Science.gov

Sample records for component assembly operations

  1. Component-Level Electronic-Assembly Repair (CLEAR) Operational Concept

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Bradish, Martin A.; Juergens, Jeffrey R.; Lewis, Michael J.; Vrnak, Daniel R.

    2011-01-01

    This Component-Level Electronic-Assembly Repair (CLEAR) Operational Concept document was developed as a first step in developing the Component-Level Electronic-Assembly Repair (CLEAR) System Architecture (NASA/TM-2011-216956). The CLEAR operational concept defines how the system will be used by the Constellation Program and what needs it meets. The document creates scenarios for major elements of the CLEAR architecture. These scenarios are generic enough to apply to near-Earth, Moon, and Mars missions. The CLEAR operational concept involves basic assumptions about the overall program architecture and interactions with the CLEAR system architecture. The assumptions include spacecraft and operational constraints for near-Earth orbit, Moon, and Mars missions. This document addresses an incremental development strategy where capabilities evolve over time, but it is structured to prevent obsolescence. The approach minimizes flight hardware by exploiting Internet-like telecommunications that enables CLEAR capabilities to remain on Earth and to be uplinked as needed. To minimize crew time and operational cost, CLEAR exploits offline development and validation to support online teleoperations. Operational concept scenarios are developed for diagnostics, repair, and functional test operations. Many of the supporting functions defined in these operational scenarios are further defined as technologies in NASA/TM-2011-216956.

  2. Lageos assembly operation plan

    NASA Technical Reports Server (NTRS)

    Brueger, J.

    1975-01-01

    Guidelines and constraints procedures for LAGEOS assembly, operation, and design performance are given. Special attention was given to thermal, optical, and dynamic analysis and testing. The operation procedures illustrate the interrelation and sequence of tasks in a flow diagram. The diagram also includes quality assurance functions for verification of operation tasks.

  3. Automated assembly of VECSEL components

    NASA Astrophysics Data System (ADS)

    Brecher, C.; Pyschny, N.; Haag, S.; Mueller, T.

    2013-02-01

    Due to the architectural advantage of an external cavity architecture that enables the integration of additional elements into the cavity (e.g. for mode control, frequency conversion, wavelength tuning or passive mode-locking) VECSELs are a rapidly developing laser technology. Nevertheless they often have to compete with direct (edge) emitting laser diodes which can have significant cost advantages thanks to their rather simple structure and production processes. One way to compensate the economical disadvantages of VECSELs is to optimize each component in terms of quality and costs and to apply more efficient (batch) production processes. In this context, the paper presents recent process developments for the automated assembly of VECSELs using a new type of desktop assembly station with an ultra-precise micromanipulator. The core concept is to create a dedicated process development environment from which implemented processes can be transferred fluently to production equipment. By now two types of processes have been put into operation on the desktop assembly station: 1.) passive alignment of the pump optics implementing a camera-based alignment process, where the pump spot geometry and position on the semiconductor chip is analyzed and evaluated; 2.) active alignment of the end mirror based on output power measurements and optimization algorithms. In addition to the core concept and corresponding hardware and software developments, detailed results of both processes are presented explaining measurement setups as well as alignment strategies and results.

  4. Multi-component assembly casting

    SciTech Connect

    James, Allister W.

    2015-10-13

    Multi-component vane segment and method for forming the same. Assembly includes: positioning a pre-formed airfoil component (12) and a preformed shroud heat resistant material (18) in a mold, wherein the airfoil component (12) and the shroud heat resistant material (18) each comprises an interlocking feature (24); preheating the mold; introducing molten structural material (46) into the mold; and solidifying the molten structural material such that it interlocks the pre-formed airfoil component (12) with respect to the preformed shroud heat resistant material (18) and is effective to provide structural support for the shroud heat resistant material (18). Surfaces between the airfoil component (12) and the structural material (46), between the airfoil component (12) and the shroud heat resistant material (18), and between the shroud heat resistant material (18) and the structural material (46) are free of metallurgical bonds.

  5. Parallel Assembly of LIGA Components

    SciTech Connect

    Christenson, T.R.; Feddema, J.T.

    1999-03-04

    In this paper, a prototype robotic workcell for the parallel assembly of LIGA components is described. A Cartesian robot is used to press 386 and 485 micron diameter pins into a LIGA substrate and then place a 3-inch diameter wafer with LIGA gears onto the pins. Upward and downward looking microscopes are used to locate holes in the LIGA substrate, pins to be pressed in the holes, and gears to be placed on the pins. This vision system can locate parts within 3 microns, while the Cartesian manipulator can place the parts within 0.4 microns.

  6. Method of using infrared radiation for assembling a first component with a second component

    DOEpatents

    Sikka, Vinod K.; Whitson, Barry G.; Blue, Craig A.

    1999-01-01

    A method of assembling a first component for assembly with a second component involves a heating device which includes an enclosure having a cavity for inserting a first component. An array of infrared energy generators is disposed within the enclosure. At least a portion of the first component is inserted into the cavity, exposed to infrared energy and thereby heated to a temperature wherein the portion of the first component is sufficiently softened and/or expanded for assembly with a second component.

  7. Component count and preliminary assembly considerations for large space truss structures

    NASA Technical Reports Server (NTRS)

    Kenner, W. Scott; Rhodes, Marvin D.; Fichter, W. B.

    1990-01-01

    Expressions for the number of truss components per truss division are presented along with expressions for the area and dimensions of mosaic hexagonal panel arrangements. The expressions were developed by substituting the number of truss components in specific truss divisions into associated polynomial equations and solving for the coefficients of the polynomials. To assist in automated or astronaut truss/panel assembly operations, a concept for assembling a tetrahedral truss with hexagonal panels is presented. The assembly concept minimizes the exchange of truss assembly devices and panel attachment devices, assuming that the number of exchanges is a driving assembly concern.

  8. 3D vision assisted flexible robotic assembly of machine components

    NASA Astrophysics Data System (ADS)

    Ogun, Philips S.; Usman, Zahid; Dharmaraj, Karthick; Jackson, Michael R.

    2015-12-01

    Robotic assembly systems either make use of expensive fixtures to hold components in predefined locations, or the poses of the components are determined using various machine vision techniques. Vision-guided assembly robots can handle subtle variations in geometries and poses of parts. Therefore, they provide greater flexibility than the use of fixtures. However, the currently established vision-guided assembly systems use 2D vision, which is limited to three degrees of freedom. The work reported in this paper is focused on flexible automated assembly of clearance fit machine components using 3D vision. The recognition and the estimation of the poses of the components are achieved by matching their CAD models with the acquired point cloud data of the scene. Experimental results obtained from a robot demonstrating the assembly of a set of rings on a shaft show that the developed system is not only reliable and accurate, but also fast enough for industrial deployment.

  9. Wedge assembly for electrical transformer component spacing

    DOEpatents

    Baggett, Franklin E.; Cage, W. Franklin

    1991-01-01

    A wedge assembly that is easily inserted between two surfaces to be supported thereby, and thereafter expanded to produce a selected spacing between those surfaces. This wedge assembly has two outer members that are substantially identical except that they are mirror images of each other. Oppositely directed faces of these of these outer members are substantially parallel for the purpose of contacting the surfaces to be separated. The outer faces of these outer members that are directed toward each other are tapered so as to contact a center member having complementary tapers on both faces. A washer member is provided to contact a common end of the outer members, and a bolt member penetrates this washer and is threadably received in a receptor of the center member. As the bolt member is threaded into the center member, the center member is drawn further into the gap between the outer members and thereby separates these outer members to contact the surfaces to be separated. In the preferred embodiment, the contacting surfaces of the outer member and the center member are provided with guide elements. The wedge assembly is described for use in separating the secondary windings from the laminations of an electrical power transformer.

  10. High Temperature Electromechanical Components for Control Rod Drive Assemblies

    NASA Astrophysics Data System (ADS)

    Gleason, Thomas E.; Lazarus, Jonathan D.; Yaspo, Robert; Cole, Allan R.; Otwell, Robert L.; Schuster, Gary B.; Jaing, Thomas J.; Meyer, Raymond A.; Shukla, Jaikaran N.; Maldonado, Jerry

    1994-07-01

    The SP-100 power system converts heat generated within a compact fast spectrum nuclear reactor directly to electricity for spacecraft applications. The reactor control system contains the only moving mechanical and electromechanical components in the entire electrical generating system. The high temperature, vacuum environment presents unique challenges for these reactor control system components. This paper describes the environmental testing of these components that has been completed and that is in progress. The specific components and assemblies include electromagnetic (EM) coils, stepper motors, EM clutches, EM brakes, ball bearings, ball screw assemblies, constant torque spring motors, gear sets, position sensors, and very high temperature sliding bearings.

  11. Extension method of drillstring component assembly

    DOEpatents

    Drumheller, Douglas S.

    2001-01-01

    A method of assembling transducer tools for down-hole applications wherein piezoelectric elements in the tools are pre-stressed by mechanically stretching an elastic mandrel about which the piezoelectric elements are positioned and subsequently releasing the mandrel so that it contracts causing the piezoelectric elements to be captured in an interference fit in a recess in the mandrel. The method can be adapted to embodiments where the recess in the mandrel is bound by two regions of the mandrel, itself, or where the recess is defined on one end by a portion of the mandrel and on the other end by a separate anvil member positioned against the piezoelectric elements and then secured to the mandrel.

  12. Evaluating Manufacturing and Assembly Errors in Rotating Machinery to Enhance Component Performance

    NASA Technical Reports Server (NTRS)

    Tumer, Irem Y.; Huff, Edward M.; Swanson, Keith (Technical Monitor)

    2001-01-01

    Manufacturing and assembly phases play a crucial role in providing products that meet the strict functional specifications associated with rotating machinery components. The errors resulting during the manufacturing and assembly of such components are correlated with the vibration and noise emanating from the final system during its operational lifetime. Vibration and noise are especially unacceptable elements in high-risk systems such as helicopters, resulting in premature component degradation and an unsafe flying environment. In such applications, individual components often are subject to 100% inspection prior to assembly, as well as during operation through rigorous maintenance, resulting in increased product development cycles and high production and operation costs. In this work, we focus on providing designers and manufacturing engineers with a technique to evaluate vibration modes and levels for each component or subsystem prior to putting them into operation. This paper presents a preliminary investigation of the correlation between vibrations and manufacturing and assembly errors using an experimental test rig, which simulates a simple bearing and shaft arrangement. A factorial design is used to study the effects of: 1) different manufacturing instances; 2) different assembly instances; and, 3) varying shaft speeds. The results indicate a correlation between manufacturing or assembly errors and vibrations measured from accelerometers. Challenges in developing a tool for DFM are identified, followed by a discussion of future work, including a real-world application to helicopter transmission vibrations.

  13. Instantaneous engine frictional torque, its components and piston assembly friction

    SciTech Connect

    Nichols, F.A. ); Henein, N.A. . Center for Automotive Research)

    1992-05-01

    The overall goal of this report is to document the work done to determine the instantaneous frictional torque of internal combustion engine by using a new approach known as (P-[omega]) method developed at Wayne State University. The emphasis has been to improve the accuracy of the method, and apply it to both diesel and gasoline engines under different operating conditions. Also work included an investigation to determine the effect of using advanced materials and techniques to coat the piston rings on the instantaneous engine frictional torque and the piston assembly friction. The errors in measuring the angular velocity, [omega], have been determined and found to be caused by variations in the divisions within one encoder, encoder-to-encoder variations, misalignment within the encoder itself and misalignment between the encoder and crankshaft. The errors in measuring the cylinder gas pressure, P, have been determined and found to be caused by transducer-to-transducer variations, zero drift, thermal stresses and lack of linearity. The ability of the (P-[omega]) method in determining the frictional torque of many engine components has been demonstrated. These components include valve train, fuel injection pump with and without fuel injection, and piston with and without different ring combinations. The emphasis in this part of the research program has been on the piston-ring assembly friction. The effects of load and other operating variables on IFT have been determined. The motoring test, which is widely used in industry to measure engine friction has been found to be inaccurate. The errors have been determined at different loads.

  14. Component model reduction via the projection and assembly method

    NASA Technical Reports Server (NTRS)

    Bernard, Douglas E.

    1989-01-01

    The problem of acquiring a simple but sufficiently accurate model of a dynamic system is made more difficult when the dynamic system of interest is a multibody system comprised of several components. A low order system model may be created by reducing the order of the component models and making use of various available multibody dynamics programs to assemble them into a system model. The difficulty is in choosing the reduced order component models to meet system level requirements. The projection and assembly method, proposed originally by Eke, solves this difficulty by forming the full order system model, performing model reduction at the the system level using system level requirements, and then projecting the desired modes onto the components for component level model reduction. The projection and assembly method is analyzed to show the conditions under which the desired modes are captured exactly; to the numerical precision of the algorithm.

  15. Programmable, directed assembly of micron-scale components

    NASA Astrophysics Data System (ADS)

    Floryan, Caspar; Westervelt, Robert

    2011-03-01

    Self assembly is a nascent paradigm for assembling components in the micron to millimeter size range. Such assemblies are often performed by modifying the surface chemistries of the individual components or by creating flow fields directing them into position. We propose a method of directed assembly using dielectric contrast between the components and a surrounding fluid. A hybrid integrated-circuit / microfluidic device will be used to trap and manipulate pieces into pre-defined patterns. The device contains an array of electrically-chargeable pixels on its surface, with a resolution of 10 μ m. Thomas Hunt, David Issadore, Robert Westervelt ``Integrated Circuit/Microfluidic Chip to Programmably Trap and Move Cells and Droplets with Dielectrophoresis'' Lab on a Chip 8, 81-87 (2008)

  16. Component-Level Electronic-Assembly Repair (CLEAR) System Architecture

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Bradish, Martin A.; Juergens, Jeffrey R.; Lewis, Michael J.; Vrnak, Daniel R.

    2011-01-01

    This document captures the system architecture for a Component-Level Electronic-Assembly Repair (CLEAR) capability needed for electronics maintenance and repair of the Constellation Program (CxP). CLEAR is intended to improve flight system supportability and reduce the mass of spares required to maintain the electronics of human rated spacecraft on long duration missions. By necessity it allows the crew to make repairs that would otherwise be performed by Earth based repair depots. Because of practical knowledge and skill limitations of small spaceflight crews they must be augmented by Earth based support crews and automated repair equipment. This system architecture covers the complete system from ground-user to flight hardware and flight crew and defines an Earth segment and a Space segment. The Earth Segment involves database management, operational planning, and remote equipment programming and validation processes. The Space Segment involves the automated diagnostic, test and repair equipment required for a complete repair process. This document defines three major subsystems including, tele-operations that links the flight hardware to ground support, highly reconfigurable diagnostics and test instruments, and a CLEAR Repair Apparatus that automates the physical repair process.

  17. Behavior of Sofradir detector dewar assembly under operational conditions

    NASA Astrophysics Data System (ADS)

    Veyrier, Jacques; Brodin, Christian; Magli, Serge

    1994-07-01

    Sofradir has built an infrared detector dewar assembly (DDA) capable of operating under various environmental conditions corresponding to various applications. In this paper it is shown that Sofradir DDA retain their performance for FLIR applications (ground vehicle, helicopter, or aircraft) as well as seeker applications. In particular, Sofradir DDAs permit the user to meet or to exceed the majority of environmental conditions defined in the US military standards such as MIL STD 81OD. Moreover, it has been shown from studies carried out at Sofradir that for components in production such as the 288 X 4 one, the reliability, thermal cycling, and operating and storage conditions are acceptable for this generation of components. Indeed, for instance, it has been demonstrated by test that the MTTF for standard operating conditions can be higher than 15,000 hours for the 288 X 4 focal plane array.

  18. Cerium migration during PEM fuel cell assembly and operation

    DOE PAGESBeta

    Baker, Andrew M.; Torraco, Dennis; Judge, Elizabeth J.; Spernjak, Dusan; Mukundan, Rangachary; Borup, Rod L.; Advani, Suresh G.; Prasad, Ajay K.

    2015-10-02

    Cerium migration between PEM fuel cell components is influenced by potential-driven mobility, ionic diffusion, and gradients in water content. These factors were investigated in ex situ experiments and in operating fuel cells. Potential-induced migration was measured ex situ in hydrated window cells. Cerium-containing MEAs were also fabricated and tested under ASTs. MEA disassembly and subsequent XRF analysis were used to observe rapid cerium migration during cell assembly and operation. During MEA hot pressing, humidification, and low RH operation at OCV, ionic diffusion causes uniform migration from the membrane into the catalyst layers. During high RH operation at OCV, in-plane ceriummore » gradients arise due to variations in water content. These gradients may diminish the scavenging efficacy of cerium by reducing its proximity to generated radicals.« less

  19. Cerium migration during PEM fuel cell assembly and operation

    SciTech Connect

    Baker, Andrew M.; Torraco, Dennis; Judge, Elizabeth J.; Spernjak, Dusan; Mukundan, Rangachary; Borup, Rod L.; Advani, Suresh G.; Prasad, Ajay K.

    2015-09-14

    Cerium migration between PEM fuel cell components is influenced by potential-driven mobility, ionic diffusion, and gradients in water content. These factors were investigated in ex situ experiments and in operating fuel cells. Potential-induced migration was measured ex situ in hydrated window cells. Cerium-containing MEAs were also fabricated and tested under ASTs. MEA disassembly and subsequent XRF analysis were used to observe rapid cerium migration during cell assembly and operation. During MEA hot pressing, humidification, and low RH operation at OCV, ionic diffusion causes uniform migration from the membrane into the catalyst layers. During high RH operation at OCV, in-plane cerium gradients arise due to variations in water content. These gradients may diminish the scavenging efficacy of cerium by reducing its proximity to generated radicals.

  20. Whisker Formation Induced by Component and Assembly Ionic Contamination

    NASA Astrophysics Data System (ADS)

    Snugovsky, Polina; Meschter, Stephan; Bagheri, Zohreh; Kosiba, Eva; Romansky, Marianne; Kennedy, Jeffrey

    2012-02-01

    This paper describes the results of an intensive whisker formation study on Pb-free assemblies with different levels of cleanliness. Thirteen types of as-received surface-mount and pin-through-hole components were cleaned and intentionally contaminated with solutions containing chloride, sulfate, bromide, and nitrate. Then the parts were assembled on double-sided boards that were also cleaned or intentionally contaminated with three fluxes having different halide contents. The assemblies were subjected to high-temperature/high-humidity testing (85°C/85% RH). Periodic examination found that contamination triggered whisker formation on both exposed tin and solder fillets. Whisker occurrence and parameters depending on the type and level of contamination are discussed. Cross-sections were used to assess the metallurgical aspects of whisker formation and the microstructural changes occurring during corrosion.

  1. Characterization of satellite components assembly for responsive space applications

    NASA Astrophysics Data System (ADS)

    Mascarenas, David; Macknelly, David; Mullins, Josh; Wiest, Heather; Park, Gyuhae; Farrar, Charles

    2011-04-01

    The rapid deployment of satellites is hindered by the need to flight-qualify their components and the resulting mechanical assembly. Conventional methods for qualification testing of satellite components are costly and time consuming. Furthermore, full-scale vehicles must be subjected to launch loads during testing. The focus of this research effort was to assess the performance of Structural Health Monitoring (SHM) techniques to replace the high-cost qualification procedure and to localize faults introduced by improper assembly. SHM techniques were applied on a small-scale structure representative of a responsive satellite. The test structure consisted of an extruded aluminum spaceframe covered with aluminum shear plates, which was assembled using bolted joints. Multiple piezoelectric patches were bonded to the test structure and acted as combined actuators and sensors. Piezoelectric Active-sensing based wave propagation and frequency response function techniques were used in conjunction with finite element modeling to capture the dynamic properties of the test structure. Areas improperly assembled were identified and localized. This effort primarily focused on determining whether or not bolted joints on the structure were properly tightened.

  2. Directed intermixing in multi-component self-assembling biomaterials

    PubMed Central

    Gasiorowski, Joshua Z.; Collier, Joel H.

    2011-01-01

    The non-covalent co-assembly of multiple different peptides can be a useful route for producing multifunctional biomaterials. However, to date such materials have almost exclusively been investigated as homogeneous self-assemblies, having functional components uniformly distributed throughout their supramolecular structures. Here we illustrate control over the intermixing of multiple different self-assembling peptides, in turn providing a simple but powerful means for modulating these materials’ mechanical and biological properties. In beta-sheet fibrillizing hydrogels, significant increases in stiffening could be achieved using heterobifunctional cross-linkers by sequestering peptides bearing different reactive groups into distinct populations of fibrils, thus favoring inter-fibril cross-linking. Further, by specifying the intermixing of RGD-bearing peptides in 2-D and 3-D self-assemblies, the growth of HUVECs and NIH 3T3 cells could be significantly modulated. This approach may be immediately applicable towards a wide variety of self-assembling systems that form stable supramolecular structures. PMID:21863894

  3. Stackable Form-Factor Peripheral Component Interconnect Device and Assembly

    NASA Technical Reports Server (NTRS)

    Somervill, Kevin M. (Inventor); Ng, Tak-kwong (Inventor); Torres-Pomales, Wilfredo (Inventor); Malekpour, Mahyar R. (Inventor)

    2013-01-01

    A stackable form-factor Peripheral Component Interconnect (PCI) device can be configured as a host controller or a master/target for use on a PCI assembly. PCI device may comprise a multiple-input switch coupled to a PCI bus, a multiplexor coupled to the switch, and a reconfigurable device coupled to one of the switch and multiplexor. The PCI device is configured to support functionality from power-up, and either control function or add-in card function.

  4. Directed self-assembly of mesoscopic components for led applications

    NASA Astrophysics Data System (ADS)

    Tkachenko, Anton

    Light-emitting diodes (LEDs) constitute a rapidly evolving and fast growing technology that promises to replace incandescent bulbs and compact fluorescent lights in many illumination applications. Large-area LED luminaires have a capability to transform lighting by providing a venue for development of smart lighting systems with additional benefits, such as visible light communications, sensing, health and productivity improvement through color temperature control, capability of creating "virtual sky" ceiling, and many others. The objective of this work is to explore directed self-assembly (DSA) approaches suitable for cost-effective assembly of large amount of LEDs and other mesoscopic (i.e. millimeter and sub-millimeter) electronic components and thus to enable manufacturing of smart lighting luminaires. Existing alternative approaches for assembly of semiconductor dies are examined including transfer printing, laser-assisted die transfer, and various directed self-assembly approaches using shape-recognition, magnetic and capillary forces, etc. After comparing their advantages and limitations, we developed two approaches to magnetic force-assisted DSA of LEDs on a large-area substrate in liquid and air medium. The first approach involves pick-up of buoyant and magnetic dies from the liquid surface onto the flexible substrate in a roll-to-roll process. The possibility of high-speed assembly of LED dies is demonstrated, but with a low yield due to the influence of the capillary force of the carrier liquid and the difficulty in ensuring reliable supply of dies to the assembly interface. To overcome the aforementioned challenges this process was modified to assemble the dies by sinking them onto the receiving substrate with a stencil mask on top, demonstrating LED assembly with a very low error rate but at a lower speed. A solder-assisted self-alignment is used to further improve placement precision and to ensure the proper orientation of the dies. The second

  5. Self-assembly kinetics of microscale components: A parametric evaluation

    NASA Astrophysics Data System (ADS)

    Carballo, Jose M.

    The goal of the present work is to develop, and evaluate a parametric model of a basic microscale Self-Assembly (SA) interaction that provides scaling predictions of process rates as a function of key process variables. At the microscale, assembly by "grasp and release" is generally challenging. Recent research efforts have proposed adapting nanoscale self-assembly (SA) processes to the microscale. SA offers the potential for reduced equipment cost and increased throughput by harnessing attractive forces (most commonly, capillary) to spontaneously assemble components. However, there are challenges for implementing microscale SA as a commercial process. The existing lack of design tools prevents simple process optimization. Previous efforts have characterized a specific aspect of the SA process. However, the existing microscale SA models do not characterize the inter-component interactions. All existing models have simplified the outcome of SA interactions as an experimentally-derived value specific to a particular configuration, instead of evaluating it outcome as a function of component level parameters (such as speed, geometry, bonding energy and direction). The present study parameterizes the outcome of interactions, and evaluates the effect of key parameters. The present work closes the gap between existing microscale SA models to add a key piece towards a complete design tool for general microscale SA process modeling. First, this work proposes a simple model for defining the probability of assembly of basic SA interactions. A basic SA interaction is defined as the event where a single part arrives on an assembly site. The model describes the probability of assembly as a function of kinetic energy, binding energy, orientation and incidence angle for the component and the assembly site. Secondly, an experimental SA system was designed, and implemented to create individual SA interactions while controlling process parameters independently. SA experiments

  6. Component assembly with shape memory polymer fastener for microrobots

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Suk; Lee, Dae-Young; Koh, Je-Sung; Jung, Gwang-Pil; Cho, Kyu-Jin

    2014-01-01

    Adhesives are generally used for the assembly of microrobots, whereas bolts, screws, or rivets are used for larger robots. Although adhesives are easy to apply, lightweight, and small, they cannot be used for repeated assembly and disassembly of parts. In this paper, we present a novel microfastener composed of a polyurethane-based shape memory polymer (SMP) that is lightweight and small but that is easily detached for disassembly. This was achieved by using the shape recovery and modulus change of the SMP. A sheet of macromolded SMP was laser machined into an I-beam-shaped rivet, and notches were added to the structure to prevent stress concentration. Pull-off tests showed that, as the notch radius increased, the disengagement strength of the rivet fastener decreased and the reusability increased. Through the elastoplastic model, a single SMP rivet was calculated to have maximum disengagement strength of 150 N cm-2 in the elastic range, depending on the notch radius. The fasteners were applied to a jumping microrobot. The legs and body were assembled with ten fasteners, which showed no permanent deformation after impact during jumping movements. The legs were easily replaced with ones of different stiffness by heating the engaged sites to make the fasteners compliant and detachable. The proposed detachable SMP microfasteners are particularly useful for testing the isolated performance of microrobot components to determine the optimal designs for these components.

  7. Damage rates for FFTF structural components and surveillance assemblies

    SciTech Connect

    Simons, R.L.

    1993-08-01

    The Fast Flux Test Facility (FFTF) surveillance program provides coupon surveillance materials that are irradiated to the expected lifetime damage dose that the represented component will experience. This methodology requires a knowledge of the damage dose rates to the surveillance assemblies and to the critical locations of the structural components. This analysis updates the predicted exposures from a total fluence to a displacement per atom (dpa) basis using Monte Carlo (computer code for) neutron photon (transport) code (MCNP). The MCNP calculation improves the relative consistency and lowers the predicted damage rates uncertainty in a number of out-of-core locations. The results were used an part of the evaluation to extend the lifetime of the invessel components to 30 years in support of multiple missions for FFTF.

  8. Tools and Equipment Modeling for Automobile Interactive Assembling Operating Simulation

    SciTech Connect

    Wu Dianliang; Zhu Hongmin

    2010-05-21

    Tools and equipment play an important role in the simulation of virtual assembly, especially in the assembly process simulation and plan. Because of variety in function and complexity in structure and manipulation, the simulation of tools and equipments remains to be a challenge for interactive assembly operation. Based on analysis of details and characteristics of interactive operations for automobile assembly, the functional requirement for tools and equipments of automobile assembly is given. Then, a unified modeling method for information expression and function realization of general tools and equipments is represented, and the handling methods of manual, semi-automatic, automatic tools and equipments are discussed. Finally, the application in assembly simulation of rear suspension and front suspension of Roewe 750 automobile is given. The result shows that the modeling and handling methods are applicable in the interactive simulation of various tools and equipments, and can also be used for supporting assembly process planning in virtual environment.

  9. Tools and Equipment Modeling for Automobile Interactive Assembling Operating Simulation

    NASA Astrophysics Data System (ADS)

    Wu, Dianliang; Zhu, Hongmin

    2010-05-01

    Tools and equipment play an important role in the simulation of virtual assembly, especially in the assembly process simulation and plan. Because of variety in function and complexity in structure and manipulation, the simulation of tools and equipments remains to be a challenge for interactive assembly operation. Based on analysis of details and characteristics of interactive operations for automobile assembly, the functional requirement for tools and equipments of automobile assembly is given. Then, a unified modeling method for information expression and function realization of general tools and equipments is represented, and the handling methods of manual, semi-automatic, automatic tools and equipments are discussed. Finally, the application in assembly simulation of rear suspension and front suspension of Roewe 750 automobile is given. The result shows that the modeling and handling methods are applicable in the interactive simulation of various tools and equipments, and can also be used for supporting assembly process planning in virtual environment.

  10. Nonisotropic Assembly of Single-Component Hairy Nanoparticles

    NASA Astrophysics Data System (ADS)

    Vaia, R.; Koerner, H.; Drummy, L.; Benicewicz, B.; Li, Y.; U Of South Carolina Collaboration; Afrl-Wpafb Team

    2014-03-01

    Solvent-free assemblies of hairy nanoparticles (HNPs) are providing avenues to avoid issues of mixing, agglomeration and limited inorganic content that plague traditional nanocomposites that are based on polymer-nanoparticle blending. We demonstrate that for a range of graft densities, depletion forces acting on high molecular weight poly(styrene) (120kDa) grafted to SiO2 (r0 = 8nm) lead to non-isotropic organization of the nanoparticle center of mass. The order within the neat HNP assembly (aHNP) and its elongational characteristics evolve as the architecture of the polymeric corona in solution transitions from concentrated (CBP) to semidilute (SDPB) polymer brush regimes. Specifically, local HNP packing adopts a non-isotropic arrangement at intermediate graft densities (σ = 0.01 - 0.1 chains/nm2) where the CPB-to-SDPB transition in solution is approximately r0. In concert, the neat HNP assembly responds to elongational deformation in a manner analogous to semi-crystalline elastomers. The correlation between the corona architecture of the HNP and the physical characteristics of the solvent free aHNP point toward a possible approach to tune mechanical, optical and electrical properties of single component hybrids in a manner analogous to block-copolymer mesoscale morphology.

