Science.gov

Sample records for component flow test

  1. Integrated flow and structural modeling for rocket engine component test facility propellant systems

    NASA Technical Reports Server (NTRS)

    Dequay, L.; Lusk, A.; Nunez, S.

    1991-01-01

    A set of PC-based computational Dynamic Fluid Flow Simulation models is presented for modeling facility gas and cryogenic systems. Data obtained provide important information regarding performance envelope parameters for the facility using different engine components; time-dependent valve setting for controlling steady-state, quasi-steady state, and transient profiles; optimum facility pipe and pipe component sizes and parameters; momentum transfer loads; and fluid conditions at critical points. A set of COSMIC NASTRAN-based finite element models is also presented to evaluate the loads and stresses on test facility piping systems from fluid and gaseous effects, thermal chill down, and occasional wind loads. The models are based on Apple Macintosh software which makes it possible to change numerous parameters.

  2. Flow Components in a NaK Test Loop Designed to Simulate Conditions in a Nuclear Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Godfroy, Thomas J.

    2008-01-01

    A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 5 psi, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.5 GPM.

  3. Flow Components in a NaK Test Loop Designed to Simulate Conditions in a Nuclear Surface Power Reactor

    SciTech Connect

    Polzin, Kurt A.; Godfroy, Thomas J.

    2008-01-21

    A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 34.5 kPa, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.114 m{sup 3}/hr.

  4. Testing and Performance Verification of a High Bypass Ratio Turbofan Rotor in an Internal Flow Component Test Facility

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.; Podboy, Gary G.; Miller, Christopher J.; Thorp, Scott A.

    2009-01-01

    A 1/5 scale model rotor representative of a current technology, high bypass ratio, turbofan engine was installed and tested in the W8 single-stage, high-speed, compressor test facility at NASA Glenn Research Center (GRC). The same fan rotor was tested previously in the GRC 9x15 Low Speed Wind Tunnel as a fan module consisting of the rotor and outlet guide vanes mounted in a flight-like nacelle. The W8 test verified that the aerodynamic performance and detailed flow field of the rotor as installed in W8 were representative of the wind tunnel fan module installation. Modifications to W8 were necessary to ensure that this internal flow facility would have a flow field at the test package that is representative of flow conditions in the wind tunnel installation. Inlet flow conditioning was designed and installed in W8 to lower the fan face turbulence intensity to less than 1.0 percent in order to better match the wind tunnel operating environment. Also, inlet bleed was added to thin the casing boundary layer to be more representative of a flight nacelle boundary layer. On the 100 percent speed operating line the fan pressure rise and mass flow rate agreed with the wind tunnel data to within 1 percent. Detailed hot film surveys of the inlet flow, inlet boundary layer and fan exit flow were compared to results from the wind tunnel. The effect of inlet casing boundary layer thickness on fan performance was quantified. Challenges and lessons learned from testing this high flow, low static pressure rise fan in an internal flow facility are discussed.

  5. Informed Test Component Weighting.

    ERIC Educational Resources Information Center

    Rudner, Lawrence M.

    2001-01-01

    Identifies and evaluates alternative methods for weighting tests. Presents formulas for composite reliability and validity as a function of component weights and suggests a rational process that identifies and considers trade-offs in determining weights. Discusses drawbacks to implicit weighting and explicit weighting and the difficulty of…

  6. Advanced nozzle and engine components test facility

    NASA Technical Reports Server (NTRS)

    Beltran, Luis R.; Delroso, Richard L.; Delrosario, Ruben

    1992-01-01

    A test facility for conducting scaled advanced nozzle and engine component research is described. The CE-22 test facility, located in the Engine Research Building of the NASA Lewis Research Center, contains many systems for the economical testing of advanced scale-model nozzles and engine components. The combustion air and altitude exhaust systems are described. Combustion air can be supplied to a model up to 40 psig for primary air flow, and 40, 125, and 450 psig for secondary air flow. Altitude exhaust can be simulated up to 48,000 ft, or the exhaust can be atmospheric. Descriptions of the multiaxis thrust stand, a color schlieren flow visualization system used for qualitative flow analysis, a labyrinth flow measurement system, a data acquisition system, and auxiliary systems are discussed. Model recommended design information and temperature and pressure instrumentation recommendations are included.

  7. NEXT Thruster Component Verification Testing

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Sovey, James S.

    2007-01-01

    Component testing is a critical part of thruster life validation activities under NASA s Evolutionary Xenon Thruster (NEXT) project testing. The high voltage propellant isolators were selected for design verification testing. Even though they are based on a heritage design, design changes were made because the isolators will be operated under different environmental conditions including temperature, voltage, and pressure. The life test of two NEXT isolators was therefore initiated and has accumulated more than 10,000 hr of operation. Measurements to date indicate only a negligibly small increase in leakage current. The cathode heaters were also selected for verification testing. The technology to fabricate these heaters, developed for the International Space Station plasma contactor hollow cathode assembly, was transferred to Aerojet for the fabrication of the NEXT prototype model ion thrusters. Testing the contractor-fabricated heaters is necessary to validate fabrication processes for high reliability heaters. This paper documents the status of the propellant isolator and cathode heater tests.

  8. Measurement of two-component flow using ultrasonic flowmeters

    NASA Astrophysics Data System (ADS)

    Whitehouse, J. C.; Eghbali, D. A.; Flitton, V. E.; Anderson, D. G.

    Calibration of transit-time and Doppler ultrasonic flowmeters under two-component flow conditions has been conducted on 400 mm (16-in.) pipe. Testing covered total flows of 0.19 to 1.89 m(exp 3)/s (3000 to 30,000 gpm) and void fractions up to 40 percent. Both flowmeter types accurately measured total volumetric flow over a portion of their ranges. Pipe average void fraction, based on a three-beam gamma densitometer, was used to determine water component flow under stratified flow conditions, with similar results.

  9. 3. VIEW LOOKING NORTH, COMPONENTS TEST LABORATORY, DYNAMIC TEST FACILITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW LOOKING NORTH, COMPONENTS TEST LABORATORY, DYNAMIC TEST FACILITY (SATURN V IN BACKGROUND). - Marshall Space Flight Center, East Test Area, Components Test Laboratory, Huntsville, Madison County, AL

  10. Oxidizer heat exchanger component testing

    NASA Technical Reports Server (NTRS)

    Kmiec, T.; Kanic, P.

    1986-01-01

    As part of the RL10 Rocket Engine Product Improvement Program, Oxidizer Heat Exchanger (OHE) stages 1, 2, and 3 were designed and fabricated during late 1983 and early 1984. The purpose of the OHE is to provide gaseous oxygen to the propellant injector for stable engine operation at tank head idle and pumped idle operating modes. This report summarizes the OHE stages 1 and 3 rig testing, and includes the separation of the stage 1-and-2 assembly and the remanifolding of stage 1. The OHE performance analysis and analytical model modifications for both stages are also presented. The flow tests were accomplished during the time period from 9 October 1984 to 12 November 1984.

  11. Oxidizer heat exchanger component test

    NASA Technical Reports Server (NTRS)

    Kanic, P. G.

    1988-01-01

    The RL10-IIB engine, is capable of multimode thrust operation. The engine operates at two low-thrust levels: tank head idle (THI), approximately 1 to 2 percent of full thrust; and pumped idle, 10 percent of full thrust. Operation at THI provides vehicle propellant settling thrust and efficient thermal conditioning; PI operation provides vehicle tank prepressurization and maneuver thrust for low-g deployment. Stable combustion of the RL10-IIB engine during the low-thrust operating modes can be accomplished by using a heat exchanger to supply gaseous oxygen to the propellant injector. The oxidized heat exchanger (OHE) vaporizes the liquid oxygen using hydrogen as the energy source. This report summarizes the test activity and post-test data analysis for two possible heat exchangers, each of which employs a completely different design philosophy. One design makes use of a low-heat transfer (PHT) approach in combination with a volume to attenuate pressure and flow oscillations. The test data showed that the LHT unit satisfied the oxygen exit quality of 0.95 or greater in both the THI and PI modes while maintaining stability. The HHT unit fulfilled all PI requirements; data for THI satisfactory operation is implied from experimental data that straddle the exact THI operating point.

  12. Explosive components facility certification tests

    SciTech Connect

    Dorrell, L.; Johnson, D.

    1995-08-01

    Sandia National Laboratories has recently completed construction of a new Explosive Components Facility (ECF) that will be used for the research and development of advanced explosives technology. The ECF includes nine indoor firing pads for detonating explosives and monitoring the detonations. Department of Energy requirements for certification of this facility include detonation of explosive levels up to 125 percent of the rated firing pad capacity with no visual structural degradation resulting from the explosion. The Explosives Projects and Diagnostics Department at Sandia decided to expand this certification process to include vibration and acoustic monitoring at various locations throughout the building during these explosive events. This information could then be used to help determine the best locations for noise and vibration sensitive equipment (e.g. scanning electron microscopes) used for analysis throughout the building. This facility has many unique isolation features built into the explosive chamber and laboratory areas of the building that allow normal operation of other building activities during explosive tests. This paper discusses the design of this facility and the various types of explosive testing performed by the Explosives Projects and Diagnostics Department at Sandia. However, the primary focus of the paper is directed at the vibration and acoustic data acquired during the certification process. This includes the vibration test setup and data acquisition parameters, as well as analysis methods used for generating peak acceleration levels and spectral information. Concerns over instrumentation issues such as the choice of transducers (appropriate ranges, resonant frequencies, etc.) and measurements with long cable lengths (500 feet) are also discussed.

  13. Scale modeling flow-induced vibrations of reactor components

    SciTech Connect

    Mulcahy, T M

    1982-06-01

    Similitude relationships currently employed in the design of flow-induced vibration scale-model tests of nuclear reactor components are reviewed. Emphasis is given to understanding the origins of the similitude parameters as a basis for discussion of the inevitable distortions which occur in design verification testing of entire reactor systems and in feature testing of individual component designs for the existence of detrimental flow-induced vibration mechanisms. Distortions of similitude parameters made in current test practice are enumerated and selected example tests are described. Also, limitations in the use of specific distortions in model designs are evaluated based on the current understanding of flow-induced vibration mechanisms and structural response.

  14. 4. VIEW SOUTHWEST COMPONENTS TEST LAB TEST BAY DETAIL SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW SOUTHWEST COMPONENTS TEST LAB TEST BAY DETAIL SHOWING EMERGENCY SHOWER, AND EYEWASH, AND OBSERVATION WINDOW. STORAGE TANKS ON ROOF. - Marshall Space Flight Center, East Test Area, Components Test Laboratory, Huntsville, Madison County, AL

  15. Fluorescent Particles For Flow Testing

    NASA Technical Reports Server (NTRS)

    Bonnell, Jeremy L.; Stern, Susan M.; Torkelson, Jan R.

    1995-01-01

    Small alumina spheres coated with fluorescent dye used in flow testing of transparent plastic model of check valve. Entrained fluroescent particles make flows visible. After completion of flow test, particles remaining in valve easily detectable and removed for measurement of their sizes.

  16. Component test program for variable-cycle engines

    NASA Technical Reports Server (NTRS)

    Powers, A. G.; Whitlow, J. B.; Stitt, L. E.

    1976-01-01

    Variable cycle engine (VCE) concepts for a supersonic cruise aircraft were studied. These VCE concepts incorporate unique critical components and flow path arrangements that provide good performance at both supersonic and subsonic cruise and appear to be economically and environmentally viable. Certain technologies were identified as critical to the successful development of these engine concepts and require considerable development and testing. The feasibility and readiness of the most critical VCE technologies, was assessed, a VCE component test program was initiated. The variable stream control engine (VSCE) component test program, tested and evaluated an efficient low emission duct burner and a quiet coannular ejector nozzle at the rear of a rematched F100 engine.

  17. LADEE Propulsion System Cold Flow Test

    NASA Technical Reports Server (NTRS)

    Williams, Jonathan Hunter; Chapman, Jack M.; Trinh, Hau, P.; Bell, James H.

    2013-01-01

    Lunar Atmosphere and Dust Environment Explorer (LADEE) is a NASA mission that will orbit the Moon. Its main objective is to characterize the atmosphere and lunar dust environment. The spacecraft development is being led by NASA Ames Research Center and scheduled for launch in 2013. The LADEE spacecraft will be operated with a bi-propellant hypergolic propulsion system using MMH and NTO as the fuel and oxidizer, respectively. The propulsion system utilizes flight-proven hardware on major components. The propulsion layout is composed of one 100-lbf main thruster and four 5-lbf RCS thrusters. The propellants are stored in four tanks (two parallel-connected tanks per propellant component). The propellants will be pressurized by regulated helium. A simulated propulsion system has been built for conducting cold flow test series to characterize the transient fluid flow of the propulsion system feed lines and to verify the critical operation modes, such as system priming, waterhammer, and crucial mission duty cycles. Propellant drainage differential between propellant tanks will also be assessed. Since the oxidizer feed line system has a higher flow demand than the fuel system does, the cold flow test focuses on the oxidizer system. The objective of the cold flow test is to simulate the LADEE propulsion fluid flow operation through water cold flow test and to obtain data for anchoring analytical models. The models will be used to predict the transient and steady state flow behaviors in the actual flight operations. The test activities, including the simulated propulsion test article, cold flow test, and analytical modeling, are being performed at NASA Marshall Space Flight Center. At the time of the abstract submission, the test article checkout is being performed. The test series will be completed by November, 2012

  18. Modeling turbulence in flows with a strong rotational component

    SciTech Connect

    Burgess, D.E.; O`Rourke, P.J.

    1993-11-01

    We consider the effectiveness of various turbulence models in flows with a strong rotational component. To evaluate the models, we implement them into a one-dimensional test code and make comparisons with experimental data for swirling flow in a cylinder. The K - {epsilon} type turbulence models do poorly in predicting the experimental results. However, we find that the incorporation of a Reynolds stress evolution equation gives good agreement with the experimentally measured mean flow. Modeling the pressure-strain correlation tensor correctly is the key for obtaining good results. A combination of Launder`s basic model together with Yakhot`s dissipation rate equation {sup 3} works best in predicting both the mean flow and the turbulence intensity.

  19. Momentum flux in two phase two component low quality flow.

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Graham, R. W.; Henry, R. E.

    1972-01-01

    Values of a one-dimensional momentum flux at a test section discharge station of a two-phase two-component low quality flow computed by two methods, one based on a one-dimensional homogeneous model and the other on a variable slip model, are compared to experimental values for a range of two-phase flow conditions. The comparison seems to indicate the superior accuracy in momentum flux predictions to be on the side of the one-dimensional homogeneous model.

  20. Component evaluation testing and analysis algorithms.

    SciTech Connect

    Hart, Darren M.; Merchant, Bion John

    2011-10-01

    The Ground-Based Monitoring R&E Component Evaluation project performs testing on the hardware components that make up Seismic and Infrasound monitoring systems. The majority of the testing is focused on the Digital Waveform Recorder (DWR), Seismic Sensor, and Infrasound Sensor. In order to guarantee consistency, traceability, and visibility into the results of the testing process, it is necessary to document the test and analysis procedures that are in place. Other reports document the testing procedures that are in place (Kromer, 2007). This document serves to provide a comprehensive overview of the analysis and the algorithms that are applied to the Component Evaluation testing. A brief summary of each test is included to provide the context for the analysis that is to be performed.

  1. Mechanical Components Branch Test Facilities and Capabilities

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.

    2004-01-01

    The Mechanical Components Branch at NASA Glenn Research Center formulates, conducts, and manages research focused on propulsion systems for both present and advanced aeronautical and space vehicles. The branch is comprised of research teams that perform basic research in three areas: mechanical drives, aerospace seals, and space mechanisms. Each team has unique facilities for testing aerospace hardware and concepts. This report presents an overview of the Mechanical Components Branch test facilities.

  2. Guide for Oxygen Component Qualification Tests

    NASA Technical Reports Server (NTRS)

    Bamford, Larry J.; Rucker, Michelle A.; Dobbin, Douglas

    1996-01-01

    Although oxygen is a chemically stable element, it is not shock sensitive, will not decompose, and is not flammable. Oxygen use therefore carries a risk that should never be overlooked, because oxygen is a strong oxidizer that vigorously supports combustion. Safety is of primary concern in oxygen service. To promote safety in oxygen systems, the flammability of materials used in them should be analyzed. At the NASA White Sands Test Facility (WSTF), we have performed configurational tests of components specifically engineered for oxygen service. These tests follow a detailed WSTF oxygen hazards analysis. The stated objective of the tests was to provide performance test data for customer use as part of a qualification plan for a particular component in a particular configuration, and under worst-case conditions. In this document - the 'Guide for Oxygen Component Qualification Tests' - we outline recommended test systems, and cleaning, handling, and test procedures that address worst-case conditions. It should be noted that test results apply specifically to: manual valves, remotely operated valves, check valves, relief valves, filters, regulators, flexible hoses, and intensifiers. Component systems are not covered.

  3. Component Latent Trait Models for Test Design.

    ERIC Educational Resources Information Center

    Embretson, Susan Whitely

    Latent trait models are presented that can be used for test design in the context of a theory about the variables that underlie task performance. Examples of methods for decomposing and testing hypotheses about the theoretical variables in task performance are given. The methods can be used to determine the processing components that are involved…

  4. Evaluation of antithrombotic effect: Importance of testing components and methodologies.

    PubMed

    Yamamoto, Junichiro; Tamura, Yukinori; Ijiri, Yoshinobu; Iwasaki, Masahiro; Murakami, Masahiro; Matsuo, Osamu

    2015-08-01

    The beneficial antithrombotic effect of some dietary components may offer the most promising approach of prevention of cardiovascular diseases and arterial thrombosis. The major stumbling block in finding effective dietary components is the lack of physiologically relevant techniques which can detect potential antithrombotic effect in humans. The presently used platelet function and coagulation tests do not allow the assessment of global thrombotic status and their value in screening dietary components for antithrombotic effect is questionable. Most of these in vitro tests ignore the effect of flow and shear stress, thrombin generation and vascular endothelium, the major contributors to arterial thrombogenesis in humans. As a gold standard, we employed the helium-neon (He-Ne) laser-induced thrombosis test in murine carotid artery and mesenteric microvessels, as the pathomechanism of this test closely reflects arterial thrombogenesis in humans. Results obtained with laser thrombosis test were compared with various shear-induced in vitro platelet function tests which use native blood (Haemostatometry, Thrombotic Status Analyser, Global Thrombosis Test-GTT). Contribution of vascular endothelium to thrombogenesis was assessed by measuring flow-mediated vasodilation (FMV) in vivo. The combination of the two shear-induced ex vivo thrombosis tests (Haemostatometry and GTT) with FMV correlated most closely with the laser-thrombosis test. Our findings suggest that combining the commercially available point-of-care GTT with the FMV test could provide a better assessment of the overall thrombotic status than either of the two tests alone. PMID:26370524

  5. SSME hot gas manifold flow comparison test

    NASA Technical Reports Server (NTRS)

    Cox, G. B., Jr.; Dill, C. C.

    1988-01-01

    An account is given of the High Pressure Fuel Turbopump (HPFT) component of NASA's Alternate Turbopump Development effort, which is aimed at the proper aerodynamic integration of the current Phase II three-duct SSME Hot Gas Manifold (HGM) and the future 'Phase II-plus' two-duct HGM. Half-scale water flow tests of both HGM geometries were conducted to provide initial design data for the HPFT. The results reveal flowfield results and furnish insight into the performance differences between the two HGM flowpaths. Proper design of the HPFT can potentially secure significant flow improvements in either HGM configuration.

  6. Flow-induced vibration of component cooling water heat exchangers

    SciTech Connect

    Yeh, Y.S.; Chen, S.S. . Nuclear Engineering Dept.; Argonne National Lab., IL )

    1990-01-01

    This paper presents an evaluation of flow-induced vibration problems of component cooling water heat exchangers in one of Taipower's nuclear power stations. Specifically, it describes flow-induced vibration phenomena, tests to identify the excitation mechanisms, measurement of response characteristics, analyses to predict tube response and wear, various design alterations, and modifications of the original design. Several unique features associated with the heat exchangers are demonstrated, including energy-trapping modes, existence of tube-support-plate (TSP)-inactive modes, and fluidelastic instability of TSP-active and -inactive modes. On the basis of this evaluation, the difficulties and future research needs for the evaluation of heat exchangers are identified. 11 refs., 19 figs., 3 tabs.

  7. Nondestructive testing of brazed rocket engine components

    NASA Technical Reports Server (NTRS)

    Adams, C. J.; Hagemaier, D. J.; Meyer, J. A.

    1968-01-01

    Report details study made of nondestructive radiographic, ultrasonic, thermographic, and leak test methods used to inspect and evaluate the quality of the various brazed joints in liquid-propellant rocket engine components and assemblies. Descriptions of some of the unique equipment and methods developed are included.

  8. Coal feed component testing for CDIF

    NASA Technical Reports Server (NTRS)

    Pearson, C. V.; Snyder, B. K.; Fornek, T. E.

    1977-01-01

    Investigations conducted during the conceptual design of the Montana MHD Component Development and Integration Facility (CDIF) identified commercially available processing and feeding equipment potentially suitable for use in a reference design. Tests on sub-scale units of this equipment indicated that they would perform as intended.

  9. Capacitance Transducers for Concentration Measurements in Two Component Flow.

    NASA Astrophysics Data System (ADS)

    Matoorianpour, Nasser

    Available from UMI in association with The British Library. This thesis is concerned with the design and development of instrumentation for non-intrusive measurements of component volumetric concentrations on industrial two component flow including gas/liquid and gas/solids systems. The design and optimisation of two amplitude modulated capacitance transducers for "steady state" or slowly varying concentration measurements are described. A new type of capacitance transducer is the symmetrical capacitance bridge which consists of capacitive voltage dividers based on the voltage measuring method. The sensing electrodes of the sensor in this system are driven at two opposite voltages to produce a symmetrical capacitance sensitivity across the sensing region. Optimum transducer parameters, the use of the driven guard technique and minimised input capacitance to the electronics provide maximum sensitivity in this capacitance bridge. The base line stability of the symmetrical capacitance bridge is further improved by applying a Commutating Auto Zero technique to the transducer. The capacitance sensitivity across the sensing volumes of three pairs of concave plate electrode systems, each subtending a different angle has been investigated experimentally. One application of this transducer, considered in this research, is the void fraction determination in air/water two component flow. A second type of high stability capacitance bridge, based on the current measuring method, is the "stray immune" transformer ratio amplifier bridge. Its high pass filter configuration, using an LCR network, provides noise immunity against the charged solids in the applications involving pneumatically conveyed solid materials. A non-intrusive mass flow rate determination system, based on the stray immune transformer ratio amplifier bridge for the steady state concentration measurements and a low cost hardware cross correlation flowmeter for component velocity measurements, has been developed

  10. Dynamic leaching test of personal computer components.

    PubMed

    Li, Yadong; Richardson, Jay B; Niu, Xiaojun; Jackson, Ollie J; Laster, Jeremy D; Walker, Aaron K

    2009-11-15

    A dynamic leaching test (DLT) was developed and used to evaluate the leaching of toxic substances for electronic waste in the environment. The major components in personal computers (PCs) including motherboards, hard disc drives, floppy disc drives, and compact disc drives were tested. The tests lasted for 2 years for motherboards and 1.5 year for the disc drives. The extraction fluids for the standard toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) were used as the DLT leaching solutions. A total of 18 elements including Ag, Al, As, Au, Ba, Be, Cd, Cr, Cu, Fe, Ga, Ni, Pd, Pb, Sb, Se, Sn, and Zn were analyzed in the DLT leachates. Only Al, Cu, Fe, Ni, Pb, and Zn were commonly found in the DLT leachates of the PC components. Their leaching levels were much higher in TCLP extraction fluid than in SPLP extraction fluid. The toxic heavy metal Pb was found to continuously leach out of the components over the entire test periods. The cumulative amounts of Pb leached out of the motherboards in TCLP extraction fluid reached 2.0 g per motherboard over the 2-year test period, and that in SPLP extraction fluid were 75-90% less. The leaching rates or levels of Pb were largely affected by the content of galvanized steel in the PC components. The higher was the steel content, the lower the Pb leaching rate would be. The findings suggest that the obsolete PCs disposed of in landfills or discarded in the environment continuously release Pb for years when subjected to landfill leachate or rains. PMID:19616380

  11. Heavy Water Components Test Reactor Decommissioning - Major Component Removal

    SciTech Connect

    Austin, W.; Brinkley, D.

    2010-05-05

    The Heavy Water Components Test Reactor (HWCTR) facility (Figure 1) was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR facility is on high, well-drained ground, about 30 meters above the water table. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. It was not a defense-related facility like the materials production reactors at SRS. The reactor was moderated with heavy water and was rated at 50 megawatts thermal power. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In 1965, fuel assemblies were removed, systems that contained heavy water were drained, fluid piping systems were drained, deenergized and disconnected and the spent fuel basin was drained and dried. The doors of the reactor facility were shut and it wasn't until 10 years later that decommissioning plans were considered and ultimately postponed due to budget constraints. In the early 1990s, DOE began planning to decommission HWCTR again. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. The $1.6 billion allocation from the American Recovery and Reinvestment Act to SRS for site clean up at SRS has opened the doors to the HWCTR again - this time for final decommissioning. During the lifetime of HWCTR, 36 different fuel assemblies were tested in the facility. Ten of these

  12. Sultan - forced flow, high field test facility

    SciTech Connect

    Horvath, I.; Vecsey, G.; Weymuth, P.; Zellweger, J.

    1981-09-01

    Three European laboratories: CNEN (Frascati, I) ECN (Petten, NL) and SIN (Villigen, CH) decided to coordinate their development efforts and to install a common high field forced flow test facility at Villigen Switzerland. The test facility SULTAN (Supraleiter Testanlage) is presently under construction. As a first step, an 8T/1m bore solenoid with cryogenic periphery will be ready in 1981. The cryogenic system, data acquisition system and power supplies which are contributed by SIN are described. Experimental feasibilities, including cooling, and instrumentation are reviewed. Progress of components and facility construction is described. Planned extension of the background field up to 12T by insert coils is outlined. 5 refs.

  13. Deconvolved spectra of Two Component Advective Flow including jet

    NASA Astrophysics Data System (ADS)

    Mondal, Santanu; Debnath, Dipak; Chakrabarti, Sandip Kumar

    2016-07-01

    Outflows and winds are produced when the accretion flows have positive specific energy. Two Component Advective Flow (TCAF) model suggests that the centrifugal pressure supported region of the flow outside the black hole horizon, acts as the base of this outflow. We study the spectral properties of the TCAF which includes a jet component. We consider the jet as a conical in shape which also up-scatters the soft photons from the Keplerian disc. We see that due to the presence of jet component, spectrum become harder as the jet itself behaves like an another Compton cloud above the inner hot corona. We also see how the jet spectra depends on the flow rates. This gives the direct link in timing properties of the X-rays in CENBOL component and the radiation emitted in the jet component.

  14. 1. VIEW EAST, COMPONENTS TEST LABORATORY SHOWING CATCH BASINS, TURBINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW EAST, COMPONENTS TEST LABORATORY SHOWING CATCH BASINS, TURBINE TESTING AREA, AND PUMP TESTING TOWER. - Marshall Space Flight Center, East Test Area, Components Test Laboratory, Huntsville, Madison County, AL

  15. Cold Flow Verification Test Facility

    SciTech Connect

    Shamsi, A.; Shadle, L.J.

    1996-12-31

    The cold flow verification test facility consists of a 15-foot high, 3-foot diameter, domed vessel made of clear acrylic in two flanged sections. The unit can operate up to pressures of 14 psig. The internals include a 10-foot high jetting fluidized bed, a cylindrical baffle that hangs from the dome, and a rotating grate for control of continuous solids removal. The fluid bed is continuously fed solids (20 to 150 lb/hr) through a central nozzle made up of concentric pipes. It can either be configured as a half or full cylinder of various dimensions. The fluid bed has flow loops for separate air flow control for conveying solids (inner jet, 500 to 100000 scfh) , make-up into the jet (outer jet, 500 to 8000 scfh), spargers in the solids removal annulus (100 to 2000 scfh), and 6 air jets (20 to 200 scfh) on the sloping conical grid. Additional air (500 to 10000 scfh) can be added to the top of the dome and under the rotating grate. The outer vessel, the hanging cylindrical baffles or skirt, and the rotating grate can be used to study issues concerning moving bed reactors. There is ample allowance for access and instrumentation in the outer shell. Furthermore, this facility is available for future Cooperative Research and Development Program Manager Agreements (CRADA) to study issues and problems associated with fluid- and fixed-bed reactors. The design allows testing of different dimensions and geometries.

  16. Compound cooling flow turbulator for turbine component

    DOEpatents

    Lee, Ching-Pang; Jiang, Nan; Marra, John J; Rudolph, Ronald J

    2014-11-25

    Multi-scale turbulation features, including first turbulators (46, 48) on a cooling surface (44), and smaller turbulators (52, 54, 58, 62) on the first turbulators. The first turbulators may be formed between larger turbulators (50). The first turbulators may be alternating ridges (46) and valleys (48). The smaller turbulators may be concave surface features such as dimples (62) and grooves (54), and/or convex surface features such as bumps (58) and smaller ridges (52). An embodiment with convex turbulators (52, 58) in the valleys (48) and concave turbulators (54, 62) on the ridges (46) increases the cooling surface area, reduces boundary layer separation, avoids coolant shadowing and stagnation, and reduces component mass.

  17. Integration Test of the High Voltage Hall Accelerator System Components

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Pinero, Luis; Peterson, Todd; Dankanich, John

    2013-01-01

    NASA Glenn Research Center is developing a 4 kilowatt-class Hall propulsion system for implementation in NASA science missions. NASA science mission performance analysis was completed using the latest high voltage Hall accelerator (HiVHAc) and Aerojet-Rocketdyne's state-of-the-art BPT-4000 Hall thruster performance curves. Mission analysis results indicated that the HiVHAc thruster out performs the BPT-4000 thruster for all but one of the missions studied. Tests of the HiVHAc system major components were performed. Performance evaluation of the HiVHAc thruster at NASA Glenn's vacuum facility 5 indicated that thruster performance was lower than performance levels attained during tests in vacuum facility 12 due to the lower background pressures attained during vacuum facility 5 tests when compared to vacuum facility 12. Voltage-Current characterization of the HiVHAc thruster in vacuum facility 5 showed that the HiVHAc thruster can operate stably for a wide range of anode flow rates for discharge voltages between 250 and 600 volts. A Colorado Power Electronics enhanced brassboard power processing unit was tested in vacuum for 1,500 hours and the unit demonstrated discharge module efficiency of 96.3% at 3.9 kilowatts and 650 volts. Stand-alone open and closed loop tests of a VACCO TRL 6 xenon flow control module were also performed. An integrated test of the HiVHAc thruster, brassboard power processing unit, and xenon flow control module was performed and confirmed that integrated operation of the HiVHAc system major components. Future plans include continuing the maturation of the HiVHAc system major components and the performance of a single-string integration test.

  18. Elevations, Major Component Isometric, Propellant Flow Schematic, and External Tank ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevations, Major Component Isometric, Propellant Flow Schematic, and External Tank Connection to Shuttle Main Engines - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  19. Resource Prospector Propulsion System Cold Flow Testing

    NASA Technical Reports Server (NTRS)

    Williams, Hunter; Holt, Kim; Addona, Brad; Trinh, Huu

    2015-01-01

    Resource Prospector (RP) is a NASA mission being led by NASA Ames Research Center with current plans to deliver a scientific payload package aboard a rover to the lunar surface. As part of an early risk reduction activity, Marshall Space Flight Center (MSFC) and Johnson Space Flight Center (JSC) have jointly developed a government-version concept of a lunar lander for the mission. The spacecraft consists of two parts, the lander and the rover which carries the scientific instruments. The lander holds the rover during launch, cruise, and landing on the surface. Following terminal descent and landing the lander portion of the spacecraft become dormant after the rover embarks on the science mission. The lander will be equipped with a propulsion system for lunar descent and landing, as well as trajectory correction and attitude control maneuvers during transit to the moon. Hypergolic propellants monomethyl hydrazine and nitrogen tetroxide will be used to fuel sixteen 70-lbf descent thrusters and twelve 5-lbf attitude control thrusters. A total of four metal-diaphragm tanks, two per propellant, will be used along with a high-pressure composite-overwrapped pressure vessel for the helium pressurant gas. Many of the major propulsion system components are heritage missile hardware obtained by NASA from the Air Force. In parallel with the flight system design activities, a simulated propulsion system based on flight drawings was built for conducting a series of water flow tests to characterize the transient fluid flow of the propulsion system feed lines and to verify the critical operation modes such as system priming, waterhammer, and crucial mission duty cycles. The primary objective of the cold flow testing was to simulate the RP propulsion system fluid flow operation through water flow testing and to obtain data for anchoring analytical models. The models will be used to predict the transient and steady state flow behaviors in the actual flight operations. All design and

  20. Testing of high speed network components

    SciTech Connect

    Wing, W.R.

    1997-06-30

    At the time of the start of this project, a battle was being fought between the computer networking technologies and telephone networking technologies. The telecommunications industry wanted to standardize on Asynchronous Transfer Mode (ATM) as the technology of choice for carrying all cross-country traffic. The computer industry wanted to use Packet Transfer Mode (PTM). The project had several goals, some unspoken. At the highest, most obvious level, the project goals were to test the high-speed components being developed by the computer technology industry. However, in addition, both industrial partners were having trouble finding markets for the high-speed networking technology they were developing and deploying. Thus, a part of the project was to demonstrate applications developed at Oak Ridge which would stretch the limits of the network, and thus demonstrate the utility of high-speed networks. Finally, an unspoken goal of the computer technology industry was to convince the telecommunications industry that packet switching was superior to cell switching. Conversely, the telecommunications industry hoped to see the computer technology industry`s packet switch fail to perform in a real-world test. Project was terminated early due to failure of one of the CRADA partners to deliver needed component.

  1. Software for Testing Electroactive Structural Components

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Fox, Robert L.; Dimery, Archie D.; Bryant, Robert G.; Shams, Qamar

    2003-01-01

    A computer program generates a graphical user interface that, in combination with its other features, facilitates the acquisition and preprocessing of experimental data on the strain response, hysteresis, and power consumption of a multilayer composite-material structural component containing one or more built-in sensor(s) and/or actuator(s) based on piezoelectric materials. This program runs in conjunction with Lab-VIEW software in a computer-controlled instrumentation system. For a test, a specimen is instrumented with appliedvoltage and current sensors and with strain gauges. Once the computational connection to the test setup has been made via the LabVIEW software, this program causes the test instrumentation to step through specified configurations. If the user is satisfied with the test results as displayed by the software, the user activates an icon on a front-panel display, causing the raw current, voltage, and strain data to be digitized and saved. The data are also put into a spreadsheet and can be plotted on a graph. Graphical displays are saved in an image file for future reference. The program also computes and displays the power and the phase angle between voltage and current.

  2. Testing the frozen flow approximation

    NASA Technical Reports Server (NTRS)

    Lucchin, Francesco; Matarrese, Sabino; Melott, Adrian L.; Moscardini, Lauro

    1993-01-01

    We investigate the accuracy of the frozen-flow approximation (FFA), recently proposed by Matarrese, et al. (1992), for following the nonlinear evolution of cosmological density fluctuations under gravitational instability. We compare a number of statistics between results of the FFA and n-body simulations, including those used by Melott, Pellman & Shandarin (1993) to test the Zel'dovich approximation. The FFA performs reasonably well in a statistical sense, e.g. in reproducing the counts-in-cell distribution, at small scales, but it does poorly in the crosscorrelation with n-body which means it is generally not moving mass to the right place, especially in models with high small-scale power.

  3. Arcjet component conditions through a multistart test

    NASA Technical Reports Server (NTRS)

    Curran, Frank M.; Haag, Thomas W.

    1987-01-01

    A low power, dc arcjet thruster was tested for starting reliability using hydrogen-nitrogen mixtures simulating the decomposition products of hydrazine. More than 300 starts were accumulated in phases with extended burn-in periods interlaced. A high degree of flow stabilization was built into the arcjet and the power supply incorporated both rapid current regulation and a high voltage, pulsed starting circuit. A nominal current level of 10 A was maintained throughout the test. Photomicrographs of the cathode tip showed a rapid recession to a steady-state operating geometry. A target of 300 starts was selected, as this represents significantly more than anticipated (150 to 240), in missions of 10 yr or less duration. Weighings showed no apparent mass loss. Some anode erosion was observed, particularly at the entrance to the constrictor. This was attributed to the brief period during startup the arc mode attachment point spends in the high pressure region upstream of the nozzle. Based on the results obtained, startup does not appear to be performance or life limiting for the number of starts typical of operational satellite applications.

  4. Thermal Performance Testing of Single Channel GRCop-84 SLM Components

    NASA Technical Reports Server (NTRS)

    Garcia, Chance P.; Cross, Matthew

    2015-01-01

    The surface finish found on components manufactured by sinter laser manufacturing (SLM) is rougher (0.013 - 0.0006 inches) than parts made using traditional fabrication methods. Internal features and passages built into SLM components do not readily allow for roughness reduction processes. Alternatively, engineering literature suggests that the roughness of a surface can enhance thermal performance within a pressure drop regime. To further investigate the thermal performance of SLM fabricated pieces, several GRCop-84 SLM single channel components were tested using a thermal conduction rig at MSFC. A 20 kW power source running at 25% duty cycle and 25% power level applied heat to each component while varying water flow rates between 2.1 - 6.2 gallons/min (GPM) at a supply pressure of 500 to 750 psi. Each test was allowed to reach quasi-steady state conditions where pressure, temperature, and thermal imaging data were recorded. Presented in this work are the heat transfer responses compared to a traditional machined OHFC Copper test section. An analytical thermal model was constructed to anchor theoretical models with the empirical data.

  5. Method and apparatus for monitoring characteristics of a flow path having solid components flowing therethrough

    DOEpatents

    Hoskinson, Reed L.; Svoboda, John M.; Bauer, William F.; Elias, Gracy

    2008-05-06

    A method and apparatus is provided for monitoring a flow path having plurality of different solid components flowing therethrough. For example, in the harvesting of a plant material, many factors surrounding the threshing, separating or cleaning of the plant material and may lead to the inadvertent inclusion of the component being selectively harvested with residual plant materials being discharged or otherwise processed. In accordance with the present invention the detection of the selectively harvested component within residual materials may include the monitoring of a flow path of such residual materials by, for example, directing an excitation signal toward of flow path of material and then detecting a signal initiated by the presence of the selectively harvested component responsive to the excitation signal. The detected signal may be used to determine the presence or absence of a selected plant component within the flow path of residual materials.

  6. Low Emissions RQL Flametube Combustor Component Test Results

    NASA Technical Reports Server (NTRS)

    Holdeman, James D.; Chang, Clarence T.

    2001-01-01

    This report describes and summarizes elements of the High Speed Research (HSR) Low Emissions Rich burn/Quick mix/Lean burn (RQL) flame tube combustor test program. This test program was performed at NASA Glenn Research Center circa 1992. The overall objective of this test program was to demonstrate and evaluate the capability of the RQL combustor concept for High Speed Civil Transport (HSCT) applications with the goal of achieving NOx emission index levels of 5 g/kg-fuel at representative HSCT supersonic cruise conditions. The specific objectives of the tests reported herein were to investigate component performance of the RQL combustor concept for use in the evolution of ultra-low NOx combustor design tools. Test results indicated that the RQL combustor emissions and performance at simulated supersonic cruise conditions were predominantly sensitive to the quick mixer subcomponent performance and not sensitive to fuel injector performance. Test results also indicated the mixing section configuration employing a single row of circular holes was the lowest NOx mixer tested probably due to the initial fast mixing characteristics of this mixing section. However, other quick mix orifice configurations such as the slanted slot mixer produced substantially lower levels of carbon monoxide emissions most likely due to the enhanced circumferential dispersion of the air addition. Test results also suggested that an optimum momentum-flux ratio exists for a given quick mix configuration. This would cause undesirable jet under- or over-penetration for test conditions with momentum-flux ratios below or above the optimum value. Tests conducted to assess the effect of quick mix flow area indicated that reduction in the quick mix flow area produced lower NOx emissions at reduced residence time, but this had no effect on NOx emissions measured at similar residence time for the configurations tested.

