Conjugate gradient type methods for linear systems with complex symmetric coefficient matrices
NASA Technical Reports Server (NTRS)
Freund, Roland
1989-01-01
We consider conjugate gradient type methods for the solution of large sparse linear system Ax equals b with complex symmetric coefficient matrices A equals A(T). Such linear systems arise in important applications, such as the numerical solution of the complex Helmholtz equation. Furthermore, most complex non-Hermitian linear systems which occur in practice are actually complex symmetric. We investigate conjugate gradient type iterations which are based on a variant of the nonsymmetric Lanczos algorithm for complex symmetric matrices. We propose a new approach with iterates defined by a quasi-minimal residual property. The resulting algorithm presents several advantages over the standard biconjugate gradient method. We also include some remarks on the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.
Clemens, M.; Weiland, T.
1996-12-31
In the field of computational electrodynamics the discretization of Maxwell`s equations using the Finite Integration Theory (FIT) yields very large, sparse, complex symmetric linear systems of equations. For this class of complex non-Hermitian systems a number of conjugate gradient-type algorithms is considered. The complex version of the biconjugate gradient (BiCG) method by Jacobs can be extended to a whole class of methods for complex-symmetric algorithms SCBiCG(T, n), which only require one matrix vector multiplication per iteration step. In this class the well-known conjugate orthogonal conjugate gradient (COCG) method for complex-symmetric systems corresponds to the case n = 0. The case n = 1 yields the BiCGCR method which corresponds to the conjugate residual algorithm for the real-valued case. These methods in combination with a minimal residual smoothing process are applied separately to practical 3D electro-quasistatical and eddy-current problems in electrodynamics. The practical performance of the SCBiCG methods is compared with other methods such as QMR and TFQMR.
Small diameter symmetric networks from linear groups
NASA Technical Reports Server (NTRS)
Campbell, Lowell; Carlsson, Gunnar E.; Dinneen, Michael J.; Faber, Vance; Fellows, Michael R.; Langston, Michael A.; Moore, James W.; Multihaupt, Andrew P.; Sexton, Harlan B.
1992-01-01
In this note is reported a collection of constructions of symmetric networks that provide the largest known values for the number of nodes that can be placed in a network of a given degree and diameter. Some of the constructions are in the range of current potential engineering significance. The constructions are Cayley graphs of linear groups obtained by experimental computation.
2d PDE Linear Symmetric Matrix Solver
Energy Science and Technology Software Center (ESTSC)
1983-10-01
ICCG2 (Incomplete Cholesky factorized Conjugate Gradient algorithm for 2d symmetric problems) was developed to solve a linear symmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as resistive MHD, spatial diffusive transport, and phase space transport (Fokker-Planck equation) problems. These problems share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized withmore » finite-difference or finite-element methods,the resulting matrix system is frequently of block-tridiagonal form. To use ICCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. The incomplete Cholesky conjugate gradient algorithm is used to solve the linear symmetric matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For matrices lacking symmetry, ILUCG2 should be used. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less
Experimental scheme for unambiguous discrimination of linearly independent symmetric states
Jimenez, O.; Burgos-Inostroza, E.; Delgado, A.; Saavedra, C.; Sanchez-Lozano, X.
2007-12-15
We propose an experimental setup for discriminating four linearly independent nonorthogonal symmetric quantum states. The setup is based on linear optics only and can be configured to implement both optimal unambiguous state discrimination [Chefles and Barnett, Phys. Lett. A 250, 223 (1998)] and minimum error discrimination. In both cases, the setup is characterized by an optimal success probability. The experimental setup can be generalized to the case of discrimination among N linearly nonorthogonal symmetric quantum states. We also study the discrimination between two incoherent superpositions of symmetric states. In this case, the setup also achieves an optimal success probability in the case of unambiguous discrimination as well as minimum error discrimination.
Optical solitons in the parity-time-symmetric Bessel complex potential
NASA Astrophysics Data System (ADS)
Hu, Sumei; Hu, Wei
2012-11-01
Optical solitons in the parity-time (PT)-symmetric Bessel complex potential are studied, including the linear case, and self-focusing and self-defocusing nonlinear cases. For the linear case, the PT-symmetric breaking points, eigenvalues and the eigenfunction for different modulated depths of the PT-symmetric Bessel complex potential are obtained numerically. The PT-symmetric breaking points increase linearly with increasing the real part of the modulated depths of the PT potential. Below the PT-symmetric breaking points, the eigenfunctions of linear modes are symmetrical; however, the symmetries of the eigenfunction break above the PT-symmetric breaking points. For nonlinear cases, the existence and stability of fundamental and multipole solitons are studied in self-focusing and self-defocusing media. The eigenvalue for the linear case is equal to the critical propagation constant bc of the existing soliton. Fundamental solitons are stable in the whole region and multipole solitons are stable with the propagation constants being close to bc both for self-focusing and self-defocusing nonlinearities. The range of solitons’ stability decreases with an increase of the number of the intensity peaks of the solitons.
Evolution of linear perturbations in spherically symmetric dust spacetimes
NASA Astrophysics Data System (ADS)
February, S.; Larena, J.; Clarkson, C.; Pollney, D.
2014-09-01
We present results from a numerical code implementing a new method to solve the master equations describing the evolution of linear perturbations in a spherically symmetric but inhomogeneous background. This method can be used to simulate several configurations of physical interest, such as relativistic corrections to structure formation, the lensing of gravitational waves (GWs) and the evolution of perturbations in a cosmological void model. This paper focuses on the latter problem, i.e. structure formation in a Hubble scale void in the linear regime. This is considerably more complicated than linear perturbations of a homogeneous and isotropic background because the inhomogeneous background leads to coupling between density perturbations and rotational modes of the spacetime geometry, as well as GWs. Previous analyses of this problem ignored this coupling in the hope that the approximation does not affect the overall dynamics of structure formation in such models. We show that for a giga-parsec void, the evolution of the density contrast is well approximated by the previously studied decoupled evolution only for very large-scale modes. However, the evolution of the gravitational potentials within the void is inaccurate at more than the 10% level, and is even worse on small scales.
Passive PT -symmetric couplers without complex optical potentials
NASA Astrophysics Data System (ADS)
Lee, Yi-Chan; Liu, Jibing; Chuang, You-Lin; Hsieh, Min-Hsiu; Lee, Ray-Kuang
2015-11-01
In addition to the implementation of parity-time-(PT -) symmetric optical systems by carefully and actively controlling the gain and loss, we show that a 2 ×2 PT -symmetric Hamiltonian has a unitarily equivalent representation without complex optical potentials in the resulting optical coupler. Through the Naimark dilation in operator algebra, passive PT -symmetric couplers can thus be implemented with a refractive index of real values and asymmetric coupling coefficients. This opens up the possibility to implement general PT -symmetric systems with state-of-the-art asymmetric slab waveguides, dissimilar optical fibers, or cavities with chiral mirrors.
The solitons in parity-time symmetric mixed Bessel linear potential and modulated nonlinear lattices
NASA Astrophysics Data System (ADS)
Chen, Haibo; Hu, Sumei
2014-12-01
The optical solitons in parity-time (PT) symmetric mixed Bessel linear potential and modulated nonlinear lattices are studied, including linear case, and self-focusing modulated nonlinear lattices' cases. For linear case, the PT-breaking points, the eigenvalues and eigenfunction for different modulated depths of PT symmetry Bessel complex potential, are obtained numerically. The eigenvalue for linear case is equal to the critical propagation constant bc of soliton existence. With increasing of the depth of the nonlinear lattices, the power of fundamental solitons decreases and the beam width changes little, but the power of multipole solitons increases and the beam width decreases. Fundamental solitons are stable in the whole region and multipole solitons are stable with the propagation constants close to bc. The range of multipole solitons stability decreases with increasing of the depth of the nonlinear lattices.
Nonlinear light behaviors near phase transition in non-parity-time-symmetric complex waveguides.
Nixon, Sean; Yang, Jianke
2016-06-15
Many classes of non-parity-time (PT)-symmetric waveguides with arbitrary gain and loss distributions still possess all-real linear spectrum or exhibit phase transition. In this Letter, nonlinear light behaviors in these complex waveguides are probed analytically near a phase transition. Using multi-scale perturbation methods, a nonlinear ordinary differential equation (ODE) is derived for the light's amplitude evolution. This ODE predicts that a single class of these non-PT-symmetric waveguides supports soliton families and amplitude-oscillating solutions both above and below linear phase transition, in close analogy with PT-symmetric systems. For the other classes of waveguides, the light's intensity always amplifies under the effect of nonlinearity, even if the waveguide is below the linear phase transition. These analytical predictions are confirmed by direct computations of the full system. PMID:27304279
NASA Astrophysics Data System (ADS)
Bakker, Lennard F.; Ouyang, Tiancheng; Yan, Duokui; Simmons, Skyler; Roberts, Gareth E.
2010-10-01
We apply the analytic-numerical method of Roberts to determine the linear stability of time-reversible periodic simultaneous binary collision orbits in the symmetric collinear four-body problem with masses 1, m, m, 1, and also in a symmetric planar four-body problem with equal masses. In both problems, the assumed symmetries reduce the determination of linear stability to the numerical computation of a single real number. For the collinear problem, this verifies the earlier numerical results of Sweatman for linear stability with respect to collinear and symmetric perturbations.
Experimental beta limits of symmetric linear heliac configurations
NASA Astrophysics Data System (ADS)
Spanjers, G. G.; Nelson, B. A.; Ribe, F. L.; Jarboe, T. R.
1994-08-01
Helically symmetric heliac equilibria [H. P. Furth, Plasma Physics and Controlled Fusion Research (International Atomic Energy Agency, Vienna, 1966), Vol. 1, p. 103] are formed on the High Beta Q Machine (HBQM) [C. M. Greenfield, Phys. Fluids B 2, 133 (1990)] by using a fast-rising central conductor (hardcore) current in conjunction with a shock-heated l=1 stellarator configuration. The equilibria are found to possess a high global beta and the plasma pressure is approximately a flux-surface quantity. Under the effects of plasma, the magnetic well is found to deepen and the rotational transform is greatly increased and becomes highly sheared, owing to plasma currents induced by the fast-rising hardcore current. In the second phase of the experiment, the equilibrium fields of the symmetric heliac are lowered while maintaining the same shock heating in an attempt to raise the global beta. No substantial change in global beta is seen, indicating that the configuration forms at the beta limit in the shock-heated HBQM, and that the plasma beta seen in the first phase of the experiment is the symmetric heliac beta limit.
Complex PT-symmetric nonlinear Schrödinger equation and Burgers equation.
Yan, Zhenya
2013-04-28
The complex -symmetric nonlinear wave models have drawn much attention in recent years since the complex -symmetric extensions of the Korteweg-de Vries (KdV) equation were presented in 2007. In this review, we focus on the study of the complex -symmetric nonlinear Schrödinger equation and Burgers equation. First of all, we briefly introduce the basic property of complex symmetry. We then report on exact solutions of one- and two-dimensional nonlinear Schrödinger equations (known as the Gross-Pitaevskii equation in Bose-Einstein condensates) with several complex -symmetric potentials. Finally, some complex -symmetric extension principles are used to generate some complex -symmetric nonlinear wave equations starting from both -symmetric (e.g. the KdV equation) and non- -symmetric (e.g. the Burgers equation) nonlinear wave equations. In particular, we discuss exact solutions of some representative ones of the complex -symmetric Burgers equation in detail. PMID:23509385
Algorithm 937: MINRES-QLP for Symmetric and Hermitian Linear Equations and Least-Squares Problems.
Choi, Sou-Cheng T; Saunders, Michael A
2014-02-01
We describe algorithm MINRES-QLP and its FORTRAN 90 implementation for solving symmetric or Hermitian linear systems or least-squares problems. If the system is singular, MINRES-QLP computes the unique minimum-length solution (also known as the pseudoinverse solution), which generally eludes MINRES. In all cases, it overcomes a potential instability in the original MINRES algorithm. A positive-definite pre-conditioner may be supplied. Our FORTRAN 90 implementation illustrates a design pattern that allows users to make problem data known to the solver but hidden and secure from other program units. In particular, we circumvent the need for reverse communication. Example test programs input and solve real or complex problems specified in Matrix Market format. While we focus here on a FORTRAN 90 implementation, we also provide and maintain MATLAB versions of MINRES and MINRES-QLP. PMID:25328255
Algorithm 937: MINRES-QLP for Symmetric and Hermitian Linear Equations and Least-Squares Problems
Choi, Sou-Cheng T.; Saunders, Michael A.
2014-01-01
We describe algorithm MINRES-QLP and its FORTRAN 90 implementation for solving symmetric or Hermitian linear systems or least-squares problems. If the system is singular, MINRES-QLP computes the unique minimum-length solution (also known as the pseudoinverse solution), which generally eludes MINRES. In all cases, it overcomes a potential instability in the original MINRES algorithm. A positive-definite pre-conditioner may be supplied. Our FORTRAN 90 implementation illustrates a design pattern that allows users to make problem data known to the solver but hidden and secure from other program units. In particular, we circumvent the need for reverse communication. Example test programs input and solve real or complex problems specified in Matrix Market format. While we focus here on a FORTRAN 90 implementation, we also provide and maintain MATLAB versions of MINRES and MINRES-QLP. PMID:25328255
Nonlinear light behaviors near phase transition in non-parity-time-symmetric complex waveguides
NASA Astrophysics Data System (ADS)
Nixon, Sean; Yang, Jianke
2016-06-01
Many classes of non-parity-time (PT) symmetric waveguides with arbitrary gain and loss distributions still possess all-real linear spectrum or exhibit phase transition. In this article, nonlinear light behaviors in these complex waveguides are probed analytically near a phase transition. Using multi-scale perturbation methods, a nonlinear ordinary differential equation (ODE) is derived for the light's amplitude evolution. This ODE predicts that the first class of these non-PT-symmetric waveguides support continuous families of solitons and robust amplitude-oscillating solutions both above and below phase transition, in close analogy with PT-symmetric systems. For the other classes of waveguides, the light's intensity always amplifies under the effect of nonlinearity even if the waveguide is below phase transition. These analytical predictions are confirmed by direct computations of the full system.
Model-size reduction for the non-linear dynamic analysis of quasi-symmetric structures
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Peters, Jeanne M.
1987-01-01
A numerical technique is developed to reduce the size of models describing the nonlinear dynamic response of quasi-symmetric structures (i.e., structures with unsymmetric geometry). The response vectors of the structure are approximated by a linear combination of the symmetric and antisymmetric vectors at each time step. The mathematical formulation and numerical implementation of the method are described in detail, and results for a shallow laminated anisotropic panel of quadrilateral planform are presented in graphs and normalized contour plots.
Symmetric linear systems - An application of algebraic systems theory
NASA Technical Reports Server (NTRS)
Hazewinkel, M.; Martin, C.
1983-01-01
Dynamical systems which contain several identical subsystems occur in a variety of applications ranging from command and control systems and discretization of partial differential equations, to the stability augmentation of pairs of helicopters lifting a large mass. Linear models for such systems display certain obvious symmetries. In this paper, we discuss how these symmetries can be incorporated into a mathematical model that utilizes the modern theory of algebraic systems. Such systems are inherently related to the representation theory of algebras over fields. We will show that any control scheme which respects the dynamical structure either implicitly or explicitly uses the underlying algebra.
A new Krylov-subspace method for symmetric indefinite linear systems
Freund, R.W.; Nachtigal, N.M.
1994-10-01
Many important applications involve the solution of large linear systems with symmetric, but indefinite coefficient matrices. For example, such systems arise in incompressible flow computations and as subproblems in optimization algorithms for linear and nonlinear programs. Existing Krylov-subspace iterations for symmetric indefinite systems, such as SYMMLQ and MINRES, require the use of symmetric positive definite preconditioners, which is a rather unnatural restriction when the matrix itself is highly indefinite with both many positive and many negative eigenvalues. In this note, the authors describe a new Krylov-subspace iteration for solving symmetric indefinite linear systems that can be combined with arbitrary symmetric preconditioners. The algorithm can be interpreted as a special case of the quasi-minimal residual method for general non-Hermitian linear systems, and like the latter, it produces iterates defined by a quasi-minimal residual property. The proposed method has the same work and storage requirements per iteration as SYMMLQ or MINRES, however, it usually converges in considerably fewer iterations. Results of numerical experiments are reported.
Solitons supported by complex PT-symmetric Gaussian potentials
Hu Sumei; Ma Xuekai; Lu Daquan; Yang Zhenjun; Zheng Yizhou; Hu Wei
2011-10-15
The existence and stability of fundamental, dipole, and tripole solitons in Kerr nonlinear media with parity-time-symmetric Gaussian complex potentials are reported. Fundamental solitons are stable not only in deep potentials but also in shallow potentials. Dipole and tripole solitons are stable only in deep potentials, and tripole solitons are stable in deeper potentials than for dipole solitons. The stable regions of solitons increase with increasing potential depth. The power of solitons increases with increasing propagation constant or decreasing modulation depth of the potentials.
Solitons supported by complex PT-symmetric Gaussian potentials
NASA Astrophysics Data System (ADS)
Hu, Sumei; Ma, Xuekai; Lu, Daquan; Yang, Zhenjun; Zheng, Yizhou; Hu, Wei
2011-10-01
The existence and stability of fundamental, dipole, and tripole solitons in Kerr nonlinear media with parity-time-symmetric Gaussian complex potentials are reported. Fundamental solitons are stable not only in deep potentials but also in shallow potentials. Dipole and tripole solitons are stable only in deep potentials, and tripole solitons are stable in deeper potentials than for dipole solitons. The stable regions of solitons increase with increasing potential depth. The power of solitons increases with increasing propagation constant or decreasing modulation depth of the potentials.
Symmetric and Asymmetric Tendencies in Stable Complex Systems
Tan, James P. L.
2016-01-01
A commonly used approach to study stability in a complex system is by analyzing the Jacobian matrix at an equilibrium point of a dynamical system. The equilibrium point is stable if all eigenvalues have negative real parts. Here, by obtaining eigenvalue bounds of the Jacobian, we show that stable complex systems will favor mutualistic and competitive relationships that are asymmetrical (non-reciprocative) and trophic relationships that are symmetrical (reciprocative). Additionally, we define a measure called the interdependence diversity that quantifies how distributed the dependencies are between the dynamical variables in the system. We find that increasing interdependence diversity has a destabilizing effect on the equilibrium point, and the effect is greater for trophic relationships than for mutualistic and competitive relationships. These predictions are consistent with empirical observations in ecology. More importantly, our findings suggest stabilization algorithms that can apply very generally to a variety of complex systems. PMID:27545722
Closed form evaluation of symmetric two-sided complex integrals
NASA Technical Reports Server (NTRS)
Winkelstein, R.
1981-01-01
Evaluation of two-sided complex integrals is often required when analyzing linear systems to determine signal variances resulting from stochastic inputs and system noise bandwidths. Algebraic solutions of integrals in a closed matrix equation form, using coefficients of the numerator and denominator polynomials, are presented. The closed forms provide the possibility of obtaining some insight into parameter sensitivity in addition to greatly reducing the computational complexity required by the normal method of evaluation by residues.
Spherically symmetric analysis on open FLRW solution in non-linear massive gravity
Chiang, Chien-I; Izumi, Keisuke; Chen, Pisin E-mail: izumi@phys.ntu.edu.tw
2012-12-01
We study non-linear massive gravity in the spherically symmetric context. Our main motivation is to investigate the effect of helicity-0 mode which remains elusive after analysis of cosmological perturbation around an open Friedmann-Lemaitre-Robertson-Walker (FLRW) universe. The non-linear form of the effective energy-momentum tensor stemming from the mass term is derived for the spherically symmetric case. Only in the special case where the area of the two sphere is not deviated away from the FLRW universe, the effective energy momentum tensor becomes completely the same as that of cosmological constant. This opens a window for discriminating the non-linear massive gravity from general relativity (GR). Indeed, by further solving these spherically symmetric gravitational equations of motion in vacuum to the linear order, we obtain a solution which has an arbitrary time-dependent parameter. In GR, this parameter is a constant and corresponds to the mass of a star. Our result means that Birkhoff's theorem no longer holds in the non-linear massive gravity and suggests that energy can probably be emitted superluminously (with infinite speed) on the self-accelerating background by the helicity-0 mode, which could be a potential plague of this theory.
Classical irregular blocks, Hill's equation and PT-symmetric periodic complex potentials
NASA Astrophysics Data System (ADS)
Piatek, Marcin; Pietrykowski, Artur R.
2016-07-01
The Schrödinger eigenvalue problems for the Whittaker-Hill potential {Q}_2(x) = 1/2{h}^2 cos 4x + 4hμ cos 2x and the periodic complex potential {Q}_1(x)=1/4{h}^2{e}^{-} 4ix} + 2{h}^2 cos 2x are studied using their realizations in two-dimensional conformal field theory (2dCFT). It is shown that for the weak coupling (small) h ∈ ℝ and non-integer Floquet parameter ν ∉ ℤ spectra of hamiltonians ℋi = - d2/d x 2 + Q i( x), i = 1, 2 and corresponding two linearly independent eigenfunctions are given by the classical limit of the "single flavor" and "two flavors" ( N f = 1 , 2) irregular conformal blocks. It is known that complex nonhermitian hamiltonians which are PT-symmetric (= invariant under simultaneous parity P and time reversal T transformations) can have real eigenvalues. The hamiltonian ℋ1 is PT-symmetric for h, x ∈ ℝ. It is found that ℋ1 has a real spectrum in the weak coupling region for ν ∈ ℝ ℤ. This fact in an elementary way follows from a definition of the N f = 1 classical irregular block. Thus, ℋ1 can serve as yet another new model for testing postulates of PT-symmetric quantum mechanics.
Generation of Symmetric Dicke States of Remote Qubits with Linear Optics
Thiel, C.; Zanthier, J. von; Bastin, T.; Solano, E.; Agarwal, G. S.
2007-11-09
We propose a method for generating all symmetric Dicke states, either in the long-lived internal levels of N massive particles or in the polarization degrees of freedom of photonic qubits, using linear optical tools only. By means of a suitable multiphoton detection technique, erasing Welcher-Weg information, our proposed scheme allows the generation and measurement of an important class of entangled multiqubit states.
Chaos and Chaos Synchronization of a Symmetric Gyro with Linear-Plus Damping
NASA Astrophysics Data System (ADS)
CHEN, H.-K.
2002-08-01
The dynamic behavior of a symmetric gyro with linear-plus-cubic damping, which is subjected to a harmonic excitation, is studied in this paper. The Liapunov direct method has been used to obtain the sufficient conditions of the stability of the equilibrium points of the system. By applying numerical results, time history, phase diagrams, Poincaré maps, Liapunov exponents and Liapunov dimensions are presented to observe periodic and chaotic motions. Besides, several control methods, the delayed feedback control, the addition of constant motor torque, the addition of period force, and adaptive control algorithm (ACA), have been used to control chaos effectively. Finally, attention is shifted to the synchronization of chaos in the two identical chaotic motions of symmetric gyros. The results show that one can make two identical chaotic systems to synchronize through applying four different kinds of one-way coupling. Furthermore, the synchronization time is also examined.
The development of an algebraic multigrid algorithm for symmetric positive definite linear systems
Vanek, P.; Mandel, J.; Brezina, M.
1996-12-31
An algebraic multigrid algorithm for symmetric, positive definite linear systems is developed based on the concept of prolongation by smoothed aggregation. Coarse levels are generated automatically. We present a set of requirements motivated heuristically by a convergence theory. The algorithm then attempts to satisfy the requirements. Input to the method are the coefficient matrix and zero energy modes, which are determined from nodal coordinates and knowledge of the differential equation. Efficiency of the resulting algorithm is demonstrated by computational results on real world problems from solid elasticity, plate blending, and shells.
Bugenhagen, B E C; Prosenc, M H
2016-04-25
The synthesis of symmetric and non-symmetric 5,5'-linked disalophen Ni(ii) complexes by the Suzuki-Miyaura-reaction is reported. Also, the synthesis and structural characterization of four Ni(ii)-precursor complexes are presented. The 5-Br-substituted mononuclear complexes and are coupled to the pinacolborane substituted complexes and yielding the four dinuclear dinickel complexes in good yields. The crystal structure of dinuclear complex was obtained revealing a coplanar arrangement between the two salophen fragments. Electronic spectra as well as DFT-calculations on the ground states and excitation energies are reported and they reveal a small coupling between the electronically saturated Ni-salophen complexes. PMID:27040080
Observation of Bloch oscillations in complex PT-symmetric photonic lattices
NASA Astrophysics Data System (ADS)
Wimmer, Martin; Miri, Mohammed-Ali; Christodoulides, Demetrios; Peschel, Ulf
2015-12-01
Light propagation in periodic environments is often associated with a number of interesting and potentially useful processes. If a crystalline optical potential is also linearly ramped, light can undergo periodic Bloch oscillations, a direct outcome of localized Wannier-Stark states and their equidistant eigenvalue spectrum. Even though these effects have been extensively explored in conservative settings, this is by no means the case in non-Hermitian photonic lattices encompassing both amplification and attenuation. Quite recently, Bloch oscillations have been predicted in parity-time-symmetric structures involving gain and loss in a balanced fashion. While in a complex bulk medium, one intuitively expects that light will typically follow the path of highest amplification, in a periodic system this behavior can be substantially altered by the underlying band structure. Here, we report the first experimental observation of Bloch oscillations in parity-time-symmetric mesh lattices. We show that these revivals exhibit unusual properties like secondary emissions and resonant restoration of PT symmetry. In addition, we present a versatile method for reconstructing the real and imaginary components of the band structure by directly monitoring the light evolution during a cycle of these oscillations.
Observation of Bloch oscillations in complex PT-symmetric photonic lattices
Wimmer, Martin; Miri, Mohammed-Ali; Christodoulides, Demetrios; Peschel, Ulf
2015-01-01
Light propagation in periodic environments is often associated with a number of interesting and potentially useful processes. If a crystalline optical potential is also linearly ramped, light can undergo periodic Bloch oscillations, a direct outcome of localized Wannier-Stark states and their equidistant eigenvalue spectrum. Even though these effects have been extensively explored in conservative settings, this is by no means the case in non-Hermitian photonic lattices encompassing both amplification and attenuation. Quite recently, Bloch oscillations have been predicted in parity-time-symmetric structures involving gain and loss in a balanced fashion. While in a complex bulk medium, one intuitively expects that light will typically follow the path of highest amplification, in a periodic system this behavior can be substantially altered by the underlying band structure. Here, we report the first experimental observation of Bloch oscillations in parity-time-symmetric mesh lattices. We show that these revivals exhibit unusual properties like secondary emissions and resonant restoration of PT symmetry. In addition, we present a versatile method for reconstructing the real and imaginary components of the band structure by directly monitoring the light evolution during a cycle of these oscillations. PMID:26639941
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.
1997-01-01
A parametric study of the buckling behavior of infinitely long symmetrically laminated anisotropic plates that are subjected to linearly varying edge loads, uniform shear loads, or combinations of these loads is presented. The study focuses on the effects of the shape of linearly varying edge load distribution, plate orthotropy, and plate flexural anisotropy on plate buckling behavior. In addition, the study exmines the interaction of linearly varying edge loads and uniform shear loads with plate flexural anisotropy and orthotropy. Results obtained by using a special purpose nondimensional analysis that is well suited for parametric studies of clamped and simply supported plates are presented for [+/- theta](sub s), thin graphite-epoxy laminates that are representative of spacecraft structural components. Also, numerous generic buckling-design charts are presented for a wide range of nondimensional parameters that are applicable to a broad class of laminate constructions. These charts show explicitly the effects of flexural orthotropy and flexural anisotropy on plate buckling behavior for linearly varying edge loads, uniform shear loads, or combinations of these loads. The most important finding of the present study is that specially orthotropic and flexurally anisotropic plates that are subjected to an axial edge load distribution that is tension dominated can support shear loads that are larger in magnitude than the shear buckling load.
NASA Astrophysics Data System (ADS)
Clarisse, Jean-Marie; Jaouen, Stéphane; Raviart, Pierre-Arnaud
2004-07-01
Linear stability studies of complex flows require that efficient numerical methods be devised for predicting growth rates of multi-dimensional perturbations. For one-dimensional (1D) basic flows - i.e. of planar, cylindrical or spherical symmetry - a general numerical approach is viable which consists in solving simultaneously the one-dimensional equations of gas dynamics and their linearized forms for three-dimensional perturbations. Extensions of artificial viscosity methods have thus been used in the past. More recently [Equations aux dérivées partielles et applications, articles dédiés à J.-L. Lions, 1998], Godunov-type schemes for single-fluid flows of gas dynamics and magnetohydrodynamics have been proposed. Pursuing this effort, we introduce, within the Lagrangian perturbation approach, a class of Godunov-type schemes which is well suited for solving multi-material problems of gas dynamics. These schemes are developed here for the planar-symmetric case and comprise two second-order extensions. The numerical capabilities of these methods are illustrated by computations of Richtmyer-Meshkov instabilities occurring at a single material interface. A systematic comparison of numerically computed growth rates with results of the linear theory for the Richtmyer-Meshkov instability is provided.
NASA Astrophysics Data System (ADS)
HARRAS, B.; BENAMAR, R.; WHITE, R. G.
2002-04-01
The geometrically non-linear free vibration of thin composite laminated plates is investigated by using a theoretical model based on Hamilton's principle and spectral analysis previously applied to obtain the non-linear mode shapes and resonance frequencies of thin straight structures, such as beams, plates and shells (Benamar et al. 1991Journal of Sound and Vibration149 , 179-195; 1993, 164, 295-316; 1990 Proceedings of the Fourth International Conference on Recent Advances in Structural Dynamics, Southampton; Moussaoui et al. 2000 Journal of Sound and Vibration232, 917-943 [1-4]). The von Kármán non-linear strain-displacement relationships have been employed. In the formulation, the transverse displacement W of the plate mid-plane has been taken into account and the in-plane displacements U and V have been neglected in the non-linear strain energy expressions. This assumption, quite often made in the literature has been adopted in reference [2] and (El Kadiri et al. 1999 Journal of Sound and Vibration228, 333-358 [5]), in the isotropic case and has been mentioned here because the results obtained have been found to be in very good agreement with those based on the hierarchical finite element method (HFEM). In a previous study, it was assumed, based on the analogy with the isotropic case, that the fundamental carbon fibre reinforced plastic (CFRP) plate non-linear mode shape could be well estimated, by using nine plate functions, obtained as products of clamped-clamped beam functions in the x and y directions, symmetric in both the length U001and width directions [3]. In the present work, a convergence study has been performed and has shown that, although such an assumption may yield a good estimate for the non-linear resonance frequency, 18 plate functions should be taken into account instead of nine in the first non-linear mode shape and associated bending stress patterns calculations. This allows the anisotropy induced by the fibre orientations to be taken
High-pulse-energy, linear optical parametric oscillator with narrow and symmetrical far field.
Farsund, Øystein; Rustad, Gunnar
2013-08-26
A new method to obtain a narrow and symmetrical far field from a high-pulse-energy optical parametric oscillator (OPO) with a linear resonator has been tested. The OPO employs two identical nonlinear crystals that are cut for type II phase matching, rotated such that their walk-off planes are orthogonal, and separated by a broadband half-wave plate. The OPO has a simple geometry, can be double-pass pumped, is wavelength tunable and operates stably with high conversion efficiency. The method has been demonstrated in a KTP-based OPO pumped at 1064 nm and a BBO-based OPO pumped at 532 nm, with output pulse energies up to 60 mJ and 75 mJ, respectively. PMID:24105562
On the computational complexity of binary and analog symmetric hopfield nets
Sima; Orponen; Antti-Poika
2000-12-01
We investigate the computational properties of finite binary- and analog-state discrete-time symmetric Hopfield nets. For binary networks, we obtain a simulation of convergent asymmetric networks by symmetric networks with only a linear increase in network size and computation time. Then we analyze the convergence time of Hopfield nets in terms of the length of their bit representations. Here we construct an analog symmetric network whose convergence time exceeds the convergence time of any binary Hopfield net with the same representation length. Further, we prove that the MIN ENERGY problem for analog Hopfield nets is NP-hard and provide a polynomial time approximation algorithm for this problem in the case of binary nets. Finally, we show that symmetric analog nets with an external clock are computationally Turing universal. PMID:11112262
Trellis Decoding Complexity of Linear Block Codes
NASA Technical Reports Server (NTRS)
Kiely, A. B.; McEliece, R. J.; Lin, W.; Ekroot, L.; Dolinar, S.
1995-01-01
We consider the problem of finding a trellis for a linear block code that minimizes one or more measures of trellis complexity. The domain of optimization may be different permutations of the same code, or different codes with the same parameters. Constraints on trellises, including relationships between the minimal trellis of a code and that of the dual code, are used to derive bounds on complexity. We define a partial ordering on trellises: if a trellis is optimum with respect to this partial ordering, it has the desirable property that it simultaneously minimizes all of the complexity measures examined. We examine properties of such optimal trellises and give examples of optimal permutations of codes, most notably the (48,24,12) quadratic residue code.
Crystal structure of the human mitochondrial chaperonin symmetrical football complex.
Nisemblat, Shahar; Yaniv, Oren; Parnas, Avital; Frolow, Felix; Azem, Abdussalam
2015-05-12
Human mitochondria harbor a single type I chaperonin system that is generally thought to function via a unique single-ring intermediate. To date, no crystal structure has been published for any mammalian type I chaperonin complex. In this study, we describe the crystal structure of a football-shaped, double-ring human mitochondrial chaperonin complex at 3.15 Å, which is a novel intermediate, likely representing the complex in an early stage of dissociation. Interestingly, the mitochondrial chaperonin was captured in a state that exhibits subunit asymmetry within the rings and nucleotide symmetry between the rings. Moreover, the chaperonin tetradecamers show a different interring subunit arrangement when compared to GroEL. Our findings suggest that the mitochondrial chaperonins use a mechanism that is distinct from the mechanism of the well-studied Escherichia coli system. PMID:25918392
Crystal structure of the human mitochondrial chaperonin symmetrical football complex
Nisemblat, Shahar; Yaniv, Oren; Parnas, Avital; Frolow, Felix; Azem, Abdussalam
2015-01-01
Human mitochondria harbor a single type I chaperonin system that is generally thought to function via a unique single-ring intermediate. To date, no crystal structure has been published for any mammalian type I chaperonin complex. In this study, we describe the crystal structure of a football-shaped, double-ring human mitochondrial chaperonin complex at 3.15 Å, which is a novel intermediate, likely representing the complex in an early stage of dissociation. Interestingly, the mitochondrial chaperonin was captured in a state that exhibits subunit asymmetry within the rings and nucleotide symmetry between the rings. Moreover, the chaperonin tetradecamers show a different interring subunit arrangement when compared to GroEL. Our findings suggest that the mitochondrial chaperonins use a mechanism that is distinct from the mechanism of the well-studied Escherichia coli system. PMID:25918392
NASA Astrophysics Data System (ADS)
Marcotte, D.
2016-04-01
The turning bands method (TBM) is a commonly used method of simulation for large Gaussian fields, its O(N) complexity being unsurpassed (N denotes the number of points to simulate). TBM can be implemented either in the spatial or the spectral domains. In the multivariate anisotropic case, spatial versions of TBM are currently available only for the linear model of coregionalization (LMC). For anisotropic non-LMC with symmetrical covariances only the spectral version is currently available. The spectral domain approach can be slow in the case of non-differentiable covariances due to the numerous frequencies to sample. Here a derivation of the equations is provided for simulating the anisotropic non-LMC directly in the spatial domain and the method is illustrated with two synthetic examples. The approach allows the specification of many different direct and cross-covariance components, each with possibly different geometric anisotropies and different model types. The complexity of the new multivariate approach remains O(N). Hence, a case of two variables defining an anisotropic non-LMC is simulated over one billion points in less than one hour on a desktop computer. These results help enlarge the scope of application of the TBM. The method can be easily implemented in any existing TBM program.
Rubio, Francisco J; Genton, Marc G
2016-06-30
We study Bayesian linear regression models with skew-symmetric scale mixtures of normal error distributions. These kinds of models can be used to capture departures from the usual assumption of normality of the errors in terms of heavy tails and asymmetry. We propose a general noninformative prior structure for these regression models and show that the corresponding posterior distribution is proper under mild conditions. We extend these propriety results to cases where the response variables are censored. The latter scenario is of interest in the context of accelerated failure time models, which are relevant in survival analysis. We present a simulation study that demonstrates good frequentist properties of the posterior credible intervals associated with the proposed priors. This study also sheds some light on the trade-off between increased model flexibility and the risk of over-fitting. We illustrate the performance of the proposed models with real data. Although we focus on models with univariate response variables, we also present some extensions to the multivariate case in the Supporting Information. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26856806
Dzhunushaliev, Vladimir; Folomeev, Vladimir; Singleton, Douglas; Myrzakulov, Ratbay
2010-08-15
In this paper we investigate wormhole and spherically symmetric solutions in four-dimensional gravity plus a matter source consisting of a ghost scalar field with a sine-Gordon potential. For the wormhole solutions we also include the possibility of electric and/or magnetic charges. For both types of solutions we perform a linear stability analysis and show that the wormhole solutions are stable and that when one turns on the electric and/or magnetic field the solution remains stable. The linear stability analysis of the spherically symmetric solutions indicates that they can be stable or unstable depending on one of the parameters of the system. This result for the spherically symmetric solution is nontrivial since a previous investigation of four-dimensional gravity plus a ghost scalar field with a {lambda}{phi}{sup 4} interaction found only unstable spherically symmetric solutions. Both the wormhole and spherically symmetric solutions presented here asymptotically go to anti-de Sitter space-time.
Parametric symmetries in exactly solvable real and PT symmetric complex potentials
NASA Astrophysics Data System (ADS)
Yadav, Rajesh Kumar; Khare, Avinash; Bagchi, Bijan; Kumari, Nisha; Mandal, Bhabani Prasad
2016-06-01
In this paper, we discuss the parametric symmetries in different exactly solvable systems characterized by real or complex PT symmetric potentials. We focus our attention on the conventional potentials such as the generalized Pöschl Teller (GPT), Scarf-I, and PT symmetric Scarf-II which are invariant under certain parametric transformations. The resulting set of potentials is shown to yield a completely different behavior of the bound state solutions. Further, the supersymmetric partner potentials acquire different forms under such parametric transformations leading to new sets of exactly solvable real and PT symmetric complex potentials. These potentials are also observed to be shape invariant (SI) in nature. We subsequently take up a study of the newly discovered rationally extended SI potentials, corresponding to the above mentioned conventional potentials, whose bound state solutions are associated with the exceptional orthogonal polynomials (EOPs). We discuss the transformations of the corresponding Casimir operator employing the properties of the so(2, 1) algebra.
Serbes, G; Aydin, N
2011-01-01
Dual-tree complex wavelet transform (DTCWT), which is a shift invariant transform with limited redundancy, is an improved version of discrete wavelet transform. Complex quadrature signals are dual channel signals obtained from the systems employing quadrature demodulation. An example of such signals is quadrature Doppler signal obtained from blood flow analysis systems. Prior to processing Doppler signals using the DTCWT, directional flow signals must be obtained and then two separate DTCWT applied, increasing the computational complexity. In this study, in order to decrease computational complexity, a symmetrical modified DTCWT algorithm is proposed (SMDTCWT). A comparison between the new transform and the symmetrical phasing-filter technique is presented. Additionally denoising performance of SMDTCWT is compared with the DWT and the DTCWT using simulated signals. The results show that the proposed method gives the same output as the symmetrical phasing-filter method, the computational complexity for processing quadrature signals using DTCWT is greatly reduced and finally the SMDTCWT based denoising outperforms conventional DWT with same computational complexity. PMID:22255416
Preconditioning the bidomain model with almost linear complexity
NASA Astrophysics Data System (ADS)
Pierre, Charles
2012-01-01
The bidomain model is widely used in electro-cardiology to simulate spreading of excitation in the myocardium and electrocardiograms. It consists of a system of two parabolic reaction diffusion equations coupled with an ODE system. Its discretisation displays an ill-conditioned system matrix to be inverted at each time step: simulations based on the bidomain model therefore are associated with high computational costs. In this paper we propose a preconditioning for the bidomain model either for an isolated heart or in an extended framework including a coupling with the surrounding tissues (the torso). The preconditioning is based on a formulation of the discrete problem that is shown to be symmetric positive semi-definite. A block LU decomposition of the system together with a heuristic approximation (referred to as the monodomain approximation) are the key ingredients for the preconditioning definition. Numerical results are provided for two test cases: a 2D test case on a realistic slice of the thorax based on a segmented heart medical image geometry, a 3D test case involving a small cubic slab of tissue with orthotropic anisotropy. The analysis of the resulting computational cost (both in terms of CPU time and of iteration number) shows an almost linear complexity with the problem size, i.e. of type nlog α( n) (for some constant α) which is optimal complexity for such problems.
Kubota, Yasuhiro; Niwa, Takahiro; Jin, Jiye; Funabiki, Kazumasa; Matsui, Masaki
2015-06-19
Novel bisboron complexes of bidentate ligands consisting of 1,4-benzoquinone and two pyrrole rings were synthesized by using a simple two-step reaction. In solution, the bisboron complexes showed absorption maxima at ∼620 and 800 nm, which were attributed to the allowed S0 → S2 and forbidden S0 → S1 transitions, respectively. The bisboron complexes did not show any fluorescence, probably because of their highly symmetrical structure which forbids the S0 → S1 transition. Bisboron complexes underwent a two-electron reduction to yield the corresponding aromatic dianion, which showed absorption maxima at ∼410 nm. PMID:26067338
Anastassi, Z. A.; Simos, T. E.
2010-09-30
We develop a new family of explicit symmetric linear multistep methods for the efficient numerical solution of the Schroedinger equation and related problems with oscillatory solution. The new methods are trigonometrically fitted and have improved intervals of periodicity as compared to the corresponding classical method with constant coefficients and other methods from the literature. We also apply the methods along with other known methods to real periodic problems, in order to measure their efficiency.
Horner, D.A.; Colgan, J.; Martin, F.; McCurdy, C.W.; Pindzola, M.S.; Rescigno, T.N.
2004-06-01
Symmetrized complex amplitudes for the double photoionization of helium are computed by the time-dependent close-coupling and exterior complex scaling methods, and it is demonstrated that both methods are capable of the direct calculation of these amplitudes. The results are found to be in excellent agreement with each other and in very good agreement with results of other ab initio methods and experiment.
Novel supramolecular assembly of symmetrical mixed-metal-ligand complexes of dioxouranium(VI).
Mubarak, Ahmed T
2006-12-01
Some binary and ternary novel complexes of dioxouranium(VI) with 8-hydroxy-7-quinolinecarboxaldehyde (OXH) have been prepared and characterized by elemental analyses, magnetic susceptibility measurements and spectral studies. Coordination effects on the vibrational spectra of the ligands have been investigated. The amine exchange reactions of coordinated Schiff bases in these complexes have been also studied, which reveal symmetrical tetradentate Schiff base complexes. Metal exchange reaction of dioxouranium(VI) complexes was obtained when reacted with tetradentate Schiff base complexes of Cu(II) with ZrCl(4)/UO(2)(CH(3)COO)(2) giving heterobinuclear complexes. Magnetic, electronic and IR spectral data suggest the configurations of distorted square planar ligand field copper(II) complexes. The ligands behave as bi-(O,O) and tetradentate (N(2),O(2)) donors. El-Sonbati equation has been used to evaluate the symmetric stretching frequency from which the F(U-O) and F(UO,UO)(-) were calculated. The bond distances of these complexes were also investigated. PMID:16843709
Transparency of the complex PT-symmetric potentials for coherent injection
NASA Astrophysics Data System (ADS)
Ahmed, Zafar; Nathan, Joseph Amal; Ghosh, Dona
2016-02-01
Two port s-matrix for a complex PT-symmetric potential may have uni-modular eigenvalues. If this happens for all energies, there occurs a perfect emission of waves at both ends. We call this phenomenon transparency which is distinctly different from coherent perfect absorption with or without lasing. Using the versatile PT-symmetric complex Scarf II (scattering) potential, we demonstrate analytically that the transparency can occur regardless of whether PT-symmetry is unbroken or broken or if there are only scattering states. In these three cases, for a given value of the strength of the real part, the strength of the imaginary part |V2 | of the potential lies in (0 ,Vα) , (Vα ,Vβ) and (0 ,Vβ) respectively. Several other numerically solved potentials also support our findings.
Grain Rotation in Ion-Complexed Symmetric Diblock Copolymer Thin Films under an Electric Field
Wang,J.; Leiston-Belanger, J.; Sievert, J.; Russell, T.
2006-01-01
In symmetric polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer thin films, lithium-PMMA complexes were formed with the addition of lithium chloride (LiCl), significantly increasing both {chi} and dielectric constant. These led to a transition in the kinetic pathway of the orientation of lamellar microdomains under an applied electric field from a disruption and re-formation of the microdomains to a grain rotation mediated by movement of defects. By controlling the number of lithium-PMMA complexes, the microdomain alignment is possibly regulated in PS-b-PMMA copolymer thin films.
Single-molecule observation of protein folding in symmetric GroEL-(GroES)2 complexes.
Takei, Yodai; Iizuka, Ryo; Ueno, Taro; Funatsu, Takashi
2012-11-30
The chaperonin, GroEL, is an essential molecular chaperone that mediates protein folding together with its cofactor, GroES, in Escherichia coli. It is widely believed that the two rings of GroEL alternate between the folding active state coupled to GroES binding during the reaction cycle. In other words, an asymmetric GroEL-GroES complex (the bullet-shaped complex) is formed throughout the cycle, whereas a symmetric GroEL-(GroES)(2) complex (the football-shaped complex) is not formed. We have recently shown that the football-shaped complex coexists with the bullet-shaped complex during the reaction cycle. However, how protein folding proceeds in the football-shaped complex remains poorly understood. Here, we used GFP as a substrate to visualize protein folding in the football-shaped complex by single-molecule fluorescence techniques. We directly showed that GFP folding occurs in both rings of the football-shaped complex. Remarkably, the folding was a sequential two-step reaction, and the kinetics were in excellent agreement with those in the bullet-shaped complex. These results demonstrate that the same reactions take place independently in both rings of the football-shaped complex to facilitate protein folding. PMID:23048033
Single-molecule Observation of Protein Folding in Symmetric GroEL-(GroES)2 Complexes*
Takei, Yodai; Iizuka, Ryo; Ueno, Taro; Funatsu, Takashi
2012-01-01
The chaperonin, GroEL, is an essential molecular chaperone that mediates protein folding together with its cofactor, GroES, in Escherichia coli. It is widely believed that the two rings of GroEL alternate between the folding active state coupled to GroES binding during the reaction cycle. In other words, an asymmetric GroEL-GroES complex (the bullet-shaped complex) is formed throughout the cycle, whereas a symmetric GroEL-(GroES)2 complex (the football-shaped complex) is not formed. We have recently shown that the football-shaped complex coexists with the bullet-shaped complex during the reaction cycle. However, how protein folding proceeds in the football-shaped complex remains poorly understood. Here, we used GFP as a substrate to visualize protein folding in the football-shaped complex by single-molecule fluorescence techniques. We directly showed that GFP folding occurs in both rings of the football-shaped complex. Remarkably, the folding was a sequential two-step reaction, and the kinetics were in excellent agreement with those in the bullet-shaped complex. These results demonstrate that the same reactions take place independently in both rings of the football-shaped complex to facilitate protein folding. PMID:23048033
NASA Astrophysics Data System (ADS)
Shen, Jun
2003-07-01
Symmetric, linear phase, slice-selective RF pulses were analyzed theoretically for performing slice-selective coherence transfer. It was shown using numerical simulations of product operators that, when a prefocusing gradient of the same area as that of the refocusing gradient is added, these pulses become slice-selective universal rotator pulses, therefore, capable of performing slice-selective coherence transfer. As an example, a slice-selective universal rotator pulse based on a seven-lobe hamming-filtered sinc pulse was applied to in vivo single-shot simultaneous spectral editing and spatial localization of neurotransmitter GABA in the human brain.
A Symmetrical Tetramer for S. aureus Pyruvate Carboxylase in Complex with Coenzyme A
Yu, L.; Xiang, S; Lasso, G; Gil, D; Valle, M; Tong, L
2009-01-01
Pyruvate carboxylase (PC) is a conserved metabolic enzyme with important cellular functions. We report crystallographic and cryo-electron microscopy (EM) studies of Staphylococcus aureus PC (SaPC) in complex with acetyl-CoA, an allosteric activator, and mutagenesis, biochemical, and structural studies of the biotin binding site of its carboxyltransferase (CT) domain. The disease-causing A610T mutation abolishes catalytic activity by blocking biotin binding to the CT active site, and Thr908 might play a catalytic role in the CT reaction. The crystal structure of SaPC in complex with CoA reveals a symmetrical tetramer, with one CoA molecule bound to each monomer, and cryo-EM studies confirm the symmetrical nature of the tetramer. These observations are in sharp contrast to the highly asymmetrical tetramer of Rhizobium etli PC in complex with ethyl-CoA. Our structural information suggests that acetyl-CoA promotes a conformation for the dimer of the biotin carboxylase domain of PC that might be catalytically more competent.
Kong, Weixin; Jiang, Wei; Zhu, Yutian; Li, Baohui
2012-08-14
Multicompartment micelles, especially those with highly symmetric surfaces such as patchy-like, patchy, and Janus micelles, have tremendous potential as building blocks of hierarchical multifunctional nanomaterials. One of the most versatile and powerful methods to obtain patchy multicompartment micelles is by the solution-state self-assembly of linear triblock copolymers. In this article, we applied the simulated annealing method to study the self-assembly of ABC linear terpolymers in C-selective solvents. Simulations predict a variety of patchy and patchy-like multicompartment micelles with high symmetry and also yield a detailed phase diagram to reveal how to control the patchy multicompartment micelle morphologies precisely. The phase diagram demonstrates that the internal segregated micellar structure depends on the ratio between the volume fractions of the two solvophobic blocks and their incompatibility, whereas the overall micellar shape depends on the copolymer concentration. The relationship between the interfacial energy, stretching energy of chains and the micellar morphology, micellar morphological transition are elucidated by computing the average contact number among the species, the mean square end-to-end distances of the whole terpolymers, the AB blocks in the terpolymers, the AB diblock copolymers, and angle distribution of terpolymers. The anchoring effect of the solvophilic C block on micellar structures is also examined by comparing the morphologies formed from ABC terpolymers and AB diblock copolymers. PMID:22804956
Out-of-Core Solutions of Complex Sparse Linear Equations
NASA Technical Reports Server (NTRS)
Yip, E. L.
1982-01-01
ETCLIB is library of subroutines for obtaining out-of-core solutions of complex sparse linear equations. Routines apply to dense and sparse matrices too large to be stored in core. Useful for solving any set of linear equations, but particularly useful in cases where coefficient matrix has no special properties that guarantee convergence with any of interative processes. The only assumption made is that coefficient matrix is not singular.
Hickey, Robert J.; Gillard, Timothy M.; Lodge, Timothy P.; Bates, Frank S.
2015-08-28
Rheological evidence of composition fluctuations in disordered diblock copolymers near the order disorder transition (ODT) has been documented in the literature over the past three decades, characterized by a failure of time–temperature superposition (tTS) to reduce linear dynamic mechanical spectroscopy (DMS) data in the terminal viscoelastic regime to a temperature-independent form. However, for some materials, most notably poly(styrene-b-isoprene) (PS–PI), no signature of these rheological features has been found. We present small-angle X-ray scattering (SAXS) results on symmetric poly(cyclohexylethylene-b-ethylene) (PCHE–PE) diblock copolymers that confirm the presence of fluctuations in the disordered state and DMS measurements that also show no sign of the features ascribed to composition fluctuations. Assessment of DMS results published on five different diblock copolymer systems leads us to conclude that the effects of composition fluctuations can be masked by highly asymmetric block dynamics, thereby resolving a long-standing disagreement in the literature and reinforcing the importance of mechanical contrast in understanding the dynamics of ordered and disordered block polymers.
NASA Astrophysics Data System (ADS)
Jie, Renlong; Qiao, Jian; Xu, Genjiu; Meng, Yingying
2016-07-01
The propagating dynamics of more than one rumor has received a substantial amount of attention in recent years. To investigate the effects of interactions between two rumors under symmetric conditions, we built a model based on an ordinary differential equation system while assuming that each individual's spreading rate after receiving one rumor depends on whether he/she knows the other rumor. In certain cases, two rumors accelerate the spread of each other, while in a portion of the other cases they impede or decelerate the spread of each other. We discuss these effects by dividing the total population into nine groups that correspond to nine states, and we subsequently build the mean-field equations for the two-rumor interaction based on the SIR model in a homogeneous complex network, and we find their numerical solution with varying interaction factors for the rates of spreading and becoming disinterested. The results show that when we change these interaction factors, the density curves of the nine states and their maximum values will change accordingly by a series of rules, which demonstrates the corresponding effects when there is a positive or negative interaction between the two rumors. Our work could establish a foundation for further study of this issue.
Simulation of complexes between linear polyelectrolyte and charged dendrimer
NASA Astrophysics Data System (ADS)
Pandav, Gunja; Ganesan, Venkat
2014-03-01
Complexes formed by electrostatic interactions between dendrimer having cationic terminal groups and anionic linear polyelectrolyte are studied using hybrid Monte Carlo simulations. The excluded volume interactions are modeled using a self-consistent field and the electrostatic interactions are computed by solving Poisson equation. Such framework facilitates simulating large scale three-dimensional systems. We primarily focus on the effect of dendrimer generation number, stiffness of polyelectrolyte chain and systematically study its effect on change in shape and size of complexes. Our results suggest that the dendrimer structure and charge distribution has a significant impact on the complex formation.
Synchronization of fractional-order linear complex networks.
Wang, Junwei; Zeng, Caibin
2015-03-01
In this paper, we concentrate on the synchronization problem of fractional-order complex networks with general linear dynamics under connected topology. By introducing a pseudo-state transformation, the problem is converted into an equivalent simultaneous stabilization problem of independent subsystems, which is characterized by nonzero eigenvalues of the Laplacian matrix. Then, sufficient conditions in terms of linear matrix inequalities (LMIs) for synchronization are established, which can be easily solved by efficient convex optimization algorithms. Finally, three examples are provided to illustrate the effectiveness of the proposed method. PMID:25467542
Lamerichs, R.M.J.N.; Boelens, R.; van der Marel, G.A.; van Boom, J.H.; Kaptein, R.; Buck, F.; Fera, B.; Rueterjans, H. )
1989-04-04
A complex between the lac repressor headpiece and a fully symmetric tight-binding 22 bp lac operator was studied by 2D NMR. Several 2D NOE spectra were recorded for the complex in both H{sub 2}O and {sup 2}H{sub 2}O. Many NOE cross-peaks between the headpiece and DNA could be identified, and changes in the chemical shift of the DNA protons upon complex formation were analyzed. Comparison of these data with those obtained for a complex between the headpiece and a 14 bp half-operator, studied previously, shows that two headpieces form a specific complex with the 22 bp lac operator in which each headpiece binds in the same way as found for the 14 bp complex. The orientation of the recognition helix in the major groove of DNA in these complexes is opposite with respect to the dyad axis to that found for other repressors.
Multikernel linear mixed models for complex phenotype prediction.
Weissbrod, Omer; Geiger, Dan; Rosset, Saharon
2016-07-01
Linear mixed models (LMMs) and their extensions have recently become the method of choice in phenotype prediction for complex traits. However, LMM use to date has typically been limited by assuming simple genetic architectures. Here, we present multikernel linear mixed model (MKLMM), a predictive modeling framework that extends the standard LMM using multiple-kernel machine learning approaches. MKLMM can model genetic interactions and is particularly suitable for modeling complex local interactions between nearby variants. We additionally present MKLMM-Adapt, which automatically infers interaction types across multiple genomic regions. In an analysis of eight case-control data sets from the Wellcome Trust Case Control Consortium and more than a hundred mouse phenotypes, MKLMM-Adapt consistently outperforms competing methods in phenotype prediction. MKLMM is as computationally efficient as standard LMMs and does not require storage of genotypes, thus achieving state-of-the-art predictive power without compromising computational feasibility or genomic privacy. PMID:27302636
NASA Astrophysics Data System (ADS)
Alexiewicz, W.; Grygiel, K.
2008-10-01
The graphical analysis of the influence of the rotational diffusion tensor anisotropy and the orientation of the permanent dipole moment on the linear and nonlinear dielectric relaxation is shown. The solution of Smoluchowski-Debye rotational diffusion equation for rigid, and noninteracting polar, symmetric-top molecules, in the "weak molecular reorientation approximation", was used. In order to highlight the influence of the symmetric shape of molecule, in comparison with classical, spherical-top Smoluchowski rotational diffusion, we present sets of Argand-type plots and three-dimensional Cole-Cole diagrams for linear and nonlinear electric susceptibilities. The results indicate that, in describing the nonlinear dielectric relaxation, the simplest spherical-top rotational diffusion model may be a sufficient approximation in some special cases only.
Devassy, Lini; Jisha, Chandroth P; Alberucci, Alessandro; Kuriakose, V C
2015-08-01
Dynamics and properties of nonlinear matter waves in a trapped BEC subject to a PT-symmetric linear potential, with the trap in the form of a super-Gaussian potential, are investigated via a variational approach accounting for the complex nature of the soliton. In the process, we address how the shape of the imaginary part of the potential, that is, a gain-loss mechanism, affects the self-localization and the stability of the condensate. Variational results are found to be in good agreement with full numerical simulations for predicting the shape, width, and chemical potential of the condensate until the PT breaking point. Variational computation also predicts the existence of solitary solution only above a threshold in the particle number as the gain-loss is increased, in agreement with numerical simulations. PMID:26382483
Complex linear effective theory and supersymmetry breaking vacua
NASA Astrophysics Data System (ADS)
Farakos, Fotis; von Unge, Rikard
2015-02-01
We calculate the low-energy effective action of massless and massive complex linear superfields coupled to a massive U(1) vector multiplet. Our calculations include superspace higher-derivative corrections and therefore go beyond previous results. Among the superspace higher derivatives, we find that terms that lead to a deformation of the auxiliary field potential and may break supersymmetry are also generated. We show that the supersymmetry breaking vacua can only be trusted if there exists a hierarchy between the higher-order terms. A renormalization group analysis shows that generically a hierarchy is not generated by the quantum corrections.
NASA Technical Reports Server (NTRS)
Dunham, R. S.
1976-01-01
FORTRAN coded out-of-core equation solvers that solve using direct methods symmetric banded systems of simultaneous algebraic equations. Banded, frontal and column (skyline) solvers were studied as well as solvers that can partition the working area and thus could fit into any available core. Comparison timings are presented for several typical two dimensional and three dimensional continuum type grids of elements with and without midside nodes. Extensive conclusions are also given.
On complexity of trellis structure of linear block codes
NASA Technical Reports Server (NTRS)
Lin, Shu
1990-01-01
The trellis structure of linear block codes (LBCs) is discussed. The state and branch complexities of a trellis diagram (TD) for a LBC is investigated. The TD with the minimum number of states is said to be minimal. The branch complexity of a minimal TD for a LBC is expressed in terms of the dimensions of specific subcodes of the given code. Then upper and lower bounds are derived on the number of states of a minimal TD for a LBC, and it is shown that a cyclic (or shortened cyclic) code is the worst in terms of the state complexity among the LBCs of the same length and dimension. Furthermore, it is shown that the structural complexity of a minimal TD for a LBC depends on the order of its bit positions. This fact suggests that an appropriate permutation of the bit positions of a code may result in an equivalent code with a much simpler minimal TD. Boolean polynomial representation of codewords of a LBC is also considered. This representation helps in study of the trellis structure of the code. Boolean polynomial representation of a code is applied to construct its minimal TD. Particularly, the construction of minimal trellises for Reed-Muller codes and the extended and permuted binary primitive BCH codes which contain Reed-Muller as subcodes is emphasized. Finally, the structural complexity of minimal trellises for the extended and permuted, and double-error-correcting BCH codes is analyzed and presented. It is shown that these codes have relatively simple trellis structure and hence can be decoded with the Viterbi decoding algorithm.
