particle precipitation

    NASA Astrophysics Data System (ADS)

    Kellerman, Adam; Makarevich, Roman; Spanswick, Emma; Donovan, Eric; Shprits, Yuri

    2016-07-01

    Energetic electrons in the 10's of keV range precipitate to the upper D- and lower E-region ionosphere, and are responsible for enhanced ionization. The same particles are important in the inner magnetosphere, as they provide a source of energy for waves, and thus relate to relativistic electron enhancements in Earth's radiation belts.In situ observations of plasma populations and waves are usually limited to a single point, which complicates temporal and spatial analysis. Also, the lifespan of satellite missions is often limited to several years which does not allow one to infer long-term climatology of particle precipitation, important for affecting ionospheric conditions at high latitudes. Multi-point remote sensing of the ionospheric plasma conditions can provide a global view of both ionospheric and magnetospheric conditions, and the coupling between magnetospheric and ionospheric phenomena can be examined on time-scales that allow comprehensive statistical analysis. In this study we utilize multi-point riometer measurements in conjunction with in situ satellite data, and physics-based modeling to investigate the spatio-temporal and energy-dependent response of riometer absorption. Quantifying this relationship may be a key to future advancements in our understanding of the complex D-region ionosphere, and may lead to enhanced specification of auroral precipitation both during individual events and over climatological time-scales.

  20. Taming of Modulation Instability by Spatio-Temporal Modulation of the Potential

    PubMed Central

    Kumar, S.; Herrero, R.; Botey, M.; Staliunas, K.

    2015-01-01

    Spontaneous pattern formation in a variety of spatially extended nonlinear systems always occurs through a modulation instability, sometimes called Turing instability: the homogeneous state of the system becomes unstable with respect to growing modulation modes. Therefore, the manipulation of the modulation instability is of primary importance in controlling and manipulating the character of spatial patterns initiated by that instability. We show that a spatio-temporal periodic modulation of the potential of spatially extended systems results in a modification of its pattern forming instability. Depending on the modulation character the instability can be partially suppressed, can change its spectrum (for instance the long wave instability can transform into short wave instability), can split into two, or can be completely eliminated. The latter result is of special practical interest, as it can be used to stabilize the intrinsically unstable system. The result bears general character, as it is shown here on a universal model of the Complex Ginzburg-Landau equation in one and two spatial dimensions (and time). The physical mechanism of the instability suppression can be applied to a variety of intrinsically unstable dissipative systems, like self-focusing lasers, reaction-diffusion systems, as well as in unstable conservative systems, like attractive Bose Einstein condensates. PMID:26286250

  1. Spatio-temporal evolution of uranium emission in laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Harilal, S. S.; Diwakar, P. K.; LaHaye, N. L.; Phillips, M. C.

    2015-09-01

    Laser-induced plasma spectroscopy provides much impetus as a nuclear forensics tool because of its capability of standoff detection and real-time analysis. However, special nuclear materials like U, Pu, etc. provide very crowded spectra and, when combined with shifts and broadening of spectral lines caused by ambient atmospheric operation, generate a complex plasma spectroscopy system. We explored the spatio-temporal evolution of excited U species in a laser ablation plume under various ambient pressure conditions. Plasmas were generated using 1064 nm, 6 ns pulses from a Nd:YAG laser on a U containing glass matrix target. The role of air ambient pressure on U line intensities, signal-to-background ratios, and linewidths were investigated. Spatially and temporally resolved optical time-of-flight emission spectroscopy of excited uranium atoms were used for studying the expansion hydrodynamics and the persistence of U species in the plume. Our results showed that U emission linewidths increased with pressure due to increased Stark broadening; however, the broadening was less than that for Ca. A comparison with U emission features in the presence of an inert gas showed the persistence of U species in plasmas in ambient air is significantly reduced; this could be due to oxide and other reactive species formation.