  11. 39. TAINTER GATE VALVES, OPERATING MACHINERY, AND VALVE ASSEMBLED AUXILIARY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. TAINTER GATE VALVES, OPERATING MACHINERY, AND VALVE ASSEMBLED AUXILIARY LOCK. January 1932 - Mississippi River 9-Foot Channel Project, Lock & Dam No. 15, Upper Mississipi River (Arsenal Island), Rock Island, Rock Island County, IL

  12. Simulation of Assembly Line Balancing in Automotive Component Manufacturing

    NASA Astrophysics Data System (ADS)

    Jamil, Muthanna; Mohd Razali, Noraini

    2016-02-01

    This study focuses on the simulation of assembly line balancing in an automotive component in a vendor manufacturing company. A mixed-model assembly line of charcoal canister product that is used in an engine system as fuel's vapour filter was observed and found that the current production rate of the line does not achieve customer demand even though the company practices buffer stock for two days in advance. This study was carried out by performing detailed process flow and time studies along the line. To set up a model of the line by simulation, real data was taken from a factory floor and tested for distribution fit. The data gathered was then transformed into a simulation model. After verification of the model by comparing it with the actual system, it was found that the current line efficiency is not at its optimum condition due to blockage and idle time. Various what-if analysis were applied to eliminate the cause. Proposed layout shows that the line is balanced by adding buffer to avoid the blockage. Whereas, manpower is added the stations to reduce process time therefore reducing idling time. The simulation study was carried out using ProModel software.

  13. Method for distributed object communications based on dynamically acquired and assembled software components

    NASA Technical Reports Server (NTRS)

    Sundermier, Amy (Inventor)

    2002-01-01

    A method for acquiring and assembling software components at execution time into a client program, where the components may be acquired from remote networked servers is disclosed. The acquired components are assembled according to knowledge represented within one or more acquired mediating components. A mediating component implements knowledge of an object model. A mediating component uses its implemented object model knowledge, acquired component class information and polymorphism to assemble components into an interacting program at execution time. The interactions or abstract relationships between components in the object model may be implemented by the mediating component as direct invocations or indirect events or software bus exchanges. The acquired components may establish communications with remote servers. The acquired components may also present a user interface representing data to be exchanged with the remote servers. The mediating components may be assembled into layers, allowing arbitrarily complex programs to be constructed at execution time.

  14. Reactor building assembly and method of operation

    SciTech Connect

    Fennern, L.E.; Caraway, H.A.; Hsu, Li C.

    1993-06-01

    A reactor building assembly is described comprising: a reactor pressure vessel containing a reactor core for generating heat in the form of steam; a containment vessel enclosing said pressure vessel; a first enclosure surrounding said containment vessel and spaced laterally therefrom to define a first chamber there between, and having a top and a bottom; a second enclosure surrounding said first enclosure and spaced laterally therefrom to define a second chamber there between, and having a top and a bottom; a building inlet for receiving into said second chamber fresh air from outside said second enclosure; a building outlet for discharging stale air from said first chamber; a transfer duct disposed through said first enclosure selectively joining in flow communication said first and second chambers; said building inlet being disposed at said second enclosure top, said building outlet being disposed at said first enclosure top, and said transfer duct being disposed adjacent said first enclosure bottom for allowing said fresh air to flow downwardly by gravity through said second chamber and through said transfer duct into said first chamber for cooling said first chamber, said stale air flowing upwardly by natural buoyancy for discharger from said first chamber through said building outlet; an exhaust stack disposed above said building outlet and in flow communication therewith for channeling upwardly said stale air from said first chamber for discharge into the surrounding environs; and a passive first driving means for increasing flow of said stale air from said building outlet comprising: an isolation pool containing isolation water; an isolation condenser disposed in said isolation pool, and joined in flow communication with said reactor pressure vessel for receiving primary steam therefrom, said primary steam being cooled in said isolation condenser for heating said isolation water to generate secondary steam.

  15. Self-assembling dual component nanoparticles with endosomal escape capability.

    PubMed

    Wong, Adelene S M; Mann, Sarah K; Czuba, Ewa; Sahut, Audrey; Liu, Haiyin; Suekama, Tiffany C; Bickerton, Tayla; Johnston, Angus P R; Such, Georgina K

    2015-04-21

    This study reports a novel nanoparticle system with simple and modular one-step assembly, which can respond intelligently to biologically relevant variations in pH. Importantly, these particles also show the ability to induce escape from the endosomal/lysosomal compartments of the cell, which is integral to the design of efficient polymeric delivery systems. The nanoparticles were formed by the nanoprecipitation of pH-responsive poly(2-(diethylamino)ethyl methacrylate) (PDEAEMA) and poly(2-(diethylamino)ethyl methacrylate)-b-poly(ethylene glycol) (PDEAEMA-b-PEG). Rhodamine B octadecyl ester perchlorate was successfully encapsulated within the hydrophobic core of the nanoparticle upon nanoprecipitation into PBS at pH 8. These particles disassembled when the pH was reduced below 6.8 at 37 °C. Cellular experiments showed the successful uptake of the nanoparticles into the endosomal/lysosomal compartments of 3T3 fibroblast cells. The ability to induce escape from the endosomes was demonstrated by the use of calcein, a membrane-impermeable fluorophore. The modular nature of these particles combined with promising endosomal escape capabilities make these dual component PDEAEMA nanoparticles useful for drug and gene delivery applications. PMID:25731820

  16. 30 CFR 18.80 - Approval of machines assembled with certified or explosion-proof components.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Machines Assembled With Certified or Explosion-Proof Components,...

  17. 30 CFR 18.80 - Approval of machines assembled with certified or explosion-proof components.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Machines Assembled With Certified or Explosion-Proof Components,...

  18. 30 CFR 18.80 - Approval of machines assembled with certified or explosion-proof components.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Machines Assembled With Certified or Explosion-Proof Components,...

  19. 30 CFR 18.80 - Approval of machines assembled with certified or explosion-proof components.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Machines Assembled With Certified or Explosion-Proof Components,...

  20. 30 CFR 18.80 - Approval of machines assembled with certified or explosion-proof components.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Machines Assembled With Certified or Explosion-Proof Components,...

  1. Ground controlled robotic assembly operations for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Parrish, Joseph C.

    1991-01-01

    A number of dextrous robotic systems and associated positioning and transportation devices are available on Space Station Freedom (SSF) to perform assembly tasks that would otherwise need to be performed by extravehicular activity (EVA) crewmembers. The currently planned operating mode for these robotic systems during the assembly phase is teleoperation by intravehicular activity (IVA) crewmembers. While this operating mode is less hazardous and expensive than manned EVA operations, and has insignificant control loop time delays, the amount of IVA time available to support telerobotic operations is much less than the anticipated requirements. Some alternative is needed to allow the robotic systems to perform useful tasks without exhausting the available IVA resources; ground control is one such alternative. The issues associated with ground control of SSF robotic systems to alleviate onboard crew time availability constraints are investigated. Key technical issues include the effect of communication time delays, the need for safe, reliable execution of remote operations, and required modifications to the SSF ground and flight system architecture. Time delay compensation techniques such as predictive displays and world model-based force reflection are addressed and collision detection and avoidance strategies to ensure the safety of the on-orbit crew, Orbiter, and SSF are described. Although more time consuming and difficult than IVA controlled teleoperations or manned EVA, ground controlled telerobotic operations offer significant benefits during the SSF assembly phase, and should be considered in assembly planning activities.

  2. ON THE ASSEMBLY HISTORY OF STELLAR COMPONENTS IN MASSIVE GALAXIES

    SciTech Connect

    Lee, Jaehyun; Yi, Sukyoung K.

    2013-03-20

    Matsuoka and Kawara showed that the number density of the most massive galaxies (log M/M{sub Sun} = 11.5-12.0) increases faster than that of the next massive group (log M/M{sub Sun} = 11.0-11.5) during 0 < z < 1. This appears to be in contradiction to the apparent 'downsizing effect'. We attempt to understand the two observational findings in the context of the hierarchical merger paradigm using semi-analytic techniques. Our models closely reproduce the result of Matsuoka and Kawara. Downsizing can also be understood as larger galaxies have, on average, smaller assembly ages but larger stellar ages. Our fiducial models further reveal details of the history of the stellar mass growth of massive galaxies. The most massive galaxies (log M/M{sub Sun} = 11.5-12.0 at z = 0), which are mostly the brightest cluster galaxies, obtain roughly 70% of their stellar components via merger accretion. The role of merger accretion monotonically declines with galaxy mass: 40% for log M/M{sub Sun} = 11.0-11.5 and 20% for log M/M{sub Sun} = 10.5-11.0 at z = 0. The specific accreted stellar mass rates via galaxy mergers decline very slowly during the whole redshift range, while specific star formation rates sharply decrease with time. In the case of the most massive galaxies, merger accretion becomes the most important channel for the stellar mass growth at z {approx} 2. On the other hand, in situ star formation is always the dominant channel in L{sub *} galaxies.

  3. Structure and assembly of the essential RNA ring component of a viral DNA packaging motor.

    PubMed

    Ding, Fang; Lu, Changrui; Zhao, Wei; Rajashankar, Kanagalaghatta R; Anderson, Dwight L; Jardine, Paul J; Grimes, Shelley; Ke, Ailong

    2011-05-01

    Prohead RNA (pRNA) is an essential component in the assembly and operation of the powerful bacteriophage 29 DNA packaging motor. The pRNA forms a multimeric ring via intermolecular base-pairing interactions between protomers that serves to guide the assembly of the ring ATPase that drives DNA packaging. Here we report the quaternary structure of this rare multimeric RNA at 3.5 Å resolution, crystallized as tetrameric rings. Strong quaternary interactions and the inherent flexibility helped rationalize how free pRNA is able to adopt multiple oligomerization states in solution. These characteristics also allowed excellent fitting of the crystallographic pRNA protomers into previous prohead/pRNA cryo-EM reconstructions, supporting the presence of a pentameric, but not hexameric, pRNA ring in the context of the DNA packaging motor. The pentameric pRNA ring anchors itself directly to the phage prohead by interacting specifically with the fivefold symmetric capsid structures that surround the head-tail connector portal. From these contacts, five RNA superhelices project from the pRNA ring, where they serve as scaffolds for binding and assembly of the ring ATPase, and possibly mediate communication between motor components. Construction of structure-based designer pRNAs with little sequence similarity to the wild-type pRNA were shown to fully support the packaging of 29 DNA. PMID:21471452

  4. Structure and assembly of the essential RNA ring component of a viral DNA packaging motor

    SciTech Connect

    Ding, Fang; Lu, Changrui; Zhao, Wei; Rajashankar, Kanagalaghatta R.; Anderson, Dwight L.; Jardine, Paul J.; Grimes, Shelley; Ke, Ailong

    2011-07-25

    Prohead RNA (pRNA) is an essential component in the assembly and operation of the powerful bacteriophage {psi}29 DNA packaging motor. The pRNA forms a multimeric ring via intermolecular base-pairing interactions between protomers that serves to guide the assembly of the ring ATPase that drives DNA packaging. Here we report the quaternary structure of this rare multimeric RNA at 3.5 {angstrom} resolution, crystallized as tetrameric rings. Strong quaternary interactions and the inherent flexibility helped rationalize how free pRNA is able to adopt multiple oligomerization states in solution. These characteristics also allowed excellent fitting of the crystallographic pRNA protomers into previous prohead/pRNA cryo-EM reconstructions, supporting the presence of a pentameric, but not hexameric, pRNA ring in the context of the DNA packaging motor. The pentameric pRNA ring anchors itself directly to the phage prohead by interacting specifically with the fivefold symmetric capsid structures that surround the head-tail connector portal. From these contacts, five RNA superhelices project from the pRNA ring, where they serve as scaffolds for binding and assembly of the ring ATPase, and possibly mediate communication between motor components. Construction of structure-based designer pRNAs with little sequence similarity to the wild-type pRNA were shown to fully support the packaging of {psi}29 DNA.

  5. Astromag phase A assembly and servicing operations report

    NASA Technical Reports Server (NTRS)

    Parikh, Link A.

    1989-01-01

    Operations concepts for the assembly and servicing of the Astromag Attached Payload on the Space Station Freedom (SSF) are presented. Scenario scripts and graphical representations of the installation of the core facility (CF) on the SSF, installation of experiment hardware on the CF, and the changeout of experiments on the CF are also presented.

  6. VPS Process for Copper Components in Thrust Chamber Assemblies

    NASA Technical Reports Server (NTRS)

    Elam, Sandra; Holmes, Richard; Hickman, Robert; McKechnie, Tim; Thom, George

    2005-01-01

    For several years, NASA's Marshall Space Flight Center (MSFC) has been working with Plasma Processes, Inc., (PPI) to fabricate thrust chamber liners with GRCop-84. Using the vacuum plasma spray (VPS) process, chamber liners of a variety of shapes and sizes have been created. Each has been formed as a functional gradient material (FGM) that creates a unique protective layer of NiCrAlY on the GRCop-84 liner s hot wall surface. Hot-fire testing was successfully conducted on a subscale unit to demonstrate the liner's durability and performance. Similar VPS technology has also been applied to create functional gradient coatings (FGC) on copper injector faceplates. Protective layers of NiCrAlY and zirconia were applied to both coaxial and impinging faceplate designs. Hot-fire testing is planned for these coated injectors in April 2005. The resulting material systems for both copper alloy components allows them to operate at higher temperatures with improved durability and operating margins.

  7. On-line dimensional measurement of small components on the eyeglasses assembly line

    NASA Astrophysics Data System (ADS)

    Rosati, G.; Boschetti, G.; Biondi, A.; Rossi, A.

    2009-03-01

    Dimensional measurement of the subassemblies at the beginning of the assembly line is a very crucial process for the eyeglasses industry, since even small manufacturing errors of the components can lead to very visible defects on the final product. For this reason, all subcomponents of the eyeglass are verified before beginning the assembly process either with a 100% inspection or on a statistical basis. Inspection is usually performed by human operators, with high costs and a degree of repeatability which is not always satisfactory. This paper presents a novel on-line measuring system for dimensional verification of small metallic subassemblies for the eyeglasses industry. The machine vision system proposed, which was designed to be used at the beginning of the assembly line, could also be employed in the Statistical Process Control (SPC) by the manufacturer of the subassemblies. The automated system proposed is based on artificial vision, and exploits two CCD cameras and an anthropomorphic robot to inspect and manipulate the subcomponents of the eyeglass. Each component is recognized by the first camera in a quite large workspace, picked up by the robot and placed in the small vision field of the second camera which performs the measurement process. Finally, the part is palletized by the robot. The system can be easily taught by the operator by simply placing the template object in the vision field of the measurement camera (for dimensional data acquisition) and hence by instructing the robot via the Teaching Control Pendant within the vision field of the first camera (for pick-up transformation acquisition). The major problem we dealt with is that the shape and dimensions of the subassemblies can vary in a quite wide range, but different positioning of the same component can look very similar one to another. For this reason, a specific shape recognition procedure was developed. In the paper, the whole system is presented together with first experimental lab

  8. Seal allows blind assembly and thermal expansion of components

    NASA Technical Reports Server (NTRS)

    1965-01-01

    The design of a seal consisting of two concentric cylinders with outer and inner threaded elements attached to each side of the system interface withstands large temperature changes and allows for blind assembly.

  9. Vibration detection of component health and operability

    NASA Technical Reports Server (NTRS)

    Baird, B. C.

    1975-01-01

    In order to prevent catastrophic failure and eliminate unnecessary periodic maintenance in the shuttle orbiter program environmental control system components, some means of detecting incipient failure in these components is required. The utilization was investigated of vibrational/acoustic phenomena as one of the principal physical parameters on which to base the design of this instrumentation. Baseline vibration/acoustic data was collected from three aircraft type fans and two aircraft type pumps over a frequency range from a few hertz to greater than 3000 kHz. The baseline data included spectrum analysis of the baseband vibration signal, spectrum analysis of the detected high frequency bandpass acoustic signal, and amplitude distribution of the high frequency bandpass acoustic signal. A total of eight bearing defects and two unbalancings was introduced into the five test items. All defects were detected by at least one of a set of vibration/acoustic parameters with a margin of at least 2:1 over the worst case baseline. The design of a portable instrument using this set of vibration/acoustic parameters for detecting incipient failures in environmental control system components is described.

  10. Glove port retrofit assembly and method of replacing components

    DOEpatents

    Giesen, Isaac M; Cournoyer, Michael E; Rael, David G

    2014-11-18

    What is disclosed is a system for retrofitting a sealed enclosure for performing work therein having an outer enclosure assembly configured to be clamped to the outer annular face of a port ring and form a sealed engagement with the outer annular surface of the port ring, a change assembly having an inner ring and an access element wherein the inner ring has a first annular cylinder body that is sized to be slidably received by the port ring and the access element is configured to be sealably and slidably positioned within the first annular cylinder body of the inner ring.

  11. Sampled MTF of fused fiber optic components and bonded assemblies

    NASA Astrophysics Data System (ADS)

    Carter, Thomas

    2013-05-01

    Fused fiber optic devices are bundles of glass optical fibers that have been successively bundled and drawn to smaller and smaller sizes, effectively creating a "zero optical path window". Due to the nature of fiber's clad and core design, pixelization or sampling of the resulting image occurs; this sampling fundamentally degrades the image. Degradation of a resulting image caused by an optical system can be quantified by way of its Modulation Transfer Function. However, since fused fiber optic devices first sample then effectively project the original image, they do not meet the Fourier transform's prerequisite conditions of being linear and isoplanatic. Current technologies at SCHOTT Lighting and Imaging have initiated a study to determine methodology for measuring the sampled modulation transfer function of bonded assemblies such as bonded Faceplate-to-OLED and Faceplate-tosensor assemblies. The use of randomly generated targets imaged through the bonded assemblies proved to be a useful tactic. This paper discusses the test methods developed and subsequent measurement of the sampled modulation transfer function of fused fiber optic bundles and bonded assemblies.

  12. Method of assembling and disassembling a control component structure

    SciTech Connect

    Edwards, G.T.; Schluderberg, D.C.

    1982-10-26

    A technique is provided for engaging and disengaging burnable poison rods from the spider in a fuel assembly. The cap on the end of each of the burnable poison rods is provided with a shank that is received in the respective bore formed in the spider. A frangible flange secures the shank and rod to the spider. Pressing the shank in the direction of the bore axis ruptures the frangible flange to release the rod from the spider.

  13. Component design challenges for the ground-based SP-100 nuclear assembly test

    SciTech Connect

    Markley, R.A.; Disney, R.K.; Brown, G.B. )

    1989-01-01

    The SP-100 ground engineering system (GES) program involves a ground test of the nuclear subsystems to demonstrate their design. The GES nuclear assembly test (NAT) will be performed in a simulated space environment within a vessel maintained at ultrahigh vacuum. The NAT employs a radiation shielding system that is comprised of both prototypical and nonprototypical shield subsystems to attenuate the reactor radiation leakage and also nonprototypical heat transport subsystems to remove the heat generated by the reactor. The reactor is cooled by liquid lithium, which will operate at temperatures prototypical of the flight system. In designing the components for these systems, a number of design challenges were encountered in meeting the operational requirements of the simulated space environment (and where necessary, prototypical requirements) while also accommodating the restrictions of a ground-based test facility with its limited available space. This paper presents a discussion of the design challenges associated with the radiation shield subsystem components and key components of the heat transport systems.

  14. Fabrication development of full-sized components for GCFR core assemblies

    SciTech Connect

    Lindgren, J.R.; Flynn, P.W.; Foster, L.C.

    1980-05-01

    This paper presents the status of the development of full-sized components for gas-cooled fast reactor (GCFR) core assemblies. Methods for ribbing of the fuel rod cladding, fabrication of grid spacers of two different designs, drawing of assembly flow ducts, and fabrication of fission gas collection manifolds by several methods are discussed.

  15. Overview of International Space Station Carbon Dioxide Removal Assembly On-Orbit Operations and Performance

    NASA Technical Reports Server (NTRS)

    Matty, Christopher M.

    2013-01-01

    Controlling Carbon Dioxide (CO2) partial pressure in the habitable vehicle environment is a critical part of operations on the International Space Station (ISS). On the United States segment of ISS, CO2 levels are primarily controlled by the Carbon Dioxide Removal Assembly (CDRA). There are two CDRAs on ISS; one in the United States Laboratory module, and one in the Node3 module. CDRA has been through several significant operational issues, performance issues and subsequent re-design of various components, primarily involving the Desiccant Adsorbent Bed (DAB) assembly and Air Selector Valves (ASV). This paper will focus on significant operational and performance issues experienced by the CDRA team from 2008-2012.

  16. Assembly, operation and disassembly manual for the Battelle Large Volume Water Sampler (BLVWS)

    SciTech Connect

    Thomas, V.W.; Campbell, R.M.

    1984-12-01

    Assembly, operation and disassembly of the Battelle Large Volume Water Sampler (BLVWS) are described in detail. Step by step instructions of assembly, general operation and disassembly are provided to allow an operator completely unfamiliar with the sampler to successfully apply the BLVWS to his research sampling needs. The sampler permits concentration of both particulate and dissolved radionuclides from large volumes of ocean and fresh water. The water sample passes through a filtration section for particle removal then through sorption or ion exchange beds where species of interest are removed. The sampler components which contact the water being sampled are constructed of polyvinylchloride (PVC). The sampler has been successfully applied to many sampling needs over the past fifteen years. 9 references, 8 figures.

  17. Bio-inspired nanocomposite assemblies as smart skin components.

    SciTech Connect

    Montano, Gabriel A.; Xiao, Xiaoyin; Achyuthan, Komandoor E.; Allen, Amy; Brozik, Susan Marie; Edwards, Thayne L.; Frischknecht, Amalie Lucile; Wheeler, David Roger

    2011-09-01

    There is national interest in the development of sophisticated materials that can automatically detect and respond to chemical and biological threats without the need for human intervention. In living systems, cell membranes perform such functions on a routine basis, detecting threats, communicating with the cell, and triggering automatic responses such as the opening and closing of ion channels. The purpose of this project was to learn how to replicate simple threat detection and response functions within artificial membrane systems. The original goals toward developing 'smart skin' assemblies included: (1) synthesizing functionalized nanoparticles to produce electrochemically responsive systems within a lipid bilayer host matrices, (2) calculating the energetics of nanoparticle-lipid interactions and pore formation, and (3) determining the mechanism of insertion of nanoparticles in lipid bilayers via imaging and electrochemistry. There are a few reports of the use of programmable materials to open and close pores in rigid hosts such as mesoporous materials using either heat or light activation. However, none of these materials can regulate themselves in response to the detection of threats. The strategies we investigated in this project involve learning how to use programmable nanomaterials to automatically eliminate open channels within a lipid bilayer host when 'threats' are detected. We generated and characterized functionalized nanoparticles that can be used to create synthetic pores through the membrane and investigated methods of eliminating the pores either through electrochemistry, change in pH, etc. We also focused on characterizing the behavior of functionalized gold NPs in different lipid membranes and lipid vesicles and coupled these results to modeling efforts designed to gain an understanding of the interaction of nanoparticles within lipid assemblies.

  18. Pre-operational environmental monitoring plan for the Device Assembly Facility at the Nevada Test Site

    SciTech Connect

    Ferate, F.D.

    1995-01-01

    Nuclear explosives operations have been and may continue to be an important component of the DOE mission at the NTS. This mission has been to conduct the nation`s nuclear testing program in a safe, secure, and efficient manner while assuring full compliance with state and federal regulations, and DOE order`s and directives. These operations have generally included assembly, disassembly or modification, staging, transportation, and tesbng of nuclear explosive devices. They may also include maintenance, repair, retrofit, and surveillance. The Device Assembly Facility (DAF) was constructed to provide a dedicated facility in which to prepare nuclear explosives assemblies for their intended disposition. This facility will provide for combined operations (replacing two separate facilities) and incorporates state-of-the-art safety and security features while minimizing the risks of environmental impacts. The facility has been completed but not yet operated, so the impacts to be considered will b e based on normal operations and not on the impacts of construction activities. The impacts will arise from nuclear explosives operations that require the handling of high explosives in combination with special nuclear materials. Wastes from operation of the earlier device assembly facilities have included grams of epoxies, pints of solvents, and small quantities of waste explosives. These are hazardous (includes radioactive) wastes and are disposed of in accordance with state and federal regulations. Assuming similar operations at the DAF, non-hazardous (includes non-radioactive) solid waste would be transported to a permitted landfill. Waste explosives would be sent to the Area 11 Explosive Ordnance Disposal Unit. Other hazardous waste would be sent to the Area 5 Radioactive Waste.Management Site for shipment or burial.

  19. Definition of large components assembled on-orbit and robot compatible mechanical joints

    NASA Technical Reports Server (NTRS)

    Williamsen, J.; Thomas, F.; Finckenor, J.; Spiegel, B.

    1990-01-01

    One of four major areas of project Pathfinder is in-space assembly and construction. The task of in-space assembly and construction is to develop the requirements and the technology needed to build elements in space. A 120-ft diameter tetrahedral aerobrake truss is identified as the focus element. A heavily loaded mechanical joint is designed to robotically assemble the defined aerobrake element. Also, typical large components such as habitation modules, storage tanks, etc., are defined, and attachment concepts of these components to the tetrahedral truss are developed.

  20. Instantaneous engine frictional torque, its components and piston assembly friction. Final report

    SciTech Connect

    Nichols, F.A.; Henein, N.A.

    1992-05-01

    The overall goal of this report is to document the work done to determine the instantaneous frictional torque of internal combustion engine by using a new approach known as (P-{omega}) method developed at Wayne State University. The emphasis has been to improve the accuracy of the method, and apply it to both diesel and gasoline engines under different operating conditions. Also work included an investigation to determine the effect of using advanced materials and techniques to coat the piston rings on the instantaneous engine frictional torque and the piston assembly friction. The errors in measuring the angular velocity, {omega}, have been determined and found to be caused by variations in the divisions within one encoder, encoder-to-encoder variations, misalignment within the encoder itself and misalignment between the encoder and crankshaft. The errors in measuring the cylinder gas pressure, P, have been determined and found to be caused by transducer-to-transducer variations, zero drift, thermal stresses and lack of linearity. The ability of the (P-{omega}) method in determining the frictional torque of many engine components has been demonstrated. These components include valve train, fuel injection pump with and without fuel injection, and piston with and without different ring combinations. The emphasis in this part of the research program has been on the piston-ring assembly friction. The effects of load and other operating variables on IFT have been determined. The motoring test, which is widely used in industry to measure engine friction has been found to be inaccurate. The errors have been determined at different loads.

  1. Modular construction of plasmids through ligation-free assembly of vector components with oligonucleotide linkers.

    PubMed

    Vroom, Jonathan A; Wang, Clifford L

    2008-06-01

    We have developed a modular method of plasmid construction that can join multiple DNA components in a single reaction. A nicking enzyme is used to create 5' and 3' overhangs on PCR-generated DNA components. Without the use of ligase or restriction enzymes, components are joined using oligonucleotide linkers that recognize the overhangs. By specifying the sequences of the linkers, desired components can be assembled in any combination and order to generate different plasmid vectors. PMID:18533903

  2. FLOAT OPERATED RADIAL GATE HOIST ASSEMBLY LIST OF PARTS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FLOAT OPERATED RADIAL GATE HOIST ASSEMBLY - LIST OF PARTS - BASE-CRANK. WASTEWAY NO. 1. WELLTON-MOHAWK CANAL - STA. 99+23.50. United States Department of the Interior, Bureau of Reclamation; Gila Project, Arizona, Wellton-Mohawk Division. Drawing No. 50-D-2511, dated May 3, 1949, Denver Colorado. Sheet 1 of 2 - Wellton-Mohawk Irrigation System, Wasteway No. 1, Wellton-Mohawk Canal, North side of Wellton-Mohawk Canal, bounded by Gila River to North & the Union Pacific Railroad & Gila Mountains to south, Wellton, Yuma County, AZ

  3. Task oriented nonlinear control laws for telerobotic assembly operations

    NASA Technical Reports Server (NTRS)

    Walker, R. A.; Ward, L. S.; Elia, C. F.

    1987-01-01

    The goal of this research is to achieve very intelligent telerobotic controllers which are capable of receiving high-level commands from the human operator and implementing them in an adaptive manner in the object/task/manipulator workspace. Initiatives by the authors at Integrated Systems, Inc. to identify and develop the key technologies necessary to create such a flexible, highly programmable, telerobotic controller are presented. The focus of the discussion is on the modeling of insertion tasks in three dimensions and nonlinear implicit force feedback control laws which incorporate tool/workspace constraints. Preliminary experiments with dual arm beam assembly in 2-D are presented.

  4. Assembly accuracy analysis for small components with a planar surface in large-scale metrology

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Huang, Peng; Li, Jiangxiong; Ke, Yinglin; Yang, Bingru; Maropoulos, Paul G.

    2016-04-01

    Large-scale mechanical products, such as aircraft and rockets, consist of large numbers of small components, which introduce additional difficulty for assembly accuracy and error estimation. Planar surfaces as key product characteristics are usually utilised for positioning small components in the assembly process. This paper focuses on assembly accuracy analysis of small components with planar surfaces in large-scale volume products. To evaluate the accuracy of the assembly system, an error propagation model for measurement error and fixture error is proposed, based on the assumption that all errors are normally distributed. In this model, the general coordinate vector is adopted to represent the position of the components. The error transmission functions are simplified into a linear model, and the coordinates of the reference points are composed by theoretical value and random error. The installation of a Head-Up Display is taken as an example to analyse the assembly error of small components based on the propagation model. The result shows that the final coordination accuracy is mainly determined by measurement error of the planar surface in small components. To reduce the uncertainty of the plane measurement, an evaluation index of measurement strategy is presented. This index reflects the distribution of the sampling point set and can be calculated by an inertia moment matrix. Finally, a practical application is introduced for validating the evaluation index.