  7. Stream responses as the sum of flow component responses

    NASA Astrophysics Data System (ADS)

    Stewart, Michael

    2014-05-01

    Catchment flows are often treated as continuums of hydrological processes from low flow to peak flow and back to low flow again, when analysing streamflow by methods like recession analysis or flow duration curve analysis. Such a conception of catchment response could not be further from the truth, catchment drainage instead is the sum of various flow components deriving from different parts of the catchment, as is well-understood by modellers. Why then have we traditionally applied the analysis methods to streamflow rather than to the separated components? (Apart, that is, for practical reasons.) Applying recession analyses to separated components turns out to give surprising results, and removes confusion arising from the mixture of components in streamflow (Stewart, 2014). The simplest separation of components is into quickflow and baseflow, which have very different sources and behaviours as shown in particular by tracer measurements. Quickflow is direct runoff from runoff events and often drops to zero between events, while baseflow is sourced from groundwater aquifers and continues as long as the stream flows. As an example, recession analysis using recession plots (i.e. plots of Q (flow) versus -dQ/dt) for quickflow and baseflow was applied to data from Glendhu GH1, New Zealand, a schist catchment of 2.2 km2. Whereas the streamflow points were fitted by power law slopes of up to 4 (i.e. dQ/dt = -0.09Q4) which proved to be artifacts due to the mixing of components noted above, the quickflow and baseflow points fitted power law slopes of 1.5 revealing the actual quadratic nature of storage reservoirs in the catchment. Other catchments have given similar results although a wider selection may show differences, nevertheless the message remains: In order to understand catchment and hillslope responses we need to be analysing separated components, not just streamflow. Stewart, M.K. 2014: New base flow separation and recession analysis methods for streamflow

  8. 17. Interior view of Test Cell 8 (oxidizer) in Components ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Interior view of Test Cell 8 (oxidizer) in Components Test Laboratory (T-27), showing west and north walls. Photograph shows upgraded instrumentation, piping, and technological modifications installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  9. 14. Interior view of Test Cell 10 (environmental) in Components ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Interior view of Test Cell 10 (environmental) in Components Test Laboratory (T-27), showing east and south walls. Photograph shows upgraded instrumentation, piping, and technological modifications installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  10. 15. Interior view of Test Cell 10 (environmental) in Components ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Interior view of Test Cell 10 (environmental) in Components Test Laboratory (T-27), showing north and east walls. Photograph shows upgraded instrumentation, piping, and technological modifications installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. The window in the wall to the left enables personnel in the control room to observe component testing in the cell. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  11. 13. Interior view of Test Cell 9 (fuel) in Components ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Interior view of Test Cell 9 (fuel) in Components Test Laboratory (T-27), showing west and north walls. Photograph shows upgraded instrumentation, piping, and technological modifications installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. Two windows in the wall to the left enable personnel in the control room to observe component testing in the cell. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  12. 16. Interior view of Test Cell 8 (oxidizer) in Components ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Interior view of Test Cell 8 (oxidizer) in Components Test Laboratory (T-27), showing east wall. Photograph shows upgraded instrumentation, piping, and technological modifications installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. The windows in the wall enable personnel in the control room to observe component testing in the cell. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  13. AMTEC recirculating test cell component testing and operation

    NASA Technical Reports Server (NTRS)

    Underwood, M. L.; Sievers, R. K.; O'Connor, D.; Williams, R. M.; Jeffries-Nakamura, B.; Bankston, C. P.

    1989-01-01

    Alkali metal thermoelectric converter operation in a recirculating test cell (RTC), which requires a small electromagnetic pump (EM) and a high-temperature beta-double-prime alumina-solid-electrolyte (BASE)-to-metal seal, is discussed. The design of a pump and an active metal braze seal and the initial operation of a cell using these components are described. The pump delivered 0.25 cu cm/min against a 28-psia head. A braze seal system was selected after shear strength tests of Ta or Nb brazed to BASE by a variety of fillers including TiCuNi, TiNi, and TiNiCr. The TiCuNi filler was chosen for environment cell testing and showed no failure or observable degradation after short-term tests up to 1055 K. The pump and the Nb/TiCuNi/BASE seal were used in a test that demonstrated all the operational functions of the RTC for the first time. An increase in the radiation reduction factor at constant input power was observed, indicating that the condenser was being wet by sodium resulting in an increased reflectivity.

  14. HEAVY WATER COMPONENTS TEST REACTOR DECOMMISSIONING

    SciTech Connect

    Austin, W.; Brinkley, D.

    2011-10-13

    The Heavy Water Components Test Reactor (HWCTR) Decommissioning Project was initiated in 2009 as a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Removal Action with funding from the American Recovery and Reinvestment Act (ARRA). This paper summarizes the history prior to 2009, the major D&D activities, and final end state of the facility at completion of decommissioning in June 2011. The HWCTR facility was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In the early 1990s, DOE began planning to decommission HWCTR. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. In 2009 the $1.6 billion allocation from the ARRA to SRS for site footprint reduction at SRS reopened the doors to HWCTR - this time for final decommissioning. Alternative studies concluded that the most environmentally safe, cost effective option for final decommissioning was to remove the reactor vessel, both steam generators, and all equipment above grade including the dome. The transfer coffin, originally above grade, was to be placed in the cavity vacated by the reactor vessel and the remaining below grade spaces would be grouted. Once all above equipment

  15. Miniature probes for use in gas turbine testing. [component reliability measuring instruments

    NASA Technical Reports Server (NTRS)

    Glawe, G. E.; Krause, L. N.

    1974-01-01

    Several examples of miniature probes (null type as well as fixed position) are presented which have proved useful in aircraft and space power systems component testing and are applicable to automotive gas turbine testing. These probes are used to determine component or system performance from the measurement of gas temperature as well as total and static pressure, and flow direction. Detailed drawings of the sensors are presented along with experimental data covering the flow characteristics over the range of intended use.

  16. FFTF thermal-hydraulic testing results affecting piping and vessel component design in LMFBR's

    SciTech Connect

    Stover, R.L.; Beaver, T.R.; Chang, S.C.

    1983-01-01

    The Fast Flux Test Facility completed four years of pre-operational testing in April 1982. This paper describes thermal-hydraulic testing results from this period which impact piping and vessel component design in LMFBRs. Data discussed are piping flow oscillations, piping thermal stratification and vessel upper plenum stratification. Results from testing verified that plant design limits were met.

  17. 19. Interior view of HVAC room in Components Test Laboratory ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Interior view of HVAC room in Components Test Laboratory (T-27), looking toward east wall. Photograph shows upgraded instrumentation, machinery, and technological modifications for HVAC system installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  18. 18. Interior view of HVAC room in Components Test Laboratory ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Interior view of HVAC room in Components Test Laboratory (T-27), showing northwest corner. Photograph shows upgraded instrumentation, piping, and technological modifications for HVAC system installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  19. 11. Interior view of control room in Components Test Laboratory ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Interior view of control room in Components Test Laboratory (T-27), looking north. Photograph shows upgraded instrumentation, piping, and technological modifications installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  20. Testing of Liquid Metal Components for Nuclear Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Godfroy, Thomas J.; Pearson, J. Boise

    2010-01-01

    efficiency of 28%. A baseline performance map was established for the pair of 1kW Stirling convertors. The performance data will then be used for design modification to the Stirling convertors. The ALIP tested at MSFC has no moving parts and no direct electrical connections to the liquid metal containing components. Pressure is developed by the interaction of the magnetic field produced by the stator and the current which flows as a result of the voltage induced in the liquid metal contained in the pump duct. Flow is controlled by variation of the voltage supplied to the pump windings. Under steady-state conditions, pump performance is measured for flow rates from 0.5-4.3 kg/s. The pressure rise developed by the pump to support these flow rates is roughly 5-65 kPa. The RMS input voltage (phase-to-phase voltage) ranges from 5-120 V, while the frequency can be varied arbitrarily up to 60 Hz. Performance is quantified at different loop temperature levels from 50 C up to 650 C, which is the peak operating temperature of the proposed AFSP reactor. The transient response of the pump is also evaluated to determine its behavior during startup and shut-down procedures.

  1. Resource Prospector Propulsion Cold Flow Test

    NASA Technical Reports Server (NTRS)

    Williams, Hunter; Pederson, Kevin; Dervan, Melanie; Holt, Kimberly; Jernigan, Frankie; Trinh, Huu; Flores, Sam

    2014-01-01

    For the past year, NASA Marshall Space Flight Center and Johnson Space Center have been working on a government version of a lunar lander design for the Resource Prospector Mission. A propulsion cold flow test system, representing an early flight design of the propulsion system, has been fabricated. The primary objective of the cold flow test is to simulate the Resource Prospector propulsion system operation through water flow testing and obtain data for anchoring analytical models. This effort will also provide an opportunity to develop a propulsion system mockup to examine hardware integration to a flight structure. This paper will report the work progress of the propulsion cold flow test system development and test preparation. At the time this paper is written, the initial waterhammer testing is underway. The initial assessment of the test data suggests that the results are as expected and have a similar trend with the pretest prediction. The test results will be reported in a future conference.

  2. Momentum flux in two phase two component low quality flow

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Graham, R. W.; Henry, R. E.

    1972-01-01

    In two phase flow systems line losses comprise frictional and momentum pressure drops. For design purposes, it would be desirable to estimate the line losses employing a one-dimensional calculation. Two methods for computing one-dimensional momentum flux at a test section discharge station are compared to the experimental value for a range of two-phase flow conditions. The one-dimensional homogeneous model appears to be more accurate generally in predicting the momentum than the variable slip model.

  3. 12. Interior view of Test Cell 9 (fuel) in Components ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Interior view of Test Cell 9 (fuel) in Components Test Laboratory (T-27), showing north and east walls. Photograph shows upgraded instrumentation, piping, and technological modifications installed in 1997-99 to accommodate testing requirements for the Atlas V missile. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  4. 5. AERIAL PHOTO OF THE COMPONENTS TEST LABORATORY DURING THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. AERIAL PHOTO OF THE COMPONENTS TEST LABORATORY DURING THE CONSTRUCTION OF THE EAST TEST AREA. 1955, FRED ORDWAY COLLECTION, U.S. SPACE AND ROCKET CENTER, HUNTSVILLE, AL. - Marshall Space Flight Center, East Test Area, Components Test Laboratory, Huntsville, Madison County, AL

  5. Performance testing of the Silo Flow Model

    SciTech Connect

    Stadler, S.P.; O`Connor, D.; Gould, A.F.

    1994-12-31

    Several instruments are commercially available for on-line analysis of coal properties such as total moisture, ash, sulfur, and mineral matter content. These instruments have found use in coal cleaning and coal-fired utility applications. However, in many instances, the coal is stored in large bunkers or silos after on-line analysis, making the data gathered from on-line analysis a poor predictor of short-term coal quality due to the flow pattern and mixing within the silo. A computerized model, the Silo Flow Model, has been developed to model the flow of coal through a silo or bunker thus providing a prediction of the output coal quality based on on-line measurements of the quality of coal entering the silo. A test procedure was developed and demonstrated to test the performance of the Silo Flow Model. The testing was performed using controlled addition of silver nitrate to the coal, in conjunction with surface profile measurements using an array of ultrasonic gauges and data acquired from plant instrumentation. Results obtained from initial testing provided estimates of flow-related parameters used in the Silo flow Model. Similar test techniques are also used to compare predicted and actual silver content at the silo outlet as a measure of model performance. This paper describes test procedures used to validate the Silo Flow Model, the testing program, and the results obtained to data. The Silo Flow Model performance is discussed and compared against other modeling approaches.

  6. 16 CFR 1109.11 - Component part testing for paint.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Component part testing for paint. 1109.11... Component part testing for paint. (a) Generally. The Commission will permit certification of a consumer product, or a component part of a consumer product, as being in compliance with the lead paint limit...

  7. 10. Interior view of control room in Components Test Laboratory ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Interior view of control room in Components Test Laboratory (T-27), looking east. The control room is located in the center of the building and abuts the Test Cell 8, 9, and 10 and equipment room wings. Photograph shows upgraded instrumentation, piping, and technological modifications installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  8. Leak testing of cryogenic components — problems and solutions

    NASA Astrophysics Data System (ADS)

    Srivastava, S. P.; Pandarkar, S. P.; Unni, T. G.; Sinha, A. K.; Mahajan, K.; Suthar, R. L.

    2008-05-01

    A prototype of Cold Neutron Source (CNS) for Dhruva Reactor is being manufactured at Centre for Design and Manufacture (CDM), BARC, Mumbai for validating the mechanical and thermal engineering design aspects, besides checking the integrity of all joints and components at low temperature, 77K. Task of a Cold Neutron Source is to generate cold neutrons by cooling down the thermal neutrons, which are originally produced in a nuclear research reactor. The complete Cold Neutron Source system comprises a complex arrangement of moderator pot, transfer line (piping), pumps, refrigerators, storage tanks, a heat exchanger and associated controls and instrumentation. The heart of the system is moderator pot in which water (moderator) is cooled down by Liquid Nitrogen (LN2) being circulated through an annular cavity machined on the walls of the pot. Transfer lines for LN2 basically consist of two concentric Stainless Steel flexible pipes, which are joined to the inlet and outlet Aluminium tubes of the moderator pot through transition joints. Leak in any component may result in loss of liquid Nitrogen, degradation of vacuum, which in turn may affect the heat removal efficiency of the source. Hence, leak testing was considered a very important quality control tool and all joints and components were subjected to helium leak test using mass spectrometer leak detector (MSLD) at cryogenic temperature. During one of the earlier experiments, flow of LN2 through inner flexible pipe of the transfer line resulted in rise of pressure in the vacuum annulus and sweating on the outer flexible pipe. After investigations it was found that large thermal stress compounded with mechanical stress resulted in cracks in the inner pipe. Accordingly design was modified to get leak proof transfer line assembly. Further, during leak testing of thin wall moderator pot, gross leak was observed on the outer jacket welded joint. Leak was so large that even a small amount of Helium gas in the vicinity of the

  9. 49 CFR 195.305 - Testing of components.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... pipeline system need not be hydrostatically tested under paragraph (a) of this section if the manufacturer certifies that either— (1) The component was hydrostatically tested at the factory; or (2) The component was... prototype that was hydrostatically tested at the factory....

  10. Testing variance components by two jackknife methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The jacknife method, a resampling technique, has been widely used for statistical tests for years. The pseudo value based jacknife method (defined as pseudo jackknife method) is commonly used to reduce the bias for an estimate; however, sometimes it could result in large variaion for an estmimate a...

  11. Flowing electrolyte battery testing and evaluation

    SciTech Connect

    Butler, P.; Miller, D.; Verardo, A.

    1982-08-01

    A laboratory to evaluate the performance and cycle life of flowing electrolyte battery systems has been established at Sandia National Laboratories. Four unique flow batteries are being tested in the laboratory using a four-variable two-level factorial experimental plan. Two Exxon zinc bromine batteries and one Gould zinc bromine battery are under test. One NASA Redox battery is on test. This paper describes results obtained to date from the test program. Cycle history, efficiency values, and general performance observations for these batteries are reported. The factorial test program and available statistical results are also discussed.

  12. Flowing-electrolyte-battery testing and evaluation

    SciTech Connect

    Butler, P.C.; Miller, D.W.; Verardo, A.E.

    1982-01-01

    A laboratory to evaluate the performance and cycle life of flowing electrolyte battery systems has been established at Sandia National Laboratories. Four unique flow batteries are being tested in the laboratory using a four-variable two-level factorial experimental plan. Two Exxon zinc bromine batteries and one Gould zinc bromine battery are under test. One NASA Redox battery is on test. This paper describes results obtained to date from the test program. Cycle history, efficiency values, and general performance observations for these batteries are reported. The factorial test program and available statistical results are also discussed.

  13. Flowing electrolyte battery testing and evaluation

    NASA Astrophysics Data System (ADS)

    Butler, P. C.; Miller, D. W.; Verardo, A. E.

    A laboratory to evaluate the performance and cycle life of flowing electrolyte battery systems has been established at Sandia National Laboratories. Four unique flow batteries are being tested in the laboratory using a four-variable two-level factorial experimental plan. Two Exxon zinc bromine batteries and one Gould zinc bromine battery are under test. One NASA Redox battery is on test. This paper describes results obtained to date from the test program. Cycle history, efficiency values, and general performance observations for these batteries are reported. The factorial test program and available statistical results are also discussed.

  14. Two-phase flow characterization for fluid components and variable gravity conditions

    NASA Technical Reports Server (NTRS)

    Dzenitis, John M.; Miller, Kathryn M.

    1992-01-01

    This paper describes a program initiated by the NASA Johnson Space Center to investigate vapor-liquid flow regimes and pressure drops in pipe components and variable gravity conditions. This program supports the Space Station Freedom External Active Thermal Control System design and future space missions, including the Space Exploration Initiative activities. The objectives for this program include studying two-phase flow behavior in fluid components (smooth pipes, bellows lines, quick-disconnect fittings), expanding the two-phase database for zero-g conditions, developing a database for low-g conditions (for example, Moon-g, Mars-g), and validating models for two-phase flow analyses. Zero-g and low-g data will be gathered using a Freon-12 flow loop during four test series on the KC-135 aircraft beginning in August 1991.

  15. Computation of incompressible viscous flows through turbopump components

    NASA Astrophysics Data System (ADS)

    Kiris, Cetin; Chang, Leon

    1993-02-01

    Flow through pump components, such as an inducer and an impeller, is efficiently simulated by solving the incompressible Navier-Stokes equations. The solution method is based on the pseudocompressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. the equations are solved in steadily rotating reference frames and the centrifugal force and the Coriolis force are added to the equation of motion. Current computations use a one-equation Baldwin-Barth turbulence model which is derived from a simplified form of the standard k-epsilon model equations. The resulting computer code is applied to the flow analysis inside a generic rocket engine pump inducer, a fuel pump impeller, and SSME high pressure fuel turbopump impeller. Numerical results of inducer flow are compared with experimental measurements. In the fuel pump impeller, the effect of downstream boundary conditions is investigated. Flow analyses at 80 percent, 100 percent, and 120 percent of design conditions are presented.

  16. A high resolution upwind scheme for multi-component flows

    NASA Astrophysics Data System (ADS)

    Igra, D.; Takayama, K.

    2002-04-01

    Conservative schemes usually produce non-physical oscillations in multi-component flow solutions. Many methods were proposed to avoid these oscillations. Some of these correction schemes could fix these oscillations in the pressure profile at discontinuities, but the density profile still remained diffused between the two components. In the case of gas-liquid interfaces, density diffusion is not acceptable. In this paper, the interfacial correction scheme proposed by Cocchi et al. was modified to be used in conjunction with the level-set approach. After each time step two grid points that bound the interface are recalculated by using an exact Riemann solver so that pressure oscillations and the density diffusion at discontinuities were eliminated. The scheme presented here can be applied to any type of conservation law solver. Some examples solved by this scheme and their results are compared with the exact solution when available. Good agreement is obtained between the present results and the exact solutions. Copyright

  17. Know the Test: One Component of Test Preparation.

    ERIC Educational Resources Information Center

    Jackson, Evelyn W.; McGlinn, Shirley

    2000-01-01

    Studies the effect of knowing the test as one aspect of a test preparation strategy with 57 premedical post-baccalaureate students. Finds that results emphasize the value of first-hand experience with a facsimile of a test and the importance of analyzing the structure and format to improve test performance. (NH)

  18. Testing of Liquid Metal Components for Nuclear Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Pearson, J. B.; Godfroy, T. J.; Schoenfeld, M.; Webster, K.; Briggs, M. H.; Geng, S. M.; Adkins, H. E.; Werner, J. E.

    2010-01-01

    The capability to perform testing at both the module/component level and in near prototypic reactor configurations using a non-nuclear test methodology allowed for evaluation of two components critical to the development of a potential nuclear fission power system for the lunar surface. A pair of 1 kW Stirling power convertors, similar to the type that would be used in a reactor system to convert heat to electricity, were integrated into a reactor simulator system to determine their performance using pumped NaK as the hot side working fluid. The performance in the pumped-NaK system met or exceed the baseline performance measurements where the converters were electrically heated. At the maximum hot-side temperature of 550 C the maximum output power was 2375 watts. A specially-designed test apparatus was fabricated and used to quantify the performance of an annular linear induction pump that is similar to the type that could be used to circulate liquid metal through the core of a space reactor system. The errors on the measurements were generally much smaller than the magnitude of the measurements, permitting accurate performance evaluation over a wide range of operating conditions. The pump produced flow rates spanning roughly 0.16 to 5.7 l/s (2.5 to 90 GPM), and delta p levels from less than 1 kPa to 90 kPa (greater than 0.145 psi to roughly 13 psi). At the nominal FSP system operating temperature of 525 C the maximum efficiency was just over 4%.

  19. Dynamic tests of cracked pipe components

    SciTech Connect

    Hale, D.A.; Heald, J.D.; Sharma, S.R.

    1984-02-01

    Dynamic tests were conducted involving notched sections of 4-in. (10-cm) stainless steel and Inconel-600 pipe. The specimen was a four-point bending beam with end masses sized to give an elastic first-mode frequency near that of typical field installed piping systems (15 Hz). Specimens were loaded using sinewave excitation at this first mode natural frequency. Specimen response was compared to predictions from an elastic-plastic dynamic analysis previously developed on this program. In addition, specimen loads at failure were compared to those predicted from a net section collapse failure criterion. The results confirmed that the elasticplastic dynamic analysis adequately predicted the dynamic response of flawed pipes under seismic-type excitation. Furthermore, net section collapse does not occur under dynamic loading conditions which simulate natural frequencies of asinstalled light water reactor piping systems. Finally, a net section collapse criterion yields conservative estimates of the load capacity of flawed pipe sections provided crack growth is properly accounted for.

  20. Quantifiable Lateral Flow Assay Test Strips

    NASA Technical Reports Server (NTRS)

    2003-01-01

    As easy to read as a home pregnancy test, three Quantifiable Lateral Flow Assay (QLFA) strips used to test water for E. coli show different results. The brightly glowing control line on the far right of each strip indicates that all three tests ran successfully. But the glowing test line on the middle left and bottom strips reveal their samples were contaminated with E. coli bacteria at two different concentrations. The color intensity correlates with concentration of contamination.

  1. 16 CFR 1509.6 - Component-spacing test method.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Component-spacing test method. 1509.6... REGULATIONS REQUIREMENTS FOR NON-FULL-SIZE BABY CRIBS § 1509.6 Component-spacing test method. The apex of the... uppermost and lowermost horizontal surfaces of the crib side. A 9-kilogram (20-pound) tensile force shall...

  2. 16 CFR 1509.6 - Component-spacing test method.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Component-spacing test method. 1509.6... REGULATIONS REQUIREMENTS FOR NON-FULL-SIZE BABY CRIBS § 1509.6 Component-spacing test method. The apex of the... uppermost and lowermost horizontal surfaces of the crib side. A 9-kilogram (20-pound) tensile force shall...

  3. 16 CFR 1509.5 - Component-spacing test apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Component-spacing test apparatus. 1509.5 Section 1509.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR NON-FULL-SIZE BABY CRIBS § 1509.5 Component-spacing test apparatus. (a)...

  4. 16 CFR 1509.5 - Component-spacing test apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Component-spacing test apparatus. 1509.5 Section 1509.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR NON-FULL-SIZE BABY CRIBS § 1509.5 Component-spacing test apparatus. (a)...

  5. Implementation of two-component advective flow solution in XSPEC

    NASA Astrophysics Data System (ADS)

    Debnath, Dipak; Chakrabarti, Sandip K.; Mondal, Santanu

    2014-05-01

    Spectral and temporal properties of black hole candidates can be explained reasonably well using Chakrabarti-Titarchuk solution of two-component advective flow (TCAF). This model requires two accretion rates, namely the Keplerian disc accretion rate and the halo accretion rate, the latter being composed of a sub-Keplerian, low-angular-momentum flow which may or may not develop a shock. In this solution, the relevant parameter is the relative importance of the halo (which creates the Compton cloud region) rate with respect to the Keplerian disc rate (soft photon source). Though this model has been used earlier to manually fit data of several black hole candidates quite satisfactorily, for the first time, we made it user friendly by implementing it into XSPEC software of Goddard Space Flight Center (GSFC)/NASA. This enables any user to extract physical parameters of the accretion flows, such as two accretion rates, the shock location, the shock strength, etc., for any black hole candidate. We provide some examples of fitting a few cases using this model. Most importantly, unlike any other model, we show that TCAF is capable of predicting timing properties from the spectral fits, since in TCAF, a shock is responsible for deciding spectral slopes as well as quasi-periodic oscillation frequencies. L86

  6. Macro-instability: a chaotic flow component in stirred tanks.

    PubMed

    Hasal, Pavel; Jahoda, Milan; Fort, Ivan

    2008-02-13

    Chaotic features of the macro-instability (MI) of flow patterns in stirred tanks are studied in this paper. Datasets obtained by measuring the axial component of the fluid velocity and the tangential force affecting the baffles are used. Two geometrically identical, flat-bottomed cylindrical mixing tanks (diameter of 0.3m) stirred with either pitched blade turbine impellers or Rushton turbine impeller are used in the experiments, and water and aqueous glycerol solutions are used as the working liquids. First, the presence of the MI component in the data is examined by spectral analysis. Then, the MI components are identified in the data using the proper orthogonal decomposition (POD) technique. The attractors of the macro-instability are reconstructed using either the POD eigenmodes or a method of delays and finally the attractor invariants are evaluated. The dependence of the correlation dimension and maximum Lyapunov exponent on the vessel operational conditions is determined together with their distribution within the tank. No significant spatial variability of the correlation dimension value is observed. Its value is strongly influenced by impeller speed and by the vessel-impeller geometry. More profound spatial distribution is displayed by the maximum Lyapunov exponent taking distinctly positive values. These two invariants, therefore, can be used to locate distinctive regions with qualitatively different MI dynamics within the stirred tank. PMID:17673415

  7. Energy efficient engine high-pressure turbine component rig performance test report

    NASA Technical Reports Server (NTRS)

    Leach, K. P.

    1983-01-01

    A rig test of the cooled high-pressure turbine component for the Energy Efficient Engine was successfully completed. The principal objective of this test was to substantiate the turbine design point performance as well as determine off-design performance with the interaction of the secondary flow system. The measured efficiency of the cooled turbine component was 88.5 percent, which surpassed the rig design goal of 86.5 percent. The secondary flow system in the turbine performed according to the design intent. Characterization studies showed that secondary flow system performance is insensitive to flow and pressure variations. Overall, this test has demonstrated that a highly-loaded, transonic, single-stage turbine can achieve a high level of operating efficiency.

  8. Use of laser flow visualization techniques in reactor component thermal-hydraulic studies

    SciTech Connect

    Oras, J.J.; Kasza, K.E.

    1984-01-01

    To properly design reactor components, an understanding of the various thermal hydraulic phenomena, i.e., thermal stratification flow channeling, recirculation regions, shear layers, etc., is necessary. In the liquid metal breeder reactor program, water is commonly used to replace sodium in experimental testing to facilitate the investigations, (i.e., reduce cost and allow fluid velocity measurement or flow pattern study). After water testing, limited sodium tests can be conducted to validate the extrapolation of the water results to sodium. This paper describes a novel laser flow visualization technique being utilized at ANL together with various examples of its use and plans for further development. A 3-watt argon-ion laser, in conjunction with a cylindrical opticallens, has been used to create a thin (approx. 1-mm) intense plane of laser light for the illuminiation of various flow tracers in precisely defined regions of interest within a test article having windows. Both fluorescing dyes tuned to the wavelength of the laser light (to maximize brightness and sharpness of flow image) and small (< 0.038-mm, 0.0015-in. dia.) opaque, nearly neutrally buoyant polystyrene spheres (to ensure that the particles trace out the fluid motion) have been used as flow tracers.

  9. Boundary layer flow visualization for flight testing

    NASA Technical Reports Server (NTRS)

    Obara, Clifford J.

    1986-01-01

    Flow visualization is used extensively in flight testing to determine aerodynamic characteristics such as surface flow direction and boundary layer state. Several visualization techniques are available to the aerodynamicist. Two of the most popular are oil flows and sublimating chemicals. Oil is used to visualize boundary layer transition, shock wave location, regions of separated flow, and surface flow direction. Boundary layer transition can also be visualized with sublimating chemicals. A summary of these two techniques is discussed, and the use of sublimating chemicals is examined in some detail. The different modes of boundary layer transition are characterized by different patterns in the sublimating chemical coating. The discussion includes interpretation of these chemical patterns and the temperature and velocity operating limitations of the chemical substances. Information for selection of appropriate chemicals for a desired set of flight conditions is provided.

  10. Cold-Flow Propulsion Research Test

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An engineer at the Marshall Space Flight Center (MSFC) Wind Tunnel Facility uses lasers to measure the velocity and gradient distortion across an eight inch curved pipe with joints and turning valves during a cold-flow propulsion research test; simulating the conditions found in the X-33's hydrogen feedline. Lasers are used because they are non-intrusive and do not disturb the flow like a probe would. The feedline supplies propellants to the turbo pump. The purpose of this project was to design the feedline to provide uniform flow into the turbo pump.

  11. Non-equilibrium Flows of Reacting Air Components in Nozzles

    NASA Astrophysics Data System (ADS)

    Bazilevich, S. S.; Sinitsyn, K. A.; Nagnibeda, E. A.

    2008-12-01

    The paper presents the results of the investigation of non-equilibrium flows of reacting air mixtures in nozzles. State-to-state approach based on the solution of the equations for vibrational level populations of molecules and atomic concentrations coupled to the gas dynamics equations is used. For the 5-component air mixture (N2, O2, NO, N, O) non-equilibrium distributions and gasdynamical parameters are calculated for different conditions in a nozzle throat. The influence of various kinetic processes on distributions and gas dynamics parameters is studied. The paper presents the comparison of the results with ones obtained for binary mixtures of molecules and atoms and various models of elementary processes.

  12. Seawater test results of Open-Cycle Ocean Thermal Energy Conversion (OC-OTEC) components

    NASA Astrophysics Data System (ADS)

    Zangrando, F.; Bharathan, D.; Link, H.; Panchal, C. B.

    Key components of open-cycle ocean thermal energy conversion systems- the flash evaporator, mist eliminator, passive predeaerator, two surface condenser stages, and two direct-contact condenser stages- have been tested using seawater. These components operate at lower steam pressures and higher inlet noncondensable gas concentrations than do conventional power plant heat exchangers. The rate of heat exchanged between the evaporator and the condenser is on the order of 1.25MW-thermal, requiring a warm seawater flow of about 0.1 cu m/s; the cold seawater flow is on the order of half the warm water flow. In addition to characterizing the performance of the various components, the system has produced potable water from condensation of the steam produced in the evaporator. The information obtained in these tests is being used to design a larger scale experiment in which net power production is expected to be demonstrate for the first time using OC-OTEC technology.

  13. LaRC Separate Flow Testing Status

    NASA Technical Reports Server (NTRS)

    Seiner, Jack

    2000-01-01

    The main goal of this presentation is to give some of the objectives of the testing program. This includes: develop jet noise data base for separate flow nozzles with bypass ratio's 5 to 14; evaluate effect of pylon on noise; develop low performance impact noise suppression concepts; and evaluate potential for active control of jet noise.

  14. Characterization of Flow Bench Engine Testing

    NASA Astrophysics Data System (ADS)

    Voris, Alex; Riley, Lauren; Puzinauskas, Paul

    2015-11-01

    This project was an attempt at characterizing particle image velocimetry (PIV) and swirl-meter test procedures. The flow direction and PIV seeding were evaluated for in-cylinder steady state flow of a spark ignition engine. For PIV seeding, both wet and dry options were tested. The dry particles tested were baby powder, glass particulate, and titanium dioxide. The wet particles tested were fogs created with olive oil, vegetable oil, DEHS, and silicon oil. The seeding was evaluated at 0.1 and 0.25 Lift/Diameter and at cylinder pressures of 10, 25 and 40 inches of H2O. PIV results were evaluated through visual and fluid momentum comparisons. Seeding particles were also evaluated based on particle size and cost. It was found that baby powder and glass particulate were the most effective seeding options for the current setup. The oil fogs and titanium dioxide were found to deposit very quickly on the mock cylinder and obscure the motion of the particles. Based on initial calculations and flow measurements, the flow direction should have a negligible impact on PIV and swirl-meter results. The characterizations found in this project will be used in future engine research examining the effects of intake port geometry on in-cylinder fluid motion and exhaust gas recirculation tolerances. Thanks to NSF site grant #1358991.

  15. Fluid flow measurements of Test Series A and B for the Small Scale Seal Performance Tests

    SciTech Connect

    Peterson, E.W.; Lagus, P.L.; Lie, K.

    1987-12-01

    The degree of waste isolation achieved by a repository seal system is dependent upon the fluid flow characteristics, or permeability, of the seals. In order to obtain meaningful, site-specific data on the performance of various possible seal system components, a series of in situ experiments called the Small Scale Seal Performance Tests (SSSPT) are being conducted at the Waste Isolation Pilot Plant (WIPP). This report contains the results of gas flow, tracer penetration, and brine flow tests conducted on concrete seals in vertical (Test Series A) and horizontal (Test Series B) configurations. The test objectives were to evaluate the seal performance and to determine if there existed scaling effects which could influence future SSSPT designs. 3 refs., 77 figs.

  16. Flow simulation of the Component Development Integration Facility magnetohydrodynamic power train system

    SciTech Connect

    Chang, S.L.; Lottes, S.A.; Bouillard, J.X.; Petrick, M.

    1997-11-01

    This report covers application of Argonne National Laboratory`s (ANL`s) computer codes to simulation and analysis of components of the magnetohydrodynamic (MHD) power train system at the Component Development and Integration Facility (CDIF). Major components of the system include a 50-MWt coal-fired, two-stage combustor and an MHD channel. The combustor, designed and built by TRW, includes a deswirl section between the first and the second-stage combustor and a converging nozzle following the second-stage combustor, which connects to the MHD channel. ANL used computer codes to simulate and analyze flow characteristics in various components of the MHD system. The first-stage swirl combustor was deemed a mature technology and, therefore, was not included in the computer simulation. Several versions of the ICOMFLO computer code were used for the deswirl section and second-stage combustor. The MGMHD code, upgraded with a slag current leakage submodel, was used for the MHD channel. Whenever possible data from the test facilities were used to aid in calibrating parameters in the computer code, to validate the computer code, or to set base-case operating conditions for computations with the computer code. Extensive sensitivity and parametric studies were done on cold-flow mixing in the second-stage combustor, reacting flow in the second-stage combustor and converging nozzle, and particle-laden flow in the deswirl zone of the first-stage combustor, the second-stage combustor, and the converging nozzle. These simulations with subsequent analysis were able to show clearly in flow patterns and various computable measures of performance a number of sensitive and problematical areas in the design of the power train. The simulations of upstream components also provided inlet parameter profiles for simulation of the MHD power generating channel. 86 figs., 18 tabs.

  17. Emersion Testing of Phenix Reactor Components From Liquid Sodium

    SciTech Connect

    Baque, F.

    2002-07-01

    The life extension of the Phenix LMFR involved the inspection of reactor vessel internal structures: among other techniques, a visual inspection was performed of the above core structure, fuel assembly heads and upper components. To make this inspection possible, a partial draining of the main vessel from primary liquid sodium was carried out (sodium at 180 and argon cover at 150 ). The test program aimed at obtaining further knowledge on the process of wetting of sodium - as pure metal - on Phenix Plant assembly heads - made of stainless steel -, as well as on the internal structure welding, was carried out from November 1998 to January 1999. The main results were as follows: - the sodium meniscus measured during sodium lowering against the non-wet vertical structures reaches 10 mm in height. On wetted structures, it reaches only 5.3 mm. - when sodium level decreases, the process if very regular. However, re-flooding is carried out in stages. - a difference of 0.2 mm between two heads altitudes is enough to observe successively each of the heads. - the quality of sodium does not modify the wetting process (in the range of cold trap temperature: 110-140 deg. C). - the influence of lighting is important. - the visibility limit of emerging electro-eroded cracks (from 0.17 to 1.0 mm) is at 0.20 mm. - the visibility of a horizontal welding, machined or not, is good when the lighting is sufficient. - the superficial flow of sodium only modifies the wetting process for the closest heads. A final test allowed to observe that the global inclination of the assembly head mock-up does not modify the wetting process. These experimental results were part of the feasibility demonstration of the visual inspection within the actual Phenix Plant that was undertaken in 2001. (authors)

  18. The SHOOT cryogenic components - Testing and applicability to other flight programs

    NASA Technical Reports Server (NTRS)

    Dipirro, Michael J.; Schein, Michael E.; Boyle, Robert F.; Figueroa, Orlando; Lindauer, David A.; Mchugh, Daniel C.; Shirron, P. J.

    1990-01-01

    Cryogenic components and techniques for the superfluid helium on-orbit transfer (SHOOT) flight demonstration are described. Instrumentation for measuring liquid quantity, position, flow rate, temperature, and pressure has been developed using the data obtained from the IRAS, Cosmic Background Explorer, and Spacelab 2 helium dewars. Topics discussed include valves and burst disks, fluid management devices, structural/thermal components, instrumentation, and ground support equipment and performance test apparatus.

  19. 14 CFR 33.53 - Engine system and component tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine system and component tests. 33.53 Section 33.53 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.53 Engine system...

  20. 14 CFR 33.91 - Engine system and component tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine system and component tests. 33.91 Section 33.91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system...

  1. 14 CFR 33.91 - Engine system and component tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine system and component tests. 33.91 Section 33.91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system...

  2. 14 CFR 33.91 - Engine system and component tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine system and component tests. 33.91 Section 33.91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system...

  3. Oklahoma School Testing Program: Writing Assessment Component. Summary Report: 1989.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    The MAT-6 Writing Test (The Psychological Corporation, 1986) was administered to Oklahoma students in grades 7 and 10 in February 1989, in compliance with state law. The inception, implementation procedures, assessment instruments, and results of the Writing Assessment Component of the Oklahoma School Testing Program are described. District-level…

  4. 14 CFR 33.53 - Engine system and component tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine system and component tests. 33.53 Section 33.53 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.53 Engine system...

  5. Forced Flow Flame-Spreading Test (FFFT)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Forced Flow Flame-Spreading Test was designed to study flame spreading over solid fuels when air is flowing at a low speed in the same direction as the flame spread. Previous research has shown that in low-speed concurrent airflows, some materials are more flammable in microgravity than earth. This image shows a 10-cm flame in microgravity that burns almost entirely blue on both sides of a thin sheet of paper. The glowing thermocouple in the lower half of the flame provides temperature measurements.

  6. Multi-phase multi-component reactive flow in Geodynamics

    NASA Astrophysics Data System (ADS)

    Oliveira, Beñat; Afonso, Juan Carlos; Zlotnik, Sergio

    2016-04-01

    Multi-phase multi-component reactive flow (MPMCRF) controls a number of important complex geodynamic/geochemical problems, such as melt generation and percolation, metasomatism, rheological weakening, magmatic differentiation, ore emplacement, and fractionation of chemical elements, to name a few. These interacting processes occur over very different spatial and temporal scales and under very different physico-chemical conditions. Therefore, there is a strong motivation in geodynamics for investigating the equations governing MPMCRF, their mathematical structure and properties, and the numerical techniques necessary to obtain reliable and accurate results. In this contribution we present results from a novel numerical framework to solve multiscale MPMCRF problems in geodynamic contexts. Our approach is based on the effective tracking of the most basic building blocks: internal energy and chemical composition. This is achieved through the combination of rigorous solutions to the conservation equations (mass, energy and momentum) for each dynamic phase (instead of the more common "mixture-type" approach) and the transport equation for the chemical species, within the context of classical irreversible thermodynamics. Interfacial processes such as phase changes, chemical diffusion+reaction, and surface tension effects are explicitly incorporated in the context of ensemble averaging. Phase assemblages, mineral and melt compositions, and all other physical parameters of multi-phase systems are obtained through dynamic free-energy minimization procedures.

  7. Application of reliability analysis method to fusion component testing

    SciTech Connect

    Ying, A.Y.; Abdou, M.A.

    1994-12-31

    The term reliability here implies that a component satisfies a set of performance criteria while under specified conditions of use over a specified period of time. For fusion nuclear technology, the reliability goal to be pursued is the development of a mean time between failures (MTBF) for a component which is longer than its lifetime goal. While the component lifetime is mainly determined by the fluence limitation (i.e., damage level) which leads to performance degradation or failure, the MTBF represents an arithmetic average life of all units in a population. One method of assessing the reliability goal involves determining component availability needs to meet the goal plant availability, defining a test-analyze-fix development program to improve component reliability, and quantifying both test times and the number of test articles that would be required to ensure that a specified target MTBF is met. Statistically, constant failure rates and exponential life distributions are assumed for analyses and blanket component development is used as an example. However, as data are collected the probability distribution of the parameter of interest can be updated in a Bayesian fashion. The nuclear component testing program will be structured such that reliability requirements for DEMO can be achieved. The program shall not exclude the practice of a good design (such as reducing the complexity of the system to the minimum essential for the required operation), the execution of high quality manufacturing and inspection processes, and the implication of quality assurance and control for component development. In fact, the assurance of a high quality testing/development program is essential so that there is no question left for reliability.

  8. Influence of stationary components on unsteady flow in industrial centrifugal compressors

    NASA Technical Reports Server (NTRS)

    Bonciani, L.; Terrinoni, L.

    1984-01-01

    An experimental investigation was performed to determine the characteristics of the onset and the growth of rotating nonuniform flow in a standard low specific speed stage, normally utilized in high pressure applications, in relation to change of stationary component geometry. Four configurations, differing only in the return channel and crossover geometry were tested on an atmospheric pressure open loop test rig. Experimental results make conspicious the effect of return channel geometry and give the possibility of shifting the unstable zone onset varying such geometry. An attempt was made to interpret the experimental results in the Emmons - Stenning's rotating stall theory.

  9. Balances for the measurement of multiple components of force in flows of a millisecond duration

    NASA Technical Reports Server (NTRS)

    Mee, D. J.; Daniel, W. J.; Tuttle, S. L.; Simmons, J. M.

    1995-01-01

    This paper reports a new balance for the measurement of three components of force - lift, drag and pitching moment - in impulsively starting flows which have a duration of about one millisecond. The basics of the design of the balance are presented and results of tests on a 15 deg semi-angle cone set at incidence in the T4 shock tunnel are compared with predictions. These results indicate that the prototype balance performs well for a 1.9 kg, 220 mm long model. Also presented are results from initial bench tests of another application of the deconvolution force balance to the measurement of thrust produced by a 2D scramjet nozzle.