  2. Taming of Modulation Instability by Spatio-Temporal Modulation of the Potential.

    PubMed

    Kumar, S; Herrero, R; Botey, M; Staliunas, K

    2015-01-01

    Spontaneous pattern formation in a variety of spatially extended nonlinear systems always occurs through a modulation instability, sometimes called Turing instability: the homogeneous state of the system becomes unstable with respect to growing modulation modes. Therefore, the manipulation of the modulation instability is of primary importance in controlling and manipulating the character of spatial patterns initiated by that instability. We show that a spatio-temporal periodic modulation of the potential of spatially extended systems results in a modification of its pattern forming instability. Depending on the modulation character the instability can be partially suppressed, can change its spectrum (for instance the long wave instability can transform into short wave instability), can split into two, or can be completely eliminated. The latter result is of special practical interest, as it can be used to stabilize the intrinsically unstable system. The result bears general character, as it is shown here on a universal model of the Complex Ginzburg-Landau equation in one and two spatial dimensions (and time). The physical mechanism of the instability suppression can be applied to a variety of intrinsically unstable dissipative systems, like self-focusing lasers, reaction-diffusion systems, as well as in unstable conservative systems, like attractive Bose Einstein condensates. PMID:26286250

  3. Proposal for a Non-Interceptive Spatio-Temporal Correlation Monitor

    SciTech Connect

    Maxwell, T.; Piot, P.; /Northern Illinois U. /Fermilab

    2009-05-01

    Designs toward TeV-range electron-positron linear colliders include a non-zero crossing angle colliding scheme at the interaction point to mitigate instabilities and possible background. Maximizing the luminosity when operating with non-zero crossing angles requires the use of 'crab' cavities to impart a well-defined spatio-temporal correlation. In this paper we propose a novel noninterceptive diagnostic capable of measuring and monitoring the spatio-temporal correlation, i.e. the transverse position of sub-picosecond time slices, within bunch. An analysis of the proposed scheme, its spatio-temporal resolution and its limitations are quantified. Finally, the design of a proof-of-principle experiment in preparation for the Fermilab's A0 photoinjector is presented.

  4. Plant diversity increases spatio-temporal niche complementarity in plant-pollinator interactions.

    PubMed

    Venjakob, Christine; Klein, Alexandra-Maria; Ebeling, Anne; Tscharntke, Teja; Scherber, Christoph

    2016-04-01

    Ongoing biodiversity decline impairs ecosystem processes, including pollination. Flower visitation, an important indicator of pollination services, is influenced by plant species richness. However, the spatio-temporal responses of different pollinator groups to plant species richness have not yet been analyzed experimentally. Here, we used an experimental plant species richness gradient to analyze plant-pollinator interactions with an unprecedented spatio-temporal resolution. We observed four pollinator functional groups (honeybees, bumblebees, solitary bees, and hoverflies) in experimental plots at three different vegetation strata between sunrise and sunset. Visits were modified by plant species richness interacting with time and space. Furthermore, the complementarity of pollinator functional groups in space and time was stronger in species-rich mixtures. We conclude that high plant diversity should ensure stable pollination services, mediated via spatio-temporal niche complementarity in flower visitation. PMID:27069585

  5. A hierarchical spatio-temporal data model for dynamic monitoring of land use

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Liu, Yaolin

    2007-06-01

    Dynamic monitoring of land use is a perennial and persistent process now in Shanghai. Therefore, the cumulated amount of monitoring data will be very large. It is an exigent problem how to manage and use this data effectively. The key issue is finding a suitable spatio-temporal data model that must take into account space, time and attribute factor adequately. In dynamic monitoring of land use, it is change that is of direct interest. With analyzing the feature of land use dynamic monitoring and the shortage of some spatio-temporal data models when they are used in the field, this paper proposes a Hierarchical Spatio-Temporal Data Model (HSDM) that stores elements of change and makes these available for direct query and analysis.

  6. Spatio-temporal aggregation of European air quality observations in the Sensor Web

    NASA Astrophysics Data System (ADS)

    Stasch, Christoph; Foerster, Theodor; Autermann, Christian; Pebesma, Edzer

    2012-10-01

    An increasing amount of observations from different applications such as long-term environmental monitoring or disaster management is published in the Web using Sensor Web technologies. The standardization of these technologies eases the integration of heterogeneous observations into several applications. However, as observations differ in spatio-temporal coverage and resolution, aggregation of observations in space and time is needed. We present an approach for spatio-temporal aggregation in the Sensor Web using the Geoprocessing Web. In particular, we define a tailored observation model for different aggregation levels, a process model for aggregation processes and a Spatio-Temporal Aggregation Service. The presented approach is demonstrated by a case study of delivering aggregated air quality observations on-demand in the Sensor Web.