  5. 19 CFR 10.25 - Textile components cut to shape in the United States and assembled abroad.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Textile components cut to shape in the United... RATE, ETC. General Provisions Articles Assembled Abroad with United States Components § 10.25 Textile components cut to shape in the United States and assembled abroad. Where a textile component is cut to...

  6. 19 CFR 10.25 - Textile components cut to shape in the United States and assembled abroad.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Textile components cut to shape in the United... RATE, ETC. General Provisions Articles Assembled Abroad with United States Components § 10.25 Textile components cut to shape in the United States and assembled abroad. Where a textile component is cut to...

  7. 19 CFR 10.25 - Textile components cut to shape in the United States and assembled abroad.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Textile components cut to shape in the United... RATE, ETC. General Provisions Articles Assembled Abroad with United States Components § 10.25 Textile components cut to shape in the United States and assembled abroad. Where a textile component is cut to...

  8. 19 CFR 10.25 - Textile components cut to shape in the United States and assembled abroad.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Textile components cut to shape in the United... RATE, ETC. General Provisions Articles Assembled Abroad with United States Components § 10.25 Textile components cut to shape in the United States and assembled abroad. Where a textile component is cut to...

  9. Errors analysis of dimensional metrology for internal components assembly of EAST

    NASA Astrophysics Data System (ADS)

    Gu, Yongqi; Liu, Chen; Xi, Weibin; Lu, Kun; Wei, Jing; Song, Yuntao; Yu, Liandong; Ge, Jian; Zheng, Yuanyang; Zhao, Huining; Zheng, Fubin; Wang, Jun

    2016-01-01

    The precision of dimensional measurement plays an important role in guaranteeing the assembly accuracy of its internal components during the upgrading phase of EAST device. In this paper, the experimental research and analysis were done based on three dimensional combined measurement systems, combining Laser Tracker, flexible Measure ARM and measurement fiducials network, which are used for alignment and measurement of EAST components during the assembly process. The error sources were analyzed, e.g. temperature, gravity, welding, and so on. And the effective weight of each kind of error source was estimated by the simulation method. Then these results were used to correct and compensate the actual measured data, the stability and consistency of the measurement results was greatly improved in different measurement process, and the assembly precision of the EAST components was promised.

  10. SOFIA tracking subsystem: results of assembly, operation, and calibration tests

    NASA Astrophysics Data System (ADS)

    Bittner, Hermann; Erdmann, Matthias; Schmolke, Juergen; Lattner, Klaus; Levin, Torsten; Erhard, Markus

    2003-02-01

    The SOFIA airborne telescope has a Tracking Subsystem for stellar acquisition, tracking, and pointing. The system has three high-performance imagers: the boresighted wide field (6 degrees FOV) and fine field imagers (70 arcminutes FOV), and the main-telescope-optics sharing focal plane imager (8 arcminutes FOV). The imagers are controlled by 3 CCD head controllers, an overall imager controller, and a tracker controller providing the tracking error signals from the objects observed by the imagers. There have been several test steps in the assembly, integration, and verification of the Tracking Subsystem. The paper presents the fully integrated system as actually built, the results of the thermal-vacuum and vibration tests of the fine field imager, the tested operational/functional S/W performance, as well as the results of the geometric and radiometric calibrations of the imagers.

  11. Component-Level Electronic-Assembly Repair (CLEAR) Synthetic Instrument Capabilities Assessment and Test Report

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Bradish, Martin A.

    2011-01-01

    The role of synthetic instruments (SIs) for Component-Level Electronic-Assembly Repair (CLEAR) is to provide an external lower-level diagnostic and functional test capability beyond the built-in-test capabilities of spacecraft electronics. Built-in diagnostics can report faults and symptoms, but isolating the root cause and performing corrective action requires specialized instruments. Often a fault can be revealed by emulating the operation of external hardware. This implies complex hardware that is too massive to be accommodated in spacecraft. The SI strategy is aimed at minimizing complexity and mass by employing highly reconfigurable instruments that perform diagnostics and emulate external functions. In effect, SI can synthesize an instrument on demand. The SI architecture section of this document summarizes the result of a recent program diagnostic and test needs assessment based on the International Space Station. The SI architecture addresses operational issues such as minimizing crew time and crew skill level, and the SI data transactions between the crew and supporting ground engineering searching for the root cause and formulating corrective actions. SI technology is described within a teleoperations framework. The remaining sections describe a lab demonstration intended to show that a single SI circuit could synthesize an instrument in hardware and subsequently clear the hardware and synthesize a completely different instrument on demand. An analysis of the capabilities and limitations of commercially available SI hardware and programming tools is included. Future work in SI technology is also described.

  12. Non-fuel assembly components: 10 CFR 61.55 classification for waste disposal

    SciTech Connect

    Migliore, R.J.; Reid, B.D.; Fadeff, S.K.; Pauley, K.A.; Jenquin, U.P.

    1994-09-01

    This document reports the results of laboratory radionuclide measurements on a representative group of non-fuel assembly (NFA) components for the purposes of waste classification. This document also provides a methodology to estimate the radionuclide inventory of NFA components, including those located outside the fueled region of a nuclear reactor. These radionuclide estimates can then be used to determine the waste classification of NFA components for which there are no physical measurements. Previously, few radionuclide inventory measurements had been performed on NFA components. For this project, recommended scaling factors were selected for the ORIGEN2 computer code that result in conservative estimates of radionuclide concentrations in NFA components. These scaling factors were based upon experimental data obtained from the following NFA components: (1) a pressurized water reactor (PWR) burnable poison rod assembly, (2) a PVM rod cluster control assembly, and (3) a boiling water reactor cruciform control rod blade. As a whole, these components were found to be within Class C limits. Laboratory radionuclide measurements for these components are provided in detail.

  13. 19 CFR 10.25 - Textile components cut to shape in the United States and assembled abroad.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Textile components cut to shape in the United States and assembled abroad. 10.25 Section 10.25 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... components cut to shape in the United States and assembled abroad. Where a textile component is cut to...

  14. Accurate design of co-assembling multi-component protein nanomaterials

    NASA Astrophysics Data System (ADS)

    King, Neil P.; Bale, Jacob B.; Sheffler, William; McNamara, Dan E.; Gonen, Shane; Gonen, Tamir; Yeates, Todd O.; Baker, David

    2014-06-01

    The self-assembly of proteins into highly ordered nanoscale architectures is a hallmark of biological systems. The sophisticated functions of these molecular machines have inspired the development of methods to engineer self-assembling protein nanostructures; however, the design of multi-component protein nanomaterials with high accuracy remains an outstanding challenge. Here we report a computational method for designing protein nanomaterials in which multiple copies of two distinct subunits co-assemble into a specific architecture. We use the method to design five 24-subunit cage-like protein nanomaterials in two distinct symmetric architectures and experimentally demonstrate that their structures are in close agreement with the computational design models. The accuracy of the method and the number and variety of two-component materials that it makes accessible suggest a route to the construction of functional protein nanomaterials tailored to specific applications.

  15. Dynamic Multi-Component Covalent Assembly for the Reversible Binding of Secondary Alcohols and Chirality Sensing

    PubMed Central

    You, Lei; Berman, Jeffrey S.; Anslyn, Eric V.

    2011-01-01

    Reversible covalent bonding is often employed for the creation of novel supramolecular structures, multi-component assemblies, and sensing ensembles. In spite of remarkable success of dynamic covalent systems, the reversible binding of a mono-alcohol with high strength is challenging. Here we show that a strategy of carbonyl activation and hemiaminal ether stabilization can be embodied in a four-component reversible assembly that creates a tetradentate ligand and incorporates secondary alcohols with exceptionally high affinity. Evidence is presented that the intermediate leading to binding and exchange of alcohols is an iminium ion. Further, to demonstrate the use of this assembly process we explored chirality sensing and enantiomeric excess determinations. An induced twist in the ligand by a chiral mono-ol results in large Cotton effects in the circular dichroism spectra indicative of the alcohol’s handedness. The strategy revealed in this study should prove broadly applicable for the incorporation of alcohols into supramolecular architecture construction. PMID:22109274

  16. Three component assemblies by orthogonal H-bonding and donor-acceptor charge-transfer interaction.

    PubMed

    Kar, Haridas; Ghosh, Suhrit

    2014-02-01

    Three component supramolecular assemblies from a mixture of an aromatic donor (D), acceptor (A) and external structure directing agent (ESDA) are achieved by orthogonal noncovalent interactions involving two different types of H-bonding and alternate D-A stacking. An ESDA containing amide or urea produces a charge-transfer gel and sol, respectively, owing to their contrasting morphology. PMID:24309620

  17. Adjustment-Free Mirage Instrument with Components Assembled in a Compact Package

    NASA Astrophysics Data System (ADS)

    Yarai, Atsushi; Yamaura, Yusuke; Nakanishi, Takuji

    2002-05-01

    This paper describes how to achieve an adjustment-free mirage instrument with components assembled in a compact package. The deflection angle amplifier that we previously developed for mirage detection is assembled in this instrument. The features of this instrument are: 1) no optical table, 2) adjustment-free design, and 3) an extremely compact structure for mobile use. The volume of our compact mirage instrument is at least 1/25 times that of the conventional mirage instrument. The capability of the compact mirage instrument is also verified. The results show good potential for using the technique for apparatus commercialization.

  18. Operational maintenance data for power generation distribution and HVAC components

    SciTech Connect

    Hollis, H.D.; Hale, P.S. Jr.; Arno, R.G.; Briggs, S.J.

    1995-12-31

    This paper describes the culmination of a 24,000 man hour effort to collect operational and maintenance data on 239 power generation, power distribution and HVAC items, including gas turbine generators, diesel engine generators, switch gear assemblies, cables, boilers, piping, valves and chillers. This program was designed to determine the effects of new technology equipment, i.e., equipment installed after 1971, on availability. The central hypothesis was that this new equipment would exhibit a significant increase in availability, with corresponding decreases in required maintenance and the occurrence of failures. Information was obtained on a variety of commercial and industrial facility types (including office buildings, hospitals, water treatment facilities, prisons, utilities, manufacturing facilities, school universities and bank computer centers), with varying degrees of maintenance quality.

  19. Mechanical joints and large components for pathfinder in-space assembly and construction

    NASA Technical Reports Server (NTRS)

    Finckenor, Jeff; Thomas, Frank

    1990-01-01

    This paper summarizes the background of the Pathfinder Project, In-Space Assembly, and Construction activity for fiscal year 1989. Work is presented on high strength mechanical truss joints and the definition of typical large components that might be required for assembly on-orbit and use on interplanetary space missions. Several mechanical joints were designed, and the most promising early design is presented in detail. The primary design drivers were the ability for robot assembly, the correction of up to a + or - 0.020 inch axial misalignment, and an axial load in the vicinity of + or - 100,000 lb. The most promising joint uses axisymmetric grooves to correct the misalignment and to transfer the load in a smooth path.

  20. Tritium handling safety and operating experience at the Tritium Systems Test Assembly

    SciTech Connect

    Carlson, R.V.

    1989-01-01

    The Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory is a facility designed to develop and demonstrate, in full scale, technologies necessary for safe and efficient operation of tokamak fusion reactors. TSTA currently consists of systems for pumping DT gas mixtures; for removing impurities; for separating the isotopes of hydrogen; for storage of hydrogen isotopes; for gas analysis; and for assuring safety by the necessary control, monitoring, and detritiation of effluent gaseous streams. TSTA also has several small scale experiments to develop and test new equipment and processes necessary for fusion reactors. Tritium was introduced into TSTA in June 1984. Current inventory is approximately 100 grams. Approximately 10{sup 9} Curies of tritium have been processed in closed loop operation at TSTA. Total tritium releases from the facility stack have been less than 75 Curies. Total operating personnel exposures are less than 500 person-mrem. Exposures to the general public from TSTA tritium releases are extremely small (less than 10{sup {minus}2} mrem). Total tritium buried as waste is less than 36,000 Curies. In this paper, data on component reliability, failure types and rates, and waste quantities are presented. Operational experience under normal, abnormal, and emergency conditions is presented. The DOE requirements for the operation of a tritium facility like TSTA include personnel training, emergency preparedness, radiation protection, safety analysis, and preoperational appraisals. 4 refs., 3 figs., 3 tabs.

  1. The AAA-ATPase NVL2 is a telomerase component essential for holoenzyme assembly

    SciTech Connect

    Her, Joonyoung; Chung, In Kwon

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer Identification of the AAA-ATPase NVL2 as a novel hTERT-interacting protein. Black-Right-Pointing-Pointer NVL2 associates with catalytically active telomerase via an interaction with hTERT. Black-Right-Pointing-Pointer NVL2 is a telomerase component essential for holoenzyme assembly. Black-Right-Pointing-Pointer ATP-binding activity of NVL2 is required for hTERT binding and telomerase assembly. -- Abstract: Continued cell proliferation requires telomerase to maintain functional telomeres that are essential for chromosome integrity. Although the core enzyme includes a telomerase reverse transcriptase (TERT) and a telomerase RNA component (TERC), a number of auxiliary proteins have been identified to regulate telomerase assembly, localization, and enzymatic activity. Here we describe the characterization of the AAA-ATPase NVL2 as a novel hTERT-interacting protein. NVL2 interacts and co-localizes with hTERT in the nucleolus. NLV2 is also found in association with catalytically competent telomerase in cell lysates through an interaction with hTERT. Depletion of endogenous NVL2 by small interfering RNA led to a decrease in hTERT without affecting the steady-state levels of hTERT mRNA, thereby reducing telomerase activity, suggesting that NVL2 is an essential component of the telomerase holoenzyme. We also found that ATP-binding activity of NVL2 is required for hTERT binding as well as telomerase assembly. Our findings suggest that NVL2, in addition to its role in ribosome biosynthesis, is essential for telomerase biogenesis and provides an alternative approach for inhibiting telomerase activity in cancer.

  2. A component modes projection and assembly model reduction methodology for articulated, multi-flexible body structures

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.; Tsuha, Walter S.

    1992-01-01

    A two-stage model reduction methodology, combining the classical Component Mode Synthesis (CMS) method and the newly developed Enhanced Projection and Assembly (EP&A) method is proposed in this research. The first stage of this methodology, called COmponent Mode Projection and Assembly model REduction (COMPARE) method, involves the generations of CMS mode sets, such as the MacNeal-Rubin mode sets. These mode sets are then used to reduce the order of each component model in the Rayleigh-Ritz sense. The resultant component models are then combined to generate reduced-order system models at various system configurations. A composite mode set which retains important system modes at all system configurations is then selected from these reduced-order system models. In the second stage, the EP&A model reduction method is employed to reduce further the order of the system model generated in the first stage. The effectiveness of the COMPARE methodology has been successfully demonstrated on a high-order, finite-element model of the cruise-configured Galileo spacecraft.

  3. A component modes projection and assembly model reduction methodology for articulated, multi-flexible body structures

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.; Tsuha, Walter S.

    1993-01-01

    A two-stage model reduction methodology, combining the classical Component Mode Synthesis (CMS) method and the newly developed Enhanced Projection and Assembly (EP&A) method, is proposed in this research. The first stage of this methodology, called the COmponent Modes Projection and Assembly model REduction (COMPARE) method, involves the generation of CMS mode sets, such as the MacNeal-Rubin mode sets. These mode sets are then used to reduce the order of each component model in the Rayleigh-Ritz sense. The resultant component models are then combined to generate reduced-order system models at various system configurations. A composite mode set which retains important system modes at all system configurations is then selected from these reduced-order system models. In the second stage, the EP&A model reduction method is employed to reduce further the order of the system model generated in the first stage. The effectiveness of the COMPARE methodology has been successfully demonstrated on a high-order, finite-element model of the cruise-configured Galileo spacecraft.

  4. Self-Assembling Multi-Component Nanofibers for Strong Bioinspired Underwater Adhesives

    PubMed Central

    Zhong, Chao; Gurry, Thomas; Cheng, Allen A; Downey, Jordan; Deng, Zhengtao; Stultz, Collin M.; Lu, Timothy K

    2014-01-01

    Many natural underwater adhesives harness hierarchically assembled amyloid nanostructures to achieve strong and robust interfacial adhesion under dynamic and turbulent environments. Despite recent advances, our understanding of the molecular design, self-assembly, and structure-function relationship of those natural amyloid fibers remains limited. Thus, designing biomimetic amyloid-based adhesives remains challenging. Here, we report strong and multi-functional underwater adhesives obtained from fusing mussel foot proteins (Mfps) of Mytilus galloprovincialis with CsgA proteins, the major subunit of Escherichia coli amyloid curli fibers. These hybrid molecular materials hierarchically self-assemble into higher-order structures, in which, according to molecular dynamics simulations, disordered adhesive Mfp domains are exposed on the exterior of amyloid cores formed by CsgA. Our fibers have an underwater adhesion energy approaching 20.9 mJ/m2, which is 1.5 times greater than the maximum of bio-inspired and bio-derived protein-based underwater adhesives reported thus far. Moreover, they outperform Mfps or curli fibers taken on their own at all pHs and exhibit better tolerance to auto-oxidation than Mfps at pH ≥7.0. This work establishes a platform for engineering multi-component self-assembling materials inspired by nature. PMID:25240674

  5. AMTEC recirculating test cell component testing and operation

    NASA Technical Reports Server (NTRS)

    Underwood, M. L.; Sievers, R. K.; O'Connor, D.; Williams, R. M.; Jeffries-Nakamura, B.; Bankston, C. P.

    1989-01-01

    Alkali metal thermoelectric converter operation in a recirculating test cell (RTC), which requires a small electromagnetic pump (EM) and a high-temperature beta-double-prime alumina-solid-electrolyte (BASE)-to-metal seal, is discussed. The design of a pump and an active metal braze seal and the initial operation of a cell using these components are described. The pump delivered 0.25 cu cm/min against a 28-psia head. A braze seal system was selected after shear strength tests of Ta or Nb brazed to BASE by a variety of fillers including TiCuNi, TiNi, and TiNiCr. The TiCuNi filler was chosen for environment cell testing and showed no failure or observable degradation after short-term tests up to 1055 K. The pump and the Nb/TiCuNi/BASE seal were used in a test that demonstrated all the operational functions of the RTC for the first time. An increase in the radiation reduction factor at constant input power was observed, indicating that the condenser was being wet by sodium resulting in an increased reflectivity.

  6. A kinetic model for impact/sliding wear of pressurized water reactor internal components: Application to rod cluster control assemblies

    SciTech Connect

    Zbinden, M.; Durbec, V.

    1996-12-01

    Certain internal components of Pressurized Water Reactors are damaged by wear when subjected to vibration induced by flow. In order to enable predictive calculation of such wear, one must have a model which takes account reliably of real damages. The modelling of wear represents a final link in a succession of numerical calculations which begins by the determination of hydraulic excitations induced by the flow. One proceeds, then, in the dynamic response calculation of the structure to finish up with an estimation of volumetric wear and of the depth of wear scars. A new concept of industrial wear model adapted to components of nuclear plants is proposed. Its originality is to be supported, on one hand, by experimental results obtained via wear machines of relatively short operational times, and, on the other hand, by the information obtained from the operating feedback over real wear kinetics of the reactors components. The proposed model is illustrated by an example which correspond to a specific real situation. The determination of the coefficients permitting to cover all assembly of configurations and the validation of the model in these configurations have been the object of the most recent work.

  7. Systems engineering studies of on-orbit assembly operation

    NASA Technical Reports Server (NTRS)

    Morgenthaler, George W.

    1991-01-01

    While the practice of construction has a long history, the underlying theory of construction is relatively young. Very little has been documented as to techniques of logistic support, construction planning, construction scheduling, construction testing, and inspection. The lack of 'systems approaches' to construction processes is certainly one of the most serious roadblocks to the construction of space structures. System engineering research efforts at CSC are aimed at developing concepts and tools which contribute to a systems theory of space construction. The research is also aimed at providing means for trade-offs of design parameters for other research areas in CSC. Systems engineering activity at CSC has divided space construction into the areas of orbital assembly, lunar base construction, interplanetary transport vehicle construction, and Mars base construction. A brief summary of recent results is given. Several models for 'launch-on-time' were developed. Launch-on-time is a critical concept to the assembly of such Earth-orbiting structures as the Space Station Freedom, and to planetary orbiters such as the Mars transfer vehicle. CSC has developed a launch vehicle selection model which uses linear programming to find optimal combinations of launch vehicles of various sizes (Atlas, Titan, Shuttles, HLLV's) to support SEI missions. Recently, the Center developed a cost trade-off model for studying on orbit assembly logistics. With this model it was determined that the most effective size of the HLLV would be in the range of 120 to 200 metric tons to LEO, which is consistent with the choices of General Stafford's Synthesis Group Report. A second-generation Dynamic Construction Activities Model ('DYCAM') process model has been under development, based on our past results in interruptability and our initial DYCAM model. This second-generation model is built on the paradigm of knowledge-based expert systems. It is aimed at providing answers to two questions: (1

  8. Directed self-assembly of mesoscopic electronic components into sparse arrays with controlled orientation using diamagnetic levitation

    NASA Astrophysics Data System (ADS)

    Tkachenko, Anton; Lu, James J.-Q.

    2015-07-01

    This paper presents a directed self-assembly (DSA) approach for assembling small electronic components, such as semiconductor dies, into sparse 2D arrays using diamagnetic levitation. The dies attached to a diamagnetic layer can be levitated at a room temperature over a stage made of magnets arranged in a checkerboard pattern. By selecting a proper die design, levitation height, and vibration pattern of the magnetic stage we assemble the dies into a regular 2D array with a specific lateral and vertical orientation of the dies. The assembled dies are transferred to a receiving substrate using capillary force.

  9. A stress assembly that confers cell viability by preserving ERES components during amino-acid starvation

    PubMed Central

    Zacharogianni, Margarita; Aguilera Gomez, Angelica; Veenendaal, Tineke; Smout, Jan; Rabouille, Catherine

    2014-01-01

    Nutritional restriction leads to protein translation attenuation that results in the storage and degradation of free mRNAs in cytoplasmic assemblies. In this study, we show in Drosophila S2 cells that amino-acid starvation also leads to the inhibition of another major anabolic pathway, the protein transport through the secretory pathway, and to the formation of a novel reversible non-membrane bound stress assembly, the Sec body that incorporates components of the ER exit sites. Sec body formation does not depend on membrane traffic in the early secretory pathway, yet requires both Sec23 and Sec24AB. Sec bodies have liquid droplet-like properties, and they act as a protective reservoir for ERES components to rebuild a functional secretory pathway after re-addition of amino-acids acting as a part of a survival mechanism. Taken together, we propose that the formation of these structures is a novel stress response mechanism to provide cell viability during and after nutrient stress. DOI: http://dx.doi.org/10.7554/eLife.04132.001 PMID:25386913

  10. The proper connection between shelterin components is required for telomeric heterochromatin assembly.

    PubMed

    Wang, Jiyong; Cohen, Allison L; Letian, Anudari; Tadeo, Xavier; Moresco, James J; Liu, Jinqiang; Yates, John R; Qiao, Feng; Jia, Songtao

    2016-04-01

    Telomeric regions contain prominent sites of heterochromatin, which is associated with unique histone modification profiles such as the methylation of histone H3 at Lys9 (H3K9me). In fission yeast, the conserved telomeric shelterin complex recruits the histone H3K9 methyltransferase complex CLRC to establish subtelomeric heterochromatin. Although many shelterin mutations affect subtelomeric heterochromatin assembly, the mechanism remains elusive due to the diverse functions of shelterin. Through affinity purification, we found that shelterin directly associates with CLRC through the Ccq1 subunit. Surprisingly, mutations that disrupt interactions between shelterin subunits compromise subtelomeric heterochromatin without affecting CLRC interaction with shelterin component Pot1, located at chromosome ends. We further discovered that telomeric repeats are refractory to heterochromatin spreading and that artificial restoration of shelterin connections or increased heterochromatin spreading rescued heterochromatin defects in these shelterin mutants. Thus, subtelomeric heterochromatin assembly requires both the recruitment of CLRC by shelterin to chromosome ends and the proper connection of shelterin components, which allows CLRC to skip telomeric repeats to internal regions. PMID:26988418

  11. Conserving Cartilage In Microtia Repair: The Modular Component Assembly Approach To Rebuilding A Human Ear

    PubMed Central

    Gandy, Jessica R.; Lemieux, Bryan; Foulad, Allen; Wong, Brian J.F.

    2016-01-01

    Objectives Current methods of microtia repair include carving an auricular framework from the costal synchondrosis. This requires considerable skill and may create a substantial donor site defect. Here, we present a modular component assembly (MCA) approach that minimizes the procedural difficulty and reduces the amount of cartilage to a single rib. Study Design Ex vivo study and survey Methods A single porcine rib was sectioned into multiple slices using a cartilage guillotine, cut into components outlined by 3D-printed templates, and assembled into an auricular scaffold. Electromechanical reshaping (EMR) was used to bend cartilage slices for creation of the helical rim. Chondrocyte viability was confirmed using confocal imaging. Ten surgeons reviewed the scaffold constructed with the MCA approach to evaluate aesthetics, relative stability, and clinical feasibility. Results An auricular framework with projection and curvature was fashioned from one rib. Surgeons found the MCA scaffold to meet minimal aesthetic and anatomic acceptability. When embedded under a covering, the region of the helix and anti-helix of the scaffold scored significantly higher on the assessment survey than that of an embedded alloplast implant (t-value=0.01). Otherwise, no difference was found between the embedded MCA and alloplast implants (t-value >0.05). EMR treated cartilage was found to be viable. Conclusion This study demonstrates that one rib can be used to create an aesthetic and durable framework for microtia repair. Precise assembly and the ability to obtain thin, uniform slices of cartilage were essential. This cartilage-sparing MCA approach may be an alternative to classic techniques. PMID:26720326

  12. The International Space Station: Operations and Assembly - Learning From Experiences - Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Fuller, Sean; Dillon, William F.

    2006-01-01

    As the Space Shuttle continues flight, construction and assembly of the International Space Station (ISS) carries on as the United States and our International Partners resume the building, and continue to carry on the daily operations, of this impressive and historical Earth-orbiting research facility. In his January 14, 2004, speech announcing a new vision for America s space program, President Bush ratified the United States commitment to completing construction of the ISS by 2010. Since the launch and joining of the first two elements in 1998, the ISS and the partnership have experienced and overcome many challenges to assembly and operations, along with accomplishing many impressive achievements and historical firsts. These experiences and achievements over time have shaped our strategy, planning, and expectations. The continual operation and assembly of ISS leads to new knowledge about the design, development and operation of systems and hardware that will be utilized in the development of new deep-space vehicles needed to fulfill the Vision for Exploration and to generate the data and information that will enable our programs to return to the Moon and continue on to Mars. This paper will provide an overview of the complexity of the ISS Program, including a historical review of the major assembly events and operational milestones of the program, along with the upcoming assembly plans and scheduled missions of the space shuttle flights and ISS Assembly sequence.

  13. Approach to In Situ Component Level Electronics Assembly Repair (CLEAR) for Constellation

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Oeftering, Richard C.

    2010-01-01

    Maintenance resupply is a significant issue for long duration space missions. Currently, the International Space Station (ISS) approaches maintenance primarily around replaceable modules called Orbital Replacement Units (ORU). While swapping out ORUs has served the ISS well keeping crew time for maintenance to a minimum, this approach assumes a substantial logistics capacity to provide replacement ORUs and return ORUs to Earth for repair. The ORUs used for ISS require relatively large blocks of replacement hardware even though the actual failed component may be several orders of magnitude smaller. The Component Level Electronics Assembly Repair (CLEAR) task was created to explore electronics repair down to the component level for future space missions. From 2006 to 2009, CLEAR was an activity under the Supportability project of the Exploration Technology Development Program. This paper describes the activities of CLEAR including making a case for component-level electronics repair, examination of current terrestrial repair hardware, and potential repair needs. Based on those needs, the CLEAR team proposes an architecture for an in-situ repair capability aboard a spacecraft or habitat. Additionally, this paper discusses recent progress toward developing in-space repair capabilities--including two spaceflight experiments-- and presents technology concepts which could help enable or benefit the same.

  14. Component-Level Electronic-Assembly Repair (CLEAR) Spacecraft Circuit Diagnostics by Analog and Complex Signature Analysis

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Wade, Raymond P.; Izadnegahdar, Alain

    2011-01-01

    The Component-Level Electronic-Assembly Repair (CLEAR) project at the NASA Glenn Research Center is aimed at developing technologies that will enable space-flight crews to perform in situ component-level repair of electronics on Moon and Mars outposts, where there is no existing infrastructure for logistics spares. These technologies must provide effective repair capabilities yet meet the payload and operational constraints of space facilities. Effective repair depends on a diagnostic capability that is versatile but easy to use by crew members that have limited training in electronics. CLEAR studied two techniques that involve extensive precharacterization of "known good" circuits to produce graphical signatures that provide an easy-to-use comparison method to quickly identify faulty components. Analog Signature Analysis (ASA) allows relatively rapid diagnostics of complex electronics by technicians with limited experience. Because of frequency limits and the growing dependence on broadband technologies, ASA must be augmented with other capabilities. To meet this challenge while preserving ease of use, CLEAR proposed an alternative called Complex Signature Analysis (CSA). Tests of ASA and CSA were used to compare capabilities and to determine if the techniques provided an overlapping or complementary capability. The results showed that the methods are complementary.