  10. A multi-component two-phase flow algorithm for use in landfill processes modelling.

    PubMed

    White, J K; Nayagum, D; Beaven, R P

    2014-09-01

    This paper describes the finite difference algorithm that has been developed for the flow sub-model of the University of Southampton landfill degradation and transport model LDAT. The liquid and gas phase flow components are first decoupled from the solid phase of the full multi-phase, multi-component landfill process constitutive equations and are then rearranged into a format that can be applied as a calculation procedure within the framework of a three dimensional array of finite difference rectangular elements. The algorithm contains a source term which accommodates the non-flow landfill processes of degradation, gas solubility, and leachate chemical equilibrium, sub-models that have been described in White and Beaven (2013). The paper includes an illustration of the application of the flow sub-model in the context of the leachate recirculation tests carried out at the Beddington landfill project. This illustration demonstrates the ability of the sub-model to track movement in the gas phase as well as the liquid phase, and to simulate multi-directional flow patterns that are different in each of the phases. PMID:24925875

  11. Wing Leading Edge Joint Laminar Flow Tests

    NASA Technical Reports Server (NTRS)

    Drake, Aaron; Westphal, Russell V.; Zuniga, Fanny A.; Kennelly, Robert A., Jr.; Koga, Dennis J.

    1996-01-01

    An F-104G aircraft at NASA's Dryden Flight Research Center has been equipped with a specially designed and instrumented test fixture to simulate surface imperfections of the type likely to be present near the leading edge on the wings of some laminar flow aircraft. The simulated imperfections consisted of five combinations of spanwise steps and gaps of various sizes. The unswept fixture yielded a pressure distribution similar to that of some laminar flow airfoils. The experiment was conducted at cruise conditions typical for business-jets and light transports: Mach numbers were in the range 0.5-0.8, and unit Reynolds numbers were 1.5-2.5 million per foot. Skin friction measurements indicated that laminar flow was often maintained for some distance downstream of the surface imperfections. Further work is needed to more precisely define transition location and to extend the experiments to swept-wing conditions and a broader range of imperfection geometries.

  12. Lunar Dust Simulant in Mechanical Component Testing - Paradigm and Practicality

    NASA Technical Reports Server (NTRS)

    Jett, T.; Street, K.; Abel, P.; Richmond, R.

    2008-01-01

    Due to the uniquely harsh lunar surface environment, terrestrial test activities may not adequately represent abrasive wear by lunar dust likely to be experienced in mechanical systems used in lunar exploration. Testing to identify potential moving mechanism problems has recently begun within the NASA Engineering and Safety Center Mechanical Systems Lunar Dust Assessment activity in coordination with the Exploration Technology and Development Program Dust Management Project, and these complimentary efforts will be described. Specific concerns about differences between simulant and lunar dust, and procedures for mechanical component testing with lunar simulant will be considered. In preparing for long term operations within a dusty lunar environment, the three fundamental approaches to keeping mechanical equipment functioning are dust avoidance, dust removal, and dust tolerance, with some combination of the three likely to be found in most engineering designs. Methods to exclude dust from contact with mechanical components would constitute mitigation by dust avoidance, so testing seals for dust exclusion efficacy as a function of particle size provides useful information for mechanism design. Dust of particle size less than a micron is not well documented for impact on lunar mechanical components. Therefore, creating a standardized lunar dust simulant in the particulate size range of ca. 0.1 to 1.0 micrometer is useful for testing effects on mechanical components such as bearings, gears, seals, bushings, and other moving mechanical assemblies. Approaching actual wear testing of mechanical components, it is beneficial to first establish relative wear rates caused by dust on commonly used mechanical component materials. The wear mode due to dust within mechanical components, such as abrasion caused by dust in grease(s), needs to be considered, as well as the effects of vacuum, lunar thermal cycle, and electrostatics on wear rate.

  13. A Small-Scale Safety Test for Initiation Components

    SciTech Connect

    Cutting, J; Chow, C; Chau, H; Hodgin, R; Lee, R

    2002-04-22

    We have developed a small-scale safety test for initiation train components. A low-cost test was needed to assess the response of initiation components to an abnormal shock environment and to detect changes in the sensitivity of initiation components as they age. The test uses a disk of Detasheet to transmit a shock through a PMMA barrier into a the test article. A schematic drawing of the fixture is shown. The 10-cm-diameter disk of 3-mm-thick Detasheet, initiated at its center by a RISI, RP detonator, produces a shock wave that is attenuated by a variable-thickness PMMA spacer (gap). Layers of metal and plastic above the test article and the material surrounding the test article may be chosen to mock up the environment of the test article at its location in a warhead. A metal plate at the bottom serves as a witness plate to record whether or not the test article detonated. For articles containing a small amount of explosive, it can be difficult to determine whether or not a detonation has occurred. In such cases, one can use a pressure transducer or laser velocimeter to detect the shock wave from the detonation of the article. The assembly is contained in a 10-cm-ID section of PVC pipe and fired in a containment vessel rated at 100 g. Test results are given for a hemispherical, exploding-bridgewire (EBW) detonator.

  14. Abrasion Testing of Critical Components of Hydrokinetic Devices

    SciTech Connect

    Worthington, Monty; Ali, Muhammad; Ravens, Tom

    2013-12-06

    The objective of the Abrasion Testing of Critical Components of Hydrokinetic Devices (Project) was to test critical components of hydrokinetic devices in waters with high levels of suspended sediment – information that is widely applicable to the hydrokinetic industry. Tidal and river sites in Alaska typically have high suspended sediment concentrations. High suspended sediment also occurs in major rivers and estuaries throughout the world and throughout high latitude locations where glacial inputs introduce silt into water bodies. In assessing the vulnerability of technology components to sediment induced abrasion, one of the greatest concerns is the impact that the sediment may have on device components such as bearings and seals, failures of which could lead to both efficiency loss and catastrophic system failures.

  15. 21 CFR 866.5240 - Complement components immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Complement components immunological test system. 866.5240 Section 866.5240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... complement components C1q, C1r, C1s, C2, C3, C4, C5, C6, C7, C8, and C9, in serum, other body fluids,...

  16. 21 CFR 866.5240 - Complement components immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Complement components immunological test system. 866.5240 Section 866.5240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... complement components C1q, C1r, C1s, C2, C3, C4, C5, C6, C7, C8, and C9, in serum, other body fluids,...

  17. 21 CFR 866.5240 - Complement components immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Complement components immunological test system. 866.5240 Section 866.5240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... complement components C1q, C1r, C1s, C2, C3, C4, C5, C6, C7, C8, and C9, in serum, other body fluids,...

  18. 21 CFR 866.5240 - Complement components immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Complement components immunological test system. 866.5240 Section 866.5240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... complement components C1q, C1r, C1s, C2, C3, C4, C5, C6, C7, C8, and C9, in serum, other body fluids,...

  19. NASA Fastrac Engine Gas Generator Component Test Program and Results

    NASA Technical Reports Server (NTRS)

    Dennis, Henry J., Jr.; Sanders, T.

    2000-01-01

    Low cost access to space has been a long-time goal of the National Aeronautics and Space Administration (NASA). The Fastrac engine program was begun at NASA's Marshall Space Flight Center to develop a 60,000-pound (60K) thrust, liquid oxygen/hydrocarbon (LOX/RP), gas generator-cycle booster engine for a fraction of the cost of similar engines in existence. To achieve this goal, off-the-shelf components and readily available materials and processes would have to be used. This paper will present the Fastrac gas generator (GG) design and the component level hot-fire test program and results. The Fastrac GG is a simple, 4-piece design that uses well-defined materials and processes for fabrication. Thirty-seven component level hot-fire tests were conducted at MSFC's component test stand #116 (TS116) during 1997 and 1998. The GG was operated at all expected operating ranges of the Fastrac engine. Some minor design changes were required to successfully complete the test program as development issues arose during the testing. The test program data results and conclusions determined that the Fastrac GG design was well on the way to meeting the requirements of NASA's X-34 Pathfinder Program that chose the Fastrac engine as its main propulsion system.

  20. Review of flow battery testing at Sandia

    SciTech Connect

    Butler, P.C.; Miller, D.W.; Robinson, C.E.; Rodriguez, G.P.

    1984-01-01

    Sandia National Laboratories is evaluating prototype zinc/bromine, Redox, and zinc/ferricyanide flowing electrolyte batteries and cells. This paper will update previous reports of test results of two Exxon zinc/bromine batteries and one NASA Redox iron/chromium battery. Two 60-sq. cm. zinc/ferricyanide cells from Lockheed Missiles and Space Co. are also being evaluated. Performance, life, and operating data will be described for these batteries and cells.

  1. Simulation of the dynamic environment for missile component testing: Demonstration

    NASA Technical Reports Server (NTRS)

    Chang, Kurng Y.

    1989-01-01

    The problems in defining a realistic test requirement for missile and space vehicle components can be classified into two categories: (1) definition of the test environment representing the expected service condition, and (2) simulation of the desired environment in the test laboratory. Recently, a new three-dimensional (3-D) test facility was completed at the U.S. Army Harry Diamond Laboratory (HDL) to simulate triaxial vibration input to a test specimen. The vibration test system is designed to support multi-axial vibration tests over the frequency range of 5 to 2000 Hertz. The availability of this 3-D test system motivates the development of new methodologies addressing environmental definition and simulation.

  2. TEST PLAN CHARACTERIZATION OF JET FORCES UPON WASTE TANK COMPONENTS

    SciTech Connect

    Bamberger, J. A.

    1992-01-01

    Westinghouse Hanford Company plans to install mixer pumps in double-shell waste tanks to mobilize and suspend settled sludge to allow eventual retrieval for treatment and permanent storage. The mixer pumps produce high momentum, horizontally directed jets that impact and mobilize the sludge and mix it into slurry for removal. There is concern that the force of the jet may damage tank internal components in its path. This test plan describes scaled experiments designed to characterize the velocity profiles of a near floor jet and to quantify the impact farces and drag coefficients of three tank components: radiation dry well, airlift circulator, and steam coil. The experiments will be conducted in water, at approximately 1/6-scale, using one stationary nozzle to simulate the jet. To measure and confirm the velocity profile of the free, submerged jet, the horizontal and vertical velocity profiles will be measured at several distances from the nozzle. The profile will also be measured after the jet impinges upon the tank floor to determine the·extent of the change in the profile caused by impingement. The jet forces upon the test articles will be measured at a maximum of four velocities and a variety of test article orientations. Each orientation will represent a unique position of the test article relative to the jet and the tank floor. In addition, the steam coil will be tested in three rotational orientations because it is not symmetric. The highest jet velocity will be selected so that the Reynolds number of the test article in the model will match that of the prototype when operating at design conditions. The forces measured upon the model components will be used to calculate the force on the prototype components using geometric scaling factors. In addition, the model force measurements will be used to calculate the component's drag coefficient as a function of the component Reynolds number.

  3. Patch testing with components of water-based metalworking fluids.

    PubMed

    Geier, Johannes; Lessmann, Holger; Frosch, Peter J; Pirker, Claudia; Koch, Patrick; Aschoff, Roland; Richter, Gerhard; Becker, Detlef; Eckert, Christian; Uter, Wolfgang; Schnuch, Axel; Fuchs, Thomas

    2003-08-01

    Water-based metalworking fluids (MWFs) may cause both irritant and allergic contact dermatitis. Several well-known MWF allergens are available for patch testing, but considering the wide variety of possible components used in MWF, our diagnostic arsenal covers only a small part of potential allergens. We therefore selected 13 frequently used MWF components that might be sensitizers and had not yet been tested routinely. In 5 centres, 233 dermatitis patients with present or past occupational exposure to MWF were patch tested with this and other panels. Only 7 patients showed positive reactions to the study panel. Allergic reactions to the emulsifier diglycolamine [syn. 2-(2-aminoethoxy) ethanol] were seen in 5 patients, and 1 patient each reacted positively to 2-amino-2-ethyl-1,3-propanediol (AEPD) and methyldiethanolamine (MDEA). Clinical relevance of the reactions to diglycolamine was unequivocally proven by its presence in the MWF from the patients' workplace in 3 cases. Diglycolamine seems to be an important MWF allergen, independently from monoethanolamine and diethanolamine. A test concentration of 1% petrolatum (pet.) appears to be appropriate. The importance of AEPD and MDEA as MWF allergens still remains to be established. The lack of positive test reactions to the other MWF components tested may be due to their low-sensitizing potential or too low a patch test concentration being used. PMID:14641356

  4. NASA Fastrac Engine Gas Generator Component Test Program and Results

    NASA Technical Reports Server (NTRS)

    Dennis, Henry J., Jr.; Sanders, Tim; Turner, James E. (Technical Monitor)

    2000-01-01

    This presentation consists of viewgraph which review the test program and the results of the tests for the Gas Generator (GG) component for the Fastrac Engine. Included are pictures of the Fastrac (MC-1) Engine and the GG, diagrams of the flight configuration, and schematics of the LOX, and the RP-1 systems and the injector assembly. The normal operating parameters are reviewed, as are the test instrumentation. Also shown are graphs of the hot gas temperature, and the test temperature profiles. The results are summarized.

  5. LEDA RF distribution system design and component test results

    SciTech Connect

    Roybal, W.T.; Rees, D.E.; Borchert, H.L.; McCarthy, M.; Toole, L.

    1998-12-31

    The 350 MHz and 700 MHz RF distribution systems for the Low Energy Demonstration Accelerator (LEDA) have been designed and are currently being installed at Los Alamos National Laboratory. Since 350 MHz is a familiar frequency used at other accelerator facilities, most of the major high-power components were available. The 700 MHz, 1.0 MW, CW RF delivery system designed for LEDA is a new development. Therefore, high-power circulators, waterloads, phase shifters, switches, and harmonic filters had to be designed and built for this applications. The final Accelerator Production of Tritium (APT) RF distribution systems design will be based on much of the same technology as the LEDA systems and will have many of the RF components tested for LEDA incorporated into the design. Low power and high-power tests performed on various components of these LEDA systems and their results are presented here.

  6. Evaluation of Integrated High Temperature Component Testing Needs

    SciTech Connect

    Rafael Soto; David Duncan; Vincent Tonc

    2009-05-01

    This paper describes the requirements for a large-scale component test capability to support the development of advanced nuclear reactor technology and their adaptation to commercial applications that advance U.S. energy economy, reliability, and security and reduce carbon emissions.

  7. Scaled Rocket Testing in Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    Dufrene, Aaron; MacLean, Matthew; Carr, Zakary; Parker, Ron; Holden, Michael; Mehta, Manish

    2015-01-01

    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was strongly based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Detailed base heating results are outside of the scope of the current work, rather test methodology and techniques are presented along with broader applicability toward scaled rocket testing in supersonic and hypersonic flow.

  8. HPM (high power microwave) testing of electronic components

    SciTech Connect

    Antinone, R.; Ng, W.C.

    1989-05-10

    This report documents the results of a study of high power microwave (HPM) vulnerability of electronic components commonly used in weapon systems. The study was carried out at the Lawrence Livermore National Laboratory from August through October 1988. The objective of this study was to determine the threshold levels for upset or disturbance and damage of the devices under test (DUT). In these tests pulsed microwave energy was directly injected into the terminal of the DUT and in most cases a 50-ohm microstrip test fixture was used to ensure that 50-ohm transmission was maintained as close to the DUT as possible. 3 refs., 41 figs., 10 tabs.

  9. Design and Testing of Improved Spacesuit Shielding Components

    SciTech Connect

    Ware, J.; Ferl, J.; Wilson, J.W.; Clowdsley, M.S.; DeAngelis, G.; Tweed, J.; Zeitlin, C.J.

    2002-05-08

    In prior studies of the current Shuttle Spacesuit (SSA), where basic fabric lay-ups were tested for shielding capabilities, it was found that the fabric portions of the suit give far less protection than previously estimated due to porosity and non-uniformity of fabric and LCVG components. In addition, overall material transmission properties were less than optimum. A number of alternate approaches are being tested to provide more uniform coverage and to use more efficient materials. We will discuss in this paper, recent testing of new material lay-ups/configurations for possible use in future spacesuit designs.

  10. Biocompatibility tests of components of an implantable cardiac assist device.

    PubMed

    von Recum, A F; Imamura, H; Freed, P S; Kantrowitz, A; Chen, S T; Ekstrom, M E; Baechler, C A; Barnhart, M I

    1978-09-01

    A permanently implantable in-series left ventricular assist device, the dynamic aortic patch (DAP), has been tested in chronic animal experiments. The DAP replaces a section of the intrathoracic aortic wall. Hemothorax and hematocele at the implantation site have been complications in recent experiments. Primary postoperative hemorrhage was ruled out, and the biocompatibility of all components was therefore examined. Dacron velour, Teflon felt, conductive polyurethane, segmented polyether polyurethane, and Teflon-coated polyester fiber sutures were implanted in the pleural cavities of dogs and tested in vitro by culturing canine saphenous vein explants on them. In vivo experiments demonstrated that all components elicited mild to moderate inflammatory reactions, but hematocele occurred only when the components were implanted in the aorta with direct blood contact and exposed to arterial blood pressures. In vitro, cells were cultured on all components with no signs of toxic reactions. These results indicated that the host tolerated all implant components without major inflammatory responses. However, histological data indicated that chronic slow bleeding into or through the Dacron velour in contact with the arterial blood serum could account for hemothorax or hematocele formation. Therefore, a configuration of the assist device using materials impermeable to blood may obviate these difficulties. PMID:151687

  11. Frequency versus time domain immunity testing of Smart Grid components

    NASA Astrophysics Data System (ADS)

    Gronwald, F.

    2014-11-01

    Smart Grid components often are subject to considerable conducted current disturbances in the frequency range 2-150 kHz and, as a consequence, it is necessary to provide reliable immunity test methods. The relevant basic standard IEC 61000-4-19 that is currently under discussion focusses on frequency domain test methods. It is remarked in this contribution that in the context of frequency domain testing the chosen frequency spacing is related to the resonance response of the system under test which, in turn, is characterized in terms of resonance frequencies and quality factors. These notions apply well to physical system but it is pointed out by the example of an actual smart meter immunity test that smart grid components may exhibit susceptibilities that do not necessarily follow a resonance pattern and, additionally, can be narrowband. As a consequence it is suggested to supplement the present frequency domain test methods by time domain tests which utilize damped sinusoidal excitations with corresponding spectra that properly cover the frequency range 2-150 kHz, as exemplified by the military standard MIL-STD-461.

  12. Heat flux process flow analysis at the component development and integration facility

    SciTech Connect

    Lee, Ying-Ming

    1993-12-31

    The Component Development and Integration Facility (CDIF) is a Department of Energy test facility operated by MSE, Inc. MSE personnel are responsible for the integration of topping cycle components for the national coal-fired magnetohydrodynamics (MHD) development program. During the past several years, a large amount of data has been collected as part of the proof-of-concept (POC) MHD test series. Some of the data collected, e.g. heat loss, pressure distribution in the channel, and other process flow data, have not been analyzed. For example, one area of interest is the flow pattern in the nozzle and channel (i.e. how complete the mixing is in the second stage of the combustor). This paper discusses some of the areas of interest (including the mixing issue), data collected during recent testing, and modeling results obtained from in-house numerical modeling tools. It is believed the collected data can be analyzed to provide valuable information for the future development of MHD technology. In the spring of 1992, a 50-MW{sub t} pressurized, slag rejecting coal-fired prototypic combustor was installed in the integrated topping cycle test train. Testing during the past year emphasized prototypic hardware start-up and Design Verification Testing (DVT), including both combustor and channel/diffuser DVT. With the new combustor and prototypic channel/diffuser testing, large amount of data were generated and analyzed to improve the understanding of the hardware. One area presented here is evaluation of the relationship between second-stage channel heat loss and nominal operating conditions using various inner diameter second stage oxygen injectors. By using a statistical approach, it appears smaller-sized oxygen injectors provide more uniform heat loss distribution in the nozzle region between left and right walls. The heat loss distribution in the channel area behaves in the opposite way.

  13. ORNL facilities for testing first-wall components

    SciTech Connect

    Tsai, C.C.; Becraft, W.R.; Gardner, W.L.; Haselton, H.H.; Hoffman, D.J.; Menon, M.M.; Stirling, W.L.

    1985-01-01

    Future long-impulse magnetic fusion devices will have operating characteristics similar to those described in the design studies of the Tokamak Fusion Core Experiment (TFCX), the Fusion Engineering Device (FED), and the International Tokamak Reactor (INTOR). Their first-wall components (pumped limiters, divertor plates, and rf waveguide launchers with Faraday shields) will be subjected to intense bombardment by energetic particles exhausted from the plasma, including fusion products. These particles are expected to have particle energies of approx.100 eV, particle fluxes of approx.10/sup 18/ cm/sup -2/.s/sup -1/, and heat fluxes of approx.1 kW/cm/sup 2/ CW to approx.100 kW/cm/sup 2/ transient. No components are available to simultaneously handle these particle and heat fluxes, survive the resulting sputtering erosion, and remove exhaust gas without degrading plasma quality. Critical issues for research and development of first-wall components have been identified in the INTOR Activity. Test facilities are needed to qualify candidate materials and develop components. At Oak Ridge National Laboratory (ORNL), existing neutral beam and wave heating test facilities can be modified to simulate first-wall environments with heat fluxes up to 30 kW/cm/sup 2/, particle fluxes of approx.10/sup 18/ cm/sup -2/.s/sup -1/, and pulse lengths up to 30 s, within test volumes up to approx.100 L. The characteristics of these test facilities are described, with particular attention to the areas of particle flux, heat flux, particle energy, pulse length, and duty cycle, and the potential applications of these facilities for first-wall component development are discussed.

  14. Testing the Markov hypothesis in fluid flows

    NASA Astrophysics Data System (ADS)

    Meyer, Daniel W.; Saggini, Frédéric

    2016-05-01

    Stochastic Markov processes are used very frequently to model, for example, processes in turbulence and subsurface flow and transport. Based on the weak Chapman-Kolmogorov equation and the strong Markov condition, we present methods to test the Markov hypothesis that is at the heart of these models. We demonstrate the capabilities of our methodology by testing the Markov hypothesis for fluid and inertial particles in turbulence, and fluid particles in the heterogeneous subsurface. In the context of subsurface macrodispersion, we find that depending on the heterogeneity level, Markov models work well above a certain scale of interest for media with different log-conductivity correlation structures. Moreover, we find surprising similarities in the velocity dynamics of the different media considered.

  15. A simulated lightning effects test facility for testing live and inert missiles and components

    NASA Technical Reports Server (NTRS)

    Craven, Jeffery D.; Knaur, James A.; Moore, Truman W., Jr.; Shumpert, Thomas H.

    1991-01-01

    Details of a simulated lightning effects test facility for testing live and inert missiles, motors, and explosive components are described. The test facility is designed to simulate the high current, continuing current, and high rate-of-rise current components of an idealized direct strike lightning waveform. The Lightning Test Facility was in operation since May, 1988, and consists of: 3 separate capacitor banks used to produce the lightning test components; a permanently fixed large steel safety cage for retaining the item under test (should it be ignited during testing); an earth covered bunker housing the control/equipment room; a charge/discharge building containing the charging/discharging switching; a remotely located blockhouse from which the test personnel control hazardous testing; and interconnecting cables.

  16. MHD Effect of Liquid Metal Film Flows as Plasma-Facing Components

    NASA Astrophysics Data System (ADS)

    Zhang, Xiujie; Xu, Zengyu; Pan, Chuanjie

    2008-12-01

    Stability of liquid metal film flow under gradient magnetic field is investigated. Three dimensional numerical simulations on magnetohydrodynamics (MHD) effect of free surface film flow were carried out, with emphasis on the film thickness variation and its surface stability. Three different MHD phenomena of film flow were observed in the experiment, namely, retardant, rivulet and flat film flow. From our experiment and numerical simulation it can be concluded that flat film flow is a good choice for plasma-facing components (PFCs)

  17. Allergen Component Testing in the Diagnosis of Food Allergy.

    PubMed

    Schussler, Edith; Kattan, Jacob

    2015-09-01

    IgE-mediated food allergies are an important public health problem, affecting 5 % of adults and 8 % of children, with numerous studies indicating that the prevalence is increasing. Food allergic reactions can range in severity from mild to severe and life threatening. Accurate diagnosis of food allergy is necessary not only to provide appropriate and potentially life-saving preventive measures but also to prevent unwarranted dietary restrictions. The diagnosis of food allergy has traditionally been based on clinical history and food specific IgE (sIgE) testing, including skin prick testing (SPT), serum tests, or both. These tests tend to be extremely sensitive, but positive test results to foods that are tolerated are common. Studies of allergen component-resolved diagnostics (CRD) show that adjuvant use of this modality may provide a more accurate assessment in the diagnosis of food allergy, though the reported benefits are questionable for a number of major allergens. Furthermore, diagnostic cutoff values have been difficult to determine for allergens where component testing has been demonstrated to be beneficial. PMID:26233426

  18. Flow boiling test of GDP replacement coolants

    SciTech Connect

    Park, S.H.

    1995-08-01

    The tests were part of the CFC replacement program to identify and test alternate coolants to replace CFC-114 being used in the uranium enrichment plants at Paducah and Portsmouth. The coolants tested, C{sub 4}F{sub 10} and C{sub 4}F{sub 8}, were selected based on their compatibility with the uranium hexafluoride process gas and how well the boiling temperature and vapor pressure matched that of CFC-114. However, the heat of vaporization of both coolants is lower than that of CFC-114 requiring larger coolant mass flow than CFC-114 to remove the same amount of heat. The vapor pressure of these coolants is higher than CFC-114 within the cascade operational range, and each coolant can be used as a replacement coolant with some limitation at 3,300 hp operation. The results of the CFC-114/C{sub 4}F{sub 10} mixture tests show boiling heat transfer coefficient degraded to a minimum value with about 25% C{sub 4}F{sub 10} weight mixture in CFC-114 and the degree of degradation is about 20% from that of CFC-114 boiling heat transfer coefficient. This report consists of the final reports from Cudo Technologies, Ltd.

  19. Free-piston stirling component test power converter test results of the initial test phase

    NASA Astrophysics Data System (ADS)

    Dochat, George R.; Dudenhoefer, James E.

    1992-01-01

    The National Aeronautics and Space Administration (NASA)—Lewis Research Center (LeRC) has the responsibility to develop power technologies that have the potential of satisfying anticipated future space mission power requirements. The Free-Piston Stirling Power Converter (FPSC) is one of the many power technologies being evaluated and developed by NASA. FPSPCs have the potential to provide high reliability, long life, efficient operation; and they can be coupled with all potential heat sources, nuclear, radioisotope and solar, various heat input, heat rejection systems, and various power management and distribution systems. FPSPCs can complete favorably with alternative power conversion systems over a range of hundreds of watts to hundreds of kilowatts and to megawatts. Mechanical Technology Incorporated (MTI) is developed FPSPC technology under contract to NASA-LeRC and will demonstrate this technology in two full-scale power converters. The first of these, the Component Test Power Converter (CTPC), initiated testing in Spring 1991 to evaluate mechanical operation at space operating temperatures. This paper reviews the testing of the CTPC at MTI and the companion testing of the earlier technology engine, the Space Power Research Engine (SPRE) at NASA-LeRC.

  20. Final report for the flow excursion follow-on testing

    SciTech Connect

    Nash, C.A.; Walters, T.W.

    1992-08-05

    The purpose of the Mark 22 Flow Excursion Follow-On testing was to investigate the theory that approximately 15% of the flow bypassed the primary flow channels in previous testing, whereas the design called for only a 3% bypass. The results of the follow-on tests clearly confirmed this theory. The testing was performed in two phases. During the first phase, characterization tests performed during the earlier test program were repeated.

  1. An immersed boundary-lattice Boltzmann method for single- and multi-component fluid flows

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Favier, Julien; D'Ortona, Umberto; Poncet, Sébastien

    2016-01-01

    The paper presents a numerical method to simulate single- and multi-component fluid flows around moving/deformable solid boundaries, based on the coupling of Immersed Boundary (IB) and Lattice Boltzmann (LB) methods. The fluid domain is simulated with LB method using the single relaxation time BGK model, in which an interparticle potential model is applied for multi-component fluid flows. The IB-related force is directly calculated with the interpolated definition of the fluid macroscopic velocity on the Lagrangian points that define the immersed solid boundary. The present IB-LB method can better ensure the no-slip solid boundary condition, thanks to an improved spreading operator. The proposed method is validated through several 2D/3D single- and multi-component fluid test cases with a particular emphasis on wetting conditions on solid wall. Finally, a 3D two-fluid application case is given to show the feasibility of modeling the fluid transport via a cluster of beating cilia.

  2. Laser damage testing of optical components under cryogenic conditions

    NASA Astrophysics Data System (ADS)

    Oulehla, Jindrich; Pokorný, Pavel; Lazar, Josef

    2012-11-01

    In this contribution we present a technology for deposition and testing of interference coatings for optical components designed to operate in power pulsed lasers. The aim of the technology is to prepare components for high power laser facilities such as ELI (Extreme Light Infrastructure) or HiLASE. ELI is a part of the European plan to build a new generation of large research facilities selected by the European Strategy Forum for Research Infrastructures (ESFRI). These facilities rely on the use of diode pumped solid state lasers (DPSSL). The choice of the material for the lasers' optical components is critical. Some of the most important properties include the ability to be antireflection and high reflection coated to reduce the energy losses and increase the overall efficiency. As large amounts of heat need to be dissipated during laser operation, cryogenic cooling is necessary. The conducted experiments served as preliminary tests of laser damage threshold measurement methodology that we plan to use in the future. We designed a special apparatus consisting of a vacuum chamber and a cooling system. The samples were placed into the vacuum chamber which was evacuated and then the samples were cooled down to approximately 120K and illuminated by a pulsed laser. Pulse duration was in the nanosecond region. Multiple test sites on the sample's surface were used for different laser pulse energies. We used optical and electron microscopy and spectrophotometer measurements for coating investigation after the conducted experiments.

  3. NASA's Evolutionary Xenon Thruster (NEXT) Component Verification Testing

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Pinero, Luis R.; Sovey, James S.

    2009-01-01

    Component testing is a critical facet of the comprehensive thruster life validation strategy devised by the NASA s Evolutionary Xenon Thruster (NEXT) program. Component testing to-date has consisted of long-duration high voltage propellant isolator and high-cycle heater life validation testing. The high voltage propellant isolator, a heritage design, will be operated under different environmental condition in the NEXT ion thruster requiring verification testing. The life test of two NEXT isolators was initiated with comparable voltage and pressure conditions with a higher temperature than measured for the NEXT prototype-model thruster. To date the NEXT isolators have accumulated 18,300 h of operation. Measurements indicate a negligible increase in leakage current over the testing duration to date. NEXT 1/2 in. heaters, whose manufacturing and control processes have heritage, were selected for verification testing based upon the change in physical dimensions resulting in a higher operating voltage as well as potential differences in thermal environment. The heater fabrication processes, developed for the International Space Station (ISS) plasma contactor hollow cathode assembly, were utilized with modification of heater dimensions to accommodate a larger cathode. Cyclic testing of five 1/22 in. diameter heaters was initiated to validate these modified fabrication processes while retaining high reliability heaters. To date two of the heaters have been cycled to 10,000 cycles and suspended to preserve hardware. Three of the heaters have been cycled to failure giving a B10 life of 12,615 cycles, approximately 6,000 more cycles than the established qualification B10 life of the ISS plasma contactor heaters.

  4. Flow-induced vibration and instability of some nuclear-reactor-system components. [PWR

    SciTech Connect

    Chen, S.S.

    1983-01-01

    The high-velocity coolant flowing through a reactor system component is a source of energy that can induce component vibration and instability. In fact, many reactor components have suffered from excessive vibration and/or dynamic instability. The potential for detrimental flow-induced vibration makes it necessary that design engineers give detailed considerations to the flow-induced vibration problems. Flow-induced-vibration studies have been performed in many countries. Significant progress has been made in understanding the different phenomena and development of design guidelines to avoid damaging vibration. The purpose of this paper is to present an overview of the recent progress in several selected areas, to discuss some new results and to indentify future research needs. Specifically, the following areas will be presented: examples of flow-induced-vibration problems in reactor components; excitation mechanisms and component response characteristics; instability mechanisms and stability criteria; design considerations; and future research needs.

  5. Universal Verification Methodology Based Register Test Automation Flow.

    PubMed

    Woo, Jae Hun; Cho, Yong Kwan; Park, Sun Kyu

    2016-05-01

    In today's SoC design, the number of registers has been increased along with complexity of hardware blocks. Register validation is a time-consuming and error-pron task. Therefore, we need an efficient way to perform verification with less effort in shorter time. In this work, we suggest register test automation flow based UVM (Universal Verification Methodology). UVM provides a standard methodology, called a register model, to facilitate stimulus generation and functional checking of registers. However, it is not easy for designers to create register models for their functional blocks or integrate models in test-bench environment because it requires knowledge of SystemVerilog and UVM libraries. For the creation of register models, many commercial tools support a register model generation from register specification described in IP-XACT, but it is time-consuming to describe register specification in IP-XACT format. For easy creation of register model, we propose spreadsheet-based register template which is translated to IP-XACT description, from which register models can be easily generated using commercial tools. On the other hand, we also automate all the steps involved integrating test-bench and generating test-cases, so that designers may use register model without detailed knowledge of UVM or SystemVerilog. This automation flow involves generating and connecting test-bench components (e.g., driver, checker, bus adaptor, etc.) and writing test sequence for each type of register test-case. With the proposed flow, designers can save considerable amount of time to verify functionality of registers. PMID:27483924

  6. Tutorial on Quantification of Differences between Single- and Two-Component Two-Phase Flow and Heat Transfer

    NASA Astrophysics Data System (ADS)

    Delil, A. A. M.

    2003-01-01

    Single-component two-phase systems are envisaged for aerospace thermal control applications: Mechanically Pumped Loops, Vapour Pressure Driven Loops, Capillary Pumped Loops and Loop Heat Pipes. Thermal control applications are foreseen in different gravity environments: Micro-g, reduced-g for Mars or Moon bases, 1-g during terrestrial testing, and hyper-g in rotating spacecraft, during combat aircraft manoeuvres and in systems for outer planets. In the evaporator, adiabatic line and condenser sections of such single-component two-phase systems, the fluid is a mixture of the working liquid (for example ammonia, carbon dioxide, ethanol, or other refrigerants, etc.) and its saturated vapour. Results of two-phase two-component flow and heat transfer research (pertaining to liquid-gas mixtures, e.g. water/air, or argon or helium) are often applied to support research on flow and heat transfer in two-phase single-component systems. The first part of the tutorial updates the contents of two earlier tutorials, discussing various aerospace-related two-phase flow and heat transfer research. It deals with the different pressure gradient constituents of the total pressure gradient, with flow regime mapping (including evaporating and condensing flow trajectories in the flow pattern maps), with adiabatic flow and flashing, and with thermal-gravitational scaling issues. The remaining part of the tutorial qualitatively and quantitatively determines the differences between single- and two-component systems: Two systems that physically look similar and close, but in essence are fully different. It was already elucidated earlier that, though there is a certain degree of commonality, the differences will be anything but negligible, in many cases. These differences (quantified by some examples) illustrates how careful one shall be in interpreting data resulting from two-phase two-component simulations or experiments, for the development of single-component two-phase thermal control

  7. Fabrication and Testing of Ceramic Matrix Composite Rocket Propulsion Components

    NASA Technical Reports Server (NTRS)

    Effinger, Michael; Clinton, R. G., Jr.; Dennis, Jay; Elam, Sandy; Genge, Gary; Eckel, Andy; Jaskowiak, Matha; Kiser, J. Doug; Lang, Jerry

    1999-01-01

    The National Aeronautics and Space Administration (NASA) is pursuing using ceramic matrix composites (CMC) as primary structural components for advanced rocket engines. This endeavor is due to the requirement of increasing safety by two orders of magnitude and reducing costs from $10,000/lb to $1,000/lb both within ten years. Out year goals are even more aggressive. Safety gains, through using CMCS, will be realized by increasing temperature margins, tolerance for extreme thermal transients, and damping capability of components and systems, by using components with lower weight and thermal conductivity, etc. Gains in cost reduction, through using CMCS, are anticipated by enabling higher performance systems, using lighter weight components and systems, enabling 100 mission reusability without system refurbishment, greatly reducing cooling requirements and erosion rates, selecting safe fabrication processes that are ideally cost competitive with metal processes at low volume production, etc. This philosophy contrasts the previous philosophy of rocket engine development focused largely on achieving the highest performance with metals and ablatives -- cost and safety were not the focal point of the initial design. Rocket engine components currently being pursued, largely C/SiC and SiC/SiC, include blisks or rotors, 10 foot by 8 foot nozzle ramps, gas generators, thrust chambers, and upperstage nozzles. The Simplex Turbopump CMC blisk effort has just successfully completed a 4.5 year development and test program. The other components mentioned are in the design or fabrication stage. Although the temperature limits of the CMC materials are not quantified in a realistic environment yet, CMC materials are projected to be the only way to achieve significant safety risks mitigation and cost reductions simultaneously. We, the end-users, material fabricators, technology facilitators, and government organizations are charged with developing and demonstrating a much safer and a

  8. Field Testing of Nano-PCM Enhanced Building Envelope Components

    SciTech Connect

    Biswas, Kaushik; Childs, Phillip W; Atchley, Jerald Allen

    2013-08-01

    The U.S. Department of Energy s (DOE) Building Technologies Program s goal of developing high-performance, energy efficient buildings will require more cost-effective, durable, energy efficient building envelopes. Forty-eight percent of the residential end-use energy consumption is spent on space heating and air conditioning. Reducing envelope-generated heating and cooling loads through application of phase change material (PCM)-enhanced envelope components can facilitate maximizing the energy efficiency of buildings. Field-testing of prototype envelope components is an important step in estimating their energy benefits. An innovative phase change material (nano-PCM) was developed with PCM encapsulated with expanded graphite (interconnected) nanosheets, which is highly conducive for enhanced thermal storage and energy distribution, and is shape-stable for convenient incorporation into lightweight building components. During 2012, two test walls with cellulose cavity insulation and prototype PCM-enhanced interior wallboards were installed in a natural exposure test (NET) facility at Charleston, SC. The first test wall was divided into four sections, which were separated by wood studs and thin layers of foam insulation. Two sections contained nano-PCM-enhanced wallboards: one was a three-layer structure, in which nano-PCM was sandwiched between two gypsum boards, and the other one had PCM dispersed homogeneously throughout graphite nanosheets-enhanced gypsum board. The second test wall also contained two sections with interior PCM wallboards; one contained nano-PCM dispersed homogeneously in gypsum and the other was gypsum board containing a commercial microencapsulated PCM (MEPCM) for comparison. Each test wall contained a section covered with gypsum board on the interior side, which served as control or a baseline for evaluation of the PCM wallboards. The walls were instrumented with arrays of thermocouples and heat flux transducers. Further, numerical modeling of

  9. Test-Retest Reliability of Component Process Variables Within the Hopkins Verbal Learning Test-Revised

    ERIC Educational Resources Information Center

    Woods, Steven Paul; Scott, J. Cobb; Conover, Emily; Marcotte, Thomas D.; Heaton, Robert K.; Grant, Igor

    2005-01-01

    Emerging data support the construct validity of component process variables of learning and memory within the Hopkins Verbal Learning Test-Revised (HVLT-R; Brandt & Benedict, 2001); however, the test-retest reliabilities of such measures are heretofore largely unknown. This study reveals generally modest-to-low 1-year test-retest stability for…

  10. Analysis and test of insulated components for rotary engine

    NASA Technical Reports Server (NTRS)

    Badgley, Patrick R.; Doup, Douglas; Kamo, Roy

    1989-01-01

    The direct-injection stratified-charge (DISC) rotary engine, while attractive for aviation applications due to its light weight, multifuel capability, and potentially low fuel consumption, has until now required a bulky and heavy liquid-cooling system. NASA-Lewis has undertaken the development of a cooling system-obviating, thermodynamically superior adiabatic rotary engine employing state-of-the-art thermal barrier coatings to thermally insulate engine components. The thermal barrier coating material for the cast aluminum, stainless steel, and ductile cast iron components was plasma-sprayed zirconia. DISC engine tests indicate effective thermal barrier-based heat loss reduction, but call for superior coefficient-of-thermal-expansion matching of materials and better tribological properties in the coatings used.

  11. Optical Air Flow Measurements for Flight Tests and Flight Testing Optical Air Flow Meters

    NASA Technical Reports Server (NTRS)

    Jentink, Henk W.; Bogue, Rodney K.

    2005-01-01

    Optical air flow measurements can support the testing of aircraft and can be instrumental to in-flight investigations of the atmosphere or atmospheric phenomena. Furthermore, optical air flow meters potentially contribute as avionics systems to flight safety and as air data systems. The qualification of these instruments for the flight environment is where we encounter the systems in flight testing. An overview is presented of different optical air flow measurement techniques applied in flight and what can be achieved with the techniques for flight test purposes is reviewed. All in-flight optical airflow velocity measurements use light scattering. Light is scattered on both air molecules and aerosols entrained in the air. Basic principles of making optical measurements in flight, some basic optical concepts, electronic concepts, optoelectronic interfaces, and some atmospheric processes associated with natural aerosols are reviewed. Safety aspects in applying the technique are shortly addressed. The different applications of the technique are listed and some typical examples are presented. Recently NASA acquired new data on mountain rotors, mountain induced turbulence, with the ACLAIM system. Rotor position was identified using the lidar system and the potentially hazardous air flow profile was monitored by the ACLAIM system.