Li, Yang; Wilson, Justin J; Do, Loi H; Apfel, Ulf-Peter; Lippard, Stephen J
2012-08-21
A triptycene-based bis(benzoxazole) diacid ligand H(2)L2(Ph4) bearing sterically encumbering groups was synthesized. Treatment of H(2)L2(Ph4) with Fe(OTf)(3) afforded a C(2)-symmetric trinuclear iron(III) complex, [NaFe(3)(L2(Ph4))(2)(μ(3)-O)(μ-O(2)CCPh(3))(2)(H(2)O)(3)](OTf)(2) (8). The triiron core of this complex adopts the well known "basic iron acetate" structure where the heteroleptic carboxylates, comprising two Ph(3)CCO(2)(-) and two (L2(Ph4))(2-) ligands, donate the six carboxylate bridges. The (L2(Ph4))(2-) ligand undergoes only minor conformational changes upon formation of the complex. PMID:22751622
Li, Yang; Wilson, Justin J.; Do, Loi H.; Apfel, Ulf-Peter; Lippard, Stephen J.
2012-01-01
A triptycene-based bis(benzoxazole) diacid ligand H2L2Ph4 bearing sterically encumbering groups was synthesized. Treatment of H2L2Ph4 with Fe(OTf)3 afforded a C2-symmetric trinuclear iron(III) complex, [NaFe3(L2Ph4)2(μ3-O)(μ-O2CCPh3)2(H2O)3](OTf)2 (8). The triiron core of this complex adopts the well known “basic iron acetate” structure where the heteroleptic carboxylates, comprising two dianionic ligands (L2Ph4)2− and two Ph3CCO2−, donate the six carboxylate bridges. The (L2Ph4)2− ligand undergoes only minor conformational changes upon formation of the complex. PMID:22751622
Data bank homology search algorithm with linear computation complexity.
Strelets, V B; Ptitsyn, A A; Milanesi, L; Lim, H A
1994-06-01
A new algorithm for data bank homology search is proposed. The principal advantages of the new algorithm are: (i) linear computation complexity; (ii) low memory requirements; and (iii) high sensitivity to the presence of local region homology. The algorithm first calculates indicative matrices of k-tuple 'realization' in the query sequence and then searches for an appropriate number of matching k-tuples within a narrow range in database sequences. It does not require k-tuple coordinates tabulation and in-memory placement for database sequences. The algorithm is implemented in a program for execution on PC-compatible computers and tested on PIR and GenBank databases with good results. A few modifications designed to improve the selectivity are also discussed. As an application example, the search for homology of the mouse homeotic protein HOX 3.1 is given. PMID:7922689
Somashekarappa, M P; Keshavayya, J; Sherigara, B S
2003-03-01
The synthesis of iron(III) complexes of general formula FeCl(R-pc), where R-pc are dianionic, symmetrically halogen substituted phthalocyanines at the positions 2,9,16,23 or 1,8,15,22, from the corresponding amino substituted derivatives is described (R=Cl, Br, I). The complexes are characterized by UV-visible and infrared spectra, powder X-ray diffraction and magnetic susceptibility measurements. The effect of substituents at the periphery and the basicity of the solvents used on the electronic spectra are discussed. The Q band of the electronic spectra for symmetrically halogen substituted derivatives are redshifted and the substituents at 2,9,16,23- positions are more effective in redshifting the Q bands than those at 1,8,15,22-positions. Depending upon the basicity of the solvents, the ligand-to-metal charge transfer (LMCT) transitions on Q band envelop shift to the higher energy region in the order of pyridine>DMF>DMSO. The infrared absorption signals for C-H and metal-ligand vibrations appear to be sharper for 1,8,15,22 substituted derivatives than for 2,9,16,23 substituted ones. PMID:12609638
Complex dynamics in the Oregonator model with linear delayed feedback
NASA Astrophysics Data System (ADS)
Sriram, K.; Bernard, S.
2008-06-01
The Belousov-Zhabotinsky (BZ) reaction can display a rich dynamics when a delayed feedback is applied. We used the Oregonator model of the oscillating BZ reaction to explore the dynamics brought about by a linear delayed feedback. The time-delayed feedback can generate a succession of complex dynamics: period-doubling bifurcation route to chaos; amplitude death; fat, wrinkled, fractal, and broken tori; and mixed-mode oscillations. We observed that this dynamics arises due to a delay-driven transition, or toggling of the system between large and small amplitude oscillations, through a canard bifurcation. We used a combination of numerical bifurcation continuation techniques and other numerical methods to explore the dynamics in the strength of feedback-delay space. We observed that the period-doubling and quasiperiodic route to chaos span a low-dimensional subspace, perhaps due to the trapping of the trajectories in the small amplitude regime near the canard; and the trapped chaotic trajectories get ejected from the small amplitude regime due to a crowding effect to generate chaotic-excitable spikes. We also qualitatively explained the observed dynamics by projecting a three-dimensional phase portrait of the delayed dynamics on the two-dimensional nullclines. This is the first instance in which it is shown that the interaction of delay and canard can bring about complex dynamics.
Cu(2+), Zn(2+), and Ni(2+) Complexes of C2-Symmetric Pseudopeptides with an Aromatic Central Spacer.
Gorla, Lingaraju; Martí-Centelles, Vicente; Freimuth, Lena; Altava, Belén; Burguete, M Isabel; Luis, Santiago V
2016-08-01
Two new tetradentate C2-symmetric pseudopeptidic ligands derived from Val and Phe containing two amino and two amido groups and a central o-substituted aromatic spacer have been prepared. Their complexes with Cu(2+), Zn(2+), and Ni(2+) have been studied by potentiometry, UV-vis spectrophotometry, FT-IR, and ESI-MS. The presence of the aromatic spacer provides Cu(2+) complexes with stability constants several orders of magnitude higher than those observed for related ligands containing aliphatic central spacers. Besides, the formation of [MH-2L] complex species is favored. Crystal structures for the corresponding Cu(2+) and Ni(2+) have been obtained, revealing the metal atom in an essentially square-planar geometry, although, in several instances, the oxygen atom of an amide carbonyl of a second complex species can act as a fifth coordination site. In the case of Zn(2+), the only crystal structure obtained displays a square-pyramidal arrangement of the metal center. Finally, preliminary experiments show the catalytic activity of some of these complexes, in particular, Zn(2+) complexes, for epoxide ring-opening with using aniline as the nucleophile in a ligand accelerated process. PMID:27438410
Symmetrizing the symmetrization postulate
NASA Astrophysics Data System (ADS)
York, Michael
2000-11-01
Reasonable requirements of (a) physical invariance under particle permutation and (b) physical completeness of state descriptions [1], enable us to deduce a Symmetric Permutation Rule(SPR): that by taking care with our state descriptions, it is always possible to construct state vectors (or wave functions) that are purely symmetric under pure permutation for all particles, regardless of type distinguishability or spin. The conventional exchange antisymmetry for two identical half-integer spin particles is shown to be due to a subtle interdependence in the individual state descriptions arising from an inherent geometrical asymmetry. For three or more such particles, however, antisymmetrization of the state vector for all pairs simultaneously is shown to be impossible and the SPR makes observably different predictions, although the usual pairwise exclusion rules are maintained. The usual caveat of fermion antisymmetrization—that composite integer spin particles (with fermionic constituents) behave only approximately like bosons—is no longer necessary.
Hasan, Mohammad; Ghatak, Ananya; Mandal, Bhabani Prasad
2014-05-15
We consider a non-Hermitian medium with a gain and loss symmetric, exponentially damped potential distribution to demonstrate different scattering features analytically. The condition for critical coupling (CC) for unidirectional wave and coherent perfect absorption (CPA) for bidirectional waves are obtained analytically for this system. The energy points at which total absorption occurs are shown to be the spectral singular points for the time reversed system. The possible energies at which CC occurs for left and right incidence are different. We further obtain periodic intervals with increasing periodicity of energy for CC and CPA to occur in this system. -- Highlights: •Energy ranges for CC and CPA are obtained explicitly for complex WS potential. •Analytical conditions for CC and CPA for PT symmetric WS potential are obtained. •Conditions for left and right CC are shown to be different. •Conditions for CC and CPA are shown to be that of SS for the time reversed system. •Our model shows the great flexibility of frequencies for CC and CPA.
Unpacking the Complexity of Linear Equations from a Cognitive Load Theory Perspective
ERIC Educational Resources Information Center
Ngu, Bing Hiong; Phan, Huy P.
2016-01-01
The degree of element interactivity determines the complexity and therefore the intrinsic cognitive load of linear equations. The unpacking of linear equations at the level of operational and relational lines allows the classification of linear equations in a hierarchical level of complexity. Mapping similar operational and relational lines across…
Wu, Zi Liang; Kurokawa, Takayuki; Liang, Songmiao; Furukawa, Hidemitsu; Gong, Jian Ping
2010-07-28
A hydrogel with cylindrically symmetric structure at macroscopic scale has been developed by polymerization of a cationic monomer in the presence of a small amount of semi-rigid polyanion poly(2,2'-disulfonyl-4,4'-benzidine terephthalamide) (PBDT) in a cylinder glass tube. The polyion complex radially aligns in the outer region of the synthesized cylinder gel. On the other hand, it orients in concentric and axial directions in the inner region. To the authors' knowledge, this is the first report of such millimeter-scale ordered structure developed in a polymeric hydrogel. We elucidate that homeotropic alignment on the glass wall is energetically favorable for the semi-rigid polyion complex, resulting in the radial orientation in the outer region. In the inner region, the oriented structures result from the monomer difffusion (due to the heterogeneous polymerization) that induces PBDT orientation perpendicular to the diffusion direction. The structured gels showing sensitive response of birefringence to external force are expected to find applications in optical sensors. PMID:20590113
Diebold, Carine; Mobian, Pierre; Huguenard, Clarisse; Allouche, Lionel; Henry, Marc
2009-12-14
The 3,3'-diphenyl-2,2'-biphenol (dpbpolH(2)) ligand is shown to react with Ti(OPr(i))(4) in a 2:1 ratio to yield a novel C(2)-symmetric mononuclear octahedral Ti(IV) bis-biphenolate complex, cis-Ti(dpbpol)(2)(HOPr(i))(2). PMID:19921051
On the solutions of some linear complex quaternionic equations.
Bolat, Cennet; İpek, Ahmet
2014-01-01
Some complex quaternionic equations in the type AX - XB = C are investigated. For convenience, these equations were called generalized Sylvester-quaternion equations, which include the Sylvester equation as special cases. By the real matrix representations of complex quaternions, the necessary and sufficient conditions for the solvability and the general expressions of the solutions are obtained. PMID:25101318
NASA Astrophysics Data System (ADS)
Albin, Michael; de, William; Horrocks, W., Jr.; Liotta, Frank J.
1982-01-01
The Eu(III) complex of the octadentate macrocyclic ligand, 1,4,7,10-tetraazacyclododecane-N,N',N'',N''' -tetraacetate, DOTA, has been examined by luminescence excitation, emission, and lifetime spectroscopy using pulsed dye laser techniques. The results confirm the expected axially symmetric nature of the major component in solution and reveal that 1.2 ± 0.4 water molecules arc coordinatcd to the Eu(III) ion in the complex.
Gross, Joshua B; Krutzler, Amanda J; Carlson, Brian M
2014-04-01
The genetic regulators of regressive craniofacial morphologies are poorly understood. To shed light on this problem, we examined the freshwater fish Astyanax mexicanus, a species with surface-dwelling and multiple independent eyeless cave-dwelling forms. Changes affecting the skull in cavefish include morphological alterations to the intramembranous circumorbital bones encircling the eye. Many of these modifications, however, have evolved separately from eye loss, such as fragmentation of the third suborbital bone. To understand the genetic architecture of these eye-independent craniofacial alterations, we developed and scored 33 phenotypes in the context of an F2 hybrid mapping pedigree bred from Pachón cavefish and surface fish. We discovered several individuals exhibiting dramatic left-right differences in bone formation, such as extensive fragmentation on the right side only. This observation, along with well-known eye size asymmetry in natural cave-dwelling animals, led us to further evaluate left-right genetic differences for the craniofacial complex. We discovered three phenotypes, inclusive of bone fragmentation and fusion, which demonstrated a directional heritable basis only on one side. Interestingly, the overall areas of affected bones were genetically symmetric. Phenotypic effect plots of these novel craniofacial QTL revealed that cave alleles are associated with abnormal conditions such as bony fusion and fragmentation. Moreover, many linked loci overlapped with other cave-associated traits, suggesting regressive craniofacial changes may evolve through linkage or as antagonistic pleiotropic consequences of cave-associated adaptations. These novel findings illuminate significant craniofacial changes accompanying evolution in complete darkness and reveal complex changes to the skull differentially influenced by genetic changes affecting the left and right sides. PMID:24496009
Gross, Joshua B.; Krutzler, Amanda J.; Carlson, Brian M.
2014-01-01
The genetic regulators of regressive craniofacial morphologies are poorly understood. To shed light on this problem, we examined the freshwater fish Astyanax mexicanus, a species with surface-dwelling and multiple independent eyeless cave-dwelling forms. Changes affecting the skull in cavefish include morphological alterations to the intramembranous circumorbital bones encircling the eye. Many of these modifications, however, have evolved separately from eye loss, such as fragmentation of the third suborbital bone. To understand the genetic architecture of these eye-independent craniofacial alterations, we developed and scored 33 phenotypes in the context of an F2 hybrid mapping pedigree bred from Pachón cavefish and surface fish. We discovered several individuals exhibiting dramatic left–right differences in bone formation, such as extensive fragmentation on the right side only. This observation, along with well-known eye size asymmetry in natural cave-dwelling animals, led us to further evaluate left–right genetic differences for the craniofacial complex. We discovered three phenotypes, inclusive of bone fragmentation and fusion, which demonstrated a directional heritable basis only on one side. Interestingly, the overall areas of affected bones were genetically symmetric. Phenotypic effect plots of these novel craniofacial QTL revealed that cave alleles are associated with abnormal conditions such as bony fusion and fragmentation. Moreover, many linked loci overlapped with other cave-associated traits, suggesting regressive craniofacial changes may evolve through linkage or as antagonistic pleiotropic consequences of cave-associated adaptations. These novel findings illuminate significant craniofacial changes accompanying evolution in complete darkness and reveal complex changes to the skull differentially influenced by genetic changes affecting the left and right sides. PMID:24496009
Piccardo, Matteo; Bloino, Julien; Barone, Vincenzo
2015-01-01
Models going beyond the rigid-rotor and the harmonic oscillator levels are mandatory for providing accurate theoretical predictions for several spectroscopic properties. Different strategies have been devised for this purpose. Among them, the treatment by perturbation theory of the molecular Hamiltonian after its expansion in power series of products of vibrational and rotational operators, also referred to as vibrational perturbation theory (VPT), is particularly appealing for its computational efficiency to treat medium-to-large systems. Moreover, generalized (GVPT) strategies combining the use of perturbative and variational formalisms can be adopted to further improve the accuracy of the results, with the first approach used for weakly coupled terms, and the second one to handle tightly coupled ones. In this context, the GVPT formulation for asymmetric, symmetric, and linear tops is revisited and fully generalized to both minima and first-order saddle points of the molecular potential energy surface. The computational strategies and approximations that can be adopted in dealing with GVPT computations are pointed out, with a particular attention devoted to the treatment of symmetry and degeneracies. A number of tests and applications are discussed, to show the possibilities of the developments, as regards both the variety of treatable systems and eligible methods. © 2015 Wiley Periodicals, Inc. PMID:26345131
Stability and complexity of small random linear systems
NASA Astrophysics Data System (ADS)
Hastings, Harold
2010-03-01
We explore the stability of the small random linear systems, typically involving 10-20 variables, motivated by dynamics of the world trade network and the US and Canadian power grid. This report was prepared as an account of work sponsored by an agency of the US Government. Neither the US Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the US Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the US Government or any agency thereof.
Quantifying Stability in Complex Networks: From Linear to Basin Stability
NASA Astrophysics Data System (ADS)
Kurths, Jürgen
The human brain, power grids, arrays of coupled lasers and the Amazon rainforest are all characterized by multistability. The likelihood that these systems will remain in the most desirable of their many stable states depends on their stability against significant perturbations, particularly in a state space populated by undesirable states. Here we claim that the traditional linearization-based approach to stability is in several cases too local to adequately assess how stable a state is. Instead, we quantify it in terms of basin stability, a new measure related to the volume of the basin of attraction. Basin stability is non-local, nonlinear and easily applicable, even to high-dimensional systems. It provides a long-sought-after explanation for the surprisingly regular topologies of neural networks and power grids, which have eluded theoretical description based solely on linear stability. Specifically, we employ a component-wise version of basin stability, a nonlinear inspection scheme, to investigate how a grid's degree of stability is influenced by certain patterns in the wiring topology. Various statistics from our ensemble simulations all support one main finding: The widespread and cheapest of all connection schemes, namely dead ends and dead trees, strongly diminish stability. For the Northern European power system we demonstrate that the inverse is also true: `Healing' dead ends by addition of transmission lines substantially enhances stability. This indicates a crucial smart-design principle for tomorrow's sustainable power grids: add just a few more lines to avoid dead ends. Further, we analyse the particular function of certain network motifs to promote the stability of the system. Here we uncover the impact of so-called detour motifs on the appearance of nodes with a poor stability score and discuss the implications for power grid design. Moreover, it will be shown that basin stability enables uncovering the mechanism for explosive synchronization and
Ramond, P. . Dept. of Physics)
1993-01-01
The Wolfenstein parametrization is extended to the quark masses in the deep ultraviolet, and an algorithm to derive symmetric textures which are compatible with existing data is developed. It is found that there are only five such textures.
Ramond, P.
1993-04-01
The Wolfenstein parametrization is extended to the quark masses in the deep ultraviolet, and an algorithm to derive symmetric textures which are compatible with existing data is developed. It is found that there are only five such textures.
Davis, Mark C; Gronert, Scott
2015-11-01
A gas-phase method for rapidly assaying the enantioselectivity of metal-centered catalysts is presented. It relies on gas-phase equilibrium measurements in a quadrupole ion trap mass spectrometer. A group of well-established C2-symmetric bis-oxazoline copper(I) complexes was used to identify chiral probe reagents that are capable of profiling the quality of the asymmetric environment provided by the metal complex. The chiral probes were then applied to a wide variety of copper(I) bis-di-imine complexes. Complexes based on a BINAM backbone exhibited selectivities that were comparable to the bis-oxazolines. Taking advantage of the mass selectivity capabilities of the ion trap mass spectrometer, the method was also applied to an un-purified mix of copper(I) complexes derived from a combinatorial synthesis of bis-di-imine ligands. This approach holds promise as a rapid screening tool for potential chiral catalysts. PMID:26505773
Nicol, Thomas W J; Matubayasi, Nobuyuki; Shimizu, Seishi
2016-06-01
The low solubility of drugs, which poses a serious problem in drug development, can in part be overcome by the use of cyclodextrins (CDs) and their derivatives. Here, the key to solubilisation is identified as the formation of inclusion complexes with the drug molecule. If inclusion complexation were the only contribution to drug solubility, it would increase linearly with CD concentration (as per the Higuchi-Connors model); this is because inclusion complexation is a 1 : 1 stoichiometric process. However, solubility curves often deviate from this linearity, whose mechanism is yet to be understood. Here we aim to clarify the origin of such non-linearity, based on the Kirkwood-Buff and the McMillan-Mayer theories of solutions. The rigorous statistical thermodynamic theory shows that non-linearity of solubilisation can be rationalised by two contributions: CD-drug interaction and the drug-induced change of CD-CD interaction. PMID:27206059
Humphries, T D; Sheppard, D A; Buckley, C E
2015-06-30
For homoleptic 18-electron complex hydrides, an inverse linear correlation has been established between the T-deuterium bond length (T = Fe, Co, Ni) and the average electronegativity of the metal countercations. This relationship can be further employed towards aiding structural solutions and predicting physical properties of novel complex transition metal hydrides. PMID:26077621
Kotani, Shunsuke; Kai, Kosuke; Shimoda, Yasushi; Hu, Hao; Gao, Shen; Sugiura, Masaharu; Ogasawara, Masamichi; Nakajima, Makoto
2016-02-01
By using a phosphine oxide-catalyzed enantioselective double aldol reaction, we achieved the concise construction of C2 -symmetric 1,9-diarylnonanoids, enabling the synthesis of (-)-ericanone from p-hydroxybenzaldehyde in 6 steps with 65 % overall yield. The enantioselective double aldol reaction is useful for establishing C2 -symmetric 1,9-diaryl-3,7-dihydroxy-5-nonanones with a single operation. Furthermore, the use of o-nosyl-protected p-hydroxybenzaldehyde and a 4,4'-disubstituted BINAP dioxide catalyst dramatically improved the reactivity and selectivity in the double aldol reaction, enabling the total synthesis of (-)-ericanone with high yield and with excellent enantiopurity. PMID:26610889
Tanase, Tomoaki; Koike, Kanako; Uegaki, Miho; Hatada, Satoko; Nakamae, Kanako; Kure, Bunsho; Ura, Yasuyuki; Nakajima, Takayuki
2016-05-01
Linear triplatinum complexes with 48e(-), [Pt3(μ-tdpmp)2(RNC)2](PF6)2 (R = 2,6-xylyl (3), (t)Bu (4)), were synthesized by using a branched tetraphosphine, tris(diphenylphosphinomethyl)phosphine (tdpmp), and characterized by crystallographic and spectroscopic analyses to show their novel dynamic behaviour in the solution state, in which the linear Pt3 unit was stabilized by two spinning tetraphosphine ligands. PMID:27054509
Lee, Kang-sang; Hoveyda, Amir H
2009-06-19
A new class of enantioselective conjugate addition (ECA) reactions that involve aryl- or alkenylsilyl fluoride reagents and are catalyzed by chiral non-C(2)-symmetric Cu-based N-heterocyclic carbene (NHC) complexes are disclosed. Transformations have been designed based on the principle that a catalytically active chiral NHC-Cu-aryl or NHC-Cu-alkenyl complex can be accessed from reaction of a Cu-halide precursor with in situ-generated aryl- or alkenyltetrafluorosilicate. Reactions proceed in the presence of 1.5 equiv of the aryl- or alkenylsilane reagents and 1.5 equiv of tris(dimethylamino)sulfonium difluorotrimethylsilicate (TASF). Desired products are isolated in 63-97% yield and 73.5:26.5-98.5:1.5 enantiomeric ratio (47%-97% ee). A major focus of the present studies is the design, evaluation, and development of new chiral imidazolinium salts and their derived NHC-Cu complexes as catalysts that promote reactions of various carbosilanes to a range of electrophilic substrates. Toward this end, nearly 20 new chiral monodentate imidazolinium salts, most of which are non-C(2)-symmetric, have been prepared and fully characterized and their ability to serve as catalysts in the ECA reactions has been investigated. PMID:19445467
NASA Astrophysics Data System (ADS)
Bahaffi, Saleh O.; Abdel Aziz, Ayman A.; El-Naggar, Maher M.
2012-08-01
A novel series of four copper(II) complexes were synthesized by thermal reaction of copper acetate salt with symmetrical tetradentate Schiff bases, N,N'bis(o-vanillin)4,5-dimethyl-l,2-phenylenediamine (H2L1), N,N'bis(salicylaldehyde)4,5-dimethyl-1,2-phenylenediamine (H2L2), N,N'bis(o-vanillin)4,5-dichloro-1,2-phenylenediamine (H2L3) and N,N'bis(salicylaldehyde)4,5-dichloro-1,2-phenylenediamine (H2L4), respectively. All the new synthesized complexes were characterized by using of microanalysis, FT-IR, UV-Vis, magnetic measurements, ESR, and conductance measurements, respectively. The data revealed that all the Schiff bases (H2L1-4) coordinate in their deprotonated forms and behave as tetradentate NOON coordinated ligands. Moreover, their copper(II) complexes have square planar geometry with general formula [CuL1-4]. The binding of the complexes with calf thymus DNA (CT-DNA) was investigated by UV-Vis spectrophotometry, fluorescence quenching and viscosity measurements. The results indicated that the complexes bind to CT-DNA through an intercalative mode. From the biological activity view, the copper(II) complexes and their parent ligands were screened for their in vitro antibacterial activity against the bacterial species Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosai by well diffusion method. The complexes showed an increased activity in comparison to some standard drugs.
Amore, Paolo; Fernández, Francisco M.; Garcia, Javier; Gutierrez, German
2014-04-15
We study both analytically and numerically the spectrum of inhomogeneous strings with PT-symmetric density. We discuss an exactly solvable model of PT-symmetric string which is isospectral to the uniform string; for more general strings, we calculate exactly the sum rules Z(p)≡∑{sub n=1}{sup ∞}1/E{sub n}{sup p}, with p=1,2,… and find explicit expressions which can be used to obtain bounds on the lowest eigenvalue. A detailed numerical calculation is carried out for two non-solvable models depending on a parameter, obtaining precise estimates of the critical values where pair of real eigenvalues become complex. -- Highlights: •PT-symmetric Hamiltonians exhibit real eigenvalues when PT symmetry is unbroken. •We study PT-symmetric strings with complex density. •They exhibit regions of unbroken PT symmetry. •We calculate the critical parameters at the boundaries of those regions. •There are exact real sum rules for some particular complex densities.
Zarzycki, Bartosz; Bickelhaupt, F Matthias; Radius, Udo
2013-05-28
A full theoretical mechanistic investigation on the symmetrical cleavage of P4 at the active complex fragments [(η(5)-C5H5)Co(L)] (L = CO, (i)Pr2Im; (i)Pr2Im = 1,3-di-iso-propylimidazolin-2-ylidene), which results in the formation of the complex [{(η(5)-C5H5)Co}2(μ,η(2:2)-P2)2] 9, is presented. The overall reaction mechanism is a complex, multistep process. Rate-determining steps of the reaction sequence are two consecutive dissociations of the co-ligands L, which induce the decisive structural rearrangements of the P4 unit. The choice of the co-ligand L ( = CO, (i)Pr2Im) influences the kinetic barrier as well as the energy balance of the overall reaction path significantly. The calculations further reveal a strong influence of the entropic effect on the overall reaction. As a consequence, the energy balance of the overall formation of 9 starting from [(η(5)-C5H5)Co(CO)] precursors is almost thermoneutral and has to overcome high kinetic barriers, whereas the reaction starting from [(η(5)-C5H5)Co((i)Pr2Im)] precursors is exothermic, featuring lower transition barriers with stabilized intermediates. From the direct comparison of both reaction coordinates it seems that the entropic effect of the co-ligands is even stronger than their electronic influence, as for both investigated systems the reactions' energy profiles are almost identical up to intermediate [{(η(5)-C5H5)Co(L)}2(μ,η(2:2)-P4)] 5 (L = CO, (i)Pr2Im). After the formation of 5, the first CO dissociation step renders the reaction endothermic for L = CO, whereas in the case of (i)Pr2Im dissociation the reaction progresses exothermically. Energy decomposition analysis and fragment analysis provide a picture of the bonding mechanisms between the metal complex fragments and P4 in the case of the most significant intermediates and the final product. PMID:23515870
Observation of Defect States in PT-Symmetric Optical Lattices
NASA Astrophysics Data System (ADS)
Regensburger, Alois; Miri, Mohammad-Ali; Bersch, Christoph; Näger, Jakob; Onishchukov, Georgy; Christodoulides, Demetrios N.; Peschel, Ulf
2013-05-01
We provide the first experimental demonstration of defect states in parity-time (PT) symmetric mesh-periodic potentials. Our results indicate that these localized modes can undergo an abrupt phase transition in spite of the fact that they remain localized in a PT-symmetric periodic environment. Even more intriguing is the possibility of observing a linearly growing radiation emission from such defects provided their eigenvalue is associated with an exceptional point that resides within the continuum part of the spectrum. Localized complex modes existing outside the band-gap regions are also reported along with their evolution dynamics.
Relation of the lunar volcano complexes lying on the identical linear gravity anomaly
NASA Astrophysics Data System (ADS)
Yamamoto, K.; Haruyama, J.; Ohtake, M.; Iwata, T.; Ishihara, Y.
2015-12-01
There are several large-scale volcanic complexes, e.g., Marius Hills, Aristarchus Plateau, Rumker Hills, and Flamsteed area in western Oceanus Procellarum of the lunar nearside. For better understanding of the lunar thermal history, it is important to study these areas intensively. The magmatisms and volcanic eruption mechanisms of these volcanic complexes have been discussed from geophysical and geochemical perspectives using data sets acquired by lunar explorers. In these data sets, precise gravity field data obtained by Gravity Recovery and Interior Laboratory (GRAIL) gives information on mass anomalies below the lunar surface, and useful to estimate location and mass of the embedded magmas. Using GRAIL data, Andrews-Hanna et al. (2014) prepared gravity gradient map of the Moon. They discussed the origin of the quasi-rectangular pattern of narrow linear gravity gradient anomalies located along the border of Oceanus Procellarum and suggested that the underlying dikes played important roles in magma plumbing system. In the gravity gradient map, we found that there are also several small linear gravity gradient anomaly patterns in the inside of the large quasi-rectangular pattern, and that one of the linear anomalies runs through multiple gravity anomalies in the vicinity of Aristarchus, Marius and Flamstead volcano complexes. Our concern is whether the volcanisms of these complexes are caused by common factors or not. To clarify this, we firstly estimated the mass and depth of the embedded magmas as well as the directions of the linear gravity anomalies. The results were interpreted by comparing with the chronological and KREEP distribution maps on the lunar surface. We suggested providing mechanisms of the magma to these regions and finally discussed whether the volcanisms of these multiple volcano complex regions are related with each other or not.
A self-consistent three-wave coupling model with complex linear frequencies
Kim, J.-H.; Terry, P. W.
2011-09-15
A three-wave coupling model with complex linear frequencies is investigated for the nonlinear interaction in a triad that has linearly unstable and stable modes. Time scales associated with linear and nonlinear physics are identified and compared with features of the frequency spectrum. From appropriate time scales, the frequency spectra are well characterized even in the transition to the steady state. The nonlinear time scales that best match spectral features are the nonlinear frequency of the fixed point and a frequency that depends on the amplitude displacement from the fixed point through the large-amplitude Jacobian elliptic solution. Two limited efforts to model the effect of other triads suggest robustness in the single triad results.
NASA Astrophysics Data System (ADS)
Wang, Hu; Meng, Xiangmin; Fan, Chuanbin; Fan, Yuhua; Bi, Caifeng
2016-03-01
A new complex, Ni(C22H26N2O10S2)·2CH3OH, with a sexidentate (N2O4) symmetric bis-Schiff base ligand (C22H26N2O10S2 = 1,2-bis(2-methoxy-6-formylphenoxy)ethane-2-aminoethane-sulfonic acid) has been synthesized and characterized by physico-chemical and spectroscopic methods. The X-ray crystal structure shows that the Ni(II) atom of the complex is six-coordinated by two nitrogens from Cdbnd N groups, two oxygens from ether groups and two hydroxyl oxygens from sulfonic acid groups in the mono-ligand, forming a distorted octahedral geometry. Theoretical study of the complex is carried out by density functional theory (DFT) method and the B3LYP method employing the 6-3l+G* basis set. Moreover, the complex proved to be good candidate for the photocatalytic degradation of methylene blue.
Multi-cavity complex controller with vector simulator for TESLA technology linear accelerator
NASA Astrophysics Data System (ADS)
Czarski, Tomasz; Pozniak, Krzysztof T.; Romaniuk, Ryszard S.; Szewinski, Jaroslaw
2008-01-01
A digital control, as the main part of the Low Level RF system, for superconducting cavities of a linear accelerator is presented. The FPGA based controller, supported by MATLAB system, was developed to investigate a novel firmware implementation. The complex control algorithm based on the non-linear system identification is the proposal verified by the preliminary experimental results. The general idea is implemented as the Multi-Cavity Complex Controller (MCC) and is still under development. The FPGA based controller executes procedure according to the prearranged control tables: Feed-Forward, Set-Point and Corrector unit, to fulfill the required cavity performance: driving in the resonance during filling and field stabilization for the flattop range. Adaptive control algorithm is applied for the feed-forward and feedback modes. The vector Simulator table has been introduced for an efficient verification of the FPGA controller structure. Experimental results of the internal simulation, are presented for a cavity representative condition.
Bayesian Model Selection in Complex Linear Systems, as Illustrated in Genetic Association Studies
Wen, Xiaoquan
2013-01-01
Summary Motivated by examples from genetic association studies, this paper considers the model selection problem in a general complex linear model system and in a Bayesian framework. We discuss formulating model selection problems and incorporating context-dependent a priori information through different levels of prior specifications. We also derive analytic Bayes factors and their approximations to facilitate model selection and discuss their theoretical and computational properties. We demonstrate our Bayesian approach based on an implemented Markov Chain Monte Carlo (MCMC) algorithm in simulations and a real data application of mapping tissue-specific eQTLs. Our novel results on Bayes factors provide a general framework to perform efficient model comparisons in complex linear model systems. PMID:24350677
Time to change from a simple linear model to a complex systems model
2016-01-01
A simple linear model to test the hypothesis based on one-on-one relationship has been used to find the causative factors of diseases. However, we now know that not just one, but many factors from different systems such as chemical exposure, genes, epigenetic changes, and proteins are involved in the pathogenesis of chronic diseases such as diabetes mellitus. So, with availability of modern technologies to understand the intricate nature of relations among complex systems, we need to move forward to the future by taking complex systems model. PMID:27158003
NASA Astrophysics Data System (ADS)
Gosálvez, Miguel A.; Otrokov, Mikhail M.; Ferrando, Nestor; Ryabishchenkova, Anastasia G.; Ayuela, Andres; Echenique, Pedro M.; Chulkov, Evgueni V.
2016-02-01
This is the first of two papers that introduce a general expression for the tracer diffusivity in complex, periodic energy landscapes with M distinct hop rates in one-, two-, and three-dimensional diluted systems (low-coverage, single-tracer limit). The present report focuses on the analysis of diffusion in systems where the end sites of the hops are located symmetrically with respect to the hop origins (symmetric hops), as encountered in many ideal surfaces and bulk materials. For diffusion in two dimensions, a number of formulas are presented for complex combinations of the different hops in systems with triangular, rectangular, and square symmetry. The formulas provide values in excellent agreement with kinetic Monte Carlo simulations, concluding that the diffusion coefficient can be directly determined from the proposed expressions without performing the simulations. Based on the diffusion barriers obtained from first-principles calculations and a physically meaningful estimate of the attempt frequencies, the proposed formulas are used to analyze the diffusion of Cu, Ag, and Rb adatoms on the surface and within the van der Waals (vdW) gap of a model topological insulator, Bi2Se3 . Considering the possibility of adsorbate intercalation from the terraces to the vdW gaps at morphological steps, we infer that, at low coverage and room temperature, (i) a majority of the Rb atoms bounce back at the steps and remain on the terraces, (ii) Cu atoms mostly intercalate into the vdW gap, the remaining fraction staying at the steps, and (iii) Ag atoms essentially accumulate at the steps and gradually intercalate into the vdW gap. These conclusions are in good qualitative agreement with previous experiments. The companion report (M. A. Gosálvez et al., Phys. Rev. B, submitted] extends the present study to the description of systems that contain asymmetric hops.
Boussie, T.R.
1991-10-01
A reproducible, high-yield synthesis of mono((8)annulene)uranium(4)dichloride (1) is reported, along with the X-ray crystal structural of the bis(pyridine) adduct. Metathesis reactions of the half-sandwich complex 1 with a variety of simple alkyl and alkoxy reagents failed to generate any isolable mono-ring complexes. Reactions of 1 with polydentate, delocalized anions did produce stable derivatives, including mono((8)annulene)uranium(4)bis(acetylacetonate) (4). An X-ray crystal structure of 4 is reported.
Boussie, T.R.
1991-10-01
A reproducible, high-yield synthesis of mono([8]annulene)uranium(4)dichloride (1) is reported, along with the X-ray crystal structural of the bis(pyridine) adduct. Metathesis reactions of the half-sandwich complex 1 with a variety of simple alkyl and alkoxy reagents failed to generate any isolable mono-ring complexes. Reactions of 1 with polydentate, delocalized anions did produce stable derivatives, including mono([8]annulene)uranium(4)bis(acetylacetonate) (4). An X-ray crystal structure of 4 is reported.
Nonlinear and linear EEG complexity changes caused by gustatory stimuli in anorexia nervosa.
Tóth, Erika; Kondákor, István; Túry, Ferenc; Gáti, Agnes; Weisz, Júlia; Molnár, Márk
2004-02-01
The objective of the present study was to investigate the effects of pleasant and unpleasant gustatory stimuli on nonlinear and linear complexity measures of the EEG in healthy controls and in anorexia nervosa (AN) patients. The subjects were exposed to unpleasant (bitter tea) and pleasant (chocolate) gustatory stimuli for 2 min. Multichannel EEG was recorded and the dimensional complexity (point-correlation dimension) and Omega complexity were calculated from the EEG epochs corresponding to the above taste conditions. In AN patients lower-dimensional complexity was observed in the majority of recording sites than that seen in controls, independent of taste conditions. Higher Omega complexity was seen in control subjects in the left side irrespective of taste effects. No such hemispheric difference was observed in AN. The lower-dimensional complexity seen in AN patients may be caused by long-lasting effects of malnutrition. The lack of a significant Omega complexity change in response to exposure of sweet taste in the left side seen in AN patients may correspond to a decreased sensitivity to such stimuli in these subjects. PMID:14962577
Cotton, Stephen J; Miller, William H
2016-03-01
In a recent series of papers, it has been illustrated that a symmetrical quasi-classical (SQC) windowing model applied to the Meyer-Miller (MM) classical vibronic Hamiltonian provides an excellent description of a variety of electronically non-adiabatic benchmark model systems for which exact quantum results are available for comparison. In this paper, the SQC/MM approach is used to treat energy transfer dynamics in site-exciton models of light-harvesting complexes, and in particular, the well-known 7-state Fenna-Mathews-Olson (FMO) complex. Again, numerically "exact" results are available for comparison, here via the hierarchical equation of motion (HEOM) approach of Ishizaki and Fleming, and it is seen that the simple SQC/MM approach provides very reasonable agreement with the previous HEOM results. It is noted, however, that unlike most (if not all) simple approaches for treating these systems, because the SQC/MM approach presents a fully atomistic simulation based on classical trajectory simulation, it places no restrictions on the characteristics of the thermal baths coupled to each two-level site, e.g., bath spectral densities (SD) of any analytic functional form may be employed as well as discrete SD determined experimentally or from MD simulation (nor is there any restriction that the baths be harmonic), opening up the possibility of simulating more realistic variations on the basic site-exciton framework for describing the non-adiabatic dynamics of photosynthetic pigment complexes. PMID:26761191
ERIC Educational Resources Information Center
de Villiers, Michael
2011-01-01
Symmetry is found in the visual arts, architecture and design of artefacts since the earliest time. Many natural objects, both organic and inorganic, display symmetry: from microscopic crystals and sub-atomic particles to macro-cosmic galaxies. Today it features strongly in higher mathematics such as Linear and Abstract Algebra, Projective and…
Nisemblat, Shahar; Parnas, Avital; Yaniv, Oren; Azem, Abdussalam; Frolow, Felix
2014-01-01
The mitochondrial Hsp60-Hsp10 complex assists the folding of various proteins impelled by ATP hydrolysis, similar to the bacterial chaperonins GroEL and GroES. The near-atomic structural details of the mitochondrial chaperonins are not known, despite the fact that almost two decades have passed since the structures of the bacterial chaperonins became available. Here, the crystallization procedure, diffraction experiments and structure determination by molecular replacement of the mammalian mitochondrial chaperonin HSP60 (E321K mutant) and its co-chaperonin Hsp10 are reported. PMID:24419632
A Low-Complexity ESPRIT-Based DOA Estimation Method for Co-Prime Linear Arrays.
Sun, Fenggang; Gao, Bin; Chen, Lizhen; Lan, Peng
2016-01-01
The problem of direction-of-arrival (DOA) estimation is investigated for co-prime array, where the co-prime array consists of two uniform sparse linear subarrays with extended inter-element spacing. For each sparse subarray, true DOAs are mapped into several equivalent angles impinging on the traditional uniform linear array with half-wavelength spacing. Then, by applying the estimation of signal parameters via rotational invariance technique (ESPRIT), the equivalent DOAs are estimated, and the candidate DOAs are recovered according to the relationship among equivalent and true DOAs. Finally, the true DOAs are estimated by combining the results of the two subarrays. The proposed method achieves a better complexity-performance tradeoff as compared to other existing methods. PMID:27571079
NASA Astrophysics Data System (ADS)
Pottier, Basile; Talini, Laurence; Frétigny, Christian
2012-02-01
We present a new optical method to measure the linear viscoelastic properties of materials, ranging from complex fluids to soft solids, within a large frequency range (about 0.1--10^4 Hz). The surface fluctuation specular reflection technique is based on the measurement of the thermal fluctuations of the free surfaces of materials at which a laser beam is specularly reflected. The propagation of the thermal surface waves depends on the surface tension, density, and complex viscoelastic modulus of the material. For known surface tension and density, we show that the frequency dependent elastic and loss moduli can be deduced from the fluctuation spectrum. Using a viscoelastic solid (a cross-linked PDMS), which linear viscoelastic properties are known in a large frequency range from rheometric measurements and the time--temperature superposition principle, we show that there is a good agreement between the rheological characterization provided by rheometric and fluctuation measurements. We also present measurements conducted with complex fluids that are supramolecular polymer solutions. The agreement with other low frequency and high frequency rheological measurements is again very good, and we discuss the sensitivity of the technique to surface viscoelasticity.
Laramée-Milette, Baptiste; Hanan, Garry S
2016-08-01
Six ruthenium complexes were synthesized based on three non-symmetrical tridentate ligands bearing the strongly electron-donating group 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-α]pyrimidine (hpp), bpyG (bpyG = 2,2'-bipyridyl-6-hpp), phenG (phenG = 2-hpp-1,10-phenanthroline) and QpyG (QpyG = 2-hpp-6-quinolylpyridyl). The fac-/mer-conformation of the homoleptic species has a dramatic effect on the optical properties, where the fac-isomer absorption is red-shifted by 150 nm, thus reaching the near-IR at approximately 850 nm. Owing to the interesting structural effect on the optical properties, density functional theory (DFT) and time-dependent DFT calculations have been implemented to enlighten the experimental data and prove that exciton coupling is at the origin of the observed shift. The electronic properties have been investigated and, as corroborated by electrochemical data, the presence of the hpp ligand strongly affects the oxidation potential of the ruthenium metal ion, which allows facile fine-tuning of the electronic properties. The luminescence properties of all the compounds have also been investigated (λmax emission = 781-817 nm) and the complexes have longer excited-state lifetimes at room temperature than the parent bis(2,2':6',2''-terpyridine)ruthenium(ii) by 10 to 30 times. PMID:27436338
NASA Astrophysics Data System (ADS)
Wu, D. Y.; Hayashi, M.; Lin, S. H.; Tian, Z. Q.
2004-01-01
The differential Raman scattering cross-sections of totally-symmetric vibrational modes for pyridine and pyridine-metal clusters have been calculated by using ab initio and density functional methods. The results are compared with experimental data and a good agreement is obtained. In particular, we can theoretically reproduce the significant changes in the relative Raman intensities of the ν12 mode in pyridine-metal cluster complexes. We focus on two mechanisms for these Raman intensities changes: (1) the chemical interaction between the pyridine and the metal clusters; and (2) the charge transfer mechanism. For the pyridine-silver cluster complexes, we find that due to the weak bonding, the chemical interaction does not influence the relative intensities of the Raman peaks of the ν1 and ν12 modes. However, in the case where the copper or the gold clusters are attached to pyridine, the intensity of the band of the ν12 mode is weakened significantly. We also find that the charge transfer mechanism increases the asymmetry of the bands of the ν1 and ν12 modes on all three metals.
Rosenfeld, J Peter; Tang, Monica; Meixner, John; Winograd, Michael; Labkovsky, Elena
2009-08-01
The complex trial protocol (CTP, [J.P. Rosenfeld, E. Labkovsky, M. Winograd, M.A. Lui, C. Vandenboom & E. Chedid (2008), The complex trial protocol (CTP): a new, countermeasure-resistant, accurate P300-based method for detection of concealed information. Psychophysiology, 45, 906-919.]) is a sensitive, new, countermeasure-resistant, P300-based concealed information protocol in which a first stimulus (Probe or Irrelevant) is followed after about 1.4-1.8 s by a Target or Non-Target second stimulus within one trial. It has been previously run with a potentially confounding asymmetric conditional probability of Targets following Probes vs. Irrelevants. This present study compared asymmetric vs. symmetric conditional probability groups and found no significant differences in detection rates or Probe-minus-Irrelevant P300 differences between groups. Group differences were seen in error rates and reaction times (RT) to second stimuli. These differences were, however, not diagnostic for deception vs. truth-telling, and were attributable to response perseveration. PMID:19374912
Leiger, Kristjan; Freiberg, Arvi
2016-01-01
Weak up-converted fluorescence related to bacteriochlorophyll a was recorded from various detergent-isolated and membrane-embedded light-harvesting pigment-protein complexes as well as from the functional membranes of photosynthetic purple bacteria under continuous-wave infrared laser excitation at 1064 nm, far outside the optically allowed singlet absorption bands of the chromophore. The fluorescence increases linearly with the excitation power, distinguishing it from the previously observed two-photon excited fluorescence upon femtosecond pulse excitation. Possible mechanisms of this excitation are discussed. PMID:25764015
Linear Superposition and Prediction of Bacterial Promoter Activity Dynamics in Complex Conditions
Rothschild, Daphna; Dekel, Erez; Hausser, Jean; Bren, Anat; Aidelberg, Guy; Szekely, Pablo; Alon, Uri
2014-01-01
Bacteria often face complex environments. We asked how gene expression in complex conditions relates to expression in simpler conditions. To address this, we obtained accurate promoter activity dynamical measurements on 94 genes in E. coli in environments made up of all possible combinations of four nutrients and stresses. We find that the dynamics across conditions is well described by two principal component curves specific to each promoter. As a result, the promoter activity dynamics in a combination of conditions is a weighted average of the dynamics in each condition alone. The weights tend to sum up to approximately one. This weighted-average property, called linear superposition, allows predicting the promoter activity dynamics in a combination of conditions based on measurements of pairs of conditions. If these findings apply more generally, they can vastly reduce the number of experiments needed to understand how E. coli responds to the combinatorially huge space of possible environments. PMID:24809350
NASA Astrophysics Data System (ADS)
Baral, Minati; Gupta, Amit; Kanungo, B. K.
2016-06-01
The design, synthesis and physicochemical characterization of a C3-symmetry Benzene-1,3,5-tricarbonylhydroxamate tripod, noted here as BTHA, are described. The chelator was built from a benzene as an anchor, symmetrically extended by three hydroxamate as ligating moieties, each bearing O, O donor sites. A combination of absorption spectrophotometry, potentiometry and theoretical investigations are used to explore the complexation behavior of the ligand with some trivalent metal ions: Fe(III), Cr(III), and Al(III). Three protonation constants were calculated for the ligand in a pH range of 2-11 in a highly aqueous medium (9:1 H2O: DMSO). A high rigidity in the molecular structure restricts the formation of 1:1 (M/L) metal encapsulation but shows a high binding efficiency for a 3:1 metal ligand stoichiometry giving formation constant (in β unit) 28.73, 26.13 and 19.69 for [M3L]; Mdbnd Fe(III), Al(III) and Cr(III) respectively, and may be considered as an efficient Fe-carrier. The spectrophotometric study reveals of interesting electronic transitions occurred during the complexation. BTHA exhibits a peak at 238 nm in acidic pH and with the increase of pH, a new peak appeared at 270 nm. A substantial shifting in both of the peaks in presence of the metal ions implicates a s coordination between ligand and metal ions. Moreover, complexation of BTHA with iron shows three distinct colors, violet, reddish orange and yellow in different pH, enables the ligand to be considered for the use as colorimetric sensor.
Baral, Minati; Gupta, Amit; Kanungo, B K
2016-06-01
The design, synthesis and physicochemical characterization of a C3-symmetry Benzene-1,3,5-tricarbonylhydroxamate tripod, noted here as BTHA, are described. The chelator was built from a benzene as an anchor, symmetrically extended by three hydroxamate as ligating moieties, each bearing O, O donor sites. A combination of absorption spectrophotometry, potentiometry and theoretical investigations are used to explore the complexation behavior of the ligand with some trivalent metal ions: Fe(III), Cr(III), and Al(III). Three protonation constants were calculated for the ligand in a pH range of 2-11 in a highly aqueous medium (9:1 H2O: DMSO). A high rigidity in the molecular structure restricts the formation of 1:1 (M/L) metal encapsulation but shows a high binding efficiency for a 3:1 metal ligand stoichiometry giving formation constant (in β unit) 28.73, 26.13 and 19.69 for [M3L]; MFe(III), Al(III) and Cr(III) respectively, and may be considered as an efficient Fe-carrier. The spectrophotometric study reveals of interesting electronic transitions occurred during the complexation. BTHA exhibits a peak at 238nm in acidic pH and with the increase of pH, a new peak appeared at 270nm. A substantial shifting in both of the peaks in presence of the metal ions implicates a s coordination between ligand and metal ions. Moreover, complexation of BTHA with iron shows three distinct colors, violet, reddish orange and yellow in different pH, enables the ligand to be considered for the use as colorimetric sensor. PMID:26970809
Moreno, Diego V; González, Sergio A; Reyes, Andrés
2011-01-14
Nuclear quantum effects (NQE) on the geometry, energy, and electronic structure of the [CN·L·NC](-) complex (L = H, D, T) are investigated with the recently developed APMO/MP2 code. This code implements the nuclear molecular orbital approach (NMO) at the Hartree-Fock (HF) and MP2 levels of theory for electrons and quantum nuclei. In a first study, we examined the H/D/T isotope effects on the geometry and electronic structure of the CNH molecule at NMO/HF and NMO/MP2 levels of theory. We found that when increasing the hydrogen nuclear mass there is a reduction of the R(N-H) bond distance and an increase of the electronic population on the hydrogen atom. Our calculated bond distances are in good agreement with experimental and other theoretical results. In a second investigation, we explored the hydrogen NQE on the geometry of [CNHNC](-) complex at the NMO/HF and NMO/MP2 levels of theory. We discovered that while a NMO/HF calculation presented an asymmetric hydrogen bond, the NMO/MP2 calculation revealed a symmetric H-bond. We also examined the H/D/T isotope effects on the geometry and stabilization energy of the [CNHNC](-) complex. We noted that gradual increases in hydrogen mass led to reductions of the R(NN) distance and destabilization of the hydrogen bond (H-bond). A discussion of these results is given in terms of the hydrogen nuclear delocalization effects on the electronic structure and energy components. To the best of our knowledge, this is the first ab initio NMO study that reveals the importance of including nuclear quantum effects in conventional electronic structure calculations for an enhanced description of strong-low-barrier H-bonded systems. PMID:21241088
A Triad of Highly Reduced, Linear Iron Nitrosyl Complexes: {FeNO}(8-10).
Chalkley, Matthew J; Peters, Jonas C
2016-09-19
Given the importance of Fe-NO complexes in both human biology and the global nitrogen cycle, there has been interest in understanding their diverse electronic structures. Herein a redox series of isolable iron nitrosyl complexes stabilized by a tris(phosphine)borane (TPB) ligand is described. These structurally characterized iron nitrosyl complexes reside in the following highly reduced Enemark-Feltham numbers: {FeNO}(8) , {FeNO}(9) , and {FeNO}(10) . These {FeNO}(8-10) compounds are each low-spin, and feature linear yet strongly activated nitric oxide ligands. Use of Mössbauer, EPR, NMR, UV/Vis, and IR spectroscopy, in conjunction with DFT calculations, provides insight into the electronic structures of this uncommon redox series of iron nitrosyl complexes. In particular, the data collectively suggest that {TPBFeNO}(8-10) are all remarkably covalent. This covalency is likely responsible for the stability of this system across three highly reduced redox states that correlate with unusually high Enemark-Feltham numbers. PMID:27560776
Zhang, Shanrong; Sherry, A. Dean
2003-01-01
Analysis of the LIS data for several series of Ln3+ complexes of C4 symmetry in terms of structural changes, crystal-field effects and/or variation of hyperfine constants along the lanthanide series was undertaken using a combination of the two-nuclei and three-nuclei techniques together with the classical onenucleus technique. Isostructurality of whole series of complexes, with changes of the Fi, and B02 parameters, was clearly defined for the complexes of L by the combination of the two first methods. Small changes, involving the three Fi, Gi and B02 parameters, are observed for the series of complexes of L-L4, using the three data plotting methods. Some of the plots according to the two- and three-nuclei methods are accidentally linear, without necessarily implying isostructurality of the complexes, as they involve parameters, which may be insensitive to any small structural changes occurring in these systems. These parameter variations could result from a magnification, by the present graphical analysis, of the breaks expected from the gradual structural changes along the series due to the lanthanide contraction. The α and β parameters of the three-nuclei method are not diagnostic of the type of structures the complexes have in solution, due to their very indirect dependence on the geometric factors. PMID:18365039
Farias, R. L. S.; Ramos, Rudnei O.; Krein, G.
2008-09-15
The thermodynamics of a scalar field with a quartic interaction is studied within the linear {delta} expansion (LDE) method. Using the imaginary-time formalism the free energy is evaluated up to second order in the LDE. The method generates nonperturbative results that are then used to obtain thermodynamic quantities like the pressure. The phase transition pattern of the model is fully studied, from the broken to the symmetry restored phase. The results are compared with those obtained with other nonperturbative methods and also with ordinary perturbation theory. The results coming from the two main optimization procedures used in conjunction with the LDE method, the principle of minimal sensitivity (PMS) and the fastest apparent convergence (FAC) are also compared with each other and studied in which cases they are applicable or not. The optimization procedures are applied directly to the free energy.
NASA Astrophysics Data System (ADS)
Keypour, Hassan; Shayesteh, Maryam; Rezaeivala, Majid; Chalabian, Firoozeh; Valencia, Laura
2013-01-01
A new symmetrical [N4O2] hexadentate Schiff base ligand, (E)-N-(pyridin-2-ylmethylene)-2-(3-(2-((E)-pyridin-2-lmethyleneamino)phenoxy)naphthalen-2-yloxy)benzenamine, abbreviated to L, and its complexes of Ni(II), Cu(II), Zn(II), Co(II), Cd(II) and Mn(II) have been synthesized in the presence of metal ions. The complexes were structurally characterized by elemental analyses, IR, UV-Vis, NMR and molar conductivity. The crystal structures of two complexes, [NiL(ONO2)2]·2H2O and [CoLCl2]CH3OH·0.5H2O, have been determined by a single crystal X-ray diffraction study. In these complexes, the ligand is coordinated in a neutral form via pyridine and azomethine nitrogen atoms. The metal ions complete their six coordination with two coordinated nitrate or chloride ions, forming a distorted octahedral geometry. The synthesized compounds have antibacterial activity against the three Gram-positive bacteria: Enterococcus faecalis, Bacillus cereus and Staphylococcus epid and also against the three Gram-negative bacteria: Citrobacter freundii, Enterobacter aerogenes and Salmonella typhi. The activity data show that the complexes are more potent antibacterials than the parent Schiff base.
NASA Astrophysics Data System (ADS)
Cattabiani, Alessandro; Barbarulo, Andrea; Riou, Hervé; Ladevèze, Pierre
2015-12-01
Recently, interest of aerospace and automotive industries on medium-frequency vibrational behavior of composite shell structures has grown due to their high specific stiffness and fatigue resistance. Conventional methods such as the finite element method and the statistical energy analysis are not suitable for the medium-frequency bandwidth. Conversely, the variational theory of complex rays (VTCR) is taking place as an ad-hoc technique to tackle such frequency band. It is a Trefftz method based on a weak variational formulation. Equilibrium equations are met using exact solutions as shape functions. The variational problem imposes boundary conditions in weak form. The present paper extends VTCR to orthotropic shell structures. Moreover, several new enhancements are introduced. Now, we use a quasi-symmetric ray distribution which can greatly reduce computational costs, and addresses in-plane inertia which was neglected in previous works. Some relevant numerical examples are presented to show the strategy and results are compared with a FEM reference to study performances.
Linear complexity integral-equation based methods for large-scale electromagnetic analysis
NASA Astrophysics Data System (ADS)
Chai, Wenwen
In general, to solve problems with N parameters, the optimal computational complexity is linear complexity O( N). However, for most computational electromagnetic methods, the complexity is higher than O(N). In this work, we introduced and further developed the H - and H2 -matrix based mathematical framework to break the computational barrier of existing integral-equation (IE)-based methods for large-scale electromagnetic analysis. Our significant contributions include the first-time dense matrix inversion and LU factorization of O(N) complexity for large-scale 3-D circuit extraction and a fast direct integral equation solver that outperforms existing direct solvers for large-scale electrodynamic analysis having millions of unknowns and ˜100 wavelengths. The major contributions of this work are: (1) Direct Matrix Solution of Linear Complexity for 3-D Integrated Circuit (IC) and Package Extraction • O(N) complexity dense matrix inversion and LU factorization algorithms and their applications to capacitance extraction and impedance extraction of large-scale 3-D circuits • O(N) direct matrix solution of highly irregular matrices consisting of both dense and sparse matrix blocks arising from full-wave analysis of general 3-D circuits with lossy conductors in multiple dielectrics. (2) Fast H - and H2 -Based IE Solvers for Large-Scale Electrodynamic Analysis • theoretical proof on the error bounded low-rank representation of electrodynamic integral operators • fast H2 -based iterative solver with O(N) computational cost and controlled accuracy from small to tens of wavelengths • fast H -based direct solver with computational cost minimized based on accuracy • Findings on how to reduce the complexity of H - and H2 -based methods for electrodynamic analysis, which are also applicable to many other fast IE solvers. (3) Fast Algorithms for Accelerating H - and H2 -Based Iterative and Direct Solvers • Optimal H -based representation and its applications from
Accurate dynamics in an azimuthally-symmetric accelerating cavity
NASA Astrophysics Data System (ADS)
Appleby, R. B.; Abell, D. T.
2015-02-01
We consider beam dynamics in azimuthally-symmetric accelerating cavities, using the EMMA FFAG cavity as an example. By fitting a vector potential to the field map, we represent the linear and non-linear dynamics using truncated power series and mixed-variable generating functions. The analysis provides an accurate model for particle trajectories in the cavity, reveals potentially significant and measurable effects on the dynamics, and shows differences between cavity focusing models. The approach provides a unified treatment of transverse and longitudinal motion, and facilitates detailed map-based studies of motion in complex machines like FFAGs.
Sun Wei; Huang, Guo H.; Lv Ying; Li Gongchen
2012-06-15
Highlights: Black-Right-Pointing-Pointer Inexact piecewise-linearization-based fuzzy flexible programming is proposed. Black-Right-Pointing-Pointer It's the first application to waste management under multiple complexities. Black-Right-Pointing-Pointer It tackles nonlinear economies-of-scale effects in interval-parameter constraints. Black-Right-Pointing-Pointer It estimates costs more accurately than the linear-regression-based model. Black-Right-Pointing-Pointer Uncertainties are decreased and more satisfactory interval solutions are obtained. - Abstract: To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerance intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate
NASA Astrophysics Data System (ADS)
Yu, Jung-Lang; Chen, Chia-Hao
Orthogonal frequency-division multiplexing (OFDM) systems often use a cyclic prefix (CP) to simplify the equalization design at the cost of bandwidth efficiency. To increase the bandwidth efficiency, we study the blind equalization with linear smoothing [1] for single-input multiple-output (SIMO) OFDM systems without CP insertion in this paper. Due to the block Toeplitz structure of channel matrix, the block matrix scheme is applied to the linear smoothing channel estimation, which equivalently increases the number of sample vectors and thus reduces the perturbation of sample autocorrelation matrix. Compared with the linear smoothing and subspace methods, the proposed block linear smoothing requires the lowest computational complexity. Computer simulations show that the block linear smoothing yields a channel estimation error smaller than that from linear smoothing, and close to that of the subspace method. Evaluating by the minimum mean-square error (MMSE) equalizer, the block linear smoothing and subspace methods have nearly the same bit-error-rates (BERs).