  15. Operator vision aids for space teleoperation assembly and servicing

    NASA Technical Reports Server (NTRS)

    Brooks, Thurston L.; Ince, Ilhan; Lee, Greg

    1992-01-01

    This paper investigates concepts for visual operator aids required for effective telerobotic control. Operator visual aids, as defined here, mean any operational enhancement that improves man-machine control through the visual system. These concepts were derived as part of a study of vision issues for space teleoperation. Extensive literature on teleoperation, robotics, and human factors was surveyed to definitively specify appropriate requirements. This paper presents these visual aids in three general categories of camera/lighting functions, display enhancements, and operator cues. In the area of camera/lighting functions concepts are discussed for: (1) automatic end effector or task tracking; (2) novel camera designs; (3) computer-generated virtual camera views; (4) computer assisted camera/lighting placement; and (5) voice control. In the technology area of display aids, concepts are presented for: (1) zone displays, such as imminent collision or indexing limits; (2) predictive displays for temporal and spatial location; (3) stimulus-response reconciliation displays; (4) graphical display of depth cues such as 2-D symbolic depth, virtual views, and perspective depth; and (5) view enhancements through image processing and symbolic representations. Finally, operator visual cues (e.g., targets) that help identify size, distance, shape, orientation and location are discussed.

  16. Multi-component self-assembled anti-tumor nano-vaccines based on MUC1 glycopeptides.

    PubMed

    Sun, Z Y; Chen, P G; Liu, Y F; Zhang, B D; Wu, J J; Chen, Y X; Zhao, Y F; Li, Y M

    2016-06-18

    Novel multi-component self-assembled nano-vaccines containing both Pam3CSK4 and CpG were developed for the first time. These multi-component vaccines could effectively activate the macrophages in vitro and elicit strong antibody immune responses and anti-tumor immune responses in vivo. PMID:27216415

  17. Positional isomers of cyanostilbene: two-component molecular assembly and multiple-stimuli responsive luminescence

    NASA Astrophysics Data System (ADS)

    Fan, Guoling; Yan, Dongpeng

    2014-05-01

    An understanding of the aggregates and properties of positional isomers can not only uncover how a slight difference in molecular structure alter crystal packing and bulk solid-state properties, but also plays an important role in developing new types of molecule-based functional materials. Herein, we report a study of the molecular packing and static/dynamic luminescence properties of three cyanostilbene (CS)-based isomers (CS1, CS2, CS3) within their single- and two-component molecular solids. Changing the positions of the cyano substitutents in the CS isomers has a marked influence on their packing modes and luminescent properties. Moreover, two-component CS-based materials have been constructed, which exhibit tunable conformations and packing fashions, as well as fluorescence properties, which differ from the pristine CS solids. The CS-based two-component molecular materials show solvent-responsive luminescence due to the dynamic disassembly of the samples. Moreover, it was found that the system based on CS2 and octafluoronaphthalene shows reversible photochromic fluorescence upon alternating light illumination and grinding. Such co-assembly procedures provide a facile way to fabricate patterned luminescent film materials. Therefore, this work not only affords new insight into the relationship between isomers and luminescence from molecular and supramolecular perspectives, but provides an effective strategy to develop multiple-stimuli-responsive luminescent materials.

  18. International Space Station Common Cabin Air Assembly Water Separator On-Orbit Operation, Failure, and Redesign

    NASA Technical Reports Server (NTRS)

    Balistreri, Steven F., Jr.; Shaw, Laura A.; Laliberte, Yvon

    2010-01-01

    The ability to control the temperature and humidity of an environment or habitat is critical for human survival. These factors are important to maintaining human health and comfort, as well as maintaining mechanical and electrical equipment in good working order to support the human and to accomplish mission objectives. The temperature and humidity of the International Space Station (ISS) United States On-orbit Segment (USOS) cabin air is controlled by the Common Cabin Air Assembly (CCAA). The CCAA consists of a fan, a condensing heat exchanger (CHX), an air/water separator, temperature and liquid sensors, and electrical controlling hardware and software. The Water Separator (WS) pulls in air and water from the CHX, and centrifugally separates the mixture, sending the water to the condensate bus and the air back into the CHX outlet airstream. Two distinct early failures of the CCAA Water Separator in the Quest Airlock forced operational changes and brought about the re-design of the Water Separator to improve the useful life via modification kits. The on-orbit operational environment of the Airlock presented challenges that were not foreseen with the original design of the Water Separator. Operational changes were instituted to prolong the life of the third installed WS, while waiting for newly designed Water Separators to be delivered on-orbit. The modification kit design involved several different components of the Water Separator, including the innovative use of a fabrication technique to build the impellers used in Water Separators out of titanium instead of aluminum. The technique allowed for the cost effective production of the low quantity build. This paper will describe the failures of the Water Separators in the Quest Airlock, the operational constraints that were implemented to prolong the life of the installed Water Separators throughout the USOS, and the innovative re-design of the CCAA Water Separator.

  19. Principal component analysis of ensemble recordings reveals cell assemblies at high temporal resolution

    PubMed Central

    Benchenane, Karim; Khamassi, Mehdi; Wiener, Sidney I.; Battaglia, Francesco P.

    2009-01-01

    Simultaneous recordings of many single neurons reveals unique insights into network processing spanning the timescale from single spikes to global oscillations. Neurons dynamically self-organize in subgroups of coactivated elements referred to as cell assemblies. Furthermore, these cell assemblies are reactivated, or replayed, preferentially during subsequent rest or sleep episodes, a proposed mechanism for memory trace consolidation. Here we employ Principal Component Analysis to isolate such patterns of neural activity. In addition, a measure is developed to quantify the similarity of instantaneous activity with a template pattern, and we derive theoretical distributions for the null hypothesis of no correlation between spike trains, allowing one to evaluate the statistical significance of instantaneous coactivations. Hence, when applied in an epoch different from the one where the patterns were identified, (e.g. subsequent sleep) this measure allows to identify times and intensities of reactivation. The distribution of this measure provides information on the dynamics of reactivation events: in sleep these occur as transients rather than as a continuous process. PMID:19529888

  20. Three Component Asymmetric Catalytic Ugi Reaction – Concinnity from Diversity via Substrate Mediated Catalyst Assembly

    PubMed Central

    Zhao, Wenjun; Huang, Li; Guan, Yong; Wulff, William D.

    2014-01-01

    The first asymmetric catalyst for the 3-component Ugi reaction was identified as a result of a screen of a large set of different BOROX catalysts. The BOROX catalysts are assembled in-situ from a chiral biaryl ligand, an amine, water, BH3•SMe2 and an alcohol or phenol. The catalyst screen included 13 different ligands, 12 amines and 47 alcohols or phenols. The optimal catalyst (LAP 8-5-47) provides the α-amino amides with excellent asymmetric induction from an aldehyde, 2° amine and an isonitrile. The catalyst is proposed to consist of an ion pair combination of a chiral boroxinate anion and an iminium cation. PMID:24554529

  1. Analysis of Performance of Jet Engine from Characteristics of Components II : Interaction of Components as Determined from Engine Operation

    NASA Technical Reports Server (NTRS)

    Goldstein, Arthur W; Alpert, Sumner; Beede, William; Kovach, Karl

    1949-01-01

    In order to understand the operation and the interaction of jet-engine components during engine operation and to determine how component characteristics may be used to compute engine performance, a method to analyze and to estimate performance of such engines was devised and applied to the study of the characteristics of a research turbojet engine built for this investigation. An attempt was made to correlate turbine performance obtained from engine experiments with that obtained by the simpler procedure of separately calibrating the turbine with cold air as a driving fluid in order to investigate the applicability of component calibration. The system of analysis was also applied to prediction of the engine and component performance with assumed modifications of the burner and bearing characteristics, to prediction of component and engine operation during engine acceleration, and to estimates of the performance of the engine and the components when the exhaust gas was used to drive a power turbine.

  2. Joint assembly

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2010-01-01

    A joint assembly is provided which includes a drive assembly and a swivel mechanism. The drive assembly features a motor operatively associated with a plurality of drive shafts for driving auxiliary elements, and a plurality of swivel shafts for pivoting the drive assembly. The swivel mechanism engages the swivel shafts and has a fixable element that may be attached to a foundation. The swivel mechanism is adapted to cooperate with the swivel shafts to pivot the drive assembly with at least two degrees of freedom relative to the foundation. The joint assembly allows for all components to remain encased in a tight, compact, and sealed package, making it ideal for space, exploratory, and commercial applications.

  3. Using Sculptor and Situs for simultaneous assembly of atomic components into low-resolution shapes.

    PubMed

    Birmanns, Stefan; Rusu, Mirabela; Wriggers, Willy

    2011-03-01

    We describe an integrated software system called Sculptor that combines visualization capabilities with molecular modeling algorithms for the analysis of multi-scale data sets. Sculptor features extensive special purpose visualization techniques that are based on modern GPU programming and are capable of representing complex molecular assemblies in real-time. The integration of graphics and modeling offers several advantages. The user interface not only eases the usually steep learning curve of pure algorithmic techniques, but it also permits instant analysis and post-processing of results, as well as the integration of results from external software. Here, we implemented an interactive peak-selection strategy that enables the user to explore a preliminary score landscape generated by the colors tool of Situs. The interactive placement of components, one at a time, is advantageous for low-resolution or ambiguously shaped maps, which are sometimes difficult to interpret by the fully automatic peak selection of colors. For the subsequent refinement of the preliminary models resulting from both interactive and automatic peak selection, we have implemented a novel simultaneous multi-body docking in Sculptor and Situs that softly enforces shape complementarities between components using the normalization of the cross-correlation coefficient. The proposed techniques are freely available in Situs version 2.6 and Sculptor version 2.0. PMID:21078392

  4. Neutral Buoyancy Simulator: MSFC-Langley joint test of large space structures component assembly:

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. With the help of the NBS, building a space station became more of a reality. In a joint venture between NASA/Langley Research Center in Hampton, VA and MSFC, the Assembly Concept for Construction of Erectable Space Structures (ACCESS) was developed and demonstrated at MSFC's NBS. The primary objective of this experiment was to test the ACCESS structural assembly concept for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction. Pictured is a demonstration of ACCESS.

  5. The C-H Peripheral Stalk Base: A Novel Component in V1-ATPase Assembly

    PubMed Central

    Hildenbrand, Zacariah L.; Molugu, Sudheer K.; Stock, Daniela; Bernal, Ricardo A.

    2010-01-01

    Vacuolar ATPases (V-ATPases) are molecular machines responsible for creating electrochemical gradients and preserving pH-dependent cellular compartments by way of proton translocation across the membrane. V-ATPases employ a dynamic rotary mechanism that is driven by ATP hydrolysis and the central rotor stalk. Regulation of this rotational catalysis is the result of a reversible V1Vo-domain dissociation that is required to preserve ATP during instances of cellular starvation. Recently the method by which the free V1-ATPase abrogates the hydrolytic breakdown of ATP upon dissociating from the membrane has become increasingly clear. In this instance the central stalk subunit F adopts an extended conformation to engage in a bridging interaction tethering the rotor and stator components together. However, the architecture by which this mechanism is stabilized has remained ambiguous despite previous work. In an effort to elucidate the method by which the rotational catalysis is maintained, the architecture of the peripheral stalks and their respective binding interactions was investigated using cryo-electron microscopy. In addition to confirming the bridging interaction exuded by subunit F for the first time in a eukaryotic V-ATPase, subunits C and H are seen interacting with one another in a tight interaction that provides a base for the three EG peripheral stalks. The formation of a CE3G3H sub-assembly appears to be unique to the dissociated V-ATPase and highlights the stator architecture in addition to revealing a possible intermediate in the assembly mechanism of the free V1-ATPase. PMID:20838636

  6. STS-49 - A demonstration of EMU operational capabilities for Space Station Freedom assembly

    NASA Technical Reports Server (NTRS)

    Bleisath, Scott A.; Johnson, Kieth G.

    1992-01-01

    One of the primary objectives for Space Shuttle mission STS-49 is to perform three EVAs on consecutive days in a manner similar to those planned for Space Station Freedom (SSF) assembly missions. The preparation and completion of this mission will serve as a pathfinder for future EVA intensive SSF assembly flights. Several operational issues pertaining to the EMU have been addressed in preparation for this mission. Provisioning and orbiter stowage of the EMU and associated hardware have been optimized for four EVA crewmembers. EMU preparatory and maintenance activities have been streamlined to help minimize crew overhead and have been carefully integrated into a very demanding mission timeline. The constraints and limitations have been assessed in providing a backup EMU capability for each EVA crewmember. Several EMU concerns have also been addressed in supporting new EVA task requirements, such as large mass handling and performing SSF assembly operations over the crew cabin and nose of the Shuttle orbiter.

  7. Automatic Dryers--Components and Operations; Appliance Repair--Intermediate: 9025.01.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    Designed to familiarize the student with the components and operations of automatic gas and electric dryers, this course outlines the principles of drying and how they relate to the automatic dryer. Instruction centers upon the functions and operations of dryer components and the recognition and identification of various component malfunctions,…

  8. Washing Machines--Components & Operations; Appliance Repair 2: #9025.03.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    Designed to familiarize the student with the components and operations of automatic washing machines, this course outline offers instruction on the principles of washing and their relation to the automatic washer, the functions and operations of washer components, identification of various component malfunctions, washer installation, and the…

  9. Force feedback coupling with dynamics for physical simulation of product assembly and operation performance

    NASA Astrophysics Data System (ADS)

    Liu, Zhenyu; Tan, Jianrong; Duan, Guifang; Fu, Yun

    2015-01-01

    Most existing force feedback methods are still difficult to meet the requirements of real-time force calculation in virtual assembly and operation with complex objects. In addition, there is often an assumption that the controlled objects are completely free and the target object is only completely fixed or free, thus, the dynamics of the kinematic chain where the controlled objects are located are neglected during the physical simulation of the product manipulation with force feedback interaction. This paper proposes a physical simulation method of product assembly and operation manipulation based on statistically learned contact force prediction model and the coupling of force feedback and dynamics. In the proposed method, based on hidden Markov model (HMM) and local weighting learning (LWL), contact force prediction model is constructed, which can estimate the contact force in real time during interaction. Based on computational load balance model, the computing resources are dynamically assigned and the dynamics integral step is optimized. In addition, smoothing process is performed to the force feedback on the synchronization points. Consequently, we can solve the coupling and synchronization problems of high-frequency feedback force servo, low-frequency dynamics solver servo and scene rendering servo, and realize highly stable and accurate force feedback in the physical simulation of product assembly and operation manipulation. This research proposes a physical simulation method of product assembly and operation manipulation.

  10. 19 CFR 10.26 - Articles assembled or processed in a beneficiary country in whole of U.S. components or...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... textile components cut to shape in the United States. 10.26 Section 10.26 Customs Duties U.S. CUSTOMS AND... ingredients; articles assembled in a beneficiary country from textile components cut to shape in the United... assembled in a beneficiary country in whole of textile components cut to shape (but not to length, width,...

  11. Microcrystals engineering using assemblies of di-protonated meso-tetraphenylporphine dimers under Zundel cations operation

    NASA Astrophysics Data System (ADS)

    Udal'tsov, Alexander V.

    2015-03-01

    New approach based on the usage of self-organized assemblies of di-protonated meso-tetraphenylporphine (TPP) dimers under Zundel cations action is suggested for the microcrystals engineering. Properties of the assemblies consisting of water and the protonated dimers, as produced in aqueous HCl in the presence of a small concentration of water-soluble organic solvent were investigated by UV-Vis and infrared spectroscopy and atomic force microscopy (AFM) in thin films. The self-organized assemblies consisting of water and di-protonated TPP dimers looked like long rods produced green crystals. These crystals were found by light microscopy. The ordered assembled structures crystallized into thin layers at open air at relative humidity of least 60%. Three acts of the microcrystals engineering actions are needed to obtain the green crystals that are (i) self-assembling of protonated TPP dimers under Zundel cations operation; (ii) generation of pure rod precursor in the di-protonated state and (iii) application of gaseous water to initiate the crystallization in order to Zundel cations action in the surface layer could occur. The size of the green crystals produced by the self-organized assemblies varies within 30-35 μm.

  12. Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components.

    PubMed

    Gerling, Thomas; Wagenbauer, Klaus F; Neuner, Andrea M; Dietz, Hendrik

    2015-03-27

    We demonstrate that discrete three-dimensional (3D) DNA components can specifically self-assemble in solution on the basis of shape-complementarity and without base pairing. Using this principle, we produced homo- and heteromultimeric objects, including micrometer-scale one- and two-stranded filaments and lattices, as well as reconfigurable devices, including an actuator, a switchable gear, an unfoldable nanobook, and a nanorobot. These multidomain assemblies were stabilized via short-ranged nucleobase stacking bonds that compete against electrostatic repulsion between the components' interfaces. Using imaging by electron microscopy, ensemble and single-molecule fluorescence resonance energy transfer spectroscopy, and electrophoretic mobility analysis, we show that the balance between attractive and repulsive interactions, and thus the conformation of the assemblies, may be finely controlled by global parameters such as cation concentration or temperature and by an allosteric mechanism based on strand-displacement reactions. PMID:25814577

  13. 10 CFR Appendix C to Part 110 - Illustrative List of Gaseous Diffusion Enrichment Plant Assemblies and Components Under NRC...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Illustrative List of Gaseous Diffusion Enrichment Plant... Appendix C to Part 110—Illustrative List of Gaseous Diffusion Enrichment Plant Assemblies and Components... for gaseous diffusion enrichment plants are the systems of plant needed to feed UF6 to the...

  14. 10 CFR Appendix C to Part 110 - Illustrative List of Gaseous Diffusion Enrichment Plant Assemblies and Components Under NRC...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Illustrative List of Gaseous Diffusion Enrichment Plant... Appendix C to Part 110—Illustrative List of Gaseous Diffusion Enrichment Plant Assemblies and Components... for gaseous diffusion enrichment plants are the systems of plant needed to feed UF6 to the...

  15. 10 CFR Appendix C to Part 110 - Illustrative List of Gaseous Diffusion Enrichment Plant Assemblies and Components Under NRC...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Illustrative List of Gaseous Diffusion Enrichment Plant Assemblies and Components Under NRC Export Licensing Authority C Appendix C to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. C Appendix C to Part 110—Illustrative List...

  16. Impact of assembly, testing and launch operations on the airborne bacterial diversity within a spacecraft assembly facility clean-room

    NASA Astrophysics Data System (ADS)

    Newcombe, David A.; La Duc, Myron T.; Vaishampayan, Parag; Venkateswaran, Kasthuri

    2008-10-01

    In an effort to minimize the probability of forward contamination of pristine extraterrestrial environments, the National Aeronautics and Space Administration requires that all US robotic spacecraft undergo assembly, testing and launch operations (ATLO) in controlled clean-room environments. This study examines the impact of ATLO activity on the microbial diversity and overall bioburden contained within the air of the clean-room facility in which the Mars Exploration Rovers (MERs) underwent final preparations for launch. Air samples were collected from several facility locations and traditional culture-based and molecular methodologies were used to measure microbial burden and diversity. Surprisingly, the greatest estimates of airborne bioburden, as derived from ATP content and cultivation assays, were observed prior to the commencement of MER ATLO activities. Furthermore, airborne microbial diversity gradually declined from the initiation of ATLO on through to launch. Proteobacterial sequences were common in 16S rDNA clone libraries. Conspicuously absent were members of the Firmicutes phylum, which includes the genus Bacillus. In previous studies, species of this genus were repeatedly isolated from the surfaces of spacecraft and clean-room assembly facilities. Increased cleaning and maintenance initiated immediately prior to the start of ATLO activity could explain the observed declines in both airborne bioburden and microbial diversity.

  17. Alignment of optical system components using an ADM beam through a null assembly

    NASA Technical Reports Server (NTRS)

    Hayden, Joseph E. (Inventor); Olczak, Eugene G. (Inventor)

    2010-01-01

    A system for testing an optical surface includes a rangefinder configured to emit a light beam and a null assembly located between the rangefinder and the optical surface. The null assembly is configured to receive and to reflect the emitted light beam toward the optical surface. The light beam reflected from the null assembly is further reflected back from the optical surface toward the null assembly as a return light beam. The rangefinder is configured to measure a distance to the optical surface using the return light beam.

  18. Space Station Freedom assembly and operation at a 51.6 degree inclination orbit

    NASA Technical Reports Server (NTRS)

    Troutman, Patrick A.; Brewer, Laura M.; Heck, Michael L.; Kumar, Renjith R.

    1993-01-01

    This study examines the implications of assembling and operating Space Station Freedom at a 51.6 degree inclination orbit utilizing an enhanced lift Space Shuttle. Freedom assembly is currently baselined at a 220 nautical mile high, 28.5 degree inclination orbit. Some of the reasons for increasing the orbital inclination are (1) increased ground coverage for Earth observations, (2) greater accessibility from Russian and other international launch sites, and (3) increased number of Assured Crew Return Vehicle (ACRV) landing sites. Previous studies have looked at assembling Freedom at a higher inclination using both medium and heavy lift expendable launch vehicles (such as Shuttle-C and Energia). The study assumes that the shuttle is used exclusively for delivering the station to orbit and that it can gain additional payload capability from design changes such as a lighter external tank that somewhat offsets the performance decrease that occurs when the shuttle is launched to a 51.6 degree inclination orbit.

  19. Effects of co-ordination number on the nucleation behaviour in many-component self-assembly.

    PubMed

    Reinhardt, Aleks; Ho, Chon Pan; Frenkel, Daan

    2016-04-12

    We report canonical and grand-canonical lattice Monte Carlo simulations of the self-assembly of addressable structures comprising hundreds of distinct component types. The nucleation behaviour, in the form of free-energy barriers to nucleation, changes significantly as the co-ordination number of the building blocks is changed from 4 to 8 to 12. Unlike tetrahedral structures - which roughly correspond to DNA bricks that have been studied in experiments - the shapes of the free-energy barriers of higher co-ordination structures depend strongly on the supersaturation, and such structures require a very significant driving force for structure growth before nucleation becomes thermally accessible. Although growth at high supersaturation results in more defects during self-assembly, we show that high co-ordination number structures can still be assembled successfully in computer simulations and that they exhibit self-assembly behaviour analogous to DNA bricks. In particular, the self-assembly remains modular, enabling in principle a wide variety of nanostructures to be assembled, with a greater spatial resolution than is possible in low co-ordination structures. PMID:26762705

  20. Ultra-Precise Assembly of Micro-Electromechanical Systems (MEMS) Components

    SciTech Connect

    Feddema, J.T.; Simon, R.; Polosky, M.; Christenson, T.

    1999-04-01

    This report summarizes a three year effort to develop an automated microassembly workcell for the assembly of LIGA (Lithography Galvonoforming Abforming) parts. Over the last several years, Sandia has developed processes for producing surface machined silicon and LIGA parts for use in weapons surety devices. Some of these parts have outside dimensions as small as 100 micron, and most all have submicron tolerances. Parts this small and precise are extremely difficult to assembly by hand. Therefore, in this project, we investigated the technologies required to develop a robotic workcell to assembly these parts. In particular, we concentrated on micro-grippers, visual servoing, micro-assembly planning, and parallel assembly. Three different micro-grippers were tested: a pneumatic probe, a thermally actuated polysilicon tweezer, and a LIGA fabricated tweezer. Visual servoing was used to accuracy position two parts relative to one another. Fourier optics methods were used to generate synthetic microscope images from CAD drawings. These synthetic images are used off-line to test image processing routines under varying magnifications and depths of field. They also provide reference image features which are used to visually servo the part to the desired position. We also investigated a new aspect of fine motion planning for the micro-domain. As parts approach 1-10 {micro}m or less in outside dimensions, interactive forces such as van der Waals and electrostatic forces become major factors which greatly change the assembly sequence and path plans. We developed the mathematics required to determine the goal regions for pick up, holding, and release of a micro-sphere being handled by a rectangular tool. Finally, we implemented and tested the ability to assemble an array of LIGA parts attached to two 3 inch diameter wafers. In this way, hundreds of parts can be assembled in parallel rather than assembling each part individually.

  1. Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components

    NASA Astrophysics Data System (ADS)

    Gerling, Thomas; Wagenbauer, Klaus F.; Neuner, Andrea M.; Dietz, Hendrik

    2015-03-01

    We demonstrate that discrete three-dimensional (3D) DNA components can specifically self-assemble in solution on the basis of shape-complementarity and without base pairing. Using this principle, we produced homo- and heteromultimeric objects, including micrometer-scale one- and two-stranded filaments and lattices, as well as reconfigurable devices, including an actuator, a switchable gear, an unfoldable nanobook, and a nanorobot. These multidomain assemblies were stabilized via short-ranged nucleobase stacking bonds that compete against electrostatic repulsion between the components’ interfaces. Using imaging by electron microscopy, ensemble and single-molecule fluorescence resonance energy transfer spectroscopy, and electrophoretic mobility analysis, we show that the balance between attractive and repulsive interactions, and thus the conformation of the assemblies, may be finely controlled by global parameters such as cation concentration or temperature and by an allosteric mechanism based on strand-displacement reactions.

  2. Process for recycling components of a PEM fuel cell membrane electrode assembly

    DOEpatents

    Shore, Lawrence

    2012-02-28

    The membrane electrode assembly (MEA) of a PEM fuel cell can be recycled by contacting the MEA with a lower alkyl alcohol solvent which separates the membrane from the anode and cathode layers of the assembly. The resulting solution containing both the polymer membrane and supported noble metal catalysts can be heated under mild conditions to disperse the polymer membrane as particles and the supported noble metal catalysts and polymer membrane particles separated by known filtration means.

  3. Replacing ODCs in a Critical Hand Cleaning Manual Electronics Assembly Operation

    NASA Technical Reports Server (NTRS)

    Bonner, J. K.; Walton, Sharon

    1997-01-01

    The manufacture of high reliability electronics assemblies for spacecraft and ground support equipment still often involves manual assembly processes. In addition, rework and repair of critical assemblies aslo often entails manual assembly processes.

  4. Constraint on the Multi-Component CKP Hierarchy and Recursion Operators

    NASA Astrophysics Data System (ADS)

    Song, Tao; Li, Chuanzhong; He, Jingsong

    2016-06-01

    In this article, we give the definition of the multi-component constrained CKP (McCKP) and two-component constrained CKP (cCKP) hierarchies (under the condition N=2). Then we give recursion operators for the two-component cCKP hierarchy. At last, we give the constrained condition from the two-component cCKP hierarchies to cCKP hierarchy.

  5. Liquid rocket valve assemblies

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design and operating characteristics of valve assemblies used in liquid propellant rocket engines are discussed. The subjects considered are as follows: (1) valve selection parameters, (2) major design aspects, (3) design integration of valve subassemblies, and (4) assembly of components and functional tests. Information is provided on engine, stage, and spacecraft checkout procedures.

  6. Copper-Catalyzed Borylative Cross-Coupling of Allenes and Imines: Selective Three-Component Assembly of Branched Homoallyl Amines.

    PubMed

    Rae, James; Yeung, Kay; McDouall, Joseph J W; Procter, David J

    2016-01-18

    A copper-catalyzed three-component coupling of allenes, bis(pinacolato)diboron, and imines allows regio-, chemo-, and diastereoselective assembly of branched α,β-substituted-γ-boryl homoallylic amines, that is, products bearing versatile amino, alkenyl, and borane functionality. Alternatively, convenient oxidative workup allows access to α-substituted-β-amino ketones. A computational study has been used to probe the stereochemical course of the cross-coupling. PMID:26632675

  7. Copper‐Catalyzed Borylative Cross‐Coupling of Allenes and Imines: Selective Three‐Component Assembly of Branched Homoallyl Amines

    PubMed Central

    Rae, James; Yeung, Kay; McDouall, Joseph J. W.

    2015-01-01

    Abstract A copper‐catalyzed three‐component coupling of allenes, bis(pinacolato)diboron, and imines allows regio‐, chemo‐, and diastereoselective assembly of branched α,β‐substituted‐γ‐boryl homoallylic amines, that is, products bearing versatile amino, alkenyl, and borane functionality. Alternatively, convenient oxidative workup allows access to α‐substituted‐β‐amino ketones. A computational study has been used to probe the stereochemical course of the cross‐coupling. PMID:26632675

  8. γ-TEMPy: Simultaneous Fitting of Components in 3D-EM Maps of Their Assembly Using a Genetic Algorithm

    PubMed Central

    Pandurangan, Arun Prasad; Vasishtan, Daven; Alber, Frank; Topf, Maya

    2015-01-01

    Summary We have developed a genetic algorithm for building macromolecular complexes using only a 3D-electron microscopy density map and the atomic structures of the relevant components. For efficient sampling the method uses map feature points calculated by vector quantization. The fitness function combines a mutual information score that quantifies the goodness of fit with a penalty score that helps to avoid clashes between components. Testing the method on ten assemblies (containing 3–8 protein components) and simulated density maps at 10, 15, and 20 Å resolution resulted in identification of the correct topology in 90%, 70%, and 60% of the cases, respectively. We further tested it on four assemblies with experimental maps at 7.2–23.5 Å resolution, showing the ability of the method to identify the correct topology in all cases. We have also demonstrated the importance of the map feature-point quality on assembly fitting in the lack of additional experimental information. PMID:26655474

  9. Operational Status of the International Space Station Plasma Contactor Hollow Cathode Assemblies July 2001 to May 2013

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Yim, John T.; Patterson, Michael J.; Dalton, Penni J.

    2013-01-01

    The International Space Station has onboard two Aerojet Rocketdyne developed plasma contactor units that perform the function of charge control. The plasma contactor units contain NASA Glenn Research Center developed hollow cathode assemblies. NASA Glenn Research Center monitors the on-orbit operation of the flight hollow cathode assemblies. As of May 31, 2013, HCA.001-F has been ignited and operated 123 times and has accumulated 8072 hours of operation, whereas, HCA.003-F has been ignited and operated 112 times and has accumulated 9664 hours of operation. Monitored hollow cathode ignition times and anode voltage magnitudes indicate that they continue to operate nominally.

  10. Operational Status of the International Space Station Plasma Contactor Hollow Cathode Assemblies from July 2011 to May 2013

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Yim, John T.; Patterson, Michael J.; Dalton, Penni J.