  12. Incipient flow properties of two-component fine powder mixtures: Changing the flowability of smaller particles

    NASA Astrophysics Data System (ADS)

    Kojima, Takehiro; Elliott, James A.

    2013-06-01

    Understanding the flow properties of two-component fine powder systems with micrometre-sized constituents is important for the quality control of electrophotographic printing applications such as photocopiers. In previous work, we studied the incipient flow properties of model powder mixtures of large (d50 ˜ 70 μm) and small (d50 ˜ 6-8 μm) particles under a consolidation stress of 2 kPa, and reported that they were strongly related to the properties of the small particles where the volume ratio of small powder (xs) exceeds ˜0.1 [1]. In this follow-up study, we examine the effect of changing the flowability of the smaller components on the structure and flow properties of the binary mixtures. For the smaller particles, we used poly(styrene-co-divinylbenzene) (PS-DVB) microspheres (d50 = 7.84 μm). The particle surfaces were modified by adding silica nanoparticles in order to prepare PS-DVB powders with a range of flowabilities. These were then mixed with glass ballotini (d50 = 71.9 μm), and the flow properties of these mixtures were evaluated using the shear testing technique. The cohesion of the mixtures showed essentially the same trend as reported in [1] in terms of their dependence on xs and was related to the number of contacts between the PS-DVB particles. Also, it was strongly dependent on the cohesion of the PS-DVB powders despite a very small xs (xs < 0.01). As for the internal angle of friction, although its value for each PS-DVB powder was similar, it also showed a correlation with the number of contacts between PS-DVB particles.

  13. Counter-Flow Cooling Tower Test Cell

    NASA Astrophysics Data System (ADS)

    Dvořák, Lukáš; Nožička, Jiří

    2014-03-01

    The article contains a design of a functional experimental model of a cross-flow mechanical draft cooling tower and the results and outcomes of measurements. This device is primarily used for measuring performance characteristics of cooling fills, but with a simple rebuild, it can be used for measuring other thermodynamic processes that take part in so-called wet cooling. The main advantages of the particular test cell lie in the accuracy, size, and the possibility of changing the water distribution level. This feature is very useful for measurements of fills of different heights without the influence of the spray and rain zone. The functionality of this test cell has been verified experimentally during assembly, and data from the measurement of common film cooling fills have been compared against the results taken from another experimental line. For the purpose of evaluating the data gathered, computational scripts were created in the MATLAB numerical computing environment. The first script is for exact calculation of the thermal balance of the model, and the second is for determining Merkel's number via Chebyshev's method.

  14. Purinergic and cholinergic components of bladder contractility and flow.

    PubMed

    Theobald, R J

    1995-01-01

    The role of ATP as a neurotransmitter/neuromodulator in the urinary tract has been the subject of much study, particularly whether ATP has a functional role in producing urine flow. Recent studies suggested significant species variation, specifically a variation between cat and other species. This study was performed to determine the in vivo response of cat urinary bladder to pelvic nerve stimulation (PNS) and to the exogenous administration of cholinergic and purinergic agents. In anesthetized cats, bladder contractions and fluid expulsion was measured in response to PNS and to the exogenous administration of cholinergic and purinergic agents. Fluid was instilled into the bladder and any fluid expelled by bladder contractions induced by PNS or exogenous agents was collected in a beaker. The volume was measured in a graduated cylinder and recorded. PNS, carbachol and APPCP produced sustained contractions with significant expulsion of fluid. ATP, ACh and hypogastric nerve stimulation did not produce any significant expulsion of fluid. Atropine, a cholinergic antagonist, inhibited PNS contractions and fluid expulsion with no effect on purinergic actions. There was a significant relationship between the magnitude of the contraction, duration of the contractions and volume of fluid expelled. The data and information from other studies, strongly suggests a functional role for ATP as a cotransmitter in the lower urinary tract different from ACh's role. ATP stimulation of a specific purinergic receptor plays a role in initiation of bladder contractions and perhaps in the initiation of urine flow from the bladder. ACh's role is functionally different and appears to be more involved in maintenance of contractile activity and flow. PMID:7830505

  15. Single Component Sorption-Desorption Test Experimental Design Approach Discussions

    SciTech Connect

    Phil WInston

    2011-09-01

    A task was identified within the fission-product-transport work package to develop a path forward for doing testing to determine behavior of volatile fission products behavior and to engage members of the NGNP community to advise and dissent on the approach. The following document is a summary of the discussions and the specific approaches suggested for components of the testing. Included in the summary isare the minutes of the conference call that was held with INL and external interested parties to elicit comments on the approaches brought forward by the INL participants. The conclusion was that an initial non-radioactive, single component test will be useful to establish the limits of currently available chemical detection methods, and to evaluated source-dispersion uniformity. In parallel, development of a real-time low-concentration monitoring method is believed to be useful in detecting rapid dispersion as well as desorption phenomena. Ultimately, the test cycle is expected to progress to the use of radio-traced species, simply because this method will allow the lowest possible detection limits. The consensus of the conference call was that there is no need for an in-core test because the duct and heat exchanger surfaces that will be the sorption target will be outside the main neutron flux and will not be affected by irradiation. Participants in the discussion and contributors to the INL approach were Jeffrey Berg, Pattrick Calderoni, Gary Groenewold, Paul Humrickhouse, Brad Merrill, and Phil Winston. Participants from outside the INL included David Hanson of General Atomics, Todd Allen, Tyler Gerczak, and Izabela Szlufarska of the University of Wisconsin, Gary Was, of the University of Michigan, Sudarshan Loyalka and Tushar Ghosh of the University of Missouri, and Robert Morris of Oak Ridge National Laboratory.

  16. Correlation of Test Data from Some NIF Small Optical Components

    SciTech Connect

    Chow, R; McBurney, M; Eickelberg, W K; Williams, W H; Thomas, M D

    2001-06-12

    The NIF injection laser system requires over 8000 precision optical components. Two special requirements for such optics are wavefront and laser damage threshold. Wavefront gradient is an important specification on the NIF ILS optics. The gradient affects the spot size and, in the second order, the contrast ratio of the laser beam. Wavefront errors are specified in terms of peak-to-valley, rms, and rms gradient, with filtering requirements. Typical values are lambda/8 PV, lambda/30 rms, and lambda/30/cm rms gradient determined after filtering for spatial periods greater than 2 mm. One objective of this study is to determine whether commercial software supplied with common phase measuring interferometers can filter, perform the gradient analysis, and produce numbers comparable to that by CVOS, the LLNL wavefront analysis application. Laser survivability of optics is another important specification for the operational longevity of the laser system. Another objective of this study is to find alternate laser damage test facilities. The addition of non-NIF testing would allow coating suppliers to optimize their processes according to their test plans and NIF integrators to validate the coatings from their sub-tiered suppliers. The maximum level required for anti-reflective, 45-degree high reflector, and polarizer coatings are 20, 30, and 5 J/cm{sup 2} (1064 nm, 3 ns pulse-width), respectively. The damage threshold correlation between a common set of samples tested by LLNL and a commercial test service is given.

  17. Seawater test results of open-cycle ocean thermal energy conversion (OC-OTEC) components

    SciTech Connect

    Zangrando, F.; Bharathan, D.; Link, H. ); Panchal, C.B. )

    1994-01-01

    Key components of open-cycle ocean thermal energy conversion systems--the flash evaporator, mist eliminator, passive predeaerator, two surface condenser stages, and two direct-contact condenser stages--have been tested using seawater. These components operate at lower steam pressures and higher inlet noncondensable gas concentrations than do conventional power plant heat exchangers. The rate of heat exchanged between the evaporator and the condenser is on the order of 1.25MW-thermal, requiring a warm seawater flow of about 0.1 m[sup 3]/s; the cold seawater flow is on the order of half the warm water flow. In addition to characterizing the performance of the various components, the system has produced potable water from condensation of the steam produced in the evaporator. The information obtained in these tests is being used to design a larger scale experiment in which net power production is expected to be demonstrate for the first time using OC-OTEC technology.

  18. 46 CFR 162.018-7 - Flow rating tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Flow rating tests. 162.018-7 Section 162.018-7 Shipping...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Safety Relief Valves, Liquefied Compressed Gas § 162.018-7 Flow rating tests. (a) Flow rating of valves shall be conducted in accordance with UG-131 of section VIII...

  19. Facility for cold flow testing of solid rocket motor models

    NASA Astrophysics Data System (ADS)

    Bacchus, D. L.; Hill, O. E.; Whitesides, R. Harold

    1992-02-01

    A new cold flow test facility was designed and constructed at NASA Marshall Space Flight Center for the purpose of characterizing the flow field in the port and nozzle of solid propellant rocket motors (SRM's). A National Advisory Committee was established to include representatives from industry, government agencies, and universities to guide the establishment of design and instrumentation requirements for the new facility. This facility design includes the basic components of air storage tanks, heater, submicron filter, quiet control valve, venturi, model inlet plenum chamber, solid rocket motor (SRM) model, exhaust diffuser, and exhaust silencer. The facility was designed to accommodate a wide range of motor types and sizes from small tactical motors to large space launch boosters. This facility has the unique capability of testing ten percent scale models of large boosters such as the new Advanced Solid Rocket Motor (ASRM), at full scale motor Reynolds numbers. Previous investigators have established the validity of studying basic features of solid rocket motor development programs include the acquisition of data to (1) directly evaluate and optimize the design configuration of the propellant grain, insulation, and nozzle; and (2) provide data for validation of the computational fluid dynamics, (CFD), analysis codes and the performance analysis codes. A facility checkout model was designed, constructed, and utilized to evaluate the performance characteristics of the new facility. This model consists of a cylindrical chamber and converging/diverging nozzle with appropriate manifolding to connect it to the facility air supply. It was designed using chamber and nozzle dimensions to simulate the flow in a 10 percent scale model of the ASRM. The checkout model was recently tested over the entire range of facility flow conditions which include flow rates from 9.07 to 145 kg/sec (20 to 320 Ibm/sec) and supply pressure from 5.17 x 10 exp 5 to 8.27 x 10 exp 6 Pa. The

  20. A note on the asymptotic distribution of likelihood ratio tests to test variance components.

    PubMed

    Visscher, Peter M

    2006-08-01

    When using maximum likelihood methods to estimate genetic and environmental components of (co)variance, it is common to test hypotheses using likelihood ratio tests, since such tests have desirable asymptotic properties. In particular, the standard likelihood ratio test statistic is assumed asymptotically to follow a chi2 distribution with degrees of freedom equal to the number of parameters tested. Using the relationship between least squares and maximum likelihood estimators for balanced designs, it is shown why the asymptotic distribution of the likelihood ratio test for variance components does not follow a chi2 distribution with degrees of freedom equal to the number of parameters tested when the null hypothesis is true. Instead, the distribution of the likelihood ratio test is a mixture of chi2 distributions with different degrees of freedom. Implications for testing variance components in twin designs and for quantitative trait loci mapping are discussed. The appropriate distribution of the likelihood ratio test statistic should be used in hypothesis testing and model selection. PMID:16899155

  1. Corrosion erosion test of SS316 in flowing Pb Bi

    NASA Astrophysics Data System (ADS)

    Kikuchi, K.; Kurata, Y.; Saito, S.; Futakawa, M.; Sasa, T.; Oigawa, H.; Wakai, E.; Miura, K.

    2003-05-01

    Corrosion tests of austenitic stainless tube were done under flowing Pb-Bi conditions for 3000 h at 450 °C. Specimens were 316SS produced as a tubing form with 13.8 mm outer diameter, 2 mm thickness and 40 cm length. During operation, maximum temperature, temperature difference and flow velocity of Pb-Bi at the specimen were kept at 450, 50 °C, and 1 m/s, respectively. After the test, specimen and components of the loop were cut and examined by optical microscope, SEM, EDX, WDX and X-ray diffraction. Pb-Bi adhered on the surface of the specimen even after Pb-Bi was drained out to the storage tank from the circulating loop. Results differed from a stagnant corrosion test in that the specimen surface became rough and the corrosion rate was maximally 0.1 mm/3000 h. Mass transfer from the high temperature to the lower temperature area was observed: crystals of Fe-Cr were found on the tube surface in the low-temperature region. The sizes of crystals varied from 0.1 to 0.2 mm. The depositing crystals were ferrite grains and the chemical composition ratio (mass%) of Fe to Cr was 9:1.

  2. Test-retest reliability of component process variables within the Hopkins Verbal Learning Test-Revised.

    PubMed

    Woods, Steven Paul; Scott, J Cobb; Conover, Emily; Marcotte, Thomas D; Heaton, Robert K; Grant, Igor

    2005-03-01

    Emerging data support the construct validity of component process variables of learning and memory within the Hopkins Verbal Learning Test-Revised (HVLT-R; Brandt & Benedict, 2001); however, the test-retest reliabilities of such measures are heretofore largely unknown. This study reveals generally modest-to-low 1-year test-retest stability for several key HVLT-R component process variables (e.g., semantic clustering) in 41 healthy, younger adults. These findings are discussed in relation to issues of clinical practice and research design in neuropsychological assessment. PMID:15695747

  3. Tests Of Shear-Flow Model For Acoustic Impedance

    NASA Technical Reports Server (NTRS)

    Parrot, Tony L.; Watson, Willie R.; Jones, Michael G.

    1992-01-01

    Tests described in report conducted to validate two-dimensional shear-flow analytical model for determination of acoustic impedance of acoustic liner in grazing-incidence, grazing-flow environment by use of infinite-waveguide method. Tests successful for both upstream and downstream propagations. Work has potential for utility in testing of engine ducts in commercial aircraft.

  4. Separating deceptive and orienting components in a Concealed Information Test.

    PubMed

    Ambach, Wolfgang; Stark, Rudolf; Peper, Martin; Vaitl, Dieter

    2008-11-01

    The Concealed Information Test (CIT) requires the examinee to deceptively deny recognition of known stimuli and to truthfully deny recognition of unknown stimuli. Because deception and orienting are typically coupled, it is unclear how exactly these sub-processes affect the physiological responses measured in the CIT. The present study aimed at separating the effects of deception from those of orienting. In a mock-crime study, using a modified CIT, thirty-six of seventy-two subjects answered truthfully ('truth group'), whereas the other thirty-six concealed their knowledge ('lie group'). Answering was delayed for 4 s after item presentation. Electrodermal activity (EDA), respiration (RLL), and phasic heart rate (HR) were recorded. A decomposition of EDA responses revealed two response components; the response in the first interval was expected to indicate orienting, stimulus evaluation, and answer preparation, whereas the response in the second interval was assumed to reflect answer-related processes. Inconclusively, both EDA components differentiated between 'probe' and 'irrelevant' items in both groups. Phasic HR and RLL differed between item classes only in the 'lie' group, thus reflecting answer-related processes, possibly deception, rather than merely orienting responses. The findings further support the notion that psychophysiological measures elicited by a modified CIT may reflect different mental processes involved in orienting and deception. PMID:18674573

  5. Plutonium immobilization ceramic feed batching component test report

    SciTech Connect

    Erickson, S.A.

    1999-10-04

    The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with high level waste glass for permanent storage. Ceramic feed batching (CFB) is one of the first process steps involved with first stage plutonium immobilization. The CFB step will blend plutonium oxide powder before it is combined with other materials to make pucks. This report discusses the Plutonium Immobilization CFB process preliminary concept (including a process block diagram), batch splitting component test results, CFB development areas, and FY 1999 and 2000 CFB program milestones.

  6. Transmission line component testing for the ITER Ion Cyclotron Heating and Current Drive System

    NASA Astrophysics Data System (ADS)

    Goulding, Richard; Bell, G. L.; Deibele, C. E.; McCarthy, M. P.; Rasmussen, D. A.; Swain, D. W.; Barber, G. C.; Barbier, C. N.; Cambell, I. H.; Moon, R. L.; Pesavento, P. V.; Fredd, E.; Greenough, N.; Kung, C.

    2014-10-01

    High power RF testing is underway to evaluate transmission line components for the ITER Ion Cyclotron Heating and Current Drive System. The transmission line has a characteristic impedance Z0 = 50 Ω and a nominal outer diameter of 305 mm. It is specified to carry up to 6 MW at VSWR = 1.5 for 3600 s pulses, with transient voltages up to 40 kV. The transmission line is actively cooled, with turbulent gas flow (N2) used to transfer heat from the inner to outer conductor, which is water cooled. High voltage and high current testing of components has been performed using resonant lines generating steady state voltages of 35 kV and transient voltages up to 60 kV. A resonant ring, which has operated with circulating power of 6 MW for 1 hr pulses, is being used to test high power, low VSWR operation. Components tested to date include gas barriers, straight sections of various lengths, and 90 degree elbows. Designs tested include gas barriers fabricated from quartz and aluminum nitride, and transmission lines with quartz and alumina inner conductor supports. The latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  7. Analysis of Flow Angularity Repeatability Tests in the NTF

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J.

    2006-01-01

    An extensive data base of flow angularity repeatability measurements from four NTF check standard model tests is analyzed for statistical consistency and to characterize the results for prediction of angle-of-attack uncertainty for customer tests. A procedure for quality assurance for flow angularity measurements during customer tests is also presented. The efficacy of the procedure is tested using results from a customer test.

  8. NASTRAN Modeling of Flight Test Components for UH-60A Airloads Program Test Configuration

    NASA Technical Reports Server (NTRS)

    Idosor, Florentino R.; Seible, Frieder

    1993-01-01

    Based upon the recommendations of the UH-60A Airloads Program Review Committee, work towards a NASTRAN remodeling effort has been conducted. This effort modeled and added the necessary structural/mass components to the existing UH-60A baseline NASTRAN model to reflect the addition of flight test components currently in place on the UH-60A Airloads Program Test Configuration used in NASA-Ames Research Center's Modern Technology Rotor Airloads Program. These components include necessary flight hardware such as instrument booms, movable ballast cart, equipment mounting racks, etc. Recent modeling revisions have also been included in the analyses to reflect the inclusion of new and updated primary and secondary structural components (i.e., tail rotor shaft service cover, tail rotor pylon) and improvements to the existing finite element mesh (i.e., revisions of material property estimates). Mode frequency and shape results have shown that components such as the Trimmable Ballast System baseplate and its respective payload ballast have caused a significant frequency change in a limited number of modes while only small percent changes in mode frequency are brought about with the addition of the other MTRAP flight components. With the addition of the MTRAP flight components, update of the primary and secondary structural model, and imposition of the final MTRAP weight distribution, modal results are computed representative of the 'best' model presently available.

  9. Development and testing of a 20-kHz component test bed

    NASA Technical Reports Server (NTRS)

    Button, Robert M.; Brush, Andrew S.; Sundberg, Richard C.

    1989-01-01

    A history of the General Dynamics Space Systems Division 20 kHz Breadboard is presented including its current configuration and its role in the Space Station Freedom (SSF) program. Highlights and results are presented on a series of tests conducted on the 20 kHz Breadboard. The first test presented is the 20 kHz Breadboard Acceptance test. This test verified the operation of the delivered Breadboard and also characterized the main components of the system. Next, an indepth efficiency testing effort is presented. The tests attempted to apportion all the power losses in the 20 kHz Breadboard Main Invert Units. Distortion test data is presented showing the distortion characteristics of a Mapham inverter. Lastly, current work on the 20 kHz Breadboard is presented including Main Inverter Unit paralleling tests. Conclusions are summarized and references given.

  10. An analysis method for multi-component airfoils in separated flow

    NASA Technical Reports Server (NTRS)

    Rao, B. M.; Duorak, F. A.; Maskew, B.

    1980-01-01

    The multi-component airfoil program (Langley-MCARF) for attached flow is modified to accept the free vortex sheet separation-flow model program (Analytical Methods, Inc.-CLMAX). The viscous effects are incorporated into the calculation by representing the boundary layer displacement thickness with an appropriate source distribution. The separation flow model incorporated into MCARF was applied to single component airfoils. Calculated pressure distributions for angles of attack up to the stall are in close agreement with experimental measurements. Even at higher angles of attack beyond the stall, correct trends of separation, decrease in lift coefficients, and increase in pitching moment coefficients are predicted.

  11. Additive Manufacturing Thermal Performance Testing of Single Channel GRCop-84 SLM Components

    NASA Technical Reports Server (NTRS)

    Garcia, Chance P.; Cross, Matthew

    2014-01-01

    The surface finish found on components manufactured by sinter laser manufacturing (SLM) is rougher (0.013 - 0.0006 inches) than parts made using traditional fabrication methods. Internal features and passages built into SLM components do not readily allow for roughness reduction processes. Alternatively, engineering literature suggests that the roughness of a surface can enhance thermal performance within a pressure drop regime. To further investigate the thermal performance of SLM fabricated pieces, several GRCop-84 SLM single channel components were tested using a thermal conduction rig at MSFC. A 20 kW power source running at 25% duty cycle and 25% power level applied heat to each component while varying water flow rates between 2.1 - 6.2 gallons/min (GPM) at a supply pressure of 550 to 700 psi. Each test was allowed to reach quasi-steady state conditions where pressure, temperature, and thermal imaging data were recorded. Presented in this work are the heat transfer responses compared to a traditional machined OHFC Copper test section. An analytical thermal model was constructed to anchor theoretical models with the empirical data.

  12. Static Feed Water Electrolysis Subsystem Testing and Component Development

    NASA Technical Reports Server (NTRS)

    Koszenski, E. P.; Schubert, F. H.; Burke, K. A.

    1983-01-01

    A program was carried out to develop and test advanced electrochemical cells/modules and critical electromechanical components for a static feed (alkaline electrolyte) water electrolysis oxygen generation subsystem. The accomplishments were refurbishment of a previously developed subsystem and successful demonstration for a total of 2980 hours of normal operation; achievement of sustained one-person level oxygen generation performance with state-of-the-art cell voltages averaging 1.61 V at 191 ASF for an operating temperature of 128F (equivalent to 1.51V when normalized to 180F); endurance testing and demonstration of reliable performance of the three-fluid pressure controller for 8650 hours; design and development of a fluid control assembly for this subsystem and demonstration of its performance; development and demonstration at the single cell and module levels of a unitized core composite cell that provides expanded differential pressure tolerance capability; fabrication and evaluation of a feed water electrolyte elimination five-cell module; and successful demonstration of an electrolysis module pressurization technique that can be used in place of nitrogen gas during the standby mode of operation to maintain system pressure and differential pressures.

  13. Development of Flow Boiling and Condensation Experiment on the International Space Station- Normal and Low Gravity Flow Boiling Experiment Development and Test Results

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Hall, Nancy R.; Hasan, Mohammad M.; Wagner, James D.; May, Rochelle L.; Mackey, Jeffrey R.; Kolacz, John S.; Butcher, Robert L.; Frankenfield, Bruce J.; Mudawar, Issam; Konichi, Chris; Hyounsoon, Lee

    2013-01-01

    Flow boiling and condensation have been identified as two key mechanisms for heat transport that are vital for achieving weight and volume reduction as well as performance enhancement in future space systems. Since inertia driven flows are demanding on power usage, lower flows are desirable. However, in microgravity, lower flows are dominated by forces other than inertia (like the capillary force). It is of paramount interest to investigate limits of low flows beyond which the flow is inertial enough to be gravity independent. One of the objectives of the Flow Boiling and Condensation Flight Experiment sets to investigate these limits for flow boiling and condensation. A two-phase flow loop consisting of a Flow Boiling Module and two Condensation Modules has been developed to experimentally study flow boiling condensation heat transfer in the reduced gravity environment provided by the reduced gravity platform. This effort supports the development of a flow boiling and condensation facility for the International Space Station (ISS). The closed loop test facility is designed to deliver the test fluid, FC-72 to the inlet of any one of the test modules at specified thermodynamic and flow conditions. The zero-g-aircraft tests will provide subcooled and saturated flow boiling critical heat flux and flow condensation heat transfer data over wide range of flow velocities. Additionally, these tests will verify the performance of all gravity sensitive components, such as evaporator, condenser and accumulator associated with the two-phase flow loop. We will present in this paper the breadboard development and testing results which consist of detailed performance evaluation of the heater and condenser combination in reduced and normal gravity. We will also present the design of the reduced gravity aircraft rack and the results of the ground flow boiling heat transfer testing performed with the Flow Boiling Module that is designed to investigate flow boiling heat transfer and

  14. CEBAF Upgrade Cryomodule Component Testing in the Horizontal Test Bed (HTB)

    SciTech Connect

    I.E. Campisi; B. Carpenter; G.K. Davis; J. Delayen; M. Drury; E. Feldl; J. Fischer; A. Guerra; P. Kneisel; T. Hiatt; C. Hovater; K. Macha; J. Mammosser; V. Nguyen; L. Phillips; J. Preble

    2001-06-01

    The planned upgrade of the CEBAF electron accelerator includes the development of an improved cryomodule. Several components differ substantially from the original CEBAF cryomodule; these include: the new 7-cell, 1.5 GHz cavities with integral helium vessel, a new, backlash-free cavity tuner, the waveguide coupler with its room-temperature ceramic window, and the HOM damping filters. In order to test the design features and performance of the new components, a horizontal cryostat (Horizontal Test Bed) has been constructed which allows testing with a turn around time of less than three weeks. This cryostat provides the environment for testing one or two cavities, with associated auxiliary components, in a condition similar to that of a real cryomodule. A series of tests has been performed on a prototype 7-cell cavity and the above-mentioned systems. In this paper the results of the tests on the cryostat, on the cavity performance, on its coupler, on the tuner characteristics, and on the microphonics behavior will be reported.

  15. Capillary flow solderability test for printed wiring boards

    SciTech Connect

    Hosking, F.M.; Yost, F.G.; Hernandez, C.L.; Sackinger, S.J.

    1994-04-01

    This report describes a new technique for evaluating capillary flow solderability on printed circuit boards. The test involves the flow of molten solder from a pad onto different-sized conductor lines. It simulates the spreading dynamics of either plated-through-hole (PTH) or surface mount technology (SMT) soldering. A standard procedure has been developed for the test. Preliminary experiments were conducted and the results demonstrate test feasibility. Test procedures and results are presented in this report.

  16. Oscillating flow loss test results in Stirling engine heat exchangers

    NASA Technical Reports Server (NTRS)

    Koester, G.; Howell, S.; Wood, G.; Miller, E.; Gedeon, D.

    1990-01-01

    The results are presented for a test program designed to generate a database of oscillating flow loss information that is applicable to Stirling engine heat exchangers. The tests were performed on heater/cooler tubes of various lengths and entrance/exit configurations, on stacked and sintered screen regenerators of various wire diameters and on Brunswick and Metex random fiber regenerators. The test results were performed over a range of oscillating flow parameters consistent with Stirling engine heat exchanger experience. The tests were performed on the Sunpower oscillating flow loss rig which is based on a variable stroke and variable frequency linear drive motor. In general, the results are presented by comparing the measured oscillating flow losses to the calculated flow losses. The calculated losses are based on the cycle integration of steady flow friction factors and entrance/exit loss coefficients.

  17. Oscillating-flow regenerator test rig

    NASA Technical Reports Server (NTRS)

    Wood, J. G.; Gedeon, D. R.

    1994-01-01

    This report summarizes work performed in setting up and performing tests on a regenerator test rig. An earlier status report presented test results, together with heat transfer correlations, for four regenerator samples (two woven screen samples and two felt metal samples). Lessons learned from this testing led to improvements to the experimental setup, mainly instrumentation as well as to the test procedure. Given funding and time constraints for this project it was decided to complete as much testing as possible while the rig was set up and operational, and to forego final data reduction and analysis until later. Additional testing was performed on several of the previously tested samples as well an on five newly fabricated samples. The following report is a summary of the work performed at OU, with many of the final test results included in raw data form.

  18. Pesticides and biocides in a karst catchment: Identification of contaminant sources and related flow components

    NASA Astrophysics Data System (ADS)

    Wagner, Thomas; Bollmann, Ulla E.; Bester, Kai; Birk, Steffen

    2013-04-01

    Karst aquifers are widely used as drinking water resources. However, their high vulnerability to chemical and bacterial contamination due to the heterogeneity in aquifer properties (highly conductive solution conduits embedded in the less conductive fissured rock) is difficult to assess and thus poses major challenges to the management of karst water resources. Contamination of karst springs by organic micro-pollutants has been observed in recent studies. Within this study the water from different springs draining one karst aquifer as well as the main sinking stream replenishing it were analysed before, during and after a storm water event in order to examine the occurrence of different pesticides and biocides. Contaminants from both urban as well as agricultural origin could be detected in the water with concentrations in the low ng/L range (tebuconazole, carbendazim, diuron, isoproturon, terbutryn, atrazine, dichlorobenzamide (BAM), which is a metabolite of dichlobenil). While some compounds could be followed from the sinking stream to the springs (e.g. dichlorobenzamide) some seem to have a source in the autogenic recharge from the karst plateau (Tebuconazole: wood preservative in buildings). These compounds appear to be related to fast flow components with residence times in the order of days, which are known from a number of tracer tests with fluorescent dyes. However, the occurrence of the pesticide atrazine (banned since 1995 in Austria) in the springs, while on the other hand no current input into the karst occurs, shows that some compounds have long residence times in the karst aquifer. These differences in residence times can hardly be attributed to differences in physico-chemical properties of the compounds and must thus be due to the presence of slow and fast flow components. This is in agreement with the duality of karst aquifers due to highly conductive networks of solution conduits embedded in less conductive fissured carbonate rocks.

  19. Design Choices for Thermofluid Flow Components and Systems that are Exported as Functional Mockup Units

    SciTech Connect

    Wetter, Michael; Fuchs, Marcus; Nouidui, Thierry

    2015-09-21

    This paper discusses design decisions for exporting Modelica thermofluid flow components as Functional Mockup Units. The purpose is to provide guidelines that will allow building energy simulation programs and HVAC equipment manufacturers to effectively use FMUs for modeling of HVAC components and systems. We provide an analysis for direct input-output dependencies of such components and discuss how these dependencies can lead to algebraic loops that are formed when connecting thermofluid flow components. Based on this analysis, we provide recommendations that increase the computing efficiency of such components and systems that are formed by connecting multiple components. We explain what code optimizations are lost when providing thermofluid flow components as FMUs rather than Modelica code. We present an implementation of a package for FMU export of such components, explain the rationale for selecting the connector variables of the FMUs and finally provide computing benchmarks for different design choices. It turns out that selecting temperature rather than specific enthalpy as input and output signals does not lead to a measurable increase in computing time, but selecting nine small FMUs rather than a large FMU increases computing time by 70%.

  20. NASA Flight Tests Explore Supersonic Laminar Flow

    NASA Video Gallery

    In partnership with Aerion Corporation of Reno, Nevada, NASA's Dryden Flight Research Center’s tested supersonic airflow over a small experimental airfoil design on its F-15B Test Bed aircraft du...

  1. Altitude Compensating Nozzle Cold Flow Test Results

    NASA Technical Reports Server (NTRS)

    Ruf, J. H.; McDaniels, D. M.

    2002-01-01

    A suite of four altitude compensating nozzle (ACN) concepts were evaluated by NASA MSFC in the Nozzle Test Facility. The ACN concepts were a dual bell, a dual expander, an annular plug nozzle and an expansion deflection nozzle. Two reference bell nozzles were also tested. Axial thrust and nozzle wall static pressures were measured for each nozzle over a wide range of nozzle pressure ratios. The nozzle hardware and test program are described. Sample test results are presented.

  2. Noninvasive blood flow tests in vascular disease.

    PubMed Central

    Steinmetz, O. K.; Cole, C. W.

    1993-01-01

    Noninvasive testing is now routine for assessing vascular conditions. Many noninvasive tests are available for obtaining physiologic and anatomic information that is both precise and reproducible. This paper discusses noninvasive testing with plethysmography, Doppler ultrasonography, and duplex scanning for carotid artery occlusive disease, deep venous thrombosis, and peripheral arterial occlusive disease. Images Figure 2 Figure 3 PMID:8268746

  3. Assessment of the National Transonic Facility for Laminar Flow Testing

    NASA Technical Reports Server (NTRS)

    Crouch, Jeffrey D.; Sutanto, Mary I.; Witkowski, David P.; Watkins, A. Neal; Rivers, Melissa B.; Campbell, Richard L.

    2010-01-01

    A transonic wing, designed to accentuate key transition physics, is tested at cryogenic conditions at the National Transonic Facility at NASA Langley. The collaborative test between Boeing and NASA is aimed at assessing the facility for high-Reynolds number testing of configurations with significant regions of laminar flow. The test shows a unit Reynolds number upper limit of 26 M/ft for achieving natural transition. At higher Reynolds numbers turbulent wedges emanating from the leading edge bypass the natural transition process and destroy the laminar flow. At lower Reynolds numbers, the transition location is well correlated with the Tollmien-Schlichting-wave N-factor. The low-Reynolds number results suggest that the flow quality is acceptable for laminar flow testing if the loss of laminar flow due to bypass transition can be avoided.

  4. Application of differential similarity to finding nondimensional groups important in tests of cooled engine components

    NASA Technical Reports Server (NTRS)

    Sucec, J.

    1977-01-01

    The method of differential similarity is applied to the partial differential equations and boundary conditions which govern the temperature, velocity, and pressure fields in the flowing gases and the solid stationary components in air-cooled engines. This procedure yields the nondimensional groups which must have the same value in both the test rig and the engine to produce similarity between the test results and the engine performance. These results guide the experimentalist in the design and selection of test equipment that properly scales quantities to actual engine conditions. They also provide a firm fundamental foundation for substantiation of previous similarity analyses which employed heuristic, physical reasoning arguments to arrive at the nondimensional groups.

  5. Hypersonic engine component experiments in high heat flux, supersonic flow environment

    NASA Technical Reports Server (NTRS)

    Gladden, Herbert J.; Melis, Matthew E.

    1993-01-01

    A major concern in advancing the state-of-the-art technologies for hypersonic vehicles is the development of an aeropropulsion system capable of withstanding the sustained high thermal loads expected during hypersonic flight. Even though progress has been made in the computational understanding of fluid dynamics and the physics/chemistry of high speed flight, there is also a need for experimental facilities capable of providing a high heat flux environment for testing component concepts and verifying/calibrating these analyses. A hydrogen/oxygen rocket engine heat source was developed at the NASA Lewis Research Center as one element in a series of facilities at national laboratories designed to fulfill this need. This 'Hot Gas Facility' is capable of providing heat fluxes up to 450 w/sq cm on flat surfaces and up to 5,000 w/sq cm at the leading edge stagnation point of a strut in a supersonic flow stream. Gas temperatures up to 3050 K can also be attained. Two recent experimental programs conducted in this facility are discussed. The objective of the first experiment is to evaluate the erosion and oxidation characteristics of a coating on a cowl leading edge (or strut leading edge) in a supersonic, high heat flux environment. Macrophotographic data from a coated leading edge model show progressive degradation over several thermal cycles at aerothermal conditions representative of high Mach number flight. The objective of the second experiment is to assess the capability of cooling a porous surface exposed to a high temperature, high velocity flow environment and to provide a heat transfer data base for a design procedure. Experimental results from transpiration cooled surfaces in a supersonic flow environment are presented.

  6. Simulation of three-component fluid flows using the multiphase lattice Boltzmann flux solver

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Tang, G. H.; Wang, Y.

    2016-06-01

    In this work, we extend the multiphase lattice Boltzmann flux solver, which was proposed in [1] for simulating incompressible flows of binary fluids based on two-component Cahn-Hilliard model, to three-component fluid flows. In the present method, the multiphase lattice Boltzmann flux solver is applied to solve for the flow field and the three-component Cahn-Hilliard model is used to predict the evolution of the interfaces. The proposed method is first validated through the classical problem of simulation of partial spreading of a liquid lens between the other two components. Numerical results of interface shapes and contact angles agree well with theoretical solutions. After that, to further demonstrate the capability of the present method, several numerical examples of three-component fluid flows are presented, including a bubble rising across a fluid-fluid interface, single droplet falling through a fluid-fluid interface, the collision-coalescence of two droplets, and the non-contact collision of two droplets. It is shown that the present method can successfully handle complex interactions among three components.

  7. High-temperature combustor liner tests in structural component response test facility

    NASA Technical Reports Server (NTRS)

    Moorhead, Paul E.

    1988-01-01

    Jet engine combustor liners were tested in the structural component response facility at NASA Lewis. In this facility combustor liners were thermally cycled to simulate a flight envelope of takeoff, cruise, and return to idle. Temperatures were measured with both thermocouples and an infrared thermal imaging system. A conventional stacked-ring louvered combustor liner developed a crack at 1603 cycles. This test was discontinued after 1728 cycles because of distortion of the liner. A segmented or float wall combustor liner tested at the same heat flux showed no significant change after 1600 cycles. Changes are being made in the facility to allow higher temperatures.

  8. Identifying instability mechanisms in swirling shear flows by using all components of the structural sensitivity

    NASA Astrophysics Data System (ADS)

    Juniper, Matthew; Qadri, Ubaid

    2012-11-01

    Four different physical mechanisms can cause or support instability in swirling shear flows (Gallaire and Chomaz 2003, PoF 15(9) 2622-2639). These are: axial shear, inertial waves, centrifugal instabilities, and azimuthal shear. In relatively simple flows, such as a Rankine vortex with plug axial flow, analytical methods can identify the physical mechanisms active in each region of the flow. In more complex flows, such as a vortex breakdown bubble, analytical methods cannot be applied and, in any case, regions of the flow are not easily delineated. When considering the stability of perturbations on top of a base flow, the structural sensitivity quantifies the effect of altering the feedback between the perturbation velocity vector and the perturbation momentum equation. We examine the nine components of this structural sensitivity, firstly for simple flows such as solid body rotation, secondly for complex swirling flows. The first analysis identifies the signature of each physical mechanism, such as the Kelvin-Helmholtz instability and the Coriolis mechanism. The second analysis compares these signatures with those found in different regions of the complex swirling flows. In this way, we identify the physical mechanisms that are active in each region of the more complex flow. Supported by the European Research Council and by Trinity College Cambridge.

  9. Fluctuations of harmonic and radial flow in heavy ion collisions with principal components

    NASA Astrophysics Data System (ADS)

    Mazeliauskas, Aleksas; Teaney, Derek

    2016-02-01

    We analyze the spectrum of harmonic flow, vn(pT) for n =0 -5 , in event-by-event hydrodynamic simulations of Pb+Pb collisions at the CERN Large Hadron Collider (√{sN N}=2.76 TeV ) with principal component analysis (PCA). The PCA procedure finds two dominant contributions to the two-particle correlation function. The leading component is identified with the event plane vn(pT) , while the subleading component is responsible for factorization breaking in hydrodynamics. For v0, v1, and v3 the subleading flow is a response to the radial excitation of the corresponding eccentricity. By contrast, for v2 the subleading flow in peripheral collisions is dominated by the nonlinear mixing between the leading elliptic flow and radial flow fluctuations. In the v2 case, the sub-sub-leading mode more closely reflects the response to the radial excitation of ɛ2. A consequence of this picture is that the elliptic flow fluctuations and factorization breaking change rapidly with centrality, and in central collisions (where the leading v2 is small and nonlinear effects can be neglected) the sub-sub-leading mode becomes important. Radial flow fluctuations and nonlinear mixing also play a significant role in the factorization breaking of v4 and v5. We construct good geometric predictors for the orientation and magnitudes of the leading and subleading flows based on a linear response to the geometry, and a quadratic mixing between the leading principal components. Finally, we suggest a set of measurements involving three point correlations which can experimentally corroborate the nonlinear mixing of radial and elliptic flow and its important contribution to factorization breaking as a function of centrality.

  10. Measurements of the wall-normal velocity component in very high Reynolds number pipe flow

    NASA Astrophysics Data System (ADS)

    Vallikivi, Margit; Hultmark, Marcus; Smits, Alexander J.

    2012-11-01

    Nano-Scale Thermal Anemometry Probes (NSTAPs) have recently been developed and used to study the scaling of the streamwise component of turbulence in pipe flow over a very large range of Reynolds numbers. This probe has an order of magnitude higher spatial and temporal resolution than regular hot wires, allowing it to resolve small scale motions at very high Reynolds numbers. Here use a single inclined NSTAP probe to study the scaling of the wall normal component of velocity fluctuations in the same flow. These new probes are calibrated using a method that is based on the use of the linear stress region of a fully developed pipe flow. Results on the behavior of the wall-normal component of velocity for Reynolds numbers up to 2 million are reported. Supported under NR Grant N00014-09-1-0263 (program manager Ron Joslin) and NSF Grant CBET-1064257 (program manager Henning Winter).

  11. Air pollution control system testing at the DOE offgas components test facility

    SciTech Connect

    Burns, D.B.; Speed, D.; VanPelt, W.; Burns, H.H.