Fleischmann, Martin; Dütsch, Luis; Elsayed Moussa, Mehdi; Balázs, Gábor; Kremer, Werner; Lescop, Christophe; Scheer, Manfred
2016-03-21
This study describes the selective synthesis of linear, trinuclear, halide-bridged Cu(I) complexes [Cu3(μ-X)2(μ-dpmp)2(MeCN)2](+) (1a: X = Cl; 1b: X = Br; 1c: X = I) stabilized by the tridentate dpmp ligand obtained by self-assembly reactions in THF/MeCN. Upon drying, the MeCN ligands can be removed and the complexes are transformed to the reactive parent trinuclear [Cu3(μ-X)2(μ-dpmp)2](+) (2a-c) building blocks with two vacant coordination sites on the terminal Cu atoms. Another synthesis in CH2Cl2 directly yields 2a-c. Additionally, two related isomeric compounds, 2a* and 2c*, and two CH2Cl2-ligated complexes, [Cu3(μ-X)2(μ-dpmp)2(CH2Cl2)2](+) (X = Br (3b), I (3c)), were structurally characterized. The frameworks of the cationic [Cu3(μ-X)2(μ-dpmp)2](+) complexes are stable in solution at low temperatures and show dynamic coordination behavior at elevated temperatures, indicated by new signals arising in the (31)P{(1)H} NMR spectra. This evolution cannot be shifted back by decreasing the temperature again. However, cationic [Cu3(μ-X)2(μ-dpmp)2](+) (X = Cl, Br, I) complexes can be obtained selectively in the solid state upon crystallization. Although reactions of 2a-c with complexes [{CpMo(CO)2}2(μ,η(2):η(2)-E2)] (E = P (A1), As (A2)) led to unsymmetrically substituted [Cu3(μ-X)2(μ-dpmp)2(η(1)-L)](+) (4a-c: X = Cl-I, L = A1; 5: X = Cl, L = A2) complexes, reactions with the cyclo-P3 complex [CpMo(CO)2(η(3)-P3)] (B) afforded zigzag chain polymers [Cu3(μ-X)2(μ-dpmp)2(μ,η(1):η(1)-B)]n[BF4]n (6a: X = Cl; 6b: X = Br) and symmetrically substituted complex [Cu3(μ-I)2(μ-dpmp)2(η(1)-B)2](+) (7). Reactions of 2a-c with cyclo-E5 complexes [Cp*Fe(η(5)-E5)] (E = P (C1), As (C2)) led to the isolation of one-dimensional coordination polymers [Cu3(μ-X)2(μ-dpmp)2(μ,η(1):η(1)-L)]n[BF4]n (8a-b: X = Cl-Br, L = C1; 9: X = Cl, L = C2) and symmetrically substituted complex [Cu3(μ-I)2(μ-dpmp)2(η(1)-C1)2](+) (10). All products exhibit a trinuclear, cationic
Complexity transitions in global algorithms for sparse linear systems over finite fields
NASA Astrophysics Data System (ADS)
Braunstein, A.; Leone, M.; Ricci-Tersenghi, F.; Zecchina, R.
2002-09-01
We study the computational complexity of a very basic problem, namely that of finding solutions to a very large set of random linear equations in a finite Galois field modulo q. Using tools from statistical mechanics we are able to identify phase transitions in the structure of the solution space and to connect them to the changes in the performance of a global algorithm, namely Gaussian elimination. Crossing phase boundaries produces a dramatic increase in memory and CPU requirements necessary for the algorithms. In turn, this causes the saturation of the upper bounds for the running time. We illustrate the results on the specific problem of integer factorization, which is of central interest for deciphering messages encrypted with the RSA cryptosystem.
FORTRAN subroutines for out-of-core solutions of large complex linear systems
NASA Technical Reports Server (NTRS)
Yip, E. L.
1979-01-01
The design and usage of two main subprograms using direct methods to solve large linear complex systems, of the form Ax = b, whose coeffficient matrices are too large to be stored in core are described. The first main subprogram is for systems whose coefficient matrices are of a particular sparse structure, namely, the matrix A can be written in the form B + D, where B is a block-banded system, and D has only a few columns of nonzeros. Key elements of the algorithms used in the subprograms include: the data structure, the strategy for preserving numerical stability, the adaptability of the algorithms for dense systems as well as for block-profile systems.
NASA Technical Reports Server (NTRS)
Ma, Q.; Boulet, C.; Tipping, R. H.
2014-01-01
The refinement of the Robert-Bonamy (RB) formalism by considering the line coupling for isotropic Raman Q lines of linear molecules developed in our previous study [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] has been extended to infrared P and R lines. In these calculations, the main task is to derive diagonal and off-diagonal matrix elements of the Liouville operator iS1 - S2 introduced in the formalism. When one considers the line coupling for isotropic Raman Q lines where their initial and final rotational quantum numbers are identical, the derivations of off-diagonal elements do not require extra correlation functions of the ^S operator and their Fourier transforms except for those used in deriving diagonal elements. In contrast, the derivations for infrared P and R lines become more difficult because they require a lot of new correlation functions and their Fourier transforms. By introducing two dimensional correlation functions labeled by two tensor ranks and making variable changes to become even functions, the derivations only require the latters' two dimensional Fourier transforms evaluated at two modulation frequencies characterizing the averaged energy gap and the frequency detuning between the two coupled transitions. With the coordinate representation, it is easy to accurately derive these two dimensional correlation functions. Meanwhile, by using the sampling theory one is able to effectively evaluate their two dimensional Fourier transforms. Thus, the obstacles in considering the line coupling for P and R lines have been overcome. Numerical calculations have been carried out for the half-widths of both the isotropic Raman Q lines and the infrared P and R lines of C2H2 broadened by N2. In comparison with values derived from the RB formalism, new calculated values are significantly reduced and become closer to measurements.
Ma, Q.; Tipping, R. H.
2014-03-14
The refinement of the Robert-Bonamy (RB) formalism by considering the line coupling for isotropic Raman Q lines of linear molecules developed in our previous study [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] has been extended to infrared P and R lines. In these calculations, the main task is to derive diagonal and off-diagonal matrix elements of the Liouville operator iS{sub 1} − S{sub 2} introduced in the formalism. When one considers the line coupling for isotropic Raman Q lines where their initial and final rotational quantum numbers are identical, the derivations of off-diagonal elements do not require extra correlation functions of the S-circumflex operator and their Fourier transforms except for those used in deriving diagonal elements. In contrast, the derivations for infrared P and R lines become more difficult because they require a lot of new correlation functions and their Fourier transforms. By introducing two dimensional correlation functions labeled by two tensor ranks and making variable changes to become even functions, the derivations only require the latters’ two dimensional Fourier transforms evaluated at two modulation frequencies characterizing the averaged energy gap and the frequency detuning between the two coupled transitions. With the coordinate representation, it is easy to accurately derive these two dimensional correlation functions. Meanwhile, by using the sampling theory one is able to effectively evaluate their two dimensional Fourier transforms. Thus, the obstacles in considering the line coupling for P and R lines have been overcome. Numerical calculations have been carried out for the half-widths of both the isotropic Raman Q lines and the infrared P and R lines of C{sub 2}H{sub 2} broadened by N{sub 2}. In comparison with values derived from the RB formalism, new calculated values are significantly reduced and become closer to measurements.
Symmetric Novikov superalgebras
Ayadi, Imen; Benayadi, Saied
2010-02-15
We study Novikov superalgebras with nondegenerate associative supersymmetric bilinear forms which are called symmetric Novikov superalgebras. We show that Novikov symmetric superalgebras are associative superalgebras with additional condition. Several examples of symmetric Novikov superalgebras are included, in particular, examples of symmetric Novikov superalgebras which are not 2-nilpotent. Finally, we introduce some notions of double extensions in order to give inductive descriptions of symmetric Novikov superalgebras.
A new ion mobility-linear ion trap instrument for complex mixture analysis.
Donohoe, Gregory C; Maleki, Hossein; Arndt, James R; Khakinejad, Mahdiar; Yi, Jinghai; McBride, Carroll; Nurkiewicz, Timothy R; Valentine, Stephen J
2014-08-19
A new instrument that couples a low-pressure drift tube with a linear ion trap mass spectrometer is demonstrated for complex mixture analysis. The combination of the low-pressure separation with the ion trapping capabilities provides several benefits for complex mixture analysis. These include high sensitivity, unique ion fragmentation capabilities, and high reproducibility. Even though the gas-phase separation and the mass measurement steps are each conducted in an ion filtering mode, detection limits for mobility-selected peptide ions are in the tens of attomole range. In addition to ion separation, the low-pressure drift tube can be used as an ion fragmentation cell yielding mobility-resolved fragment ions that can be subsequently analyzed by multistage tandem mass spectrometry (MS(n)) methods in the ion trap. Because of the ion trap configuration, these methods can be comprised of any number (limited by ion signal) of collision-induced dissociation (CID) and electron transfer dissociation (ETD) processes. The high reproducibility of the gas-phase separation allows for comparison of two-dimensional ion mobility spectrometry (IMS)-MS data sets in a pixel-by-pixel fashion without the need for data set alignment. These advantages are presented in model analyses representing mixtures encountered in proteomics and metabolomics experiments. PMID:25068446
Probabilistic cloning of three symmetric states
Jimenez, O.; Bergou, J.; Delgado, A.
2010-12-15
We study the probabilistic cloning of three symmetric states. These states are defined by a single complex quantity, the inner product among them. We show that three different probabilistic cloning machines are necessary to optimally clone all possible families of three symmetric states. We also show that the optimal cloning probability of generating M copies out of one original can be cast as the quotient between the success probability of unambiguously discriminating one and M copies of symmetric states.
NASA Astrophysics Data System (ADS)
Chen, Rongti; Liang, Jiachang; Du, Youming; Cao, Chun; Yin, Dinzhen; Wang, Shuying; Zhang, Tianbao
1987-06-01
Complex formation between positronium and glycine derivatives in solution is discussed and the complex reaction rate constants obtained by means of a positron annihilation lifetime spectrometer with BaF 2 detectors. Rate constants mainly depend on the conjugation effect at the benzene ring and the induction effect of the substituents at the phenyl. There is a linear free energy relationship between rate constants and basicities of N-substituted phenyl glycines in orthopositronium-glycine complex formation.
Synthesis and structures of niobium(V) complexes stabilized by linear-linked aryloxide trimers.
Matsuo, Tsukasa; Kawaguchi, Hiroyuki
2002-11-18
The preparation and characterization of a series of niobium(V) complexes that incorporate the linear-linked aryloxide trimers 2,6-bis(4,6-dimethylsalicyl)-4-tert-butylphenol [H3(Me-L)] and 2,6-bis(4-methyl-6-tert-butylsalicyl)-4-tert-butylphenol [H3(tBu-L)] are described. The chloride complex [Nb(Me-L)Cl2]2 (1) was prepared in high yield by reaction of NbCl5 with H3(Me-L) in toluene. In contrast, the analogous reaction with H3(tBu-L) gave a mixture of [Nb(tBu-L)Cl2]2 (2) and [Nb(de-tBu-L)Cl2]2 (3a). During the formation of 3a, one of tert-butyl groups at the ortho position in the tBu-L ligand was lost. When the NbCl5/H3(tBu-L) reaction was carried out in acetonitrile, Nb[H(tBu-L)]Cl3(NCMe) (4) was obtained. Heating a solution of 4 in toluene generated 2 and 3a. The isolated complex 4 underwent ligand redistribution in acetonitrile to produce Nb[H(tBu-L)]2Cl(NCMe) (5). Treatment of NbCl5 with Li3(tBu-L) in toluene afforded 2. The chloride ligands in 1 and 2 smoothly reacted with 4 equiv of MeMgI and LiStBu, resulting in [Nb(R-L)Me2]2 [R = Me (6), tBu (7)] and Nb(Me-L)(StBu)2 (8), respectively. A number of the above complexes have been characterized by X-ray crystallography. In the structures of 1, 2, and 6, the R-L ligand is bound to the metal center with a U-coordination mode, while an alternative S-conformation is adopted for 3a and 8. Complexes 4 and 5 contain a bidentate H(tBu-L) diphenoxide-monophenol ligand. PMID:12425637
Sun, Wei; Huang, Guo H; Lv, Ying; Li, Gongchen
2012-06-01
To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerance intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP's solutions demonstrate its effectiveness for providing more satisfactory interval solutions than IPFP3. Following its first application to waste management, the IPFP can be potentially applied to other environmental problems under multiple complexities. PMID:22370050
Diffusion of the Linear CH3S-Au-SCH3 Complex on Au(111) from First Principles
Jiang, Deen; Dai, Sheng
2009-01-01
Recent experimental and computational advances have clearly established the importance of the linear alkylthiolate-Au-alkylthiolate (RS-Au-SR) complex at the interface between the thiolate groups and the gold surface. By using density functional theory-based first principles method, here we show that the elementary diffusion step of this linear complex on Au(111) has a barrier of only {approx}0.5 eV in the case of methylthiolate, indicating great mobility of the linear complex on Au(111). The role of this low barrier in the formation of a self-assembled monolayer of thiolate groups in the form of RS-Au-SR on Au(111) is discussed.
Optimal actuator and sensor placement in the linearized complex Ginzburg-Landau system
NASA Astrophysics Data System (ADS)
Chen, Kevin; Rowley, Clarence
2010-11-01
The linearized complex Ginzburg-Landau equation is a model for the evolution of small fluid perturbations, such as in a bluff body wake. We control this system by implementing actuators and sensors and designing an H2-optimal controller. We seek the optimal actuator and sensor placement that minimizes the H2 norm of the controlled system, from flow disturbances to a cost on the perturbation and input magnitude. We formulate the gradient of the H2 squared norm with respect to actuator and sensor positions, and iterate toward the optimal position. With a single actuator and sensor, it is optimal to place the actuator just upstream of the origin (e.g., the bluff body object) and the sensor just downstream. With multiple but an equal number of actuators and sensors, it is optimal to arrange them in pairs, placing actuators slightly upstream of sensors, and scattering pairs throughout the spatial domain. Global mode and Gramian analyses fail to predict the optimal placement; they produce H2 norms about five times higher than at the true optimum. A wave maker formulation is better able to guess an initial condition for the iterator.
NASA Astrophysics Data System (ADS)
Mishchenko, Michael I.; Liu, Li; Mackowski, Daniel W.
2013-07-01
We use state-of-the-art public-domain Fortran codes based on the T-matrix method to calculate orientation and ensemble averaged scattering matrix elements for a variety of morphologically complex black carbon (BC) and BC-containing aerosol particles, with a special emphasis on the linear depolarization ratio (LDR). We explain theoretically the quasi-Rayleigh LDR peak at side-scattering angles typical of low-density soot fractals and conclude that the measurement of this feature enables one to evaluate the compactness state of BC clusters and trace the evolution of low-density fluffy fractals into densely packed aggregates. We show that small backscattering LDRs measured with ground-based, airborne, and spaceborne lidars for fresh smoke generally agree with the values predicted theoretically for fluffy BC fractals and densely packed near-spheroidal BC aggregates. To reproduce higher lidar LDRs observed for aged smoke, one needs alternative particle models such as shape mixtures of BC spheroids or cylinders.
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Liu, Li; Mackowski, Daniel W.
2013-01-01
We use state-of-the-art public-domain Fortran codes based on the T-matrix method to calculate orientation and ensemble averaged scattering matrix elements for a variety of morphologically complex black carbon (BC) and BC-containing aerosol particles, with a special emphasis on the linear depolarization ratio (LDR). We explain theoretically the quasi-Rayleigh LDR peak at side-scattering angles typical of low-density soot fractals and conclude that the measurement of this feature enables one to evaluate the compactness state of BC clusters and trace the evolution of low-density fluffy fractals into densely packed aggregates. We show that small backscattering LDRs measured with groundbased, airborne, and spaceborne lidars for fresh smoke generally agree with the values predicted theoretically for fluffy BC fractals and densely packed near-spheroidal BC aggregates. To reproduce higher lidar LDRs observed for aged smoke, one needs alternative particle models such as shape mixtures of BC spheroids or cylinders.
Bhattacharjee, Saurav Das, Nilakshi
2015-10-15
A systematic theoretical investigation has been carried out on the role of dust charging dynamics on the nature and stability of DIA (Dust Ion Acoustic) mode in complex plasma. The study has been made for both linear and non-linear scale regime of DIA mode. The observed results have been characterized in terms of background plasma responses towards dust surface responsible for dust charge fluctuation, invoking important dusty plasma parameters, especially the ion flow speed and dust size. The linear analyses confirm the nature of instability in DIA mode in presence of dust charge fluctuation. The instability shows a damping of DIA mode in subsonic flow regime followed by a gradual growth in instability in supersonic limit of ion flow. The strength of non-linearity and their existence domain is found to be driven by different dusty plasma parameters. As dust is ubiquitous in interstellar medium with plasma background, the study also addresses the possible effect of dust charging dynamics in gravito-electrostatic characterization and the stability of dust molecular clouds especially in proto-planetary disc. The observations are influential and interesting towards the understanding of dust settling mechanism and formation of dust environments in different regions in space.
NASA Astrophysics Data System (ADS)
Bhattacharjee, Saurav; Das, Nilakshi
2015-10-01
A systematic theoretical investigation has been carried out on the role of dust charging dynamics on the nature and stability of DIA (Dust Ion Acoustic) mode in complex plasma. The study has been made for both linear and non-linear scale regime of DIA mode. The observed results have been characterized in terms of background plasma responses towards dust surface responsible for dust charge fluctuation, invoking important dusty plasma parameters, especially the ion flow speed and dust size. The linear analyses confirm the nature of instability in DIA mode in presence of dust charge fluctuation. The instability shows a damping of DIA mode in subsonic flow regime followed by a gradual growth in instability in supersonic limit of ion flow. The strength of non-linearity and their existence domain is found to be driven by different dusty plasma parameters. As dust is ubiquitous in interstellar medium with plasma background, the study also addresses the possible effect of dust charging dynamics in gravito-electrostatic characterization and the stability of dust molecular clouds especially in proto-planetary disc. The observations are influential and interesting towards the understanding of dust settling mechanism and formation of dust environments in different regions in space.
Optimal symmetric flight studies
NASA Technical Reports Server (NTRS)
Weston, A. R.; Menon, P. K. A.; Bilimoria, K. D.; Cliff, E. M.; Kelley, H. J.
1985-01-01
Several topics in optimal symmetric flight of airbreathing vehicles are examined. In one study, an approximation scheme designed for onboard real-time energy management of climb-dash is developed and calculations for a high-performance aircraft presented. In another, a vehicle model intermediate in complexity between energy and point-mass models is explored and some quirks in optimal flight characteristics peculiar to the model uncovered. In yet another study, energy-modelling procedures are re-examined with a view to stretching the range of validity of zeroth-order approximation by special choice of state variables. In a final study, time-fuel tradeoffs in cruise-dash are examined for the consequences of nonconvexities appearing in the classical steady cruise-dash model. Two appendices provide retrospective looks at two early publications on energy modelling and related optimal control theory.
Modifications to Axially Symmetric Simulations Using New DSMC (2007) Algorithms
NASA Technical Reports Server (NTRS)
Liechty, Derek S.
2008-01-01
Several modifications aimed at improving physical accuracy are proposed for solving axially symmetric problems building on the DSMC (2007) algorithms introduced by Bird. Originally developed to solve nonequilibrium, rarefied flows, the DSMC method is now regularly used to solve complex problems over a wide range of Knudsen numbers. These new algorithms include features such as nearest neighbor collisions excluding the previous collision partners, separate collision and sampling cells, automatically adaptive variable time steps, a modified no-time counter procedure for collisions, and discontinuous and event-driven physical processes. Axially symmetric solutions require radial weighting for the simulated molecules since the molecules near the axis represent fewer real molecules than those farther away from the axis due to the difference in volume of the cells. In the present methodology, these radial weighting factors are continuous, linear functions that vary with the radial position of each simulated molecule. It is shown that how one defines the number of tentative collisions greatly influences the mean collision time near the axis. The method by which the grid is treated for axially symmetric problems also plays an important role near the axis, especially for scalar pressure. A new method to treat how the molecules are traced through the grid is proposed to alleviate the decrease in scalar pressure at the axis near the surface. Also, a modification to the duplication buffer is proposed to vary the duplicated molecular velocities while retaining the molecular kinetic energy and axially symmetric nature of the problem.
Two-dimensional linear modes and solitons in parity-time symmetry bessel complex-valued potential
NASA Astrophysics Data System (ADS)
Chen, Haibo; Hu, Sumei
2015-11-01
We study the optical properties of two-dimensional linear modes and solitons in parity-time (PT) symmetry Bessel complex-valued potential. The PT-breaking points, the eigenvalues and eigenfunction for different modulated depths of two-dimensional PT symmetry Bessel complex potential are obtained numerically. The PT-breaking points increase linearly with increasing the real part of the modulated depths of PT potential. The existence of fundamental and dipole solitons are studied in self-focusing and self-defocusing media. The eigenvalue for linear case is equal to the critical propagation constant bc of the existing soliton. The fundamental solitons are stable in both the self-focusing and self-defocusing media, and the dipole solitons are stable in the self-defocusing media but unstable in the self-focusing media.
Panja, Anangamohan; Moore, Curtis E; Eichhorn, David M
2013-01-01
Treatment of cobalt(II) perchlorate hexahydrate with 2 molar equiv. of 2-aminobenzenethiol (Habt) in acetonitrile afforded a tricationic tricobalt complex, [Co{Co(abt)3}2](ClO4)3·2CH3CN, by aerial oxidation. The molecular structure of the meso (ΔΛ) form of the complex was determined by X-ray crystallography. In the complex cation, the central Co is coordinated by six thiolate groups from two terminal fac(S)-[Co(abt)3] units in an octahedral geometry, forming a linear S-bridged tricobalt structure. PMID:24465064
Meta-analysis of Complex Diseases at Gene Level with Generalized Functional Linear Models.
Fan, Ruzong; Wang, Yifan; Chiu, Chi-Yang; Chen, Wei; Ren, Haobo; Li, Yun; Boehnke, Michael; Amos, Christopher I; Moore, Jason H; Xiong, Momiao
2016-02-01
We developed generalized functional linear models (GFLMs) to perform a meta-analysis of multiple case-control studies to evaluate the relationship of genetic data to dichotomous traits adjusting for covariates. Unlike the previously developed meta-analysis for sequence kernel association tests (MetaSKATs), which are based on mixed-effect models to make the contributions of major gene loci random, GFLMs are fixed models; i.e., genetic effects of multiple genetic variants are fixed. Based on GFLMs, we developed chi-squared-distributed Rao's efficient score test and likelihood-ratio test (LRT) statistics to test for an association between a complex dichotomous trait and multiple genetic variants. We then performed extensive simulations to evaluate the empirical type I error rates and power performance of the proposed tests. The Rao's efficient score test statistics of GFLMs are very conservative and have higher power than MetaSKATs when some causal variants are rare and some are common. When the causal variants are all rare [i.e., minor allele frequencies (MAF) < 0.03], the Rao's efficient score test statistics have similar or slightly lower power than MetaSKATs. The LRT statistics generate accurate type I error rates for homogeneous genetic-effect models and may inflate type I error rates for heterogeneous genetic-effect models owing to the large numbers of degrees of freedom and have similar or slightly higher power than the Rao's efficient score test statistics. GFLMs were applied to analyze genetic data of 22 gene regions of type 2 diabetes data from a meta-analysis of eight European studies and detected significant association for 18 genes (P < 3.10 × 10(-6)), tentative association for 2 genes (HHEX and HMGA2; P ≈ 10(-5)), and no association for 2 genes, while MetaSKATs detected none. In addition, the traditional additive-effect model detects association at gene HHEX. GFLMs and related tests can analyze rare or common variants or a combination of the two and
Conformally symmetric traversable wormholes
Boehmer, Christian G.; Harko, Tiberiu; Lobo, Francisco S. N.
2007-10-15
Exact solutions of traversable wormholes are found under the assumption of spherical symmetry and the existence of a nonstatic conformal symmetry, which presents a more systematic approach in searching for exact wormhole solutions. In this work, a wide variety of solutions are deduced by considering choices for the form function, a specific linear equation of state relating the energy density and the pressure anisotropy, and various phantom wormhole geometries are explored. A large class of solutions impose that the spatial distribution of the exotic matter is restricted to the throat neighborhood, with a cutoff of the stress-energy tensor at a finite junction interface, although asymptotically flat exact solutions are also found. Using the 'volume integral quantifier', it is found that the conformally symmetric phantom wormhole geometries may, in principle, be constructed by infinitesimally small amounts of averaged null energy condition violating matter. Considering the tidal acceleration traversability conditions for the phantom wormhole geometry, specific wormhole dimensions and the traversal velocity are also deduced.
NASA Astrophysics Data System (ADS)
Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong; Ding, Yinghui
2014-07-01
The linear regression parameters between two time series can be different under different lengths of observation period. If we study the whole period by the sliding window of a short period, the change of the linear regression parameters is a process of dynamic transmission over time. We tackle fundamental research that presents a simple and efficient computational scheme: a linear regression patterns transmission algorithm, which transforms linear regression patterns into directed and weighted networks. The linear regression patterns (nodes) are defined by the combination of intervals of the linear regression parameters and the results of the significance testing under different sizes of the sliding window. The transmissions between adjacent patterns are defined as edges, and the weights of the edges are the frequency of the transmissions. The major patterns, the distance, and the medium in the process of the transmission can be captured. The statistical results of weighted out-degree and betweenness centrality are mapped on timelines, which shows the features of the distribution of the results. Many measurements in different areas that involve two related time series variables could take advantage of this algorithm to characterize the dynamic relationships between the time series from a new perspective.
NASA Astrophysics Data System (ADS)
Bender, Carl M.
2015-07-01
The average quantum physicist on the street would say that a quantum-mechanical Hamiltonian must be Dirac Hermitian (invariant under combined matrix transposition and complex conjugation) in order to guarantee that the energy eigenvalues are real and that time evolution is unitary. However, the Hamiltonian H = p2 + ix3, which is obviously not Dirac Hermitian, has a positive real discrete spectrum and generates unitary time evolution, and thus it defines a fully consistent and physical quantum theory. Evidently, the axiom of Dirac Hermiticity is too restrictive. While H = p2 + ix3 is not Dirac Hermitian, it is PT symmetric; that is, invariant under combined parity P (space reflection) and time reversal T. The quantum mechanics defined by a PT-symmetric Hamiltonian is a complex generalization of ordinary quantum mechanics. When quantum mechanics is extended into the complex domain, new kinds of theories having strange and remarkable properties emerge. In the past few years, some of these properties have been verified in laboratory experiments. A particularly interesting PT-symmetric Hamiltonian is H = p2 - x4, which contains an upside-down potential. This potential is discussed in detail, and it is explained in intuitive as well as in rigorous terms why the energy levels of this potential are real, positive, and discrete. Applications of PT-symmetry in quantum field theory are also discussed.
NASA Astrophysics Data System (ADS)
Aurière, M.; López Ariste, A.; Mathias, P.; Lèbre, A.; Josselin, E.; Montargès, M.; Petit, P.; Chiavassa, A.; Paletou, F.; Fabas, N.; Konstantinova-Antova, R.; Donati, J.-F.; Grunhut, J. H.; Wade, G. A.; Herpin, F.; Kervella, P.; Perrin, G.; Tessore, B.
2016-06-01
Context. Betelgeuse is an M supergiant that harbors spots and giant granules at its surface and presents linear polarization of its continuum. Aims: We have previously discovered linear polarization signatures associated with individual lines in the spectra of cool and evolved stars. Here, we investigate whether a similar linearly polarized spectrum exists for Betelgeuse. Methods: We used the spectropolarimeter Narval, combining multiple polarimetric sequences to obtain high signal-to-noise ratio spectra of individual lines, as well as the least-squares deconvolution (LSD) approach, to investigate the presence of an averaged linearly polarized profile for the photospheric lines. Results: We have discovered the existence of a linearly polarized spectrum for Betelgeuse, detecting a rather strong signal (at a few times 10-4 of the continuum intensity level), both in individual lines and in the LSD profiles. Studying its properties and the signal observed for the resonant Na i D lines, we conclude that we are mainly observing depolarization of the continuum by the absorption lines. The linear polarization of the Betelgeuse continuum is due to the anisotropy of the radiation field induced by brightness spots at the surface and Rayleigh scattering in the atmosphere. We have developed a geometrical model to interpret the observed polarization, from which we infer the presence of two brightness spots and their positions on the surface of Betelgeuse. We show that applying the model to each velocity bin along the Stokes Q and U profiles allows the derivation of a map of the bright spots. We use the Narval linear polarization observations of Betelgeuse obtained over a period of 1.4 yr to study the evolution of the spots and of the atmosphere. Conclusions: Our study of the linearly polarized spectrum of Betelgeuse provides a novel method for studying the evolution of brightness spots at its surface and complements quasi-simultaneous observations obtained with PIONIER at the
NASA Astrophysics Data System (ADS)
Olmsted, Peter
2004-03-01
"Shear banding", i.e. flow-induced macroscopic "phase coexistence" or apparent "phase transitions", has been observed in many complex fluids, including wormlike micelles, lamellar systems, associating polymers, and liquid crystals. In this talk I will review this behavior, and discuss a general phenomenology for understanding shear banding and flow-induced phase separation in complex fluids, at a "thermodynamic" level (as opposed to a "statistical mechanics" level). An accurate theory must include the relevant microstructural order parameters, and construct the fully coupled spatially-dependent hydrodynamic equations of motion. Although this has been successfully done for very few model fluids, we can nonetheless obtain general rules for the "phase behavior". Perhaps surprisingly, the interface between coexisting phases plays a crucial role in determining the steady state behavior, and is much more important than its equilibrium counterpart. I will discuss recent work addressed at the kinetics and morphology of wormlike micellar solutions, and touch on models for more complex oscillatory and possibly chaotic systems.
Estimation of Complex Generalized Linear Mixed Models for Measurement and Growth
ERIC Educational Resources Information Center
Jeon, Minjeong
2012-01-01
Maximum likelihood (ML) estimation of generalized linear mixed models (GLMMs) is technically challenging because of the intractable likelihoods that involve high dimensional integrations over random effects. The problem is magnified when the random effects have a crossed design and thus the data cannot be reduced to small independent clusters. A…
Inhibiting complex IL-17A and IL-17RA interactions with a linear peptide
Liu, Shenping; Desharnais, Joel; Sahasrabudhe, Parag V.; Jin, Ping; Li, Wei; Oates, Bryan D.; Shanker, Suman; Banker, Mary Ellen; Chrunyk, Boris A.; Song, Xi; Feng, Xidong; Griffor, Matt; Jimenez, Judith; Chen, Gang; Tumelty, David; Bhat, Abhijit; Bradshaw, Curt W.; Woodnutt, Gary; Lappe, Rodney W.; Thorarensen, Atli; Qiu, Xiayang; Withka, Jane M.; Wood, Lauren D.
2016-01-01
IL-17A is a pro-inflammatory cytokine that has been implicated in autoimmune and inflammatory diseases. Monoclonal antibodies inhibiting IL-17A signaling have demonstrated remarkable efficacy, but an oral therapy is still lacking. A high affinity IL-17A peptide antagonist (HAP) of 15 residues was identified through phage-display screening followed by saturation mutagenesis optimization and amino acid substitutions. HAP binds specifically to IL-17A and inhibits the interaction of the cytokine with its receptor, IL-17RA. Tested in primary human cells, HAP blocked the production of multiple inflammatory cytokines. Crystal structure studies revealed that two HAP molecules bind to one IL-17A dimer symmetrically. The N-terminal portions of HAP form a β-strand that inserts between two IL-17A monomers while the C-terminal section forms an α helix that directly blocks IL-17RA from binding to the same region of IL-17A. This mode of inhibition suggests opportunities for developing peptide antagonists against this challenging target. PMID:27184415
Inhibiting complex IL-17A and IL-17RA interactions with a linear peptide.
Liu, Shenping; Desharnais, Joel; Sahasrabudhe, Parag V; Jin, Ping; Li, Wei; Oates, Bryan D; Shanker, Suman; Banker, Mary Ellen; Chrunyk, Boris A; Song, Xi; Feng, Xidong; Griffor, Matt; Jimenez, Judith; Chen, Gang; Tumelty, David; Bhat, Abhijit; Bradshaw, Curt W; Woodnutt, Gary; Lappe, Rodney W; Thorarensen, Atli; Qiu, Xiayang; Withka, Jane M; Wood, Lauren D
2016-01-01
IL-17A is a pro-inflammatory cytokine that has been implicated in autoimmune and inflammatory diseases. Monoclonal antibodies inhibiting IL-17A signaling have demonstrated remarkable efficacy, but an oral therapy is still lacking. A high affinity IL-17A peptide antagonist (HAP) of 15 residues was identified through phage-display screening followed by saturation mutagenesis optimization and amino acid substitutions. HAP binds specifically to IL-17A and inhibits the interaction of the cytokine with its receptor, IL-17RA. Tested in primary human cells, HAP blocked the production of multiple inflammatory cytokines. Crystal structure studies revealed that two HAP molecules bind to one IL-17A dimer symmetrically. The N-terminal portions of HAP form a β-strand that inserts between two IL-17A monomers while the C-terminal section forms an α helix that directly blocks IL-17RA from binding to the same region of IL-17A. This mode of inhibition suggests opportunities for developing peptide antagonists against this challenging target. PMID:27184415
NASA Astrophysics Data System (ADS)
Liu, Y.; Li, T.; Zhu, C.; Zhang, R.; Wu, Y.
2015-12-01
Three-dimensional (3-D) electromagnetic (EM) forward modelling and inversion continues to be an important issue for the correct interpretation of EM data.To this end,approximate solutions have been developed that allow the construction of relatively fast forward modelling and inversion schemes.We have developed an improved quasi-linear approximation which is more appropriate in solving the linear equation for greatly shortening calculation time.We achieved this by using green's function properties.Then we introduced the improved quasi-linear approximation to spectral induced polarization (SIP) to tackle the problem of the resolution and the efficiency.The localized quasi-linear (LQL) approximation theory is appropriate for multisource array-type surveys assuming that the normal field is slowly varying within the inhomogeneity domain.However,the normal field of attenuates severely which dose not satisfy the assumption of the LQL approximation.As a consenquence,the imaginary part is not accurate when LQL approximation is adopted for the simulation.The improved quasi-linear approximation provide a new approach with the same resolution of QL approximation and much less calculation time.We have also constructed three-dimensional SIP forward modeling based on improved quasi-linear approximation method.It only takes 0.8s for forward modeling when inhomogeneity domain is divided into 2000 blocks.Beyond that, we have introduced the Cole-Cole model to the algorithm and complete the three-dimensional complex resistivity conjugate gradient inversion with parameter restraint.The model trial results show that this method can obtain good inversion results in physical parameters such as zero frequency resistivity, polarization.The results demonstrate the stability and the efficiency of the improved quasi-linear approximation and the method may be a practical solution for3-D EM forward modelling and inversion of SIP.
Viscosity in spherically symmetric accretion
NASA Astrophysics Data System (ADS)
Ray, Arnab K.
2003-10-01
The influence of viscosity on the flow behaviour in spherically symmetric accretion has been studied here. The governing equation chosen has been the Navier-Stokes equation. It has been found that at least for the transonic solution, viscosity acts as a mechanism that detracts from the effectiveness of gravity. This has been conjectured to set up a limiting scale of length for gravity to bring about accretion, and the physical interpretation of such a length scale has been compared with the conventional understanding of the so-called `accretion radius' for spherically symmetric accretion. For a perturbative presence of viscosity, it has also been pointed out that the critical points for inflows and outflows are not identical, which is a consequence of the fact that under the Navier-Stokes prescription, there is a breakdown of the invariance of the stationary inflow and outflow solutions - an invariance that holds good under inviscid conditions. For inflows, the critical point gets shifted deeper within the gravitational potential well. Finally, a linear stability analysis of the stationary inflow solutions, under the influence of a perturbation that is in the nature of a standing wave, has indicated that the presence of viscosity induces greater stability in the system than has been seen for the case of inviscid spherically symmetric inflows.
Chiral formulation for hyperKähler sigma-models on cotangent bundles of symmetric spaces
NASA Astrophysics Data System (ADS)
Kuzenko, Sergei M.; Novak, Joseph
2008-12-01
Starting with the projective-superspace off-shell formulation for four-dimensional Script N = 2 supersymmetric sigma-models on cotangent bundles of arbitrary Hermitian symmetric spaces, their on-shell description in terms of Script N = 1 chiral superfields is developed. In particular, we derive a universal representation for the hyperkähler potential in terms of the curvature of the symmetric base space. Within the tangent-bundle formulation for such sigma-models, completed recently in arXiv:0709.2633 and realized in terms of Script N = 1 chiral and complex linear superfields, we give a new universal formula for the superspace Lagrangian. A closed form expression is also derived for the Kähler potential of an arbitrary Hermitian symmetric space in Kähler normal coordinates.
NASA Astrophysics Data System (ADS)
Kauczor, Joanna; Norman, Patrick; Christiansen, Ove; Coriani, Sonia
2013-12-01
We present a reduced-space algorithm for solving the complex (damped) linear response equations required to compute the complex linear response function for the hierarchy of methods: coupled cluster singles, coupled cluster singles and iterative approximate doubles, and coupled cluster singles and doubles. The solver is the keystone element for the development of damped coupled cluster response methods for linear and nonlinear effects in resonant frequency regions.
Complexity of visual stimuli and non-linear EEG dynamics in humans.
Müller, Viktor; Lutzenberger, Werner; Preissl, Hubert; Pulvermüller, Friedemann; Birbaumer, Niels
2003-03-01
The effects of stimulus complexity on the nonlinear electrical brain (EEG) dynamics were investigated in a sample of 24 healthy volunteers. Stimuli used were either a single mechanical low-friction pendulum with a periodic movement (temporal frequency about 1 Hz) or a double-pendulum with a chaotic movement, which were observed for 2-3 min in each case. The prediction that a more complex visual stimulus (double-pendulum) increases the dimensional complexity of brain activity as compared to a simple visual stimulus (single-pendulum), was confirmed by determination of pointwise correlation dimension. Further, there was a significant decrease of alpha power in the double-pendulum compared to a single-pendulum condition. Moreover, a correlation analysis showed a positive correlation between EEG complexity and beta power over the whole cortex in the single- and, above all, in the double-pendulum condition, and also a positive correlation between dimensional complexity and alpha power in the double-pendulum condition only, particularly in the brain regions responsible for the 'bottom-up' sustained attention processes. PMID:12589895
Predictive non-linear modeling of complex data by artificial neural networks.
Almeida, Jonas S
2002-02-01
An artificial neural network (ANN) is an artificial intelligence tool that identifies arbitrary nonlinear multiparametric discriminant functions directly from experimental data. The use of ANNs has gained increasing popularity for applications where a mechanistic description of the dependency between dependent and independent variables is either unknown or very complex. This machine learning technique can be roughly described as a universal algebraic function that will distinguish signal from noise directly from experimental data. The application of ANNs to complex relationships makes them highly attractive for the study of biological systems. Recent applications include the analysis of expression profiles and genomic and proteomic sequences. PMID:11849962
Multi-Linear Strategies for (Re)Presenting the Complexity of Young People in Research
ERIC Educational Resources Information Center
Ryan, Mary Elizabeth
2010-01-01
Within the current climate of unpredictability and constant change, young people at school are faced with a multitude of choices and contradictory influences. In this article, I argue that (re)presentations of young people in youth research need to reflect the complexity and multiplicity of their lives and changing priorities, and I attempt to…
Panprasitwech, Oranit; Laohakosol, Vichian; Chaichana, Tuangrat
2010-11-11
Explicit formulae for continued fractions with symmetric patterns in their partial quotients are constructed in the field of formal power series. Similar to the work of Cohn in 1996, which generalized the so-called folding lemma to {kappa}-fold symmetry, the notion of {kappa}-duplicating symmetric continued fractions is investigated using a modification of the 1995 technique due to Clemens, Merrill and Roeder.
Xu, Lin; Yang, Hai-Bo
2016-06-01
During the past few decades, the construction of various kinds of platinum-acetylide complexes has attracted considerable attention, because of their wide applications in photovoltaic cells, non-linear optics, and bio-imaging materials. Among these platinum-acetylide complexes, the linear neutral platinum-acetylide complexes, due to their attractive properties, such as well-defined linear geometry, synthetic accessibility, and intriguing photoproperties, have emerged as a rising star in this field. In this personal account, we will discuss how we entered the field of linear neutral platinum-acetylide chemistry and what we found in this field. The preparation of various types of linear neutral platinum-acetylide complexes and their applications in the areas of micro/nanostructure materials, complicated topologies, and dye-sensitized solar cells will be summarized in this account. PMID:27097565
NASA Astrophysics Data System (ADS)
Arish, D.; Nair, M. Sivasankaran
2011-11-01
The Schiff base ligand, N, N'-bis-(4-isopropylbenzaldimine)-1,2-diaminoethane (L), obtained by the condensation of 4-isopropylbenzaldehyde and 1,2-diaminoethane, has been used to synthesize the complexes of the type [ML 2X 2] [M = Co(II), Ni(II) and Zn(II); X = Cl and OAc]. The newly synthesized ligand (L) and its complexes have been characterized on the basis of elemental analyses, mass, 1H and 13C-NMR, molar conductance, IR, UV-vis, magnetic moment, CV and thermal analyses, powder XRD and SEM. IR spectral data show that the ligand is coordinated to the metal ions in a bidentate manner. The geometrical structures of these complexes are found to be octahedral. Interestingly, reaction with Cu(II) ion with this ligand undergoes hydrolytic cleavage to form ethylenediamine copper(II) complex and the corresponding aldehyde. The antimicrobial results indicate that the chloro complexes exhibit more activity than the acetato complexes. The complexes bind to CT-DNA by intercalation modes. Novel chloroform soluble ZnL 2Cl 2 complex exhibits tremendous antimicrobial, DNA binding and cleaving properties.
NASA Astrophysics Data System (ADS)
Rasulov, R. Ya.; Rasulov, V. R.; Eshboltaev, I.
2016-04-01
Matrix elements of optical transitions occuring between the subbands of the valence band of a p-GaAs type semiconductor are calculated. Transitions associated with the non-simultaneous absorption of single photons and simultaneous absorption of two photons are taken into account. The expressions are obtained for the average values of the square modulus of matrix elements calculated with respect to the solid angle of the wave vector of holes. Linear-circular dichroism of four-photon absorption of light in semiconductors with a complex valence band is theoretically studied.
PT-Symmetric Quantum Field Theory
NASA Astrophysics Data System (ADS)
Bender, Carl M.
2011-09-01
In 1998 it was discovered that the requirement that a Hamiltonian be Dirac Hermitian (H = H†) can be weakened and generalized to the requirement that a Hamiltonian be PT symmetric ([H,PT] = 0); that is, invariant under combined space reflection and time reversal. Weakening the constraint of Hermiticity allows one to consider new kinds of physically acceptable Hamiltonians and, in effect, it amounts to extending quantum mechanics from the real (Hermitian) domain into the complex domain. Much work has been done on the analysis of various PT-symmetric quantum-mechanical models. However, only very little analysis has been done on PT-symmetric quantum-field-theoretic models. Here, we describe some of what has been done in the context of PT-symmetric quantum field theory and describe some possible fundamental applications.
NASA Technical Reports Server (NTRS)
Bogdanoff, J. L.; Kayser, K.; Krieger, W.
1977-01-01
The paper describes convergence and response studies in the low frequency range of complex systems, particularly with low values of damping of different distributions, and reports on the modification of the relaxation procedure required under these conditions. A new method is presented for response estimation in complex lumped parameter linear systems under random or deterministic steady state excitation. The essence of the method is the use of relaxation procedures with a suitable error function to find the estimated response; natural frequencies and normal modes are not computed. For a 45 degree of freedom system, and two relaxation procedures, convergence studies and frequency response estimates were performed. The low frequency studies are considered in the framework of earlier studies (Kayser and Bogdanoff, 1975) involving the mid to high frequency range.
Linear stability theory as an early warning sign for transitions in high dimensional complex systems
NASA Astrophysics Data System (ADS)
Piovani, Duccio; Grujić, Jelena; Jeldtoft Jensen, Henrik
2016-07-01
We analyse in detail a new approach to the monitoring and forecasting of the onset of transitions in high dimensional complex systems by application to the Tangled Nature model of evolutionary ecology and high dimensional replicator systems with a stochastic element. A high dimensional stability matrix is derived in the mean field approximation to the stochastic dynamics. This allows us to determine the stability spectrum about the observed quasi-stable configurations. From overlap of the instantaneous configuration vector of the full stochastic system with the eigenvectors of the unstable directions of the deterministic mean field approximation, we are able to construct a good early-warning indicator of the transitions occurring intermittently.
Cylindrically symmetric electrohydrodynamic patterning.
Deshpande, Paru; Pease, Leonard F; Chen, Lei; Chou, Stephen Y; Russel, William B
2004-10-01
Cylindrically symmetric structures such as concentric rings and rosettes arise out of thin polymeric films subjected to strong electric fields. Experiments that formed concentric rings and theory capable of explaining these and other cylindrical structures are presented. These rings represent an additional member of a class of structures, including pillars and holes, formed by electrohydrodynamic patterning of thin films, occasionally referred to as lithographically induced self-assembly. Fabrication of a set of concentric rings begins by spin coating a thin poly(methyl methacrylate) film onto a silicon wafer. A mask is superimposed parallel to the film leaving a similarly thin air gap. Electric fields, acting in opposition to surface tension, destabilize the free interface when raised above the glass transition temperature. Central pillars nucleate under small cylindrical protrusions patterned on the mask. Rings then emerge sequentially, with larger systems having as many as 10 fully formed rings. Ring-to-ring spacings and annular widths, typically on the order of a micron, are approximately constant within a concentric cluster. The formation rate is proportional to the viscosity and, consequently, has the expected Williams-Landel-Ferry dependence on temperature. In light of these developments we have undertaken a linear stability analysis in cylindrical coordinates to describe these rings and ringlike structures. The salient feature of this analysis is the use of perturbations that incorporate their radial dependence in terms of Bessel functions as opposed to the traditional sinusoids of Cartesian coordinates. The theory predicts approximately constant ring-to-ring spacings, constant annular widths, and growth rates that agree with experiment. A secondary instability is observed at higher temperatures, which causes the rings to segment into arcs or pillar arrays. The cylindrical theory may be generalized to describe hexagonal pillar/hole packing, gratings, and
Multi-Party Privacy-Preserving Set Intersection with Quasi-Linear Complexity
NASA Astrophysics Data System (ADS)
Cheon, Jung Hee; Jarecki, Stanislaw; Seo, Jae Hong
Secure computation of the set intersection functionality allows n parties to find the intersection between their datasets without revealing anything else about them. An efficient protocol for such a task could have multiple potential applications in commerce, health care, and security. However, all currently known secure set intersection protocols for n>2 parties have computational costs that are quadratic in the (maximum) number of entries in the dataset contributed by each party, making secure computation of the set intersection only practical for small datasets. In this paper, we describe the first multi-party protocol for securely computing the set intersection functionality with both the communication and the computation costs that are quasi-linear in the size of the datasets. For a fixed security parameter, our protocols require O(n2k) bits of communication and Õ(n2k) group multiplications per player in the malicious adversary setting, where k is the size of each dataset. Our protocol follows the basic idea of the protocol proposed by Kissner and Song, but we gain efficiency by using different representations of the polynomials associated with users' datasets and careful employment of algorithms that interpolate or evaluate polynomials on multiple points more efficiently. Moreover, the proposed protocol is robust. This means that the protocol outputs the desired result even if some corrupted players leave during the execution of the protocol.
Praveen, P A; Ramesh Babu, R; Jothivenkatachalam, K; Ramamurthi, K
2015-11-01
Metal organic materials are widely investigated to find their suitability for nonlinear optical applications due to the advantage of combined organic and inorganic properties. In this work benzimidazole based metal organic thin films of dichlorobis (1H-Benzimidazole) Co(II) and dichlorobis (1H-Benzimidazole) Cu(II) were deposited by chemical bath deposition method. The deposited films were annealed at 100, 150 and 200 °C to investigate the effect of annealing on the properties of thin films. Surface homogeneity of the films was increased with the annealing temperature due to the surface diffusion of the films and the same was evidently shown by Raman spectroscopy and Atomic Force Microscopy studies. But annealing the films at 200 °C yielded bulk patches on the surface due to the distortion of molecules. Linear and nonlinear optical properties of the films annealed at 150 °C showed relatively higher transmittance and improved nonlinear optical properties than the other as prepared and annealed samples. PMID:26056978
NASA Astrophysics Data System (ADS)
De, D. K.
1981-03-01
The observed angular dependence of the electron paramagnetic resonance linewidth in the ab and ac planes of CuCa(AC)2, 6H2O in the temperature interval 77K-12K was explained by considering dipolar interactions along with hyperfine and isotropic exchange interactions in these two planes. It was found that this so called linear-chain copper compound can be better described by a three dimensional paramagnet. The exchange interaction is very nearly isotropic with values Jab = 0.0098 cm-1 and Jc = 0.0103 cm-1. The values of the A⊥ derived from the linewidth fit in the ab plane are 14G at 77K and 60.5G at 1.2K. Due to insufficiency of data in the ac plane, the fit was done with the measured value of A∥. Although the exchange interaction has been found to be temperature independent the hyperfine interaction increases very much at low temperatures. The high temperature (300-460K) EPR spectra are quite different from the low temperature spectra. High temperature differential thermal analyses and thermogravimetric analyses have been carried out and corroborated with the EPR findings.
NASA Astrophysics Data System (ADS)
Jamali, A.; Khaleghi, E.; Gholaminezhad, I.; Nariman-zadeh, N.
2016-05-01
In this paper, a new multi-objective genetic programming (GP) with a diversity preserving mechanism and a real number alteration operator is presented and successfully used for Pareto optimal modelling of some complex non-linear systems using some input-output data. In this study, two different input-output data-sets of a non-linear mathematical model and of an explosive cutting process are considered separately in three-objective optimisation processes. The pertinent conflicting objective functions that have been considered for such Pareto optimisations are namely, training error (TE), prediction error (PE), and the length of tree (complexity of the network) (TL) of the GP models. Such three-objective optimisation implementations leads to some non-dominated choices of GP-type models for both cases representing the trade-offs among those objective functions. Therefore, optimal Pareto fronts of such GP models exhibit the trade-off among the corresponding conflicting objectives and, thus, provide different non-dominated optimal choices of GP-type models. Moreover, the results show that no significant optimality in TE and PE may occur when the TL of the corresponding GP model exceeds some values.
NASA Astrophysics Data System (ADS)
Lewis, Thomas; Pandav, Gunja; Omar, Ahmad; Ganesan, Venkat
2013-03-01
The unique architecture and high charge density of dendrimer molecules have attracted interest for their utilization in gene delivery applications. The strong binding affinity of cationic dendrimers to genetic materials make them effective gene delivery vectors not only by shielding the nucleic acid (NA) material from degradative enzymes in the blood stream, but also by reducing the overall negative charge of the dendrimer-NA material complex, which in turn creates more favorable interaction with the anionic cell membrane. However, the high cytotoxicities of cationic dendrimers have motivated the development of polyethylene glycol (PEG) conjugated dendrimer molecules, which have been shown to reduce dendrimer cytotoxicity while still retaining transfection ability. In order to gain insight into how the addition of neutral grafts affects the binding affinity and conformations of dendrimer-NA material complexes, we have developed and numerically solved a Self-Consistent Field Theory approach for both grafted and non-grafted annealed charged dendrimer molecules in the presence of linear polyelectrolyte molecules. Specifically, this work examines the effect of linear polyelectrolyte stiffness, grafting chain length, and solution pOH.
Heo, Yun Seok; Lee, Ho-Joon; Hassell, Bryan A; Irimia, Daniel; Toth, Thomas L; Elmoazzen, Heidi; Toner, Mehmet
2011-10-21
Oocyte cryopreservation has become an essential tool in the treatment of infertility by preserving oocytes for women undergoing chemotherapy. However, despite recent advances, pregnancy rates from all cryopreserved oocytes remain low. The inevitable use of the cryoprotectants (CPAs) during preservation affects the viability of the preserved oocytes and pregnancy rates either through CPA toxicity or osmotic injury. Current protocols attempt to reduce CPA toxicity by minimizing CPA concentrations, or by minimizing the volume changes via the step-wise addition of CPAs to the cells. Although the step-wise addition decreases osmotic shock to oocytes, it unfortunately increases toxic injuries due to the long exposure times to CPAs. To address limitations of current protocols and to rationally design protocols that minimize the exposure to CPAs, we developed a microfluidic device for the quantitative measurements of oocyte volume during various CPA loading protocols. We spatially secured a single oocyte on the microfluidic device, created precisely controlled continuous CPA profiles (step-wise, linear and complex) for the addition of CPAs to the oocyte and measured the oocyte volumetric response to each profile. With both linear and complex profiles, we were able to load 1.5 M propanediol to oocytes in less than 15 min and with a volumetric change of less than 10%. Thus, we believe this single oocyte analysis technology will eventually help future advances in assisted reproductive technologies and fertility preservation. PMID:21887438
Heo, Yun Seok; Lee, Ho-Joon; Hassell, Bryan A.; Irimia, Daniel; Toth, Thomas L.; Elmoazzen, Heidi; Toner, Mehmet
2013-01-01
Oocyte cryopreservation has become an essential tool in the treatment of infertility by preserving oocytes for women undergoing chemotherapy. However, despite recent advances, pregnancy rates from all cryopreserved oocytes remain low. The inevitable use of the cryoprotectants (CPAs) during preservation affects the viability of the preserved oocytes and pregnancy rates either through CPA toxicity or osmotic injury. Current protocols attempt to reduce CPA toxicity by minimizing CPA concentrations, or by minimizing the volume changes via the step-wise addition of CPAs to the cells. Although the step-wise addition decreases osmotic shock to oocytes, it unfortunately increases toxic injuries due to the long exposure times to CPAs. To address limitations of current protocols and to rationally design protocols that minimize the exposure to CPAs, we developed a microfluidic device for the quantitative measurements of oocyte volume during various CPA loading protocols. We spatially secured a single oocyte on the microfluidic device, created precisely controlled continuous CPA profiles (step-wise, linear and complex) for the addition of CPAs to the oocyte and measured the oocyte volumetric response to each profile. With both linear and complex profiles, we were able to load 1.5 M propanediol to oocytes in less than 15 min and with a volumetric change of less than 10%. Thus, we believe this single oocyte analysis technology will eventually help future advances in assisted reproductive technologies and fertility preservation. PMID:21887438
Liu, Isiah Po-Chun; Bénard, Marc; Hasanov, Hasan; Chen, I-Wen Peter; Tseng, Wei-Hsiang; Fu, Ming-Dung; Rohmer, Marie-Madeleine; Chen, Chun-hsien; Lee, Gene-Hsiang; Peng, Shie-Ming
2007-01-01
Two new linear pentanickel complexes [Ni5(bna)4(Cl)2][PF6]2 (1) and [Ni5(bna)4(Cl)2][PF6]4 (2; bna=binaphthyridylamide), were synthesized and structurally characterized. A derivative of 1, [Ni5(bna)4(NCS)2][NCS]2 (3), was also isolated for the purpose of the conductance experiments carried out in comparison with [Ni5(tpda)4(NCS)2] (4; tpda=tripyridyldiamide). The metal framework of complex 2 is a standard [Ni5]10+ core, isoelectronic with that of [Ni5(tpda)4Cl2] (5). Also as in 5, complex 2 has an antiferromagnetic ground state (J=-15.86 cm(-1)) resulting from a coupling between the terminal nickel atoms, both in high-spin sate (S=1). Complex 1 displays the first characterized linear nickel framework in which the usual sequence of NiII atoms has been reduced by two electrons. Each dinickel unit attached to the naphthyridyl moieties is assumed to undergo a one-electron reduction, whereas the central nickel formally remains NiII. DFT calculations suggest that the metal framework of the mixed-valence complex 1 should be described as intermediate between a localized picture corresponding to NiII-NiI-NiII-NiI-NiII and a fully delocalized model represented as (Ni2)3+-NiII-(Ni2)3+. Assuming the latter model, the ground state of 1 results from an antiferromagnetic coupling (J=-34.03 cm(-1)) between the two (Ni2)3+ fragments, considered each as a single magnetic centre (S=3/2). An intervalence charge-transfer band is observed in the NIR spectrum of 1 at 1186 nm, suggesting, in accordance with DFT calculations, that 1 should be assigned to Robin-Day class II of mixed-valent complexes. Scanning tunnelling microscopy (STM) methodology was used to assess the conductance of single molecules of 3 and 4. Compound 3 was found approximately 40% more conductive than 4, a result that could be assigned to the electron mobility induced by mixed-valency in the naphthyridyl fragments. PMID:17847146
Systems of Differential Equations with Skew-Symmetric, Orthogonal Matrices
ERIC Educational Resources Information Center
Glaister, P.
2008-01-01
The solution of a system of linear, inhomogeneous differential equations is discussed. The particular class considered is where the coefficient matrix is skew-symmetric and orthogonal, and where the forcing terms are sinusoidal. More general matrices are also considered.
A HLL-Rankine-Hugoniot Riemann solver for complex non-linear hyperbolic problems
NASA Astrophysics Data System (ADS)
Guy, Capdeville
2013-10-01
We present a new HLL-type approximate Riemann solver that aims at capturing any isolated discontinuity without necessitating extensive characteristic analysis of governing partial differential equations. This property is especially attractive for complex hyperbolic systems with more than two equations. Following Linde's (2002) approach [6], we introduce a generic middle wave into the classical two-state HLL solver. The property of this third wave is typified by the way of a "strength indicator" that is derived from polynomial considerations. The polynomial that constitutes the basis of the procedure is made non-oscillatory by an adapted fourth-order WENO algorithm (CWENO4). This algorithm makes it possible to derive an expression for the strength indicator. According to the size of this latter parameter, the resulting solver (HLL-RH), either computes the multi-dimensional Rankine-Hugoniot equations if an isolated discontinuity appears in the Riemann fan, or asymptotically tends towards the two-state HLL solver if the solution is locally smooth. The asymptotic version of the HLL-RH solver is demonstrated to be positively conservative and entropy satisfying in its first-order multi-dimensional form provided that a relevant and not too restrictive CFL condition is considered; specific limitations of the conservative increments of the numerical solution and a suited entropy condition enable to maintain these properties in its high-order version. With a monotonicity-preserving algorithm for the time integration, the numerical method so generated, is third order in time and fourth-order accurate in space for the smooth part of the solution; moreover, the scheme is stable and accurate when capturing a shock wave, whatever the complexity of the underlying differential system. Extensive numerical tests for the one- and two-dimensional Euler equation of gas dynamics and comparisons with classical Godunov-type methods help to point out the potentialities and insufficiencies
Localization of c-di-GMP-Binding Protein with the Linear Terminal Complexes of Acetobacter xylinum
Kimura, Satoshi; Chen, He Ping; Saxena, Inder M.; Brown, R. Malcolm; Itoh, Takao
2001-01-01
Specific labeling of a single row of cellulose-synthesizing complexes (terminal complexes, TC subunits, TCs, or TC arrays) in Acetobacter xylinum by antibodies raised against a 93-kDa protein (the cyclic dignanylic acid-binding protein) has been demonstrated by using the sodium dodecyl sulfate (SDS)–freeze-fracture labeling (FRL) technique. The antibodies to the 93-kDa protein specifically recognized the TC subunits on the protoplasmic fracture (PF) face of the outer membrane in A. xylinum; however, nonlabeled TCs were also observed. Two types of TC subunits (particles or pits) are observed on the PF face of the outer membrane: (i) immunogold-labeled TCs showing a line of depressions (pits) with an indistinct particle array and (ii) nonlabeled TC subunits with a distinct single row of particle arrays. The evidence indicates that the labeling patterns differ with respect to the presence or absence of certain TC subunits remaining attached to the replica after SDS treatment. This suggests the presence of at least two TC components, one in the outer membrane and the other in the cytoplasmic membrane. If the TC component in the outer membrane is preferentially fractured and remains attached to the ectoplasmic fracture face (or outer leaflet) of the outer membrane, subsequent replica formation reveals a pit or depression with positive antibody labeling on the PF face of the outer membrane. If the TC component in the outer membrane remains with the PF face (or inner leaflet) of the outer membrane, the innermost TC component is removed during SDS treatment and labeling does not occur. SDS-FRL of TCs in A. xylinum has enabled us to provide the first topological molecular analysis of component proteins in a cellulose-synthesizing TC structure in a prokaryotic organism. PMID:11544230
Integrable nonlinear parity-time-symmetric optical oscillator
NASA Astrophysics Data System (ADS)
Hassan, Absar U.; Hodaei, Hossein; Miri, Mohammad-Ali; Khajavikhan, Mercedeh; Christodoulides, Demetrios N.
