Science.gov

Sample records for complex vapor heated

  1. Passive Vaporizing Heat Sink

    NASA Technical Reports Server (NTRS)

    Knowles, TImothy R.; Ashford, Victor A.; Carpenter, Michael G.; Bier, Thomas M.

    2011-01-01

    A passive vaporizing heat sink has been developed as a relatively lightweight, compact alternative to related prior heat sinks based, variously, on evaporation of sprayed liquids or on sublimation of solids. This heat sink is designed for short-term dissipation of a large amount of heat and was originally intended for use in regulating the temperature of spacecraft equipment during launch or re-entry. It could also be useful in a terrestrial setting in which there is a requirement for a lightweight, compact means of short-term cooling. This heat sink includes a hermetic package closed with a pressure-relief valve and containing an expendable and rechargeable coolant liquid (e.g., water) and a conductive carbon-fiber wick. The vapor of the liquid escapes when the temperature exceeds the boiling point corresponding to the vapor pressure determined by the setting of the pressure-relief valve. The great advantage of this heat sink over a melting-paraffin or similar phase-change heat sink of equal capacity is that by virtue of the =10x greater latent heat of vaporization, a coolant-liquid volume equal to =1/10 of the paraffin volume can suffice.

  2. Understanding Latent Heat of Vaporization.

    ERIC Educational Resources Information Center

    Linz, Ed

    1995-01-01

    Presents a simple exercise for students to do in the kitchen at home to determine the latent heat of vaporization of water using typical household materials. Designed to stress understanding by sacrificing precision for simplicity. (JRH)

  3. Vapor-Resistant Heat-Pipe Artery

    NASA Technical Reports Server (NTRS)

    Dussinger, Peter M.; Shaubach, Robert M.; Buchko, Matt

    1991-01-01

    Vapor lock in heat pipe delayed or prevented. Modifications of wick prevent flow of vapor into, or formation of vapor in, liquid-return artery. Small pores of fine-grained sintered wick help to prevent formation of large bubbles. Slotted tube offers few nucleation sites for bubbles. Improves return of liquid in heat pipe.

  4. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    SciTech Connect

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  5. Multilead, Vaporization-Cooled Soldering Heat Sink

    NASA Technical Reports Server (NTRS)

    Rice, John

    1995-01-01

    Vaporization-cooled heat sink proposed for use during soldering of multiple electrical leads of packaged electronic devices to circuit boards. Heat sink includes compliant wicks held in grooves on edges of metal fixture. Wicks saturated with water. Prevents excessive increases in temperature at entrances of leads into package.

  6. Vaporization characteristics of carbon heat shields under radiative heating.

    NASA Technical Reports Server (NTRS)

    Davy, W. C.; Bar-Nun, A.

    1972-01-01

    Study of the vaporization characteristics of samples of ATJ graphite, a material that has been considered for use on a Jovian probe. These samples were subjected to radiative heating loads of approximately 2 kW/sq cm in argon atmospheres of pressures from 0.00046 to 1 atm. Surface temperatures, mass loss rates, and spatially resolved emission spectral data were recorded. These data are analyzed to determine carbon vapor pressure as a function of temperature and are compared with current models for the vapor pressure of carbon. The effects of finite vaporization (i.e., nonequilibrium) rates are considered and compared with experiment. Estimates of the heat of vaporization from an energy balance are also presented.

  7. Open-cycle vapor compression heat pump

    NASA Astrophysics Data System (ADS)

    Sakhuja, R.; Becker, F. E.

    1981-05-01

    Recovery and upgrading of low-grade steam or waste heat sources offers a great potential of energy conservation. Thermo Electron is developing an open cycle vapor compression steam heat pump to meet this objective. The system utilizes excess low-pressure steam or that produced from an industrial excess heat source with a waste heat boiler and compresses this steam to the desired pressure level for process use. The compressor is driven by a prime mover such as a gas turbine, gas engine, etc. The prime mover exhaust heat also can be recovered to generate additional process steam. The fuel consumption of this system can be as low as 30 to 50 percent in comparison to a direct-fired boiler over the expected range of process conditions. Simple payback periods as low as one year can be achieved.

  8. Vapor-modulated heat pipe for improved temperature control

    NASA Technical Reports Server (NTRS)

    Edwards, D. K.; Eninger, J. E.; Ludeke, E. E.

    1978-01-01

    Dryout induced by vapor throttling makes control of equipment temperature less dependent on variations in sink environment. Mechanism controls flow of vapor in heat pipe by using valve in return path to build difference in pressure and also difference in saturation temperature of the vapor. In steady state, valve closes just enough to produce partial dryout that achieves required temperature drop.

  9. Analysis of the transient compressible vapor flow in heat pipe

    NASA Technical Reports Server (NTRS)

    Jang, Jong Hoon; Faghri, Amir; Chang, Won Soon

    1989-01-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures.

  10. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium.

    PubMed

    McCarron, Daniel J; Hughes, Ifan G; Tierney, Patrick; Cornish, Simon L

    2007-09-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D(2) transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude. PMID:17902946

  11. [Latent heat of vaporization in amaranth (Amaranthus hybridus)].

    PubMed

    Alvarado, J D; Toaza, E; Coloma, G

    1990-09-01

    The vapor pressure at four temperatures and 10 moisture contents in a range between 26.8 and 3.6 g/100 dry matter, were determined by the manometric method in two samples of milled amaranth seeds, known as "ataco" or "sangoracha". For each humidity, the relationship between vapor pressure of the flour and vapor pressure of water at different temperatures is satisfactorily described by power equations, which are herein presented. The slope was used in the determination of latent heat of vaporization, according to Othmer's law. An exponential equation describing the relationship between the rate of latent heat and moisture content on a dry basis are established and discussed. This allows calculation with sufficient exactitude of the latent heat of vaporization values in amaranth, particularly at low moisture contents. The data are useful in calculations for drying or extrusion operations, largely applied in cereals. PMID:2134140

  12. Potassium Rankine cycle vapor chamber (heat pipe) radiator study

    NASA Technical Reports Server (NTRS)

    Gerrels, E. E.; Killen, R. E.

    1971-01-01

    A structurally integrated vapor chamber fin (heat pipe) radiator is defined and evaluated as a potential candidate for rejecting waste heat from the potassium Rankine cycle powerplant. Several vapor chamber fin geometries, using stainless steel construction, are evaluated and an optimum is selected. A comparison is made with an operationally equivalent conduction fin radiator. Both radiators employ NaK-78 in the primary coolant loop. In addition, the Vapor Chamber Fin (VCF) radiator utilizes sodium in the vapor chambers. Preliminary designs are developed for the conduction fin and VCF concepts. Performance tests on a single vapor chamber were conducted to verify the VCF design. A comparison shows the conduction fin radiator easier to fabricate, but heavier in weight, particularly as meteoroid protection requirements become more stringent. While the analysis was performed assuming the potassium Rankine cycle powerplant, the results are equally applicable to any system radiating heat to space in the 900 to 1400 F temperature range.

  13. Heat-Exchange Fluids for Sulfuric Acid Vaporizers

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Petersen, G. R.

    1982-01-01

    Some fluorine-substituted organic materials meet criteria for heat-exchange fluids in contact with sulfuric acid. Most promising of these are perfluoropropylene oxide polymers with degree of polymerization (DP) between 10 and 50. It is desirable to have DP in high range because vapor pressure of material decreases as DP increases, and high-DP liquids have lower loss due to vaporization.

  14. Kinetics of wet sodium vapor complex plasma

    SciTech Connect

    Mishra, S. K.; Sodha, M. S.

    2014-04-15

    In this paper, we have investigated the kinetics of wet (partially condensed) Sodium vapor, which comprises of electrons, ions, neutral atoms, and Sodium droplets (i) in thermal equilibrium and (ii) when irradiated by light. The formulation includes the balance of charge over the droplets, number balance of the plasma constituents, and energy balance of the electrons. In order to evaluate the droplet charge, a phenomenon for de-charging of the droplets, viz., evaporation of positive Sodium ions from the surface has been considered in addition to electron emission and electron/ion accretion. The analysis has been utilized to evaluate the steady state parameters of such complex plasmas (i) in thermal equilibrium and (ii) when irradiated; the results have been graphically illustrated. As a significant outcome irradiated, Sodium droplets are seen to acquire large positive potential, with consequent enhancement in the electron density.

  15. Calculation of complex equilibria involving vaporization into vacuum

    NASA Technical Reports Server (NTRS)

    Paule, R. C.

    1974-01-01

    A simplified, direct approach is presented to the description of complex equilibria involving vaporization into vacuum. Emphasis is on the basic problem-solving process and on modification of existing techniques. Sequential solutions are presented to problems involving purification of a melt by vaporization into vacuum. The effects of concentration of melt and oxygen partial pressures on vaporization rates are demonstrated.

  16. Heat Pipe Vapor Dynamics. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Issacci, Farrokh

    1990-01-01

    The dynamic behavior of the vapor flow in heat pipes is investigated at startup and during operational transients. The vapor is modeled as two-dimensional, compressible viscous flow in an enclosure with inflow and outflow boundary conditions. For steady-state and operating transients, the SIMPLER method is used. In this method a control volume approach is employed on a staggered grid which makes the scheme very stable. It is shown that for relatively low input heat fluxes the compressibility of the vapor flow is low and the SIMPLER scheme is suitable for the study of transient vapor dynamics. When the input heat flux is high or the process under a startup operation starts at very low pressures and temperatures, the vapor is highly compressible and a shock wave is created in the evaporator. It is shown that for a wide range of input heat fluxes, the standard methods, including the SIMPLER scheme, are not suitable. A nonlinear filtering technique, along with the centered difference scheme, are then used for shock capturing as well as for the solution of the cell Reynolds-number problem. For high heat flux, the startup transient phase involves multiple shock reflections in the evaporator region. Each shock reflection causes a significant increase in the local pressure and a large pressure drop along the heat pipe. Furthermore, shock reflections cause flow reversal in the evaporation region and flow circulations in the adiabatic region. The maximum and maximum-averaged pressure drops in different sections of the heat pipe oscillate periodically with time because of multiple shock reflections. The pressure drop converges to a constant value at steady state. However, it is significantly higher than its steady-state value at the initiation of the startup transient. The time for the vapor core to reach steady-state condition depends on the input heat flux, the heat pipe geometry, the working fluid, and the condenser conditions. However, the vapor transient time, for an Na

  17. Forced convection heat transfer to air/water vapor mixtures

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Florschuetz, L. W.

    1984-01-01

    Heat transfer coefficients were measured using both dry and humid air in the same forced convection cooling scheme and were compared using appropriate nondimensional parameters (Nusselt, Prandtl and Reynolds numbers). A forced convection scheme with a complex flow field, two dimensional arrays of circular jets with crossflow, was utilized with humidity ratios (mass ratio of water vapor to air) up to 0.23. The dynamic viscosity, thermal conductivity and specific heat of air, steam and air/steam mixtures are examined. Methods for determining gaseous mixture properties from the properties of their pure components are reviewed as well as methods for determining these properties with good confidence. The need for more experimentally determined property data for humid air is discussed. It is concluded that dimensionless forms of forced convection heat transfer data and empirical correlations based on measurements with dry air may be applied to conditions involving humid air with the same confidence as for the dry air case itself, provided that the thermophysical properties of the humid air mixtures are known with the same confidence as their dry air counterparts.

  18. Excess liquid in heat-pipe vapor spaces

    NASA Technical Reports Server (NTRS)

    Eninger, J. E.; Edwards, D. K.

    1977-01-01

    A mathematical model is developed of excess liquid in heat pipes that is used to calculate the parameters governing the axial flow of liquid in fillets and puddles that form in vapor spaces. In an acceleration field, the hydrostatic pressure variation is taken into account, which results in noncircular meniscus shapes. The two specific vapor-space geometries considered are circular and the 'Dee-shape' that is formed by a slab wick in a circular tube. Also presented are theoretical and experimental results for the conditions under which liquid slugs form at the ends of the vapor spaces. These results also apply to the priming of arteries.

  19. Heat transfer intensification by increasing vapor flow rate in flat heat pipes

    NASA Astrophysics Data System (ADS)

    Sprinceana, Silviu; Mihai, Ioan; Beniuga, Marius; Suciu, Cornel

    2015-02-01

    Flat heat pipes have various technical applications, one of the most important being the cooling of electronic components[9]. Their continuous development is due to the fact that these devices permit heat transfer without external energetic contribution. The practical exploitation of flat heat pipes however is limited by the fact that dissipated power can only reach a few hundred watts. The present paper aims to advance a new method for the intensification of convective heat transfer. A centrifugal mini impeller, driven by a turntable which incorporates four permanent magnets was designed. These magnets are put in motion by another rotor, which in its turn includes two permanent magnets and is driven by a mini electrical motor. Rotation of the centrifugal blades generates speed and pressure increase of the cooling agent brought to vapor state within the flat micro heat pipe. It's well known that the liquid suffers biphasic transformations during heat transfer inside the heat pipe. Over the hotspot (the heat source being the electronic component) generated at one end of the heat pipe, convective heat transfer occurs, leading to sudden vaporization of the liquid. Pressures generated by newly formed vapors push them towards the opposite end of the flat heat pipe, where a finned mini heat sink is usually placed. The mini-heat exchanger is air-cooled, thus creating a cold spot, where vapors condensate. The proposed method contributes to vapor flow intensification by increasing their transport speed and thus leading to more intense cooling of the heat pipe.

  20. Forced convection heat transfer to air/water vapor mixtures

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Florschuetz, L. W.

    1986-01-01

    Heat transfer coefficients were measured using both dry air and air/water vapor mixtures in the same forced convection cooling test rig (jet array impingement configurations) with mass ratios of water vapor to air up to 0.23. The primary objective was to verify by direct experiment that selected existing methods for evaluation of viscosity and thermal conductivity of air/water vapor mixtures could be used with confidence to predict heat transfer coefficients for such mixtures using as a basis heat transfer data for dry air only. The property evaluation methods deemed most appropriate require as a basis a measured property value at one mixture composition in addition to the property values for the pure components.

  1. Open-cycle vapor compression heat pump

    NASA Astrophysics Data System (ADS)

    Becker, F. E.; Ruggles, A. E.

    1984-05-01

    Large quantities of low-grade energy in the form of low-pressure steam and low-temperature heat are wasted by industry. The practical and economical recovery of energy from these sources is often limited by the number of applications for the use of low-temperature heat. Thermo Electron has developed an open-cycle steam heat pump system capable of the direct recovery and upgrading of low-grade waste steam. The system compresses low-pressure waste steam (or steam made from sources of low-temperature waste heat) to produce high-pressure steam suitable for use in industrial processes. A prototype system was developed that is capable of recovering and recompressing up to 10,000 lb/hr of waste steam, while using only 50 percent of the fuel that would be required to produce comparable steam in a boiler. The prototype steam recompression system, using a 2200-cfm rotary screw compressor driven by a 500-hp natural gas engine, was tested for a yearlong field test.

  2. Fundamental Experiments and Numerical Analyses on Heat Transfer Characteristics of a Vapor Chamber

    NASA Astrophysics Data System (ADS)

    Koito, Yasushi; Imura, Hideaki; Mochizuki, Masataka; Saito, Yuji; Torii, Shuichi

    A vapor chamber is used as a novel heat spreader to cool high-performance MPUs (microprocessor units). The vapor chamber is placed between small heat sources and a large heat sink. This paper describes the effect of heat source size on the heat transfer characteristics of the vapor chamber. First, by the experiments, the effect of heat source size on the temperature distribution of the vapor chamber is investigated, and the validity of the mathematical model of the vapor chamber is confirmed. Secondly, by the numerical analyses, the effect of heat source size on the thermal resistances inside the vapor chamber is discussed. It is found that the heat source size greatly affects the thermal resistance of the evaporator section inside the vapor chamber. Although the thermal resistance is hardly affected by the heat generation rate and the heat flux of the heat source, it increases as the heat source becomes smaller.

  3. Potential heat exchange fluids for use in sulfuric acid vaporizers

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Petersen, G. R.

    1981-01-01

    A series of liquids have been screened as candidate heat exchange fluids for service in thermochemical cycles that involve the vaporization of sulfuric acid. The required chemical and physical criteria of the liquids is described with the results of some preliminary high temperature test data presented.

  4. Potential heat exchange fluids for use in sulfuric acid vaporizers

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Petersen, G. R.

    1979-01-01

    A series of perhalocarbons are proposed as candidate heat exchange fluids for service in thermochemical cycles for hydrogen production that involve direct contact of the fluid with sulfuric acid and vaporization of the acid. The required chemical and physical criteria of the liquids are described and the results of some preliminary high temperature test data are presented.

  5. Open-cycle vapor compression heat pump

    NASA Astrophysics Data System (ADS)

    Becker, F. E.; Ruggles, A. E.

    A prototype gas-fired steam heat pump was developed. The system utilizes a dry screw compressor driven by a 500-hp natural gas industrial engine. The system can recompress 10,000 lb per hr of clean steam over a 3 to 1 pressure ratio. The fuel consumption of this system is approximately 50 percent that of a direct-fired boiler. A similar size system capable of operating with contaminated steam is also being developed.

  6. Vapor layer evolution during drop impact on a heated surface

    NASA Astrophysics Data System (ADS)

    Lee, Sanghyeon; Lee, Sangjun; Lee, Jisan; Fezzaa, Kamel; Je, Jung Ho

    2015-11-01

    When a liquid drop impacts on a sufficiently hot surface above the boiling point, a vapor layer is formed between the drop and the surface, preventing direct contact between them and as a result levitating the drop, known as the Leidenfrost effect. Understanding the evolution of the vapor layer is largely unexplored despite its importance in estimating heat transfer in cooling systems of thermal or nuclear power plants. The side-profile visualization of the vapor layer, as absolutely required for investigating its evolution, has been however unavailable by conventional optical microscopy. In this study, by employing ultrafast X-ray phase contrast imaging, we directly visualize the profiles of the vapor layers during liquid drop impact on a hot surface and elucidate the evolution of the vapor layers during spreading and retraction of the drop as functions of impact height and surface temperature. We reveal that the evolution is governed by the propagation of capillary waves generated in retraction and the wavelength of capillary waves λ is inversely proportional to the impact height h with a relation ~σ/ρh ~We-1 where We is weber number. Capillary waves that converge at the center of the vapor layers are linked to the bouncing behavior of the drop.

  7. Vapor-Compression Heat Pumps for Operation Aboard Spacecraft

    NASA Technical Reports Server (NTRS)

    Ruemmele, Warren; Ungar, Eugene; Cornwell, John

    2006-01-01

    Vapor-compression heat pumps (including both refrigerators and heat pumps) of a proposed type would be capable of operating in microgravity and would be safe to use in enclosed environments like those of spacecraft. The designs of these pumps would incorporate modifications of, and additions to, vapor-compression cycles of heat pumps now used in normal Earth gravitation, in order to ensure efficiency and reliability during all phases of operation, including startup, shutdown, nominal continuous operation, and peak operation. Features of such a design might include any or all of the following: (1) Configuring the compressor, condenser, evaporator, valves, capillary tubes (if any), and controls to function in microgravitation; (2) Selection of a working fluid that satisfies thermodynamic requirements and is safe to use in a closed crew compartment; (3) Incorporation of a solenoid valve and/or a check valve to prevent influx of liquid to the compressor upon startup (such influx could damage the compressor); (4) Use of a diode heat pipe between the cold volume and the evaporator to limit the influx of liquid to the compressor upon startup; and (5) Use of a heated block to vaporize any liquid that arrives at the compressor inlet.

  8. Development of a vapor compression heat pump for space use

    NASA Astrophysics Data System (ADS)

    Berner, F.; Savage, C. J.

    1981-06-01

    A heat pump is presently developed for use in Spacelab as a stand-alone refrigeration unit as well as within a fluid loop system. It is expected to feature a high coefficient of performance because its power requirement is minimized through continuous adjustment of two operating parameters of its vapor compression cycle, i.e., evaporator pressure and compressor speed, to the instantaneous cooling requirements and heat rejection conditions. The heat pump system will achieve the highest possible cooling rate as long as the temperature of the payload to be cooled is significantly above the desired level, and it will minimize the difference between actual and set heat source temperature when this difference has become small. The most complicated component of the heat pump is the reciprocating vapor compressor. This component's main features are described and its experimentally determined performance parameters are given. Based on these parameters, operating maps, showing achievable heat source temperatures and cooling rates with curves of constant power consumption included, are presented for different temperatures of the fluid to which the heat is rejected.

  9. Finite-volume model for chemical vapor infiltration incorporating radiant heat transfer. Interim report

    SciTech Connect

    Smith, A.W.; Starr, T.L.

    1995-05-01

    Most finite-volume thermal models account for the diffusion and convection of heat and may include volume heating. However, for certain simulation geometries, a large percentage of heat flux is due to thermal radiation. In this paper a finite-volume computational procedure for the simulation of heat transfer by conduction, convection and radiation in three dimensional complex enclosures is developed. The radiant heat transfer is included as a source term in each volume element which is derived by Monte Carlo ray tracing from all possible radiating and absorbing faces. The importance of radiative heat transfer is illustrated in the modeling of chemical vapor infiltration (CVI) of tubes. The temperature profile through the tube preform matches experimental measurements only when radiation is included. An alternative, empirical approach using an {open_quotes}effective{close_quotes} thermal conductivity for the gas space can match the initial temperature profile but does not match temperature changes that occur during preform densification.

  10. Cappuccino and Specific Heat versus Heat of Vaporization

    ERIC Educational Resources Information Center

    Hidden, Frits; Boomsma, Jorn; Schins, Anton; van den Berg, Ed

    2012-01-01

    A cappuccino is prepared by adding about 50 mL frothing, foaming milk to a cup of espresso. Whole milk is best for foaming and the ideal milk temperature when adding it to the espresso is 65 [degrees]C. The espresso itself may be warmer than that. During the heating the milk should not burn, as that would spoil the taste. The best way is to heat…

  11. Vapor Compression and Thermoelectric Heat Pump Heat Exchangers for a Condensate Distillation System: Design and Experiment

    NASA Technical Reports Server (NTRS)

    Erickson, Lisa R.; Ungar, Eugene K.

    2013-01-01

    Maximizing the reuse of wastewater while minimizing the use of consumables is critical in long duration space exploration. One of the more promising methods of reclaiming urine is the distillation/condensation process used in the cascade distillation system (CDS). This system accepts a mixture of urine and toxic stabilizing agents, heats it to vaporize the water and condenses and cools the resulting water vapor. The CDS wastewater flow requires heating and its condensate flow requires cooling. Performing the heating and cooling processes separately requires two separate units, each of which would require large amounts of electrical power. By heating the wastewater and cooling the condensate in a single heat pump unit, mass, volume, and power efficiencies can be obtained. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump performance tests are provided. A summary is provided of the heat pump mass, volume and power trades and a selection recommendation is made.

  12. Atmospheric solar heating rate in the water vapor bands

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah

    1986-01-01

    The total absorption of solar radiation by water vapor in clear atmospheres is parameterized as a simple function of the scaled water vapor amount. For applications to cloudy and hazy atmospheres, the flux-weighted k-distribution functions are computed for individual absorption bands and for the total near-infrared region. The parameterization is based upon monochromatic calculations and follows essentially the scaling approximation of Chou and Arking, but the effect of temperature variation with height is taken into account in order to enhance the accuracy. Furthermore, the spectral range is extended to cover the two weak bands centered at 0.72 and 0.82 micron. Comparisons with monochromatic calculations show that the atmospheric heating rate and the surface radiation can be accurately computed from the parameterization. Comparisons are also made with other parameterizations. It is found that the absorption of solar radiation can be computed reasonably well using the Goody band model and the Curtis-Godson approximation.

  13. Heat Transfer in Complex Fluids

    SciTech Connect

    Mehrdad Massoudi

    2012-01-01

    Amongst the most important constitutive relations in Mechanics, when characterizing the behavior of complex materials, one can identify the stress tensor T, the heat flux vector q (related to heat conduction) and the radiant heating (related to the radiation term in the energy equation). Of course, the expression 'complex materials' is not new. In fact, at least since the publication of the paper by Rivlin & Ericksen (1955), who discussed fluids of complexity (Truesdell & Noll, 1992), to the recently published books (Deshpande et al., 2010), the term complex fluids refers in general to fluid-like materials whose response, namely the stress tensor, is 'non-linear' in some fashion. This non-linearity can manifest itself in variety of forms such as memory effects, yield stress, creep or relaxation, normal-stress differences, etc. The emphasis in this chapter, while focusing on the constitutive modeling of complex fluids, is on granular materials (such as coal) and non-linear fluids (such as coal-slurries). One of the main areas of interest in energy related processes, such as power plants, atomization, alternative fuels, etc., is the use of slurries, specifically coal-water or coal-oil slurries, as the primary fuel. Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume fraction of solids, and the mean size and the size distribution of the coal, but also on the shear rate, since the slurry behaves as shear-rate dependent fluid. There are also studies which indicate that preheating the fuel results in better performance, and as a result of such heating, the viscosity changes. Constitutive modeling of these non-linear fluids, commonly referred to as non-Newtonian fluids, has received much attention. Most of the naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts, suspensions, blood, coal-water slurries, drilling fluids, mud, etc. It should be noted that sometimes these fluids show Newtonian

  14. Overall Heat and Mass Transfer Coefficient of Water Vapor Adsorption

    NASA Astrophysics Data System (ADS)

    Hamamoto, Yoshinori; Mori, Hideo; Godo, Masazumi; Miura, Kunio; Watanabe, Yutaka; Ishizawa, Toshihiko; Takatsuka, Takeshi

    A fundamental investigation was performed to develop a compact and simple desiccant ventilation unit which is one of the main components of a novel energy saving air-conditioning system. Water vapor in the air is adsorbed and/or desorbed to be controlled the humidity of supply air through a unit of an adsorbent rotor. A numerical simulation helps to understand the phenomena of heat and mass transfer in the rotor block. Overall transfer coefficients were estimated by performing both experiment and calculation. It was examined that the transient overall equivalent heat and mass transfer coefficient was not constant. It seems that both film fluid and diffusion resistance govern the coefficients in the block, and the influence of air flow on the time averaged coefficients is estimated by a considering the laminar forced convection from a flat plate. There is little difference of the coefficient between adsorption and desorption process. The correlation and fitting parameters are presented for prediction of the overall heat and mass transfer coefficients. The estimation accuracy was improved.

  15. Overall Heat and Mass Transfer Coefficient of Water Vapor Adsorption

    NASA Astrophysics Data System (ADS)

    Hamamoto, Yoshinori; Mori, Hideo; Godo, Masazumi; Miura, Kunio; Watanabe, Yutaka; Ishizawa, Toshihiko; Takatsuka, Takeshi

    A fundamental investigation was performed to develop a compact and simple desiccant ventilation unit which is one of the main components of a novel energy saving air-conditioning system. Water vapor in the air is adsorbed and/or desorbed to be controlled the humidity of supply air through a unit of an adsorbent packed bed. A numerical simulation helps to understand the phenomena of heat and mass transfer in the bed. Overall transfer coefficients of them as properties for the simulation were estimated by performing both experiment and calculation. It was clarified that the transient overall equivalent heat and mass transfer does not strongly depend on the air flow rate through the packed bed, the averaged equivalent mass transfer is governed by surface and pore diffusion in a particle of adsorbent at low flow rate. Moreover, the coefficient during the adsorption process is slightly larger than desorption. An equation of the overall mass transfer coefficient is derived. It shows five times as large as the value estimated by experiment. Therefore, the correlation and fitting parameters are presented for prediction of the overall heat and mass transfer coefficients. The estimation accuracy was improved.

  16. Vapor Hydrogen Peroxide as Alternative to Dry Heat Microbial Reduction

    NASA Technical Reports Server (NTRS)

    Cash, Howard A.; Kern, Roger G.; Chung, Shirley Y.; Koukol, Robert C.; Barengoltz, Jack B.

    2006-01-01

    The Jet Propulsion Laboratory, in conjunction with the NASA Planetary Protection Officer, has selected vapor phase hydrogen peroxide (VHP) sterilization process for continued development as a NASA approved sterilization technique for spacecraft subsystems and systems. The goal is to include this technique, with appropriate specification, in NPG8020.12C as a low temperature complementary technique to the dry heat sterilization process. A series of experiments were conducted in vacuum to determine VHP process parameters that provided significant reductions in spore viability while allowing survival of sufficient spores for statistically significant enumeration. With this knowledge of D values, sensible margins can be applied in a planetary protection specification. The outcome of this study provided an optimization of test sterilizer process conditions: VHP concentration, process duration, a process temperature range for which the worst case D value may be imposed, a process humidity range for which the worst case D value may be imposed, and robustness to selected spacecraft material substrates.

  17. Nonsteady flow of a vapor-drop flow in a heated channel

    SciTech Connect

    Kroshilin, V.E.; Khodzhaev, Y.D.

    1992-06-01

    Flow of a vapor-drop mixture in a heated channel is studied under steady and non-steady conditions using a model which considers direct thermal interaction of drops with the heating surface. 10 refs., 4 figs.

  18. Bilateral heat exchange in vaporization channels with an inner spirally coiled tube

    NASA Astrophysics Data System (ADS)

    Budov, V. M.; Dmitriev, S. M.

    1989-02-01

    Analytical expressions have been obtained for the profiles of the coolant temperatures and the enthalpy of the heated medium along the length of a vaporization channel with twisted flow, in the case of bilateral heating with forward and reverse motion.

  19. Dielectric and specific heat relaxations in vapor deposited glycerol.

    PubMed

    Kasina, A; Putzeys, T; Wübbenhorst, M

    2015-12-28

    Recently [S. Capponi, S. Napolitano, and M. Wübbenhorst, Nat. Commun. 3, 1233 (2012)], vapor deposited glasses of glycerol have been found to recover their super-cooled liquid state via a metastable, ordered liquid (MROL) state characterized by a tremendously enhanced dielectric strength along with a slow-down of the relaxation rate of the structural relaxation. To study the calorimetric signature of this phenomenon, we have implemented a chip-based, differential AC calorimeter in an organic molecular beam deposition setup, which allows the simultaneous measurement of dielectric relaxations via interdigitated comb electrodes and specific heat relaxation spectra during deposition and as function of the temperature. Heating of the as-deposited glass just above the bulk Tg and subsequent cooling/reheating revealed a step-wise increase in cp by in total 9%, indicating unambiguously that glycerol, through slow vapour deposition, forms a thermodynamically stable glass, which has a specific heat as low as that of crystalline glycerol. Moreover, these glasses were found to show excellent kinetic stability as well as evidenced by both a high onset-temperature and quasi-isothermal recovery measurements at -75 °C. The second goal of the study was to elucidate the impact of the MROL state on the specific heat and its relaxation to the super-cooled state. Conversion of "MROL glycerol" to its "normal" (ordinary liquid, OL) state revealed a second, small (∼2%) increase of the glassy cp, a little gain (<10%) in the relaxed specific heat, and no signs of deviations of τcal from that of normal "bulk" glycerol. These findings altogether suggest that the MROL state in glycerol comprises largely bulk-type glycerol that coexist with a minor volume fraction (<10%) of PVD-induced structural anomalies with a crystal-like calorimetric signature. Based on the new calorimetric findings, we have proposed a new physical picture that assumes the existence of rigid polar clusters (RPCs

  20. Vapor hydrogen peroxide as alternative to dry heat microbial reduction

    NASA Astrophysics Data System (ADS)

    Chung, S.; Kern, R.; Koukol, R.; Barengoltz, J.; Cash, H.

    2008-09-01

    The Jet Propulsion Laboratory (JPL), in conjunction with the NASA Planetary Protection Officer, has selected vapor phase hydrogen peroxide (VHP) sterilization process for continued development as a NASA approved sterilization technique for spacecraft subsystems and systems. The goal was to include this technique, with an appropriate specification, in NASA Procedural Requirements 8020.12 as a low-temperature complementary technique to the dry heat sterilization process. The VHP process is widely used by the medical industry to sterilize surgical instruments and biomedical devices, but high doses of VHP may degrade the performance of flight hardware, or compromise material compatibility. The goal for this study was to determine the minimum VHP process conditions for planetary protection acceptable microbial reduction levels. Experiments were conducted by the STERIS Corporation, under contract to JPL, to evaluate the effectiveness of vapor hydrogen peroxide for the inactivation of the standard spore challenge, Geobacillus stearothermophilus. VHP process parameters were determined that provide significant reductions in spore viability while allowing survival of sufficient spores for statistically significant enumeration. In addition to the obvious process parameters of interest: hydrogen peroxide concentration, number of injection cycles, and exposure duration, the investigation also considered the possible effect on lethality of environmental parameters: temperature, absolute humidity, and material substrate. This study delineated a range of test sterilizer process conditions: VHP concentration, process duration, a process temperature range for which the worst case D-value may be imposed, a process humidity range for which the worst case D-value may be imposed, and the dependence on selected spacecraft material substrates. The derivation of D-values from the lethality data permitted conservative planetary protection recommendations.

  1. Vapor pressures and heats of vaporization of primary coal tars. Quarterly technical progress report, April 1--June 30, 1995

    SciTech Connect

    Suuberg, E.M.

    1995-10-01

    The vapor pressure correlations that exist at present for coal tars are very crude and they are not considered reliable to even an order of magnitude when applied to tars. The present project seeks to address this important gap in the near term by direct measurement of vapor pressures of coal tar fractions, by application of well-established techniques and modifications thereof. The principal objectives of the program are to: (1) obtain data on the vapor pressures and heats of vaporization of tars from a range of ranks of coal, (2) develop correlations based on a minimum set of conveniently measurable characteristics of the tars, (3) develop equipment that would allow performing such measurements in a reliable, straightforward fashion. Both the gas saturation method and the Knudsen effusion method are being used. Results are presented for anthracene, naphthacene, pentacene, and a mixture of anthracene and perylene obtained using the effusion method.

  2. Experimental determination of ablation vapor species from carbon phenolic heat-shield materials

    NASA Technical Reports Server (NTRS)

    Lincoln, K. A.

    1981-01-01

    The relative concentrations of vapors produced from carbon phenolic composites under thermal loadings approximating those expected at peak heating during vehicle entry into the atmospheres of the outer planets have been determined. The technique of vaporizing the surface of bulk samples by laser irradiation while measuring in situ the vapor species by mass spectrometry is described. Results show that vapor composition varies with irradiance level and with depth of heating (or extent of pyrolysis). Attempts are made to compare these experimental results with the theoretical predictions from computer codes.

  3. Dielectric and specific heat relaxations in vapor deposited glycerol

    SciTech Connect

    Kasina, A. E-mail: wubbenhorst@fys.kuleuven.be; Putzeys, T.; Wübbenhorst, M. E-mail: wubbenhorst@fys.kuleuven.be

    2015-12-28

    Recently [S. Capponi, S. Napolitano, and M. Wübbenhorst, Nat. Commun. 3, 1233 (2012)], vapor deposited glasses of glycerol have been found to recover their super-cooled liquid state via a metastable, ordered liquid (MROL) state characterized by a tremendously enhanced dielectric strength along with a slow-down of the relaxation rate of the structural relaxation. To study the calorimetric signature of this phenomenon, we have implemented a chip-based, differential AC calorimeter in an organic molecular beam deposition setup, which allows the simultaneous measurement of dielectric relaxations via interdigitated comb electrodes and specific heat relaxation spectra during deposition and as function of the temperature. Heating of the as-deposited glass just above the bulk T{sub g} and subsequent cooling/reheating revealed a step-wise increase in c{sub p} by in total 9%, indicating unambiguously that glycerol, through slow vapour deposition, forms a thermodynamically stable glass, which has a specific heat as low as that of crystalline glycerol. Moreover, these glasses were found to show excellent kinetic stability as well as evidenced by both a high onset-temperature and quasi-isothermal recovery measurements at −75 °C. The second goal of the study was to elucidate the impact of the MROL state on the specific heat and its relaxation to the super-cooled state. Conversion of “MROL glycerol” to its “normal” (ordinary liquid, OL) state revealed a second, small (∼2%) increase of the glassy c{sub p}, a little gain (<10%) in the relaxed specific heat, and no signs of deviations of τ{sub cal} from that of normal “bulk” glycerol. These findings altogether suggest that the MROL state in glycerol comprises largely bulk-type glycerol that coexist with a minor volume fraction (<10%) of PVD-induced structural anomalies with a crystal-like calorimetric signature. Based on the new calorimetric findings, we have proposed a new physical picture that assumes the

  4. Vaporization heat transfer of dielectric liquids on a wick-covered surface

    NASA Technical Reports Server (NTRS)

    Gu, C. B.; Chow, L. C.; Baker, K.

    1993-01-01

    Vaporization heat transfer characteristics were measured for the dielectric liquid FC-72 on a horizontal heated surface covered with wire screen wicks with the mesh number for the screens varying from 24 to 100. In such a situation the liquid level can be either higher or lower than the heated surface. When the liquid level was above the heated surface (shallow pool boiling), the height of the liquid level above the surface, h, was varied from 0 to 10 mm. When the liquid level was below the heated surface (evaporation through capillary pumping), the distance from the liquid level to the edge of the surface, L, was adjusted from 0 to 15 mm. Experimental data revealed that the critical heat flux (CHF) decreases as the mesh number is increased from 24 to 100 for both vaporation and shallow pool boiling, showing that the vapor-escaping limit is more important than the capillary limit in flat plate heat pipe application.

  5. Performance of multiple mini-tube heat exchangers as an internal heat exchanger of a vapor-injection cycle heat pump

    NASA Astrophysics Data System (ADS)

    Jang, Jin Yong; Jeong, Ji Hwan

    2016-04-01

    A multiple mini-tube (MMT) heat exchanger was considered as an internal heat exchanger of vapor-injection cycle heat pump. Heat transfer and pressure drop in multiple mini-tube heat exchangers were numerically and experimentally investigated. Results show that the best performance of the MMT heat exchanger can be obtained when the intermediate-pressure two-phase refrigerant is supplied to the shell-side and this refrigerant reaches a saturated vapor state at the exit of the heat exchanger.

  6. Deterioration of Heat Transfer Performance in Condensation of Binary Vapor Mixtures

    NASA Astrophysics Data System (ADS)

    Fujii, Tetsu

    It is explained using theoretical results for laminar film condensation that the deterioration of heat transfer performance in the case of condensation of binary vapor mixtures is caused by the temperature drop in the vapor boundary layer due to the increase of the concentration of the volatile component at the vapor-liquid interface. As for free convection condensation the agreement between theory and experiment is satisfactory in the case where the condensate film is smooth, while the heat transfer coefficient becomes larger than the theoretical result in the case where drops and/or streaks appear in the film. It is also explained using some examples of experimental results that the heat transferred from a bulk vapor to a cooling surface can be evaluated by simultaneously solving the equations with respect to the heat transfer coefficient for condensation of pure vapors, the mass transfer coefficient in the vapor phase, and the phase equilibrium in the cases where binary vapor mixtures of water, Frons, alcohols and other organic vapors condense in a vertical tube, a plate-fin condenser, a horizontal tube and a horizontal tube bundle. Then, future problems are pointed out.

  7. Monte Carlo molecular simulation predictions for the heat of vaporization of acetone and butyramide.

    SciTech Connect

    Biddy, Mary J.; Martin, Marcus Gary

    2005-03-01

    Vapor pressure and heats of vaporization are computed for the industrial fluid properties simulation challenge (IFPSC) data set using the Towhee Monte Carlo molecular simulation program. Results are presented for the CHARMM27 and OPLS-aa force fields. Once again, the average result using multiple force fields is a better predictor of the experimental value than either individual force field.

  8. An assessment of vapor compression heat pump technology and applications for industrial processes

    NASA Astrophysics Data System (ADS)

    Kearney, D. W.

    1982-04-01

    Vapor compression heat pumps (VCHPs) are an energy conservation technology which can utilize the energy from low temperature waste streams to provide higher temperature energy requirements for industrial processes. The VCHPs are driven by electric motors, steam or gas turbines, or gas engines. The use of heat pumps affects the utilization of natural gas for industrial processes, reducing usage through more efficient utilization or increasing usage through the adoption of gas fired prime movers. The current status and potential of vapor compression heat pump technology and applications for industry and impact of this technology on natural gas utilization is assessed. Industrial applications are identified on a four digit SIC level for each of the generic types of closed and open cycle VCHP systems; temperature boosting, dehumidification, mechanical vapor recompression, and low pressure steam production. It is concluded that vapor compression heat pumps offer a promising energy efficient alternative in many industrial processes.

  9. Heats of vaporization of room temperature ionic liquids by tunable vacuum ultraviolet photoionization

    SciTech Connect

    Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; To, Albert; Koh, Christine; Strasser, Daniel; Kostko, Oleg; Leone, Stephen R.

    2009-11-25

    The heats of vaporization of the room temperature ionic liquids (RTILs) N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide, N-butyl-N-methylpyrrolidinium dicyanamide, and 1-butyl-3-methylimidazolium dicyanamide are determined using a heated effusive vapor source in conjunction with single photon ionization by a tunable vacuum ultraviolet synchrotron source. The relative gas phase ionic liquid vapor densities in the effusive beam are monitored by clearly distinguished dissociative photoionization processes via a time-of-flight mass spectrometer at a tunable vacuum ultraviolet beamline 9.0.2.3 (Chemical Dynamics Beamline) at the Advanced Light Source synchrotron facility. Resulting in relatively few assumptions, through the analysis of both parent cations and fragment cations, the heat of vaporization of N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide is determined to be Delta Hvap(298.15 K) = 195+-19 kJ mol-1. The observed heats of vaporization of 1-butyl-3-methylimidazolium dicyanamide (Delta Hvap(298.15 K) = 174+-12 kJ mol-1) and N-butyl-N-methylpyrrolidinium dicyanamide (Delta Hvap(298.15 K) = 171+-12 kJ mol-1) are consistent with reported experimental values using electron impact ionization. The tunable vacuum ultraviolet source has enabled accurate measurement of photoion appearance energies. These appearance energies are in good agreement with MP2 calculations for dissociative photoionization of the ion pair. These experimental heats of vaporization, photoion appearance energies, and ab initio calculations corroborate vaporization of these RTILs as intact cation-anion ion pairs.

  10. Experimental investigation of the latent heat of vaporization in aqueous nanofluids

    SciTech Connect

    Lee, Soochan; Phelan, Patrick E. Dai, Lenore; Prasher, Ravi; Gunawan, Andrey; Taylor, Robert A.

    2014-04-14

    This paper reports an experimental investigation of the latent heat of vaporization (h{sub fg}) in nanofluids. Two different types of nanoparticles, graphite and silver, suspended in deionized water were exposed to a continuous laser beam (130 mW, 532 nm) to generate boiling. The latent heat of vaporization in the nanofluids was determined by the measured vapor mass generation and the heat input. To ensure that the measured h{sub fg} values are independent of heating method, the experiments were repeated with an electrically heated hot wire as a primary heat input. These experiments show considerable variation in the h{sub fg} of nanofluids. That is, graphite nanofluid exhibits an increased h{sub fg} and silver nanofluid shows a decrease in h{sub fg} compared to the value for pure water. As such, these results indicate that relatively low mass fractions of nanoparticles can apparently create large changes in h{sub fg}.

  11. Vapor pressures and heats of vaporization of primary coal tars. Quarterly technical progress report, 1 October 1993--31 December 1993

    SciTech Connect

    Suuberg, E.M.

    1993-12-31

    The vapor pressure correlations that exist at present for coal tars are very crude and they are not considered reliable to even an order of magnitude when applied to tars. Sophisticated general correlative approaches are slowly being developed, based upon group contribution methods, or based upon some key functional features of the molecules. These are as yet difficult to apply to coal tars. The detailed group contribution methods, in which fairly precise structural information is needed, do not lend themselves well for application to very complex, poorly characterized coal tars. The methods based upon more global types of characterizations have not yet dealt much with the question of oxygenated functional groups. In short, only very limited correlations exist, and these are not considered reliable to even an order of magnitude when applied to tars. The present project seeks to address this important gap in the near term by direct measurement of vapor pressures of coal tar fractions, by application of well-established techniques and modifications thereof. The principal objectives of the program are to: (1) obtain data on the vapor pressures and heats of vaporization of tars from a range of ranks of coal, (2) develop correlations based on a minimum set of conveniently measurable characteristics of the tars, (3) develop equipment that would allow performing such measurements in a reliable, straightforward fashion.

  12. A first-order estimate of shock heating and vaporization in oceanic impacts

    NASA Technical Reports Server (NTRS)

    Croft, S. K.

    1982-01-01

    The vaporization of water in oceanic impacts of asteroids or comets of multikilometer dimensions is estimated by a semianalytical modeling of impact heating and shock isobar geometry that is based on computer code calculations. The mass of water vaporized in an infinitely deep ocean by the impact of a 10 km diameter asteroid at 25 km/sec (these values have been proposed for the Cretaceous/Tertiary extinction bolide) is approximately equal to the total mass of water vapor present in the earth's atmosphere, and 3-4 orders of magnitude larger than the mass of water vapor in the stratosphere. For projectiles of this size, however, the finite depth of the ocean becomes significant and may considerably reduce the amount of water vapor initially generated by the impact. Climatological models and extinction scenarios invoking the effects of impact-generated water vapor may critically depend on the a priori ambiguous details of the hypothesized impact.

  13. Drying of pulverized material with heated condensible vapor

    DOEpatents

    Carlson, Larry W.

    1986-01-01

    Apparatus for drying pulverized material utilizes a high enthalpy condensable vapor such as steam for removing moisture from the individual particles of the pulverized material. The initially wet particulate material is tangentially delivered by a carrier vapor flow to an upper portion of a generally vertical cylindrical separation drum. The lateral wall of the separation drum is provided with a plurality of flow guides for directing the vapor tangentially therein in the direction of particulate material flow. Positioned concentrically within the separation drum and along the longitudinal axis thereof is a water-cooled condensation cylinder which is provided with a plurality of collection plates, or fins, on the outer lateral surface thereof. The cooled collection fins are aligned counter to the flow of the pulverized material and high enthalpy vapor mixture to maximize water vapor condensation thereon. The condensed liquid which includes moisture removed from the pulverized material then flows downward along the outer surface of the coolant cylinder and is collected and removed. The particles travel in a shallow helix due to respective centrifugal and vertical acceleration forces applied thereto. The individual particles of the pulverized material are directed outwardly by the vortex flow where they contact the inner cylindrical surface of the separation drum and are then deposited at the bottom thereof for easy collection and removal. The pulverized material drying apparatus is particularly adapted for drying coal fines and facilitates the recovery of the pulverized coal.

  14. Drying of pulverized material with heated condensible vapor

    DOEpatents

    Carlson, L.W.

    1984-08-16

    Apparatus for drying pulverized material utilizes a high enthalpy condensable vapor such as steam for removing moisture from the individual particles of the pulverized material. The initially wet particulate material is tangentially delivered by a carrier vapor flow to an upper portion of a generally vertical cylindrical separation drum. The lateral wall of the separation drum is provided with a plurality of flow guides for directing the vapor tangentially therein in the direction of particulate material flow. Positioned concentrically within the separation drum and along the longitudinal axis thereof is a water-cooled condensation cylinder which is provided with a plurality of collection plates, or fines, on the outer lateral surface thereof. The cooled collection fines are aligned counter to the flow of the pulverized material and high enthalpy vapor mixture to maximize water vapor condensation thereon. The condensed liquid which includes moisture removed from the pulverized materials then flows downward along the outer surface of the coolant cylinder and is collected and removed. The particles travel in a shallow helix due to respective centrifugal and vertical acceleration forces applied thereto. The individual particles of the pulverized material are directed outwardly by the vortex flow where they contact the inner cylindrical surface of the separation drum and are then deposited at the bottom thereof for easy collection and removal. The pulverized material drying apparatus is particularly adapted for drying coal fines and facilitates the recovery of the pulverized coal. 2 figs.

  15. Characteristics of low-temperature short heat pipes with a nozzle-shaped vapor channel

    NASA Astrophysics Data System (ADS)

    Seryakov, A. V.

    2016-01-01

    This paper presents the results of experimental and numerical studies of heat transfer and swirling pulsating flows in short low-temperature heat pipes whose vapor channels have the form of a conical nozzle. It has been found that as the evaporator of the heat pipe is heated, pressure pulsations occur in the vapor channel starting at a certain threshold value of the heat power, which is due to the start of boiling in the evaporator. The frequency of the pulsations has been measured, and their dependence on the superheat of the evaporator has been determined. It has been found that in heat pipes with a conical vapor channel, pulsations occur at lower evaporator superheats and the pulsation frequency is greater than in heat pipes of the same size with a standard cylindrical vapor channel. It has been shown that the curve of the heat-transfer coefficient versus thermal load on the evaporator has an inflection corresponding to the start of boiling in the capillary porous evaporator of the heat pipe.

  16. Vapor pressures and heats of vaporization of primary coal tars. Quarterly technical progress report, July 1--September 30, 1995

    SciTech Connect

    Suuberg, E.M.

    1995-12-31

    There is significant current interest in general area of coal pyrolysis, particularly because of the central role of pyrolysis in all thermally driven coal conversion processes-gasification, combustion, liquefaction, mild gasification, or thermal beneficiation. There remain several key data needs in these application areas. Among them is a need for more reliable correlation for prediction of vapor pressure of heavy, primary coal tars. The vapor pressure correlations that exist at present for coal tars are very crude and they are not considered reliable to even an order of magnitude when applied to tars. The present project seeks to address this important gap in the near term by direct measurement of vapor pressures of coal tar fractions, by application of well-established techniques and modifications thereof. The principal objectives of the program are to: (1) obtain data on the vapor pressures and heats of vaporization of tars from a range of ranks of coal, (2) develop correlations based on a minimum set of conveniently measurable characteristics of the tars, (3) develop equipment that would allow performing such measurements in a reliable, straightforward fashion. A significant amount of time has been devoted during this quarter to extending the work on measurements of vapor pressures of tars. For this purpose, cellulose tar and cellulose tar related compounds have been selected as model systems. Cellulose tar has a much narrower distribution of molecular weight than does coal tar, and it is much more homogeneous. Thus it is better to develop the methods to be used for coal tars on this simpler model system first.

  17. Estimation of heat load in waste tanks using average vapor space temperatures

    SciTech Connect

    Crowe, R.D.; Kummerer, M.; Postma, A.K.

    1993-12-01

    This report describes a method for estimating the total heat load in a high-level waste tank with passive ventilation. This method relates the total heat load in the tank to the vapor space temperature and the depth of waste in the tank. Q{sub total} = C{sub f} (T{sub vapor space {minus}} T{sub air}) where: C{sub f} = Conversion factor = (R{sub o}k{sub soil}{sup *}area)/(z{sub tank} {minus} z{sub surface}); R{sub o} = Ratio of total heat load to heat out the top of the tank (function of waste height); Area = cross sectional area of the tank; k{sub soil} = thermal conductivity of soil; (z{sub tank} {minus} z{sub surface}) = effective depth of soil covering the top of tank; and (T{sub vapor space} {minus} T{sub air}) = mean temperature difference between vapor space and the ambient air at the surface. Three terms -- depth, area and ratio -- can be developed from geometrical considerations. The temperature difference is measured for each individual tank. The remaining term, the thermal conductivity, is estimated from the time-dependent component of the temperature signals coming from the periodic oscillations in the vapor space temperatures. Finally, using this equation, the total heat load for each of the ferrocyanide Watch List tanks is estimated. This provides a consistent way to rank ferrocyanide tanks according to heat load.

  18. 7 CFR 305.24 - Vapor heat treatment schedules.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... (1) The internal temperature of the fruit must be increased using saturated water vapor until the... Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION... schedules. (a) T106-a-1, T106-a-2, T106-a-3, T106-a-4. (1) The temperature of the fruit pulp must...

  19. Vapor Flow Patterns During a Start-Up Transient in Heat Pipes

    NASA Technical Reports Server (NTRS)

    Issacci, F.; Ghoniem, N, M.; Catton, I.

    1996-01-01

    The vapor flow patterns in heat pipes are examined during the start-up transient phase. The vapor core is modelled as a channel flow using a two dimensional compressible flow model. A nonlinear filtering technique is used as a post process to eliminate the non-physical oscillations of the flow variables. For high-input heat flux, multiple shock reflections are observed in the evaporation region. The reflections cause a reverse flow in the evaporation and circulations in the adiabatic region. Furthermore, each shock reflection causes a significant increase in the local pressure and a large pressure drop along the heat pipe.

  20. Vapor-Phase Stoichiometry and Heat Treatment of CdTe Starting Material for Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Sha, Yi-Gao; Lehoczky, S. L.; Liu, Hao-Chieh; Fang, Rei; Brebrick, R. F.

    1998-01-01

    Six batches of CdTe, having total amounts of material from 99 to 203 g and gross mole fraction of Te, X(sub Te), 0.499954-0.500138, were synthesized from pure Cd and Te elements. The vapor-phase stoichiometry of the assynthesized CdTe batches was determined from the partial pressure of Te2, P(sub Te2) using an optical absorption technique. The measured vapor compositions at 870 C were Te-rich for all of the batches with partial pressure ratios of Cd to Te2, P(sub Cd)/P(sub Te2), ranging from 0.00742 to 1.92. After the heat treatment of baking under dynamic vacuum at 870 C for 8 min, the vapor-phase compositions moved toward that of the congruent sublimation, i.e. P(sub Cd)/P(sub Te2) = 2.0, with the measured P(sub Cd)/P(sub Te2) varying from 1.84 to 3.47. The partial pressure measurements on one of the heat-treated samples also showed that the sample remained close to the congruent sublimation condition over the temperature range 800-880 C.

  1. Vapor Compression and Thermoelectric Heat Pumps for a Cascade Distillation Subsystem: Design and Experiment

    NASA Technical Reports Server (NTRS)

    Erickson, Lisa R.; Ungar, Eugene K.

    2012-01-01

    Humans on a spacecraft require significant amounts of water for drinking, food, hydration, and hygiene. Maximizing the reuse of wastewater while minimizing the use of consumables is critical for long duration space exploration. One of the more promising consumable-free methods of reclaiming wastewater is the distillation/condensation process used in the Cascade Distillation Subsystem (CDS). The CDS heats wastewater to the point of vaporization then condenses and cools the resulting water vapor. The CDS wastewater flow requires heating for evaporation and the product water flow requires cooling for condensation. Performing the heating and cooling processes separately would require two separate units, each of which would demand large amounts of electrical power. Mass, volume, and power efficiencies can be obtained by heating the wastewater and cooling the condensate in a single heat pump unit. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the CDS system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump analysis and performance tests are provided. The mass, volume, and power requirement for each heat pump option is compared and the advantages and disadvantages of each system are listed.

  2. An analysis of the vapor flow and the heat conduction through the liquid-wick and pipe wall in a heat pipe with single or multiple heat sources

    NASA Technical Reports Server (NTRS)

    Chen, Ming-Ming; Faghri, Amir

    1990-01-01

    A numerical analysis is presented for the overall performance of heat pipes with single or multiple heat sources. The analysis includes the heat conduction in the wall and liquid-wick regions as well as the compressibility effect of the vapor inside the heat pipe. The two-dimensional elliptic governing equations in conjunction with the thermodynamic equilibrium relation and appropriate boundary conditions are solved numerically. The solutions are in agreement with existing experimental data for the vapor and wall temperatures at both low and high operating temperatures.

  3. Delay of explosive vaporization in pulsed laser-heated droplets.

    PubMed

    Park, B S; Biswas, A; Armstrong, R L; Pinnick, R G

    1990-02-15

    Measurements of time delays for explosion of pulsed CO(2) laser-heated droplets are presented. A simple model based on classical nucleation theory in superheated liquids, which neglects heat and mass transport, is used to interpret the data. The model shows good agreement with the experimental observations. PMID:19759758

  4. Dynamics of vaporization and dissociation during transient surface heating, with application to vacuum arcs

    SciTech Connect

    Benson, D.A.

    1981-02-01

    This report describes a model of vaporization and dissociation occurring as a result of intense heating over a localized area of a material surface. The balance of heat between the input power and losses due to vaporization, as well as radiation and conduction in the material, are considered. The model includes the effect of binary mass diffusion and changes of surface stoichiometry for multiple component materials. Effects of vapor recondensation are included. The model is then applied to the description of spot heating on a vacuum arc anode through the use of a simple power feedback model. Comparison of surface temperature measurements to model predictions are used to parametrically describe the arc behavior. Finally, extensive parametric analyses showing the effect of material property variations on the arc behavior are described.

  5. A numerical analysis of the effects of conjugate heat transfer, vapor compressibility, and viscous dissipation in heat pipes

    NASA Technical Reports Server (NTRS)

    Faghri, Amir; Chen, Ming-Ming

    1989-01-01

    The effects of conjugate heat transfer, vapor compressibility, and viscous dissipation in heat pipes are discussed. The accuracy of the partially parabolic versus the elliptic presentation of the governing equations is also examined. The results show that the axial wall conduction has a tendency to make the temperature distribution more uniform for heat pipes with large ratios of pipe wall to effective liquid-wick thermal conductivity. The compressible and incompressible models show very close agreement for the total pressure drop, while the local pressure variations along the heat pipe are quite different for these two models when the radial Reynolds number at the interface is high.

  6. Vapors-liquid phase separator. [infrared telescope heat sink

    NASA Technical Reports Server (NTRS)

    Frederking, T. H. K.; Brown, G. S.; Chuang, C.; Kamioka, Y.; Kim, Y. I.; Lee, J. M.; Yuan, S. W. K.

    1980-01-01

    The use of porous plugs, mostly with in the form of passive devices with constant area were considered as vapor-liquid phase separators for helium 2 storage vessels under reduced gravity. The incorporation of components with variable cross sectional area as a method of flow rate modification was also investigated. A particular device which uses a shutter-type system for area variation was designed and constructed. This system successfully permitted flor rate changes of up to plus or minus 60% from its mean value.

  7. Heat Treatments of ZnSe Starting Materials for Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Palosz, W.; Feth, S.; Lehoczky, S. L.

    1997-01-01

    The effect of different heat treatments on stoichiometry and residual gas pressure in ZnSe physical vapor transport system was investigated. The dependence of the amount and composition of the residual gas on various heat treatment procedures is reported. Heat treatment of ZnSe starting materials by baking under the condition of dynamic vacuum to adjust its stoichiometry was performed and the effectiveness of the treatment was confirmed by the measurements of the partial pressure of Se2, P(sub Se2), in equilibrium with the heat treated samples. Optimum heat treatment procedures on the ZnSe starting material for the physical vapor transport process are discussed and verified experimentally.

  8. Self-Regulated Plasma Heat Flux Mitigation Due to Liquid Sn Vapor Shielding.

    PubMed

    van Eden, G G; Morgan, T W; Aussems, D U B; van den Berg, M A; Bystrov, K; van de Sanden, M C M

    2016-04-01

    A steady-state high-flux H or He plasma beam was balanced against the pressure of a Sn vapor cloud for the first time, resulting in a self-regulated heat flux intensity near the liquid surface. A temperature response of the liquid surface characterized by a decoupling from the received heating power and significant cooling of the plasma in the neutral Sn cloud were observed. The plasma heat flux impinging on the target was found to be mitigated, as heat was partially dissipated by volumetric processes in the vapor cloud rather than wholly by surface effects. These results motivate further exploration of liquid metal solutions to the critical challenge of heat and particle flux handling in fusion power plants. PMID:27081983

  9. Self-Regulated Plasma Heat Flux Mitigation Due to Liquid Sn Vapor Shielding

    NASA Astrophysics Data System (ADS)

    van Eden, G. G.; Morgan, T. W.; Aussems, D. U. B.; van den Berg, M. A.; Bystrov, K.; van de Sanden, M. C. M.

    2016-04-01

    A steady-state high-flux H or He plasma beam was balanced against the pressure of a Sn vapor cloud for the first time, resulting in a self-regulated heat flux intensity near the liquid surface. A temperature response of the liquid surface characterized by a decoupling from the received heating power and significant cooling of the plasma in the neutral Sn cloud were observed. The plasma heat flux impinging on the target was found to be mitigated, as heat was partially dissipated by volumetric processes in the vapor cloud rather than wholly by surface effects. These results motivate further exploration of liquid metal solutions to the critical challenge of heat and particle flux handling in fusion power plants.

  10. Heat Treatments of ZnSe Starting Materials for Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Palosz, W.; Feth, S.; Lehoczky, S. L.

    1998-01-01

    The effect of different heat treatments on stoichiometry and residual gas pressure in ZnSe physical vapor transport system was investigated. The dependence of the amount and composition of the residual gas on various heat treatment procedures is reported. Heat treatment of ZnSe starting materials by baking under the condition of dynamic vacuum to adjust its stoichiometry was performed and the effectiveness of the treatment was confirmed by the measurements of the partial pressure of Se2, P(sub Se2), in equilibrium with the heat treated samples. Optimum heat treatment procedures on the ZnSe starting material for the physical vapor transport process are discussed and verified experimentally.

  11. System for vaporizing carbon dioxide utilizing the heat by-product of the refrigeration system as a heat source

    SciTech Connect

    Shaw, H.L.

    1980-12-23

    The present invention is directed to a carbonation and refrigeration system wherein the heat of the refrigerant output side of the refrigeration compressor is utilized to vaporize liquid carbon dioxide into CO/sub 2/ gas which is introduced into a liquid product. The carbonation and refrigeration system successfully utilizes the heat of the refrigerant to vaporize the CO/sub 2/ liquid regardless of the cooling demand of the system caused by seasonal temperature variations. For example during the winter months when the cooling demand is as low as 10% of the cooling demand in the summer, the carbonation and refrigeration system operates effectively to vaporize the CO/sub 2/ liquid by means of a heat exchanger and a desuperheater which are connected in communication with the superheated vapor emerging from the output side of a refrigeration compressor. In addition, the carbonation and refrigeration system of the present invention cools more efficiently by extracting some of the heat from the condensed refrigerant entering the receiver of the refrigeration system. In this manner, the refrigeration compressor can operate more efficiently.