  7. The Relationship between Filling-in Induction and Spatio-Temporal Frequency of Sorrounding Dynamic Textures

    NASA Astrophysics Data System (ADS)

    Yokota, Masae; Yokota, Yasunari

    To elucidate perceptual filling-in mechanisms in peripheral vision, we investigated dependency of filling-in occurrence on spatio-temporal frequency of dynamic textures surrounding the filling-in target. We first measured spatial frequency sensitivity of the filling-in target in static texture. Then, the time to filling-in, when dynamic textures which have variously limited spatio-temporal frequency are surrounding the filling-in target, were measured. According to the hypothesis of filling-in process which has already proposed by the authors, the tendency of inducing filling-in, i.e., the attenuation factor of perceptual power for filling-in target in dynamic textures, is estimated as a function of spatio-temporal frequency. It was suggested that surrounding texture with stronger perception promotes filling-in more intensively.

  8. Geovisualization Approaches for Spatio-temporal Crime Scene Analysis - Towards 4D Crime Mapping

    NASA Astrophysics Data System (ADS)

    Wolff, Markus; Asche, Hartmut

    This paper presents a set of methods and techniques for analysis and multidimensional visualisation of crime scenes in a German city. As a first step the approach implies spatio-temporal analysis of crime scenes. Against this background a GIS-based application is developed that facilitates discovering initial trends in spatio-temporal crime scene distributions even for a GIS untrained user. Based on these results further spatio-temporal analysis is conducted to detect variations of certain hotspots in space and time. In a next step these findings of crime scene analysis are integrated into a geovirtual environment. Behind this background the concept of the space-time cube is adopted to allow for visual analysis of repeat burglary victimisation. Since these procedures require incorporating temporal elements into virtual 3D environments, basic methods for 4D crime scene visualisation are outlined in this paper.

  9. Large-Scale Spatio-Temporal Patterns of Mediterranean Cephalopod Diversity.

    PubMed

    Keller, Stefanie; Bartolino, Valerio; Hidalgo, Manuel; Bitetto, Isabella; Casciaro, Loredana; Cuccu, Danila; Esteban, Antonio; Garcia, Cristina; Garofalo, Germana; Josephides, Marios; Jadaud, Angelique; Lefkaditou, Evgenia; Maiorano, Porzia; Manfredi, Chiara; Marceta, Bojan; Massutí, Enric; Micallef, Reno; Peristeraki, Panagiota; Relini, Giulio; Sartor, Paolo; Spedicato, Maria Teresa; Tserpes, George; Quetglas, Antoni

    2016-01-01

    Species diversity is widely recognized as an important trait of ecosystems' functioning and resilience. Understanding the causes of diversity patterns and their interaction with the environmental conditions is essential in order to effectively assess and preserve existing diversity. While diversity patterns of most recurrent groups such as fish are commonly studied, other important taxa such as cephalopods have received less attention. In this work we present spatio-temporal trends of cephalopod diversity across the entire Mediterranean Sea during the last 19 years, analysing data from the annual bottom trawl survey MEDITS conducted by 5 different Mediterranean countries using standardized gears and sampling protocols. The influence of local and regional environmental variability in different Mediterranean regions is analysed applying generalized additive models, using species richness and the Shannon Wiener index as diversity descriptors. While the western basin showed a high diversity, our analyses do not support a steady eastward decrease of diversity as proposed in some previous studies. Instead, high Shannon diversity was also found in the Adriatic and Aegean Seas, and high species richness in the eastern Ionian Sea. Overall diversity did not show any consistent trend over the last two decades. Except in the Adriatic Sea, diversity showed a hump-shaped trend with depth in all regions, being highest between 200-400 m depth. Our results indicate that high Chlorophyll a concentrations and warmer temperatures seem to enhance species diversity, and the influence of these parameters is stronger for richness than for Shannon diversity. PMID:26760965

  10. A Kinect based sign language recognition system using spatio-temporal features

    NASA Astrophysics Data System (ADS)

    Memiş, Abbas; Albayrak, Songül

    2013-12-01

    This paper presents a sign language recognition system that uses spatio-temporal features on RGB video images and depth maps for dynamic gestures of Turkish Sign Language. Proposed system uses motion differences and accumulation approach for temporal gesture analysis. Motion accumulation method, which is an effective method for temporal domain analysis of gestures, produces an accumulated motion image by combining differences of successive video frames. Then, 2D Discrete Cosine Transform (DCT) is applied to accumulated motion images and temporal domain features transformed into spatial domain. These processes are performed on both RGB images and depth maps separately. DCT coefficients that represent sign gestures are picked up via zigzag scanning and feature vectors are generated. In order to recognize sign gestures, K-Nearest Neighbor classifier with Manhattan distance is performed. Performance of the proposed sign language recognition system is evaluated on a sign database that contains 1002 isolated dynamic signs belongs to 111 words of Turkish Sign Language (TSL) in three different categories. Proposed sign language recognition system has promising success rates.