    2014-01-01

    The International Space Station has onboard two Aerojet Rocketdyne developed plasma contactor units that perform the function of charge control. The plasma contactor units contain NASA Glenn Research Center developed hollow cathode assemblies. NASA Glenn Research Center monitors the onorbit operation of the flight hollow cathode assemblies. As of May 31, 2013, HCA.001-F has been ignited and operated 123 times and has accumulated 8072 hours of operation, whereas, HCA.003-F has been ignited and operated 112 times and has accumulated 9664 hours of operation. Monitored hollow cathode ignition times and anode voltage magnitudes indicate that they continue to operate nominally.

  11. Optical test bench for high precision metrology and alignment of zoom sub-assembly components

    NASA Astrophysics Data System (ADS)

    Leprêtre, F.; Levillain, E.; Wattellier, B.; Delage, P.; Brahmi, D.; Gascon, A.

    2013-09-01

    Thales Angénieux (TAGX) designs and manufactures zoom lens assemblies for cinema applications. These objectives are made of mobile lens assemblies. These need to be precisely characterized to detect alignment, polishing or glass index homogeneity errors, which amplitude may range to a few hundreds of nanometers. However these assemblies are highly aberrated with mainly spherical aberration (>30 μm PV). PHASICS and TAGX developed a solution based on the use of a PHASICS SID4HR wave front sensor. This is based on quadri-wave lateral shearing interferometry, a technology known for its high dynamic range. A 100-mm diameter He:Ne source illuminates the lens assembly entrance pupil. The transmitted wave front is then directly measured by the SID4- HR. The measured wave front (WFmeas) is then compared to a simulation from the lens sub-assembly optical design (WFdesign). We obtain a residual wave front error (WFmanufactured), which reveals lens imperfections due to its manufacturing. WFmeas=WFdesign+(WFEradius+WFEglass+WFEpolish)=WF design + WFmanufactured The optical test bench was designed so that this residual wave front is measured with a precision below 100 nm PV. The measurement of fast F-Number lenses (F/2) with aberrations up to 30 μm, with a precision of 100 nm PV was demonstrated. This bench detects mismatches in sub-assemblies before the final integration step in the zoom. Pre-alignment is also performed in order to overpass the mechanical tolerances. This facilitates the completed zoom alignment. In final, productivity gains are expected due to alignment and mounting time savings.

  12. Environmental assessment for device assembly facility operations, Nevada Test Site, Nye County, Nevada. Final report

    SciTech Connect

    1995-05-01

    The U.S. Department of Energy, Nevada Operations Office (DOE/NV), has prepared an environmental assessment (EA), (DOE/EA-0971), to evaluate the impacts of consolidating all nuclear explosive operations at the newly constructed Device Assembly Facility (DAF) in Area 6 of the Nevada Test Site. These operations generally include assembly, disassembly or modification, staging, transportation, testing, maintenance, repair, retrofit, and surveillance. Such operations have previously been conducted at the Nevada Test Site in older facilities located in Area 27. The DAF will provide enhanced capabilities in a state-of-the-art facility for the safe, secure, and efficient handling of high explosives in combination with special nuclear materials (plutonium and highly enriched uranium). Based on the information and analyses in the EA, DOE has determined that the proposed action would not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (42 U.S.C. 4321 et seq.). Therefore, an environmental impact statement is not required, and DOE is issuing this finding of no significant impact.

  13. PRICE: Software for the Targeted Assembly of Components of (Meta) Genomic Sequence Data

    PubMed Central

    Ruby, J. Graham; Bellare, Priya; DeRisi, Joseph L.

    2013-01-01

    Low-cost DNA sequencing technologies have expanded the role for direct nucleic acid sequencing in the analysis of genomes, transcriptomes, and the metagenomes of whole ecosystems. Human and machine comprehension of such large datasets can be simplified via synthesis of sequence fragments into long, contiguous blocks of sequence (contigs), but most of the progress in the field of assembly has focused on genomes in isolation rather than metagenomes. Here, we present software for paired-read iterative contig extension (PRICE), a strategy for focused assembly of particular nucleic acid species using complex metagenomic data as input. We describe the assembly strategy implemented by PRICE and provide examples of its application to the sequence of particular genes, transcripts, and virus genomes from complex multicomponent datasets, including an assembly of the BCBL-1 strain of Kaposi’s sarcoma-associated herpesvirus. PRICE is open-source and available for free download (derisilab.ucsf.edu/software/price/ or sourceforge.net/projects/pricedenovo/). PMID:23550143

  14. Template-based self-assembly for silicon chips and 01005 surface-mount components

    NASA Astrophysics Data System (ADS)

    Hoo, J. H.; Park, Kwang Soon; Baskaran, Rajashree; Böhringer, Karl F.

    2014-04-01

    We present template-based microscale self-assembly as a technique that promotes the electronics industry's initiative towards functional diversification and function densification, demonstrating that our process can improve existing assembly and packaging techniques, and also enable possibilities restricted by current industry methodologies. We first present foundational work that performs part (370 × 370 × 150 µm3) delivery to receptor sites (20 × 10 array) with a stochastic batch delivery process that completes within tens of seconds. The delivery mechanism is statistically characterized and a chemical kinetics inspired model is developed. Based on this understanding, repeatable and programmable 100% yield assembly is achieved in open-loop and feedback-based configurations. The established methodology is adapted to deliver and assemble standard 01 005 format (0.016″ × 0.008″, 0.4 mm × 0.2 mm) monolithic ceramic capacitors and thin-film resistors onto silicon substrates. This process is CMOS compatible and is competitive with capacitors and resistors fabricated through standard foundry processes.

  15. Pb-free surface-finishing on electronic components' terminals for Pb-free soldering assembly

    SciTech Connect

    Tanaka, Hitoshi; Tanimoto, Morimasa; Matsuda, Akira; Uno, Takeo; Kurihara, Masaaki; Shiga, Shoji

    1999-11-01

    Pb-free solderable surface finishing is essential to implement Pb-free solder assembly in order to meet with the growing demand of environmental consciousness to eliminate Pb from electronic products. Two types of widely applicable Pb-free surface finishing technologies are developed. One is the multilayer-system including Pd with Ni undercoat. Heat-resistance of Pd enables whole-surface-plating on to leadframe before IC-assembling process. The other is the double-layer-system with low-melting-point-materials, for example, thicker Sn underlayer and thinner Sn-Bi alloy overlayer, dilutes Sn-Bi alloy's defects of harmful reactivity along with substrate metal and mechanical brittleness with keeping its advantages of solder-wettability and no whisker.

  16. DNA self-assembly-driven positioning of molecular components on nanopatterned surfaces.

    PubMed

    Szymonik, M; Davies, A G; Wälti, C

    2016-09-30

    We present a method for the specific, spatially targeted attachment of DNA molecules to lithographically patterned gold surfaces-demonstrated by bridging DNA strands across nanogap electrode structures. An alkanethiol self-assembled monolayer was employed as a molecular resist, which could be selectively removed via electrochemical desorption, allowing the binding of thiolated DNA anchoring oligonucleotides to each electrode. After introducing a bridging DNA molecule with single-stranded ends complementary to the electrode-tethered anchoring oligonucleotides, the positioning of the DNA molecule across the electrode gap, driven by self-assembly, occurred autonomously. This demonstrates control of molecule positioning with resolution limited only by the underlying patterned structure, does not require any alignment, is carried out entirely under biologically compatible conditions, and is scalable. PMID:27559837

  17. Lessons learned from the microbial analysis of the Herschel spacecraft during assembly, integration, and test operations.

    PubMed

    Moissl-Eichinger, Christine; Pukall, Rüdiger; Probst, Alexander J; Stieglmeier, Michaela; Schwendner, Petra; Mora, Maximilian; Barczyk, Simon; Bohmeier, Maria; Rettberg, Petra

    2013-12-01

    Understanding microbial diversity in spacecraft assembly clean rooms is of major interest with respect to planetary protection considerations. A coordinated screening of different clean rooms in Europe and South America by three German institutes [Deutsches Zentrum für Luft- und Raumfahrt (DLR), Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), and the Institute of Microbiology and Archaea Center, University of Regensburg] took place during the assembly, test, and launch operations of the Herschel spacecraft in 2006-2009. Through this campaign, we retrieved critical information regarding the microbiome within these clean rooms and on the Herschel spacecraft, which served as a model for upcoming ESA mission preparations. This "lessons learned" document summarizes and discusses the data we obtained during this sampling campaign. Additionally, we have taken the opportunity to create a database that includes all 16S rRNA gene sequences ever retrieved from molecular and cultivable diversity studies of spacecraft assembly clean rooms to compare the microbiomes of US, European, and South American facilities. PMID:24313230

  18. Thermally Induced Charge Reversal of Layer-by-Layer Assembled Single-Component Polymer Films.

    PubMed

    Richardson, Joseph J; Tardy, Blaise L; Ejima, Hirotaka; Guo, Junling; Cui, Jiwei; Liang, Kang; Choi, Gwan H; Yoo, Pil J; De Geest, Bruno G; Caruso, Frank

    2016-03-23

    Temperature can be harnessed to engineer unique properties for materials useful in various contexts and has been shown to affect the layer-by-layer (LbL) assembly of polymer thin films and cause physical changes in preassembled polymer thin films. Herein we demonstrate that exposure to relatively low temperatures (≤ 100 °C) can induce physicochemical changes in cationic polymer thin films. The surface charge of polymer films containing primary and secondary amines reverses after heating (from positive to negative), and different characterization techniques are used to show that the change in surface charge is related to oxidation of the polymer that specifically occurs in the thin film state. This charge reversal allows for single-polymer LbL assembly to be performed with poly(allylamine) hydrochloride (PAH) through alternating heat/deposition steps. Furthermore, the negative charge induced by heating reduces the fouling and cell-association of PAH-coated planar and particulate substrates, respectively. This study highlights a unique property of thin films which is relevant to LbL assembly and biofouling and is of interest for the future development of thin polymer films for biomedical systems. PMID:26953514

  19. Self-assembly of the oxy-tyrosinase core and the fundamental components of phenolic hydroxylation.

    PubMed

    Citek, Cooper; Lyons, Christopher T; Wasinger, Erik C; Stack, T Daniel P

    2012-04-01

    The enzyme tyrosinase contains two Cu(I) centres, trigonally coordinated by imidazole nitrogens of six conserved histidine residues. The enzyme activates O(2) to form a µ-η(2):η(2)-peroxo-dicopper(II) core, which hydroxylates tyrosine to a catechol in the first committed step of melanin biosynthesis. Here, we report a family of synthetic peroxo complexes, with spectroscopic and chemical features consistent with those of oxygenated tyrosinase, formed through the self-assembly of monodentate imidazole ligands, Cu(I) and O(2) at -125 °C. An extensively studied complex reproduces the enzymatic electrophilic oxidation of exogenous phenolic substrates to catechols in good stoichiometric yields. The self-assembly and subsequent reactivity support the intrinsic stability of the Cu(2)O(2) core with imidazole ligation, in the absence of a polypeptide framework, and the innate capacity to effect hydroxylation of phenolic substrates. These observations suggest that a foundational role of the protein matrix is to facilitate expression of properties native to the core by bearing the entropic costs of assembly and precluding undesired oxidative degradation pathways. PMID:22437718

  20. Self-assembly of the oxy-tyrosinase core and the fundamental components of phenolic hydroxylation

    NASA Astrophysics Data System (ADS)

    Citek, Cooper; Lyons, Christopher T.; Wasinger, Erik C.; Stack, T. Daniel P.

    2012-04-01

    The enzyme tyrosinase contains two CuI centres, trigonally coordinated by imidazole nitrogens of six conserved histidine residues. The enzyme activates O2 to form a µ-η2:η2-peroxo-dicopper(II) core, which hydroxylates tyrosine to a catechol in the first committed step of melanin biosynthesis. Here, we report a family of synthetic peroxo complexes, with spectroscopic and chemical features consistent with those of oxygenated tyrosinase, formed through the self-assembly of monodentate imidazole ligands, CuI and O2 at -125 °C. An extensively studied complex reproduces the enzymatic electrophilic oxidation of exogenous phenolic substrates to catechols in good stoichiometric yields. The self-assembly and subsequent reactivity support the intrinsic stability of the Cu2O2 core with imidazole ligation, in the absence of a polypeptide framework, and the innate capacity to effect hydroxylation of phenolic substrates. These observations suggest that a foundational role of the protein matrix is to facilitate expression of properties native to the core by bearing the entropic costs of assembly and precluding undesired oxidative degradation pathways.

  1. Predicting tool operator capacity to react against torque within acceptable handle deflection limits in automotive assembly.

    PubMed

    Radwin, Robert G; Chourasia, Amrish; Fronczak, Frank J; Subedi, Yashpal; Howery, Robert; Yen, Thomas Y; Sesto, Mary E; Irwin, Curtis B

    2016-05-01

    The proportion of tool operators capable of maintaining published psychophysically derived threaded fastener tool handle deflection limits were predicted using a biodynamic tool operator model, interacting with the tool, task and workstation. Tool parameters, including geometry, speed and torque were obtained from the specifications for 35 tools used in an auto assembly plant. Tool mass moments of inertia were measured for these tools using a novel device that engages the tool in a rotating system of known inertia. Task parameters, including fastener target torque and joint properties (soft, medium or hard), were ascertained from the vehicle design specifications. Workstation parameters, including vertical and horizontal distances from the operator were measured using a laser rangefinder for 69 tool installations in the plant. These parameters were entered into the model and tool handle deflection was predicted for each job. While handle deflection for most jobs did not exceed the capacity of 75% females and 99% males, six jobs exceeded the deflection criterion. Those tool installations were examined and modifications in tool speed and operator position improved those jobs within the deflection limits, as predicted by the model. We conclude that biodynamic tool operator models may be useful for identifying stressful tool installations and interventions that bring them within the capacity of most operators. PMID:26851480

  2. Hydraulically actuated fuel injector including a pilot operated spool valve assembly and hydraulic system using same

    DOEpatents

    Shafer, Scott F.

    2002-01-01

    The present invention relates to hydraulic systems including hydraulically actuated fuel injectors that have a pilot operated spool valve assembly. One class of hydraulically actuated fuel injectors includes a solenoid driven pilot valve that controls the initiation of the injection event. However, during cold start conditions, hydraulic fluid, typically engine lubricating oil, is particularly viscous and is often difficult to displace through the relatively small drain path that is defined past the pilot valve member. Because the spool valve typically responds slower than expected during cold start due to the difficulty in displacing the relatively viscous oil, accurate start of injection timing can be difficult to achieve. There also exists a greater difficulty in reaching the higher end of the cold operating speed range. Therefore, the present invention utilizes a fluid evacuation valve to aid in displacement of the relatively viscous oil during cold start conditions.

  3. Some legal, jurisdictional, and operational implications of a congressional technology assessment component

    NASA Technical Reports Server (NTRS)

    Mayo, L. H.

    1975-01-01

    An analysis is presented for the Congress of the relationships between an institutionalized assessment function and legislative information gathering and decisionmaking needs. The study was directed to the following topics: (1) the positing of a hypothetical technology assessment component for legislative support; (2) the posing of a number of questions relating to the operational context of this assessment component including the organization/operational framework, general operational problems, access to relevant information, and the utilization of assessment data and analyses; and (3) some selected comments relevant to the questions posed.

  4. Composite components under impact load and effects of defects on the loading capacity. [Alpha Jet tail assembly

    NASA Technical Reports Server (NTRS)

    Aoki, R.; Wurzel, D.

    1979-01-01

    Investigations were carried out on a horizontal tail assembly made of carbon fiber reinforced plastic for the Alpha Jet. The possibility of obtaining a leading edge nose design lighter but not more expensive than a metal version was studied. An important consideration was sufficient resistance of the leading edge against impact of stones and hailstones combined with high degree of stiffness. The improvement of energy reception characteristics of the materials through suitable laminate design was considered. Since certain defects occur in structural components, the effects of such defects on the characteristics of the parts were also studied.

  5. Evaluation of temperatures attained by electronic components during various manual soldering operations

    NASA Astrophysics Data System (ADS)

    Dunn, B. D.; Hilbrands, G.; Nielsen, P. J.

    1983-03-01

    After component-failure analyses showed that defective spacecraft devices were overheated during soldering, it was verified that quality-assurance personnel omitted to control pretinning-bath and soldering iron temperatures, so data were acquired under controlled processing conditions. Component temperature rises were recorded during degolding, pretinning, soldering and the reworking of soldered joints. Results show that existing ESA specifications for manual soldering and repair ensure that the maximum temperature ratings ascribed to standard spacecraft components are not exceeded. Application of heat sinks to certain delicate components during degolding is essential, and it can be advantageous to apply them during pretinning and other soldering operations.

  6. Assembly of the cnidarian camera-type eye from vertebrate-like components

    PubMed Central

    Kozmik, Zbynek; Ruzickova, Jana; Jonasova, Kristyna; Matsumoto, Yoshifumi; Vopalensky, Pavel; Kozmikova, Iryna; Strnad, Hynek; Kawamura, Shoji; Piatigorsky, Joram; Paces, Vaclav; Vlcek, Cestmir

    2008-01-01

    Animal eyes are morphologically diverse. Their assembly, however, always relies on the same basic principle, i.e., photoreceptors located in the vicinity of dark shielding pigment. Cnidaria as the likely sister group to the Bilateria are the earliest branching phylum with a well developed visual system. Here, we show that camera-type eyes of the cubozoan jellyfish, Tripedalia cystophora, use genetic building blocks typical of vertebrate eyes, namely, a ciliary phototransduction cascade and melanogenic pathway. Our findings indicative of parallelism provide an insight into eye evolution. Combined, the available data favor the possibility that vertebrate and cubozoan eyes arose by independent recruitment of orthologous genes during evolution. PMID:18577593

  7. Photoredox-Catalyzed Three-Component Tandem Process: An Assembly of Complex Trifluoromethylated Phthalans and Isoindolines.

    PubMed

    Jarrige, Lucie; Carboni, Aude; Dagousset, Guillaume; Levitre, Guillaume; Magnier, Emmanuel; Masson, Géraldine

    2016-06-17

    A novel photoredox-mediated tandem three-component process afforded a wide variety of CF3-containing phthalans and isoindolines in respectable yields and with moderate to excellent diastereoselectivity. PMID:27276522

  8. Three-component assembly of structurally diverse 2-aminopyrimidine-5-carbonitriles.

    PubMed

    Val, Cristina; Crespo, Abel; Yaziji, Vicente; Coelho, Alberto; Azuaje, Jhonny; El Maatougui, Abdelaziz; Carbajales, Carlos; Sotelo, Eddy

    2013-07-01

    An expedient route for the synthesis of libraries of diversely decorated 2-aminopyrimidine-5-carbonitriles is reported. This approach is based on a three-component reaction followed by spontaneous aromatization. PMID:23697392

  9. Recurrent isolation of extremotolerant bacteria from the clean room where Phoenix spacecraft components were assembled.

    PubMed

    Ghosh, Sudeshna; Osman, Shariff; Vaishampayan, Parag; Venkateswaran, Kasthuri

    2010-04-01

    The microbial burden of the Phoenix spacecraft assembly environment was assessed in a systematic manner via several cultivation-based techniques and a suite of NASA-certified, cultivation-independent biomolecule-based detection assays. Extremotolerant bacteria that could potentially survive conditions experienced en route to Mars or on the planet's surface were isolated with a series of cultivation-based assays that promoted the growth of a variety of organisms, including spore formers, mesophilic heterotrophs, anaerobes, thermophiles, psychrophiles, alkaliphiles, and bacteria resistant to UVC radiation and hydrogen peroxide exposure. Samples were collected from the clean room where Phoenix was housed at three different time points, before (1P), during (2P), and after (3P) Phoenix's presence at the facility. There was a reduction in microbial burden of most bacterial groups, including spore formers, in samples 2P and 3P. Analysis of 262 isolates from the facility demonstrated that there was also a shift in predominant cultivable bacterial populations accompanied by a reduction in diversity during 2P and 3P. It is suggested that this shift was a result of increased cleaning when Phoenix was present in the assembly facility and that certain species, such as Acinetobacter johnsonii and Brevundimonas diminuta, may be better adapted to environmental conditions found during 2P and 3P. In addition, problematic bacteria resistant to multiple extreme conditions, such as Bacillus pumilus, were able to survive these periods of increased cleaning. PMID:20446872

  10. Recurrent Isolation of Extremotolerant Bacteria from the Clean Room Where Phoenix Spacecraft Components Were Assembled

    NASA Astrophysics Data System (ADS)

    Ghosh, Sudeshna; Osman, Shariff; Vaishampayan, Parag; Venkateswaran, Kasthuri

    2010-04-01

    The microbial burden of the Phoenix spacecraft assembly environment was assessed in a systematic manner via several cultivation-based techniques and a suite of NASA-certified, cultivation-independent biomolecule-based detection assays. Extremotolerant bacteria that could potentially survive conditions experienced en route to Mars or on the planet's surface were isolated with a series of cultivation-based assays that promoted the growth of a variety of organisms, including spore formers, mesophilic heterotrophs, anaerobes, thermophiles, psychrophiles, alkaliphiles, and bacteria resistant to UVC radiation and hydrogen peroxide exposure. Samples were collected from the clean room where Phoenix was housed at three different time points, before (1P), during (2P), and after (3P) Phoenix's presence at the facility. There was a reduction in microbial burden of most bacterial groups, including spore formers, in samples 2P and 3P. Analysis of 262 isolatisolattivable bacterial populations accompanied by a reduction in diversity during 2P and 3P. It is suggested that this shift was a result of increased cleaning when Phoenix was present in the assembly facility and that certain species, such as Acinetobacter johnsonii and Brevundimonas diminuta, may be better adapted to environmental conditions found during 2P and 3P. In addition, problematic bacteria resistant to multiple extreme conditions, such as Bacillus pumilus, were able to survive these periods of increased cleaning.

  11. Anti-cooperative Assembly of the SRP19 and SRP68/72 Components of the Signal Recognition Particle

    PubMed Central

    Maity, Tuhin Subhra; Fried, Howard M.; Weeks, Kevin M.

    2016-01-01

    SYNOPSIS The mammalian signal recognition particle (SRP) represents an important model for the assembly and role of inter-domain interactions in complex ribonucleoproteins (RNPs). We analyze the interdependent interactions between the SRP19, SRP68 and SRP72 proteins and the SRP RNA. SRP72 binds the SRP RNA largely via non-specific electrostatic interactions and enhances the affinity of SRP68 for the RNA. SRP19 and SRP68 both bind directly and specifically to the same two RNA helices, but on opposite faces and at opposite ends. SRP19 binds at the apexes of helices 6 and 8, whereas the SRP68/72 heterodimer binds at the three-way junction involving RNA helices 5, 6 and 8. Even though both SRP19 and SRP68/72 stabilize a similar parallel orientation for RNA helices 6 and 8, these two proteins bind to the RNA with moderate anti-cooperativity. Long-range anti-cooperative binding by SRP19 and SRP68/72 appears to arise from stabilization of distinct conformations in the stiff intervening RNA scaffold. Assembly of large RNPs is generally thought to involve either cooperative or energetically neutral interactions among components. In contrast, our findings emphasize that antagonistic interactions can play significant roles in assembly of multi-subunit RNPs. PMID:18564060

  12. Advances in Understanding Carboxysome Assembly in Prochlorococcus and Synechococcus Implicate CsoS2 as a Critical Component

    PubMed Central

    Cai, Fei; Dou, Zhicheng; Bernstein, Susan L.; Leverenz, Ryan; Williams, Eric B.; Heinhorst, Sabine; Shively, Jessup; Cannon, Gordon C.; Kerfeld, Cheryl A.

    2015-01-01

    The marine Synechococcus and Prochlorococcus are the numerically dominant cyanobacteria in the ocean and important in global carbon fixation. They have evolved a CO2-concentrating-mechanism, of which the central component is the carboxysome, a self-assembling proteinaceous organelle. Two types of carboxysome, α and β, encapsulating form IA and form IB d-ribulose-1,5-bisphosphate carboxylase/oxygenase, respectively, differ in gene organization and associated proteins. In contrast to the β-carboxysome, the assembly process of the α-carboxysome is enigmatic. Moreover, an absolutely conserved α-carboxysome protein, CsoS2, is of unknown function and has proven recalcitrant to crystallization. Here, we present studies on the CsoS2 protein in three model organisms and show that CsoS2 is vital for α-carboxysome biogenesis. The primary structure of CsoS2 appears tripartite, composed of an N-terminal, middle (M)-, and C-terminal region. Repetitive motifs can be identified in the N- and M-regions. Multiple lines of evidence suggest CsoS2 is highly flexible, possibly an intrinsically disordered protein. Based on our results from bioinformatic, biophysical, genetic and biochemical approaches, including peptide array scanning for protein-protein interactions, we propose a model for CsoS2 function and its spatial location in the α-carboxysome. Analogies between the pathway for β-carboxysome biogenesis and our model for α-carboxysome assembly are discussed. PMID:25826651

  13. The relationship between operative and radiographic acetabular component orientation: which factors influence resultant cup orientation?

    PubMed

    Grammatopoulos, G; Pandit, H G; da Assunção, R; McLardy-Smith, P; De Smet, K A; Gill, H S; Murray, D W

    2014-10-01

    There is great variability in acetabular component orientation following hip replacement. The aims of this study were to compare the component orientation at impaction with the orientation measured on post-operative radiographs and identify factors that influence the difference between the two. A total of 67 hip replacements (52 total hip replacements and 15 hip resurfacings) were prospectively studied. Intra-operatively, the orientation of the acetabular component after impaction relative to the operating table was measured using a validated stereo-photogrammetry protocol. Post-operatively, the radiographic orientation was measured; the mean inclination/anteversion was 43° (sd 6°)/ 19° (sd 7°). A simulated radiographic orientation was calculated based on how the orientation would have appeared had an on-table radiograph been taken intra-operatively. The mean difference between radiographic and intra-operative inclination/anteversion was 5° (sd 5°)/ -8° (sd 8°). The mean difference between simulated radiographic and intra-operative inclination/anteversion, which quantifies the effect of the different way acetabular orientation is measured, was 3°/-6° (sd 2°). The mean difference between radiographic and simulated radiographic orientation inclination/anteversion, which is a manifestation of the change in pelvic position between component impaction and radiograph, was 1°/-2° (sd 7°). This study demonstrated that in order to achieve a specific radiographic orientation target, surgeons should implant the acetabular component 5° less inclined and 8° more anteverted than their target. Great variability (2 sd about ± 15°) in the post-operative radiographic cup orientation was seen. The two equally contributing causes for this are variability in the orientation at which the cup is implanted, and the change in pelvic position between impaction and post-operative radiograph. PMID:25274911

  14. Thermal loads on tokamak plasma facing components during normal operation and disruptions

    NASA Astrophysics Data System (ADS)

    McGrath, Robert T.

    Power loadings experienced by tokamak plasma facing components during normal operation and during off-normal events are discussed. A model for power and particle flow in the tokamak boundary layer is presented and model predictions are compared to infrared measurements of component heating. The inclusion of the full three-dimensional geometry of the component and of the magnetic flux surface is very important in the modeling. Experimental measurements show that misalignment of component armor tile surfaces by only a millimeter can lead to significant localized heating. An application to the design of plasma facing components for future machines is presented. Finally, thermal loads expected during tokamak disruptions are discussed. The primary problems are surface melting and vaporization due to localized intense heating during the disruption thermal quench and volumetric heating of the component armor and structure due to localized impact of runaway electrons.

  15. Assembling surface mounted components on ink-jet printed double sided paper circuit board.

    PubMed

    Andersson, Henrik A; Manuilskiy, Anatoliy; Haller, Stefan; Hummelgård, Magnus; Sidén, Johan; Hummelgård, Christine; Olin, Håkan; Nilsson, Hans-Erik

    2014-03-01

    Printed electronics is a rapidly developing field where many components can already be manufactured on flexible substrates by printing or by other high speed manufacturing methods. However, the functionality of even the most inexpensive microcontroller or other integrated circuit is, at the present time and for the foreseeable future, out of reach by means of fully printed components. Therefore, it is of interest to investigate hybrid printed electronics, where regular electrical components are mounted on flexible substrates to achieve high functionality at a low cost. Moreover, the use of paper as a substrate for printed electronics is of growing interest because it is an environmentally friendly and renewable material and is, additionally, the main material used for many packages in which electronics functionalities could be integrated. One of the challenges for such hybrid printed electronics is the mounting of the components and the interconnection between layers on flexible substrates with printed conductive tracks that should provide as low a resistance as possible while still being able to be used in a high speed manufacturing process. In this article, several conductive adhesives are evaluated as well as soldering for mounting surface mounted components on a paper circuit board with ink-jet printed tracks and, in addition, a double sided Arduino compatible circuit board is manufactured and programmed. PMID:24521824

  16. Assembling surface mounted components on ink-jet printed double sided paper circuit board

    NASA Astrophysics Data System (ADS)

    Andersson, Henrik A.; Manuilskiy, Anatoliy; Haller, Stefan; Hummelgård, Magnus; Sidén, Johan; Hummelgård, Christine; Olin, Håkan; Nilsson, Hans-Erik

    2014-03-01

    Printed electronics is a rapidly developing field where many components can already be manufactured on flexible substrates by printing or by other high speed manufacturing methods. However, the functionality of even the most inexpensive microcontroller or other integrated circuit is, at the present time and for the foreseeable future, out of reach by means of fully printed components. Therefore, it is of interest to investigate hybrid printed electronics, where regular electrical components are mounted on flexible substrates to achieve high functionality at a low cost. Moreover, the use of paper as a substrate for printed electronics is of growing interest because it is an environmentally friendly and renewable material and is, additionally, the main material used for many packages in which electronics functionalities could be integrated. One of the challenges for such hybrid printed electronics is the mounting of the components and the interconnection between layers on flexible substrates with printed conductive tracks that should provide as low a resistance as possible while still being able to be used in a high speed manufacturing process. In this article, several conductive adhesives are evaluated as well as soldering for mounting surface mounted components on a paper circuit board with ink-jet printed tracks and, in addition, a double sided Arduino compatible circuit board is manufactured and programmed.