  12. An improved algorithm for the modeling of vapor flow in heat pipes

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K.; Hainley, Donald C.

    1989-01-01

    A heat pipe vapor flow algorithm suitable for use in codes on microcomputers is presented. The incompressible heat pipe vapor flow studies of Busse are extended to incorporate compressibility effects. The Busse velocity profile factor is treated as a function of temperature and pressure. The assumption of a uniform saturated vapor temperature determined by the local pressure at each cross section of the pipe is not made. Instead, a mean vapor temperature, defined by an energy integral, is determined in the course of the solution in addition to the pressure, saturation temperature at the wall, and the Busse velocity profile factor. For alkali metal working fluids, local species equilibrium is assumed. Temperature and pressure profiles are presented for several cases involving sodium heat pipes. An example for a heat pipe with an adiabatic section and two evaporators in sequence illustrates the ability to handle axially varying heat input. A sonic limit plot for a short evaporator falls between curves for the Busse and Levy inviscid sonic limits.

  13. Flat-plate /vapor-chamber/ heat pipes

    NASA Technical Reports Server (NTRS)

    Fleischman, G. L.; Marcus, B. D.; Mcintosh, R.; Ollendorf, S.

    1975-01-01

    This paper discusses the design, fabrication and testing of heat pipes constructed in the form of flat-plate panels. The test panels were constructed of copper with methyl alcohol as the working fluid. Capillary grooves etched on the internal surfaces provided evaporation and condensation heat-transfer coefficients on the order of 1600 Btu/hr-sq ft-deg F. Two panels were launched on board a sounding rocket; the payload reached an altitude of 140 miles, and zero gravity was achieved for almost six minutes. The panel with working fluid inside demonstrated a heat input flux of 2.5 watts/sq cm, with only a 3 to 5 C temperature difference throughout the entire panel.

  14. Macroscopic modeling for heat and water vapor transfer in dry snow by homogenization.

    PubMed

    Calonne, Neige; Geindreau, Christian; Flin, Frédéric

    2014-11-26

    Dry snow metamorphism, involved in several topics related to cryospheric sciences, is mainly linked to heat and water vapor transfers through snow including sublimation and deposition at the ice-pore interface. In this paper, the macroscopic equivalent modeling of heat and water vapor transfers through a snow layer was derived from the physics at the pore scale using the homogenization of multiple scale expansions. The microscopic phenomena under consideration are heat conduction, vapor diffusion, sublimation, and deposition. The obtained macroscopic equivalent model is described by two coupled transient diffusion equations including a source term arising from phase change at the pore scale. By dimensional analysis, it was shown that the influence of such source terms on the overall transfers can generally not be neglected, except typically under small temperature gradients. The precision and the robustness of the proposed macroscopic modeling were illustrated through 2D numerical simulations. Finally, the effective vapor diffusion tensor arising in the macroscopic modeling was computed on 3D images of snow. The self-consistent formula offers a good estimate of the effective diffusion coefficient with respect to the snow density, within an average relative error of 10%. Our results confirm recent work that the effective vapor diffusion is not enhanced in snow. PMID:25011981

  15. Explosive formation and dynamics of vapor nanobubbles around a continuously heated gold nanosphere

    NASA Astrophysics Data System (ADS)

    Hou, Lei; Yorulmaz, Mustafa; Verhart, Nico R.; Orrit, Michel

    2015-01-01

    We form sub-micrometer-sized vapor bubbles around a single laser-heated gold nanoparticle in a liquid and monitor them through optical scattering of a probe laser. Bubble formation is explosive even under continuous-wave heating. The fast, inertia-governed expansion is followed by a slower contraction and disappearance after some tens of nanoseconds. In a narrow range of illumination powers, bubble time traces show a clear echo signature. We attribute it to sound waves released upon the initial explosion and reflected by flat interfaces, hundreds of microns away from the particle. Echoes can trigger new explosions. A nanobubble’s steady state (with a vapor shell surrounding the heated nanoparticle) can be reached by a proper time profile of the heating intensity. Stable nanobubbles could have original applications for light modulation and for enhanced optical-acoustic coupling in photoacoustic microscopy.

  16. Thermostatistical estimations of vapor-state molecules affected by gravity in a heat pipe

    NASA Astrophysics Data System (ADS)

    Etori, Kanji

    1988-03-01

    Some thermodynamical properties of vapor state molecules in a heat pipe are analytically examined in an unsteady quasi-thermoequilibrium state. First, as a analytical procedure, the Hamiltonian of a gas molecule is formulated as the sum of those energies of the translation, the intermolecular interaction, the rotation, the vibration and the work with respect to the ensemble average of an unsteady velocity of a vapor state molecule in a gravity. The partition function and the free energy in this system are secondly introduced by using the Hamiltonian. According to the thermodynamical relations, the entropy and the specific heat per mol of the vapor state molecules are derived from the free energy and are finally estimated to examine the shifts affected by the gravity from the conventional values which do not include any gravitational term.

  17. What Is the Boiling Point and Heat of Vaporization of Sulfuric Acid?

    ERIC Educational Resources Information Center

    Myers, R. Thomas

    1983-01-01

    Discusses the values presented in various handbooks for the boiling point and heat of vaporization of sulfuric acid, noting discrepencies. Analyzes various approaches to data presentation, discussing the data on sulfuric acid in light of the Trouton constant. Points out the need for a more critical use of tables. (JM)

  18. The Condensation Line of Air and the Heats of Vaporization of Oxygen and Nitrogen

    NASA Technical Reports Server (NTRS)

    Furukawa, George T; Mccoskey, Robert E

    1953-01-01

    The condensation pressure of air was determined over the range of temperature from 60 to 85 K. The experimental results were slightly higher than the calculated values based on the ideal solution law. Heat of vaporization of oxygen was determined at four temperatures ranging from about 68 to 91 K and of nitrogen similarly at four temperatures ranging from 62 to 78 K.

  19. Buoyancy-Driven Heat Transfer During Application of a Thermal Gradient for the Study of Vapor Deposition at Low Pressure Using and Ideal Gas

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Hung, R. J.; Paley, M. S.; Penn, B. G.; Long, Y. T.

    1996-01-01

    A mathematical model has been developed to determine heat transfer during vapor deposition of source materials under a variety of orientations relative to gravitational accelerations. The model demonstrates that convection can occur at total pressures as low as 10-2 mm Hg. Through numerical computation, using physical material parameters of air, a series of time steps demonstrates the development of flow and temperature profiles during the course of vapor deposition. These computations show that in unit gravity vapor deposition occurs by transport through a fairly complicated circulating flow pattern when applying heat to the bottom of the vessel with parallel orientation with respect to the gravity vector. The model material parameters for air predict the effect of kinematic viscosity to be of the same order as thermal diffusivity, which is the case for Prandtl number approx. 1 fluids. Qualitative agreement between experiment and the model indicates that 6-(2-methyl-4-nitroanilino)-2,4-hexadiyn-l-ol (DAMNA) at these pressures indeed approximates an ideal gas at the experiment temperatures, and may validate the use of air physical constants. It is apparent that complicated nonuniform temperature distribution in the vapor could dramatically affect the homogeneity, orientation, and quality of deposited films. The experimental test i's a qualitative comparison of film thickness using ultraviolet-visible spectroscopy on films generated in appropriately oriented vapor deposition cells. In the case where heating of the reaction vessel occurs from the top, deposition of vapor does not normally occur by convection due to a stable stratified medium. When vapor deposition occurs in vessels heated at the bottom, but oriented relative to the gravity vector between these two extremes, horizontal thermal gradients induce a complex flow pattern. In the plane parallel to the tilt axis, the flow pattern is symmetrical and opposite in direction from that where the vessel is

  20. Heat diffusion: thermodynamic depth complexity of networks.

    PubMed

    Escolano, Francisco; Hancock, Edwin R; Lozano, Miguel A

    2012-03-01

    In this paper we use the Birkhoff-von Neumann decomposition of the diffusion kernel to compute a polytopal measure of graph complexity. We decompose the diffusion kernel into a series of weighted Birkhoff combinations and compute the entropy associated with the weighting proportions (polytopal complexity). The maximum entropy Birkhoff combination can be expressed in terms of matrix permanents. This allows us to introduce a phase-transition principle that links our definition of polytopal complexity to the heat flowing through the network at a given diffusion time. The result is an efficiently computed complexity measure, which we refer to as flow complexity. Moreover, the flow complexity measure allows us to analyze graphs and networks in terms of the thermodynamic depth. We compare our method with three alternative methods described in the literature (Estrada's heterogeneity index, the Laplacian energy, and the von Neumann entropy). Our study is based on 217 protein-protein interaction (PPI) networks including histidine kinases from several species of bacteria. We find a correlation between structural complexity and phylogeny (more evolved species have statistically more complex PPIs). Although our methods outperform the alternatives, we find similarities with Estrada's heterogeneity index in terms of network size independence and predictive power. PMID:22587160

  1. Heat diffusion: Thermodynamic depth complexity of networks

    NASA Astrophysics Data System (ADS)

    Escolano, Francisco; Hancock, Edwin R.; Lozano, Miguel A.

    2012-03-01

    In this paper we use the Birkhoff-von Neumann decomposition of the diffusion kernel to compute a polytopal measure of graph complexity. We decompose the diffusion kernel into a series of weighted Birkhoff combinations and compute the entropy associated with the weighting proportions (polytopal complexity). The maximum entropy Birkhoff combination can be expressed in terms of matrix permanents. This allows us to introduce a phase-transition principle that links our definition of polytopal complexity to the heat flowing through the network at a given diffusion time. The result is an efficiently computed complexity measure, which we refer to as flow complexity. Moreover, the flow complexity measure allows us to analyze graphs and networks in terms of the thermodynamic depth. We compare our method with three alternative methods described in the literature (Estrada's heterogeneity index, the Laplacian energy, and the von Neumann entropy). Our study is based on 217 protein-protein interaction (PPI) networks including histidine kinases from several species of bacteria. We find a correlation between structural complexity and phylogeny (more evolved species have statistically more complex PPIs). Although our methods outperform the alternatives, we find similarities with Estrada's heterogeneity index in terms of network size independence and predictive power.

  2. Heat standards calibration in the DOE complex

    SciTech Connect

    Carillo, L.A.; Rudy, C.R.; Long, S.M.; McDaniel, J.; Rodenburg, W.W.

    1997-11-01

    As part of the Department of Energy (DOE) Non-nuclear Reconfiguration Program, the Office of Safeguards and Security Calorimetry Development Program has transferred from EG and G Mound Applied Technologies to the Los Alamos National Laboratory. An important function of this program is the calibration and certification of {sup 238}Pu heat standards, which are used to assure accountability of plutonium and tritium throughout the complex. To facilitate relatively uninterrupted calibration service, two calorimeters have been installed in the Los Alamos Plutonium Facility (TA-55). These calorimeters are capable of highly accurate measurements of heat standards with power ranging from 0.01 to 20 W. In addition, two new EG and G Mound Applied Technologies calibration calorimeters with a robot handling system have been installed in the Nuclear Safeguards Laboratories at Los Alamos National Laboratory. These calorimeters are located in a specially constructed laboratory that is controlled for temperature and humidity to achieve low uncertainty in the measurements. Because transportation of aging heat standards between sites within the DOE complex has become increasingly difficult, the authors are looking into several approaches to this problem. Repackaging of all heat standards to comply with Department of Transportation and American Nuclear Standards Institute requirements is a long-term goal.

  3. The effect of heat conduction in the vapor on the dynamics of downflowing condensate

    NASA Astrophysics Data System (ADS)

    Kliakhandler, Igor L.; Davis, Stephen H.; Bankoff, S. George

    2002-01-01

    A vapor fills the gap between two vertical plates, one hot and one cold. The temperatures are adjusted so that condensate forms on the cold wall. It is the dynamics of the system that is examined. The paper extends the one-sided model of evaporation-condensation to account the heat conduction in the vapor phase, which turns out to be important in many condensation problems. For the considered flow, both vapor recoil and Marangoni effect are stabilizing; as a result, the condensate becomes unstable at nonzero Reynolds numbers in contrast to the usual film flow down a vertical wall. A nonlinear evolution equation is derived and analyzed for the interaction of viscous shear and evaporation-condensation. It turns out that the one-sided model of heat and mass transfer gives a very good description of the initial stage of thin-film growth; in later stages, however, the heat conduction through the vapor becomes important when the film is sufficiently thick.

  4. Vaporization heat transfer of dielectric liquids on enhanced surfaces covered with screen wicks

    NASA Technical Reports Server (NTRS)

    Gu, C. B.; Chow, L. C.; Pais, M. R.; Baker, K.

    1993-01-01

    Experiments were conducted to investigate the vaporization heat transfer characteristics for the dielectric liquid FC-72 on several wicking surfaces which may be used in flat-plate heat pipes. The wicking materials studied included microstructure enhanced surfaces and coarse surfaces covered with screen meshes. Experimental data for q versus deltaT curves and critical heat fluxes were obtained for the two different operating conditions of a heat pipe, evaporation, and shallow pool boiling. When the liquid level was above the heated surface, the height of the liquid level above the surface was varied from 0 to 10 mm. When the liquid level was below the heated surface, the distance from the liquid level to the edge of the surface was adjusted from 0 to 15 mm. Experimental results revealed that for shallow pool boiling when the heated surface was covered with a wire screen mesh, the heat transfer coefficient increased at lower heat fluxes but the critical heat flux (CHF) decreased for all the surfaces tested. In the case of evaporation, both CHF and the heat transfer coefficient increased as the microstructure surfaces were covered with screen meshes.

  5. Adsorption of water vapor by homoionic montmorillonites: Heats of adsorption and desorption

    SciTech Connect

    Dios Cancela, G.; Huertas, F.J.; Romero Taboada, E.; Sanchez-Rasero, F.; Hernandez Laguna, A.

    1997-01-15

    Adsorption isotherms for water vapor, basal spacing, and immersion heats and water desorption heats of Li{sup +}, Na{sup +}, Mg{sup 2+}, Ca{sup 2+}, Cu{sup 2+}, and Fe{sup 3+} montmorillonite are measured at various relative humidities (r.h.). The amount of water adsorbed as a function of r.h. is found to increase gradually, whereas basal spacing increases and the adsorption heat decreases in steps. The water desorption heat also decreases in steps. The entropy of adsorbed water appears to be negative with respect to the entropy of liquid water. A theoretical model is proposed to describe the hydration process of Li{sup +}, Na{sup +}, Mg{sup 2+}, Ca{sup 2+}, Cu{sup 2+}, and Fe{sup 3+} montmorillonites. The experimental adsorption heats are found to have a direct relationship with the sum of the hydration energy of the cations plus expansion energy.

  6. Effects of Acid Vapor, Basic Vapor and Heat Treatments on the Properties of Langmuir-Blodgett Films of Divalent Metal Salts of Fatty Acids

    NASA Astrophysics Data System (ADS)

    Saito, Mitsuyoshi; Sugi, Michio; Ikegami, Keiichi; Yoneyama, Mitsuru; Iizima, Sigeru

    1986-06-01

    When LB films are exposed to the atmosphere vaporized from acid at room temperature, the X-ray diffraction peaks attributed to the lamellar structure disappear and new peaks appear depending on the metal ion species of the salt, whereas such noticeable change is not observed by basic vapor treatment and heat treatment. Diffraction patterns for LB films of free fatty acids are not influenced by these three treatments.

  7. Vapor transport of zirconium and silicon during heat-treatment of Zircaloy in silica

    SciTech Connect

    Knittel, D.R.; Cubicciotti, D.

    1980-01-01

    When pieces of Zircaloy are heated above 600/sup 0/C in sealed silica capsules, silicon is deposited on the Zircaloy surface as zirconium silicides and zirconium is deposited on the silica in two forms: as an oxide layer in the high temperature region and as a metallic mirror on lower temperature surfaces. Samples of Zircaloy were heated in silica capsules under various conditions and analyzed by scanning electron microscopy. The results indicate that the deposits resulted from vapor transport processes involving volatile zirconium and silicon fluorides. Residual fluoride on Zircaloy surfaces, remaining from acid pickling treatments, was observed by Auger electron spectroscopy and mass spectroscopy in amounts sufficient to cause the transport. The thermodynamics of the vapor transport reactions are in accord with the fluoride mechanism. 4 figures.

  8. Heat treatment's effects on hydroxyapatite powders in water vapor and air atmosphere

    NASA Astrophysics Data System (ADS)

    Karabulut, A.; Baştan, F. E.; Erdoǧan, G.; Üstel, F.

    2015-03-01

    Hydroxyapatite (HA; Ca10(PO4)6(OH)2) is the main chemical constituent of bone tissue (~70%) as well as HA which is a calcium phosphate based ceramic material forms inorganic tissue of bone and tooth as hard tissues is used in production of prosthesis for synthetic bone, fractured and broken bone restoration, coating of metallic biomaterials and dental applications because of its bio compatibility. It is known that Hydroxyapatite decomposes with high heat energy after heat treatment. Therefore hydroxyapatite powders that heated in water vapor will less decomposed phases and lower amorphous phase content than in air atmosphere. In this study high purity hydroxyapatite powders were heat treated with open atmosphere furnace and water vapor atmosphere with 900, 1000, 1200 °C. Morphology of same powder size used in this process by SEM analyzed. Chemical structures of synthesized coatings have been examined by XRD. The determination of particle size and morphological structure of has been characterized by Particle Sizer, and SEM analysis, respectively. Weight change of sample was recorded by thermogravimetric analysis (TGA) during heating and cooling.

  9. Development of a Parching Machine Using Super-Heated Vapor or Super-Heated High-Moisture Atmosphere

    NASA Astrophysics Data System (ADS)

    Sato, Shoichi; Shinsho, Seiji; Iriki, Hiroyuki; Asai, Junya; Suganuma, Hirofumi; Shibata, Tsutomu

    We developed a new parching machine with super-heated vapor or super-heated highmoisture atmosphere as a heat medium, and investigated the influence exerted on the characteristics of manufactured tea and crude tea quality. (1)We developed machine specifications that improved throughput and allowed us to control stable quality compared with the conventional kamairicha parching machine. (2)The new parching machine could not only manufacture like kamairicha but also achieve various degrees of steaming of products like green tea or heavily steamed sencha. (3)The new parching machine could not only deactivate enzymes but dry leaves. (4)The influence of throughput was great with respect to the grade of pan-parched flavour, which meant that there was a contact opportunity for tea leaves and the surface of machine's wall. (5)Unpleasant smells such as that produced in a summer crop of tea were reduced by the new parching machine.

  10. Zeolite Y adsorbents with high vapor uptake capacity and robust cycling stability for potential applications in advanced adsorption heat pumps

    SciTech Connect

    Li, XS; Narayanan, S; Michaelis, VK; Ong, TC; Keeler, EG; Kim, H; Mckay, IS; Griffin, RG; Wang, EN

    2015-01-01

    Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg2+ ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapor diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg, Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the lab-scale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N-2 sorption, Al-27/Si-29 MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fick's 2nd law and D-R equation regressions. Among these, close examination of sorption isotherms for H2O and N-2 adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications. (C) 2014 Elsevier Inc. All rights reserved.

  11. Zeolite Y Adsorbents with High Vapor Uptake Capacity and Robust Cycling Stability for Potential Applications in Advanced Adsorption Heat Pumps

    PubMed Central

    Li, Xiansen; Narayanan, Shankar; Michaelis, Vladimir K.; Ong, Ta-Chung; Keeler, Eric G.; Kim, Hyunho; McKay, Ian S.; Griffin, Robert G.; Wang, Evelyn N.

    2014-01-01

    Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg2+ ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapor diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg,Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the labscale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N2 sorption, 27Al/29Si MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fick’s 2nd law and D-R equation regressions. Among these, close examination of sorption isotherms for H2O and N2 adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications. PMID:25395877

  12. Zeolite Y Adsorbents with High Vapor Uptake Capacity and Robust Cycling Stability for Potential Applications in Advanced Adsorption Heat Pumps.

    PubMed

    Li, Xiansen; Narayanan, Shankar; Michaelis, Vladimir K; Ong, Ta-Chung; Keeler, Eric G; Kim, Hyunho; McKay, Ian S; Griffin, Robert G; Wang, Evelyn N

    2015-01-01

    Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg(2+) ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapor diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg,Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the labscale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N2 sorption, (27)Al/(29)Si MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fick's 2(nd) law and D-R equation regressions. Among these, close examination of sorption isotherms for H2O and N2 adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications. PMID:25395877

  13. Modeling of a heat sink and high heat flux vapor chamber

    NASA Astrophysics Data System (ADS)

    Vadnjal, Aleksander

    An increasing demand for a higher heat flux removal capability within a smaller volume for high power electronics led us to focus on a novel cold plate design. A high heat flux evaporator and micro channel heat sink are the main components of a cold plate which is capable of removing couple of 100 W/cm2. In order to describe performance of such porous media device a proper modeling has to be addressed. A universal approach based on the volume average theory (VAT) to transport phenomena in porous media is shown. An approach on how to treat the closure for momentum and energy equations is addressed and a proper definition for friction factors and heat transfer coefficients are discussed. A numerical scheme using a solution to Navier-Stokes equations over a representative elementary volume (REV) and the use of VAT is developed to show how to compute friction factors and heat transfer coefficients. The calculation show good agreement with the experimental data. For the heat transfer coefficient closure, a proper average for both fluid and solid is investigated. Different types of heating are also investigated in order to determine how it influences the heat transfer coefficient. A higher heat fluxes in small area condensers led us to the micro channels in contrast to the classical heat fin design. A micro channel can have various shapes to enhance heat transfer, but the shape that will lead to a higher heat flux removal with a moderate pumping power needs to be determined. The standard micro-channel terminology is usually used for channels with a simple cross section, e.g. square, round, triangle, etc., but here the micro channel cross section is going to be expanded to describe more complicated and interconnected micro scale channel cross sections. The micro channel geometries explored are pin fins (in-line and staggered) and sintered porous micro channels. The problem solved here is a conjugate problem involving two heat transfer mechanisms; (1) porous media

  14. Chemical-vapor deposition of complex oxides: materials and process development

    SciTech Connect

    Muenchausen, R.

    1996-11-01

    This is the final report of a six-month, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL) part of the Advanced Materials Laboratory (AML). The demand for higher performance and lower cost in electronics is driving the need for advanced materials and consequent process integration. Ceramic thin-film technology is becoming more important in the manufacture of microelectronic devices, photovoltaics, optoelectronics, magneto-optics, sensors, microwave, and radio frequency communication devices, and high-Tc superconducting tapes. A flexible processing approach for potential large-scale manufacturing of novel electronic ceramic thin films is desirable. Current thin- film deposition technologies based on physical vapor-deposition techniques are limited in scale potential and have limited control of processing parameters. The lack of control over multiple process parameters inhibits the versatility and reproducibility of the physical vapor deposition processes applied to complex oxides. Chemical vapor deposition is emerging as a viable approach for large- scale manufacturing of electronic materials. Specifically, the ability to control more processing parameters with chemical vapor deposition than with other processing techniques provides the reliability and material property reproducibility required by manufacturing. This project sought to investigate the chemical vapor deposition of complex oxides.

  15. Wet Etching of Heat Treated Atomic Layer Chemical Vapor Deposited Zirconium Oxide in HF Based Solutions

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Sriram; Raghavan, Srini

    2008-06-01

    Alternative materials are being considered to replace silicon dioxide as gate dielectric material. Of these, the oxides of hafnium and zirconium show the most promise. However, integrating these new high-k materials into the existing complementary metal-oxide-semiconductor (CMOS) process remains a challenge. One particular area of concern is the wet etching of heat treated high-k dielectrics. In this paper, work done on the wet etching of heat treated atomic layer chemical vapor deposited (ALCVD) zirconium oxide in HF based solutions is presented. It was found that heat treated material, while refractory to wet etching at room temperature, is more amenable to etching at higher temperatures when methane sulfonic acid is added to dilute HF solutions. Selectivity over SiO2 is still a concern.

  16. Dependence of the isobaric specific heat capacity of water vapor on the pressure and temperature

    NASA Astrophysics Data System (ADS)

    Vestfálová, Magda; Šafařík, Pavel

    2016-03-01

    The fundamental base for the calculation of the thermodynamic properties of substances is the thermal equation of state and the dependence of some of the basic specific heat capacities on temperature. Dependence of isobaric specific heat capacity on the pressure can already be deduced from these relations. International standards of the properties of water and steam are based on the new scientific formulation IAPWS-95. The equation is in the form of Helmholtz dimensionless function with very much parameters. The aim of this paper is to design the simple dependence of the isobaric specific heat capacity of water vapor on the pressure and temperature in the range in which the steam occurs in the atmospheric moist air.

  17. Intensification of microalgae drying and oil extraction process by vapor recompression and heat integration.

    PubMed

    Song, Chunfeng; Liu, Qingling; Ji, Na; Deng, Shuai; Zhao, Jun; Kitamura, Yutaka

    2016-05-01

    Reducing energy penalty caused by drying and oil extraction is the most critical challenge in microalgae biodiesel production. In this study, vapor recompression and heat integration are utilized to optimize the performance of wet microalgae drying and oil extraction. In the microalgae drying stage, the hot exhaust stream is recompressed and coupled with wet microalgae to recover the condensate heat. In the oil extraction stage, the exergy rate of recovered solvent is also elevated by compressor and then exchanged heat with feed and bottom stream in the distillation column. Energy and mass balance of the intensified process is investigated and compared with the conventional microalgae drying-extraction process. The simulation results indicated that the total energy consumption of the intensified process can be saved by 52.4% of the conventional route. PMID:26871956

  18. Effects of detailed droplet heating models on turbulent sprays vaporization behavior

    NASA Astrophysics Data System (ADS)

    Mawid, M. A.

    1993-06-01

    The effects of three different droplet heating models on the vaporization history and internal structure of turbulent liquid fuel sprays were investigated. The models considered were the infinite-diffusion, diffusion-limit, and effective-conductivity models. A numerical solution for the models was developed and implemented in the KIVA-II computer code. Low temperature and relatively high temperature numerical studies were conducted. The low temperature computations were compared with existing experimental data. The comparisons showed that while the infinite-diffusion and diffusion-limit models respectively overpredicted and underpredicted the fuel vapor peak concentration and distribution in the combustor, the effective-conductivity model gave results that were in better agreement with measurements. A limited study for the high temperature case was performed due to lack of experimental data and predictions using the three models were compared with each other.

  19. Quantitative model of vapor dominated geothermal reservoirs as heat pipes in fractured porous rock

    SciTech Connect

    Pruess, K.

    1985-03-01

    We present a numerical model of vapor-dominated reservoirs which is based on the well-known conceptual model of White, Muffler, and Truesdell. Computer simulations show that upon heat recharge at the base, a single phase liquid-dominated geothermal reservoir in fractured rock with low matrix permeability will evolve into a two-phase reservoir with B.P.D. (boiling point-for-depth) pressure and temperature profiles. A rather limited discharge event through cracks in the caprock, involving loss of only a few percent of fluids in place, is sufficient to set the system off to evolve a vapor-dominated state. The attributes of this state are discussed, and some features requiring further clarification are identified. 26 refs., 5 figs.

  20. Effects of detailed droplet heating models on turbulent sprays vaporization behavior

    NASA Technical Reports Server (NTRS)

    Mawid, M. A.

    1993-01-01

    The effects of three different droplet heating models on the vaporization history and internal structure of turbulent liquid fuel sprays were investigated. The models considered were the infinite-diffusion, diffusion-limit, and effective-conductivity models. A numerical solution for the models was developed and implemented in the KIVA-II computer code. Low temperature and relatively high temperature numerical studies were conducted. The low temperature computations were compared with existing experimental data. The comparisons showed that while the infinite-diffusion and diffusion-limit models respectively overpredicted and underpredicted the fuel vapor peak concentration and distribution in the combustor, the effective-conductivity model gave results that were in better agreement with measurements. A limited study for the high temperature case was performed due to lack of experimental data and predictions using the three models were compared with each other.

  1. Initial Thermal Modeling of the Constrained Vapor Bubble Heat Exchanger Using TSS/SINDA

    NASA Astrophysics Data System (ADS)

    Basu, S.; Wayner, P. C., Jr.; Plawsky, J. L.

    2002-07-01

    Heat transfer systems operating under interfacial free-energy gradients to control the fluid flow are simple and light due to the absence of mechanical pumps. These have been proposed as reliable cooling systems in microgravity environments (Wayner, 1999). The Constrained Vapor Bubble (CVB) heat exchanger is being designed as a microgravity (mu-g) fluid physics experiment for the Fluids Integrated Rack (FIR) aboard the International Space Station (ISS). The aim of this study is to characterize the heat flow mechanisms of such a device operating as a wickless heat pipe, using the Thermal Synthesizer System/Systems Improved Numerical Differencing Analyzer (TSS/SINDA) software. The geometry and nodal meshwork was created using TSS, the graphics interface to SINDA. A SINDA (thermal) model was created to study steady state and transient solutions to heat transfer under the influence of conduction, convection and radiation. Experiments were performed with the CVB in vacuum and air, for various power inputs. An initial thermal model using TSS-SINDA is presented for the dry, evacuated CVB cell. The temperature profile data collected from the experiments were compared to the results of the model to provide significant insights to the losses due to radiation and convection. In view of expected flight-data trends (where convection is essentially negligible), the importance of radiation is discussed. The presence of a good heater-insulation is essential for high heat input to the cell.

  2. A correlation to predict the heat flux on the air-side of a vapor chamber with overturn-U flattened tubes

    NASA Astrophysics Data System (ADS)

    Srimuang, Wasan; Limkaisang, Viroj

    2016-08-01

    The heat transfer characteristics of a conventional vapor chamber (CVC) and a loop vapor chamber (LVC) are compared. The vapor chambers consisted of a stainless steel box with different covers. The results indicated that the heat flux and convective heat transfer coefficient of the air-side of LVC is higher than CVC. An empirical correlation was developed to predict the convective heat transfer coefficient of the air-side of the LVC.

  3. Matrix isolation infrared spectroscopic study of the vapor species over heated ReO{sub 3}

    SciTech Connect

    Almond, M.J.; Orrin, R.H.; Ogden, J.S.

    1996-02-01

    The vapor phase species over ReO{sub 3} heated in vacuo to approx 400C have been trapped in argon or nitrogen matrices at approx 12 K. The only species within such matrices detected by infrared spectroscopy is Re{sub 2}O{sub 7}. The bands of matrix-isolated Re{sub 2}O{sub 7} have been assigned by comparison with the spectrum of the gaseous compound. Most of the isolated Re{sub 2}O{sub 7} is shown to be in the monomeric form; thus, an infrared absorption at 916.5 cm{sup {minus}1} (N{sub 2} matrix), which had previously been assigned to an aggregate of Re{sub 2}O{sub 7} may, on the basis of annealing experiments, be attributed to the monomer. The solid remaining in the sample tube following heating of the ReO{sub 3} sample consists of ReO{sub 2} in both the monoclinic and orthorhombic crystal forms alongside some unreacted cubic ReO{sub 3} and a small amount of orthorhombic Re{sub 2}O{sub 7}. Thus, it is found that thermal decomposition of ReO{sub 3} in vacuo at 400 C follows the expected disproportionation route. The authors find no spectroscopic evidence for the existence of other species, such as ReO{sub 3} or HReO{sub 4}, in the vapor above heated ReO{sub 3}. This finding is in contrast to the results of earlier mass spectrometric studies that suggested that molecular ReO{sub 3} was present in the vapor together with Re{sub 2}O{sub 7}.

  4. Secondary electrospray ionization of complex vapor mixtures. Theoretical and experimental approach.

    PubMed

    Vidal-de-Miguel, Guillermo; Herrero, Ana

    2012-06-01

    In secondary electrospray ionization (SESI) systems, gaseous analytes exposed to an electrospray plume become ionized after charge is transferred from the charging electrosprayed particles (the charging agent) to the vapor species. Currently available SESI models are valid for simplified systems having only one type of electrosprayed species, which ionizes only one single vapor species, and for the limit of low vapor concentration. More realistic models require considering other effects. Here we develop a theoretical model that accounts for the effects of high vapor concentration, saturation effects, interferences between different vapor species, and electrosprays producing different types of species from the liquid phase. In spite of the relatively high complexity of the problem, we find simple relations between the different ionic species concentrations that hold independently of the particular ion source configuration. Our model suggests that an ideal SESI system should use highly concentrated charging agents composed preferably of only one dominating species with low mobility. Experimental measurements with a MeOH-H(2)O-NH(3) electrospray and a mixture of fatty acids and lactic acid served to test the theory, which gives good qualitative results. These results also suggest that the SESI ionization mechanism is primarily based on ions rather than on charged droplets. PMID:22528202

  5. Process for utilizing the waste heat content of condensate and/or vapor produced in the manufacture of sugar

    SciTech Connect

    Huber, H.; Schiweck, H.

    1981-09-22

    A process is provided for utilizing the waste heat content of condensate and/or vapor produced in the manufacture of sugar in which thin juice is cooled, subjected to one or more stages of flash evaporation to concentrate and further cool the juice, after which it is heated with condensate and/or vapor produced elsewhere in the sugar manufacturing process and with incoming thin juice thereby heating the outgoing juice to substantially its original temperature and providing the cooling of the incoming thin juice. In another embodiment completely purified thin juice is concentrated in a multiple effect evaporating plant wherein the vapor produced in the final evaporator is compressed and is returned selectively to one of the preceding evaporators of the evaporating plant for use in heating the juice.

  6. Study on Operating Performance of Stirling Engine-Driven Vapor Compression Heat Pump System

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru

    Stirling engines have many unique advantages including higher thermal efficiencies, preferable exhaust gas characteristics, multi-fuel usage, and low noise and vibration. On the other hand, heat pump systems are very attractive for space heating and cooling, and industrial usage. There are several environmental merits of Stirling driven vapor compression (SDVC) systems. A design method for the SDVC, which is based on mathematical methods for Stirling and Ranking cycles, has been developed. The attractive SDVC performance using conventional and alternative refrigerants was shown. From the calculated Total Equivalent Warming Impact (TEWI) and operating costs, it became clear that the SDVC system with the alternative refrigerant has a higher potential as the future air-conditioning system.

  7. Pressure intelligent control strategy of Waste heat recovery system of converter vapors

    NASA Astrophysics Data System (ADS)

    Feng, Xugang; Wu, Zhiwei; Zhang, Jiayan; Qian, Hong

    2013-01-01

    The converter gas evaporative cooling system is mainly used for absorbing heat in the high temperature exhaust gas which produced by the oxygen blowing reaction. Vaporization cooling steam pressure control system of converter is a nonlinear, time-varying, lagging behind, close coupling of multivariable control object. This article based on the analysis of converter operation characteristics of evaporation cooling system, of vaporization in a production run of pipe pressure variation and disturbance factors.For the dynamic characteristics of the controlled objects,we have improved the conventional PID control scheme.In Oxygen blowing process, we make intelligent control by using fuzzy-PID cascade control method and adjusting the Lance,that it can realize the optimization of the boiler steam pressure control.By design simulation, results show that the design has a good control not only ensures drum steam pressure in the context of security, enabling efficient conversion of waste heat.And the converter of 1800 flue gas through pipes and cool and dust removal also can be cooled to about 800. Therefore the converter haze evaporative cooling system has achieved to the converter haze temperature decrease effect and enhanced to the coal gas returns-ratio.

  8. Application of Molecular Dynamics Simulations in Molecular Property Prediction I: Density and Heat of Vaporization

    PubMed Central

    Wang, Junmei; Tingjun, Hou

    2011-01-01

    Molecular mechanical force field (FF) methods are useful in studying condensed phase properties. They are complementary to experiment and can often go beyond experiment in atomic details. Even a FF is specific for studying structures, dynamics and functions of biomolecules, it is still important for the FF to accurately reproduce the experimental liquid properties of small molecules that represent the chemical moieties of biomolecules. Otherwise, the force field may not describe the structures and energies of macromolecules in aqueous solutions properly. In this work, we have carried out a systematic study to evaluate the General AMBER Force Field (GAFF) in studying densities and heats of vaporization for a large set of organic molecules that covers the most common chemical functional groups. The latest techniques, such as the particle mesh Ewald (PME) for calculating electrostatic energies, and Langevin dynamics for scaling temperatures, have been applied in the molecular dynamics (MD) simulations. For density, the average percent error (APE) of 71 organic compounds is 4.43% when compared to the experimental values. More encouragingly, the APE drops to 3.43% after the exclusion of two outliers and four other compounds for which the experimental densities have been measured with pressures higher than 1.0 atm. For heat of vaporization, several protocols have been investigated and the best one, P4/ntt0, achieves an average unsigned error (AUE) and a root-mean-square error (RMSE) of 0.93 and 1.20 kcal/mol, respectively. How to reduce the prediction errors through proper van der Waals (vdW) parameterization has been discussed. An encouraging finding in vdW parameterization is that both densities and heats of vaporization approach their “ideal” values in a synchronous fashion when vdW parameters are tuned. The following hydration free energy calculation using thermodynamic integration further justifies the vdW refinement. We conclude that simple vdW parameterization

  9. A computational study of droplet evaporation with fuel vapor jet ejection induced by localized heat sources

    NASA Astrophysics Data System (ADS)

    Sim, Jaeheon; Im, Hong G.; Chung, Suk Ho

    2015-05-01

    Droplet evaporation by a localized heat source under microgravity conditions was numerically investigated in an attempt to understand the mechanism of the fuel vapor jet ejection, which was observed experimentally during the flame spread through a droplet array. An Eulerian-Lagrangian method was implemented with a temperature-dependent surface tension model and a local phase change model in order to effectively capture the interfacial dynamics between liquid droplet and surrounding air. It was found that the surface tension gradient caused by the temperature variation within the droplet creates a thermo-capillary effect, known as the Marangoni effect, creating an internal flow circulation and outer shear flow which drives the fuel vapor into a tail jet. A parametric study demonstrated that the Marangoni effect is indeed significant at realistic droplet combustion conditions, resulting in a higher evaporation constant. A modified Marangoni number was derived in order to represent the surface force characteristics. The results at different pressure conditions indicated that the nonmonotonic response of the evaporation rate to pressure may also be attributed to the Marangoni effect.

  10. Coupled heat and vapor transport: The thermostat effect of a freely evaporating land surface

    NASA Astrophysics Data System (ADS)

    Szilagyi, Jozsef; Schepers, Aaron

    2014-01-01

    Analytical solutions of the 2-D heat and vapor transport equations for a surface moisture jump are often based on a constant streamwise temperature (Tws) assumption over the wet vegetated surface. By analyzing 90 thermal infrared images taken over center-pivot irrigated areas in Nebraska, it has been demonstrated for the first time that such an assumption is realistic. Average temperature difference between the perimeter and core of the irrigated full or half circles stayed between -0.11 and 0.09°C (standard deviation of 0.25-0.41°C). It was further demonstrated that wet-bulb temperatures (a proxy of Tws) remain near constant during drying of the environment when net radiation and wind conditions stay largely unchanged, enabling estimation of Tws at any stage of drying, thus improving evaporation estimates of the Priestley-Taylor equation in arid and semiarid environments.

  11. The interaction of flow, heat transfer, and free interfaces in an electron-beam vaporization system for metals

    SciTech Connect

    Westerberg, K.W.; McClelland, M.A.; Finlayson, B.A.

    1994-11-01

    A numerical analysis is made of the liquid flow and energy transport in a system to vaporize metals. The energy from an electron beam heats metal confined in a water-cooled crucible. Metal vaporizes from a hot pool of circulating liquid which is surrounded by a shell of its own solid. Flow in the pool is strongly driven by temperature-induced buoyancy and capillary forces and is located in the transition region between laminar and turbulent flow. At high vaporization rates, the thrust of the departing vapor forms a trench at the beam impact site. A modified finite element method is used to calculate the flow and temperature fields coupled with the interface locations. The mesh is structured with spines that stretch and pivot as the interfaces move. The discretized equations are arranged in an {open_quotes}arrow{close_quotes} matrix and solved using the Newton-Raphson method. The electron-beam power and width are varied for cases involving the high-rate vaporization of aluminum. Attention is focused on the interaction of vaporization, liquid flow, and heat transport in the trench area.

  12. Vapor pressures and heats of vaporization of primary coal tars. Quarterly technical progress report, 1 July 1993--30 September 1993

    SciTech Connect

    Suuberg, E.M.; Oja, V.; Lilly, W.D.

    1993-12-31

    There is significant current interest in general area of coal pyrolysis, particularly with respect to comprehensive models of this complicated phenomenon. This interest derives from the central role of pyrolysis in all thermally driven coal conversion processes -- gasification, combustion, liquefaction, mild gasification, or thermal benefication. There remain several key data needs in these application areas. Among them is a need for more reliable correlation for prediction of vapor pressure of heavy, primary coal tars. Such information is important in design of all coal conversion processes, in which the volatility of tarry products is of major concern. Only very limited correlations exist, and these are not considered reliable to even an order of magnitude when applied to tars. The present project seeks to address this important gap in the near term by direct measurement of vapor pressures of coal tar fractions, by application of well-established techniques and modifications thereof. The principal objectives of the program are to: (1) obtain data on the vapor pressures and heats of vaporization of tars from a range of ranks of coal, (2) develop correlations based on a minimum set of conveniently measurable characteristics of the tars, (3) develop equipment that would allow performing such measurements in a reliable, straightforward fashion. Results of the literature survey are compiled. The experimental tasks have been concerned with setup and calibration.

  13. Seasonal and interannual variation in water vapor and heat fluxes in a West Siberian continental bog

    NASA Astrophysics Data System (ADS)

    Shimoyama, K.; Hiyama, T.; Fukushima, Y.; Inoue, G.

    2003-10-01

    The seasonal and interannual variation in the energy fluxes of a West Siberian continental bog were measured from April to October in 1999 and 2000 using the eddy covariance method. The energy balance closure rate (=[sensible + latent heat fluxes]/[available energy]) ranged from ˜0.8 to 0.9 and showed a better energy balance and less scattering using the soil heat flux estimated from an area-averaged soil thermal parameter rather than from a plot-based measurement. The net radiation (Rn) increased drastically after snowmelt because the surface albedo (a) dropped from its highest value to its lowest value over the course of the snowmelt. The snowmelt water raised the water table (zwt) to its highest level; it then gradually decreased. The seasonal and interannual variation in a, which ranged from 0.09-0.19, depended on zwt, because surface wetness was closely related to zwt through the capillary uptake of Sphagnum moss. The seasonal variation in the latent heat flux (lE) was similar to that in Rn. The largest lE was observed in the middle of June, and was ˜120 Wm-2 (4.2 mm d-1) in both years. Conversely, the sensible heat flux (H) did not show an obvious seasonal pattern and was lower than lE during the growing season. The Bowen ratio (Br) in the early growing season was 0.57 and 0.60, and the values in the peak growing season were 0.65 and 0.78, in 1999 and 2000, respectively. The lower Br was related to the higher zwt; specifically, it was due to the wetter surface conditions. An interannual comparison of the monthly mean atmospheric water vapor deficit (δe) and lE showed a significant relationship with a higher lE observed in the year with a higher δe. Therefore in the bog studied the interannual variation in the water vapor flux was controlled mainly by zwt and δe.

  14. Measurement of vapor pressures and heats of sublimation of dicarboxylic acids using atmospheric solids analysis probe mass spectrometry.

    PubMed

    Bruns, Emily A; Greaves, John; Finlayson-Pitts, Barbara J

    2012-06-21

    Vapor pressures of low volatility compounds are important parameters in several atmospheric processes, including the formation of new particles and the partitioning of compounds between the gas phase and particles. Understanding these processes is critical for elucidating the impacts of aerosols on climate, visibility, and human health. Dicarboxylic acids are an important class of compounds in the atmosphere for which reported vapor pressures often vary by more than an order of magnitude. In this study, atmospheric solids analysis probe mass spectrometry (ASAP-MS), a relatively new atmospheric pressure ionization technique, is applied for the first time to the measurement of vapor pressures and heats of sublimation of a series of dicarboxylic acids. Pyrene was also studied because its vapor pressures and heat of sublimation are relatively well-known. The heats of sublimation measured using ASAP-MS were in good agreement with published values. The vapor pressures, assuming an evaporation coefficient of unity, were typically within a factor of ∼3 lower than published values made at similar temperatures for most of the acids. The underestimation may be due to diffusional constraints resulting from evaporation at atmospheric pressure. However, this study establishes that ASAP-MS is a promising new technique for such measurements. PMID:22432524

  15. Induction heating pure vapor source of high temperature melting point materials on electron cyclotron resonance ion source

    SciTech Connect

    Kutsumi, Osamu; Kato, Yushi; Matsui, Yuuki; Sato, Fuminobu; Iida, Toshiyuki; Kitagawa, Atsushi; Muramatsu, Masayuki; Uchida, Takashi; Yoshida, Yoshikazu

    2010-02-15

    Multicharged ions that are needed are produced from solid pure material with high melting point in an electron cyclotron resonance ion source. We develop an evaporator by using induction heating (IH) with multilayer induction coil, which is made from bare molybdenum or tungsten wire without water cooling and surrounding the pure vaporized material. We optimize the shapes of induction coil and vaporized materials and operation of rf power supply. We conduct experiment to investigate the reproducibility and stability in the operation and heating efficiency. IH evaporator produces pure material vapor because materials directly heated by eddy currents have no contact with insulated materials, which are usually impurity gas sources. The power and the frequency of the induction currents range from 100 to 900 W and from 48 to 23 kHz, respectively. The working pressure is about 10{sup -4}-10{sup -3} Pa. We measure the temperature of the vaporized materials with different shapes, and compare them with the result of modeling. We estimate the efficiency of the IH vapor source. We are aiming at the evaporator's higher melting point material than that of iron.

  16. Smoothing HCCI heat release with vaporization-cooling-induced thermal stratification using ethanol.

    SciTech Connect

    Dec, John E.; Sjoberg, Carl-Magnus G.

    2010-12-01

    Ethanol and ethanol/gasoline blends are being widely considered as alternative fuels for light-duty automotive applications. At the same time, HCCI combustion has the potential to provide high efficiency and ultra-low exhaust emissions. However, the application of HCCI is typically limited to low and moderate loads because of unacceptably high heat-release rates (HRR) at higher fueling rates. This work investigates the potential of lowering the HCCI HRR at high loads by using partial fuel stratification to increase the in-cylinder thermal stratification. This strategy is based on ethanol's high heat of vaporization combined with its true single-stage ignition characteristics. Using partial fuel stratification, the strong fuel-vaporization cooling produces thermal stratification due to variations in the amount of fuel vaporization in different parts of the combustion chamber. The low sensitivity of the autoignition reactions to variations of the local fuel concentration allows the temperature variations to govern the combustion event. This results in a sequential autoignition event from leaner and hotter zones to richer and colder zones, lowering the overall combustion rate compared to operation with a uniform fuel/air mixture. The amount of partial fuel stratification was varied by adjusting the fraction of fuel injected late to produce stratification, and also by changing the timing of the late injection. The experiments show that a combination of 60-70% premixed charge and injection of 30-40 % of the fuel at 80{sup o}CA before TDC is effective for smoothing the HRR. With CA50 held fixed, this increases the burn duration by 55% and reduces the maximum pressure-rise rate by 40%. Combustion stability remains high but engine-out NO{sub x} has to be monitored carefully. For operation with strong reduction of the peak HRR, ISNO{sub x} rises to around 0.20 g/kWh for an IMEP{sub g} of 440 kPa. The single-cylinder HCCI research engine was operated naturally aspirated

  17. Heat pipes for spacecraft temperature control: An assessment of the state-of-the-art. [gas, vapor, liquid, and voltage control

    NASA Technical Reports Server (NTRS)

    Groll, M.; Kirkpatrick, J. P.

    1976-01-01

    Spacecraft applications that require the efficient cooling of high-powered components, the precise temperature control of sensitive electronic and optical components, and the protection of cooled components from temporary, adverse environmental conditions are increasing. Heat pipes using gas, vapor, liquid, or voltage control to provide variable conductance or diode thermal behavior have been and are continuing to be developed to meet increasingly difficult requirements. The various control techniques are critically evaluated using characteristic features and properties, including heat transport capability, volume and mass requirements, complexity and ease of fabrication, reliability, and control characteristics. As a result, advantages and disadvantages of specific approaches are derived and discussed. Using four development levels, the state-of-the-art of the various heat pipe temperature control techniques is assessed.

  18. Large-Scale Synthesis of Graphene Films by Joule-Heating-Induced Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Lee, Jung Min; Jeong, Hae Yong; Park, Won Il

    2010-10-01

    We report large-area synthesis of few-layer graphene films by chemical vapor deposition (CVD) in a cold-wall reactor. The key feature of this method is that the catalytic metal layers on the SiO2/Si substrates are self-heated to high growth temperature (900°C to 1000°C) by high-current Joule heating. Synthesis of high-quality graphene films, whose structural and electrical characteristics are comparable to those grown by hot-wall CVD systems, was confirmed by transmission electron microscopy images, Raman spectra, and current-voltage analysis. Optical transmittance spectra of the graphene films allowed us to estimate the number of graphene layers, which revealed that high-temperature exposure of Ni thin layers to a carbon precursor (CH4) was critical in determining the number of graphene layers. In particular, exposure to CH4 for 20 s produces very thin graphene films with an optical transmittance of 93%, corresponding to an average layer number of three and a sheet resistance of ~600 Ω/square.

  19. Heat-Resistant Co-W Catalytic Metals for Multilayer Graphene Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Ueno, Kazuyoshi; Karasawa, Yusuke; Kuwahara, Satoru; Baba, Shotaro; Hanai, Hitoshi; Yamazaki, Yuichi; Sakuma, Naoshi; Kajita, Akihiro; Sakai, Tadashi

    2013-04-01

    Multilayer graphene (MLG) is expected to be a low-resistance and high-reliability interconnect material replacing copper (Cu) in nanoscale interconnects. Chemical vapor deposition (CVD) on catalytic metals is expected as a practical method for MLG deposition. To obtain high-quality MLG films without catalyst agglomeration by CVD, heat-resistant Co-W catalytic metals were investigated. The agglomeration of the Co-W catalytic metals was suppressed by increasing the W composition; however, MLG deposition was suppressed at the same time. The effects of W addition on the MLG growth were discussed from the viewpoints of the crystallographic change of the Co-W catalysts and chemical reactions. It was found that the Co grain size was reduced and the fcc Co formation was suppressed by W addition. In addition, graphite formation was supposed to be suppressed by W addition owing to the formation of phases other than fcc Co according to the Co-W-C phase diagram. With the optimum W concentration, MLG crystallinity was improved by high-temperature CVD using the heat-resistant Co-W catalytic metals (0.7 at. %) without agglomeration, compared with that in the case of using pure-Co catalysts.

  20. Simulation of the early startup period of high-temperature heat pipes from the frozen state by a rarefied vapor self-diffusion model

    NASA Technical Reports Server (NTRS)

    Cao, Y.; Faghri, A.

    1993-01-01

    The heat pipe startup process is described physically and is divided into five periods for convenience of analysis. The literature survey revealed that none of the previous attempts to simulate the heat pipe startup process numerically were successful, since the rarefied vapor flow in the heat pipe was not considered. Therefore, a rarefied vapor self-diffusion model is proposed, and the early startup periods, in which the rarefied vapor flow is dominant within the heat pipe, are first simulated numerically. The numerical results show that large vapor density gradients existed along the heat pipe length, and the vapor flow reaches supersonic velocities when the density is extremely low. The numerical results are compared with the experimental data of the early startup period with good agreement.

  1. A non-equilibrium model for soil heating and moisture transport during extreme surface heating: the soil (heat-moisture-vapor) HMV-Model Version 1

    NASA Astrophysics Data System (ADS)

    Massman, W. J.

    2015-11-01

    Increased use of prescribed fire by land managers and the increasing likelihood of wildfires due to climate change require an improved modeling capability of extreme heating of soils during fires. This issue is addressed here by developing and testing the soil (heat-moisture-vapor) HMV-model, a 1-D (one-dimensional) non-equilibrium (liquid-vapor phase change) model of soil evaporation that simulates the coupled simultaneous transport of heat, soil moisture, and water vapor. This model is intended for use with surface forcing ranging from daily solar cycles to extreme conditions encountered during fires. It employs a linearized Crank-Nicolson scheme for the conservation equations of energy and mass and its performance is evaluated against dynamic soil temperature and moisture observations, which were obtained during laboratory experiments on soil samples exposed to surface heat fluxes ranging between 10 000 and 50 000 W m-2. The Hertz-Knudsen equation is the basis for constructing the model's non-equilibrium evaporative source term. Some unusual aspects of the model that were found to be extremely important to the model's performance include (1) a dynamic (temperature and moisture potential dependent) condensation coefficient associated with the evaporative source term, (2) an infrared radiation component to the soil's thermal conductivity, and (3) a dynamic residual soil moisture. This last term, which is parameterized as a function of temperature and soil water potential, is incorporated into the water retention curve and hydraulic conductivity functions in order to improve the model's ability to capture the evaporative dynamics of the strongly bound soil moisture, which requires temperatures well beyond 150 °C to fully evaporate. The model also includes film flow, although this phenomenon did not contribute much to the model's overall performance. In general, the model simulates the laboratory-observed temperature dynamics quite well, but is less precise (but

  2. A Numerical Study of Heat and Water Vapor Transfer in MDCT-Based Human Airway Models

    PubMed Central

    Wu, Dan; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2014-01-01

    A three-dimensional (3D) thermo-fluid model is developed to study regional distributions of temperature and water vapor in three multi-detector row computed-tomography (MDCT)-basedhuman airwayswith minute ventilations of 6, 15 and 30 L/min. A one-dimensional (1D) model is also solved to provide necessary initial and boundary conditionsforthe 3D model. Both 3D and 1D predicted temperature distributions agree well with available in vivo measurement data. On inspiration, the 3D cold high-speed air stream is split at the bifurcation to form secondary flows, with its cold regions biased toward the inner wall. The cold air flowing along the wall is warmed up more rapidly than the air in the lumen center. The repeated splitting pattern of air streams caused by bifurcations acts as an effective mechanism for rapid heat and mass transfer in 3D. This provides a key difference from the 1D model, where heating relies largely on diffusion in the radial direction, thus significantly affecting gradient-dependent variables, such as energy flux and water loss rate. We then propose the correlations for respective heat and mass transfer in the airways of up to 6 generations: Nu=3.504(ReDaDt)0.277, R = 0.841 and Sh=3.652(ReDaDt)0.268, R = 0.825, where Nu is the Nusselt number, Sh is the Sherwood number, Re is the branch Reynolds number, Da is the airway equivalent diameter, and Dt is the tracheal equivalentdiameter. PMID:25081386

  3. Waste-Heat-Driven Cooling Using Complex Compound Sorbents

    NASA Technical Reports Server (NTRS)

    Rocketfeller, Uwe; Kirol, Lance; Khalili, Kaveh

    2004-01-01

    Improved complex-compound sorption pumps are undergoing development for use as prime movers in heat-pump systems for cooling and dehumidification of habitats for humans on the Moon and for residential and commercial cooling on Earth. Among the advantages of sorption heat-pump systems are that they contain no moving parts except for check valves and they can be driven by heat from diverse sources: examples include waste heat from generation of electric power, solar heat, or heat from combustion of natural gas. The use of complex compound sorbents in cooling cycles is not new in itself: Marketing of residential refrigerators using SrCl2 was attempted in the 1920s and 30s and was abandoned because heat- and mass-transfer rates of the sorbents were too low. Addressing the issue that gave rise to the prior abandonment of complex compound sorption heat pumps, the primary accomplishment of the present development program thus far has been the characterization of many candidate sorption media, leading to large increases in achievable heat- and mass-transfer rates. In particular, two complex compounds (called "CC260-1260" and "CC260-2000") were found to be capable of functioning over the temperature range of interest for the lunar-habitat application and to offer heat- and mass-transfer rates and a temperature-lift capability adequate for that application. Regarding the temperature range: A heat pump based on either of these compounds is capable of providing a 95-K lift from a habitable temperature to a heat-rejection (radiator) temperature when driven by waste heat at an input temperature .500 K. Regarding the heat- and mass-transfer rates or, more precisely, the power densities made possible by these rates: Power densities observed in tests were 0.3 kilowatt of cooling per kilogram of sorbent and 2 kilowatts of heating per kilogram of sorbent. A prototype 1-kilowatt heat pump based on CC260-2000 has been built and demonstrated to function successfully.

  4. Shortwave heating response to water vapor as a significant source of uncertainty in global hydrological sensitivity in CMIP5 models

    NASA Astrophysics Data System (ADS)

    DeAngelis, A. M.; Qu, X.; Hall, A. D.; Klein, S. A.

    2014-12-01

    The hydrological cycle is expected to undergo substantial changes in response to global warming, with all climate models predicting an increase in global-mean precipitation. There is considerable spread among models, however, in the projected increase of global-mean precipitation, even when normalized by surface temperature change. In an attempt to develop a better physical understanding of the causes of this intermodel spread, we investigate the rapid and temperature-mediated responses of global-mean precipitation to CO2 forcing in an ensemble of CMIP5 models by applying regression analysis to pre-industrial and abrupt quadrupled CO2 simulations, and focus on the atmospheric radiative terms that balance global precipitation. The intermodel spread in the temperature-mediated component, which dominates the spread in total hydrological sensitivity, is highly correlated with the spread in temperature-mediated clear-sky shortwave (SW) atmospheric heating among models. Upon further analysis of the sources of intermodel variability in SW heating, we find that increases of upper atmosphere and (to a lesser extent) total column water vapor in response to 1K surface warming only partly explain intermodel differences in the SW response. Instead, most of the spread in the SW heating term is explained by intermodel differences in the sensitivity of SW absorption to fixed changes in column water vapor. This suggests that differences in SW radiative transfer codes among models are the dominant source of variability in the response of atmospheric SW heating to warming. Better understanding of the SW heating sensitivity to water vapor in climate models appears to be critical for reducing uncertainty in the global hydrological response to future warming. Current work entails analysis of observations to potentially constrain the intermodel spread in SW sensitivity to water vapor, as well as more detailed investigation of the radiative transfer schemes in different models and how

  5. Experimental study of flow and heat transfer in a rotating chemical vapor deposition reactor

    NASA Astrophysics Data System (ADS)

    Wong, Sun

    An experimental model was set up to study the rotating vertical impinging chemical vapor deposition reactor. Deposition occurs only when the system has enough thermal energy. Therefore, understanding the fluid characteristic and heat transfer of the system will provide a good basis to understand the full model. Growth rate and the uniformity of the film are the two most important factors in CVD process and it is depended on the flow and thermal characteristic within the system. Optimizing the operating parameters will result in better growth rate and uniformity. Operating parameters such as inflow velocity, inflow diameter and rotational speed are used to create different design simulations. Fluid velocities and various temperatures are recorded to see the effects of the different operating parameters. Velocities are recorded by using flow meter and hot wire anemometer. Temperatures are recorded by using various thermocouples and infrared thermometer. The result should provide a quantitative basis for the prediction, design and optimization of the system and process for design and fabrication of future CVD reactors. Further assessment of the system results will be discuss in detail such as effects of buoyancy and effects of rotation. The experimental study also coupled with a numerical study for further validation of both model. Comparisons between the two models are also presented.

  6. Biodecontamination of animal rooms and heat-sensitive equipment with vaporized hydrogen peroxide.

    PubMed

    Krause, J; McDonnell, G; Riedesel, H

    2001-11-01

    Common methods used to decontaminate and disinfect laboratory animal areas are difficult to standardize, labor-intensive, and potentially hazardous for staff members and the environment. As an alternative to traditional methods, we tested fumigation with vaporized hydrogen peroxide by using the VHP 1000 Biodecontamination System. The design of our air-conditioning system allowed the connection of the generator to any animal room by using the ventilation piping, thus forming a closed circuit. A 3-h cycle consisting of dehumidification, conditioning, sterilization, and aeration was developed and shown to be effective. The biodecontamination process was monitored during five independent trials using chemical and biological (Bacillus stearothermophilus spores) indicators. Contact plates for testing surfaces and room air for environmental bacteria, yeasts, and fungi consistently showed fewer than 10 colony-forming units per 100 cm2 or per 1 liter air. In addition, this method proved successful with heat-sensitive equipment like the blower units of individually ventilated caging systems. Overall, the system was easy to use and very effective in biodecontaminating animal rooms and equipment in a reproducible manner. There were no signs of corrosion or functional damage after more than 10 fumigation cycles. Work load and potential health risk for staff members and the environment was negligible. PMID:11703051

  7. Vapor Grown Carbon Fiber/Phenolic Matrix Composites for Rocket Nozzles and Heat Shields

    NASA Technical Reports Server (NTRS)

    Patton, R. D.; Pittman, C. U., Jr.; Wang, L.; Day, A.; Hill, J. R.

    2001-01-01

    The ablation and mechanical and thermal properties of vapor grown carbon fiber (VGCF)/phenolic resin composites were evaluated to determine the potential of using this material in solid rocket motor nozzles. Composite specimens with varying VGCF loading (30%-50% wt) including one sample with ex-rayon carbon fiber plies were prepared and exposed to a plasma torch for 20 s with a heat flux of 16.5 MW/sq m at approximately 1650 C. Low erosion rates and little char formation were observed, confirming that these materials were promising for rocket motor nozzle materials. When fiber loadings increased, mechanical properties and ablative properties improved. The VGCF composites had low thermal conductivities (approximately 0.56 W/m-C) indicating they were good insulating materials. If a 65% fiber loading in VGCF composite can be achieved, then ablative properties are projected to be comparable to or better than the composite material currently used on the Space Shuttle Reusable Solid Rocket Motor (RSRM).

  8. An investigation into the output characteristics of a discharge-heated copper vapor laser

    NASA Astrophysics Data System (ADS)

    Wang, Tieh C.; Yang, Ching Y.