2016-04-01
The nonlinear dynamics of a balanced parity-time-symmetric optical microring arrangement are analytically investigated. By considering gain and loss saturation effects, the pertinent conservation laws are explicitly obtained in the Stokes domain, thus establishing integrability. Our analysis indicates the existence of two regimes of oscillatory dynamics and frequency locking, both of which are analogous to those expected in linear parity-time-symmetric systems. Unlike other saturable parity-time-symmetric systems considered before, the model studied in this work first operates in the symmetric regime and then enters the broken parity-time phase.
Polarization converters based on axially symmetric twisted nematic liquid crystal.
Ko, Shih-Wei; Ting, Chi-Lun; Fuh, Andy Y-G; Lin, Tsung-Hsien
2010-02-15
An axially symmetric twisted nematic liquid crystal (ASTNLC) device, based on axially symmetric photoalignment, was demonstrated. Such an ASTNLC device can convert axial (azimuthal) to azimuthal (axial) polarization. The optical properties of the ASTNLC device are analyzed and found to agree with simulation results. The ASTNLC device with a specific device can be adopted as an arbitrary axial symmetric polarization converter or waveplate for axially, azimuthally or vertically polarized light. A design for converting linear polarized light to axially symmetric circular polarized light is also demonstrated. PMID:20389369
Vieira, Erika M.; Snapper, Marc L.; Hoveyda, Amir H.
2011-01-01
A catalytic method for enantioselective synthesis of homoallylamides through Cu-catalyzed reactions of stable and easily accessible (pinacolato)allylborons with aryl-, heteroaryl-,alkyl- or alkenyl-substituted N-phosphinoylimines is disclosed. Transformations are promoted by 1–5 mol % of readily accessible NHC–Cu complexes, derived from C1-symmetric imidazolinium salts, which can be prepared in multi-gram quantities in four steps from commercially available materials. Allyl additions deliver the desired products in up to quantitative yield and 98.5:1.5 enantiomeric ratio and are amenable to gram-scale operations. A mechanistic model accounting for the observed selectivity levels and trends is proposed. PMID:21341657
Werner, Tamas W; Reschke, Stephan; Bunzen, Hana; von Nidda, Hans-Albrecht Krug; Deisenhofer, Joachim; Loidl, Alois; Volkmer, Dirk
2016-02-01
The pentanuclear Co(II) complex [Co5Tp*4(Me2bta)6] containing N-donor ligands (5,6-dimethyl benzotriazolate; Me2bta6) and N-donor capping ligands (tris(3,5-dimethyl-1-pyrazolyl)borate; Tp*) was prepared by a simple and efficient ligand exchange reaction from [Co5Cl4(Me2bta)6] and tetra-n-butyl ammonium tris(3,5-dimethyl-1-pyrazolyl)borate. Compared to the precursor complex [Co5Cl4(Me2bta)6], which contains one Co(II) ion in octahedral and four Co(II) ions in tetrahedral coordination geometry, the title compound features all five Co(II) ions in an octahedral coordination environment while keeping a high complex symmetry. This results in modified properties including improved solubility and distinct magnetic behavior as compared to the precursor complex. The molecular structure and phase purity of the compound was verified by XRPD, UV-vis, ESI-MS, IR, and NMR measurements. Thermal stability of the compound was determined via TGA. The magnetic properties of here reported novel complex [Co5Tp*4(Me2bta)6] as well as its precursor [Co5Cl4(Me2bta)6] were examined in detail via ESR and SQUID measurements, which indicated weak anti-ferromagnetic exchange interactions between high-spin Co(II) centers at T < 20 and 50 K, respectively. PMID:26828949
Panja, Anangamohan; Guionneau, Philippe
2013-04-14
A bis(imido)-bridged dinuclear cobalt(III) complex, [Co2(amp)2(μ-imp)2Cl2]Cl2·2H2O () [amp = 2-aminomethylpyridine; imp = 2-iminomethylpyridine anion], was synthesized by the reaction of cobalt(II) chloride with 2-aminomethylpyridine in the presence of alkaline hydrogen peroxide at room temperature. X-ray crystallography reveals that both the metal centres in the molecule are related to each other through an inversion centre, and the geometry of each of the Co(III) ions is a distorted octahedral structure having a CoN5Cl coordination environment. The most important feature of the structure is the modification of half of the coordinated amines by the oxidative dehydrogenation process which involves double bridging in the complex cation. To the best of our knowledge, this is the first example of a bis(imido)-bridged dinuclear cobalt(III) complex derived from metal-assisted oxidative dehydrogenation of the coordinated primary amine ligand. Complex was found to be an excellent functional model for the phenoxazinone synthase, catalyzing the oxidative coupling of 2-aminophenol to the corresponding 2-aminophenoxazinone chromophore in dioxygen saturated methanol. The detailed kinetic investigations reveal that the phenoxazinone chromophore is produced via a potential complex-substrate intermediate. PMID:23396321
ERIC Educational Resources Information Center
Uebelacker, James W.
This module considers ordinary linear differential equations with constant coefficients. The "complex method" used to find solutions is discussed, with numerous examples. The unit includes both problem sets and an exam, with answers provided for both. (MP)
Malkov, Andrei V; Gouriou, Laure; Lloyd-Jones, Guy C; Starý, Ivo; Langer, Vratislav; Spoor, Paul; Vinader, Victoria; Kocovský, Pavel
2006-09-01
Application of new chiral ligands (R)-(-)-12 a and (S)-(+)-12 c (VALDY), derived from amino acids, to the title reaction, involving cinnamyl (linear) and isocinnamyl (branched) type substrates (4 and 5 --> 6), led to excellent regio- and enantioselectivities (>30:1, < or =98 % ee), showing that ligands with a single chiral center are capable of high asymmetric induction. The structural requirements of the ligand and the mechanism are discussed. The application of single enantiomers of deuterium-labeled substrates (both linear 38 c and branched 37 c) and analysis of the products (41-43) by (2)H{(1)H} NMR spectroscopy in a chiral liquid crystal matrix allowed the stereochemical pathways of the reaction to be distinguished. With ligand (S)-(+)-12 c, the matched enantiomer of branched substrate was found to be (S)-5, which was converted into (R)-6 with very high regio- and stereoselectivity via a process that involves net retention of stereochemistry. The mismatched enantiomer of the branched substrate was found to be (R)-5, which was also converted into (R)-6, that is, with apparent net inversion, but at a lower rate and with lower overall enantioselectivity. This latter feature, which may be termed a "memory effect", reduced the global enantioselectivity in the reaction of the racemic substrate (+/-)-5. The stereochemical pathway of the mismatched manifold has been shown also to be one of net retention, the apparent inversion occurring through equilibration via an Mo-allyl intermediate prior to nucleophilic attack. Incomplete equilibration leads to the memory effect and thus to lower enantioselectivity. Analysis of the mismatched manifold over the course of the reaction revealed that the memory effect is progressively attenuated with the nascent global selectivity increasing substantially as the reaction proceeds. The origin of this effect is suggested to be the depletion of CO sources in the reaction mixture, which attenuates turnover rate and thus facilitates
Integrability and symmetric spaces
Ferreira, L.A.
1989-01-01
It is shown that a sufficient condition for a model describing the motion of a particle on a coset space to possess a Fundamental Poisson bracket Relation, and consequently charges in involution, is that it must be a symmetric space. The conditions, a Hamiltonian, or any functions of the canonical variables, has to satisfy in order to commute with these charges, are studied. It is show that, for the case of the noncompact symmetric spaces, these conditions lead to an algebraic structure which lays an important role in the construction of conserved quantities.
Braids, shuffles and symmetrizers
NASA Astrophysics Data System (ADS)
Isaev, A. P.; Ogievetsky, O. V.
2009-07-01
Multiplicative analogues of the shuffle elements of the braid group rings are introduced; in local representations they give rise to certain graded associative algebras (b-shuffle algebras). For the Hecke and BMW algebras, the (anti)-symmetrizers have simple expressions in terms of the multiplicative shuffles. The (anti)-symmetrizers can be expressed in terms of the highest multiplicative 1-shuffles (for the Hecke and BMW algebras) and in terms of the highest additive 1-shuffles (for the Hecke algebras). The spectra and multiplicities of eigenvalues of the operators of the multiplication by the multiplicative and additive 1-shuffles are examined. Dedicated to the memory of Aleosha Zamolodchikov.
Orbital tomography for highly symmetric adsorbate systems
NASA Astrophysics Data System (ADS)
Stadtmüller, B.; Willenbockel, M.; Reinisch, E. M.; Ules, T.; Bocquet, F. C.; Soubatch, S.; Puschnig, P.; Koller, G.; Ramsey, M. G.; Tautz, F. S.; Kumpf, C.
2012-10-01
Orbital tomography is a new and very powerful tool to analyze the angular distribution of a photoemission spectroscopy experiment. It was successfully used for organic adsorbate systems to identify (and consequently deconvolute) the contributions of specific molecular orbitals to the photoemission data. The technique was so far limited to surfaces with low symmetry like fcc(110) oriented surfaces, owing to the small number of rotational domains that occur on such surfaces. In this letter we overcome this limitation and present an orbital tomography study of a 3,4,9,10-perylene-tetra-carboxylic-dianhydride (PTCDA) monolayer film adsorbed on Ag(111). Although this system exhibits twelve differently oriented molecules, the angular resolved photoemission data still allow a meaningful analysis of the different local density of states and reveal different electronic structures for symmetrically inequivalent molecules. We also discuss the precision of the orbital tomography technique in terms of counting statistics and linear regression fitting algorithm. Our results demonstrate that orbital tomography is not limited to low-symmetry surfaces, a finding which makes a broad field of complex adsorbate systems accessible to this powerful technique.
Pitschner, H F; Berkowitsch, A
2001-01-01
Symbolic dynamics as a non linear method and computation of the normalized algorithmic complexity (C alpha) was applied to basket-catheter mapping of atrial fibrillation (AF) in the right human atrium. The resulting different degrees of organisation of AF have been compared to conventional classification of Wells. Short time temporal and spatial distribution of the C alpha during AF and effects of propafenone on this distribution have been investigated in 30 patients. C alpha was calculated for a moving window. Generated C alpha was analyzed within 10 minutes before and after administration of propafenone. The inter-regional C alpha distribution was statistically analyzed. Inter-regional C alpha differences were found in all patients (p < 0.001). The right atrium could be divided in high- and low complexity areas according to individual patterns. A significant C alpha increase in cranio-caudal direction was confirmed inter-individually (p < 0.01). The administration of propafenone enlarged the areas of low complexity. PMID:11889958
Sato, Atsuko; Shimeld, Sebastian M; Bishop, John D D
2014-06-01
The sea squirt Ciona intestinalis species complex is a widely used model system for genomics and developmental biology, as well as ecology. Contrary to previous reports, here we show no difference in the success of development and hatching between hybrid and conspecific crosses between the two species within this complex known as types A and B, from a region in the English Channel where they are sympatric. We grew laboratory hybrids in the field for three months, and successfully obtained reproductive adults. In back-crosses of F1 laboratory hybrids to parental types, normal larvae were obtained. We conclude that hybrid crosses generate viable offspring and the resulting hybrids are interfertile with types A and B. However we also show that introgression in the natural sympatric population remains low. We discuss possible pre-zygotic and post-zygotic mechanisms which reproductively isolate these species. PMID:24882097
Souza Dutra, A. de; Santos, V. G. C. S. dos; Amaro de Faria, A. C. Jr.
2007-06-15
Some kinks for non-Hermitian quantum field theories in 1+1 dimensions are constructed. A class of models where the soliton energies are stable and real are found. Although these kinks are not Hermitian, they are symmetric under PT transformations.
Tomonaga, Masato; Hashimoto, Nobuyuki; Tokunaga, Fuminori; Onishi, Megumi; Myoui, Akira; Yoshikawa, Hideki; Iwai, Kazuhiro
2012-02-01
NF-κB is involved in the metastasis of malignant cells. We have shown that NF-κB activation is involved in the pulmonary metastasis of LM8 cells, a highly metastatic subclone of Dunn murine osteosarcoma cells. Recently, it was determined that a newly identified type of polyubiquitin chain, a linear polyubiquitin chain, which is specifically generated by the linear ubiquitin chain assembly complex (LUBAC), plays a critical role in NF-κB activation. Here, we have evaluated the roles of LUBAC-mediated NF-κB activation in the development of lung metastasis of osteosarcoma cells. All three components of LUBAC (HOIL-1L, HOIP and SHARPIN) were highly expressed in LM8 cells compared to Dunn cells. Attenuation of LUBAC expression by stable knockdown of HOIL-1L in LM8 cells significantly suppressed NF-κB activity, invasiveness in vitro and lung metastasis. Induction of intracellular adhesion molecule-1 (ICAM-1) expression by LUBAC is involved in cell retention in the lungs after an intravenous inoculation of tumor cells. Moreover, we found that knockdown of LUBAC decreased not only the number but also the size of the metastatic nodules of LM8 cells in the lungs. These results indicate that LUBAC-mediated NF-κB activation plays crucial roles in several steps involved in metastasis, including extravasation and growth of osteosarcoma cells in the lung, and that suppression of LUBAC-mediated linear polyubiquitination activity may be a new approach to treat this life-threatening disease of young adolescents. PMID:21947385
Skyllberg,U.; Bloom, P.; Qian, J.; Lin, C.; Bleam, W.
2006-01-01
The chemical speciation of inorganic mercury (Hg) is to a great extent controlling biologically mediated processes, such as mercury methylation, in soils, sediments, and surface waters. Of utmost importance are complexation reactions with functional groups of natural organic matter (NOM), indirectly determining concentrations of bioavailable, inorganic Hg species. Two previous extended X-ray absorption fine structure (EXAFS) spectroscopic studies have revealed that reduced organic sulfur (S) and oxygen/nitrogen (O/N) groups are involved in the complexation of Hg(II) to humic substances extracted from organic soils. In this work, covering intact organic soils and extending to much lower concentrations of Hg than before, we show that Hg is complexed by two reduced organic S groups (likely thiols) at a distance of 2.33 Angstroms in a linear configuration. Furthermore, a third reduced S (likely an organic sulfide) was indicated to contribute with a weaker second shell attraction at a distance of 2.92-3.08 Angstroms. When all high-affinity S sites, corresponding to 20-30% of total reduced organic S, were saturated, a structure involving one carbonyl-O or amino-N at 2.07 Angstroms and one carboxyl-O at 2.84 Angstroms in the first shell, and two second shell C atoms at an average distance of 3.14 Angstroms, gave the best fit to data. Similar results were obtained for humic acid extracted from an organic wetland soil. We conclude that models that are in current use to describe the biogeochemistry of mercury and to calculate thermodynamic processes need to include a two-coordinated complexation of Hg(II) to reduced organic sulfur groups in NOM in soils and waters.
Xu, Songchen; Magoon, Yitzhak; Reinig, Regina R.; Schmidt, Bradley M.; Ellern, Arkady; Sadow, Aaron D.
2015-07-16
A bulky, optically active monoanionic scorpionate ligand, tris(4S-isopropyl-5,5-dimethyl-2-oxazolinyl)phenylborate (ToP*), is synthesized from the naturally occurring amino acid l-valine as its lithium salt, Li[ToP*] (1). That compound is readily converted to the thallium complex Tl[ToP*] (2) and to the acid derivative H[ToP*] (3). Group 7 tricarbonyl complexes ToP*M(CO)3 (M = Mn (4), Re (5)) are synthesized by the reaction of MBr(CO)5 and Li[ToP*] and are crystallographically characterized. The νCO bands in their infrared spectra indicate that π back-donation in the rhenium compounds is greater with ToP* than with non-methylated tris(4S-isopropyl-2-oxazolinyl)phenylborate (ToP). The reaction of H[ToP*] and ZnEt2 gives ToP*ZnEt (6), whilemore » ToP*ZnCl (7) is synthesized from Li[ToP*] and ZnCl2. The reaction of ToP*ZnCl and KOtBu followed by addition of PhSiH3 provides the zinc hydride complex ToP*ZnH (8). In this study, compound 8 is the first example of a crystallographically characterized optically active zinc hydride. We tested its catalytic reactivity in the cross-dehydrocoupling of silanes and alcohols, which provided Si-chiral silanes with moderate enantioselectivity.« less
Resonances for Symmetric Two-Barrier Potentials
ERIC Educational Resources Information Center
Fernandez, Francisco M.
2011-01-01
We describe a method for the accurate calculation of bound-state and resonance energies for one-dimensional potentials. We calculate the shape resonances for symmetric two-barrier potentials and compare them with those coming from the Siegert approximation, the complex scaling method and the box-stabilization method. A comparison of the…
Nisemblat, Shahar; Parnas, Avital; Yaniv, Oren; Azem, Abdussalam; Frolow, Felix
2014-01-01
The mitochondrial Hsp60–Hsp10 complex assists the folding of various proteins impelled by ATP hydrolysis, similar to the bacterial chaperonins GroEL and GroES. The near-atomic structural details of the mitochondrial chaperonins are not known, despite the fact that almost two decades have passed since the structures of the bacterial chaperonins became available. Here, the crystallization procedure, diffraction experiments and structure determination by molecular replacement of the mammalian mitochondrial chaperonin HSP60 (E321K mutant) and its co-chaperonin Hsp10 are reported. PMID:24419632
Plotzitzka, Jacqueline; Kleeberg, Christian
2016-05-16
A series of complexes of the type [(NHC)Cu-ER3] (NHC = IDipp, IMes, ItBu, Me2IMe, and ER3 = SiMe2Ph, SiPh3, SnMe3) and [(NHC)Cu-R'] (NHC = IDipp, Me2IMe and R' = Ph, C≡CPh) was synthesized in good yields by the reaction of the corresponding [(NHC)Cu-OtBu] complex with the respective silylborane pinB-ER3 (pin = OCMe2CMe2O; ER3 = SiMe2Ph, SiPh3), the stannylborane ((C2H4)(iPrN)2)B-SnMe3, or a boronic acid ester pinB-R' (R' = Ph, C≡CPh). Solid structures of all complexes were systematically studied by X-ray diffraction analysis. The solid state structures of the complexes [(NHC)Cu-ER3] show a dependence of the structural motif from the steric properties of the NHC ligand. The sterically demanding NHC ligands (IDipp, IMes, ItBu) lead to monomeric, linear complexes [(NHC)Cu-ER3], while with the less demanding Me2IMe ligand, polynuclear, μ-ER3-bridged complexes with ultrashort Cu···Cu distances are observed. For the related complexes [(NHC)Cu-R'] no analogous complexes with bridging anionic ligands are realized. Instead, irrespective of the NHC ligand, linear coordinated copper complexes of different types are formed. (29)Si heteronuclear solution NMR spectroscopic data on [(NHC)Cu(I)-SiR3] exhibit distinctly different chemical shifts for the (in the solid state) monomeric and dimeric complexes suggesting different structure types also in solution. This agrees well with the observation of a trinuclear complex [(Me2IMe)Cu-SnMe3]3 both in the solid state and in solution. Initial catalytic studies suggest that [(NHC)Cu-OtBu] complexes (NHC = ItBu, Me2IMe) are, in addition to the established [(IDipp)Cu-OtBu] complex, efficient precatalysts for the silylation of aldehydes and α,β-unsaturated ketones with pinB-SiMe2Ph. PMID:27145039
Symmetric and irregular aromatic silicon nanoclusters
NASA Astrophysics Data System (ADS)
Vach, Holger
2014-10-01
Based on first-principles calculations, we predict the existence of two classes of aromatic hydrogenated silicon nanoclusters. Despite their completely different structure, they both exhibit quite comparable physical and chemical properties due to the common presence of overcoordinated silicon atoms inducing extensive electron delocalization. Due to a complex interplay between strain relaxation and aromatic stabilization, apparently ill-defined nanoclusters might sometimes turn out to be more stable than their symmetric counterparts. Both symmetric and irregular aromatic silicon nanoclusters are extremely stable at ambient conditions and might readily find applications in future nano-technological devices.
Integrability of PT-symmetric dimers
NASA Astrophysics Data System (ADS)
Pickton, J.; Susanto, H.
2013-12-01
The coupled discrete linear and Kerr nonlinear Schrödinger equations with gain and loss describing transport on dimers with parity-time (PT)-symmetric potentials are considered. The model is relevant among others to experiments in optical couplers and proposals on Bose-Einstein condensates in PT-symmetric double-well potentials. It is known that the models are integrable. Here, the integrability is exploited further to construct the phase portraits of the system. A pendulum equation with a linear potential and a constant force for the phase difference between the fields is obtained, which explains the presence of unbounded solutions above a critical threshold parameter. The behavior of all solutions of the system, including changes in the topological structure of the phase plane, is then discussed.
Rome, J.A.; Harris, J.H.
1984-01-01
A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.
NASA Astrophysics Data System (ADS)
Carbonaro, Richard F.; Atalay, Yasemin B.; Di Toro, Dominic M.
2011-05-01
Stability constants for metal complexation to bidentate ligands containing negatively-charged oxygen donor atoms can be estimated from the following linear free energy relationship (LFER): log KML = χOO( αO log KHL,1 + αO log KHL,2) where KML is the metal-ligand stability constant for a 1:1 complex, KHL,1 and KHL,2 are the proton-ligand stability constants (the ligand p Ka values), and αO is the Irving-Rossotti slope. The parameter χOO is metal specific and has slightly different values for five and six membered chelate rings. LFERs are presented for 21 different metal ions and are accurate to within approximately 0.30 log units in predictions of log KML values. Ligands selected for use in LFER development include dicarboxylic acids, carboxyphenols, and ortho-diphenols. For ortho-hydroxybenzaldehydes, α-hydroxycarboxylic acids, and α-ketocarboxylic acids, a modification of the LFER where log KHL,2 is set equal to zero is required. The chemical interpretation of χOO is that it accounts for the extra stability afforded to metal complexes by the chelate effect. Cu-NOM binding constants calculated from the bidentate LFERs are similar in magnitude to those used in WHAM 6. This LFER can be used to make log KML predictions for small organic molecules. Since natural organic matter (NOM) contains many of the same functional groups (i.e. carboxylic acids, phenols, alcohols), the LFER log KML predictions shed light on the range of appropriate values for use in modeling metal partitioning in natural systems.
Static cylindrically symmetric spacetimes
NASA Astrophysics Data System (ADS)
Fjällborg, Mikael
2007-05-01
We prove the existence of static solutions to the cylindrically symmetric Einstein Vlasov system, and we show that the matter cylinder has finite extension in two of the three spatial dimensions. The same results are also proved for a quite general class of equations of state for perfect fluids coupled to the Einstein equations, extending the class of equations of state considered by Bicak et al (2004 Class. Quantum Grav.21 1583). We also obtain this result for the Vlasov Poisson system.
Multiple symmetric lipomatosis.
Lee, M S; Lee, M H; Hur, K B
1988-12-01
Multiple symmetric lipomatosis (MSL) is an extremely uncommon disorder. In the medical literatures about 200 cases have been reported. MSL is not associated with other generalized lipomatous disorders, nor are these patient to be necessarily obese. The cause of MSL is unknown. The disorder usually occurs in middle-aged males and there is frequently a history of alcoholism. Some instances of familial occurrence have been reported, but the majority of cases are sporadic. Two cases of MSL are presented. PMID:3267365
Müh, Frank; Renger, Thomas
2012-08-01
Linear optical spectra of solubilized trimers and small lamellar aggregates of the major light-harvesting complex II (LHCII) of higher plants are simulated employing excitonic couplings and site energies of chlorophylls (Chls) computed on the basis of the two crystal structures by a combined quantum chemical/electrostatic approach. A good agreement between simulation and experiment is achieved (except for the circular dichroism in the Chl b region), if vibronic transitions of Chls are taken into account. Site energies are further optimized by refinement fits of optical spectra. The differences between refined and directly calculated values are not significant enough to decide, whether the crystal structures are closer to trimers or aggregates. Changes in the linear dichroism spectrum upon aggregation are related to site energy shifts of Chls b601, b607, a603, a610, and a613, and are interpreted in terms of conformational changes of violaxanthin and the two luteins involving their ionone rings. Chl a610 is the energy sink at 77K in both conformations. An analysis of absorption spectra of trimers perpendicular and parallel to the C(3)-axis (van Amerongen et al. Biophys. J. 67 (1994) 837-847) shows that only Chl a604 close to neoxanthin is significantly reoriented in trimers compared to the crystal structures. Whether this pigment is orientated in aggregates as in the crystal structures, can presently not be determined faithfully. To finally decide about pigment reorientations that could be of relevance for non-photochemical quenching, further polarized absorption and fluorescence measurements of aggregates or detergent-depleted LHCII would be helpful. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial. PMID:22387396
Ansari, Mohd Asif; Mandal, Abhishek; Paretzki, Alexa; Beyer, Katharina; Fiedler, Jan; Kaim, Wolfgang; Lahiri, Goutam Kumar
2016-06-01
The dinuclear complexes {(μ-H2L)[Ru(bpy)2]2}(ClO4)2 ([3](ClO4)2), {(μ-H2L)[Ru(pap)2]2}(ClO4)2 ([4](ClO4)2), and the asymmetric [(bpy)2Ru(μ-H2L)Ru(pap)2](ClO4)2 ([5](ClO4)2) were synthesized via the mononuclear species [Ru(H3L)(bpy)2]ClO4 ([1]ClO4) and [Ru(H3L)(pap)2]ClO4 ([2]ClO4), where H4L is the centrosymmetric 1,5-diamino-9,10-anthraquinone, bpy is 2,2'-bipyridine, and pap is 2-phenylazopyridine. Electrochemistry of the structurally characterized [1]ClO4, [2]ClO4, [3](ClO4)2, [4](ClO4)2, and [5](ClO4)2 reveals multistep oxidation and reduction processes, which were analyzed by electron paramagnetic resonance (EPR) of paramagnetic intermediates and by UV-vis-NIR spectro-electrochemistry. With support by time-dependent density functional theory (DFT) calculations the redox processes could be assigned. Significant results include the dimetal/bridging ligand mixed spin distribution in 3(3+) versus largely bridge-centered spin in 4(3+)-a result of the presence of Ru(II)-stabilizig pap coligands. In addition to the metal/ligand alternative for electron transfer and spin location, the dinuclear systems allow for the observation of ligand/ligand and metal/metal site differentiation within the multistep redox series. DFT-supported EPR and NIR absorption spectroscopy of the latter case revealed class II mixed-valence behavior of the oxidized asymmetric system 5(3+) with about equal contributions from a radical bridge formulation. In comparison to the analogues with the deprotonated 1,4-diaminoanthraquinone isomer the centrosymmetric H2L(2-) bridge shows anodically shifted redox potentials and weaker electronic coupling between the chelate sites. PMID:27171539
Brennan, D. P.; Finn, J. M.
2014-10-15
Feedback stabilization of magnetohydrodynamic (MHD) modes in a tokamak is studied in a cylindrical model with a resistive wall, plasma resistivity, viscosity, and toroidal rotation. The control is based on a linear combination of the normal and tangential components of the magnetic field just inside the resistive wall. The feedback includes complex gain, for both the normal and for the tangential components, and it is known that the imaginary part of the feedback for the former is equivalent to plasma rotation [J. M. Finn and L. Chacon, Phys. Plasmas 11, 1866 (2004)]. The work includes (1) analysis with a reduced resistive MHD model for a tokamak with finite β and with stepfunction current density and pressure profiles, and (2) computations with a full compressible visco-resistive MHD model with smooth decreasing profiles of current density and pressure. The equilibria are stable for β = 0 and the marginal stability values β{sub rp,rw} < β{sub rp,iw} < β{sub ip,rw} < β{sub ip,iw} (resistive plasma, resistive wall; resistive plasma, ideal wall; ideal plasma, resistive wall; and ideal plasma, ideal wall) are computed for both models. The main results are: (a) imaginary gain with normal sensors or plasma rotation stabilizes below β{sub rp,iw} because rotation suppresses the diffusion of flux from the plasma out through the wall and, more surprisingly, (b) rotation or imaginary gain with normal sensors destabilizes above β{sub rp,iw} because it prevents the feedback flux from entering the plasma through the resistive wall to form a virtual wall. A method of using complex gain G{sub i} to optimize in the presence of rotation in this regime with β > β{sub rp,iw} is presented. The effect of imaginary gain with tangential sensors is more complicated but essentially destabilizes above and below β{sub rp,iw}.
Ewert, Kai K; Kotamraju, Venkata Ramana; Majzoub, Ramsey N; Steffes, Victoria M; Wonder, Emily A; Teesalu, Tambet; Ruoslahti, Erkki; Safinya, Cyrus R
2016-03-15
Because nucleic acids (NAs) have immense potential value as therapeutics, the development of safe and effective synthetic NA vectors continues to attract much attention. In vivo applications of NA vectors require stabilized, nanometer-scale particles, but the commonly used approaches of steric stabilization with a polymer coat (e.g., PEGylation; PEG=poly(ethylene glycol)) interfere with attachment to cells, uptake, and endosomal escape. Conjugation of peptides to PEG-lipids can improve cell attachment and uptake for cationic liposome-DNA (CL-DNA) complexes. We present several synthetic approaches to peptide-PEG-lipids and discuss their merits and drawbacks. A lipid-PEG-amine building block served as the common key intermediate in all synthetic routes. Assembling the entire peptide-PEG-lipid by manual solid phase peptide synthesis (employing a lipid-PEG-carboxylic acid) allowed gram-scale synthesis but is mostly applicable to linear peptides connected via their N-terminus. Conjugation via thiol-maleimide or strain-promoted (copper-free) azide-alkyne cycloaddition chemistry is highly amenable to on-demand preparation of peptide-PEG-lipids, and the appropriate PEG-lipid precursors are available in a single chemical step from the lipid-PEG-amine building block. Azide-alkyne cycloaddition is especially suitable for disulfide-bridged peptides such as iRGD (cyclic CRGDKGPDC). Added at 10 mol% of a cationic/neutral lipid mixture, the peptide-PEG-lipids stabilize the size of CL-DNA complexes. They also affect cell attachment and uptake of nanoparticles in a peptide-dependent manner, thereby providing a platform for preparing stabilized, affinity-targeted CL-DNA nanoparticles. PMID:26874401
Solano-Collado, Virtu; Lurz, Rudi; Espinosa, Manuel; Bravo, Alicia
2013-08-01
The MgaSpn transcriptional regulator contributes to the virulence of Streptococcus pneumoniae. It is thought to be a member of the Mga/AtxA family of global regulators. MgaSpn was shown to activate in vivo the P1623B promoter, which is divergent from the promoter (Pmga) of its own gene. This activation required a 70-bp region (PB activation region) located between both promoters. In this work, we purified an untagged form of the MgaSpn protein, which formed dimers in solution. By gel retardation and footprinting assays, we analysed the binding of MgaSpn to linear double-stranded DNAs. MgaSpn interacted with the PB activation region when it was placed at internal position on the DNA. However, when it was positioned at one DNA end, MgaSpn recognized preferentially the Pmga promoter placed at internal position. In both cases, and on binding to the primary site, MgaSpn spread along the adjacent DNA regions generating multimeric protein-DNA complexes. When both MgaSpn-binding sites were located at internal positions on longer DNAs, electron microscopy experiments demonstrated that the PB activation region was the preferred target. DNA molecules totally or partially covered by MgaSpn were also visualized. Our results suggest that MgaSpn might recognize particular DNA conformations to achieve DNA-binding specificity. PMID:23723245
Inn, Kyung-Soo; Gack, Michaela U.; Tokunaga, Fuminori; Shi, Mude; Wong, Lai-Yee; Iwai, Kazuhiro; Jung, Jae U.
2011-01-01
Summary Upon detection of viral RNA, retinoic acid inducible gene I (RIG-I) undergoes TRIM25-mediated Lys-63 linked ubiquitination, leading to type-I interferon (IFN) production. In this study, we demonstrate that the linear ubiquitin assembly complex (LUBAC), comprised of two RING-IBR-RING (RBR)-containing E3 ligases HOIL-1L and HOIP, independently targets TRIM25 and RIG-I to effectively suppress virus-induced IFN production. RBR E3 ligase domains of HOIL-1L and HOIP bind and induce proteosomal degradation of TRIM25, whereas the NZF domain of HOIL-1L competes with TRIM25 for RIG-I binding. Consequently, both actions by the HOIL-1L/HOIP LUBAC potently inhibit RIG-I ubiquitination and anti-viral activity, but in a mechanistically separate manner. Conversely, the genetic deletion or depletion of HOIL-1L and HOIP robustly enhances virus-induced type-I IFN production. Taken together, the HOIL-1L/HOIP LUBAC specifically suppresses RIG-I ubiquitination and activation by inducing TRIM25 degradation and inhibiting TRIM25 interaction with RIG-I, resulting in the comprehensive suppression of the IFN-mediated anti-viral signaling pathway. PMID:21292167
Construction of dynamics and time-ordered exponential for unbounded non-symmetric Hamiltonians
Futakuchi, Shinichiro; Usui, Kouta
2014-06-15
We prove under certain assumptions that there exists a solution of the Schrödinger or the Heisenberg equation of motion generated by a linear operator H acting in some complex Hilbert space H, which may be unbounded, not symmetric, or not normal. We also prove that, under the same assumptions, there exists a time evolution operator in the interaction picture and that the evolution operator enjoys a useful series expansion formula. This expansion is considered to be one of the mathematically rigorous realizations of so-called “time-ordered exponential,” which is familiar in the physics literature. We apply the general theory to prove the existence of dynamics for the mathematical model of Quantum Electrodynamics quantized in the Lorenz gauge, the interaction Hamiltonian of which is not even symmetric or normal.
Symmetrization for redundant channels
NASA Technical Reports Server (NTRS)
Tulplue, Bhalchandra R. (Inventor); Collins, Robert E. (Inventor)
1988-01-01
A plurality of redundant channels in a system each contain a global image of all the configuration data bases in each of the channels in the system. Each global image is updated periodically from each of the other channels via cross channel data links. The global images of the local configuration data bases in each channel are separately symmetrized using a voting process to generate a system signal configuration data base which is not written into by any other routine and is available for indicating the status of the system within each channel. Equalization may be imposed on a suspect signal and a number of chances for that signal to heal itself are provided before excluding it from future votes. Reconfiguration is accomplished upon detecting a channel which is deemed invalid. A reset function is provided which permits an externally generated reset signal to permit a previously excluded channel to be reincluded within the system. The updating of global images and/or the symmetrization process may be accomplished at substantially the same time within a synchronized time frame common to all channels.
Koyama, Yoshiyuki; Sugiura, Kikuya; Yoshihara, Chieko; Inaba, Toshio; Ito, Tomoko
2015-01-01
We have reported that ternary complexes of plasmid DNA with conventional linear polyethylenimine (l-PEI) and certain polyanions were very stably dispersed, and, with no cryoprotectant, they could be freeze-dried and re-hydrated without the loss of transfection ability. These properties enabled the preparation of a concentrated suspension of very small pDNA complex, by preparing the complexes at highly diluted conditions, followed by condensation via lyophilization-and-rehydration procedure. Recently, a high potency linear polyethylenimine having no residual protective groups, i.e., Polyethylenimine “Max” (PEI “Max”), is available, which has been reported to induce much higher gene expression than conventional l-PEI. We tried to prepare the small DNA/PEI “Max”/polyanion complexes by a similar freeze-drying method. Small complex particles could be obtained without apparent aggregation, but transfection activity of the rehydrated complexes was severely reduced. Complex-preparation conditions were investigated in details to achieve the freeze-dried DNA/PEI “Max”/polyanion small ternary complexes with high transfection efficiency. DNA/PEI “Max”/polyanion complexes containing cytokine-coding plasmids were then prepared, and their anti-tumor therapeutic efficacy was examined in tumor-bearing mice. PMID:26213961
Keith, Scott W.; Allison, David B.
2014-01-01
This paper details the design, evaluation, and implementation of a framework for detecting and modeling non-linearity between a binary outcome and a continuous predictor variable adjusted for covariates in complex samples. The framework provides familiar-looking parameterizations of output in terms of linear slope coefficients and odds ratios. Estimation methods focus on maximum likelihood optimization of piecewise linear free-knot splines formulated as B-splines. Correctly specifying the optimal number and positions of the knots improves the model, but is marked by computational intensity and numerical instability. Our inference methods utilize both parametric and non-parametric bootstrapping. Unlike other non-linear modeling packages, this framework is designed to incorporate multistage survey sample designs common to nationally representative datasets. We illustrate the approach and evaluate its performance in specifying the correct number of knots under various conditions with an example using body mass index (BMI, kg/m2) and the complex multistage sampling design from the Third National Health and Nutrition Examination Survey to simulate binary mortality outcomes data having realistic non-linear sample-weighted risk associations with BMI. BMI and mortality data provide a particularly apt example and area of application since BMI is commonly recorded in large health surveys with complex designs, often categorized for modeling, and non-linearly related to mortality. When complex sample design considerations were ignored, our method was generally similar to or more accurate than two common model selection procedures, Schwarz’s Bayesian Information Criterion (BIC) and Akaike’s Information Criterion (AIC), in terms of correctly selecting the correct number of knots. Our approach provided accurate knot selections when complex sampling weights were incorporated, while AIC and BIC were not effective under these conditions. PMID:25610831
Pekar, Tonya; Blethrow, Justin D.; Schwartz, Jae C.; Merrihew, Gennifer E.; MacCoss, Michael J.; Swaney, Danielle L.; Russell, Jason D.; Coon, Joshua J.; Zabrouskov, Vlad
2009-01-01
The considerable progress in high throughput proteomics analysis via liquid chromatography-electrospray ionization-tandem mass spectrometry over the last decade has been fueled to a large degree by continuous improvements in instrumentation. High throughput identification experiments are based on peptide sequencing and are largely accomplished through the use of tandem mass spectrometry, with ion trap and trap-based instruments having become broadly adopted analytical platforms. To satisfy increasingly demanding requirements for depth of characterization and throughput, we present a newly developed dual-pressure linear ion trap mass spectrometer (LTQ Velos) that features increased sensitivity, afforded by a new source design, and demonstrates practical cycle times two times shorter than that of an LTQ XL, while improving or maintaining spectral quality for MS/MS fragmentation spectra. These improvements resulted in a substantial increase in the detection and identification of both proteins and unique peptides from the complex proteome of Caenorhabditis elegans, as compared to existing platforms. The greatly increased ion flux into the mass spectrometer in combination with improved isolation of low-abundance precursor ions resulted in increased detection of low-abundance peptides. These improvements cumulatively resulted in a substantially greater penetration into the baker’s yeast (Saccharomyces cerevisiae) proteome compared to LTQ XL. Alternatively, faster cycle times on the new instrument allowed for higher throughput for a given depth of proteome analysis, with more peptides and proteins identified in 60 min using an LTQ Velos than in 180 min using an LTQ XL. When mass analysis was carried out with resolution in excess of 25,000 FWHM, it became possible to isotopically resolve a small intact protein and its fragments, opening possibilities for top down experiments. PMID:19689114
Simonyan, Arsen; Gitsov, Ivan
2008-10-21
This study describes the first Diels-Alder (DA) reaction performed in aqueous medium with highly hydrophobic compounds-fullerene (C 60) as the dienophile and anthracene (An) or tetracene (Tet) as the dienes, respectively. The reactions are performed in nanocontainers, constructed by self-assembly of linear-dendritic amphiphilic copolymers with poly(ethylene glycol), PEG or poly(ethylene oxide), PEO as the hydrophilic blocks and poly(benzyl ether) monodendrons as the hydrophobic fragments: G3PEO13k, dG3 and dG2. Comparative studies under identical conditions are carried out with an amphiphilic linear-linear copolymer, poly(styrene)1800- block-PEO2100, PSt-PEO, and the nonionic surfactant Igepal CO-720, IP720. The binding affinity of supermolecules built of these amphiphiles toward the DA reagents decreases in the following order: G3PEO13k > dG3 > PSt-PEO > dG2 > IP720. The kinetic constant of binding is evaluated for tetracene and decreases in a similar fashion: 5 x 10 (-7) M/min (G3PEO13k), through 4 x 10 (-7) M/min (PSt-PEO) down to 1.5 x 10 (-7) M/min for IP720. The mobility of substrates encapsulated in the micellar core, estimated by pyrene fluorescence decay, is 95-121 ns for the micelles of the linear-dendritic copolymers and notably higher for PSt-PEO (152 ns), revealing the much denser interior of the linear analogue. The apparent kinetic constant for the DA reaction of C 60 and Tet within the G3PEO13k supermolecule in aqueous medium is markedly higher than in organic solvent (toluene), 208 vs 1.82 M /min. With G3PEO13k the conversions reach 49% for the DA reaction between C 60 and An, and 55% for C 60 and Tet. Besides the monoadduct (26.5% yield) the reaction with An produces exclusively increasing amounts of D 2 h -symmetric antipodal bis-adduct, whose yield reaches up to 22.5% after 48 h. In addition to the environmentally friendly conditions notable advantages of the synthetic strategy described are the extended stability of the linear
Linear optimal control of tokamak fusion devices
Kessel, C.E.; Firestone, M.A.; Conn, R.W.
1989-05-01
The control of plasma position, shape and current in a tokamak fusion reactor is examined using linear optimal control. These advanced tokamaks are characterized by non up-down symmetric coils and structure, thick structure surrounding the plasma, eddy currents, shaped plasmas, superconducting coils, vertically unstable plasmas, and hybrid function coils providing ohmic heating, vertical field, radial field, and shaping field. Models of the electromagnetic environment in a tokamak are derived and used to construct control gains that are tested in nonlinear simulations with initial perturbations. The issues of applying linear optimal control to advanced tokamaks are addressed, including complex equilibrium control, choice of cost functional weights, the coil voltage limit, discrete control, and order reduction. Results indicate that the linear optimal control is a feasible technique for controlling advanced tokamaks where the more common classical control will be severely strained or will not work. 28 refs., 13 figs.
Static spherically symmetric wormholes with isotropic pressure
NASA Astrophysics Data System (ADS)
Cataldo, Mauricio; Liempi, Luis; Rodríguez, Pablo
2016-06-01
In this paper we study static spherically symmetric wormhole solutions sustained by matter sources with isotropic pressure. We show that such spherical wormholes do not exist in the framework of zero-tidal-force wormholes. On the other hand, it is shown that for the often used power-law shape function there are no spherically symmetric traversable wormholes sustained by sources with a linear equation of state p = ωρ for the isotropic pressure, independently of the form of the redshift function ϕ (r). We consider a solution obtained by Tolman at 1939 for describing static spheres of isotropic fluids, and show that it also may describe wormhole spacetimes with a power-law redshift function, which leads to a polynomial shape function, generalizing a power-law shape function, and inducing a solid angle deficit.
Symmetric Waveguide Orthomode Junctions
NASA Technical Reports Server (NTRS)
Wollack, E. J.; Grammer, W.
2003-01-01
Imaging applications at millimeter and submillimeter wavelengths demand precise characterization of the amplitude, spectrum, and polarization of the electromagnetic radiation. The use of a waveguide orthomode transducer (OMT) can help achieve these goals by increasing spectral coverage and sensitivity while reducing exit aperture size, optical spill, instrumental polarization offsets, and lending itself to integration in focal plane arrays. For these reasons, four-old symmetric OMTs are favored over a traditional quasi-optical wire grid for focal plane imaging arrays from a systems perspective. The design, fabrication, and test of OMTs realized with conventional split-block techniques for millimeter wave-bands are described. The design provides a return loss is -20 dB over a full waveguide band (40% bandwidth), and the cross-polarization and isolation are greater than -40 dB for tolerances readily achievable in practice. Prototype examples realized in WR10.0 and WR3.7 wavebands will be considered in detail.
Symmetric Waveguide Orthomode Junctions
NASA Technical Reports Server (NTRS)
Wollack, E. J.; Grammer, W.
2003-01-01
Imaging applications at millimeter and submillimeter wavelengths demand precise characterization of the amplitude, spectrum, and polarization of the electromagnetic radiation. The use of a waveguide orthomode transducer (OMT) can help achieve these goals by increasing spectral coverage and sensitivity while reducing exit aperture size, optical spill, instrumental polarization offsets, and lending itself to integration in focal plane arrays. For these reasons, four-fold symmetric OMTs are favored over a traditional quasi-optical wire grid for focal plane imaging arrays from a systems perspective. The design, fabrication, and test of OMTs realized with conventional split-block techniques for millimeter wave-bands are described. The design provides a return loss is -20 dB over a full waveguide band (40% bandwidth), and the cross-polarization and isolation are greater than -40 dB for tolerances readily achievable in practice. Prototype examples realized in WR10.0 and WR3.7 wavebands will be considered in detail.
Bonnet, Célia S; Laine, Sophie; Buron, Frédéric; Tircsó, Gyula; Pallier, Agnès; Helm, Lothar; Suzenet, Franck; Tóth, Éva
2015-06-15
To study the influence of hydrazine functions in the ligand skeleton, we designed the heptadentate HYD ligand (2,2',2″,2‴-(2,2'-(pyridine-2,6-diyl)bis(2-methylhydrazine-2,1,1-triyl)) tetraacetic acid) and compared the thermodynamic, kinetic, and relaxation properties of its Ln(3+) complexes to those of the parent pyridine (Py) analogues without hydrazine (Py = 2,6-pyridinebis(methanamine)-N,N,N',N'-tetraacetic acid). The protonation constants of HYD were determined by pH-potentiometric measurements, and assigned by a combination of UV-visible and NMR spectroscopies. The protonation sequence is rather unusual and illustrates that small structural changes can strongly influence ligand basicity. The first protonation step occurs on the pyridine nitrogen in the basic region, followed by two hydrazine nitrogens and the carboxylate groups at acidic pH. Contrary to Py, HYD self-aggregates through a pH-dependent process (from pH ca. 4). Thermodynamic stability constants have been obtained by pH-potentiometry and UV-visible spectrophotometry for various Ln(3+) and physiological cations (Zn(2+), Ca(2+), Cu(2+)). LnHYD stability constants show the same trend as those of LnDTPA complexes along the Ln(3+) series, with log K = 18.33 for Gd(3+), comparable to the Py analogue. CuHYD has a particularly high stability (log K > 19) preventing its determination from pH-potentiometric measurements. The stability constant of CuPy was also revisited and found to be underestimated in previous studies, highlighting that UV-visible spectrophotometry is often indispensable to obtain reliable stability constants for Cu(2+) chelates. The dissociation of GdL, assessed by studying the Cu(2+)-exchange reaction, occurs mainly via an acid-catalyzed process, with limited contribution from direct Cu(2+) attack. The kinetic inertness of GdHYD is remarkable for a linear bishydrated chelate; the 25-fold increase in the dissociation half-life with respect to the monohydrated commercial contrast agent
NASA Astrophysics Data System (ADS)
Chen, Yong; Yan, Zhenya
2016-03-01
Solitons are of the important significant in many fields of nonlinear science such as nonlinear optics, Bose-Einstein condensates, plamas physics, biology, fluid mechanics, and etc. The stable solitons have been captured not only theoretically and experimentally in both linear and nonlinear Schrödinger (NLS) equations in the presence of non-Hermitian potentials since the concept of the parity-time -symmetry was introduced in 1998. In this paper, we present novel bright solitons of the NLS equation with third-order dispersion in some complex -symmetric potentials (e.g., physically relevant -symmetric Scarff-II-like and harmonic-Gaussian potentials). We find stable nonlinear modes even if the respective linear -symmetric phases are broken. Moreover, we also use the adiabatic changes of the control parameters to excite the initial modes related to exact solitons to reach stable nonlinear modes. The elastic interactions of two solitons are exhibited in the third-order NLS equation with -symmetric potentials. Our results predict the dynamical phenomena of soliton equations in the presence of third-order dispersion and -symmetric potentials arising in nonlinear fiber optics and other physically relevant fields.
Chen, Yong; Yan, Zhenya
2016-01-01
Solitons are of the important significant in many fields of nonlinear science such as nonlinear optics, Bose-Einstein condensates, plamas physics, biology, fluid mechanics, and etc. The stable solitons have been captured not only theoretically and experimentally in both linear and nonlinear Schrödinger (NLS) equations in the presence of non-Hermitian potentials since the concept of the parity-time -symmetry was introduced in 1998. In this paper, we present novel bright solitons of the NLS equation with third-order dispersion in some complex -symmetric potentials (e.g., physically relevant -symmetric Scarff-II-like and harmonic-Gaussian potentials). We find stable nonlinear modes even if the respective linear -symmetric phases are broken. Moreover, we also use the adiabatic changes of the control parameters to excite the initial modes related to exact solitons to reach stable nonlinear modes. The elastic interactions of two solitons are exhibited in the third-order NLS equation with -symmetric potentials. Our results predict the dynamical phenomena of soliton equations in the presence of third-order dispersion and -symmetric potentials arising in nonlinear fiber optics and other physically relevant fields. PMID:27002543
Chen, Yong; Yan, Zhenya
2016-01-01
Solitons are of the important significant in many fields of nonlinear science such as nonlinear optics, Bose-Einstein condensates, plamas physics, biology, fluid mechanics, and etc. The stable solitons have been captured not only theoretically and experimentally in both linear and nonlinear Schrödinger (NLS) equations in the presence of non-Hermitian potentials since the concept of the parity-time -symmetry was introduced in 1998. In this paper, we present novel bright solitons of the NLS equation with third-order dispersion in some complex -symmetric potentials (e.g., physically relevant -symmetric Scarff-II-like and harmonic-Gaussian potentials). We find stable nonlinear modes even if the respective linear -symmetric phases are broken. Moreover, we also use the adiabatic changes of the control parameters to excite the initial modes related to exact solitons to reach stable nonlinear modes. The elastic interactions of two solitons are exhibited in the third-order NLS equation with -symmetric potentials. Our results predict the dynamical phenomena of soliton equations in the presence of third-order dispersion and -symmetric potentials arising in nonlinear fiber optics and other physically relevant fields. PMID:27002543
Novel linear piezoelectric motor for precision position stage
NASA Astrophysics Data System (ADS)
Chen, Chao; Shi, Yunlai; Zhang, Jun; Wang, Junshan
2016-03-01
Conventional servomotor and stepping motor face challenges in nanometer positioning stages due to the complex structure, motion transformation mechanism, and slow dynamic response, especially directly driven by linear motor. A new butterfly-shaped linear piezoelectric motor for linear motion is presented. A two-degree precision position stage driven by the proposed linear ultrasonic motor possesses a simple and compact configuration, which makes the system obtain shorter driving chain. Firstly, the working principle of the linear ultrasonic motor is analyzed. The oscillation orbits of two driving feet on the stator are produced successively by using the anti-symmetric and symmetric vibration modes of the piezoelectric composite structure, and the slider pressed on the driving feet can be propelled twice in only one vibration cycle. Then with the derivation of the dynamic equation of the piezoelectric actuator and transient response model, start-upstart-up and settling state characteristics of the proposed linear actuator is investigated theoretically and experimentally, and is applicable to evaluate step resolution of the precision platform driven by the actuator. Moreover the structure of the two-degree position stage system is described and a special precision displacement measurement system is built. Finally, the characteristics of the two-degree position stage are studied. In the closed-loop condition the positioning accuracy of plus or minus <0.5 μm is experimentally obtained for the stage propelled by the piezoelectric motor. A precision position stage based the proposed butterfly-shaped linear piezoelectric is theoretically and experimentally investigated.
Kantoury, Mahshid; Eslami Moghadam, Mahboube; Tarlani, Ali Akbar; Divsalar, Adeleh
2016-07-01
The aim of this study was to investigate the structure effect and identify the modes of binding of amino acid-Pt complexes to DNA molecule for cancer treatment. Hence, three novel water soluble platinum complexes, [Pt(phen)(R-gly)]NO3 (where phen is 1,10-phenanthroline, R-gly is methyl, amyl, and isopentyl-glycine), have been synthesized and characterized by spectroscopic methods, conductivity measurements, and chemical analysis. The anticancer activities of synthesized complexes were investigated against human breast cancer cell line of MDA-MB 231. The 50% cytotoxic concentration values were determined to be 42.5, 58, and 70 μm for methyl-, amyl-, and isopentyl-gly complexes, respectively. These complexes were interacted with calf thymus DNA (ct-DNA) via positive cooperative interaction. The modes of binding of the complexes to DNA were investigated by fluorescence spectroscopy and circular dichroism in combination with a molecular docking study. The result indicates that complexes with small or branched hydrocarbon chains can intercalate with DNA. This is while amyl complexes with linear chains interacted additionally via groove binding. The results of the negative value of Gibbs energy for binding of isopentyl-platinum to DNA and those of the molecular docking were coherent. Furthermore, the docking results demonstrated that hydrophobic interaction plays an important role in the complex-DNA interaction. PMID:26833921
Larsson, Göran; Schleucher, Jürgen; Onions, Jacqueline; Hermann, Stefan; Grundström, Thomas; Wijmenga, Sybren S
2005-08-01
Calmodulin (CaM) interacts specifically as a dimer with some dimeric basic-Helix-Loop-Helix (bHLH) transcription factors via a novel high affinity binding mode. Here we report a study of the backbone dynamics by (15)N-spin relaxation on the CaM dimer in complex with a dimeric peptide that mimics the CaM binding region of the bHLH transcription factor SEF2-1. The relaxation data were measured at multiple magnetic fields, and analyzed in a model-free manner using in-house written software designed to detect nanosecond internal motion. Besides picosecond motions, all residues also experience internal motion with an effective correlation time of approximately 2.5 ns with squared order parameter (S(2)) of approximately 0.75. Hydrodynamic calculations suggest that this can be attributed to motions of the N- and C-terminal domains of the CaM dimer in the complex. Moreover, residues with significant exchange broadening are found. They are clustered in the CaM:SEF2-1mp binding interface, the CaM:CaM dimer interface, and in the flexible helix connecting the CaM N- and C-terminal domains, and have similar exchange times (approximately 50 micros), suggesting a cooperative mechanism probably caused by protein:protein interactions. The dynamic features presented here support the conclusion that the conformationally heterogeneous bHLH mimicking peptide trapped inside the CaM dimer exchanges between different binding sites on both nanosecond and microsecond timescales. Nature has thus found a way to specifically recognize a relatively ill-fitting target. This novel mode of target-specific binding, which neither belongs to lock-and-key nor induced-fit binding, is characterized by dimerization and continuous exchange between multiple flexible binding alternatives. PMID:15894636
Chirally symmetric but confining dense, cold matter
Glozman, L. Ya.; Wagenbrunn, R. F.
2008-03-01
The folklore tradition about the QCD phase diagram is that at the chiral restoration phase transition at finite density hadrons are deconfined and there appears the quark matter. We address this question within the only known exactly solvable confining and chirally symmetric model. It is postulated within this model that there exists linear Coulomb-like confining interaction. The chiral symmetry breaking and the quark Green function are obtained from the Schwinger-Dyson (gap) equation while the color-singlet meson spectrum results from the Bethe-Salpeter equation. We solve this model at T=0 and finite chemical potential {mu} and obtain a clear chiral restoration phase transition at the critical value {mu}{sub cr}. Below this value the spectrum is similar to the previously obtained one at {mu}=0. At {mu}>{mu}{sub cr} the quarks are still confined and the physical spectrum consists of bound states which are arranged into a complete set of exact chiral multiplets. This explicitly demonstrates that a chirally symmetric matter consisting of confined but chirally symmetric hadrons at finite chemical potential is also possible in QCD. If so, there must be nontrivial implications for astrophysics.
Chirally symmetric but confining dense, cold matter
NASA Astrophysics Data System (ADS)
Glozman, L. Ya.; Wagenbrunn, R. F.
2008-03-01
The folklore tradition about the QCD phase diagram is that at the chiral restoration phase transition at finite density hadrons are deconfined and there appears the quark matter. We address this question within the only known exactly solvable confining and chirally symmetric model. It is postulated within this model that there exists linear Coulomb-like confining interaction. The chiral symmetry breaking and the quark Green function are obtained from the Schwinger-Dyson (gap) equation while the color-singlet meson spectrum results from the Bethe-Salpeter equation. We solve this model at T=0 and finite chemical potential μ and obtain a clear chiral restoration phase transition at the critical value μcr. Below this value the spectrum is similar to the previously obtained one at μ=0. At μ>μcr the quarks are still confined and the physical spectrum consists of bound states which are arranged into a complete set of exact chiral multiplets. This explicitly demonstrates that a chirally symmetric matter consisting of confined but chirally symmetric hadrons at finite chemical potential is also possible in QCD. If so, there must be nontrivial implications for astrophysics.
Symmetric multilayer megampere X-pinch
Shelkovenko, T. A.; Pikuz, S. A.; McBride, R. D.; Knapp, P. F.; Wilhelm, G.; Sinars, D. B.; Hammer, D. A.; Orlov, N. Yu.
2010-01-15
Raising the power of X-ray emission from an X-pinch by increasing the pinch current to the megampere level requires the corresponding increase in the initial linear mass of the load. This can be achieved by increasing either the number of wires or their diameter. In both cases, special measures should be undertaken to prevent the formation of a complicated configuration with an uncontrolled spatial structure in the region of wire crossing, because such a structure breaks the symmetry of the neck formed in the crossing region, destabilizes plasma formation, and degrades X-ray generation. To improve the symmetry of the wire crossing region, X-pinch configurations with a regular multilayer arrangement of wires in this region were proposed and implemented. The results of experiments with various symmetric X-pinch configurations on the COBRA facility at currents of {approx}1MA are presented. It is shown that an X-pinch with a symmetric crossing region consisting of several layers of wires made of different materials can be successfully used in megampere facilities. The most efficient combinations of wires in symmetric multilayer X-pinches are found in which only one hot spot forms and that are characterized by a high and stable soft X-ray yield.
Optical Scanner for Linear Arrays
NASA Technical Reports Server (NTRS)
Finkel, M. W.
1986-01-01
Optical scanner instantaneously reads contiguous lines forming scene or target in object plane. Reading active or passive and scans, continuous or discrete. Scans essentially linear with scan angle and symmetric about axial ray. Nominal focal error, resulting from curvature of scan, well within Rayleigh limit. Scanner specifically designed to be fully compatible with general requirements of linear arrays.
Decay Structure for Symmetric Hyperbolic Systems with Non-Symmetric Relaxation and its Application
NASA Astrophysics Data System (ADS)
Ueda, Yoshihiro; Duan, Renjun; Kawashima, Shuichi
2012-07-01
This paper is concerned with the decay structure for linear symmetric hyperbolic systems with relaxation. When the relaxation matrix is symmetric, the dissipative structure of the systems is completely characterized by the Kawashima-Shizuta stability condition formulated in Umeda et al. (Jpn J Appl Math 1:435-457, 1984) and Shizuta and Kawashima (Hokkaido Math J 14:249-275, 1985) and we obtain the asymptotic stability result together with the explicit time-decay rate under that stability condition. However, some physical models which satisfy the stability condition have non-symmetric relaxation term (for example, the Timoshenko system and the Euler-Maxwell system). Moreover, it had been already known that the dissipative structure of such systems is weaker than the standard type and is of the regularity-loss type (see Duan in J Hyperbolic Differ Equ 8:375-413, 2011; Ide et al. in Math Models Meth Appl Sci 18:647-667, 2008; Ide and Kawashima in Math Models Meth Appl Sci 18:1001-1025, 2008; Ueda et al. in SIAM J Math Anal 2012; Ueda and Kawashima in Methods Appl Anal 2012). Therefore our purpose in this paper is to formulate a new structural condition which includes the Kawashima-Shizuta condition, and to analyze the weak dissipative structure for general systems with non-symmetric relaxation.
Achromatic axially symmetric wave plate.
Wakayama, Toshitaka; Komaki, Kazuki; Otani, Yukitoshi; Yoshizawa, Toru
2012-12-31
An achromatic axially symmetric wave plate (AAS-WP) is proposed that is based on Fresnel reflections. The wave plate does not introduce spatial dispersion. It provides retardation in the wavelength domain with an axially symmetric azimuthal angle. The optical configuration, a numerical simulation, and the optical properties of the AAS-WP are described. It is composed of PMMA. A pair of them is manufactured on a lathe. In the numerical simulation, the achromatic angle is estimated and is used to design the devices. They generate an axially symmetric polarized beam. The birefringence distribution is measured in order to evaluate the AAS-WPs. PMID:23388751
Conditional symmetric instability and mesoscale rainbands
NASA Technical Reports Server (NTRS)
Xu, Q.