  11. Spatio-temporal analysis of potential aquifer recharge: Application to the Basin of Mexico

    NASA Astrophysics Data System (ADS)

    Carrera-Hernández, J. J.; Gaskin, S. J.

    2008-05-01

    SummaryRegional estimates of aquifer recharge are needed in data-scarce regions such as the Basin of Mexico, where nearly 20 million people are located and where the Basin's aquifer system represents the main water source. In order to develop the spatio-temporal estimates of aquifer recharge and to analyze to what extent urban growth has affected aquifer recharge, this work presents a daily soil water balance which uses different vegetation and soil types as well as the effect of topography on climatological variables and evapotranspiration. The soil water balance was applied on a daily time step in the Basin of Mexico for the period 1975-1986, obtaining an annually-lumped potential recharge flow of 10.9-23.8 m 3/s (35.9-78.1 mm) in the entire Basin, while the monthly values for the year with the largest lumped recharge value (1981 = 78.1 mm) range from 1 m 3/s (0.3 mm) in December to 87.9 m 3/s (23.7 mm) in June. As aquifer recharge in the Basin mainly occurs by subsurface flow from its enclosing mountains as Mountain Block Recharge, urban growth has had a minimal impact on aquifer recharge, although it has diminished recharge in the alluvial plain.

  12. Spatio-Temporal Variability of Saturated Crevasses Along the Margins of Jakobshavn ISBRÆ

    NASA Astrophysics Data System (ADS)

    Ring, A.; Lampkin, D. J.

    2014-12-01

    Jakobshavn Isbræ is the fastest marine-terminating outlet glacier on the Greenland Ice Sheet and has experienced speed up, thinning and increased mass discharge primarily due to ocean-ice interactions at the terminus, over the last two decades. Approximately 60% of the total driving stress within the main ice stream is compensated by resistance due to lateral shear. We have observed the presence of water-filled crevasses, which fill in local depressions and drain seasonally, resulting in meltwater filtration directly into the shear margins. Injection of meltwater into the shear margins can result in shear weakening with implications for observed changes within the ice stream, in addition to, potentially enhancing mass flux into the main trough. Shear weakening, due to infiltrated meltwater, can increase sliding due to basal lubrication or reduce ice stiffness due to cryo-hydrologic warming. In this study, LandSat-7 ETM+ and LandSat-8 OLI images at 15m spatial resolutions are used to characterize the spatio-temporal variability of saturated crevasses during the ablation seasons from 2000 through 2013. Changes in the delineated area of water-filled crevasses are compared to variability in ice surface velocity fields during the analysis period as a first-order assessment on the potential impact these features may have on marginal ice dynamics.

  13. Spatio-temporal coherence mapping of few-cycle vortex pulses.

    PubMed

    Grunwald, R; Elsaesser, T; Bock, M

    2014-01-01

    Light carrying an orbital angular momentum (OAM) displays an optical phase front rotating in space and time and a vanishing intensity, a so-called vortex, in the center. Beyond continuous-wave vortex beams, optical pulses with a finite OAM are important for many areas of science and technology, ranging from the selective manipulation and excitation of matter to telecommunications. Generation of vortex pulses with a duration of few optical cycles requires new methods for characterising their coherence properties in space and time. Here we report a novel approach for flexibly shaping and characterising few-cycle vortex pulses of tunable topological charge with two sequentially arranged spatial light modulators. The reconfigurable optical arrangement combines interferometry, wavefront sensing, time-of-flight and nonlinear correlation techniques in a very compact setup, providing complete spatio-temporal coherence maps at minimum pulse distortions. Sub-7 fs pulses carrying different optical angular momenta are generated in single and multichannel geometries and characterised in comparison to zero-order Laguerre-Gaussian beams. To the best of our knowledge, this represents the shortest pulse durations reported for direct vortex shaping and detection with spatial light modulators. This access to space-time coupling effects with sub-femtosecond time resolution opens new prospects for tailored twisted light transients of extremely short duration. PMID:25413789