    1989-11-01

    The laser output characteristics of a discharge-heated copper vapor laser (CVL) were investigated at a charging voltage of 14.5 kV, laser tube temperature of 1450 C, pulse repetition rate (PRR) range from 0.5 to 9.5 kHz, and buffer gas pressures of 20 and 75 Torr. Changing buffer gas pressure from 20 to 75 Torr causes no significant variation of the rates of relaxation of metastable atoms. Increase of the current rise of pumping pulse with increasing PRR is the predominant factor for improving the laser behavior when PRR is greater than 3.5 kHz with buffer gas pressure of 20 Torr and when PRR is less than 4.5 kHz with buffer gas pressure of 75 Torr. For short pulse applications, the CVL is preferably operated at high PRR and low buffer gas regime. For the 25-W CVL used here, the prepulse electron density should be higher than 10 to the 13th/cu cm for efficient laser operation. The output power of this CVL can be increased to much higher than 30 W if the thermal insulation is optimized and the PRR is increased.

  9. Quantifying Heat Flow from a Restless Caldera: Shallow Measurement from a Vapor Dominated Area of the Yellowstone Plateau Volcanic Field

    NASA Astrophysics Data System (ADS)

    Rosenberg, R.; Harris, R. N.; Hurwitz, S.; Fulton, P. M.; Davis, M. G.; Werner, C. A.

    2009-12-01

    Any attempt to characterize the vigor of magmatic activity and forecast future volcanism in Yellowstone caldera requires knowledge regarding the thermal state of its magmatic system, one of the largest and most focused heat sources on Earth. Current knowledge of heat transport between magma and the ground surface is limited. Advective heat transport from the caldera has been quantified by measuring chloride flux from the major rivers draining the caldera, based on the assumptions of the chloride inventory method (Fournier, JVGR1979). We have quantified the total (conductive, advective, and evaporative) heat flux from one of the most active thermal areas in Yellowstone caldera, the Obsidian Pool thermal area (OPTA) which includes 0.1 km2 of thermal ground within the Mud Volcano thermal area. The OPTA is characterized by vapor dominated conditions. Rising steam and other gases (mainly CO2) fill open fractures beneath a low-permeability cap consisting of clay minerals (Bargar and Muffler, 1982). Conduction-dominated heat transfer through the clay cap is associated with a high temperature gradient. We made at least 4 soil-temperature measurements at 0-1 m depth at 251 locations in the OPTA and measured soil thermal conductivity in the laboratory. Evaporative heat from several thermal pools was quantified based on pool temperatures and meteorological data. Our preliminary analysis indicates that surface heat loss from OPTA is dominantly conductive. Extrapolation of the OPTA results to approximately 35 km2 of vapor-dominated area in Yellowstone caldera and surroundings would yield a total heat flow that constitutes a major fraction of the total heat power from Yellowstone’s magmatic system.

  10. Effect of heat-treatment temperature of vapor-grown graphite fibers. I - Properties of their bromine intercalation compounds

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Hambourger, Paul D.; Slabe, Melissa E.

    1989-01-01

    Vapor-grown graphite fibers were heat treated at 2000, 2200, 2400, 2600, 2800, and 3000 C, brominated at room temperature for two days, and then characterized by X-ray diffraction analysis, differential scanning calorimetry, and resistivity measurements. Fibers greater than 13 microns in diameter had low resistivities (50 microohms or less) irrespective of the heat treatment temperature. An analysis of the results obtained suggests that resistivities below 6 microohms cannot be achieved through a further reduction in defect level unless the amount of bromine is increased.

  11. Heat flux distribution and rectification of complex networks

    NASA Astrophysics Data System (ADS)

    Liu, Zonghua; Wu, Xiang; Yang, Huijie; Gupte, Neelima; Li, Baowen

    2010-02-01

    It was recently found that the heterogeneity of complex networks can enhance transport properties such as epidemic spreading, electric energy transfer, etc. A trivial deduction would be that the presence of hubs in complex networks can also accelerate the heat transfer although no concrete research has been done so far. In the present study, we have studied this problem and have found a surprising answer: the heterogeneity does not favor but prevents the heat transfer. We present a model to study heat conduction in complex networks and find that the network topology greatly affects the heat flux. The heat conduction decreases with the increase of heterogeneity of the network caused by both degree distribution and the clustering coefficient. Its underlying mechanism can be understood by using random matrix theory. Moreover, we also study the rectification effect and find that it is related to the degree difference of the network, and the distance between the source and the sink. These findings may have potential applications in real networks, such as nanotube/nanowire networks and biological networks.

  12. Copper vapor laser fragmentation of gallstones: in vitro measurements of wall heat transmission.

    PubMed

    Dayton, M T; Decker, D L; McClane, R; Dixon, J A

    1988-07-01

    Laser fragmentation is a promising new modality in management of retained CBD stones. Recent reports demonstrate the feasibility of lasers for this, but few studies have evaluated their safety (e.g., thermal injury may occur at greater than 43 degrees C). This study was conducted to measure heat transmission from lased bilirubinate and mixed stones to a simulated CBD wall. Four welded thermocouples were passed to the inside wall of 6-mm polyvinyl tubing 90 degrees apart to surround the lumen stone. The thermocouples were interfaced to a computer and temperatures were recorded every 270 msec. The tubing was submerged in a 37 degrees C water bath for all lasing work. A copper vapor laser (wavelength, 510 nm; 5.6 W; 5 kHz; pulse length, 30 ns) was attached to a 650-micron quartz fiber. A stone was "impacted" in the tubing and the laser fiber was pushed against the stone while making multiple passes to fragment it. Thirty mixed gallstones (mean size, 6.9 X 5.1 mm) and 20 bilirubinate gallstones (mean size, 7.1 X 5.2 mm) were fragmented during the study. Maximum temperature (Tmax), duration of Tmax (TmaxD), interval to stone piercing (TiP), and interval to fragmentation (TiF) were measured and comparisons were carried out with the SPSS statistical package using the t test procedure. The Tmax generated during fragmentation of bilirubinate stones (43.4 +/- 1.7 degrees C) was significantly less (P less than 0.002) than the Tmax for mixed stones (54.0 +/- 2.7 degrees C) but both Tmax values represented potentially injurious temperature levels.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3392997

  13. Simple analysis of total mercury and methylmercury in seafood using heating vaporization atomic absorption spectrometry.

    PubMed

    Yoshimoto, Keisuke; Anh, Hoang Thi Van; Yamamoto, Atsushi; Koriyama, Chihaya; Ishibashi, Yasuhiro; Tabata, Masaaki; Nakano, Atsuhiro; Yamamoto, Megumi

    2016-01-01

    This study aimed to develop a simpler method for determining total mercury (T-Hg) and methylmercury (MeHg) in biological samples by using methyl isobutyl ketone (MIBK) in the degreasing step. The fat in the samples was extracted by MIBK to the upper phase. T-Hg transferred into the water phase. This was followed by the extraction of MeHg from the water phase using HBr, CuCl2 and toluene. The MeHg fraction was reverse-extracted into L-cysteine-sodium acetate solution from toluene. The concentrations of T-Hg and MeHg were determined by heating vaporization atomic absorption spectrometry. Certified reference materials for T-Hg and MeHg in hair and fish were accurately measured using this method. This method was then applied to determine T-Hg and MeHg concentrations in the muscle, liver and gonads of seafood for the risk assessment of MeHg exposure. The mean T-Hg and MeHg concentrations in squid eggs were 0.023 and 0.022 µg/g, and in squid nidamental glands 0.052 and 0.049 µg/g, respectively. The MeHg/T-Hg ratios in the eggs and nidamental glands of squid were 94.4% and 96.5%, respectively. The mean T-Hg and MeHg concentrations in the gonads of sea urchins were 0.043 and 0.001 µg/g, respectively, with a MeHg/T-Hg ratio of 3.5%. We developed an efficient analytical method for T-Hg and MeHg using MIBK in the degreasing step. The new information on MeHg concentration and MeHg/T-Hg ratios in the egg or nidamental glands of squid and gonads of sea urchin will also be useful for risk assessment of mercury in seafood. PMID:27432235

  14. Vapor-modulated heat pipe report. Flight data analysis and further development of variable-conductance heat pipes. [design analysis and performance tests

    NASA Technical Reports Server (NTRS)

    Eninger, J. E.; Fleischman, G. L.; Luedke, E. E.

    1975-01-01

    The design and testing of a heat pipe for spacecraft application is presented. The application in mind calls for heat loads up to 20 watts, a set-point temperature of 294K, and a sink that varies from -220K to nearly as high as the set-point. The overall heat pipe length is 137 cm. Two basically different mechanisms of achieving variable conductance in the pipe by vapor-flow throttling were studied. In one, the thermal resistance between the heat source and sink is due to a saturation-temperature drop corresponding to the vapor-pressure drop developed across the valve. In the other, the pressure difference across the valve induces capillary groove and wick dry out in an evaporation region, and thus results in an increased thermal resistance. This mechanism was selected for fabrication and testing. The pipe is a stainless-steel/methanol two-heat-pipe system. Results are presented and discussed. Engineering drawings and specifications of the pipe are shown.

  15. Spectrophotometric studies of holmium(III) chloride-aluminum(III) chloride vapor complexes

    SciTech Connect

    Williams, C.W.; Hessler, J.P.; Peterson, E.J.

    1980-01-01

    The gas complexation reactions between LnCl/sub 3/ and Al/sub 2/Cl/sub 6/ to yield molecular species of the form LnCl/sub 3/ (Al/sub 2/Cl/sub 6/)/sub x/ have been studied for a number of years. The spectrophotometric technique has been used to deduce the thermodynamic properties of the molecular species. We have studied the HoCl/sub 3/ (Al/sub 2/Cl/sub 6/)/sub x/ system from 600 to 900/sup 0/K and at Al/sub 2/Cl/sub 6/ pressures between 1 and 7 atm. The Ho/sup 3 +/ hypersensitive transition between /sup 5/I/sub 8/ and /sup 5/G/sub 6/ at 456 nm has been used to measure the complex vapor densities as a function of pressure and temperature. A temperature-dependence of the optical absorption spectrum was observed in samples with a constant Ho/sup 3 +/ ion density. These data cannot be understood in terms of the generally used treatment of molar absorptivity, but requires the introduction of an effective oscillator strength. A temperature-dependent oscillator effect is also observed and this is interpeted as evidence for the presence of multiple species with differing oscillator strengths. The consequence of these observations for the determination of equilibrium constants for the different species will be discussed.

  16. Observation of low heat capacities for vapor-deposited glasses of indomethacin as determined by AC nanocalorimetry

    SciTech Connect

    Kearns, Kenneth L.; Whitaker, Katherine R.; Ediger, M. D.; Huth, Heiko; Schick, Christoph

    2010-07-07

    Highly stable glass films of indomethacin (IMC) with thicknesses ranging from 75 to 2900 nm were prepared by physical vapor deposition. Alternating current (AC) nanocalorimetry was used to evaluate the heat capacity and kinetic stability of the glasses as a function of thickness. Glasses deposited at a substrate temperature of 0.84T{sub g} displayed heat capacities that were approximately 19 J/(mol K) (4.5%) lower than glasses deposited at T{sub g} (315 K) or the ordinary glass prepared by cooling the liquid. This difference in heat capacity was observed over the entire thickness range and is significantly larger than the {approx}2 J/(mol K) (0.3%) difference previously observed between aged and ordinary glasses. The vapor-deposited glasses were isothermally transformed into the supercooled liquid above T{sub g}. Glasses with low heat capacities exhibited high kinetic stability. The transformation time increased by an order of magnitude as the film thickness increased from 75 to 600 nm and was independent of film thickness for the thickest films. We interpret these results to indicate that the transformation of stable glass into supercooled liquid can occur by either a surface-initiated or bulk mechanism. In these experiments, the structural relaxation time of the IMC supercooled liquid was observed to be nearly independent of sample thickness.

  17. Large-eddy Simulation of Heat and Water Vapor Transfer in CT-Based Human Airway Models

    NASA Astrophysics Data System (ADS)

    Wu, Dan; Tawhai, Merryn; Hoffman, Eric; Lin, Ching-Long

    2014-11-01

    We propose a novel imaging-based thermodynamic model to study local heat and mass transfers in the human airways. Both 3D and 1D CFD models are developed and validated. Large-eddy simulation (LES) is adopted to solve 3D incompressible Navier-Stokes equations with Boussinesq approximation along with temperature and water vapor transport equations and energy-flux based wall boundary condition. The 1D model provides initial and boundary conditions to the 3D model. The computed tomography (CT) lung images of three healthy subjects with sinusoidal waveforms and minute ventilations of 6, 15 and 30 L/min are considered. Between 1D and 3D models and between subjects, the average temperature and water vapor distributions are similar, but their regional distributions are significantly different. In particular, unlike the 1D model, the heat and water vapor transfers in the 3D model are elevated at the bifurcations during inspiration. Moreover, the correlations of Nusselt number (Nu) and Sherwood number (Sh) with local Reynolds number and airway diameter are proposed. In conclusion, use of the subject-specific lung model is essential for accurate prediction of local thermal impacts on airway epithelium. Supported in part by NIH grants R01-HL094315, U01-HL114494 and S10-RR022421.

  18. Revealing the complex conduction heat transfer mechanism of nanofluids.

    PubMed

    Sergis, A; Hardalupas, Y

    2015-12-01

    Nanofluids are two-phase mixtures consisting of small percentages of nanoparticles (sub 1-10 %vol) inside a carrier fluid. The typical size of nanoparticles is less than 100 nm. These fluids have been exhibiting experimentally a significant increase of thermal performance compared to the corresponding carrier fluids, which cannot be explained using the classical thermodynamic theory. This study deciphers the thermal heat transfer mechanism for the conductive heat transfer mode via a molecular dynamics simulation code. The current findings are the first of their kind and conflict with the proposed theories for heat transfer propagation through micron-sized slurries and pure matter. The authors provide evidence of a complex new type of heat transfer mechanism, which explains the observed abnormal heat transfer augmentation. The new mechanism appears to unite a number of popular speculations for the thermal heat transfer mechanism employed by nanofluids as predicted by the majority of the researchers of the field into a single one. The constituents of the increased diffusivity of the nanoparticle can be attributed to mismatching of the local temperature profiles between parts of the surface of the solid and the fluid resulting in increased local thermophoretic effects. These effects affect the region surrounding the solid manifesting interfacial layer phenomena (Kapitza resistance). In this region, the activity of the fluid and the interactions between the fluid and the nanoparticle are elevated. Isotropic increased nanoparticle mobility is manifested as enhanced Brownian motion and diffusion effects. PMID:26058515

  19. Revealing the complex conduction heat transfer mechanism of nanofluids

    NASA Astrophysics Data System (ADS)

    Sergis, A.; Hardalupas, Y.

    2015-06-01

    Nanofluids are two-phase mixtures consisting of small percentages of nanoparticles (sub 1-10 %vol) inside a carrier fluid. The typical size of nanoparticles is less than 100 nm. These fluids have been exhibiting experimentally a significant increase of thermal performance compared to the corresponding carrier fluids, which cannot be explained using the classical thermodynamic theory. This study deciphers the thermal heat transfer mechanism for the conductive heat transfer mode via a molecular dynamics simulation code. The current findings are the first of their kind and conflict with the proposed theories for heat transfer propagation through micron-sized slurries and pure matter. The authors provide evidence of a complex new type of heat transfer mechanism, which explains the observed abnormal heat transfer augmentation. The new mechanism appears to unite a number of popular speculations for the thermal heat transfer mechanism employed by nanofluids as predicted by the majority of the researchers of the field into a single one. The constituents of the increased diffusivity of the nanoparticle can be attributed to mismatching of the local temperature profiles between parts of the surface of the solid and the fluid resulting in increased local thermophoretic effects. These effects affect the region surrounding the solid manifesting interfacial layer phenomena (Kapitza resistance). In this region, the activity of the fluid and the interactions between the fluid and the nanoparticle are elevated. Isotropic increased nanoparticle mobility is manifested as enhanced Brownian motion and diffusion effects

  20. Effects of Vegetation and of Heat and Vapor Fluxes from Soil on Snowpack Evolution and Radiobrightness

    NASA Technical Reports Server (NTRS)

    Chung, Y. C.; England, A. W.; DeRoo, R. D.; Weininger, Etai

    2006-01-01

    The radiobrightness of a snowpack is strongly linked to the snow moisture content profile, to the point that the only operational inversion algorithms require dry snow. Forward dynamic models do not include the effects of freezing and thawing of the soil beneath the snowpack and the effect of vegetation within the snow or above the snow. To get a more realistic description of the evolution of the snowpack, we reported an addition to the Snow-Soil-Vegetation-Atmosphere- Transfer (SSVAT) model, wherein we coupled soil processes of the Land Surface Process (LSP) model with the snow model SNTHERM. In the near future we will be adding a radiobrightness prediction based on the modeled moisture, temperature and snow grain size profiles. The initial investigations with this SSVAT for a late winter and early spring snow pack indicate that soil processes warm the snowpack and the soil. Vapor diffusion needs to be considered whenever the ground is thawed. In the early spring, heat flow from the ground into a snow and a strong temperature gradient across the snow lead to thermal convection. The buried vegetation can be ignored for a late winter snow pack. The warmer surface snow temperature will affect radiobrightness since it is most sensitive to snow surface characteristics. Comparison to data shows that SSVAT provides a more realistic representation of the temperature and moisture profiles in the snowpack and its underlying soil than SNTHERM. The radiobrightness module will be optimized for the prediction of brightness when the snow is moist. The liquid water content of snow causes considerable absorption compared to dry snow, and so longer wavelengths are likely to be most revealing as to the state of a moist snowpack. For volumetric moisture contents below about 7% (the pendular regime), the water forms rings around the contact points between snow grains. Electrostatic modeling of these pendular rings shows that the absorption of these rings is significantly higher than a

  1. Sahara Heat Low Perturbations and Water Vapor in the Sahel: A Positive Feedback System

    NASA Astrophysics Data System (ADS)

    Caughman, L.; Evan, A. T.

    2013-12-01

    It is necessary to understand the drivers and feedbacks of global desertification, motivated by the increasing need to improve global food production and to sustainably manage ecosystems in the context of climate change. Climate change and land dynamics are the perturbations that are major drivers of an ecosystem shift to a ';';desertified'' state. This shift is typically sustained by positive feedbacks, which stabilize the system in the new state. This research focuses on changes in precipitation resulting from land-atmosphere interactions and changes in vegetation cover. We concentrate on the Sahel region of Africa (a strip of land that is a transitional area between the Sahara desert to the North and the rain forest to the South). It is a dry land, semi arid environment and is a bistable ecosystem that can either be in the state of 'dry' or 'wet'. After an abnormally wet/high precipitation period in the 1950s the Sahel experienced terrible droughts and desertification which peaked in the 1980s. Since then, precipitation has gradually increased and a sinusoidal model has been shown run on a multi decadal cycle. Discrepancies in the data exist, however, and although the overall cycle has been modeled well, the large inter-annual fluctuations in precipitation have yet to be sufficiently modeled or explained. This research offers new evidence as to why such a phenomenon exists and attempts to attribute this behavior to a coupled land-atmosphere feedback system, linking together changes in vegetation cover and precipitation in the Sahel. Using the model output data from a high resolution Weather Research and Forecasting (WRF) model to look at Africa and compare the difference between perturbations and the mean, this research asserts that when the surface of the Saharan Heat Low (SHL) becomes extremely hot the pressure drops substantially. Subsequently, due to the West African Monsoon system, air rushes in from high-pressure areas, and pulls monsoon precipitation

  2. Development and characterization of induction heating electrothermal vaporization (IH-ETV) sample introduction for inductively coupled plasma spectrometry

    NASA Astrophysics Data System (ADS)

    Rybak, Michael E.; Salin, Eric D.

    2001-03-01

    A general study of performance attributes was conducted for a prototypical electrothermal vaporization (ETV) sample introduction system, in which induction heating (IH) was used to facilitate the drying, pyrolysis, and vaporization of samples from long, undercut graphite cup probes in a radio-frequency (RF) induction field. In the first part of this study, experiments were carried out to determine the heating characteristics and temperature control aspects of an IH-ETV arrangement. Using a remote-sensing infrared thermocouple, it was determined that a 3/8-inch (9.53-mm) outer diameter graphite cup sample probe could be heated to a maximum temperature of 1860°C in the induction field of the IH-ETV under full forward power (1.5 kW). The IH-ETV device was found to have a rapid heating response (1/ e time-constant of 2.0±0.2 s) that was independent of the initial/final temperatures chosen. Linear temperature control was possible by regulating either the DC voltage applied to the plate or the current flowing to the grid of the RF generator oscillator tube. The second part of this work consisted of studies to establish benchmarks, such as limits of detection (LOD) with inductively coupled plasma optical emission spectrometry (ICP-OES) and transport efficiency for analyte vaporization under several x-Ar mixed gas atmospheres [where x=15% N 2, 10% O 2, HCl (sparged), or 15% SF 6 (v/v)]. In general, reproducible transient signals with evolution times of 5-15 s were seen for the vaporization of most elements studied, with peak area intensity and reproducibility generally being the best with SF 6-Ar. A 10-fold increase in transport efficiency was seen for refractory carbide-forming analytes (Cr, V) when vaporization was conducted in a halogenous ( x=HCl, SF 6) versus non-halogenous ( x=N 2, O 2) environment, with a two-fold improvement being observed for most other non-refractory elements (Cd, Cu, Fe, Mn, Ni, Pb, Zn). The transport of arsenic proved to be a special case

  3. GAM-HEAT: A computer code to compute heat transfer in complex enclosures

    SciTech Connect

    Cooper, R.E.; Taylor, J.R.

    1992-12-01

    This report discusses the GAM[underscore]HEAT code which was developed for heat transfer analyses associated with postulated Double Ended Guilliotine Break Loss Of Coolant Accidents (DEGB LOCA) resulting in a drained reactor vessel. In these analyses the gamma radiation resulting from fission product decay constitutes the primary source of energy as a function of time. This energy is deposited into the various reactor components and is re-radiated as thermal energy. The code accounts for all radiant heat exchanges within and leaving the reactor enclosure. The SRS reactors constitute complex radiant exchange enclosures since there are many assemblies of various types within the primary enclosure and most of the assemblies themselves constitute enclosures. GAM-HEAT accounts for this complexity by processing externally generated view factors and connectivity matrices as discussed below, and also accounts for convective, conductive, and advective heat exchanges. The code is structured such that it is applicable for many situations involving heat exchange between surfaces within a radiatively passive medium.

  4. GAM-HEAT: A computer code to compute heat transfer in complex enclosures. Revision 2

    SciTech Connect

    Cooper, R.E.; Taylor, J.R.

    1992-12-01

    This report discusses the GAM{underscore}HEAT code which was developed for heat transfer analyses associated with postulated Double Ended Guilliotine Break Loss Of Coolant Accidents (DEGB LOCA) resulting in a drained reactor vessel. In these analyses the gamma radiation resulting from fission product decay constitutes the primary source of energy as a function of time. This energy is deposited into the various reactor components and is re-radiated as thermal energy. The code accounts for all radiant heat exchanges within and leaving the reactor enclosure. The SRS reactors constitute complex radiant exchange enclosures since there are many assemblies of various types within the primary enclosure and most of the assemblies themselves constitute enclosures. GAM-HEAT accounts for this complexity by processing externally generated view factors and connectivity matrices as discussed below, and also accounts for convective, conductive, and advective heat exchanges. The code is structured such that it is applicable for many situations involving heat exchange between surfaces within a radiatively passive medium.

  5. GAM-HEAT: A computer code to compute heat transfer in complex enclosures

    NASA Astrophysics Data System (ADS)

    Cooper, R. E.; Taylor, J. R.

    1992-12-01

    This report discusses the GAM-HEAT code which was developed for heat transfer analyses associated with postulated Double Ended Guillotine Break Loss Of Coolant Accidents (DEGB LOCA) resulting in a drained reactor vessel. In these analyses the gamma radiation resulting from fission product decay constitutes the primary source of energy as a function of time. This energy is deposited into the various reactor components and is re-radiated as thermal energy. The code accounts for all radiant heat exchanges within and leaving the reactor enclosure. The SRS reactors constitute complex radiant exchange enclosures since there are many assemblies of various types within the primary enclosure and most of the assemblies themselves constitute enclosures. GAM-HEAT accounts for this complexity by processing externally generated view factors and connectivity matrices as discussed below, and also accounts for convective, conductive, and advective heat exchanges. The code is structured such that it is applicable for many situations involving heat exchange between surfaces within a radiatively passive medium.

  6. A novel pre-oxidation method for elemental mercury removal utilizing a complex vaporized absorbent.

    PubMed

    Zhao, Yi; Hao, Runlong; Guo, Qing

    2014-09-15

    A novel semi-dry integrative method for elemental mercury (Hg(0)) removal has been proposed in this paper, in which Hg(0) was initially pre-oxidized by a vaporized liquid-phase complex absorbent (LCA) composed of a Fenton reagent, peracetic acid (CH3COOOH) and sodium chloride (NaCl), after which Hg(2+) was absorbed by the resultant Ca(OH)2. The experimental results indicated that CH3COOOH and NaCl were the best additives for Hg(0) oxidation. Among the influencing factors, the pH of the LCA and the adding rate of the LCA significantly affected the Hg(0) removal. The coexisting gases, SO2 and NO, were characterized as either increasing or inhibiting in the removal process, depending on their concentrations. Under optimal reaction conditions, the efficiency for the single removal of Hg(0) was 91%. Under identical conditions, the efficiencies of the simultaneous removal of SO2, NO and Hg(0) were 100%, 79.5% and 80.4%, respectively. Finally, the reaction mechanism for the simultaneous removal of SO2, NO and Hg(0) was proposed based on the characteristics of the removal products as determined by X-ray diffraction (XRD), atomic fluorescence spectrometry (AFS), the analysis of the electrode potentials, and through data from related research references. PMID:25146096

  7. GAM-HEAT -- a computer code to compute heat transfer in complex enclosures. Revision 1

    SciTech Connect

    Cooper, R.E.; Taylor, J.R.; Kielpinski, A.L.; Steimke, J.L.

    1991-02-01

    The GAM-HEAT code was developed for heat transfer analyses associated with postulated Double Ended Guillotine Break Loss Of Coolant Accidents (DEGB LOCA) resulting in a drained reactor vessel. In these analyses the gamma radiation resulting from fission product decay constitutes the primary source of energy as a function of time. This energy is deposited into the various reactor components and is re- radiated as thermal energy. The code accounts for all radiant heat exchanges within and leaving the reactor enclosure. The SRS reactors constitute complex radiant exchange enclosures since there are many assemblies of various types within the primary enclosure and most of the assemblies themselves constitute enclosures. GAM-HEAT accounts for this complexity by processing externally generated view factors and connectivity matrices, and also accounts for convective, conductive, and advective heat exchanges. The code is applicable for many situations involving heat exchange between surfaces within a radiatively passive medium. The GAM-HEAT code has been exercised extensively for computing transient temperatures in SRS reactors with specific charges and control components. Results from these computations have been used to establish the need for and to evaluate hardware modifications designed to mitigate results of postulated accident scenarios, and to assist in the specification of safe reactor operating power limits. The code utilizes temperature dependence on material properties. The efficiency of the code has been enhanced by the use of an iterative equation solver. Verification of the code to date consists of comparisons with parallel efforts at Los Alamos National Laboratory and with similar efforts at Westinghouse Science and Technology Center in Pittsburgh, PA, and benchmarked using problems with known analytical or iterated solutions. All comparisons and tests yield results that indicate the GAM-HEAT code performs as intended.

  8. Operation characteristic of a heat pump of mechanical vapor recompression propelled by fans and its performance analysis applied to waste-water treatment

    NASA Astrophysics Data System (ADS)

    Weike, Pang; Wenju, Lin; Qilin, Pan; Wenye, Lin; Qunte, Dai; Luwei, Yang; Zhentao, Zhang

    2014-01-01

    In this paper, a set of heat pump (called as Mechanical Vapor Recompression, MVR) propelled by a centrifugal fan is tested and it shows some special characteristic when it works together with a falling film evaporator. Firstly, an analysis of the fan's suction and discharge parameters at stable state, such as its pressure and temperature, indicates that a phenomenon of wet compression is probably to appear during vapor compression. As a result, superheat after saturated vapor is compressed is eliminated, which reduces discharge temperature of the system. It is because drops boil away and absorb the super heat into their latent heat during vapor compression. Meanwhile, drops in the suction vapor add to the compressed vapor, which increase the given heat of the MVR heat pump. Next, assistant electric heat could adjust and keep steady of the operating pressure and temperature of an MVR heat pump. With the evaporation temperature up to be high, heat balance is broken and supplement heat needs to increase. Thirdly, the performance of an MVR heat pump is affect by the balance of falling film and evaporation that has an effect on heat transfer. Then, two parameters standing for the performance are measured as it runs in practical condition. The two important parameters are consumptive electricity power and productive water capacity. According to theoretical work in ideal condition by calculation and fan's input power by measure as running, adiabatic efficiency (ηad) of a centrifugal fan is calculated when it is applied in a heat pump of MVR. Following, based on ηad, practical SMER and COP of an MVR heat pump are discovered to be correlative with it. Finally, in dependence on productive water in theory and in practice, displacement efficiency (ηv) of centrifugal fans is obtained when compressing vapor, and so provide some references of matching a fan for an MVR heat pump. On the other hand, it is helpful to research and develop MVR heat pumps, and also to check

  9. Stimulated Raman scattering in lead vapor heat pipe for tunable and narrow-linewidth XeCl excimer laser

    SciTech Connect

    Rieger, H.

    1989-05-01

    Narrow-linewidth and high-efficiency conversion of stimulated Raman scattering (SRS) in a lead vapor heat pipe was observed using a narrow-linewidth and injection-locked XeCl excimer laser system as the pump source. The XeCl laser was continuously tuned over its entire B-X gain curve, from the (0-0) transition to the (0-3) transition, giving it a range of 0.8 nm (307.65-308.45 nm). The laser linewidth was narrowed down to 0.002 A (0.02 cm/sup -1/). The output energy was 310 mJ/pulse, with a repetition rate up to 50 pps and good beam quality. A lead vapor heat pipe operating at 1225/sup 0/C was used as a single-pass stimulated Raman converter, shifting the radiation from 308 to 459 nm. Photon conversion efficiency as high as 80 percent was achieved, using a pump linewidth of 0.01 A.

  10. Micrometeorological observations of carbon, water vapor and heat exchanges on the California Academy of Sciences' living roof using eddy covariance

    NASA Astrophysics Data System (ADS)

    Lavender, S.; Oliphant, A. J.; Thorp, R.

    2014-12-01

    Living roofs have very different surface energy, water and carbon budgets than conventional roofs. Since roofs cover approximately one third of the planimetric surface area of cities, they are a significant driver of the urban boundary layer. Living roofs have been thought to be beneficial for reducing the urban heat island through increased latent heat exchange, uptake of atmospheric carbon dioxide and storage in soil and plant matter, building energy conservation through soil heat storage and latent heat fluxes and reduction in runoff. Here we present evidence of some of these through ongoing observations of surface energy, water and carbon budget estimates for the extensive living roof of the California Academy of Sciences building in Golden Gate Park, San Francisco, California. Micrometeorological measurements including the eddy covariance approach are used to estimate CO2, water vapor and both ground and atmospheric heat fluxes. The California Academy's roof encompasses an area of 18,000 m2. Vegetation surveys were conducted in the spring; beach strawberry (Fragaria chiloensis) and California bentgrass (Agrostis) were found to dominate the project footprint out of the 26 species observed. Eddy covariance measurements are made about one meter above the 10-20 cm tall vegetation on the downwind side of the building. Approximately 50% of data are rejected due to less than 80% of the flux source area being contained in the roof or due to low friction velocity. Nevertheless, we are able to develop robust diurnal ensemble fluxes, and will present data from a nine month period. During summer, the roof acted as a carbon sink of approximately 1.5 gC m-2 d-1. Turbulent heat fluxes were dominated by sensible heat flux with a mean Bowen ratio of approximately 1.5 and daily evapotranspiration rates of about 1.8 mm d-1. The role of seasonality and meteorology on surface microclimate characteristics will also be discussed.

  11. The mechanical design of a vapor compressor for a heat pump to be used in space

    NASA Technical Reports Server (NTRS)

    Berner, F.; Oesch, H.; Goetz, K.; Savage, C. J.

    1982-01-01

    A heat pump developed for use in Spacelab as a stand-alone refrigeration unit as well as within a fluid loop system is discussed. It will provide an active thermal control for payloads. Specifications for the heat pump were established: (1) heat removal rates at the source; (2) heat source temperatures from room temperature; (3) heat-sink fluid temperatures at condenser inlet; and (4) minimum power consumption. A reversed Carnot cycle heat pump using Freon 12 as working fluid incorporating a one-cylinder reciprocating compressor was selected. The maximum crankshaft speed was fixed relatively high at 100 rpm. The specified cooling rates then made it necessary to select a cylinder volume of 10 cu cm, which was obtained with a bore of 40 mm and a stroke of 8 mm.

  12. The mechanical design of a vapor compressor for a heat pump to be used in space

    NASA Astrophysics Data System (ADS)

    Berner, F.; Oesch, H.; Goetz, K.; Savage, C. J.

    1982-05-01

    A heat pump developed for use in Spacelab as a stand-alone refrigeration unit as well as within a fluid loop system is discussed. It will provide an active thermal control for payloads. Specifications for the heat pump were established: (1) heat removal rates at the source; (2) heat source temperatures from room temperature; (3) heat-sink fluid temperatures at condenser inlet; and (4) minimum power consumption. A reversed Carnot cycle heat pump using Freon 12 as working fluid incorporating a one-cylinder reciprocating compressor was selected. The maximum crankshaft speed was fixed relatively high at 100 rpm. The specified cooling rates then made it necessary to select a cylinder volume of 10 cu cm, which was obtained with a bore of 40 mm and a stroke of 8 mm.

  13. Vapor- and mechanical-grinding-triggered color and luminescence switches for bis(σ-fluorophenylacetylide) platinum(II) complexes.

    PubMed

    Ni, Jun; Zhang, Xu; Wu, Yu-Hui; Zhang, Li-Yi; Chen, Zhong-Ning

    2011-01-24

    Square-planar bis(σ-fluorophenylacetylide) platinum(II) complexes [Pt(Me(3)SiC≡CbpyC≡C-SiMe(3))(C≡CC(6)H(4)F)(2)] (C≡CC(6)H(4)F-2 for 2, C≡CC(6)H(4)F-3 for 3, and C≡CC(6)H(4)F-4 for 4; Me(3)SiC≡CbpyC≡CSiMe(3)=5,5'-bis(trimethylsilylethynyl)-2,2'-bipyridine) were prepared and were characterized by spectroscopic and luminescence studies, and X-ray crystallography. The color and luminescence of crystalline complex 3 is specifically sensitive to CHCl(3) vapor to afford 140-180 nm of luminescence vapochromic redshift, which is useful for specific detection of CHCl(3) vapor. Complex 4 displays selective luminescence vapochromic properties to CH(2)Cl(2) and CHCl(3) vapors with a luminescence vapochromic shift response of ca. 150-200 nm. Interestingly, complexes 2-4 exhibit reversible, and naked-eye perceivable, mechanical stimuli-responsive color and luminescence changes. When solid species 2-4 are crushed gently or ground, the crystalline state is converted to an amorphous phase. Meanwhile, bright yellow-orange luminescence in the crystalline species is converted to dark red under UV light irradiation with 100-160 nm of mechanochromic shift response. A vapochromic or mechanochromic cycle was monitored by dynamic variations in emission spectra and X-ray diffraction (XRD) patterns. The halohydrocarbon vapor- or mechanical-grinding-triggered color and luminescence switches are most likely correlated to a shorted intermolecular Pt-Pt distance as that revealed in vapochromic species 4·0.5 CH(2)Cl(2) by X-ray crystallography, thus leading to an increased contribution from intermolecular Pt-Pt interaction as demonstrated by DTF computational studies. PMID:21243683

  14. User's manual for the TRW gaspipe 2 program: A vapor-gas front analysis program for heat pipes containing non-condensible gas

    NASA Technical Reports Server (NTRS)

    Edwards, D. K.; Fleischman, G. L.; Marcus, B. D.

    1973-01-01

    A digital computer program for design and analysis of heat pipes which contain non-condensible gases, either for temperature control or to aid in start-up from the frozen state, is presented. Some of the calculations which are possible with the program are: (1) wall temperature profile along a gas-loaded heat pipe, (2) amount of gas loading necessary to obtain desired evaporator temperature at a desired heat load, (3) heat load versus evaporator temperature for a fixed amount of gas in the pipe, and (4) heat and mass transfer along the pipe, including the vapor-gas front region.

  15. Comparison of measured and modeled radiation, heat and water vapor fluxes: FIFE pilot study

    NASA Technical Reports Server (NTRS)

    Blad, Blaine L.; Hubbard, Kenneth G.; Verma, Shashi B.; Starks, Patrick; Norman, John M.; Walter-Shea, Elizabeth

    1987-01-01

    The feasibility of using radio frequency receivers to collect data from automated weather stations to model fluxes of latent heat, sensible heat, and radiation using routine weather data collected by automated weather stations was tested and the estimated fluxes were compared with fluxes measured over wheat. The model Cupid was used to model the fluxes. Two or more automated weather stations, interrogated by radio frequency and other means, were utilized to examine some of the climatic variability of the First ISLSCP (International Satellite Land-Surface Climatology Project) Field Experiment (FIFE) site, to measure and model reflected and emitted radiation streams from various locations at the site and to compare modeled latent and sensible heat fluxes with measured values. Some bidirectional reflected and emitted radiation data were collected from 23 locations throughout the FIFE site. Analysis of these data along with analysis of the measured sensible and latent heat fluxes is just beginning.

  16. Comparison of measured and modeled radiation, heat and water vapor fluxes: FIFE pilot study

    NASA Technical Reports Server (NTRS)

    Blad, Blaine L.; Verma, Shashi B.; Hubbard, Kenneth G.; Starks, Patrick; Hays, Cynthia; Norman, John M.; Waltershea, Elizabeth

    1988-01-01

    The primary objectives of the 1985 study were to test the feasibility of using radio frequency receivers to collect data from automated weather stations and to evaluate the use of the data collected by the automated weather stations for modeling the fluxes of latent heat, sensible heat, and radiation over wheat. The model Cupid was used to calculate these fluxes which were compared with fluxes of these entities measured using micrometeorological techniques. The primary objectives of the 1986 study were to measure and model reflected and emitted radiation streams at a few locations within the First International Satellite Land-Surface Climatology Project Field Experiment (FIFE) site and to compare modeled and measured latent heat and sensible heat fluxes from the prairie vegetation.

  17. An analysis of the vaporization of volatile organic contaminants from porous media by conductive heating

    SciTech Connect

    Fan, Y.H.; Udell, K.S.

    1995-12-31

    A one-dimensional analytical model is developed for the vaporization of a single hydrocarbon contaminant, during subsurface remediation using steam injection, in the low permeability zones in the presence of a liquid water phase. The energy equation is solved to give temperature distributions in the two regions separated by the propagating evaporation front in terms of a defined similarity variable. Darcy`s law is then applied to predict the pressure distribution in the region between the evaporation front and the top surface in contact with the steam flowing in the high permeability zones of the subsurface. It is found that the length scale associated with the medium cleanup is proportional to the square root of the time scale and that the temperature at the evaporation front has the largest effect on the front propagation behavior. For relatively high permeability porous media, the temperature at the evaporation front is significantly lower than the normal boiling point of the hydrocarbon phase. This phenomenon is due to a convective flux of hydrocarbon and water vapor from the evaporation front caused by local total gas pressures exceeding the free stream steam pressure. The temperature at the evaporation front increases with decreasing medium permeability and increasing liquid hydrocarbon saturations. Iterative procedures are outlined to obtain the temperature and pressure distributions, evaporation front propagation behavior, and mass removal rates. The analytical solution is shown to be in good agreement with numerical simulation conducted using a validated simulator.

  18. Water injection into vapor- and liquid-dominated reservoirs: Modeling of heat transfer and mass transport

    SciTech Connect

    Pruess, K.; Oldenburg, C.; Moridis, G.; Finsterle, S.

    1997-12-31

    This paper summarizes recent advances in methods for simulating water and tracer injection, and presents illustrative applications to liquid- and vapor-dominated geothermal reservoirs. High-resolution simulations of water injection into heterogeneous, vertical fractures in superheated vapor zones were performed. Injected water was found to move in dendritic patterns, and to experience stronger lateral flow effects than predicted from homogeneous medium models. Higher-order differencing methods were applied to modeling water and tracer injection into liquid-dominated systems. Conventional upstream weighting techniques were shown to be adequate for predicting the migration of thermal fronts, while higher-order methods give far better accuracy for tracer transport. A new fluid property module for the TOUGH2 simulator is described which allows a more accurate description of geofluids, and includes mineral dissolution and precipitation effects with associated porosity and permeability change. Comparisons between numerical simulation predictions and data for laboratory and field injection experiments are summarized. Enhanced simulation capabilities include a new linear solver package for TOUGH2, and inverse modeling techniques for automatic history matching and optimization.

  19. Heat flow in vapor dominated areas of the Yellowstone Plateau volcanic field: implications for the thermal budget of the Yellowstone Caldera

    USGS Publications Warehouse

    Hurwitz, Shaul; Harris, Robert; Werner, Cynthia Anne; Murphy, Fred

    2012-01-01

    Characterizing the vigor of magmatic activity in Yellowstone requires knowledge of the mechanisms and rates of heat transport between magma and the ground surface. We present results from a heat flow study in two vapor dominated, acid-sulfate thermal areas in the Yellowstone Caldera, the 0.11 km2 Obsidian Pool Thermal Area (OPTA) and the 0.25 km2 Solfatara Plateau Thermal Area (SPTA). Conductive heat flux through a low permeability layer capping large vapor reservoirs is calculated from soil temperature measurements at >600 locations and from laboratory measurements of soil properties. The conductive heat output is 3.6 ± 0.4 MW and 7.5 ± 0.4 MW from the OPTA and the SPTA, respectively. The advective heat output from soils is 1.3 ± 0.3 MW and 1.2 ± 0.3 MW from the OPTA and the SPTA, respectively and the heat output from thermal pools in the OPTA is 6.8 ± 1.4 MW. These estimates result in a total heat output of 11.8 ± 1.4 MW and 8.8 ± 0.4 MW from OPTA and SPTA, respectively. Focused zones of high heat flux in both thermal areas are roughly aligned with regional faults suggesting that faults in both areas serve as conduits for the rising acid vapor. Extrapolation of the average heat flux from the OPTA (103 ± 2 W·m−2) and SPTA (35 ± 3 W·m−2) to the ~35 km2 of vapor dominated areas in Yellowstone yields 3.6 and 1.2 GW, respectively, which is less than the total heat output transported by steam from the Yellowstone Caldera as estimated by the chloride inventory method (4.0 to 8.0 GW).

  20. Heat flow in vapor dominated areas of the Yellowstone Plateau Volcanic Field: Implications for the thermal budget of the Yellowstone Caldera

    NASA Astrophysics Data System (ADS)

    Hurwitz, Shaul; Harris, Robert N.; Werner, Cynthia A.; Murphy, Fred

    2012-10-01

    Characterizing the vigor of magmatic activity in Yellowstone requires knowledge of the mechanisms and rates of heat transport between magma and the ground surface. We present results from a heat flow study in two vapor dominated, acid-sulfate thermal areas in the Yellowstone Caldera, the 0.11 km2 Obsidian Pool Thermal Area (OPTA) and the 0.25 km2 Solfatara Plateau Thermal Area (SPTA). Conductive heat flux through a low permeability layer capping large vapor reservoirs is calculated from soil temperature measurements at >600 locations and from laboratory measurements of soil properties. The conductive heat output is 3.6 ± 0.4 MW and 7.5 ± 0.4 MW from the OPTA and the SPTA, respectively. The advective heat output from soils is 1.3 ± 0.3 MW and 1.2 ± 0.3 MW from the OPTA and the SPTA, respectively and the heat output from thermal pools in the OPTA is 6.8 ± 1.4 MW. These estimates result in a total heat output of 11.8 ± 1.4 MW and 8.8 ± 0.4 MW from OPTA and SPTA, respectively. Focused zones of high heat flux in both thermal areas are roughly aligned with regional faults suggesting that faults in both areas serve as conduits for the rising acid vapor. Extrapolation of the average heat flux from the OPTA (103 ± 2 W·m-2) and SPTA (35 ± 3 W·m-2) to the ˜35 km2 of vapor dominated areas in Yellowstone yields 3.6 and 1.2 GW, respectively, which is less than the total heat output transported by steam from the Yellowstone Caldera as estimated by the chloride inventory method (4.0 to 8.0 GW).

  1. Efficiency of vapor compression heat pumps based on non-azeotropic refrigerant mixtures

    NASA Astrophysics Data System (ADS)

    Mezentseva, N. N.

    2011-06-01

    The work presents the results of cycle computation for vapor compression pumps based on ozone-safe mixed refrigerants. Non-azeotropic binary refrugerants R32/R152a (30/70) and R32/R134a (30/70) were considere as working substances. Properties of non-azeotropic refrigerants were calculated according to the additivity method of thermodynamic functions and method of Lemmon and Jacobsen. Deviations in the values of thermophysical properties obtained with two methods have been determined. It is shown that at the use of nonazeotropic mixture R32/R152a (30/70), energy conversion ratio increases by 2.2-3.6 % compared with the results for R32/R134a (30/70) at temperature difference between the processes of boiling and condensation from 28 to 53 °C.

  2. Performance Analysis of Stirling Engine-Driven Vapor Compression Heat Pump System

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru

    Stirling engine-driven vapor compression systems have many unique advantages including higher thermal efficiencies, preferable exhaust gas characteristics, multi-fuel usage, and low noise and vibration which can play an important role in alleviating environmental and energy problems. This paper introduces a design method for the systems based on reliable mathematical methods for Stirling and Rankin cycles using reliable thermophysical information for refrigerants. The model deals with a combination of a kinematic Stirling engine and a scroll compressor. Some experimental coefficients are used to formulate the model. The obtained results show the performance behavior in detail. The measured performance of the actual system coincides with the calculated results. Furthermore, the calculated results clarify the performance using alternative refrigerants for R-22.

  3. Relationship between 578-nm (copper vapor) laser beam geometry and heat distribution within biological tissues

    NASA Astrophysics Data System (ADS)

    Ilyasov, Ildar K.; Prikhodko, Constantin V.; Nevorotin, Alexey J.

    1995-01-01

    Monte Carlo (MC) simulation model and the thermoindicative tissue phantom were applied for evaluation of a depth of tissue necrosis (DTN) as a result of quasi-cw copper vapor laser (578 nm) irradiation. It has been shown that incident light focusing angle is essential for DTN. In particular, there was a significant rise in DTN parallel to elevation of this angle up to +20 degree(s)C and +5 degree(s)C for both the MC simulation and tissue phantom models, respectively, with no further increase in the necrosis depth above these angles. It is to be noted that the relationship between focusing angles and DTN values was apparently stronger for the real target compared to the MC-derived hypothetical one. To what extent these date are applicable for medical practice can be evaluated in animal models which would simulate laser-assisted therapy for PWS or related dermatologic lesions with converged 578 nm laser beams.

  4. Research Strategy for Modeling the Complexities of Turbine Heat Transfer

    NASA Technical Reports Server (NTRS)

    Simoneau, Robert J.

    1996-01-01

    The subject of this paper is a NASA research program, known as the Coolant Flow Management Program, which focuses on the interaction between the internal coolant channel and the external film cooling of a turbine blade and/or vane in an aircraft gas turbine engine. The turbine gas path is really a very complex flow field. The combination of strong pressure gradients, abrupt geometry changes and intersecting surfaces, viscous forces, rotation, and unsteady blade/vane interactions all combine to offer a formidable challenge. To this, in the high pressure turbine, we add the necessity of film cooling. The ultimate goal of the turbine designer is to maintain or increase the high level of turbine performance and at the same time reduce the amount of coolant flow needed to achieve this end. Simply stated, coolant flow is a penalty on the cycle and reduces engine thermal efficiency. Accordingly, understanding the flow field and heat transfer associated with the coolant flow is a priority goal. It is important to understand both the film cooling and the internal coolant flow, particularly their interaction. Thus, the motivation for the Coolant Flow Management Program. The paper will begin with a brief discussion of the management and research strategy, will then proceed to discuss the current attack from the internal coolant side, and will conclude by looking at the film cooling effort - at all times keeping sight of the primary goal the interaction between the two. One of the themes of this paper is that complex heat transfer problems of this nature cannot be attacked by single researchers or even groups of researchers, each working alone. It truly needs the combined efforts of a well-coordinated team to make an impact. It is important to note that this is a government/industry/university team effort.

  5. Vapor pressures and calculated heats of vaporization of concentrated nitric acid solutions in the composition range 71 to 89 percent nitrogen dioxide, 1 to 10 percent water, and in the temperature range 10 to 60 degrees C

    NASA Technical Reports Server (NTRS)

    Mckeown, A B; Belles, Frank E

    1954-01-01

    Total vapor pressures were measured for 16 acid mixtures of the ternary system nitric acid, nitrogen dioxide, and water within the temperature range 10 degrees to 60 degrees Celsius, and with the composition range 71 to 89 weight percent nitric acid, 7 to 20 weight percent nitrogen dioxide, and 1 to 10 weight percent water. Heats of vaporization were calculated from the vapor pressure measurements for each sample for the temperatures 25, 40, and 60 degrees Celsius. The ullage of the apparatus used for the measurements was 0.46. Ternary diagrams showing isobars as a function of composition of the system were constructed from experimental and interpolated data for the temperatures 25, 40, 45, and 60 degrees C and are presented herein.

  6. Calibrated vapor generator source

    DOEpatents

    Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

    1995-09-26

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

  7. Calibrated vapor generator source

    DOEpatents

    Davies, John P.; Larson, Ronald A.; Goodrich, Lorenzo D.; Hall, Harold J.; Stoddard, Billy D.; Davis, Sean G.; Kaser, Timothy G.; Conrad, Frank J.

    1995-01-01

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet.

  8. Summary report of results of the vapor vacuum extraction test at the RWMC (Radioactive Waste Management Complex)

    SciTech Connect

    Sisson, J.B.; Ellis, G.C.

    1990-11-01

    A test scale vapor vacuum extraction system was operated for four months at the Radioactive Waste Management Complex. The extraction system removed more than 65 million ft{sup 3} of soil gas containing 429 Kg of Carbon Tetrachloride and 164 Kg of TCE. Hydraulic properties of the basalts were estimated and input into a numerical transport model. The model simulations indicated that a rubble zone at 190 ft dominated the soil gas flow pattern. Refined calibration of transport models will allow enhancement of the production system design to increase operational efficiency and effectiveness. 7 refs., 18 figs.

  9. A season of heat, water vapor, total hydrocarbon, and ozone fluxes at a subarctic fen

    NASA Technical Reports Server (NTRS)

    Moore, Kathleen E.; Fitzjarrald, David R.; Wofsy, Steven C.; Daube, Bruce C.; Munger, J. William; Bakwin, Peter S.; Crill, Patrick

    1994-01-01

    High-latitude environments are thought to play several critical roles in the global balance of radiatively active trace gases. Adequate documentation of the source and sink strengths for trace gases requires long time series of detailed measurements, including heat and moisture budgets. A fen near Schefferville, Quebec, was instrumented during the summer of 1990 for the measurement of the surface energy, radiation, and moisture balances as well as for eddy correlation estimates of ozone and methane flux. Despite the limited fetch at this site, analysis of the tower flux 'footprint' indicates that at least 80% of the flux observed originates from sources within the fen. Sensible heat fluxes averaged 25% of the daytime net radiation at the site, while the latent heat flux, determined from the energy balance, was 63%; the Bowen ratio varied from 0.2 to 0.8 from day to day, without a seasonal trend to the variation. The competing effects of rooted macrophyte development (with concomitant effects on roughness and transpiration) and the normal shift in synoptic pattern around day 200 to warm, dry conditions results in a lack of net seasonal effect on the energy partitioning. Over the period from days 170 to 230, the evaporation (167 mm) was double the rainfall, while the decline in water level was 107 mm, leaving a net runoff of 0.44 mm/d. The total hydrocarbon flux was 75-120 mg m(exp -2)/d, following a diurnal pattern similar to heat or moisture flux, while the daytime ozone flux was about -1.11 x 10(exp 11) molecules cm(exp -2)/s. A period near the end of the experiment, during week 30, produced the strongest total hydrocarbon flux, associated with warmer deep (1 m) soil temperatures, lower fen water levels, and the late summer shift in wind direction at that time. An early summer 'flush' of total hydrocarbon was not observed.

  10. The Performance Evaluation of Vapor Compression Heat Pump System Using HFC Alternative Refrigerant Mixtures

    NASA Astrophysics Data System (ADS)

    Taira, Shigeharu; Yazima, Ryuzaburo; Tarutani, Isamu; Koyama, Shigeru

    This paper deals with an experimental study on the performance evaluation of heat pump systems using HFC alternative refrigerants. The tested heat pump systems are modified from the R22 use to alternative refrigerants. Refrigerant mixtures of R410A, R407C. R32/125 and R32/134a are tested. where R410A and R407C launched into global market recently. Pure refrigerants of R22, R32, R125 and R134a are also tested. The experimental results of alternative refrigerants are evaluated in comparison with the result of R22, and the following are confirmed : (1) the performance of R32 is the highest. (2) adding R125 to R32 and R32/134a results into the deterioration of the performance, (3) the use of counter flow-like heat exchangers for a zeotropic refrigerant mixtures are effective, and (4) in case of R410A. the modification of the compressor to fit operating pressure heightens the performance. The effects of the performance of components on the COP are also analyzed based on the measured thermodynamic states at both ends of components in the system. Then, it is clarified that the most effective factor is irreversibility of compressors and the following is the pressure drop in low pressure side including the evaporator and the suction pipe.

  11. Seasonal and Diurnal Fluxes of Radiation, Heat, Water Vapor, and Carbon Dioxide over a Suburban Area.

    NASA Astrophysics Data System (ADS)

    Moriwaki, R.; Kanda, M.

    2004-11-01

    Based on 1 yr of field measurements, the diurnal, seasonal, and annual fluxes of energy and carbon dioxide (CO2) at a residential area of Tokyo, Japan, are described. The major findings are as follows. 1) The storage heat flux G in the daytime had little seasonal variation, irrespective of significant seasonal change of net all-wave radiation Rn. 2) The latent heat flux in the summer daytime was large despite the small areal fraction of natural coverage (trees and bare soil). The estimated local latent heat flux per unit natural coverage was 2 times the available energy (Rn - G), which indicates that the “oasis effect” was significant. 3) The CO2 flux was always upward throughout the year and the magnitude was larger in winter, mainly because of an increase of fossil fuel consumption. The annual total CO2 flux was 6 times the downward CO2 flux at a typical temperate deciduous forest.


  12. The role of water vapor and its associated latent heating in extreme Beaufort coastal storm surge events

    NASA Astrophysics Data System (ADS)

    Gyakum, J. R.; Small, D. L.; Atallah, E.; Liu, N.; Kuo, Y.

    2009-12-01

    During the rather limited ice-free season that typically may occur from late July through early October, the Beaufort Sea region is susceptible to extreme windstorms, many of which produce damaging storm surges to low-lying coastal communities. During the most recent years, the ice-free season has lengthened, suggesting an increased vulnerability of coastal communities to cyclogenesis-related windstorms. Therefore, our research focuses on the dynamic and thermodynamic mechanisms responsible for significant surface wind events during the ice-free season in this region. We demonstrate that these storm surge events are often associated with the generation of large-scale atmospheric circulation regomes conducive to North American droughts. Our analysis methodology includes the detailed synoptic-dynamic analysis, including numerical experiments, on a case of an especially long-lived extreme storm surge that occurred in September 1999. We utilize conventional surface and upper-air station data, along with satellite and ground-based water vapor data. We also utilize global and regional reanalysis data to document the synoptic-scale and mesoscale environments associated with the cyclogenesis events. Our numerical experiments with the Weather Research and Forecasting (WRF) model include sensitivity testing with COSMIC-derived water vapor data, and sensitivity tests to illustrate the relative roles that latent heating plays in the storm surge event, at various stages in its lifecycle. A particularly important finding of our research on the devastating September 1999 storm surge event is that a relatively rare case of explosive cyclogenesis in the Gulf of Alaska is a key player in this Beaufort storm surge. The deep-tropospheric latent heating during the explosive cyclogenesis generates a dynamic tropopause ridge. This ridge in turn induces surface ridging that contributes to the strong west-northwesterlies associated with the storm surge. This generation of the dynamic

  13. Experimental study of a constrained vapor bubble fin heat exchanger in the absence of external natural convection.

    PubMed

    Basu, Sumita; Plawsky, Joel L; Wayner, Peter C

    2004-11-01

    In preparation for a microgravity flight experiment on the International Space Station, a constrained vapor bubble fin heat exchanger (CVB) was operated both in a vacuum chamber and in air on Earth to evaluate the effect of the absence of external natural convection. The long-term objective is a general study of a high heat flux, low capillary pressure system with small viscous effects due to the relatively large 3 x 3 x 40 mm dimensions. The current CVB can be viewed as a large-scale version of a micro heat pipe with a large Bond number in the Earth environment but a small Bond number in microgravity. The walls of the CVB are quartz, to allow for image analysis of naturally occurring interference fringes that give the pressure field for liquid flow. The research is synergistic in that the study requires a microgravity environment to obtain a low Bond number and the space program needs thermal control systems, like the CVB, with a large characteristic dimension. In the absence of natural convection, operation of the CVB may be dominated by external radiative losses from its quartz surface. Therefore, an understanding of radiation from the quartz cell is required. All radiative exchange with the surroundings occurs from the outer surface of the CVB when the temperature range renders the quartz walls of the CVB optically thick (lambda > 4 microns). However, for electromagnetic radiation where lambda < 2 microns, the walls are transparent. Experimental results obtained for a cell charged with pentane are compared with those obtained for a dry cell. A numerical model was developed that successfully simulated the behavior and performance of the device observed experimentally. PMID:15644365

  14. Atomic MoS2 monolayers synthesized from a metal-organic complex by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Liu, Lina; Qiu, Hailong; Wang, Jingyi; Xu, Guanchen; Jiao, Liying

    2016-02-01

    The controllable synthesis of MoS2 monolayers is the key challenge for their practical applications. Here we report the chemical vapor deposition (CVD) growth of single layered MoS2 by utilizing a bifunctional precursor. This precursor is a metal-organic complex which supplies both Mo sources and organic seeding promoters for the efficient CVD growth of MoS2 monolayers. The successful growth of high quality MoS2 flakes indicates that the rational design of bifunctional precursors will open up a new way for the controllable CVD growth of two-dimensional (2D) transition metal dichalcogenides (TMDCs).The controllable synthesis of MoS2 monolayers is the key challenge for their practical applications. Here we report the chemical vapor deposition (CVD) growth of single layered MoS2 by utilizing a bifunctional precursor. This precursor is a metal-organic complex which supplies both Mo sources and organic seeding promoters for the efficient CVD growth of MoS2 monolayers. The successful growth of high quality MoS2 flakes indicates that the rational design of bifunctional precursors will open up a new way for the controllable CVD growth of two-dimensional (2D) transition metal dichalcogenides (TMDCs). Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09089j

  15. Volatile organometallic complexes suitable for use in chemical vapor depositions on metal oxide films

    DOEpatents

    Giolando, Dean M.

    2003-09-30

    Novel ligated compounds of tin, titanium, and zinc are useful as metal oxide CVD precursor compounds without the detriments of extreme reactivity yet maintaining the ability to produce high quality metal oxide coating by contact with heated substrates.

  16. Improved efficiency and precise temperature control of low-frequency induction-heating pure iron vapor source on ECR ion source

    SciTech Connect

    Kato, Y.; Takenaka, T.; Yano, K.; Kiriyama, R.; Kurisu, Y.; Nozaki, D.; Muramatsu, M.; Kitagawa, A.; Uchida, T.; Yoshida, Y.; Sato, F.; Iida, T.

    2012-11-06

    Multiply charged ions to be used prospectively are produced from solid pure material in an electron cyclotron resonance ion source (ECRIS). Recently a pure iron source is also required for the production of caged iron ions in the fullerene in order to control cells in vivo in bio-nano science and technology. We adopt directly heating iron rod by induction heating (IH) because it has non-contact with insulated materials which are impurity gas sources. We choose molybdenum wire for the IH coils because it doesn't need water cooling. To improve power efficiency and temperature control, we propose to the new circuit without previously using the serial and parallel dummy coils (SPD) for matching and safety. We made the circuit consisted of inductively coupled coils which are thin-flat and helix shape, and which insulates the IH power source from the evaporator. This coupling coils circuit, i.e. insulated induction heating coil transformer (IHCT), can be move mechanically. The secondary current can be adjusted precisely and continuously. Heating efficiency by using the IHCT is much higher than those of previous experiments by using the SPD, because leakage flux is decreased and matching is improved simultaneously. We are able to adjust the temperature in heating the vapor source around melting point. And then the vapor pressure can be controlled precisely by using the IHCT. We can control {+-}10K around 1500 Degree-Sign C by this method, and also recognize to controlling iron vapor flux experimentally in the extreme low pressures. Now we come into next stage of developing induction heating vapor source for materials with furthermore high temperature melting points above 2000K with the IHCT, and then apply it in our ECRIS.

  17. Macroscopic modeling of heat and water vapor transfer with phase change in dry snow based on an upscaling method: Influence of air convection

    NASA Astrophysics Data System (ADS)

    Calonne, N.; Geindreau, C.; Flin, F.