1986-01-01
The linear theory of conditional symmetric instability (CSI) is re-examined in a rigorous framework. In comparison with symmetric instability a new feature of CSI is that the moist updraught tends to be narrow, as with conditional buoyancy instability (CBI). As the width of the moist updraught varies from its tolerance maximum to infinitesimal, the inviscid growth rate increases from zero to its maximum and the slope of the moist updraught increases from the absolute momentum surface to the moist most unstable surface. The fact that CSI circulations absorb energy from the basic shear and moist thermal field but lose energy to the dry basic thermal field is responsible for the narrow and slant feature of the moist updraught. When a bulk viscosity is accounted for, the most rapidly growing CSI modes bear a qualitative resemblance to some observed rainbands. The stability criterion of viscous CSI also shows a better comparison with observational data than inviscid CSI. The linear CSI theory here predicts that the isolated mode is preferred to other non-isolated (periodic or irregular spacing) modes. The preference of non-isolated modes is speculated to occur in the nonlinear stage.
Probabilistic minimal disturbance measurement of symmetrical qubit states
Filip, R.; Mista, L. Jr.; De Martini, F.; Ricci, M.; Sciarrino, F.
2006-11-15
We derive fidelity tradeoffs for probabilistic minimal disturbance measurements for certain discrete sets of symmetrical single qubit states. We propose and experimentally demonstrate a simple linear optical scheme saturating these tradeoffs in which the degree of disturbance is controlled only by measurement of a single ancillary photon.
Symmetric Composite Laminate Stress Analysis
NASA Technical Reports Server (NTRS)
Wang, T.; Smolinski, K. F.; Gellin, S.
1985-01-01
It is demonstrated that COSMIC/NASTRAN may be used to analyze plate and shell structures made of symmetric composite laminates. Although general composite laminates cannot be analyzed using NASTRAN, the theoretical development presented herein indicates that the integrated constitutive laws of a symmetric composite laminate resemble those of a homogeneous anisotropic plate, which can be analyzed using NASTRAN. A detailed analysis procedure is presented, as well as an illustrative example.
NASA Technical Reports Server (NTRS)
Kasami, Tadao; Takata, Toyoo; Fujiwara, Toru; Lin, Shu
1993-01-01
It was shown earlier that for a punctured Reed-Muller (RM) code or a primitive BCH code, which contains a punctured RM code of the same minimum distance as a large subcode, the state complexity of the minimal trellis diagram is much greater than that for an equivalent code obtained by a proper permutation on the bit positions. To find a permutation on the bit positions for a given code that minimizes the state complexity of its minimal trellis diagram is an interesting and challenging problem. This permutation problem is related to the generalized Hamming weight hierarchy of a code, and is shown that for RM codes, the standard binary order of bit positions is optimum at every bit position with respect to the state complexity of a minimal trellis diagram by using a theorem due to Wei. The state complexity of trellis diagram for the extended and permuted (64, 24) BCH code is discussed.
NASA Astrophysics Data System (ADS)
Shanmugakala, R.; Tharmaraj, P.; Sheela, C. D.
2014-11-01
A series of transition metal complexes of type [ML] and [ML2]Cl2 (where M = Cu(II), Ni(II), Co(II) have synthesized from 2-phenylamino-4,6-dichloro-s-triazine and 3,5-dimethyl pyrazole; their characteristics have been investigated by means of elemental analyses, magnetic susceptibility, molar conductance, IR, UV-Vis, Mass, NMR and ESR spectra. The electrochemical behavior of copper(II) complexes we have studied, by using cyclic voltammetry. The ESR spectra of copper(II) complexes are recorded at 300 K and 77 K and their salient features are appropriately reported. Spectral datas, we found, show that the ligand acts as a neutral tridentate, and coordinates through the triazine ring nitrogen and pyrazolyl ring nitrogen atoms to the metal ion. Evident from our findings, the metal(II) complexes of [ML] type exhibit square pyramidal geometry, and that of [ML2]Cl2 exhibit octahedral geometry. The in vitro antimicrobial activities of the ligand and its complexes are evaluated against Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans, Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Proteus vulgaris, Cryptococcus neoformans, Pseudomonas aeruginosa, Salmonella typhi, Serratia marcescens, Shigella flexneri, Vibrio cholera, Vibris parahaemolyticus, Aspergillus niger, Candida albicans and Penicillium oxalicum by well-diffusion method. The second harmonic generation efficiency of the ligand and its complexes are determined and compared with urea and KDP.
Self-assembly behavior of a linear-star supramolecular amphiphile based on host-guest complexation.
Wang, Juan; Wang, Xing; Yang, Fei; Shen, Hong; You, Yezi; Wu, Decheng
2014-11-01
A star polymer, β-cyclodextrin-poly(l-lactide) (β-CD-PLLA), and a linear polymer, azobenzene-poly(ethylene glycol) (Azo-PEG), could self-assemble into a supramolecular amphiphilic copolymer (β-CD-PLLA@Azo-PEG) based on the host-guest interaction between β-CD and azobenzene moieties. This linear-star supramolecular amphiphilic copolymer further self-assembled into a variety of morphologies, including sphere-like micelle, carambola-like micelle, naan-like micelle, shuttle-like lamellae, tube-like fiber, and random curled-up lamellae, by tuning the length of hydrophilic or hydrophobic chains. The variation of morphology was closely related to the topological structure and block ratio of the supramolecular amphiphiles. These self-assembly structures could disassemble upon an ultraviolet (UV) light irradiation. PMID:25310380
Nonlinear waves in PT -symmetric systems
NASA Astrophysics Data System (ADS)
Konotop, Vladimir V.; Yang, Jianke; Zezyulin, Dmitry A.
2016-07-01
Recent progress on nonlinear properties of parity-time (PT )-symmetric systems is comprehensively reviewed in this article. PT symmetry started out in non-Hermitian quantum mechanics, where complex potentials obeying PT symmetry could exhibit all-real spectra. This concept later spread out to optics, Bose-Einstein condensates, electronic circuits, and many other physical fields, where a judicious balancing of gain and loss constitutes a PT -symmetric system. The natural inclusion of nonlinearity into these PT systems then gave rise to a wide array of new phenomena which have no counterparts in traditional dissipative systems. Examples include the existence of continuous families of nonlinear modes and integrals of motion, stabilization of nonlinear modes above PT -symmetry phase transition, symmetry breaking of nonlinear modes, distinctive soliton dynamics, and many others. In this article, nonlinear PT -symmetric systems arising from various physical disciplines are presented, nonlinear properties of these systems are thoroughly elucidated, and relevant experimental results are described. In addition, emerging applications of PT symmetry are pointed out.
Taming the Exceptional Points of Parity-Time Symmetric Acoustics
NASA Astrophysics Data System (ADS)
Dubois, Marc; Shi, Chengzhi; Chen, Yun; Cheng, Lei; Ramezani, Hamidreza; Wang, Yuan; Zhang, Xiang
Parity-time (PT) symmetric concept and development lead to a wide range of applications including coherent perfect absorbers, single mode lasers, unidirectional cloaking and sensing, and optical isolators. These new applications and devices emerge from the existence of a phase transition in PT symmetric complex-valued potential obtained by balancing gain and loss materials. However, the systematic extension of such devices is adjourned by the key challenge in the management of the complex scattering process within the structure in order to engineer PT phase and exceptional points. Here, based on active acoustic elements, we experimentally demonstrate the simultaneous control of complex-valued potentials and multiple interference inside the structure at any given frequency. This method broadens the scope of applications for PT symmetric devices in many fields including optics, microwaves, electronics, which are crucial for sensing, imaging, cloaking, lasing, absorbing, etc.
Oskrochi, Gholamreza; Lesaffre, Emmanuel; Oskrochi, Youssof; Shamley, Delva
2016-01-01
In this study, four major muscles acting on the scapula were investigated in patients who had been treated in the last six years for unilateral carcinoma of the breast. Muscle activity was assessed by electromyography during abduction and adduction of the affected and unaffected arms. The main principal aim of the study was to compare shoulder muscle activity in the affected and unaffected shoulder during elevation of the arm. A multivariate linear mixed model was introduced and applied to address the principal aims. The result of fitting this model to the data shows a huge improvement as compared to the alternatives. PMID:26950134
Oskrochi, Gholamreza; Lesaffre, Emmanuel; Oskrochi, Youssof; Shamley, Delva
2016-01-01
In this study, four major muscles acting on the scapula were investigated in patients who had been treated in the last six years for unilateral carcinoma of the breast. Muscle activity was assessed by electromyography during abduction and adduction of the affected and unaffected arms. The main principal aim of the study was to compare shoulder muscle activity in the affected and unaffected shoulder during elevation of the arm. A multivariate linear mixed model was introduced and applied to address the principal aims. The result of fitting this model to the data shows a huge improvement as compared to the alternatives. PMID:26950134
Escuer, A; Goher, M A; Mautner, F A; Vicente, R
2000-05-15
Three new polynuclear copper(II) complexes, derived from the end-on azido bridging ligand and pyridine derivatives, have been synthesized, and their crystal structures have been determined by X-ray diffraction methods; they are the dinuclear compounds [Cu2(mu 1,1-N3)2(4-Etpy)4(mu-NO3)2] (1), and [Cu2(mu 1,1-N3)2(3-ampy)4(mu-NO3)2]. C2H5OH (2), and the trinuclear [Cu3(mu 1,1-N3)4(N3)2(Meinic)2(DMF)2] (3). 4-Etpy is 4-ethylpyridine, 3-ampy is 3-aminopyridine, and Meinic is methylisonicotinate. Compound 1, C28H36Cu2N12O6, crystallized in the monoclinic system, space group P2(1)/n, with a = 12.355(9) A, b = 12.474(4) A, c = 12.854(6) A, beta = 117.68(4) degrees, and Z = 2. Compound 2, C22H30Cu2N16O7, crystallized in the triclinic system, space group P1, with a = 9.695(2) A, b = 10.895(2) A, c = 7.909(2) A, alpha = 96.81(3) degrees, beta = 96.40(3) degrees, gamma = 96.56(3) degrees and Z = 1. Compound 3, C20H28-Cu3N22O6, crystallized in the monoclinic system, space group P2(1)/n, with a = 7.755(2) A, b = 14.680(5) A, c = 15.810(5) A, beta = 102.81(2) degrees, and Z = 2. 1-3 have the symmetric [Cu(mu 1,1-N3)2Cu]2+ core and structural parameters outside the previously reported range. Magnetic susceptibility data, measured from 2 to 300 K, show strong ferromagnetic coupling for the dinuclear end-on compounds 1 and 2 and bulk moderate ferromagnetic coupling for the trinuclear compound 3. These data were fitted to the appropriate equations derived from the Hamiltonian H = -JS1S2 for 1 and 2 and from the Hamiltonian H = -J1(SA1SB + SA2SB) - J2SA1.SA2 for 3, giving the parameters J = 230.1(1) cm-1, g = 2.17(0.01) for 1, J = 223.2(2) cm-1, g = 2.16(0.01) for 2, and J1 = 47.3(2) cm-1, J2 = -22.5(1) cm-1, gA = 2.26(0.02), gB = 2.07(0.03) for 3. The magnetic susceptibility data can be correlated with the structural parameters. PMID:12526520
PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex.
Lamiable, Alexis; Thévenet, Pierre; Rey, Julien; Vavrusa, Marek; Derreumaux, Philippe; Tufféry, Pierre
2016-07-01
Structure determination of linear peptides of 5-50 amino acids in aqueous solution and interacting with proteins is a key aspect in structural biology. PEP-FOLD3 is a novel computational framework, that allows both (i) de novo free or biased prediction for linear peptides between 5 and 50 amino acids, and (ii) the generation of native-like conformations of peptides interacting with a protein when the interaction site is known in advance. PEP-FOLD3 is fast, and usually returns solutions in a few minutes. Testing PEP-FOLD3 on 56 peptides in aqueous solution led to experimental-like conformations for 80% of the targets. Using a benchmark of 61 peptide-protein targets starting from the unbound form of the protein receptor, PEP-FOLD3 was able to generate peptide poses deviating on average by 3.3Å from the experimental conformation and return a native-like pose in the first 10 clusters for 52% of the targets. PEP-FOLD3 is available at http://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD3. PMID:27131374
Khan, Mohsin; Syed, Gulam Hussain; Kim, Seong-Jun; Siddiqui, Aleem
2016-01-01
Hepatitis B virus (HBV) suppresses innate immune signaling to establish persistent infection. Although HBV is a DNA virus, its pre-genomic RNA (pgRNA) can be sensed by RIG-I and activates MAVS to mediate interferon (IFN) λ synthesis. Despite of the activation of RIG-I-MAVS axis by pgRNA, the underlying mechanism explaining how HBV infection fails to induce interferon-αβ (IFN) synthesis remained uncharacterized. We demonstrate that HBV induced parkin is able to recruit the linear ubiquitin assembly complex (LUBAC) to mitochondria and abrogates IFN β synthesis. Parkin interacts with MAVS, accumulates unanchored linear polyubiquitin chains on MAVS via LUBAC, to disrupt MAVS signalosome and attenuate IRF3 activation. This study highlights the novel role of parkin in antiviral signaling which involves LUBAC being recruited to the mitochondria. These results provide avenues of investigations on the role of mitochondrial dynamics in innate immunity. PMID:27348524
NASA Astrophysics Data System (ADS)
Trivedi, Manoj; Nagarajan, R.; Kumar, Abhinav; Singh, Narendra K.; Rath, Nigam P.
2011-05-01
The new mononuclear Ru III complexes cis-, mer-[Ru( k3-dipic)(EPh 3) 2Cl]·2H 2O (E = P ( 1), As ( 2)), (L = 2,6-pyridyldicarboxylate; dipic) have been synthesized and characterized. The X-ray crystal structure of 1 reveals that the coordination geometry around the Ru III center is distorted octahedral in which three sites are occupied by tridentate dipic ligand and remaining three sites are occupied by two mutually cis triphenyl phosphine ligands and one chloride ions. In chloroform solvent, cis-, mer-[Ru( k3-dipic)(EPh 3) 2Cl]·2H 2O (E = P ( 1), As ( 2)) complexes undergoes thermal rearrangement to more stable trans-, mer-[Ru( k3-dipic)(EPh 3) 2Cl] (E = P( 3), As( 4)) complexes. Complexes 1 and 2 show rhombic EPR spectral features, while complex 3 and 4 show tetragonal distortion. The new Ru III complexes 1 and 2 display both Ru III-Ru II reduction and Ru III-Ru IV oxidation processes. These geometric isomers exhibit textbook differences both in spectroscopic as well as structural properties in the solid state. The new complexes 1 and 2 were found to catalyze the oxidation of alcohols to carbonyl derivatives using N-methyl morpholine- N-oxide as co-oxidant. The first static hyperpolarizability ( β) for all of the complexes have been investigated by density functional theory (DFT) which suggests β value increases from trans to cis form. Also, the solvent-induced effects on the non-linear optical properties (NLO) were studied by using self-consistent reaction field (SCRF) method. As the solvent polarity increases, the β value increases monotonically. The electronic absorption bands of 1 have been assigned by time dependent density functional theory (TD-DFT).
A symmetric inhibitor binds HIV-1 protease asymmetrically.
Dreyer, G B; Boehm, J C; Chenera, B; DesJarlais, R L; Hassell, A M; Meek, T D; Tomaszek, T A; Lewis, M
1993-01-26
Potential advantages of C2-symmetric inhibitors designed for the symmetric HIV-1 protease include high selectivity, potency, stability, and bioavailability. Pseudo-C2-symmetric monools and C2-symmetric diols, containing central hydroxymethylene and (R,R)-dihydroxyethylene moieties flanked by a variety of hydrophobic P1/P1' side chains, were studied as HIV-1 protease inhibitors. The monools and diols were synthesized in 8-10 steps from D-(+)-arabitol and D-(+)-mannitol, respectively. Monools with ethyl or isobutyl P1/P1' side chains were weak inhibitors of recombinant HIV-1 protease (Ki > 10 microM), while benzyl P1/P1' side chains afforded a moderately potent inhibitor (apparent Ki = 230 nM). Diols were 100-10,000x more potent than analogous monools, and a wider range of P1/P1' side chains led to potent inhibition. Both classes of compounds exhibited lower apparent Ki values under high-salt conditions. Surprisingly, monool and diol HIV-1 protease inhibitors were potent inhibitors of porcine pepsin, a prototypical asymmetric monomeric aspartic protease. These results were evaluated in the context of the pseudosymmetric structure of monomeric aspartic proteases and their evolutionary kinship with the retroviral proteases. The X-ray crystal structure of HIV-1 protease complexed with a symmetric diol was determined at 2.6 A. Contrary to expectations, the diol binds the protease asymmetrically and exhibits 2-fold disorder in the electron density map. Molecular dynamics simulations were conducted beginning with asymmetric and symmetric HIV-1 protease/inhibitor model complexes. A more stable trajectory resulted from the asymmetric complex, in agreement with the observed asymmetric binding mode. A simple four-point model was used to argue more generally that van der Waals and electrostatic force fields can commonly lead to an asymmetric association between symmetric molecules. PMID:8422397
Non-symmetric and chaotic vibrations of Euler-Bernoulli beams under harmonic and noisy excitations
NASA Astrophysics Data System (ADS)
Awrejcewicz, J.; Erofeev, N. P.; Krysko, V. A.
2016-05-01
In this paper we study non-linear dynamics of flexible Euler-Bernoulli beams subjected to harmonic load and white noise. We report that in the case of continuous mechanical systems like the studied Euler-Bernoulli beams the action of white noise yieldes novel and unexpected phenomena, i.e. symmetric transversal loads and symmetric boundary conditions imply non-symmetric beam vibration. In addition, regions of non-symmetric beam vibrations for two values of white noise intensity are given and the charts of regular and chaotic vibrations of the studied beams are presented.
Xie, Maohua; Park, Dongkyoo; You, Shuo; Li, Rui; Owonikoko, Taofeek K; Wang, Ya; Doetsch, Paul W; Deng, Xingming
2015-01-01
High-linear energy transfer ionizing radiation, derived from high charge (Z) and energy (E) (HZE) particles, induces clustered/complex DNA double-strand breaks (DSBs) that include small DNA fragments, which are not repaired by the non-homologous end-joining (NHEJ) pathway. The homologous recombination (HR) DNA repair pathway plays a major role in repairing DSBs induced by HZE particles. The Mre11 complex (Mre11/Rad50/NBS1)-mediated resection of DSB ends is a required step in preparing for DSB repair via the HR DNA repair pathway. Here we found that expression of Bcl2 results in decreased HR activity and retards the repair of DSBs induced by HZE particles (i.e. (56)iron and (28)silicon) by inhibiting Mre11 complex activity. Exposure of cells to (56)iron or (28)silicon promotes Bcl2 to interact with Mre11 via the BH1 and BH4 domains. Purified Bcl2 protein directly suppresses Mre11 complex-mediated DNA resection in vitro. Expression of Bcl2 reduces the ability of Mre11 to bind DNA following exposure of cells to HZE particles. Our findings suggest that, after cellular exposure to HZE particles, Bcl2 may inhibit Mre11 complex-mediated DNA resection leading to suppression of the HR-mediated DSB repair in surviving cells, which may potentially contribute to tumor development. PMID:25567982
Looking for symmetric Bell inequalities
NASA Astrophysics Data System (ADS)
Bancal, Jean-Daniel; Gisin, Nicolas; Pironio, Stefano
2010-09-01
Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell experiments involving two parties and two measurement settings that are not of the Collins-Gisin-Linden-Massar-Popescu type.
NASA Astrophysics Data System (ADS)
Ushenko, V. A.; Gorsky, M. P.
2013-08-01
We present theoretical fundamentals of polarization and correlation analysis of the optical anisotropy of biological tissues. Results of measurements of coordinate distributions of the complex degree of mutual anisotropy (CDMA) that are formed by birefringent structures of the prostate tissue with benign and malignant changes are compared. Magnitudes and ranges of variation of statistical (the firstto fourth-order distribution moments) and correlation (excess of autocorrelation functions) parameters of the coordinate CDMA distributions of histological sections of the prostate postoperative bioptic material are studied. Objective criteria of the diagnostics of the appearance of pathology and of the differentiation of the degree of its severity are determined.
Thin-shell wormholes: Linearization stability
Poisson, E.; Visser, M.
1995-12-15
The class of spherically symmetric thin-shell wormholes provides a particularly elegant collection of exemplars for the study of traversable Lorentzian wormholes. In the present paper we consider linearized (spherically symmetric) perturbations around some assumed static solution of the Einstein field equations. This permits us to relate stability issues to the (linearized) equation of state of the exotic matter which is located at the wormhole throat. {copyright} 1995 The American Physical Society.
Small acoustically forced symmetric bodies in viscous fluids.
Nadal, François; Lauga, Eric
2016-03-01
The total force exerted on a small rigid body by an acoustic field in a viscous fluid is addressed analytically in the limit where the typical size of the particle is smaller than both the viscous diffusion length scale and the acoustic wavelength. In this low-frequency limit, such a force can be calculated provided the effect of the acoustic steady streaming is negligible. Using the Eulerian linear expansion of Lagrangian hydrodynamic quantities (velocity and pressure), the force on a small solid sphere free to move in an acoustic field is first calculated in the case of progressive and standing waves, and it is compared to past results. The proposed method is then extended to the case of more complex shapes with three planes of symmetry. For a symmetric body oriented with one of its axis along the wave direction, the acoustic force exerted by a progressive wave is affected by the particle shape at leading order. In contrast, for a standing wave (with the same orientation), the force experienced by the particle at leading order is the same as the one experienced by a sphere of same volume and density. PMID:27036245
APPROXIMATING SYMMETRIC POSITIVE SEMIDEFINITE TENSORS OF EVEN ORDER*
BARMPOUTIS, ANGELOS; JEFFREY, HO; VEMURI, BABA C.
2012-01-01
Tensors of various orders can be used for modeling physical quantities such as strain and diffusion as well as curvature and other quantities of geometric origin. Depending on the physical properties of the modeled quantity, the estimated tensors are often required to satisfy the positivity constraint, which can be satisfied only with tensors of even order. Although the space P02m of 2mth-order symmetric positive semi-definite tensors is known to be a convex cone, enforcing positivity constraint directly on P02m is usually not straightforward computationally because there is no known analytic description of P02m for m > 1. In this paper, we propose a novel approach for enforcing the positivity constraint on even-order tensors by approximating the cone P02m for the cases 0 < m < 3, and presenting an explicit characterization of the approximation Σ2m ⊂ Ω2m for m ≥ 1, using the subset Ω2m⊂P02m of semi-definite tensors that can be written as a sum of squares of tensors of order m. Furthermore, we show that this approximation leads to a non-negative linear least-squares (NNLS) optimization problem with the complexity that equals the number of generators in Σ2m. Finally, we experimentally validate the proposed approach and we present an application for computing 2mth-order diffusion tensors from Diffusion Weighted Magnetic Resonance Images. PMID:23285313
Symmetry breaking in linearly coupled Korteweg-de Vries systems.
Espinosa-Cerón, A; Malomed, B A; Fujioka, J; Rodríguez, R F
2012-09-01
We consider solitons in a system of linearly coupled Korteweg-de Vries (KdV) equations, which model two-layer settings in various physical media. We demonstrate that traveling symmetric solitons with identical components are stable at velocities lower than a certain threshold value. Above the threshold, which is found exactly, the symmetric modes are unstable against spontaneous symmetry breaking, which gives rise to stable asymmetric solitons. The shape of the asymmetric solitons is found by means of a variational approximation and in the numerical form. Simulations of the evolution of an unstable symmetric soliton sometimes produce its breakup into two different asymmetric modes. Collisions between moving stable solitons, symmetric and asymmetric ones, are studied numerically, featuring noteworthy features. In particular, collisions between asymmetric solitons with identical polarities are always elastic, while in the case of opposite polarities the collision leads to a switch of the polarities of both solitons. Three-soliton collisions are studied too, featuring quite complex interaction scenarios. PMID:23020484
2014-01-01
A simple and robust nanolithographic method that allows sub-100 nm chemical patterning on a range of oxide surfaces was developed in order to fabricate nanoarrays of plant light-harvesting LHCII complexes. The site-specific immobilization and the preserved functionality of the LHCII complexes were confirmed by fluorescence emission spectroscopy. Nanopatterned LHCII trimers could be reversibly switched between fluorescent and quenched states by controlling the detergent concentration in the imaging buffer. A 3-fold quenching of the average fluorescence intensity was accompanied by a decrease in the average (amplitude-weighted) fluorescence lifetime from approximately 2.24 ns to approximately 0.4 ns, attributed to the intrinsic ability of LHCII to switch between fluorescent and quenched states upon changes in its conformational state. The nanopatterning methodology was extended by immobilizing a second protein, the enhanced green fluorescent protein (EGFP), onto LHCII-free areas of the chemically patterned surfaces. This very simple surface chemistry, which allows simultaneous selective immobilization and therefore sorting of the two types of protein molecules on the surface, is a key underpinning step toward the integration of LHCII into switchable biohybrid antenna constructs. PMID:24988144
SYMTRAN - A Time-dependent Symmetric Tandem Mirror Transport Code
Hua, D; Fowler, T
2004-06-15
A time-dependent version of the steady-state radial transport model in symmetric tandem mirrors in Ref. [1] has been coded up and first tests performed. Our code, named SYMTRAN, is an adaptation of the earlier SPHERE code for spheromaks, now modified for tandem mirror physics. Motivated by Post's new concept of kinetic stabilization of symmetric mirrors, it is an extension of the earlier TAMRAC rate-equation code omitting radial transport [2], which successfully accounted for experimental results in TMX. The SYMTRAN code differs from the earlier tandem mirror radial transport code TMT in that our code is focused on axisymmetric tandem mirrors and classical diffusion, whereas TMT emphasized non-ambipolar transport in TMX and MFTF-B due to yin-yang plugs and non-symmetric transitions between the plugs and axisymmetric center cell. Both codes exhibit interesting but different non-linear behavior.
Plane symmetric thin-shell wormholes: Solutions and stability
Lemos, Jose P. S.; Lobo, Francisco S. N.
2008-08-15
Using the cut-and-paste procedure, we construct static and dynamic, plane symmetric wormholes by surgically grafting together two spacetimes of plane symmetric vacuum solutions with a negative cosmological constant. These plane symmetric wormholes can be interpreted as domain walls connecting different universes, having planar topology, and upon compactification of one or two coordinates, cylindrical topology or toroidal topology, respectively. A stability analysis is carried out for the dynamic case by taking into account specific equations of state, and a linearized stability analysis around static solutions is also explored. It is found that thin-shell wormholes made of a dark energy fluid or of a cosmological constant fluid are stable, while thin-shell wormholes made of phantom energy are unstable.
Bumblebee preference for symmetrical flowers.
Møller, A P
1995-03-14
Fluctuating asymmetry, which represents small random deviations from otherwise bilateral symmetry, is a measure of the phenotypic quality of individuals indicating the ability of controlled development under given environmental and genetic conditions. I tested whether floral symmetry reliably reflects phenotypic quality measured in terms of pollinator rewards and whether pollinators respond to floral symmetry in a series of observations and experiments on Epilobium angustifolium (Onagraceae). Lower petal asymmetry was negatively related to mean lower petal length, whereas asymmetry in leaf width was positively related to mean leaf width. Flowers visited by bumblebees were larger and more symmetrical than the nearest neighboring flower. This relationship between pollinator preference for large and symmetrical flowers was demonstrated to be causal in experiments in which the lower petals were manipulated symmetrically or asymmetrically. Nectar production was larger in symmetrical flowers, and this may explain the bumblebee preference for flower symmetry. Floral symmetry therefore reliably reflects nectar production and hence enhances pollen transport. Extensive embryo abortion has been documented in E. angustifolium and other outcrossing plant species. Floral fluctuating asymmetry, which reflects general developmental homeostasis, may explain such developmental selection in these plants. PMID:11607519
A scheme for symmetrization verification
NASA Astrophysics Data System (ADS)
Sancho, Pedro
2011-08-01
We propose a scheme for symmetrization verification in two-particle systems, based on one-particle detection and state determination. In contrast to previous proposals, it does not follow a Hong-Ou-Mandel-type approach. Moreover, the technique can be used to generate superposition states of single particles.
Intensity-symmetric Airy beams.
Vaveliuk, P; Lencina, Alberto; Rodrigo, Jose A; Martnez-Matos, Ó
2015-03-01
Theoretical, numerical, and experimental research on a novel family of Airy beams in rectangular coordinates having a symmetric transverse pattern of light intensity is presented. The intensity-symmetric Airy beams include both the symmetric Airy beam whose field amplitude is an even function of the transverse coordinates and the antisymmetric Airy beam whose field amplitude is an odd function of such coordinates. The theoretical foundations are based on the relationship of the symmetries of the spectral phase with the cosine and sine Fourier transforms. These beams are analyzed in a propagation range also including the region preceding the Fourier plane. These beams exhibit autofocusing, collapse, self-bending, and reversal propagation. Moreover, the intensity distribution is strongly asymmetric with respect to the Fourier plane. All these peculiar features were not reported for other classes of paraxial beams in a rectangular frame. The experimental generation of intensity-symmetric Airy beams is demonstrated supporting the theoretical predictions. Possible applications in planar waveguide writing and optical trapping are also discussed. PMID:26366655
Prior Distributions on Symmetric Groups
ERIC Educational Resources Information Center
Gupta, Jayanti; Damien, Paul
2005-01-01
Fully and partially ranked data arise in a variety of contexts. From a Bayesian perspective, attention has focused on distance-based models; in particular, the Mallows model and extensions thereof. In this paper, a class of prior distributions, the "Binary Tree," is developed on the symmetric group. The attractive features of the class are: it…
Nonlinear localized modes in PT-symmetric optical media with competing gain and loss
Midya, Bikashkali; Roychoudhury, Rajkumar
2014-02-15
The existence and stability of the nonlinear spatial localized modes are investigated in parity-time symmetric optical media characterized by a generic complex hyperbolic refractive index distribution with competing gain and loss profile. The exact analytical expression of the localized modes are found for all values of the competing parameter and in the presence of both the self-focusing and self-defocusing Kerr nonlinearity. The effects of competing gain/loss profile on the stability structure of these localized modes are discussed with the help of linear stability analysis followed by the direct numerical simulation of the governing equation. The spatial localized modes in two-dimensional geometry as well as the transverse power-flow density associated with these localized modes are also examined. -- Highlights: • Existence of localized modes is investigated in PT-symmetric complex potentials. • Exact analytical expression of the localized modes is obtained. • Effect of gain/loss profile on the stability of these localized modes is discussed. • Localized modes in 2D and associated transverse power-flow density are also examined.
A symmetric bipolar nebula around MWC 922.
Tuthill, P G; Lloyd, J P
2007-04-13
We report regular and symmetric structure around dust-enshrouded Be star MWC 922 obtained with infrared imaging. Biconical lobes that appear nearly square in aspect, forming this "Red Square" nebula, are crossed by a series of rungs that terminate in bright knots or "vortices," and an equatorial dark band crossing the core delimits twin hyperbolic arcs. The intricate yet cleanly constructed forms that comprise the skeleton of the object argue for minimal perturbation from global turbulent or chaotic effects. We also report the presence of a linear comb structure, which may arise from optically projected shadows of a periodic feature in the inner regions, such as corrugations in the rim of a circumstellar disk. The sequence of nested polar rings draws comparison with the triple-ring system seen around the only naked-eye supernova in recent history: SN1987A. PMID:17431173
Parametric separation of symmetric pure quantum states
NASA Astrophysics Data System (ADS)
Solís-Prosser, M. A.; Delgado, A.; Jiménez, O.; Neves, L.
2016-01-01
Quantum state separation is a probabilistic map that transforms a given set of pure states into another set of more distinguishable ones. Here we investigate such a map acting onto uniparametric families of symmetric linearly dependent or independent quantum states. We obtained analytical solutions for the success probability of the maps—which is shown to be optimal—as well as explicit constructions in terms of positive operator valued measures. Our results can be used for state discrimination strategies interpolating continuously between minimum-error and unambiguous (or maximum-confidence) discrimination, which, in turn, have many applications in quantum information protocols. As an example, we show that quantum teleportation through a nonmaximally entangled quantum channel can be accomplished with higher probability than the one provided by unambiguous (or maximum-confidence) discrimination and with higher fidelity than the one achievable by minimum-error discrimination. Finally, an optical network is proposed for implementing parametric state separation.
Koka, Kanthaiah; Tollin, Daniel J.
2014-01-01
The interaural level difference (ILD) cue to sound location is first encoded in the lateral superior olive (LSO). ILD sensitivity results because the LSO receives excitatory input from the ipsilateral cochlear nucleus and inhibitory input indirectly from the contralateral cochlear nucleus via glycinergic neurons of the ipsilateral medial nucleus of the trapezoid body (MNTB). It is hypothesized that in order for LSO neurons to encode ILDs, the sound spectra at both ears must be accurately encoded via spike rate by their afferents. This spectral-coding hypothesis has not been directly tested in MNTB, likely because MNTB neurons have been mostly described and studied recently in regards to their abilities to encode temporal aspects of sounds, not spectral. Here, we test the hypothesis that MNTB neurons and their inputs from the cochlear nucleus and auditory nerve code sound spectra via discharge rate. The Random Spectral Shape (RSS) method was used to estimate how the levels of 100-ms duration spectrally stationary stimuli were weighted, both linearly and non-linearly, across a wide band of frequencies. In general, MNTB neurons, and their globular bushy cell inputs, were found to be well-modeled by a linear weighting of spectra demonstrating that the pathways through the MNTB can accurately encode sound spectra including those resulting from the acoustical cues to sound location provided by head-related directional transfer functions (DTFs). Together with the anatomical and biophysical specializations for timing in the MNTB-LSO complex, these mechanisms may allow ILDs to be computed for complex stimuli with rapid spectrotemporally-modulated envelopes such as speech and animal vocalizations and moving sound sources. PMID:25565971
Non-Real Eigenvalues for {{{PT}}} -Symmetric Double Wells
NASA Astrophysics Data System (ADS)
Benbernou, Amina; Boussekkine, Naima; Mecherout, Nawal; Ramond, Thierry; Sjöstrand, Johannes
2016-05-01
We study small, {{{PT}}} -symmetric perturbations of self-adjoint double-well Schrödinger operators in dimension {n≥ 1} . We prove that the eigenvalues stay real for a very small perturbation, then bifurcate to the complex plane as the perturbation gets stronger.
NASA Astrophysics Data System (ADS)
Sanchez-Vila, X.; Rubol, S.; Fernandez-Garcia, D.
2011-12-01
Despite the fact that the prognoses on the availability of resources related to different climate scenarios have been already formulated, the complex hydrological and biogeochemical reactions taking place in different compartments in natural environmental media are poorly understood, especially regarding the interactions between water bodies, and the reactions taking place at soil-water interfaces. Amongst them, the inter-relationship between hydrology, chemistry and biology has important implications in natural (rivers, lakes) and man-made water facilities (lagoons, artificial recharge pounds, reservoirs, slow infiltration systems, etc). The consequences involve environment, economic, social and health-risk aspects. At the current stage, only limited explanations are available to understand the implications of these relationships on ecosystem services, water quality and water quantity. Therefore, there is an urgent need to seek a full understanding of these physical-biogeochemical processes in water-bodies, sediments and biota and its implications in ecological and health risk. We present a soil column experiment and a mathematical model which aim to study the mutual interplay between water and bacteria activity in porous media, the corresponding dynamics and the feedback on nutrient cycling by using a multidisciplinary approach.
Lang, Weeranuch; Kumagai, Yuya; Sadahiro, Juri; Maneesan, Janjira; Okuyama, Masayuki; Mori, Haruhide; Sakairi, Nobuo; Kimura, Atsuo
2014-10-01
Intermolecular interaction of linear-type α-(1 → 6)-glucosyl megalosaccharide rich (L-IMS) and water-insoluble anionic ethyl red was firstly characterized in a comparison with inclusion complexation by cyclodextrins (CDs) to overcome the problem of poor solubility and bioavailability. Phase solubility studies indicated an enhancement of 3- and 9-fold over the solubility in water upon the presence of L-IMS and β-CD, respectively. (1)H NMR and circular dichrosim spectra revealed the dye forms consisted of 1:1 stoichiometric inclusion complex within the β-CD cavity, whereas they exhibited non-specific hydrophobic interaction, identified by solvent polarity changes, with L-IMS. The inclusion complex delivered by β-CD showed an uncompetitive inhibitory-type effect to azoreductase, particularly with high water content that did not promote dye liberation. Addition of the solid dye dispersed into coupled-enzyme reaction system supplied by L-IMS as the dye solubilizer provided usual degradation rate. The dye intermission in series exhibited successful removal with at least 5 cycles was economically feasible. PMID:25087215
Linear electric field mass spectrometry
McComas, D.J.; Nordholt, J.E.
1992-12-01
A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.
Linear electric field mass spectrometry
McComas, David J.; Nordholt, Jane E.
1992-01-01
A mass spectrometer and methods for mass spectrometry. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field.
Bunch-Kaufman factorization for real symmetric indefinite banded matrices
NASA Technical Reports Server (NTRS)
Jones, Mark T.; Patrick, Merrell L.
1989-01-01
The Bunch-Kaufman algorithm for factoring symmetric indefinite matrices was rejected for banded matrices because it destroys the banded structure of the matrix. Herein, it is shown that for a subclass of real symmetric matrices which arise in solving the generalized eigenvalue problem using Lanczos's method, the Bunch-Kaufman algorithm does not result in major destruction of the bandwidth. Space time complexities of the algorithm are given and used to show that the Bunch-Kaufman algorithm is a significant improvement over LU factorization.
Geometry and Symmetric Coherent States of Three Qubits Systems
NASA Astrophysics Data System (ADS)
Guo, Xiao-Kan
2016-06-01
In this paper, we first generalize the previous results that relate 1- and 2-qubit geometries to complex and quaternionic Möbius transformations respectively, to the case of 3-qubit states under octonionic Möbius transformations. This completes the correspondence between the qubit geometries and the four normed division algebras. Thereby, new systems of symmetric coherent states with 2 and 3 qubits can be constructed by mapping the spin coherent states to their antipodal symmetric ponits on the generalized Bloch spheres via Möbius transformations in corresponding dimensions. Finally, potential applications of the normed division algebras in physics are discussed.
Symmetric Discrete Orthonormal Stockwell Transform
NASA Astrophysics Data System (ADS)
Wang, Yanwei; Orchard, Jeff
2008-09-01
The Stockwell Transform (ST) is a time-frequency signal decomposition that is gaining in popularity, likely because of its direct relation with the Fourier Transform (FT). A discrete and non-redundant version of the ST, denoted the Discrete Orthonormal Stockwell Transform (DOST), has made the use of the ST more feasible. However, the matrix multiplication required by the DOST can still be a formidable computation, especially for high-dimensional data. Moreover, the symmetric property of the ST and FT is not present in the DOST. In this paper, we investigate a new Symmetric Discrete Orthonormal Stockwell Transform (SDOST) that still keeps the non-redundant multiresolution features of the DOST, while maintaining a symmetry property similar to that of the FT. First, we give a brief introduction for the ST and the DOST. Then we analyze the DOST coefficients and modify the transform to get a symmetric version. A small experiment shows that the SDOST has kept the abilities of the DOST and demonstrates the advantage of symmetry when applying the SDOST.
Dispersion in a bent-solenoid channel with symmetric focusing
Wang, Chun-xi
2001-08-21
Longitudinal ionization cooling of a muon beam is essential for muon colliders and will be useful for neutrino factories. Bent-solenoid channels with symmetric focusing has been considered for beam focusing and for generating the required dispersion in the ``emittance exchange'' scheme of longitudinal cooling. In this paper, we derive the Hamiltonian that governs the linear beam dynamics of a bent-solenoid channel, solve the single-particle dynamics, and give equations for determining the latticefunctions, in particular, the dispersion functions.
Nonlinear wave dynamics near phase transition in PT-symmetric localized potentials
NASA Astrophysics Data System (ADS)
Nixon, Sean; Yang, Jianke
2016-09-01
Nonlinear wave propagation in parity-time symmetric localized potentials is investigated analytically near a phase-transition point where a pair of real eigenvalues of the potential coalesce and bifurcate into the complex plane. Necessary conditions for a phase transition to occur are derived based on a generalization of the Krein signature. Using the multi-scale perturbation analysis, a reduced nonlinear ordinary differential equation (ODE) is derived for the amplitude of localized solutions near phase transition. Above the phase transition, this ODE predicts a family of stable solitons not bifurcating from linear (infinitesimal) modes under a certain sign of nonlinearity. In addition, it predicts periodically-oscillating nonlinear modes away from solitons. Under the opposite sign of nonlinearity, it predicts unbounded growth of solutions. Below the phase transition, solution dynamics is predicted as well. All analytical results are compared to direct computations of the full system and good agreement is observed.
Accessing the exceptional points of parity-time symmetric acoustics
Shi, Chengzhi; Dubois, Marc; Chen, Yun; Cheng, Lei; Ramezani, Hamidreza; Wang, Yuan; Zhang, Xiang
2016-01-01
Parity-time (PT) symmetric systems experience phase transition between PT exact and broken phases at exceptional point. These PT phase transitions contribute significantly to the design of single mode lasers, coherent perfect absorbers, isolators, and diodes. However, such exceptional points are extremely difficult to access in practice because of the dispersive behaviour of most loss and gain materials required in PT symmetric systems. Here we introduce a method to systematically tame these exceptional points and control PT phases. Our experimental demonstration hinges on an active acoustic element that realizes a complex-valued potential and simultaneously controls the multiple interference in the structure. The manipulation of exceptional points offers new routes to broaden applications for PT symmetric physics in acoustics, optics, microwaves and electronics, which are essential for sensing, communication and imaging. PMID:27025443
Accessing the exceptional points of parity-time symmetric acoustics
NASA Astrophysics Data System (ADS)
Shi, Chengzhi; Dubois, Marc; Chen, Yun; Cheng, Lei; Ramezani, Hamidreza; Wang, Yuan; Zhang, Xiang
2016-03-01
Parity-time (PT) symmetric systems experience phase transition between PT exact and broken phases at exceptional point. These PT phase transitions contribute significantly to the design of single mode lasers, coherent perfect absorbers, isolators, and diodes. However, such exceptional points are extremely difficult to access in practice because of the dispersive behaviour of most loss and gain materials required in PT symmetric systems. Here we introduce a method to systematically tame these exceptional points and control PT phases. Our experimental demonstration hinges on an active acoustic element that realizes a complex-valued potential and simultaneously controls the multiple interference in the structure. The manipulation of exceptional points offers new routes to broaden applications for PT symmetric physics in acoustics, optics, microwaves and electronics, which are essential for sensing, communication and imaging.
Canonical distributions on Riemannian homogeneous k-symmetric spaces
NASA Astrophysics Data System (ADS)
Balashchenko, Vitaly V.
2015-01-01
It is known that distributions generated by almost product structures are applicable, in particular, to some problems in the theory of Monge-Ampère equations. In this paper, we characterize canonical distributions defined by canonical almost product structures on Riemannian homogeneous k-symmetric spaces in the sense of types AF (anti-foliation), F (foliation), TGF (totally geodesic foliation). Algebraic criteria for all these types on k-symmetric spaces of orders k = 4, 5, 6 were obtained. Note that canonical distributions on homogeneous k-symmetric spaces are closely related to special canonical almost complex structures and f-structures, which were recently applied by I. Khemar to studying elliptic integrable systems.
Accessing the exceptional points of parity-time symmetric acoustics.
Shi, Chengzhi; Dubois, Marc; Chen, Yun; Cheng, Lei; Ramezani, Hamidreza; Wang, Yuan; Zhang, Xiang
2016-01-01
Parity-time (PT) symmetric systems experience phase transition between PT exact and broken phases at exceptional point. These PT phase transitions contribute significantly to the design of single mode lasers, coherent perfect absorbers, isolators, and diodes. However, such exceptional points are extremely difficult to access in practice because of the dispersive behaviour of most loss and gain materials required in PT symmetric systems. Here we introduce a method to systematically tame these exceptional points and control PT phases. Our experimental demonstration hinges on an active acoustic element that realizes a complex-valued potential and simultaneously controls the multiple interference in the structure. The manipulation of exceptional points offers new routes to broaden applications for PT symmetric physics in acoustics, optics, microwaves and electronics, which are essential for sensing, communication and imaging. PMID:27025443
The discrete dynamics of symmetric competition in the plane.
Jiang, H; Rogers, T D
1987-01-01
We consider the generalized Lotka-Volterra two-species system xn + 1 = xn exp(r1(1 - xn) - s1yn) yn + 1 = yn exp(r2(1 - yn) - s2xn) originally proposed by R. M. May as a model for competitive interaction. In the symmetric case that r1 = r2 and s1 = s2, a region of ultimate confinement is found and the dynamics therein are described in some detail. The bifurcations of periodic points of low period are studied, and a cascade of period-doubling bifurcations is indicated. Within the confinement region, a parameter region is determined for the stable Hopf bifurcation of a pair of symmetrically placed period-two points, which imposes a second component of oscillation near the stable cycles. It is suggested that the symmetric competitive model contains much of the dynamical complexity to be expected in any discrete two-dimensional competitive model. PMID:3437226
Skyrmions and vector mesons: a symmetric approach
Caldi, D.G.
1984-01-01
We propose an extension of the effective, low-energy chiral Lagrangian known as the Skyrme model, to one formulated by a non-linear sigma model generalized to include vector mesons in a symmetric way. The model is based on chiral SU(6) x SU(6) symmetry spontaneously broken to static SU(6). The rho and other vector mesons are dormant Goldstone bosons since they are in the same SU(6) multiplet as the pion and other pseudoscalars. Hence the manifold of our generalized non-linear sigma model is the coset space (SU(6) x SU(6))/Su(6). Relativistic effects, via a spin-dependent mass term, break the static SU(6) and give the vectors a mass. The model can then be fully relativistic and covariant. The lowest-lying Skyrmion in this model is the whole baryonic 56-plet, which splits into the octet and decuplet in the presence of relativistic SU(6)-breaking. Due to the built-in SU(6) and the presence of vector mesons, the model is expected to have better phenomenological results, as well as providing a conceptually more unified picture of mesons and baryons. 29 references.
Manufacturing and applications of nonrotationally symmetric optics
NASA Astrophysics Data System (ADS)
Weck, Manfred; Klocke, Fritz; Oezmeral, H.; Hennig, Jan; Ruebenach, Olaf; Ehl, M.; Grosser, Norbert; Leiers, R.; Henning, Thomas F. E.; Unnebrink, Lars; Bernges, Joerg
1999-09-01
The use of lasers is more and more growing in industrial processing of different materials. Some examples of possible applications are the improvement of surface characteristics, drilling, welding, cutting and micro-structuring. An important aspect in this context is the necessity to adjust a specific intensity distribution for each application. This is usually realized by using special optics, which are able to form or shape the beam. These optics have complex geometries and in addition they have to fulfill high precision requirements regarding form and surface quality. The efficiency of laser system can be increased by using special designed optics with non-rotationally symmetric structures. Fabricating optics with these requirements is almost impossible using conventional manufacturing techniques. The only possibility for manufacturing is the use of fast tool servo system while the diamond turning process.
Abusam, A; Keesman, K J; van Straten, G; Spanjers, H; Meinema, K
2001-01-01
When applied to large simulation models, the process of parameter estimation is also called calibration. Calibration of complex non-linear systems, such as activated sludge plants, is often not an easy task. On the one hand, manual calibration of such complex systems is usually time-consuming, and its results are often not reproducible. On the other hand, conventional automatic calibration methods are not always straightforward and often hampered by local minima problems. In this paper a new straightforward and automatic procedure, which is based on the response surface method (RSM) for selecting the best identifiable parameters, is proposed. In RSM, the process response (output) is related to the levels of the input variables in terms of a first- or second-order regression model. Usually, RSM is used to relate measured process output quantities to process conditions. However, in this paper RSM is used for selecting the dominant parameters, by evaluating parameters sensitivity in a predefined region. Good results obtained in calibration of ASM No. 1 for N-removal in a full-scale oxidation ditch proved that the proposed procedure is successful and reliable. PMID:11385868
Draber, Peter; Kupka, Sebastian; Reichert, Matthias; Draberova, Helena; Lafont, Elodie; de Miguel, Diego; Spilgies, Lisanne; Surinova, Silvia; Taraborrelli, Lucia; Hartwig, Torsten; Rieser, Eva; Martino, Luigi; Rittinger, Katrin; Walczak, Henning
2015-01-01
Summary Ubiquitination and deubiquitination are crucial for assembly and disassembly of signaling complexes. LUBAC-generated linear (M1) ubiquitin is important for signaling via various immune receptors. We show here that the deubiquitinases CYLD and A20, but not OTULIN, are recruited to the TNFR1- and NOD2-associated signaling complexes (TNF-RSC and NOD2-SC), at which they cooperate to limit gene activation. Whereas CYLD recruitment depends on its interaction with LUBAC, but not on LUBAC’s M1-chain-forming capacity, A20 recruitment requires this activity. Intriguingly, CYLD and A20 exert opposing effects on M1 chain stability in the TNF-RSC and NOD2-SC. While CYLD cleaves M1 chains, and thereby sensitizes cells to TNF-induced death, A20 binding to them prevents their removal and, consequently, inhibits cell death. Thus, CYLD and A20 cooperatively restrict gene activation and regulate cell death via their respective activities on M1 chains. Hence, the interplay between LUBAC, M1-ubiquitin, CYLD, and A20 is central for physiological signaling through innate immune receptors. PMID:26670046
NASA Astrophysics Data System (ADS)
Ivanov, Sergey V.
2016-07-01
Stable bimolecular complexes (tightly bound dimers) in the gas phase are usually created during third body stabilization of their unstable precursors-quasi-bound complexes (QCs). The latter can arise under the condition that at least one of the colliding partners has an internal degree of freedom. In this article, the principal difference between "orbitings" and QCs is demonstrated in the classical nonreactive scattering picture. Additionally, fractions of QCs in binary collisions of different linear molecules are compared. Also in the article the influence of QCs on rotational R-T relaxation and on vibration-rotational spectral line broadening is discussed. Explicit formulae shedding light on the QCs contribution to the R-T relaxation cross section and the line width and shift are presented. The obtained results emphasize the need for including QCs in every theoretical modeling of spectroscopic manifestation of intermolecular interactions. Besides the topics above, the possible manifestation of non-impact effects in the central regions of spectral lines due to QCs is stated. And finally, special consideration is given to the problem of adequate simulation of QCs formation at different pressures.
Symmetric and antisymmetric nonlinear modes supported by dual local gain in lossy lattices
NASA Astrophysics Data System (ADS)
Chow, K. W.; Ding, Edwin; Malomed, B. A.; Tang, A. Y. S.
2014-01-01
We introduce a discrete lossy system, into which a double "hot spot" (HS) is inserted, i.e., two mutually symmetric sites carrying linear gain and cubic nonlinearity. The system can be implemented as an array of optical or plasmonic waveguides, with a pair of amplified nonlinear cores embedded into it. We focus on the case of self-defocusing nonlinearity and cubic losses acting at the HSs. Symmetric localized modes pinned to the double HS are constructed in an implicit analytical form, which is done separately for the cases of odd and even numbers of intermediate sites between the HSs. In the former case, some stationary solutions feature a W-like shape, with a low peak at the central site, added to tall peaks at the positions of the embedded HSs. The special case of two adjacent HSs is considered too. Stability of the solution families against small perturbations is investigated in a numerical form, which reveals stable and unstable subfamilies. The instability generated by an isolated positive eigenvalue leads to a spontaneous transformation into a co-existing stable antisymmetric mode, while a pair of complex-conjugate eigenvalues gives rise to persistent breathers. This article is a contribution to the volume dedicated to Professor Helmut Brand on the occasion of his 60th birhday.
van Rahden, Vanessa A.; Fernandez-Vizarra, Erika; Alawi, Malik; Brand, Kristina; Fellmann, Florence; Horn, Denise; Zeviani, Massimo; Kutsche, Kerstin
2015-01-01
Microphthalmia with linear skin defects (MLS) syndrome is an X-linked male-lethal disorder also known as MIDAS (microphthalmia, dermal aplasia, and sclerocornea). Additional clinical features include neurological and cardiac abnormalities. MLS syndrome is genetically heterogeneous given that heterozygous mutations in HCCS or COX7B have been identified in MLS-affected females. Both genes encode proteins involved in the structure and function of complexes III and IV, which form the terminal segment of the mitochondrial respiratory chain (MRC). However, not all individuals with MLS syndrome carry a mutation in either HCCS or COX7B. The majority of MLS-affected females have severe skewing of X chromosome inactivation, suggesting that mutations in HCCS, COX7B, and other as-yet-unidentified X-linked gene(s) cause selective loss of cells in which the mutated X chromosome is active. By applying whole-exome sequencing and filtering for X-chromosomal variants, we identified a de novo nonsense mutation in NDUFB11 (Xp11.23) in one female individual and a heterozygous 1-bp deletion in a second individual, her asymptomatic mother, and an affected aborted fetus of the subject’s mother. NDUFB11 encodes one of 30 poorly characterized supernumerary subunits of NADH:ubiquinone oxidoreductase, known as complex I (cI), the first and largest enzyme of the MRC. By shRNA-mediated NDUFB11 knockdown in HeLa cells, we demonstrate that NDUFB11 is essential for cI assembly and activity as well as cell growth and survival. These results demonstrate that X-linked genetic defects leading to the complete inactivation of complex I, III, or IV underlie MLS syndrome. Our data reveal an unexpected role of cI dysfunction in a developmental phenotype, further underscoring the existence of a group of mitochondrial diseases associated with neurocutaneous manifestations. PMID:25772934
Symmetric spaces of exceptional groups
Boya, L. J.
2010-02-15
We address the problem of the reasons for the existence of 12 symmetric spaces with the exceptional Lie groups. The 1 + 2 cases for G{sub 2} and F{sub 4}, respectively, are easily explained from the octonionic nature of these groups. The 4 + 3 + 2 cases on the E{sub 6,7,8} series require the magic square of Freudenthal and, for the split case, an appeal to the supergravity chain in 5, 4, and 3 space-time dimensions.
Model-size reduction for the analysis of symmetric structures with asymmetric boundary conditions
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Whitworth, Sandra L.
1987-01-01
A simple computational procedure is presented for reducing the size of the analysis model for a symmetric structure with asymmetric boundary conditions to that of the corresponding structure with symmetric boundary conditions. The procedure is based on approximating the asymmetric response of the structure by a linear combination of symmetric and antisymmetric global approximation vectors (or modes). The key elements of the procedure are (1) restructuring the governing finite-element equations to delineate the contributions to the symmetric and antisymmetric components of the asymmetric response, (2) successive application of the finite element method and the classical Rayleigh-Ritz technique. The finite-element method is first used to generate a few global approximation vectors (or modes). Then the amplitudes of these modes are computed by using the Rayleigh-Ritz technique. The effectiveness of the computational procedure is demonstrated by means of numerical examples of linear static problems of shells, and its potential for solving nonlinear problems is discussed.
Biggins, J; Svejkovský, J
1980-10-01
A variety of unicellular algae, thylakoids from higher plants in different stages of maturity and isolated pigment-protein complexes were oriented in stretched polyvinyl alcohol films. Low temperature linear dichroism (LD) spectra of Chlorella pyrenoidosa and higher plant thylakoids in the films were very similar to those obtained after orientation of similar samples using magnetic or electric fields. Positive LD bands corresponding to Chl a (670) and (682) and negative bands due to Chl a (658) and Chl b(648) were resolved in spectra of the light harvesting Chl a/b protein. Chl b (648) and Chl a (658) and (670) were not seen in the LD spectrum of thylakoids from plants grown in intermittent light, the Chl b-less mutant of barley, Euglena gracilis or the cyanobacteria, Phormidium luridum and Anacystis nidulans, but did appear upon chloroplast maturation in Romaine lettuce and during the greening of etiolated and intermittent light plants. The highly oriented long wavelength Chl a (682) in the light-harvesting complex may represent residual PS II whose peak dichroism is centered at 681 nm. The PS I preparation had a Chl a/b ratio of approx. 6 and the LD spectrum was positive with a maximum at 690-694 nm and a band of lower amplitude at 652 nm. The minor LD band was not observed in PS I preparations from organisms that lack chl b such as the cyanobacteria, intermittent light plants and the Chl b-less mutant of barley. We suggest that the 652 nm band is due to Chl b molecules associated with the antenna of PS I and are distinct from those on the light harvesting complex whose orientation is different. We also conclude that all the Chl a forms are oriented and that the long geometric axes of the pigment-protein complexes, as deduced from the configuration they assume in the stretched films, are axes that normally lie parallel to the plane of the native thylakoid. PMID:6774749
G-factors of hole bound states in spherically symmetric potentials in cubic semiconductors
NASA Astrophysics Data System (ADS)
Miserev, Dmitry; Sushkov, Oleg
2016-03-01
Holes in cubic semiconductors have effective spin 3/2 and very strong spin orbit interaction. Due to these factors properties of hole bound states are highly unusual. We consider a single hole bound by a spherically symmetric potential, this can be an acceptor or a spherically symmetric quantum dot. Linear response to an external magnetic field is characterized by the bound state Lande g-factor. We calculate analytically g-factors of all bound states.
Wathen, A.; Golub, G.
1996-12-31
A simple fixed point linearisation of the Navier-Stokes equations leads to the Oseen problem which after appropriate discretisation yields large sparse linear systems with coefficient matrices of the form (A B{sup T} B -C). Here A is non-symmetric but its symmetric part is positive definite, and C is symmetric and positive semi-definite. Such systems arise in other situations. In this talk we will describe and present some analysis for an iteration based on an indefinite and symmetric preconditioner of the form (D B{sup T} B -C).
Han, Sufang; Wang, Bin; Jin, Wei; Xiao, Zhifeng; Li, Xing; Ding, Wenyong; Kapur, Meghan; Chen, Bing; Yuan, Baoyu; Zhu, Tiansheng; Wang, Handong; Wang, Jing; Dong, Qun; Liang, Weibang; Dai, Jianwu
2015-02-01
Spinal cord injury (SCI) is still a worldwide clinical challenge for which there is no viable therapeutic method. We focused on developing combinatorial methods targeting the complex pathological process of SCI. In this study, we implanted linear-ordered collagen scaffold (LOCS) fibers with collagen binding brain-derived neurotrophic factor (BDNF) by tagging a collagen-binding domain (CBD) (LOCS + CBD-BDNF) in completely transected canine SCI with multisystem rehabilitation to validate its potential therapeutic effect through a long-term (38 weeks) observation. We found that LOCS + CBD-BDNF implants strikingly promoted locomotion and functional sensory recovery, with some dogs standing unassisted and transiently moving. Further histological analysis showed that administration of LOCS + CBD-BDNF reduced lesion volume, decreased collagen deposits, promoted axon regeneration and improved myelination, leading to functional recovery. Collectively, LOCS + CBD-BDNF showed striking therapeutic effect on completely transected canine SCI model and it is the first time to report such breakthrough in the war with SCI. Undoubtedly, it is a potentially promising therapeutic method for SCI paralysis or other movement disorders caused by neurological diseases in the future. PMID:25522968
PT-symmetric dimer of coupled nonlinear oscillators
NASA Astrophysics Data System (ADS)
Cuevas, Jesús; Kevrekidis, Panayotis G.; Saxena, Avadh; Khare, Avinash
2013-09-01
We provide a systematic analysis of a prototypical nonlinear oscillator system respecting PT symmetry i.e., one of them has gain and the other an equal and opposite amount of loss. Starting from the linear limit of the system, we extend considerations to the nonlinear case for both soft and hard cubic nonlinearities identifying symmetric and antisymmetric breather solutions, as well as symmetry-breaking variants thereof. We propose a reduction of the system to a Schrödinger-type PT-symmetric dimer, whose detailed earlier understanding can explain many of the phenomena observed herein, including the PT phase transition. Nevertheless, there are also significant parametric as well as phenomenological potential differences between the two models and we discuss where these arise and where they are most pronounced. Finally, we also provide examples of the evolution dynamics of the different states in their regimes of instability.