  14. Large-Scale Spatio-Temporal Patterns of Mediterranean Cephalopod Diversity

    PubMed Central

    Keller, Stefanie; Bartolino, Valerio; Hidalgo, Manuel; Bitetto, Isabella; Casciaro, Loredana; Cuccu, Danila; Esteban, Antonio; Garcia, Cristina; Garofalo, Germana; Josephides, Marios; Jadaud, Angelique; Lefkaditou, Evgenia; Maiorano, Porzia; Manfredi, Chiara; Marceta, Bojan; Massutí, Enric; Micallef, Reno; Peristeraki, Panagiota; Relini, Giulio; Sartor, Paolo; Spedicato, Maria Teresa; Tserpes, George; Quetglas, Antoni

    2016-01-01

    Species diversity is widely recognized as an important trait of ecosystems’ functioning and resilience. Understanding the causes of diversity patterns and their interaction with the environmental conditions is essential in order to effectively assess and preserve existing diversity. While diversity patterns of most recurrent groups such as fish are commonly studied, other important taxa such as cephalopods have received less attention. In this work we present spatio-temporal trends of cephalopod diversity across the entire Mediterranean Sea during the last 19 years, analysing data from the annual bottom trawl survey MEDITS conducted by 5 different Mediterranean countries using standardized gears and sampling protocols. The influence of local and regional environmental variability in different Mediterranean regions is analysed applying generalized additive models, using species richness and the Shannon Wiener index as diversity descriptors. While the western basin showed a high diversity, our analyses do not support a steady eastward decrease of diversity as proposed in some previous studies. Instead, high Shannon diversity was also found in the Adriatic and Aegean Seas, and high species richness in the eastern Ionian Sea. Overall diversity did not show any consistent trend over the last two decades. Except in the Adriatic Sea, diversity showed a hump-shaped trend with depth in all regions, being highest between 200–400 m depth. Our results indicate that high Chlorophyll a concentrations and warmer temperatures seem to enhance species diversity, and the influence of these parameters is stronger for richness than for Shannon diversity. PMID:26760965

  15. Spatio-temporal coherence mapping of few-cycle vortex pulses

    PubMed Central

    Grunwald, R.; Elsaesser, T.; Bock, M.

    2014-01-01

    Light carrying an orbital angular momentum (OAM) displays an optical phase front rotating in space and time and a vanishing intensity, a so-called vortex, in the center. Beyond continuous-wave vortex beams, optical pulses with a finite OAM are important for many areas of science and technology, ranging from the selective manipulation and excitation of matter to telecommunications. Generation of vortex pulses with a duration of few optical cycles requires new methods for characterising their coherence properties in space and time. Here we report a novel approach for flexibly shaping and characterising few-cycle vortex pulses of tunable topological charge with two sequentially arranged spatial light modulators. The reconfigurable optical arrangement combines interferometry, wavefront sensing, time-of-flight and nonlinear correlation techniques in a very compact setup, providing complete spatio-temporal coherence maps at minimum pulse distortions. Sub-7 fs pulses carrying different optical angular momenta are generated in single and multichannel geometries and characterised in comparison to zero-order Laguerre-Gaussian beams. To the best of our knowledge, this represents the shortest pulse durations reported for direct vortex shaping and detection with spatial light modulators. This access to space-time coupling effects with sub-femtosecond time resolution opens new prospects for tailored twisted light transients of extremely short duration. PMID:25413789

  16. Robust spatio-temporal registration of 4D cardiac ultrasound sequences

    NASA Astrophysics Data System (ADS)

    Bersvendsen, Jørn; Toews, Matthew; Danudibroto, Adriyana; Wells, William M.; Urheim, Stig; Estépar, Raúl San José; Samset, Eigil

    2016-04-01

    Registration of multiple 3D ultrasound sectors in order to provide an extended field of view is important for the appreciation of larger anatomical structures at high spatial and temporal resolution. In this paper, we present a method for fully automatic spatio-temporal registration between two partially overlapping 3D ultrasound sequences. The temporal alignment is solved by aligning the normalized cross correlation-over-time curves of the sequences. For the spatial alignment, corresponding 3D Scale Invariant Feature Transform (SIFT) features are extracted from all frames of both sequences independently of the temporal alignment. A rigid transform is then calculated by least squares minimization in combination with random sample consensus. The method is applied to 16 echocardiographic sequences of the left and right ventricles and evaluated against manually annotated temporal events and spatial anatomical landmarks. The mean distances between manually identified landmarks in the left and right ventricles after automatic registration were (mean+/-SD) 4.3+/-1.2 mm compared to a reference error of 2.8 +/- 0.6 mm with manual registration. For the temporal alignment, the absolute errors in valvular event times were 14.4 +/- 11.6 ms for Aortic Valve (AV) opening, 18.6 +/- 16.0 ms for AV closing, and 34.6 +/- 26.4 ms for mitral valve opening, compared to a mean inter-frame time of 29 ms.