    2015-12-01

    At the microscopic scale, i.e., pore scale, dry snow metamorphism is mainly driven by the heat and water vapor transfer and the sublimation-deposition process at the ice-air interface. Up to now, the description of these phenomena at the macroscopic scale, i.e., snow layer scale, in the snowpack models has been proposed in a phenomenological way. Here we used an upscaling method, namely, the homogenization of multiple-scale expansions, to derive theoretically the macroscopic equivalent modeling of heat and vapor transfer through a snow layer from the physics at the pore scale. The physical phenomena under consideration are steady state air flow, heat transfer by conduction and convection, water vapor transfer by diffusion and convection, and phase change (sublimation and deposition). We derived three different macroscopic models depending on the intensity of the air flow considered at the pore scale, i.e., on the order of magnitude of the pore Reynolds number and the Péclet numbers: (A) pure diffusion, (B) diffusion and moderate convection (Darcy's law), and (C) strong convection (nonlinear flow). The formulation of the models includes the exact expression of the macroscopic properties (effective thermal conductivity, effective vapor diffusion coefficient, and intrinsic permeability) and of the macroscopic source terms of heat and vapor arising from the phase change at the pore scale. Such definitions can be used to compute macroscopic snow properties from 3-D descriptions of snow microstructures. Finally, we illustrated the precision and the robustness of the proposed macroscopic models through 2-D numerical simulations.

  18. Heat Transfer And Vapor Dynamics Induced By Nanosecond Laser Ablation Of Titanium Target

    SciTech Connect

    Hamadi, F.; Amara, E. H.; Mezaoui, D.

    2008-09-23

    A numerical modelling describing a pulsed nanosecond laser interaction with a titanium target is presented, resulting in the study of the plume expansion in vacuum or in background gas, using the species transport model available in Fluent computational fluid dynamics code. The heat transfers in the solid target and the molten material are modeled using an enthalpy formulation for the solid-liquid phase changing. The effect of laser fluences is investigated, and results are presented as a function of time. Moreover, the plasma or the vapour dynamics is calculated by solving a set of Navier-Stokes equations. The plasma absorption by inverse Bremsstrahlung, the ionization states and the density profiles of the Titanium ions and electrons in the plume are interactively included in the Fluent calculation process by the mean of User Defined Functions (UDFs) used in order to take into account the specificity of our problem. The ionization is computed by solving the Saha-Eggert equation assuming local thermodynamic equilibrium (LTE) conditions.

  19. Isotherms and Kinetics of Water Vapor Sorption/Desorption for Surface Films of Polyion-Surfactant Ion Complex Salts.

    PubMed

    Gustavsson, Charlotte; Piculell, Lennart

    2016-07-14

    Thin films of "complex salts" (CS = ionic surfactants with polymeric counterions) have recently been shown to respond to humidity changes in ambient air by changing their liquid crystalline structure. We here report isotherms and kinetics of water sorption/desorption for ∼10-100 μm films of alkyltrimethylammonium polyacrylate CS, measured in a dynamic gravimetric vapor sorption instrument over a 0-95% relative humidity (RH) range. The sorption per ion pair was similar to that observed for common ionomers. A kinetic model for the water exchange is presented, assuming that the "external" transport between the vapor reservoir and the film surface is rate-determining. The model predicts that the water content, after a small stepwise change of the reservoir RH, should vary exponentially with time, with a time constant proportional to both the slope of the sorption isotherm and the film thickness. These predictions were confirmed for our films over large RH ranges, and the external mass transfer coefficient in our setup was calculated from the experimental data. Expressions derived for the Biot number (ratio of characteristic times for internal and external water transport) for the considered limiting case strongly indicate that external water transport should quite generally affect, or even dominate, the measured kinetics for similarly thin hydrated films. PMID:27327628

  20. Vapor resistant arteries

    NASA Technical Reports Server (NTRS)

    Shaubach, Robert M. (Inventor); Dussinger, Peter M. (Inventor); Buchko, Matthew T. (Inventor)

    1989-01-01

    A vapor block resistant liquid artery structure for heat pipes. A solid tube artery with openings is encased in the sintered material of a heat pipe wick. The openings are limited to that side of the artery which is most remote from the heat source. The liquid in the artery can thus exit the artery through the openings and wet the sintered sheath, but vapor generated at the heat source is unlikely to move around the solid wall of the artery and reverse its direction in order to penetrate the artery through the openings. An alternate embodiment uses finer pore size wick material to resist vapor entry.

  1. In situ decontamination of spills and landfills by focussed microwave/radio frequency heating and closed-loop vapor flushing and vacuum recovery system

    SciTech Connect

    Johnson, P.C.; Otermat, A.L.; Chou, C.C.

    1991-12-31

    This patent describes a system for the in situ decontamination of a zone of contaminated soil in a spill or landfill. It comprises an injection well located outside the contaminated zone but traversing at least the entire depth of the contaminated zone; perforations in the injection well corresponding only to the thickness of the contaminated zone; means for injecting a vapor into the injection well whereby the vapor is forced through the perforations in the injection well; an extraction well traversing the contaminated zone, the well having perforations only through the thickness of the contaminated zone; means for pulling a vacuum in the extraction well whereby the vapors will be drawn from the injection well, through the contaminated zone and into the extraction well thereby flushing and cleansing contaminants from the contaminated zone; means connected to the outlet of the extraction well for treating the contaminated vapors and recycling the treated vapor to the injection well; and means for heating the surface above the contaminated zone thereby enhancing volatilization of the contaminants in the contaminated zone.

  2. Cobalt(I) Olefin Complexes: Precursors for Metal-Organic Chemical Vapor Deposition of High Purity Cobalt Metal Thin Films.

    PubMed

    Hamilton, Jeff A; Pugh, Thomas; Johnson, Andrew L; Kingsley, Andrew J; Richards, Stephen P

    2016-07-18

    We report the synthesis and characterization of a family of organometallic cobalt(I) metal precursors based around cyclopentadienyl and diene ligands. The molecular structures of the complexes cyclopentadienyl-cobalt(I) diolefin complexes are described, as determined by single-crystal X-ray diffraction analysis. Thermogravimetric analysis and thermal stability studies of the complexes highlighted the isoprene, dimethyl butadiene, and cyclohexadiene derivatives [(C5H5)Co(η(4)-CH2CHC(Me)CH2)] (1), [(C5H5)Co(η(4)-CH2C(Me)C(Me)CH2)] (2), and [(C5H5)Co(η(4)-C6H8)] (4) as possible cobalt metal organic chemical vapor deposition (MOCVD) precursors. Atmospheric pressure MOCVD was employed using precursor 1, to synthesize thin films of metallic cobalt on silicon substrates under an atmosphere (760 torr) of hydrogen (H2). Analysis of the thin films deposited at substrate temperatures of 325, 350, 375, and 400 °C, respectively, by scanning electron microscopy and atomic force microscopy reveal temperature-dependent growth features. Films grown at these temperatures are continuous, pinhole-free, and can be seen to be composed of hexagonal particles clearly visible in the electron micrograph. Powder X-ray diffraction and X-ray photoelectron spectroscopy all show the films to be highly crystalline, high-purity metallic cobalt. Raman spectroscopy was unable to detect the presence of cobalt silicides at the substrate/thin film interface. PMID:27348614

  3. The effect of water vapor in the reactor cavity in a MHTGR (Modular High Temperature Gas Cooled Reactor) on the radiation heat transfer

    SciTech Connect

    Cappiello, M.W.

    1991-01-01

    Analyses have been completed to determine the effect of the presence of water vapor in the reactor cavity in a modular high temperature gas cooled reactor on the predicted radiation heat transfer from the vessel wall to the reactor cavity cooling system. The analysis involves the radiation heat transfer between two parallel plates with an absorbing and emitting medium present. Because the absorption in the water vapor is spectrally dependent, the solution is difficult even for simple geometries. A computer code was written to solve the problem using the Monte Carlo method. The code was validated against closed form solutions, and shows excellent agreement. In the analysis of the reactor problem, the results show that the reduction in heat transfer, and the consequent increase in the vessel wall temperature, can be significant. This effect can be cast in terms of a reduction in the wall surface emissivities from 0.8 to 0.59. Because of the insulating effect of the water vapor, increasing the gap distance between the vessel wall and the cooling system will cause the vessel wall temperature to increase further. Care should be taken in the design of the facility to minimize the gap distance and keep temperature increase within allowable limits. 3 refs., 6 figs., 4 tabs.

  4. Dioxo-Fluoroalkoxide Tungsten(VI) Complexes for Growth of WOx Thin Films by Aerosol-Assisted Chemical Vapor Deposition.

    PubMed

    Bonsu, Richard O; Kim, Hankook; O'Donohue, Christopher; Korotkov, Roman Y; Abboud, Khalil A; Anderson, Timothy J; McElwee-White, Lisa

    2015-08-01

    The soluble bis(fluoroalkoxide) dioxo tungsten(VI) complexes WO2(OR)2(DME) [1, R = C(CF3)2CH3; 2, R = C(CF3)3] have been synthesized by alkoxide-chloride metathesis and evaluated as precursors for aerosol-assisted chemical vapor deposition (AACVD) of WOx. The (1)H NMR and (19)F NMR spectra of 1 and 2 are consistent with an equilibrium between the dimethoxyethane (DME) complexes 1 and 2 and the solvato complexes WO2(OR)2(CD3CN)2 [1b, R = C(CF3)2CH3; 2b, R = C(CF3)3] in acetonitrile-d3 solution. Studies of the fragmentation of 1 and 2 by mass spectrometry and thermolysis resulted in observation of DME and the corresponding alcohols, with hexafluoroisobutylene also generated from 1. DFT calculations on possible decomposition mechanisms for 1 located pathways for hydrogen abstraction by a terminal oxo to form hexafluoroisobutylene, followed by dimerization of the resulting terminal hydroxide complex and dissociation of the alcohol. AACVD using 1 occurred between 100 and 550 °C and produced both substoichiometric amorphous WOx and a polycrystalline W18O49 monoclinic phase, which exhibits 1-D preferred growth in the [010] direction. The work function (4.9-5.6 eV), mean optical transmittance (39.1-91.1%), conductivity (0.4-2.3 S/cm), and surface roughness (3.4-7.9 nm) of the WOx films are suitable for charge injection layers in organic electronics. PMID:26172992

  5. Estimation of spatially distributed latent energy flux over complex terrain using a scanning water-vapor Raman lidar

    SciTech Connect

    Cooper, D.I.; Eichinger, W.; Archuleta, J.; Cottingame, W.; Osborne, M.; Tellier, L.

    1995-09-01

    Evapotranspiration is one of the critical variables in both water and energy balance models of the hydrological system. The hydrologic system is driven by the soil-plant-atmosphere continuum, and as such is a spatially distributed process. Traditional techniques rely on point sensors to collect information that is then averaged over a region. The assumptions involved in spatially average point data is of limited value (1) because of limited sensors in the arrays, (2) the inability to extend and interpret the Measured scalars and estimated fluxes at a point over large areas in complex terrain, and (3) the limited understanding of the relationship between point measurements of spatial processes. Remote sensing technology offers the ability to collect detailed spatially distributed data. However, the Los Alamos National Laboratory`s volume-imaging, scanning water-vapor Raman lidar has been shown to be able to estimate the latent energy flux at a point. The extension of this capability to larger scales over complex terrain represents a step forward. This abstract Outlines the techniques used to estimate the spatially resolved latent energy flux. The following sections describe the site, model, data acquired, and lidar estimated latent energy ``map``.

  6. The identification of a heat-shock protein complex in chloroplasts of barley leaves.

    PubMed

    Clarke, A K; Critchley, C

    1992-12-01

    In vivo radiolabeling of chloroplast proteins in barley (Hordeum vulgare L. cv Corvette) leaves and their separation by one-dimensional electrophoresis revealed at least seven heat-shock proteins between 24 and 94 kD, of which most have not been previously identified in this C(3) species. Fractionation into stromal and thylakoid membrane components showed that all chloroplast heat-shock proteins were synthesized on cytoplasmic ribosomes, translocated into the chloroplast, and located in the stroma. Examination of stromal preparations by native (nondissociating) polyacrylamide gel electrophoresis revealed the presence of a high-molecular mass heat-shock protein complex in barley. This complex was estimated to be 250 to 265 kD in size. Dissociation by denaturing polyacrylamide gel electrophoresis revealed a single protein component, a 32-kD heat-shock protein. The synthesis of this protein and the formation of the heat-shock protein complex were dependent on functional cytoplasmic ribosomes. Immunological studies showed that the heat-shock protein complex did not contain any proteins homologous to the alpha-subunit of ribulose bisphosphate carboxylase oxygenase subunit-binding protein. Other features about the complex included the absence of nucleic acid (RNA or DNA) and its nondissociation in the presence of Mg(2+)/ATP. These results suggest that the heat-shock protein complex in barley chloroplasts is a homogeneous octamer of 32-kD subunits. PMID:16653243

  7. The Identification of a Heat-Shock Protein Complex in Chloroplasts of Barley Leaves 1

    PubMed Central

    Clarke, Adrian K.; Critchley, Christa

    1992-01-01

    In vivo radiolabeling of chloroplast proteins in barley (Hordeum vulgare L. cv Corvette) leaves and their separation by one-dimensional electrophoresis revealed at least seven heat-shock proteins between 24 and 94 kD, of which most have not been previously identified in this C3 species. Fractionation into stromal and thylakoid membrane components showed that all chloroplast heat-shock proteins were synthesized on cytoplasmic ribosomes, translocated into the chloroplast, and located in the stroma. Examination of stromal preparations by native (nondissociating) polyacrylamide gel electrophoresis revealed the presence of a high-molecular mass heat-shock protein complex in barley. This complex was estimated to be 250 to 265 kD in size. Dissociation by denaturing polyacrylamide gel electrophoresis revealed a single protein component, a 32-kD heat-shock protein. The synthesis of this protein and the formation of the heat-shock protein complex were dependent on functional cytoplasmic ribosomes. Immunological studies showed that the heat-shock protein complex did not contain any proteins homologous to the α-subunit of ribulose bisphosphate carboxylase oxygenase subunit-binding protein. Other features about the complex included the absence of nucleic acid (RNA or DNA) and its nondissociation in the presence of Mg2+/ATP. These results suggest that the heat-shock protein complex in barley chloroplasts is a homogeneous octamer of 32-kD subunits. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:16653243

  8. Metal organic chemical vapor deposition of environmental barrier coatings for the inhibition of solid deposit formation from heated jet fuel

    NASA Astrophysics Data System (ADS)

    Mohan, Arun Ram

    Solid deposit formation from jet fuel compromises the fuel handling system of an aviation turbine engine and increases the maintenance downtime of an aircraft. The deposit formation process depends upon the composition of the fuel, the nature of metal surfaces that come in contact with the heated fuel and the operating conditions of the engine. The objective of the study is to investigate the effect of substrate surfaces on the amount and nature of solid deposits in the intermediate regime where both autoxidation and pyrolysis play an important role in deposit formation. A particular focus has been directed to examining the effectiveness of barrier coatings produced by metal organic chemical vapor deposition (MOCVD) on metal surfaces for inhibiting the solid deposit formation from jet fuel degradation. In the first part of the experimental study, a commercial Jet-A sample was stressed in a flow reactor on seven different metal surfaces: AISI316, AISI 321, AISI 304, AISI 347, Inconel 600, Inconel 718, Inconel 750X and FecrAlloy. Examination of deposits by thermal and microscopic analysis shows that the solid deposit formation is influenced by the interaction of organosulfur compounds and autoxidation products with the metal surfaces. The nature of metal sulfides was predicted by Fe-Ni-S ternary phase diagram. Thermal stressing on uncoated surfaces produced coke deposits with varying degree of structural order. They are hydrogen-rich and structurally disordered deposits, spherulitic deposits, small carbon particles with relatively ordered structures and large platelets of ordered carbon structures formed by metal catalysis. In the second part of the study, environmental barrier coatings were deposited on tube surfaces to inhibit solid deposit formation from the heated fuel. A new CVD system was configured by the proper choice of components for mass flow, pressure and temperature control in the reactor. A bubbler was designed to deliver the precursor into the reactor

  9. The effect of dependence between vapor heat capacity, specific heat of evaporation-condensation of irrigating liquid and temperature on thermodynamic parameters of processes gases

    NASA Astrophysics Data System (ADS)

    Khromova, Helen; Oparina, Irene

    2014-08-01

    The results of parameters calculations of the vapor-gas flow and droplets of irrigating liquid in application to the conditions of flue gas cooling in the reactors of the soda ash workshop at "Azot" limited company, Kemerovo, are compared.

  10. Complex, multi-scale small intestinal topography replicated in cellular growth substrates fabricated via chemical vapor deposition of Parylene C.

    PubMed

    Koppes, Abigail N; Kamath, Megha; Pfluger, Courtney A; Burkey, Daniel D; Dokmeci, Mehmet; Wang, Lin; Carrier, Rebecca L

    2016-01-01

    Native small intestine possesses distinct multi-scale structures (e.g., crypts, villi) not included in traditional 2D intestinal culture models for drug delivery and regenerative medicine. The known impact of structure on cell function motivates exploration of the influence of intestinal topography on the phenotype of cultured epithelial cells, but the irregular, macro- to submicron-scale features of native intestine are challenging to precisely replicate in cellular growth substrates. Herein, we utilized chemical vapor deposition of Parylene C on decellularized porcine small intestine to create polymeric intestinal replicas containing biomimetic irregular, multi-scale structures. These replicas were used as molds for polydimethylsiloxane (PDMS) growth substrates with macro to submicron intestinal topographical features. Resultant PDMS replicas exhibit multiscale resolution including macro- to micro-scale folds, crypt and villus structures, and submicron-scale features of the underlying basement membrane. After 10 d of human epithelial colorectal cell culture on PDMS substrates, the inclusion of biomimetic topographical features enhanced alkaline phosphatase expression 2.3-fold compared to flat controls, suggesting biomimetic topography is important in induced epithelial differentiation. This work presents a facile, inexpensive method for precisely replicating complex hierarchal features of native tissue, towards a new model for regenerative medicine and drug delivery for intestinal disorders and diseases. PMID:27550930

  11. Injection plume behavior in fractured, vapor-dominated reservoirs

    SciTech Connect

    Pruess, Karsten

    1996-01-24

    We discuss fluid flow and heat transfer processes during water injection into hot, fluid-depleted vapor zones. Numerical simulations of injection plumes in fractures, modeled as two-dimensional heterogeneous porous media, indicate complex behavior. Under certain conditions it is possible to make detailed quantitative predictions of vaporization behavior. However, when effects of reservoir heterogeneity are dominant it will only be possible to predict the behavior of injection plumes in general terms.

  12. Vapor-controlled linkage isomerization of a vapochromic bis(thiocyanato)platinum(II) complex: new external stimuli to control isomerization behavior.

    PubMed

    Kobayashi, Atsushi; Fukuzawa, Yuki; Chang, Ho-Chol; Kato, Masako

    2012-07-16

    We synthesized a novel Pt(II)-diimine complex with a typical ambidentate thiocyanato ligand, [Pt(thiocyanato)(2)(H(2)dcbpy)] (1; H(2)dcbpy =4,4'-dicarboxy-2,2'-bipyridine), and found that the complex 1 exhibits unique linkage isomerizations with drastic color and luminescence changes driven by exposure to volatile organic chemical (VOC) vapors in the solid state. Reaction between [PtCl(2)(H(2)dcbpy)] and KSCN in aqueous solution at 0 °C enabled successful isolation of an isomer with the S-coordinated thiocyanato ligand, [Pt(SCN)(2)(H(2)dcbpy)] (1SS·H(2)O), as a nonluminescent orange solid. Interestingly, 1SS·H(2)O was isomerized completely to one isomer with the N-coordinated isothiocyanato ligand, [Pt(NCS)(2)(H(2)dcbpy)] (1NN·3DMF) by exposure to DMF vapor, and this isomerization was accompanied by significant color and luminescence changes from nonluminescent orange to luminescent red. IR spectroscopy and thermogravimetric analysis revealed that adsorption of the DMF vapor and transformation of the hydrogen-bonded structure both played important roles in this vapor-induced linkage isomerization. Another isomer containing both S- and N-coordinated thiocyanato ligands, [Pt(SCN)(NCS)(H(2)dcbpy)] (1SN), was obtained as a nonluminescent yellow solid simply by exposure of 1SS·H(2)O to acetone vapor at room temperature, and about 80% of 1SS·H(2)O was found to be converted to 1SN. In the solution state, each isomer changed gradually to an isomeric mixture, but pure 1SS was regenerated by UV light irradiation (λ(irr.) = 300 nm) of an MeOH solution of the mixture. In the crystal structure of 1SN, the complex molecules were hydrogen-bonded to each other through the carboxyl groups of the H(2)dcbpy ligand and the N site of the thiocyanato ligand, whereas the 1NN molecules in the 1NN·4DMF crystal were hydrogen-bonded to the solvated DMF molecules. Competition of the hydrogen-bonding ability among the carboxyl groups of the H(2)dcbpy ligand, N and S atoms of the

  13. Means and method for vapor generation

    DOEpatents

    Carlson, Larry W.

    1984-01-01

    A liquid, in heat transfer contact with a surface heated to a temperature well above the vaporization temperature of the liquid, will undergo a multiphase (liquid-vapor) transformation from 0% vapor to 100% vapor. During this transition, the temperature driving force or heat flux and the coefficients of heat transfer across the fluid-solid interface, and the vapor percentage influence the type of heating of the fluid--starting as "feedwater" heating where no vapors are present, progressing to "nucleate" heating where vaporization begins and some vapors are present, and concluding with "film" heating where only vapors are present. Unstable heating between nucleate and film heating can occur, accompanied by possibly large and rapid temperature shifts in the structures. This invention provides for injecting into the region of potential unstable heating and proximate the heated surface superheated vapors in sufficient quantities operable to rapidly increase the vapor percentage of the multiphase mixture by perhaps 10-30% and thereby effectively shift the multiphase mixture beyond the unstable heating region and up to the stable film heating region.

  14. Means and method for vapor generation

    DOEpatents

    Carlson, L.W.

    A liquid, in heat transfer contact with a surface heated to a temperature well above the vaporization temperature of the liquid, will undergo a multiphase (liquid-vapor) transformation from 0% vapor to 100% vapor. During this transition, the temperature driving force or heat flux and the coefficients of heat transfer across the fluid-solid interface, and the vapor percentage influence the type of heating of the fluid - starting as feedwater heating where no vapors are present, progressing to nucleate heating where vaporization begins and some vapors are present, and concluding with film heating where only vapors are present. Unstable heating between nucleate and film heating can occur, accompanied by possibly large and rapid temperature shifts in the structures. This invention provides for injecting into the region of potential unstable heating and proximate the heated surface superheated vapors in sufficient quantities operable to rapidly increase the vapor percentage of the multiphase mixture by perhaps 10 to 30% and thereby effectively shift the multiphase mixture beyond the unstable heating region and up to the stable film heating region.

  15. Vapor pressure and evaporation rate of certain heat-resistant compounds in a vacuum at high temperatures

    NASA Technical Reports Server (NTRS)

    Bolgar, A. S.; Verkhoglyadova, T. S.; Samsonov, G. V.

    1985-01-01

    The vapor pressure and evaporation rate of borides of titanium, zirconium, and chrome; and of strontium and carbides of titanium, zirconium, and chrome, molybdenum silicide; and nitrides of titanium, niobium, and tantalum in a vacuum were studied. It is concluded that all subject compounds evaporate by molecular structures except AlB sub 12' which dissociates, losing the aluminum.

  16. Interpretation of MSL REMS data using 1D coupled heat and water vapor transport model of Mars subsurface

    NASA Astrophysics Data System (ADS)

    Gloesener, Elodie; Karatekin, Özgür; Dehant, Véronique

    2016-04-01

    MSL Rover Environmental Monitoring Station (REMS) performed high-resolution measurements of temperature and relative humidity during more than one Martian year. In this work, a 1D subsurface model is used to study water vapor exchange between the atmosphere and the subsurface at Gale crater using REMS data. The thermal model used includes several layers of varying thickness with depth and properties that can be changed to correspond to those of Martian rocks at locations studied. It also includes the transport of water vapor through porous Martian regolith and the different phases considered are vapor, ice and adsorbed H2O. The total mass flux is given by the sum of diffusive and advective transport. The role of an adsorbing regolith on water transfer as well as the range of parameters with significant effect on water transport in Martian conditions are investigated. In addition, kinetics of the adsorption process is considered to examine its influence on the water vapor exchange between the subsurface and the atmosphere.

  17. The influence of radiative heat exchange on the character of gasdynamic flows under conditions of pulsed discharge in high-pressure cesium vapor

    NASA Astrophysics Data System (ADS)

    Baksht, F. G.; Lapshin, V. F.

    2015-01-01

    The gasdynamics of pulse-periodic radiative discharge in high-pressure cesium vapor has been studied in the framework of a two-temperature multifluid model. It is established that, at a limited volume of the gas-discharge tube, the character of gasdynamic flows depends on the conditions of radiative heat exchange in discharge plasma. In cases in which the main contribution to radiative energy losses is related to a spectral region with optical thickness τ R (λ) ˜ 1, there is nonlocal radiative heat exchange in discharge plasma, which is uniformly heated over the entire tube volume and moves from the discharge axis to tube walls during the entire pulse of discharge current. Under the conditions of radiative losses determined by the spectral region where τ R (λ) ≪ 1, the reabsorption of radiation is absent and discharge plasma is nonuniformly heated by the current pulse. This leads to the appearance of reverse motions, so that the heated plasma is partly pushed toward the tube walls and partly returned to the discharge axis.

  18. Application of photoacoustic and photothermal techniques for heat conduction measurements in a free-standing chemical vapor-deposited diamond film

    SciTech Connect

    Glorieux, C.; De Groote, J.; Lauriks, W.; Thoen, J. ); Fivez, J. EHSAL, Brussel Universitaire Faculteiten St. Ignatius, Antwerpen )

    1993-11-01

    Heat conduction in a free-standing chemical vapor-deposited polycrystalline diamond film has been investigated by means of combined front and rear photoacoustic signal detection techniques and also by means of a mirage' photothermal beam deflection technique. The results obtained with the different techniques are consistent with a value of [alpha] = (5.5 [+-] 0.4) [times] 10[sup [minus]4]m[sup 2][center dot]s[sup [minus]1] for thermal diffusivity, resulting in a value of k -(9.8 [+-] 0.7) [times] 10[sup 2]W m[sup [minus]1]. K[sup [minus]1] for thermal conductivity when literature values for the density and heat capacity for natural diamond are used. 25 refs., 7 figs.

  19. Numerical simulation of water injection into vapor-dominated reservoirs

    SciTech Connect

    Pruess, K.

    1995-01-01

    Water injection into vapor-dominated reservoirs is a means of condensate disposal, as well as a reservoir management tool for enhancing energy recovery and reservoir life. We review different approaches to modeling the complex fluid and heat flow processes during injection into vapor-dominated systems. Vapor pressure lowering, grid orientation effects, and physical dispersion of injection plumes from reservoir heterogeneity are important considerations for a realistic modeling of injection effects. An example of detailed three-dimensional modeling of injection experiments at The Geysers is given.

  20. Senstitivity analysis of horizontal heat and vapor transfer coefficients for a cloud-topped marine boundary layer during cold-air outbreaks. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Chang, Y. V.

    1986-01-01

    The effects of external parameters on the surface heat and vapor fluxes into the marine atmospheric boundary layer (MABL) during cold-air outbreaks are investigated using the numerical model of Stage and Businger (1981a). These fluxes are nondimensionalized using the horizontal heat (g1) and vapor (g2) transfer coefficient method first suggested by Chou and Atlas (1982) and further formulated by Stage (1983a). In order to simplify the problem, the boundary layer is assumed to be well mixed and horizontally homogeneous, and to have linear shoreline soundings of equivalent potential temperature and mixing ratio. Modifications of initial surface flux estimates, time step limitation, and termination conditions are made to the MABL model to obtain accurate computations. The dependence of g1 and g2 in the cloud topped boundary layer on the external parameters (wind speed, divergence, sea surface temperature, radiative sky temperature, cloud top radiation cooling, and initial shoreline soundings of temperature, and mixing ratio) is studied by a sensitivity analysis, which shows that the uncertainties of horizontal transfer coefficients caused by changes in the parameters are reasonably small.

  1. Complex Geometry Creation and Turbulent Conjugate Heat Transfer Modeling

    SciTech Connect

    Bodey, Isaac T; Arimilli, Rao V; Freels, James D

    2011-01-01

    The multiphysics capabilities of COMSOL provide the necessary tools to simulate the turbulent thermal-fluid aspects of the High Flux Isotope Reactor (HFIR). Version 4.1, and later, of COMSOL provides three different turbulence models: the standard k-{var_epsilon} closure model, the low Reynolds number (LRN) k-{var_epsilon} model, and the Spalart-Allmaras model. The LRN meets the needs of the nominal HFIR thermal-hydraulic requirements for 2D and 3D simulations. COMSOL also has the capability to create complex geometries. The circular involute fuel plates used in the HFIR require the use of algebraic equations to generate an accurate geometrical representation in the simulation environment. The best-estimate simulation results show that the maximum fuel plate clad surface temperatures are lower than those predicted by the legacy thermal safety code used at HFIR by approximately 17 K. The best-estimate temperature distribution determined by COMSOL was then used to determine the necessary increase in the magnitude of the power density profile (PDP) to produce a similar clad surface temperature as compared to the legacy thermal safety code. It was determined and verified that a 19% power increase was sufficient to bring the two temperature profiles to relatively good agreement.

  2. Stratified vapor generator

    DOEpatents

    Bharathan, Desikan; Hassani, Vahab

    2008-05-20

    A stratified vapor generator (110) comprises a first heating section (H.sub.1) and a second heating section (H.sub.2). The first and second heating sections (H.sub.1, H.sub.2) are arranged so that the inlet of the second heating section (H.sub.2) is operatively associated with the outlet of the first heating section (H.sub.1). A moisture separator (126) having a vapor outlet (164) and a liquid outlet (144) is operatively associated with the outlet (124) of the second heating section (H.sub.2). A cooling section (C.sub.1) is operatively associated with the liquid outlet (144) of the moisture separator (126) and includes an outlet that is operatively associated with the inlet of the second heating section (H.sub.2).

  3. Morphological Stability and Fluid Dynamics of Vapor Crystal Growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, F.

    1985-01-01

    A fundamental understanding of the conditions under which crystals can retain morphological stability, i.e., shape stability of the advancing interface, during growth from vapors was studied. Morphological stability (MS) is a necessary condition for the growth of homogeneous single crystals required for numerous device applications. For crystallization from melts, the MS concepts are well developed and are essentially based on heat and mass transfer conditions about the advancing interface. For crystallization from vapors, the MS requirements are more complex and not well understood. The added complexity arises from the fact that anisotropies in interfacial kinetics are typically stronger in crystallization from vapors than from melts. These pronounced anisotropies root in the distinctly lower atomic roughness of most vapor-solid interfaces.

  4. Simultaneous effects of inlet stagnation pressure and heat transfer to the water vapor condensing flow of supersonic laval nozzle

    NASA Astrophysics Data System (ADS)

    Rad, E. Amiri; Mahpeykar, M. R.; Teymourtash, A. R.

    2012-06-01

    The formation of droplets in low-pressure stages of power steam turbines is due to the nucleation phenomenon and its effects, such as sudden pressure rise, also known as the condensation shock, where the irreversible internal heat transfer causes a drop in the efficiency of the turbine. Furthermore, the existence of the liquid phase causes erosion of turbine blade surfaces, and consequently, creates high mechanical costs. Therefore, proposing a solution for reducing these unwanted thermodynamic and mechanical effects is desirable. In the previous work of the authors, volumetric heating of the convergent section was introduced as an approach for reducing the mentioned damages and losses. However, further investigations revealed that heating the convergent section results in the expansion of the flow, and decreases the total mass flow rate, which is not favorable. In this paper, using semi-analytical and one dimensional modeling, the simultaneous effects of volumetric heat transfer and inlet stagnation pressure rise are investigated in order to propose a strategy for modifying this shortcoming and to stabilize the mass flow rate. The results show that for the boundary conditions used in this research, increasing the inlet stagnation pressure up to 5 percent can stabilize the mass flow rate of the non-adiabatic flow, compared to the flow in adiabatic conditions.

  5. Boiler for generating high quality vapor

    NASA Technical Reports Server (NTRS)

    Gray, V. H.; Marto, P. J.; Joslyn, A. W.

    1972-01-01

    Boiler supplies vapor for use in turbines by imparting a high angular velocity to the liquid annulus in heated rotating drum. Drum boiler provides a sharp interface between boiling liquid and vapor, thereby, inhibiting the formation of unwanted liquid droplets.

  6. Archimedes Mass Filter Vaporizer

    NASA Astrophysics Data System (ADS)

    Putvinski, S.; Agnew, A. F.; Cluggish, B. P.; Ohkawa, T.; Sevier, L.; Umstadter, K. R.; Dresvin, S. V.; Kuteev, B. V.; Feygenson, O. N.; Ivanov, D. V.; Zverev, S. G.; Miroshnikov, I. V.; Egorov, S. M.; Kiesewetter, D. V.; Maliugin, V. I.

    2001-10-01

    Archimedes Technology Group, Inc., is developing a plasma mass separator called the Archimedes Filter that separates waste oxide mixtures ion by ion into two mass groups: light and heavy. Since high-level waste at Hanford has 99.9its radioactivity associated with heavy elements, the Archimedes Filter can effectively decontaminate over three-quarters of that waste. The Filter process involves some preprocessing followed by volatilization and separation by the magnetic and electric fields of the main plasma. This presentation describes the approach to volatilization of the waste oxy-hydroxide mixture by means of a very high heat flux (q > 10 MW/m2). Such a high heat flux is required to ensure congruent evaporation of the complex oxy-hydroxide mixture and is achieved by injection of small droplets of molten waste into an inductively coupled plasma (ICP) torch. This presentation further addresses different issues related to evaporation of the waste including modeling of droplet evaporation, estimates of parameters of plasma torch, and 2D modeling of the plasma. The experimental test bed for oxide vaporization and results of the initial experiments on oxide evaporation in 60 kW ICP torch will also be described.

  7. Numerical modeling of simultaneous heat and moisture transfer under complex geometry for refrigeration purposes

    NASA Astrophysics Data System (ADS)

    Hou, Xiaofei; Joaquim, Rigola; Oriol, Lehmkuhl; Carles, Oliet; D, Pérez-Segarra Carlos

    2012-11-01

    The aim of the paper is to gain a better insight into heat and moisture transfer in refrigerator and to do fundamental study for water evaporation and condensation in refrigeration application. The governing transport equations (continuity, momentum, energy and concentration equations) in 3D Cartesian coordinates are firstly introduced. As the mixed convection is simulated in the paper, buoyancy forces caused by both temperature and concentration gradient are considered and are also included in momentum equation. Numerical results are carried out by using Termofluids code. The pressure-velocity linkage is solved by means of an explicit finite volume fractional step procedure. In order to validate the code, a humid air flowing in a horizontal 3D rectangular duct case is carried out and compared with the published numerical and experimental results. The contour of temperature and vapor density of air at a cross section is provided and analyzed. Finally, the heat and mass transfer process during the moist air flow through complicated geometry is simulated and temperature and humidity distributions are obtained.

  8. Spatial and temporal variability of heat, water vapor, carbon dioxide, and momentum air-sea exchange in a coastal environment

    NASA Astrophysics Data System (ADS)

    Crawford, Timothy L.; McMillen, Robert T.; Meyers, Tilden P.; Hicks, Bruce B.

    1993-07-01

    Simultaneous eddy correlation measurements from a tower, a boat, and an aircraft platform are used to assess the spatial and temporal variability of heat, moisture, momentum, and CO2 turbulent fluxes in a coastal environment. Dissolved CO2 in the coastal waters and atmospheric CO2 concentrations were continuously measured throughout the experiment. Good agreement was found among the different sensing systems. Air-to-sea gas, momentum, and energy flux density measurements are shown to be achievable from both a boat and an aircraft. The observed 10 W/sq m sensible heat flux was time-invariant but did not vary spatially with surface temperature, which was strongly correlated with ocean depth. The 100 to 200 W/sq m evaporative moisture flux dominated energy exchange and varied both in time and space. No consistent diurnal variation was observed, but the spatial trend also followed surface temperature. CO2 exchange exhibited large spatial and temporal variance.

  9. The influence of vapor superheating on the level of heat regeneration in a subcritical ORC coupled with gas power plant

    NASA Astrophysics Data System (ADS)

    Wiśniewski, Sławomir; Borsukiewicz-Gozdur, Aleksandra

    2010-09-01

    The authors presented problems related to utilization of exhaust gases of the gas turbine unit for production of electricity in an Organic Rankine Cycle (ORC) power plant. The study shows that the thermal coupling of ORC cycle with a gas turbine unit improves the efficiency of the system. The undertaken analysis concerned four the so called "dry" organic fluids: benzene, cyclohexane, decane and toluene. The paper also presents the way how to improve thermal efficiency of Clausius-Rankine cycle in ORC power plant. This method depends on applying heat regeneration in ORC cycle, which involves pre-heating the organic fluid via vapour leaving the ORC turbine. As calculations showed this solution allows to considerably raise the thermal efficiency of Clausius-Rankine cycle.

  10. REFRIG-12: A graphics-augmented interactive program for designing vapor-compression refrigeration/heat pump cycles

    NASA Astrophysics Data System (ADS)

    Davis, B. W.

    1984-09-01

    REFRIG-12 is an interactive program that serves as a tool for designing and analyzing thermodynamic vapor compression refrigeration/heatpump cycles. Graphic and alphanumeric responses to design decisions are displayed simultaneously on separate monitors. Temperature-Entropy property coordinates are used to describe the thermodynamic processes Freon-12 undergoes as it passes through the various mechanical components which ultimately produce the cycle. The processes are displayed graphically as the user makes the decisions to design a refrigeration cycle. When a design has been completed, REFRIG-12 offers the user an opportunity to make changes. The effects of design changes become graphically discernible through successive overlays on the graphics monitor. DOTPLOT can be executed to produce a hard copy of the graphics monitor display. Summaries of the cycle performance, pertinent energy transfers, and other engineering consequences of the design specifications can also be presented - at user option - on both the CRT and the printer. REFRIG-12 is organized so that a relatively small main program controls 25 subroutines. Each subroutine has stand alone characteristics and may be used with programs having other primary purposes. The subroutines can be conveniently merged (or chained) into system memory as needed.

  11. Vapor-liquid activity coefficients for methanol and ethanol from heat of solution data: application to steam-methane reforming.

    PubMed

    Kunz, R G; Baade, W F

    2001-11-16

    This paper presents equations and curves to calculate vapor-liquid phase equilibria for methanol and ethanol in dilute aqueous solution as a function of temperature, using activity coefficients at infinite dilution. These thermodynamic functions were originally derived to assess the distribution of by-product contaminants in the process condensate and the steam-system deaerator of a hydrogen plant [Paper ENV-00-171 presented at the NPRA 2000 Environmental Conference, San Antonio, TX, 10-12 September 2000], but have general applicability to other systems as well. The functions and calculation method described here are a necessary piece of an overall prediction technique to estimate atmospheric emissions from the deaerator-vent when the process condensate is recycled as boiler feed water (BFW) make-up. Having such an estimation technique is of particular significance at this time because deaerator-vent emissions are already coming under regulatory scrutiny in California [Emissions from Hydrogen Plant Process Vents, Adopted 21 January 2000] followed closely elsewhere in the US, and eventually worldwide. The overall technique will enable a permit applicant to estimate environmental emissions to comply with upcoming regulations, and a regulatory agency to evaluate those estimates. It may also be useful to process engineers as a tool to estimate contaminant concentrations and flow rates in internal process streams such as the steam-generating system. Metallurgists and corrosion engineers might be able to use the results for materials selection. PMID:11606240

  12. Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant

    PubMed Central

    2011-01-01

    The chemical composition of small organic molecules is often very similar to amino acid side chains or the bases in nucleic acids, and hence there is no a priori reason why a molecular mechanics force field could not describe both organic liquids and biomolecules with a single parameter set. Here, we devise a benchmark for force fields in order to test the ability of existing force fields to reproduce some key properties of organic liquids, namely, the density, enthalpy of vaporization, the surface tension, the heat capacity at constant volume and pressure, the isothermal compressibility, the volumetric expansion coefficient, and the static dielectric constant. Well over 1200 experimental measurements were used for comparison to the simulations of 146 organic liquids. Novel polynomial interpolations of the dielectric constant (32 molecules), heat capacity at constant pressure (three molecules), and the isothermal compressibility (53 molecules) as a function of the temperature have been made, based on experimental data, in order to be able to compare simulation results to them. To compute the heat capacities, we applied the two phase thermodynamics method (Lin et al. J. Chem. Phys.2003, 119, 11792), which allows one to compute thermodynamic properties on the basis of the density of states as derived from the velocity autocorrelation function. The method is implemented in a new utility within the GROMACS molecular simulation package, named g_dos, and a detailed exposé of the underlying equations is presented. The purpose of this work is to establish the state of the art of two popular force fields, OPLS/AA (all-atom optimized potential for liquid simulation) and GAFF (generalized Amber force field), to find common bottlenecks, i.e., particularly difficult molecules, and to serve as a reference point for future force field development. To make for a fair playing field, all molecules were evaluated with the same parameter settings, such as thermostats and barostats

  13. Heat transport in a two-dimensional complex (dusty) plasma at melting conditions

    NASA Astrophysics Data System (ADS)

    Nosenko, V.; Ivlev, A. V.; Zhdanov, S.; Morfill, G.; Goree, J.; Piel, A.

    2007-11-01

    The heat transport in a two-dimensional complex (dusty) plasma undergoing a phase transition was studied experimentally. A single layer of highly charged polymer microspheres was suspended in a plasma sheath. In the absence of manipulation, the suspension forms a 2D triangular lattice. To melt this lattice and form a liquid, we used a laser-heating method. Two focused laser beams were moved rapidly around in the monolayer. The kinetic temperature of the particles increased with the laser power applied, and above a threshold a melting transition occurred. We used video microscopy for direct imaging and particle tracking. The spatial profiles of the particle kinetic temperature were calculated. Using the heat transport equation with an additional term to account for the energy dissipation due to the gas drag, we analyzed the temperature profiles to find a thermal conductivity, which did not depend on temperature.

  14. Biopolymer nanoparticles from heat-treated electrostatic protein-polysaccharide complexes: factors affecting particle characteristics.

    PubMed

    Jones, Owen Griffith; McClements, David Julian

    2010-03-01

    Biopolymer nanoparticles can be formed by heating globular protein-ionic polysaccharide electrostatic complexes above the thermal denaturation temperature of the protein. This study examined how the size and concentration of biopolymer particles formed by heating beta-lactoglobulin-pectin complexes could be manipulated by controlling preparation conditions: pH, ionic strength, protein concentration, holding time, and holding temperature. Biopolymer particle size and concentration increased with increasing holding time (0 to 30 min), decreasing holding temperature (90 to 70 degrees C), increasing protein concentration (0 to 2 wt/wt%), increasing pH (4.5 to 5), and increasing salt concentration (0 to 50 mol/kg). The influence of these factors on biopolymer particle size was attributed to their impact on protein-polysaccharide interactions, and on the kinetics of nucleation and particle growth. The knowledge gained from this study will facilitate the rational design of biopolymer particles with specific physicochemical and functional attributes. PMID:20492252

  15. Evaluation of the low temperature heat exchanger fouling problem. Results of studies on soot production and condensing system fouling. [Recovery of latent heat of vaporization of moisture

    SciTech Connect

    Butcher, T.; Celebi, Y.; Piraino, M.

    1984-06-01

    The development of condensing heat exchangers for oil-fired heating equipment would yield a significant improvement in thermal efficiency. Soot production by oil burners, however, could lead to serious fouling problems in these systems. The objectives of this study were to investigate the causes of fouling in oil-fired condensing systems and to evaluate the need for the development of advanced oil burners. Tests were done to evaluate the effect of operating conditions on start-up and shutdown smoke production in both noncondensing and condensing furnaces. Modern retention head burners which are commonly used in the US were included as well as one European burner with some different design features. These features included the head design, a fuel shut-off in the nozzle tip, and nozzle heating. This burner was found to produce less smoke on start-up and shutdown than the common US burner. Fouling studies were done on both types of burners under cyclic conditions with relatively low excess air (10% CO/sub 2/) and continuous induced draft. Soot deposition did not cause any change in system thermal performance although soot deposition was heavier than would be expected with a noncondensing system. Tests were also done on the effects of fuel quality on soot production. Measurement techniques for soot included the common Bacharach smoke spot test, optical opacity, and filtration (EPA method 5). 27 refs., 69 figs., 18 tabs.

  16. THE WATER VAPOR SPECTRUM OF APM 08279+5255: X-RAY HEATING AND INFRARED PUMPING OVER HUNDREDS OF PARSECS

    SciTech Connect

    Bradford, C. M.; Bock, J. J.; Naylor, B. J.; Nguyen, H. T.; Zmuidzinas, J.; Bolatto, A. D.; Maloney, P. R.; Aguirre, J. E.; Glenn, J.; Kamenetzky, J.; Lupu, R.; Scott, K.; Matsuhara, H.; Murphy, E. J.

    2011-11-10

    We present the rest-frame 200-320 {mu}m spectrum of the z = 3.91 quasar APM 08279+5255, obtained with Z-Spec at the Caltech Submillimeter Observatory. In addition to the J = 8 {yields} 7 to J = 13 {yields} 12 CO rotational transitions which dominate the CO cooling, we find six transitions of water originating at energy levels ranging up to 643 K. Most are first detections at high redshift, and we have confirmed one transition with CARMA. The CO cooling is well described by our X-ray dominated region (XDR) model, assuming L{sub 1-100keV} {approx} 1 Multiplication-Sign 10{sup 46} erg s{sup -1}, and that the gas is distributed over a 550-pc size scale, as per the now-favored {mu} = 4 lensing model. The total observed cooling in water corresponds to 6.5 Multiplication-Sign 10{sup 9} L{sub Sun }, comparable to that of CO. We compare the water spectrum with that of Mrk 231, finding that the intensity ratios among the high-lying lines are similar, but with a total luminosity scaled up by a factor of {approx}50. Using this scaling, we estimate an average water abundance relative to H{sub 2} of 1.4 Multiplication-Sign 10{sup -7}, a good match to the prediction of the chemical network in the XDR model. As with Mrk 231, the high-lying water transitions are excited radiatively via absorption in the rest-frame far-infrared, and we show that the powerful dust continuum in APM 08279+5255 is more than sufficient to pump this massive reservoir of warm water vapor.

  17. Dendritic-Tumor Fusion Cells Derived Heat Shock Protein70-Peptide Complex Has Enhanced Immunogenicity

    PubMed Central

    Chen, Jun; Liu, Yunyan; Luo, Wen

    2015-01-01

    Tumor-derived heat shock protein70-peptide complexes (HSP70.PC-Tu) have shown great promise in tumor immunotherapy due to numerous advantages. However, large-scale phase III clinical trials showed that the limited immunogenicity remained to be enhanced. In previous research, we demonstrated that heat shock protein 70-peptide complexes (HSP70.PC-Fc) derived from dendritic cell (DC)-tumor fusions exhibit enhanced immunogenicity compared with HSP70.PCs from tumor cells. However, the DCs used in our previous research were obtained from healthy donors and not from the patient population. In order to promote the clinical application of these complexes, HSP70.PC-Fc was prepared from patient-derived DC fused directly with patient-derived tumor cells in the current study. Our results showed that compared with HSP70.PC-Tu, HSP70.PC-Fc elicited much more powerful immune responses against the tumor from which the HSP70 was derived, including enhanced T cell activation, and CTL responses that were shown to be antigen specific and HLA restricted. Our results further indicated that the enhanced immunogenicity is related to the activation of CD4+ T cells and increased association with other heat shock proteins, such as HSP90. Therefore, the current study confirms the enhanced immunogenicity of HSP70.PC derived from DC-tumor fusions and may provide direct evidence promoting their future clinical use. PMID:25961716

  18. Hsp56: A novel heat shock protein associated with untransformed steroid receptor complexes

    SciTech Connect

    Sanchez, E.R. )

    1990-12-25

    The recently-described p59 protein has been shown to be associated with untransformed steroid receptors present in rabbit uterus and rat liver cytosols while a smaller version of this protein (p56) interacts with glucocorticoid receptors in human IM-9 cell cytosols. In addition to interacting with glucocorticoid receptors, the p56 protein of IM-9 cell cytosol is also found as part of a large heteromeric complex that contains both the 70-kDa and 90-kDa heat shock proteins (hsp70 and hsp90, respectively). Given this association of p56 with the two major stress proteins, I have speculated that p56 may itself be a heat shock protein. In this paper, the effect of heat stress on the rate of synthesis of p56 is determined. Intact IM-9 cells were exposed to 37 or 43 degrees C for 4 h, followed by pulse-labeling with (35S)methionine. Analysis of whole cytosolic extracts by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography reveal an increased rate of radiolabeling for hsp70, hsp90, hsp100, ad hsp110, but no heat-inducible protein of smaller relative molecular mass is detected. However, immune-purification of p56 from normal and heat-stressed cytosols with the EC1 monoclonal antibody results in the presence of a 56-kDa protein that exhibits an increased rate of synthesis in response to heat stress. The results of two-dimensional gel Western blots employing the EC1 antibody demonstrate that this heat-inducible protein is indeed the EC1-reactive p56 protein and that the induction effect is not due to unequal yields of p56 during immune-purification.

  19. Dynamic Complexity Study of Nuclear Reactor and Process Heat Application Integration

    SciTech Connect

    J'Tia Patrice Taylor; David E. Shropshire

    2009-09-01

    Abstract This paper describes the key obstacles and challenges facing the integration of nuclear reactors with process heat applications as they relate to dynamic issues. The paper also presents capabilities of current modeling and analysis tools available to investigate these issues. A pragmatic approach to an analysis is developed with the ultimate objective of improving the viability of nuclear energy as a heat source for process industries. The extension of nuclear energy to process heat industries would improve energy security and aid in reduction of carbon emissions by reducing demands for foreign derived fossil fuels. The paper begins with an overview of nuclear reactors and process application for potential use in an integrated system. Reactors are evaluated against specific characteristics that determine their compatibility with process applications such as heat outlet temperature. The reactor system categories include light water, heavy water, small to medium, near term high-temperature, and far term high temperature reactors. Low temperature process systems include desalination, district heating, and tar sands and shale oil recovery. High temperature processes that support hydrogen production include steam reforming, steam cracking, hydrogen production by electrolysis, and far-term applications such as the sulfur iodine chemical process and high-temperature electrolysis. A simple static matching between complementary systems is performed; however, to gain a true appreciation for system integration complexity, time dependent dynamic analysis is required. The paper identifies critical issues arising from dynamic complexity associated with integration of systems. Operational issues include scheduling conflicts and resource allocation for heat and electricity. Additionally, economic and safety considerations that could impact the successful integration of these systems are considered. Economic issues include the cost differential arising due to an integrated

  20. TRANSPORT OF HEAT, WATER VAPOR AND CARBON DOXIDE BY LONG PERIOD EDDIES IN THE STABLE BOUNDARY LAYER

    SciTech Connect

    Kurzeja, R.

    2010-07-26

    The vertical transport of heat and trace chemicals for a night in April has been studied with a wavelet analysis and conventional one-hour averages. It was found that for the night of April 20, 2009, turbulent kinetic energy, heat and trace chemicals were transported directed downward from the jet core. The most significant periods for this transport were less than 5 minutes and greater than one hour with intermittent transport taking place in the 5 min to 1 hour time frame. The nocturnal boundary layer is characterized by turbulent intermittency, long period oscillations, and a slow approach to equilibrium, (Mahrt, 1999). Although turbulence is usually maintained by surface friction, downward transport from low-level jets can also play an important role in turbulence maintenance and in the transport of scalars, Mahrt (1999), Banta et al. (2006). The eddy covariance flux measurement technique assumes continuous turbulence which is unusual in the stable boundary because significant flux transport occurs via turbulent eddies whose periods are long compared with the averaging time (Goulden et al., 1996). Systematic error in eddy flux measurements is attributed mainly to the neglect of long period eddies. Banta et al. (2006) noted that observations of turbulence below the low level jet suggested that while upward transport of turbulence kinetic energy (TKE) is common, downward transport from the jet can also occur. They found that in the CASES 99 experiments that turbulence scaled well with the strength of the low-level jet, and that surface cooling was more important than surface roughness. Because nocturnal turbulence is intermittent and non-stationary, the appropriate averaging time for calculation of TKE and EC fluxes is not obvious. Wavelet analysis is, thus, a more suitable analysis tool than conventional Fourier analysis.

  1. Integrated bioenergy complex for the production of power, heat and bio-ethanol

    SciTech Connect

    Taviani, M.; Chiaramonti, D.; Tondi, G.; Grassi, G.

    1998-07-01

    In this paper an integrated bioenergy complex for the production of power, heat and bio-ethanol is presented. Ethanol, in fact, has been recognized as a high-quality transportation fuel. The reduction of petroleum consumption, especially for transport, is a strategic goal especially for those countries that already have or will experience an intensive industrial development in the next future. For these motivations, the production of bio-ethanol from Sweet Sorghum (which is now one of the most promising crop for this application in term of productivity, inputs demand, and flexibility) is of great interest in most of countries. The proposed integrated complex produces power, heat and bio-ethanol: the produced power and heat are partly used for bio-ethanol processing and biomass pre-treatment, partly to be sold to the market. This system has important innovations allowing a decentralized energy and ethanol production and creating new local jobs. The small power plant is based upon a steam cycle with an advanced low emission combustor, capable of burning different biomass resources with a modest decrease in the efficiency value. The Bioenergy Complex, suitable to satisfy the needs of a 3,000 inhabitants village, is composed by the following sub-systems: (1) Sweet Sorghum plantation (250 ha); the main products are: dry bagasse (approximately 3,900 Ton/year), grains (1,300 Ton/y) and sugar (1,850 Ton/y); (2) Cane crushing--sugar juice extraction system; (3) Sugar juice fermentation and distillation ethanol production (approx. 835 Ton/y); (4) Biomass pre-treatment components (grinding, drying, briquetting, storage, etc.); and (5) Cogeneration unit--the expansion unit is constituted by a last generation reciprocating steam engine, coupled with a 500 kWe alternator; the heat of the expanded flow is removed in the condenser, with an available thermal power of approximately 2,000 kWt.

  2. Tubing For Sampling Hydrazine Vapor

    NASA Technical Reports Server (NTRS)

    Travis, Josh; Taffe, Patricia S.; Rose-Pehrsson, Susan L.; Wyatt, Jeffrey R.

    1993-01-01

    Report evaluates flexible tubing used for transporting such hypergolic vapors as those of hydrazines for quantitative analysis. Describes experiments in which variety of tubing materials, chosen for their known compatibility with hydrazine, flexibility, and resistance to heat.

  3. Complexity and Genetic Variability of Heat-Shock Protein Expression in Isolated Maize Microspores.

    PubMed Central

    Magnard, J. L.; Vergne, P.; Dumas, C.

    1996-01-01

    The expression of heat-shock proteins (HSPs) in isolated maize (Zea mays L.) microspores has been investigated using high-resolution two-dimensional electrophoresis coupled to immunodetection and fluorography of in vivo synthesized proteins. To this end, homogeneous and viable populations of microspores have been purified in sufficient amounts for molecular analysis from plants grown in controlled conditions. Appropriate conditions for thermal stress application have been defined. The analysis revealed that isolated microspores from maize display a classical heat-shock response characterized by the repression of the normal protein synthesis and the expression of a set of HSPs. A high complexity of the response was demonstrated, with numerous different HSPs being resolved in each known major HSP molecular weight class. However, the extent of this heat-shock response is limited in that some of these HSPs do not accumulate at high levels following temperature elevation. Comparative analysis of the heat-shock responses of microspores isolated from five genotypes demonstrated high levels of genetic variability. Furthermore, many HSPs were detected in microspores at control temperature, indicating a possible involvement of these proteins in pollen development at stages close to first pollen mitosis. PMID:12226349

  4. Heat-induced formation of myosin oligomer-soluble filament complex in high-salt solution.

    PubMed

    Shimada, Masato; Takai, Eisuke; Ejima, Daisuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2015-02-01

    Heat-induced aggregation of myosin into an elastic gel plays an important role in the water-holding capacity and texture of meat products. Here, we investigated thermal aggregation of porcine myosin in high-salt solution over a wide temperature range by dynamic light scattering experiments. The myosin samples were readily dissolved in 1.0 M NaCl at 25 °C followed by dilution into various salt concentrations. The diluted solutions consistently contained both myosin monomers and soluble filaments. The filament size decreased with increasing salt concentration and temperature. High temperatures above Tm led to at least partial dissociation of soluble filaments and thermal unfolding, resulting in the formation of soluble oligomers and binding to the persistently present soluble filaments. Such a complex formation between the oligomers and filaments has never been observed. Our results provide new insight into the heat-induced myosin gelation in high-salt solution. PMID:25445683

  5. Interaction of the sea breeze with a river breeze in an area of complex coastal heating

    NASA Technical Reports Server (NTRS)

    Zhong, Shiyuan; Takle, Eugene S.; Leone, John M., Jr.

    1991-01-01

    The interaction of the sea-breeze circulation with a river-breeze circulation in an area of complex coastal heating (east coast of Florida) was studied using a 3D finite-element mesoscale model. The model simulations are compared with temperature and wind fields observed on a typical fall day during the Kennedy Space Center Atmospheric Boundary Layer Experiment. The results from numerical experiments designed to isolate the effect of the river breeze indicate that the convergence in the sea-breeze front is suppressed when it passes over the cooler surface of the rivers.

  6. Sensitivity of model parameterizations for simulated latent heat flux at the snow surface for complex mountain sites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The snowcover energy balance is typically dominated by net radiation and sensible and latent heat fluxes. Validation of the two latter components is rare and often difficult to undertake at complex mountain sites. Latent heat flux, the focus of this paper, is the primary coupling mechanism between...

  7. Electrolyte vapor condenser

    DOEpatents

    Sederquist, Richard A.; Szydlowski, Donald F.; Sawyer, Richard D.

    1983-01-01

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well.

  8. Electrolyte vapor condenser

    DOEpatents

    Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

    1983-02-08

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

  9. Characterization of the Sublimation and Vapor Pressure of 2-(2-Nitrovinyl) Furan (G-0) Using Thermogravimetric Analysis: Effects of Complexation with Cyclodextrins.

    PubMed

    Ruz, Vivian; González, Mirtha Mayra; Winant, Danny; Rodríguez, Zenaida; Van den Mooter, Guy

    2015-01-01

    In the present work, the sublimation of crystalline solid 2-(2-nitrovinyl) furan (G-0) in the temperature range of 35 to 60 °C (below the melting point of the drug) was studied using thermogravimetric analysis (TGA). The sublimated product was characterized using Fourier-transformed-infrared spectroscopy (FT-IR) and thin layer chromatography (TLC). The sublimation rate at each temperature was obtained using the slope of the linear regression model and followed apparent zero-order kinetics. The sublimation enthalpy from 35 to 60 °C was obtained from the Eyring equation. The Gückel method was used to estimate the sublimation rate and vapor pressure at 25 °C. Physical mixtures, kneaded and freeze-dried complexes were prepared with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) and sulfobutyl ether-β-cyclodextrin (SBE-β-CD) and analyzed using isothermal TGA at 50 °C. The complexation contributed to reducing the sublimation process. The best results were achieved using freeze-dried complexes with both cyclodextrins. PMID:26295385

  10. Synthesis and modeling of uniform complex metal oxides by close-proximity atmospheric pressure chemical vapor deposition.