Spatiotemporal localized modes in PT-symmetric optical media
Wang, Yue-Yue; Dai, Chao-Qing Wang, Xiao-Gang
2014-09-15
We firstly obtain spatiotemporal localized mode solutions of a (3+1)-dimensional nonlinear Schrödinger equation in PT-symmetric potentials, and then discuss the linear stability of LMs, which are also tested by means of direct simulations. Moreover, phase switches and transverse power-flow density associated with these localized modes have also been examined. At last, we investigate the dynamical behaviors of spatiotemporal LMs in three kinds of inhomogeneous media. - Highlights: • Spatiotemporal LMs of a (3+1)-dimensional NLSE in PT-symmetric potentials are obtained. • Phase switches and transverse power-flow density of LM are examined. • Dynamical behaviors of LMs in three kinds of inhomogeneous media are studied.
Walking dynamics are symmetric (enough)
Ankaralı, M. Mert; Sefati, Shahin; Madhav, Manu S.; Long, Andrew; Bastian, Amy J.; Cowan, Noah J.
2015-01-01
Many biological phenomena such as locomotion, circadian cycles and breathing are rhythmic in nature and can be modelled as rhythmic dynamical systems. Dynamical systems modelling often involves neglecting certain characteristics of a physical system as a modelling convenience. For example, human locomotion is frequently treated as symmetric about the sagittal plane. In this work, we test this assumption by examining human walking dynamics around the steady state (limit-cycle). Here, we adapt statistical cross-validation in order to examine whether there are statistically significant asymmetries and, even if so, test the consequences of assuming bilateral symmetry anyway. Indeed, we identify significant asymmetries in the dynamics of human walking, but nevertheless show that ignoring these asymmetries results in a more consistent and predictive model. In general, neglecting evident characteristics of a system can be more than a modelling convenience—it can produce a better model.
Open String on Symmetric Product
NASA Astrophysics Data System (ADS)
Fuji, Hiroyuki; Matsuo, Yutaka
We discuss some basic properties of the open string on the symmetric product which is supposed to describe the open string field theory in discrete light-cone quantization (DLCQ). We first derive the consistent twisted boundary conditions for Annulus/Möbius/Klein Bottle diagrams and give the explicit form of the corresponding amplitude. They have the interpretation as the long open (or closed) string amplitude but the world sheet topology viewed from the short string and from the long string is in general different. Boundary (cross-cap) states of the short string are classified into three categories, the boundary (cross-cap) states of the long string and the "joint" state which connects two strings. The partition function has the typical structure of the string field theory in DLCQ. Tadpole condition is also analyzed and gives a reasonable gauge group SO(213).
Super Bloch oscillation in a PT symmetric system
NASA Astrophysics Data System (ADS)
Turker, Z.; Yuce, C.
2016-07-01
Wannier-Stark ladder in a PT symmetric system is generally complex that leads to amplified/damped Bloch oscillation. We show that a non-amplified wave packet oscillation with very large amplitude can be realized in a non-Hermitian tight binding lattice if certain conditions are satisfied. We show that pseudo PT symmetry guarantees the reality of the quasi energy spectrum in our system.
Plastic tension of thin strip with symmetrical cut-outs
NASA Astrophysics Data System (ADS)
Nepershin, Rostislav I.
2016-06-01
Numerical solution of thin strip plane-stress tension with symmetrical cut-outs for Mises rigid-plastic solid is given. Limit plastic state of neck forming along the rigid-plastic boundaries induced by velocity discontinuity is considered. The problem solution can be useful for the material limit plastic formability estimation in the case of biaxial stress tension in complex thin sheet plastic forming technology.
Drift waves in helically symmetric stellarators
Rafiq, T.; Hegna, C.
2005-11-15
The local linear stability of electron drift waves and ion temperature gradient modes (ITG) is investigated in a quasihelically symmetric (QHS) stellarator and a conventional asymmetric (Mirror) stellarator. The geometric details of the different equilibria are emphasized. Eigenvalue equations for the models are derived using the ballooning mode formalism and solved numerically using a standard shooting technique in a fully three-dimensional stellarator configuration. While the eigenfunctions have a similar shape in both magnetic geometries, they are slightly more localized along the field line in the QHS case. The most unstable electron drift modes are strongly localized at the symmetry points (where stellarator symmetry is present) and in the regions where normal curvature is unfavorable and magnitude of the local magnetic shear and magnetic field is minimum. The presence of a large positive local magnetic shear in the bad curvature region is found to be destabilizing. Electron drift modes are found to be more affected by the normal curvature than by the geodesic curvature. The threshold of stability of the ITG modes in terms of {eta}{sub i} is found to be 2/3 in this fluid model consistent with the smallest threshold for toroidal geometry with adiabatic electrons. Optimization to favorable drift wave stability has small field line curvature, short connection lengths, the proper combination of geodesic curvature and local magnetic shear, large values of local magnetic shear, and the compression of flux surfaces in the unfavorable curvature region.
Strong orientational coordinates and orientational order parameters for symmetric objects
NASA Astrophysics Data System (ADS)
Haji-Akbari, Amir; Glotzer, Sharon C.
2015-12-01
Recent advancements in the synthesis of anisotropic macromolecules and nanoparticles have spurred an immense interest in theoretical and computational studies of self-assembly. The cornerstone of such studies is the role of shape in self-assembly and in inducing complex order. The problem of identifying different types of order that can emerge in such systems can, however, be challenging. Here, we revisit the problem of quantifying orientational order in systems of building blocks with non-trivial rotational symmetries. We first propose a systematic way of constructing orientational coordinates for such symmetric building blocks. We call the arising tensorial coordinates strong orientational coordinates (SOCs) as they fully and exclusively specify the orientation of a symmetric object. We then use SOCs to describe and quantify local and global orientational order, and spatiotemporal orientational correlations in systems of symmetric building blocks. The SOCs and the orientational order parameters developed in this work are not only useful in performing and analyzing computer simulations of symmetric molecules or particles, but can also be utilized for the efficient storage of rotational information in long trajectories of evolving many-body systems.
Begum, Samiyara; Subramanian, Ranga
2016-01-01
The structural features, spectroscopic properties, and interaction energies of the linear proton-bound complexes of OCH(+) and its sulfur analog SCH(+) with N2 were investigated using the high-level ab initio methods MP2 and CCSD(T) as well as density functional theory with the aug-cc-pVXZ (X = D, T) basis sets. The rotational constants along with the vibrational frequencies of the cation-molecule complexes are reported here. A comparison of the interaction energies of the OCH(+)-N2 and SCH(+)-N2 complexes with those of the OCH(+)-CO and OCH(+)-OC complexes was also performed. The energies of all the complexes were determined at the complete basis set (CBS) limit. CS shows higher proton affinity at the C site than CO does, so the complex OCH(+)-N2 is relatively strongly bound and has a higher interaction energy than the SCH(+)-N2 complex. Symmetry-adapted perturbation theory (SAPT) was used to decompose the total interaction energies of the complexes into the attractive electrostatic interaction energy (E elst), induction energy (E ind), dispersion energy (E disp), and repulsive exchange energy (E exch). We found that the ratio of E ind to E disp is large for these linear proton-bound complexes, meaning that inductive effects are favored in these complexes. The bonding characteristics of the linear complexes were elucidated using natural bond orbital (NBO) theory. NBO analysis showed that the attractive interaction is caused by NBO charge transfer from the lone pair on N to the σ*(C-H) antibonding orbital in XCH(+)-N2 (X = O, S). The quantum theory of atoms in molecules (QTAIM) was used to analyze the strengths of the various bonds within and between the cation and molecule in each of these proton-bound complexes in terms of the electron density at bond critical points (BCP). Graphical Abstract Linear proton-bound complexes of OCH(+)-N2 and SCH(+)-N2. In these complexes, inductive effect is favored over dispersive effect. The attractive interaction is the NBO
Xu, Songchen; Magoon, Yitzhak; Reinig, Regina R.; Schmidt, Bradley M.; Ellern, Arkady; Sadow, Aaron D.
2015-07-16
A bulky, optically active monoanionic scorpionate ligand, tris(4S-isopropyl-5,5-dimethyl-2-oxazolinyl)phenylborate (To^{P*}), is synthesized from the naturally occurring amino acid l-valine as its lithium salt, Li[To^{P*}] (1). That compound is readily converted to the thallium complex Tl[To^{P*}] (2) and to the acid derivative H[To^{P*}] (3). Group 7 tricarbonyl complexes To^{P*}M(CO)_{3} (M = Mn (4), Re (5)) are synthesized by the reaction of MBr(CO)_{5} and Li[To^{P*}] and are crystallographically characterized. The ν_{CO} bands in their infrared spectra indicate that π back-donation in the rhenium compounds is greater with To^{P*} than with non-methylated tris(4S-isopropyl-2-oxazolinyl)phenylborate (To^{P}). The reaction of H[To^{P*}] and ZnEt_{2} gives To^{P*}ZnEt (6), while To^{P*}ZnCl (7) is synthesized from Li[To^{P*}] and ZnCl_{2}. The reaction of To^{P*}ZnCl and KOtBu followed by addition of PhSiH_{3} provides the zinc hydride complex To^{P*}ZnH (8). In this study, compound 8 is the first example of a crystallographically characterized optically active zinc hydride. We tested its catalytic reactivity in the cross-dehydrocoupling of silanes and alcohols, which provided Si-chiral silanes with moderate enantioselectivity.
Slowly decaying waves on spherically symmetric spacetimes and ultracompact neutron stars
NASA Astrophysics Data System (ADS)
Keir, Joe
2016-07-01
We prove that, in a class of spherically symmetric spacetimes exhibiting stable trapping of null geodesics, linear waves cannot (uniformly) decay faster than logarithmically. When these linear waves are treated as a model for nonlinear perturbations, this slow decay is highly suggestive of nonlinear instability. We also prove that, in a large class of asymptotically flat, spherically symmetric spacetimes, logarithmic decay actually holds as a uniform upper bound. In the presence of stable trapping, this result is therefore the best one can obtain. In addition, we provide an application of these results to ultracompact neutron stars, suggesting that all stars with r\\lt 3M might be unstable.
NASA Astrophysics Data System (ADS)
Sidorin, Anatoly
2010-01-01
In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.
Sidorin, Anatoly
2010-01-05
In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.
Continuity and Separation in Symmetric Topologies
ERIC Educational Resources Information Center
Harris, J.; Lynch, M.
2007-01-01
In this note, it is shown that in a symmetric topological space, the pairs of sets separated by the topology determine the topology itself. It is then shown that when the codomain is symmetric, functions which separate only those pairs of sets that are already separated are continuous, generalizing a result found by M. Lynch.
The generalized sidelobe canceller based on quaternion widely linear processing.
Tao, Jian-wu; Chang, Wen-xiu
2014-01-01
We investigate the problem of quaternion beamforming based on widely linear processing. First, a quaternion model of linear symmetric array with two-component electromagnetic (EM) vector sensors is presented. Based on array's quaternion model, we propose the general expression of a quaternion semiwidely linear (QSWL) beamformer. Unlike the complex widely linear beamformer, the QSWL beamformer is based on the simultaneous operation on the quaternion vector, which is composed of two jointly proper complex vectors, and its involution counterpart. Second, we propose a useful implementation of QSWL beamformer, that is, QSWL generalized sidelobe canceller (GSC), and derive the simple expressions of the weight vectors. The QSWL GSC consists of two-stage beamformers. By designing the weight vectors of two-stage beamformers, the interference is completely canceled in the output of QSWL GSC and the desired signal is not distorted. We derive the array's gain expression and analyze the performance of the QSWL GSC in the presence of one type of interference. The advantage of QSWL GSC is that the main beam can always point to the desired signal's direction and the robustness to DOA mismatch is improved. Finally, simulations are used to verify the performance of the proposed QSWL GSC. PMID:24955425
The Generalized Sidelobe Canceller Based on Quaternion Widely Linear Processing
Tao, Jian-wu; Chang, Wen-xiu
2014-01-01
We investigate the problem of quaternion beamforming based on widely linear processing. First, a quaternion model of linear symmetric array with two-component electromagnetic (EM) vector sensors is presented. Based on array's quaternion model, we propose the general expression of a quaternion semiwidely linear (QSWL) beamformer. Unlike the complex widely linear beamformer, the QSWL beamformer is based on the simultaneous operation on the quaternion vector, which is composed of two jointly proper complex vectors, and its involution counterpart. Second, we propose a useful implementation of QSWL beamformer, that is, QSWL generalized sidelobe canceller (GSC), and derive the simple expressions of the weight vectors. The QSWL GSC consists of two-stage beamformers. By designing the weight vectors of two-stage beamformers, the interference is completely canceled in the output of QSWL GSC and the desired signal is not distorted. We derive the array's gain expression and analyze the performance of the QSWL GSC in the presence of one type of interference. The advantage of QSWL GSC is that the main beam can always point to the desired signal's direction and the robustness to DOA mismatch is improved. Finally, simulations are used to verify the performance of the proposed QSWL GSC. PMID:24955425
Glaser, Thorsten; Heidemeier, Maik; Krickemeyer, Erich; Bögge, Hartmut; Stammler, Anja; Fröhlich, Roland; Bill, Eckhard; Schnack, Jürgen
2009-01-19
The reaction of the tris(tetradentate) triplesalen ligand H6talen(t-Bu2), which provides three salen-like coordination environments bridged in a meta-phenylene arrangement by a phloroglucinol backbone, with Mn(II) salts under aerobic conditions affords, in situ, the trinuclear Mn(III) triplesalen complexes [(talen(t-Bu2)){Mn(III)(solv)n}3]3+. These can be used as molecular building blocks in the reaction with [Fe(CN)6]3- as a hexaconnector to form the heptanuclear complex [{(talen(t-Bu2)){Mn(III)(solv)n}3}2{Fe(III)(CN)6}]3+ ([Mn(III)6Fe(III)]3+). The regular ligand folding observed in the trinuclear triplesalen complexes preorganizes the three metal ions for the reaction of three facially coordinated nitrogen atoms of a hexacyanometallate and provides a driving force for the formation of the heptanuclear complexes [M(t)6M(c)]n+ (M(t), terminal metal ion of the triplesalen building block; M(c), central metal ion of the hexacyanometallate) by molecular recognition, as has already been demonstrated for the single-molecule magnet [Mn(III)6Cr(III)]3+. [{(talen(t-Bu2))(Mn(III)(MeOH))3}2{Fe(III)(CN)6}][Fe(III)(CN)6] (1) was characterized by single-crystal X-ray diffraction, FTIR, ESI- and MALDI-TOF-MS, Mössbauer spectroscopy, and magnetic measurements. The molecular structure of [Mn(III)6Fe(III)]3+ is overall identical to that of [Mn(III)6Cr(III)]3+ but exhibits a different ligand folding of the Mn(III) salen subunits with a helical distortion. The Mössbauer spectra demonstrate a stronger distortion from octahedral symmetry for the central [Fe(CN)6]3- in comparison to the ionic [Fe(CN)6]3-. At low temperatures in zero magnetic fields, the Mössbauer spectra show magnetic splittings indicative of slow relaxation of the magnetization on the Mössbauer time scale. Variable-temperature-variable-field and mu(eff) versus T magnetic data have been analyzed in detail by full-matrix diagonalization of the appropriate spin-Hamiltonian, consisting of isotropic exchange, zero
Baryon symmetric big bang cosmology
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1978-01-01
Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.
Heat conduction of symmetric lattices
NASA Astrophysics Data System (ADS)
Nie, Linru; Yu, Lilong; Zheng, Zhigang; Shu, Changzheng
2013-06-01
Heat conduction of symmetric Frenkel-Kontorova (FK) lattices with a coupling displacement was investigated. Through simplifying the model, we derived analytical expression of thermal current of the system in the overdamped case. By means of numerical calculations, the results indicate that: (i) As the coupling displacement d equals to zero, temperature oscillations of the heat baths linked with the lattices can control magnitude and direction of the thermal current; (ii) Whether there is a temperature bias or not, the thermal current oscillates periodically with d, whose amplitudes become greater and greater; (iii) As d is not equal to zero, the thermal current monotonically both increases and decreases with temperature oscillation amplitude of the heat baths, dependent on values of d; (iv) The coupling displacement also induces nonmonotonic behaviors of the thermal current vs spring constant of the lattice and coupling strength of the lattices; (v) These dynamical behaviors come from interaction of the coupling displacement with periodic potential of the FK lattices. Our results have the implication that the coupling displacement plays a crucial role in the control of heat current.
Parity-time-symmetric teleportation
NASA Astrophysics Data System (ADS)
Ra'di, Y.; Sounas, D. L.; Alù, A.; Tretyakov, S. A.
2016-06-01
We show that electromagnetic plane waves can be fully "teleported" through thin, nearly fully reflective sheets, assisted by a pair of parity-time-symmetric lossy and active sheets in front and behind the screen. The proposed structure is able to almost perfectly absorb incident waves over a wide range of frequency and incidence angles, while waves having a specific frequency and incidence angle are replicated behind the structure in synchronization with the input signal. It is shown that the proposed structure can be designed to teleport waves at any desired frequency and incidence angle. Furthermore, we generalize the proposed concept to the case of teleportation of electromagnetic waves over electrically long distances, enabling full absorption at one surface and the synthesis of the same signal at another point located electrically far away from the first surface. The physical principle behind this selective teleportation is discussed, and similarities and differences with tunneling and cloaking concepts based on PT symmetry are investigated. From the application point of view, the proposed structure works as an extremely selective filter, both in frequency and spatial domains.
Recursive partitioned inversion of large (1500 x 1500) symmetric matrices
NASA Technical Reports Server (NTRS)
Putney, B. H.; Brownd, J. E.; Gomez, R. A.
1976-01-01
A recursive algorithm was designed to invert large, dense, symmetric, positive definite matrices using small amounts of computer core, i.e., a small fraction of the core needed to store the complete matrix. The described algorithm is a generalized Gaussian elimination technique. Other algorithms are also discussed for the Cholesky decomposition and step inversion techniques. The purpose of the inversion algorithm is to solve large linear systems of normal equations generated by working geodetic problems. The algorithm was incorporated into a computer program called SOLVE. In the past the SOLVE program has been used in obtaining solutions published as the Goddard earth models.
Static spherically symmetric solutions in f(G) gravity
NASA Astrophysics Data System (ADS)
Sharif, M.; Fatima, H. Ismat
2016-05-01
We investigate interior solutions for static spherically symmetric metric in the background of f(G) gravity. We use the technique of conformal Killing motions to solve the field equations with both isotropic and anisotropic matter distributions. These solutions are then used to obtain density, radial and tangential pressures for power-law f(G) model. For anisotropic case, we assume a linear equation-of-state and investigate solutions for the equation-of-state parameter ω = ‑1.5. We check physical validity of the solutions through energy conditions and also examine its stability. Finally, we study equilibrium configuration using Tolman-Oppenheimer-Volkoff equation.
Using scaling to compute moments of inertia of symmetric objects
NASA Astrophysics Data System (ADS)
Ricardo, Bernard
2015-09-01
Moment of inertia is a very important property in the study of rotational mechanics. The concept of moment of inertia is analogous to mass in the linear motion, and its calculation is routinely done through integration. This paper provides an alternative way to compute moments of inertia of rigid bodies of regular shape using their symmetrical property. This approach will be very useful and preferred for teaching rotational mechanics at the undergraduate level, as it does not require the knowledge or the application of calculus. The seven examples provided in this paper will help readers to understand clearly how to use the method.
Thermoelastic analysis of laminated plates. I - Symmetric specially orthotropic laminates
Wu, C.H.; Tauchert, T.R.
1980-04-01
Thermally induced deformations and stress resultants in symmetric laminated plates are analyzed. The method of M. Levy is used to study the transverse bending of a specially orthotropic laminate having two simply supported edges and subject to a temperature distribution that does not vary in a direction parallel to the simple supports. A solution is also obtained for the problem of in-plane stretching of the plate middle surface caused by a general three-dimensional temperature field. As an illustrative example, the thermoelastic response of a unidirectionally fiber-reinforced plate to a temperature variation that is linear in the thickness direction is computed.
Stability of spherically symmetric solutions in modified theories of gravity
Seifert, Michael D.
2007-09-15
In recent years, a number of alternative theories of gravity have been proposed as possible resolutions of certain cosmological problems or as toy models for possible but heretofore unobserved effects. However, the implications of such theories for the stability of structures such as stars have not been fully investigated. We use our 'generalized variational principle', described in a previous work [M. D. Seifert and R. M. Wald, Phys. Rev. D 75, 084029 (2007)], to analyze the stability of static spherically symmetric solutions to spherically symmetric perturbations in three such alternative theories: Carroll et al.'s f(R) gravity, Jacobson and Mattingly's 'Einstein-aether theory', and Bekenstein's TeVeS theory. We find that in the presence of matter, f(R) gravity is highly unstable; that the stability conditions for spherically symmetric curved vacuum Einstein-aether backgrounds are the same as those for linearized stability about flat spacetime, with one exceptional case; and that the 'kinetic terms' of vacuum TeVeS theory are indefinite in a curved background, leading to an instability.
Continuous-time symmetric Hopfield nets are computationally universal.
Síma, Jirí; Orponen, Pekka
2003-03-01
We establish a fundamental result in the theory of computation by continuous-time dynamical systems by showing that systems corresponding to so-called continuous-time symmetric Hopfield nets are capable of general computation. As is well known, such networks have very constrained Lyapunov-function controlled dynamics. Nevertheless, we show that they are universal and efficient computational devices, in the sense that any convergent synchronous fully parallel computation by a recurrent network of n discrete-time binary neurons, with in general asymmetric coupling weights, can be simulated by a symmetric continuous-time Hopfield net containing only 18n + 7 units employing the saturated-linear activation function. Moreover, if the asymmetric network has maximum integer weight size w(max) and converges in discrete time t*, then the corresponding Hopfield net can be designed to operate in continuous time Theta(t*/epsilon) for any epsilon > 0 such that w(max)2(12n) symmetric Hopfield nets. PMID:12620163
Observation of optical solitons in PT-symmetric lattices
Wimmer, Martin; Regensburger, Alois; Miri, Mohammad-Ali; Bersch, Christoph; Christodoulides, Demetrios N.; Peschel, Ulf
2015-01-01
Controlling light transport in nonlinear active environments is a topic of considerable interest in the field of optics. In such complex arrangements, of particular importance is to devise strategies to subdue chaotic behaviour even in the presence of gain/loss and nonlinearity, which often assume adversarial roles. Quite recently, notions of parity-time (PT) symmetry have been suggested in photonic settings as a means to enforce stable energy flow in platforms that simultaneously employ both amplification and attenuation. Here we report the experimental observation of optical solitons in PT-symmetric lattices. Unlike other non-conservative nonlinear arrangements where self-trapped states appear as fixed points in the parameter space of the governing equations, discrete PT solitons form a continuous parametric family of solutions. The possibility of synthesizing PT-symmetric saturable absorbers, where a nonlinear wave finds a lossless path through an otherwise absorptive system is also demonstrated. PMID:26215165
NASA Astrophysics Data System (ADS)
Laurent, Oscar; Zeh, Armin
2015-11-01
Combined U-Pb and Lu-Hf isotope data from zircon populations are widely used to constrain Hadean-Archean crustal evolution. Linear Hf isotope-age arrays are interpreted to reflect the protracted, internal reworking of crust derived from the (depleted) mantle during a short-lived magmatic event, and related 176Lu/177Hf ratios are used to constrain the composition of the reworked crustal reservoir. Results of this study, however, indicate that Hf isotope-age arrays can also result from complex geodynamic processes and crust-mantle interactions, as shown by U-Pb and Lu-Hf isotope analyses of zircons from well characterized granitoids of the Pietersburg Block (PB), northern Kaapvaal Craton (South Africa). Apart from scarce remnants of Paleoarchean crust, most granitoids of the PB with ages between 2.94 and 2.05 Ga (n = 32) define a straight Hf isotope-age array with low 176Lu/177Hf of 0.0022, although they show a wide compositional range, were derived from various sources and emplaced successively in different geodynamic settings. The crustal evolution occurred in five stages: (I) predominately mafic crust formation in an intra-oceanic environment (3.4-3.0 Ga); (II) voluminous TTG crust formation in an early accretionary orogen (3.0-2.92 Ga); (III) internal TTG crust reworking and subduction of TTG-derived sediments in an Andean-type setting (2.89-2.75 Ga); (IV) (post-)collisional high-K magmatism from both mantle and crustal sources (2.71-2.67 Ga); and (V) alkaline magmatism in an intra-cratonic environment (2.05-2.03 Ga). The inferred array results from voluminous TTG crust formation during stage II, and involvement of this crust during all subsequent stages by two different processes: (i) internal crust reworking through both partial melting and assimilation at 2.89-2.75 Ga, leading to the formation of biotite granites coeval with minor TTGs, and (ii) subduction of TTG-derived sediments underneath the PB, causing enrichment of the mantle that subsequently became
Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial
NASA Astrophysics Data System (ADS)
Shi, J. H.; Zhu, Z.; Ma, H. F.; Jiang, W. X.; Cui, T. J.
2012-10-01
We demonstrate the coexistence of two tunable symmetric and asymmetric resonances in a metamaterial composed of asymmetrical split-rings (ASRs) patterned on a dielectric layer numerically and experimentally. The full-wave simulation and measurement results demonstrate that the metamaterial reveals a symmetric cross-polarization transmission band with a ripple-free peak and asymmetric co-polarization transmission bands characterized by trapped-mode resonances. Both symmetric and asymmetric resonances can be easily tuned via the incident angle of electromagnetic waves. The resonant excitation and coupling of the electric and magnetic dipole moments contribute to the conversion of two orthogonal linear polarizations. The ASR metamaterial shows a directionally asymmetric transmission for both linearly and circularly polarized waves for large angles of incidence. The proposed ASR metamaterial is of importance to develop novel metamaterial-based devices.
ERIC Educational Resources Information Center
Walkiewicz, T. A.; Newby, N. D., Jr.
1972-01-01
A discussion of linear collisions between two or three objects is related to a junior-level course in analytical mechanics. The theoretical discussion uses a geometrical approach that treats elastic and inelastic collisions from a unified point of view. Experiments with a linear air track are described. (Author/TS)
An application of eigenspace methods to symmetric flutter suppression
NASA Technical Reports Server (NTRS)
Fennell, Robert E.
1988-01-01
An eigenspace assignment approach to the design of parameter insensitive control laws for linear multivariable systems is presented. The control design scheme utilizes flexibility in eigenvector assignments to reduce control system sensitivity to changes in system parameters. The methods involve use of the singular value decomposition to provide an exact description of allowable eigenvectors in terms of a minimum number of design parameters. In a design example, the methods are applied to the problem of symmetric flutter suppression in an aeroelastic vehicle. In this example the flutter mode is sensitive to changes in dynamic pressure and eigenspace methods are used to enhance the performance of a stabilizing minimum energy/linear quadratic regulator controller and associated observer. Results indicate that the methods provide feedback control laws that make stability of the nominal closed loop systems insensitive to changes in dynamic pressure.
Gaussian Multiplicative Chaos for Symmetric Isotropic Matrices
NASA Astrophysics Data System (ADS)
Chevillard, Laurent; Rhodes, Rémi; Vargas, Vincent
2013-02-01
Motivated by isotropic fully developed turbulence, we define a theory of symmetric matrix valued isotropic Gaussian multiplicative chaos. Our construction extends the scalar theory developed by J.P. Kahane in 1985.
Origin of symmetric PMNS and CKM matrices
NASA Astrophysics Data System (ADS)
Rodejohann, Werner; Xu, Xun-Jie
2015-03-01
The Pontecorvo-Maki-Nakagawa-Sakata and Cabibbo-Kobayashi-Maskawa matrices are phenomenologically close to symmetric, and a symmetric form could be used as zeroth-order approximation for both matrices. We study the possible theoretical origin of this feature in flavor symmetry models. We identify necessary geometric properties of discrete flavor symmetry groups that can lead to symmetric mixing matrices. Those properties are actually very common in discrete groups such as A4 , S4 , or Δ (96 ) . As an application of our theorem, we generate a symmetric lepton mixing scheme with θ12=θ23=36.21 ° ; θ13=12.20 ° , and δ =0 , realized with the group Δ (96 ) .
Yan, Zhenya; Chen, Yong; Wen, Zichao
2016-08-01
We report the bright solitons of the generalized Gross-Pitaevskii (GP) equation with some types of physically relevant parity-time- ( PT-) and non- PT-symmetric potentials. We find that the constant momentum coefficient Γ can modulate the linear stability and complicated transverse power-flows (not always from the gain toward loss) of nonlinear modes. However, the varying momentum coefficient Γ(x) can modulate both unbroken linear PT-symmetric phases and stability of nonlinear modes. Particularly, the nonlinearity can excite the unstable linear mode (i.e., broken linear PT-symmetric phase) to stable nonlinear modes. Moreover, we also find stable bright solitons in the presence of non- PT-symmetric harmonic-Gaussian potential. The interactions of two bright solitons are also illustrated in PT-symmetric potentials. Finally, we consider nonlinear modes and transverse power-flows in the three-dimensional (3D) GP equation with the generalized PT-symmetric Scarff-II potential. PMID:27586605
Scattering properties of PT-symmetric objects
NASA Astrophysics Data System (ADS)
Miri, Mohammad-Ali; Eftekhar, Mohammad Amin; Facao, Margarida; Abouraddy, Ayman F.; Bakry, Ahmed; Razvi, Mir A. N.; Alshahrie, Ahmed; Alù, Andrea; Christodoulides, Demetrios N.
2016-07-01
We investigate the scattering response of parity-time (PT) symmetric structures. We show that, due to the local flow of energy between gain and loss regions, such systems can deflect light in unusual ways, as a function of the gain/loss contrast. Such structures are highly anisotropic and their scattering patterns can drastically change as a function of the angle of incidence. In addition, we derive a modified optical theorem for PT-symmetric scattering systems, and discuss its ramifications.
Lax Operator for Macdonald Symmetric Functions
NASA Astrophysics Data System (ADS)
Nazarov, Maxim; Sklyanin, Evgeny
2015-07-01
Using the Lax operator formalism, we construct a family of pairwise commuting operators such that the Macdonald symmetric functions of infinitely many variables and of two parameters q, t are their eigenfunctions. We express our operators in terms of the Hall-Littlewood symmetric functions of the variables and of the parameter t corresponding to the partitions with one part only. Our expression is based on the notion of Baker-Akhiezer function.
Image registration under symmetric conditions: novel approach
NASA Astrophysics Data System (ADS)
Duraisamy, Prakash; Yousef, Amr; Buckles, Bill; Jackson, Steve
2015-03-01
Registering the 2D images is one of the important pre-processing steps in many computer vision applications like 3D reconstruction, building panoramic images. Contemporary registration algorithm like SIFT (Scale Invariant Feature transform) was not quite success in registering the images under symmetric conditions and under poor illuminations using DoF (Difference of Gaussian) features. In this paper, we introduced a novel approach for registering the images under symmetric conditions.
Symmetric states: Their nonlocality and entanglement
Wang, Zizhu; Markham, Damian
2014-12-04
The nonlocality of permutation symmetric states of qubits is shown via an extension of the Hardy paradox and the extension of the associated inequality. This is achieved by using the Majorana representation, which is also a powerful tool in the study of entanglement properties of symmetric states. Through the Majorana representation, different nonlocal properties can be linked to different entanglement properties of a state, which is useful in determining the usefulness of different states in different quantum information processing tasks.
Stoncius, Sigitas; Butkus, Eugenius; Zilinskas, Albinas; Larsson, Krister; Ohrström, Lars; Berg, Ulf; Wärnmark, Kenneth
2004-08-01
The synthesis of a C2-symmetric cleft molecule 2 based on the fused framework between bicyclo[3.3.1]nonane and 4-oxo-5-azaindole, incorporating a self-complementary hydrogen-bonding motif, in both racemic and enantiomerically pure forms is reported. This cleft molecule is reminiscent of analogues of Tröger's base though with different cleft dimensions and tilt angles. The framework of 2 provides a building block for the construction of self-assembled hydrogen-bonded supramolecular structures. The solid-state structure of 2 is highly influenced by the limited solubility of (+/-)-2 and (-)-2. The solvents interact with the potential hydrogen-bonding motifs of (+/-)-2 and (-)-2, forming different three-dimensional structures as revealed by X-ray diffraction analysis. In the solid state (+/-)-(2)2 x 5DMF forms hydrogen-bonded pleated band structures that build up three-dimensional pens between adjacent bands in which two molecules of DMF are trapped. In contrast, the aggregate obtained from (-)-2, (-)-2 x 2AcOH, showed infinite bands of complex constitution. PMID:15287761
Quasi-axially symmetric stellarators
Garabedian, Paul R.
1998-01-01
Confinement of a plasma for controlled thermonuclear fusion is studied numerically. Toroidal equilibria are considered, with an emphasis on the Modular Helias-like Heliac 2 (MHH2), which is a stellarator of low aspect ratio with just two field periods surrounded by 16 modular coils. The geometry is fully three-dimensional, but there is an axial symmetry of the magnetic structure that is calculated to give confinement competitive with that in circular tokamaks. Additional vertical and toroidal field coils, together with a current drive, provide the flexibility and the control of rotational transform necessary for a successful experiment. An MHH3 device with three field periods and comparable quasi-axial symmetry is presented, too, and because of reversed shear, its physical properties may be better. Variational analysis of equilibrium and stability is shown to give a more reliable prediction of performance for these stellarators than linearized or local theories that suffer from a failure of differentiability and convergence. PMID:9707544
Quasi-axially symmetric stellarators.
Garabedian, P R
1998-08-18
Confinement of a plasma for controlled thermonuclear fusion is studied numerically. Toroidal equilibria are considered, with an emphasis on the Modular Helias-like Heliac 2 (MHH2), which is a stellarator of low aspect ratio with just two field periods surrounded by 16 modular coils. The geometry is fully three-dimensional, but there is an axial symmetry of the magnetic structure that is calculated to give confinement competitive with that in circular tokamaks. Additional vertical and toroidal field coils, together with a current drive, provide the flexibility and the control of rotational transform necessary for a successful experiment. An MHH3 device with three field periods and comparable quasi-axial symmetry is presented, too, and because of reversed shear, its physical properties may be better. Variational analysis of equilibrium and stability is shown to give a more reliable prediction of performance for these stellarators than linearized or local theories that suffer from a failure of differentiability and convergence. PMID:9707544
The Stark Effect in Linear Potentials
ERIC Educational Resources Information Center
Robinett, R. W.
2010-01-01
We examine the Stark effect (the second-order shifts in the energy spectrum due to an external constant force) for two one-dimensional model quantum mechanical systems described by linear potentials, the so-called quantum bouncer (defined by V(z) = Fz for z greater than 0 and V(z) = [infinity] for z less than 0) and the symmetric linear potential…
A dimer PT -symmetric model simulated in GaAs/AlGaAs quantum wells
NASA Astrophysics Data System (ADS)
Meng, Li-Chen; Zhang, Wen-Jing; Liu, Jibing; Xie, Xiao-Tao
2016-05-01
We perform the possibility to generate a dimer PT -symmetric model based on a double lambda four-level system in GaAs/AlGaAs quantum wells with biexcitonic transitions. By presenting the detuning management and modulating the Rabi frequencies of the two strong coupling laser fields, we show that the PT -symmetric model can be realized by the spatial evolution of the weak probe laser and four-wave mixing (FWM)-generated field along the propagation direction. The two weak fields in our model may be used to simulate two laser propagating in two PT -symmetric parallel waveguides. The diffraction effect also can be studied in some conditions. Our scheme offers two advantages: the complex refractive index is controlled by the strong coupling fields; the symmetry energy exchange between a dimer PT -symmetric structure is guaranteed by the four-wave mixing process. The present investigation may provide research opportunities in optical experiments.
Computational design of a self-assembling symmetrical β-propeller protein
Voet, Arnout R. D.; Noguchi, Hiroki; Addy, Christine; Simoncini, David; Terada, Daiki; Unzai, Satoru; Park, Sam-Yong; Zhang, Kam Y. J.; Tame, Jeremy R. H.
2014-01-01
The modular structure of many protein families, such as β-propeller proteins, strongly implies that duplication played an important role in their evolution, leading to highly symmetrical intermediate forms. Previous attempts to create perfectly symmetrical propeller proteins have failed, however. We have therefore developed a new and rapid computational approach to design such proteins. As a test case, we have created a sixfold symmetrical β-propeller protein and experimentally validated the structure using X-ray crystallography. Each blade consists of 42 residues. Proteins carrying 2–10 identical blades were also expressed and purified. Two or three tandem blades assemble to recreate the highly stable sixfold symmetrical architecture, consistent with the duplication and fusion theory. The other proteins produce different monodisperse complexes, up to 42 blades (180 kDa) in size, which self-assemble according to simple symmetry rules. Our procedure is suitable for creating nano-building blocks from different protein templates of desired symmetry. PMID:25288768
Feijoo, David; Zezyulin, Dmitry A; Konotop, Vladimir V
2015-12-01
We analyze a system of three two-dimensional nonlinear Schrödinger equations coupled by linear terms and with the cubic-quintic (focusing-defocusing) nonlinearity. We consider two versions of the model: conservative and parity-time (PT) symmetric. These models describe triple-core nonlinear optical waveguides, with balanced gain and losses in the PT-symmetric case. We obtain families of soliton solutions and discuss their stability. The latter study is performed using a linear stability analysis and checked with direct numerical simulations of the evolutional system of equations. Stable solitons are found in the conservative and PT-symmetric cases. Interactions and collisions between the conservative and PT-symmetric solitons are briefly investigated, as well. PMID:26764776
Christofilos, N.C.; Polk, I.J.
1959-02-17
Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.
The Topology of Three-Dimensional Symmetric Tensor Fields
NASA Technical Reports Server (NTRS)
Lavin, Yingmei; Levy, Yuval; Hesselink, Lambertus
1994-01-01
We study the topology of 3-D symmetric tensor fields. The goal is to represent their complex structure by a simple set of carefully chosen points and lines analogous to vector field topology. The basic constituents of tensor topology are the degenerate points, or points where eigenvalues are equal to each other. First, we introduce a new method for locating 3-D degenerate points. We then extract the topological skeletons of the eigenvector fields and use them for a compact, comprehensive description of the tensor field. Finally, we demonstrate the use of tensor field topology for the interpretation of the two-force Boussinesq problem.
A Symmetrical Interpretation of the Klein-Gordon Equation
NASA Astrophysics Data System (ADS)
Heaney, Michael B.
2013-06-01
This paper presents a new Symmetrical Interpretation (SI) of relativistic quantum mechanics which postulates: quantum mechanics is a theory about complete experiments, not particles; a complete experiment is maximally described by a complex transition amplitude density; and this transition amplitude density never collapses. This SI is compared to the Copenhagen Interpretation (CI) for the analysis of Einstein's bubble experiment. This SI makes several experimentally testable predictions that differ from the CI, solves one part of the measurement problem, resolves some inconsistencies of the CI, and gives intuitive explanations of some previously mysterious quantum effects.
NASA Astrophysics Data System (ADS)
West, Carl T.; Kottos, Tsampikos; Prosen, Tomaž
2010-02-01
We study a new class of chaotic systems with dynamical localization, where gain or loss mechanisms break the Hermiticity, while allowing for parity-time (PT) symmetry. For a value γPT of the gain or loss parameter the spectrum undergoes a spontaneous phase transition from real (exact phase) to complex values (broken phase). We develop a one parameter scaling theory for γPT, and show that chaos assists the exact PT phase. Our results have applications to the design of optical elements with PT symmetry.
Architecture of the symmetric core of the nuclear pore.
Lin, Daniel H; Stuwe, Tobias; Schilbach, Sandra; Rundlet, Emily J; Perriches, Thibaud; Mobbs, George; Fan, Yanbin; Thierbach, Karsten; Huber, Ferdinand M; Collins, Leslie N; Davenport, Andrew M; Jeon, Young E; Hoelz, André
2016-04-15
The nuclear pore complex (NPC) controls the transport of macromolecules between the nucleus and cytoplasm, but its molecular architecture has thus far remained poorly defined. We biochemically reconstituted NPC core protomers and elucidated the underlying protein-protein interaction network. Flexible linker sequences, rather than interactions between the structured core scaffold nucleoporins, mediate the assembly of the inner ring complex and its attachment to the NPC coat. X-ray crystallographic analysis of these scaffold nucleoporins revealed the molecular details of their interactions with the flexible linker sequences and enabled construction of full-length atomic structures. By docking these structures into the cryoelectron tomographic reconstruction of the intact human NPC and validating their placement with our nucleoporin interactome, we built a composite structure of the NPC symmetric core that contains ~320,000 residues and accounts for ~56 megadaltons of the NPC's structured mass. Our approach provides a paradigm for the structure determination of similarly complex macromolecular assemblies. PMID:27081075
Symmetric Galerkin boundary formulations employing curved elements
NASA Technical Reports Server (NTRS)
Kane, J. H.; Balakrishna, C.
1993-01-01
Accounts of the symmetric Galerkin approach to boundary element analysis (BEA) have recently been published. This paper attempts to add to the understanding of this method by addressing a series of fundamental issues associated with its potential computational efficiency. A new symmetric Galerkin theoretical formulation for both the (harmonic) heat conduction and the (biharmonic) elasticity problem that employs regularized singular and hypersingular boundary integral equations (BIEs) is presented. The novel use of regularized BIEs in the Galerkin context is shown to allow straightforward incorporation of curved, isoparametric elements. A symmetric reusable intrinsic sample point (RISP) numerical integration algorithm is shown to produce a Galerkin (i.e., double) integration strategy that is competitive with its counterpart (i.e., singular) integration procedure in the collocation BEA approach when the time saved in the symmetric equation solution phase is also taken into account. This new formulation is shown to be capable of employing hypersingular BIEs while obviating the requirement of C 1 continuity, a fact that allows the employment of the popular continuous element technology. The behavior of the symmetric Galerkin BEA method with regard to both direct and iterative equation solution operations is also addressed. A series of example problems are presented to quantify the performance of this symmetric approach, relative to the more conventional unsymmetric BEA, in terms of both accuracy and efficiency. It is concluded that appropriate implementations of the symmetric Galerkin approach to BEA indeed have the potential to be competitive with, if not superior to, collocation-based BEA, for large-scale problems.
Communication-avoiding symmetric-indefinite factorization
Ballard, Grey Malone; Becker, Dulcenia; Demmel, James; Dongarra, Jack; Druinsky, Alex; Peled, Inon; Schwartz, Oded; Toledo, Sivan; Yamazaki, Ichitaro
2014-11-13
We describe and analyze a novel symmetric triangular factorization algorithm. The algorithm is essentially a block version of Aasen's triangular tridiagonalization. It factors a dense symmetric matrix A as the product A=PLTL^{T}P^{T} where P is a permutation matrix, L is lower triangular, and T is block tridiagonal and banded. The algorithm is the first symmetric-indefinite communication-avoiding factorization: it performs an asymptotically optimal amount of communication in a two-level memory hierarchy for almost any cache-line size. Adaptations of the algorithm to parallel computers are likely to be communication efficient as well; one such adaptation has been recently published. As a result, the current paper describes the algorithm, proves that it is numerically stable, and proves that it is communication optimal.
Communication-avoiding symmetric-indefinite factorization
Ballard, Grey Malone; Becker, Dulcenia; Demmel, James; Dongarra, Jack; Druinsky, Alex; Peled, Inon; Schwartz, Oded; Toledo, Sivan; Yamazaki, Ichitaro
2014-11-13
We describe and analyze a novel symmetric triangular factorization algorithm. The algorithm is essentially a block version of Aasen's triangular tridiagonalization. It factors a dense symmetric matrix A as the product A=PLTLTPT where P is a permutation matrix, L is lower triangular, and T is block tridiagonal and banded. The algorithm is the first symmetric-indefinite communication-avoiding factorization: it performs an asymptotically optimal amount of communication in a two-level memory hierarchy for almost any cache-line size. Adaptations of the algorithm to parallel computers are likely to be communication efficient as well; one such adaptation has been recently published. As a result,more » the current paper describes the algorithm, proves that it is numerically stable, and proves that it is communication optimal.« less
The Robust Assembly of Small Symmetric Nanoshells
Wagner, Jef; Zandi, Roya
2015-01-01
Highly symmetric nanoshells are found in many biological systems, such as clathrin cages and viral shells. Many studies have shown that symmetric shells appear in nature as a result of the free-energy minimization of a generic interaction between their constituent subunits. We examine the physical basis for the formation of symmetric shells, and by using a minimal model, demonstrate that these structures can readily grow from the irreversible addition of identical subunits. Our model of nanoshell assembly shows that the spontaneous curvature regulates the size of the shell while the mechanical properties of the subunit determine the symmetry of the assembled structure. Understanding the minimum requirements for the formation of closed nanoshells is a necessary step toward engineering of nanocontainers, which will have far-reaching impact in both material science and medicine. PMID:26331253
The Robust Assembly of Small Symmetric Nanoshells.
Wagner, Jef; Zandi, Roya
2015-09-01
Highly symmetric nanoshells are found in many biological systems, such as clathrin cages and viral shells. Many studies have shown that symmetric shells appear in nature as a result of the free-energy minimization of a generic interaction between their constituent subunits. We examine the physical basis for the formation of symmetric shells, and by using a minimal model, demonstrate that these structures can readily grow from the irreversible addition of identical subunits. Our model of nanoshell assembly shows that the spontaneous curvature regulates the size of the shell while the mechanical properties of the subunit determine the symmetry of the assembled structure. Understanding the minimum requirements for the formation of closed nanoshells is a necessary step toward engineering of nanocontainers, which will have far-reaching impact in both material science and medicine. PMID:26331253
Symmetric extension of two-qubit states
NASA Astrophysics Data System (ADS)
Chen, Jianxin; Ji, Zhengfeng; Kribs, David; Lütkenhaus, Norbert; Zeng, Bei
2014-09-01
A bipartite state ρAB is symmetric extendible if there exists a tripartite state ρABB' whose AB and AB' marginal states are both identical to ρAB. Symmetric extendibility of bipartite states is of vital importance in quantum information because of its central role in separability tests, one-way distillation of Einstein-Podolsky-Rosen pairs, one-way distillation of secure keys, quantum marginal problems, and antidegradable quantum channels. We establish a simple analytic characterization for symmetric extendibility of any two-qubit quantum state ρAB; specifically, tr(ρB2)≥tr(ρAB2)-4√ detρAB . As a special case we solve the bosonic three-representability problem for the two-body reduced density matrix.
CAST: Contraction Algorithm for Symmetric Tensors
Rajbhandari, Samyam; NIkam, Akshay; Lai, Pai-Wei; Stock, Kevin; Krishnamoorthy, Sriram; Sadayappan, Ponnuswamy
2014-09-22
Tensor contractions represent the most compute-intensive core kernels in ab initio computational quantum chemistry and nuclear physics. Symmetries in these tensor contractions makes them difficult to load balance and scale to large distributed systems. In this paper, we develop an efficient and scalable algorithm to contract symmetric tensors. We introduce a novel approach that avoids data redistribution in contracting symmetric tensors while also avoiding redundant storage and maintaining load balance. We present experimental results on two parallel supercomputers for several symmetric contractions that appear in the CCSD quantum chemistry method. We also present a novel approach to tensor redistribution that can take advantage of parallel hyperplanes when the initial distribution has replicated dimensions, and use collective broadcast when the final distribution has replicated dimensions, making the algorithm very efficient.
On symmetric and upwind TVD schemes
NASA Technical Reports Server (NTRS)
Yee, H. C.
1985-01-01
A class of explicit and implicit total variation diminishing (TVD) schemes for the compressible Euler and Navier-Stokes equations was developed. They do not generate spurious oscillations across shocks and contact discontinuities. In general, shocks can be captured within 1 to 2 grid points. For the inviscid case, these schemes are divided into upwind TVD schemes and symmetric (nonupwind) TVD schemes. The upwind TVD scheme is based on the second-order TVD scheme. The symmetric TVD scheme is a generalization of Roe's and Davis' TVD Lax-Wendroff scheme. The performance of these schemes on some viscous and inviscid airfoil steady-state calculations is investigated. The symmetric and upwind TVD schemes are compared.
Izzet, Guillaume; Akdas, Huriye; Hucher, Nicolas; Giorgi, Michel; Prangé, Thierry; Reinaud, Olivia
2006-02-01
Complexation of copper(II) by calix[6]arene-based ligands bearing either two or three N-benzylimidazole coordinating arms under basic conditions has been studied. Whereas the tris(imidazole) derivative stabilizes dicationic 5-coordinate aqua complexes in a mononuclear state with an intracavity bound guest, in the presence of hydroxide ions, the latter undergo dimerization. An X-ray structure revealed decoordination of one imidazole arm and formation of a bis(hydroxo) bridged Cu(II) core with a square-planar geometry for both metal centers sandwiched by two empty calixarene cavities. Upon methanolysis, the dinuclear complex underwent an unexpected rearrangement leading to the clean formation of a trinuclear complex. X-ray diffraction analyses of this novel species revealed a trinuclear core constructed around a central Cu(II) ion that is doubly bridged through either methoxide or hydroxide anions to two Cu(II) ions hold by two calixarene units. The same complex could be directly synthesized by reacting the ligand with copper(II) perchlorate in a 2:3 ratio in the presence of base. In solution, the tetrahydroxo Cu(3) complex was characterized by UV-vis and (1)H NMR spectroscopies and displayed an electron paramagnetic resonance (EPR) signal only below 100 K that accounts for a S = 1/2 fundamental state. Formation of the same di- and trinuclear species was observed with a calix[6]arene-based bis(imidazole) ligand, which demonstrates the generality of the reaction schemes. All these results emphasize the versatility of the calix[6]arene scaffold for the stabilization of metal complexes with various nuclearities. PMID:16441115
Self-bending symmetric cusp beams
Gong, Lei; Liu, Wei-Wei; Lu, Yao; Li, Yin-Mei; Ren, Yu-Xuan
2015-12-07
A type of self-bending symmetric cusp beams with four accelerating intensity maxima is theoretically and experimentally presented. Distinguished from the reported regular polygon beams, the symmetric cusp beams simultaneously exhibit peculiar features of natural autofocusing and self-acceleration during propagation. Further, such beams take the shape of a fine longitudinal needle-like structure at the focal region and possess the strong ability of self-healing over obstacles. All these intriguing properties were verified experimentally. Particularly, the spatial profile of the reconstructed beam exhibits spatially sculpted optical structure with four siamesed curved arms. Thus, we anticipate that the structured beam will benefit optical guiding and optofluidics in surprising ways.
All-optical symmetric ternary logic gate
NASA Astrophysics Data System (ADS)
Chattopadhyay, Tanay
2010-09-01
Symmetric ternary number (radix=3) has three logical states (1¯, 0, 1). It is very much useful in carry free arithmetical operation. Beside this, the logical operation using this type of number system is also effective in high speed computation and communication in multi-valued logic. In this literature all-optical circuits for three basic symmetrical ternary logical operations (inversion, MIN and MAX) are proposed and described. Numerical simulation verifies the theoretical model. In this present scheme the different ternary logical states are represented by different polarized state of light. Terahertz optical asymmetric demultiplexer (TOAD) based interferometric switch has been used categorically in this manuscript.
Observational tests of Baryon symmetric cosmology
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1982-01-01
Observational evidence for Baryon symmetric (matter/antimatter) cosmology and future observational tests are reviewed. The most significant consequences of Baryon symmetric cosmology lie in the prediction of an observable cosmic background of gamma radiation from the decay of pi(0)-mesons produced in nucleon-antinucleon annihilations. Equations for the prediction of the amma ray background spectrum for the case of high redshifts are presented. The theoretical and observational plots of the background spectrum are shown to be in good agreement. Measurement of cosmic ray antiprotons and the use of high energy neutrino astronomy to look for antimatter elsewhere in the universe are also addressed.
Self-bending symmetric cusp beams
NASA Astrophysics Data System (ADS)
Gong, Lei; Liu, Wei-Wei; Ren, Yu-Xuan; Lu, Yao; Li, Yin-Mei
2015-12-01
A type of self-bending symmetric cusp beams with four accelerating intensity maxima is theoretically and experimentally presented. Distinguished from the reported regular polygon beams, the symmetric cusp beams simultaneously exhibit peculiar features of natural autofocusing and self-acceleration during propagation. Further, such beams take the shape of a fine longitudinal needle-like structure at the focal region and possess the strong ability of self-healing over obstacles. All these intriguing properties were verified experimentally. Particularly, the spatial profile of the reconstructed beam exhibits spatially sculpted optical structure with four siamesed curved arms. Thus, we anticipate that the structured beam will benefit optical guiding and optofluidics in surprising ways.
Familial multiple symmetric lipomatosis with peripheral neuropathy.
Chalk, C H; Mills, K R; Jacobs, J M; Donaghy, M
1990-08-01
We describe coexisting peripheral neuropathy and multiple symmetric lipomatosis in 4 of 7 siblings. The absence of either condition in 3 other generations of this family suggests autosomal recessive inheritance. None of the affected siblings were alcoholic, a factor some have proposed to explain the frequent occurrence of peripheral neuropathy in sporadic multiple symmetric lipomatosis. Serum lipid studies, including apoprotein A levels, were normal. Sural nerve biopsy from 1 patient showed nerve fiber loss, predominantly affecting large myelinated fibers. The relationship between myelin sheath thickness and axon diameter was normal, arguing that this neuropathy is not due to primary axonal atrophy. PMID:2166247
Symmetric splitting of very light systems
Grotowski, K.; Majka, Z.; Planeta, R.; Szczodrak, M.; Chan, Y.; Guarino, G.; Moretto, L.G.; Morrissey, D.J.; Sobotka, L.G.; Stokstad, R.G.; Tserruya, I.; Wald, S.; Wozniak, G.J.
1984-10-01
Inclusive and coincidence measurements have been performed to study symmetric products from the reactions 74--186 MeV /sup 12/C+ /sup 40/Ca, 141 MeV /sup 9/Be+ /sup 40/Ca, and 153 MeV /sup 6/Li+ /sup 40/Ca. The binary decay of the composite system has been verified. Energy spectra, angular distributions, and fragment correlations are presented. The total kinetic energies for the symmetric products from these very light composite systems are compared to liquid drop model calculations and fission systematics.
Numerical Analysis of the Symmetric Methods
NASA Astrophysics Data System (ADS)
Xu, Ji-Hong; Zhang, A.-Li
1995-03-01
Aimed at the initial value problem of the particular second-order ordinary differential equations,y ″=f(x, y), the symmetric methods (Quinlan and Tremaine, 1990) and our methods (Xu and Zhang, 1994) have been compared in detail by integrating the artificial earth satellite orbits in this paper. In the end, we point out clearly that the integral accuracy of numerical integration of the satellite orbits by applying our methods is obviously higher than that by applying the same order formula of the symmetric methods when the integration time-interval is not greater than 12000 periods.
Coe, Benjamin J; Jones, Lathe A; Harris, James A; Brunschwig, Bruce S; Asselberghs, Inge; Clays, Koen; Persoons, André
2003-01-29
We have used several techniques, including hyper-Rayleigh scattering and Stark spectroscopy, to investigate the effects of polyene chain length on the optical properties of complexes containing ruthenium(II) electron donor groups and pyridinium electron acceptors. In marked contrast with all other known donor-acceptor polyenes, conjugation extension beyond a single double bond in the dipolar complexes studied leads to blue-shifting of the intramolecular charge-transfer absorptions. Furthermore, the static first hyperpolarizabilities beta0 become maximized with trans-1,3-butadienyl linkages and then decrease in complexes with three CH=CH bonds. Our results clearly demonstrate that the molecular engineering criteria for metal-containing nonlinear optical chromophores can differ dramatically from those for purely organic compounds. PMID:12537472
An almost symmetric Strang splitting scheme for nonlinear evolution equations☆
Einkemmer, Lukas; Ostermann, Alexander
2014-01-01
In this paper we consider splitting methods for the time integration of parabolic and certain classes of hyperbolic partial differential equations, where one partial flow cannot be computed exactly. Instead, we use a numerical approximation based on the linearization of the vector field. This is of interest in applications as it allows us to apply splitting methods to a wider class of problems from the sciences. However, in the situation described, the classic Strang splitting scheme, while still being a method of second order, is not longer symmetric. This, in turn, implies that the construction of higher order methods by composition is limited to order three only. To remedy this situation, based on previous work in the context of ordinary differential equations, we construct a class of Strang splitting schemes that are symmetric up to a desired order. We show rigorously that, under suitable assumptions on the nonlinearity, these methods are of second order and can then be used to construct higher order methods by composition. In addition, we illustrate the theoretical results by conducting numerical experiments for the Brusselator system and the KdV equation. PMID:25844017
Integrability and vesture for harmonic maps into symmetric spaces
NASA Astrophysics Data System (ADS)
Beheshti, Shabnam; Tahvildar-Zadeh, Shadi
2016-05-01
After formulating the notion of integrability for axially symmetric harmonic maps from ℝ3 into symmetric spaces, we give a complete and rigorous proof that, subject to some mild restrictions on the target, all such maps are integrable. Furthermore, we prove that a variant of the inverse scattering method, called vesture (dressing) can always be used to generate new solutions for the harmonic map equations starting from any given solution. In particular, we show that the problem of finding N-solitonic harmonic maps into a non-compact Grassmann manifold SU(p,q)/S(U(p) × U(q)) is completely reducible via the vesture (dressing) method to a problem in linear algebra which we prove is solvable in general. We illustrate this method, and establish its agreement with previously known special cases, by explicitly computing a 1-solitonic harmonic map for the two cases (p = 1,q = 1) and (p = 2,q = 1) and showing that the family of solutions obtained in each case contains respectively the Kerr family of solutions to the Einstein vacuum equations, and the Kerr-Newman family of solutions to the Einstein-Maxwell equations in the hyperextreme sector of the corresponding parameters.
A modified direct preconditioner for indefinite symmetric Toeplitz systems
Concus, P.; Saylor, P.
1994-12-31
A modification is presented of the classical $O(n{sup 2})$ algorithm of Trench for the direct solution of Toeplitz systems of equations. The Trench algorithm can be guaranteed to be stable only for matrices that are (symmetric) positive definite; it is generally unstable otherwise. The modification permits extension of the algorithm to compute an approximate inverse in the indefinite symmetric case, for which the unmodified algorithm breaks down when principal submatrices are singular. As a preconditioner, this approximate inverse has an advantage that only matrix-vector multiplications are required for the solution of a linear system, without forward and backward solves. The approximate inverse so obtained can be sufficiently accurate, moreover that, when it is used as a preconditioner for the applications investigated, subsequent iteration may not even be necessary. Numerical results are given for several test matrices. The perturbation to the original matrix that defines the modification is related to a perturbation in a quantity generated in the Trench algorithm; the associated stability of the Trench algorithm is discussed.
NASA Astrophysics Data System (ADS)
Chen, Xi; Xue, Long-Xin; Ju, Chun-Chuan; Wang, Ke-Zhi
2013-07-01
A novel Ru(II) complex of [Ru(bpy)2(Hbcpip)](ClO4)2 {where bpy = 2,2-bipyridine, Hbcpip = 2-(4-(9H-3,9'-bicarbazol-9-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline} is synthesized and characterized. Calf-thymus DNA-binding properties of the complex were studied by UV-vis absorption and luminescence titrations, steady-state emission quenching by [Fe(CN)6]4-, DNA competitive binding with ethidium bromide, thermal denaturation and DNA viscosity measurements. The results indicate that the complex partially intercalated into the DNA with a binding constant of (5.5 ± 1.4) × 105 M-1 in buffered 50 mM NaCl. The acid-base properties of the complex were also studied by UV-visible and luminescence spectrophotometric pH titrations, and ground- and excited-state acidity ionization constant values were derived.
Future non-linear stability for solutions of the Einstein-Vlasov system of Bianchi types II and VI0
NASA Astrophysics Data System (ADS)
Nungesser, Ernesto
2012-10-01
In a recent paper [E. Nungesser, "Future non-linear stability for reflection symmetric solutions of the Einstein-Vlasov system of Bianchi types II and VI0," Annales Henri Poincare (2012), 10.1007/s00023-012-0201-0], we have treated the future nonlinear stability for reflection symmetric solutions of the Einstein-Vlasov system of Bianchi types II and VI0. We have been able now to remove the reflection symmetry assumption, thus treating the non-diagonal case. Apart from the increasing complexity, the methods have been essentially the same as in the diagonal case, showing that they are thus quite powerful. Here, the challenge was to put the equations in a form that permits the use of the previous results. We are able to conclude that after a possible basis change, the future of the non-diagonal spacetimes in consideration is asymptotically diagonal.