  17. Enhanced Component Performance Study: Motor-Operated Valves 1998–2012

    SciTech Connect

    T. E. Wierman

    2013-10-01

    This report presents an enhanced performance evaluation of motor-operated valves (MOVs) at U.S. commercial nuclear power plants. The data used in this study are based on the operating experience failure reports from fiscal year 1998 through 2012 for the component reliability as reported in the Equipment Performance and Information Exchange (EPIX). The MOV failure modes considered are failure to open/close, failure to operate or control, and spurious operation. The component reliability estimates and the reliability data are trended for the most recent 10-year period while yearly estimates for reliability are provided for the entire active period. No statistically significant increasing trends were identified in the MOV results. Statistically significant decreasing trends were identified for failure to open/close and operation demands.

  18. Enhanced Component Performance Study: Air-Operated Valves 1998–2013

    SciTech Connect

    Schroeder, John Alton

    2014-10-01

    This report presents a performance evaluation of air-operated valves (AOVs) at U.S. commercial nuclear power plants. The data used in this study are based on the operating experience failure reports from fiscal year 1998 through 2013 for the component reliability as reported in the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The AOV failure modes considered are failure-to-open/close, failure to operate or control, and spurious operation. The component reliability estimates and the reliability data are trended for the most recent 10-year period, while yearly estimates for reliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the AOV failure data.

  19. Multi-component superstructures self-assembled from nanocrystal building blocks.

    PubMed

    Tan, Rui; Zhu, Hua; Cao, Can; Chen, Ou

    2016-05-21

    More than three decades of intensive study to make high-quality nanocrystals have created a unique toolbox for building multi-component superstructures, which have been recognized as a new generation of metamaterials important to both fundamental sciences and applied technologies. This minireview summarizes recent advances in this exciting field. We will focus our discussion on the synthetic strategies and superstructures of this multi-component metamaterial, and highlight their novel properties and potential applications. Additionally, some perspectives on possible developments in this field are offered at the end of this review. We hope that this minireview will both inform and stimulate research interests for the design and fabrication of these nanocrystal-based multi-component metamaterials for diverse applications in the future. PMID:27136751

  20. Multi-component superstructures self-assembled from nanocrystal building blocks

    NASA Astrophysics Data System (ADS)

    Tan, Rui; Zhu, Hua; Cao, Can; Chen, Ou

    2016-05-01

    More than three decades of intensive study to make high-quality nanocrystals have created a unique toolbox for building multi-component superstructures, which have been recognized as a new generation of metamaterials important to both fundamental sciences and applied technologies. This minireview summarizes recent advances in this exciting field. We will focus our discussion on the synthetic strategies and superstructures of this multi-component metamaterial, and highlight their novel properties and potential applications. Additionally, some perspectives on possible developments in this field are offered at the end of this review. We hope that this minireview will both inform and stimulate research interests for the design and fabrication of these nanocrystal-based multi-component metamaterials for diverse applications in the future.

  1. Tubulin-specific Chaperones: Components of a Molecular Machine that Assembles the α/β Heterodimer

    PubMed Central

    Tian, Guoling; Cowan, Nicholas J.

    2016-01-01

    The tubulin heterodimer consists of one α- and one β-tubulin polypeptide. Neither protein can partition to the native state or assemble into polymerization competent heterodimers without the concerted action of a series of chaperone proteins including five tubulin-specific chaperones termed TBCA-TBCE. TBCA and TBCB bind to and stabilize newly synthesized quasi-native β- and α-tubulin polypeptides following their generation via multiple rounds of ATP-dependent interaction with the cytosolic chaperonin, CCT. There is free exchange β-tubulin between TBCA and TBCD, and of α-tubulin between TBCB and TBCE, resulting in the formation of TBCD/β and TBCE/α, respectively. The latter two complexes interact, forming a supercomplex (TBCD/α/TBCD/β). Discharge of the native α/β heterodimer occurs via interaction of the supercomplex with TBCC, which results in the triggering of TBC-bound β-tubulin-bound (E-site) GTP hydrolysis. This reaction acts as a switch for disassembly of the supercomplex and the release of GDP-bound heterodimer, which becomes polymerization competent following spontaneous E-site exchange with GTP. The tubulin-specific chaperones thus function together as a tubulin assembly machine, marrying the α- and β-tubulin subunits into a tightly associated heterodimer. The existence of this evolutionarily conserved pathway explains why it has never proved possible to isolate α- or β-tubulin as stable independent entities in the absence of their cognate partners, and implies that each exists and is maintained in the heterodimer in a non-minimal energy state. Here we describe methods for the purification of recombinant TBC’s as biologically active proteins following their expression in a variety of host/vector systems. PMID:23973072

  2. Concept report: Experimental vector magnetograph (EXVM) operational configuration balloon flight assembly

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The observational limitations of earth bound solar studies has prompted a great deal of interest in recent months in being able to gain new scientific perspectives through, what should prove to be, relatively low cost flight of the magnetograph system. The ground work done by TBE for the solar balloon missions (originally planned for SOUP and GRID) as well as the rather advanced state of assembly of the EXVM has allowed the quick formulation of a mission concept for the 30 cm system currently being assembled. The flight system operational configuration will be discussed as it is proposed for short duration flight (on the order of one day) over the continental United States. Balloon hardware design requirements used in formulation of the concept are those set by the National Science Balloon Facility (NSBF), the support agency under NASA contract for flight services. The concept assumes that the flight hardware assembly would come together from three development sources: the scientific investigator package, the integration contractor package, and the NSBF support system. The majority of these three separate packages can be independently developed; however, the computer control interfaces and telemetry links would require extensive preplanning and coordination. A special section of this study deals with definition of a dedicated telemetry link to be provided by the integration contractor for video image data for pointing system performance verification. In this study the approach has been to capitalize to the maximum extent possible on existing hardware and system design. This is the most prudent step that can be taken to reduce eventual program cost for long duration flights. By fielding the existing EXVM as quickly as possible, experience could be gained from several short duration flight tests before it became necessary to commit to major upgrades for long duration flights of this system or of the larger 60 cm version being considered for eventual development.

  3. Generalized recognition of single-ended contact formations for use in automated assembly operations

    SciTech Connect

    Ravuri, R.; Everett, L.J.

    1999-03-01

    Robots are preferred over any other form of automated machines for assembly tasks due to their capability of being programmed to perform a variety of tasks. However, in the present day industries, the turn around time for new designs have dramatically reduced. Therefore, the need for robots which can adapt its teaching and programming to new situations is strongly felt. This is especially true in the tasks such as assembly operations, which involve the robot making frequent contacts with its environment. This research addresses the problems that arise due to small changes in the work settings after the system has been programmed or trained. In an industry setting it is very likely that changes such as orientation and translation of the grasped object with respect to the robot axes can occur due to many unforeseen causes. The research here is focused on generalizing a Hybrid Control System, in which an assembly skill is described as a sequence of qualitative states and the desired transition between the states. In this case, the qualitative state takes the form of a single-ended contact formation, which describes how a grasped object touches its environment. Skill acquisition involves learning the sequence of qualitative states, the transition between those states, and the mapping from the sensor signals to the qualitative states. The authors discuss impact of changes in the orientation and the position of the grasped object with respect to the robot axes on the recognition of these qualitative states. They also propose a method of decreasing the performance degradation caused by this orientation change in recognition of these qualitative states, by adapting to the new situation with as minimum retraining as possible. Experimental results are presented which illustrate and validate the approach.

  4. Extended Aging Theories for Predictions of Safe Operational Life of Critical Airborne Structural Components

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Chen, Tony

    2006-01-01

    The previously developed Ko closed-form aging theory has been reformulated into a more compact mathematical form for easier application. A new equivalent loading theory and empirical loading theories have also been developed and incorporated into the revised Ko aging theory for the prediction of a safe operational life of airborne failure-critical structural components. The new set of aging and loading theories were applied to predict the safe number of flights for the B-52B aircraft to carry a launch vehicle, the structural life of critical components consumed by load excursion to proof load value, and the ground-sitting life of B-52B pylon failure-critical structural components. A special life prediction method was developed for the preflight predictions of operational life of failure-critical structural components of the B-52H pylon system, for which no flight data are available.

  5. Component-Level Electronic-Assembly Repair (CLEAR) Analysis of the Problem Reporting and Corrective Action (PRACA) Database of the International Space Station On-Orbit Electrical Systems

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Bradish, Martin A.; Juergens, Jeffrey R.; Lewis, Michael J.

    2011-01-01

    The NASA Constellation Program is investigating and developing technologies to support human exploration of the Moon and Mars. The Component-Level Electronic-Assembly Repair (CLEAR) task is part of the Supportability Project managed by the Exploration Technology Development Program. CLEAR is aimed at enabling a flight crew to diagnose and repair electronic circuits in space yet minimize logistics spares, equipment, and crew time and training. For insight into actual space repair needs, in early 2008 the project examined the operational experience of the International Space Station (ISS) program. CLEAR examined the ISS on-orbit Problem Reporting and Corrective Action database for electrical and electronic system problems. The ISS has higher than predicted reliability yet, as expected, it has persistent problems. A goal was to identify which on-orbit electrical problems could be resolved by a component-level replacement. A further goal was to identify problems that could benefit from the additional diagnostic and test capability that a component-level repair capability could provide. The study indicated that many problems stem from a small set of root causes that also represent distinct component problems. The study also determined that there are certain recurring problems where the current telemetry instrumentation and built-in tests are unable to completely resolve the problem. As a result, the root cause is listed as unknown. Overall, roughly 42 percent of on-orbit electrical problems on ISS could be addressed with a component-level repair. Furthermore, 63 percent of on-orbit electrical problems on ISS could benefit from additional external diagnostic and test capability. These results indicate that in situ component-level repair in combination with diagnostic and test capability can be expected to increase system availability and reduce logistics. The CLEAR approach can increase the flight crew s ability to act decisively to resolve problems while reducing

  6. Selected Lessons Learned through the ISS Design, Development, Assembly, and Operations: Applicability to International Cooperation for Standardization

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.

    2009-01-01

    This slide presentation reviews selected lessons that were learned during the design, development, assembly and operation of the International Space Station. The critical importance of standards and common interfaces is emphasized to create a common operation environment that can lead to flexibility and adaptability.

  7. Selected Lessons Learned over the ISS Design, Development, Assembly, and Operations: Applicability to International Cooperation for Standardization

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.

    2010-01-01

    This slide presentation reviews some of the lessons learned in the sphere of international cooperation during the development, assembly and operation of the International Space Station. From the begining all Partners shared a common objective to build, operate and utilize a crewed laboratory in low orbit as an international partnership. The importance of standards is emphasized.

  8. Engineering development of selective agglomeration: Task 6, Operation of the Component Development Test Facility

    SciTech Connect

    Not Available

    1991-09-01

    The objective of this report is to summarize the component development and laboratory binder test work at Wilsonville during Task 6. This Task included the construction and startup of the Component Development Test Facility (CDTF), coal procurement, evaluation of unit operation and dewatering performance, laboratory binder tests for diesel and heptane, production characterization, and vendor tests. Data evaluation, interpretation, and analysis are not included in this report, but will be discussed in the Task 7 report.

  9. Westinghouse Fuel Assemblies Performance after Operation in South-Ukraine NPP Mixed Core

    SciTech Connect

    Abdullayev, A. M.; Kulish, G. V.; Slyeptsov, O.; Slyeptsov, S.; Aleshin, Y.; Sparrow, S.; Lashevych, P.; Sokolov, D.; Latorre, Richard

    2013-09-14

    The evaluation of WWER-1000 Westinghouse fuel performance was done using the results of post–irradiation examinations of six LTAs and the WFA reload batches that have operated normally in mixed cores at South-Ukraine NPP, Unit-3 and Unit-2. The data on WFA/LTA elongation, FR growth and bow, WFA bow and twist, RCCA drag force and drag work, RCCA drop time, FR cladding integrity as well as the visual observation of fuel assemblies obtained during the 2006-2012 outages was utilized. The analysis of the measured data showed that assembly growth, FR bow, irradiation growth, and Zr-1%Nb grid and ZIRLO cladding corrosion lies within the design limits. The RCCA drop time measured for the LTA/WFA is about 1.9 s at BOC and practically does not change at EOC. The measured WFA bow and twist, and data of drag work on RCCA insertion showed that the WFA deformation in the mixed core is mostly controlled by the distortion of Russian FAs (TVSA) having the higher lateral stiffness. The visual inspection of WFAs carried out during the 2012 outages revealed some damage to the Zr-1%Nb grid outer strap for some WFAs during the loading sequence. The performed fundamental investigations allowed identifying the root cause of grid outer strap deformation and proposing the WFA design modifications for preventing damage to SG at a 225 kg handling trip limit.

  10. A Genetic Algorithm for Flow Shop Scheduling with Assembly Operations to Minimize Makespan

    NASA Astrophysics Data System (ADS)

    Bhongade, A. S.; Khodke, P. M.

    2014-04-01

    Manufacturing systems, in which, several parts are processed through machining workstations and later assembled to form final products, is common. Though scheduling of such problems are solved using heuristics, available solution approaches can provide solution for only moderate sized problems due to large computation time required. In this work, scheduling approach is developed for such flow-shop manufacturing system having machining workstations followed by assembly workstations. The initial schedule is generated using Disjunctive method and genetic algorithm (GA) is applied further for generating schedule for large sized problems. GA is found to give near optimal solution based on the deviation of makespan from lower bound. The lower bound of makespan of such problem is estimated and percent deviation of makespan from lower bounds is used as a performance measure to evaluate the schedules. Computational experiments are conducted on problems developed using fractional factorial orthogonal array, varying the number of parts per product, number of products, and number of workstations (ranging upto 1,520 number of operations). A statistical analysis indicated the significance of all the three factors considered. It is concluded that GA method can obtain optimal makespan.

  11. Operational implications of qualification tests of class 1E electrical components for mild environments

    SciTech Connect

    Jabs, R.H.; Gangloff, W.

    1986-06-01

    This paper presents information regarding a program of accelerated aging and seismic testing of electrical and electronic components used in safety related equipment which is located in mild environment areas of a nuclear power plant. The test methodology is responsive to IEEE Std. 323-1974 and IEEE Std. 344-1975 for Class 1E electrical equipment. The methods used in accelerated aging and seismic testing of the elemental components (capacitors, potentiometers, integrated circuits, etc.) are described and results are presented on a mix of such components which have been tested to various equivalent lives. The operational implications of this program are also discussed.

  12. Hazard Analysis for the Mark III Space Suit Assembly (SSA) Used in One-g Operations

    NASA Technical Reports Server (NTRS)

    Mitchell, Kate; Ross, Amy; Blanco, Raul; Wood, Art

    2012-01-01

    This Hazard Analysis document encompasses the Mark III Space Suit Assembly (SSA) and associated ancillary equipment. It has been prepared using JSC17773, "Preparing Hazard Analyses for JSC Ground Operation", as a guide. The purpose of this document is to present the potential hazards involved in ground (23 % maximum O2, One-g) operations of the Mark III and associated ancillary support equipment system. The hazards listed in this document are specific to suit operations only; each supporting facility (Bldg. 9, etc.) is responsible for test specific Hazard Analyses. A "hazard" is defined as any condition that has the potential for harming personnel or equipment. This analysis was performed to document the safety aspects associated with manned use of the Mark III for pressurized and unpressurized ambient, ground-based, One-g human testing. The hazards identified herein represent generic hazards inherent to all standard JSC test venues for nominal ground test configurations. Non-standard test venues or test specific configurations may warrant consideration of additional hazards analysis prior to test. The cognizant suit engineer is responsible for the safety of the astronaut/test subject, space suit, and suit support personnel. The test requester, for the test supported by the suit test engineer and suited subject, is responsible for overall safety and any necessary Test Readiness Reviews (TRR).

  13. 19 CFR 10.26 - Articles assembled or processed in a beneficiary country in whole of U.S. components or...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... textile components cut to shape in the United States. 10.26 Section 10.26 Customs Duties U.S. CUSTOMS AND... ingredients; articles assembled in a beneficiary country from textile components cut to shape in the United States. (a) No article (except a textile article, apparel article, or petroleum, or any product...

  14. 19 CFR 10.26 - Articles assembled or processed in a beneficiary country in whole of U.S. components or...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... textile components cut to shape in the United States. 10.26 Section 10.26 Customs Duties U.S. CUSTOMS AND... ingredients; articles assembled in a beneficiary country from textile components cut to shape in the United States. (a) No article (except a textile article, apparel article, or petroleum, or any product...

  15. 19 CFR 10.26 - Articles assembled or processed in a beneficiary country in whole of U.S. components or...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... textile components cut to shape in the United States. 10.26 Section 10.26 Customs Duties U.S. CUSTOMS AND... ingredients; articles assembled in a beneficiary country from textile components cut to shape in the United States. (a) No article (except a textile article, apparel article, or petroleum, or any product...

  16. 19 CFR 10.26 - Articles assembled or processed in a beneficiary country in whole of U.S. components or...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... textile components cut to shape in the United States. 10.26 Section 10.26 Customs Duties U.S. CUSTOMS AND... ingredients; articles assembled in a beneficiary country from textile components cut to shape in the United States. (a) No article (except a textile article, apparel article, or petroleum, or any product...

  17. Additive manufacture (3d printing) of plasma diagnostic components and assemblies for fusion experiments

    NASA Astrophysics Data System (ADS)

    Sieck, Paul; Woodruff, Simon; Stuber, James; Romero-Talamas, Carlos; Rivera, William; You, Setthivoine; Card, Alexander

    2015-11-01

    Additive manufacturing (or 3D printing) is now becoming sufficiently accurate with a large range of materials for use in printing sensors needed universally in fusion energy research. Decreasing production cost and significantly lowering design time of energy subsystems would realize significant cost reduction for standard diagnostics commonly obtained through research grants. There is now a well-established set of plasma diagnostics, but these expensive since they are often highly complex and require customization, sometimes pace the project. Additive manufacturing (3D printing) is developing rapidly, including open source designs. Basic components can be printed for (in some cases) less than 1/100th costs of conventional manufacturing. We have examined the impact that AM can have on plasma diagnostic cost by taking 15 separate diagnostics through an engineering design using Conventional Manufacturing (CM) techniques to determine costs of components and labor costs associated with getting the diagnostic to work as intended. With that information in hand, we set about optimizing the design to exploit the benefits of AM. Work performed under DOE Contract DE-SC0011858.

  18. A Novel Component of the Disulfide-Reducing Pathway Required for Cytochrome c Assembly in Plastids

    PubMed Central

    Gabilly, Stéphane T.; Kropat, Janette; Karamoko, Mohamed; Page, M. Dudley; Nakamoto, Stacie S.; Merchant, Sabeeha S.; Hamel, Patrice P.

    2011-01-01

    In plastids, the conversion of energy in the form of light to ATP requires key electron shuttles, the c-type cytochromes, which are defined by the covalent attachment of heme to a CXXCH motif. Plastid c-type cytochrome biogenesis occurs in the thylakoid lumen and requires a system for transmembrane transfer of reductants. Previously, CCDA and CCS5/HCF164, found in all plastid-containing organisms, have been proposed as two components of the disulfide-reducing pathway. In this work, we identify a small novel protein, CCS4, as a third component in this pathway. CCS4 was genetically identified in the green alga Chlamydomonas reinhardtii on the basis of the rescue of the ccs4 mutant, which is blocked in the synthesis of holoforms of plastid c-type cytochromes, namely cytochromes f and c6. Although CCS4 does not display sequence motifs suggestive of redox or heme-binding function, biochemical and genetic complementation experiments suggest a role in the disulfide-reducing pathway required for heme attachment to apoforms of cytochromes c. Exogenous thiols partially rescue the growth phenotype of the ccs4 mutant concomitant with recovery of holocytochrome f accumulation, as does expression of an ectopic copy of the CCDA gene, encoding a trans-thylakoid transporter of reducing equivalents. We suggest that CCS4 might function to stabilize CCDA or regulate its activity. PMID:21220358

  19. 14 CFR 60.25 - Operation with missing, malfunctioning, or inoperative components.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Operation with missing, malfunctioning, or inoperative components. 60.25 Section 60.25 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND...

  20. 14 CFR 60.25 - Operation with missing, malfunctioning, or inoperative components.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Operation with missing, malfunctioning, or inoperative components. 60.25 Section 60.25 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND...

  1. 14 CFR 60.25 - Operation with missing, malfunctioning, or inoperative components.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Operation with missing, malfunctioning, or inoperative components. 60.25 Section 60.25 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND...

  2. 14 CFR 60.25 - Operation with missing, malfunctioning, or inoperative components.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Operation with missing, malfunctioning, or inoperative components. 60.25 Section 60.25 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND...

  3. 14 CFR 60.25 - Operation with missing, malfunctioning, or inoperative components.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Operation with missing, malfunctioning, or inoperative components. 60.25 Section 60.25 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND...

  4. The Effects of an Abolishing Operation Intervention Component on Play Skills, Challenging Behavior, and Stereotypy

    ERIC Educational Resources Information Center

    Lang, Russell; O'Reilly, Mark; Sigafoos, Jeff; Machalicek, Wendy; Rispoli, Mandy; Lancioni, Giulio E.; Aguilar, Jeannie; Fragale, Christina

    2010-01-01

    The purpose of this study was to reduce stereotypy and challenging behavior during play skills instruction by adding an abolishing operation component (AOC) to the intervention strategy. An alternating treatments design compared one condition in which participants were allowed to engage in stereotypy freely before beginning the play skills…

  5. Intracellular self-assembly based multi-labeling of key viral components: Envelope, capsid and nucleic acids.

    PubMed

    Wen, Li; Lin, Yi; Zhang, Zhi-Ling; Lu, Wen; Lv, Cheng; Chen, Zhi-Liang; Wang, Han-Zhong; Pang, Dai-Wen

    2016-08-01

    Envelope, capsid and nucleic acids are key viral components that are all involved in crucial events during virus infection. Thus simultaneous labeling of these key components is an indispensable prerequisite for monitoring comprehensive virus infection process and dissecting virus infection mechanism. Baculovirus was genetically tagged with biotin on its envelope protein GP64 and enhanced green fluorescent protein (EGFP) on its capsid protein VP39. Spodoptera frugiperda 9 (Sf9) cells were infected by the recombinant baculovirus and subsequently fed with streptavidin-conjugated quantum dots (SA-QDs) and cell-permeable nucleic acids dye SYTO 82. Just by genetic engineering and virus propagation, multi-labeling of envelope, capsid and nucleic acids was spontaneously accomplished during virus inherent self-assembly process, significantly simplifying the labeling process while maintaining virus infectivity. Intracellular dissociation and transportation of all the key viral components, which was barely reported previously, was real-time monitored based on the multi-labeling approach, offering opportunities for deeply understanding virus infection and developing anti-virus treatment. PMID:27209260

  6. Epitaxial self-assembly of binary molecular components into branched nanowire heterostructures for photonic applications.

    PubMed

    Kong, Qinghua; Liao, Qing; Xu, Zhenzhen; Wang, Xuedong; Yao, Jiannian; Fu, Hongbing

    2014-02-12

    We report a sequential epitaxial growth to prepare organic branched nanowire heterostructures (BNwHs) consisting of a microribbon trunk of 1,4-dimethoxy-2,5-di[4'-(cyano)styryl]benzene (COPV) with multiple nanowire branches of 2,4,5-triphenylimidazole (TPI) in a one-pot solution synthesis. The synthesis involves a seeded-growth process, where COPV microribbons are grown first as a trunk followed by a seeded-growth of TPI nanowire branches at the pregrown trunk surfaces. Selected area electron diffraction characterizations reveal that multiple hydrogen-bonding interactions between TPI and COPV components play an essential role in the epitaxial growth as a result of the structural matching between COPV and TPI crystals. A multichannel optical router was successfully realized on the basis of the passive waveguides of COPV green photoluminescence (PL) along TPI nanowire branches in a single organic BNwH. PMID:24446808

  7. Design and Analysis of a Novel Six-Component F/T Sensor based on CPM for Passive Compliant Assembly

    NASA Astrophysics Data System (ADS)

    Liang, Qiaokang; Zhang, Dan; Wang, Yaonan; Ge, Yunjian

    2013-10-01

    This paper presents the design and analysis of a six-component Force/Torque (F/T) sensor whose design is based on the mechanism of the Compliant Parallel Mechanism (CPM). The force sensor is used to measure forces along the x-, y-, and z-axis (Fx, Fy and Fz) and moments about the x-, y-, and z-axis (Mx, My and Mz) simultaneously and to provide passive compliance during parts handling and assembly. Particularly, the structural design, the details of the measuring principle and the kinematics are presented. Afterwards, based on the Design of Experiments (DOE) approach provided by the software ANSYS®, a Finite Element Analysis (FEA) is performed. This analysis is performed with the objective of achieving both high sensitivity and isotropy of the sensor. The results of FEA show that the proposed sensor possesses high performance and robustness.

  8. A definition study of the on-orbit assembly operations for the outboard photovoltaic power modules for Space Station Freedom. M.S. Thesis - Toledo Univ.

    NASA Technical Reports Server (NTRS)

    Sours, Thomas J.

    1989-01-01

    A concept is described for the assembly of the outboard PV modules for Space Station Freedom. Analysis of the on-orbit assembly operations was performed using CADAM design graphics software. A scenario for assembly using the various assembly equipment, as currently defined, is described in words, tables and illustrations. This work is part of ongoing studies in the area of space station assembly. The outboard PV module and the assembly equipment programs are all in definition and preliminary design phases. An input is provided to the design process of assembly equipment programs. It is established that the outboard PV module assembly operations can be performed using the assembly equipment currently planned in the Space Station Freedom Program.

  9. National Ignition Facility final optics assembly thermal effects of maintenance operations

    SciTech Connect

    Parietti, L.; Martin, R.A.

    1998-04-01

    The National Ignition Facility (NIF), the world`s most powerful laser system, is being built at Lawrence Livermore National Laboratory (LLNL) to study inertial fusion and high-energy-density science. This billion-dollar facility consists of 192 beams focusing 1.8 MJ on a fusion target. The Final Optics Assembly (FOA), the last mechanical apparatus before the target chamber, converts the light from an incoming frequency of 1 {omega} to ia target-ready 3 {omega}, and focuses the laser beam. The performance of the frequency conversion crystals is very sensitive to temperature changes; crystal temperature must be maintained within a 0.1 C of a nominal temperature prior to a laser shot. Maximizing system availability requires minimizing thermal recovery times after thermal disturbances occurring in both normal and maintenance operations. To guide the design, it is important to have estimates of those recovery times. This report presents Computational Fluid Dynamics (CFD) design calculations to evaluate thermal effects of maintenance operations.

  10. Stabilized composite membranes and membrane electrode assemblies for elevated temperature/low relative humidity PEFC operation

    NASA Astrophysics Data System (ADS)

    Ramani, Vijay; Kunz, H. R.; Fenton, J. M.

    An approach is presented to combine existing heteropolyacid (HPA) additive and membrane electrode assembly (MEA) stabilization techniques to yield a stabilized MEA for operation at 120 °C and 35% relative humidity (RH). MEAs were prepared using Nafion ®/phosphotungstic acid composite membranes with a phosphotungstic acid (PTA) particle size of 30-50 nm. The PTA additive was stabilized by substituting its protons with cesium counter ions. The Nafion ® in the membrane and electrodes was simultaneously converted to the Cs + form by an ion-exchange process. The melt processability of the Nafion ® in the Cs + form permitted the MEA to be heat treated at 200 °C and 30 atm, promoting the development of a durable membrane/electrode interface. The prior stabilization of the PTA permitted MEA re-protonation with minimal additive loss. FTIR spectroscopy and thermogravimetric analysis (TGA) were employed to present evidence of ion-exchange and protonation. In situ electrochemical impedance measurements (EIS) and cyclic voltammetry (CV) measurements confirmed ion-exchange and protonation within the active portion of the stabilized MEA. The stabilization process did not affect the integrity of the MEA, with the hydrogen crossover currents through the membrane remaining unchanged at 2 mA cm -2. The MEA was evaluated at 120 °C and 35% relative humidity in an operating fuel cell environment and yielded respectable performance under these conditions.

  11. Phase equilibriums, self-assembly and interactions in two-, three- and four medium-chain length component systems.

    PubMed

    Rosenholm, Jarl B

    2014-03-01

    The Scandinavian surface (surfactant) and colloid science owes much of its success to Per Ekwall and Björn Lindman. In this review the main topics shared by their research groups at Åbo Akademi University in Finland and at Lund University in Sweden are described. The nature of surface active substances (cosolvents, co-surfactants and surfactants) and microemulsions are evaluated. It is shown that the properties of medium-chain length surfactants differ dramatically from long-chain surfactants. The phase equilibriums of binary systems are related to the phase equilibriums of ternary and quaternary systems referred to as microemulsions or more recently also as nanoemulsions. A distinction is made between hydrotrope liquids, detergentless microemulsions, surfactant mixture systems and microemulsions. Three component systems are assembled to "true" quaternary microemulsions. An exceptionally comprehensive network of thermodynamic parameters describing molecular site exchange and micelle formation are derived and related mutually. Gibbs free energy, enthalpy, entropy, volume, heat capacity, expansivity and compressibility can be used to illustrate the degree of aggregation cooperativity and to evaluate whether micelle formation is of a first-, second- or intermediate order phase transition. Theoretical simulations and experimental results show that the associate structures of medium-chain length surfactants are quite open and may be deformed due to small aggregation numbers. The self-assembly occurs over a number of distinct steps at a series of experimentally detectable critical concentrations. Despite the low aggregation tendency their phase behavior equals those of long-chain homologs in surfactant mixture and microemulsion systems. A number of models describing the self-assembly are reviewed. Nuclear magnetic resonance (shift, relaxation rate and diffusion), Laser Raman and infrared spectroscopies were chosen as key instruments for molecular interaction

  12. Analysis of mutations in Neurospora crassa ERMES components reveals specific functions related to β-barrel protein assembly and maintenance of mitochondrial morphology.