    PubMed

    Hoye, Robert L Z; Muñoz-Rojas, David; Musselman, Kevin P; Vaynzof, Yana; MacManus-Driscoll, Judith L

    2015-05-27

    A close-proximity atmospheric pressure chemical vapor deposition (AP-CVD) reactor is developed for synthesizing high quality multicomponent metal oxides for electronics. This combines the advantages of a mechanically controllable substrate-manifold spacing and vertical gas flows. As a result, our AP-CVD reactor can rapidly grow uniform crystalline films on a variety of substrate types at low temperatures without requiring plasma enhancements or low pressures. To demonstrate this, we take the zinc magnesium oxide (Zn(1-x)Mg(x)O) system as an example. By introducing the precursor gases vertically and uniformly to the substrate across the gas manifold, we show that films can be produced with only 3% variation in thickness over a 375 mm(2) deposition area. These thicknesses are significantly more uniform than for films from previous AP-CVD reactors. Our films are also compact, pinhole-free, and have a thickness that is linearly controllable by the number of oscillations of the substrate beneath the gas manifold. Using photoluminescence and X-ray diffraction measurements, we show that for Mg contents below 46 at. %, single phase Zn(1-x)Mg(x)O was produced. To further optimize the growth conditions, we developed a model relating the composition of a ternary oxide with the bubbling rates through the metal precursors. We fitted this model to the X-ray photoelectron spectroscopy measured compositions with an error of Δx = 0.0005. This model showed that the incorporation of Mg into ZnO can be maximized by using the maximum bubbling rate through the Mg precursor for each bubbling rate ratio. When applied to poly(3-hexylthiophene-2,5-diyl) hybrid solar cells, our films yielded an open-circuit voltage increase of over 100% by controlling the Mg content. Such films were deposited in short times (under 2 min over 4 cm(2)). PMID:25939729

  11. Evidence for Multiple Mediator Complexes in Yeast Independently Recruited by Activated Heat Shock Factor.

    PubMed

    Anandhakumar, Jayamani; Moustafa, Yara W; Chowdhary, Surabhi; Kainth, Amoldeep S; Gross, David S

    2016-07-15

    Mediator is an evolutionarily conserved coactivator complex essential for RNA polymerase II transcription. Although it has been generally assumed that in Saccharomyces cerevisiae, Mediator is a stable trimodular complex, its structural state in vivo remains unclear. Using the "anchor away" (AA) technique to conditionally deplete select subunits within Mediator and its reversibly associated Cdk8 kinase module (CKM), we provide evidence that Mediator's tail module is highly dynamic and that a subcomplex consisting of Med2, Med3, and Med15 can be independently recruited to the regulatory regions of heat shock factor 1 (Hsf1)-activated genes. Fluorescence microscopy of a scaffold subunit (Med14)-anchored strain confirmed parallel cytoplasmic sequestration of core subunits located outside the tail triad. In addition, and contrary to current models, we provide evidence that Hsf1 can recruit the CKM independently of core Mediator and that core Mediator has a role in regulating postinitiation events. Collectively, our results suggest that yeast Mediator is not monolithic but potentially has a dynamic complexity heretofore unappreciated. Multiple species, including CKM-Mediator, the 21-subunit core complex, the Med2-Med3-Med15 tail triad, and the four-subunit CKM, can be independently recruited by activated Hsf1 to its target genes in AA strains. PMID:27185874

  12. Structure of human heat-shock transcription factor 1 in complex with DNA.

    PubMed

    Neudegger, Tobias; Verghese, Jacob; Hayer-Hartl, Manajit; Hartl, F Ulrich; Bracher, Andreas

    2016-02-01

    Heat-shock transcription factor 1 (HSF1) has a central role in mediating the protective response to protein conformational stresses in eukaryotes. HSF1 consists of an N-terminal DNA-binding domain (DBD), a coiled-coil oligomerization domain, a regulatory domain and a transactivation domain. Upon stress, HSF1 trimerizes via its coiled-coil domain and binds to the promoters of heat shock protein-encoding genes. Here, we present cocrystal structures of the human HSF1 DBD in complex with cognate DNA. A comparative analysis of the HSF1 paralog Skn7 from Chaetomium thermophilum showed that single amino acid changes in the DBD can switch DNA binding specificity, thus revealing the structural basis for the interaction of HSF1 with cognate DNA. We used a crystal structure of the coiled-coil domain of C. thermophilum Skn7 to develop a model of the active human HSF1 trimer in which HSF1 embraces the heat-shock-element DNA. PMID:26727489

  13. Complex Heat Capacity of Lithium Borate Glasses Studied by Modulated DSC

    SciTech Connect

    Matsuda, Yu; Ike, Yuji; Matsui, Chihiro; Kodama, Masao; Kojima, Seiji

    2006-05-05

    Complex heat capacity, C{sub p}* = C{sub p}' - iC{sub p}'', of lithium borate glasses Li2O{center_dot}(1-x)B2O3 (x = 0.00 - 0.33) has been investigated by Modulated DSC (MDSC). We have successfully observed the frequency dependent C{sub p}* by MDSC in the frequency range 0.01 to 0.1 Hz, and the average relaxation time of glass transition has been determined as a function of temperature. Moreover, the composition dependence of the thermal properties has been investigated. The calorimetric glass transition temperatures become higher with the increase of concentration of Li2O and show the board maximum around x = 0.26-0.28. The width of glass transition region becomes narrower as Li2O increases. These results relate to the change of the fragility of the system. It has been proven that the complex heat capacity spectroscopy by MDSC is a powerful tool to investigate the glass transition phenomena.

  14. Hsp40 Couples with the CSPα Chaperone Complex upon Induction of the Heat Shock Response

    PubMed Central

    Gibbs, Sarah J.; Barren, Brandy; Beck, Katy E.; Proft, Juliane; Zhao, Xiaoxi; Noskova, Tatiana; Braun, Andrew P.; Artemyev, Nikolai O.; Braun, Janice E. A.

    2009-01-01

    In response to a conditioning stress, the expression of a set of molecular chaperones called heat shock proteins is increased. In neurons, stress-induced and constitutively expressed molecular chaperones protect against damage induced by ischemia and neurodegenerative diseases, however the molecular basis of this protection is not known. Here we have investigated the crosstalk between stress-induced chaperones and cysteine string protein (CSPα). CSPα is a constitutively expressed synaptic vesicle protein bearing a J domain and a cysteine rich “string” region that has been implicated in the long term functional integrity of synaptic transmission and the defense against neurodegeneration. We have shown previously that the CSPα chaperone complex increases isoproterenol-mediated signaling by stimulating GDP/GTP exchange of Gαs. In this report we demonstrate that in response to heat shock or treatment with the Hsp90 inhibitor geldanamycin, the J protein Hsp40 becomes a major component of the CSPα complex. Association of Hsp40 with CSPα decreases CSPα-CSPα dimerization and enhances the CSPα-induced increase in steady state GTP hydrolysis of Gαs. This newly identified CSPα-Hsp40 association reveals a previously undescribed coupling of J proteins. In view of the crucial importance of stress-induced chaperones in the protection against cell death, our data attribute a role for Hsp40 crosstalk with CSPα in neuroprotection. PMID:19242542

  15. A new method for predicting the solar heat gain of complex fenestration systems

    SciTech Connect

    Klems, J.H.; Warner, J.L.; Kelley, G.O.

    1995-03-01

    A new method of predicting the solar heat gain through complex fenestration systems involving nonspecular layers such as shades or blinds has been examined in a project jointly sponsored by ASHRAE and DOE. In this method, a scanning radiometer is used to measure the bidirectional radiative transmittance and reflectance of each layer of a fenestration system. The properties of systems containing these layers are then built up computationally from the measured layer properties using a transmission/multiple-reflection calculation. The calculation produces the total directional-hemispherical transmittance of the fenestration system and the layer-by-layer absorbances. These properties are in turn combined with layer-specific measurements of the inward-flowing fractions of absorbed solar energy to produce the overall solar heat gain coefficient. The method has been applied to one of the most optically complex systems in common use, a venetian blind in combination with multiple glazings. A comparison between the scanner-based calculation method and direct system calorimetric measurements made on the LBL MoWiTT facility showed good agreement, and is a significant validation of the method accuracy and feasibility.

  16. AMTEC vapor-vapor series connected cells

    NASA Technical Reports Server (NTRS)

    Underwood, Mark L. (Inventor); Williams, Roger M. (Inventor); Ryan, Margaret A. (Inventor); Nakamura, Barbara J. (Inventor); Oconnor, Dennis E. (Inventor)

    1995-01-01

    An alkali metal thermoelectric converter (AMTEC) having a plurality of cells structurally connected in series to form a septum dividing a plenum into two chambers, and electrically connected in series, is provided with porous metal anodes and porous metal cathodes in the cells. The cells may be planar or annular, and in either case a metal alkali vapor at a high temperature is provided to the plenum through one chamber on one side of the wall and returned to a vapor boiler after condensation at a chamber on the other side of the wall in the plenum. If the cells are annular, a heating core may be placed along the axis of the stacked cells. This arrangement of series-connected cells allows efficient generation of power at high voltage and low current.

  17. Cooling systems and hybrid A/C systems using an electromagnetic radiation-absorbing complex

    SciTech Connect

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2015-05-19

    A method for powering a cooling unit. The method including applying electromagnetic (EM) radiation to a complex, where the complex absorbs the EM radiation to generate heat, transforming, using the heat generated by the complex, a fluid to vapor, and sending the vapor from the vessel to a turbine coupled to a generator by a shaft, where the vapor causes the turbine to rotate, which turns the shaft and causes the generator to generate the electric power, wherein the electric powers supplements the power needed to power the cooling unit

  18. Chemical vapor infiltration of non-oxide ceramic matrix composites

    SciTech Connect

    Besmann, T.M.; Stinton, D.P.; Lowden, R.A.

    1993-12-31

    Continuous fiber ceramic composites are enabling new, high temperature structural applications. Chemical vapor infiltration methods for producing these composites are being investigated, with the complexity of filament weaves and deposition chemistry merged with standard heat and mass transport relationships. Silicon carbide- based materials are, by far, the most mature, and are already being used in aerospace applications. This paper addresses the state-of-the-art of the technology and outlines current issues.

  19. The lithium vapor box divertor

    NASA Astrophysics Data System (ADS)

    Goldston, R. J.; Myers, R.; Schwartz, J.

    2016-02-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m-2, implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma.

  20. Vacuum vapor deposition gun assembly

    DOEpatents

    Zeren, Joseph D.

    1985-01-01

    A vapor deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, a hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  1. Vapor generation methods for explosives detection research

    SciTech Connect

    Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.

    2012-12-01

    The generation of calibrated vapor samples of explosives compounds remains a challenge due to the low vapor pressures of the explosives, adsorption of explosives on container and tubing walls, and the requirement to manage (typically) multiple temperature zones as the vapor is generated, diluted, and delivered. Methods that have been described to generate vapors can be classified as continuous or pulsed flow vapor generators. Vapor sources for continuous flow generators are typically explosives compounds supported on a solid support, or compounds contained in a permeation or diffusion device. Sources are held at elevated isothermal temperatures. Similar sources can be used for pulsed vapor generators; however, pulsed systems may also use injection of solutions onto heated surfaces with generation of both solvent and explosives vapors, transient peaks from a gas chromatograph, or vapors generated by s programmed thermal desorption. This article reviews vapor generator approaches with emphasis on the method of generating the vapors and on practical aspects of vapor dilution and handling. In addition, a gas chromatographic system with two ovens that is configurable with up to four heating ropes is proposed that could serve as a single integrated platform for explosives vapor generation and device testing. Issues related to standards, calibration, and safety are also discussed.

  2. Method and apparatus for vapor detection

    NASA Technical Reports Server (NTRS)

    Lerner, Melvin (Inventor); Hood, Lyal V. (Inventor); Rommel, Marjorie A. (Inventor); Pettitt, Bruce C. (Inventor); Erikson, Charles M. (Inventor)

    1980-01-01

    The method disclosed herein may be practiced by passing the vapors to be sampled along a path with halogen vapor, preferably chlorine vapor, heating the mixed vapors to halogenate those of the sampled vapors subject to halogenation, removing unreacted halogen vapor, and then sensing the vapors for organic halogenated compounds. The apparatus disclosed herein comprises means for flowing the vapors, both sample and halogen vapors, into a common path, means for heating the mixed vapors to effect the halogenation reaction, means for removing unreacted halogen vapor, and a sensing device for sensing halogenated compounds. By such a method and means, the vapors of low molecular weight hydrocarbons, ketones and alcohols, when present, such as methane, ethane, acetone, ethanol, and the like are converted, at least in part, to halogenated compounds, then the excess halogen removed or trapped, and the resultant vapors of the halogenated compounds sensed or detected. The system is highly sensitive. For example, acetone in a concentration of 30 parts per billion (volume) is readily detected.

  3. An infrared thermography imaging system for convective heat transfer measurements in complex flows

    NASA Astrophysics Data System (ADS)

    Sargent, S. R.; Hedlund, C. R.; Ligrani, P. M.

    1998-12-01

    An infrared thermography imaging system is described for spatially resolved convective heat transfer measurements when used in conjunction with thermocouples, energy balances, digital image processing, zinc-selenide windows, and unique in situ calibration procedures. The usefulness of the system and the techniques developed are demonstrated by measurements made in two different environments with complex, three-dimensional flow features. First, spatial variations of surface Nusselt numbers are measured along the concave surfaces of a swirl chamber whose geometry models an internal passage used to cool the leading edge of a turbine blade. Second, spatially resolved distributions of the adiabatic film-cooling effectiveness are measured downstream of film-cooling holes on a symmetric turbine blade in transonic flow.

  4. The JCMT Gould Belt Survey: evidence for radiative heating and contamination in the W40 complex

    NASA Astrophysics Data System (ADS)

    Rumble, D.; Hatchell, J.; Pattle, K.; Kirk, H.; Wilson, T.; Buckle, J.; Berry, D. S.; Broekhoven-Fiene, H.; Currie, M. J.; Fich, M.; Jenness, T.; Johnstone, D.; Mottram, J. C.; Nutter, D.; Pineda, J. E.; Quinn, C.; Salji, C.; Tisi, S.; Walker-Smith, S.; Francesco, J. Di; Hogerheijde, M. R.; Ward-Thompson, D.; Bastien, P.; Bresnahan, D.; Butner, H.; Chen, M.; Chrysostomou, A.; Coude, S.; Davis, C. J.; Drabek-Maunder, E.; Duarte-Cabral, A.; Fiege, J.; Friberg, P.; Friesen, R.; Fuller, G. A.; Graves, S.; Greaves, J.; Gregson, J.; Holland, W.; Joncas, G.; Kirk, J. M.; Knee, L. B. G.; Mairs, S.; Marsh, K.; Matthews, B. C.; Moriarty-Schieven, G.; Mowat, C.; Rawlings, J.; Richer, J.; Robertson, D.; Rosolowsky, E.; Sadavoy, S.; Thomas, H.; Tothill, N.; Viti, S.; White, G. J.; Wouterloot, J.; Yates, J.; Zhu, M.

    2016-08-01

    We present SCUBA-2 450{\\mu}m and 850{\\mu}m observations of the W40 complex in the Serpens-Aquila region as part of the James Clerk Maxwell Telescope (JCMT) Gould Belt Survey (GBS) of nearby star-forming regions. We investigate radiative heating by constructing temperature maps from the ratio of SCUBA-2 fluxes using a fixed dust opacity spectral index, {\\beta} = 1.8, and a beam convolution kernel to achieve a common 14.8" resolution. We identify 82 clumps ranging between 10 and 36K with a mean temperature of 20{\\pm}3K. Clump temperature is strongly correlated with proximity to the external OB association and there is no evidence that the embedded protostars significantly heat the dust. We identify 31 clumps that have cores with densities greater than 105cm{^{-3}}. Thirteen of these cores contain embedded Class 0/I protostars. Many cores are associated with bright-rimmed clouds seen in Herschel 70 {\\mu}m images. From JCMT HARP observations of the 12CO 3-2 line, we find contamination of the 850{\\mu}m band of up to 20 per cent. We investigate the free-free contribution to SCUBA-2 bands from large-scale and ultracompact H ii regions using archival VLA data and find the contribution is limited to individual stars, accounting for 9 per cent of flux per beam at 450 {\\mu}m or 12 per cent at 850 {\\mu}m in these cases. We conclude that radiative heating has potentially influenced the formation of stars in the Dust Arc sub-region, favouring Jeans stable clouds in the warm east and fragmentation in the cool west.

  5. The JCMT Gould Belt Survey: evidence for radiative heating and contamination in the W40 complex

    NASA Astrophysics Data System (ADS)

    Rumble, D.; Hatchell, J.; Pattle, K.; Kirk, H.; Wilson, T.; Buckle, J.; Berry, D. S.; Broekhoven-Fiene, H.; Currie, M. J.; Fich, M.; Jenness, T.; Johnstone, D.; Mottram, J. C.; Nutter, D.; Pineda, J. E.; Quinn, C.; Salji, C.; Tisi, S.; Walker-Smith, S.; Francesco, J. Di; Hogerheijde, M. R.; Ward-Thompson, D.; Bastien, P.; Bresnahan, D.; Butner, H.; Chen, M.; Chrysostomou, A.; Coude, S.; Davis, C. J.; Drabek-Maunder, E.; Duarte-Cabral, A.; Fiege, J.; Friberg, P.; Friesen, R.; Fuller, G. A.; Graves, S.; Greaves, J.; Gregson, J.; Holland, W.; Joncas, G.; Kirk, J. M.; Knee, L. B. G.; Mairs, S.; Marsh, K.; Matthews, B. C.; Moriarty-Schieven, G.; Mowat, C.; Rawlings, J.; Richer, J.; Robertson, D.; Rosolowsky, E.; Sadavoy, S.; Thomas, H.; Tothill, N.; Viti, S.; White, G. J.; Wouterloot, J.; Yates, J.; Zhu, M.

    2016-08-01

    We present SCUBA-2 450 μm and 850 μm observations of the W40 complex in the Serpens-Aquila region as part of the James Clerk Maxwell Telescope (JCMT) Gould Belt Survey (GBS) of nearby star-forming regions. We investigate radiative heating by constructing temperature maps from the ratio of SCUBA-2 fluxes using a fixed dust opacity spectral index, β = 1.8, and a beam convolution kernel to achieve a common 14.8 arcsec resolution. We identify 82 clumps ranging between 10 and 36 K with a mean temperature of 20 ± 3 K. Clump temperature is strongly correlated with proximity to the external OB association and there is no evidence that the embedded protostars significantly heat the dust. We identify 31 clumps that have cores with densities greater than 105cm-3. 13 of these cores contain embedded Class 0/I protostars. Many cores are associated with bright-rimmed clouds seen in Herschel 70 μm images. From JCMT HARP observations of the 12CO 3-2 line, we find contamination of the 850 μm band of up to 20 per cent. We investigate the free-free contribution to SCUBA-2 bands from large-scale and ultracompact H II regions using archival VLA data and find the contribution is limited to individual stars, accounting for 9 per cent of flux per beam at 450 μm or 12 per cent at 850 μm in these cases. We conclude that radiative heating has potentially influenced the formation of stars in the Dust Arc sub-region, favouring Jeans stable clouds in the warm east and fragmentation in the cool west.

  6. Filter vapor trap

    DOEpatents

    Guon, Jerold

    1976-04-13

    A sintered filter trap is adapted for insertion in a gas stream of sodium vapor to condense and deposit sodium thereon. The filter is heated and operated above the melting temperature of sodium, resulting in a more efficient means to remove sodium particulates from the effluent inert gas emanating from the surface of a liquid sodium pool. Preferably the filter leaves are precoated with a natrophobic coating such as tetracosane.

  7. Controlling Metal-Halide Vapor Density in Lasers

    NASA Technical Reports Server (NTRS)

    Pivirotto, T. J.

    1984-01-01

    Streams of buffer gas convect and dilute metal-halide vapor. Technique uses flow of buffer gas through reservoir, which contains heated metal halide, to convect vapors into discharge tube. Second stream of buffer gas dilutes vapor. Final vapor density in laser tube controlled and changed by adjusting either one or both of buffer gas flow rates.

  8. Use of perfluorinated phosphines to provide thermomorphic anticancer complexes for heat-based tumor targeting.

    PubMed

    Renfrew, Anna K; Scopelliti, Rosario; Dyson, Paul J

    2010-03-01

    A series of compounds of general formula [Ru(eta(6)-arene)(pta)(PR(3))Cl]BF(4) (arene = p-cymene or 4-phenyl-2-butanol; pta = 1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane, PR(3) = PPh(2)(p-C(6)H(4)C(2)H(4)C(8)F(17)), PPh(p-C(6)H(4)C(2)H(4)C(8)F(17))(2), P(p-C(6)H(4)C(2)H(4)C(6)F(13))(3), PPh(3) or P(p-C(6)H(4)F)(3)) have been prepared and characterized by spectroscopic methods. The structure of [Ru(eta(6)-p-cymene)(pta)Cl(P(p-C(6)H(4)F)(3))]BF(4) has also been established in the solid state by X-ray crystallography. The cytotoxicities of the compounds were determined in the A2780 and A2780 cisplatin-resistant cell lines revealing that the fluorinated phosphines significantly increase antiproliferative activity relative to their bis-chloride precursors. Two of the complexes were found to be thermoresponsive, that is, showing poor water solubility at 37 degrees C and good solubility at 42 degrees C, the temperature of a heated tumor, providing a method of tumor targeting. Incubation at 42 degrees C for 2 h resulted in improved cytotoxicities for two of the complexes. PMID:20131860

  9. The application of complex network time series analysis in turbulent heated jets

    SciTech Connect

    Charakopoulos, A. K.; Karakasidis, T. E. Liakopoulos, A.; Papanicolaou, P. N.

    2014-06-15

    In the present study, we applied the methodology of the complex network-based time series analysis to experimental temperature time series from a vertical turbulent heated jet. More specifically, we approach the hydrodynamic problem of discriminating time series corresponding to various regions relative to the jet axis, i.e., time series corresponding to regions that are close to the jet axis from time series originating at regions with a different dynamical regime based on the constructed network properties. Applying the transformation phase space method (k nearest neighbors) and also the visibility algorithm, we transformed time series into networks and evaluated the topological properties of the networks such as degree distribution, average path length, diameter, modularity, and clustering coefficient. The results show that the complex network approach allows distinguishing, identifying, and exploring in detail various dynamical regions of the jet flow, and associate it to the corresponding physical behavior. In addition, in order to reject the hypothesis that the studied networks originate from a stochastic process, we generated random network and we compared their statistical properties with that originating from the experimental data. As far as the efficiency of the two methods for network construction is concerned, we conclude that both methodologies lead to network properties that present almost the same qualitative behavior and allow us to reveal the underlying system dynamics.

  10. The application of complex network time series analysis in turbulent heated jets

    NASA Astrophysics Data System (ADS)

    Charakopoulos, A. K.; Karakasidis, T. E.; Papanicolaou, P. N.; Liakopoulos, A.

    2014-06-01

    In the present study, we applied the methodology of the complex network-based time series analysis to experimental temperature time series from a vertical turbulent heated jet. More specifically, we approach the hydrodynamic problem of discriminating time series corresponding to various regions relative to the jet axis, i.e., time series corresponding to regions that are close to the jet axis from time series originating at regions with a different dynamical regime based on the constructed network properties. Applying the transformation phase space method (k nearest neighbors) and also the visibility algorithm, we transformed time series into networks and evaluated the topological properties of the networks such as degree distribution, average path length, diameter, modularity, and clustering coefficient. The results show that the complex network approach allows distinguishing, identifying, and exploring in detail various dynamical regions of the jet flow, and associate it to the corresponding physical behavior. In addition, in order to reject the hypothesis that the studied networks originate from a stochastic process, we generated random network and we compared their statistical properties with that originating from the experimental data. As far as the efficiency of the two methods for network construction is concerned, we conclude that both methodologies lead to network properties that present almost the same qualitative behavior and allow us to reveal the underlying system dynamics.

  11. Vaporizer performance

    NASA Astrophysics Data System (ADS)

    Liu, C. H.; Perez-Ortiz, B. M.; Whitelaw, J. H.

    This paper examines the nature of the flow leaving a vaporizer, its dependence on the flowrates of air and kerosene fuel, the inlet air temperature, and the possible consequences for the performance of a combustor fueled by the vaporizer. A phase Doppler velocimeter was used to examine the distribution of droplet diameters, velocities of the droplets, and the liquid-fuel flux at the exit. Measurements are also reported which show the nature of the two-phase flow away from the vaporizer exits and in important regions within a combustor corresponding to a one-sixth annular sector of a reverse-flow arrangement. The distribution of droplets within the combustor was observed and photographs of the combusting flow are presented.

  12. Vapor fragrancer

    NASA Astrophysics Data System (ADS)

    Sang, Q. Tran; Bryant, Timothy D.

    1987-05-01

    This invention relates to a vapor fragrancer for continuously, uniformly, and economically odorizing or deodorizing an environment. Homes, offices, automobiles, and space stations require either odorizing or deodorizing of the atmosphere to create pleasant conditions for work or leisure. A vapor fragrancer is provided to accomplish these goals. A supplier continuously supplies a predetermined amount of desired liquid fragrance from a container to a retaining material, which is positioned in the circulation path of the atmosphere. The supplier is either a low powered pump or a gravity dispenser. The atmosphere flowing in a circulation path passes over the retaining material containing the liquid fragrance and lifts a fragrant vapor from the retaining material. The atmosphere is thereby continuously and uniformly fragranced.

  13. Single-ion heat capacities, C(p)(298)ion, of solids: with a novel route to heat-capacity estimation of complex anions.

    PubMed

    Glasser, Leslie; Jenkins, H Donald Brooke

    2012-06-01

    Single-ion heat capacities, C(p)(298)(ion), are additive values for the estimation of room-temperature (298 K) heat capacities of ionic solids. They may be used for inferring the heat capacities of ionic solids for which values are unavailable and for checking reported values, thus complementing our independent method of estimation from formula unit volumes (termed volume-based thermodynamics, VBT). Analysis of the reported heat-capacity data presented here provides a new self-consistent set of heat capacities for both cations and anions that is compatible (and thus may be combined) with an extensive set developed by Spencer. The addition of a large range of silicate species permits the estimation of the heat capacities of many silicate minerals. The single-ion heat capacities of individual silicate anions are observed to be strictly proportional to the total number of atoms (Si plus O), n, contained within the silicate anion complex itself (e.g., for the anion Si(2)O(7)(2-), n = 9, for SiO(4)(2-), n = 5), C(p)(silicate anion)/J K(-1) mol(-1) = 13.8n, in a new rule that is an extension of the Neumann-Kopp relationship. The same linear relationship applies to other homologous anion series (for example, oxygenated heavy-metal anion complexes such as niobates, bismuthates, and tantalates), although with a different proportionality constant. A similar proportionality, C(p)(complex anion)/J K(-1) mol(-1) ≈ 17.5n, which may be regarded as a convenient "rule of thumb", also applies, although less strictly, to complex anions in general. The proportionality constants reflect the rigidity of the complex anion, being always less than the Dulong-Petit value of 25 J K(-1) mol(-1). An emergent feature of our VBT and single-ion approaches to an estimation of the thermodynamic properties is the identification of anomalies in measured values, as is illustrated in this paper. PMID:22583202

  14. Precision ozone vapor pressure measurements

    NASA Technical Reports Server (NTRS)

    Hanson, D.; Mauersberger, K.

    1985-01-01

    The vapor pressure above liquid ozone has been measured with a high accuracy over a temperature range of 85 to 95 K. At the boiling point of liquid argon (87.3 K) an ozone vapor pressure of 0.0403 Torr was obtained with an accuracy of + or - 0.7 percent. A least square fit of the data provided the Clausius-Clapeyron equation for liquid ozone; a latent heat of 82.7 cal/g was calculated. High-precision vapor pressure data are expected to aid research in atmospheric ozone measurements and in many laboratory ozone studies such as measurements of cross sections and reaction rates.

  15. Chemical vapor deposition sciences

    SciTech Connect

    1992-12-31

    Chemical vapor deposition (CVD) is a widely used method for depositing thin films of a variety of materials. Applications of CVD range from the fabrication of microelectronic devices to the deposition of protective coatings. New CVD processes are increasingly complex, with stringent requirements that make it more difficult to commercialize them in a timely fashion. However, a clear understanding of the fundamental science underlying a CVD process, as expressed through computer models, can substantially shorten the time required for reactor and process development. Research scientists at Sandia use a wide range of experimental and theoretical techniques for investigating the science of CVD. Experimental tools include optical probes for gas-phase and surface processes, a range of surface analytic techniques, molecular beam methods for gas/surface kinetics, flow visualization techniques and state-of-the-art crystal growth reactors. The theoretical strategy uses a structured approach to describe the coupled gas-phase and gas-surface chemistry, fluid dynamics, heat and mass transfer of a CVD process. The software used to describe chemical reaction mechanisms is easily adapted to codes that model a variety of reactor geometries. Carefully chosen experiments provide critical information on the chemical species, gas temperatures and flows that are necessary for model development and validation. This brochure provides basic information on Sandia`s capabilities in the physical and chemical sciences of CVD and related materials processing technologies. It contains a brief description of the major scientific and technical capabilities of the CVD staff and facilities, and a brief discussion of the approach that the staff uses to advance the scientific understanding of CVD processes.

  16. Mechanical vapor recompression for waste energy recovery

    SciTech Connect

    Becker, F.E.; Zakak, A.I.

    1985-03-01

    This paper is concerned with energy recovery in petroleum distillation processes utilizing mechanical vapor recompression. Several examples illustrating recompression of head vapors for heating the reboiler of a distillation tower are presented. The advantages of the mechanical vapor recompression system using a screw compressor are discussed in detail. The system is economically attractive with simple payback periods often less than two years. The paper describes the merits of mechanical vapor recompression, using a screw-type compressor for recovering energy at the distillation tower, and how it can be accomplished by using an intermediary fluid such as steam or by recompressing the distillation column vapors directly.

  17. Specific Genetic Immunotherapy Induced by Recombinant Vaccine Alpha-Fetoprotein-Heat Shock Protein 70 Complex

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoping; Lin, Huanping; Wang, Qiaoxia

    Purposes: To construct a recombinant vaccine alpha-fetoprotein (AFP)-heat shock protein (HSP70) complex, and study its ability to induce specific CTL response and its protective effect against AFP-producing tumor. Material/Methods: A recombinant vaccine was constructed by conjugating mouse alpha-fetoprotein to heat shock protein 70. By way of intracutaneous injection, mice were primed and boosted with recombinant vaccine mAFP/HSP70, whereas single mAFP or HSP70 injection as controls. The ELISPOT and ELISA were used to measure the frequency of cells producing the cytokine IFN-γ in splenocytes and the level of anti-AFP antibody of serum from immunized mice respectively. In vivo tumor challenge were carried out to assess the immune effect of the recombinant vaccine. Results: By recombinant mAFP/HSP70 vaccine immunization, the results of ELISPOT and ELISA showed that the number of splenic cells producing IFN-γ and the level of anti-AFP antibody of serum were significantly higher in mAFP/HSP70 group than those in mAFP and HSP70 groups (108.50±11.70 IFN-γ spots/106 cells vs 41.60±10.40 IFN-γ spots/106 cells, 7.32±3.14 IFN-γ spots/106 cells, P<0.01; 156.32±10.42 μg/mL vs 66.52±7.35 μg/mL, 5.73±2.89 μg/mL, P<0.01). The tumor volume in mAFP/HSP70 group was significantly smaller than that in mAFP and HSP70 groups (42.44±7.14 mm3 vs 392.23±12.46 mm3, 838.63±13.84 mm3, P<0.01). Conclusions: The study further confirmed the function of heat shock protein 70's immune adjuvant. Sequential immunization with recombinant mAFP/HSP70 vaccine could generate effective antitumor immunity on AFP-producing tumor. The recombined mAFP/HSP70 vaccine may be suitable for serving as an immunotherapy for hepatocellular carcinoma.

  18. Heating systems for heating subsurface formations

    DOEpatents

    Nguyen, Scott Vinh; Vinegar, Harold J.

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  19. Mechanism of Formation and Stabilization of Nanoparticles Produced by Heating Electrostatic Complexes of WPI-Dextran Conjugate and Chondroitin Sulfate.

    PubMed

    Dai, Qingyuan; Zhu, Xiuling; Yu, Jingyang; Karangwa, Eric; Xia, Shuqin; Zhang, Xiaoming; Jia, Chengsheng

    2016-07-13

    Protein conformational changes were demonstrated in biopolymer nanoparticles, and molecular forces were studied to elucidate the formation and stabilization mechanism of biopolymer nanoparticles. The biopolymer nanoparticles were prepared by heating electrostatic complexes of whey protein isolate (WPI)-dextran conjugate (WD) and chondroitin sulfate (ChS) above the denaturation temperature and near the isoelectric point of WPI. The internal characteristics of biopolymer nanoparticles were analyzed by several spectroscopic techniques. Results showed that grafted dextran significantly (p < 0.05) prevented the formation of large aggregates of WD dispersion during heat treatment. However, heat treatment slightly induced the hydrophobicity changes of the microenvironment around fluorophores of WD. ChS electrostatic interaction with WD changed the fluorescence intensity of WD regardless of heat treatment. Far-UV circular dichroism (CD) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopies confirmed that glycosylation and ionic polysaccharide did not significantly cause protein conformational changes in WD and ChS (WDC) during heat treatment. In addition, hydrophobic bonds were the major molecular force for the formation and stabilization of biopolymer nanoparticles. However, hydrogen bonds slightly influenced their formation and stabilization. Ionic bonds only promoted the formation of biopolymer nanoparticles, while disulfide bonds partly contributed to their stability. This work will be beneficial to understand protein conformational changes and molecular forces in biopolymer nanoparticles, and to prepare the stable biopolymer nanoparticles from heating electrostatic complexes of native or glycosylated protein and polysaccharide. PMID:27329490

  20. Assessment of the CCSD and CCSD(T) Coupled-Cluster Methods in Calculating Heats of Formation for Zn Complexes

    NASA Astrophysics Data System (ADS)

    Weaver, Michael N.; Yang, Yue; Merz, Kenneth M.

    2009-08-01

    Heats of formation were calculated using coupled-cluster methods for a series of zinc complexes. The calculated values were evaluated against previously conducted computational studies using density functional methods as well as experimental values. Heats of formation for nine neutral ZnXn complexes [X = -Zn, -H, -O, -F2, -S, -Cl, -Cl2, -CH3, (-CH3)2] were determined at the CCSD and CCSD(T) levels using the 6-31G** and TZVP basis sets as well as the LANL2DZ-6-31G** (LACVP**) and LANL2DZ-TZVP hybrid basis sets. The CCSD(T)/6-31G** level of theory was found to predict the heat of formation for the nonalkyl Zn complexes most accurately. The alkyl Zn species were problematic in that none of the methods that were tested accurately predicted the heat of formation for these complexes. In instances where experimental geometric parameters were available, these were most accurately predicted by the CCSD/6-31G** level of theory; going to CCSD(T) did not improve agreement with the experimental values. Coupled-cluster methods did not offer a systemic improvement over DFT calculations for a given functional/basis set combination. With the exceptions of ZnH and ZnF2, there are multiple density functionals that outperform coupled-cluster calculations with the 6-31G** basis set.

  1. Heat-Pipe Array for Large-Area Cooling

    NASA Technical Reports Server (NTRS)

    Edelstein, F.; Brown, R. F.

    1986-01-01

    High rates of heat transfer anticipated. Prototype evaporative cold plate gathers waste heat from equipment mounted on it. Plate made by welding together flanges of several sections of heat pipe. Since plate separates liquid and vapor phases at inlet and outlet ports, eliminates complexities and uncertainties of two-phase flow in zero gravity. On earth, inlet valve enables plate to operate at relatively-large height differences with other plates in same system.

  2. The chloroplast Ndh complex mediates the dark reduction of the plastoquinone pool in response to heat stress in tobacco leaves.

    PubMed

    Sazanov, L A; Burrows, P A; Nixon, P J

    1998-06-01

    We have examined the effects of heat stress on electron transfer in the thylakoid membrane of an engineered plastid ndh deletion mutant, delta1, incapable of performing the Ndh-mediated reduction of the plastoquinone pool in the chloroplast. Upon heat stress in the dark, the rate of PSII-independent reduction of PSI after subsequent illumination by far-red light is dramatically enhanced in both delta1 and a wild-type control plant (WT). In contrast, in the dark, only the WT shows an increase in the reduction state of the plastoquinone pool. We conclude that the heat stress-induced reduction of the intersystem electron transport chain can be mediated by Ndh-independent pathways in the light but that in the dark the dominant pathway for reduction of the plastoquinone pool is catalysed by the Ndh complex. Our results therefore demonstrate a functional role for the Ndh complex in the dark. PMID:9657394

  3. MEMS Lubrication by In-Situ Tribochemical Reactions From the Vapor Phase.

    SciTech Connect

    Dugger, Michael T.; Asay, David B.; Kim, Seong H.

    2008-01-01

    Vapor Phase Lubrication (VPL) of silicon surfaces with pentanol has been demonstrated. Two potential show stoppers with respect to application of this approach to real MEMS devices have been investigated. Water vapor was found to reduce the effectiveness of VPL with alcohol for a given alcohol concentration, but the basic reaction mechanism observed in water-free environments is still active, and devices operated much longer in mixed alcohol and water vapor environments than with chemisorbed monolayer lubricants alone. Complex MEMS gear trains were successfully lubricated with alcohol vapors, resulting in a factor of 104 improvement in operating life without failure. Complex devices could be made to fail if operated at much higher frequencies than previously used, and there is some evidence that the observed failure is due to accumulation of reaction products at deeply buried interfaces. However, if hypothetical reaction mechanisms involving heated surfaces are valid, then the failures observed at high frequency may not be relevant to operation at normal frequencies. Therefore, this work demonstrates that VPL is a viable approach for complex MEMS devices in conventional packages. Further study of the VPL reaction mechanisms are recommended so that the vapor composition may be optimized for low friction and for different substrate materials with potential application to conventionally fabricated, metal alloy parts in weapons systems. Reaction kinetics should be studied to define effective lubrication regimes as a function of the partial pressure of the vapor phase constituent, interfacial shear rate, substrate composition, and temperature.

  4. Heat transfer system

    DOEpatents

    McGuire, Joseph C.

    1982-01-01

    A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  5. Heat transfer system

    DOEpatents

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  6. Novel methods of copper vapor laser excitation

    SciTech Connect

    McColl, W.B.; Ching, H.; Bosch, R.; Brake, M.; Gilgenbach, R.

    1990-12-31

    Microwave and intense electron beam excitation of copper vapor are being investigated to be used in copper vapor lasers for isotope separation. Both methods use copper chloride vapor by heating copper chloride. Helium was used as the buffer gas at 2 to 100 torr. In the microwave system, intense copperlines at 510 nm and 578 nm were observed. Initial electron beam results indicate that light emission follows the beam current.

  7. Hydrodynamic, Heat and Acoustic Processes Modelling in Tranport of Rheologically Complex Viscous Media Technology in Pipelines

    NASA Astrophysics Data System (ADS)

    Kharlamov, Sergey N.; Kudelin, Nikita S.; Dedeyev, Pavel O.

    2014-08-01

    The paper describes the results of mathematical modelling of acoustic processes, hydrodynamics and heat exchange in case of oil products transportation in pipelines with constant and variable cross-section. The turbulence model features of RANS approach and intensification of heat exchange in substances with anomalous rheology are reviewed. It is shown that statistic second order models are appropriate to use for forecasting details of the pulsating flows. The paper states the numerical integration features of determining equations. The properties of vibratory effect influence are determined. Vortex and heat perturbations, rheological changes impact on resistance regularities and intensity of heat exchange are analyzed.

  8. Role of chalcogen vapor annealing in inducing bulk superconductivity in Fe1+yTe1-xSex [How does annealing in chalcogen vapor induce superconductivity in Fe1+yTe-xSex?

    DOE PAGESBeta

    Lin, Wenzhi; Ganesh, P.; Gianfrancesco, Anthony; Wang, Jun; Berlijn, Tom; Maier, Thomas A.; Kalinin, Sergei V.; Sales, Brian C.; Pan, Minghu

    2015-02-01

    Recent investigations have shown that Fe1+yTe1-xSex can be made superconducting by annealing it in Se and O vapors. The current lore is that these chalcogen vapors induce superconductivity by removing the magnetic excess Fe atoms. To investigate this phenomenon we performed a combination of magnetic susceptibility, specific heat and transport measurements together with scanning tunneling microscopy and spectroscopy and density functional theory calculations on Fe1+yTe1-xSex treated with Te vapor. We conclude that the main role of the Te vapor is to quench the magnetic moments of the excess Fe atoms by forming FeTem (m ≥ 1) complexes. We show thatmore » the remaining FeTem complexes are still damaging to the superconductivity and therefore that their removal potentially could further improve superconductive properties in these compounds.« less

  9. A software system used for load distribution at a combined heat and power plant with the complex mix of the equipment and complex schemes of heat and electric power supply

    NASA Astrophysics Data System (ADS)

    Makarch'yan, V. A.; Chernyaev, A. N.; Andryushin, A. V.; Pechenkin, S. P.; Lisitsa, V. I.; Logvinov, E. I.; Molchanov, A. Yu.

    2013-05-01

    The authors describe various approaches to construction of an algorithm for the solution of the problem of load distribution at a combined heat and power (CHP) plant with the complex mix of the equipment and complex schemes of heat and electrical energy supply on the basis of which the software system has been developed. Methods of obtaining energy characteristics of the equipment used for solving the problem of load distribution were studied. The results of the implementation of the software system for load distribution at the CHP-23 plant belonging to OAO Mosenergo are given. Realization of recommendations on maintaining an operational mode of the equipment with due regard for its optimal loading makes it possible to obtain fuel savings of up to 1%.

  10. Role of chalcogen vapor annealing in inducing bulk superconductivity in Fe1 +yTe1 -xSex

    NASA Astrophysics Data System (ADS)

    Lin, Wenzhi; Ganesh, P.; Gianfrancesco, Anthony; Wang, Jun; Berlijn, Tom; Maier, Thomas A.; Kalinin, Sergei V.; Sales, Brian C.; Pan, Minghu

    2015-02-01

    Recent investigations have shown that Fe1 +yTe1 -xSex can be made superconducting by annealing it in Se and O vapors. The current lore is that these chalcogen vapors induce superconductivity by removing the magnetic excess Fe atoms. To investigate this phenomenon, we performed a combination of magnetic susceptibility, specific heat, and transport measurements together with scanning tunneling microscopy and spectroscopy and density functional theory calculations on Fe1 +yTe1 -xSex treated with Te vapor. We conclude that the main role of the Te vapor is to quench the magnetic moments of the excess Fe atoms by forming FeTem (m ≥1 ) complexes. We show that the remaining FeTem complexes are still damaging to the superconductivity and therefore that their removal potentially could further improve superconductive properties in these compounds.

  11. Acoustic Behavior of Vapor Bubbles

    NASA Technical Reports Server (NTRS)

    Prosperetti, Andrea; Oguz, Hasan N.

    1996-01-01

    In a microgravity environment vapor bubbles generated at a boiling surface tend to remain near it for a long time. This affects the boiling heat transfer and in particular promotes an early transition to the highly inefficient film boiling regime. This paper describes the physical basis underlying attempts to remove the bubbles by means of pressure radiation forces.

  12. Axially grooved heat pipe study

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A technology evaluation study on axially grooved heat pipes is presented. The state-of-the-art is reviewed and present and future requirements are identified. Analytical models, the Groove Analysis Program (GAP) and a closed form solution, were developed to facilitate parametric performance evaluations. GAP provides a numerical solution of the differential equations which govern the hydrodynamic flow. The model accounts for liquid recession, liquid/vapor shear interaction, puddle flow as well as laminar and turbulent vapor flow conditions. The closed form solution was developed to reduce computation time and complexity in parametric evaluations. It is applicable to laminar and ideal charge conditions, liquid/vapor shear interaction, and an empirical liquid flow factor which accounts for groove geometry and liquid recession effects. The validity of the closed form solution is verified by comparison with GAP predictions and measured data.

  13. Heat transfer in the turbulent swirling flow in a channel of complex shape

    NASA Astrophysics Data System (ADS)

    Evlev, V. M.; Kalinin, E. K.; Danilov, Iu. I.; Dziubenko, B. V.; Dreitser, G. A.

    The heat transfer characteristics of turbulent swirling flow in channels formed by densely packed twisted tube bundles of oval cross section are considered in the light of several models. These include a flow model that invokes the concept of wall layer characteristic thickness, a temperature and velocity field model which takes account of mixing at heat input azimuthal inhomogeneities, the explanation of heat transfer and transverse mixing intensification mechanisms, and a model of heat transfer and hydraulic resistance that addresses the velocity cross component. In the region of fully developed turbulence, it is found that the heat transfer coefficient increases at relative swirling pitches greater than 10-12 deg, commensurately with hydraulic resistance.

  14. Vacuum-Induction, Vacuum-Arc, and Air-Induction Melting of a Complex Heat-Resistant Alloy

    NASA Technical Reports Server (NTRS)

    Decker, R. F.; Rowe, John P.; Freeman, J. W.

    1959-01-01

    The relative hot-workability and creep-rupture properties at 1600 F of a complex 55Ni-20Cr-15Co-4Mo-3Ti-3Al alloy were evaluated for vacuum-induction, vacuum-arc, and air-induction melting. A limited study of the role of oxygen and nitrogen and the structural effects in the alloy associated with the melting process was carried out. The results showed that the level of boron and/or zirconium was far more influential on properties than the melting method. Vacuum melting did reduce corner cracking and improve surface during hot-rolling. It also resulted in more uniform properties within heats. The creep-rupture properties were slightly superior in vacuum heats at low boron plus zirconium or in heats with zirconium. There was little advantage at high boron levels and air heats were superior at high levels of boron plus zirconium. Vacuum heats also had fewer oxide and carbonitride inclusions although this was a function of the opportunity for separation of the inclusions from high oxygen plus nitrogen heats. The removal of phosphorous by vacuum melting was not found to be related to properties. Oxygen plus nitrogen appeared to increase ductility in creep-rupture tests suggesting that vacuum melting removes unidentified elements detrimental to ductility. Oxides and carbonitrides in themselves did not initiate microcracks. Carbonitrides in the grain boundaries of air heats did initiate microcracks. The role of microcracking from this source and as a function of oxygen and nitrogen content was not clear. Oxygen and nitrogen did intensify corner cracking during hot-rolling but were not responsible for poor surface which resulted from rolling heats melted in air.

  15. Air heating system

    DOEpatents

    Primeau, John J.

    1983-03-01

    A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

  16. Fluid flow effects in evaporation from liquid-vapor meniscus

    SciTech Connect

    Khrustalev, D.; Faghri, A.

    1996-12-31

    A mathematical model of the evaporating liquid-vapor meniscus in a capillary slot has been developed. The model includes two-dimensional steady-state momentum conservation and energy equations for both the vapor and liquid phases, and incorporates the existing simplified one-dimensional model of the evaporating microfilm. The numerical results, obtained for water, demonstrate the importance of accounting for the fluid flow in calculating the effective evaporative heat transfer coefficient and the superheat of the vapor over the liquid-vapor meniscus due to the heat transfer from the heated wall. With higher heat fluxes, a recirculation zone appears in the vapor near the heated wall due to the extensive evaporation in the thin-film region of the liquid-vapor meniscus.

  17. Gravity sensitivity of a resistojet water vaporizer

    NASA Technical Reports Server (NTRS)

    Morren, W. Earl

    1993-01-01

    A laboratory model of a water vaporizer for resistojet applications was designed, fabricated, and steady and transient characteristics were measured. Vaporizer operation was not impacted by rotation about a horizontal axis normal to its own. The vaporizer was operated under low and high accelerations aboard a jet aircraft for periods up to 25 s at flow rates ranging from 159(10)(exp -6) to 230(10)(exp -6) kg/s. Slight changes in inlet and outlet pressures and some heat exchanger temperatures were observed during the low-gravity tests. However, the results of these tests indicated probable compatibility of the vaporizer design tested with a low-gravity environment.

  18. Solar heating and hot water system installed at Municipal Building complex, Abbeville, South Carolina

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Information on the solar energy system installed at the new municipal building for the City of Abbeville, SC is presented, including a description of solar energy system and buildings, lessons learned, and recommendations. The solar space heating system is a direct air heating system. The flat roof collector panel was sized to provide 75% of the heating requirement based on an average day in January. The collectors used are job-built with two layers of filon corrugated fiberglass FRP panels cross lapped make up the cover. The storage consists of a pit filled with washed 3/4 in - 1 1/2 in diameter crushed granite stone. The air handler includes the air handling mechanism, motorized dampers, air circulating blower, sensors, control relays and mode control unit. Solar heating of water is provided only those times when the hot air in the collector is exhausted to the outside.

  19. Theory of hysteresis during electron heating of electromagnetic wave scattering by self-organized dust structures in complex plasmas

    SciTech Connect

    Tsytovich, Vadim; Gusein-zade, Namik; Ignatov, Alexander

    2015-07-15

    Dust structuring is a natural and universal process in complex plasmas. The scattering of electromagnetic waves by dust structures is governed by the factor of coherency, i.e., the total number of coherent electrons in a single structure. In the present paper, we consider how the factor of coherency changes due to additional pulse electron heating and show that it obeys a hysteresis. After the end of the pulse heating, the scattering intensity differs substantially from that before heating. There are three necessary conditions for scattering hysteresis: first, the radiation wavelength should be larger than the pattern (structure) size; second, the total number of coherent electrons confined by the structure should be large; and third, the heating pulse duration should be shorter than the characteristic time of dust structure formation. We present the results of numerical calculations using existing models of self-consistent dust structures with either positively or negatively charged dust grains. It is shown that, depending on the grain charge and the ionization rate, two types of hysteresis are possible: one with a final increase of the scattering and the other with a final decrease of the scattering. It is suggested that the hysteresis of coherent scattering can be used as a tool in laboratory experiments and that it can be a basic mechanism explaining the observed hysteresis in radar scattering by noctilucent clouds during active experiments on electron heating in mesosphere.

  20. Effects of friction and heat conduction on sound propagation in ducts. [analyzing complex aerodynamic noise problems

    NASA Technical Reports Server (NTRS)

    Huerre, P.; Karamcheti, K.

    1976-01-01

    The theory of sound propagation is examined in a viscous, heat-conducting fluid, initially at rest and in a uniform state, and contained in a rigid, impermeable duct with isothermal walls. Topics covered include: (1) theoretical formulation of the small amplitude fluctuating motions of a viscous, heat-conducting and compressible fluid; (2) sound propagation in a two dimensional duct; and (3) perturbation study of the inplane modes.

  1. Synthesis and evaluation of κ(2)-β-diketonate and β-ketoesterate tungsten(vi) oxo-alkoxide complexes as precursors for chemical vapor deposition of WOx thin films.

    PubMed

    Bonsu, Richard O; Bock, Duane C; Kim, Hankook; Korotkov, Roman Y; Abboud, Khalil A; Anderson, Timothy J; McElwee-White, Lisa

    2016-07-01

    Reactions of [WO(OR)4]x (x = 1, 2) complexes with bidentate ligands (LH = acacH, tbacH, dpmH, tbpaH) afforded complexes : [WO(OCH3)3(acac) (); WO(OCH2CH3)3(acac) (); WO(OCH(CH3)2)3(acac) (); WO(OCH3)3(tbac) (); WO(OCH2CH3)3(tbac) (); WO(OCH(CH3)2)3(tbac) (); WO(OCH2CH3)3(dpm) (); WO(OCH(CH3)2)3(dpm) (); WO(OCH2C(CH3)3)3(acac) (); WO(OCH2C(CH3)3)3(tbac) (); WO(OCH2C(CH3)3)3(dpm) (); WO(OCH2C(CH3)3)3(tbpa) (); WO(OC(CH3)3)3(tbac) ()]. The synthesis is facilitated by the lability of the bridging ligands of the [WO(OR)4]2 complexes in solution, which provides a pathway for exchange of L with an alkoxide ligand. Thermogravimetric analysis and the conditions for sublimation or distillation of demonstrate that they have sufficient vapor pressure and thermal stability for volatilization in a conventional Chemical Vapor Deposition (CVD) reactor. High solubility in hydrocarbon and ether solvents establishes that the complexes are also potential candidates for Aerosol-Assisted Chemical Vapor Deposition (AACVD). AACVD from on ITO or bare glass resulted in growth of continuous, dense and amorphous thin films of substoichiometric WOx between 250-350 °C and nanorods of W18O49 above 350 °C. PMID:27160734

  2. Experimental study of flash boiling spray vaporization through quantitative vapor concentration and liquid temperature measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Gaoming; Hung, David L. S.; Xu, Min

    2014-08-01

    Flash boiling sprays of liquid injection under superheated conditions provide the novel solutions of fast vaporization and better air-fuel mixture formation for internal combustion engines. However, the physical mechanisms of flash boiling spray vaporization are more complicated than the droplet surface vaporization due to the unique bubble generation and boiling process inside a superheated bulk liquid, which are not well understood. In this study, the vaporization of flash boiling sprays was investigated experimentally through the quantitative measurements of vapor concentration and liquid temperature. Specifically, the laser-induced exciplex fluorescence technique was applied to distinguish the liquid and vapor distributions. Quantitative vapor concentration was obtained by correlating the intensity of vapor-phase fluorescence with vapor concentration through systematic corrections and calibrations. The intensities of two wavelengths were captured simultaneously from the liquid-phase fluorescence spectra, and their intensity ratios were correlated with liquid temperature. The results show that both liquid and vapor phase of multi-hole sprays collapse toward the centerline of the spray with different mass distributions under the flash boiling conditions. Large amount of vapor aggregates along the centerline of the spray to form a "gas jet" structure, whereas the liquid distributes more uniformly with large vortexes formed in the vicinity of the spray tip. The vaporization process under the flash boiling condition is greatly enhanced due to the intense bubble generation and burst. The liquid temperature measurements show strong temperature variations inside the flash boiling sprays with hot zones present in the "gas jet" structure and vortex region. In addition, high vapor concentration and closed vortex motion seem to have inhibited the heat and mass transfer in these regions. In summary, the vapor concentration and liquid temperature provide detailed information

  3. Process for vaporizing a liquid hydrocarbon fuel

    DOEpatents

    Szydlowski, Donald F.; Kuzminskas, Vaidotas; Bittner, Joseph E.

    1981-01-01

    The object of the invention is to provide a process for vaporizing liquid hydrocarbon fuels efficiently and without the formation of carbon residue on the apparatus used. The process includes simultaneously passing the liquid fuel and an inert hot gas downwardly through a plurality of vertically spaed apart regions of high surface area packing material. The liquid thinly coats the packing surface, and the sensible heat of the hot gas vaporizes this coating of liquid. Unvaporized liquid passing through one region of packing is uniformly redistributed over the top surface of the next region until all fuel has been vaporized using only the sensible heat of the hot gas stream.

  4. Large-capacity pump vaporizer for liquid hydrogen and nitrogen

    NASA Technical Reports Server (NTRS)

    Hauser, J. A.

    1970-01-01

    Pump vaporizer system delivers 500 standard cubic feet per minute of hydrogen or nitrogen, one system delivers both gases. Vacuum-jacketed pump discharges liquid hydrogen or liquid nitrogen into vaporizing system heated by ambient air. Principal characteristics of the flow and discharge system, pump, and vaporizer are given.

  5. Power production with two-phase expansion through vapor dome

    SciTech Connect

    Amend, W.E.; Toner, S.J.

    1984-08-07

    In a system wherein a fluid exhibits a regressive vapor dome in a T-S diagram, the following are provided: a two-phase nozzle receiving the fluid in pressurized and heated liquid state and expanding the received liquid into saturated or superheated vapor state, and apparatus receiving the saturated or superheated vapor to convert the kinetic energy thereof into power.

  6. Measuring the Heats of Water.

    ERIC Educational Resources Information Center

    Hunt, James L.; Tegart, Tracy L.

    1994-01-01

    Uses common equipment (tea kettle and vacuum bottles) to precisely measure the specific heat, latent heat of fusion, and latent heat of vaporization of water. Provides descriptions for all three experiments. (MVL)

  7. Distribution of Chlorophyll-Protein Complexes during Chilling in the Light Compared with Heat-Induced Modifications 1

    PubMed Central

    Ovaska, Jari; Mäenpää, Pirkko; Nurmi, Arja; Aro, Eva-Mari

    1990-01-01

    The effects of chilling in the light (4 days at 5°C and 100-200 micromoles of photons per square meter per second) on the distribution of chlorophyll (Chl) protein complexes between appressed and nonappressed thylakoid regions of pumpkin (Cucurbita pepo L.) chloroplasts were studied and compared with the changes occurring during in vitro heat treatment (5 minutes at 40°C) of isolated thylakoids. Both treatments induced an increase (18 and 65%, respectively) in the relative amount of the antenna Chl a protein complexes (CP47 + CP43) of photosystem II (PSII) in stroma lamellae vesicles. Freeze-fracture replicas of light-chilled material revealed an increase in the particle density on the exoplasmic fracture face of unstacked membrane regions. These two treatments differed markedly, however, in respect to comigration of the light-harvesting Chl a/b protein complex (LHCII) of PSII. The LHCII/PSII ratio in stroma lamellae vesicles remained fairly constant during chilling in the light, whereas it dropped during the heat treatment. Moreover, it was a minor light-harvesting Chl a/b protein complex of PSII, CP29, that increased most in stroma lamellae vesicles during light-chilling. Changes in the organization of LHCII during chilling were suggested by a shift to particles of smaller sizes on the protoplasmic fracture face of stacked membrane regions and a decrease in the amount of trans-Δ3-hexadecenoic acid in the phosphatidyldiacylglycerol fraction. Images Figure 2 PMID:16667464

  8. Heat-Transfer Coupling For Heat Pipes

    NASA Technical Reports Server (NTRS)

    Nesmith, Bill J.

    1991-01-01

    Proposed welded heat-transfer coupling joins set of heat pipes to thermoelectric converter. Design avoids difficult brazing operation. Includes pair of mating flanged cups. Upper cup integral part of housing of thermoelectric converter, while lower cup integral part of plate supporting filled heat pipes. Heat pipes prefilled. Heat of welding applied around periphery of coupling, far enough from heat pipes so it would not degrade working fluid or create excessive vapor pressure in the pipes.

  9. Control of flow through a vapor generator

    DOEpatents

    Radcliff, Thomas D.

    2005-11-08

    In a Rankine cycle system wherein a vapor generator receives heat from exhaust gases, provision is made to avoid overheating of the refrigerant during ORC system shut down while at the same time preventing condensation of those gases within the vapor generator when its temperature drops below a threshold temperature by diverting the flow of hot gases to ambient and to thereby draw ambient air through the vapor generator in the process. In one embodiment, a bistable ejector is adjustable between one position, in which the hot gases flow through the vapor generator, to another position wherein the gases are diverted away from the vapor generator. Another embodiment provides for a fixed valve ejector with a bias towards discharging to ambient, but with a fan on the downstream side of said vapor generator for overcoming this bias.

  10. Heat transfer model for quenching by submerging

    NASA Astrophysics Data System (ADS)

    Passarella, D. N.; Varas, F.; Martín, E. B.

    2011-05-01

    In quenching by submerging the workpiece is cooled due to vaporization, convective flow and interaction of both mechanisms. The dynamics of these phenomena is very complex and the corresponding heat fluxes are strongly dependent on local flow variables such as velocity of fluid and vapor fraction. This local dependence may produce very different cooling rates along the piece, responsible for inappropriate metallurgical transformations, variability of material properties and residual stresses. In order to obtain an accurate description of cooling during quenching, a mathematical model of heat transfer is presented here. The model is based on the drift-flux mixture-model for multiphase flows, including an equation of conservation of energy for the liquid phase and specific boundary conditions that account for evaporation and presence of vapor phase on the surface of the piece. The model was implemented on Comsol Multiphysics software. Generation of appropriate initial and boundary conditions, as well as numerical resolution details, is briefly discussed. To test the model, a simple flow condition was analyzed. The effect of vapor fraction on heat transfer is assessed. The presence of the typical vapor blanket and its collapse can be recovered by the model, and its effect on the cooling rates on different parts of the piece is analyzed. Comparisons between numerical results and data from literature are made.

  11. Flow Visualization within the Evaporator of Planar Loop Heat Pipe

    NASA Astrophysics Data System (ADS)

    Suh, Junwoo; Cytrynowicz, Debra; Medis, Praveen; Gerner, Frank M.; Henderson, H. Thurman

    2005-02-01

    A planar micro loop heat pipe (LHP) with coherent porous silicon (CPS) wick in the evaporator is a two-phase heat transfer device that utilizes evaporation and condensation to transfer heat. This CPS wick has thousands of pores, which are 2 micrometer in diameter, contained over an area of one square centimeter. As heat is applied to the evaporator, liquid is vaporized and evaporator chamber's pressure is increased. A meniscus formed at the liquid/vapor interface inside the pore of the CPS wick is supported by capillary forces even though pressure force pushes it down. Vapor flows through the vapor line to the condenser and condenses. Liquid is transported back to the evaporator due to pressure difference. The internal thermodynamics and fluid dynamics are poorly understood due to the difficulty of taking internal measurements and the complexity of two-phase phenomena. To understand this thermal device, the clear evaporator machined from Pyrex glass was utilized to monitor the complex phenomena which occur in the evaporator. These phenomena include vapor formation, nucleate boiling, evaporation, depriming, and pressure oscillation. DI-water was utilized as the working fluid.

  12. Nonazeotropic Heat Pump

    NASA Technical Reports Server (NTRS)

    Ealker, David H.; Deming, Glenn

    1991-01-01

    Heat pump collects heat from water circulating in heat-rejection loop, raises temperature of collected heat, and transfers collected heat to water in separate pipe. Includes sealed motor/compressor with cooling coils, evaporator, and condenser, all mounted in outer housing. Gradients of temperature in evaporator and condenser increase heat-transfer efficiency of vapor-compression cycle. Intended to recover relatively-low-temperature waste heat and use it to make hot water.

  13. On the role of stochastic heating in experiments with complex plasmas

    SciTech Connect

    Marmolino, C.; De Angelis, U.; Ivlev, A. V.; Morfill, G. E.

    2009-03-15

    Stochastic heating of dust particles resulting from dust charge fluctuations is considered in some laboratory situations, where high kinetic temperatures of dust particles have been suggested or could be observed. A particular case, in the conditions of the scrape-off layer in tokamak plasmas, is also considered and it is shown that kinetic energies corresponding to velocities of {approx_equal}km/s can be reached in times of order {approx_equal}1 ms by micron-size particles interacting with a background of stochastically heated nanosize particles.

  14. Solar heat gain coefficient of complex fenestrations with a venetian blind for differing slat tilt angles

    SciTech Connect

    Klems, J.H.; Warner, J.L.

    1996-08-01

    Measured bidirectional transmittances and reflectances of a buff-colored venetian blind together with a layer calculation scheme developed in previous publications are utilized to produce directional-hemispherical properties for the venetian blind layer and solar heat gain coefficients for the blind in combination with clear double glazing. Results are presented for three blind slat tilt angles and for the blind mounted either interior to the double glazing or between the glass panes. Implications of the results for solar heat gain calculations are discussed in the context of sun positions for St. Louis, MO.

  15. Rapid presumptive identification of the Mycobacterium tuberculosis-bovis complex by radiometric determination of heat stable urease

    SciTech Connect

    Gandy, J.H.; Pruden, E.L.; Cox, F.R.

    1983-12-01

    Simple and rapid Bactec methodologies for the determination of neat (unaltered) and heat stable urease activity of mycobacteria are presented. Clinical isolates (63) and stock cultures (32)--consisting of: M. tuberculosis (19), M. bovis (5), M. kansasii (15), M. marinum (4), M. simiae (3), M. scrofulaceum (16), M. gordonae (6), M. szulgai (6), M. flavescens (1), M. gastri (1), M. intracellulare (6), M. fortuitum-chelonei complex (12), and M. smegmatis (1)--were tested for neat urease activity by Bactec radiometry. Mycobacterial isolates (50-100 mg wet weight) were incubated at 35 degrees C for 30 minutes with microCi14C-urea. Urease-positive mycobacteria gave Bactec growth index (GI) values greater than 100 units, whereas urease-negative species gave values less than 10 GI units. Eighty-three isolates possessing neat urease activity were heated at 80 degrees C for 30 minutes followed by incubation at 35 degrees C for 30 minutes with 1 microCi14C-urea. Mycobacterium tuberculosis-bovis complex demonstrated heat-stable urease activity (GI more than 130 units) and could be distinguished from mycobacteria other than tuberculosis (MOTT), which gave GI values equal to or less than 40 units.