    1997-06-01

    In 1997, the Department of Energy (DOE) Savannah River Site (SRS) plans to begin operation of the Consolidated Incineration Facility (CIF) to treat solid and liquid RCRA hazardous and mixed wastes. The Savannah River Technology Center (SRTC) leads an extensive technical support program designed to obtain incinerator and air pollution control equipment performance data to support facility start-up and operation. A key component of this technical support program includes the Offgas Components Test Facility (OCTF), a pilot-scale offgas system test bed. The primary goal for this test facility is to demonstrate and evaluate the performance of the planned CIF Air Pollution Control System (APCS). To accomplish this task, the OCTF has been equipped with a 1/10 scale CIF offgas system equipment components and instrumentation. In addition, the OCTF design maximizes the flexibility of APCS operation and facility instrumentation and sampling capabilities permit accurate characterization of all process streams throughout the facility. This allows APCS equipment performance to be evaluated in an integrated system under a wide range of possible operating conditions. This paper summarizes the use of this DOE test facility to successfully demonstrate APCS operability and maintainability, evaluate and optimize equipment and instrument performance, and provide direct CIF start-up support. These types of facilities are needed to permit resolution of technical issues associated with design and operation of systems that treat and dispose combustible hazardous, mixed, and low-level radioactive waste throughout and DOE complex.

  12. Flow generation in a novel centrifugal diffuser test device

    NASA Astrophysics Data System (ADS)

    Vidos, P.

    1983-09-01

    Recognition of the need to develop optimum diffusers for advanced centrifugal compressors, resulted in the design and manufacture of a novel low-speed test facility for centrifugal diffuser testing. The CDTD was designed to allow the flow angle and wall boundary profiles into the test diffuser to be controlled by variable geometry in the flow generator. The present study reports on the design of the flow generator and the analysis of the internal flow using a NASA computer code (MERIDL). First test results are given and are compared with the results of a control volume analysis. The flow angle control technique was found to work effectively but to give somewhat smaller angles (by 4 deg) than were predicted. It was concluded that the information obtained would allow scaling of the device; however, an analysis code was needed which would accept the real physical boundary conditions.

  13. Multidimensional Scaling versus Components Analysis of Test Intercorrelations.

    ERIC Educational Resources Information Center

    Davison, Mark L.

    1985-01-01

    Considers the relationship between coordinate estimates in components analysis and multidimensional scaling. Reports three small Monte Carlo studies comparing nonmetric scaling solutions to components analysis. Results are related to other methodological issues surrounding research on the general ability factor, response tendencies in…

  14. Item Calibrations for Licensure Tests with Multiple Specialty Components.

    ERIC Educational Resources Information Center

    Huang, Chi-Yu; Lohss, William E.; Lin, Chuan-Ju; Shin, David

    This study was conducted to compare the usefulness of three item response theory (IRT) calibration packages (BILOG, BILOG-MG, and PIC) for examinations that include common and specialty components. Because small sample sizes and different mean abilities between specialty components are the most frequent problems that licensure/certification…

  15. Periodic Components in Communication Data: Models and Hypothesis Testing.

    ERIC Educational Resources Information Center

    Watt, James H., Jr.

    A relatively simple procedure for modeling periodic components in time series data is presented in this paper, along with an example of the procedure's use with communication data. Similar to multiple regression analysis, the described procedure has four steps that are based on information about periodic waves and their components, how to create…

  16. Velocity vector analysis of a juncture flow using a three component laser velocimeter

    NASA Technical Reports Server (NTRS)

    Meyers, J. F.; Hepner, T. E.

    1984-01-01

    A specialized single-axis, five-beam three-component laser velocimeter was constructed and used to study the flow field in a juncture. The juncture was defined by a blunt leading edged vertical splitter plate and a sharp leading edged horizontal plate. The investigations were conducted in the Low Turbulence Pressure Tunnel at a Mach number of 0.1 and a Reynolds number of 2.2 x 10 to the 6th per meter over the model. The three-component velocity flow field in the juncture was measured, Reynolds stresses calculated, and the velocity vector analysis performed.

  17. Velocity Vector Analysis of a Juncture Flow Using a Three-Component Laser Velocimeter

    NASA Technical Reports Server (NTRS)

    Meyers, James F.; Hepner, Timothy E.

    1984-01-01

    A specialized single-axis, five-beam three-component laser velocimeter was constructed and used to study the flow field in a juncture. The juncture was defined by a blunt leading, edged vertical splitter plate and a sharp leading edged horizontal plate. The investigations were conducted in the Low Turbulence Pressure Tunnel at a Mach number of 0.1 and a Reynolds number of 2.2 x 10(exp 6) per meter over the model. The three-component velocity flow field in the juncture was measured, Reynolds stresses calculated and the velocity vector analysis performed.

  18. System for measuring three fluctuating velocity components in a turbulently flowing fluid

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y. (Inventor)

    1977-01-01

    A system is described for measuring fluid velocity in a turbulently flowing fluid including a sensing apparatus for dynamically sensing the mainstream and two orthogonal cross velocity components of the fluid. A transducer operative is included to provide three electrical output signals representative of the velocity components in the mainstream, and in the cross directions. Signal processors can be utilized to derive the Reynolds stress wave and the Reynolds stress.

  19. Separate Flow Nozzle Test Status Meeting

    NASA Technical Reports Server (NTRS)

    Saiyed, Naseem H. (Editor)

    2000-01-01

    NASA Glenn, in partnership with US industry, completed an exhaustive experimental study on jet noise reduction from separate flow nozzle exhaust systems. The study developed a data base on various bypass ratio nozzles, screened quietest configurations and acquired pertinent data for predicting the plume behavior and ultimately its corresponding jet noise. Several exhaust system configurations provided over 2.5 EPNdB jet noise reduction at take-off power. These data were disseminated to US aerospace industry in a conference hosted by NASA GRC whose proceedings are shown in this report.

  20. Flow Simulation of Solid Rocket Motors. 1; Injection Induced Water-Flow Tests from Porous Media

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Yeh, Y. P.; Smith, A. W.; Heaman, J. P.

    1999-01-01

    Prior to selecting a proper porous material for use in simulating the internal port flow of a solid rocket motor (SRM), in cold-flow testing, the flow emerging from porous materials is experimentally investigated. The injection-flow emerging from a porous matrix always exhibits a lumpy velocity profile that is spatially stable and affects the development of the longitudinal port flow. This flow instability, termed pseudoturbulence, is an inherent signature of the porous matrix and is found to generally increase with the wall porosity and with the injection flow rate. Visualization studies further show that the flow from porous walls made from shaving-type material (sintered stainless-steel) exhibits strong recirculation zones that are conspicuously absent in walls made from nodular or spherical material (sintered bronze). Detailed flow visualization observations and hot-film measurements are reported from tests of injection-flow and a coupled cross-flow from different porous wall materials. Based on the experimental data, discussion is provided on the choice of suitable material for SRM model testing while addressing the consequences and shortcomings from such a test.

  1. Test component attachment effects on resonant plate pyrotechnic shock simulation

    SciTech Connect

    Bell, G.R.; Zimmerman, R.M.

    1989-01-01

    An accepted technique for simulating pyrotechnic shock inputs has been the resonant plate test. The plate is designed so that its predominant modes generate the desired frequency content of a given shock test specification. The success of the test is dependent on the engineer's ability to effectively design and control the response of the resonant plate. In designing a test to simulated a pyrotechnic environment, the location and mass of the test item become very important considerations since they have a profound impact on the dynamic response of the resonant plate. A relatively massive test item can change the plates's resonant frequency. Differences in the relative frequencies of the test item's fixture and the resonant plate may also effect the input to the test items. In this study, a simple mock test assembly is used to study test item and resonant plate interactions during a test. The implications of this interaction regarding the deviations of the shock test specification are also discussed. Data from shock tests performed with the test assembly mounted to a rigid mounting surface and a flexible resonant plate are compared. Frequency response functions and shock response spectra are generated from the test data and compared to show the significance of: (1) the relative stiffness of the mounting surface; and (2) the location of the input control point during a resonant plate test. These factors are shown to be particularly important in using resonant plate testing to simulate pyrotechnic shock environments. 5 refs., 7 figs.

  2. Test flow disturbances in an expansion tube

    NASA Technical Reports Server (NTRS)

    Paull, A.; Stalker, R. J.

    1992-01-01

    The operation of an expansion tube is investigated theoretically with emphasis on the factors that have limited the utility of the expansion tube in the past. It is shown why the window of steady test conditions is narrow and how this window can be expanded so that these facilities can be used in a variety of hypersonic research. The theoretical predictions are supported by centerline Pitot pressure measurements using air as the test gas.

  3. Incompressible viscous flow computations for the pump components and the artificial heart

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin

    1992-01-01

    A finite difference, three dimensional incompressible Navier-Stokes formulation to calculate the flow through turbopump components is utilized. The solution method is based on the pseudo compressibility approach and uses an implicit upwind differencing scheme together with the Gauss-Seidel line relaxation method. Both steady and unsteady flow calculations can be performed using the current algorithm. Here, equations are solved in steadily rotating reference frames by using the steady state formulation in order to simulate the flow through a turbopump inducer. Eddy viscosity is computed by using an algebraic mixing-length turbulence model. Numerical results are compared with experimental measurements and a good agreement is found between the two.

  4. 46 CFR 56.97-5 - Pressure testing of nonstandard piping system components.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Pressure testing of nonstandard piping system components... ENGINEERING PIPING SYSTEMS AND APPURTENANCES Pressure Tests § 56.97-5 Pressure testing of nonstandard piping system components. (a) All nonstandard piping system components such as welded valves and...

  5. 46 CFR 56.97-5 - Pressure testing of nonstandard piping system components.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Pressure testing of nonstandard piping system components... ENGINEERING PIPING SYSTEMS AND APPURTENANCES Pressure Tests § 56.97-5 Pressure testing of nonstandard piping system components. (a) All nonstandard piping system components such as welded valves and...

  6. 46 CFR 56.97-5 - Pressure testing of nonstandard piping system components.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Pressure testing of nonstandard piping system components... ENGINEERING PIPING SYSTEMS AND APPURTENANCES Pressure Tests § 56.97-5 Pressure testing of nonstandard piping system components. (a) All nonstandard piping system components such as welded valves and...

  7. 46 CFR 56.97-5 - Pressure testing of nonstandard piping system components.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Pressure testing of nonstandard piping system components... ENGINEERING PIPING SYSTEMS AND APPURTENANCES Pressure Tests § 56.97-5 Pressure testing of nonstandard piping system components. (a) All nonstandard piping system components such as welded valves and...

  8. 46 CFR 56.97-5 - Pressure testing of nonstandard piping system components.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Pressure testing of nonstandard piping system components... ENGINEERING PIPING SYSTEMS AND APPURTENANCES Pressure Tests § 56.97-5 Pressure testing of nonstandard piping system components. (a) All nonstandard piping system components such as welded valves and...

  9. Test component attachment effects on resonant plate pyrotechnic shock simulation

    NASA Astrophysics Data System (ADS)

    Bell, R. Glenn; Zimmerman, Roger M.

    An accepted technique for simulating pyrotechnic shock inputs has been the resonant plate test. The plate is designed so that its predominant modes generate the desired frequency content of a given shock test specification. The success of the test is dependent on the engineer's ability to effectively design and control the response of the resonant plate. In designing a test to simulate a pyrotechnic environment, the location and mass of the test item become very important considerations since they have a profound impact on the dynamic response of the resonant plate. A relatively massive test item can change the plates's resonant frequency. Differences in the relative frequencies of the test item's fixture and the resonant plate may also effect the input to the test items. In this study, a simple mock test assembly is used to study test item and resonant plate interactions during a test. The implications of this interaction regarding the deviations of the shock test specification are also discussed. Data from shock tests performed with the test assembly mounted to a rigid mounting surface and a flexible resonant plate are compared. Frequency response functions and shock response spectra are generated from the test data and compared to show the significance of: (1) the relative stiffness of the mounting surface; and (2) the location of the input control point during a resonant plate test.

  10. Flight tests of a supersonic natural laminar flow airfoil

    NASA Astrophysics Data System (ADS)

    Frederick, M. A.; Banks, D. W.; Garzon, G. A.; Matisheck, J. R.

    2015-06-01

    A flight test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80 inch (203 cm) chord and 40 inch (102 cm) span article mounted on the centerline store location of an F-15B airplane. The test article was designed with a leading edge sweep of effectively 0° to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate that the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, was similar to that of subsonic natural laminar flow wings.

  11. Flight Tests of a Supersonic Natural Laminar Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Frederick, Michael A.; Banks, Daniel W.; Garzon, G. A.; Matisheck, J. R.

    2015-01-01

    A flight-test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80-inch (203 cm) chord and 40-inch (102 cm) span article mounted on the centerline store location of an F-15B airplane (McDonnell Douglas Corporation, now The Boeing Company, Chicago, Illinois). The test article was designed with a leading edge sweep of effectively 0 deg to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2-D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, were similar to that of subsonic natural laminar flow wings.

  12. Development of traveling wave resonator based test bed for high power transmission line component testing

    NASA Astrophysics Data System (ADS)

    Jha, Akhil; Harikrishna, JVS; Ajesh, P.; Anand, Rohit; Trivedi, Rajesh; Mukherjee, Aparajita

    2015-12-01

    India is responsible for delivery of 8+1(prototype) RF sources to ITER Organization. Each RF source will provide 2.5MW of RF power at 2 VSWR in the frequency range of 35 to 65MHz. Eight such RF sources will generate total 20MW of RF power. A large number of high power transmission line components are required for connecting various stages of RF source. To test these passive transmission line components at high power, prior to connecting with RF source system, a test facility is required. India is developing a 3MW test facility based on the concept of Traveling Wave Resonator (TWR) for testing of transmission line components. TWR is basically a ring resonator which will build high power under certain operation condition at resonant frequency (˜55MHz in this case). In TWR, power is fed to the ring via a directional coupler continuously which leads to development of high circulating power in the ring. The voltage and current magnitude inside the ring increases with the increasing circulating power. Detailed RF simulation and design of the TWR test bed has been done using high frequency simulator Microwave Studio (MWS). Calculations done for the ring gain, transmission loss, resonance frequency etc. and are verified with the simulation results. Concept validated using 3-1/8 inch prototype TWR test bed, where experiments were carried out with a ˜10dB (λ/4 coupled) coupler to feed the ring. Ring gain of ˜13.24dB (˜21times) was achieved with ˜0.17 dB of ring loss. Around 9.2 kW ring power is achieved with an input power of 440W. At present, the 3-1/8inch TWR test bed is being upgraded with a ˜15dB coupler to achieve ring gain ˜19-20dB (˜80-100 times). This concept will be finally adopted for 12inch TWR test bed to achieve 3MW ring power with ˜30-40kW of input power. In this paper, detailed design, simulation, test results out of prototype activity and future plan for establishing MW level transmission line test bed is described.

  13. NGNP Component Test Capability Design Code of Record

    SciTech Connect

    S.L. Austad; D.S. Ferguson; L.E. Guillen; C.W. McKnight; P.J. Petersen

    2009-09-01

    The Next Generation Nuclear Plant Project is conducting a trade study to select a preferred approach for establishing a capability whereby NGNP technology development testing—through large-scale, integrated tests—can be performed for critical HTGR structures, systems, and components (SSCs). The mission of this capability includes enabling the validation of interfaces, interactions, and performance for critical systems and components prior to installation in the NGNP prototype.

  14. Characterization of Unsteady Flow Structures Around Tandem Cylinders for Component Interaction Studies in Airframe Noise

    NASA Technical Reports Server (NTRS)

    Jenkins, Luther N.; Khorrami, Mehdi R.; Choudhari, Meelan M.; McGinley, Catherine B.

    2005-01-01

    A joint computational and experimental study has been performed at NASA Langley Research Center to investigate the unsteady flow generated by the components of an aircraft landing gear system. Because the flow field surrounding a full landing gear is so complex, the study was conducted on a simplified geometry consisting of two cylinders in tandem arrangement to isolate and characterize the pertinent flow phenomena. This paper focuses on the experimental effort where surface pressures, 2-D Particle Image Velocimetry, and hot-wire anemometry were used to document the flow interaction around the two cylinders at a Reynolds Number of 1.66 x 10(exp 5), based on cylinder diameter, and cylinder spacing-todiameter ratios, L/D, of 1.435 and 3.70. Transition strips were applied to the forward cylinder to produce a turbulent boundary layer upstream of the flow separation. For these flow conditions and L/D ratios, surface pressures on both the forward and rear cylinders show the effects of L/D on flow symmetry, base pressure, and the location of flow separation and attachment. Mean velocities and instantaneous vorticity obtained from the PIV data are used to examine the flow structure between and aft of the cylinders. Shedding frequencies and spectra obtained using hot-wire anemometry are presented. These results are compared with unsteady, Reynolds-Averaged Navier-Stokes (URANS) computations for the same configuration in a companion paper by Khorrami, Choudhari, Jenkins, and McGinley (2005). The experimental dataset produced in this study provides information to better understand the mechanisms associated with component interaction noise, develop and validate time-accurate computer methods used to calculate the unsteady flow field, and assist in modeling of the radiated noise from landing gears.

  15. Acceleration of fatigue tests for built-up titanium components

    NASA Technical Reports Server (NTRS)

    Watanabe, R. T.

    1976-01-01

    A study was made of the feasibility of a room-temperature scheme of accelerating fatigue tests for Mach 3 advanced supersonic transport aircraft. The test scheme used equivalent room-temperature cycles calculated for supersonic flight conditions. Verification tests were conducted using specimens representing titanium wing lower surface structure. Test-acceleration parameters were developed for the test with an auxiliary test set. Five specimens were tested with a flight-by-flight load and temperature spectrum to simulate typical Mach 3 operation. Two additional sets of five specimens were tested at room temperature to evaluate the test-acceleration scheme. The fatigue behavior of the specimens generally correlated well with the proposed correction method.

  16. An evaluation of pressure and flow measurement in the Molten Salt Test Loop (MSTL) system.

    SciTech Connect

    Gill, David Dennis; Kolb, William J.; Briggs, Ronald J.

    2013-07-01

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL allows customers and researchers to test components in flowing, molten nitrate salt at plant-like conditions for pressure, flow, and temperature. An important need in thermal storage systems that utilize molten salts is for accurate flow and pressure measurement at temperatures above 535%C2%B0C. Currently available flow and pressure instrumentation for molten salt is limited to 535%C2%B0C and even at this temperature the pressure measurement appears to have significant variability. It is the design practice in current Concentrating Solar Power plants to measure flow and pressure on the cold side of the process or in dead-legs where the salt can cool, but this practice won't be possible for high temperature salt systems. For this effort, a set of tests was conducted to evaluate the use of the pressure sensors for flow measurement across a device of known flow coefficient Cv. To perform this task, the pressure sensors performance was evaluated and was found to be lacking. The pressure indicators are severely affected by ambient conditions and were indicating pressure changes of nearly 200psi when there was no flow or pressure in the system. Several iterations of performance improvement were undertaken and the pressure changes were reduced to less than 15psi. The results of these pressure improvements were then tested for use as flow measurement. It was found that even with improved pressure sensors, this is not a reliable method of flow measurement. The need for improved flow and pressure measurement at high temperatures remains and will need to be solved before it will be possible to move to high temperature thermal storage systems with molten salts.

  17. Flow tests of the Willis Hulin well

    SciTech Connect

    Randolph, P.L.; Hayden, C.G.; Rogers, L.A.

    1992-02-01

    The Hulin well was tested between 20,100 and 20,700 feet down in layers of brine-saturated clean sand with occasional intervening layers of shale. The characteristics of the brine and gas were determined in this interval and an initial determination of the reservoir properties were made.

  18. Flight Tests of a Supersonic Natural Laminar Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Frederick, M. A.; Banks, D. W.; Garzon, G. A.; Matisheck, J. R.

    2014-01-01

    A flight test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80-inch (203 cm) chord and 40-inch (102 cm) span article mounted on the centerline store location of an F-15B airplane. The wing was designed with a leading edge sweep of effectively 0 deg to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2-D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, were similar to that of subsonic natural laminar flow wings.

  19. The Forced Flow Flame-Spreading Test (FFFT)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Forced Flow Flame-Spreading Test was designed to study flame spreading over solid fuels when air is flowing at a low speed concurrent airflows, some materials are more flammable in microgravity than earth. 1.5 cm flame in microgravity that melts a polyethylene cylinder into a liquid ball.

  20. Flow-test device fits into restricted access passages

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J. J.; Oberschmidt, M.; Rosenbaum, B. J.

    1967-01-01

    Test device using a mandrel with a collapsible linkage assembly enables a fluid flow sensor to be properly positioned in a restricted passage by external manipulation. This device is applicable to the combustion chamber of a rocket motor.

  1. Task 8 -- Design and test of critical components

    SciTech Connect

    Chance, T.F.

    1996-11-01

    This report covers tasks 8.1, 8.1.1, and 8.2. The primary objective of Task 8.1, Particulates Flow Deposition, is to characterize the particulate generated in an operating gas turbine combined cycle (GTCC) power plant whose configuration approximates that proposed for an ATS power plant. In addition, the task is to evaluate the use of full-flow filtering to reduce the steam particulate loads. Before the start of this task, GE had already negotiated an agreement with the candidate power plant, piping and a filter unit had already been installed at the power plant site, and major elements of the data acquisition system had been purchased. The objective of Task 8.1.1, Coolant Purity, is to expose typical ATS gas turbine airfoil cooling channel geometries to real steam flow to determine whether there are any unexpected deposit formations. The task is a static analog of the centrifugal deposition rig trials of Task 8.2, in which a bucket channel return bend is exposed to steam flow. Two cooling channel geometries are of primary interest in this static exposure. The primary objective of Task 8.2, Particle Centrifugal Sedimentation, is to determine the settling characteristics of particles in a cooling stream from an operating gas turbine combined cycle (GTCC) power plant when that stream is ducted through a passage experiencing the G-loads expected in a simulated bucket channel specimen representative of designs proposed for an ATS gas turbine.

  2. How is flow experienced and by whom? Testing flow among occupations.

    PubMed

    Llorens, Susana; Salanova, Marisa; Rodríguez, Alma M

    2013-04-01

    The aims of this paper are to test (1) the factorial structure of the frequency of flow experience at work; (2) the flow analysis model in work settings by differentiating the frequency of flow and the frequency of its prerequisites; and (3) whether there are significant differences in the frequency of flow experience depending on the occupation. A retrospective study among 957 employees (474 tile workers and 483 secondary school teachers) using multigroup confirmatory factorial analyses and multiple analyses of variance suggested that on the basis of the flow analysis model in work settings, (1) the frequency of flow experience has a two-factor structure (enjoyment and absorption); (2) the frequency of flow experience at work is produced when both challenge and skills are high and balanced; and (3) secondary school teachers experience flow more frequently than tile workers. PMID:22674654

  3. Development, testing and application of DrainFlow: A fully distributed integrated surface-subsurface flow model for drainage study

    NASA Astrophysics Data System (ADS)

    Shokri, Ali; Bardsley, William Earl

    2016-06-01

    Hydrological and hydrogeological investigation of drained land is a complex and integrated procedure. The scale of drainage studies may vary from a high-resolution small scale project through to comprehensive catchment or regional scale investigations. This wide range of scales and integrated system behaviour poses a significant challenge for the development of suitable drainage models. Toward meeting these requirements, a fully distributed coupled surface-subsurface flow model titled DrainFlow has been developed and is described. DrainFlow includes both the diffusive wave equation for surface flow components (overland flow, open drain, tile drain) and Richard's equation for saturated/unsaturated zones. To overcome the non-linearity problem created from switching between wet and dry boundaries, a smooth transitioning technique is introduced to buffer the model at tile drains and at interfaces between surface and subsurface flow boundaries. This gives a continuous transition between Dirichlet and Neumann boundary conditions. DrainFlow is tested against five well-known integrated surface-subsurface flow benchmarks. DrainFlow as applied to some synthetic drainage study examples is quite flexible for changing all or part of the model dimensions as required by problem complexity, problem scale, and data availability. This flexibility enables DrainFlow to be modified to allow for changes in both scale and boundary conditions, as often encountered in real-world drainage studies. Compared to existing drainage models, DrainFlow has the advantage of estimating actual infiltration directly from the partial differential form of Richard's equation rather than through analytical or empirical infiltration approaches like the Green and Ampt equation.

  4. Linear model describing three components of flow in karst aquifers using 18O data

    USGS Publications Warehouse

    Long, A.J.; Putnam, L.D.

    2004-01-01

    The stable isotope of oxygen, 18O, is used as a naturally occurring ground-water tracer. Time-series data for ??18O are analyzed to model the distinct responses and relative proportions of the conduit, intermediate, and diffuse flow components in karst aquifers. This analysis also describes mathematically the dynamics of the transient fluid interchange between conduits and diffusive networks. Conduit and intermediate flow are described by linear-systems methods, whereas diffuse flow is described by mass-balance methods. An automated optimization process estimates parameters of lognormal, Pearson type III, and gamma distributions, which are used as transfer functions in linear-systems analysis. Diffuse flow and mixing parameters also are estimated by these optimization methods. Results indicate the relative proximity of a well to a main conduit flowpath and can help to predict the movement and residence times of potential contaminants. The three-component linear model is applied to five wells, which respond to changes in the isotopic composition of point recharge water from a sinking stream in the Madison aquifer in the Black Hills of South Dakota. Flow velocities as much as 540 m/d and system memories of as much as 71 years are estimated by this method. Also, the mean, median, and standard deviation of traveltimes; time to peak response; and the relative fraction of flow for each of the three components are determined for these wells. This analysis infers that flow may branch apart and rejoin as a result of an anastomotic (or channeled) karst network.

  5. 4. Exterior view of Components Test Laboratory (T27), looking northeast. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Exterior view of Components Test Laboratory (T-27), looking northeast. The building wing on the left houses Test Cell 8 (oxidizer) and the oxidizer storage pit or vault, and that on the right houses Test Cell 10 (environmental). - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  6. 5. Exterior view of Components Test Laboratory (T27), looking northwest. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Exterior view of Components Test Laboratory (T-27), looking northwest. The building wing on the left houses Test Cell 10 (environmental), and that on the right houses Test Cell 9 (fuel) and the fuel storage pit or vault. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  7. Phase 2: HGM air flow tests in support of HEX vane investigation

    NASA Technical Reports Server (NTRS)

    Cox, G. B., Jr.; Steele, L. L.; Eisenhart, D. W.

    1993-01-01

    Following the start of SSME certification testing for the Pratt and Whitney Alternate Turbopump Development (ATD) High Pressure Oxidizer Turbopump (HPOTP), cracking of the leading edge of the inner HEX vane was experienced. The HEX vane, at the inlet of the oxidizer bowl in the Hot Gas Manifold (HGM), accepts the HPOTP turbine discharge flow and turns it toward the Gaseous Oxidizer Heat Exchanger (GOX HEX) coil. The cracking consistently initiated over a specific circumferential region of the hex vane, with other circumferential locations appearing with increased run time. Since cracking had not to date been seen with the baseline HPOTP, a fluid-structural interaction involving the ATD HPOTP turbine exit flowfield and the HEX inner vane was suspected. As part of NASA contract NAS8-36801, Pratt and Whitney conducted air flow tests of the ATD HPOTP turbine turnaround duct flowpath in the MSFC Phase 2 HGM air flow model. These tests included HEX vane strain gages and additional fluctuating pressure gages in the turnaround duct and HEX vane flowpath area. Three-dimensional flow probe measurements at two stations downstream of the turbine simulator exit plane were also made. Modifications to the HPOTP turbine simulator investigated the effects on turbine exit flow profile and velocity components, with the objective of reproducing flow conditions calculated for the actual ATD HPOTP hardware. Testing was done at the MSFC SSME Dynamic Fluid Air Flow (Dual-Leg) Facility, at air supply pressures between 50 and 250 psia. Combinations of turbine exit Mach number and pressure level were run to investigate the effect of flow regime. Information presented includes: (1) Descriptions of turbine simulator modifications to produce the desired flow environment; (2) Types and locations for instrumentation added to the flow model for improved diagnostic capability; (3) Evaluation of the effect of changes to the turbine simulator flowpath on the turbine exit flow environment; and (4

  8. Phase 2: HGM air flow tests in support of HEX vane investigation

    NASA Astrophysics Data System (ADS)

    Cox, G. B., Jr.; Steele, L. L.; Eisenhart, D. W.

    1993-07-01

    Following the start of SSME certification testing for the Pratt and Whitney Alternate Turbopump Development (ATD) High Pressure Oxidizer Turbopump (HPOTP), cracking of the leading edge of the inner HEX vane was experienced. The HEX vane, at the inlet of the oxidizer bowl in the Hot Gas Manifold (HGM), accepts the HPOTP turbine discharge flow and turns it toward the Gaseous Oxidizer Heat Exchanger (GOX HEX) coil. The cracking consistently initiated over a specific circumferential region of the hex vane, with other circumferential locations appearing with increased run time. Since cracking had not to date been seen with the baseline HPOTP, a fluid-structural interaction involving the ATD HPOTP turbine exit flowfield and the HEX inner vane was suspected. As part of NASA contract NAS8-36801, Pratt and Whitney conducted air flow tests of the ATD HPOTP turbine turnaround duct flowpath in the MSFC Phase 2 HGM air flow model. These tests included HEX vane strain gages and additional fluctuating pressure gages in the turnaround duct and HEX vane flowpath area. Three-dimensional flow probe measurements at two stations downstream of the turbine simulator exit plane were also made. Modifications to the HPOTP turbine simulator investigated the effects on turbine exit flow profile and velocity components, with the objective of reproducing flow conditions calculated for the actual ATD HPOTP hardware. Testing was done at the MSFC SSME Dynamic Fluid Air Flow (Dual-Leg) Facility, at air supply pressures between 50 and 250 psia. Combinations of turbine exit Mach number and pressure level were run to investigate the effect of flow regime. Information presented includes: (1) Descriptions of turbine simulator modifications to produce the desired flow environment; (2) Types and locations for instrumentation added to the flow model for improved diagnostic capability; (3) Evaluation of the effect of changes to the turbine simulator flowpath on the turbine exit flow environment; and (4

  9. Shake, Rattle and Roll: James Webb Telescope Components Pass Tests

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Mike Ressler (right) and Kalyani Sukhatme of JPL pose in the clean room with a model component, called a focal plane module, of the Mid-Infrared Instrument on NASA's James Webb Space Telescope. Ressler is the project scientist for the instrument, and Sukhatme is the project element manager for the instrument's focal plane module.

  10. Incompressible viscous flow computations for the pump components and the artificial heart

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin

    1992-01-01

    A finite-difference, three-dimensional incompressible Navier-Stokes formulation to calculate the flow through turbopump components is utilized. The solution method is based on the pseudocompressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. Both steady and unsteady flow calculations can be performed using the current algorithm. In this work, the equations are solved in steadily rotating reference frames by using the steady-state formulation in order to simulate the flow through a turbopump inducer. Eddy viscosity is computed by using an algebraic mixing-length turbulence model. Numerical results are compared with experimental measurements and a good agreement is found between the two. Included in the appendix is a paper on incompressible viscous flow through artificial heart devices with moving boundaries. Time-accurate calculations, such as impeller and diffusor interaction, will be reported in future work.

  11. Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility

    NASA Astrophysics Data System (ADS)

    Kou, Jisheng; Sun, Shuyu

    2016-08-01

    In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young-Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young-Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young-Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests

  12. 16 CFR 1109.11 - Component part testing for paint.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... lead in paint, all testing must be performed on dry paint that is scraped off of a substrate for testing. The substrate used need not be of the same material as the material used in the finished product... on any suitable substrate....

  13. 16 CFR 1109.11 - Component part testing for paint.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... lead in paint, all testing must be performed on dry paint that is scraped off of a substrate for testing. The substrate used need not be of the same material as the material used in the finished product... on any suitable substrate....

  14. AMTEC cell testing, optimization of rhodium/tungsten electrodes, and tests of other components

    NASA Technical Reports Server (NTRS)

    Williams, Roger M.; Ryan, Margaret A.; Jeffries-Nakamura, Barbara; Underwood, Mark L.; O'Connor, Dennis; Kikkert, Stan

    1991-01-01

    Electrodes, current collectors, ceramic to metal braze seals, and metallic components exposed to the high 'hot side' temperatures and sodium liquid and vapor environment have been tested and evaluated in laboratory cells running for hundreds of hours at 1100-1200 K. Rhodium/tungsten electrodes have been selected as the optimum electrodes based on performance parameters and durability. Current collectors have been evaluated under simulated and actual operating conditions. The microscopic effects of metal migration between electrode and current collector alloys as well as their thermal and electrical properties determined the suitability of current collector and lead materials. Braze seals suitable for long term application to AMTEC devices are being developed.

  15. Three-component laser velocimeter surveys of the flow over a backward-facing step

    NASA Technical Reports Server (NTRS)

    Kjelgaard, Scott O.

    1991-01-01

    A three-component laser velocimeter is used to investigate the flow over a backward-facing step. The backward-facing step had an expansion ratio of 2, a boundary layer height to step height ratio of 0.34 and a Reynolds number based on step height of 19,000. Results from three-component velocimeter surveys of the flow over the backward-facing step are presented with comparisons of the current experiment with previous experiments and computational results. The present results compared well with previous experiments with the exception of the reattachment length. The short reattachment length was due to the short length of the channel downstream. The measurement of the lateral velocity component showed that there is a mean flow in and out of the centerline plane as high as 7 percent of the freestream velocity. However, the shear stresses show no correlation between the lateral fluctuations and the longitudinal and vertical fluctuations, indicating that the flow is 2D in terms of the turbulence quantities.

  16. A New Component of Solar Dynamics: North-South Diverging Flows Migrating toward the Equator with an 11 Year Period

    NASA Technical Reports Server (NTRS)

    Beck, J. G.; Gizon, L.; Duvall, Thomas L., Jr.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    Time-distance helioseismology analysis of dopplergrams provides maps of torsional oscillations and meridional flows. Meridional flow maps show a time-varying component that has a banded structure which matches the torsional oscillations with an equatorward migration over the solar cycle. The time-varying component of meridional flow consists of a flow diverging from the dominant latitude of magnetic activity. These maps are compared with other torsional oscillation maps and with magnetic flux maps, showing a strong correlation with active latitudes. These results demonstrate a strong link between the time-varying component of the meridional flow and the torsional oscillations.

  17. Computer Simulation of Material Flow in Warm-forming Bimetallic Components

    SciTech Connect

    Kong, T. F.; Chan, L. C.; Lee, T. C.

    2007-05-17

    Bimetallic components take advantage of two different metals or alloys so that their applicable performance, weight and cost can be optimized. However, since each material has its own flow properties and mechanical behaviour, heterogeneous material flows will occur during the bimetal forming process. Those controls of process parameters are relatively more complicated than forming single metals. Most previous studies in bimetal forming have focused mainly on cold forming, and less relevant information about the warm forming has been provided. Indeed, changes of temperature and heat transfer between two materials are the significant factors which can highly influence the success of the process. Therefore, this paper presents a study of the material flow in warm-forming bimetallic components using finite-element (FE) simulation in order to determine the suitable process parameters for attaining the complete die filling. A watch-case-like component made of stainless steel (AISI-316L) and aluminium alloy (AL-6063) was used as the example. The warm-forming processes were simulated with the punch speeds V of 40, 80, and 120 mm/s and the initial temperatures of the stainless steel TiSS of 625, 675, 725, 775, 825, 875, 925, 975, and 1025 deg. C. The results showed that the AL-6063 flowed faster than the AISI-316L and so the incomplete die filling was only found in the AISI-316L region. A higher TiSS was recommended to avoid incomplete die filling. The reduction of V is also suggested because this can save the forming energy and prevent the damage of tooling. Eventually, with the experimental verification, the results from the simulation were in agreement with those of the experiments. On the basis of the results of this study, engineers can gain a better understanding of the material flow in warm-forming bimetallic components, and be able to determine more efficiently the punch speed and initial material temperature for the process.

  18. The research to select test data of black-box component using contract

    NASA Astrophysics Data System (ADS)

    Jiang, Ying; Jin, Lin; Liu, Yu-Ping

    2013-03-01

    During the process of component based software development, components must be tested before reused successfully. Test-data generation is an important topic in black-box component testing. The large number of test data will spend plenty of execution time and increase the testing cost. Based on the contracts of black-box component, this paper presents a test data selection method after generated a great deal of initial test cases. First, the contract grammar of blackbox components is defined. Then the method and process of test data selection is presented based on contract. Finally, some experiments are carried out. The results have shown that the number of test data is reduced while shortening the time and keeping the efficiency after twice selection.

  19. Analysis of components from drip tests with ATM-10 glass

    SciTech Connect

    Fortner, J.A.; Bates, J.K.; Gerding, T.J.

    1996-09-01

    Waste package assemblies consisting of actinide-doped West Valley ATM-10 reference glass and sensitized 304L stainless steel have been reacted with simulated repository groundwater using the Unsaturated Test Method. Analyses of surface corrosion and reaction products resulting from tests that were terminated at scheduled intervals between 13 and 52 weeks are reported. Analyses reveal complex interactions between the groundwater, the sensitized stainless steel waste form holder, and the glass. Alteration phases form that consist mainly of smectite clay, brockite, and an amorphous thorium iron titanium silicate, the latter two incorporating thorium, uranium, and possibly transuranics. The results from the terminated tests, combined with data from tests that are still ongoing, will help determine the suitability of glass waste forms in the proposed high-level repository at the Yucca Mountain Site.

  20. English Proficiency Test: The Oral Component of a Primary School.

    ERIC Educational Resources Information Center

    Hingle, Ishbel; Linington, Viv

    1997-01-01

    Outlines some of the problem areas described by researchers when designing a test of oral production for beginning-level speakers of English, and suggests ways in which these areas may be addressed. (Author/VWL)

  1. Flammable gas interlock spoolpiece flow response test plan and procedure

    SciTech Connect

    Schneider, T.C., Fluor Daniel Hanford

    1997-02-13

    The purpose of this test plan and procedure is to test the Whittaker electrochemical cell and the Sierra Monitor Corp. flammable gas monitors in a simulated field flow configuration. The sensors are used on the Rotary Mode Core Sampling (RMCS) Flammable Gas Interlock (FGI), to detect flammable gases, including hydrogen and teminate the core sampling activity at a predetermined concentration level.

  2. Structural Dynamics Testing of Advanced Stirling Convertor Components

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.; Williams, Zachary Douglas

    2013-01-01

    NASA Glenn Research Center has been supporting the development of Stirling energy conversion for use in space. Lockheed Martin has been contracted by the Department of Energy to design and fabricate flight-unit Advanced Stirling Radioisotope Generators, which utilize Sunpower, Inc., free-piston Advanced Stirling Convertors. The engineering unit generator has demonstrated conversion efficiency in excess of 20 percent, offering a significant improvement over existing radioisotope-fueled power systems. NASA Glenn has been supporting the development of this generator by developing the convertors through a technology development contract with Sunpower, and conducting research and experiments in a multitude of areas, such as high-temperature material properties, organics testing, and convertor-level extended operation. Since the generator must undergo launch, several launch simulation tests have also been performed at the convertor level. The standard test sequence for launch vibration exposure has consisted of workmanship and flight acceptance levels. Together, these exposures simulate what a flight convertor will experience. Recently, two supplementary tests were added to the launch vibration simulation activity. First was a vibration durability test of the convertor, intended to quantify the effect of vibration levels up to qualification level in both the lateral and axial directions. Second was qualification-level vibration of several heater heads with small oxide inclusions in the material. The goal of this test was to ascertain the effect of the inclusions on launch survivability to determine if the heater heads were suitable for flight.

  3. Analytical flow/thermal modeling of combustion gas flows in Redesigned Solid Rocket Motor test joints

    NASA Technical Reports Server (NTRS)

    Woods, G. H.; Knox, E. C.; Pond, J. E.; Bacchus, D. L.; Hengel, J. E.

    1992-01-01

    A one-dimensional analytical tool, TOPAZ (Transient One-dimensional Pipe flow AnalyZer), was used to model the flow characteristics of hot combustion gases through Redesigned Solid Rocket Motor (RSRM) joints and to compute the resultant material surface temperatures and o-ring seal erosion of the joints. The capabilities of the analytical tool were validated with test data during the Seventy Pound Charge (SPC) motor test program. The predicted RSRM joint thermal response to ignition transients was compared with test data for full-scale motor tests. The one-dimensional analyzer is found to be an effective tool for simulating combustion gas flows in RSRM joints and for predicting flow and thermal properties.

  4. ac power control in the Core Flow Test Loop

    SciTech Connect

    McDonald, D.W.

    1980-01-01

    This work represents a status report on a development effort to design an ac power controller for the Core Flow Test Loop. The Core Flow Test Loop will be an engineering test facility which will simulate the thermal environment of a gas-cooled fast-breeder reactor. The problems and limitations of using sinusoidal ac power to simulate the power generated within a nuclear reactor are addressed. The transformer-thyristor configuration chosen for the Core Flow Test Loop power supply is presented. The initial considerations, design, and analysis of a closed-loop controller prototype are detailed. The design is then analyzed for improved performance possibilities and failure modes are investigated at length. A summary of the work completed to date and a proposed outline for continued development completes the report.

  5. Component Testing of the J-2X Augmented Spark Igniter (ASI)

    NASA Technical Reports Server (NTRS)

    Osborne, Robin J.; Peters, Warren T.; Gaspar, Kenny C.; Hauger, Katherine; Kwapisz, Mike J.