  17. Spatio-temporal behavior of microwave sheath-voltage combination plasma source

    NASA Astrophysics Data System (ADS)

    Kar, Satyananda; Kousaka, Hiroyuki; Raja, Laxminarayan L.

    2015-05-01

    Microwave sheath-Voltage combination Plasma (MVP) is a high density plasma source and can be used as a suitable plasma processing device (e.g., ionized physical vapor deposition). In the present report, the spatio-temporal behavior of an argon MVP sustained along a direct-current biased Ti rod is investigated. Two plasma modes are observed, one is an "oxidized state" (OS) at the early time of the microwave plasma and the other is "ionized sputter state" (ISS) at the later times. Transition of the plasma from OS to ISS results a prominent change in the visible color of the plasma, resulting from a significant increase in the plasma density, as measured by a Langmuir probe. In the OS, plasma is dominated by Ar ions, and the density is in amplitude order of 1011 cm-3. In the ISS, metal ions from the Ti rod contribute significantly to the ion composition, and higher density plasma (1012 cm-3) is produced. Nearly uniform high density plasma along the length of the Ti rod is produced at very low input microwave powers (around 30 W). Optical emission spectroscopy measurements confirm the presence of sputtered Ti ions and Ti neutrals in the ISS.

  18. Mapping the spatio-temporal distribution of threatened batoids to improve conservation in a subtropical estuary.

    PubMed

    Possatto, F E; Broadhurst, M K; Spach, H L; Winemiller, K O; Millar, R B; Santos, K M; Lamour, M R

    2016-07-01

    The spatio-temporal distributions of four batoid species were examined in a subtropical estuary. Fluvial gradient was the most important factor explaining abundances, reflecting positive relationships with either salinity or distance from urbanised areas that were consistent across seasons and depths. The results support existing protected areas. PMID:27108671

  19. Model term selection for spatio-temporal system identification using mutual information

    NASA Astrophysics Data System (ADS)

    Wang, Shu; Wei, Hua-Liang; Coca, Daniel; Billings, Stephen A.

    2013-02-01

    A new mutual information based algorithm is introduced for term selection in spatio-temporal models. A generalised cross validation procedure is also introduced for model length determination and examples based on cellular automata, coupled map lattice and partial differential equations are described.

  20. Statistical Analysis of Spatio-temporal Variations of Sea Surface Height Observed by Topex Altimeter

    NASA Technical Reports Server (NTRS)

    Fabrikant, A.; Glazman, R. E.; Greysukh, A.

    1994-01-01

    Using non-gridded Topex altimeter data, high resolution 2-d power spectra and spatio-temporal autocorrelation functions of sea surface height (SSH) variations are estimated and employed for studying anisotropic SSH fields varying in a broad range of scales.

  1. Effects of Spatio-Temporal Aliasing on Pilot Performance in Active Control Tasks

    NASA Technical Reports Server (NTRS)

    Zaal, Peter; Sweet, Barbara

    2010-01-01

    Spatio-temporal aliasing affects pilot performance and control behavior. For increasing refresh rates: 1) Significant change in control behavior: a) Increase in visual gain and neuromuscular frequency. b) Decrease in visual time delay. 2) Increase in tracking performance: a) Decrease in RMSe. b) Increase in crossover frequency.

  2. Cortical Spatio-Temporal Dynamics Underlying Phonological Target Detection in Humans

    ERIC Educational Resources Information Center

    Chang, Edward F.; Edwards, Erik; Nagarajan, Srikantan S.; Fogelson, Noa; Dalal, Sarang S.; Canolty, Ryan T.; Kirsch, Heidi E.; Barbaro, Nicholas M.; Knight, Robert T.