NASA Astrophysics Data System (ADS)
Seshadreesan, Kaushik P.; Olson, Jonathan P.; Motes, Keith R.; Rohde, Peter P.; Dowling, Jonathan P.
2015-02-01
Boson sampling is a specific quantum computation, which is likely hard to implement efficiently on a classical computer. The task is to sample the output photon-number distribution of a linear-optical interferometric network, which is fed with single-photon Fock-state inputs. A question that has been asked is if the sampling problems associated with any other input quantum states of light (other than the Fock states) to a linear-optical network and suitable output detection strategies are also of similar computational complexity as boson sampling. We consider the states that differ from the Fock states by a displacement operation, namely the displaced Fock states and the photon-added coherent states. It is easy to show that the sampling problem associated with displaced single-photon Fock states and a displaced photon-number detection scheme is in the same complexity class as boson sampling for all values of displacement. On the other hand, we show that the sampling problem associated with single-photon-added coherent states and the same displaced photon-number detection scheme demonstrates a computational-complexity transition. It transitions from being just as hard as boson sampling when the input coherent amplitudes are sufficiently small to a classically simulatable problem in the limit of large coherent amplitudes.
Dissociative recombination of highly symmetric polyatomic ions.
Douguet, Nicolas; Orel, Ann E; Greene, Chris H; Kokoouline, Viatcheslav
2012-01-13
A general first-principles theory of dissociative recombination is developed for highly symmetric molecular ions and applied to H(3)O(+) and CH(3)(+), which play an important role in astrophysical, combustion, and laboratory plasma environments. The theoretical cross sections obtained for the dissociative recombination of the two ions are in good agreement with existing experimental data from storage ring experiments. PMID:22324682
Onthe static and spherically symmetric gravitational field
NASA Astrophysics Data System (ADS)
Gottlieb, Ioan; Maftei, Gheorghe; Mociutchi, Cleopatra
Starting from a generalization of Einstein 's theory of gravitation, proposed by one of the authors (Cleopatra Mociutchi), the authors study a particular spherical symmetric case. Among other one obtain the compatibility conditions for the existence of the static and spherically symmetruic gravitational filed in the case of extended Einstein equation.
Amplituhedron Cells and Stanley Symmetric Functions
NASA Astrophysics Data System (ADS)
Lam, Thomas
2016-05-01
The amplituhedron was recently introduced in the study of scattering amplitudes in {N = 4} super Yang-Mills. We compute the cohomology class of a tree amplituhedron subvariety of the Grassmannian to be the truncation of an affine Stanley symmetric function.
Symmetric stiffness matrix for incompressible hyperelastic materials
NASA Technical Reports Server (NTRS)
Takamatsu, T.; Stricklin, J. A.; Key, J. E.
1976-01-01
Symmetric structure matrices are derived for solving plane strain and axisymmetric problems involving incompressible hyperelastic materials. An infinite hollow cylinder subjected to internal pressure is considered as an example. Displacement and hydrostatic pressure profiles are calculated using the Newton-Raphson iteration technique. The results are in good agreement with the exact curves.
Super-symmetric informationally complete measurements
NASA Astrophysics Data System (ADS)
Zhu, Huangjun
2015-11-01
Symmetric informationally complete measurements (SICs in short) are highly symmetric structures in the Hilbert space. They possess many nice properties which render them an ideal candidate for fiducial measurements. The symmetry of SICs is intimately connected with the geometry of the quantum state space and also has profound implications for foundational studies. Here we explore those SICs that are most symmetric according to a natural criterion and show that all of them are covariant with respect to the Heisenberg-Weyl groups, which are characterized by the discrete analog of the canonical commutation relation. Moreover, their symmetry groups are subgroups of the Clifford groups. In particular, we prove that the SIC in dimension 2, the Hesse SIC in dimension 3, and the set of Hoggar lines in dimension 8 are the only three SICs up to unitary equivalence whose symmetry groups act transitively on pairs of SIC projectors. Our work not only provides valuable insight about SICs, Heisenberg-Weyl groups, and Clifford groups, but also offers a new approach and perspective for studying many other discrete symmetric structures behind finite state quantum mechanics, such as mutually unbiased bases and discrete Wigner functions.
Conformal cylindrically symmetric spacetimes in modified gravity
NASA Astrophysics Data System (ADS)
Türkog˜lu, Murat Metehan; Dog˜ru, Melis Ulu
2015-11-01
We investigate cylindrically symmetric spacetimes in the context of f(R) gravity. We firstly attain conformal symmetry of the cylindrically symmetric spacetime. We obtain solutions to use features of the conformal symmetry, field equations and their solutions for cylindrically symmetric spacetime filled with various cosmic matters such as vacuum state, perfect fluid, anisotropic fluid, massive scalar field and their combinations. With the vacuum state solutions, we show that source of the spacetime curvature is considered as Casimir effect. Casimir force for given spacetime is found using Wald’s axiomatic analysis. We expose that the Casimir force for Boulware, Hartle-Hawking and Unruh vacuum states could have attractive, repulsive and ineffective features. In the perfect fluid state, we show that matter form of the perfect fluid in given spacetime must only be dark energy. Also, we offer that potential of massive and massless scalar field are developed as an exact solution from the modified field equations. All solutions of field equations for vacuum case, perfect fluid and scalar field give a special f(R) function convenient to Λ-CDM model. In addition to these solutions, we introduce conformal cylindrical symmetric solutions in the cases of different f(R) models. Finally, geometrical and physical results of the solutions are discussed.
Miniaturized symmetrization optics for junction laser
NASA Technical Reports Server (NTRS)
Hammer, Jacob M. (Inventor); Kaiser, Charlie J. (Inventor); Neil, Clyde C. (Inventor)
1982-01-01
Miniaturized optics comprising transverse and lateral cylindrical lenses composed of millimeter-sized rods with diameters, indices-of-refraction and spacing such that substantially all the light emitted as an asymmetrical beam from the emitting junction of the laser is collected and translated to a symmetrical beam.
The deuterium puzzle in the symmetric universe
NASA Technical Reports Server (NTRS)
Leroy, B.; Nicolle, J. P.; Schatzman, E.
1973-01-01
An attempt was made to use deuterium abundance in the symmetric universe to prove that no nucleosynthesis takes place during annihilation and therefore neutrons were loss before nucleosynthesis. Data cover nucleosynthesis during the radiative era, cross section estimates, maximum abundance of He-4 at the end of nucleosynthesis area, and loss rate.
Entanglement classes of symmetric Werner states
Lyons, David W.; Walck, Scott N.
2011-10-15
The symmetric Werner states for n qubits, important in the study of quantum nonlocality and useful for applications in quantum information, have a surprisingly simple and elegant structure in terms of tensor products of Pauli matrices. Further, each of these states forms a unique local unitary equivalence class, that is, no two of these states are interconvertible by local unitary operations.
Symmetrical peripheral gangrene caused by septic shock
Shimbo, Keisuke; Yokota, Kazunori; Miyamoto, Junpei; Okuhara, Yukako; Ochi, Mitsuo
2015-01-01
We report three cases of symmetrical peripheral gangrene (SPG) caused by septic shock. Most of sepsis survivors with SPG require amputation of the affected extremities. To preserve the length of the thumb and fingers, we performed surgical amputation and used flaps to cover the amputated peripheral extremities.
Twofold transition in PT-symmetric coupled oscillators
NASA Astrophysics Data System (ADS)
Bender, Carl M.; Gianfreda, Mariagiovanna; Özdemir, Şahin K.; Peng, Bo; Yang, Lan
2013-12-01
The inspiration for this theoretical paper comes from recent experiments on a PT-symmetric system of two coupled optical whispering galleries (optical resonators). The optical system can be modeled as a pair of coupled linear oscillators, one with gain and the other with loss. If the coupled oscillators have a balanced loss and gain, the system is described by a Hamiltonian and the energy is conserved. This theoretical model exhibits two PT transitions depending on the size of the coupling parameter ɛ. For small ɛ, the PT symmetry is broken and the system is not in equilibrium, but when ɛ becomes sufficiently large, the system undergoes a transition to an equilibrium phase in which the PT symmetry is unbroken. For very large ɛ, the system undergoes a second transition and is no longer in equilibrium. The principal result presented here is that the classical and quantized versions of the system exhibit transitions at exactly the same values of ɛ.
On the locally rotationally symmetric Einstein-Maxwell perfect fluid
NASA Astrophysics Data System (ADS)
Pugliese, D.; Valiente Kroon, J. A.
2016-06-01
We examine the stability of Einstein-Maxwell perfect fluid configurations with a privileged radial direction by means of a 1+1+2-tetrad formalism. We use this formalism to cast in a quasilinear symmetric hyperbolic form the equations describing the evolution of the system. This hyperbolic reduction is used to discuss the stability of linear perturbations in some special cases. By restricting the analysis to isotropic fluid configurations, we assume a constant electrical conductivity coefficient for the fluid. As a result of this analysis we provide a complete classification and characterization of various stable and unstable configurations. We find, in particular, that in many cases the stability conditions are strongly determined by the constitutive equations and the electric conductivity. A threshold for the emergence of the instability appears in both contracting and expanding systems.
Two loop QCD vertices at the symmetric point
Gracey, J. A.
2011-10-15
We compute the triple gluon, quark-gluon and ghost-gluon vertices of QCD at the symmetric subtraction point at two loops in the MS scheme. In addition we renormalize each of the three vertices in their respective momentum subtraction schemes, MOMggg, MOMq and MOMh. The conversion functions of all the wave functions, coupling constant and gauge parameter renormalization constants of each of the schemes relative to MS are determined analytically. These are then used to derive the three loop anomalous dimensions of the gluon, quark, Faddeev-Popov ghost and gauge parameter as well as the {beta} function in an arbitrary linear covariant gauge for each MOM scheme. There is good agreement of the latter with earlier Landau gauge numerical estimates of Chetyrkin and Seidensticker.
Nickel-Catalyzed Asymmetric Kumada Cross-Coupling of Symmetric Cyclic Sulfates.
Eno, Meredith S; Lu, Alexander; Morken, James P
2016-06-29
Nickel-catalyzed enantioselective cross-couplings between symmetric cyclic sulfates and aromatic Grignard reagents are described. These reactions are effective with a broad range of substituted cyclic sulfates and deliver products with asymmetric tertiary carbon centers. Mechanistic experiments point to a stereoinvertive SN2-like oxidative addition of a nickel complex to the electrophilic substrate. PMID:27276235
Correlation and simple linear regression.
Eberly, Lynn E
2007-01-01
This chapter highlights important steps in using correlation and simple linear regression to address scientific questions about the association of two continuous variables with each other. These steps include estimation and inference, assessing model fit, the connection between regression and ANOVA, and study design. Examples in microbiology are used throughout. This chapter provides a framework that is helpful in understanding more complex statistical techniques, such as multiple linear regression, linear mixed effects models, logistic regression, and proportional hazards regression. PMID:18450049
Weakly Interacting Symmetric and Anti-Symmetric States in the Bilayer Systems
NASA Astrophysics Data System (ADS)
Marchewka, M.; Sheregii, E. M.; Tralle, I.; Tomaka, G.; Ploch, D.
We have studied the parallel magneto-transport in DQW-structures of two different potential shapes: quasi-rectangular and quasi-triangular. The quantum beats effect was observed in Shubnikov-de Haas (SdH) oscillations for both types of the DQW structures in perpendicular magnetic filed arrangement. We developed a special scheme for the Landau levels energies calculation by means of which we carried out the necessary simulations of beating effect. In order to obtain the agreement between our experimental data and the results of simulations, we introduced two different quasi-Fermi levels which characterize symmetric and anti-symmetric states in DQWs. The existence of two different quasi Fermi-Levels simply means, that one can treat two sub-systems (charge carriers characterized by symmetric and anti-symmetric wave functions) as weakly interacting and having their own rate of establishing the equilibrium state.
Time-reversal and nonlocal effects in PT-symmetric nonlinear lattices with balanced gain and loss
NASA Astrophysics Data System (ADS)
Sukhorukov, Andrey A.; Xu, Zhiyong; Dmitriev, Sergey V.; Suchkov, Sergey V.; Kivshar, Yuri S.
2011-09-01
We reveal a number of fundamentally important effects which underpin the key aspects of light propagation in photonic structures composed of coupled waveguides with loss and gain regions, which are designed as optical analogues of complex parity-time (or PT) symmetric potentials. We identify a generic nature of time-reversals in PT-symmetric optical couplers, which enables flexible control of all-optical switching and a realization of logic operations. We also show that light propagation in PT-symmetric structures can exhibit strongly nonlocal sensitivity to topology of a photonic structure. These results suggest new possibilities for shaping optical beams and pulses compared to conservative structures.
Colgate, S.A.
1958-05-27
An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.
NASA Astrophysics Data System (ADS)
Murillo Pulgarín, J. A.; Alañón Molina, A.; Boras, N.
2012-12-01
Synchronous fluorescence spectroscopy (SFS) is a rapid, sensitive and non-destructive method suitable for the analysis of multifluorophoric mixtures. In this study non linear variable angle synchronous spectrofluorimetry was applied to the determination of three fluoroquinololes in urine. Although this technique provides very good results, total resolution of multicomponent mixtures is not always achieved when the spectral profiles strongly overlap. Partial least-squares regression (PLS-1) was utilized to a develop calibration model that related synchronous fluorescence spectra to the analytical concentration of fluoroquinolones in the presence of urine. The same multicomponent mixture was determined using excitation emission matrix fluorescence (EEMF) along with N-way partial least squares regression (N-PLS and U-PLS). The determination was carried out in micellar medium 0.01 M with a pH of 4.8 provided by 0.2 M sodium acetate/acetic acid buffer. A central composite design was selected to obtain a calibration matrix of 25 standards plus a blank sample. The proposed methods were validated by application to a test set of synthetic samples. The results show that SFS with PLS-1 is a better method compared to EEMF with N-PLS or U-PLS because of the low RMSEP values of the former.
Daròs, J A; Marcos, J F; Hernández, C; Flores, R
1994-01-01
The structure of a series of RNAs extracted from avocado infected by the 247-nt avocado sunblotch viroid (ASBVd) was investigated. The identification of multistranded complexes containing circular ASBVd RNAs of (+) and (-) polarity suggests that replication of ASBVd proceeds through a symmetric pathway with two rolling circles where these two circular RNAs are the templates. This is in contrast to the replication of potato spindle tuber viroid and probably of most of its related viroids, which proceeds via an asymmetric pathway where circular (+)-strand and linear multimeric (-)-strand RNAs are the two templates. Linear (+) and (-) ASBVd RNAs of subgenomic length (137 nt and about 148 nt, respectively) and one linear (+)-strand ASBVd RNA of supragenomic length (383-384 nt) were also found in viroid-infected tissue. The two linear (+)-strand RNAs have the same 5'- and 3'-terminal sequences, with the supragenomic species being a fusion product of the monomeric and subgenomic (+)-strand ASBVd RNAs. The 3' termini of these two (+)-strand molecules, which at least in the subgenomic RNA has an extra nontemplate cytidylate residue, could represent sites of either premature termination of the (+)-strands or specific initiation of the (-)-strands. The 5' termini of sub- and supragenomic (+)-strand and the 5' terminus of the subgenomic (-)-strand ASBVd RNA are identical to those produced in the in vitro self-cleavage reactions of (+) and (-) dimeric ASBVd RNAs, respectively. These observations strongly suggest that the hammerhead structures which mediate the in vitro self-cleavage reactions are also operative in vivo. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 PMID:7809126
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Context image for PIA03667 Linear Clouds
These clouds are located near the edge of the south polar region. The cloud tops are the puffy white features in the bottom half of the image.
Image information: VIS instrument. Latitude -80.1N, Longitude 52.1E. 17 meter/pixel resolution.
Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.
NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.
Dinh, Thanh-Chung; Renger, Thomas
2015-01-21
A challenge for the theory of optical spectra of pigment-protein complexes is the equal strength of the pigment-pigment and the pigment-protein couplings. Treating both on an equal footing so far can only be managed by numerically costly approaches. Here, we exploit recent results on a normal mode analysis derived spectral density that revealed the dominance of the diagonal matrix elements of the exciton-vibrational coupling in the exciton state representation. We use a cumulant expansion technique that treats the diagonal parts exactly, includes an infinite summation of the off-diagonal parts in secular and Markov approximations, and provides a systematic perturbative way to include non-secular and non-Markov corrections. The theory is applied to a model dimer and to chlorophyll (Chl) a and Chl b homodimers of the reconstituted water-soluble chlorophyll-binding protein (WSCP) from cauliflower. The model calculations reveal that the non-secular/non-Markov effects redistribute oscillator strength from the strong to the weak exciton transition in absorbance and they diminish the rotational strength of the exciton transitions in circular dichroism. The magnitude of these corrections is in a few percent range of the overall signal, providing a quantitative explanation of the success of time-local convolution-less density matrix theory applied earlier. A close examination of the optical spectra of Chl a and Chl b homodimers in WSCP suggests that the opening angle between Q{sub y} transition dipole moments in Chl b homodimers is larger by about 9{sup ∘} than for Chl a homodimers for which a crystal structure of a related WSCP complex exists. It remains to be investigated whether this change is due to a different mutual geometry of the pigments or due to the different electronic structures of Chl a and Chl b.
NASA Astrophysics Data System (ADS)
Dinh, Thanh-Chung; Renger, Thomas
2015-01-01
A challenge for the theory of optical spectra of pigment-protein complexes is the equal strength of the pigment-pigment and the pigment-protein couplings. Treating both on an equal footing so far can only be managed by numerically costly approaches. Here, we exploit recent results on a normal mode analysis derived spectral density that revealed the dominance of the diagonal matrix elements of the exciton-vibrational coupling in the exciton state representation. We use a cumulant expansion technique that treats the diagonal parts exactly, includes an infinite summation of the off-diagonal parts in secular and Markov approximations, and provides a systematic perturbative way to include non-secular and non-Markov corrections. The theory is applied to a model dimer and to chlorophyll (Chl) a and Chl b homodimers of the reconstituted water-soluble chlorophyll-binding protein (WSCP) from cauliflower. The model calculations reveal that the non-secular/non-Markov effects redistribute oscillator strength from the strong to the weak exciton transition in absorbance and they diminish the rotational strength of the exciton transitions in circular dichroism. The magnitude of these corrections is in a few percent range of the overall signal, providing a quantitative explanation of the success of time-local convolution-less density matrix theory applied earlier. A close examination of the optical spectra of Chl a and Chl b homodimers in WSCP suggests that the opening angle between Qy transition dipole moments in Chl b homodimers is larger by about 9∘ than for Chl a homodimers for which a crystal structure of a related WSCP complex exists. It remains to be investigated whether this change is due to a different mutual geometry of the pigments or due to the different electronic structures of Chl a and Chl b.
Observational tests of baryon symmetric cosmology
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1983-01-01
Observational evidence for Baryon symmetric (matter/antimatter) cosmology and future observational tests are reviewed. The most significant consequences of Baryon symmetric cosmology lie in the prediction of an observable cosmic background of gamma radiation from the decay of Pi(O)-mesons produced in nucleon-antinucleon annihilations. Equations for the prediction of the gamma ray background spectrum for the case of high redshifts are presented. The theoretical and observational plots of the background spectrum are shown to be in good agreement. Measurements of cosmic ray antiprotons and the use of high energy neutrino astronomy to look for antimatter elsewhere in the universe are also addressed. Previously announced in STAR as N83-10996
Cusped Wilson lines in symmetric representations
NASA Astrophysics Data System (ADS)
Correa, Diego H.; Massolo, Fidel I. Schaposnik; Trancanelli, Diego
2015-08-01
We study the cusped Wilson line operators and Bremsstrahlung functions associated to particles transforming in the rank- k symmetric representation of the gauge group U( N) for super Yang-Mills. We find the holographic D3-brane description for Wilson loops with internal cusps in two different limits: small cusp angle and . This allows for a non-trivial check of a conjectured relation between the Bremsstrahlung function and the expectation value of the 1/2 BPS circular loop in the case of a representation other than the fundamental. Moreover, we observe that in the limit of k ≫ N, the cusped Wilson line expectation value is simply given by the exponential of the 1-loop diagram. Using group theory arguments, this eikonal exponentiation is conjectured to take place for all Wilson loop operators in symmetric representations with large k, independently of the contour on which they are supported.
Symmetric space description of carbon nanotubes
NASA Astrophysics Data System (ADS)
Caselle, Michele; Magnea, Ulrika
2006-01-01
Using an innovative technique arising from the theory of symmetric spaces, we obtain an approximate analytic solution of the Dorokhov-Mello-Pereyra-Kumar (DMPK) equation in the insulating regime of a metallic carbon nanotube with symplectic symmetry and an odd number of conducting channels. This symmetry class is characterized by the presence of a perfectly conducting channel in the limit of infinite length of the nanotube. The derivation of the DMPK equation for this system has recently been performed by Takane, who also obtained the average conductance both analytically and numerically. Using the Jacobian corresponding to the transformation to radial coordinates and the parametrization of the transfer matrix given by Takane, we identify the ensemble of transfer matrices as the symmetric space of negative curvature SO*(4m + 2)/[SU(2m + 1) × U(1)] belonging to the DIII-odd Cartan class. We rederive the leading-order correction to the conductance of the perfectly conducting channel \\langle \\ln \\delta g \\rangle and its variance Var(ln δg). Our results are in complete agreement with Takane's. In addition, our approach based on the mapping to a symmetric space enables us to obtain new universal quantities: a universal group theoretical expression for the ratio \\mathrm {Var}(\\ln \\delta g)/\\langle \\ln \\delta g\\rangle , and as a by-product a novel expression for the localization length for the most general case of a symmetric space with BCm root system, in which all three types of roots are present.
Wave equation on spherically symmetric Lorentzian metrics
Bokhari, Ashfaque H.; Al-Dweik, Ahmad Y.; Zaman, F. D.; Kara, A. H.; Karim, M.
2011-06-15
Wave equation on a general spherically symmetric spacetime metric is constructed. Noether symmetries of the equation in terms of explicit functions of {theta} and {phi} are derived subject to certain differential constraints. By restricting the metric to flat Friedman case the Noether symmetries of the wave equation are presented. Invertible transformations are constructed from a specific subalgebra of these Noether symmetries to convert the wave equation with variable coefficients to the one with constant coefficients.
Spherically symmetric solutions in a FRW background
NASA Astrophysics Data System (ADS)
Moradpour, H.; Riazi, N.
2015-02-01
We impose perfect fluid concept along with slow expansion approximation to derive new solutions which, considering non-static spherically symmetric metrics, can be treated as Black Holes (BHs). We will refer to these solutions as Quasi BHs. Mathematical and physical features such as Killing vectors, singularities, and mass have been studied. Their horizons and thermodynamic properties have also been investigated. In addition, relationship with other related works (including McVittie's) are described.
Compensator configurations for load currents' symmetrization
NASA Astrophysics Data System (ADS)
Rusinaru, D.; Manescu, L. G.; Dinu, R. C.
2016-02-01
This paper approaches aspects regarding the mitigation effects of asymmetries in 3-phase 3-wire networks. The measure consisting in connecting of load current symmetrization devices at the load coupling point is presented. A time-variation of compensators parameters is determined as a function of the time-recorded electrical values. The general sizing principle of the load current symmetrization reactive components is based on a simple equivalent model of the unbalanced 3-phase loads. By using these compensators a certain control of the power components transits is ensured in the network. The control is based on the variations laws of the compensators parameters as functions of the recorded electrical values: [B] = [T]·[M]. The link between compensator parameters and measured values is ensured by a transformation matrix [T] for each operation conditions of the supply network. Additional conditions for improving of energy and efficiency performance of the compensator are considered: i.e. reactive power compensation. The compensator sizing algorithm was implemented into a MATLAB environment software, which generate the time-evolution of the parameters of load current symmetrization device. The input data of application takes into account time-recording of the electrical values. By using the compensator sizing software, some results were achieved for the case of a consumer connected at 20 kV busbar of a distribution substation, during 24 hours measurement session. Even the sizing of the compensators aimed some additional network operation aspects (power factor correction) correlated with the total or major load symmetrizations, the harmonics aspects of the network values were neglected.
Symmetric scrolled packings of multilayered carbon nanoribbons
NASA Astrophysics Data System (ADS)
Savin, A. V.; Korznikova, E. A.; Lobzenko, I. P.; Baimova, Yu. A.; Dmitriev, S. V.
2016-06-01
Scrolled packings of single-layer and multilayer graphene can be used for the creation of supercapacitors, nanopumps, nanofilters, and other nanodevices. The full atomistic simulation of graphene scrolls is restricted to consideration of relatively small systems in small time intervals. To overcome this difficulty, a two-dimensional chain model making possible an efficient calculation of static and dynamic characteristics of nanoribbon scrolls with allowance for the longitudinal and bending stiffness of nanoribbons is proposed. The model is extended to the case of scrolls of multilayer graphene. Possible equilibrium states of symmetric scrolls of multilayer carbon nanotribbons rolled up so that all nanoribbons in the scroll are equivalent are found. Dependences of the number of coils, the inner and outer radii, lowest vibrational eigenfrequencies of rolled packages on the length L of nanoribbons are obtained. It is shown that the lowest vibrational eigenfrequency of a symmetric scroll decreases with a nanoribbon length proportionally to L -1. It is energetically unfavorable for too short nanoribbons to roll up, and their ground state is a stack of plane nanoribbons. With an increasing number k of layers, the nanoribbon length L necessary for creation of symmetric scrolls increases. For a sufficiently small number of layers k and a sufficiently large nanoribbon length L, the scrolled packing has the lowest energy as compared to that of stack of plane nanoribbons and folded structures. The results can be used for development of nanomaterials and nanodevices on the basis of graphene scrolled packings.
Asymmetric versus symmetric pulses for cortical microstimulation.
Koivuniemi, Andrew S; Otto, Kevin J
2011-10-01
Intracortical microstimulation (ICMS), which has shown promise in the visual, auditory and somatosensory systems as a platform for sensory prostheses, typically relies on charged balanced, symmetric, biphasic stimulation. However, neural stimulation models as well as experiments conducted in cochlear implant users have suggested that charge balanced asymmetric pulses could generate lower detection thresholds for stimulation in terms of charge per phase. For this study, rats were chronically implanted with microelectrode arrays unilaterally in their right auditory cortex and then trained to detect ICMS delivered through a single electrode site in order to determine their behavioral threshold. This model was used in two experiments. The first experiment addressed the effect of lead phase direction, asymmetry, and phase duration on detection threshold. The second experiment fixed the cathode phase duration at 123 μs and varied only the phase asymmetry and lead phase direction. Taken together, the results of these experiments suggest that, for ICMS, the primary determinant of threshold level is cathode phase duration, and that asymmetry provides no significant advantage when compared to symmetric, cathode leading pulses. However, symmetric anode leading pulses of less than or equal to 205 μs per phase consistently showed higher thresholds when compared to all other pulses of equal cathode phase duration. PMID:21968793
Spherically symmetric thick branes cosmological evolution
NASA Astrophysics Data System (ADS)
Bernardini, A. E.; Cavalcanti, R. T.; da Rocha, Roldão
2015-01-01
Spherically symmetric time-dependent solutions for the 5D system of a scalar field canonically coupled to gravity are obtained and identified as an extension of recent results obtained by Ahmed et al. (JHEP 1404:061. arXiv:1312.3576 [hep-th], 2014). The corresponding cosmology of models with regularized branes generated by such a 5D scalar field scenario is also investigated. It has been shown that the anisotropic evolution of the warp factor and consequently the Hubble like parameter are both driven by the radial coordinate on the brane, which leads to an emergent thick brane-world scenario with spherically symmetric time dependent warp factor. Meanwhile, the separability of variables depending on fifth dimension, , which is exhibited by the equations of motion, allows one to recover the extra dimensional profiles obtained in Ahmed et al. (2014), namely the extra dimensional part of the scale (warp) factor and the scalar field dependence on . Therefore, our results are mainly concerned with the time dependence of a spherically symmetric warp factor. Besides evincing possibilities for obtaining asymmetric stable brane-world scenarios, the extra dimensional profiles here obtained can also be reduced to those ones investigated in Ahmed et al. (2014).
Instability of hairy black holes in shift-symmetric Horndeski theories
NASA Astrophysics Data System (ADS)
Ogawa, Hiromu; Kobayashi, Tsutomu; Suyama, Teruaki
2016-03-01
Recently it was pointed out that in shift-symmetric scalar-tensor theories a black hole can have nontrivial scalar hair which depends linearly on time. We develop black hole perturbation theory for such solutions and compute the quadratic action of odd parity perturbations. We show that around all the solutions known so far with such time-dependent scalar hair the perturbations trigger instabilities or are presumably strongly coupled.
Ordinary versus PT-symmetric Φ³ quantum field theory
Bender, Carl M.; Branchina, Vincenzo; Messina, Emanuele
2012-04-02
A quantum-mechanical theory is PT-symmetric if it is described by a Hamiltonian that commutes with PT, where the operator P performs space reflection and the operator T performs time reversal. A PT-symmetric Hamiltonian often has a parametric region of unbroken PT symmetry in which the energy eigenvalues are all real. There may also be a region of broken PT symmetry in which some of the eigenvalues are complex. These regions are separated by a phase transition that has been repeatedly observed in laboratory experiments. This paper focuses on the properties of a PT-symmetric igΦ³ quantum field theory. This quantum fieldmore » theory is the analog of the PT-symmetric quantum-mechanical theory described by the Hamiltonian H=p²+ix³, whose eigenvalues have been rigorously shown to be all real. This paper compares the renormalization group properties of a conventional Hermitian gΦ³ quantum field theory with those of the PT-symmetric igΦ³ quantum field theory. It is shown that while the conventional gΦ³ theory in d=6 dimensions is asymptotically free, the igΦ³ theory is like a gΦ⁴ theory in d=4 dimensions; it is energetically stable, perturbatively renormalizable, and trivial.« less
Ordinary versus PT-symmetric Φ³ quantum field theory
Bender, Carl M.; Branchina, Vincenzo; Messina, Emanuele
2012-04-02
A quantum-mechanical theory is PT-symmetric if it is described by a Hamiltonian that commutes with PT, where the operator P performs space reflection and the operator T performs time reversal. A PT-symmetric Hamiltonian often has a parametric region of unbroken PT symmetry in which the energy eigenvalues are all real. There may also be a region of broken PT symmetry in which some of the eigenvalues are complex. These regions are separated by a phase transition that has been repeatedly observed in laboratory experiments. This paper focuses on the properties of a PT-symmetric igΦ³ quantum field theory. This quantum field theory is the analog of the PT-symmetric quantum-mechanical theory described by the Hamiltonian H=p²+ix³, whose eigenvalues have been rigorously shown to be all real. This paper compares the renormalization group properties of a conventional Hermitian gΦ³ quantum field theory with those of the PT-symmetric igΦ³ quantum field theory. It is shown that while the conventional gΦ³ theory in d=6 dimensions is asymptotically free, the igΦ³ theory is like a gΦ⁴ theory in d=4 dimensions; it is energetically stable, perturbatively renormalizable, and trivial.
Dissipative trapped-electron instability in quasihelically symmetric stellarators
Rafiq, T.; Hegna, C.C.
2006-05-15
The linear electrostatic dissipative trapped-electron mode is investigated in a quasihelically symmetric (QHS) stellarator and a configuration whose symmetry is spoiled by the addition of a mirror contribution to the magnetic spectrum. The effect of the trapped electrons is accounted for using the drift kinetic equation with an energy-dependent Krook collision operator and an effective collision frequency giving the rate of detrapping. The ballooning mode formalism and Wentzel-Kramers-Brillouin type boundary conditions are used to solve an eigenvalue problem for a drift wave equation with nearly adiabatic electrons in a fully three-dimensional magnetohydrodynamic equilibria. The trapped-electron growth rate is calculated using a perturbative approach. Multiple classes of helically localized and toroidally localized eigenfunctions in the ballooning space are calculated. The results of the QHS configuration is compared and contrasted with the results of the mirror configuration. The helically trapped modes are found to be most destabilizing. In both configurations the magnitude of the linear growth rates are comparable, crudely indicating the same level of anomalous flux as has also been observed in the edge region of experiments.
Anisotropy of bituminous mixture in the linear viscoelastic domain
NASA Astrophysics Data System (ADS)
Di Benedetto, Hervé; Sauzéat, Cédric; Clec'h, Pauline
2016-08-01
Some anisotropic properties in the linear viscoelastic domain of bituminous mixtures compacted with a French LPC wheel compactor are highlighted in this paper. Bituminous mixture is generally considered as isotropic even if the compaction process on road or in laboratory induces anisotropic properties. Tension-compression complex modulus tests have been performed on parallelepipedic specimens in two directions: (i) direction of compactor wheel movement (direction I, which is horizontal) and (ii) direction of compaction (direction II, which is vertical). These tests consist in measuring sinusoidal axial and lateral strains as well as sinusoidal axial stress, when sinusoidal axial loading is applied on the specimen. Different loading frequencies and temperatures are applied. Two complex moduli, EI ^{*} and E_{II}^{*}, and four complex Poisson's ratios, ν_{{II-I}}^{*}, ν_{{III-I}}^{*}, ν_{{I-II}}^{*} and ν_{{III-II}}^{*}, were obtained. The vertical direction appears softer than the other ones for the highest frequencies. There are very few differences between the two directions I and II for parameters concerning viscous effects (phase angles φ(EI) and φ(E_{II}), and shift factors). The four Poisson's ratios reveal anisotropic properties but rheological tensor can be considered as symmetric when considering very similar values obtained for the two measured parameters (I-II and II-I)
Shear flow behavior of a dynamically symmetric polymeric bicontinuous microemulsion
NASA Astrophysics Data System (ADS)
Zhou, Ning
2005-03-01
Soft materials with complex internal structure often exhibit fascinating rheological behavior. For example, under flow the poly (ethylethylene) (PEE)/poly(dimethyl siloxane) (PDMS)/PEE-PDMS polymeric bicontinuous microemulsion (BμE) showed shear-induced macrophase separation.^ 1 This was tentatively attributed to the extreme dynamical asymmetry of the two homopolymers, i.e., their viscosities differed by three orders of magnitude. To understand the role of the dynamic symmetry of a BμE when subjected to shear flow, we have developed a new ternary polymer blend system poly(butylene oxide) (PBO)/ poly(ethylenepropylene) (PEP)/PEP-PBO, which is dynamically almost symmetric. We will report on the shear flow behavior of this new BμE. Reference: [1] Krishnan et al. Phys. Rev. Lett. 2001, 87, 098301
Symmetric/asymmetric bifurcation behaviours of a bogie system
NASA Astrophysics Data System (ADS)
Xue-jun, Gao; Ying-hui, Li; Yuan, Yue; True, Hans
2013-02-01
Based on the bifurcation and stability theory of dynamical systems, the symmetric/asymmetric bifurcation behaviours and chaotic motions of a railway bogie system under a complex nonlinear wheel-rail contact relation are investigated in detail by the 'resultant bifurcation diagram' method with slowly increasing and decreasing speed. It is found that the stationary equilibrium solution and the periodic motions coexist due to the sub-critical Hopf bifurcation in the railway bogie system. It is also found that multiple solutions coexist in many speed ranges. The coexistence of multiple solutions may result in a jump and hysteresis of the oscillating amplitude for different kinds of disturbances. It should be avoided in the normal operation. Furthermore, it is found that symmetry-breaking of the system through a pitchfork bifurcation leads to asymmetric chaotic motions in the railway bogie system. The speed ranges of asymmetric chaotic motions are, however, small.
Invariant current approach to wave propagation in locally symmetric structures
NASA Astrophysics Data System (ADS)
Zampetakis, V. E.; Diakonou, M. K.; Morfonios, C. V.; Kalozoumis, P. A.; Diakonos, F. K.; Schmelcher, P.
2016-05-01
A theory for wave mechanical systems with local inversion and translation symmetries is developed employing the two-dimensional solution space of the stationary Schrödinger equation. The local symmetries of the potential are encoded into corresponding local basis vectors in terms of symmetry-induced two-point invariant currents which map the basis amplitudes between symmetry-related points. A universal wavefunction structure in locally symmetric potentials is revealed, independently of the physical boundary conditions, by using special local bases which are adapted to the existing local symmetries. The local symmetry bases enable efficient computation of spatially resolved wave amplitudes in systems with arbitrary combinations of local inversion and translation symmetries. The approach opens the perspective of a flexible analysis and control of wave localization in structurally complex systems.
González-Díaz, Humberto; Arrasate, Sonia; Gómez-SanJuan, Asier; Sotomayor, Nuria; Lete, Esther; Besada-Porto, Lina; Ruso, Juan M
2013-01-01
In general perturbation methods starts with a known exact solution of a problem and add "small" variation terms in order to approach to a solution for a related problem without known exact solution. Perturbation theory has been widely used in almost all areas of science. Bhor's quantum model, Heisenberg's matrix mechanincs, Feyman diagrams, and Poincare's chaos model or "butterfly effect" in complex systems are examples of perturbation theories. On the other hand, the study of Quantitative Structure-Property Relationships (QSPR) in molecular complex systems is an ideal area for the application of perturbation theory. There are several problems with exact experimental solutions (new chemical reactions, physicochemical properties, drug activity and distribution, metabolic networks, etc.) in public databases like CHEMBL. However, in all these cases, we have an even larger list of related problems without known solutions. We need to know the change in all these properties after a perturbation of initial boundary conditions. It means, when we test large sets of similar, but different, compounds and/or chemical reactions under the slightly different conditions (temperature, time, solvents, enzymes, assays, protein targets, tissues, partition systems, organisms, etc.). However, to the best of our knowledge, there is no QSPR general-purpose perturbation theory to solve this problem. In this work, firstly we review general aspects and applications of both perturbation theory and QSPR models. Secondly, we formulate a general-purpose perturbation theory for multiple-boundary QSPR problems. Last, we develop three new QSPR-Perturbation theory models. The first model classify correctly >100,000 pairs of intra-molecular carbolithiations with 75-95% of Accuracy (Ac), Sensitivity (Sn), and Specificity (Sp). The model predicts probabilities of variations in the yield and enantiomeric excess of reactions due to at least one perturbation in boundary conditions (solvent, temperature
Lee, Myoung-Jae; Jung, Young-Dae
2015-02-15
The nonthermal and geometric effects on the propagation of the surface dust acoustic waves are investigated in a Lorentzian dusty plasma slab. The symmetric and anti-symmetric dispersion modes of the dust acoustic waves are obtained by the plasma dielectric function with the spectral reflection conditions the slab geometry. The variation of the nonthermal and geometric effects on the symmetric and the anti-symmetric modes of the surface plasma waves is also discussed.
Off-axis reflecting telescope with axially-symmetric optical property and its applications
NASA Astrophysics Data System (ADS)
Chang, Seunghyuk
2006-06-01
The basic concept and fundamental result of a recently developed geometric aberration theory for classical off-axis reflecting telescopes and imaging systems are presented. It is shown that a classical off-axis reflecting telescope can be designed to have practically axially-symmetric optical property by eliminating the dominant aberration (linear astigmatism) caused by the asymmetric geometry. A simple closed-form equation for elimination of linear astigmatism is presented. Also, to show how the developed aberration theory can be applied to current and future telescopes, several off-axis reflecting telescopes and imaging systems are designed and analyzed.
Feature Surfaces in Symmetric Tensor Fields Based on Eigenvalue Manifold.
Palacios, Jonathan; Yeh, Harry; Wang, Wenping; Zhang, Yue; Laramee, Robert S; Sharma, Ritesh; Schultz, Thomas; Zhang, Eugene
2016-03-01
Three-dimensional symmetric tensor fields have a wide range of applications in solid and fluid mechanics. Recent advances in the (topological) analysis of 3D symmetric tensor fields focus on degenerate tensors which form curves. In this paper, we introduce a number of feature surfaces, such as neutral surfaces and traceless surfaces, into tensor field analysis, based on the notion of eigenvalue manifold. Neutral surfaces are the boundary between linear tensors and planar tensors, and the traceless surfaces are the boundary between tensors of positive traces and those of negative traces. Degenerate curves, neutral surfaces, and traceless surfaces together form a partition of the eigenvalue manifold, which provides a more complete tensor field analysis than degenerate curves alone. We also extract and visualize the isosurfaces of tensor modes, tensor isotropy, and tensor magnitude, which we have found useful for domain applications in fluid and solid mechanics. Extracting neutral and traceless surfaces using the Marching Tetrahedra method can cause the loss of geometric and topological details, which can lead to false physical interpretation. To robustly extract neutral surfaces and traceless surfaces, we develop a polynomial description of them which enables us to borrow techniques from algebraic surface extraction, a topic well-researched by the computer-aided design (CAD) community as well as the algebraic geometry community. In addition, we adapt the surface extraction technique, called A-patches, to improve the speed of finding degenerate curves. Finally, we apply our analysis to data from solid and fluid mechanics as well as scalar field analysis. PMID:26441450
Symmetrical band-pass loudspeaker systems
NASA Astrophysics Data System (ADS)
Matusiak, Grzegorz Piotr
2001-12-01
Loudspeaker systems are analyzed in a doctoral dissertation. The dissertation concerns loudspeaker systems, which are known as subwoofers or band-pass loudspeaker systems. Their advantages include: high- quality sound reproduction in the low-frequency range, small dimensions, small nonlinear distortions and the fact that they can be placed anywhere in a room or car. Band-pass loudspeaker systems are used widely in the so- called Home Theatre as well as to provide sound in cinema, theatre, concert, discotheque, opera, operetta, philharmonic and amphitheater halls, at open-air concerts, and so on. Various designs are mass-produced by a large number of manufacturers. The study covers an analysis of band-pass loudspeaker systems to which the frequency transformation, i.e. the reactance transformation, has been applied. Since this is a symmetrical transformation, amplitude frequency responses of the studied band-pass systems are also symmetrical (logarithmic scale of a frequency). As a result, the high-pass loudspeaker system design method, known as the Thiele-Small, Benson analysis, can be employed. The investigations include the formulation of band-pass system equations (fourth, sixth and eighth-order polynomials) and the subsequent derivation of relations for the calculation of system parameters. The obtained results enable the calculation of optimum designs for prescribed alignments, e.g. (Chebyshev) equal-ripple, (Butterworth) maximally flat, or quasi-maximally flat (QB). The analysis covers fourth, sixth and eighth-order symmetrical systems. Eighth-order systems have been divided into three kinds according to three ways of physical realization. The doctoral dissertation includes band-pass loudspeaker systems, which can be designed with active or passive filters or without the filter. Designed systems consist of a loudspeaker whose front of a diaphragm is loaded with a Helmholtz resonator, i.e. an enclosure with a vent, which radiates sound outwards. The back is
Symmetrical and anti-symmetrical coherent perfect absorption for acoustic waves
Wei, Pengjiang; Croënne, Charles; Tak Chu, Sai; Li, Jensen
2014-03-24
We investigate tunable acoustic absorption enabled by the coherent control of input waves. It relies on coherent perfect absorption originally proposed in optics. By designing appropriate acoustic metamaterial structures with resonating effective bulk modulus or density, we show that complete absorption of incident waves impinging on the metamaterial can be achieved for either symmetrical or anti-symmetrical inputs in the forward and backward directions. By adjusting the relative phase between the two incident beams, absorption can be tuned effectively from unity to zero, making coherent control useful in applications like acoustic modulators, noise controllers, transducers, and switches.
Ushenko, Yu A; Gorskii, M P; Dubolazov, A V; Motrich, A V; Ushenko, V A; Sidor, M I
2012-08-31
Theory of polarisation-correlation analysis of laser images of histological sections of biopsy material from cervix tissue based on spatial frequency selection of linear and circular birefringence mechanisms is formulated. Comparative results of measuring the coordinate distributions of the complex degree of mutual anisotropy (CDMA), produced by fibrillar networks formed by myosin and collagen fibres of cervix tissue in different pathological conditions, namely, pre-cancer (dysplasia) and cancer (adenocarcinoma), are presented. The values and variation ranges of statistical (moments of the first - fourth order), correlation (excess-autocorrelation functions), and fractal (slopes of approximating curves and dispersion of extrema of logarithmic dependences of power spectra) parameters of the CDMA coordinate distributions are studied. Objective criteria for pathology diagnostics and differentiation of its severity degree are determined. (image processing)
Communities and classes in symmetric fractals
NASA Astrophysics Data System (ADS)
Krawczyk, Małgorzata J.
2015-07-01
Two aspects of fractal networks are considered: the community structure and the class structure, where classes of nodes appear as a consequence of a local symmetry of nodes. The analyzed systems are the networks constructed for two selected symmetric fractals: the Sierpinski triangle and the Koch curve. Communities are searched for by means of a set of differential equations. Overlapping nodes which belong to two different communities are identified by adding some noise to the initial connectivity matrix. Then, a node can be characterized by a spectrum of probabilities of belonging to different communities. Our main goal is that the overlapping nodes with the same spectra belong to the same class.
Synthesis of controllers for symmetric systems
NASA Astrophysics Data System (ADS)
Ameur Abid, Chiheb; Zouari, Belhassen
2010-11-01
This article deals with supervisory control problem for coloured Petri (CP) nets. Considering a CP-net, we build a condensed version of the ordinary state-space, namely the symbolic reachability graph (SRG). This latter graph allows to cope with state-space explosion problem for symmetric systems. The control specification can be expressed in terms of either forbidden states or forbidden sequences of transitions. According to these specifications, we derive the controller by applying the theory of regions on the basis of the SRG. Thanks to expressiveness power of CP-nets, the obtained controller to be connected to the plant model is reduced to one single place.
2 × 2 random matrix ensembles with reduced symmetry: from Hermitian to {PT} -symmetric matrices
NASA Astrophysics Data System (ADS)
Gong, Jiangbin; Wang, Qing-hai
2012-11-01
A possibly fruitful extension of conventional random matrix ensembles is proposed by imposing symmetry constraints on conventional Hermitian matrices or parity-time ( {PT})-symmetric matrices. To illustrate the main idea, we first study 2 × 2 complex Hermitian matrix ensembles with O(2)-invariant constraints, yielding novel level-spacing statistics such as singular distributions, the half-Gaussian distribution, distributions interpolating between the GOE (Gaussian orthogonal ensemble) distribution and half-Gaussian distributions, as well as the gapped-GOE distribution. Such a symmetry-reduction strategy is then used to explore 2 × 2 {PT}-symmetric matrix ensembles with real eigenvalues. In particular, {PT}-symmetric random matrix ensembles with U(2) invariance can be constructed, with the conventional complex Hermitian random matrix ensemble being a special case. In two examples of {PT}-symmetric random matrix ensembles, the level-spacing distributions are found to be the standard GUE (Gaussian unitary ensemble) statistics or the ‘truncated-GUE’ statistics. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’.
Seifert, Michael D.; Wald, Robert M.
2007-04-15
We present a general method for the analysis of the stability of static, spherically symmetric solutions to spherically symmetric perturbations in an arbitrary diffeomorphism covariant Lagrangian field theory. Our method involves fixing the gauge and solving the linearized gravitational field equations to eliminate the metric perturbation variables in terms of the matter variables. In a wide class of cases--which include f(R) gravity, the Einstein-aether theory of Jacobson and Mattingly, and Bekenstein's TeVeS theory--the remaining perturbation equations for the matter fields are second order in time. We show how the symplectic current arising from the original Lagrangian gives rise to a symmetric bilinear form on the variables of the reduced theory. If this bilinear form is positive definite, it provides an inner product that puts the equations of motion of the reduced theory into a self-adjoint form. A variational principle can then be written down immediately, from which stability can be tested readily. We illustrate our method in the case of Einstein's equation with perfect fluid matter, thereby rederiving, in a systematic manner, Chandrasekhar's variational principle for radial oscillations of spherically symmetric stars. In a subsequent paper, we will apply our analysis to f(R) gravity, the Einstein-aether theory, and Bekenstein's TeVeS theory.
The modelling of symmetric airfoil vortex generators
NASA Technical Reports Server (NTRS)
Reichert, B. A.; Wendt, B. J.
1996-01-01
An experimental study is conducted to determine the dependence of vortex generator geometry and impinging flow conditions on shed vortex circulation and crossplane peak vorticity for one type of vortex generator. The vortex generator is a symmetric airfoil having a NACA 0012 cross-sectional profile. The geometry and flow parameters varied include angle-of-attack alfa, chordlength c, span h, and Mach number M. The vortex generators are mounted either in isolation or in a symmetric counter-rotating array configuration on the inside surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio is delta/R = 0. 17. Circulation and peak vorticity data are derived from crossplane velocity measurements conducted at or about 1 chord downstream of the vortex generator trailing edge. Shed vortex circulation is observed to be proportional to M, alfa, and h/delta. With these parameters held constant, circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio AR. Shed vortex peak vorticity is also observed to be proportional to M, alfa, and h/delta. Unlike circulation, however, peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at AR approx. 2.0 before falling off.
Cyclicity of some symmetric nilpotent centers
NASA Astrophysics Data System (ADS)
García, Isaac A.
2016-03-01
In this work we present techniques for bounding the cyclicity of a wide class of monodromic nilpotent singularities of symmetric polynomial planar vector fields. The starting point is identifying a broad family of nilpotent symmetric fields for which existence of a center is equivalent to existence of a local analytic first integral, which, unlike the degenerate case, is not true in general for nilpotent singularities. We are able to relate so-called "focus quantities" to the "Poincaré-Lyapunov quantities" arising from the Poincaré first return map. When we apply the method to concrete examples, we show in some cases that the upper bound is sharp. Our approach is based on computational algebra methods for determining a minimal basis (constructed by focus quantities instead of by Poincaré-Lyapunov quantities because of the easier computability of the former) of the associated polynomial Bautin ideal in the parameter space of the family. The case in which the Bautin ideal is not radical is also treated.
Electroweak Baryogenesis in R-symmetric Supersymmetry
Fok, R.; Kribs, Graham D.; Martin, Adam; Tsai, Yuhsin
2013-03-01
We demonstrate that electroweak baryogenesis can occur in a supersymmetric model with an exact R-symmetry. The minimal R-symmetric supersymmetric model contains chiral superfields in the adjoint representation, giving Dirac gaugino masses, and an additional set of "R-partner" Higgs superfields, giving R-symmetric \\mu-terms. New superpotential couplings between the adjoints and the Higgs fields can simultaneously increase the strength of the electroweak phase transition and provide additional tree-level contributions to the lightest Higgs mass. Notably, no light stop is present in this framework, and in fact, we require both stops to be above a few TeV to provide sufficient radiative corrections to the lightest Higgs mass to bring it up to 125 GeV. Large CP-violating phases in the gaugino/higgsino sector allow us to match the baryon asymmetry of the Universe with no constraints from electric dipole moments due to R-symmetry. We briefly discuss some of the more interesting phenomenology, particularly of the of the lightest CP-odd scalar.
Spherically Symmetric Solutions of Light Galileon
NASA Astrophysics Data System (ADS)
Momeni, D.; Houndjo, M. J. S.; Güdekli, E.; Rodrigues, M. E.; Alvarenga, F. G.; Myrzakulov, R.
2016-02-01
We have been studied the model of light Galileon with translational shift symmetry ϕ → ϕ + c. The matter Lagrangian is presented in the form {L}_{φ }= -η (partial φ )2+β G^{μ ν }partial _{μ }φ partial _{ν }φ . We have been addressed two issues: the first is that, we have been proven that, this type of Galileons belong to the modified matter-curvature models of gravity in type of f(R,R^{μ ν }T_{μ ν }m). Secondly, we have been investigated exact solution for spherically symmetric geometries in this model. We have been found an exact solution with singularity at r = 0 in null coordinates. We have been proven that the solution has also a non-divergence current vector norm. This solution can be considered as an special solution which has been investigated in literature before, in which the Galileon's field is non-static (time dependence). Our scalar-shift symmetrized Galileon has the simple form of ϕ = t, which it is remembered by us dilaton field.
Fast numerical determination of symmetric sparsity patterns
Carter, R.G.
1994-08-01
The author considers a function g: {Re}{sup n} {yields} {Re}{sup n} for which the Jacobian is symmetric and sparse. Such functions often arise, for instance, in numerical optimization, where g is the gradient of some objective function f so that the Jacobian of g is the Hessian of f. In many such applications one can generate extremely efficient algorithms by taking advantage of the sparsity structure of the problem if this pattern is known a priori. Unfortunately, determining such sparsity structures by hand is often difficult and prone to error. If one suspects a mistake has been made, or if g is a {open_quotes}black box{close_quotes} so that the true structure is completely unknown, one often has no alternative but to compute the entire matrix by finite differences - a prohibitively expensive task for large problems. The author shows that it is possible to numerically determine symmetric sparsity patterns using a relatively small number of g evaluations. Numerical results are shown for n up to 100,000 in which all nonzeros in the Jacobian are correctly identified in about one-hundredth of the time required to estimate the sparsity structure by a full finite difference calculation. When a good initial guess for the sparsity structure is available, numerical results are presented for n up to 500,000, in which all missing nonzeros are correctly located almost five-thousand times faster than would be possible with a full finite difference calculation.
Spherically symmetric black holes in f (R) gravity: is geometric scalar hair supported?
NASA Astrophysics Data System (ADS)
Cañate, Pedro; Jaime, Luisa G.; Salgado, Marcelo
2016-08-01
We critically discuss current research on black hole (BH) solutions in f (R) gravity and shed light on its geometrical and physical significance. We also investigate the meaning, existence or lack thereof of Birkhoff’s theorem (BT) in this kind of modified gravity. We then focus on the analysis and search for non-trivial (i.e. hairy) asymptotically flat (AF) BH solutions in static and spherically symmetric (SSS) spacetimes in vacuum having the property that the Ricci scalar does not vanish identically in the domain of outer communication. To do so, we provide and enforce regularity conditions at the horizon in order to prevent the presence of singular solutions there. Specifically, we consider several classes of f (R) models like those proposed recently for explaining the accelerated expansion in the Universe and which have been thoroughly tested in several physical scenarios. Finally, we report analytical and numerical evidence about the absence of geometric hair in AFSSSBH solutions in those f (R) models. First, we submit the models to the available no-hair theorems (NHTs), and in the cases where the theorems apply, the absence of hair is demonstrated analytically. In the cases where the theorems do not apply, we resort to a numerical analysis due to the complexity of the non-linear differential equations. With that aim, a code to solve the equations numerically was built and tested using well-known exact solutions. In a future investigation we plan to analyze the problem of hair in de Sitter and anti-de Sitter backgrounds.
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.
2013-01-01
Nondimensional linear-bifurcation buckling equations for balanced, symmetrically laminated cylinders with negligible shell-wall anisotropies and subjected to uniform axial compression loads are presented. These equations are solved exactly for the practical case of simply supported ends. Nondimensional quantities are used to characterize the buckling behavior that consist of a stiffness-weighted length-to-radius parameter, a stiffness-weighted shell-thinness parameter, a shell-wall nonhomogeneity parameter, two orthotropy parameters, and a nondimensional buckling load. Ranges for the nondimensional parameters are established that encompass a wide range of laminated-wall constructions and numerous generic plots of nondimensional buckling load versus a stiffness-weighted length-to-radius ratio are presented for various combinations of the other parameters. These plots are expected to include many practical cases of interest to designers. Additionally, these plots show how the parameter values affect the distribution and size of the festoons forming each response curve and how they affect the attenuation of each response curve to the corresponding solution for an infinitely long cylinder. To aid in preliminary design studies, approximate formulas for the nondimensional buckling load are derived, and validated against the corresponding exact solution, that give the attenuated buckling response of an infinitely long cylinder in terms of the nondimensional parameters presented herein. A relatively small number of "master curves" are identified that give a nondimensional measure of the buckling load of an infinitely long cylinder as a function of the orthotropy and wall inhomogeneity parameters. These curves reduce greatly the complexity of the design-variable space as compared to representations that use dimensional quantities as design variables. As a result of their inherent simplicity, these master curves are anticipated to be useful in the ongoing development of
Solitary Waves of a $$\\mathcal {P}$$ $$\\mathcal {T}$$-Symmetric Nonlinear Dirac Equation
Cuevas-Maraver, Jesus; Kevrekidis, Panayotis G.; Saxena, Avadh; Cooper, Fred; Khare, Avinash; Comech, Andrew; Bender, Carl M.
2015-10-06
In our study we consider we consider a prototypical example of a mathcalP mathcalT-symmetric Dirac model. We discuss the underlying linear limit of the model and identify the threshold of the mathcalP mathcalT -phase transition in an analytical form. We then focus on the examination of the nonlinear model. We consider the continuation in the mathcalP mathcalT -symmetric model of the solutions of the corresponding Hamiltonian model and find that the solutions can be continued robustly as stable ones all the way up to the mathcalP mathcalT-transition threshold. In the latter, they degenerate into linear waves. We also examine themore » dynamics of the model. Given the stability of the waveforms in the mathcalP mathcalT-exact phase, we consider them as initial conditions for parameters outside of that phase. We also find that both oscillatory dynamics and exponential growth may arise, depending on the size of the corresponding “quench”. The former can be characterized by an interesting form of bifrequency solutions that have been predicted on the basis of the SU symmetry. Finally, we explore some special, analytically tractable, but not mathcalP mathcalT-symmetric solutions in the massless limit of t- e model.« less
Linear regression in astronomy. I
NASA Technical Reports Server (NTRS)
Isobe, Takashi; Feigelson, Eric D.; Akritas, Michael G.; Babu, Gutti Jogesh
1990-01-01
Five methods for obtaining linear regression fits to bivariate data with unknown or insignificant measurement errors are discussed: ordinary least-squares (OLS) regression of Y on X, OLS regression of X on Y, the bisector of the two OLS lines, orthogonal regression, and 'reduced major-axis' regression. These methods have been used by various researchers in observational astronomy, most importantly in cosmic distance scale applications. Formulas for calculating the slope and intercept coefficients and their uncertainties are given for all the methods, including a new general form of the OLS variance estimates. The accuracy of the formulas was confirmed using numerical simulations. The applicability of the procedures is discussed with respect to their mathematical properties, the nature of the astronomical data under consideration, and the scientific purpose of the regression. It is found that, for problems needing symmetrical treatment of the variables, the OLS bisector performs significantly better than orthogonal or reduced major-axis regression.
Symmetric instability in the Gulf Stream
NASA Astrophysics Data System (ADS)
Thomas, Leif N.; Taylor, John R.; Ferrari, Raffaele; Joyce, Terrence M.
2013-07-01
Analyses of wintertime surveys of the Gulf Stream (GS) conducted as part of the CLIvar MOde water Dynamic Experiment (CLIMODE) reveal that water with negative potential vorticity (PV) is commonly found within the surface boundary layer (SBL) of the current. The lowest values of PV are found within the North Wall of the GS on the isopycnal layer occupied by Eighteen Degree Water, suggesting that processes within the GS may contribute to the formation of this low-PV water mass. In spite of large heat loss, the generation of negative PV was primarily attributable to cross-front advection of dense water over light by Ekman flow driven by winds with a down-front component. Beneath a critical depth, the SBL was stably stratified yet the PV remained negative due to the strong baroclinicity of the current, suggesting that the flow was symmetrically unstable. A large eddy simulation configured with forcing and flow parameters based on the observations confirms that the observed structure of the SBL is consistent with the dynamics of symmetric instability (SI) forced by wind and surface cooling. The simulation shows that both strong turbulence and vertical gradients in density, momentum, and tracers coexist in the SBL of symmetrically unstable fronts. SI is a shear instability that draws its energy from geostrophic flows. A parameterization for the rate of kinetic energy (KE) extraction by SI applied to the observations suggests that SI could result in a net dissipation of 33 mW m-2 and 1 mW m-2 for surveys with strong and weak fronts, respectively. The surveys also showed signs of baroclinic instability (BCI) in the SBL, namely thermally direct vertical circulations that advect biomass and PV. The vertical circulation was inferred using the omega equation and used to estimate the rate of release of available potential energy (APE) by BCI. The rate of APE release was found to be comparable in magnitude to the net dissipation associated with SI. This result points to an
The Caenorhabditis elegans septin complex is nonpolar
John, Corinne M; Hite, Richard K; Weirich, Christine S; Fitzgerald, Daniel J; Jawhari, Hatim; Faty, Mahamadou; Schläpfer, Dominik; Kroschewski, Ruth; Winkler, Fritz K; Walz, Tom; Barral, Yves; Steinmetz, Michel O
2007-01-01
Septins are conserved GTPases that form heteromultimeric complexes and assemble into filaments that play a critical role in cell division and polarity. Results from budding and fission yeast indicate that septin complexes form around a tetrameric core. However, the molecular structure of the core and its influence on the polarity of septin complexes and filaments is poorly defined. The septin complex of the nematode Caenorhabditis elegans is formed entirely by the core septins UNC-59 and UNC-61. We show that UNC-59 and UNC-61 form a dimer of coiled-coil-mediated heterodimers. By electron microscopy, this heterotetramer appears as a linear arrangement of four densities representing the four septin subunits. Fusion of GFP to the N termini of UNC-59 and UNC-61 and subsequent electron microscopic visualization suggests that the sequence of septin subunits is UNC-59/UNC-61/UNC-61/UNC-59. Visualization of GFP extensions fused to the extremity of the C-terminal coiled coils indicates that these extend laterally from the heterotetrameric core. Together, our study establishes that the septin core complex is symmetric, and suggests that septins form nonpolar filaments. PMID:17599066
Operational multipartite entanglement classes for symmetric photonic qubit states
Kiesel, N.; Wieczorek, W.; Weinfurter, H.; Krins, S.; Bastin, T.; Solano, E.