    2013-01-01

    In support of the development of the J-2X engine, 201 low pressure, liquid oxygen / liquid hydrogen (LOX/LH2) J-2X Augmented Spark Igniter (ASI) subsystem ignition tests were conducted at Marshall Space Flight Center (MSFC). The main objective of these tests was to start the ASI within the anticipated J-2X engine start box, as well as outside of it, to check for ignition margin. The setup for the J-2X ASI component testing simulated, as much as possible, the tank-head start-up configuration of the ASI within the J-2X Engine. The ignition tests were divided into 124 vacuum start tests to simulate altitude start on a flight engine, and 77 sea-level start tests to simulate the first set of ground tests for the J-2X Engine at Stennis Space Center (SSC). Other ignition parameters that were varied included propellant tank pressures, oxidizer temperature entering the ASI oxidizer feedline, oxidizer valve timing, spark igniter condition (new versus damaged), and oxidizer and fuel feedline orifice sizes. Propellant blowdowns using venturis sized to simulate the ASI resistance allowed calculation of transient propellant mass flow rates as well as global mixture ratio for all ignition tests. Global mixture ratio within the ASI at the time of ignition varied from 0.2 to 1.2. Detailed electronics data obtained from an instrumented ignition lead allowed characterization of the breakdown voltage, sustaining voltage and energy contained in each spark as the ASI propellants ignited. Results indicated that ignition always occurred within the first five sparks when both propellants were present in the ASI chamber.

  6. AEROFROSH: a shock condition calculator for multi-component fuel aerosol-laden flows

    NASA Astrophysics Data System (ADS)

    Campbell, M. F.; Haylett, D. R.; Davidson, D. F.; Hanson, R. K.

    2015-08-01

    This article introduces an algorithm that determines the thermodynamic conditions behind incident and reflected shocks in aerosol-laden flows. Importantly, the algorithm accounts for the effects of droplet evaporation on post-shock properties. Additionally, this article describes an algorithm for resolving the effects of multiple-component-fuel droplets. This article presents the solution methodology and compares the results to those of another similar shock calculator. It also provides examples to show the impact of droplets on post-shock properties and the impact that multi-component fuel droplets have on shock experimental parameters. Finally, this paper presents a detailed uncertainty analysis of this algorithm's calculations given typical experimental uncertainties.

  7. Initial Component Testing for a Germanium Array Cryostat

    SciTech Connect

    Keillor, Martin E.; Aalseth, Craig E.; Day, Anthony R.; Fast, James E.; Hoppe, Eric W.; Hyronimus, Brian J.; Hossbach, Todd W.; Seifert, Allen

    2009-06-01

    This report describes progress on the construction of two ultra-low-background cryostats that are part of the NA-22 funded “Radionuclide Laboratories” (RN Labs) project. Each cryostat will house seven high-purity germanium crystals (HPGe). These cryostats are being built from a limited set of materials that are known to have very low levels of radioactive impurities. The RN Labs instrument is designed to take advantage of low background performance, high detection efficiency, and γ-γ coincidence signatures to provide unprecedented gamma spectroscopy sensitivity. The project is focused on improving gamma analysis capabilities for nuclear detonation detection (NDD) applications. The instrument also has the potential for basic nuclear physics research. Section 1 provides the background for the project. Section 2 discusses germanium crystal acceptance testing. Design problems were found after the first delivery of new detectors from the vendor, Canberra Semiconductors. The first four crystals were returned for repair, resulting in a delay in crystal procurement. Section 3 provides an update on copper electroforming. In general, electroforming parts for RN Labs has proceeded smoothly, but there have been recent problems in electroforming three large copper parts necessary for the project. Section 4 describes the first round of testing for the instrument: anti-cosmic scintillator testing, electronics testing, and initial vacuum testing. Section 5 concludes with an overall description of the state of the project and challenges that remain.

  8. Compact test apparatus for evaluation of flow erosion of marine coatings.

    PubMed

    Dębowski, M A; Quintana, R; Lee, H P

    2015-10-01

    An apparatus designed and manufactured for evaluation of flow erosion of coatings or layers is presented in this paper. The setup was primarily designed for coatings intended to perform in dynamic marine environments but can be also used for evaluation using fresh water. The concept is based on an in-line flow test cell and modular design allowing good flexibility of varying testing parameters. The flow rate that can be achieved depends on the flow cell geometry and can reach 28 km/h (15 kn) with the presented setup. Temperature may be adjusted between 15 and 35 °C. Particle and metal ion filters are parts of this setup. The dimensions of the apparatus including all components do not exceed 2 m × 2 m × 2 m. The use of the apparatus is illustrated with the results of evaluation of self-polishing anti-fouling coatings and model, silicon wafer grafted layers. PMID:26520992

  9. Compact test apparatus for evaluation of flow erosion of marine coatings

    NASA Astrophysics Data System (ADS)

    Debowski, M. A.; Quintana, R.; Lee, H. P.

    2015-10-01

    An apparatus designed and manufactured for evaluation of flow erosion of coatings or layers is presented in this paper. The setup was primarily designed for coatings intended to perform in dynamic marine environments but can be also used for evaluation using fresh water. The concept is based on an in-line flow test cell and modular design allowing good flexibility of varying testing parameters. The flow rate that can be achieved depends on the flow cell geometry and can reach 28 km/h (15 kn) with the presented setup. Temperature may be adjusted between 15 and 35 °C. Particle and metal ion filters are parts of this setup. The dimensions of the apparatus including all components do not exceed 2 m × 2 m × 2 m. The use of the apparatus is illustrated with the results of evaluation of self-polishing anti-fouling coatings and model, silicon wafer grafted layers.

  10. Testing the instream flow method in trout streams

    SciTech Connect

    Studley, T.K.; Railsback, S.F.; Asce, M.

    1995-12-31

    Pacific Gas and Electric Company`s (PG&E) Department of Research and Development and co-sponsors are fieldtesting the Instream Flow Incremental Methodology (IFIM) at a number of trout stream study sites. Fish populations, flows, and other variables were measured for an eight-year baseline period. Three levels of increasingly sophisticated predictions of population response to increased flows were made. The flow increases have been implemented and additional data are being collected to test the predictions. The baseline data and prediction analyses indicate that (1) using different habitat suitability criteria produces substantially different predictions of how populations respond to flow changes, (2) overlaps in habitat used by trout species can lead to misleading predictions of a population`s response to flow changes, and (3) factors other than habitat during summer low flows can limit trout populations (these include spawning habitat, high flows, stream channel characteristics, and stream temperature). Comprehensive field studies are expensive, but are more likely to result in instream flows that provide a cost-effective tradeoff between power and fisheries values.

  11. High level radioactive waste vitrification process equipment component testing

    SciTech Connect

    Siemens, D.H.; Heath, W.O.; Larson, D.E.; Craig, S.N.; Berger, D.N.; Goles, R.W.

    1985-04-01

    Remote operability and maintainability of vitrification equipment were assessed under shielded-cell conditions. The equipment tested will be applied to immobilize high-level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: a turntable for handling waste canisters under the melter; a removable discharge cone in the melter overflow section; a thermocouple jumper that extends into a shielded cell; remote instrument and electrical connectors; remote, mechanical, and heat transfer aspects of the melter glass overflow section; a reamer to clean out plugged nozzles in the melter top; a closed circuit camera to view the melter interior; and a device to retrieve samples of the glass product. A test was also conducted to evaluate liquid metals for use in a liquid metal sealing system.

  12. Flow tests of the Gladys McCall well

    SciTech Connect

    Randolph, P.L.; Hayden, C.G.; Rogers, L.A. )

    1992-04-01

    This report pulls together the data from all of the geopressured-geothermal field research conducted at the Gladys McCall well. The well produced geopressured brine containing dissolved natural gas from the Lower Miocene sands at a depth of 15,150 to 16,650 feet. More than 25 million barrels of brine and 727 million standard cubic feet of natural gas were produced in a series of flow tests between December 1982 and October 1987 at various brine flow rates up to 28,000 barrels per day. Initial short-term flow tests for the Number 9 Sand found the permeability to be 67 to 85 md (millidarcies) for a brine volume of 85 to 170 million barrels. Initial short-term flow tests for the Number 8 Sand found a permeability of 113 to 132 md for a reservoir volume of 430 to 550 million barrels of brine. The long-term flow and buildup test of the Number 8 Sand found that the high-permeability reservoir connected to the wellbore (measured by the short-term flow test) was connected to a much larger, low-permeability reservoir. Numerical simulation of the flow and buildup tests required this large connected reservoir to have a volume of about 8 billion barrels (two cubic miles of reservoir rock) with effective permeabilities in the range of 0.2 to 20 md. Calcium carbonate scale formation in the well tubing and separator equipment was a problem. During the first 2 years of production, scale formation was prevented in the surface equipment by injection of an inhibitor upstream of the choke. Starting in 1985, scale formation in the production tubing was successfully prevented by injecting inhibitor pills'' directly into the reservoir. Corrosion and/or erosion of surface piping and equipment, as well as disposal well tubing, was also significant.

  13. Hanford Tank Farms Waste Certification Flow Loop Test Plan

    SciTech Connect

    Bamberger, Judith A.; Meyer, Perry A.; Scott, Paul A.; Adkins, Harold E.; Wells, Beric E.; Blanchard, Jeremy; Denslow, Kayte M.; Greenwood, Margaret S.; Morgen, Gerald P.; Burns, Carolyn A.; Bontha, Jagannadha R.

    2010-01-01

    A future requirement of Hanford Tank Farm operations will involve transfer of wastes from double shell tanks to the Waste Treatment Plant. As the U.S. Department of Energy contractor for Tank Farm Operations, Washington River Protection Solutions anticipates the need to certify that waste transfers comply with contractual requirements. This test plan describes the approach for evaluating several instruments that have potential to detect the onset of flow stratification and critical suspension velocity. The testing will be conducted in an existing pipe loop in Pacific Northwest National Laboratory’s facility that is being modified to accommodate the testing of instruments over a range of simulated waste properties and flow conditions. The testing phases, test matrix and types of simulants needed and the range of testing conditions required to evaluate the instruments are described

  14. A review of DOE HEPA filter component test activities

    SciTech Connect

    Slawski, J.W.; Bresson, J.F.; Scripsick, R.C.

    1997-08-01

    All HEPA filters purchased for installation in DOE nuclear facilities are required to be tested at a Filter Test Facility (FTF) prior to installation. The number of HEPA filters purchased by DOE has been reduced so much that the Hanford FTF was closed. From Fiscal Year (FY) 1992 to 1994, funding was not provided to the FTF Technical Support Group (TSG) at the Los Alamos National Laboratory. As a consequence, Round Robin Tests (RRTs), performed twice each year by the FTFs to assess constituency of test results among the FTFs, were not performed in FY 1992 and FY 1993. The Annual Reports of FTF test activities were not prepared for FY 1992 - 1995. Technical support provided to the FTFs was minimal. There is talk of closing a second FTF, and ongoing discussions as to whether DOE will continue to fund operation of the FTFs. In FY 1994, DOE Defense Programs commenced funding the TSG. RRT data for FY 1994 and 1995 have been entered into the database; the FY 1994 RRT report has been issued; and the FY 1995 RRT report is in progress. Data from semiannual reports have been retrieved and entered into the database. Standards related to HEPA filter test and procurement activities are now scheduled for issuance by FY 1996. Continuation of these activities depends on whether DOE will continue to support the HEPA filter test program. The history and activities of the FTFs and the TSG at Los Alamos have been reported at previous Air Cleaning Conferences. Data from the FY 1991 Annual Report of FTF activities was presented at the 1992 Air Cleaning Conference. Preparation of the Annual Reports was temporarily suspended in 1992. However, all of the FTF Semiannual report data have been retrieved and entered into the data base. This paper focuses primarily on the results of HEPA filter tests conducted by FTFs during FY 1992 - FY 1995, and the possible effects of the DOE program uncertainties on the quality of HEPA filters for installation at the DOE sites. 15 refs., 13 tabs.

  15. Columbia University flow instability experimental program: Volume 6. Single annulus tests, transient test program

    SciTech Connect

    Dougherty, T.; Maciuca, C.; McAssey, E.V. Jr.; Reddy, D.G.; Yang, B.W.

    1992-09-01

    The coolant in the Savannah River Site (SRS) production nuclear reactor assemblies is circulated as a subcooled liquid under normal operating conditions. This coolant is evenly distributed throughout multiple annular flow channels with a uniform pressure profile across each coolant flow channel. During the postulated Loss of Coolant Accident (LOCA), which is initiated by a hypothetical guillotine pipe break, the coolant flow through the reactor assemblies is significantly reduced. The flow reduction and accompanying power reduction (after shutdown is initiated) occur in the first 1 to 2 seconds of the LOCA. This portion of the LOCA is referred to as the Flow Instability phase. This report presents the experimental results for the transient portion of the single annulus test program. The test program was designed to investigate the onset of flow instability in an annular geometry similar to the MARK 22 reactor. The test program involved testing of both a ribless heater and a ribbed heater under steady state as well as transient conditions. The ribbed heater testing is currently underway and will be reported separately. The steady state portion of this test program with ribless heater was completed and reported in report No. CU-HTRF-T3A. The present report presents transient test results obtained from a ribless, uniform annulus test section. A total of thirty five transients were conducted with six cases in which flow excursion occurred. No unstable conditions resulted for tests in which the steady state Q{sub ratio} OFI limit was not exceeded.

  16. 2. Exterior view of Components Test Laboratory (T27), looking southeast. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Exterior view of Components Test Laboratory (T-27), looking southeast. The building wing on the left houses the equipment room and that on the right houses Test Cell 8 (oxidizer) and the oxidizer storage pit or vault. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  17. 3. Exterior view of Components Test Laboratory (T27), looking southeast. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Exterior view of Components Test Laboratory (T-27), looking southeast. The building wing on the left houses the equipment room, and that on the right houses Test Cell 8 (oxidizer) and the oxidizer storage pit or vault. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  18. Evaluating Key Watershed Components of Low Flow Regimes in New England Streams.

    PubMed

    Morrison, Alisa C; Gold, Arthur J; Pelletier, Marguerite C

    2016-05-01

    Water resource managers seeking to optimize stream ecosystem services and abstractions of water from watersheds need an understanding of the importance of land use, physical and climatic characteristics, and hydrography on different low flow components of stream hydrographs. Within 33 USGS gaged watersheds of southern New England, we assessed relationships between watershed variables and a set of low flow parameters by using an information-theoretical approach. The key variables identified by the Akaike Information Criteria (AIC) weighting factors as generating positive relationships with low flow events included percent stratified drift, mean elevation, drainage area, and mean August precipitation. The extent of wetlands in the watershed was negatively related to low flow magnitudes. Of the various land use variables, the percentage of developed land was found to have the highest importance and a negative relationship on low flow magnitudes, but was less important than wetlands and physical and climatic features. Our results suggest that management practices aimed to sustain low flows in fluvial systems can benefit from attention to specific watershed features. We draw attention to the finding that streams located in watersheds with high proportions of wetlands may require more stringent approaches to withdrawals to sustain fluvial ecosystems during drought periods, particularly in watersheds with extensive development and limited deposits of stratified drift. PMID:27136170

  19. Eigenmodes of Ducted Flows With Radially-Dependent Axial and Swirl Velocity Components

    NASA Technical Reports Server (NTRS)

    Kousen, Kenneth A.

    1999-01-01

    This report characterizes the sets of small disturbances possible in cylindrical and annular ducts with mean flow whose axial and tangential components vary arbitrarily with radius. The linearized equations of motion are presented and discussed, and then exponential forms for the axial, circumferential, and time dependencies of any unsteady disturbances are assumed. The resultant equations form a generalized eigenvalue problem, the solution of which yields the axial wavenumbers and radial mode shapes of the unsteady disturbances. Two numerical discretizations are applied to the system of equations: (1) a spectral collocation technique based on Chebyshev polynomial expansions on the Gauss-Lobatto points, and (2) second and fourth order finite differences on uniform grids. The discretized equations are solved using a standard eigensystem package employing the QR algorithm. The eigenvalues fall into two primary categories: a discrete set (analogous to the acoustic modes found in uniform mean flows) and a continuous band (analogous to convected disturbances in uniform mean flows) where the phase velocities of the disturbances correspond to the local mean flow velocities. Sample mode shapes and eigensystem distributions are presented for both sheared axial and swirling flows. The physics of swirling flows is examined with reference to hydrodynamic stability and completeness of the eigensystem expansions. The effect of assuming exponential dependence in the axial direction is discussed.

  20. Ground vibration test of the laminar flow control JStar airplane

    NASA Technical Reports Server (NTRS)

    Kehoe, M. W.; Cazier, F. W., Jr.; Ellison, J. F.

    1985-01-01

    A ground vibration test was conducted on a Lockheed JetStar airplane that had been modified for the purpose of conducting laminar flow control experiments. The test was performed prior to initial flight flutter tests. Both sine-dwell and single-point-random excitation methods were used. The data presented include frequency response functions and a comparison of mode frequencies and mode shapes from both methods.

  1. 14 CFR 33.91 - Engine system and component tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system and..., reliability, and durability. (c) Each unpressurized hydraulic fluid tank may not fail or leak when subjected... hydraulic fluid tank must meet the requirements of § 33.64. (d) For an engine type certificated for use...

  2. 14 CFR 33.91 - Engine system and component tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system and..., reliability, and durability. (c) Each unpressurized hydraulic fluid tank may not fail or leak when subjected... hydraulic fluid tank must meet the requirements of § 33.64. (d) For an engine type certificated for use...

  3. Space Flight Requirements for Fiber Optic Components: Qualification Testing and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.

    2006-01-01

    This viewgraph presentation reviews the qualification testing requirements for Fiber Optic Components used during space flight. Since most components for space flight fiber optic components are now commercial of the shelf (COTS) products, and the changes at Goddard Space Flight Center, such as short term projects, and low budgets and other changes, have made full qualification of Fiber Optic Components not only too expensive also impossible. This presentation reviews the environmental parameters, the testing and or testing requirements of some optical components on board some NASA satellites.

  4. A new component of the collective flow in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Gutbrod, H. H.; Kampert, K. H.; Kolb, B. W.; Poskanzer, A. M.; Ritter, H. G.; Schmidt, H. R.

    1989-01-01

    The reaction Au+Au at 400 MeV/nucleon is analyzed in the coordinate system given by the principal axes of the kinetic energy flow ellipsoid. In addition to the previously observed side-splash and bounce-off we find a pronounced component perpendicular to the reaction plane at mid-rapidity both in position- and momentum-space. The anisotropy is investigated as a function of multiplicity and is found to be most prominent for semi-central collisions.

  5. Rayleigh Scattering for Measuring Flow in a Nozzle Testing Facility

    NASA Technical Reports Server (NTRS)

    Gomez, Carlos R.; Panda, Jayanta

    2006-01-01

    A molecular Rayleigh-scattering-based air-density measurement system was built in a large nozzle-and-engine-component test facility for surveying supersonic plumes from jet-engine exhaust. A molecular Rayleigh-scattering-based air-density measurement system was built in a large nozzle-and-enginecomponent test facility for surveying supersonic plumes from jet-engine exhaust

  6. Three-dimensional flows about simple components at angle of attack

    NASA Technical Reports Server (NTRS)

    Peake, D. J.; Tobak, M.

    1982-01-01

    The structures of three dimensional separated flow about some chosen aerodynamic components at angle of attack are synthesized, holding strictly to the notion that streamlines in the external flow (viscous plus inviscid) and skin friction lines on the body surface may be considered as trajectories having properties consistent with those of continuous vector fields. Singular points in the fields are of limited number and are classified as simple nodes and saddles. Analogous flow structures at high angles of attack about blunt and pointed bodies, straight and swept wings, etc., are discussed, highlighting the formation of spiral nodes (foci) in the pattern of the skin friction lines. How local and global three dimensional separation lines originate and form is addressed, and the characteristics of both symmetric and asymmetric leeward wakes are described.

  7. Inverse Comptonization in a Two Component Advective Flow: Results of a Monte Carlo simulation

    SciTech Connect

    Ghosh, Himadri; Chakrabarti, S. K.; Laurent, Philippe

    2008-10-08

    We compute the resultant spectrum due to multiple scattering of soft photons emitted from a Keplerian disk by thermal electrons inside a torus axisymmetrically placed around a black hole. In a two component advective flow model, the post-shock region is similar to a thick accretion disk and the pre-shock sub-keplerian flow is highly optically thin. As a preliminary run of the Monte Carlo simulation of the system, we assume the CENBOL to be a small (2-14r{sub g}) thick accretion disk without a cusp to allow bulk motion of the flow. Bulk Motion Comptonization (BMC) has also been added. We show that the spectral behaviour is very similar to what is predicted in Chakrabarti and Titarchuk (1995)

  8. Intracellular Flow Cytometric Measurement of Extracellular Matrix Components in Porcine Intervertebral Disc Cells

    PubMed Central

    Flagler, Daniel J.; Huang, Chun-Yuh; Yuan, Tai-Yi; Lu, Zhongmin; Cheung, Herman S.; Gu, Wei Yong

    2009-01-01

    The objective of this study was to develop and demonstrate the utility of a novel method of evaluating intracellular levels of extracellular matrix (ECM) components in intervertebral disc (IVD) cells using flow cytometry. By using this method, this study discriminated between cell populations in porcine IVD and examined the response of IVD cells to monolayer cultures, a traditional method of cell expansion, by measuring phenotypic attributes of ECM component production. It was found that monolayer cultures affected collagen production of IVD cells while there were differences in collagen type II production between the cells isolated from the annulus fibrosus (AF) and nucleus pulposus (NP) regions of IVD. Size distributions of fresh and cultured cells were also presented while the relationships between cell size and intracellular collagen level revealed heterogeneous cell populations in AF and NP regions. Furthermore, this study showed that the intracellular collagen signals of IVD cells were significantly enhanced by the treatments of Brefeldin-A and ascorbic acid. This suggests that Brefeldin-A and ascorbic acid could be used to increase the sensitivity of flow cytometric analysis on intracellular collagen levels by maximizing collagen accumulation inside cells. Since a unique feature of the flow cytometric screening tool is the ability to discriminate between various cell populations in a single sample, the flow cytometric method developed in this study may have the potential to identify specific collagen-producing cell populations from tissues or cell cultures. PMID:20161070

  9. Diagnostic testing: a key component of high-value care.

    PubMed

    Cardinal, Lucien J

    2016-01-01

    This is the fourth article of a series on fundamental concepts in biostatistics and research. In this article, the author reviews the fundamental concepts in diagnostic testing, sensitivity, and specificity and how they relate to the concept of high-value care. The topics are discussed in common language, with a minimum of jargon and mathematics, and with clinical examples. Emphasis is given to conceptual understanding. A companion article will follow focusing on predictive value and prior probability. PMID:27406456

  10. Diagnostic testing: a key component of high-value care

    PubMed Central

    Cardinal, Lucien J.

    2016-01-01

    This is the fourth article of a series on fundamental concepts in biostatistics and research. In this article, the author reviews the fundamental concepts in diagnostic testing, sensitivity, and specificity and how they relate to the concept of high-value care. The topics are discussed in common language, with a minimum of jargon and mathematics, and with clinical examples. Emphasis is given to conceptual understanding. A companion article will follow focusing on predictive value and prior probability. PMID:27406456

  11. Fractional flow in fractured chalk; a flow and tracer test revisited

    NASA Astrophysics Data System (ADS)

    Odling, N. E.; West, L. J.; Hartmann, S.; Kilpatrick, A.

    2013-04-01

    A multi-borehole pumping and tracer test in fractured chalk is revisited and reinterpreted in the light of fractional flow. Pumping test data analyzed using a fractional flow model gives sub-spherical flow dimensions of 2.2-2.4 which are interpreted as due to the partially penetrating nature of the pumped borehole. The fractional flow model offers greater versatility than classical methods for interpreting pumping tests in fractured aquifers but its use has been hampered because the hydraulic parameters derived are hard to interpret. A method is developed to convert apparent transmissivity and storativity (L4-n/T and S2-n) to conventional transmissivity and storativity (L2/T and dimensionless) for the case where flow dimension, 2 < n < 3. These parameters may then be used in further applications, facilitating application of the fractional flow model. In the case illustrated, improved fits to drawdown data are obtained and the resultant transmissivities and storativities are found to be lower by 30% and an order of magnitude respectively, than estimates from classical methods. The revised hydraulic parameters are used in a reinterpretation of a tracer test using an analytical dual porosity model of solute transport incorporating matrix diffusion and modified for fractional flow. Model results show smaller fracture apertures, spacings and dispersivities than those when 2D flow is assumed. The pumping and tracer test results and modeling presented illustrate the importance of recognizing the potential fractional nature of flow generated by partially penetrating boreholes in fractured aquifers in estimating aquifer properties and interpreting tracer breakthrough curves.

  12. Testing Components of New Community Isopycnal Ocean Circulation Model

    SciTech Connect

    Bryan, Kirk

    2008-05-09

    The ocean and atmosphere are both governed by the same physical laws and models of the two media have many similarities. However, there are critical differences that call for special methods to provide the best simulation. One of the most important difference is that the ocean is nearly opaque to radiation in the visible and infra-red part of the spectrum. For this reason water mass properties in the ocean are conserved along trajectories for long distances and for long periods of time. For this reason isopycnal coordinate models would seem to have a distinct advantage in simulating ocean circulation. In such a model the coordinate surfaces are aligned with the natural paths of near adiabatic, density conserving flow in the main thermocline. The difficulty with this approach is at the upper and lower boundaries of the ocean, which in general do not coincide with density surfaces. For this reason hybrid coordinate models were proposed by Bleck and Boudra (1981) in which Cartesian coordinates were used near the ocean surface and isopycnal coordinates were used in the main thermocline. This feature is now part of the HICOM model (Bleck, 2002).

  13. Investigation of the Flow-Induced Vibration in the E2 Test Facility

    NASA Technical Reports Server (NTRS)

    Castillo, Luciano

    2001-01-01

    An investigation of flow induced vibration due to coupling between the fluid flow and the propellants lines (LOX and RP-1) was performed. Various flow rate conditions were studied to check whether flow induced vibration was possible due to vortex shedding in both valves and pipe lines. Resonance test was conducted for all segments of the LOX-feedline for the preburner under test. In addition, critical values of frequency and velocity are calculated using a mass damping model. A simple chart characterizing the relation between frequency and velocity is developed for each component; i.e. propellant lines, valves and flow meters. It was found that flow induced vibration occurs for various segments with flow rates of 113 lb/s, 275 lb/s and 40 lb/s. Even more interesting using critical conditions for buckling, it was found that the valve or pipe may collapse for a flow rate of 275 lb/s and valve height of 10% of pipe diameter. Furthermore, two models for the acoustic pressure acting on the segments particularly for the valve are proposed.

  14. Investigation of the Flow-Induced Vibration in the E2 Test Facility

    NASA Technical Reports Server (NTRS)

    Castillo, Luciano

    2001-01-01

    An investigation of flow induced vibration due to coupling between the fluid flow and the propellants lines (LOX and RP-1) was performed. Various flow rate conditions were studied to check whether flow induced vibration was possible due to vortex shedding in both valves and pipe lines. Resonances test was conducted for all segments of the LOX-feedline for the preburner under test. In addition, critical values of frequency and velocity are calculated using a mass damping model. A simple chart characterizing the relation between frequency and velocity is developed for each component; i.e. propellant lines, valves and flow meters. It was found that flow induced vibration occurs for various segments with flow rates of 113 1b/s, 275 lb/s and 40 lb/s. Even more interesting using critical conditions for buckling, it was found that the valve or pipe may collapse for a flow rate of 275 lb/s and valve height of 10% of pipe diameter. Furthermore, two models for the acoustic pressure acting on the segments particularly for the valve are proposed.

  15. 32 CFR 21.425 - How does a DoD Component's authority flow to awarding and administering activities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the contracting activity for procurement contracts, as defined at 48 CFR 2.101. The intent is that... 32 National Defense 1 2010-07-01 2010-07-01 false How does a DoD Component's authority flow to... a DoD Component's authority flow to awarding and administering activities? The Head of a...

  16. Laminar flow test installation in the Boeing Research Wind Tunnel

    NASA Technical Reports Server (NTRS)

    George-Falvy, Dezso

    1990-01-01

    This paper describes the initial wind tunnels tests in the 5- by 8-ft Boeing Research Wind Tunnel of a near full-scale (20-foot chord) swept wing section having laminar flow control (LFC) by slot suction over its first 30 percent chord. The model and associated test apparatus were developed for use as a testbed for LFC-related experimentation in support of preliminary design studies done under contract with the National Aeronautics and Space Administration. This paper contains the description of the model and associated test apparatus as well as the results of the initial test series in which the proper functioning of the test installation was demonstrated and new data were obtained on the sensitivity of suction-controlled laminar flow to surface protuberances in the presence of crossflow due to sweep.

  17. Radiation tests of CMS RPC muon trigger electronic components

    NASA Astrophysics Data System (ADS)

    Buńkowski, Karol; Kassamakov, Ivan; Królikowski, Jan; Kierzkowski, Krzysztof; Kudła, Maciej; Maenpaa, Teppo; Poźniak, Krzysztof; Rybka, Dominik; Tuominen, Eija; Ungaro, Donatella; Wrochna, Grzegorz; Zabołotny, Wojciech

    2005-02-01

    The results of proton irradiation test of electronic devices, selected for the RPC trigger electronic system of the CMS detector, will be presented. For Xilinx Spartan-IIE FPGA the cross-section for Single Event Upsets (SEUs) in configuration bits was measured. The dynamic SEUs in flip-flops were also investigated, but not observed. For the FLASH memories no single upsets were detected. Only after irradiating with a huge dose permanent damages of devices were observed. For Synchronous Dynamic Random Access Memory (SDRAM), the SEU cross-section was measured.

  18. Design verification and cold-flow modeling test report

    SciTech Connect

    Not Available

    1993-07-01

    This report presents a compilation of the following three test reports prepared by TRW for Alaska Industrial Development and Export Authority (AIDEA) as part of the Healy Clean Coal Project, Phase 1 Design of the TRW Combustor and Auxiliary Systems, which is co-sponsored by the Department of Energy under the Clean Coal Technology 3 Program: (1) Design Verification Test Report, dated April 1993, (2) Combustor Cold Flow Model Report, dated August 28, 1992, (3) Coal Feed System Cold Flow Model Report, October 28, 1992. In this compilation, these three reports are included in one volume consisting of three parts, and TRW proprietary information has been excluded.

  19. Water Flow Testing and Unsteady Pressure Analysis of a Two-Bladed Liquid Oxidizer Pump Inducer

    NASA Technical Reports Server (NTRS)

    Schwarz, Jordan B.; Mulder, Andrew; Zoladz, Thomas

    2011-01-01

    The unsteady fluid dynamic performance of a cavitating two-bladed oxidizer turbopump inducer was characterized through sub-scale water flow testing. While testing a novel inlet duct design that included a cavitation suppression groove, unusual high-frequency pressure oscillations were observed. With potential implications for inducer blade loads, these high-frequency components were analyzed extensively in order to understand their origins and impacts to blade loading. Water flow testing provides a technique to determine pump performance without the costs and hazards associated with handling cryogenic propellants. Water has a similar density and Reynolds number to liquid oxygen. In a 70%-scale water flow test, the inducer-only pump performance was evaluated. Over a range of flow rates, the pump inlet pressure was gradually reduced, causing the flow to cavitate near the pump inducer. A nominal, smooth inducer inlet was tested, followed by an inlet duct with a circumferential groove designed to suppress cavitation. A subsequent 52%-scale water flow test in another facility evaluated the combined inducer-impeller pump performance. With the nominal inlet design, the inducer showed traditional cavitation and surge characteristics. Significant bearing loads were created by large side loads on the inducer during synchronous cavitation. The grooved inlet successfully mitigated these loads by greatly reducing synchronous cavitation, however high-frequency pressure oscillations were observed over a range of frequencies. Analytical signal processing techniques showed these oscillations to be created by a rotating, multi-celled train of pressure pulses, and subsequent CFD analysis suggested that such pulses could be created by the interaction of rotating inducer blades with fluid trapped in a cavitation suppression groove. Despite their relatively low amplitude, these high-frequency pressure oscillations posed a design concern due to their sensitivity to flow conditions and

  20. Aortic Relative Pressure Components Derived from Four-Dimensional Flow Cardiovascular Magnetic Resonance

    PubMed Central

    Lamata, Pablo; Pitcher, Alex; Krittian, Sebastian; Nordsletten, David; Bissell, Malenka M; Cassar, Thomas; Barker, Alex J; Markl, Michael; Neubauer, Stefan; Smith, Nicolas P

    2014-01-01

    Purpose To describe the assessment of the spatiotemporal distribution of relative aortic pressure quantifying the magnitude of its three major components. Methods Nine healthy volunteers and three patients with aortic disease (bicuspid aortic valve, dissection, and Marfan syndrome) underwent 4D-flow CMR. Spatiotemporal pressure maps were computed from the CMR flow fields solving the pressure Poisson equation. The individual components of pressure were separated into time-varying inertial (“transient”), spatially varying inertial (“convective”), and viscous components. Results Relative aortic pressure is primarily caused by transient effects followed by the convective and small viscous contributions (64.5, 13.6, and 0.3 mmHg/m, respectively, in healthy subjects), although regional analysis revealed prevalent convective effects in specific contexts, e.g., Sinus of Valsalva and aortic arch at instants of peak velocity. Patients showed differences in peak transient values and duration, and localized abrupt convective changes explained by abnormalities in aortic geometry, including the presence of an aneurysm, a pseudo-coarctation, the inlet of a dissection, or by complex flow patterns. Conclusion The evaluation of the three components of relative pressure enables the quantification of mechanistic information for understanding and stratifying aortic disease, with potential future implications for guiding therapy. Magn Reson Med 72:1162–1169, 2014. © 2013 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:24243444

  1. Fan Noise Source Diagnostic Test: LDV Measured Flow Field Results

    NASA Technical Reports Server (NTRS)

    Podboy, Gary C.; Krupar, Martin J.; Hughes, Christopher E.; Woodward, Richard P.

    2003-01-01

    Results are presented of an experiment conducted to investigate potential sources of noise in the flow developed by two 22-in. diameter turbofan models. The R4 and M5 rotors that were tested were designed to operate at nominal take-off speeds of 12,657 and 14,064 RPMC, respectively. Both fans were tested with a common set of swept stators installed downstream of the rotors. Detailed measurements of the flows generated by the two were made using a laser Doppler velocimeter system. The wake flows generated by the two rotors are illustrated through a series of contour plots. These show that the two wake flows are quite different, especially in the tip region. These data are used to explain some of the differences in the rotor/stator interaction noise generated by the two fan stages. In addition to these wake data, measurements were also made in the R4 rotor blade passages. These results illustrate the tip flow development within the blade passages, its migration downstream, and (at high rotor speeds) its merging with the blade wake of the adjacent (following) blade. Data also depict the variation of this tip flow with tip clearance. Data obtained within the rotor blade passages at high rotational speeds illustrate the variation of the mean shock position across the different blade passages.

  2. Overview on test cases for computation of internal flows in turbomachines

    NASA Astrophysics Data System (ADS)

    Fottner, Leonhard

    1992-09-01

    Aero engine component design and development makes increasing use of computer codes for flow field calculations, such as two- or three-dimensional flow fields and flow fields with strong viscous effects. The accuracy of these calculation methods depends on the mathematical models and numerical schemes used to describe the physical reality. The proof of validity and the refinement of such methods depend on verification against relevant test cases, primarily experimental test cases. The AGARD Propulsion and Energetics Panel established Working Group 18 to specify relevant reference test cases to serve as validation bases for new methods, but also as check for existing production codes. The present paper gives an overview on the results of the Working Group and briefly describes the different test cases. These test cases refer to analytical and experimental test cases for steady flow in linear compressor and turbine cascades, single blade rows, single and multistage axial compressors and turbines and ducts. In addition, suggestions for future tests designed to reduce the limitations are discussed.

  3. Testing of ceramic gas turbine components under service-like conditions

    NASA Technical Reports Server (NTRS)

    Siebmanns, W.

    1980-01-01

    The German firm MTU, Munich, West Germany, is developing gas turbine components made of special ceramics (silicon nitride, silicon carbide) which can withstand temperatures up to 1600 K. Various components such as the combustor and turbine wheel are being developed. Various preliminary tests of components are discussed.

  4. Major advances in testing of dairy products: milk component and dairy product attribute testing.

    PubMed

    Barbano, D M; Lynch, J M

    2006-04-01

    Milk component analysis is relatively unusual in the field of quantitative analytical chemistry because an analytical test result determines the allocation of very large amounts of money between buyers and sellers of milk. Therefore, there is high incentive to develop and refine these methods to achieve a level of analytical performance rarely demanded of most methods or laboratory staff working in analytical chemistry. In the last 25 yr, well-defined statistical methods to characterize and validate analytical method performance combined with significant improvements in both the chemical and instrumental methods have allowed achievement of improved analytical performance for payment testing. A shift from marketing commodity dairy products to the development, manufacture, and marketing of value added dairy foods for specific market segments has created a need for instrumental and sensory approaches and quantitative data to support product development and marketing. Bringing together sensory data from quantitative descriptive analysis and analytical data from gas chromatography olfactometry for identification of odor-active compounds in complex natural dairy foods has enabled the sensory scientist and analytical chemist to work together to improve the consistency and quality of dairy food flavors. PMID:16537952

  5. Flow Visualization of Liquid Hydrogen Line Chilldown Tests

    NASA Technical Reports Server (NTRS)

    Rame, Enrique; Hartwig, Jason W.; McQuillen John B.

    2014-01-01

    We present experimental measurements of wall and fluid temperature during chill-down tests of a warm cryogenic line with liquid hydrogen. Synchronized video and fluid temperature measurements are used to interpret stream temperature profiles versus time. When cold liquid hydrogen starts to flow into the warm line, a sequence of flow regimes, spanning from all-vapor at the outset to bubbly with continuum liquid at the end can be observed at a location far downstream of the cold inlet. In this paper we propose interpretations to the observed flow regimes and fluid temperature histories for two chilldown methods, viz. trickle (i.e. continuous) flow and pulse flow. Calculations of heat flux from the wall to the fluid versus wall temperature indicate the presence of the transition/nucleate boiling regimes only. The present tests, run at typical Reynolds numbers of approx O(10 (exp 5)), are in sharp contrast to similar tests conducted at lower Reynolds numbers where a well-defined film boiling region is observed.

  6. Engineering development of selective agglomeration: Task 6, Operation of the Component Development Test Facility

    SciTech Connect

    Not Available

    1991-09-01

    The objective of this report is to summarize the component development and laboratory binder test work at Wilsonville during Task 6. This Task included the construction and startup of the Component Development Test Facility (CDTF), coal procurement, evaluation of unit operation and dewatering performance, laboratory binder tests for diesel and heptane, production characterization, and vendor tests. Data evaluation, interpretation, and analysis are not included in this report, but will be discussed in the Task 7 report.

  7. Flow reference method testing and analysis: Field test plan, Texas Utilities Decordova Steam Electric Station

    SciTech Connect

    Lieberman, E.; Werner, A.S.

    1997-05-30

    This report describes the experimental design and test plan for the first of three field tests that the US Environmental Protection Agency (EPA) conducted in 1997 as part of a major study to evaluate potential improvements to Method 2, EPA`s test method for measuring flue gas volumetric flow in stacks. The experimental design involved four test teams taking concurrent in-stack measurements with velocity sensing probes. Seven types of probes were included in the study. Three test matrices were used to gather data for inter-probe and inter-team comparisons and to assess the impact of velocity decline near the stack wall on volumetric flow measurements.

  8. Flow measurements in a centrifugal diffusor test device

    NASA Astrophysics Data System (ADS)

    Vitting, T.

    1985-06-01

    This work sought to verify concepts used in the design of a large scale, low speed, radial cascade wind tunnel which was to be used to investigate flow phenomena in and the performance of vaned radial diffusors. A major contributor to centrifugal compressor efficiency is the performance of the vaned diffusor which closely follows the impeller of the compressor. The purpose of this diffusor is to efficiently convert most of the kinetic energy of the transonic flow entering the vane into pressure. The need for an experimental facility which could simulate adequately, at low cost and in a controlled way, the environment of the centrifugal compressor motivated the development of the Centrifugal Diffusor Test Device (CDTD). It was expected that the generation of a three dimensional flow would provide improved empirical data on annular cascade performance. This measurement program surveyed the axial and circumferential uniformity of the flow at the inlet of a transonic wedge-type blading mounted in the device. Evaluation of the results showed the flow uniformity to be unsatisfactory. Leakage and other small perturbations in the flow field in the swirl generator are believed to be amplified by the basic flow configuration of the device.

  9. EPA flow reference method testing and analysis: Findings report. Appendices

    SciTech Connect

    1999-06-01

    In the summer of 1997, the US Environmental Protection Agency (EPA) conducted a series of week-long field tests at three electric utility sites to evaluate potential improvements to Method 2, EPA`s test method for measuring flue gas volumetric flow in stacks. The findings from that study are presented in document EPA/430-R-99-009a (NTIS Order Number PB99-150286). This document contains 10 appendices for that report.

  10. Mutation Testing for Effective Verification of Digital Components of Physical Systems

    NASA Astrophysics Data System (ADS)

    Kushik, N. G.; Evtushenko, N. V.; Torgaev, S. N.