    2011-01-01

    Selective processing of task-relevant stimuli is critical for goal-directed behavior. We used electrocorticography to assess the spatio-temporal dynamics of cortical activation during a simple phonological target detection task, in which subjects press a button when a prespecified target syllable sound is heard. Simultaneous surface potential…

  3. The Impact of Spatio-Temporal Constraints on Cursive Letter Handwriting in Children

    ERIC Educational Resources Information Center

    Chartrel, Estelle; Vinter, Annie

    2008-01-01

    The study assessed the impact of spatial and temporal constraints on handwriting movements in young children. One hundred children of 5-7 years of age of both genders were given the task of copying isolated cursive letters under four conditions: normal, with temporal, spatial, or spatio-temporal constraints. The results showed that imposing…

  4. Evaluation of Bayesian spatio-temporal latent models in small area health data.

    PubMed

    Choi, Jungsoon; Lawson, Andrew B; Cai, Bo; Hossain, Md Monir

    2011-12-01

    Health outcomes are linked to air pollution, demographic, or socioeconomic factors which vary across space and time. Thus, it is often found that relative risks in space-time health data have locally different temporal patterns. In such cases, latent modeling is useful in the disaggregation of risk profiles. In particular, spatio-temporal mixture models can help to isolate spatial clusters each of which has a homogeneous temporal pattern in relative risks. In mixture modeling, various weight structures can be used and two situations can be considered: the number of underlying components is known or unknown. In this paper, we compare spatio-temporal mixture models with different weight structures in both situations. In addition, spatio-temporal Dirichlet process mixture models are compared to them when the number of components is unknown. For comparison, we propose a set of spatial cluster detection diagnostics based on the posterior distribution of the weights. We also develop new accuracy measures to assess the recovery of true relative risks. Based on the simulation study, we examine the performance of various spatio-temporal mixture models in terms of proposed methods and goodness-of-fit measures. We apply our models to a county-level chronic obstructive pulmonary disease data set from the state of Georgia. PMID:22184483

  5. a Framework for Online Spatio-Temporal Data Visualization Based on HTML5

    NASA Astrophysics Data System (ADS)

    Mao, B.; Wu, Z.; Cao, J.

    2012-07-01

    Web is entering a new phase - HTML5. New features of HTML5 should be studied for online spatio-temporal data visualization. In the proposed framework, spatio-temporal data is stored in the data server and is sent to user browsers with WebSocket. Public geo-data such as Internet digital map is integrated into the browsers. Then animation is implemented through the canvas object defined by the HTML5 specification. To simulate the spatio-temporal data source, we collected the daily location of 15 users with GPS tracker. The current positions of the users are collected every minute and are recorded in a file. Based on this file, we generate a real time spatio-temporal data source which sends out current user location every second.By enlarging the real time scales by 60 times, we can observe the movement clearly. The data transmitted with WebSocket is the coordinates of users' current positions, which will can be demonstrated in client browsers.

  6. Construction of an Unbiased Spatio-temporal Atlas of the Tongue During Speech

    PubMed Central

    Woo, Jonghye; Xing, Fangxu; Lee, Junghoon; Stone, Maureen; Prince, Jerry L.

    2016-01-01

    Quantitative characterization and comparison of tongue motion during speech and swallowing present fundamental challenges because of striking variations in tongue structure and motion across subjects. A reliable and objective description of the dynamics tongue motion requires the consistent integration of inter-subject variability to detect the subtle changes in populations. To this end, in this work, we present an approach to constructing an unbiased spatio-temporal atlas of the tongue during speech for the first time, based on cine-MRI from twenty two normal subjects. First, we create a common spatial space using images from the reference time frame, a neutral position, in which the unbiased spatio-temporal atlas can be created. Second, we transport images from all time frames of all subjects into this common space via the single transformation. Third, we construct atlases for each time frame via groupwise diffeomorphic registration, which serves as the initial spatio-temporal atlas. Fourth, we update the spatio-temporal atlas by realigning each time sequence based on the Lipschitz norm on diffeomorphisms between each subject and the initial atlas. We evaluate and compare different configurations such as similarity measures to build the atlas. Our proposed method permits to accurately and objectively explain the main pattern of tongue surface motion. PMID:26221715

  7. On the spatio-temporal dynamics of soil moisture at the field scale

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, we review the state of the art of characterizing and analyzing spatio-temporal dynamics of soil moisture content at the field scale. We discuss measurement techniques that have become available in recent years and that provide unique opportunities to characterize field scale soil mois...