    PubMed

    Wideman, Jeremy G; Lackey, Sebastian W K; Srayko, Martin A; Norton, Kacie A; Nargang, Frank E

    2013-01-01

    The endoplasmic reticulum mitochondria encounter structure (ERMES) tethers the er to mitochondria and contains four structural components: Mmm1, Mdm12, Mdm10, and Mmm2 (Mdm34). The Gem1 protein may play a role in regulating ERMES function. Saccharomyces cerevisiae and Neurospora crassa strains lacking any of Mmm1, Mdm12, or Mdm10 are known to show a variety of phenotypic defects including altered mitochondrial morphology and defects in the assembly of β-barrel proteins into the mitochondrial outer membrane. Here we examine ERMES complex components in N. crassa and show that Mmm1 is an ER membrane protein containing a Cys residue near its N-terminus that is conserved in the class Sordariomycetes. The residue occurs in the ER-lumen domain of the protein and is involved in the formation of disulphide bonds that give rise to Mmm1 dimers. Dimer formation is required for efficient assembly of Tom40 into the TOM complex. However, no effects are seen on porin assembly or mitochondrial morphology. This demonstrates a specificity of function and suggests a direct role for Mmm1 in Tom40 assembly. Mutation of a highly conserved region in the cytosolic domain of Mmm1 results in moderate defects in Tom40 and porin assembly, as well as a slight morphological phenotype. Previous reports have not examined the role of Mmm2 with respect to mitochondrial protein import and assembly. Here we show that absence of Mmm2 affects assembly of β-barrel proteins and that lack of any ERMES structural component results in defects in Tom22 assembly. Loss of N. crassa Gem1 has no effect on the assembly of these proteins but does affect mitochondrial morphology. PMID:23940790

  13. Assembly, characterization, and operation of large-scale TES detector arrays for ACTPol

    NASA Astrophysics Data System (ADS)

    Pappas, Christine Goodwin

    2016-01-01

    The Polarization-sensitive Receiver for the Atacama Cosmology Telescope (ACTPol) is designed to measure the Cosmic Microwave Background (CMB) temperature and polarization anisotropies on small angular scales. Measurements of the CMB temperature and polarization anisotropies have produced arguably the most important cosmological data to date, establishing the LambdaCDM model and providing the best constraints on most of its parameters. To detect the very small fluctuations in the CMB signal across the sky, ACTPol uses feedhorn-coupled Transition-Edge Sensor (TES) detectors. A TES is a superconducting thin film operated in the transition region between the superconducting and normal states, where it functions as a highly sensitive resistive thermometer. In this thesis, aspects of the assembly, characterization, and in-field operation of the ACTPol TES detector arrays are discussed. First, a novel microfabrication process for producing high-density superconducting aluminum/polyimide flexible circuitry (flex) designed to connect large-scale detector arrays to the first stage of readout is presented. The flex is used in parts of the third ACTPol array and is currently being produced for use in the AdvACT detector arrays, which will begin to replace the ACTPol arrays in 2016. Next, we describe methods and results for the in-lab and on-telescope characterization of the detectors in the third ACTPol array. Finally, we describe the ACTPol TES R(T,I) transition shapes and how they affect the detector calibration and operation. Methods for measuring the exact detector calibration and re-biasing functions, taking into account the R(T,I) transition shape, are presented.

  14. Neutral Buoyancy Simulator: MSFC-Langley joint test of large space structures component assembly:

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. Another facet of the space station would be electrical cornectors which would be used for powering tools the astronauts would need for construction, maintenance and repairs. Shown is an astronaut training during an underwater electrical connector test in the NBS.

  15. International Space Station Common Cabin Air Assembly Condensing Heat Exchanger Hydrophilic Coating Operation, Recovery, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Balistreri, Steven F.; Steele, John W.; Caron, Mark E.; Laliberte, Yvon J.; Shaw, Laura A.

    2013-01-01

    The ability to control the temperature and humidity of an environment or habitat is critical for human survival. These factors are important to maintaining human health and comfort, as well as maintaining mechanical and electrical equipment in good working order to support the human and to accomplish mission objectives. The temperature and humidity of the International Space Station (ISS) United States On-orbit Segment (USOS) cabin air is controlled by the Common Cabin Air Assembly (CCAA). The CCAA consists of a fan, a condensing heat exchanger (CHX), an air/water separator, temperature and liquid sensors, and electrical controlling hardware and software. The CHX is the primary component responsible for control of temperature and humidity. The CCAA CHX contains a chemical coating that was developed to be hydrophilic and thus attract water from the humid influent air. This attraction forms the basis for water removal and therefore cabin humidity control. However, there have been several instances of CHX coatings becoming hydrophobic and repelling water. When this behavior is observed in an operational CHX in the ISS segments, the unit s ability to remove moisture from the air is compromised and the result is liquid water carryover into downstream ducting and systems. This water carryover can have detrimental effects on the ISS cabin atmosphere quality and on the health of downstream hardware. If the water carryover is severe and widespread, this behavior can result in an inability to maintain humidity levels in the USOS. This paper will describe the operation of the five CCAAs within the USOS, the potential causes of the hydrophobic condition, and the impacts of the resulting water carryover to downstream systems. It will describe the history of this behavior and the actual observed impacts to the ISS USOS. Information on mitigation steps to protect the health of future CHX hydrophilic coatings as well as remediation and recovery of the full heat exchanger will be

  16. Enhanced Component Performance Study: Air-Operated Valves 1998-2014

    SciTech Connect

    Schroeder, John Alton

    2015-11-01

    This report presents a performance evaluation of air-operated valves (AOVs) at U.S. commercial nuclear power plants. The data used in this study are based on the operating experience failure reports from fiscal year 1998 through 2014 for the component reliability as reported in the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The AOV failure modes considered are failure-to-open/close, failure to operate or control, and spurious operation. The component reliability estimates and the reliability data are trended for the most recent 10-year period, while yearly estimates for reliability are provided for the entire active period. One statistically significant trend was observed in the AOV data: The frequency of demands per reactor year for valves recording the fail-to-open or fail-to-close failure modes, for high-demand valves (those with greater than twenty demands per year), was found to be decreasing. The decrease was about three percent over the ten year period trended.

  17. Enhanced Component Performance Study: Air-Operated Valves 1998–2012

    SciTech Connect

    T. E. Wierman

    2013-10-01

    This report presents an enhanced performance evaluation of air-operated valves (AOVs) at U.S. commercial nuclear power plants. The data used in this study are based on the operating experience failure reports from fiscal year 1998 through 2012 for the component reliability as reported in the Equipment Performance and Information Exchange (EPIX). Results (beta distributions for failure probabilities upon demand and gamma distributions for rates) are used as inputs to the U.S. Nuclear Regulatory Commission standardized plant analysis risk models of U.S. commercial nuclear power plants. The AOV failure modes considered are failure-to-open/close, failure to operate or control, and spurious operation. The component reliability estimates and the reliability data are trended for the most recent 10-year period while yearly estimates for reliability are provided for the entire active period. No statistically significant increasing trends were identified in the AOV results. Statistically significant decreasing trends were identified in two areas: AOV operation demands less than or equal to 20 demands per year and greater than 20 demands.

  18. Investigation of component failure rates for pulsed versus steady state tokamak operation

    SciTech Connect

    Cadwallader, L.C.

    1992-07-01

    This report presents component failure rate data sources applicable to magnetic fusion systems, and defines multiplicative factors to adjust these data for specific use on magnetic fusion experiment designs. The multipliers address both long pulse and steady state tokamak operation. Thermal fatigue and radiation damage are among the leading reasons for large multiplier values in pulsed operation applications. Field failure rate values for graphite protective tiles are presented, and beryllium tile failure rates in laboratory testing are also given. All of these data can be used for reliability studies, safety analyses, design tradeoff studies, and risk assessments.

  19. Hot melt adhesive pad surface attachment assembly concept for on-orbit operations

    NASA Technical Reports Server (NTRS)

    Progar, D. J.; Stein, B. A.

    1984-01-01

    The use of a hot melt adhesive concept to develop a Surface Attachment Assembly (SAA) for on-orbit attachment and detachment operations for the Manned Maneuvering Unit (MMU) was investigated. The concept involved impregnation of the hot melt adhesive into a fiberglass covered pad which contained electrical heating and thermoelectric cooling devices. The polyamide hot melt adhesive selected can be repeatedly heated to its melting point in a vacuum and provide good adhesion to various surfaces, i.e., reusable surface insulation tiles, metals, and composites, when cooled. After a series of adhesive screening tests, Jet-Melt 3746 was selected from a group of commercially available thermoplastic adhesive candidates which met or exceeded many of the criteria established for the SAA system. The SAA system was designed and fabricted with the goal of proving the concept with a working model rather than attempting to optimize all facets of the system. This system evolved by investigating alternate attachment concepts, designing and fabricating electronic systems to heat and cool the adhesive, and then fabricating electronic systems to heat and cool the adhesive, and then fabricating and testing two prototype full-size units.

  20. Hot melt adhesive pad surface attachment assembly concept for on-orbit operations

    NASA Astrophysics Data System (ADS)

    Progar, D. J.; Stein, B. A.

    1984-03-01

    The use of a hot melt adhesive concept to develop a Surface Attachment Assembly (SAA) for on-orbit attachment and detachment operations for the Manned Maneuvering Unit (MMU) was investigated. The concept involved impregnation of the hot melt adhesive into a fiberglass covered pad which contained electrical heating and thermoelectric cooling devices. The polyamide hot melt adhesive selected can be repeatedly heated to its melting point in a vacuum and provide good adhesion to various surfaces, i.e., reusable surface insulation tiles, metals, and composites, when cooled. After a series of adhesive screening tests, Jet-Melt 3746 was selected from a group of commercially available thermoplastic adhesive candidates which met or exceeded many of the criteria established for the SAA system. The SAA system was designed and fabricted with the goal of proving the concept with a working model rather than attempting to optimize all facets of the system. This system evolved by investigating alternate attachment concepts, designing and fabricating electronic systems to heat and cool the adhesive, and then fabricating electronic systems to heat and cool the adhesive, and then fabricating and testing two prototype full-size units.

  1. Pulsed Plasma Thruster (PPT) Technology: Earth Observing-1 PPT Operational and Advanced Components Being Developed

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Benson, Scott W.; Arrington, Lynn A.; Frus, John; Hoskins, W. Andrew; Burton, Rodney

    2003-01-01

    In 2002 the pulsed plasma thruster (PPT) mounted on the Earth Observing-1 spacecraft was operated successfully in orbit. The two-axis thruster system is fully incorporated in the attitude determination and control system and is being used to automatically counteract disturbances in the pitch axis of the spacecraft. The first tests conducted in space demonstrated the full range of PPT operation, followed by calibration of control torques from the PPT in the attitude control system. Then the spacecraft was placed in PPT control mode. To date, it has operated for about 30 hr. The PPT successfully controlled pitch momentum during wheel de-spin, solar array acceleration and deceleration during array rewind, and environmental torques in nominal operating conditions. Images collected with the Advanced Landsat Imager during PPT operation have demonstrated that there was no degradation in comparison to full momentum wheel control. In addition, other experiments have been performed to interrogate the effects of PPT operation on communication packages and light reflection from spacecraft surfaces. Future experiments will investigate the possibility of orbit-raising maneuvers, spacecraft roll, and concurrent operation with the Hyperion imager. Future applications envisioned for pulsed plasma thrusters include longer life, higher precision, multiaxis thruster configurations for three-axis attitude control systems or high-precision, formationflying systems. Advanced components, such as a "dry" mica-foil capacitor, a wear-resistant spark plug, and a multichannel power processing unit have been developed under contract with Unison Industries, General Dynamics, and C.U. Aerospace. Over the last year, evaluation tests have been conducted to determine power processing unit efficiency, atmospheric functionality, vacuum functionality, thruster performance evaluation, thermal performance, and component life.

  2. Optimal use of human and machine resources for Space Station assembly operations

    NASA Technical Reports Server (NTRS)

    Parrish, Joseph C.

    1988-01-01

    This paper investigates the issues involved in determining the best mix of human and machine resources for assembly of the Space Station. It presents the current Station assembly sequence, along with descriptions of the available assembly resources. A number of methodologies for optimizing the human/machine tradeoff problem have been developed, but the Space Station assembly offers some unique issues that have not yet been addressed. These include a strong constraint on available EVA time for early flights and a phased deployment of assembly resources over time. A methodology for incorporating the previously developed decision methods to the special case of the Space Station is presented. This methodology emphasizes an application of multiple qualitative and quantitative techniques, including simulation and decision analysis, for producing an objective, robust solution to the tradeoff problem.

  3. Development and testing of laser Doppler system components for wake vortex monitoring. Volume 2: Scanner operations manual

    NASA Technical Reports Server (NTRS)

    Edwards, B. B.; Coffey, E. W.

    1974-01-01

    The theory and operation of the scanner portion of the laser Doppler system for detecting and monitoring aircraft trailing vortices in an airport environment are discussed. Schematics, wiring diagrams, component values, and operation and checkout procedures are included.

  4. 14 CFR 105.21 - Parachute operations over or into a congested area or an open-air assembly of persons.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Parachute operations over or into a... PARACHUTE OPERATIONS Operating Rules § 105.21 Parachute operations over or into a congested area or an open-air assembly of persons. (a) No person may conduct a parachute operation, and no pilot in command...

  5. 14 CFR 105.21 - Parachute operations over or into a congested area or an open-air assembly of persons.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Parachute operations over or into a... PARACHUTE OPERATIONS Operating Rules § 105.21 Parachute operations over or into a congested area or an open-air assembly of persons. (a) No person may conduct a parachute operation, and no pilot in command...

  6. 14 CFR 105.21 - Parachute operations over or into a congested area or an open-air assembly of persons.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Parachute operations over or into a... PARACHUTE OPERATIONS Operating Rules § 105.21 Parachute operations over or into a congested area or an open-air assembly of persons. (a) No person may conduct a parachute operation, and no pilot in command...

  7. 14 CFR 105.21 - Parachute operations over or into a congested area or an open-air assembly of persons.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Parachute operations over or into a... PARACHUTE OPERATIONS Operating Rules § 105.21 Parachute operations over or into a congested area or an open-air assembly of persons. (a) No person may conduct a parachute operation, and no pilot in command...

  8. 14 CFR 105.21 - Parachute operations over or into a congested area or an open-air assembly of persons.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Parachute operations over or into a... PARACHUTE OPERATIONS Operating Rules § 105.21 Parachute operations over or into a congested area or an open-air assembly of persons. (a) No person may conduct a parachute operation, and no pilot in command...

  9. Analysis of components, designs, and operation for electric propulsion and integrated electrical system

    SciTech Connect

    Arrington, J.W.

    1998-09-01

    The surface combatant of the 21st century will be designed to support a myriad of tasks requiring greater flexibility and endurance while keeping construction, maintenance and operating costs to a minimum. As a result the design of a surface combatant will depart from today`s standards and philosophies. One option is the use of an electric propulsion system that can be integrated with the other ship`s electrical loads. Electric propulsion operating with an Integrated Electrical System has many advantages that will fulfill the requirements of future surface combatants. This study provides the historical background, the supporting issues, components, and architecture of electric propulsion systems and the Integrated Electrical System. Technical information on various component types and issues that influence the design considerations of an electric propulsion system and Integrated Electrical System to meet the requirements of a surface combatant are addressed. The areas of study are prime movers, generators, frequency converters, motors, ship`s service electrical distribution, auxiliary electrical loads, and system control.

  10. CMEMS (Copernicus Marine Environment Monitoring Service) In Situ Thematic Assembly Centre: A service for operational Oceanography

    NASA Astrophysics Data System (ADS)

    Manzano Muñoz, Fernando; Pouliquen, Sylvie; Petit de la Villeon, Loic; Carval, Thierry; Loubrieu, Thomas; Wedhe, Henning; Sjur Ringheim, Lid; Hammarklint, Thomas; Tamm, Susanne; De Alfonso, Marta; Perivoliotis, Leonidas; Chalkiopoulos, Antonis; Marinova, Veselka; Tintore, Joaquin; Troupin, Charles

    2016-04-01

    Copernicus, previously known as GMES (Global Monitoring for Environment and Security), is the European Programme for the establishment of a European capacity for Earth Observation and Monitoring. Copernicus aims to provide a sustainable service for Ocean Monitoring and Forecasting validated and commissioned by users. From May 2015, the Copernicus Marine Environment Monitoring Service (CMEMS) is working on an operational mode through a contract with services engagement (result is regular data provision). Within CMEMS, the In Situ Thematic Assembly Centre (INSTAC) distributed service integrates in situ data from different sources for operational oceanography needs. CMEMS INSTAC is collecting and carrying out quality control in a homogeneous manner on data from providers outside Copernicus (national and international networks), to fit the needs of internal and external users. CMEMS INSTAC has been organized in 7 regional Dissemination Units (DUs) to rely on the EuroGOOS ROOSes. Each DU aggregates data and metadata provided by a series of Production Units (PUs) acting as an interface for providers. Homogeneity and standardization are key features to ensure coherent and efficient service. All DUs provide data in the OceanSITES NetCDF format 1.2 (based on NetCDF 3.6), which is CF compliant, relies on SeaDataNet vocabularies and is able to handle profile and time-series measurements. All the products, both near real-time (NRT) and multi-year (REP), are available online for every CMEMS registered user through an FTP service. On top of the FTP service, INSTAC products are available through Oceanotron, an open-source data server dedicated to marine observations dissemination. It provides services such as aggregation on spatio-temporal coordinates and observed parameters, and subsetting on observed parameters and metadata. The accuracy of the data is checked on various levels. Quality control procedures are applied for the validity of the data and correctness tests for the

  11. 21 CFR 111.120 - What quality control operations are required for components, packaging, and labels before use in...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Production and Process Control System: Requirements for Quality Control § 111.120 What quality control operations are required for components, packaging, and... 21 Food and Drugs 2 2011-04-01 2011-04-01 false What quality control operations are required...

  12. Mission Operations Centers (MOCs): Integrating key spacecraft ground data system components

    NASA Technical Reports Server (NTRS)

    Harbaugh, Randy; Szakal, Donna

    1994-01-01

    In an environment characterized by decreasing budgets, limited system development time, and user needs for increased capabilities, the Mission Operations Division (MOD) at the National Aeronautics and Space Administration Goddard Space Flight Center initiated a new, cost-effective concept in developing its spacecraft ground data systems: the Mission Operations Center (MOC). In the MOC approach, key components are integrated into a comprehensive and cohesive spacecraft planning, monitoring, command, and control system with a single, state-of-the-art graphical user interface. The MOD is currently implementing MOC's, which feature a common, reusable, and extendable system architecture, to support the X-Ray Timing Explorer (XTE), Tropical Rainfall Measuring Mission (TRMM), and Advanced Composition Explorer (ACE) missions. As a result of the MOC approach, mission operations are integrated, and users can, with a single system, perform real-time health and safety monitoring, real-time command and control, real-time attitude processing, real-time and predictive graphical spacecraft monitoring, trend analysis, mission planning and scheduling, command generation and management, network scheduling, guide star selection, and (using an expert system) spacecraft monitoring and fault isolation. The MOD is also implementing its test and training simulators under the new MOC management structure. This paper describes the MOC concept, the management approaches used in developing MOC systems, the technologies employed and the development process improvement initiatives applied in implementing MOC systems, and the expected benefits to both the user and the mission project in using the MOC approach.

  13. The structure of monomeric components of self-assembling CXCR4 antagonists determines the architecture of resulting nanostructures

    NASA Astrophysics Data System (ADS)

    Lee, Youngshim; Chen, Yuhong; Tarasova, Nadya I.; Gaponenko, Vadim

    2011-12-01

    Self-assembling peptides play increasingly important roles in the development of novel materials and drug delivery vehicles. Understanding mechanisms governing the assembly of nanoarchitectures is essential for the generation of peptide-based nanodevices. We find that a cone-shaped derivative of the second transmembrane domain of CXCR4 receptor, x4-2-6 self-assembles into nanospheres, while a related cylindrical peptide, x4-2-9 forms fibrils. Stronger intermolecular interactions in nanospheres than in fibrils result in slow rates of particle disassembly and protection against proteolytic degradation.

  14. Report of the Assembly Subcommittee on Indian Affairs to the Standing Committee on Governmental Operations.

    ERIC Educational Resources Information Center

    New York State Assembly, Albany.

    The 1970 legislative session of the New York State Assembly created the Subcommittee on Indian Affairs to review New York's Indian Law and state services provided to Indian reservations. Seven hearings were held on reservations to gather opinions, suggestions, and criticisms of the on-reservation Indian community. In addition, a special hearing…

  15. Assemblies of protective anion exchange membrane on air electrode for its efficient operation in aqueous alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Bertolotti, Bruno; Chikh, Linda; Vancaeyzeele, Cédric; Alfonsi, Séverine; Fichet, Odile

    2015-01-01

    Aqueous alkaline metal-air batteries represent promising energy storage devices when supplied with atmospheric air. However, under this condition, the air electrode shows a very short life time (i.e. 50 h of operation in 5 M LiOH at -10 mA cm-2), mainly due to the precipitation of carbonates inside the electrode porosity. The air electrode can then be protected by an anion exchange membrane on the electrolyte side. In this paper, we demonstrate that the efficiency of this protective membrane depends on the assembly method on the electrode. When a modified poly(epichlorohydrin) (PECH) network is synthesized directly on the electrode, the polymer seeps inside the electrode porosity, and a suitable interface inducing negligible additional polarization in comparison with classical pressure-assembled membranes is obtained. This protected electrode shows improved stability of up to 160 h of operation in 5 M LiOH. This performance is improved to 350 h by adjusting the conductivity and the ionic exchange capacity. Finally, the interest of interpenetrating polymer network (IPN) architecture compared to a single network is confirmed. Indeed, an electrode protected with a PECH/poly(2-hydroxyethyl methacrylate) (PHEMA) IPN is stable for 650 h in 5 M LiOH. In addition, degradation process becomes reversible since the assembly can be regenerated, which is not possible for the bare electrode.

  16. Upgraded Fuel Assemblies for BWRs

    SciTech Connect

    Garner, N.L.; Rentmeister, T.; Lippert, H.J.; Mollard, P.

    2007-07-01

    Established with engineering and manufacturing operations in the US and Europe, AREVA NP has been and is supplying nuclear fuel assemblies and associated core components to light water reactors worldwide, representing today more than 170,000 fuel assemblies on the world market and more than 56,000 fuel assemblies for BWR plants. Since first delivered in 1992, ATRIUM{sup TM}(1)10 fuel assemblies have now been supplied to a total of 28 BWR plants in the US, Europe, and Asia resulting in an operating experience over 16 000 fuel assemblies. In the spring of 2001, a BWR record burnup of 71 MWd/kgU was reached by four lead fuel assemblies after eight operating cycles. More recently, ATRIUM 10XP and ATRIUM 10XM fuel assemblies featuring changes in their characteristics and exhibiting upgraded behavior have been delivered to several utilities worldwide. This success story has been made possible thanks to a continuous improvement process with the aim of further upgrading BWR fuel assembly performance and reliability. An overview is given on current AREVA advanced BWR fuel supply regarding: - advanced designs to tailor product selection to specific operating strategies; - performance capabilities of each advanced design option; - testing and operational experience for these advanced designs; - upgraded features available for inclusion with advanced designs. (authors)

  17. Components separation in complex ventral hernia repair: surgical technique and post-operative outcomes.

    PubMed

    Ross, Samuel W; Oommen, Bindhu; Heniford, B Todd; Augenstein, Vedra A

    2014-03-01

    There are over 350,000 ventral hernia repairs (VHR) performed in the United States annually and a variety of laparoscopic and open surgical techniques are described and utilized. Complex ventral hernias such as recurrent hernias, those with infected mesh, open wounds, coexisting enteric fistulas, parastomal hernias, and massive hernias-especially those with loss of abdominal domain-require sophisticated repair techniques. Many of these repairs are performed via an open approach. Ideally, the aim is to place mesh under the fascia with a large overlap of the defect and obtain primary fascial closure. However, it is often impossible to bring together fascial edges in very large hernias. Component separation is an excellent surgical technique in selected patients which involves release of the different layers of the abdominal wall and in turn helps accomplish primary fascial approximation. The posterior rectus sheath, external oblique or the transverse abdominis fascia can be cut and allows for closure of fascia in a tension free manner in a majority of patients. In this chapter we describe the various techniques for component separation, indications for use, how to select an appropriate type of release and post-operative outcomes. PMID:24700223

  18. Energy operator demodulating of optimal resonance components for the compound faults diagnosis of gearboxes

    NASA Astrophysics Data System (ADS)

    Zhang, Dingcheng; Yu, Dejie; Zhang, Wenyi

    2015-11-01

    Compound faults diagnosis is a challenge for rotating machinery fault diagnosis. The vibration signals measured from gearboxes are usually complex, non-stationary, and nonlinear. When compound faults occur in a gearbox, weak fault characteristic signals are always submerged by the strong ones. Therefore, it is difficult to detect a weak fault by using the demodulating analysis of vibration signals of gearboxes directly. The key to compound faults diagnosis of gearboxes is to separate different fault characteristic signals from the collected vibration signals. Aiming at that problem, a new method for the compound faults diagnosis of gearboxes is proposed based on the energy operator demodulating of optimal resonance components. In this method, the genetic algorithm is first used to obtain the optimal decomposition parameters. Then the compound faults vibration signals of a gearbox are subject to resonance-based signal sparse decomposition (RSSD) to separate the fault characteristic signals of the gear and the bearing by using the optimal decomposition parameters. Finally, the separated fault characteristic signals are analyzed by energy operator demodulating, and each one’s instantaneous amplitude can be calculated. According to the spectra of instantaneous amplitudes of fault characteristic signals, the faults of the gear and the bearing can be diagnosed, respectively. The performance of the proposed method is validated by using the simulation data and the experiment vibration signals from a gearbox with compound faults.

  19. 21 CFR 111.415 - What requirements apply to filling, assembling, packaging, labeling, and related operations?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Production and Process Control System: Requirements for Packaging and Labeling Operations § 111.415 What... unlabeled condition for future label operations, to prevent mixups; (f) Assigning a batch, lot, or...

  20. 21 CFR 111.415 - What requirements apply to filling, assembling, packaging, labeling, and related operations?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., packaging, labeling, and related operations? 111.415 Section 111.415 Food and Drugs FOOD AND DRUG... MANUFACTURING PRACTICE IN MANUFACTURING, PACKAGING, LABELING, OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Production and Process Control System: Requirements for Packaging and Labeling Operations § 111.415...

  1. 21 CFR 111.120 - What quality control operations are required for components, packaging, and labels before use in...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... components, packaging, and labels before use in the manufacture of a dietary supplement? 111.120 Section 111... labels before use in the manufacture of a dietary supplement? Quality control operations for components, packaging, and labels before use in the manufacture of a dietary supplement must include: (a) Reviewing...

  2. 21 CFR 111.120 - What quality control operations are required for components, packaging, and labels before use in...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... components, packaging, and labels before use in the manufacture of a dietary supplement? 111.120 Section 111... labels before use in the manufacture of a dietary supplement? Quality control operations for components, packaging, and labels before use in the manufacture of a dietary supplement must include: (a) Reviewing...

  3. 21 CFR 111.120 - What quality control operations are required for components, packaging, and labels before use in...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... components, packaging, and labels before use in the manufacture of a dietary supplement? 111.120 Section 111... Quality Control § 111.120 What quality control operations are required for components, packaging, and..., and labels conform to specifications established under § 111.70 (b) and (d); (c) Conducting...

  4. Operation of Alcator C-Mod with high-Z plasma facing components and implications

    SciTech Connect

    Lipschultz, B.; Lin, Y.; Reinke, M.L.; Hubbard, A.; Hutchinson, I.H.; Irby, J.; LaBombard, B.; Marmar, E.S.; Marr, K.; Terry, J.L.; Wolfe, S.M.; Whyte, D.

    2006-05-15

    Studies of potential plasma facing component (PFC) materials for a magnetic fusion reactor generally conclude that tungsten is the best choice due to its low tritium (T) retention, capability to handle high heat fluxes with low erosion, and robustness to nuclear damage and activation. ITER [F. Perkins et al., Nucl. Fusion 39, 2137 (1999)] may operate with all tungsten PFCs to provide the necessary operational experience for a reactor. Alcator C-Mod [I. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] operates with molybdenum (Mo) high-Z PFCs, which have very similar properties to tungsten. The experiments described herein have provided a unique comparison of operation with or without in situ boron coatings applied to the molybdenum PFCs; the latter are likely most relevant to ITER and beyond. ICRF-heated H-modes were readily achieved without boron coatings although the resultant enhancement in energy confinement was typically small (H{sub ITER,89}{approx}1). Molybdenum concentrations, n{sub Mo}/n{sub e}, rise rapidly after the H-mode transition up to 0.1%, cooling the plasma by line radiation, reducing energy confinement, and/or causing a back H/L transition. Surprisingly, the primarily molybdenum PFC surfaces retain 3.5-5.0x10{sup 20} of injected D{sub 2} molecules per discharge, corresponding to 50% of the injected gas. Plasma current disruptions, both randomly occurring over the course of a day, or planned, reduce the retained D long term. After applying boron coatings, n{sub Mo}/n{sub e} was reduced by a factor of 10-20 with H{sub ITER,89} approaching 2. A world-record volume-average plasma pressure of 1.8 atm at 5.4 T was achieved at the ITER normalized {beta}. The effects of each boronization are found to be limited in time, correlated to time-integrated input energy. Intra- and inter-discharge boronization techniques have been developed with the latter being the most successful. This initial study indicates that a low-Z coating over at least a fraction of

  5. 21 CFR 111.415 - What requirements apply to filling, assembling, packaging, labeling, and related operations?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... MANUFACTURING PRACTICE IN MANUFACTURING, PACKAGING, LABELING, OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS..., package, label, and perform other related operations in a way that ensures the quality of the dietary supplement and that the dietary supplement is packaged and labeled as specified in the master...