    2015-12-01

    Digital components of modern physical systems are often designed applying circuitry solutions based on the field programmable gate array technology (FPGA). Such (embedded) digital components should be carefully tested. In this paper, an approach for the verification of digital physical system components based on mutation testing is proposed. The reference description of the behavior of a digital component in the hardware description language (HDL) is mutated by introducing into it the most probable errors and, unlike mutants in high-level programming languages, the corresponding test case is effectively derived based on a comparison of special scalable representations of the specification and the constructed mutant using various logic synthesis and verification systems.

  11. Ecological, psychological, and cognitive components of reading difficulties: testing the component model of reading in fourth graders across 38 countries.

    PubMed

    Chiu, Ming Ming; McBride-Chang, Catherine; Lin, Dan

    2012-01-01

    The authors tested the component model of reading (CMR) among 186,725 fourth grade students from 38 countries (45 regions) on five continents by analyzing the 2006 Progress in International Reading Literacy Study data using measures of ecological (country, family, school, teacher), psychological, and cognitive components. More than 91% of the differences in student difficulty occurred at the country (61%) and classroom (30%) levels (ecological), with less than 9% at the student level (cognitive and psychological). All three components were negatively associated with reading difficulties: cognitive (student's early literacy skills), ecological (family characteristics [socioeconomic status, number of books at home, and attitudes about reading], school characteristics [school climate and resources]), and psychological (students' attitudes about reading, reading self-concept, and being a girl). These results extend the CMR by demonstrating the importance of multiple levels of factors for reading deficits across diverse cultures. PMID:22183193

  12. 30 CFR 27.35 - Tests to determine life of critical components and subassemblies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests to determine life of critical components and subassemblies. 27.35 Section 27.35 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Requirements § 27.35 Tests to determine life of critical components and subassemblies. Replaceable...

  13. Techniques employed by the NASA White Sands Test Facility to ensure oxygen system component safety

    NASA Technical Reports Server (NTRS)

    Stradling, J. S.; Pippen, D. L.; Frye, G. W.

    1983-01-01

    Methods of ascertaining the safety and suitability of a variety of oxygen system components are discussed. Additionally, qualification and batch control requirements for soft goods in oxygen systems are presented. Current oxygen system component qualification test activities in progress at White Sands Test Facility are described.

  14. 16 CFR 1508.5 - Component spacing test method for § 1508.4(b).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Component spacing test method for § 1508.4(b). 1508.5 Section 1508.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR FULL-SIZE BABY CRIBS § 1508.5 Component spacing test method...

  15. 7. Exterior view of Components Test Laboratory (T27), looking south. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Exterior view of Components Test Laboratory (T-27), looking south. The wing in the immediate foreground houses the equipment room. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  16. CONSTRUCTION AND EVALUATION OF A FLOW TEST STAND

    EPA Science Inventory

    A test stand for the examination of flow monitors in a 3-inch pipe was designed, constructed, and evaluated. The calculations necessary for the proper design are based on empirical data and are described in detail. A statistical analysis was used to estimate the error generated f...

  17. Cotton-Harvester-Flow Simulator for Testing Cotton Yield Monitor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An experimental system was developed to simulate the pneumatic flow arrangement found in picker-type cotton harvesters. The simulation system was designed and constructed for testing a prototype cotton yield monitor developed at Mississippi State University. The simulation system was constructed to ...

  18. Experimental and analytical study of one- and two-component flows in spherical chambers

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.

    1973-01-01

    A study was conducted to evaluate techniques for obtaining high inner-gas concentrations in a spherical cavity for application to the open-cycle gaseous-core nuclear rocket. The study included flow visualization tests with water and gases as the working fluids, calculations of the streamline distribution, and calculation and measurement of the inner-gas concentration with air and Freon-11 as the inner-stream gases. The cavity shape, the outer-stream injection conditions, the turbulent transport coefficients, and the buoyancy effects were found to affect the inner-stream flow patterns.

  19. THE COMPONENT TEST FACILITY – A NATIONAL USER FACILITY FOR TESTING OF HIGH TEMPERATURE GAS-COOLED REACTOR (HTGR) COMPONENTS AND SYSTEMS

    SciTech Connect

    David S. Duncan; Vondell J. Balls; Stephanie L. Austad

    2008-09-01

    The Next Generation Nuclear Plant (NGNP) and other High-Temperature Gas-cooled Reactor (HTGR) Projects require research, development, design, construction, and operation of a nuclear plant intended for both high-efficiency electricity production and high-temperature industrial applications, including hydrogen production. During the life cycle stages of an HTGR, plant systems, structures and components (SSCs) will be developed to support this reactor technology. To mitigate technical, schedule, and project risk associated with development of these SSCs, a large-scale test facility is required to support design verification and qualification prior to operational implementation. As a full-scale helium test facility, the Component Test facility (CTF) will provide prototype testing and qualification of heat transfer system components (e.g., Intermediate Heat Exchanger, valves, hot gas ducts), reactor internals, and hydrogen generation processing. It will perform confirmation tests for large-scale effects, validate component performance requirements, perform transient effects tests, and provide production demonstration of hydrogen and other high-temperature applications. Sponsored wholly or in part by the U.S. Department of Energy, the CTF will support NGNP and will also act as a National User Facility to support worldwide development of High-Temperature Gas-cooled Reactor technologies.

  20. Methodology to identify risk-significant components for inservice inspection and testing

    SciTech Connect

    Anderson, M.T.; Hartley, R.S.; Jones, J.L. Jr.; Kido, C.; Phillips, J.H.

    1992-08-01

    Periodic inspection and testing of vital system components should be performed to ensure the safe and reliable operation of Department of Energy (DOE) nuclear processing facilities. Probabilistic techniques may be used to help identify and rank components by their relative risk. A risk-based ranking would allow varied DOE sites to implement inspection and testing programs in an effective and cost-efficient manner. This report describes a methodology that can be used to rank components, while addressing multiple risk issues.

  1. Design, testing, and model validation of an MR squeeze-flow vibration damper

    NASA Astrophysics Data System (ADS)

    Sims, Neil D.; Stanway, Roger; Johnson, Andrew R.; Mellor, Phillip

    2001-07-01

    Ongoing research at the University of Sheffield is currently concerned with the design and construction of magneto- rheological (MR) squeeze-flow vibration damper. Previous work has demonstrated the feasibility of employing such a device as the key component in a controllable vibration isolator. The work also demonstrated the inadequacies of existing mathematical models which do not account for the observed behavior of MR fluids in squeeze flow. In parallel with investigations into the behavior of MR dampers, a collaborative programme between the Universities of Liverpool and Sheffield is also in progress. Here attention is focussed on ER fluids in squeeze-flow and a new test facility has been constructed for use in the development and validation of mathematical models. It is anticipated that this collaborative programme will assist in the development of both ER and MR squeeze-flow models. In this paper, the authors present a summary of progress to date.

  2. Assessment of RELAP5-3D{copyright} using data from two-dimensional RPI flow tests

    SciTech Connect

    Davis, C.B.

    1998-07-01

    The capability of the RELAP5-3D{copyright} computer code to perform multi-dimensional thermal-hydraulic analysis was assessed using data from steady-state flow tests conducted at Rensselaer Polytechnic Institute (RPI). The RPI data were taken in a two-dimensional test section in a low-pressure air/water loop. The test section consisted of a thin vertical channel that simulated a two-dimensional slice through the core of a pressurized water reactor. Single-phase and two-phase flows were supplied to the test section in an asymmetric manner to generate a two-dimensional flow field. A traversing gamma densitometer was used to measure void fraction at many locations in the test section. High speed photographs provided information on the flow patterns and flow regimes. The RPI test section was modeled using the multi-dimensional component in RELAP5-3D Version BF06. Calculations of three RPI experiments were performed. The flow regimes predicted by the base code were in poor agreement with those observed in the tests. The two-phase regions were observed to be in the bubbly and slug flow regimes in the test. However, nearly all of the junctions in the horizontal direction were calculated to be in the stratified flow regime because of the relatively low velocities in that direction. As a result, the void fraction predictions were also in poor agreement with the measured values. Significantly improved results were obtained in sensitivity calculations with a modified version of the code that prevented the horizontal junctions from entering the stratified flow regime. These results indicate that the code`s logic in the determination of flow regimes in a multi-dimensional component must be improved. The results of the sensitivity calculations also indicate that RELAP5-3D will provide a significant multi-dimensional hydraulic analysis capability once the flow regime prediction is improved.

  3. Operational implications of qualification tests of class 1E electrical components for mild environments

    SciTech Connect

    Jabs, R.H.; Gangloff, W.

    1986-06-01

    This paper presents information regarding a program of accelerated aging and seismic testing of electrical and electronic components used in safety related equipment which is located in mild environment areas of a nuclear power plant. The test methodology is responsive to IEEE Std. 323-1974 and IEEE Std. 344-1975 for Class 1E electrical equipment. The methods used in accelerated aging and seismic testing of the elemental components (capacitors, potentiometers, integrated circuits, etc.) are described and results are presented on a mix of such components which have been tested to various equivalent lives. The operational implications of this program are also discussed.

  4. Flow-Field Survey in the Test Region of the SR-71 Aircraft Test Bed Configuration

    NASA Technical Reports Server (NTRS)

    Mizukami, Masashi; Jones, Daniel; Weinstock, Vladimir D.

    2000-01-01

    A flat plate and faired pod have been mounted on a NASA SR-71A aircraft for use as a supersonic flight experiment test bed. A test article can be placed on the flat plate; the pod can contain supporting systems. A series of test flights has been conducted to validate this test bed configuration. Flight speeds to a maximum of Mach 3.0 have been attained. Steady-state sideslip maneuvers to a maximum of 2 deg have been conducted, and the flow field in the test region has been surveyed. Two total-pressure rakes, each with two flow-angle probes, have been placed in the expected vicinity of an experiment. Static-pressure measurements have been made on the flat plate. At subsonic and low supersonic speeds with no sideslip, the flow in the surveyed region is quite uniform. During sideslip maneuvers, localized flow distortions impinge on the test region. Aircraft sideslip does not produce a uniform sidewash over the test region. At speeds faster than Mach 1.5, variable-pressure distortions were observed in the test region. Boundary-layer thickness on the flat plate at the rake was less than 2.1 in. For future experiments, a more focused and detailed flow-field survey than this one would be desirable.

  5. Testing the global flow reconstruction method on coupled chaotic oscillators

    NASA Astrophysics Data System (ADS)

    Plachy, Emese; Kolláth, Zoltán

    2010-03-01

    Irregular behaviour of pulsating variable stars may occur due to low dimensional chaos. To determine the quantitative properties of the dynamics in such systems, we apply a suitable time series analysis, the global flow reconstruction method. The robustness of the reconstruction can be tested through the resultant quantities, like Lyapunov dimension and Fourier frequencies. The latter is specially important as it is directly derivable from the observed light curves. We have performed tests using coupled Rossler oscillators to investigate the possible connection between those quantities. In this paper we present our test results.

  6. Effects of light intensity and pattern contrast on the ability of the land crab, Cardisoma guanhumi, to separate optic flow-field components.

    PubMed

    Johnson, Aaron P; Barnes, W Jon P; Macauley, Martin W S

    2004-01-01

    Using a novel suite of computer-generated visual stimuli that mimicked components of optic flow, the visual responses of the tropical land crab, Cardisoma guanhumi, were investigated. We show that crabs are normally successful in distinguishing the rotational and translational components of the optic flow field, showing strong optokinetic responses to the former but not the latter. This ability was not dependent on the orientation of the crab, occurring both in "forwards-walking" and "sideways-walking" configurations. However, under conditions of low overall light intensity and/or low object/background contrast, the separation mechanism shows partial failure causing the crab to generate compensatory eye movements to translation, particularly in response to low-frequency (low-velocity) stimuli. Using this discovery, we then tested the ability of crabs to separate rotational and translational components in a combined rotation/translation flow field under different conditions. We demonstrate that, while crabs can successfully separate such a combined flow field under normal circumstances, showing compensatory eye movements only to the rotational component, they are unable to make this separation under conditions of low overall light intensity and low object/background contrast. Here, the responses to both flow-field components show summation when they are in phase, but, surprisingly, there is little reduction in the amplitude of responses to rotation when the translational component is in antiphase. Our results demonstrate that the crab's visual system finds separation of flow-field components a harder task than detection of movement, since the former shows partial failure at light intensities and/or object/background contrasts at which movement of the world around the crab is still generating high-gain optokinetic responses. PMID:15733344

  7. Flow and diffusion of high-stakes test scores

    PubMed Central

    Marder, M.; Bansal, D.

    2009-01-01

    We apply visualization and modeling methods for convective and diffusive flows to public school mathematics test scores from Texas. We obtain plots that show the most likely future and past scores of students, the effects of random processes such as guessing, and the rate at which students appear in and disappear from schools. We show that student outcomes depend strongly upon economic class, and identify the grade levels where flows of different groups diverge most strongly. Changing the effectiveness of instruction in one grade naturally leads to strongly nonlinear effects on student outcomes in subsequent grades. PMID:19805049

  8. Applying well flow adapted filtering to transient pumping tests

    NASA Astrophysics Data System (ADS)

    Zech, Alraune; Attinger, Sabine

    2014-05-01

    Transient pumping tests are often used to estimate porous medium characteristics like hydraulic conductivity and storativity. The interpretation of pumping test drawdowns is based on methods which are normally developed under the assumption of homogeneous porous media. However aquifer heterogeneity strongly impacts on well flow pattern, in particular in the vicinity of the pumping well. The purpose of this work is to present a method to interpret drawdowns of transient pumping tests in heterogeneous porous media. With this method we are able to describe the effects that statistical quantities like variance and correlation length have on pumping test drawdowns. Furthermore it allows inferring on the statistical parameters of aquifer heterogeneity from drawdown data by invers estimation, which is not possible using methods for homogeneous media like Theis' solution. The method is based on a representative description of hydraulic conductivity for radial flow regimes. It is derived from a well flow adapted filtering procedure (Coarse Graining), where the heterogeneity of hydraulic conductivity is assumed to be log-normal distributed with a Gaussian correlation structure. applying the up scaled hydraulic conductivity to the groundwater flow equation results in a hydraulic head which depends on the statistical parameters of the porous medium. It describes the drawdown of a transient pumping test in heterogeneous media. We used an ensemble of transient pumping test simulations to verify the up scaled drawdown solution. We generated transient pumping tests in heterogeneous media for various values of the statistical parameters variance and correlation length and evaluated their impact on the drawdown behavior as well as on the temporal evolution. We further examined the impact of several aspects like the location of an observation well or the local conductivity at the pumping well on the drawdown behavior. This work can be understood as an expansion of the work of Zech et

  9. Cold Flow Plume Entrainment Test Final Report NTF Test Number 2456

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; McDaniels, David; Mishtawy, Jason; Ramachandran, Narayanan; Hammad, Khaled J.

    2005-01-01

    As part of the Space Shuttle Return to Flight (RTF) program, Marshall Space Flight Center (MSFC) performed computational fluid dynamics (CFD) analysis to define the velocity flowfields around the Shuttle stack at liftoff. These CFD predicted velocity flowfields were used in debris transport analysis (DTA). High speed flows such as plumes induce or 'entrain' mass from the surrounding environment. Previous work had shown that CFD analysis over-predicts plume induced flows. Therefore, the DTA would tend to 1) predict more debris impacts, and 2) the debris velocity (and kinetic energy) of those impacts would be too high. At a November, 2004 peer-review it was recommended that the Liftoff DTA team quantify the uncertainty in the DTA caused by the CFD's over prediction of plume induced flow. To do so, the Liftoff DTA team needed benchmark quality data for plume induced flow to quantify the CFD accuracy and its effect on the DTA. MSFC's Nozzle Test Facility (NTF) conducted the "Nozzle Induced Flows test, P#2456" to obtain experimental data for plume induced flows for nozzle flow exhausting into q quiescent freestream. Planning for the test began in December, 2004 and the experimental data was obtained in February and March of 2005. The funding for this test was provided by MSFC's Space Shuttle Propulsion Systems Integration and Engineering office.

  10. The use of programmable logic controllers (PLC) for rocket engine component testing

    NASA Technical Reports Server (NTRS)

    Nail, William; Scheuermann, Patrick; Witcher, Kern

    1991-01-01

    Application of PLCs to the rocket engine component testing at a new Stennis Space Center Component Test Facility is suggested as an alternative to dedicated specialized computers. The PLC systems are characterized by rugged design, intuitive software, fault tolerance, flexibility, multiple end device options, networking capability, and built-in diagnostics. A distributed PLC-based system is projected to be used for testing LH2/LOx turbopumps required for the ALS/NLS rocket engines.

  11. Measurements of Turbulent Flow Field in Separate Flow Nozzles with Enhanced Mixing Devices - Test Report

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2002-01-01

    As part of the Advanced Subsonic Technology Program, a series of experiments was conducted at NASA Glenn Research Center on the effect of mixing enhancement devices on the aeroacoustic performance of separate flow nozzles. Initial acoustic evaluations of the devices showed that they reduced jet noise significantly, while creating very little thrust loss. The explanation for the improvement required that turbulence measurements, namely single point mean and RMS statistics and two-point spatial correlations, be made to determine the change in the turbulence caused by the mixing enhancement devices that lead to the noise reduction. These measurements were made in the summer of 2000 in a test program called Separate Nozzle Flow Test 2000 (SFNT2K) supported by the Aeropropulsion Research Program at NASA Glenn Research Center. Given the hot high-speed flows representative of a contemporary bypass ratio 5 turbofan engine, unsteady flow field measurements required the use of an optical measurement method. To achieve the spatial correlations, the Particle Image Velocimetry technique was employed, acquiring high-density velocity maps of the flows from which the required statistics could be derived. This was the first successful use of this technique for such flows, and shows the utility of this technique for future experimental programs. The extensive statistics obtained were likewise unique and give great insight into the turbulence which produces noise and how the turbulence can be modified to reduce jet noise.

  12. Three-dimensional model for multi-component reactive transport with variable density groundwater flow

    USGS Publications Warehouse

    Mao, X.; Prommer, H.; Barry, D.A.; Langevin, C.D.; Panteleit, B.; Li, L.

    2006-01-01

    PHWAT is a new model that couples a geochemical reaction model (PHREEQC-2) with a density-dependent groundwater flow and solute transport model (SEAWAT) using the split-operator approach. PHWAT was developed to simulate multi-component reactive transport in variable density groundwater flow. Fluid density in PHWAT depends not on only the concentration of a single species as in SEAWAT, but also the concentrations of other dissolved chemicals that can be subject to reactive processes. Simulation results of PHWAT and PHREEQC-2 were compared in their predictions of effluent concentration from a column experiment. Both models produced identical results, showing that PHWAT has correctly coupled the sub-packages. PHWAT was then applied to the simulation of a tank experiment in which seawater intrusion was accompanied by cation exchange. The density dependence of the intrusion and the snow-plough effect in the breakthrough curves were reflected in the model simulations, which were in good agreement with the measured breakthrough data. Comparison simulations that, in turn, excluded density effects and reactions allowed us to quantify the marked effect of ignoring these processes. Next, we explored numerical issues involved in the practical application of PHWAT using the example of a dense plume flowing into a tank containing fresh water. It was shown that PHWAT could model physically unstable flow and that numerical instabilities were suppressed. Physical instability developed in the model in accordance with the increase of the modified Rayleigh number for density-dependent flow, in agreement with previous research. ?? 2004 Elsevier Ltd. All rights reserved.

  13. Complementary Constrains on Component based Multiphase Flow Problems, Should It Be Implemented Locally or Globally?

    NASA Astrophysics Data System (ADS)

    Shao, H.; Huang, Y.; Kolditz, O.

    2015-12-01

    Multiphase flow problems are numerically difficult to solve, as it often contains nonlinear Phase transition phenomena A conventional technique is to introduce the complementarity constraints where fluid properties such as liquid saturations are confined within a physically reasonable range. Based on such constraints, the mathematical model can be reformulated into a system of nonlinear partial differential equations coupled with variational inequalities. They can be then numerically handled by optimization algorithms. In this work, two different approaches utilizing the complementarity constraints based on persistent primary variables formulation[4] are implemented and investigated. The first approach proposed by Marchand et.al[1] is using "local complementary constraints", i.e. coupling the constraints with the local constitutive equations. The second approach[2],[3] , namely the "global complementary constrains", applies the constraints globally with the mass conservation equation. We will discuss how these two approaches are applied to solve non-isothermal componential multiphase flow problem with the phase change phenomenon. Several benchmarks will be presented for investigating the overall numerical performance of different approaches. The advantages and disadvantages of different models will also be concluded. References[1] E.Marchand, T.Mueller and P.Knabner. Fully coupled generalized hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part I: formulation and properties of the mathematical model, Computational Geosciences 17(2): 431-442, (2013). [2] A. Lauser, C. Hager, R. Helmig, B. Wohlmuth. A new approach for phase transitions in miscible multi-phase flow in porous media. Water Resour., 34,(2011), 957-966. [3] J. Jaffré, and A. Sboui. Henry's Law and Gas Phase Disappearance. Transp. Porous Media. 82, (2010), 521-526. [4] A. Bourgeat, M. Jurak and F. Smaï. Two-phase partially miscible flow and transport modeling in

  14. Flap survey test of a combined surface blowing model: Flow measurements at static flow conditions

    NASA Technical Reports Server (NTRS)

    Fukushima, T.

    1978-01-01

    The Combined Surface Blowing (CSB) V/STOL lift/propulsion system consists of a blown flap system which deflects the exhaust from a turbojet engine over a system of flaps deployed at the trailing edge of the wing. Flow measurements consisting of velocity measurements using split film probes and total measure surveys using a miniature Kiel probe were made at control stations along the flap systems at two spanwise stations, the centerline of the nozzle and 60 percent of the nozzle span outboard of the centerline. Surface pressure measurements were made in the wing cove and the upper surface of the first flap element. The test showed a significant flow separation in the wing cove. The extent of the separation is so large that the flow into the first flap takes place only at the leading edge of the flap. The velocity profile measurements indicate that large spanwise (3 dimensional) flow may exist.

  15. Payload and Components Real-Time Automated Test System (PACRATS), Data Acquisition of Leak Rate and Pressure Data Test Procedure

    NASA Technical Reports Server (NTRS)

    Rinehart, Maegan L.

    2011-01-01

    The purpose of this activity is to provide the Mechanical Components Test Facility (MCTF) with the capability to obtain electronic leak test and proof pressure data, Payload and Components Real-time Automated Test System (PACRATS) data acquisition software will be utilized to display real-time data. It will record leak rates and pressure/vacuum level(s) simultaneously. This added functionality will provide electronic leak test and pressure data at specified sampling frequencies. Electronically stored data will provide ES61 with increased data security, analysis, and accuracy. The tasks performed in this procedure are to verify PACRATS only, and are not intended to provide verifications for MCTF equipment.

  16. Ensemble Averaged Conservation Equations for Multiphase, Multi-component, and Multi-material Flows

    SciTech Connect

    Ray A. Berry

    2003-08-01

    Many important “fluid” flows involve a combination of two or more materials having different properties. The multiple phases or components often exhibit relative motion among the phases or material classes. The microscopic motions of the individual constituents are complex and the solution to the micro-level evolutionary equations is difficult. Characteristic of such flows of multi-component materials is an uncertainty in the exact locations of the particular constituents at any particular time. For most practical purposes, it is not possible to exactly predict or measure the evolution of the details of such systems, nor is it even necessary or desirable. Instead, we are usually interested in more gross features of the motion, or the “average” behavior of the system. Here we present descriptive equations that will predict the evolution of this averaged behavior. Due to the complexities of interfaces and resultant discontinuities in fluid properties, as well as from physical scaling issues, it is essential to work with averaged quantities and parameters. We begin by tightening up, or more rigorously defining, our concept of an average. There are several types of averaging. The published literature predominantly contains two types of averaging: volume averaging [Whitaker 1999, Dobran 1991] and time averaging [Ishii 1975]. Occasionally combinations of the two are used. However, we utilize a more general approach by adopting what is known as ensemble averaging.

  17. Analysis of Alcove 8/Niche 3 Flow and Transport Tests

    SciTech Connect

    H.H. Liu

    2006-09-01

    The purpose of this report is to document analyses of the Alcove 8/Niche 3 flow and transport tests, with a focus on the large-infiltration-plot tests and compare pre-test model predictions with the actual test observations. The tests involved infiltration that originated from the floor of Alcove 8 (located in the Enhanced Characterization of Repository Block (ECRB) Cross Drift) and observations of seepage and tracer transport at Niche 3 (located in the Main Drift of the Exploratory Studies Facility (ESF)). The test results are relevant to drift seepage and solute transport in the unsaturated zone (UZ) of Yucca Mountain. The main objective of this analysis was to evaluate the modeling approaches used and the importance of the matrix diffusion process by comparing simulation and actual test observations. The pre-test predictions for the large plot test were found to differ from the observations and the reasons for the differences were documented in this report to partly address CR 6783, which concerns unexpected test results. These unexpected results are discussed and assessed with respect to the current baseline unsaturated zone radionuclide transport model in Sections 6.2.4, 6.3.2, and 6.4.

  18. 1. Exterior view of Components Test Laboratory (T27), looking southeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Exterior view of Components Test Laboratory (T-27), looking southeast from hill north of structure. The building wing in the right foreground houses Test Cell 8 (oxidizer) and the oxidizer storage pit or vault. Test Cell 10 is located in the center background, Test Cell 9 is at the far left, and the equipment room is in the immediate left foreground. The control room is in the center of the structure and abuts the aforementioned test cell and equipment room wings. This structure served as a facility for testing, handling, and storage of Titan II's hydrazine- and nitrogen teteroxide-based propellant system components for compatability determinations. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  19. NASA Ares I Launch Vehicle First Stage Roll Control System Cold Flow Development Test Program Overview

    NASA Technical Reports Server (NTRS)

    Butt, Adam; Popp, Christopher G.; Holt, Kimberly A.; Pitts, Hank M.

    2010-01-01

    The Ares I launch vehicle is the selected design, chosen to return humans to the moon, Mars, and beyond. It is configured in two inline stages: the First Stage is a Space Shuttle derived five-segment Solid Rocket Booster and the Upper Stage is powered by a Saturn V derived J-2X engine. During launch, roll control for the First Stage (FS) is handled by a dedicated Roll Control System (RoCS) located on the connecting Interstage. That system will provide the Ares I with the ability to counteract induced roll torque while any induced yaw or pitch moments are handled by vectoring of the booster nozzle. This paper provides an overview of NASA s Ares I FS RoCS cold flow development test program including detailed test objectives, types of tests run to meet those objectives, an overview of the results, and applicable lessons learned. The test article was built and tested at the NASA Marshall Space Flight Center in Huntsville, AL. The FS RoCS System Development Test Article (SDTA) is a full scale, flight representative water flow test article whose primary objective was to obtain fluid system performance data to evaluate integrated system level performance characteristics and verify analytical models. Development testing and model correlation was deemed necessary as there is little historical precedent for similar large flow, pulsing systems such as the FS RoCS. The cold flow development test program consisted of flight-similar tanks, pressure regulators, and thruster valves, as well as plumbing simulating flight geometries, combined with other facility grade components and structure. Orifices downstream of the thruster valves were used to simulate the pressure drop through the thrusters. Additional primary objectives of this test program were to: evaluate system surge pressure (waterhammer) characteristics due to thruster valve operation over a range of mission duty cycles at various feed system pressures, evaluate temperature transients and heat transfer in the

  20. Flow through a mechanical distraction enterogenesis device: a pilot test

    PubMed Central

    Miyasaka, Eiichi A.; Okawada, Manabu; Herman, Richard; Utter, Brent; Luntz, Jonathan; Brei, Diann; Teitelbaum, Daniel H.

    2011-01-01

    Background We tested the coupling portion of a prototype intraluminal distraction enterogenesis device to allow flow-through of simulated enteric contents (SEC) in both pig and human jejunum. Materials and methods SEC was made using 80% corn syrup. Ten cm pig and human intestinal segments had a spoke-shaped 2.2cm coupling adaptor sutured in place intraluminally. The adaptor had a flow-through area of 33.6mm2. SEC was pumped into the proximal part of the intestinal segment at 0.083mL/sec. The times to first passage of SEC through the coupler (first drop), 10mL and 20mL of SEC eluted from the distal end were recorded. Results Mean time to first drop elution was 155±38 seconds with pig, and 149±22 seconds with human bowel (p = 0.8). This corresponded to a hydrostatic pressure of 37.5mmHg before the initial drop passed through. Mean flow rates were 0.094mL/sec in pig bowel and 0.084mL/sec in human bowel (p=0.09). To account for occlusion from luminal debris, a 75% occlusion of coupler holes was studied in the smaller pig bowel to investigate if reductions in flow-through area could be tolerated. Mean time to first drop increased slightly to 171±15 seconds, and the elution rate stayed the same (p=0.5). Conclusions After a physiological level of initial pressure buildup allowing the first drop of SEC to pass the coupling adaptor, our prototype intestinal coupling adaptor did not obstruct flow-through of SEC, even after a 75% decrease in flow-through area. This type of attachment represents a viable approach to placing a device in-continuity without obstructing flow of enteric contents. PMID:21571307

  1. Computational analysis of turbine engine test cell flow phenomena

    NASA Astrophysics Data System (ADS)

    Prufert, Matthew Brian

    1998-11-01

    Turbine engine altitude test cells must incorporate an exhaust system collector to remove hot exhaust gases from the vicinity of the jet engine and to provide additional pumping to simulate the reduced pressure which would be encountered in flight. For economic reasons, it is desirable to utilize the same test configuration to simulate as much of the engine operating envelope as possible. To extend the test envelope, a cut-and-try approach is usually taken using available test data, one-dimensional analyses, and past experience. In this study, a computational approach was used to model some of the recognized operational problems which are commonly encountered. Specifically, computational models were used to evaluate the performance of an altitude test cell at low altitude conditions. Particular emphasis was placed on potential test section over-heating and the reduction of diffuser pumping to achieve near sea-level test conditions. A computational model which utilizes the NPARC Navier-Stokes code was applied to several test configurations operating at steady-state and to a single diffuser configuration in the presence of unsteady pressure fluctuations. During 1997/1998, the author developed two-dimensional and three-dimensional NPARC Navier-Stokes flow models and procedures for use in predicting test cell and engine surface cooling effectiveness for a military engine installation in an altitude test chamber. The predicted model flowfields for both steady-state and time variant flows were used to qualitatively verify limited infrared imaging camera data and quantitatively compare numerical results with test cell and diffuser pressure and temperature data. Prediction of surface convention heat transfer rates are currently beyond the capabilities of the NPARC CFD code. To quantify localized wall heat transfer rates, the BLAYER boundary layer code also was utilized. The BLAYER code is capable of quantifying boundary layer convection heat transfer rates based on near

  2. Jet-Surface Interaction Test: Flow Measurements Results

    NASA Technical Reports Server (NTRS)

    Brown, Cliff; Wernet, Mark

    2014-01-01

    Modern aircraft design often puts the engine exhaust in close proximity to the airframe surfaces. Aircraft noise prediction tools must continue to develop in order to meet the challenges these aircraft present. The Jet-Surface Interaction Tests have been conducted to provide a comprehensive quality set of experimental data suitable for development and validation of these exhaust noise prediction methods. Flow measurements have been acquired using streamwise and cross-stream particle image velocimetry (PIV) and fluctuating surface pressure data acquired using flush mounted pressure transducers near the surface trailing edge. These data combined with previously reported far-field and phased array noise measurements represent the first step toward the experimental data base. These flow data are particularly applicable to development of noise prediction methods which rely on computational fluid dynamics to uncover the flow physics. A representative sample of the large flow data set acquired is presented here to show how a surface near a jet affects the turbulent kinetic energy in the plume, the spatial relationship between the jet plume and surface needed to generate surface trailing-edge noise, and differences between heated and unheated jet flows with respect to surfaces.

  3. Performance testing of a Savonius windmill rotor in shear flows

    NASA Astrophysics Data System (ADS)

    Mojola, O. O.; Onasanya, O. E.

    The effects of flow shear and/or unsteadiness on the power producing performance of a Savonius windmill rotor are studied. Measurements are made in two laboratory statistically-steady shear flows, and in the natural wind, which is both viscous and unsteady. The measurements were made of the speed, torque, and power of the rotor at a number of streamwise stations for each of four values of the bucket overlap ratio. Flow velocity profiles and graphs of wind shear variation are given. It is concluded that even in the presence of shear, the power coefficient of a Savonius windmill rotor is most strongly dependent on the tip speed ratio. As in inviscid flow, the power coefficient peaked at a tip speed ratio = 0.8. The major effect of shear was to reduce the power coefficient below the inviscid flow level, the magnitude of reduction depending on the magnitude of shear present. In field testing of the Savonius rotor, the unsteadiness of the wind proved to be a greater source of power loss than the wind shear.

  4. Investigating the Reliability of the Civics Component of the U.S. Naturalization Test

    ERIC Educational Resources Information Center

    Winke, Paula

    2011-01-01

    In this study, I investigated the reliability of the U.S. Naturalization Test's civics component by asking 414 individuals to take a mock U.S. citizenship test comprising civics test questions. Using an incomplete block design of six forms with 16 nonoverlapping items and four anchor items on each form (the anchors connected the six subsets of…

  5. A review of flow battery testing at Sandia

    SciTech Connect

    Butler, P.C.; Miller, D.W.; Robinson, C.E.; Rodriguez, G.P.

    1984-08-01

    Sandia National Laboratories is evaluating prototype zinc/bromine, Redox, and zinc/ferricyanide flowing electrolyte batteries and cells. This paper updates previous reports of test results of two Exxon zinc/bromine batteries and one NASA Redox iron/chromium battery. Two 60sq. cm. zinc/ferricyanide cells from Lockheed Missiles and Space Co. are also being evaluated. Performance, life, and operating data are described for these batteries and cells.

  6. Flammable gas interlock spoolpiece flow response test report

    SciTech Connect

    Schneider, T.C., Fluor Daniel Hanford

    1997-03-24

    The purpose of this test report is to document the testing performed under the guidance of HNF-SD-WM-TC-073, {ital Flammable Gas Interlock Spoolpiece Flow Response Test Plan and Procedure}. This testing was performed for Lockheed Martin Hanford Characterization Projects Operations (CPO) in support of Rotary Mode Core Sampling jointly by SGN Eurisys Services Corporation and Numatec Hanford Company. The testing was conducted in the 305 building Engineering Testing Laboratory (ETL). NHC provides the engineering and technical support for the 305 ETL. The key personnel identified for the performance of this task are as follows: Test responsible engineering manager, C. E. Hanson; Flammable Gas Interlock Design Authority, G. P. Janicek; 305 ETL responsible manager, N. J. Schliebe; Cognizant RMCS exhauster engineer, E. J. Waldo/J. D. Robinson; Cognizant 305 ETL engineer, K. S. Witwer; Test director, T. C. Schneider. Other support personnel were supplied, as necessary, from 305/306 ETL. The testing, on the flammable Gas Interlock (FGI) system spoolpiece required to support Rotary Mode Core Sampling (RMCS) of single shell flammable gas watch list tanks, took place between 2-13-97 and 2-25-97.

  7. Radial flow permeability testing of an argillaceous limestone.

    PubMed

    Selvadurai, A P S; Jenner, L

    2013-01-01

    Argillaceous Lindsay limestone is the geologic storage formation that will be encountered at the site for the construction of a deep ground repository in Ontario, Canada, for the storage of low to intermediate level nuclear waste. The permeability of the Lindsay limestone is a key parameter that will influence the long-term movement of radionuclides from the repository to the geosphere. This paper describes the use of both steady-state and transient radial flow laboratory tests to determine the permeability of this argillaceous limestone. The interpretation of the tests is carried out using both analytical results and computational models of flow problems that exhibit radial symmetry. The results obtained from this research investigation are compared with the data available in the literature for similar argillaceous limestones mainly found in the Lindsay (Cobourg) formation. The experiments give permeabilities in the range of 1.0 × 10(-22) to 1.68 × 10(-19) m(2) for radial flows that are oriented along bedding planes under zero axial stress. The factors influencing transient pulse tests in particular and the interpretation of the results are discussed. PMID:22489872

  8. Development and testing of CMC components for automotive gas turbine engines

    NASA Technical Reports Server (NTRS)

    Khandelwal, Pramod K.

    1991-01-01

    Ceramic matrix composite (CMC) materials are currently being developed and evaluated for advanced gas turbine engine components because of their high specific strength and resistance to catastrophic failure. Components with 2D and 3D composite architectures have been successfully designed and fabricated. This is an overview of the test results for a backplate, combustor, and a rotor.

  9. Testing and examination of TMI-2 electrical components and discrete devices

    SciTech Connect

    Soberano, F.T.

    1982-11-01

    This report discusses the approach and results of the in situ test conducted on TMI-2 reactor building electrical components and discrete devices. Also included are the necessary presumptions and assumptions to correlate observed anomalies to the accident.

  10. 225-kW Dynamometer for Testing Small Wind Turbine Components: Preprint

    SciTech Connect

    Green, J.

    2006-06-01

    This paper describes NREL's new 225-kW dynamometer facility that is suitable for testing a variety of components and subsystems for small wind turbines and discusses opportunities for industry partnerships with NREL for use of the facility.

  11. High-flux source of fusion neutrons for material and component testing

    SciTech Connect

    Baldwin, D. E.; Hooper, E. B.; Ryutov, D. D.; Thomassen, K. I.

    1999-01-07

    The inner part of a fusion reactor will have to operate at very high neutron loads. In steady-state reactors the minimum fluence before the scheduled replacement of the reactor core should be at least l0-15 Mw.yr/m2. A more frequent replacement of the core is hardly compatible with economic constraints. A most recent summary of the discussions of these issues is presented in Ref. [l]. If and when times come to build a commercial fusion reactor, the availability of information on the behavior of materials and components at such fluences will become mandatory for making a final decision. This makes it necessary an early development and construction of a neutron source for fusion material and component testing. In this paper, we present information on one very attractive concept of such a source: a source based on a so called Gas Dynamic Trap. This neutron source was proposed in the mid 1980s (Ref. [2]; see also a survey [3] with discussion of the early stage of the project). Since then, gradual accumulation of the relevant experimental information on a modest-scale experimental facility GDT at Novosibirsk, together with a continuing design activity, have made initial theoretical considerations much more credible. We believe that such a source can be built within 4 or 5 years. Of course, one should remember that there is a chance for developing steady-state reactors with a liquid (and therefore continuously renewable) first wall [4], which would also serve as a tritium breeder. In this case, the need in the neutron testing will become less pressing. However, it is not clear yet that the concept of the flowing wall will be compatible with all types of steady-state reactors. It seems therefore prudent to be prepared to the need of a quick construction of a neutron source. It should also be mentioned that there exist projects of the accelerator-based neutron sources (e.g., [5]). However, they generally have two major disadvantages: a wrong neutron spectrum

  12. 16 CFR 1508.5 - Component spacing test method for § 1508.4(b).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Component spacing test method for § 1508.4(b). 1508.5 Section 1508.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR FULL-SIZE BABY CRIBS § 1508.5 Component spacing test method for § 1508.4(b). (a) Construct a...

  13. On testing of functionally equivalent components of fault-tolerant software

    NASA Technical Reports Server (NTRS)

    Vouk, Mladen A.; Helsabeck, Michael L.; Tai, Kuo-Chung; Mcallister, David F.

    1986-01-01

    Six functionally equivalent programs were tested with specification based random and extremal/special value (ESV) test cases. Statement and branch coverage were used to measure and compare the attained testing effectiveness. It was observed that both measures reached a nearly steady state value after 25 to 75 random test cases. Coverage saturation curves appear to follow an exponential growth model. However, the steady state values for branch coverage of different components, but the same input cases, differed by as much as 22 percent. The effect is the result of the differences in the detailed structure of the components. Improvement in coverage provided by the random test data, after the ESV cases were executed, was only about 1 percent. Results indicate that extensive random testing can be a process of diminishing returns, and that in the FTS context functional ('black box') testing can provide a very uneven execution coverage of the functionally equivalent software, and therefore should be supplemented by structure based testing.

  14. 42 CFR 84.93 - Gas flow test; open-circuit apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Gas flow test; open-circuit apparatus. 84.93...-Contained Breathing Apparatus § 84.93 Gas flow test; open-circuit apparatus. (a) A static-flow test will be performed on all open-circuit apparatus. (b) The flow from the apparatus shall be greater than 200...

  15. 42 CFR 84.93 - Gas flow test; open-circuit apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Gas flow test; open-circuit apparatus. 84.93...-Contained Breathing Apparatus § 84.93 Gas flow test; open-circuit apparatus. (a) A static-flow test will be performed on all open-circuit apparatus. (b) The flow from the apparatus shall be greater than 200...

  16. Lateral flow-based antibody testing for Chlamydia trachomatis.

    PubMed

    Gwyn, Sarah; Mitchell, Alexandria; Dean, Deborah; Mkocha, Harran; Handali, Sukwan; Martin, Diana L

    2016-08-01

    We describe here a lateral flow-based assay (LFA) for the detection of antibodies against immunodominant antigen Pgp3 from Chlamydia trachomatis, the causative agent of urogenital chlamydia infection and ocular trachoma. Optimal signal detection was achieved when the gold-conjugate and test line contained Pgp3, creating a dual sandwich capture assay. The LFA yielded positive signals with serum and whole blood but not with eluted dried blood spots. For serum, the agreement of the LFA with the non-reference multiplex assay was 96%, the specificity using nonendemic pediatric sera was 100%, and the inter-rater agreement was κ=0.961. For whole blood, the agreement of LFA with multiplex was 81.5%, the specificity was 100%, and the inter-rater agreement was κ=0.940. The LFA was tested in a field environment and yielded similar results to those from laboratory-based testing. These data show the successful development of a lateral flow assay for detection of antibodies against Pgp3 with reliable use in field settings, which would make antibody-based testing for trachoma surveillance highly practical, especially after cessation of trachoma elimination programs. PMID:27208400

  17. Energy efficient engine low-pressure compressor component test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Michael, C. J.; Halle, J. E.