  16. Plasmonic Nanobubbles as Transient Vapor Nanobubbles Generated Around Plasmonic Nanoparticles

    PubMed Central

    Lukianova-Hleb, Ekaterina; Hu, Ying; Latterini, Loredana; Tarpani, Luigi; Lee, Seunghyun; Drezek, Rebekah A.; Hafner, Jason H.; Lapotko, Dmitri O.

    2010-01-01

    We have used short laser pulses to generate transient vapor nanobubbles around plasmonic nanoparticles. The photothermal, mechanical and optical properties of such bubbles were found to be different from those of plasmonic nanoparticle and vapor bubbles as well. This phenomena was considered as a new complex nanosystem – plasmonic nanobubble (PNB). Mechanical and optical scattering properties of PNB depended upon the nanoparticle surface and heat capacity, clusterization state, and the optical pulse length. The generation of the PNB required much higher laser pulse fluence thresholds than the explosive boiling level, and was characterized by the relatively high lower threshold of the minimal size (lifetime) of PNB. Optical scattering by PNB and its diameter (measured as the lifetime) has been varied with the fluence of laser pulse and this has demonstrated the tunable nature of PNB. PMID:20307085

  17. Processing of extraterrestrial materials by high temperature vacuum vaporization

    NASA Technical Reports Server (NTRS)

    Grimley, R. T.; Lipschutz, M. E.

    1983-01-01

    It is noted that problems associated with the extraction and concentration of elements and commpounds important for the construction and operation of space habitats have received little attention. High temperature vacuum vaporization is considered a promising approach; this is a technique for which the space environment offers advantages in the form of low ambient pressures and temperatures and the possibility of sustained high temperatures via solar thermal energy. To establish and refine this new technology, experimental determinations must be made of the material release profiles as a function of temperature, of the release kinetics and chemical forms of material being transported, and of the various means of altering release kinetics. Trace element data determined by neutron activation analysis of meteorites heated to 1400 C in vacuum is summarized. The principal tool, high temperature spectrometry, is used to examine the vaporization thermodynamics and kinetics of major and minor elements from complex multicomponent extraterrestrial materials.

  18. Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles.

    PubMed

    Lukianova-Hleb, Ekaterina; Hu, Ying; Latterini, Loredana; Tarpani, Luigi; Lee, Seunghyun; Drezek, Rebekah A; Hafner, Jason H; Lapotko, Dmitri O

    2010-04-27

    We have used short laser pulses to generate transient vapor nanobubbles around plasmonic nanoparticles. The photothermal, mechanical, and optical properties of such bubbles were found to be different from those of plasmonic nanoparticle and vapor bubbles, as well. This phenomenon was considered as a new complex nanosystem-plasmonic nanobubble (PNB). Mechanical and optical scattering properties of PNB depended upon the nanoparticle surface and heat capacity, clusterization state, and the optical pulse length. The generation of the PNB required much higher laser pulse fluence thresholds than the explosive boiling level and was characterized by the relatively high lower threshold of the minimal size (lifetime) of PNB. Optical scattering by PNB and its diameter (measured as the lifetime) has been varied with the fluence of laser pulse, and this has demonstrated the tunable nature of PNB. PMID:20307085

  19. The summer 2012 Greenland heat wave: In situ and remote sensing observations of water vapor isotopic composition during an atmospheric river event

    NASA Astrophysics Data System (ADS)

    Bonne, Jean-Louis; Steen-Larsen, Hans Christian; Risi, Camille; Werner, Martin; Sodemann, Harald; Lacour, Jean-Lionel; Fettweis, Xavier; Cesana, Grégory; Delmotte, Marc; Cattani, Olivier; Vallelonga, Paul; Kjær, Helle Astrid; Clerbaux, Cathy; Sveinbjörnsdóttir, Árny Erla; Masson-Delmotte, Valérie

    2015-04-01

    During 7-12 July 2012, extreme moist and warm conditions occurred over Greenland, leading to widespread surface melt. To investigate the physical processes during the atmospheric moisture transport of this event, we study the water vapor isotopic composition using surface in situ observations in Bermuda Island, South Greenland coast (Ivittuut), and northwest Greenland ice sheet (NEEM), as well as remote sensing observations (Infrared Atmospheric Sounding Interferometer (IASI) instrument on board MetOp-A), depicting propagation of similar surface and midtropospheric humidity and δD signals. Simulations using Lagrangian moisture source diagnostic and water tagging in a regional model showed that Greenland was affected by an atmospheric river transporting moisture from the western subtropical North Atlantic Ocean, which is coherent with observations of snow pit impurities deposited at NEEM. At Ivittuut, surface air temperature, humidity, and δD increases are observed. At NEEM, similar temperature increase is associated with a large and long-lasting ˜100‰δD enrichment and ˜15‰ deuterium excess decrease, thereby reaching Ivittuut level. We assess the simulation of this event in two isotope-enabled atmospheric general circulation models (LMDz-iso and ECHAM5-wiso). LMDz-iso correctly captures the timing of propagation for this event identified in IASI data but depict too gradual variations when compared to surface data. Both models reproduce the surface meteorological and isotopic values during the event but underestimate the background deuterium excess at NEEM. Cloud liquid water content parametrization in LMDz-iso poorly impacts the vapor isotopic composition. Our data demonstrate that during this atmospheric river event the deuterium excess signal is conserved from the moisture source to northwest Greenland.

  20. Constrained Vapor Bubble

    NASA Technical Reports Server (NTRS)

    Huang, J.; Karthikeyan, M.; Plawsky, J.; Wayner, P. C., Jr.

    1999-01-01

    The nonisothermal Constrained Vapor Bubble, CVB, is being studied to enhance the understanding of passive systems controlled by interfacial phenomena. The study is multifaceted: 1) it is a basic scientific study in interfacial phenomena, fluid physics and thermodynamics; 2) it is a basic study in thermal transport; and 3) it is a study of a heat exchanger. The research is synergistic in that CVB research requires a microgravity environment and the space program needs thermal control systems like the CVB. Ground based studies are being done as a precursor to flight experiment. The results demonstrate that experimental techniques for the direct measurement of the fundamental operating parameters (temperature, pressure, and interfacial curvature fields) have been developed. Fluid flow and change-of-phase heat transfer are a function of the temperature field and the vapor bubble shape, which can be measured using an Image Analyzing Interferometer. The CVB for a microgravity environment, has various thin film regions that are of both basic and applied interest. Generically, a CVB is formed by underfilling an evacuated enclosure with a liquid. Classification depends on shape and Bond number. The specific CVB discussed herein was formed in a fused silica cell with inside dimensions of 3x3x40 mm and, therefore, can be viewed as a large version of a micro heat pipe. Since the dimensions are relatively large for a passive system, most of the liquid flow occurs under a small capillary pressure difference. Therefore, we can classify the discussed system as a low capillary pressure system. The studies discussed herein were done in a 1-g environment (Bond Number = 3.6) to obtain experience to design a microgravity experiment for a future NASA flight where low capillary pressure systems should prove more useful. The flight experiment is tentatively scheduled for the year 2000. The SCR was passed on September 16, 1997. The RDR is tentatively scheduled for October, 1998.

  1. Complexes of trophoblastic peptides and heat shock protein 70 as a novel contraceptive vaccine in a mouse model.

    PubMed

    Han, Mei; Yao, Yuan; Zeng, Wangjiang; Wang, Yanfang; Feng, Lin; Zhao, Jie

    2016-04-01

    The concept of contraceptive vaccines has interested reproductive biologists and immunologists for nearly 2 decades, but no approach has been approved. In this study, a new immunocontraceptive vaccine that targets placental trophoblasts was expored. We demonstrated that after in-vitro binding with heat shock protein 70, trophoblast-derived peptides can activate T cells both in vitro and in vivo. The activated T cells have a Th1 bias and specifically cause cytolysis of trophoblasts, leading to the termination of pregnancy. Such activated T cells seem to have an effect on early gestation, rather than influencing preimplantation. We did not observe side-effects of this vaccine in mice. In conclusion, a novel contraceptive strategy is described that uses heat shock protein 70-trophoblastic peptide complexes to generate a specific T-cell immune response against placental trophoblasts. This type of vaccine targeting the post-implantation phase does not generate a permanent effect but possibly raises an ethical issue. PMID:26847794

  2. High heat flux loop heat pipes

    NASA Technical Reports Server (NTRS)

    North, Mark T.; Sarraf, David B.; Rosenfeld, John H.; Maidanik, Yuri F.; Vershinin, Sergey

    1997-01-01

    Loop heat pipes (LHPs) can transport very large thermal power loads over long distances, through flexible, small diameter tubes against gravitational heads. In order to overcome the evaporator limit of LHPs, which is of about 0.07 MW/sq m, work was carried out to improve the efficiency by threefold to tenfold. The vapor passage geometry for the high heat flux conditions is shown. A bidisperse wick material within the circumferential vapor passages was used. Along with heat flux enhancement, several underlying issues were demonstrated, including the fabrication of bidisperse powder with controlled properties and the fabrication of a device geometry capable of replacing vapor passages with bidisperse powder.

  3. Fabrication and morphological characterization of biopolymer particles formed by electrostatic complexation of heat treated lactoferrin and anionic polysaccharides.

    PubMed

    Peinado, Irene; Lesmes, Uri; Andrés, Ana; McClements, Julian D

    2010-06-15

    Biopolymer particles fabricated from proteins and/or polysaccharides can be used to encapsulate functional components or to modify various functional properties of materials. In this study, sub-micrometer biopolymer particles were fabricated by electrostatic complexation of heat-denatured protein (lactoferrin, LF) particles with anionic polysaccharides (alginate, carrageenan, or pectin). The aim of the study was to exploit macromolecular electrostatic interactions to form sub-micrometer sized particles and study their stability and morphological characteristics. Initially, protein particles were formed by heat treatment (91 degrees C, 20 min) of a lactoferrin solution (0.2% LF, pH 7), which led to a suspension of protein particles with mean diameter of 200-400 nm and isoelectric point of pI approximately 8.5. Biopolymer particles were then formed by mixing the protein particles with anionic polysaccharides at pH 8 and then lowering the pH to promote electrostatic deposition of polysaccharides onto the protein particle surfaces. The influence of pH (2-11) and ionic strength (0-200 mM NaCl) on the properties and stability of the complexes was studied using turbidity, dynamic light scattering, and electrophoresis measurements. Relatively stable particles could be formed from pH 5 to 8, but appreciable aggregation occurred at lower pH which was attributed to charge neutralization and bridging effects. LF-pectin complexes were relatively stable to salt addition, but LF-carrageenan and LF-alginate complexes exhibited aggregation at higher salt concentrations. These results have important implications for the application of lactoferrin-polysaccharide complexes as functional components in commercial products, such as pharmaceuticals, personal care products, and foods. PMID:20229991

  4. Simple Chemical Vapor Deposition Experiment

    ERIC Educational Resources Information Center

    Pedersen, Henrik

    2014-01-01

    Chemical vapor deposition (CVD) is a process commonly used for the synthesis of thin films for several important technological applications, for example, microelectronics, hard coatings, and smart windows. Unfortunately, the complexity and prohibitive cost of CVD equipment makes it seldom available for undergraduate chemistry students. Here, a…

  5. A method for optimum heating and cooling boiler components of a complex shape

    NASA Astrophysics Data System (ADS)

    Duda, Piotr; Rząsa, Dariusz

    2015-06-01

    A numerical method for determining a transient fluid temperature is presented. The method is formulated to minimizethe total time of heating and cooling operation based on the assumption that maximum tensile and compressivetotal stresses in a solid can not exceed the allowable value during the entire process. The method can be used for any construction element of a simple or complicated geometry. In this method, material properties of solids can be assumed as constant or temperature dependent. The method will be implemented for the heating operationof an outlet header. This construction element is mounted in supercritical power plants. The outlet header is installed in the 460 MW power unit and it is designed for the working pressure of p w = 26.5 MPa and the steam working temperature of T w = 554°C. The results obtained from the proposed method will be compared with the calculations according to TRD 301 - German boiler code

  6. The Lithium Vapor Box Divertor

    NASA Astrophysics Data System (ADS)

    Goldston, Robert; Hakim, Ammar; Hammett, Gregory; Jaworski, Michael; Myers, Rachel; Schwartz, Jacob

    2015-11-01

    Projections of scrape-off layer width to a demonstration power plant suggest an immense parallel heat flux, of order 12 GW/m2, which will necessitate nearly fully detached operation. Building on earlier work by Nagayama et al. and by Ono et al., we propose to use a series of differentially pumped boxes filled with lithium vapor to isolate the buffering vapor from the main plasma chamber, allowing stable detachment. This powerful differential pumping is only available for condensable vapors, not conventional gases. We demonstrate the properties of such a system through conservation laws for vapor mass and enthalpy, and then include plasma entrainment and ultimately an estimate of radiated power. We find that full detachment should be achievable with little leakage of lithium to the main plasma chamber. We also present progress towards solving the Navier-Stokes equation numerically for the chain of vapor boxes, including self-consistent wall boundary conditions and fully-developed shocks, as well as concepts for an initial experimental demonstration-of-concept. This work supported by DOE Contract No. DE-AC02-09CH11466.

  7. Enhanced photoluminescence and Raman properties of Al-Doped ZnO nanostructures prepared using thermal chemical vapor deposition of methanol assisted with heated brass.

    PubMed

    Thandavan, Tamil Many K; Gani, Siti Meriam Abdul; San Wong, Chiow; Md Nor, Roslan

    2015-01-01

    Vapor phase transport (VPT) assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn) was used to prepare un-doped and Al-doped zinc oxide (ZnO) nanostructures (NSs). The structure and morphology were characterized by field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). Photoluminescence (PL) properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni), oxygen interstitials (Oi), zinc vacancy (Vzn), singly charged zinc vacancy (VZn-), oxygen vacancy (Vo), singly charged oxygen vacancy (Vo+) and oxygen anti-site defects (OZn) in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE) and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs. PMID:25756598

  8. Enhanced Photoluminescence and Raman Properties of Al-Doped ZnO Nanostructures Prepared Using Thermal Chemical Vapor Deposition of Methanol Assisted with Heated Brass

    PubMed Central

    Thandavan, Tamil Many K.; Gani, Siti Meriam Abdul; San Wong, Chiow; Md. Nor, Roslan

    2015-01-01

    Vapor phase transport (VPT) assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn) was used to prepare un-doped and Al-doped zinc oxide (ZnO) nanostructures (NSs). The structure and morphology were characterized by field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). Photoluminescence (PL) properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni), oxygen interstitials (Oi), zinc vacancy (Vzn), singly charged zinc vacancy (VZn-), oxygen vacancy (Vo), singly charged oxygen vacancy (Vo+) and oxygen anti-site defects (OZn) in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE) and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs. PMID:25756598

  9. Multi-chamber controllable heat pipe

    NASA Technical Reports Server (NTRS)

    Shlosinger, A. P. (Inventor)

    1970-01-01

    A temperature controllable heat pipe switching device is reported. It includes separate evaporating and condensing chambers interconnected by separate vapor flow and liquid return conduits. The vapor flow conduit can be opened or closed to the flow of vapor, whereas the liquid return conduit blocks vapor flow at all times. When the vapor flow path is open, the device has high thermal conductivity, and when the vapor flow path is blocked the device has low thermal conductivity.

  10. Vapor spill pipe monitor

    NASA Astrophysics Data System (ADS)

    Bianchini, G. M.; McRae, T. G.

    1983-06-01

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote IR gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote IR sensor which measures the gas composition.

  11. Vapor spill pipe monitor

    DOEpatents

    Bianchini, G.M.; McRae, T.G.

    1983-06-23

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

  12. THERMALLY OPERATED VAPOR VALVE

    DOEpatents

    Dorward, J.G. Jr.

    1959-02-10

    A valve is presented for use in a calutron to supply and control the vapor to be ionized. The invention provides a means readily operable from the exterior of the vacuum tank of the apparatuss without mechanical transmission of forces for the quick and accurate control of the ionizing arc by a corresponding control of gas flow theretos thereby producing an effective way of carefully regulating the operation of the calutron. The invention consists essentially of a tube member extending into the charge bottle of a calutron devices having a poppet type valve closing the lower end of the tube. An electrical heating means is provided in the valve stem to thermally vary the length of the stem to regulate the valve opening to control the flow of material from the charge bottle.

  13. Vaporization Would Cool Primary Battery

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Miyake, Robert N.

    1991-01-01

    Temperature of discharging high-power-density primary battery maintained below specified level by evaporation of suitable liquid from jacket surrounding battery, according to proposal. Pressure-relief valve regulates pressure and boiling temperature of liquid. Less material needed in cooling by vaporization than in cooling by melting. Technique used to cool batteries in situations in which engineering constraints on volume, mass, and location prevent attachment of cooling fins, heat pipes, or like.

  14. Chemical vapor deposition of sialon

    DOEpatents

    Landingham, R.L.; Casey, A.W.

    A laminated composite and a method for forming the composite by chemical vapor deposition are described. The composite includes a layer of sialon and a material to which the layer is bonded. The method includes the steps of exposing a surface of the material to an ammonia containing atmosphere; heating the surface to at least about 1200/sup 0/C; and impinging a gas containing N/sub 2/, SiCl/sub 4/, and AlCl/sub 3/ on the surface.

  15. Modeling the heat transfer in geometrically complex media with a volume source

    SciTech Connect

    Gurevich, M. I. Tel’kovskaya, O. V.; Chukbar, B. K.; Shkarovskiy, D. A.

    2014-12-15

    Fuel elements produced from spent fuel are porous media with spatially varying characteristics. A hierarchical discrete structure for the numerical modeling of heat-transfer processes in media with an anisotropic geometry that is characterized by both the microscopic voids and macroscopic changes in the parameters is proposed. The basic unit of the structure at its lower level is a cell that represents the local properties of the medium. The cells have a standard interface that allows one to form three-dimensional networks of such cells. Different types of cells in the network represent macroscopic changes. The potential for parallel processing is analyzed.

  16. Boron and Zirconium from Crucible Refractories in a Complex Heat-Resistant Alloy

    NASA Technical Reports Server (NTRS)

    Decker, R F; Rowe, John P; Freeman, J W

    1958-01-01

    In a laboratory study of the factors involved in the influence of induction vacuum melting on 55ni-20cr-15co-4mo-3ti-3al heat resistant alloy, it was found that the major factor was the type of ceramic used as the crucible. The study concluded that trace amounts of boron or zirconium derived from reaction of the melt with the crucible refactories improved creep-rupture properties at 1,600 degrees F. Boron was most effective and, in addition, markedly improved hot-workability.

  17. The Experimental Measurement of Aerodynamic Heating About Complex Shapes at Supersonic Mach Numbers

    NASA Technical Reports Server (NTRS)

    Neumann, Richard D.; Freeman, Delma C.

    2011-01-01

    In 2008 a wind tunnel test program was implemented to update the experimental data available for predicting protuberance heating at supersonic Mach numbers. For this test the Langley Unitary Wind Tunnel was also used. The significant differences for this current test were the advances in the state-of-the-art in model design, fabrication techniques, instrumentation and data acquisition capabilities. This current paper provides a focused discussion of the results of an in depth analysis of unique measurements of recovery temperature obtained during the test.

  18. Modeling the heat transfer in geometrically complex media with a volume source

    NASA Astrophysics Data System (ADS)

    Gurevich, M. I.; Tel'kovskaya, O. V.; Chukbar, B. K.; Shkarovskiy, D. A.

    2014-12-01

    Fuel elements produced from spent fuel are porous media with spatially varying characteristics. A hierarchical discrete structure for the numerical modeling of heat-transfer processes in media with an anisotropic geometry that is characterized by both the microscopic voids and macroscopic changes in the parameters is proposed. The basic unit of the structure at its lower level is a cell that represents the local properties of the medium. The cells have a standard interface that allows one to form three-dimensional networks of such cells. Different types of cells in the network represent macroscopic changes. The potential for parallel processing is analyzed.

  19. Synthesis gas generation complex and process

    SciTech Connect

    Doering, E.L.

    1989-01-17

    A synthesis gas generation complex is described including: (a) a coal gasification plant, including at least one gasifier for the gasification of coal to produce synthesis gas at a temperature of about 2000/sup 0/F to 3000/sup 0/F, the gasifier having heat exchange surfaces adapted for indirect heat exchange with steam and water; (b) a heat exchange section comprising at least one heat exchanger in gas flow communication with the gasifier, the heat exchanger comprising at least one segment adapted to generate superheated steam, and lower temperature heat exchange segments; (c) a gas cleanup section in flow communication with the heat exchanger, the cleanup section comprising means for removing particulates and H/sub 2/S from the synthesis gas; (d) a steam turbine adapted to receive and utilize superheated steam and to produce a low temperature vapor, the steam turbine driving an electrical generator.

  20. Heat Transfer in a Complex Trailing Edge Passage for a High Pressure Turbine Blade. Part 2:; Simulation Results

    NASA Technical Reports Server (NTRS)

    Rigby, David L.; Bunker, Ronald S.

    2002-01-01

    A combined experimental and numerical study to investigate the heat transfer distribution in a complex blade trailing edge passage was conducted. The geometry consists of a two pass serpentine passage with taper toward the trailing edge, as well as from hub to tip. The upflow channel has an average aspect ratio of roughly 14:1, while the exit passage aspect ratio is about 5:1. The upflow channel is split in an interrupted way and is smooth on the trailing edge side of the split and turbulated on the other side. A turning vane is placed near the tip of the upflow channel. Reynolds numbers in the range of 31,000 to 61,000, based on inlet conditions, were simulated numerically. The simulation was performed using the Glenn-HT code, a full three-dimensional Navier-Stokes solver using the Wilcox k-omega turbulence model. A structured multi-block grid is used with approximately 4.5 million cells and average y+ values on the order of unity. Pressure and heat transfer distributions are presented with comparison to the experimental data. While there are some regions with discrepancies, in general the agreement is very good for both pressure and heat transfer.

  1. Sorption Characteristics of Sorption Material Coated on Heat Transfer surface of a Heat Exchanger

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Komatsu, Fujio; Horibe, Akihiko; Haruki, Naoto; Machida, Akito

    This paper describes sorption characteristics of organic sorbent coated on heat transfer surface of a plate-fin-tube heat exchanger. The organic sorbent is a bridged complex of soldium polyacrylate. This bridged complex containing the carboxyl group as water vapor adsorption site has a larger adsorption abilities as compared with silica gel. The experiments in which the moist air was passed into the heat exchanger coated with sorption material were conducted under various conditions of air flow rate and the temperature of brine that was the heat transfer fluid to cool the air flow in the dehumidifying process. It is found that the sorption rate of vapor is affected by the air flow rate and the brine temperature. Meanwhile, the attempt of clarifying the sorption mechanism is also conducted. Finally the average mass transfer coefficient of the organic sorbent was non-dimensionalized as a function of Reynolds number and non-dimensional temperature. In addition, it was observed that the factor which affects the sorption rate in the water vapor sorption process of the organic sorbent coated on the heat exchanger shifts from the “adsorption step” to the “sorption step”.

  2. The non-Newtonian heat and mass transport of He 2 in porous media used for vapor-liquid phase separation. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.

    1985-01-01

    This investigation of vapor-liquid phase separation (VLPS) of He 2 is related to long-term storage of cryogenic liquid. The VLPS system utilizes porous plugs in order to generate thermomechanical (thermo-osmotic) force which in turn prevents liquid from flowing out of the cryo-vessel (e.g., Infrared Astronomical Satellite). An apparatus was built and VLPS data were collected for a 2 and a 10 micrometer sintered stainless steel plug and a 5 to 15 micrometer sintered bronze plug. The VLPS data obtained at high temperature were in the nonlinear turbulent regime. At low temperature, the Stokes regime was approached. A turbulent flow model was developed, which provides a phenomenological description of the VLPS data. According to the model, most of the phase separation data are in the turbulent regime. The model is based on concepts of the Gorter-Mellink transport involving the mutual friction known from the zero net mass flow (ZNMF) studies. The latter had to be modified to obtain agreement with the present experimental VLPS evidence. In contrast to the well-known ZNMF mode, the VLPS results require a geometry dependent constant (Gorter-Mellink constant). A theoretical interpretation of the phenomenological equation for the VLPS data obtained, is based on modelling of the dynamics of quantized vortices proposed by Vinen. In extending Vinen's model to the VLPS transport of He 2 in porous media, a correlation between the K*(GM) and K(p) was obtained which permits an interpretation of the present findings. As K(p) is crucial, various methods were introduced to measure the permeability of the porous media at low temperatures. Good agreement was found between the room temperature and the low temperature K(p)-value of the plugs.

  3. Impact Welding of Aluminum to Copper and Stainless Steel by Vaporizing Foil Actuator: Effect of Heat Treatment Cycles on Mechanical Properties and Microstructure

    NASA Astrophysics Data System (ADS)

    Vivek, Anupam; Hansen, Steven; Benzing, Jake; He, Mei; Daehn, Glenn

    2015-10-01

    This work studies the mechanical property effect of microstructure on impact welds of aluminum alloy AA6061 with both copper alloy Cu 110 and stainless steel AISI 304. AA6061-T6 and T4 temper aluminum sheets of 1 mm thickness were launched toward copper and stainless steel targets using the vaporizing foil actuator technique. Flyer plate velocities, measured via photonic Doppler velocimetry, were observed to be approximately 800 m/s. The welded aluminum-copper samples were subjected to instrumented peel testing, microhardness testing, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. The welded joints exhibited cracks through their continuous intermetallic layers. The cracks were impeded upon encountering a ductile metallic wave. The welds created with T6 temper flyer sheets were found to have smaller intermetallic-free and wavy interface regions as compared to those created with T4 temper flyer sheets. Peel strength tests of the two weld combinations resulted in failure along the interface in the case of the T6 flyer welds, while the failure generally occurred in the parent aluminum for the T4 temper flyer welds. Half of the T4 flyer welds were subjected to aging for 18 h at 433 K (160 °C) to convert the aluminum sheet to the T6 condition. Although the aged flyer material did not attain the hardness of the as-received T6 material, it was found to be significantly stronger than the T4 material. These welds retained their strength after the aging process, and diffusion across the interface was minimal. The welded aluminum-stainless steel samples were analyzed on a more basic level than aluminum-copper samples, but were found to exhibit similar results.

  4. Sporicidal Activity of the KMT reagent in its vapor phase against Geobacillus stearothermophilus Spores.

    PubMed

    Kida, Nori; Mochizuki, Yasushi; Taguchi, Fumiaki

    2007-01-01

    In an investigation of the sporicidal activity of the KMT reagent, a vapor phase study was performed using five kinds of carriers contaminated with Geobacillus stearothermophilus spores. When 25 ml of the KMT reagent was vaporized in a chamber (capacity; approximately 95 liters), the 2-step heating method (vaporization by a combination of low temperature and high temperature) showed the most effective sporicidal activity in comparison with the 1-step heating method (rapid vaporization). The 2-step heating method appeared to be related to the sporicidal activity of vaporized KMT reagent, i.e., ethanol and iodine, which vaporized mainly when heated at a low temperature such as 55 C, and acidic water, which vaporized mainly when heated at a high temperature such as 300 C. We proposed that the KMT reagent can be used as a new disinfectant not only in the liquid phase but also in the vapor phase in the same way as peracetic acid and hydrogen peroxide. PMID:17237604

  5. Thermal and hydraulic performance tests of a sieve-tray direct-contact heat exchanger vaporizing pure and mixed-hydrocarbon Rankine-cycle working fluids

    SciTech Connect

    Mines, G.L.; Demuth, O.J.; Wiggins, D.J.

    1983-08-01

    Experiments investigating a sieve-tray direct-contact heat exchanger were conducted at the Raft River Geothermal Test Site in southeastern Idaho using the 60-kW Mobile Heat Cycle Research Facility operating in the thermal loop mode (without a turbine). Isobutane, propane, and several hydrocarbon mixtures were heated and boiled in the direct-contact column, which is approx. 12 in. in diameter and 19-1/2 ft. high, using the energy from a 280/sup 0/F geothermal resource. Using pure fluids, isobutane or propane, the column operated much as intended, with 17 trays used for preheating and one or two accomplishing the boiling. For the pure fluids, individual tray efficiencies were found to be 70% or higher for preheating, and close to 100% for boiling; column pinch points were projected to be well under 1/sup 0/F with some runs reaching values as low as approx. 0.02/sup 0/F. Maximum geofluid throughputs for the isobutane tests corresponded roughly to the terminal rise velocity of a 1/32 in. working fluid droplet in geofluid. Boiling was found to occur in as many as 12 trays for the mixtures having the highest concentrations of the minor component, with overall efficiencies in the boiling section estimated on the order of 25 or 30%. Preheating tray efficiencies appeared to be fairly independent of working fluid, with pinch points ranging from as low as approx. 0.03/sup 0/F for a 0.95 isobutane/0.05 hexane mixture to approx. 2.3/sup 0/F for a 0.85 isobutane/0.05 hexane mixture. Column operation was noticeably less stable for the mixtures than for the pure fluids, with maximum throughputs dropping to as low as 40 to 50% of those for the pure fluids.

  6. Thermoregulation in complex situations: combined heat exposure, infectious fever and water deprivation

    NASA Astrophysics Data System (ADS)

    Blatteis, C. M.

    Heat exposure, infectious fever and water deprivation are stressors that, individually, produce disturbances in more than one regulated system, calling for diverse compensatory responses. A potential conflict is created when these stimuli are combined and impose concurrent stressful loads on the body because the homeostatic defenses mobilized against one are also partly needed against the other stressors. To learn how the competing demands of combined stressors for shared regulatory systems are met, rabbits were exposed to 32°C and 37°C (heat), administered lipopolysaccharide (Salmonella enteritidis LPS, 2 µg/kg, i.v.) in temperatures of 22°C or 27°C, or water-deprived for 1 or 2 days in 22°C or 27°C, in separate experiments. The corresponding controls were exposed to 22°C or 27°C, administered pyrogen-free saline i.v. in 22°C or 27°C, or normally hydrated in 22°C or 27°C. In subsequent experiments, two or all three of these treatments were applied concurrently. Core and ear skin temperatures and respiratory rates were monitored continuously. The results indicated that the concomitant needs of moderate heat exposure, fever and 1 day of water deprivation were generally met by the regulatory systems involved, but different patterns of thermoeffector activities were evoked and the eventual body temperature changes produced were different under each condition. However, when the test conditions were severe, their combined needs were not met adequately and the eventual compensatory response depended not only on the particular stimulus intensity, but also on the immediate importance for survival of the functions being defended. Thus, dehydration was the most dangerous factor to the physiological integrity of the animals. In sum, conflicting physiological stimuli appear to result in responses that are different from the responses to a single perturbation, the eventual output representing the resultant of the inputs rather than a singular output dictated by one

  7. Enthalpy By Energy Balance for Aerodynamic Heating Facility at NASA Ames Research Center Arc Jet Complex

    NASA Technical Reports Server (NTRS)

    Hightower, T. Mark; MacDonald, Christine L.; Martinez, Edward R.; Balboni, John A.; Anderson, Karl F.; Arnold, Jim O. (Technical Monitor)

    2002-01-01

    The NASA Ames Research Center (ARC) Arc Jet Facilities' Aerodynamic Heating Facility (AHF) has been instrumented for the Enthalpy By Energy Balance (EB2) method. Diagnostic EB2 data is routinely taken for all AHF runs. This paper provides an overview of the EB2 method implemented in the AHF. The chief advantage of the AHF implementation over earlier versions is the non-intrusiveness of the instruments used. For example, to measure the change in cooling water temperature, thin film 1000 ohm Resistance Temperature Detectors (RTDs) are used with an Anderson Current Loop (ACL) as the signal conditioner. The ACL with 1000 ohm RTDs allows for very sensitive measurement of the increase in temperature (Delta T) of the cooling water to the arc heater, which is a critical element of the EB2 method. Cooling water flow rates are measured with non-intrusive ultrasonic flow meters.

  8. Studies of oscillatory combustion and fuel vaporization

    NASA Technical Reports Server (NTRS)

    Borman, G. L.; Myers, P. S.; Uyehara, O. A.

    1972-01-01

    Research projects involving oscillatory combustion and fuel vaporization are reported. Comparisons of experimental and theoretical droplet vaporization histories under ambient conditions such that the droplet may approach its thermodynamic critical point are presented. Experimental data on instantaneous heat transfer from a gas to a solid surface under conditions of oscillatory pressure with comparisons to an unsteady one-dimensional model are analyzed. Droplet size and velocity distribution in a spray as obtained by use of a double flash fluorescent method were investigated.

  9. Multicomponent fuel vaporization at high pressures.

    SciTech Connect

    Torres, D. J.; O'Rourke, P. J.

    2002-01-01

    We extend our multicomponent fuel model to high pressures using a Peng-Robinson equation of state, and implement the model into KIVA-3V. Phase equilibrium is achieved by equating liquid and vapor fugacities. The latent heat of vaporization and fuel enthalpies are also corrected for at high pressures. Numerical simulations of multicomponent evaporation are performed for single droplets for a diesel fuel surrogate at different pressures.

  10. Anthropogenic water vapor emissions in Tokyo

    NASA Astrophysics Data System (ADS)

    Moriwaki, Ryo; Kanda, Manabu; Senoo, Hiroshi; Hagishima, Aya; Kinouchi, Tsuyoshi

    2008-11-01

    Temporal and spatial variations in anthropogenic water vapor (AWV) emissions and anthropogenic heat (AH) in Tokyo were estimated using data from a geographic information system (GIS) and an energy-consumption database. The maximum value of AWV exceeded 500 W m-2 in summer in central Tokyo. Estimations of AWV were validated with field-measured data. The estimated and measured data agreed well, indicating that anthropogenic sources such as district cooling systems release large amounts of water vapor into the atmosphere.

  11. On the vertical exchange of heat, mass and momentum over complex, mountainous terrain

    NASA Astrophysics Data System (ADS)

    Rotach, Mathias; Gohm, Alexander; Lang, Moritz; Leukauf, Daniel; Stiperski, Ivana; Wagner, Johannes

    2015-12-01

    The role of the atmospheric boundary layer (ABL) in the atmosphere-climate system is the exchange of heat, mass and momentum between 'the earth's surface' and the atmosphere. Traditionally, it is understood that turbulent transport is responsible for this exchange and hence the understanding and physical description of the turbulence structure of the boundary layer is key to assess the effectiveness of earth-atmosphere exchange. This understanding is rooted in the (implicit) assumption of a scale separation or spectral gap between turbulence and mean atmospheric motions, which in turn leads to the assumption of a horizontally homogeneous and flat (HHF) surface as a reference, for which both physical understanding and model parameterizations have successfully been developed over the years. Over mountainous terrain, however, the ABL is generically inhomogeneous due to both thermal (radiative) and dynamic forcing. This inhomogeneity leads to meso-scale and even sub-meso-scale flows such as slope and valley winds or wake effects. It is argued here that these (sub)meso-scale motions can significantly contribute to the vertical structure of the boundary layer and hence vertical exchange of heat and mass between the surface and the atmosphere. If model grid resolution is not high enough the latter will have to be parameterized (in a similar fashion as gravity wave drag parameterizations take into account the momentum transport due to gravity waves in large-scale models). In this contribution we summarize the available evidence of the contribution of (sub)meso-scale motions to vertical exchange in mountainous terrain from observational and numerical modeling studies. In particular, a number of recent simulation studies using idealized topography will be summarized and put into perspective – so as to identify possible limitations and areas of necessary future research.

  12. The vapor pressure of iron pentacarbonyl

    NASA Technical Reports Server (NTRS)

    Gilbert, A. G.; Sulzmann, K. G. P.

    1974-01-01

    Vapor pressure measurements have been made on pure iron pentacarbonyl between +31 and -19 C. The experimental results may be expressed by the logarithm of pressure (mm Hg) to the base 10 equals -(2096.7 K/T) + 8.4959, which corresponds to a heat of vaporization for the liquid carbonyl of delta H ? (9.588 plus or minus 0.12) kcal/mole. This result confirms and extends the earlier measurements made by Trautz and Badstuebner between 0 and 140 C. The need for careful purification of commercially available iron pentacarbonyl is emphasized, particularly for establishing the correct vapor pressure below 45 C.

  13. Metal vapor laser including hot electrodes and integral wick

    DOEpatents

    Ault, E.R.; Alger, T.W.

    1995-03-07

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube. 5 figs.

  14. Metal vapor laser including hot electrodes and integral wick

    DOEpatents

    Ault, Earl R.; Alger, Terry W.

    1995-01-01

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube.

  15. Heat shock induction by a misassembled cytoplasmic membrane protein complex in Escherichia coli.

    PubMed

    Mourez, M; Skouloubris, S; Betton, J M; Dassa, E

    1997-11-01

    We analysed the effects of the overproduction of parts or all of a multisubunit ATP-binding cassette (ABC) transporter, the MalFGK2 complex, involved in the uptake of maltose and maltodextrins in Escherichia coli. We found that production of the MalF protein alone was inducing the phtrA promoter, which is under the control of a recently discovered sigma factor, sigma24, involved in the response to extracytoplasmic stresses. The production level, stability and localization of MalF were not altered when produced without its partners, suggesting that the protein was correctly inserted in the membrane. Our results indicate that a large periplasmic loop located between the third and fourth transmembrane segment of MalF, the L3 loop, is responsible for phtrA induction: (i) deleted MalF proteins with no L3 loop or with a L3 loop lacking 120 amino acids do not induce the phtrA promoter; (ii) the export to the periplasm of the L3 loop alone or fused to MalE induces the phtrA promoter. Moreover, the proteolytic sensitivity of MalF is different when it is produced alone and when MalF and MalG are produced together, suggesting a change in the conformation and/or accessibility of MalF. These results suggest that some inner membrane proteins can be sensed outside the cytoplasm by a quality control apparatus or by the export machinery. Moreover, the observation of the phtrA induction by MalF could be a useful new tool for studying the insertion and assembly of the MalFGK2 complex. PMID:9427411

  16. Supercritical CO2 interpolymer complex encapsulation improves heat stability of probiotic bifidobacteria.

    PubMed

    Thantsha, M S; Labuschagne, P W; Mamvura, C I

    2014-02-01

    The probiotic industry faces the challenge of retention of probiotic culture viability as numbers of these cells within their products inevitably decrease over time. In order to retain probiotic viability levels above the therapeutic minimum over the duration of the product's shelf life, various methods have been employed, among which encapsulation has received much interest. In line with exploitation of encapsulation for protection of probiotics against adverse conditions, we have previously encapsulated bifidobacteria in poly-(vinylpyrrolidone)-poly-(vinylacetate-co-crotonic acid) (PVP:PVAc-CA) interpolymer complex microparticles under supercritical conditions. The microparticles produced had suitable characteristics for food applications and also protected the bacteria in simulated gastrointestinal fluids. The current study reports on accelerated shelf life studies of PVP:PVAc-CA encapsulated Bifidobacterium lactis Bb12 and Bifidobacterium longum Bb46. Samples were stored as free powders in glass vials at 30 °C for 12 weeks and then analysed for viable counts and water activity levels weekly or fortnightly. Water activities of the samples were within the range of 0.25-0.43, with an average a(w) = 0.34, throughout the storage period. PVP:PVAc-CA interpolymer complex encapsulation retained viable levels above the recommended minimum for 10 and 12 weeks, for B. longum Bb46 and B. lactis Bb12, respectively, thereby extending their shelf lives under high storage temperature by between 4 and 7 weeks. These results reveal the possibility for manufacture of encapsulated probiotic powders with increased stability at ambient temperatures. This would potentially allow the supply of a stable probiotic formulation to impoverished communities without proper storage facilities recommended for most of the currently available commercial probiotic products. PMID:23990069

  17. Effect of cooling-heating rate on sol-gel transformation of fish gelatin-gum arabic complex coacervate phase.

    PubMed

    Anvari, Mohammad; Chung, Donghwa

    2016-10-01

    The objective of this study was to characterize influence of different cooling and heating rates on gelation of fish gelatin (FG)-gum arabic (GA) complex coacervate phase using rheological measurements. For the coacervate phase prepared at 10°C, the gelling temperature, melting temperature, gel strength, and stress relaxation decreased with increasing cooling or heating rate, however, no gelation was observed at the highest cooling rate of 0.05°C/min. Similar trends were obtained for the coacervates phase prepared at 30°C, but the gelation did not occur at a cooling rate of 0.033 or 0.05°C/min. The results indicated that rheological properties of FG-GA coacervate gels were highly dependent to the cooling process, where more thermos-stable and stronger gels formed at slower cooling. This was probably because of higher degree of molecular rearrangements, more hydrogen bindings, and formation of greater junction zones into the gel network at slower cooling rates. However, all of the FG-GA coacervate gels obtained at different cooling rates were classified as a weak physical gel. PMID:27246375

  18. Tropospheric water vapor and climate sensitivity

    SciTech Connect

    Schneider, E.K.; Kirtman, B.P.; Lindzen, R.S.

    1999-06-01

    Estimates are made of the effect of changes in tropospheric water vapor on the climate sensitivity to doubled carbon dioxide (CO{sub 2}) using a coarse resolution atmospheric general circulation model coupled to a slab mixed layer ocean. The sensitivity of the model to doubled CO{sub 2} is found as the difference between the equilibrium responses for control and doubled CO{sub 2} cases. Clouds are specified to isolate the water vapor feedback. Experiments in which the water vapor distribution is specified rather than internally calculated are used to find the contribution of water vapor in various layers and latitude belts to the sensitivity. The contribution of water vapor in layers of equal mass to the climate sensitivity varies by about a factor of 2 with height, with the largest contribution coming from layers between 450 and 750 mb, and the smallest from layers above 230 mb. The positive feedback on the global mean surface temperature response to doubled CO{sub 2} from water vapor above 750 mb is about 2.6 times as large as that from water vapor below 750 mb. The feedback on global mean surface temperature due to water vapor in the extratropical free troposphere is about 50% larger than the feedback due to the lower-latitude free troposphere water vapor. Several important sources of nonlinearity of the radiative heating rates were identified in the process of constructing the specified cloud and water vapor fields. These are (1) the interaction of clouds and solar radiation, which produces much more reflection of solar radiation for time mean clouds than for the instantaneous clouds; (2) the correlation of clouds and water vapor, which produces less downward longwave radiation at the ground for correlated clouds and water vapor than when these fields are independent; and (3) the interaction of water vapor with long wave radiation, which produces less downward longwave radiation at the ground of the average over instantaneous water vapor distributions than of

  19. Solar vapor generation enabled by nanoparticles.

    PubMed

    Neumann, Oara; Urban, Alexander S; Day, Jared; Lal, Surbhi; Nordlander, Peter; Halas, Naomi J

    2013-01-22

    Solar illumination of broadly absorbing metal or carbon nanoparticles dispersed in a liquid produces vapor without the requirement of heating the fluid volume. When particles are dispersed in water at ambient temperature, energy is directed primarily to vaporization of water into steam, with a much smaller fraction resulting in heating of the fluid. Sunlight-illuminated particles can also drive H(2)O-ethanol distillation, yielding fractions significantly richer in ethanol content than simple thermal distillation. These phenomena can also enable important compact solar applications such as sterilization of waste and surgical instruments in resource-poor locations. PMID:23157159

  20. Enhanced vacuum arc vapor deposition electrode

    NASA Technical Reports Server (NTRS)

    Weeks, Jack L. (Inventor); Todd, Douglas M. (Inventor)

    1999-01-01

    A process for forming a thin metal coating on a substrate wherein a gas stream heated by an electrical current impinges on a metallic target in a vacuum chamber to form a molten pool of the metal and then vaporize a portion of the pool, with the source of the heated gas stream being on one side of the target and the substrate being on the other side of the target such that most of the metallic vapor from the target is directed at the substrate.

  1. Complex regulation of heat shock- and glucose-responsive genes in human cells

    SciTech Connect

    Watowich, S.S.; Morimoto, R.I.

    1988-01-01

    The authors isolated a human genomic clone that encodes the glucose-responsive protein GRP78 and have used this cloned gene probe, together with a cloned HSP70 gene, to study the expression of both stress-induced genes in response to inhibitors of cellular metabolism. On the basis of the effects of this group of chemicals on GRP78 and HSP70 expression, the authors identified three classes of stress gene inducers. The first class induces GRP78 expression and includes inhibitors of glycoprotein processing. The second class results in coordinate activation of both GRP78 and HSP70 synthesis and includes amino acid analogs and heavy metals. Chemicals in the third class coordinately induce GRP78 and repress HSP70 expression; this class includes the calcium ionophore A23187 and the glucose analog 2-deoxyglucose. Whereas induction of GRP78 or HSP70 expression is primarily due to transcriptional activation, chemicals that repress HSP70 expression act through posttranscriptional regulation. These results reveal that the regulation of GRP78 and HSP70 expression is complex and may be dependent on the specificity and magnitude of physiological damage.

  2. Pumped two-phase heat transfer loop

    NASA Technical Reports Server (NTRS)

    Edelstein, Fred

    1988-01-01

    A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes several independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.

  3. Pumped two-phase heat transfer loop

    NASA Technical Reports Server (NTRS)

    Edelstein, Fred (Inventor)

    1987-01-01

    A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes a plurality of independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.

  4. Assessing complexity of skin blood flow oscillations in response to locally applied heating and pressure in rats: Implications for pressure ulcer risk

    NASA Astrophysics Data System (ADS)

    Liao, Fuyuan; O'Brien, William D.; Jan, Yih-Kuen

    2013-10-01

    The objective of this study was to investigate the effects of local heating on the complexity of skin blood flow oscillations (BFO) under prolonged surface pressure in rats. Eleven Sprague-Dawley rats were studied: 7 rats underwent surface pressure with local heating (△t=10 °C) and 4 rats underwent pressure without heating. A pressure of 700 mmHg was applied to the right trochanter area of rats for 3 h. Skin blood flow was measured using laser Doppler flowmetry. The loading period was divided into nonoverlapping 30 min epochs. For each epoch, multifractal detrended fluctuation analysis (MDFA) was utilized to compute DFA coefficients and complexity of endothelial related metabolic, neurogenic, and myogenic frequencies of BFO. The results showed that under surface pressure, local heating led to a significant decrease in DFA coefficients of myogenic frequency during the initial epoch of loading period, a sustained decrease in complexity of myogenic frequency, and a significantly higher degree of complexity of metabolic frequency during the later phase of loading period. Surrogate tests showed that the reduction in complexity of myogenic frequency was associated with a loss of nonlinearity whereas increased complexity of metabolic frequency was associated with enhanced nonlinearity. Our results indicate that increased metabolic activity and decreased myogenic response due to local heating manifest themselves not only in magnitudes of metabolic and myogenic frequencies but also in their structural complexity. This study demonstrates the feasibility of using complexity analysis of BFO to monitor the ischemic status of weight-bearing skin and risk of pressure ulcers.

  5. LOX vaporization in high-pressure, hydrogen-rich gas

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Jeng, San-Mou

    1990-01-01

    LOX droplet vaporization in high-pressure hydrogen-rich gas is analyzed, with special attention to thermodynamic effects which compel the surface to heat to the critical state and to supercritical vaporization processes on heating to criticality. Subcritical vaporization is modeled using a quasi-steady diffusion-controlled gas-phase transport formulation coupled to an effective-conductivity internal-energy-transport model accounting for circulation effects. It is demonstrated how the droplet surface might heat to the critical state, for ambient pressures slightly greater than the critical pressure of oxygen, such that the bulk of propellant within the droplet remains substantially below the critical mixing temperature.

  6. Vapor phase pyrolysis

    NASA Technical Reports Server (NTRS)

    Steurer, Wolfgang

    1992-01-01

    The vapor phase pyrolysis process is designed exclusively for the lunar production of oxygen. In this concept, granulated raw material (soil) that consists almost entirely of metal oxides is vaporized and the vapor is raised to a temperature where it dissociates into suboxides and free oxygen. Rapid cooling of the dissociated vapor to a discrete temperature causes condensation of the suboxides, while the oxygen remains essentially intact and can be collected downstream. The gas flow path and flow rate are maintained at an optimum level by control of the pressure differential between the vaporization region and the oxygen collection system with the aid of the environmental vacuum.

  7. Hsp70-Hsp40 Chaperone Complex Functions in Controlling Polarized Growth by Repressing Hsf1-Driven Heat Stress-Associated Transcription

    PubMed Central

    Liu, Jianhua; Oliferenko, Snezhana

    2013-01-01

    How the molecular mechanisms of stress response are integrated at the cellular level remains obscure. Here we show that the cellular polarity machinery in the fission yeast Schizosaccharomyces pombe undergoes dynamic adaptation to thermal stress resulting in a period of decreased Cdc42 activity and altered, monopolar growth. Cells where the heat stress-associated transcription was genetically upregulated exhibit similar growth patterning in the absence of temperature insults. We identify the Ssa2-Mas5/Hsp70-Hsp40 chaperone complex as repressor of the heat shock transcription factor Hsf1. Cells lacking this chaperone activity constitutively activate the heat-stress-associated transcriptional program. Interestingly, they also exhibit intermittent monopolar growth within a physiological temperature range and are unable to adapt to heat stress. We propose that by negatively regulating the heat stress-associated transcription, the Ssa2-Mas5 chaperone system could optimize cellular growth under different temperature regiments. PMID:24146635

  8. The smart vapor retarder: An innovation inspired by computer simulations

    SciTech Connect

    Kuenzel, H.M.

    1998-12-31

    Water management is the new trend in civil engineering. Since it is difficult to ensure perfect vapor- and watertightness of building components, a limited moisture ingress is acceptable as long as the drying process is effective enough to avoid moisture damage. Recent computer models for the simulation of heat and moisture transport are valuable tools for the risk assessment of structures and their repair or retrofit. Unventilated, insulated assemblies with a vapor-resistant exterior layer can accumulate water because winter condensation and summer drying are not balanced. The balance can be reestablished if the vapor retarder is more permeable in summer than in winter. Parametric computer studies have defined the required properties of such a vapor retarder. Developed according to the computed specifications, the smart vapor retarder shows a seasonal variation in vapor permeability of a factor of ten. The secret of this behavior lies in the humidity-dependent vapor diffusion resistance of the film material.

  9. A trinuclear defect-grid iron(II) spin crossover complex with a large hysteresis loop that is readily silenced by solvent vapor.

    PubMed

    Steinert, Markus; Schneider, Benjamin; Dechert, Sebastian; Demeshko, Serhiy; Meyer, Franc

    2014-06-10

    A new type of [2×2] matrix-like complexes with one vertex devoid of a metal ion has been selectively synthesized. The defect-grid triiron(II) complex exhibits a sharp and complete spin-crossover (SCO) from the 1HS-2LS to the 2HS-1LS state (HS: high spin; LS: low spin) with wide hysteresis near room temperature. Although the "structurally soft" H-bonded vertex, elastically coupled to the metal ions, accounts for the stabilization of spin states, it also mediates a dramatic, yet reversible, response to the uptake of exogenous solvent molecules leading to silencing of the SCO. The high sensitivity towards those guest molecules, the short response time upon exposure, and the smooth reversibility of guest binding are favorable characteristics for future sensing applications of such defect grids. PMID:24854423

  10. Stable nanoparticles prepared by heating electrostatic complexes of whey protein isolate-dextran conjugate and chondroitin sulfate.

    PubMed

    Dai, Qingyuan; Zhu, Xiuling; Abbas, Shabbar; Karangwa, Eric; Zhang, Xiaoming; Xia, Shuqin; Feng, Biao; Jia, Chengsheng

    2015-04-29

    A simple and green method was developed for preparing the stable biopolymer nanoparticles with pH and salt resistance. The method involved the macromolecular crowding Maillard process and heat-induced gelation process. The conjugates of whey protein isolate (WPI) and dextran were produced by Maillard reaction. The nanoparticles were fabricated by heating electrostatic complexes of WPI-dextran conjugate and chondroitin sulfate (ChS) above the denaturation temperature and near the isoelectric point of WPI. Then, the nanoparticles were characterized by spectrophotometry, dynamic laser scattering, zeta potential, transmission electron microscopy, atomic force microscopy, and scanning electron microscopy. Results showed that the nanoparticles were stable in the pH range from 1.0 to 8.0 and in the presence of high salt concentration of 200 mM NaCl. WPI-dextran conjugate, WPI, and ChS were assembled into the nanoparticles with dextran conjugated to WPI/ChS shell and WPI/ChS core. The repulsive steric interactions, from both dextran covalently conjugated to WPI and ChS electrostatically interacted with WPI, were the major formation mechanism of the stable nanoparticles. As a nutrient model, lutein could be effectively encapsulated into the nanoparticles. Additionally, the nanoparticles exhibited a spherical shape and homogeneous size distribution regardless of lutein loading. The results suggested that the stable nanoparticles from proteins and strong polyelectrolyte polysaccharides would be used as a promising target delivery system for hydrophobic nutrients and drugs at physiological pH and salt conditions. PMID:25844903

  11. Model for the Vaporization of Mixed Organometallic Compounds in the Metalorganic Chemical Vapor Deposition of High Temperature Superconducting Films

    NASA Technical Reports Server (NTRS)

    Meng, Guangyao; Zhou, Gang; Schneider, Roger L.; Sarma, Bimal K.; Levy, Moises

    1993-01-01

    A model of the vaporization and mass transport of mixed organometallics from a single source for thin film metalorganic chemical vapor deposition is presented. A stoichiometric gas phase can be obtained from a mixture of the organometallics in the desired mole ratios, in spite of differences in the volatilities of the individual compounds. Proper film composition and growth rates are obtained by controlling the velocity of a carriage containing the organometallics through the heating zone of a vaporizer.

  12. Inhibition of Class II Major Histocompatibility Complex Antigen Processing by Escherichia coli Heat-Labile Enterotoxin Requires an Enzymatically Active A Subunit

    PubMed Central

    Matousek, Milita P.; Nedrud, John G.; Cieplak, Witold; Harding, Clifford V.

    1998-01-01

    Escherichia coli heat-labile enterotoxin (LT) and cholera toxin (CT) were found to inhibit intracellular antigen processing. Processing was not inhibited by mutant LT with attenuated ADP-ribosyltransferase activity, CT B or LT B subunit, which enhanced presentation of preexisting cell surface peptide-class II major histocompatibility complex complexes. Inhibition of antigen processing correlated with A subunit ADP-ribosyltransferase activity. PMID:9632629

  13. Vaporization of droplets in premixing chambers

    NASA Technical Reports Server (NTRS)

    Yule, A. J.; Chigier, N. A.

    1980-01-01

    Detailed measurements were made of the structures of turbulent fuel sprays vaporizing in heated airstreams. The measurements show the size dependent vaporization and dispersion of the droplets and the important influence of the large eddies in the turbulence. The measurements form a data base for the development of models of fuel spray vaporization. Two laser techniques were specially developed for the investigation. A laser tomography technique converts line-of-sight light scattering measurements into time averaged 'point' measurements of droplet size distribution and volume concentration. A laser anemometer particle sizing technique was further developed to permit accurate measurements of individual particle sizes and velocities, with backscatter collection of light. The experiments are combined with heat transfer models to analyze the performance of miniature thermocouples in liquid sprays.

  14. Raman spectroscopy of vapors at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Laane, Jaan; Haller, Kristjan; Sakurai, Sachie; Morris, Kevin; Autrey, Daniel; Arp, Zane; Chiang, Whe-Yi; Combs, Amanda

    2003-05-01

    The most effective way to obtain high quality vapor-phase Raman spectra is to heat the samples to increase their vapor pressure. Many samples can be heated to 350 °C and higher without decomposition. We have designed a simple Raman cell to allow these high temperature studies to be carried out. The high-temperature Raman spectra of nine molecules will be presented and discussed. Most of these are non-rigid molecules containing aromatic rings for which vibrational potential energy surfaces have been determined from their spectra. Two molecules ( p-cresol and 3-methylindole) are model compounds for amino acids and their vapor-phase spectra are characteristic of environments with no hydrogen bonding.

  15. Vapor concentration measurement with photothermal deflectometry

    NASA Technical Reports Server (NTRS)

    Banish, R. Michael; Xiao, Rong-Fu; Rosenberger, Franz

    1988-01-01

    Theoretical and experimental results for using the photothermal deflection technique to measure vapor species concentration, while minimizing the disturbance of the transport (material) parameters due to vapor heating, are developed and described. In contrast to common practice, the above constraints require using a pump-beam duty cycle of less than 50 percent. The theoretical description of the shortened heating time is based on a step-function formulation of the pumping cycle. The results are obtained as closed-form solutions of the energy equation for many chopping cycles until steady state is reached, by use of a Green's-function method. The Euler formulation of the Fermat principle is used to calculate the deflection angle. The equations are expanded to include the effects of vapor velocity on both the temperature and temperature gradient profiles. The effects of finite (unfocused) pump and probe beams and thermal (Soret) diffusion are also accounted for. Excellent agreement between theory and experiment is obtained.

  16. Condensation of acetol and acetic acid vapor with sprayed liquid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A cellulose-derived fraction of biomass pyrolysis vapor was simulated by evaporating acetol and acetic acid (AA) from flasks on a hot plate. The liquid in the flasks was infused with heated nitrogen. The vapor/nitrogen stream was superheated in a tube oven and condensed by contact with a cloud of ...

  17. 33 CFR 154.808 - Vapor control system, general.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... carries over from the vessel or condenses as a result of an enrichment process. (h) If a liquid knockout... inerted vapors of cargoes containing sulfur, provisions must be made to control heating from pyrophoric... electrical equipment used in a vapor control system must comply with NFPA 70. (d) Any pressure, flow,...

  18. External artery heat pipe

    NASA Technical Reports Server (NTRS)

    Gernert, Nelson J. (Inventor); Ernst, Donald M. (Inventor); Shaubach, Robert M. (Inventor)

    1989-01-01

    An improved heat pipe with an external artery. The longitudinal slot in the heat pipe wall which interconnects the heat pipe vapor space with the external artery is completely filled with sintered wick material and the wall of the external artery is also covered with sintered wick material. This added wick structure assures that the external artery will continue to feed liquid to the heat pipe evaporator even if a vapor bubble forms within and would otherwise block the liquid transport function of the external artery.

  19. Heat pipe cooled probe

    NASA Technical Reports Server (NTRS)

    Camarda, C. J. (Inventor); Couch, L. M.

    1984-01-01

    The basic heat pipe principle is employed to provide a self-contained passively cooled probe that may be placed into a high temperature environment. The probe consists of an evaporator region of a heat pipe and a sensing instrument. Heat is absorbed as the working fluid evaporates in the probe. The vapor is transported to the vapor space of the condenser region. Heat is dissipated from the condenser region and fins causing condensation of the working fluid, which returns to the probe by gravity and the capillary action of the wick. Working fluid, wick and condenser configurations and structure materials can be selected to maintain the probe within an acceptable temperature range.

  20. Multiple source heat pump

    DOEpatents

    Ecker, Amir L.

    1983-01-01

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  1. Chemical vapor deposition of sialon

    DOEpatents

    Landingham, Richard L.; Casey, Alton W.

    1982-01-01

    A laminated composite and a method for forming the composite by chemical vapor deposition. The composite includes a layer of sialon and a material to which the layer is bonded. The method includes the steps of exposing a surface of the material to an ammonia containing atmosphere; heating the surface to at least about 1200.degree. C.; and impinging a gas containing in a flowing atmosphere of air N.sub.2, SiCl.sub.4, and AlCl.sub.3 on the surface.

  2. Enhancing the treatment effect on melanoma by heat shock protein 70-peptide complexes purified from human melanoma cell lines

    PubMed Central

    Gao, Yanwei; Gao, Weishi; Chen, Xia; Cha, Nier; Wang, Xiaoli; Jia, Xiangdong; Wang, Bingping; Ren, Meng; Ren, Jun

    2016-01-01

    Dendritic cell (DC) vaccines are currently one of the most effective approaches to treat melanoma. The immunogenicity of antigens loaded into DCs determines the treatment effects. Patients treated with autologous antigen-loaded DC vaccines achieve the best therapeutic effects. In China, most melanoma patients cannot access their autologous antigens because of formalin treatment of tumor tissue after surgery. In the present study, we purified heat shock protein 70 (HSP70)-peptide complexes (PCs) from human melanoma cell lines A375, A875, M21, M14, WM-35, and SK-HEL-1. We named the purified product as M-HSP70-PCs, and determined its immunological activities. Autologous HSP70-PCs purified from primary tumor cells of melanoma patients (nine cases) were used as controls. These two kinds of tumor antigenic complexes loaded into DCs were used to stimulate an antitumor response against tumor cells in the corresponding patients. Mature DCs pulsed with M-HSP70-PCs stimulated autologous T cells to secrete the same levels of type I cytokines compared with the autologous HSP70-PCs. Moreover, DCs pulsed with M-HSP70-PCs induced CD8+ T cells with an equal ability to kill melanoma cells from patients compared with autologous HSP70-PCs. Next, we used these PC-pulsed autologous DCs and induced autologous specific CD8+ T cells to treat one patient with melanoma of the nasal skin and lung metastasis. The treatment achieved a good effect after six cycles. These findings provide a new direction for DC-based immunotherapy for melanoma patients who cannot access autologous antigens. PMID:27431432

  3. Enhancing the treatment effect on melanoma by heat shock protein 70-peptide complexes purified from human melanoma cell lines.