  6. The modular structure of the inner-membrane ring component PrgK facilitates assembly of the type III secretion system basal body.

    PubMed

    Bergeron, Julien R C; Worrall, Liam J; De, Soumya; Sgourakis, Nikolaos G; Cheung, Adrienne H; Lameignere, Emilie; Okon, Mark; Wasney, Gregory A; Baker, David; McIntosh, Lawrence P; Strynadka, Natalie C J

    2015-01-01

    The type III secretion system (T3SS) is a large macromolecular assembly found at the surface of many pathogenic Gram-negative bacteria. Its role is to inject toxic "effector" proteins into the cells of infected organisms. The molecular details of the assembly of this large, multimembrane-spanning complex remain poorly understood. Here, we report structural, biochemical, and functional analyses of PrgK, an inner-membrane component of the prototypical Salmonella typhimurium T3SS. We have obtained the atomic structures of the two ring building globular domains and show that the C-terminal transmembrane helix is not essential for assembly and secretion. We also demonstrate that structural rearrangement of the two PrgK globular domains, driven by an interconnecting linker region, may promote oligomerization into ring structures. Finally, we used electron microscopy-guided symmetry modeling to propose a structural model for the intimately associated PrgH-PrgK ring interaction within the assembled basal body. PMID:25533490

  7. Bacterial Community Dynamics in Full-Scale Activated Sludge Bioreactors: Operational and Ecological Factors Driving Community Assembly and Performance

    PubMed Central

    Valentín-Vargas, Alexis; Toro-Labrador, Gladys; Massol-Deyá, Arturo A.

    2012-01-01

    The assembling of bacterial communities in conventional activated sludge (CAS) bioreactors was thought, until recently, to be chaotic and mostly unpredictable. Studies done over the last decade have shown that specific, and often, predictable random and non-random factors could be responsible for that process. These studies have also motivated a “structure–function” paradigm that is yet to be resolved. Thus, elucidating the factors that affect community assembly in the bioreactors is necessary for predicting fluctuations in community structure and function. For this study activated sludge samples were collected during a one-year period from two geographically distant CAS bioreactors of different size. Combining community fingerprinting analysis and operational parameters data with a robust statistical analysis, we aimed to identify relevant links between system performance and bacterial community diversity and dynamics. In addition to revealing a significant β-diversity between the bioreactors’ communities, results showed that the largest bioreactor had a less dynamic but more efficient and diverse bacterial community throughout the study. The statistical analysis also suggests that deterministic factors, as opposed to stochastic factors, may have a bigger impact on the community structure in the largest bioreactor. Furthermore, the community seems to rely mainly on mechanisms of resistance and functional redundancy to maintain functional stability. We suggest that the ecological theories behind the Island Biogeography model and the species-area relationship were appropriate to predict the assembly of bacterial communities in these CAS bioreactors. These results are of great importance for engineers and ecologists as they reveal critical aspects of CAS systems that could be applied towards improving bioreactor design and operation. PMID:22880016

  8. A novel high-speed production process to create modular components for the bottom-up assembly of large-scale tissue-engineered constructs.

    PubMed

    Khan, Omar F; Voice, Derek N; Leung, Brendan M; Sefton, Michael V

    2015-01-01

    To replace damaged or diseased tissues, large tissue-engineered constructs can be prepared by assembling modular components in a bottom-up approach. However, a high-speed method is needed to produce sufficient numbers of these modules for full-sized tissue substitutes. To this end, a novel production technique is devised, combining air shearing and a plug flow reactor-style design to rapidly produce large quantities of hydrogel-based (here type I collagen) cylindrical modular components with tunable diameters and length. Using this technique, modules containing NIH 3T3 cells show greater than 95% viability while endothelial cell surface attachment and confluent monolayer formation are demonstrated. Additionally, the rapidly produced modules are used to assemble large tissue constructs (>1 cm(3) ) in vitro. Module building blocks containing luciferase-expressing L929 cells are packed in full size adult rat-liver-shaped bioreactors and perfused with cell medium, to demonstrate the capacity to build organ-shaped constructs; bioluminescence demonstrates sustained viability over 3 d. Cardiomyocyte-embedded modules are also used to assemble electrically stimulatable contractile tissue. PMID:24895070

  9. A novel high-speed production process to create modular components for the bottom-up assembly of large scale tissue engineered constructs

    PubMed Central

    Khan, Omar F.; Voice, Derek N.; Leung, Brendan M.

    2014-01-01

    To replace damaged or diseased tissues, large tissue-engineered constructs can be prepared by assembling modular components in a bottom-up approach. However, a high speed method is needed to produce sufficient numbers of these modules for full-sized tissue substitutes. To this end, we have devised a novel production technique that combines air shearing and a plug flow reactor-style design to rapidly produce large quantities of hydrogel-based (here type I collagen) cylindrical modular components with tunable diameters and length. Using this technique, modules containing NIH 3T3 cells showed greater than 95% viability while endothelial cell surface attachment and confluent monolayer formation was demonstrated. Additionally, the rapidly-produced modules were used to assemble large tissue constructs (> 1 cm3) in vitro. Module building blocks containing luciferase-expressing L929 cells were packed in full size adult rat liver-shaped bioreactors and perfused with cell medium, to demonstrate the capacity to build organ-shaped constructs; bioluminescence demonstrated sustained viability over 3 days. Cardiomyocyte embedded modules were also used to assemble electrically stimulatable contractile tissue. PMID:24895070

  10. Specific features of operation of a membrane-electrode assembly of an air-hydrogen fuel cell

    NASA Astrophysics Data System (ADS)

    Nechitailov, A. A.; Glebova, N. V.; Koshkina, D. V.; Tomasov, A. A.; Zelenina, N. K.; Terukova, E. E.

    2013-09-01

    Specific features of the operation of the membrane-electrode assembly with high catalytic activity that are a part of the simplified design of a low-temperature air-hydrogen fuel cell under conditions of forced and natural convection of air on the cathode are studied. The governing effect of water balance on the specific power of the fuel cell in the stationary mode (˜1 h) is shown, and the range of the operating conditions of the cell with self-control is determined. The power of the fuel cell at an efficiency of ˜50% and the surface density of platinum on a cathode of ≈0.2 mg/cm2 is 200-250 and 100 mW/cm2 in the forced and natural air-convection modes, respectively, which is comparable with the advanced results.

  11. Human Assisted Assembly Processes

    SciTech Connect

    CALTON,TERRI L.; PETERS,RALPH R.

    2000-01-01

    Automatic assembly sequencing and visualization tools are valuable in determining the best assembly sequences, but without Human Factors and Figure Models (HFFMs) it is difficult to evaluate or visualize human interaction. In industry, accelerating technological advances and shorter market windows have forced companies to turn to an agile manufacturing paradigm. This trend has promoted computerized automation of product design and manufacturing processes, such as automated assembly planning. However, all automated assembly planning software tools assume that the individual components fly into their assembled configuration and generate what appear to be a perfectly valid operations, but in reality the operations cannot physically be carried out by a human. Similarly, human figure modeling algorithms may indicate that assembly operations are not feasible and consequently force design modifications; however, if they had the capability to quickly generate alternative assembly sequences, they might have identified a feasible solution. To solve this problem HFFMs must be integrated with automated assembly planning to allow engineers to verify that assembly operations are possible and to see ways to make the designs even better. Factories will very likely put humans and robots together in cooperative environments to meet the demands for customized products, for purposes including robotic and automated assembly. For robots to work harmoniously within an integrated environment with humans the robots must have cooperative operational skills. For example, in a human only environment, humans may tolerate collisions with one another if they did not cause much pain. This level of tolerance may or may not apply to robot-human environments. Humans expect that robots will be able to operate and navigate in their environments without collisions or interference. The ability to accomplish this is linked to the sensing capabilities available. Current work in the field of cooperative

  12. A Motor Drive Electronics Assembly for Mars Curiosity Rover: An Example of Assembly Qualification for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Kolawa, Elizabeth; Chen, Yuan; Mojarradi, Mohammad M.; Weber, Carissa Tudryn; Hunter, Don J.

    2013-01-01

    This paper describes the technology development and infusion of a motor drive electronics assembly for Mars Curiosity Rover under space extreme environments. The technology evaluation and qualification as well as space qualification of the assembly are detailed and summarized. Because of the uncertainty of the technologies operating under the extreme space environments and that a high level reliability was required for this assembly application, both component and assembly board level qualifications were performed.

  13. Expression of store-operated channel components in prostate cancer: the prognostic paradox.

    PubMed

    Perrouin Verbe, Marie-Aimée; Bruyere, Franck; Rozet, Francois; Vandier, Christophe; Fromont, Gaelle

    2016-03-01

    In vitro studies in prostate cancer (PCa) cell lines have suggested a key and complex role of the store-operated channels (SOCs) in major cancer hallmarks, including proliferation, apoptosis, and migration. In the present study, we investigated in vivo the expression of the SOC components transient receptor potential canonical (TRPC) 1, TRPC4, Orai1, and stromal interaction molecule 1 (STIM1), during all stages of PCa progression, and evaluated their prognostic impact in clinically localized cancer (CLC). The expressions of TRPC1, TRPC4, Orai1, STIM1, and the androgen receptor and the proliferation marker Ki-67 were evaluated by immunohistochemistry on tissue microarrays containing samples of normal prostate tissues (n=91), prostatic intraepithelial neoplasia (n=61), CLC surgically treated (n=238), and castration-resistant prostate cancer (CRPC; n=45). All markers significantly increased in CLC compared with normal tissues and (for Orai1 and STIM1) in advanced pT3 tumors compared with pT2. In contrast, their expression decreased in CRPC, particularly for Orai1. In CLC, staining for TRPC1, Orai1 and STIM1 correlated with androgen receptor expression, and TRPC1 status was associated with lower proliferation and longer recurrence-free survival, after adjusting for classical prognostic markers. Although increased SOC expression during PCa progression supports a role in cancer cell migration, the inverse association between TRPC1 and biochemical relapse suggests a protective effect in CLC. Moreover, the dramatic down-regulation of Orai1 in CRPC supports its role in apoptosis at this stage of the disease. These results call for caution when considering SOCs as potential therapeutic targets for PCa. PMID:26826413

  14. Fission yeast MOZART1/Mzt1 is an essential γ-tubulin complex component required for complex recruitment to the microtubule organizing center, but not its assembly

    PubMed Central

    Masuda, Hirohisa; Mori, Risa; Yukawa, Masashi; Toda, Takashi

    2013-01-01

    γ-Tubulin plays a universal role in microtubule nucleation from microtubule organizing centers (MTOCs) such as the animal centrosome and fungal spindle pole body (SPB). γ-Tubulin functions as a multiprotein complex called the γ-tubulin complex (γ-TuC), consisting of GCP1–6 (GCP1 is γ-tubulin). In fungi and flies, it has been shown that GCP1–3 are core components, as they are indispensable for γ-TuC complex assembly and cell division, whereas the other three GCPs are not. Recently a novel conserved component, MOZART1, was identified in humans and plants, but its precise functions remain to be determined. In this paper, we characterize the fission yeast homologue Mzt1, showing that it is essential for cell viability. Mzt1 is present in approximately equal stoichiometry with Alp4/GCP2 and localizes to all the MTOCs, including the SPB and interphase and equatorial MTOCs. Temperature-sensitive mzt1 mutants display varying degrees of compromised microtubule organization, exhibiting multiple defects during both interphase and mitosis. Mzt1 is required for γ-TuC recruitment, but not sufficient to localize to the SPB, which depends on γ-TuC integrity. Intriguingly, the core γ-TuC assembles in the absence of Mzt1. Mzt1 therefore plays a unique role within the γ-TuC components in attachment of this complex to the major MTOC site. PMID:23885124

  15. Data Collection for Current U.S. Wind Energy Projects: Component Costs, Financing, Operations, and Maintenance; January 2011 - September 2011

    SciTech Connect

    Martin-Tretton, M.; Reha, M.; Drunsic, M.; Keim, M.

    2012-01-01

    DNV Renewables (USA) Inc. (DNV) used an Operations and Maintenance (O&M) Cost Model to evaluate ten distinct cost scenarios encountered under variations in wind turbine component failure rates. The analysis considers: (1) a Reference Scenario using the default part failure rates within the O&M Cost Model, (2) High Failure Rate Scenarios that increase the failure rates of three major components (blades, gearboxes, and generators) individually, (3) 100% Replacement Scenarios that model full replacement of these components over a 20 year operating life, and (4) Serial Failure Scenarios that model full replacement of blades, gearboxes, and generators in years 4 to 6 of the wind project. DNV selected these scenarios to represent a broad range of possible operational experiences. Also in this report, DNV summarizes the predominant financing arrangements used to develop wind energy projects over the past several years and provides summary data on various financial metrics describing those arrangements.

  16. Thermo-mechanical analysis of a user filter assembly for undulator/wiggler operations at the Advanced Photon Source

    SciTech Connect

    Nian, H.L.T.; Kuzay, T.M.; Collins, J.; Shu, D.; Benson, C.; Dejus, R.

    1996-12-31

    This paper reports a thermo-mechanical study of a beamline filter (user filter) for undulator/wiggler operations. It is deployed in conjunction with the current commissioning window assembly on the APS insertion device (ID) front ends. The beamline filter at the Advanced Photon Source (APS) will eventually be used in windowless operations also. Hence survival and reasonable life expectancy of the filters under intense insertion device (ID) heat flu are crucial to the beamline operations. To accommodate various user requirements, the filter is configured to be a multi-choice type and smart to allow only those filter combinations that will be safe to operate with a given ring current and beamline insertion device gap. However, this paper addresses only the thermo-mechanical analysis of individual filter integrity and safety in all combinations possible. The current filter design is configured to have four filter frames in a cascade with each frame holding five filters. This allows a potential 625 total filter combinations. Thermal analysis for all of these combinations becomes a mammoth task considering the desired choices for filter materials (pyrolitic graphite and metallic filters), filter thicknesses, undulator gaps, and the beam currents. The paper addresses how this difficult task has been reduced to a reasonable effort and computational level. Results from thermo-mechanical analyses of the filter combinations are presented both in tabular and graphical format.

  17. RhoB is a component of the human cytomegalovirus assembly complex and is required for efficient viral production

    PubMed Central

    Goulidaki, Nektaria; Alarifi, Saud; Alkahtani, Saad H; Al-Qahtani, Ahmed; Spandidos, Demetrios A; Stournaras, Christos; Sourvinos, George

    2015-01-01

    Human Cytomegalovirus (HCMV), an ubiquitous β-herpesvirus, is a significant pathogen that causes medically severe diseases in immunocompromised individuals and in congenitally infected neonates. RhoB belongs to the family of Rho GTPases, which regulates diverse cellular processes. Rho proteins are implicated in the entry and egress from the host cell of mainly α- and γ-herpesviruses, whereas β-herpesviruses are the least studied in this regard. Here, we studied the role of RhoB GTPase during HCMV lytic infection. Microscopy analysis, both in fixed and live infected cells showed that RhoB was translocated to the assembly complex/compartment (AC) of HCMV, a cytoplasmic zone in infected cells where many viral structural proteins are known to accumulate and assembly of new virions takes place. Furthermore, RhoB was localized at the AC even when the expression of the late HCMV AC proteins was inhibited. At the very late stages of infection, cellular projections were formed containing RhoB and HCMV virions, potentially contributing to the successful viral spread. Interestingly, the knockdown of RhoB in HCMV-infected cells resulted in a significant reduction of the virus titer and could also affect the accumulation of AC viral proteins at this subcellular compartment. RhoB knockdown also affected actin fibers' structure. Actin reorganization was observed at late stages of infection originating from the viral AC and surrounding the cellular projections, implying a potential interplay between RhoB and actin during HCMV assembly and egress. In conclusion, our results demonstrate for the first time that RhoB is a constituent of the viral AC and is required for HCMV productive infection. PMID:26114383

  18. From Research to Operations: Integrating Components of an Advanced Diagnostic System with an Aspect-Oriented Framework

    NASA Technical Reports Server (NTRS)

    Fletcher, Daryl P.; Alena, Richard L.; Akkawi, Faisal; Duncavage, Daniel P.

    2004-01-01

    This paper presents some of the challenges associated with bringing software projects from the research world into an operationa1 environment. While the core functional components of research-oriented software applications can have great utility in an operational setting, these applications often lack aspects important in an operational environment such as logging and security. Furthermore, these stand-alone applications, sometimes developed in isolation from one another, can produce data products useful to other applications in a software ecosystem.

  19. Aly and THO are required for assembly of the human TREX complex and association of TREX components with the spliced mRNA

    PubMed Central

    Chi, Binkai; Wang, Qingliang; Wu, Guifen; Tan, Ming; Wang, Lantian; Shi, Min; Chang, Xingya; Cheng, Hong

    2013-01-01

    The mRNA export complex TREX (TREX) is known to contain Aly, UAP56, Tex1 and the THO complex, among which UAP56 is required for TREX assembly. Here, we systematically investigated the role of each human TREX component in TREX assembly and its association with the mRNA. We found that Tex1 is essentially a subunit of the THO complex. Aly, THO and UAP56 are all required for assembly of TREX, in which Aly directly interacts with THO subunits Thoc2 and Thoc5. Both Aly and THO function in linking UAP56 to the cap-binding protein CBP80. Interestingly, association of UAP56 with the spliced mRNA, but not with the pre-mRNA, requires Aly and THO. Unexpectedly, we found that Aly and THO require each other to associate with the spliced mRNA. Consistent with these biochemical results, similar to Aly and UAP56, THO plays critical roles in mRNA export. Together, we propose that Aly, THO and UAP56 form a highly integrated unit to associate with the spliced mRNA and function in mRNA export. PMID:23222130

  20. Durability of Membrane Electrode Assemblies (MEAs) in PEM Fuel Cells Operated on Pure Hydrogen and Oxygen

    NASA Technical Reports Server (NTRS)

    Stanic, Vesna; Braun, James; Hoberecht, Mark

    2003-01-01

    Proton exchange membrane (PEM) fuel cells are energy sources that have the potential to replace alkaline fuel cells for space programs. Broad power ranges, high peak-to-nominal power capabilities, low maintenance costs, and the promise of increased life are the major advantages of PEM technology in comparison to alkaline technology. The probability of PEM fuel cells replacing alkaline fuel cells for space applications will increase if the promise of increased life is verified by achieving a minimum of 10,000 hours of operating life. Durability plays an important role in the process of evaluation and selection of MEAs for Teledyne s Phase I contract with the NASA Glenn Research Center entitled Proton Exchange Membrane Fuel cell (PEMFC) Power Plant Technology Development for 2nd Generation Reusable Launch Vehicles (RLVs). For this contract, MEAs that are typically used for H2/air operation were selected as potential candidates for H2/O2 PEM fuel cells because their catalysts have properties suitable for O2 operation. They were purchased from several well-established MEA manufacturers who are world leaders in the manufacturing of diverse products and have committed extensive resources in an attempt to develop and fully commercialize MEA technology. A total of twelve MEAs used in H2/air operation were initially identified from these manufacturers. Based on the manufacturers specifications, nine of these were selected for evaluation. Since 10,000 hours is almost equivalent to 14 months, it was not possible to perform continuous testing with each MEA selected during Phase I of the contract. Because of the lack of time, a screening test on each MEA was performed for 400 hours under accelerated test conditions. The major criterion for an MEA pass or fail of the screening test was the gas crossover rate. If the gas crossover rate was higher than the membrane intrinsic permeability after 400 hours of testing, it was considered that the MEA had failed the test. Three types of

  1. [Finite element analysis of a cemented ceramic femoral component for the assembly situation in total knee arthroplasty].

    PubMed

    Schultze, Christine; Klüss, Daniel; Martin, Heiner; Hingst, Volker; Mittelmeier, Wolfram; Schmitz, Klaus-Peter; Bader, Rainer

    2007-08-01

    The femoral components of the total knee replacements are generally made of metal. In contrast, ceramic femoral components promise improved tribological and allergological properties. However, ceramic components present a risk of failure as a result of stress peaks. Stress peaks can be minimised through adequate implant design, proper material composition and optimum force transmission between bone and implant. Thus, the quality of the implant fixation is a crucial factor. The objective of the present study was to analyse the influence of the cement layer thickness on stress states in the ceramic femoral component and in the femur. Two- and three- dimensional finite element analyses of an artificial knee joint with cement layers of different thickness and with an unbalanced cement layer thickness between the ceramic femoral component and the femur were performed. Higher stress regions occurred in the area of force transmission and in the median plane. The maximum calculated stresses were below the accepted tensile strength. Stresses were found to be lower for cement layer thickness of <2.0 mm. PMID:17691864

  2. A Three‐Component Assembly Promoted by Boronic Acids Delivers a Modular Fluorophore Platform (BASHY Dyes)†

    PubMed Central

    Santos, Fábio M. F.; Rosa, João N.; Candeias, Nuno R.; Carvalho, Cátia Parente; Matos, Ana I.; Ventura, Ana E.; Florindo, Helena F.; Silva, Liana C.

    2015-01-01

    Abstract The modular assembly of boronic acids with Schiff‐base ligands enabled the construction of innovative fluorescent dyes [boronic acid salicylidenehydrazone (BASHY)] with suitable structural and photophysical properties for live cell bioimaging applications. This reaction enabled the straightforward synthesis (yields up to 99 %) of structurally diverse and photostable dyes that exhibit a polarity‐sensitive green‐to‐yellow emission with high quantum yields of up to 0.6 in nonpolar environments. These dyes displayed a high brightness (up to 54 000 m −1 cm−1). The promising structural and fluorescence properties of BASHY dyes fostered the preparation of non‐cytotoxic, stable, and highly fluorescent poly(lactide‐co‐glycolide) nanoparticles that were effectively internalized by dendritic cells. The dyes were also shown to selectively stain lipid droplets in HeLa cells, without inducing any appreciable cytotoxicity or competing plasma membrane labeling; this confirmed their potential as fluorescent stains. PMID:26691630

  3. 21 CFR 111.120 - What quality control operations are required for components, packaging, and labels before use in...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... components, packaging, and labels before use in the manufacture of a dietary supplement? 111.120 Section 111...) FOOD FOR HUMAN CONSUMPTION CURRENT GOOD MANUFACTURING PRACTICE IN MANUFACTURING, PACKAGING, LABELING, OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Production and Process Control System: Requirements...

  4. COTS-based OO-component approach for software inter-operability and reuse (software systems engineering methodology)

    NASA Technical Reports Server (NTRS)

    Yin, J.; Oyaki, A.; Hwang, C.; Hung, C.

    2000-01-01

    The purpose of this research and study paper is to provide a summary description and results of rapid development accomplishments at NASA/JPL in the area of advanced distributed computing technology using a Commercial-Off--The-Shelf (COTS)-based object oriented component approach to open inter-operable software development and software reuse.

  5. Assembly of Xylanases into Designer Cellulosomes Promotes Efficient Hydrolysis of the Xylan Component of a Natural Recalcitrant Cellulosic Substrate

    PubMed Central

    Moraïs, Sarah; Barak, Yoav; Hadar, Yitzhak; Wilson, David B.; Shoham, Yuval; Lamed, Raphael; Bayer, Edward A.

    2011-01-01

    ABSTRACT In nature, the complex composition and structure of the plant cell wall pose a barrier to enzymatic degradation. Nevertheless, some anaerobic bacteria have evolved for this purpose an intriguing, highly efficient multienzyme complex, the cellulosome, which contains numerous cellulases and hemicellulases. The rod-like cellulose component of the plant cell wall is embedded in a colloidal blend of hemicelluloses, a major component of which is xylan. In order to enhance enzymatic degradation of the xylan component of a natural complex substrate (wheat straw) and to study the synergistic action among different xylanases, we have employed a variation of the designer cellulosome approach by fabricating a tetravalent complex that includes the three endoxylanases of Thermobifida fusca (Xyn10A, Xyn10B, and Xyn11A) and an Xyl43A β-xylosidase from the same bacterium. Here, we describe the conversion of Xyn10A and Xyl43A to the cellulosomal mode. The incorporation of the Xyl43A enzyme together with the three endoxylanases into a common designer cellulosome served to enhance the level of reducing sugars produced during wheat straw degradation. The enhanced synergistic action of the four xylanases reflected their immediate juxtaposition in the complex, and these tetravalent xylanolytic designer cellulosomes succeeded in degrading significant (~25%) levels of the total xylan component of the wheat straw substrate. The results suggest that the incorporation of xylanases into cellulosome complexes is advantageous for efficient decomposition of recalcitrant cellulosic substrates—a distinction previously reserved for cellulose-degrading enzymes. PMID:22086489

  6. P-Body Components Are Required for Ty1 Retrotransposition during Assembly of Retrotransposition-Competent Virus-Like Particles▿

    PubMed Central

    Checkley, Mary Ann; Nagashima, Kunio; Lockett, Stephen J.; Nyswaner, Katherine M.; Garfinkel, David J.

    2010-01-01

    Ty1 is a retrovirus-like retrotransposon whose replication is influenced by diverse cellular processes in Saccharomyces cerevisiae. We have identified cytoplasmic P-body components encoded by DHH1, KEM1, LSM1, and PAT1 as cofactors that posttranscriptionally enhance Ty1 retrotransposition. Using fluorescent in situ hybridization and immunofluorescence microscopy, we found that Ty1 mRNA and Gag colocalize to discrete cytoplasmic foci in wild-type cells. These foci, which are distinct from P-bodies, do not form in P-body component mutants or under conditions suboptimal for retrotransposition. Our immunoelectron microscopy (IEM) data suggest that mRNA/Gag foci are sites where virus-like particles (VLPs) cluster. Overexpression of Ty1 leads to a large increase in retrotransposition in wild-type cells, which allows VLPs to be detected by IEM. However, retrotransposition is still reduced in P-body component mutants under these conditions. Moreover, the percentage of Ty1 mRNA/Gag foci and VLP clusters and levels of integrase and reverse transcriptase are reduced in these mutants. Ty1 antisense RNAs, which have been reported to inhibit Ty1 transposition, are more abundant in the kem1Δ mutant and colocalize with Ty1 mRNA in the cytoplasm. Therefore, Kem1p may prevent the aggregation of Ty1 antisense and mRNAs. Overall, our results suggest that P-body components enhance the formation of retrotransposition-competent Ty1 VLPs. PMID:19901074

  7. Mountain Plains Learning Experience Guide: Radio and T.V. Repair. Course: Basic Radio Theory & Component Assembly.

    ERIC Educational Resources Information Center

    Vetter, B.; And Others

    One of four individualized courses included in a radio and television repair curriculum, this course focuses on diagnosing difficulties, making necessary adjustments, and removing and replacing components for a radio receiver. The course is comprised of seven units: (1) Introduction to Radio, (2) Crystal Detectors, (3) Regenerative Receivers, (4)…

  8. NASA JPL Distributed Systems Technology (DST) Object-Oriented Component Approach for Software Inter-Operability and Reuse

    NASA Technical Reports Server (NTRS)

    Hall, Laverne; Hung, Chaw-Kwei; Lin, Imin

    2000-01-01

    The purpose of this paper is to provide a description of NASA JPL Distributed Systems Technology (DST) Section's object-oriented component approach to open inter-operable systems software development and software reuse. It will address what is meant by the terminology object component software, give an overview of the component-based development approach and how it relates to infrastructure support of software architectures and promotes reuse, enumerate on the benefits of this approach, and give examples of application prototypes demonstrating its usage and advantages. Utilization of the object-oriented component technology approach for system development and software reuse will apply to several areas within JPL, and possibly across other NASA Centers.

  9. Continuous operation of membrane capacitive deionization cells assembled with dissimilar potential of zero charge electrode pairs.

    PubMed

    Omosebi, Ayokunle; Gao, Xin; Rentschler, Jeffery; Landon, James; Liu, Kunlei

    2015-05-15

    The performance of single stack membrane assisted capacitive deionization cells configured with pristine and nitric acid oxidized Zorflex (ZX) electrode pairs was evaluated. The potentials of zero charge for the pristine and oxidized electrodes were respectively -0.2V and 0.2V vs. SCE. Four cell combinations of the electrodes including a pristine anode-pristine cathode, oxidized anode-pristine cathode, pristine anode-oxidized cathode, and oxidized anode-oxidized cathode were investigated. When the PZC was located within the polarization window of the electrode, diminished performance was observed. The cells were operated at 1.2 V and based on potential distribution results, the effective working potentials were ∼0.9, 0.8, 1.2, and 1.1 V for the pristine anode-pristine cathode, oxidized anode-pristine cathode, pristine anode-oxidized cathode, and oxidized anode-oxidized cathode cells, respectively. The highest electrosorption capacity of 17 mg NaCl/g ZX was observed for the pristine anode-oxidized cathode cell, where both PZCs were outside of the polarization window. PMID:25432447

  10. Core operational Sentinel-3 marine data product services as part of the Copernicus Space Component

    NASA Astrophysics Data System (ADS)

    Bonekamp, Hans; Montagner, Francois; Santacesaria, Vincenzo; Nogueira Loddo, Carolina; Wannop, Sally; Tomazic, Igor; O'Carroll, Anne; Kwiatkowska, Ewa; Scharroo, Remko; Wilson, Hilary

    2016-06-01

    This paper describes the marine data available from the Marine Centre, part of the Sentinel-3 Payload Data Ground Segment, located at the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). The Marine Centre together with the existing EUMETSAT facilities provides a centralised operational service for operational oceanography. These descriptions of the marine data are produced with a focus on a user service perspective. They include the scientific and operational feedback mechanisms on the performance of the services as well as practical information and user support mechanisms.