  8. Disentangling multidimensional spatio-temporal data into their common and aberrant responses

    DOE PAGESBeta

    Chang, Young Hwan; Korkola, James; Amin, Dhara N.; Moasser, Mark M.; Carmena, Jose M.; Gray, Joe W.; Tomlin, Claire J.; Lisacek, Frederique

    2015-04-22

    With the advent of high-throughput measurement techniques, scientists and engineers are starting to grapple with massive data sets and encountering challenges with how to organize, process and extract information into meaningful structures. Multidimensional spatio-temporal biological data sets such as time series gene expression with various perturbations over different cell lines, or neural spike trains across many experimental trials, have the potential to acquire insight about the dynamic behavior of the system. For this potential to be realized, we need a suitable representation to understand the data. A general question is how to organize the observed data into meaningful structures andmore » how to find an appropriate similarity measure. A natural way of viewing these complex high dimensional data sets is to examine and analyze the large-scale features and then to focus on the interesting details. Since the wide range of experiments and unknown complexity of the underlying system contribute to the heterogeneity of biological data, we develop a new method by proposing an extension of Robust Principal Component Analysis (RPCA), which models common variations across multiple experiments as the lowrank component and anomalies across these experiments as the sparse component. We show that the proposed method is able to find distinct subtypes and classify data sets in a robust way without any prior knowledge by separating these common responses and abnormal responses. Thus, the proposed method provides us a new representation of these data sets which has the potential to help users acquire new insight from data.« less

  9. Spatio-temporal variation in European starling reproductive success at multiple small spatial scales

    PubMed Central

    Brickhill, Daisy; Evans, Peter GH; Reid, Jane M

    2015-01-01

    Understanding population dynamics requires spatio-temporal variation in demography to be measured across appropriate spatial and temporal scales. However, the most appropriate spatial scale(s) may not be obvious, few datasets cover sufficient time periods, and key demographic rates are often incompletely measured. Consequently, it is often assumed that demography will be spatially homogeneous within populations that lack obvious subdivision. Here, we quantify small-scale spatial and temporal variation in a key demographic rate, reproductive success (RS), within an apparently contiguous population of European starlings. We used hierarchical cluster analysis to define spatial clusters of nest sites at multiple small spatial scales and long-term data to test the hypothesis that small-scale spatio-temporal variation in RS occurred. RS was measured as the number of chicks alive ca. 12 days posthatch either per first brood or per nest site per breeding season (thereby incorporating multiple breeding attempts). First brood RS varied substantially among spatial clusters and years. Furthermore, the pattern of spatial variation was stable across years; some nest clusters consistently produced more chicks than others. Total seasonal RS also varied substantially among spatial clusters and years. However, the magnitude of variation was much larger and the pattern of spatial variation was no longer temporally consistent. Furthermore, the estimated magnitude of spatial variation in RS was greater at smaller spatial scales. We thereby demonstrate substantial spatial, temporal, and spatio-temporal variation in RS occurring at very small spatial scales. We show that the estimated magnitude of this variation depended on spatial scale and that spatio-temporal variation would not have been detected if season-long RS had not been measured. Such small-scale spatio-temporal variation should be incorporated into empirical and theoretical treatments of population dynamics. PMID:26380670

  10. Spatio-temporal image correlation (STIC): new technology for evaluation of the fetal heart.

    PubMed

    DeVore, G R; Falkensammer, P; Sklansky, M S; Platt, L D

    2003-10-01

    Spatio-temporal image correlation (STIC) is a new approach for clinical assessment of the fetal heart. It offers an easy to use technique to acquire data from the fetal heart and to aid in visualization with both two-dimensional and three-dimensional (3D) cine sequences. The acquisition is performed in two steps: first, images are acquired by a single, automatic volume sweep. Second, the system analyzes the image data according to their spatial and temporal domain and processes an online dynamic 3D image sequence that is displayed in a multiplanar reformatted cross-sectional display and/or a surface rendered display. The examiner can navigate within the heart, re-slice, and produce all of the standard image planes necessary for a comprehensive diagnosis. The advantages of STIC for use in evaluation of the fetal heart are as follows: the technique delivers a temporal resolution which corresponds to a B-mode frame rate of approximately 80 frames/s; it provides the examiner with an unlimited number of images for review; it allows for correlation between image planes that are perpendicular to the main image acquisition plane; it may shorten the evaluation time when complex heart defects are suspected; it enables the reconstruction of a 3D rendered image that contains depth and volume which may provide additional information that is not available from the thin multiplanar image slices (e.g. for pulmonary veins, septal thickness); it lends itself to storage and review of volume data by the examiner or by experts at a remote site; it provides the examiner with the ability to review all images in a looped cine sequence. PMID:14528474