    PubMed

    Gao, Yanwei; Gao, Weishi; Chen, Xia; Cha, Nier; Wang, Xiaoli; Jia, Xiangdong; Wang, Bingping; Ren, Meng; Ren, Jun

    2016-09-01

    Dendritic cell (DC) vaccines are currently one of the most effective approaches to treat melanoma. The immunogenicity of antigens loaded into DCs determines the treatment effects. Patients treated with autologous antigen-loaded DC vaccines achieve the best therapeutic effects. In China, most melanoma patients cannot access their autologous antigens because of formalin treatment of tumor tissue after surgery. In the present study, we purified heat shock protein 70 (HSP70)-peptide complexes (PCs) from human melanoma cell lines A375, A875, M21, M14, WM‑35, and SK‑HEL‑1. We named the purified product as M‑HSP70‑PCs, and determined its immunological activities. Autologous HSP70‑PCs purified from primary tumor cells of melanoma patients (nine cases) were used as controls. These two kinds of tumor antigenic complexes loaded into DCs were used to stimulate an antitumor response against tumor cells in the corresponding patients. Mature DCs pulsed with M‑HSP70‑PCs stimulated autologous T cells to secrete the same levels of type I cytokines compared with the autologous HSP70‑PCs. Moreover, DCs pulsed with M‑HSP70‑PCs induced CD8+ T cells with an equal ability to kill melanoma cells from patients compared with autologous HSP70‑PCs. Next, we used these PC‑pulsed autologous DCs and induced autologous specific CD8+ T cells to treat one patient with melanoma of the nasal skin and lung metastasis. The treatment achieved a good effect after six cycles. These findings provide a new direction for DC-based immunotherapy for melanoma patients who cannot access autologous antigens. PMID:27431432

  4. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1977-01-01

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  5. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1983-01-01

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  6. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1983-06-21

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  7. HANFORD CHEMICAL VAPORS WORKER CONCERNS & EXPOSURE EVALUATION

    SciTech Connect

    ANDERSON, T.J.

    2006-12-20

    Chemical vapor emissions from underground hazardous waste storage tanks on the Hanford site in eastern Washington State are a potential concern because workers enter the tank farms on a regular basis for waste retrievals, equipment maintenance, and surveillance. Tank farm contractors are in the process of retrieving all remaining waste from aging single-shell tanks, some of which date to World War II, and transferring it to newer double-shell tanks. During the waste retrieval process, tank farm workers are potentially exposed to fugitive chemical vapors that can escape from tank headspaces and other emission points. The tanks are known to hold more than 1,500 different species of chemicals, in addition to radionuclides. Exposure assessments have fully characterized the hazards from chemical vapors in half of the tank farms. Extensive sampling and analysis has been done to characterize the chemical properties of hazardous waste and to evaluate potential health hazards of vapors at the ground surface, where workers perform maintenance and waste transfer activities. Worker concerns. risk communication, and exposure assessment are discussed, including evaluation of the potential hazards of complex mixtures of chemical vapors. Concentrations of vapors above occupational exposure limits-(OEL) were detected only at exhaust stacks and passive breather filter outlets. Beyond five feet from the sources, vapors disperse rapidly. No vapors have been measured above 50% of their OELs more than five feet from the source. Vapor controls are focused on limited hazard zones around sources. Further evaluations of vapors include analysis of routes of exposure and thorough analysis of nuisance odors.

  8. Monogroove liquid heat exchanger

    NASA Technical Reports Server (NTRS)

    Brown, Richard F. (Inventor); Edelstein, Fred (Inventor)

    1990-01-01

    A liquid supply control is disclosed for a heat transfer system which transports heat by liquid-vapor phase change of a working fluid. An assembly (10) of monogroove heat pipe legs (15) can be operated automatically as either heat acquisition devices or heat discharge sources. The liquid channels (27) of the heat pipe legs (15) are connected to a reservoir (35) which is filled and drained by respective filling and draining valves (30, 32). Information from liquid level sensors (50, 51) on the reservoir (35) is combined (60) with temperature information (55) from the liquid heat exchanger (12) and temperature information (56) from the assembly vapor conduit (42) to regulate filling and draining of the reservoir (35), so that the reservoir (35) in turn serves the liquid supply/drain needs of the heat pipe legs (15), on demand, by passive capillary action (20, 28).

  9. Vapor spill monitoring method

    DOEpatents

    Bianchini, Gregory M.; McRae, Thomas G.

    1985-01-01

    Method for continuous sampling of liquified natural gas effluent from a spill pipe, vaporizing the cold liquified natural gas, and feeding the vaporized gas into an infrared detector to measure the gas composition. The apparatus utilizes a probe having an inner channel for receiving samples of liquified natural gas and a surrounding water jacket through which warm water is flowed to flash vaporize the liquified natural gas.

  10. Chemical vapor generation for atomic spectrometry. A contribution to the comprehension of reaction mechanisms in the generation of volatile hydrides using borane complexes

    NASA Astrophysics Data System (ADS)

    D'Ulivo, Alessandro; Baiocchi, Cristiano; Pitzalis, Emanuela; Onor, Massimo; Zamboni, Roberto

    2004-04-01

    A systematic study has been developed in order to clarify the mechanism of hydride generation using different borane complexes [sodium tetrahydroborate(III), NaBH 4 (THB); borane-ammonia complex, H 3B-NH 3 (AB); borane- tert-Butylamine complex, H 3B-NH 2C(CH 3) 3 (TBAB)], as derivatizing reagents. Stannane, stibine and bismuthine were generated in a continuous flow reaction system at different acidities in the pH range of 1.38-12.7. The pH of sample solution was pre-equilibrated on-line in a mixing loop by the addition of appropriate solution before the reaction with the derivatizing reagent in a reaction loop. The generated hydrides were delivered to a miniature argon hydrogen flame atomizer and free atoms detected by atomic absorption spectrometry (AAS). The effect of pH on the relative sensitivity has been investigated by varying both the mixing loop volume (4, 15 and 50 μl) and reaction loop volume (100 and 500 μl). The mixing rates of the solutions have been also tested to avoid any undesired effect arising from the incomplete mixing of the solution in the flow reaction system. The generation of hydrides using on-line pre-equilibration of pH can be observed also in alkaline or neutral conditions, while the generation of the same hydrides is observed only in acidic solution if the equilibration of pH was performed off-line. Stannane generation using amineboranes has never been reported before. Kinetic calculations were performed in order to estimate the concentration of nascent hydrogen arising from the decomposition of the derivatizing agents in the flow reaction system. It has been found that in many cases, the mechanism of nascent hydrogen failed to explain the generation of the hydrides. The direct action of BH 4- and H 3B-X species (X=ammonia or amino group) on the analyte element, present in solution in a suitable chemical form, is the only possible mechanism of hydride formation in a wide range of solution acidities, from pH 4.5 up to pH 12.7. The

  11. Methods for forming wellbores in heated formations

    DOEpatents

    Guimerans, Rosalvina Ramona; Mansure, Arthur James

    2012-09-25

    A method for forming a wellbore in a heated formation includes flowing liquid cooling fluid to a bottom hole assembly in a wellbore in a heated formation. At least a portion of the liquid cooling fluid is vaporized at or near a region to be cooled. Vaporizing the liquid cooling fluid absorbs heat from the region to be cooled.

  12. Analysis of a Flooded Heat Exchanger

    ERIC Educational Resources Information Center

    Fink, Aaron H.; Luyben, William L.

    2015-01-01

    Flooded heat exchangers are often used in industry to reduce the required heat-transfer area and the size of utility control valves. These units involve a condensing vapor on the hot side that accumulates as a liquid phase in the lower part of the vessel. The heat transfer occurs mostly in the vapor space, but the condensate becomes somewhat…

  13. Water vapor diffusion membrane development

    NASA Technical Reports Server (NTRS)

    Tan, M. K.

    1977-01-01

    An application of the water vapor diffusion technique is examined whereby the permeated water vapor is vented to space vacuum to alleviate on-board waste storage and provide supplemental cooling. The work reported herein deals primarily with the vapor diffusion-heat rejection (VD-HR) as it applies to the Space Shuttle. A stack configuration was selected, designed and fabricated. An asymmetric cellulose acetate membrane, used in reverse osmosis application was selected and a special spacer was designed to enhance mixing and promote mass transfer. A skid-mount unit was assembled from components used in the bench unit although no attempt was made to render it flight-suitable. The operating conditions of the VD-HR were examined and defined and a 60-day continuous test was carried out. The membranes performed very well throughout the test; no membrane rupture and no unusual flux decay was observed. In addition, a tentative design for a flight-suitable VD-HR unit was made.

  14. Adsorption kinetics of surfactants at liquid-solid and liquid-vapor interfaces from atomic-scale simulations

    NASA Astrophysics Data System (ADS)

    Iskrenova, Eugeniya K.; Patnaik, Soumya S.

    2012-02-01

    Nucleate pool boiling of pure liquid is a complex process involving different size- and time-scale phenomena. The appearance of the first nanobubble in the liquid at the bottom of a hot pan, the detachment of the bubble from the solid surface, its subsequent coalescence with other bubbles, all represent complex multiscale phenomena. Surfactants added to water increase the complexity of the process by contributing to the dynamic surface tension at the liquid-vapor and liquid-solid interfaces and thus affecting the heat and mass transfer at those interfaces. We apply molecular dynamics simulations to study the adsorption kinetics of anionic, cationic, and non-ionic surfactants at liquid/solid and liquid/vapor interfaces. The all-atom vs. united-atom approaches for the solid and surfactants are surveyed in view of their applicability at near boiling temperatures and a range of model water potentials is assessed for reproducing the thermal properties of water at boiling conditions.

  15. Supplemental fuel vapor system

    SciTech Connect

    Foster, P.M.

    1991-01-08

    This patent describes a supplemental fuel system utilizing fuel vapor. It comprises: an internal combustion engine including a carburetor and an intake manifold; a fuel tank provided with air vents; a fuel conduit having a first end connected to the fuel tank and in communication with liquid fuel in the tank and a second end connected to the carburetor; the fuel conduit delivering the liquid fuel to the carburetor from the fuel tank; a fuel vapor conduit having a first end connected to the fuel tank at a location displaced from contact with the liquid fuel and a second end connected to a carbon canister; a PCV conduit having a first end connected to a pollution control valve and a second end connected to the intake manifold; and, an intermediate fuel vapor conduit having a first end connected to the fuel vapor conduit and a second end connected to the PCV conduit; wherein the air vents continuously provide air to the tank to mix with the liquid fuel and form fuel vapor. The fuel vapor drawn from the fuel tank by vacuum developed in the intake manifold and flows through the fuel vapor conduit. The intermediate fuel vapor conduit and the intake manifold to combustion chambers of the internal combustion engine so as to supplement fuel delivered to the engine by the fuel conduit. The liquid fuel and the fuel vapor constantly delivered to the engine during normal operation.

  16. Preliminary characterization of a water vaporizer for resistojet applications

    NASA Technical Reports Server (NTRS)

    Morren, W. Earl

    1992-01-01

    A series of tests was conducted to explore the characteristics of a water vaporizer intended for application to resistojet propulsion systems. The objectives of these tests were to (1) observe the effect of orientation with respect to gravity on vaporizer stability, (2) characterize vaporizer efficiency and outlet conditions over a range of flow rates, and (3) measure the thrust performance of a vaporizer/resistojet thruster assembly. A laboratory model of a forced-flow, once-through water vaporizer employing a porous heat exchange medium was built and characterized over a range of flow rates and power levels of interest for application to water resistojets. In a test during which the vaporizer was rotated about a horizontal axis normal to its own axis, the outlet temperature and mass flow rate through the vaporizer remained steady. Throttlability to 30 percent of the maximum flow rate tested was demonstrated. The measured thermal efficiency of the vaporizer was near 0.9 for all tests. The water vaporizer was integrated with an engineering model multipropellant resistojet. Performance of the vaporizer/thruster assembly was measured over a narrow range of operating conditions. The maximum specific impulse measured was 234 s at a mass flow rate and specific power level (vaporizer and thruster combined) of 154 x 10(exp-6)kg/s and 6.8 MJ/kg, respectively.

  17. Droplet Vaporization In A Levitating Acoustic Field

    NASA Technical Reports Server (NTRS)

    Ruff, G. A.; Liu, S.; Ciobanescu, I.

    2003-01-01

    Combustion experiments using arrays of droplets seek to provide a link between single droplet combustion phenomena and the behavior of complex spray combustion systems. Both single droplet and droplet array studies have been conducted in microgravity to better isolate the droplet interaction phenomena and eliminate or reduce the effects of buoyancy-induced convection. In most experiments involving droplet arrays, the droplets are supported on fibers to keep them stationary and close together before the combustion event. The presence of the fiber, however, disturbs the combustion process by introducing a source of heat transfer and asymmetry into the configuration. As the number of drops in a droplet array increases, supporting the drops on fibers becomes less practical because of the cumulative effect of the fibers on the combustion process. To eliminate the effect of the fiber, several researchers have conducted microgravity experiments using unsupported droplets. Jackson and Avedisian investigated single, unsupported drops while Nomura et al. studied droplet clouds formed by a condensation technique. The overall objective of this research is to extend the study of unsupported drops by investigating the combustion of well-characterized drop clusters in a microgravity environment. Direct experimental observations and measurements of the combustion of droplet clusters would provide unique experimental data for the verification and improvement of spray combustion models. In this work, the formation of drop clusters is precisely controlled using an acoustic levitation system so that dilute, as well as dense clusters can be created and stabilized before combustion in microgravity is begun. While the low-gravity test facility is being completed, tests have been conducted in 1-g to characterize the effect of the acoustic field on the vaporization of single and multiple droplets. This is important because in the combustion experiment, the droplets will be formed and

  18. Highly effective metal vapor absorbents based on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Liu, Zongwen; Gao, Yihua; Bando, Yoshio

    2002-12-01

    It was shown that, when filled with gallium, carbon nanotubes can absorb copper vapor with extraordinarily high efficiency. The copper vapor generated from the supporting copper grid upon heating to 800 °C in an electron microscope under a pressure of 1.0×10-5 Pa quickly deposited into the carbon nanotubes and formed an alloy with gallium where the vapor pressure is up to 500 times higher (5×10-3 Pa). These filled carbon nanotubes may be used as highly sensitive toxic or radioactive metal vapor absorbents since gallium also tends to form alloys with metals like mercury and uranium.

  19. Hand-held gas chromatography-ion mobility spectrometry for on-site analysis of complex organic mixtures in air or vapors over waste sites

    SciTech Connect

    Bell, S.C. ); Eiceman, G.A. . Dept. of Chemistry)

    1991-01-01

    The strengths of Ion mobility spectrometry (IMS) are low detection limits, a wide range of application, and simplicity of design and operation. The gentle ionization processes used in IMS impart a measure of selectivity to its response. However, atmospheric pressure chemical ionization with compounds of comparable proton affinities leads to mobility spectra for which interpretive and predictive models do not exist. An alternative approach for the analysis of complex mixtures with IMS is the use of a separation device such as a gas chromatograph (GC) as an inlet. Results suggest that an IMS cell temperature of ca. 150{degrees} to 175{degrees}C provided mobility spectra with suitable spectral detail without the complications of ion-molecule clusters or fragmentation. Significant fluctuation in peak heights were observed over a 30 day test period. Neural network pattern identification techniques were applied to data obtained at room temperature and at 150{degrees}. Results showed that spectral variables within compound classes as insufficient to distinguish related compounds when mobility data was obtained using the commercial room temperature IMS cell. Similar but less severe difficulty was encountered using the 150{degrees} data. 5 refs., 3 figs., 2 tabs.

  20. Modeling and Validation of Microwave Ablations with Internal Vaporization

    PubMed Central

    Chiang, Jason; Birla, Sohan; Bedoya, Mariajose; Jones, David; Subbiah, Jeyam; Brace, Christopher L.

    2014-01-01

    Numerical simulation is increasingly being utilized for computer-aided design of treatment devices, analysis of ablation growth, and clinical treatment planning. Simulation models to date have incorporated electromagnetic wave propagation and heat conduction, but not other relevant physics such as water vaporization and mass transfer. Such physical changes are particularly noteworthy during the intense heat generation associated with microwave heating. In this work, a numerical model was created that integrates microwave heating with water vapor generation and transport by using porous media assumptions in the tissue domain. The heating physics of the water vapor model was validated through temperature measurements taken at locations 5, 10 and 20 mm away from the heating zone of the microwave antenna in homogenized ex vivo bovine liver setup. Cross-sectional area of water vapor transport was validated through intra-procedural computed tomography (CT) during microwave ablations in homogenized ex vivo bovine liver. Iso-density contours from CT images were compared to vapor concentration contours from the numerical model at intermittent time points using the Jaccard Index. In general, there was an improving correlation in ablation size dimensions as the ablation procedure proceeded, with a Jaccard Index of 0.27, 0.49, 0.61, 0.67 and 0.69 at 1, 2, 3, 4, and 5 minutes. This study demonstrates the feasibility and validity of incorporating water vapor concentration into thermal ablation simulations and validating such models experimentally. PMID:25330481

  1. Modeling and validation of microwave ablations with internal vaporization.

    PubMed

    Chiang, Jason; Birla, Sohan; Bedoya, Mariajose; Jones, David; Subbiah, Jeyam; Brace, Christopher L

    2015-02-01

    Numerical simulation is increasingly being utilized for computer-aided design of treatment devices, analysis of ablation growth, and clinical treatment planning. Simulation models to date have incorporated electromagnetic wave propagation and heat conduction, but not other relevant physics such as water vaporization and mass transfer. Such physical changes are particularly noteworthy during the intense heat generation associated with microwave heating. In this paper, a numerical model was created that integrates microwave heating with water vapor generation and transport by using porous media assumptions in the tissue domain. The heating physics of the water vapor model was validated through temperature measurements taken at locations 5, 10, and 20 mm away from the heating zone of the microwave antenna in homogenized ex vivo bovine liver setup. Cross-sectional area of water vapor transport was validated through intraprocedural computed tomography (CT) during microwave ablations in homogenized ex vivo bovine liver. Iso-density contours from CT images were compared to vapor concentration contours from the numerical model at intermittent time points using the Jaccard index. In general, there was an improving correlation in ablation size dimensions as the ablation procedure proceeded, with a Jaccard index of 0.27, 0.49, 0.61, 0.67, and 0.69 at 1, 2, 3, 4, and 5 min, respectively. This study demonstrates the feasibility and validity of incorporating water vapor concentration into thermal ablation simulations and validating such models experimentally. PMID:25330481

  2. Explosive vapor detection payload for small robots

    NASA Astrophysics Data System (ADS)

    Stimac, Phil J.; Pettit, Michael; Wetzel, John P.; Haas, John W.

    2013-05-01

    Detection of explosive hazards is a critical component of enabling and improving operational mobility and protection of US Forces. The Autonomous Mine Detection System (AMDS) developed by the US Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD) is addressing this challenge for dismounted soldiers. Under the AMDS program, ARA has developed a vapor sampling system that enhances the detection of explosive residues using commercial-off-the-shelf (COTS) sensors. The Explosives Hazard Trace Detection (EHTD) payload is designed for plug-and-play installation and operation on small robotic platforms, addressing critical Army needs for more safely detecting concealed or exposed explosives in areas such as culverts, walls and vehicles. In this paper, we describe the development, robotic integration and performance of the explosive vapor sampling system, which consists of a sampling "head," a vapor transport tube and an extendable "boom." The sampling head and transport tube are integrated with the boom, allowing samples to be collected from targeted surfaces up to 7-ft away from the robotic platform. During sample collection, an IR lamp in the sampling head is used to heat a suspected object/surface and the vapors are drawn through the heated vapor transport tube to an ion mobility spectrometer (IMS) for detection. The EHTD payload is capable of quickly (less than 30 seconds) detecting explosives such as TNT, PETN, and RDX at nanogram levels on common surfaces (brick, concrete, wood, glass, etc.).

  3. Effects of capillarity and vapor adsorption in the depletion of vapor-dominated geothermal reservoirs

    SciTech Connect

    Pruess, Karsten; O'Sullivan, Michael

    1992-01-01

    Vapor-dominated geothermal reservoirs in natural (undisturbed) conditions contain water as both vapor and liquid phases. The most compelling evidence for the presence of distributed liquid water is the observation that vapor pressures in these systems are close to saturated vapor pressure for measured reservoir temperatures (White et al., 1971; Truesdell and White, 1973). Analysis of natural heat flow conditions provides additional, indirect evidence for the ubiquitous presence of liquid. From an analysis of the heat pipe process (vapor-liquid counterflow) Preuss (1985) inferred that effective vertical permeability to liquid phase in vapor-dominated reservoirs is approximately 10{sup 17} m{sup 2}, for a heat flux of 1 W/m{sup 2}. This value appears to be at the high end of matrix permeabilities of unfractured rocks at The Geysers, suggesting that at least the smaller fractures contribute to liquid permeability. For liquid to be mobile in fractures, the rock matrix must be essentially completely liquid-saturated, because otherwise liquid phase would be sucked from the fractures into the matrix by capillary force. Large water saturation in the matrix, well above the irreducible saturation of perhaps 30%, has been shown to be compatible with production of superheated steam (Pruess and Narasimhan, 1982). In response to fluid production the liquid phase will boil, with heat of vaporization supplied by the reservoir rocks. As reservoir temperatures decline reservoir pressures will decline also. For depletion of ''bulk'' liquid, the pressure would decline along the saturated vapor pressure curve, while for liquid held by capillary and adsorptive forces inside porous media, an additional decline will arise from ''vapor pressure lowering''. Capillary pressure and vapor adsorption effects, and associated vapor pressure lowering phenomena, have received considerable attention in the geothermal literature, and also in studies related to geologic disposal of heat generating

  4. Effect of impact angle on vaporization

    NASA Astrophysics Data System (ADS)

    Schultz, Peter H.

    1996-09-01

    Impacts into easily vaporized targets such as dry ice and carbonates generate a rapidly expanding vapor cloud. Laboratory experiments performed in a tenuous atmosphere allow deriving the internal energy of this cloud through well-established and tested theoretical descriptions. A second set of experiments under near-vacuum conditions provides a second measure of energy as the internal energy converts to kinetic energy of expansion. The resulting data allow deriving the vaporized mass as a function of impact angle and velocity. Although peak shock pressures decrease with decreasing impact angle (referenced to horizontal), the amount of impact-generated vapor is found to increase and is derived from the upper surface. Moreover, the temperature of the vapor cloud appears to decrease with decreasing angle. These unexpected results are proposed to reflect the increasing roles of shear heating and downrange hypervelocity ricochet impacts created during oblique impacts. The shallow provenance, low temperature, and trajectory of such vapor have implications for larger-scale events, including enhancement of atmospheric and biospheric stress by oblique terrestrial impacts and impact recycling of the early atmosphere of Mars.

  5. Urania vapor composition at very high temperatures

    SciTech Connect

    Pflieger, Rachel; Colle, Jean-Yves; Iosilevskiy, Igor; Sheindlin, Michael

    2011-02-01

    Due to the chemically unstable nature of uranium dioxide its vapor composition at very high temperatures is, presently, not sufficiently studied though more experimental knowledge is needed for risk assessment of nuclear reactors. We used laser vaporization coupled to mass spectrometry of the produced vapor to study urania vapor composition at temperatures in the vicinity of its melting point and higher. The very good agreement between measured melting and freezing temperatures and between partial pressures measured on the temperature increase and decrease indicated that the change in stoichiometry during laser heating was very limited. The evolutions with temperature (in the range 2800-3400 K) of the partial pressures of the main vapor species (UO{sub 2}, UO{sub 3}, and UO{sub 2}{sup +}) were compared with theoretically predicted evolutions for equilibrium noncongruent gas-liquid and gas-solid phase coexistences and showed very good agreement. The measured main relative partial pressure ratios around 3300 K all agree with calculated values for total equilibrium between condensed and vapor phases. It is the first time the three main partial pressure ratios above stoichiometric liquid urania have been measured at the same temperature under conditions close to equilibrium noncongruent gas-liquid phase coexistence.

  6. Petroleum Vapor - Field Technical

    EPA Science Inventory

    The screening approach being developed by EPA OUST to evaluate petroleum vapor intrusion (PVI) requires information that has not be routinely collected in the past at vapor intrusion sites. What is the best way to collect this data? What are the relevant data quality issues and ...

  7. Water vapor pressure calculation.

    PubMed

    Hall, J R; Brouillard, R G

    1985-06-01

    Accurate calculation of water vapor pressure for systems saturated with water vapor can be performed using the Goff-Gratch equation. A form of the equation that can be adapted for computer programming and for use in electronic databases is provided. PMID:4008425

  8. Arabidopsis DPB3-1, a DREB2A Interactor, Specifically Enhances Heat Stress-Induced Gene Expression by Forming a Heat Stress-Specific Transcriptional Complex with NF-Y Subunits[C][W

    PubMed Central

    Sato, Hikaru; Mizoi, Junya; Tanaka, Hidenori; Maruyama, Kyonosin; Qin, Feng; Osakabe, Yuriko; Morimoto, Kyoko; Ohori, Teppei; Kusakabe, Kazuya; Nagata, Maika; Shinozaki, Kazuo

    2014-01-01

    DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN2A (DREB2A) is a key transcription factor for drought and heat stress tolerance in Arabidopsis thaliana. DREB2A induces the expression of dehydration- and heat stress-inducible genes under the corresponding stress conditions. Target gene selectivity is assumed to require stress-specific posttranslational regulation, but the mechanisms of this process are not yet understood. Here, we identified DNA POLYMERASE II SUBUNIT B3-1 (DPB3-1), which was previously annotated as NUCLEAR FACTOR Y, SUBUNIT C10 (NF-YC10), as a DREB2A interactor, through a yeast two-hybrid screen. The overexpression of DPB3-1 in Arabidopsis enhanced the expression of a subset of heat stress-inducible DREB2A target genes but did not affect dehydration-inducible genes. Similarly, the depletion of DPB3-1 expression resulted in reduced expression of heat stress-inducible genes. Interaction and expression pattern analyses suggested the existence of a trimer comprising NF-YA2, NF-YB3, and DPB3-1 that could synergistically activate a promoter of the heat stress-inducible gene with DREB2A in protoplasts. These results suggest that DPB3-1 could form a transcriptional complex with NF-YA and NF-YB subunits and that the identified trimer enhances heat stress-inducible gene expression during heat stress responses in cooperation with DREB2A. We propose that the identified trimer contributes to the target gene selectivity of DREB2A under heat stress conditions. PMID:25490919

  9. Experimental study of external fuel vaporization

    NASA Technical Reports Server (NTRS)

    Szetela, E. J.; Tevelde, J. A.

    1982-01-01

    The fuel properties used in the design of a flash vaporization system for aircraft gas turbine engines were evaluated in experiments using a flowing system to determine critical temperature and pressure, boiling points, dew points, heat transfer coefficients, deposit formation rates, and deposit removal. Three fuels were included in the experiments: Jet-A, an experimental referree broad specification fuel, and a premium No. 2 diesel fuel. Engine conditions representing a NASA Energy Efficient Engine at sea-level take-off, cruise, and idle were simulated in the vaporization system and it was found that single phase flow was maintained in the heat exchanger and downstream of the throttle. Deposits encountered in the heat exchanger represented a thermal resistance as high as 1300 sq M K/watt and a deposit formation rate over 1000 gC/sq cm hr.

  10. Chicken Heat Shock Protein 90 Is a Component of the Putative Cellular Receptor Complex of Infectious Bursal Disease Virus▿

    PubMed Central

    Lin, Ta-Wei; Lo, Chi-Wen; Lai, Su-Yuan; Fan, Ruey-Jane; Lo, Chao-Jung; Chou, Yu-mei; Thiruvengadam, Rekha; Wang, Andrew H.-J.; Wang, Min-Ying

    2007-01-01

    Infectious bursal disease virus (IBDV) causes a highly contagious disease in young chicks and leads to significant economic losses in the poultry industry. The capsid protein VP2 of IBDV plays an important role in virus binding and cell recognition. VP2 forms a subviral particle (SVP) with immunogenicity similar to that of the IBDV capsid. In the present study, we first showed that SVP could inhibit IBDV infection to an IBDV-susceptible cell line, DF-1 cells, in a dose-dependent manner. Second, the localizations of the SVP on the surface of DF-1 cells were confirmed by fluorescence microscopy, and the specific binding of the SVP to DF-1 cells occurred in a dose-dependent manner. Furthermore, the attachment of SVP to DF-1 cells was inhibited by an SVP-induced neutralizing monoclonal antibody against IBDV but not by denatured-VP2-induced polyclonal antibodies. Third, the cellular factors in DF-1 cells involved in the attachment of SVP were purified by affinity chromatography using SVP bound on the immobilized Ni2+ ions. A dominant factor was identified as being chicken heat shock protein 90 (Hsp90) (cHsp90) by mass spectrometry. Results of biotinylation experiments and indirect fluorescence assays indicated that cHsp90 is located on the surface of DF-1 cells. Virus overlay protein binding assays and far-Western assays also concluded that cHsp90 interacts with IBDV and SVP, respectively. Finally, both Hsp90 and anti-Hsp90 can inhibit the infection of DF-1 cells by IBDV. Taken together, for the first time, our results suggest that cHsp90 is part of the putative cellular receptor complex essential for IBDV entry into DF-1 cells. PMID:17522206

  11. Researching Complex Heat, Air and Moisture Interactions for a Wide-Range of Building Envelope Systems and Environmental Loads

    SciTech Connect

    Karagiozis, A.N.

    2007-05-15

    This document serves as the final report documenting work completed by Oak Ridge National Laboratory (ORNL) and the Fraunhofer Institute in Building Physics (Holzkirchen, Germany) under an international CRADA No. 0575 with Fraunhofer Institute of Bauphysics of the Federal Republic of Germany for Researching Complex Heat, Air and Moisture Interactions for a Wide Range of Building Envelope Systems and Environmental Loads. This CRADA required a multi-faceted approach to building envelope research that included a moisture engineering approach by blending extensive material property analysis, laboratory system and sub-system thermal and moisture testing, and advanced moisture analysis prediction performance. The Participant's Institute for Building physics (IBP) and the Contractor's Buildings Technology Center (BTC) identified potential research projects and activities capable of accelerating and advancing the development of innovative, low energy and durable building envelope systems in diverse climates. This allowed a major leverage of the limited resources available to ORNL to execute the required Department of Energy (DOE) directives in the area of moisture engineering. A joint working group (ORNL and Fraunhofer IBP) was assembled and a research plan was executed from May 2000 to May 2005. A number of key deliverables were produced such as adoption of North American loading into the WUFI-software. in addition the ORNL Weather File Analyzer was created and this has been used to address environmental loading for a variety of US climates. At least 4 papers have been co-written with the CRADA partners, and a chapter in the ASTM Manual 40 on Moisture Analysis and Condensation Control. All deliverables and goals were met and exceeded making this collaboration a success to all parties involves.

  12. Stratospheric water vapor feedback

    PubMed Central

    Dessler, A. E.; Schoeberl, M. R.; Wang, T.; Davis, S. M.; Rosenlof, K. H.

    2013-01-01

    We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistry–climate model to be +0.3 W/(m2⋅K), which would be a significant contributor to the overall climate sensitivity. One-third of this feedback comes from increases in water vapor entering the stratosphere through the tropical tropopause layer, with the rest coming from increases in water vapor entering through the extratropical tropopause. PMID:24082126

  13. Stratospheric water vapor feedback.

    PubMed

    Dessler, A E; Schoeberl, M R; Wang, T; Davis, S M; Rosenlof, K H

    2013-11-01

    We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistry-climate model to be +0.3 W/(m(2)⋅K), which would be a significant contributor to the overall climate sensitivity. One-third of this feedback comes from increases in water vapor entering the stratosphere through the tropical tropopause layer, with the rest coming from increases in water vapor entering through the extratropical tropopause. PMID:24082126

  14. Metal vapor arc switch electromagnetic accelerator technology

    NASA Technical Reports Server (NTRS)

    Mongeau, P. P.

    1984-01-01

    A multielectrode device housed in an insulator vacuum vessel, the metal vapor vacuum switch has high power capability and can hold off voltages up to the 100 kilovolt level. Such switches can be electronically triggered and can interrupt or commutate at a zero current crossing. The physics of arc initiation, arc conduction, and interruption are examined, including material considerations; inefficiencies; arc modes; magnetic field effects; passive and forced extinction; and voltage recovery. Heating, electrode lifetime, device configuration, and external circuit configuration are discussed. The metal vapor vacuum switch is compared with SCRs, GTOs, spark gaps, ignitrons, and mechanical breakers.

  15. Method for the generation of variable density metal vapors which bypasses the liquidus phase

    DOEpatents

    Kunnmann, Walter; Larese, John Z.

    2001-01-01

    The present invention provides a method for producing a metal vapor that includes the steps of combining a metal and graphite in a vessel to form a mixture; heating the mixture to a first temperature in an argon gas atmosphere to form a metal carbide; maintaining the first temperature for a period of time; heating the metal carbide to a second temperature to form a metal vapor; withdrawing the metal vapor and the argon gas from the vessel; and separating the metal vapor from the argon gas. Metal vapors made using this method can be used to produce uniform powders of the metal oxide that have narrow size distribution and high purity.

  16. Thermal Design of Vapor Cooling of Flight Vehicle Structures Using LH2 Boil-Off

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Zoeckler, Joseph

    2015-01-01

    Using hydrogen boil-off vapor to cool the structure of a flight vehicle cryogenic upper stage can reduce heat loads to the stage and increase the usable propellant in the stage or extend the life of the stage. The hydrogen vapor can be used to absorb incoming heat as it increases in temperature before being vented overboard. In theory, the amount of heat leaking into the hydrogen tank from the structure will be reduced if the structure is cooled using the propellant boil-off vapor. However, the amount of boil-off vapor available to be used for cooling and the reduction in heat leak to the propellant tank are dependent to each other. The amount of heat leak reduction to the LH2 tank also depends on the total heat load on the stage and the vapor cooling configurations.

  17. Cathepsin B activity has a crucial role in the developmental competence of bovine cumulus-oocyte complexes exposed to heat shock during in vitro maturation.

    PubMed

    Balboula, A Z; Yamanaka, K; Sakatani, M; Kawahara, M; Hegab, A O; Zaabel, S M; Takahashi, M

    2013-10-01

    Cathepsin B was found to be correlated inversely with the quality of bovine oocytes and embryos. The aims of this study were to evaluate i) the relationship between heat shock during in vitro maturation (IVM) of bovine cumulus-oocyte complexes (COCs) and cathepsin B activity in relation to apoptosis and ii) the effect of supplementation of cathepsin B inhibitor (E-64) during IVM of heat-shocked COCs on embryonic development. After IVM at 38.5 °C for 22 h (control group) or at 38.5 °C for 5 h followed by 41 °C for 17 h (heat shock group) either with or without 1 μM E-64, activities and protein expression of cathepsin B and caspase 3 were evaluated as well as TUNEL staining. After IVF, developmental rate, total cell number, and the percentage of apoptotic cells in blastocysts were evaluated on day 8 (day 0, IVF day). Heat-shocked IVM COCs showed significantly high activities and expressions of both cathepsin B, and caspase 3 accompanied by a significant increase in number of TUNEL-positive cells. Addition of E-64 significantly decreased the activities of cathepsin B and caspase 3, and TUNEL-positive cells in heat-shocked IVM COCs. Moreover, addition of 1 μM E-64 during IVM under heat shock conditions significantly improved both developmental competence and quality of the produced embryos. These results indicate that heat shock induction of cathepsin B is associated with apoptosis of COCs, and inhibition of cathepsin B activity can improve the developmental competence of heat-shocked COCs during IVM. PMID:23898216

  18. Vacuum vapor deposition

    NASA Technical Reports Server (NTRS)

    Poorman, Richard M. (Inventor); Weeks, Jack L. (Inventor)

    1995-01-01

    A method and apparatus is described for vapor deposition of a thin metallic film utilizing an ionized gas arc directed onto a source material spaced from a substrate to be coated in a substantial vacuum while providing a pressure differential between the source and the substrate so that, as a portion of the source is vaporized, the vapors are carried to the substrate. The apparatus includes a modified tungsten arc welding torch having a hollow electrode through which a gas, preferably inert, flows and an arc is struck between the electrode and the source. The torch, source, and substrate are confined within a chamber within which a vacuum is drawn. When the arc is struck, a portion of the source is vaporized and the vapors flow rapidly toward the substrate. A reflecting shield is positioned about the torch above the electrode and the source to ensure that the arc is struck between the electrode and the source at startup. The electrode and the source may be confined within a vapor guide housing having a duct opening toward the substrate for directing the vapors onto the substrate.

  19. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Heat Pipes were originally developed by NASA and the Los Alamos Scientific Laboratory during the 1960s to dissipate excessive heat build- up in critical areas of spacecraft and maintain even temperatures of satellites. Heat pipes are tubular devices where a working fluid alternately evaporates and condenses, transferring heat from one region of the tube to another. KONA Corporation refined and applied the same technology to solve complex heating requirements of hot runner systems in injection molds. KONA Hot Runner Systems are used throughout the plastics industry for products ranging in size from tiny medical devices to large single cavity automobile bumpers and instrument panels.

  20. The Tonga-Vanuatu Subduction Complex -- a Self-Optimized 3D Slab-Slab-Mantle Heat Pump

    NASA Astrophysics Data System (ADS)

    McCreary, J. A.

    2008-12-01

    Recently published geophysical and geochemical data and increasingly actualistic free subduction models prompted a fresh look at 2 classics hinting, in combination, that a coupled 3D slab-slab-upper mantle interaction (Scholz and Campos, 1995; full citations at URL below) might power the prodigious surface heat dissipation (Lagabrielle et al., 1997) characterizing one of Earth's most remarkable tectonomagmatic systems, the Tonga-Vanuatu Subduction Complex (TVSC). The 3D TVSC includes (1) the kinematically, magmatically, and bathymetrically distinct North Tonga (NT, 14-26° S) and South Vanuatu (SV, 16-23° S) trenches and slabs, (2) the shared NT-SV backarc, and (3) entrained mobile upper mantle (MUM). That Earth's greatest convergence, rollback, and spreading rates; most disseminated spreading (the North Fiji Basin (NFB) ridge swarm); and greatest concentration of aggregate active ridge length coincide in a 1,500 km TVSC can't be accidental. To the north and south, the respective active NT and SV trenches swing abruptly 90° counterclockwise into continuity with the Vitiaz and Hunter fossil trenches, both active in the Late Miocene but now sinistral strike-slip loci standing over long exposed PA and AU slab edges. These 2 active-fossil trench pairs bracket a hot, shallow and geophysically and geochemically exceptional TVSC interior consisting of 2 rapidly spreading backarcs set back-to-back in free sublithospheric communication: The Lau-Havre NT backarc on the east and the ridge-infested SV backarc (NFB) on the west. The NFB and adjacent North Fiji Plateau make up the unplatelike New Hebrides-Fiji Orogen (Bird, 2003). As in the western Aleutians, the NT-Vitiaz and SV-Hunter subduction-to-strike-slip transitions (SSSTs) stand above toroidal fluxes of hot, dry PA and AU MUM driven along-trench and around the free NT and SV slab edges from subslab to supraslab regions by dynamic pressure gradients powered by slab free-fall and induced viscous couplings. These edge

  1. Vitamin B complex attenuated heat hyperalgesia following infraorbital nerve constriction in rats and reduced capsaicin in vivo and in vitro effects.

    PubMed

    Kopruszinski, Caroline M; Reis, Renata C; Bressan, Elisangela; Reeh, Peter W; Chichorro, Juliana G

    2015-09-01

    Vitamins of the B complex attenuate some neuropathic pain sensory aspects in various animal models and in patients, but the mechanisms underlying their effects remain to be elucidated. Herein it was investigated if the treatment with a vitamin B complex (VBC) reduces heat hyperalgesia in rats submitted to infraorbital nerve constriction and the possibility that TRPV1 receptors represent a target for B vitamins. In the present study, the VBC refers to a combination of vitamins B1, B6 and B12 at low- (18, 18 and 1.8mg/kg, respectively) or high- (180, 180 and 18mg/kg, respectively) doses. Acute treatment of rats with either the low- or the high-doses combination reduced heat hyperalgesia after nerve injury, but the high-doses combination resulted in a long-lasting effect. Repeated treatment with the low-dose combination reduced heat hyperalgesia on day four after nerve injury and showed a synergist effect with a single injection of carbamazepine (3 or 10mg/kg), which per se failed to modify the heat threshold. In naïve rats, acute treatment with the high-dose of VBC or B1 and B12 vitamins independently reduced heat hyperalgesia evoked by capsaicin (3µg into the upper lip). Moreover, the VBC, as well as, each one of the B vitamins independently reduced the capsaicin-induced calcium responses in HEK 293 cells transiently transfected with the human TRPV1 channels. Altogether, these results indicate that B vitamins can be useful to control heat hyperalgesia associated with trigeminal neuropathic pain and that modulation of TRPV1 receptors may contribute to their anti-hyperalgesic effects. PMID:26048309

  2. Liquid fuel vaporizer and combustion chamber having an adjustable thermal conductor

    DOEpatents

    Powell, Michael R; Whyatt, Greg A; Howe, Daniel T; Fountain, Matthew S

    2014-03-04

    The efficiency and effectiveness of apparatuses for vaporizing and combusting liquid fuel can be improved using thermal conductors. For example, an apparatus having a liquid fuel vaporizer and a combustion chamber can be characterized by a thermal conductor that conducts heat from the combustion chamber to the vaporizer. The thermal conductor can be a movable member positioned at an insertion depth within the combustion chamber that corresponds to a rate of heat conduction from the combustion chamber to the vaporizer. The rate of heat conduction can, therefore, be adjusted by positioning the movable member at a different insertion depth.

  3. Visualization of working fluid flow in gravity assisted heat pipe

    NASA Astrophysics Data System (ADS)

    Nemec, Patrik; Malcho, Milan

    2015-05-01

    Heat pipe is device working with phase changes of working fluid inside hermetically closed pipe at specific pressure. The phase changes of working fluid from fluid to vapor and vice versa help heat pipe to transport high heat flux. The article deal about construction and processes casing in heat pipe during operation. Experiment visualization of working fluid flow is performed with glass heat pipe filed with ethanol. The visualization of working fluid flow explains the phenomena as working fluid boiling, nucleation of bubbles, vapor flow, vapor condensation on the wall, vapor and condensate flow interaction, flow down condensate film thickness on the wall, occurred during the heat pipe operation.

  4. Reaction heat used in static water removal from fuel cells

    NASA Technical Reports Server (NTRS)

    Platner, J. L.

    1966-01-01

    Reaction heat is used for removal of water formed at the hydrogen fuel electrode in a hydrogen-oxygen fuel cell. A portion of the heat inherent in the fuel cell current generation reaction is used to transfer excess water into water vapor and cause it to be exhausted from the cell by a porous vapor transport membrane adjoining a vapor cavity.

  5. Urban thermal environment measurements and numerical simulation for an actual complex urban area covering a large district heating and cooling system in summer

    NASA Astrophysics Data System (ADS)

    Huang, Hong; Ooka, Ryozo; Kato, Shinsuke

    Urban thermal situation is thought to have a great influence on the air quality in urban areas. In recent years, the urban thermal environment has become worse, such as the days on which the temperature goes above 30 °C, the sultry nights and heat stroke increase due to changes in terrestrial cover and increased anthropogenic heat emission accompanied by urbanization. Therefore, the urban thermal environment should be carefully investigated and accurately analyzed for a better study of the air quality. Here, in order to study the urban thermal environment in summer, (1) the actual status of an urban thermal environment in a complex urban area covering a large district heating and cooling (DHC) system in Tokyo is investigated using field measurements, and (2) a numerical simulation program which can be adapted to complex urban areas coupled with convection, radiation and conduction is developed and used to predict the urban thermal environment. Wind velocity, temperature and humidity are obtained from the simulation, which shows good agreement with results of the field measurement. The spatial distribution of the standard effective temperature (SET *), the comprehensive index of human thermal comfort, is also calculated using the above results, to estimate the thermal comfort at the pedestrian level. This urban thermal numerical simulation can be coupled with air pollution dispersion and chemical processes to provide a more precise air quality prediction in complex urban areas.

  6. Temperature and heat flux datasets of a complex object in a fire plume for the validation of fire and thermal response codes.

    SciTech Connect

    Jernigan, Dann A.; Blanchat, Thomas K.

    2010-09-01

    It is necessary to improve understanding and develop temporally- and spatially-resolved integral scale validation data of the heat flux incident to a complex object in addition to measuring the thermal response of said object located within the fire plume for the validation of the SIERRA/FUEGO/SYRINX fire and SIERRA/CALORE codes. To meet this objective, a complex calorimeter with sufficient instrumentation to allow validation of the coupling between FUEGO/SYRINX/CALORE has been designed, fabricated, and tested in the Fire Laboratory for Accreditation of Models and Experiments (FLAME) facility. Validation experiments are specifically designed for direct comparison with the computational predictions. Making meaningful comparison between the computational and experimental results requires careful characterization and control of the experimental features or parameters used as inputs into the computational model. Validation experiments must be designed to capture the essential physical phenomena, including all relevant initial and boundary conditions. This report presents the data validation steps and processes, the results of the penlight radiant heat experiments (for the purpose of validating the CALORE heat transfer modeling of the complex calorimeter), and the results of the fire tests in FLAME.

  7. Second Vapor-Level Sensor For Vapor Degreaser

    NASA Technical Reports Server (NTRS)

    Painter, Nance M.; Burley, Richard K.

    1990-01-01

    Second vapor-level sensor installed at lower level in vapor degreaser makes possible to maintain top of vapor at that lower level. Evaporation reduced during idle periods. Provides substantial benefit, without major capital cost of building new vapor degreaser with greater freeboard height.

  8. Heat pipe with embedded wick structure

    DOEpatents

    Adkins, D.R.; Shen, D.S.; Tuck, M.R.; Palmer, D.W.; Grafe, V.G.

    1998-06-23

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas. 7 figs.

  9. Heat pipe with embedded wick structure

    DOEpatents

    Adkins, Douglas Ray; Shen, David S.; Tuck, Melanie R.; Palmer, David W.; Grafe, V. Gerald

    1998-01-01

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas.

  10. Heat pipe with embedded wick structure

    DOEpatents

    Adkins, Douglas Ray; Shen, David S.; Tuck, Melanie R.; Palmer, David W.; Grafe, V. Gerald

    1999-01-01

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas.

  11. Dynamic headspace generation and quantitation of triacetone triperoxide vapor.

    PubMed

    Giordano, Braden C; Lubrano, Adam L; Field, Christopher R; Collins, Greg E

    2014-02-28

    Two methods for quantitation of triacetone triperoxide (TATP) vapor using a programmable temperature vaporization (PTV) inlet coupled to a gas chromatography/mass spectrometer (GC/MS) have been demonstrated. The dynamic headspace of bulk TATP was mixed with clean humid air to produce a TATP vapor stream. Sampling via a heated transfer line to a PTV inlet with a Tenax-TA™ filled liner allowed for direct injection of the vapor stream to a GC/MS for vapor quantitation. TATP was extracted from the vapor stream and subsequently desorbed from the PTV liner for splitless injection on the GC column. Calibration curves were prepared using solution standards with a standard split/splitless GC inlet for quantitation of the TATP vapor. Alternatively, vapor was sampled onto a Tenax-TA™ sample tube and placed into a thermal desorption system. In this instance, vapor was desorbed from the tube and subsequently trapped on a liquid nitrogen cooled PTV inlet. Calibration curves for this method were prepared from direct liquid injection of standards onto samples tube with the caveat that a vacuum is applied to the tube during deposition to ensure that the volatile TATP penetrates into the tube. Vapor concentration measurements, as determined by either GC/MS analysis or mass gravimetry of the bulk TATP, were statistically indistinguishable. Different approaches to broaden the TATP vapor dynamic range, including diluent air flow, sample chamber temperature, sample vial orifice size, and sample size are discussed. Vapor concentrations between 50 and 5400ngL(-1) are reported, with stable vapor generation observed for as long as 60 consecutive hours. PMID:24508355

  12. Gasoline Vapor Recovery

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Gasoline is volatile and some of it evaporates during storage, giving off hydrocarbon vapor. Formerly, the vapor was vented into the atmosphere but anti-pollution regulations have precluded that practice in many localities, so oil companies and storage terminals are installing systems to recover hydrocarbon vapor. Recovery provides an energy conservation bonus in that most of the vapor can be reconverted to gasoline. Two such recovery systems are shown in the accompanying photographs (mid-photo at right and in the foreground below). They are actually two models of the same system, although.configured differently because they are customized to users' needs. They were developed and are being manufactured by Edwards Engineering Corporation, Pompton Plains, New Jersey. NASA technological information proved useful in development of the equipment.

  13. Premelting-Induced Smoothening of the Ice-Vapor Interface.

    PubMed

    Benet, Jorge; Llombart, Pablo; Sanz, Eduardo; MacDowell, Luis G

    2016-08-26

    We perform computer simulations of the quasiliquid layer of ice formed at the ice-vapor interface close to the ice Ih-liquid-vapor triple point of water. Our study shows that the two distinct surfaces bounding the film behave at small wavelengths as atomically rough and independent ice-water and water-vapor interfaces. For long wavelengths, however, the two surfaces couple, large scale parallel fluctuations are inhibited, and the ice-vapor interface becomes smooth. Our results could help explain the complex morphology of ice crystallites. PMID:27610864

  14. Vaporization of synthetic fuels. Final report. [Thesis

    SciTech Connect

    Sirignano, W.A.; Yao, S.C.; Tong, A.Y.; Talley, D.

    1983-01-01

    The problem of transient droplet vaporization in a hot convective environment is examined. The main objective of the present study is to develop an algorithm for the droplet vaporization which is simple enough to be feasibly incorporated into a complete spray combustion analysis and yet will also account for the important physics such as liquid-phase internal circulation, unsteady droplet heating and axisymmetric gas-phase convection. A simplified liquid-phase model has been obtained based on the assumption of the existence of a Hill's spherical vortex inside the droplet together with some approximations made in the governing diffusion equation. The use of the simplified model in a spray situation has also been examined. It has been found that droplet heating and vaporization are essentially unsteady and droplet temperature is nonuniform for a significant portion of its lifetime. It has also been found that the droplet vaporization characteristic can be quite sensitive to the particular liquid-phase and gas-phase models. The results of the various models are compared with the existing experimental data. Due to large scattering in the experimental measurements, particularly the droplet diameter, no definite conclusion can be drawn based on the experimental data. Finally, certain research problems which are related to the present study are suggested for future studies.

  15. A concept of heat pipe engine

    NASA Astrophysics Data System (ADS)

    Kobayashi, Y.

    A closed thermal cycle heat pipe engine is described. The device capitalizes on inefficiencies in normal heat pipes such as small latent heat and a large variation of the saturated vapor pressure with temperature changes. Operations are at medium temperature and with two-phase liquid-vapor conditions. The engine body is kept in an adiabatic state, while the pressure vessel is in a thermosyphon configuration. A piston is included in the engine, while the pressure vessel features an upper condensor thermal-conductively decoupled from a lower evaporator. The evaporator produces high pressure vapor, from which the condensor extracts heat flux in order to condense the vapor. A shutter exposes or shuts off the vapor from the condensor as needed. The vapor moves the piston before being condensed. A working model with methanol fluid and no piston has demonstrated the feasibility of the design, and plans for constructing a prototype engine working at near-300 C temperature are indicated.

  16. Numerical simulation of heat and mass transfer processes in the nozzle and expansion unit of the separator-steam-generator system in waste-heat utilization complex

    NASA Astrophysics Data System (ADS)

    Artemov, V. I.; Minko, K. B.; Yan'kov, G. G.

    2015-12-01

    Homogeneous equilibrium and nonequilibrium (relaxation) models are used to simulate flash boiling flows in nozzles. The simulation were performed using the author's CFD-code ANES. Existing experimental data are used to test the realized mathematical model and the modified algorithms of ANES CFD-code. The results of test calculations are presented, together with data obtained for the nozzle and expansion unit of the steam generator and separator in the waste-heat system at ZAO NPVP Turbokon. The SIMPLE algorithm may be used for the transonic and supersonic flashing liquid flow. The relaxation model yields better agreement with experimental data regarding the distribution of void fraction along the nozzle axis. For the given class of flow, the difference between one- and two-dimensional models is slight.

  17. IITRI RADIO FREQUENCY HEATING TECHNOLOGY - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    The IIT Research Institute's Radiofrequency Heating System is an innovative technology used to heat soil contaminated with organic chemicals. y increasing the temperature of the contaminated soil, radiofrequency heating increases the efficiency of soil vapor extraction systems. h...

  18. Phase Change Heat Transfer Device for Process Heat Applications

    SciTech Connect

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2010-10-01

    The next generation nuclear plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to approx.1300 K) and industrial scale power transport (=50MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a thermal device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via ‘pumping a fluid’, a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization/condensing process. The condensate is further returned to the hot source by gravity, i.e., without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) of vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.

  19. Heat-transfer thermal switch

    NASA Technical Reports Server (NTRS)

    Friedell, M. V.; Anderson, A. J.

    1974-01-01

    Thermal switch maintains temperature of planetary lander, within definite range, by transferring heat. Switch produces relatively large stroke and force, uses minimum electrical power, is lightweight, is vapor pressure actuated, and withstands sterilization temperatures without damage.

  20. A complete procedure for leak detection and diagnosis in a complex heat exchanger using data-driven fuzzy models.

    PubMed

    Habbi, Hacene; Kinnaert, Michel; Zelmat, Mimoun

    2009-07-01

    In this paper, an efficient fuzzy model-based leak detection algorithm is designed for a pilot heat exchanger. A dynamic fuzzy model of the physical plant is first derived from input-output measurements using a fuzzy clustering technique. This model is run in parallel to the process for symptom generation. The leak detection mechanism has been tested and validated on the real co-current heat exchanger, and has proven to be efficient in detecting leaks of different magnitudes in the water circulation pipe. PMID:19246038

  1. Effect of buoyancy force on turbulent modes of complex heat transfer in an air-filled square cavity

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, I. V.; Sheremet, M. A.

    2015-10-01

    Turbulent natural convection with the interaction of surface radiation in square enclosure has been numerically studied. The governing equations are solved contemporaneously by finite difference method to obtain the velocity, temperature and heat flux distributions. Turbulence has been modeled using the standard k-ε model. The change of convective and radiative Nusselt numbers with respect to time has been described. The analysis is carried out over a wide range of Rayleigh number from 108 to 1010. The effect of this key parameter on temperature and velocity distributions, convective and radiative Nusselt numbers has been investigated. The results clearly demonstrate a significant effect of buoyancy ratio on unsteady turbulent heat transfer.

  2. Hybrid Vapor Compression Adsorption System: Thermal Storage Using Hybrid Vapor Compression Adsorption System

    SciTech Connect

    2012-01-04

    HEATS Project: UTRC is developing a new climate-control system for EVs that uses a hybrid vapor compression adsorption system with thermal energy storage. The targeted, closed system will use energy during the battery-charging step to recharge the thermal storage, and it will use minimal power to provide cooling or heating to the cabin during a drive cycle. The team will use a unique approach of absorbing a refrigerant on a metal salt, which will create a lightweight, high-energy-density refrigerant. This unique working pair can operate indefinitely as a traditional vapor compression heat pump using electrical energy, if desired. The project will deliver a hot-and-cold battery that provides comfort to the passengers using minimal power, substantially extending the driving range of EVs.

  3. Calculation of the radiative heat exchange in a conical cavity of complex configuration with an absorptive medium

    NASA Technical Reports Server (NTRS)

    Surinov, Y. A.; Fedyanin, V. E.

    1975-01-01

    The generalized zonal method is used to calculate the distribution of the temperature factor on the lateral surface of a conical cavity of complex configuration (a Laval nozzle) containing an absorptive medium. The highest values of the radiation density occur on the converging part of the lateral surface of the complex conical cavity (Laval nozzle).

  4. HspB5/αB-crystallin increases dendritic complexity and protects the dendritic arbor during heat shock in cultured rat hippocampal neurons.

    PubMed

    Bartelt-Kirbach, Britta; Moron, Margarethe; Glomb, Maximilian; Beck, Clara-Maria; Weller, Marie-Pascale; Golenhofen, Nikola

    2016-10-01

    The small heat shock protein ΗspΒ5 (αB-crystallin) exhibits generally cytoprotective functions and possesses powerful neuroprotective capacity in the brain. However, little is known about the mode of action of ΗspΒ5 or other members of the HspB family particularly in neurons. To get clues of the neuronal function of HspBs, we overexpressed several HspBs in cultured rat hippocampal neurons and investigated their effect on neuronal morphology and stress resistance. Whereas axon length and synapse density were not affected by any HspB, dendritic complexity was enhanced by HspB5 and, to a lesser extent, by HspB6. Furthermore, we could show that this process was dependent on phosphorylation, since a non-phosphorylatable mutant of HspB5 did not show this effect. Rarefaction of the dendritic arbor is one hallmark of several neurodegenerative diseases. To investigate if HspB5, which is upregulated at pathophysiological conditions, might be able to protect dendrites during such situations, we exposed HspB5 overexpressing neuronal cultures to heat shock. HspB5 prevented heat shock-induced rarefaction of dendrites. In conclusion, we identified regulation of dendritic complexity as a new function of HspB5 in hippocampal neurons. PMID:27085702

  5. Exclusive photothermal heat generation by a gadolinium bis(naphthalocyanine) complex and inclusion into modified high-density lipoprotein nanocarriers for therapeutic applications.

    PubMed

    Mathew, Simon; Murakami, Tatsuya; Nakatsuji, Hirotaka; Okamoto, Haruki; Morone, Nobuhiro; Heuser, John E; Hashida, Mitsuru; Imahori, Hiroshi

    2013-10-22

    A hydrophobic gadolinium bis(naphthalocyanine) sandwich complex (GdSand) possessing several absorbances across visible and infrared wavelengths (up to 2500 nm) was solubilized in aqueous solution by uptake into a nascent mutant high-density lipoprotein (HDL) nanocarrier. The HDL nanocarrier was additionally functionalized with a trans-activator of transcription peptide sequence to promote efficient cell penetration of the drug delivery system (cpHDL). The dye-loaded nanocarrier (GdSand@cpHDL) exhibited photothermal heat generation properties upon irradiation with near-infrared (NIR) laser light, with controllable heat generation abilities as a function of the incident laser light power. Comparison of the photothermal behavior of the dyes GdSand and the well-explored molecular photothermal agent indocyanine green (ICG) in the cpHDL nanocarrier (i.e., ICG@cpHDL) revealed two significant advantages of GdSand@cpHDL: (1) the ability to maintain elevated temperatures upon light absorption for extended periods of time, with a reduced degree of self-destruction of the dye, and (2) exclusive photothermal heat generation with no detectable singlet oxygen production leading to improved integrity of the cpHDL nanocarrier after irradiation. Finally, GdSand@cpHDL was successfully subjected to an in vitro study against NCI-H460 human lung cancer cells, demonstrating the proof-of-principle utility of lanthanide sandwich complexes in photothermal therapeutic applications. PMID:24053139

  6. CVB: the Constrained Vapor Bubble Capillary Experiment on the International Space Station MARANGONI FLOW REGION

    NASA Technical Reports Server (NTRS)

    Wayner, Peter C., Jr.; Kundan, Akshay; Plawsky, Joel

    2014-01-01

    The Constrained Vapor Bubble (CVB) is a wickless, grooved heat pipe and we report on a full- scale fluids experiment flown on the International Space Station (ISS). The CVB system consists of a relatively simple setup a quartz cuvette with sharp corners partially filled with either pentane or an ideal mixture of pentane and isohexane as the working fluids. Along with temperature and pressure measurements, the two-dimensional thickness profile of the menisci formed at the corners of the quartz cuvette was determined using the Light Microscopy Module (LMM). Even with the large, millimeter dimensions of the CVB, interfacial forces dominate in these exceedingly small Bond Number systems. The experiments were carried out at various power inputs. Although conceptually simple, the transport processes were found to be very complex with many different regions. At the heated end of the CVB, due to a high temperature gradient, we observed Marangoni flow at some power inputs. This region from the heated end to the central drop region is defined as a Marangoni dominated region. We present a simple analysis based on interfacial phenomena using only measurements from the ISS experiments that lead to a predictive equation for the thickness of the film near the heated end of the CVB. The average pressure gradient for flow in the film is assumed due to the measured capillary pressure at the two ends of the liquid film and that the pressure stress gradient due to cohesion self adjusts to a constant value over a distance L. The boundary conditions are the no slip condition at the wall interface and an interfacial shear stress at the liquid- vapor interface due to the Marangoni stress, which is due to the high temperature gradient. Although the heated end is extremely complex, since it includes three- dimensional variations in radiation, conduction, evaporation, condensation, fluid flow and interfacial forces, we find that using the above simplifying assumptions, a simple successful

  7. Chemical vapor deposition of epitaxial silicon

    DOEpatents

    Berkman, Samuel

    1984-01-01

    A single chamber continuous chemical vapor deposition (CVD) reactor is described for depositing continuously on flat substrates, for example, epitaxial layers of semiconductor materials. The single chamber reactor is formed into three separate zones by baffles or tubes carrying chemical source material and a carrier gas in one gas stream and hydrogen gas in the other stream without interaction while the wafers are heated to deposition temperature. Diffusion of the two gas streams on heated wafers effects the epitaxial deposition in the intermediate zone and the wafers are cooled in the final zone by coolant gases. A CVD reactor for batch processing is also described embodying the deposition principles of the continuous reactor.

  8. Dynamics of vapor emissions at wire explosion thresholda)

    NASA Astrophysics Data System (ADS)

    Belony, Paul A.; Kim, Yong W.

    2010-10-01

    X-pinch plasmas have been actively studied in the recent years. Numerical simulation of the ramp-up of metallic vapor emissions from wire specimens shows that under impulsive Ohmic heating the wire core invariably reaches a supercritical state before explosion. The heating rate depends sensitively on the local wire resistance, leading to highly variable vapor emission flux along the wire. To examine the vapor emission process, we have visualized nickel wire explosions by means of shock formation in air. In a single explosion as captured by shadowgraphy, there usually appear several shocks with spherical or cylindrical wave front originating from different parts of the wire. Growth of various shock fronts in time is well characterized by a power-law scaling in one form or another. Continuum emission spectra are obtained and calibrated to measure temperature near the explosion threshold. Shock front structures and vapor plume temperature are examined.