2010-03-15
We present experimental schemes that allow us to study the entanglement classes of all symmetric states in multiqubit photonic systems. We compare the efficiency of the proposed schemes and highlight the relation between the entanglement properties of symmetric Dicke states and a recently proposed entanglement scheme for atoms. In analogy to the latter, we obtain a one-to-one correspondence between well-defined sets of experimental parameters and multiqubit entanglement classes inside the symmetric subspace of the photonic system.
Cutting Force Predication Based on Integration of Symmetric Fuzzy Number and Finite Element Method
Wang, Zhanli; Hu, Yanjuan; Wang, Yao; Dong, Chao; Pang, Zaixiang
2014-01-01
In the process of turning, pointing at the uncertain phenomenon of cutting which is caused by the disturbance of random factors, for determining the uncertain scope of cutting force, the integrated symmetric fuzzy number and the finite element method (FEM) are used in the prediction of cutting force. The method used symmetric fuzzy number to establish fuzzy function between cutting force and three factors and obtained the uncertain interval of cutting force by linear programming. At the same time, the change curve of cutting force with time was directly simulated by using thermal-mechanical coupling FEM; also the nonuniform stress field and temperature distribution of workpiece, tool, and chip under the action of thermal-mechanical coupling were simulated. The experimental result shows that the method is effective for the uncertain prediction of cutting force. PMID:24790556
Cutting force predication based on integration of symmetric fuzzy number and finite element method.
Wang, Zhanli; Hu, Yanjuan; Wang, Yao; Dong, Chao; Pang, Zaixiang
2014-01-01
In the process of turning, pointing at the uncertain phenomenon of cutting which is caused by the disturbance of random factors, for determining the uncertain scope of cutting force, the integrated symmetric fuzzy number and the finite element method (FEM) are used in the prediction of cutting force. The method used symmetric fuzzy number to establish fuzzy function between cutting force and three factors and obtained the uncertain interval of cutting force by linear programming. At the same time, the change curve of cutting force with time was directly simulated by using thermal-mechanical coupling FEM; also the nonuniform stress field and temperature distribution of workpiece, tool, and chip under the action of thermal-mechanical coupling were simulated. The experimental result shows that the method is effective for the uncertain prediction of cutting force. PMID:24790556
Radially symmetric transmon with long lifetime
NASA Astrophysics Data System (ADS)
Sandberg, Martin; Vissers, Michael; Gao, Jiansong; Pappas, David
2014-03-01
We present a radially symmetric design for a large pad transmon qubit. The symmetry reduces the dipole radiation by orders of magnitude relative to axial large pad qubits that are widely used for 3D-circuit QED experiments. The reduction in radiation allows for the use of large area structures that are needed to reduce the effects of interface losses. This enables long qubit lifetimes without the use of a high-Q cavity resonator. Energy relaxation and coherence times of up to 35 microseconds have been measured. The qubit can be implemented in a microstrip geometry. This gives the advantage of removing discontinuous ground planes that can cause stray resonances. In addition, this geometry is well suited for implementing and exploring circuits with direct qubit-qubit coupling.
Symmetrical Taylor impact of glass bars
NASA Astrophysics Data System (ADS)
Murray, N. H.; Bourne, N. K.; Field, J. E.; Rosenberg, Z.
1998-07-01
Brar and Bless pioneered the use of plate impact upon bars as a technique for investigating the 1D stress loading of glass but limited their studies to relatively modest stresses (1). We wish to extend this technique by applying VISAR and embedded stress gauge measurements to a symmetrical version of the test in which two rods impact one upon the other. Previous work in the laboratory has characterised the glass types (soda-lime and borosilicate)(2). These experiments identify the failure mechanisms from high-speed photography and the stress and particle velocity histories are interpreted in the light of these results. The differences in response of the glasses and the relation of the fracture to the failure wave in uniaxial strain are discussed.
Scaling model for symmetric star polymers
NASA Astrophysics Data System (ADS)
Ramachandran, Ram; Rai, Durgesh K.; Beaucage, Gregory
2010-03-01
Neutron scattering data from symmetric star polymers with six poly (urethane-ether) arms, chemically bonded to a C-60 molecule are fitted using a new scaling model and scattering function. The new scaling function can describe both good solvent and theta solvent conditions as well as resolve deviations in chain conformation due to steric interactions between star arms. The scaling model quantifies the distinction between invariant topological features for this star polymer and chain tortuosity which changes with goodness of solvent and steric interaction. Beaucage G, Phys. Rev. E 70 031401 (2004).; Ramachandran R, et al. Macromolecules 41 9802-9806 (2008).; Ramachandran R, et al. Macromolecules, 42 4746-4750 (2009); Rai DK et al. Europhys. Lett., (Submitted 10/2009).
Circularly symmetric light scattering from nanoplasmonic spirals.
Trevino, Jacob; Cao, Hui; Dal Negro, Luca
2011-05-11
In this paper, we combine experimental dark-field imaging, scattering, and fluorescence spectroscopy with rigorous electrodynamics calculations in order to investigate light scattering from planar arrays of Au nanoparticles arranged in aperiodic spirals with diffuse, circularly symmetric Fourier space. In particular, by studying the three main types of Vogel's spirals fabricated by electron-beam lithography on quartz substrates, we demonstrate polarization-insensitive planar light diffraction in the visible spectral range. Moreover, by combining dark-field imaging with analytical multiparticle calculations in the framework of the generalized Mie theory, we show that plasmonic spirals support distinctive structural resonances with circular symmetry carrying orbital angular momentum. The engineering of light scattering phenomena in deterministic structures with circular Fourier space provides a novel strategy for the realization of optical devices that fully leverage on enhanced, polarization-insensitive light-matter coupling over planar surfaces, such as thin-film plasmonic solar cells, plasmonic polarization devices, and optical biosensors. PMID:21466155
Cracked shells under skew-symmetric loading
NASA Technical Reports Server (NTRS)
Lelale, F.
1982-01-01
A shell containing a through crack in one of the principal planes of curvature and under general skew-symmetric loading is considered. By employing a Reissner type shell theory which takes into account the effect of transverse shear strains, all boundary conditions on the crack surfaces are satisfied separately. Consequently, unlike those obtained from the classical shell theory, the angular distributions of the stress components around the crack tips are shown to be identical to the distributions obtained from the plane and antiplane elasticity solutions. Extensive results are given for axially and circumferentially cracked cylindrical shells, spherical shells, and toroidal shells under uniform inplane shearing, out of plane shearing, and torsion. The effect of orthotropy on the results is also studied.
Jamming anomaly in PT-symmetric systems
NASA Astrophysics Data System (ADS)
Barashenkov, I. V.; Zezyulin, D. A.; Konotop, V. V.
2016-07-01
The Schrödinger equation with a { P }{ T }-symmetric potential is used to model an optical structure consisting of an element with gain coupled to an element with loss. At low gain–loss amplitudes γ, raising the amplitude results in the energy flux from the active to the leaky element being boosted. We study the anomalous behaviour occurring for larger γ, where the increase of the amplitude produces a drop of the flux across the gain–loss interface. We show that this jamming anomaly is either a precursor of the exceptional point, where two real eigenvalues coalesce and acquire imaginary parts, or precedes the eigenvalue's immersion in the continuous spectrum.
Highly symmetric POVMs and their informational power
NASA Astrophysics Data System (ADS)
Słomczyński, Wojciech; Szymusiak, Anna
2016-01-01
We discuss the dependence of the Shannon entropy of normalized finite rank-1 POVMs on the choice of the input state, looking for the states that minimize this quantity. To distinguish the class of measurements where the problem can be solved analytically, we introduce the notion of highly symmetric POVMs and classify them in dimension 2 (for qubits). In this case, we prove that the entropy is minimal, and hence, the relative entropy (informational power) is maximal, if and only if the input state is orthogonal to one of the states constituting a POVM. The method used in the proof, employing the Michel theory of critical points for group action, the Hermite interpolation, and the structure of invariant polynomials for unitary-antiunitary groups, can also be applied in higher dimensions and for other entropy-like functions. The links between entropy minimization and entropic uncertainty relations, the Wehrl entropy, and the quantum dynamical entropy are described.
Torus quantization of symmetrically excited helium
Mueller, J. ); Burgdoerfer, J. Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6377 ); Noid, D. )
1992-02-01
The recent discovery by Richter and Wintgen (J. Phys. B 23, L197 (1990)) that the classical helium atom is not globally ergodic has stimulated renewed interest in its semiclassical quantization. The Einstein-Brillouin-Keller quantization of Kolmogorov-Arnold-Moser tori around stable periodic orbits becomes locally possible in a selected region of phase space. Using a hyperspherical representation we have found a dynamically confining potential allowing for a stable motion near the Wannier ridge. The resulting semiclassical eigenenergies provide a test for full quantum calculations in the limit of very high quantum numbers. The relations to frequently used group-theoretical classifications for doubly excited states and to the periodic-orbit quantization of the chaotic portion of the phase space are discussed. The extrapolation of the semiclassical quantization to low-lying states give remarkably accurate estimates for the energies of all symmetric {ital L}=0 states of helium.
Symmetric Satellite Swarms and Choreographic Crystals
NASA Astrophysics Data System (ADS)
Boyle, Latham; Khoo, Jun Yong; Smith, Kendrick
2016-01-01
In this Letter, we introduce a natural dynamical analogue of crystalline order, which we call choreographic order. In an ordinary (static) crystal, a high degree of symmetry may be achieved through a careful arrangement of the fundamental repeated elements. In the dynamical analogue, a high degree of symmetry may be achieved by having the fundamental elements perform a carefully choreographed dance. For starters, we show how to construct and classify all symmetric satellite constellations. Then we explain how to generalize these ideas to construct and classify choreographic crystals more broadly. We introduce a quantity, called the "choreography" of a given configuration. We discuss the possibility that some (naturally occurring or artificial) many-body or condensed-matter systems may exhibit choreographic order, and suggest natural experimental signatures that could be used to identify and characterize such systems.
Symmetric Satellite Swarms and Choreographic Crystals.
Boyle, Latham; Khoo, Jun Yong; Smith, Kendrick
2016-01-01
In this Letter, we introduce a natural dynamical analogue of crystalline order, which we call choreographic order. In an ordinary (static) crystal, a high degree of symmetry may be achieved through a careful arrangement of the fundamental repeated elements. In the dynamical analogue, a high degree of symmetry may be achieved by having the fundamental elements perform a carefully choreographed dance. For starters, we show how to construct and classify all symmetric satellite constellations. Then we explain how to generalize these ideas to construct and classify choreographic crystals more broadly. We introduce a quantity, called the "choreography" of a given configuration. We discuss the possibility that some (naturally occurring or artificial) many-body or condensed-matter systems may exhibit choreographic order, and suggest natural experimental signatures that could be used to identify and characterize such systems. PMID:26799028
Consistency of PT-symmetric quantum mechanics
NASA Astrophysics Data System (ADS)
Brody, Dorje C.
2016-03-01
In recent reports, suggestions have been put forward to the effect that parity and time-reversal (PT) symmetry in quantum mechanics is incompatible with causality. It is shown here, in contrast, that PT-symmetric quantum mechanics is fully consistent with standard quantum mechanics. This follows from the surprising fact that the much-discussed metric operator on Hilbert space is not physically observable. In particular, for closed quantum systems in finite dimensions there is no statistical test that one can perform on the outcomes of measurements to determine whether the Hamiltonian is Hermitian in the conventional sense, or PT-symmetric—the two theories are indistinguishable. Nontrivial physical effects arising as a consequence of PT symmetry are expected to be observed, nevertheless, for open quantum systems with balanced gain and loss.
Pseudo-Z symmetric space-times
Mantica, Carlo Alberto; Suh, Young Jin
2014-04-15
In this paper, we investigate Pseudo-Z symmetric space-time manifolds. First, we deal with elementary properties showing that the associated form A{sub k} is closed: in the case the Ricci tensor results to be Weyl compatible. This notion was recently introduced by one of the present authors. The consequences of the Weyl compatibility on the magnetic part of the Weyl tensor are pointed out. This determines the Petrov types of such space times. Finally, we investigate some interesting properties of (PZS){sub 4} space-time; in particular, we take into consideration perfect fluid and scalar field space-time, and interesting properties are pointed out, including the Petrov classification. In the case of scalar field space-time, it is shown that the scalar field satisfies a generalized eikonal equation. Further, it is shown that the integral curves of the gradient field are geodesics. A classical method to find a general integral is presented.
Tunneling control using classical non-linear oscillator
Kar, Susmita; Bhattacharyya, S. P.
2014-04-24
A quantum particle is placed in symmetric double well potential which is coupled to a classical non-linear oscillator via a coupling function. With different spatial symmetry of the coupling and under various controlling fashions, the tunneling of the quantum particle can be enhanced or suppressed, or totally destroyed.
Group Lifting Structures For Multirate Filter Banks, II: Linear Phase Filter Banks
Brislawn, Christopher M
2008-01-01
The theory of group lifting structures is applied to linear phase lifting factorizations for the two nontrivial classes of two-channel linear phase perfect reconstruction filter banks, the whole-and half-sample symmetric classes. Group lifting structures defined for the reversible and irreversible classes of whole-and half-sample symmetric filter banks are shown to satisfy the hypotheses of the uniqueness theorem for group lifting structures. It follows that linear phase lifting factorizations of whole-and half-sample symmetric filter banks are therefore independent of the factorization methods used to compute them. These results cover the specification of user-defined whole-sample symmetric filter banks in Part 2 of the ISO JPEG 2000 standard.
The synthesis of symmetrical bis-1,2,5-thiadiazole ligands.
Mullins, Michael J.; Abboud, Khalil A.; Philipp, Dean M.; Muller, Richard Partain; Goddard, William A., III; Athey, Phillip S.; Snelgrove, R. Vernon
2004-05-01
We have been engaged in a search for coordination catalysts for the copolymerization of polar monomers (such as vinyl chloride and vinyl acetate) with ethylene. We have been investigating complexes of late transition metals with heterocyclic ligands. In this report we describe the synthesis of a symmetrical bis-thiadiazole. We have characterized one of the intermediates using single crystal X-ray diffraction. Several unsuccessful approaches toward 1 are also described, which shed light on some of the unique chemistry of thiadiazoles.
Nonlinear coupling of tearing fluctuations in the Madison Symmetric Torus
Sarff, J.S.; Assadi, S.; Almagri, A.F.; Cekic, M.; Den Hartog, D.J.; Fiksel, G.; Hokin, S.A.; Ji, H.; Prager, S.C.; Shen, W.; Sidikman, K.L.; Stoneking, M.R. )
1993-07-01
Three-wave, nonlinear, tearing mode coupling has been measured in the Madison Symmetric Torus (MST) reversed-field pinch (RFP) [Fusion Technol. [bold 19], 131 (1991)] using bispectral analysis of edge magnetic fluctuations resolved in [ital k]-space.'' The strength of nonlinear three-wave interactions satisfying the sum rules [ital m][sub 1]+[ital m][sub 2]=[ital m][sub 3] and [ital n][sub 1]+[ital n][sub 2]=[ital n][sub 3] is measured by the bicoherency. In the RFP, [ital m]=1, [ital n][similar to]2[ital R]/[ital a] (6 for MST) internally resonant modes are linearly unstable and grow to large amplitude. Large values of bicoherency occur for two [ital m]=1 modes coupled to an [ital m]=2 mode and the coupling of intermediate toroidal modes, e.g., [ital n]=6 and 7 coupled to [ital n]=13. These experimental bispectral features agree with predicted bispectral features derived from magnetohydrodynamic (MHD) computation. However, in the experiment, enhanced coupling occurs in the crash'' phase of a sawtooth oscillation concomitant with a broadened mode spectrum suggesting the onset of a nonlinear cascade.
Cardiac electrophysiology numerical models using symmetric multiprocessing (SMP).
Petsios, Stefanos Konstantinos D; Fotiadis, Dimitrios I
2009-01-01
Multi-dimensional electrophysiological models have been introduced to investigate electrical propagation in tissue level, based on cell-dynamics models. The models include a set of non-linear differential equations which describe the dynamics of cell and tissue excitation. However, as models evolve, it is inevitable that proper and powerful tools need to be introduced in order to reproduce the detailed and thus computationally intensive simulations. To build such tools, several computational methodologies need to be adopted regarding efficiency and reliability. On the other hand improvements apply to the hardware too. State of the art computers, even personal computers, tend to make use of multiple core Central Processing Units. Unfortunately the aforementioned methodologies follow sequential logic, resulting to low efficiency of the working platform. In this work we present the performance bottleneck in symmetric multiprocessing (SMP) for simulations of propagation phenomena in cardiac tissue electrophysiological models. We demonstrate the scalability and efficacy of the different methodologies used in the discretisation scheme and message passing in SMP. PMID:19965052
Nonlinear coupling of tearing fluctuations in the Madison Symmetric Torus
Sarff, J.S.; Almagri, A.F.; Cekic, M.; Den Hartog, D.J.; Fiksel, G.; Hokin, S.A.; Ji, H.; Prager, S.C.; Shen, W.; Stoneking, M.R. ); Assadi, S. ); Sidikman, K.L. )
1992-11-01
Three-wave, nonlinear, tearing mode coupling has been measured in the Madison Symmetric Torus (MST) reversed-field pinch (RFP) [Fusion Technol. 19, 131 (1991)] using bispectral analysis of edge magnetic fluctuations resolved in k-space. The strength of nonlinear three-wave interactions satisfying the sum rules m[sub 1] + m[sub 2] = m[sub 3] and n[sub 1] + n[sub 2] = n[sub 3] is measured by the bicoherency. In the RFP, m=l, n[approximately]2R/a (6 for MST) internally resonant modes are linearly unstable and grow to large amplitude. Large values of bicoherency occur for two m=l modes coupled to an m=2 mode and the coupling of intermediate toroidal modes, e.g., n=6 and 7 coupled to n=13. These experimental bispectral features agree with predicted bispectral features derived from MHD computation. However, in the experiment, enhanced coupling occurs in the crash'' phase of a sawtooth oscillation concomitant with a broadened mode spectrum suggesting the onset of a nonlinear cascade.
Nonlinear coupling of tearing fluctuations in the Madison Symmetric Torus
Sarff, J.S.; Almagri, A.F.; Cekic, M.; Den Hartog, D.J.; Fiksel, G.; Hokin, S.A.; Ji, H.; Prager, S.C.; Shen, W.; Stoneking, M.R.; Assadi, S.; Sidikman, K.L.
1992-11-01
Three-wave, nonlinear, tearing mode coupling has been measured in the Madison Symmetric Torus (MST) reversed-field pinch (RFP) [Fusion Technol. 19, 131 (1991)] using bispectral analysis of edge magnetic fluctuations resolved in ``k-space. The strength of nonlinear three-wave interactions satisfying the sum rules m{sub 1} + m{sub 2} = m{sub 3} and n{sub 1} + n{sub 2} = n{sub 3} is measured by the bicoherency. In the RFP, m=l, n{approximately}2R/a (6 for MST) internally resonant modes are linearly unstable and grow to large amplitude. Large values of bicoherency occur for two m=l modes coupled to an m=2 mode and the coupling of intermediate toroidal modes, e.g., n=6 and 7 coupled to n=13. These experimental bispectral features agree with predicted bispectral features derived from MHD computation. However, in the experiment, enhanced coupling occurs in the ``crash`` phase of a sawtooth oscillation concomitant with a broadened mode spectrum suggesting the onset of a nonlinear cascade.
Stochastic modeling of cell growth with symmetric or asymmetric division
NASA Astrophysics Data System (ADS)
Marantan, Andrew; Amir, Ariel
2016-07-01
We consider a class of biologically motivated stochastic processes in which a unicellular organism divides its resources (volume or damaged proteins, in particular) symmetrically or asymmetrically between its progeny. Assuming the final amount of the resource is controlled by a growth policy and subject to additive and multiplicative noise, we derive the recursive integral equation describing the evolution of the resource distribution over subsequent generations and use it to study the properties of stable resource distributions. We find conditions under which a unique stable resource distribution exists and calculate its moments for the class of affine linear growth policies. Moreover, we apply an asymptotic analysis to elucidate the conditions under which the stable distribution (when it exists) has a power-law tail. Finally, we use the results of this asymptotic analysis along with the moment equations to draw a stability phase diagram for the system that reveals the counterintuitive result that asymmetry serves to increase stability while at the same time widening the stable distribution. We also briefly discuss how cells can divide damaged proteins asymmetrically between their progeny as a form of damage control. In the appendixes, motivated by the asymmetric division of cell volume in Saccharomyces cerevisiae, we extend our results to the case wherein mother and daughter cells follow different growth policies.
Circularly symmetric distributed feedback semiconductor laser: An analysis
Erdogan, T.; Hall, D.G.
1990-08-15
We analyze the near-threshold behavior of a circularly symmetric distributed feedback laser by developing a coupled-mode theory analysis for all azimuthal modes. We show that the equations that describes the low-order azimuthal modes are, to a very good approximation, the same as those for the one-dimensional (linear) distributed feedback laser. We examine the behavior of higher-order azimuthal modes by numerically solving the exact coupled-mode equations. We find that while a significant amount of mode discrimination exists among radial (longitudinal) modes, as in the one-dimensional distributed feedback laser, there is a much smaller degree of discrimination among azimuthal modes, indicating probability of multimode operation. Despite the multimode behavior, we find the frequency bandwidth associated with modes that do lase ought to be smaller than the spacing between Fabry-Perot modes of a typical semiconductor laser. This laser is an excellent candidate for a surface-emitting laser-it should have a superb quality output beam and is well-suited for array operation.
Circularly symmetric distributed feedback semiconductor laser: An analysis
Erdogan, T.; Hall, D.G. )
1990-08-15
We analyze the near-threshold behavior of a circularly symmetric distributed feedback laser by developing a coupled-mode theory analysis for all azimuthal modes. We show that the equations that describe the low-order azimuthal modes are, to a very good approximation, the same as those for the one-dimensional (linear) distributed feedback laser. We examine the behavior of higher-order azimuthal modes by numerically solving the exact coupled-mode equations. We find that while a significant amount of mode discrimination exists among radial (longitudinal) modes, as in the one-dimensional distributed feedback laser, there is a much smaller degree of discrimination among azimuthal modes, indicating probability of multimode operation. Despite the multimode behavior, we find that the frequency bandwidth associated with modes that do lase ought to be smaller than the spacing between Fabry-Perot modes of a typical semiconductor laser. This laser is an excellent candidate for a surface-emitting laser---it should have a superb quality output beam and is well-suited for array operation.
Gyrokinetic Studies of Microturbulence in the Madison Symmetric Torus
NASA Astrophysics Data System (ADS)
Williams, Zachary; Duff, James; Pueschel, M. J.; Terry, Paul
2015-11-01
Reversed-field pinches operating with Pulsed Poloidal Current Drive (PPCD) exhibit microturbulence that contributes to heat and particle transport. This work focuses on the analysis of high-frequency fluctuations in a recent 200 kA PPCD discharge in the Madison Symmetric Torus, for which strong experimental evidence of microturbulence exists. Local gyrokinetic simulations were performed at multiple radial positions outside the reversal surface using the
Stochastic modeling of cell growth with symmetric or asymmetric division.
Marantan, Andrew; Amir, Ariel
2016-07-01
We consider a class of biologically motivated stochastic processes in which a unicellular organism divides its resources (volume or damaged proteins, in particular) symmetrically or asymmetrically between its progeny. Assuming the final amount of the resource is controlled by a growth policy and subject to additive and multiplicative noise, we derive the recursive integral equation describing the evolution of the resource distribution over subsequent generations and use it to study the properties of stable resource distributions. We find conditions under which a unique stable resource distribution exists and calculate its moments for the class of affine linear growth policies. Moreover, we apply an asymptotic analysis to elucidate the conditions under which the stable distribution (when it exists) has a power-law tail. Finally, we use the results of this asymptotic analysis along with the moment equations to draw a stability phase diagram for the system that reveals the counterintuitive result that asymmetry serves to increase stability while at the same time widening the stable distribution. We also briefly discuss how cells can divide damaged proteins asymmetrically between their progeny as a form of damage control. In the appendixes, motivated by the asymmetric division of cell volume in Saccharomyces cerevisiae, we extend our results to the case wherein mother and daughter cells follow different growth policies. PMID:27575162
Topological Analyses of Symmetric Eruptive Prominences
NASA Astrophysics Data System (ADS)
Panasenco, O.; Martin, S. F.
Erupting prominences (filaments) that we have analyzed from Hα Doppler data at Helio Research and from SOHO/EIT 304 Å, show strong coherency between their chirality, the direction of the vertical and lateral motions of the top of the prominences, and the directions of twisting of their legs. These coherent properties in erupting prominences occur in two patterns of opposite helicity; they constitute a form of dynamic chirality called the ``roll effect." Viewed from the positive network side as they erupt, many symmetrically-erupting dextral prominences develop rolling motion toward the observer along with right-hand helicity in the left leg and left-hand helicity in the right leg. Many symmetricaly-erupting sinistral prominences, also viewed from the positive network field side, have the opposite pattern: rolling motion at the top away from the observer, left-hand helical twist in the left leg, and right-hand twist in the right leg. We have analysed the motions seen in the famous movie of the ``Grand Daddy" erupting prominence and found that it has all the motions that define the roll effect. From our analyses of this and other symmetric erupting prominences, we show that the roll effect is an alternative to the popular hypothetical configuration of an eruptive prominence as a twisted flux rope or flux tube. Instead we find that a simple flat ribbon can be bent such that it reproduces nearly all of the observed forms. The flat ribbon is the most logical beginning topology because observed prominence spines already have this topology prior to eruption and an initial long magnetic ribbon with parallel, non-twisted threads, as a basic form, can be bent into many more and different geometrical forms than a flux rope.
Focal symmetrical encephalomalacia in a goat.
Oliveira, Diego M; Pimentel, Luciano A; Pessoa, André F; Dantas, Antônio F M; Uzal, Francisco; Riet-Correa, Franklin
2010-09-01
Focal symmetrical encephalomalacia (FSE) is the most prominent lesion seen in the chronic form of enterotoxemia caused by Clostridium perfringens type D in sheep. However, this lesion has not been reported in goats. The current paper reports a case of FSE in a goat from the state of Paraíba in the Brazilian semiarid region. As reported by the farmer, 30, 4-48-month-old animals from a flock of 150 goats died after showing nervous signs, including blindness and recumbence, for periods varying between 1 and 14 days. The flock was grazing native pasture supplemented with wheat and corn bran. Additionally, lactating goats were supplemented with soybeans. A 4-month-old goat with nervous signs was examined clinically and then necropsied 3 days after the onset of clinical signs. Bilateral, focal, and symmetrical areas of brown discoloration were observed in the internal capsule and thalamus. Histologic lesions in these areas consisted of multifocal, bilateral malacia with a few neutrophils; endothelial cell swelling; perivascular edema; and hemorrhages. The etiology of these lesions was not determined. However, FSE is considered pathognomonic for C. perfringens type D enterotoxemia in sheep, and it is speculated that this microorganism was the etiologic agent in the present case. The flock had been vaccinated against type D enterotoxemia only once, approximately 3 months before the beginning of the outbreak. Insufficient immunity due to the incorrect vaccination protocol, low efficacy of the vaccine used, and a diet including large amounts of highly fermentable carbohydrates were suspected to be predisposing factors for this outbreak. PMID:20807946
Resonance and antiresonance of symmetric and asymmetric cantilevered piezoelectric flexors.
Smits, J G; Choi, W S; Ballato, A
1997-01-01
The resonances of dynamically excited symmetric piezoelectric bimorphs have been determined from the equations of state. Under the effect of sinusoidal stimuli: a moment exerted at the tip M, a force exerted perpendicular to the plane of the bimorph also applied at the tip F, a uniformly applied pressure p, and an electrode voltage V, they respond with a sinusoidal tip rotation alpha, tip deflection delta, volume displacement nu, and electrode charge Q. All of the former are related to all of the latter through a dynamic admittance matrix B. The antiresonance frequency of the capacitance C have been found while also antiresonance in off-diagonal elements have been determined. The latter indicate that at these frequencies the bimorph does not work as an actuator or sensor in the particular domain of the off-diagonal. The mode shape at these antiresonance frequencies has been determined. The antiresonance of b(14) determines that for this frequency the tip has deflection but no rotation, while the antiresonance of b(24 ) indicates that the tip has rotation but no deflection. No antiresonance in the volume displacement is found, indicating that the bimorph is a pressure converter (microphone) at all frequencies. Micromachined piezoelectric heterogeneous bimorphs have been fabricated using the techniques of I.C. fabrication. Their deflections have been measured as a function of frequency and applied voltage, while these have been compared with the theoretical predictions. An anomalously large quadratic deflection has been found, superimposed on the linear piezoelectric behavior. The agreement between the linear part of the experimental deflection and the theory was quite good. PMID:18244123
Static, cylindrically symmetric strings in general relativity with cosmological constant
Linet, B.
1986-07-01
The static, cylindrically symmetric solutions to Einstein's equations with a cosmological term describing cosmic strings are determined. The discussion depends on the sign of the cosmological constant.
Concrete Representation and Separability Criteria for Symmetric Quantum State
NASA Astrophysics Data System (ADS)
Li, Chang'e.; Tao, Yuanhong; Zhang, Jun; Li, Linsong; Nan, Hua
2014-09-01
Using the typical generators of the special unitary groups S U(2), the concrete representation of symmetric quantum state is established, then the relations satisfied by those coefficients in the representation are presented. Based on the representation of density matrix, the PPT criterion and CCNR criterion are proved to be equivalent on judging the separability of symmetric quantum states. Moreover, it is showed that the matrix Γ ρ of symmetric quantum state only has five efficient entries, thus the calculation of ∥Γ ρ ∥ is simplified. Finally, the quantitative expressions of real symmetric quantum state under the ∥Γ ρ ∥ separability criterion are obtained.
Entanglement equivalence of N-qubit symmetric states
Mathonet, P.; Krins, S.; Bastin, T.; Godefroid, M.; Solano, E.
2010-05-15
We study the interconversion of multipartite symmetric N-qubit states under stochastic local operations and classical communication (SLOCC). We demonstrate that if two symmetric states can be connected with a nonsymmetric invertible local operation (ILO), then they belong necessarily to the separable, W, or Greenberger-Horne-Zeilinger (GHZ) entanglement class, establishing a practical method of discriminating subsets of entanglement classes. Furthermore, we prove that there always exists a symmetric ILO connecting any pair of symmetric N-qubit states equivalent under SLOCC, simplifying the requirements for experimental implementations of local interconversion of those states.
Nonlinear dynamic analysis of quasi-symmetric anisotropic structures
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Peters, Jeanne M.
1987-01-01
An efficient computational method for the nonlinear dynamic analysis of quasi-symmetric anisotropic structures is proposed. The application of mixed models simplifies the analytical development and improves the accuracy of the response predictions, and operator splitting allows the reduction of the analysis model of the quasi-symmetric structure to that of the corresponding symmetric structure. The preconditoned conjugate gradient provides a stable and effective technique for generating the unsymmetric response of the structure as the sum of a symmetrized response plus correction modes. The effectiveness of the strategy is demonstrated with the example of a laminated anisotropic shallow shell of quadrilateral planform subjected to uniform normal loading.
NASA Astrophysics Data System (ADS)
Uhlmann, Armin
2016-03-01
This is an introduction to antilinear operators. In following Wigner the terminus antilinear is used as it is standard in Physics. Mathematicians prefer to say conjugate linear. By restricting to finite-dimensional complex-linear spaces, the exposition becomes elementary in the functional analytic sense. Nevertheless it shows the amazing differences to the linear case. Basics of antilinearity is explained in sects. 2, 3, 4, 7 and in sect. 1.2: Spectrum, canonical Hermitian form, antilinear rank one and two operators, the Hermitian adjoint, classification of antilinear normal operators, (skew) conjugations, involutions, and acq-lines, the antilinear counterparts of 1-parameter operator groups. Applications include the representation of the Lagrangian Grassmannian by conjugations, its covering by acq-lines. As well as results on equivalence relations. After remembering elementary Tomita-Takesaki theory, antilinear maps, associated to a vector of a two-partite quantum system, are defined. By allowing to write modular objects as twisted products of pairs of them, they open some new ways to express EPR and teleportation tasks. The appendix presents a look onto the rich structure of antilinear operator spaces.
A permanent magnet tubular linear generator for wave energy conversion
NASA Astrophysics Data System (ADS)
Yu, Haitao; Liu, Chunyuan; Yuan, Bang; Hu, Minqiang; Huang, Lei; Zhou, Shigui
2012-04-01
A novel three-phase permanent magnet tubular linear generator (PMTLG) with Halbach array is proposed for the sea wave energy conversion. Non-linear axi-symmetrical finite element method (FEM) is implemented to calculate the magnetic fields along air-gap for different Halbach arrays of PMTLGs. The PMTLG characteristics are analyzed and the simulation results are validated by the experiment. An assistant tooth is implemented to greatly minimize the end and cogging effects which cause the oscillatory detent force.
Solution of dense systems of linear equations in electromagnetic scattering calculations
Rahola, J.
1994-12-31
The discrete-dipole approximation (DDA) is a method for calculating the scattering of light by an irregular particle. The DDA has been used for example in calculations of optical properties of cosmic dust. In this method the particle is approximated by interacting electromagnetic dipoles. Computationally the DDA method includes the solution of large dense systems of linear equations where the coefficient matrix is complex symmetric. In the author`s work, the linear systems of equations are solved by various iterative methods such as the conjugate gradient method applied to the normal equations and QMR. The linear systems have rather low condition numbers due to which many iterative methods perform quite well even without any preconditioning. Some possible preconditioning strategies are discussed. Finally, some fast special methods for computing the matrix-vector product in the iterative methods are considered. In some cases, the matrix-vector product can be computed with the fast Fourier transform, which enables the author to solve dense linear systems of hundreds of thousands of unknowns.
Magnetospectroscopy of symmetric and anti-symmetric states in double quantum wells
NASA Astrophysics Data System (ADS)
Marchewka, M.; Sheregii, E. M.; Tralle, I.; Ploch, D.; Tomaka, G.; Furdak, M.; Kolek, A.; Stadler, A.; Mleczko, K.; Zak, D.; Strupinski, W.; Jasik, A.; Jakiela, R.
2008-02-01
The experimental results obtained for magnetotransport in the InGaAs/InAlAs double quantum well (DQW) structures of two different shapes of wells are reported. A beating effect occurring in the Shubnikov-de Haas (SdH) oscillations was observed for both types of structures at low temperatures in the parallel transport when the magnetic field was perpendicular to the layers. An approach for the calculation of the Landau level energies for DQW structures was developed and then applied to the analysis and interpretation of the experimental data related to the beating effect. We also argue that in order to account for the observed magnetotransport phenomena (SdH and integer quantum Hall effect), one should introduce two different quasi-Fermi levels characterizing two electron subsystems regarding the symmetry properties of their states, symmetric and anti-symmetric ones, which are not mixed by electron-electron interaction.
Symmetric linear systems. [twin-lift helicopter control models for heavy construction use
NASA Technical Reports Server (NTRS)
Lewis, J.; Martin, C.
1983-01-01
Employment as a means of transportation in the civilian construction trades represents one of the many applications of the helicopter. However, a major limitation to its use in heavy construction has been that the mass which can be effectively and safely transported is severely restricted. The construction of the so-called 'heavy lift' helicopter provided one solution to this problem. But it has been found that there are physical and economic limitations to the payload which can be transported. The proposal has been made to overcome these limitations by making use of multiple helicopters to move a single mass. A study of the feasibility of this proposal showed that automatic control would be needed to make the concept successful. The present investigation is concerned with some initial models in regard to the twinlift problem, taking into account the control theoretic problems.
Vibration control of large linear quadratic symmetric systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Jeon, G. J.
1983-01-01
Some unique properties on a class of the second order lambda matrices were found and applied to determine a damping matrix of the decoupled subsystem in such a way that the damped system would have preassigned eigenvalues without disturbing the stiffness matrix. The resulting system was realized as a time invariant velocity only feedback control system with desired poles. Another approach using optimal control theory was also applied to the decoupled system in such a way that the mode spillover problem could be eliminated. The procedures were tested successfully by numerical examples.
NASA Astrophysics Data System (ADS)
Jimenez, Carmen; Kurdyumov, Vadim
2015-11-01
Direct numerical simulations, including detailed chemistry and transport, are used to investigate the structure and stability of freely propagating lean hydrogen flames in planar narrow channels. Depending on the flame burning rate and the wall properties, the flame-wall heat exchange can result in flame extinction. For large heat losses only the fastest burning flames, corresponding to fast reactant flowing rates can propagate. We show that double flame solutions, symmetric and non-symmetric, can coexist for the same set of parameters. The symmetric solutions are calculated imposing symmetric boundary conditions in the channel mid-plane and when this restriction is relaxed non-symmetric solutions develop. This indicates that the symmetric flames are unstable to non-symmetric perturbations, as predicted before within the context of a constant density model. Moreover, the burning rates of the non-symmetric flames are found to be significantly larger than those of the corresponding symmetric solution and therefore the range of conditions for flame extinction and flashback also differ. This shows that assuming in CFD that the flame should reproduce the symmetry of the cold flow can have important safety implications in micro scale combustion devices burning lean hydrogen mixture.
Guisado-Barrios, Gregorio; Li, Yang; Slawin, Alexandra M Z; Richens, David T; Gass, Ian A; Murray, Paul R; Yellowlees, Lesley J; Brechin, Euan K
2008-01-28
Reaction of MnCl(2).4H(2)O with H(3)L (H(3)L = tris(6-hydroxymethyl-2-pyridylmethyl)amine) in methanol gives hepta-coordinated [Mn(H(3)L)]Cl(2) involving attachment of Mn(II) to all four nitrogens and three hydroxymethyl arms. Reaction of H(3)L with Fe(ClO(4))(2).6H(2)O in CH(3)CN in the presence of NaO(2)CC(6)H(5) in an attempt to make [Fe(III)OH(H(3)L)(O(2)CC(6)H(5))](ClO(4)), a putative model for soybean lipoxygenase-1, instead gave rise to the linear triiron(III) complex [Fe(3)L(2)](ClO(4))(3) with all three hydroxymethyl arms deprotonated and forming three alkoxide bridges between each Fe(III) centre. The central Fe(III) is hexa-coordinated to only the alkoxide bridges and flanked by two hepta-coordinated iron(III) centres analogous to the Mn(ii) complex. [Fe(3)L(2)](ClO(4))(3) exhibits two reversible 1e(-) reductions to mixed-valence [Fe(3)L(2)](2+) and [Fe(3)L(2)](+) forms. Structure data and magnetochemistry on [Fe(3)L(2)](ClO(4))(3) reveals the tightest Fe-O-Fe angle (87.4 degrees ) and shortest Fe...Fe distance (2.834 A) yet found for any weakly antiferromagnetically-coupled high spin alkoxide-bridged di- or triiron(iii) system and challenges current theories involved in correlating the extent/nature of magnetic interactions in such systems based on Fe-O(bridge) distances and Fe-O-Fe angles. The central hexa-alkoxide coordinated Fe(III) is novel and shows a remarkable resistance towards reduction to Fe(II). PMID:18185873
Insensitive dependence of delay-induced oscillation death on complex networks
NASA Astrophysics Data System (ADS)
Zou, Wei; Zheng, Xing; Zhan, Meng
2011-06-01
Oscillation death (also called amplitude death), a phenomenon of coupling induced stabilization of an unstable equilibrium, is studied for an arbitrary symmetric complex network with delay-coupled oscillators, and the critical conditions for its linear stability are explicitly obtained. All cases including one oscillator, a pair of oscillators, regular oscillator networks, and complex oscillator networks with delay feedback coupling, can be treated in a unified form. For an arbitrary symmetric network, we find that the corresponding smallest eigenvalue of the Laplacian λN (0 >λN ≥ -1) completely determines the death island, and as λN is located within the insensitive parameter region for nearly all complex networks, the death island keeps nearly the largest and does not sensitively depend on the complex network structures. This insensitivity effect has been tested for many typical complex networks including Watts-Strogatz (WS) and Newman-Watts (NW) small world networks, general scale-free (SF) networks, Erdos-Renyi (ER) random networks, geographical networks, and networks with community structures and is expected to be helpful for our understanding of dynamics on complex networks.
47 CFR 51.711 - Symmetrical reciprocal compensation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 3 2012-10-01 2012-10-01 false Symmetrical reciprocal compensation. 51.711 Section 51.711 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES... Traffic § 51.711 Symmetrical reciprocal compensation. (a) Rates for transport and termination of...
Spherically symmetric model atmospheres for late-type giant stars
NASA Astrophysics Data System (ADS)
Bennett, Philip Desmond
The ATHENA computer code was developed to model the extended atmospheres of late-type giant and supergiant stars. The atmospheres are assumed to be static, spherically symmetric and in radiative and hydrostatic equilibrium. Molecular line blanketing (for now) is handled using the simplifying assumption of mean opacity. The complete linearization method of Auer and Mihalas, adapted to spherical geometry, is used to solve the model system. The radiative transfer is solved by using variable Eddington factors to close the system of moment transfer equations, and the entire system of transfer equations plus constraints is solved efficiently by arrangement into the Rybicki block matrix form. The variable Eddington factors are calculated from the full angle-dependent formal solution of the radiative transfer problem using the impact parameter method of Hummer, Kunas. We were guided by the work of Mihalas and Hummer in their development of extended models of O stars, but our method differs in the choice of the independent variable. The radius depth scale used by Mihals and Hummer was found to fail because of the strongly temperature-dependent opacities of late-type atmospheres. Instead, we were able to achieve an exact linearization of the radius. This permitted the use of the numerically well-behaved column mass or optical depth scales. The resulting formulation is analogous to the plane-parallel complete linearization method and reduces to this method in the compact atmosphere limit. Models of M giants were calculated for Teff = 3000K and 3500K with opacities of the CN, TiO, and H2O molecules included, and the results were in general agreement with other published spherical models. These models were calculated assuming radiative equilibrium. The importance of convective energy transport was estimated by calculating the convective flux that would result from the temperature structure of the models. The standard local mixing length theory was used for this purpose
Bicriterion seriation methods for skew-symmetric matrices.
Brusco, Michael J; Stahl, Stephanie
2005-11-01
The decomposition of an asymmetric proximity matrix into its symmetric and skew-symmetric components is a well-known principle in combinatorial data analysis. The seriation of the skew-symmetric component can emphasize information corresponding to the sign or absolute magnitude of the matrix elements, and the choice of objective criterion can have a profound impact on the ordering. In this research note, we propose a bicriterion approach for seriation of a skew-symmetric matrix incorporating both sign and magnitude information. Two numerical demonstrations reveal that the bicriterion procedure is an effective alternative to direct seriation of the skew-symmetric matrix, facilitating favourable trade-offs among sign and magnitude information. PMID:16293204
5D non-symmetric gravity and geodesic confinement
NASA Astrophysics Data System (ADS)
Ghosh, Suman; Shankaranarayanan, S.
2013-09-01
This work focuses on an unexplored aspect of non-symmetric geometry where only the off-diagonal metric components along the extra dimension, in a 5-dimensional spacetime, are non-symmetric. We show that the energy densities of the stationary non-symmetric models are similar to that of brane models thereby mimicking the thick-brane scenario. We find that the massive test particles are confined near the location of the brane for both growing and decaying warp factors. This feature is unique to the non-symmetric nature of our model. We have also studied the dynamical models where standard 4D FLRW brane is embedded. Our analysis shows that the non-symmetric terms deconfine energy density at the early universe while automatically confine at late times.
Mühlenbeck, Cordelia; Liebal, Katja; Pritsch, Carla; Jacobsen, Thomas
2016-01-01
Symmetric structures are of importance in relation to aesthetic preference. To investigate whether the preference for symmetric patterns is unique to humans, independent of their cultural background, we compared two human populations with distinct cultural backgrounds (Namibian hunter-gatherers and German town dwellers) with one species of non-human great apes (Orangutans) in their viewing behavior regarding symmetric and asymmetric patterns in two levels of complexity. In addition, the human participants were asked to give their aesthetic evaluation of a subset of the presented patterns. The results showed that humans of both cultural groups fixated on symmetric patterns for a longer period of time, regardless of the pattern’s complexity. On the contrary, Orangutans did not clearly differentiate between symmetric and asymmetric patterns, but were much faster in processing the presented stimuli and scanned the complete screen, while both human groups rested on the symmetric pattern after a short scanning time. The aesthetic evaluation test revealed that the fixation preference for symmetric patterns did not match with the aesthetic evaluation in the Hai//om group, whereas in the German group aesthetic evaluation was in accordance with the fixation preference in 60 percent of the cases. It can be concluded that humans prefer well-ordered structures in visual processing tasks, most likely because of a positive processing bias for symmetry, which Orangutans did not show in this task, and that, in humans, an aesthetic preference does not necessarily accompany the fixation preference. PMID:27065184
PELDOR in rotationally symmetric homo-oligomers
NASA Astrophysics Data System (ADS)
Giannoulis, Angeliki; Ward, Richard; Branigan, Emma; Naismith, James H.; Bode, Bela E.
2013-10-01
Nanometre distance measurements by pulsed electron-electron double resonance (PELDOR) spectroscopy have become an increasingly important tool in structural biology. The theoretical underpinning of the experiment is well defined for systems containing two nitroxide spin-labels (spin pairs); however, recently experiments have been reported on homo-oligomeric membrane proteins consisting of up to eight spin-labelled monomers. We have explored the theory behind these systems by examining model systems based on multiple spins arranged in rotationally symmetric polygons. The results demonstrate that with a rising number of spins within the test molecule, increasingly strong distortions appear in distance distributions obtained from an analysis based on the simple spin pair approach. These distortions are significant over a range of system sizes and remain so even when random errors are introduced into the symmetry of the model. We present an alternative approach to the extraction of distances on such systems based on a minimisation that properly treats multi-spin correlations. We demonstrate the utility of this approach on a spin-labelled mutant of the heptameric Mechanosensitive Channel of Small Conductance of E. coli.
Mitotoxicity in distal symmetrical sensory peripheral neuropathies
Bennett, Gary J.; Doyle, Timothy; Salvemini, Daniela
2016-01-01
Chronic distal symmetrical sensory peripheral neuropathy is a common neurological complication of cancer chemotherapy, HIV treatment and diabetes. Although aetiology-specific differences in presentation are evident, the clinical signs and symptoms of these neuropathies are clearly similar. Data from animal models of neuropathic pain suggest that the similarities have a common cause: mitochondrial dysfunction in primary afferent sensory neurons. Mitochondrial dysfunction is caused by mitotoxic effects of cancer chemotherapeutic drugs of several chemical classes, HIV-associated viral proteins, and nucleoside reverse transcriptase inhibitor treatment, as well as the (possibly both direct and indirect) effects of excess glucose. The mitochondrial injury results in a chronic neuronal energy deficit, which gives rise to spontaneous nerve impulses and a compartmental neuronal degeneration that is first apparent in the terminal receptor arbor—that is, intraepidermal nerve fibres—of cutaneous afferent neurons. Preliminary data suggest that drugs that prevent mitochondrial injury or improve mitochondrial function could be useful in the treatment of these conditions. PMID:24840972
Spherically symmetric conformal gravity and ``gravitational bubbles''
NASA Astrophysics Data System (ADS)
Berezin, V. A.; Dokuchaev, V. I.; Eroshenko, Yu. N.
2016-01-01
The general structure of the spherically symmetric solutions in the Weyl conformal gravity is described. The corresponding Bach equations are derived for the special type of metrics, which can be considered as the representative of the general class. The complete set of the pure vacuum solutions is found. It consists of two classes. The first one contains the solutions with constant two-dimensional curvature scalar of our specific metrics, and the representatives are the famous Robertson-Walker metrics. One of them we called the ``gravitational bubbles'', which is compact and with zero Weyl tensor. Thus, we obtained the pure vacuum curved space-times (without any material sources, including the cosmological constant) what is absolutely impossible in General Relativity. Such a phenomenon makes it easier to create the universe from ``nothing''. The second class consists of the solutions with varying curvature scalar. We found its representative as the one-parameter family. It appears that it can be conformally covered by the thee-parameter Mannheim-Kazanas solution. We also investigated the general structure of the energy-momentum tensor in the spherical conformal gravity and constructed the vectorial equation that reveals clearly some features of non-vacuum solutions. Two of them are explicitly written, namely, the metrics à la Vaidya, and the electrovacuum space-time metrics.
Symmetric weak ternary quantum homomorphic encryption schemes
NASA Astrophysics Data System (ADS)
Wang, Yuqi; She, Kun; Luo, Qingbin; Yang, Fan; Zhao, Chao
2016-03-01
Based on a ternary quantum logic circuit, four symmetric weak ternary quantum homomorphic encryption (QHE) schemes were proposed. First, for a one-qutrit rotation gate, a QHE scheme was constructed. Second, in view of the synthesis of a general 3 × 3 unitary transformation, another one-qutrit QHE scheme was proposed. Third, according to the one-qutrit scheme, the two-qutrit QHE scheme about generalized controlled X (GCX(m,n)) gate was constructed and further generalized to the n-qutrit unitary matrix case. Finally, the security of these schemes was analyzed in two respects. It can be concluded that the attacker can correctly guess the encryption key with a maximum probability pk = 1/33n, thus it can better protect the privacy of users’ data. Moreover, these schemes can be well integrated into the future quantum remote server architecture, and thus the computational security of the users’ private quantum information can be well protected in a distributed computing environment.
Coscheduling Technique for Symmetric Multiprocessor Clusters
Yoo, A B; Jette, M A
2000-09-18
Coscheduling is essential for obtaining good performance in a time-shared symmetric multiprocessor (SMP) cluster environment. However, the most common technique, gang scheduling, has limitations such as poor scalability and vulnerability to faults mainly due to explicit synchronization between its components. A decentralized approach called dynamic coscheduling (DCS) has been shown to be effective for network of workstations (NOW), but this technique is not suitable for the workloads on a very large SMP-cluster with thousands of processors. Furthermore, its implementation can be prohibitively expensive for such a large-scale machine. IN this paper, they propose a novel coscheduling technique based on the DCS approach which can achieve coscheduling on very large SMP-clusters in a scalable, efficient, and cost-effective way. In the proposed technique, each local scheduler achieves coscheduling based upon message traffic between the components of parallel jobs. Message trapping is carried out at the user-level, eliminating the need for unsupported hardware or device-level programming. A sending process attaches its status to outgoing messages so local schedulers on remote nodes can make more intelligent scheduling decisions. Once scheduled, processes are guaranteed some minimum period of time to execute. This provides an opportunity to synchronize the parallel job's components across all nodes and achieve good program performance. The results from a performance study reveal that the proposed technique is a promising approach that can reduce response time significantly over uncoordinated time-sharing and batch scheduling.
Phase Behavior of Symmetric Sulfonated Block Copolymers
Park, Moon Jeong; Balsara, Nitash P.
2008-08-21
Phase behavior of poly(styrenesulfonate-methylbutylene) (PSS-PMB) block copolymers was studied by varying molecular weight, sulfonation level, and temperature. Molecular weights of the copolymers range from 2.9 to 117 kg/mol. Ordered lamellar, gyroid, hexagonally perforated lamellae, and hexagonally packed cylinder phases were observed in spite of the fact that the copolymers are nearly symmetric with PSS volume fractions between 0.45 and 0.50. The wide variety of morphologies seen in our copolymers is inconsistent with current theories on block copolymer phase behavior such as self-consistent field theory. Low molecular weight PSS-PMB copolymers (<6.2 kg/mol) show order-order and order-disorder phase transitions as a function of temperature. In contrast, the phase behavior of high molecular weight PSS-PMB copolymers (>7.7 kg/mol) is independent of temperature. Due to the large value of Flory-Huggins interaction parameter, x, between the sulfonated and non-sulfonated blocks, PSS-PMB copolymers with PSS and PMB molecular weights of 1.8 and 1.4 kg/mol, respectively, show the presence of an ordered gyroid phase with a 2.5 nm diameter PSS network. A variety of methods are used to estimate x between PSS and PMB chains as a function of sulfonation level. Some aspects of the observed phase behavior of PSS-PMB copolymers can be rationalized using x.
Fast axis servo for the fast and precise machining of non-rotational symmetric optics
NASA Astrophysics Data System (ADS)
Tian, Fujing; Yin, Ziqiang; Li, Shengyi
2014-08-01
A new long range tool servo-fast axis servo is developed, which is used for fabricating the non-rotational symmetric optics surface with millimeters' sag. The mechanism design, motion modeling and development of FAS device were studied. The FAS consists of a linear motor, aerostatic bearings, high-resolution encoder and a motion controller. A control strategy consists of a proportional, integral and derivative (PID) feedback controller and velocity/acceleration feedforward controller is implemented to accommodate the system control performance. Experimental tests have been carried out to verify the performance of the FAS system.
NASA Technical Reports Server (NTRS)
Green, S.
1979-01-01
The infinite order sudden (IOS) approximation is extended to rotational excitation of symmetric tops by collisions with atoms. After development of a formalism for 'primitive' or 'one-ended' tops, proper parity-adapted linear combinations describing real rotors are considered and modifications needed for asymmetric rigid rotors are noted. The generalized spectroscopic relaxation cross sections are discussed. IOS calculations for NH3-He and H2CO-He are performed and compared with more accurate calculations, and the IOS approximation is found to provide a reasonably accurate description.
Five dimensional spherically symmetric cosmological model in Brans-Dicke theory of gravitation
NASA Astrophysics Data System (ADS)
Rao, V. U. M.; Jaysudha, V.
2015-08-01
In this paper, we consider the spherically symmetric space-time in five dimensions in Brans-Dicke (Phys. Rev. 124:925, 1961) theory of gravitation in the presence of perfect fluid distribution. A determinate solution of the highly non-linear field equations is presented using (i) relation between metric potentials and (ii) an equation of state which represents disordered radiation in five dimensional universe. The solution obtained describes five dimensional radiating model in Brans-Dicke theory. Some physical and kinematical properties of the model are also discussed.
NASA Astrophysics Data System (ADS)
Reddy, D. R. K.; Raju, P.; Sobhanbabu, K.
2016-04-01
Five dimensional spherically symmetric space-time filled with two minimally interacting fields; matter and holographic dark energy components is investigated in a scalar tensor theory of gravitation proposed by Brans and Dicke (Phys. Rev. 124:925, 1961). To obtain a determinate solution of the highly non-linear field equations we have used (i) a relation between metric potentials and (ii) an equation of state which represents disordered radiation in five dimensional universe. The solution obtained represents a minimally interacting and radiating holographic dark energy model in five dimensional universe. Some physical and Kinematical properties of the model are, also, studied.
NASA Astrophysics Data System (ADS)
Mandt, Stephan; Rapp, Akos; Rosch, Achim
2011-06-01
We consider a cloud of fermionic atoms in an optical lattice described by a Hubbard model with an additional linear potential. While homogeneous interacting systems mainly show damped Bloch oscillations and heating, a finite cloud behaves differently: It expands symmetrically such that gains of potential energy at the top are compensated by losses at the bottom. Interactions stabilize the necessary heat currents by inducing gradients of the inverse temperature 1/T, with T<0 at the bottom of the cloud. An analytic solution of hydrodynamic equations shows that the width of the cloud increases with t1/3 for long times consistent with results from our Boltzmann simulations.
Solitons in PT-symmetric periodic systems with the logarithmically saturable nonlinearity
Zhan, Kaiyun; Tian, Hao; Li, Xin; Xu, Xianfeng; Jiao, Zhiyong; Jia, Yulei
2016-01-01
We report on the formation and stability of induced solitons in parity-time (PT) symmetric periodic systems with the logarithmically saturable nonlinearity. Both on-site and off-site lattice solitons exist for the self-focusing nonlinearity. The most intriguing result is that the above solitons can also be realized inside the several higher-order bands of the band structure, due to the change of nonlinear type with the soliton power. Stability analysis shows that on-site solitons are linearly stably, and off-site solitons are unstable in their existence domain. PMID:27596716
Solitons in PT-symmetric periodic systems with the logarithmically saturable nonlinearity.
Zhan, Kaiyun; Tian, Hao; Li, Xin; Xu, Xianfeng; Jiao, Zhiyong; Jia, Yulei
2016-01-01
We report on the formation and stability of induced solitons in parity-time (PT) symmetric periodic systems with the logarithmically saturable nonlinearity. Both on-site and off-site lattice solitons exist for the self-focusing nonlinearity. The most intriguing result is that the above solitons can also be realized inside the several higher-order bands of the band structure, due to the change of nonlinear type with the soliton power. Stability analysis shows that on-site solitons are linearly stably, and off-site solitons are unstable in their existence domain. PMID:27596716
Ballooning Stability of the Compact Quasiaxially Symmetric Stellarator
M.H. Redi; J. Canik; R.L. Dewar; J.L. Johnson; S. Klasky; W.A. Cooper; W. Kerbichler
2001-09-19
The magnetohydrodynamic (MHD) ballooning stability of a compact, quasiaxially symmetric stellarator (QAS), expected to achieve good stability and particle confinement is examined with a method that can lead to estimates of global stability. Making use of fully 3D, ideal-MHD stability codes, the QAS beta is predicted to be limited above 4% by ballooning and high-n kink modes. Here MHD stability is analyzed through the calculation and examination of the ballooning mode eigenvalue isosurfaces in the 3-space [s, alpha, theta(subscript ''k'')]; s is the edge normalized toroidal flux, alpha is the field line variable, and theta(subscript ''k'') is the perpendicular wave vector or ballooning parameter. Broken symmetry, i.e., deviations from axisymmetry, in the stellarator magnetic field geometry causes localization of the ballooning mode eigenfunction, with new types of nonsymmetric, eigenvalue isosurfaces in both the stable and unstable spectrum. The isosurfaces around the most unstable points i n parameter space (well above marginal) are topologically spherical. In such cases, attempts to use ray tracing to construct global ballooning modes lead to a k-space runaway. Introduction of a reflecting cutoff in k(perpendicular) to model numerical truncation or finite Larmor radius (FLR) yields chaotic ray paths ergodically filling the allowed phase space, indicating that the global spectrum must be described using the language of quantum chaos theory. However, the isosurface for marginal stability in the cases studied are found to have a more complex topology, making estimation of FLR stabilization more difficult.
NASA Astrophysics Data System (ADS)
Romano, Marcello
2010-04-01
A new method is introduced to control and analyze the rotational motion of an axially symmetric rigid-body spacecraft. In particular, this motion is seen as the combination of the rotation of a virtual sphere with respect to the inertial frame, and the rotation of the body, about its symmetry axis, with respect to this sphere. Two new exact solutions are introduced for the motion of axially symmetric rigid bodies subjected to a constant external torque in the following cases: (1) torque parallel to the angular momentum and (2) torque parallel to the vectorial component of the angular momentum on the plane perpendicular to the symmetry axis. By building upon these results, two rotational maneuvers are proposed for axially symmetric spacecraft: a detumbling maneuver and a nutation canceling maneuver. The two maneuvers are the minimum time maneuvers for spherically constrained maximum torque. These maneuvers are simple and elegant, as they reduce the control of the three degrees-of-freedom nonlinear rotational motion to a single degree-of-freedom linear problem. Furthermore, the complete (both for the dynamics and for the kinematics) and exact analytic solutions are found for the two maneuvers. An extended survey is reported in the introduction of the paper of the few cases where the rotation of a rigid body is fully reduced to an exact analytic solution in closed form.