  9. The tracking of interfaces in an electron-beam vaporizer

    SciTech Connect

    Westerberg, K.W.; McClelland, M.A.; Finlayson, B.A.

    1993-03-01

    A numerical analysis is made of the material and energy flow in an electron beam vaporizer. In this system the energy from an electron beam heats metal confined in a water-cooled crucible. Metal is vaporized from a liquid pool circulating in a shell of its own solid. A modified Galerkin finite element method is used to calculate the flow and temperature fields along with the interface locations. The mesh is parameterized with spines which stretch and pivot as the phase boundaries move. The discretized equations are arranged in an ``arrow`` matrix and solved using the Newton-Raphson method. Results are given for an experimental aluminum vaporizer. The effects of buoyancy and capillary driven flow are included along with the surface contributions of vapor thrust, latent heat, thermal radiation, and crucible contact resistance.

  10. Thermodynamic and transport properties of sodium liquid and vapor

    SciTech Connect

    Fink, J.K.; Leibowitz, L.

    1995-01-01

    Data have been reviewed to obtain thermodynamically consistent equations for thermodynamic and transport properties of saturated sodium liquid and vapor. Recently published Russian recommendations and results of equation of state calculations on thermophysical properties of sodium have been included in this critical assessment. Thermodynamic properties of sodium liquid and vapor that have been assessed include: enthalpy, heat capacity at constant pressure, heat capacity at constant volume, vapor pressure, boiling point, enthalpy of vaporization, density, thermal expansion, adiabatic and isothermal compressibility, speed of sound, critical parameters, and surface tension. Transport properties of liquid sodium that have been assessed include: viscosity and thermal conductivity. For each property, recommended values and their uncertainties are graphed and tabulated as functions of temperature. Detailed discussions of the analyses and determinations of the recommended equations include comparisons with recommendations given in other assessments and explanations of consistency requirements. The rationale and methods used in determining the uncertainties in the recommended values are also discussed.

  11. A model for acoustic vaporization of encapsulated droplets

    NASA Astrophysics Data System (ADS)

    Coulouvrat, François; Guédra, Matthieu

    2015-10-01

    This work deals with the theoretical modelling of the acoustic vaporization of a droplet encapsulated with a thin viscoelastic shell. A generalized Rayleigh-Plesset equation describing the radial motion of the particle is derived, which accounts for the evaporation rate at liquid/vapor interface, the surface tension between droplet and outer liquid, and the viscoelasticity of the shell. This equation is coupled to heat equations in the liquid media which rule the temperature field around the bubble and thus the mass flux through the surface. Numerical simulations reveal behaviors of the vapor nucleus which can be substantially different from the case of a vapor bubble in an infinite medium. The results show that the ADV threshold depends on frequency in agreement with experimental observations in literature. The rigidity of the shell also affects the ADV threshold and the dynamics of the vapor expansion.

  12. Advanced heat pump

    NASA Astrophysics Data System (ADS)

    Ashley, Joseph L.; Matthews, John D.

    1989-09-01

    This patent application discloses a heat pump which includes a first packed bed of liquid desiccant for removing moisture from outside air in the heating mode of operation, and a pump for transferring the moisture laden desiccant to a second packed bed which humidifies condenser heated inside air by adding water vapor to the air. The first packed bed, by removing moisture from the outside air before it passes through the heat pump's evaporator coils, prevents frost from forming on the coils. In the cooling mode of operation the second packed bed of liquid desiccant removes water vapor from the air inside of the building. The moisture laden desiccant is then transferred to the first packed bed by a second pump where condenser heat transfers the moisture from the desiccant to outside air.

  13. Vapor core propulsion reactors

    NASA Technical Reports Server (NTRS)

    Diaz, Nils J.

    1991-01-01

    Many research issues were addressed. For example, it became obvious that uranium tetrafluoride (UF4) is a most preferred fuel over uranium hexafluoride (UF6). UF4 has a very attractive vaporization point (1 atm at 1800 K). Materials compatible with UF4 were looked at, like tungsten, molybdenum, rhenium, carbon. It was found that in the molten state, UF4 and uranium attacked most everything, but in the vapor state they are not that bad. Compatible materials were identified for both the liquid and vapor states. A series of analyses were established to determine how the cavity should be designed. A series of experiments were performed to determine the properties of the fluid, including enhancement of the electrical conductivity of the system. CFD's and experimental programs are available that deal with most of the major issues.

  14. Fuel Vaporization Effects

    NASA Technical Reports Server (NTRS)

    Bosque, M. A.

    1983-01-01

    A study of the effects of fuel-air preparation characteristics on combustor performance and emissions at temperature and pressure ranges representative of actual gas turbine combustors is discussed. The effect of flameholding devices on the vaporization process and NOx formation is discussed. Flameholder blockage and geometry are some of the elements that affect the recirculation zone characteristics and subsequently alter combustion stability, emissions and performance. A water cooled combustor is used as the test rig. Preheated air and Jet A fuel are mixed at the entrance of the apparatus. A vaporization probe is used to determine percentage of vaporization and a gas sample probe to determine concentration of emissions in the exhaust gases. The experimental design is presented and experimental expected results are discussed.

  15. Chemical vapor deposition coating of fibers using microwave application

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Hoover, Gordon (Inventor); Jackson, Henry W. (Inventor)

    2000-01-01

    Chemical vapor deposition coating is carried out in a cylindrical cavity. The fibers are heated by a microwave source that is uses a TM0N0 mode, where O is an integer, and produces a field that depends substantially only on radius. The fibers are observed to determine their heating, and their position can be adjusted. Once the fibers are uniformly heated, a CVD reagent is added to process the fibers.

  16. The expression of heat shock protein hsp27 and a complexed 22-kilodalton protein is inversely correlated with oncogenicity of adenovirus-transformed cells.

    PubMed Central

    Zantema, A; de Jong, E; Lardenoije, R; van der Eb, A J

    1989-01-01

    We isolated a monoclonal antibody that immunoprecipitated two proteins of 22 and 27 kilodaltons (kDa) from nononcogenic adenovirus type 5 early region 1 (E1)-transformed rat cells but not from oncogenic adenovirus type 12 E1-transformed rat cells. In a variety of adenovirus-transformed cells including cells transformed by E1A and the c-H-ras oncogene, we found a perfect, inverse correlation between the presence of these two proteins and the oncogenicity of these cells in syngeneic immunocompetent rats. Characterization of the two proteins revealed that they occur in a large (700-kDa) complex and that the 27-kDa protein is identical to the already known 27-kDa (28-kDa) heat shock protein hsp27. The suppression of the hsp27 protein in oncogenic cells is further demonstrated by the fact that its mRNA is absent even after heat-shock induction. Images PMID:2746733

  17. A new method for predicting the solar heat gain of complex fenestration systems: II, Detailed description of the matrix layer calculation

    SciTech Connect

    Klems, J.H.

    1993-10-01

    A new method of predicting the solar heat gain through complex fenestration systems involving nonspecular layers such as shades or blinds has been examined in a project jointly sponsored by ASHRAE and DOE. In this method, a scanning radiometer is used to measure the bidirectional radiative transmittance and reflectance of each layer of a fenestration system. The properties of systems containing these layers are then built up computationally from the measured layer properties using a transmission/multiple-reflection calculation. The calculation produces the total directional-hemispherical transmittance of the fenestration system and the layer-by-layer absorptances. These properties are in turn combined with layer-specific measurements of the inward-flowing fractions of absorbed solar energy to produce the overall solar heat gain coefficient. A preceding paper outlined the method and provided the physical derivation of the calculation. In this second of a series of related papers the detailed development of the matrix layer calculation is presented.

  18. Chemical vapor deposition of group IIIB metals

    DOEpatents

    Erbil, A.

    1989-11-21

    Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula given in the patent where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula 1 is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula 1 and a heat decomposable tellurium compound under nonoxidizing conditions.

  19. Chemical vapor deposition of group IIIB metals

    DOEpatents

    Erbil, Ahmet

    1989-01-01

    Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula (I) ##STR1## where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula I is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula I and a heat decomposable tellurium compound under nonoxidizing conditions.

  20. Heat-set gel-like networks of lipophilic Co(II) triazole complexes in organic media and their thermochromic structural transitions.

    PubMed

    Kuroiwa, Keita; Shibata, Tomoko; Takada, Akihiko; Nemoto, Norio; Kimizuka, Nobuo

    2004-02-25

    A novel class of thermally responsive supramolecular assemblies is formed from the lipophilic cobalt(II) complexes of 4-alkylated 1,2,4-triazoles. When an ether linkage is introduced in the alkylchain moiety, a blue gel-like phase is formed in chloroform, even at very low concentration (ca. 0.01 wt %, at room temperature). The blue color is accompanied by a structured absorption around 580-730 nm, which is characteristic of cobalt (II) in the tetrahedral (T(d)) coordination. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) of the gel-like phase confirms the formation of networks of fibrous nanoassemblies with widths of 5-30 nm. The observed widths are larger than a molecular length of the triazole ligand (ca. 2.2 nm) and they are consisted of aggregates of T(d) coordination polymers. Very interestingly, the blue gel-like phase turned into a solution by cooling below 25 degrees C. A pale pink solution is obtained at 0 degrees C, indicating the formation of octahedral (O(h)) complexes. The observed thermochromic transition is totally reversible. The formation of gel-like networks by heating is contrary to the conventional organogels, which dissolve upon heating. Temperature dependence of the storage and loss moduli (G' and G") shows minima around at 27 degrees C, at which temperature they gave comparable values. On the other hand, G' exceeds G" both in the gel-like phase (temperature above 27 degrees C) and in the solution phase (temperature below 25 degrees C). These observations indicate that T(d) complexes are present as low-molecular weight species around at 25-27 degrees C. They are self-assembled to polymeric T(d) complexes by heating and form gel-like networks. Upon cooling the solution below 25 degrees C, T(d) complexes are converted to O(h) complexes and they also self-assemble into oligomeric or polymeric species at lower temperatures. The observed unique thermochromic transition (pink solution --> blue gel-like phase) is accompanied

  1. Vapor concentration monitor

    DOEpatents

    Bayly, John G.; Booth, Ronald J.

    1977-01-01

    An apparatus for monitoring the concentration of a vapor, such as heavy water, having at least one narrow bandwidth in its absorption spectrum, in a sample gas such as air. The air is drawn into a chamber in which the vapor content is measured by means of its radiation absorption spectrum. High sensitivity is obtained by modulating the wavelength at a relatively high frequency without changing its optical path, while high stability against zero drift is obtained by the low frequency interchange of the sample gas to be monitored and of a reference sample. The variable HDO background due to natural humidity is automatically corrected.

  2. Save by absorption heat pumping

    SciTech Connect

    Davidson, W.F.; Campagne, W.V.L.

    1987-12-01

    The author compares absorption heat pumping (AHP) to mechanical vapor compressor (MVC) heat pumping. The moving part of the AHP is a pump easy to maintain and inexpensive to spare. The mechanical component of the MVC is a vapor compressor which requires more maintenance and is cost-prohibitive to spare. Also, in the MVC system, a purified product stream is heat pumped in an open compressor, thus risking product contamination. In the AHP system, the cold and hot utilities are heat pumped. Therefore, product integrity with an AHP system is well protected as in a conventional fractionation column.

  3. Modelling of Laser-Enhanced Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Brown, R. A.

    1985-01-01

    Research is directed at development of a detailed model of mass and heat transfer and chemical reaction in the pyrolysis of silane for the growth of thin amorphous silicon substrates incorporating laser heating of the gas phase above the film. The model will be the basis for evaluation of the relative importances of the decomposition of SiH4 in the vapor phase, mass transfer of the intermediate species, e.g., SiH2, and the evolution of hydrogen gas. Plans are also underway for developing a model for homogeneous nucleation of Si in the vapor phase to model the rate limitations observed at high gas-phase temperatures and high partial pressures of silane. Work was concentrated on an almost one-dimensional model for the coupling of the CO2 laser beam for heat transfer of the vapor phase with simple kinetic models for SiH4 decomposition and subsequent absorption of Si vapor on the substrate. Mass transfer in the vapor phase is assumed to be solely by diffusion. The role of convection in the vapor phase caused by the large changes in density in and around the center of the laser beam will be analyzed to evaluate the potential of microgravity experiments for increasing the uniformity of the film and the deposition rate.

  4. Complex permittivity measurements during high temperature recycling of space shuttle antenna window and dielectric heat shield materials

    NASA Technical Reports Server (NTRS)

    Bassett, H. L.; Bomar, S. H., Jr.

    1973-01-01

    The research performed and the data obtained on candidate space shuttle antenna window and heat shield materials are presented. The measurement technique employs a free-space focused beam microwave bridge for obtaining RF transmission data, and a device which rotates a sample holder which is heated on one side by natural gas-air flames. The surface temperature of each sample is monitored by IR pyrometry; embedded and rear surface thermocouples are also used in obtaining temperature data. The surface of the sample undergoing test is subjected to approximately the same temperature/time profile that occurs at a proposed antenna position on the space shuttle as it re-enters. The samples are cycled through ten of these temperature profiles to determine the recycling effects. Very little change was noted in the materials due to the recycling.

  5. Reproductive value in a complex life cycle: heat tolerance of the pitcher-plant mosquito, Wyeomyia smithii.

    PubMed

    Zani, P A; Cohnstaedt, L W; Corbin, D; Bradshaw, W E; Holzapfel, C M

    2005-01-01

    Because mortality accumulates with age, Fisher proposed that the strength of selection acting on survival should increase from birth up to the age of first reproduction. Hamilton later theorized that the strength of selection acting on survival should not change from birth to age at first reproduction. As organisms in nature do not live in uniform environments but, rather, experience periodic stress, we hypothesized that resistance to environmental stress should increase (Fisher) or remain constant (Hamilton) from birth to age at first reproduction. Using the pitcher-plant mosquito, Wyeomyia smithii, we imposed heat stress by simulating the passage of a warm-weather front at different pre-adult and adult stages. Contrary to either Fisher or Hamilton, stress tolerance declined from embryos to larvae to pupae to adults. Consequently, reproductive value appears to have been of little consequence in the evolution of stage-specific tolerance of heat stress in W. smithii. PMID:15669965

  6. Chemical vapor deposition of WN{sub x}C{sub y} using the tungsten piperidylhydrazido complex Cl{sub 4}(CH{sub 3}CN)W(N-pip): Deposition, characterization, and diffusion barrier evaluation

    SciTech Connect

    Kim, Dojun; Kim, Oh Hyun; Anderson, Tim; Koller, Juergen; McElwee-White, Lisa; Leu, Lii-Cherng; Tsai, Joseph M.; Norton, David P.

    2009-07-15

    The tungsten piperidylhydrazido complex Cl{sub 4}(CH{sub 3}CN)W(N-pip) (1) was used for film growth of tungsten carbonitride (WN{sub x}C{sub y}) by metal-organic chemical vapor deposition (CVD) in the absence and presence of ammonia (NH{sub 3}) in H{sub 2} carrier. The microstructure of films deposited with NH{sub 3} was x-ray amorphous between 300 and 450 deg. C. The chemical composition of films deposited with NH{sub 3} exhibited increased N levels and decreased C levels over the entire deposition temperature range (300-700 deg. C) as compared to films deposited without NH{sub 3}. As determined by x-ray photoelectron spectroscopy, W is primarily bonded to N and C for films deposited at 400 deg. C, but at lower deposition temperature the binding energy of the W-O bond becomes more evident. The growth rates of films deposited with NH{sub 3} varied from 0.6 A/min at 300 deg. C to 4.2 A/min at 600 deg. C. Over 600 deg. C, the growth rate decreased when using NH{sub 3} presumably due to parasitic gas phase reactions that deplete the precursor. Diffusion barrier properties were investigated using Cu/WN{sub x}C{sub y}/Si stacks consisting of 100 nm Cu deposited at room temperature by reactive sputtering on a 20 nm WN{sub x}C{sub y} film deposited at 400 deg. C by CVD. X-ray diffraction and cross-sectional transmission electron microscopy were used to determine the performance of the diffusion barrier. Cu/WN{sub x}C{sub y}/Si stacks annealed under N{sub 2} at 500 deg. C for 30 min maintained the integrity of both Cu/WN{sub x}C{sub y} and WN{sub x}C{sub y}/Si interfaces.

  7. BTSC VAPOR INSTRUSION PRIMER "VAPOR INTRUSION CONSIDERATION FOR REDEVELOPMENT"

    EPA Science Inventory

    This primer is designed for brownfields stakeholders concerned about vapor intrusion, including property owners, real estate developers, and contractors performing environmental site investigations. It provides an overview of the vapor intrusion issue and how it can impact the ap...

  8. Method and apparatus for producing thermal vapor stream

    DOEpatents

    Cradeur, Robert R.; Sperry, John S.; Krajicek, Richard W.

    1979-01-01

    Method and apparatus for producing a thermal vapor stream for injecting into a subterranean formation for the recovery of liquefiable minerals therefrom, including a pressure vessel containing a high pressure combustion chamber for producing a heating gas for introduction into a heating gas injector. The heating gas injector is partly immersed in a steam generating section of the pressure vessel such that the heating gas is passed through the steam generating section to produce steam and combustion products which are directed between the pressure vessel and the combustion chamber for simultaneously cooling of the combustion chamber by further heating of the steam and combustion gases.

  9. Heat exchanger-accumulator

    DOEpatents

    Ecker, Amir L.

    1980-01-01

    What is disclosed is a heat exchanger-accumulator for vaporizing a refrigerant or the like, characterized by an upright pressure vessel having a top, bottom and side walls; an inlet conduit eccentrically and sealingly penetrating through the top; a tubular overflow chamber disposed within the vessel and sealingly connected with the bottom so as to define an annular outer volumetric chamber for receiving refrigerant; a heat transfer coil disposed in the outer volumetric chamber for vaporizing the liquid refrigerant that accumulates there; the heat transfer coil defining a passageway for circulating an externally supplied heat exchange fluid; transferring heat efficiently from the fluid; and freely allowing vaporized refrigerant to escape upwardly from the liquid refrigerant; and a refrigerant discharge conduit penetrating sealingly through the top and traversing substantially the length of the pressurized vessel downwardly and upwardly such that its inlet is near the top of the pressurized vessel so as to provide a means for transporting refrigerant vapor from the vessel. The refrigerant discharge conduit has metering orifices, or passageways, penetrating laterally through its walls near the bottom, communicating respectively interiorly and exteriorly of the overflow chamber for controllably carrying small amounts of liquid refrigerant and oil to the effluent stream of refrigerant gas.

  10. Vapor pressures and vapor compositions in equilibrium with hypostoichiometric plutonium dioxide at high temperatures

    SciTech Connect

    Green, D.W.; Fink, J.K.; Leibowitz, L.

    1982-06-01

    Vapor pressures and vapor compositions in equilibrium with a hypostoichiometric plutonium dioxide condensed phase have been calculated for the temperature range 1500 less than or equal to T less than or equal to 4000 K. Thermodynamic functions for the condensed phase and for each of the gaseous species were combined with an oxygen-potential model to obtain the partial pressures of O/sub 2/, O, Pu, PuO, and PuO/sub 2/. New thermodynamic functions for the solid oxide were calculated from available information and from new estimates of the heat capacity of the liquid. Thermodynamic functions for the vapor species were calculated previously. A suitable oxygen-potential model has been used previously for the solid hypostoichiometric plutonium dioxide; this model has been extended into the liquid region using several alternative methods. The effects of these alternatives on the calculated oxygen pressures have been examined in detail.

  11. Critical heat flux in subcooled flow boiling

    NASA Astrophysics Data System (ADS)

    Hall, David Douglas

    The critical heat flux (CHF) phenomenon was investigated for water flow in tubes with particular emphasis on the development of methods for predicting CHF in the subcooled flow boiling regime. The Purdue University Boiling and Two-Phase Flow Laboratory (PU-BTPFL) CHF database for water flow in a uniformly heated tube was compiled from the world literature dating back to 1949 and represents the largest CHF database ever assembled with 32,544 data points from over 100 sources. The superiority of this database was proven via a detailed examination of previous databases. The PU-BTPFL CHF database is an invaluable tool for the development of CHF correlations and mechanistic models that are superior to existing ones developed with smaller, less comprehensive CHF databases. In response to the many inaccurate and inordinately complex correlations, two nondimensional, subcooled CHF correlations were formulated, containing only five adjustable constants and whose unique functional forms were determined without using a statistical analysis but rather using the parametric trends observed in less than 10% of the subcooled CHF data. The correlation based on inlet conditions (diameter, heated length, mass velocity, pressure, inlet quality) was by far the most accurate of all known subcooled CHF correlations, having mean absolute and root-mean-square (RMS) errors of 10.3% and 14.3%, respectively. The outlet (local) conditions correlation was the most accurate correlation based on local CHF conditions (diameter, mass velocity, pressure, outlet quality) and may be used with a nonuniform axial heat flux. Both correlations proved more accurate than a recent CHF look-up table commonly employed in nuclear reactor thermal hydraulic computer codes. An interfacial lift-off, subcooled CHF model was developed from a consideration of the instability of the vapor-liquid interface and the fraction of heat required for liquid-vapor conversion as opposed to that for bulk liquid heating. Severe

  12. Experimental investigation of fuel vaporization on combustion efficiency

    SciTech Connect

    Zakkay, V.; Agnone, A.; Clisset, H.

    1980-12-01

    The development of a residential size vaporizing oil burner is presented along with its operational and performance characteristics. The vaporization scheme consists of spraying No. 2 oil onto a regeneratively heated surface at a temperature above the oil vaporization temperature (650/sup 0/F). The vaporized oil mixes with a preheated air (T = 250/sup 0/F) stream to produce a uniform fuel air mixture. The premixed vaporized fuel/air stream produces short blue flamelets anchored to a steel screen flame holder. The operational and performance characteristics of this burner are presented for a range of the air and oil flow parameters around the stoichiometric condition, and for a nominal firing rate of less than or equal to 1.2 gph. Operation with less than 3% excess air is demonstrated with very little soot formation. The combustion quality of the vaporizing oil burner is substantially improved compared to conventional spray combustion and recirculation type blue flame burners. The vaporizing oil burner was adapted to a conventional boiler and the thermal efficiency was determined by a calorimeter technique and compared to the stack method. The thermal efficiency with the vaporized combustion mode is about 4% greater than conventional spray combustion burners. The increase is realized through the reduced excess air requirements. The increased efficiency can result in reduced oil consumption from 12% to 20% depending on the location and usage of the burner unit.

  13. Water vapor lidar

    NASA Technical Reports Server (NTRS)

    Ellingson, R.; Mcilrath, T.; Schwemmer, G.; Wilkerson, T. D.

    1976-01-01

    The feasibility was studied of measuring atmospheric water vapor by means of a tunable lidar operated from the space shuttle. The specific method evaluated was differential absorption, a two-color method in which the atmospheric path of interest is traversed by two laser pulses. Results are reported.

  14. Water vapor diffusion membranes

    NASA Technical Reports Server (NTRS)

    Holland, F. F., Jr.; Smith, J. K.

    1974-01-01

    The program is reported, which was designed to define the membrane technology of the vapor diffusion water recovery process and to test this technology using commercially available or experimental membranes. One membrane was selected, on the basis of the defined technology, and was subjected to a 30-day demonstration trial.

  15. Solvent vapor collector

    DOEpatents

    Ellison, Kenneth; Whike, Alan S.

    1979-01-30

    A solvent vapor collector is mounted on the upstream inlet end of an oven having a gas-circulating means and intended for curing a coating applied to a strip sheet metal at a coating station. The strip sheet metal may be hot and solvent vapors are evaporated at the coating station and from the strip as it passes from the coating station to the oven. Upper and lower plenums within a housing of the collector are supplied with oven gases or air from the gas-circulating means and such gases or air are discharged within the collector obliquely in a downstream direction against the strip passing through that collector to establish downstream gas flows along the top and under surfaces of the strip so as, in turn, to induct solvent vapors into the collector at the coating station. A telescopic multi-piece shroud is usefully provided on the housing for movement between an extended position in which it overlies the coating station to collect solvent vapors released thereat and a retracted position permitting ready cleaning and adjustment of that coating station.

  16. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    ERIC Educational Resources Information Center

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  17. Soil vapor extraction with dewatering

    SciTech Connect

    Thomson, N.R.

    1996-08-01

    The physical treatment technology of soil vapor extraction (SVE) is reliable, safe, robust, and able to remove significant amounts of mass at a relatively low cost. SVE combined with a pump-and-treat system to create a dewatered zone has the opportunity to remove more mass with the added cost of treating the extracted groundwater. Various limiting processes result in a significant reduction in the overall mass removal rates from a SVE system in porous media. Only pilot scale, limited duration SVE tests conducted in low permeability media have been reported in the literature. It is expected that the presence of a fracture network in low permeability media will add another complexity to the limiting conditions surrounding the SVE technology. 20 refs., 4 figs.

  18. Heat pipe dynamic behavior

    NASA Technical Reports Server (NTRS)

    Issacci, F.; Roche, G. L.; Klein, D. B.; Catton, I.

    1988-01-01

    The vapor flow in a heat pipe was mathematically modeled and the equations governing the transient behavior of the core were solved numerically. The modeled vapor flow is transient, axisymmetric (or two-dimensional) compressible viscous flow in a closed chamber. The two methods of solution are described. The more promising method failed (a mixed Galerkin finite difference method) whereas a more common finite difference method was successful. Preliminary results are presented showing that multi-dimensional flows need to be treated. A model of the liquid phase of a high temperature heat pipe was developed. The model is intended to be coupled to a vapor phase model for the complete solution of the heat pipe problem. The mathematical equations are formulated consistent with physical processes while allowing a computationally efficient solution. The model simulates time dependent characteristics of concern to the liquid phase including input phase change, output heat fluxes, liquid temperatures, container temperatures, liquid velocities, and liquid pressure. Preliminary results were obtained for two heat pipe startup cases. The heat pipe studied used lithium as the working fluid and an annular wick configuration. Recommendations for implementation based on the results obtained are presented. Experimental studies were initiated using a rectangular heat pipe. Both twin beam laser holography and laser Doppler anemometry were investigated. Preliminary experiments were completed and results are reported.

  19. Acoustically enhanced heat transport.

    PubMed

    Ang, Kar M; Yeo, Leslie Y; Friend, James R; Hung, Yew Mun; Tan, Ming K

    2016-01-01

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10(6) Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξs ∼ 10(-9) m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξs ∼ 10(-8) m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10(-8) m with 10(6) Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation. PMID:26827343

  20. Acoustically enhanced heat transport

    NASA Astrophysics Data System (ADS)

    Ang, Kar M.; Yeo, Leslie Y.; Friend, James R.; Hung, Yew Mun; Tan, Ming K.

    2016-01-01

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ˜ 106 Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξs ˜ 10-9 m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξs ˜ 10-8 m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10-8 m with 106 Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  1. The origin of the dynamic growth of vapor bubbles associated with vapor explosions

    SciTech Connect

    Lee, H.S.; Merte, H. Jr.

    1996-12-31

    An explosive type of vapor bubble growth was observed during pool boiling experiments in microgravity using R-113, where heater surface superheats as high as 70 C were attained at nucleation. This corresponds to approximately 65% of the computed superheat limit of the fluid, compared to the approximate 30% observed at earth gravity for the same system. Photographs and measurements of the vapor bubble growth provide evidence for rates of growth not accountable by conventional models. The photographs reveal that the liquid-vapor interface of the explosive bubbles become wrinkled and corrugated, leading to the conclusion that some type of instability mechanism is acting. The classical hydrodynamic instability theories of Landau and Rayleigh-Taylor, used in conjunction with a model of the early growth of spherical vapor bubbles developed by the authors, predict that the early growth should be stable. These theories do not consider the effects of heat transfer at the interface, which is believed responsible for the observed instability of the evaporating surface. This was confirmed by the mechanisms proposed by Prosperetti and Plesset which, although including the effects of heat transfer, required that the unperturbed liquid temperature distribution be known at the moment of onset of the instability. This is generally unknown, so that no comparisons with experiments were possible up to this point. The present pool boiling experiments conducted in microgravity, some of which result in the explosive vapor bubble growth referred to, permit the precise determination of the unperturbed liquid temperature distribution using a model of the early vapor bubble growth along with the measurement of heater surface temperature at nucleation. The limited results to date provide good agreement with the mechanisms proposed by Prosperetti and Plesset.

  2. BioVapor Model Evaluation

    EPA Science Inventory

    General background on modeling and specifics of modeling vapor intrusion are given. Three classical model applications are described and related to the problem of petroleum vapor intrusion. These indicate the need for model calibration and uncertainty analysis. Evaluation of Bi...

  3. Combined rankine and vapor compression cycles

    DOEpatents

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  4. Chemical Vapor Deposition of Turbine Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Haven, Victor E.

    1999-01-01

    Ceramic thermal barrier coatings extend the operating temperature range of actively cooled gas turbine components, therefore increasing thermal efficiency. Performance and lifetime of existing ceram ic coatings are limited by spallation during heating and cooling cycles. Spallation of the ceramic is a function of its microstructure, which is determined by the deposition method. This research is investigating metalorganic chemical vapor deposition (MOCVD) of yttria stabilized zirconia to improve performance and reduce costs relative to electron beam physical vapor deposition. Coatings are deposited in an induction-heated, low-pressure reactor at 10 microns per hour. The coating's composition, structure, and response to the turbine environment will be characterized.

  5. A study of vapor-liquid flow in porous media

    SciTech Connect

    Satik, Cengiz; Yortsos, Yanis C.

    1994-01-20

    We study the heat transfer-driven liquid-to-vapor phase change in single-component systems in porous media by using pore network models and flow visualization experiments. Experiments using glass micromodels were conducted. The flow visualization allowed us to define the rules for the numerical pore network model. A numerical pore network model is developed for vapor-liquid displacement where fluid flow, heat transfer and capillarity are included at the pore level. We examine the growth process at two different boundary conditions.

  6. Vapor chambers for an atmospheric cloud physics laboratory

    NASA Technical Reports Server (NTRS)

    Fleischman, G. L.; Scollon, T. R., Jr.; Loose, J. D.

    1980-01-01

    The methanol/stainless steel vapor chambers (flat-plate heat pipes) discussed in this paper were developed for use in spaceborne atmospheric cloud chambers. This application imposed stringent thermal and mechanical requirements on the design. Flatness, low thermal mass, vibration, and structural integrity requirements were achieved in addition to precision temperature uniformity and thermal transport. Heat transfer coefficients on the order of 0.34 to 0.40 W/sq cm -C were measured. The vapor chambers are capable of transporting 170 W-cm per cm of width in either the axial or side-to-side direction.

  7. Chemical vapor deposition reactor. [providing uniform film thickness

    NASA Technical Reports Server (NTRS)

    Chern, S. S.; Maserjian, J. (Inventor)

    1977-01-01

    An improved chemical vapor deposition reactor is characterized by a vapor deposition chamber configured to substantially eliminate non-uniformities in films deposited on substrates by control of gas flow and removing gas phase reaction materials from the chamber. Uniformity in the thickness of films is produced by having reactive gases injected through multiple jets which are placed at uniformally distributed locations. Gas phase reaction materials are removed through an exhaust chimney which is positioned above the centrally located, heated pad or platform on which substrates are placed. A baffle is situated above the heated platform below the mouth of the chimney to prevent downdraft dispersion and scattering of gas phase reactant materials.

  8. Vapor-Generator Wand Helps To Reveal Airflow Patterns

    NASA Technical Reports Server (NTRS)

    Robelen, David B.

    1993-01-01

    In vapor-generator wand, liquid propylene glycol flows into electrically heated stainless-steel tube. Liquid boils in heated tube, and emerging vapor forms dense, smoke-like fog used to make airflow patterns visible. Built in variety of sizes, suitable for uses ranging from tabletop demonstrations to research in wind tunnels. For best viewing, plume illuminated by bright, focused incandescent spotlight at right angle to viewing direction. Viewing further enhanced by coating walls of test chamber with flat, dark color to minimize reflections and increase contrast.

  9. Spectral probing of impact-generated vapor in laboratory experiments

    NASA Astrophysics Data System (ADS)

    Schultz, Peter H.; Eberhardy, Clara A.

    2015-03-01

    High-speed spectra of hypervelocity impacts at the NASA Ames Vertical Gun Range (AVGR) captured the rapidly evolving conditions of impact-generated vapor as a function of impact angle, viewpoint, and time (within the first 50 μs). Impact speeds possible at the AVGR (<7 km/s) are insufficient to induce significant vaporization in silicates, other than the high-temperature (but low-mass) jetting component created at first contact. Consequently, this study used powdered dolomite as a proxy for surveying the evolution and distribution of chemical constituents within much longer lasting vapor. Seven separate telescopes focused on different portions of the impact vapor plume and were connected through quartz fibers to two 0.35 cm monochromaters. Quarter-space experiments reduced the thermal background and opaque phases due to condensing particles and heated projectile fragments while different exposure times isolated components passing through different the fields of view, both above and below the surface within the growing transient cavity. At early times (<5 μs), atomic emission lines dominate the spectra. At later times, molecular emission lines dominate the composition of the vapor plume along a given direction. Layered targets and target mixtures isolated the source and reveal that much of the vaporization comes from the uppermost surface. Collisions by projectile fragments downrange also make significant contributions for impacts below 60° (from the horizontal). Further, impacts into mixtures of silicates with powdered dolomite reveal that frictional heating must play a role in vapor production. Such results have implications for processes controlling vaporization on planetary surfaces including volatile release, atmospheric evolution (formation and erosion), vapor generated by the Deep Impact collision, and the possible consequences of the Chicxulub impact.

  10. Staged regenerative sorption heat pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1995-01-01

    A regenerative adsorbent heat pump process and system for cooling and heating a space. A sorbent is confined in a plurality of compressors of which at least four are first stage and at least four are second stage. The first stage operates over a first pressure region and the second stage over a second pressure region which is higher than the first. Sorbate from the first stage enters the second stage. The sorbate loop includes a condenser, expansion valve, evaporator and the compressors. A single sorbate loop can be employed for single-temperature-control such as air conditioning and heating. Two sorbate loops can be used for two-temperature-control as in a refrigerator and freezer. The evaporator temperatures control the freezer and refrigerator temperatures. Alternatively the refrigerator temperature can be cooled by the freezer with one sorbate loop. A heat transfer fluid is circulated in a closed loop which includes a radiator and the compressors. Low temperature heat is exhausted by the radiator. High temperature heat is added to the heat transfer fluid entering the compressors which are desorbing vapor. Heat is transferred from compressors which are sorbing vapor to the heat transfer fluid, and from the heat transfer fluid to the compressors which are desorbing vapor. Each compressor is subjected to the following phases, heating to its highest temperature, cooling down from its highest temperature, cooling to its lowest temperature, and warming up from its lowest temperature. The phases are repeated to complete a cycle and regenerate heat.

  11. Chemical heat pump

    DOEpatents

    Greiner, Leonard

    1980-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  12. Mitochondrial Heat Shock Protein (Hsp) 70 and Hsp10 Cooperate in the Formation of Hsp60 Complexes*

    PubMed Central

    Böttinger, Lena; Oeljeklaus, Silke; Guiard, Bernard; Rospert, Sabine; Warscheid, Bettina; Becker, Thomas

    2015-01-01

    Mitochondrial Hsp70 (mtHsp70) mediates essential functions for mitochondrial biogenesis, like import and folding of proteins. In these processes, the chaperone cooperates with cochaperones, the presequence translocase, and other chaperone systems. The chaperonin Hsp60, together with its cofactor Hsp10, catalyzes folding of a subset of mtHsp70 client proteins. Hsp60 forms heptameric ring structures that provide a cavity for protein folding. How the Hsp60 rings are assembled is poorly understood. In a comprehensive interaction study, we found that mtHsp70 associates with Hsp60 and Hsp10. Surprisingly, mtHsp70 interacts with Hsp10 independently of Hsp60. The mtHsp70-Hsp10 complex binds to the unassembled Hsp60 precursor to promote its assembly into mature Hsp60 complexes. We conclude that coupling to Hsp10 recruits mtHsp70 to mediate the biogenesis of the heptameric Hsp60 rings. PMID:25792736

  13. Determination of the Latent Heats and Triple Point of Perfluorocyclobutane

    ERIC Educational Resources Information Center

    Briggs, A. G.; Strachan, A. N.

    1977-01-01

    Proposes the use of Perfluorocyclobutane in physical chemistry courses to conduct experiments on latent heat, triple point temperatures and pressures, boiling points, and entropy of vaporization. (SL)

  14. A cytosolic heat shock protein 90 and cochaperone CDC37 complex is required for RIP3 activation during necroptosis.

    PubMed

    Li, Dianrong; Xu, Tao; Cao, Yang; Wang, Huayi; Li, Lin; Chen, She; Wang, Xiaodong; Shen, Zhirong

    2015-04-21

    Receptor-interacting protein kinase 3, RIP3, and a pseudokinase mixed lineage kinase-domain like protein, MLKL, constitute the core components of the necroptosis pathway, which causes programmed necrotic death in mammalian cells. Latent RIP3 in the cytosol is activated by several upstream signals including the related kinase RIP1, which transduces signals from the tumor necrosis factor (TNF) family of cytokines. We report here that RIP3 activation following the induction of necroptosis requires the activity of an HSP90 and CDC37 cochaperone complex. This complex physically associates with RIP3. Chemical inhibitors of HSP90 efficiently block necroptosis by preventing RIP3 activation. Cells with knocked down CDC37 were unable to respond to necroptosis stimuli. Moreover, an HSP90 inhibitor that is currently under clinical development as a cancer therapy was able to prevent systemic inflammatory response syndrome in rats treated with TNF-α. HSP90 and CDC37 cochaperone complex-mediated protein folding is thus an important part of the RIP3 activation process during necroptosis. PMID:25852146

  15. Heat pump evaluation for Space Station ATCS evolution

    NASA Technical Reports Server (NTRS)

    Ames, Brian E.; Petete, Patricia A.

    1991-01-01

    A preliminary feasibility assessment of the application of a vapor compression heat pump to the Active Thermal Control System (ATCS) of SSF is presented. This paper focuses on the methodology of raising the surface temperature of the radiators for improved heat rejection. Some of the effects of the vapor compression cycle on SSF examined include heat pump integration into ATCS, constraints on the heat pump operating parameters, and heat pump performance enhancements.

  16. Effect of thermal desorption kinetics on vapor injection peak irregularities by a microscale gas chromatography preconcentrator.

    PubMed

    Seo, Jung Hwan; Liu, Jing; Fan, Xudong; Kurabayashi, Katsuo

    2012-08-01

    Microscale gas chromatography (μGC) is an emerging analytical technique for in situ analysis and on-site monitoring of volatile organic compounds (VOCs) in moderately complex mixtures. One of the critical subcomponents in a μGC system is a microfabricated preconcentrator (μ-preconcentrator), which enables detection of compounds existing in indoor/ambient air at low (~sub ppb) concentrations by enhancing their signals. The prevailing notion is that elution peak broadening and tailing phenomena resulting from undesirable conditions of a microfabricated separation column (μ-column) are the primary sources of poor chromatographic resolution. However, previous experimental results indicate that the resolution degradation still remains observed for a μ-column integrated with other μGC subcomponents even after setting optimal separation conditions. In this work, we obtain the evidence that the unoptimized μ-preconcentrator vapor release/injection performance significantly contributes to decrease the fidelity of μGC analysis using our state-of-the-art passive preconcentrator microdevice. The vapor release/injection performance is highly affected by the kinetics of the thermal desorption of compounds trapped in the microdevice. Decreasing the heating rate by 20% from the optimal rate of 90 °Cs(-1) causes a 340% increase in peak tailing as well as 70% peak broadening (30% peak height reduction) to the microscale vapor injection process. PMID:22780835

  17. Determination of the Accommodation Coefficient Using Vapor/gas Bubble Dynamics in an Acoustic Field

    NASA Technical Reports Server (NTRS)

    Gumerov, Nail A.; Hsiao, Chao-Tsung; Goumilevski, Alexei G.; Allen, Jeff (Technical Monitor)

    2001-01-01

    Nonequilibrium liquid/vapor phase transformations can occur in superheated or subcooled liquids in fast processes such as in evaporation in a vacuum. The rate at which such a phase transformation occurs depends on the "condensation" or "accommodation" coefficient, Beta, which is a property of the interface. Existing measurement techniques for Beta are complex and expensive. The development of a relatively inexpensive and reliable technique for measurement of Beta for a wide range of substances and temperatures is of great practical importance. The dynamics of a bubble in an acoustic field strongly depends on the value of Beta. It is known that near the saturation temperature, small vapor bubbles grow under the action of an acoustic field due to "rectified heat transfer." This finding can be used as the basis for an effective measurement technique of Beta. We developed a theory of vapor bubble behavior in an isotropic acoustic wave and in a plane standing acoustic wave. A numerical code was developed which enables simulation of a variety of experimental situations and accurately takes into account slowly evolving temperature. A parametric study showed that the measurement of Beta can be made over a broad range of frequencies and bubble sizes. We found several interesting regimes and conditions which can be efficiently used for measurements of Beta. Measurements of Beta can be performed in both reduced and normal gravity environments.

  18. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Kenty, J. L.; Moudy, L. A.; Simpson, W. I.; Yang, J. J.

    1976-01-01

    A chemical vapor deposition (CVD) reactor system with a vertical deposition chamber was used for the growth of Si films on glass, glass-ceramic, and polycrystalline ceramic substrates. Silicon vapor was produced by pyrolysis of SiH4 in a H2 or He carrier gas. Preliminary deposition experiments with two of the available glasses were not encouraging. Moderately encouraging results, however, were obtained with fired polycrystalline alumina substrates, which were used for Si deposition at temperatures above 1,000 C. The surfaces of both the substrates and the films were characterized by X-ray diffraction, reflection electron diffraction, scanning electron microscopy optical microscopy, and surface profilometric techniques. Several experiments were conducted to establish baseline performance data for the reactor system, including temperature distributions on the sample pedestal, effects of carrier gas flow rate on temperature and film thickness, and Si film growth rate as a function of temperature.

  19. Precision micro drilling with copper vapor lasers

    SciTech Connect

    Chang, J.J.; Martinez, M.W.; Warner, B.E.; Dragon, E.P.; Huete, G.; Solarski, M.E.

    1994-09-02

    The authors have developed a copper vapor laser based micro machining system using advanced beam quality control and precision wavefront tilting technologies. Micro drilling has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratio up to 1:40 have been consistently drilled on a variety of metals with good quality. For precision trepanned holes, the hole-to-hole size variation is typically within 1% of its diameter. Hole entrance and exit are both well defined with dimension error less than a few microns. Materialography of sectioned holes shows little (sub-micron scale) recast layer and heat affected zone with surface roughness within 1--2 microns.

  20. Experimental vaporization of the Holbrook chondrite

    NASA Technical Reports Server (NTRS)

    Gooding, J. L.; Muenow, D. W.

    1977-01-01

    The vapor phase composition obtained by heating samples of the Holbrook L6 chondrite to 1300 C was determined quantitatively by Knudsen cell-quadrupole mass spectrometry. Maximum observed vapor pressures, produced at 1200 C, are reported for Na, K, Fe, and Ni, and the implications of the Na/K ratio are considered. The Fe and Ni data are discussed with attention to their migration in individual equilibrated chondrites. S2 (with minor SO2), H2O, and CO2 were also present in the high-temperature gas phase. Vesicles formed by the release of intrinsically derived volatiles are compared with vesicles in the Ibitira eucrite. Chondrite evolution is briefly discussed.

  1. Vapor absorption refrigeration in road transport vehicles

    SciTech Connect

    Horuz, I.

    1999-08-01

    This study includes an experimental investigation into the use of vapor absorption refrigeration (VAR) systems in road transport vehicles using the waste heat in the exhaust gases of the main propulsion unit as the energy source. This would provide an alternative to the conventional vapor compression refrigeration system and its associated internal combustion engine. The performance of a VAR system fired by natural gas is compared with that of the same system driven by engine exhaust gases. This showed that the exhaust-gas-driven system produced the same performance characteristics as the gas-fired system. It also suggested that, with careful design, inserting the VAR system generator into the main engine exhaust system need not impair the performance of the vehicle propulsion unit. A comparison of the capital and running costs of the conventional and proposed alternative system is made. Suggestions are also made regarding operation of the VAR system during off-road/slow running conditions.

  2. Water vaporization on Ceres

    NASA Technical Reports Server (NTRS)

    A'Hearn, Michael F.; Feldman, Paul D.

    1992-01-01

    A search is presently conducted for OH generated by the photodissociation of atmospheric water vapor in long-exposure IUE spectra of the region around Ceres. A statistically significant detection of OH is noted in an exposure off the northern limb of Ceres after perihelion. The amount of OH is consistent with a polar cap that might be replenished during winter by subsurface percolation, but which dissipates in summer.

  3. Active microchannel heat exchanger

    DOEpatents

    Tonkovich, Anna Lee Y [Pasco, WA; Roberts, Gary L [West Richland, WA; Call, Charles J [Pasco, WA; Wegeng, Robert S [Richland, WA; Wang, Yong [Richland, WA

    2001-01-01

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  4. Effects of turbulence mixing, variable properties, and vaporization on spray droplet combustion

    NASA Technical Reports Server (NTRS)

    Kim, Y. M.; Chung, T. J.

    1990-01-01

    Combustion of liquid fuels in the form of spray droplets is simulated numerically. Various vaporization models are examined as to their performance in finite element calculations involving a turbulent flow field. The Eulerian coordinate for the gas and Lagrangian coordinate for the liquid spray droplets are coupled through source terms being updated in the equations of continuity, momentum, and energy. The k-epsilon and modified eddy breakup models are used for simulating turbulent spray combustion flow field. Numerical results for the droplet trajectories, droplet heating, recirculation characteristics, and effects of evaporation models are evaluated. It is also shown that the finite element method is advantageous in dealing with complex geometries, complex boundary conditions, adaptive unstructured grids.

  5. The vapor pressures of explosives

    SciTech Connect

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter

    2013-01-05

    The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 °C.

  6. 3D transient multiphase model for keyhole, vapor plume, and weld pool dynamics in laser welding including the ambient pressure effect

    NASA Astrophysics Data System (ADS)

    Pang, Shengyong; Chen, Xin; Zhou, Jianxin; Shao, Xinyu; Wang, Chunming

    2015-11-01

    The physical process of deep penetration laser welding involves complex, self-consistent multiphase keyhole, metallic vapor plume, and weld pool dynamics. Currently, efforts are still needed to understand these multiphase dynamics. In this paper, a novel 3D transient multiphase model capable of describing a self-consistent keyhole, metallic vapor plume in the keyhole, and weld pool dynamics in deep penetration fiber laser welding is proposed. Major physical factors of the welding process, such as recoil pressure, surface tension, Marangoni shear stress, Fresnel absorptions mechanisms, heat transfer, and fluid flow in weld pool, keyhole free surface evolutions and solid-liquid-vapor three phase transformations are coupling considered. The effect of ambient pressure in laser welding is rigorously treated using an improved recoil pressure model. The predicated weld bead dimensions, transient keyhole instability, weld pool dynamics, and vapor plume dynamics are compared with experimental and literature results, and good agreements are obtained. The predicted results are investigated by not considering the effects of the ambient pressure. It is found that by not considering the effects of ambient pressure, the average keyhole wall temperature is underestimated about 500 K; besides, the average speed of metallic vapor will be significantly overestimated. The ambient pressure is an essential physical factor for a comprehensive understanding the dynamics of deep penetration laser welding.

  7. Role of Co-Vapors in Vapor Deposition Polymerization

    NASA Astrophysics Data System (ADS)

    Lee, Ji Eun; Lee, Younghee; Ahn, Ki-Jin; Huh, Jinyoung; Shim, Hyeon Woo; Sampath, Gayathri; Im, Won Bin; Huh, Yang–Il; Yoon, Hyeonseok

    2015-02-01

    Polypyrrole (PPy)/cellulose (PPCL) composite papers were fabricated by vapor phase polymerization. Importantly, the vapor-phase deposition of PPy onto cellulose was assisted by employing different co-vapors namely methanol, ethanol, benzene, water, toluene and hexane, in addition to pyrrole. The resulting PPCL papers possessed high mechanical flexibility, large surface-to-volume ratio, and good redox properties. Their main properties were highly influenced by the nature of the co-vaporized solvent. The morphology and oxidation level of deposited PPy were tuned by employing co-vapors during the polymerization, which in turn led to change in the electrochemical properties of the PPCL papers. When methanol and ethanol were used as co-vapors, the conductivities of PPCL papers were found to have improved five times, which was likely due to the enhanced orientation of PPy chain by the polar co-vapors with high dipole moment. The specific capacitance of PPCL papers obtained using benzene, toluene, water and hexane co-vapors was higher than those of the others, which is attributed to the enlarged effective surface area of the electrode material. The results indicate that the judicious choice and combination of co-vapors in vapor-deposition polymerization (VDP) offers the possibility of tuning the morphological, electrical, and electrochemical properties of deposited conducting polymers.

  8. Dynamics of a vapor nanobubble collapsing near a solid boundary

    NASA Astrophysics Data System (ADS)

    Magaletti, Francesco; Gallo, Mirko; Marino, Luca; Massimo Casciola, Carlo

    2015-12-01

    In the present paper a diffuse interface approach [1] is used to address the collapse of a sub-micron vapor bubble near solid boundaries. This formulation enables an unprecedented description of interfacial flows that naturally takes into account topology modification and phase changes (both vapor/liquid and vapor/supercritical fluid transformations). Results from numerical simulations are exploited to discuss the complex sequence of events associated with the bubble collapse near a wall, encompassing shock-wave emissions in the liquid and reflections from the wall, their successive interaction with the expanding bubble, the ensuing asymmetry of the bubble and the eventual jetting phase.

  9. Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor

    NASA Technical Reports Server (NTRS)

    Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)

    2001-01-01

    A process for producing polycrystalline silicon carbide by heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.

  10. Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor

    NASA Technical Reports Server (NTRS)

    Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)

    2000-01-01

    A process for producing polycrystalline silicon carbide includes heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.

  11. Laser beam interactions with vapor plumes during Nd:YAG laser welding on aluminum

    NASA Astrophysics Data System (ADS)

    Peebles, H. C.; Russo, A. J.; Hadley, G. R.; Akau, R. L.

    Welds produced on pure aluminum targets using pulsed Nd:YAG lasers can be accurately described using a relatively simple conduction mode heat transfer model provided that the fraction of laser energy absorbed is known and the amount of metal vaporized is smalled however at laser fluences commonly used in many production welding schedules significant aluminum vaporization does occur. The possible mechanisms have been identified which could result in laser beam attenuation by the vapor plume.

  12. High power densities from high-temperature material interactions. [in thermionic energy conversion and metallic fluid heat pipes

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1981-01-01

    Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs), offering unique advantages in terrestrial and space energy processing by virtue of operating on working-fluid vaporization/condensation cycles that accept great thermal power densities at high temperatures, share complex materials problems. Simplified equations are presented that verify and solve such problems, suggesting the possibility of cost-effective applications in the near term for TEC and MFHP devices. Among the problems discussed are: the limitation of alkali-metal corrosion, protection against hot external gases, external and internal vaporization, interfacial reactions and diffusion, expansion coefficient matching, and creep deformation.

  13. Transferring heat during a bounce

    NASA Astrophysics Data System (ADS)

    Shiri, Samira; Bird, James

    2015-11-01

    When a hot liquid drop impacts a cold non-wetting surface, the temperature difference drives heat transfer. If the drop leaves the surface before reaching thermal equilibrium, the amount of heat transfer may depend on the contact time. Past studies exploring finite-time heat exchange with droplets focus on the Leidenfrost condition where heat transfer is regulated by a thin layer of vapor. Here, we present systematic experiments to measure the heat transferred by a bouncing droplet in non-Leidenfrost conditions. We propose a physical model of this heat transfer and compare our model to the experiments.

  14. Frictional Heat Generation and Slip Duration Estimated From Micro-fault in an Exhumed Accretionary Complex and Their Relations to the Scaling Law for Slow Earthquakes

    NASA Astrophysics Data System (ADS)

    Hashimoto, Y.; Morita, K.; Okubo, M.; Hamada, Y.; Lin, W.; Hirose, T.; Kitamura, M.

    2015-12-01

    Fault motion has been estimated by diffusion pattern of frictional heating recorded in geology (e.g., Fulton et al., 2012). The same record in deeper subduction plate interface can be observed from micro-faults in an exhumed accretionary complex. In this study, we focused on a micro-fault within the Cretaceous Shimanto Belt, SW Japan to estimate fault motion from the frictional heating diffusion pattern. A carbonaceous material concentrated layer (CMCL) with ~2m of thickness is observed in study area. Some micro-faults cut the CMCL. Thickness of a fault is about 3.7mm. Injection veins and dilatant fractures were observed in thin sections, suggesting that the high fluid pressure was existed. Samples with 10cm long were collected to measure distribution of vitrinite reflectance (Ro) as a function of distance from the center of micro-fault. Ro of host rock was ~1.0%. Diffusion pattern was detected decreasing in Ro from ~1.2%-~1.1%. Characteristic diffusion distance is ~4-~9cm. We conducted grid search to find the optimal frictional heat generation per unit area (Q, the product of friction coefficient, normal stress and slip velocity) and slip duration (t) to fit the diffusion pattern. Thermal diffusivity (0.98*10-8m2/s) and thermal conductivity (2.0 W/mK) were measured. In the result, 2000-2500J/m2 of Q and 63000-126000s of t were estimated. Moment magnitudes (M0) of slow earthquakes (slow EQs) follow a scaling law with slip duration and its dimension is different from that for normal earthquakes (normal EQ) (Ide et al., 2007). The slip duration estimated in this study (~104-~105s) consistent with 4-5 of M0, never fit to the scaling law for normal EQ. Heat generation can be inverted from 4-5 of M0, corresponding with ~108-~1011J, which is consistent with rupture area of 105-108m2 in this study. The comparisons in heat generation and slip duration between geological measurements and geophysical remote observations give us the estimation of rupture area, M0, and

  15. Application of the discrete ordinates method to combined conductive and radiative heat transfer in a two-dimensional complex geometry.

    NASA Astrophysics Data System (ADS)

    Sakami, M.; Charette, A.; Le Dez, V.

    1996-10-01

    This paper describes a new approach for determining the radiative intensity and temperature fields in a semi-transparent medium for coupled radiative - conductive heat transfer in two-dimensional enclosures. The boundary surfaces are uniformly gray with prescribed emissivities and temperatures. The medium is radiatively absorbing - emitting - scattering and gray. The method is a modification of the discrete ordinates method based on the incorporation of directional ray propagation relations within the cells. The algorithm is applicable to enclosures of arbitrary geometry and does not generate numerical oscillations and negative intensities which can appear in the traditional technique. This is made possible by solving the radiative transfer equation exactly along a set of discretized directions. The method can handle triangular grids of any type, structured or unstructured, and is thus compatible with the finite element technique - which is used for the conduction part of the present coupled problem. A summary of the basic equations is given, followed by a brief assessment of the method for pure radiation. Cases of combined conduction - radiation are then presented and the results are compared with those obtained by other researchers. It is shown that the method has no limitation with respect to geometry and is accurate over a wide range of optical thicknesses.

  16. Water-Assisted Vapor Deposition of PEDOT Thin Film.

    PubMed

    Goktas, Hilal; Wang, Xiaoxue; Ugur, Asli; Gleason, Karen K

    2015-07-01

    The synthesis and characterization of poly(3,4-ethylenedioxythiophene) (PEDOT) using water-assisted vapor phase polymerization (VPP) and oxidative chemical vapor deposition (oCVD) are reported. For the VPP PEDOT, the oxidant, FeCl3 , is sublimated onto the substrate from a heated crucible in the reactor chamber and subsequently exposed to 3,4-ethylenedioxythiophene (EDOT) monomer and water vapor in the same reactor. The oCVD PEDOT was produced by introducing the oxidant, EDOT monomer, and water vapor simultaneously to the reactor. The enhancement of doping and crystallinity is observed in the water-assisted oCVD thin films. The high doping level observed at UV-vis-NIR spectra for the oCVD PEDOT, suggests that water acts as a solubilizing agent for oxidant and its byproducts. Although the VPP produced PEDOT thin films are fully amorphous, their conductivities are comparable with that of the oCVD produced ones. PMID:25882241

  17. Vapor Hydrogen Peroxide Sterilization Certification

    NASA Astrophysics Data System (ADS)

    Chen, Fei; Chung, Shirley; Barengoltz, Jack

    For interplanetary missions landing on a planet of potential biological interest, United States NASA planetary protection currently requires that the flight system must be assembled, tested and ultimately launched with the intent of minimizing the bioload taken to and deposited on the planet. Currently the only NASA approved microbial reduction method is dry heat sterilization process. However, with utilization of such elements as highly sophisticated electronics and sensors in modern spacecraft, this process presents significant materials challenges and is thus an undesirable bioburden reduction method to design engineers. The objective of this work is to introduce vapor hydrogen peroxide (VHP) as an alternative to dry heat microbial reduction to meet planetary protection requirements. The VHP sterilization technology is widely used by the medical industry, but high doses of VHP may degrade the performance of flight hardware, or compromise material compatibility. The goal of our study is determine the minimum VHP process conditions for PP acceptable microbial reduction levels. A series of experiments were conducted using Geobacillus stearothermophilus to determine VHP process parameters that provided significant reductions in spore viability while allowing survival of sufficient spores for statistically significant enumeration. In addition to the obvious process parameters -hydrogen peroxide concentration, number of pulses, and exposure duration -the investigation also considered the possible effect of environmental pa-rameters. Temperature, relative humidity, and material substrate effects on lethality were also studied. Based on the results, a most conservative D value was recommended. This recom-mended D value was also validated using VHP "hardy" strains that were isolated from clean-rooms and environmental populations collected from spacecraft relevant areas. The efficiency of VHP at ambient condition as well as VHP material compatibility will also be

  18. SIMULATION OF BOILING HEAT TRANSFER AROUND MICRO PIN-FIN HEAT EXCHANGER: PROGRESS AND CHALLENGES

    SciTech Connect

    Tyagi, M.; Maha, A.; Singh, K. V.; Li, G.; and Pang, S.S.

    2006-07-01

    Boiling at microscales is a challenging problem for the computational models as well as the resources. During boiling, the formation and departure of vapor bubbles from the heated surface involves the physics from nano/micro level to the macro level. Therefore, a hierarchical methodology is needed to incorporate the nano/microscale physics with the macroscale system performance. Using micro-fabrication techniques, microstructures (micropin-fins) can be fabricated around the tubes in the heat exchanger of Pressurized Water Reactors (PWRs) to increase the heat-exchanging efficiency and reduce the overall size of the heat-exchanger for the given heat transfer rates. Combined with high fidelity simulations of the thermal transport in the entire system, optimal design of microstructure patterns and layouts can be worked out pragmatically. Properly patterned microstructures on the pipe in the steam generation zone should create more nuclei for bubble to form and result in a reduced average bubble size and shorter retention time, i.e. the time for the vapor phase sticking on the pipe surface. The smaller average steam bubble size and shorter bubble retention time will enhance the overall thermal efficiency. As a preliminary step, a periodic arrangement of micropin-fins containing four in-line cylindrical fins was modeled. The governing equations for the mass, momentum and energy transport were solved in the fluid in a conjugate heat transfer mode. In the future, several studies will be conducted to simulate different geometric arrangements, different fin cross-sections, and realistic operating conditions including phase-change with boiling by adding complexities in simple steps.

  19. Heat Transfer in a Complex Trailing Edge Passage for a High Pressure Turbine Blade - Part 1: Experimental Measurements. Part 1; Experimental Measurements

    NASA Technical Reports Server (NTRS)

    Bunker, Ronald S.; Wetzel, Todd G.; Rigby, David L.; Reddy, D. R. (Technical Monitor)

    2000-01-01

    A combined experimental and computational study has been performed to investigate the detailed heat transfer coefficient distributions within a complex blade trailing edge passage. The experimental measurements are made using a steady liquid crystal thermography technique applied to one major side of the passage. The geometry of the trailing edge passage is that of a two-pass serpentine circuit with a sharp 180-degree turning region at the tip. The upflow channel is split by interrupted ribs into two major subchannels, one of which is turbulated. This channel has an average aspect ratio of roughly 14:1. The spanwise extent of the channel geometry includes both area convergence from root to tip, as well as taper towards the trailing edge apex. The average section Reynolds numbers tested in this upflow channel range from 55,000 to 98,000. The tip section contains a turning vane near the extreme comer. The downflow channel has an aspect ratio of about 5:1, and also includes convergence and taper. Turbulators of varying sizes are included in this channel also. Both detailed heat transfer and pressure distribution measurements are presented. The pressure measurements are incorporated into a flow network model illustrating the major loss contributors.

  20. A new method for predicting the solar heat gain of complex fenestration systems: 1, Overview and derivation of the matrix Layer calculation

    SciTech Connect

    Klems, J.H.

    1993-10-01

    A new method of predicting the solar heat gain through complex fenestration systems involving nonspecular layers such as shades or blinds has been examined in a project jointly sponsored by ASHRAE and DOE. In this method, a scanning radiometer is used to measure the bidirectional radiative transmittance and reflectance of each layer of a fenestration system. The properties of systems containing these layers are then built up computationally from the measured layer properties using a transmission/multiple-reflection calculation. The calculation produces the total directional-hemispherical transmittance of the fenestration system and the layer-by-layer absorptances. These properties are in turn combined with layer-specific measurements of the inward-flowing fractions of absorbed solar energy to produce the overall solar heat gain coefficient. In this first in a series of related papers describing the project, the assumptions and limitations of the calculation method are described and the derivation of the matrix calculation technique from the initial integral equations is presented.