    1981-01-01

    The aerodynamic and mechanical design description of the low pressure compressor component of the Energy Efficient Engine were used. The component was designed to meet the requirements of the Flight Propulsion System while maintaining a low cost approach in providing a low pressure compressor design for the Integrated Core/Low Spool test required in the Energy Efficient Engine Program. The resulting low pressure compressor component design meets or exceeds all design goals with the exception of surge margin. In addition, the expense of hardware fabrication for the Integrated Core/Low Spool test has been minimized through the use of existing minor part hardware.

  18. An automated thermal vacuum test system for use in environmental testing of flight systems and components

    NASA Technical Reports Server (NTRS)

    Cleckner, Craig S.; Knutson, Jeffrey R.

    1991-01-01

    Unusual requirements for the Pressure Distribution/Air Data System (PD/ADS) transducer thermal vacuum testing led to the development of a conductively heated and cooled, fully automated, bell-jar test system. The system has proven to be easily adaptable for other tests and offers the advantages of quick turn-around and low operational cost.

  19. Parametric Testing of Chevrons on Single Flow Hot Jets

    NASA Technical Reports Server (NTRS)

    Bridges, James; Brown, Clifford A.

    2004-01-01

    A parametric family of chevron nozzles have been studied, looking for relationships between chevron geometric parameters, flow characteristics, and far-field noise. Both cold and hot conditions have been run at acoustic Mach number 0.9. Ten models have been tested, varying chevron count, penetration, length, and chevron symmetry. Four comparative studies were defined from these datasets which show: that chevron length is not a major impact on either flow or sound; that chevron penetration increases noise at high frequency and lowers it at low frequency, especially for low chevron counts; that chevron count is a strong player with good low frequency reductions being achieved with high chevron count without strong high frequency penalty; and that chevron asymmetry slightly reduces the impact of the chevron. Finally, it is shown that although the hot jets differ systematically from the cold one, the overall trends with chevron parameters is the same.

  20. Testing of models of flow-induced hemolysis in blood flow through hypodermic needles.

    PubMed

    Chen, Yangsheng; Kent, Timothy L; Sharp, M Keith

    2013-03-01

    Hemolysis caused by flow in hypodermic needles interferes with a number of tests on blood samples drawn by venipuncture, including assays for metabolites, electrolytes, and enzymes, causes discomfort during dialysis sessions, and limits transfusion flow rates. To evaluate design modifications to address this problem, as well as hemolysis issues in other cardiovascular devices, computational fluid dynamics (CFD)-based prediction of hemolysis has potential for reducing the time and expense for testing of prototypes. In this project, three CFD-integrated blood damage models were applied to flow-induced hemolysis in 16-G needles and compared with experimental results, which demonstrated that a modified needle with chamfered entrance increased hemolysis, while a rounded entrance decreased hemolysis, compared with a standard needle with sharp entrance. After CFD simulation of the steady-state velocity field, the time histories of scalar stress along a grid of streamlines were calculated. A strain-based cell membrane failure model and two empirical power-law blood damage models were used to predict hemolysis on each streamline. Total hemolysis was calculated by weighting the predicted hemolysis along each streamline by the flow rate along each streamline. The results showed that only the strain-based blood damage model correctly predicted increased hemolysis in the beveled needle and decreased hemolysis in the rounded needle, while the power-law models predicted the opposite trends. PMID:23419169

  1. Development and testing of highway storm-sewer flow measurement and recording system

    USGS Publications Warehouse

    Kilpatrick, F.A.; Kaehrle, W.R.; Hardee, Jack; Cordes, E.H.; Landers, M.N.

    1985-01-01

    A comprehensive study and development of measuring instruments and techniques for measuring all components of flow in a storm-sewer drainage system was undertaken by the U.S. Geological Survey under the sponsorship of the Federal Highway Administration. The study involved laboratory and field calibration and testing of measuring flumes, pipe insert meters, weirs, electromagnetic velocity meters as well as the development and calibration of pneumatic-bubbler pressure transducer head measuring systems. Tracer-dilution and acoustic flow meter measurements were used in field verification tests. A single micrologger was used to record data from all the above instruments as well as from a tipping-bucket rain gage and also to activate on command the electromagnetic velocity meter and tracer-dilution systems. (Author 's abstract)

  2. Small punch testing for determining the material toughness of low alloy steel components in service

    SciTech Connect

    Foulds, J. ); Viswanathan, R. )

    1994-10-01

    The toughness of the low alloy ferritic steel material of structural components operating at elevated temperatures can degrade during service due to embrittling phenomena such as carbide coarsening and temper embrittlement. The extent of degradation and the current level of toughness are critical inputs to component structural integrity assessments and to operation and maintenance planning. Conventional test methods for measuring toughness require the removal of large material samples from the in-service component, which is generally impractical. However, the recent development of relatively nondestructive, miniature sample removal systems and the small punch test technique (which utilizes nonstandard, miniature specimens) now provides a convenient, practical means of evaluating the material of an in-service component for toughness and related mechanical properties. This paper describes the small punch test technique with selected examples of its application to various grades of low alloy ferritic steel.

  3. Flight Tests of a Supersonic Natural Laminar Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Frederick, Mike; Banks, Dan; Garzon, Andres; Matisheck, Jason

    2014-01-01

    IR thermography was used to characterize the transition front on a S-NLF test article at chord Reynolds numbers in excess of 30 million Changes in transition due to Mach number, Reynolds number, and surface roughness were investigated - Regions of laminar flow in excess of 80% chord at chord Reynolds numbers greater than 14 million IR thermography clearly showed the transition front and other flow features such as shock waves impinging upon the surface A series of parallel oblique shocks, of yet unknown origin, were found to cause premature transition at higher Reynolds numbers. NASA has a current goal to eliminate barriers to the development of practical supersonic transport aircraft Drag reduction through the use of supersonic natural laminar flow (S-NLF) is currently being explored as a means of increasing aerodynamic efficiency - Tradeoffs work best for business jet class at M<2 Conventional high-speed designs minimize inviscid drag at the expense of viscous drag - Existence of strong spanwise pressure gradient leads to crossflow (CF) while adverse chordwise pressure gradients amplifies and Tollmien-Schlichting (TS) instabilities Aerion Corporation has patented a S-NLF wing design (US Patent No. 5322242) - Low sweep to control CF - dp/dx < 0 on both wing surfaces to stabilize TS - Thin wing with sharp leading edge to minimize wave drag increase due to reduction in sweep NASA and Aerion have partnered to study S-NLF since 1999 Series of S-NLF experiments flown on the NASA F-15B research test bed airplane Infrared (IR) thermography used to characterize transition - Non-intrusive, global, good spatial resolution - Captures significant flow features well

  4. Preliminary Results of Testing of Flow Effects on Evaporator Scaling

    SciTech Connect

    Hu, M.Z.

    2002-02-15

    This investigation has focused on the effects of fluid flow on solids deposition from solutions that simulate the feed to the 2H evaporator at the Savannah River Site. Literature studies indicate that the fluid flow (or shear) affects particle-particle and particle-surface interactions and thus the phenomena of particle aggregation in solution and particle deposition (i.e., scale formation) onto solid surfaces. Experimental tests were conducted with two configurations: (1) using a rheometer to provide controlled shear conditions and (2) using controlled flow of reactive solution through samples of stainless steel tubing. All tests were conducted at 80 C and at high silicon and aluminum concentrations, 0.133 M each, in solutions containing 4 M sodium hydroxide and 1 A4 each of sodium nitrate and sodium nitrite. Two findings from these experiments are important for consideration in developing approaches for reducing or eliminating evaporator scaling problems: (1) The rheometer tests suggested that for the conditions studied, maximum solids deposition occurs at a moderate shear rate, approximately 12 s{sup -1}. That value is expected to be on the order of shear rates that will occur in various parts of the evaporator system; for instance, a 6 gal/min single-phase liquid flow through the 2-in. lift or gravity drain lines would result in a shear rate of approximately 16 s{sup -1}. These results imply that engineering approaches aimed at reducing deposits through increased mixing would need to generate shear near all surfaces significantly greater than 12 s{sup -1}. However, further testing is needed to set a target value for shear that is applicable to evaporator operation. This is because the measured trend is not statistically significant at the 95% confidence interval due to variability in the results. In addition, testing at higher temperatures and lower concentrations of aluminum and silicon would more accurately represent conditions in the evaporator. Without

  5. Space Launch System Base Heating Test: Environments and Base Flow Physics

    NASA Technical Reports Server (NTRS)

    Mehta, Manish; Knox, Kyle S.; Seaford, C. Mark; Dufrene, Aaron T.

    2016-01-01

    The NASA Space Launch System (SLS) vehicle is composed of four RS-25 liquid oxygen-hydrogen rocket engines in the core-stage and two 5-segment solid rocket boosters and as a result six hot supersonic plumes interact within the aft section of the vehicle during flight. Due to the complex nature of rocket plume-induced flows within the launch vehicle base during ascent and a new vehicle configuration, sub-scale wind tunnel testing is required to reduce SLS base convective environment uncertainty and design risk levels. This hot-fire test program was conducted at the CUBRC Large Energy National Shock (LENS) II short-duration test facility to simulate flight from altitudes of 50 kft to 210 kft. The test program is a challenging and innovative effort that has not been attempted in 40+ years for a NASA vehicle. This paper discusses the various trends of base convective heat flux and pressure as a function of altitude at various locations within the core-stage and booster base regions of the two-percent SLS wind tunnel model. In-depth understanding of the base flow physics is presented using the test data, infrared high-speed imaging and theory. The normalized test design environments are compared to various NASA semi-empirical numerical models to determine exceedance and conservatism of the flight scaled test-derived base design environments. Brief discussion of thermal impact to the launch vehicle base components is also presented.

  6. 6. Exterior view of Components Test Laboratory (T27), looking southwest. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Exterior view of Components Test Laboratory (T-27), looking southwest. The building wing on the left houses Test Cell 9 (fuel), and that on the right houses the equipment room. The corrugated aluminum shed that is taller than the main building in the left foreground houses a citric acid air pollution control room (also known as scrubber room), the interior of which may be seen in CO-88-A-21. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  7. Test Results of the RS-44 Integrated Component Evaluator Liquid Oxygen/Hydrogen Rocket Engine

    NASA Technical Reports Server (NTRS)

    Sutton, R. F.; Lariviere, B. W.

    1993-01-01

    An advanced LOX/LH2 expander cycle rocket engine, producing 15,000 lbf thrust for Orbital Transfer Vehicle missions, was tested to determine ignition, transition, and main stage characteristics. Detail design and fabrication of the pump fed RS44 integrated component evaluator (ICE) was accomplished using company discretionary resources and was tested under this contracted effort. Successful demonstrations were completed to about the 50 percent fuel turbopump power level (87,000 RPM), but during this last test, a high pressure fuel turbopump (HPFTP) bearing failed curtailing the test program. No other hardware were affected by the HPFTP premature shutdown. The ICE operations matched well with the predicted start transient simulations. The tests demonstrated the feasibility of a high performance advanced expander cycle engine. All engine components operated nominally, except for the HPFTP, during the engine hot-fire tests. A failure investigation was completed using company discretionary resources.

  8. Experience with helium leak and thermal shocks test of SST-1 cryo components

    NASA Astrophysics Data System (ADS)

    Sharma, Rajiv; Nimavat, Hiren; Srikanth, G. L. N.; Bairagi, Nitin; Shah, Pankil; Tanna, V. L.; Pradhan, S.

    2012-11-01

    A steady state superconducting Tokamak SST-1 is presently under its assembly stage at the Institute for Plasma Research. The SST-1 machine is a family of Superconducting SC coils for both Toroidal field and Poloidal Field. An ultra high vacuum compatible vacuum vessel, placed in the bore of the TF coils, houses the plasma facing components. A high vacuum cryostat encloses all the SC coils and the vacuum vessel. Liquid Nitrogen (LN2) cooled thermal shield between the vacuum vessel & SC coils as well as between cryostat and the SC coils. There are number of crucial cryogenic components as Electrical isolators, 80 K thermal shield, Cryogenic flexible hose etc., which have to be passed the performance validation tests as part of fulfillment of the stringent QA/QC before incorporated in the main assembly. The individual leak tests of components at RT as well as after thermal cycle from 300 K to 77 K ensure us to make final overall leak proof system. These components include, Large numbers of Electrical Isolators for Helium as well as LN2 services, Flexible Bellows and Hoses for Helium as well as LN2 services, Thermal shock tests of large numbers of 80 K Bubble shields In order to validate the helium leak tightness of these components, we have used the calibrated mass spectrometer leak detector (MSLD) at 300 K, 77 K and 4.2. Since it is very difficult to locate the leaks, which are appearing at rather lower temperatures e.g. less than 20 K, We have invented different approaches to resolve the issue of such leaks. This paper, in general describes the design of cryogenic flexible hose, assembly, couplings for leak testing, test method and techniques of thermal cycles test at 77 K inflow conditions and leak testing aspects of different cryogenic components. The test results, the problems encountered and its solutions techniques are discussed.

  9. New High Power CW Test Facilities For ITER ICRH Components Testing

    NASA Astrophysics Data System (ADS)

    Bernard, J. M.; Lombard, G.; Argouarch, A.; Chaix, J. P.; Fejoz, P.; Garibaldi, P.; Hatchressian, J. C.; Lebourg, P.; Martinez, A.; Mollard, P.; Mouyon, D.; Mougeolle, G.; Pagano, M.; Thouvenin, D.; Volpe, D.; Volpe, R.; Vulliez, K.

    2011-12-01

    First CW test bed, devoted for Ion Cyclotron Resonance Heating (ICRH), has been built at CEA Cadarache. It has been designed for testing the ICRH antenna sub assemblies under ITER relevant conditions (vacuum, cooling and RF). This paper presents a technical overview of these facilities and discusses their future operations in the framework of the ITER ICRH European R&D program.

  10. The development and testing of ceramic components in piston engines. Final report

    SciTech Connect

    McEntire, B.J.; Willis, R.W.; Southam, R.E.

    1994-10-01

    Within the past 10--15 years, ceramic hardware has been fabricated and tested in a number of piston engine applications including valves, piston pins, roller followers, tappet shims, and other wear components. It has been shown that, with proper design and installation, ceramics improve performance, fuel economy, and wear and corrosion resistance. These results have been obtained using rig and road tests on both stock and race engines. Selected summaries of these tests are presented in this review paper.

  11. Development and test of advanced composite components. Center Directors discretionary fund program

    NASA Technical Reports Server (NTRS)

    Faile, G.; Hollis, R.; Ledbetter, F.; Maldonado, J.; Sledd, J.; Stuckey, J.; Waggoner, G.; Engler, E.

    1985-01-01

    This report describes the design, analysis, fabrication, and test of a complex bathtub fitting. Graphite fibers in an epoxy matrix were utilized in manufacturing of 11 components representing four different design and layup concepts. Design allowables were developed for use in the final stress analysis. Strain gage measurements were taken throughout the static load test and correlation of test and analysis data were performed, yielding good understanding of the material behavior and instrumentation requirements for future applications.

  12. Comparison of batch and column tests for the elution of artificial turf system components.

    PubMed

    Krüger, O; Kalbe, U; Berger, W; Nordhauβ, K; Christoph, G; Walzel, H-P

    2012-12-18

    Synthetic athletic tracks and turf areas for outdoor sporting grounds may release contaminants due to the chemical composition of some components. A primary example is that of zinc from reused scrap tires (main constituent, styrene butadiene rubber, SBR), which might be harmful to the environment. Thus, methods for the risk assessment of those materials are required. Laboratory leaching methods like batch and column tests are widely used to examine the soil-groundwater pathway. We tested several components for artificial sporting grounds with batch tests at a liquid to solid (LS) ratio of 2 L/kg and column tests with an LS up to 26.5 L/kg. We found a higher zinc release in the batch test eluates for all granules, ranging from 15% higher to 687% higher versus data from column tests for SBR granules. Accompanying parameters, especially the very high turbidity of one ethylene propylene diene monomer rubber (EPDM) or thermoplastic elastomer (TPE) eluates, reflect the stronger mechanical stress of batch testing. This indicates that batch test procedures might not be suitable for the risk assessment of synthetic sporting ground components. Column tests, on the other hand, represent field conditions more closely and allow for determination of time-dependent contaminants release. PMID:23153171

  13. Numerical Modelling of Vegetation Flow Interaction: the Wienfluss Test Case

    NASA Astrophysics Data System (ADS)

    Wilson, C.; Yagci, O.; Rauch, H.; Stoesser, T.

    2003-04-01

    We apply a three-dimensional computational fluid dynamics code based on a finite-volume discretisation to a 170m test reach of the a river in Vienna. One of the primary aims of this paper is to test various methods for representing the flow resistance of natural vegetation. The two approaches considered vary in complexity and could be practically implemented and applied within 2D and 3D flood modelling tools. The first approach uses empirical relationships derived from the laboratory data and modifies the existing friction term in the momentum equations. While the second approach introduces a drag related sink term in addition to the bed friction term. The roughness closure models considered do not modify the turbulence model (in this case the k-e model) and hence do not require re-calibration for each application. The test reach is straight and comprises an asymmetrical compound channel that is vegetated on the floodplain by willows and unvegetated within the main channel. The development of the willows has been monitored over a four year period and plant parameters which characterise the dimensions of individual trees and their distribution have been quantified. Further, streamwise velocity data of high-spatial resolution has been collected at one cross-section for a series of flood events. The performance of each approach is quantified in terms of its ability to reproduce the streamwise velocity distribution in a partially vegetated channel. Different parameter tests are conducted to allow the sensitivity of the computed velocities against mesh resolution, and other important plant properties to be examined. For both flow resistance approaches, reasonable agreement is found between the measured and computed floodplain velocities.

  14. Uninstrumented assembly airflow testing in the Annular Flow Distribution facility

    SciTech Connect

    Kielpinski, A.L.

    1992-02-01

    During the Emergency Cooling System phase of a postulated large-break loss of coolant accident (ECS-LOCA), air enters the primary loop and is pumped down the reactor assemblies. One of the experiments performed to support the analysis of this accident was the Annular Flow Distribution (AFD) experiment, conducted in a facility built for this purpose at Babcock and Wilcox Alliance Research Center in Alliance, Ohio. As part of this experiment, a large body of airflow data were acquired in a prototypical mockup of the Mark 22 reactor assembly. This assembly was known as the AFD (or the I-AFD here) reference assembly. The I-AFD assembly was fully prototypical, having been manufactured in SRS`s production fabrication facility. Similar Mark 22 mockup assemblies were tested in several test facilities in the SRS Heat Transfer Laboratory (HTL). Discrepancies were found. The present report documents further work done to address the discrepancy in airflow measurements between the AFD facility and HTL facilities. The primary purpose of this report is to disseminate the data from the U-AFD test, and to compare these test results to the I-AFD data and the U-AT data. A summary table of the test data and the B&W data transmittal letter are included as an attachment to this report. The full data transmittal volume from B&W (including time plots of the various instruments) is included as an appendix to this report. These data are further analyzed by comparing them to two other HTL tests, namely, SPRIHTE 1 and the Single Assembly Test Stand (SATS).

  15. Temporal Variability from the Two-Component Advective Flow Solution and Its Observational Evidence

    NASA Astrophysics Data System (ADS)

    Dutta, Broja G.; Chakrabarti, Sandip K.

    2016-09-01

    In the propagating oscillatory shock model, the oscillation of the post-shock region, i.e., the Compton cloud, causes the observed low-frequency quasi-periodic oscillations (QPOs). The evolution of QPO frequency is explained by the systematic variation of the Compton cloud size, i.e., the steady radial movement of the shock front, which is triggered by the cooling of the post-shock region. Thus, analysis of the energy-dependent temporal properties in different variability timescales can diagnose the dynamics and geometry of accretion flows around black holes. We study these properties for the high-inclination black hole source XTE J1550-564 during its 1998 outburst and the low-inclination black hole source GX 339-4 during its 2006–07 outburst using RXTE/PCA data, and we find that they can satisfactorily explain the time lags associated with the QPOs from these systems. We find a smooth decrease of the time lag as a function of time in the rising phase of both sources. In the declining phase, the time lag increases with time. We find a systematic evolution of QPO frequency and hard lags in these outbursts. In XTE J1550-564, the lag changes from hard to soft (i.e., from a positive to a negative value) at a crossing frequency (ν c) of ∼3.4 Hz. We present possible mechanisms to explain the lag behavior of high and low-inclination sources within the framework of a single two-component advective flow model.

  16. Numerical Modeling for Hole-Edge Cracking of Advanced High-Strength Steels (AHSS) Components in the Static Bend Test

    NASA Astrophysics Data System (ADS)

    Kim, Hyunok; Mohr, William; Yang, Yu-Ping; Zelenak, Paul; Kimchi, Menachem

    2011-08-01

    Numerical modeling of local formability, such as hole-edge cracking and shear fracture in bending of AHSS, is one of the challenging issues for simulation engineers for prediction and evaluation of stamping and crash performance of materials. This is because continuum-mechanics-based finite element method (FEM) modeling requires additional input data, "failure criteria" to predict the local formability limit of materials, in addition to the material flow stress data input for simulation. This paper presents a numerical modeling approach for predicting hole-edge failures during static bend tests of AHSS structures. A local-strain-based failure criterion and a stress-triaxiality-based failure criterion were developed and implemented in LS-DYNA simulation code to predict hole-edge failures in component bend tests. The holes were prepared using two different methods: mechanical punching and water-jet cutting. In the component bend tests, the water-jet trimmed hole showed delayed fracture at the hole-edges, while the mechanical punched hole showed early fracture as the bending angle increased. In comparing the numerical modeling and test results, the load-displacement curve, the displacement at the onset of cracking, and the final crack shape/length were used. Both failure criteria also enable the numerical model to differentiate between the local formability limit of mechanical-punched and water-jet-trimmed holes. The failure criteria and static bend test developed here are useful to evaluate the local formability limit at a structural component level for automotive crash tests.

  17. Columbia University Flow Instability Experimental Program, Volume 5: Single annulus tests, steady-state test program

    SciTech Connect

    Dougherty, T.; Maciuca, C.; McAssey, E.V. Jr.; Reddy, D.G.; Yang, B.W.

    1991-07-01

    This report presents results for the steady state portion of the finless single annulus test program. The objective of the experimental study was to investigate the onset of flow instability in an annular geometry similar to the MARK 22 reactor. The test program involved testing of both a finless or ribless heater and a ribbed heater. The latter program is currently underway and will be reported separately. For finless heater, testing was conducted in both a steady state and transient mode. The present report presents steady state results for a series of experiments with uniform and asymmetric heating. The demand curves obtained under uniform heating yielded OFI flow-rates which were slightly below those obtained for a circular tube geometry with the same L/D ratio; however, the single annulus had a hydraulic diameter which was approximately fifty percent larger than the circular tube. The asymmetric heating cases were selected to provide the same average power input as the uniform cases. The results for these tests indicated that the flow-rate at OFI increased with the degree of asymmetry.

  18. An Analysis of Testing Requirements for Fluoride Salt Cooled High Temperature Reactor Components

    SciTech Connect

    Holcomb, David Eugene; Cetiner, Sacit M; Flanagan, George F; Peretz, Fred J; Yoder Jr, Graydon L

    2009-11-01

    This report provides guidance on the component testing necessary during the next phase of fluoride salt-cooled high temperature reactor (FHR) development. In particular, the report identifies and describes the reactor component performance and reliability requirements, provides an overview of what information is necessary to provide assurance that components will adequately achieve the requirements, and then provides guidance on how the required performance information can efficiently be obtained. The report includes a system description of a representative test scale FHR reactor. The reactor parameters presented in this report should only be considered as placeholder values until an FHR test scale reactor design is completed. The report focus is bounded at the interface between and the reactor primary coolant salt and the fuel and the gas supply and return to the Brayton cycle power conversion system. The analysis is limited to component level testing and does not address system level testing issues. Further, the report is oriented as a bottom-up testing requirements analysis as opposed to a having a top-down facility description focus.

  19. Space Flight Requirements for Fiber Optic Components; Qualification Testing and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard; Friedberg, Patricia; Malenab, Mary; Matuszeski, Adam

    2007-01-01

    "Qualification" of fiber optic components holds a very different meaning than it did ten years ago. In the past, qualification meant extensive prolonged testing and screening that led to a programmatic method of reliability assurance. For space flight programs today, the combination of using higher performance commercial technology, with shorter development schedules and tighter mission budgets makes long term testing and reliability characterization unfeasible. In many cases space flight missions will be using technology within years of its development and an example of this is fiber laser technology. Although the technology itself is not a new product the components that comprise a fiber laser system change frequently as processes and packaging changes occur. Once a process or the materials for manufacturing a component change, even the data that existed on its predecessor can no longer provide assurance on the newer version. In order to assure reliability during a space flight mission, the component engineer must understand the requirements of the space flight environment as well as the physics of failure of the components themselves. This can be incorporated into an efficient and effective testing plan that "qualifies" a component to specific criteria defined by the program given the mission requirements and the component limitations. This requires interaction at the very initial stages of design between the system design engineer, mechanical engineer, subsystem engineer and the component hardware engineer. Although this is the desired interaction what typically occurs is that the subsystem engineer asks the components or development engineers to meet difficult requirements without knowledge of the current industry situation or the lack of qualification data. This is then passed on to the vendor who can provide little help with such a harsh set of requirements due to high cost of testing for space flight environments. This presentation is designed to guide the

  20. Field Test of a DHW Distribution System: Temperature and Flow Analyses (Presentation)

    SciTech Connect

    Barley, C. D.; Hendron, B.; Magnusson, L.

    2010-05-13

    This presentation discusses a field test of a DHW distribution system in an occupied townhome. It includes measured fixture flows and temperatures, a tested recirculation system, evaluated disaggregation of flow by measured temperatures, Aquacraft Trace Wizard analysis, and comparison.

  1. High-speed testing of tandem-Banyan network switch component

    NASA Astrophysics Data System (ADS)

    Terai, Hirotaka; Kameda, Yoshio; Yorozu, Shinichi; Kawakami, Akira; Yoshikawa, Nobuyuki; Wang, Zhen

    2003-10-01

    We present the high-speed test results of a tandem-Banyan network switch (TBNS) component based on superconductor single-flux-quantum technology. The tested circuit is called a transmission checker (TMC) and is one component of the TBNS. The circuit was designed by using the CONNECT SFQ cell library developed for NEC standard fabrication technology. To perform the high-speed test, an on-chip test system composed of shift resisters and a high-speed clock generator were integrated together with the TMC circuit. The total number of Josephson junctions, including the on-chip test system, was 1545. We observed correct output waveforms at up to 40 GHz. The bias margin of the TMC circuit was ±6.1% up to 27 GHz and ±1.7% at 40 GHz.

  2. Solar Ultraviolet Magnetograph Investigation (SUMI) Component Responses to Payload Vibration Testing

    NASA Technical Reports Server (NTRS)

    Hunt, Ronald A.

    2011-01-01

    Vibration testing of SUMI was performed at both the experiment and payload levels. No accelerometers were installed inside the experiment during testing, but it is certain that component responses were very high. The environments experienced by optical and electronic components in these tests is an area of ongoing concern. The analysis supporting this presentation included a detailed finite element model of the SUMI experiment section, the dynamic response of which, correlated well with accelerometer measurements from the testing of the experimental section at Marshall Space Flight Center. The relatively short timeframe available to complete the task and the limited design information available was a limitation on the level of detail possible for the non-experiment portion of the model. However, since the locations of interest are buried in the experimental section of the model, the calculated responses should be enlightening both for the development of test criteria and for guidance in design.

  3. Laminar flow control leading edge glove flight test article development

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.; Mcnay, D. E.; Thelander, J. A.

    1984-01-01

    A laminar flow control (LFC) flight test article was designed and fabricated to fit into the right leading edge of a JetStar aircraft. The article was designed to attach to the front spar and fill in approx. 70 inches of the leading edge that are normally occupied by the large slipper fuel tank. The outer contour of the test article was constrained to align with an external fairing aft of the front spar which provided a surface pressure distribution over the test region representative of an LFC airfoil. LFC is achieved by applying suction through a finely perforated surface, which removes a small fraction of the boundary layer. The LFC test article has a retractable high lift shield to protect the laminar surface from contamination by airborne debris during takeoff and low altitude operation. The shield is designed to intercept insects and other particles that could otherwise impact the leading edge. Because the shield will intercept freezing rain and ice, a oozing glycol ice protection system is installed on the shield leading edge. In addition to the shield, a liquid freezing point depressant can be sprayed on the back of the shield.

  4. Implementation of Speed Variation in the Structural Dynamic Assessment of Turbomachinery Flow-Path Components

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Davis, R. Benjamin; DeHaye, Michael K.

    2013-01-01

    During the design of turbomachinery flow path components, the assessment of possible structural resonant conditions is critical. Higher frequency modes of these structures are frequently found to be subject to resonance, and in these cases, design criteria require a forced response analysis of the structure with the assumption that the excitation speed exactly equals the resonant frequency. The design becomes problematic if the response analysis shows a violation of the HCF criteria. One possible solution is to perform "finite-life" analysis, where Miner's rule is used to calculate the actual life in seconds in comparison to the required life. In this situation, it is beneficial to incorporate the fact that, for a variety of turbomachinery control reasons, the speed of the rotor does not actually dwell at a single value but instead dithers about a nominal mean speed and during the time that the excitation frequency is not equal to the resonant frequency, the damage accumulated by the structure is diminished significantly. Building on previous investigations into this process, we show that a steady-state assumption of the response is extremely accurate for this typical case, resulting in the ability to quickly account for speed variation in the finite-life analysis of a component which has previously had its peak dynamic stress at resonance calculated. A technique using Monte Carlo simulation is also presented which can be used when specific speed time histories are not available. The implementation of these techniques can prove critical for successful turbopump design, as the improvement in life when speed variation is considered is shown to be greater than a factor of two.

  5. Implementation of Speed Variation in the Structural Dynamic Assessment of Turbomachinery Flow-Path Components

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Davis, R. Benjamin; DeHaye, Michael

    2013-01-01

    During the design of turbomachinery flow path components, the assessment of possible structural resonant conditions is critical. Higher frequency modes of these structures are frequently found to be subject to resonance, and in these cases, design criteria require a forced response analysis of the structure with the assumption that the excitation speed exactly equals the resonant frequency. The design becomes problematic if the response analysis shows a violation of the HCF criteria. One possible solution is to perform "finite-life" analysis, where Miner's rule is used to calculate the actual life in seconds in comparison to the required life. In this situation, it is beneficial to incorporate the fact that, for a variety of turbomachinery control reasons, the speed of the rotor does not actually dwell at a single value but instead dithers about a nominal mean speed and during the time that the excitation frequency is not equal to the resonant frequency, the damage accumulated by the structure is diminished significantly. Building on previous investigations into this process, we show that a steady-state assumption of the response is extremely accurate for this typical case, resulting in the ability to quickly account for speed variation in the finite-life analysis of a component which has previously had its peak dynamic stress at resonance calculated. A technique using Monte Carlo simulation is also presented which can be used when specific speed time histories are not available. The implementation of these techniques can prove critical for successful turbopump design, as the improvement in life when speed variation is considered is shown to be greater than a factor of two

  6. Modeling the Relations Between Flow Regime Components, Species Traits, and Spawning Success of Fishes in Warmwater Streams

    NASA Astrophysics Data System (ADS)

    Craven, Scott W.; Peterson, James T.; Freeman, Mary C.; Kwak, Thomas J.; Irwin, Elise

    2010-08-01

    Modifications to stream hydrologic regimes can have a profound influence on the dynamics of their fish populations. Using hierarchical linear models, we examined the relations between flow regime and young-of-year fish density using fish sampling and discharge data from three different warmwater streams in Illinois, Alabama, and Georgia. We used an information theoretic approach to evaluate the relative support for models describing hypothesized influences of five flow regime components representing: short-term high and low flows; short-term flow stability; and long-term mean flows and flow stability on fish reproductive success during fish spawning and rearing periods. We also evaluated the influence of ten fish species traits on fish reproductive success. Species traits included spawning duration, reproductive strategy, egg incubation rate, swimming locomotion morphology, general habitat preference, and food habits. Model selection results indicated that young-of-year fish density was positively related to short-term high flows during the spawning period and negatively related to flow variability during the rearing period. However, the effect of the flow regime components varied substantially among species, but was related to species traits. The effect of short-term high flows on the reproductive success was lower for species that broadcast their eggs during spawning. Species with cruiser swimming locomotion morphologies (e.g., Micropterus) also were more vulnerable to variable flows during the rearing period. Our models provide insight into the conditions and timing of flows that influence the reproductive success of warmwater stream fishes and may guide decisions related to stream regulation and management.

  7. Extension of similarity test procedures to cooled engine components with insulating ceramic coatings

    NASA Astrophysics Data System (ADS)

    Gladden, H. J.

    1980-05-01

    Material thermal conductivity was analyzed for its effect on the thermal performance of air cooled gas turbine components, both with and without a ceramic thermal-barrier material, tested at reduced temperatures and pressures. The analysis shows that neglecting the material thermal conductivity can contribute significant errors when metal-wall-temperature test data taken on a turbine vane are extrapolated to engine conditions. This error in metal temperature for an uncoated vane is of opposite sign from that for a ceramic-coated vane. A correction technique is developed for both ceramic-coated and uncoated components.

  8. Compensation between meridional flow components of the Atlantic MOC at 26° N

    NASA Astrophysics Data System (ADS)

    Frajka-Williams, E.; Meinen, C. S.; Johns, W. E.; Smeed, D. A.; Duchez, A.; Lawrence, A. J.; Cuthbertson, D. A.; McCarthy, G. D.; Bryden, H. L.; Baringer, M. O.; Moat, B. I.; Rayner, D.

    2016-04-01

    From ten years of observations of the Atlantic meridional overturning circulation (MOC) at 26° N (2004-2014), we revisit the question of flow compensation between components of the circulation. Contrasting with early results from the observations, transport variations of the Florida Current (FC) and upper mid-ocean (UMO) transports (top 1000 m east of the Bahamas) are now found to compensate on sub-annual timescales. The observed compensation between the FC and UMO transports is associated with horizontal circulation and means that this part of the correlated variability does not project onto the MOC. A deep baroclinic response to wind-forcing (Ekman transport) is also found in the lower North Atlantic Deep Water (LNADW; 3000-5000 m) transport. In contrast, co-variability between Ekman and the LNADW transports does contribute to overturning. On longer timescales, the southward UMO transport has continued to strengthen, resulting in a continued decline of the MOC. Most of this interannual variability of the MOC can be traced to changes in isopycnal displacements on the western boundary, within the top 1000 m and below 2000 m. Substantial trends are observed in isopycnal displacements in the deep ocean, underscoring the importance of deep boundary measurements to capture the variability of the Atlantic MOC.

  9. 42 CFR 84.93 - Gas flow test; open-circuit apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Gas flow test; open-circuit apparatus. 84.93...-Contained Breathing Apparatus § 84.93 Gas flow test; open-circuit apparatus. (a) A static-flow test will be...) water-column height when full container pressure is applied. (c) Where pressure demand apparatus...

  10. 42 CFR 84.93 - Gas flow test; open-circuit apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Gas flow test; open-circuit apparatus. 84.93...-Contained Breathing Apparatus § 84.93 Gas flow test; open-circuit apparatus. (a) A static-flow test will be...) water-column height when full container pressure is applied. (c) Where pressure demand apparatus...

  11. 42 CFR 84.93 - Gas flow test; open-circuit apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Gas flow test; open-circuit apparatus. 84.93...-Contained Breathing Apparatus § 84.93 Gas flow test; open-circuit apparatus. (a) A static-flow test will be...) water-column height when full container pressure is applied. (c) Where pressure demand apparatus...

  12. 30 CFR 75.152 - Tests of air flow; qualified person.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of air flow; qualified person. 75.152....152 Tests of air flow; qualified person. A person is a qualified person within the meaning of the provisions of Subpart D—Ventilation of this part requiring that tests of air flow be made by a...

  13. Combustor and Vane Features and Components Tested in a Gas Turbine Environment

    NASA Technical Reports Server (NTRS)

    Roinson, R. Craig; Verrilli, Michael J.

    2003-01-01

    The use of ceramic matrix composites (CMCs) as combustor liners and turbine vanes provides the potential of improving next-generation turbine engine performance, through lower emissions and higher cycle efficiency, relative to today s use of superalloy hot-section components. For example, the introduction of film-cooling air in metal combustor liners has led to higher levels of nitrogen oxide (NOx) emissions from the combustion process. An environmental barrier coated (EBC) siliconcarbide- fiber-reinforced silicon carbide matrix (SiC/SiC) composite is a new material system that can operate at higher temperatures, significantly reducing the film-cooling requirements and enabling lower NOx production. Evaluating components and subcomponents fabricated from these advanced CMCs under gas turbine conditions is paramount to demonstrating that the material system can perform as required in the complex thermal stress and environmentally aggressive engine environment. To date, only limited testing has been conducted on CMC combustor and turbine concepts and subelements of this type throughout the industry. As part of the Ultra-Efficient Engine Technology (UEET) Program, the High Pressure Burner Rig (HPBR) at the NASA Glenn Research Center was selected to demonstrate coupon, subcomponent feature, and component testing because it can economically provide the temperatures, pressures, velocities, and combustion gas compositions that closely simulate the engine environments. The results have proven the HPBR to be a highly versatile test rig amenable to multiple test specimen configurations essential to coupon and component testing.

  14. Component tests for the ITER Ion Cyclotron Transmission Line and Matching System - Status and Plans

    NASA Astrophysics Data System (ADS)

    Goulding, R. H.; McCarthy, M. P.; Deibele, C. E.; Rasmussen, D. A.; Swain, D. W.; Barber, G. C.; Campbell, I. H.; Gray, S. L.; Moon, R. L.; Pesavento, P. V.; Sanabria, R. M.; Fredd, E.; Greenough, N.; Kung, C.

    2015-11-01

    New Z0 = 50 Ω gas-cooled component designs for the ITER Ion Cyclotron Heating and Current Drive System have been successfully tested at high RF power levels. They include two types featuring spoke-ring assembly (SRA) inner conductor supports: 20° elbows, and variable length assembly bellows, both achieving RF voltages > 35 kV peak, and currents ~ 760 A peak during quasi-steady state operation. The SRA utilizes mechanically preloaded fused quartz spokes, increasing lateral load handling capability. Components with SRA supports have been seismically tested, with no variation in low power electrical performance detected after testing. A 3 MW four-port switch has also been successfully tested at high RF power, and tests of a 6 MW hybrid power splitter are planned in the near future. Latest results will be presented. Plans for arc localization tests in a 60 m SRA transmission line run, and RF tests of Z0 = 50 Ω and Z0 = 20 Ω matching components with water-cooled inner conductors will also be discussed. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  15. A study of facilities and fixtures for testing of a high speed civil transport wing component

    NASA Technical Reports Server (NTRS)

    Cerro, J. A.; Vause, R. F.; Bowman, L. M.; Jensen, J. K.; Martin, C. J., Jr.; Stockwell, A. E.; Waters, W. A., Jr.

    1996-01-01

    A study was performed to determine the feasibility of testing a large-scale High Speed Civil Transport wing component in the Structures and Materials Testing Laboratory in Building 1148 at NASA Langley Research Center. The report includes a survey of the electrical and hydraulic resources and identifies the backing structure and floor hard points which would be available for reacting the test loads. The backing structure analysis uses a new finite element model of the floor and backstop support system in the Structures Laboratory. Information on the data acquisition system and the thermal power requirements is also presented. The study identified the hardware that would be required to test a typical component, including the number and arrangement of hydraulic actuators required to simulate expected flight loads. Load introduction and reaction structure concepts were analyzed to investigate the effects of experimentally induced boundary conditions.

  16. Developing standard performance testing procedures for MC&A components at a site

    SciTech Connect

    Scherer, Carolynn

    2010-01-01

    The condition of a nuclear material control and accountability system (MC&A) and its individual components, as with any system combining technical elements, documentation and the human factor, may be characterized through an aggregate of values for the various parameters that determine the system's ability to perform. The MC&A system's status may be functioning effectively, marginally or not functioning based on a summary of the values of the individual parameters. This work included a review of the following elements and subsystems or components for a material control and accountability system: (1) MC&A Elements: Information subsystem, Measurement subsystem, NM access subsystem, including a tamper-indicating device (TID) program, and Automated information-gathering subsystem; and (2) Detecting NM Loses Elements: Inventory differences, Shipper/receiver differences, Confirmatory measurements and differences with accounting data, and TID or seal violations. In order to detect the absence or loss of nuclear material there must be appropriate interactions among the elements and their respective subsystems (from the list above). Additionally this work includes a review of the status of regulatory requirements for the MC&A system components and potential criteria that support the evaluation of the performance of the listed components. The listed components had performance testing algorithms and procedures developed that took into consideration the regulatory criteria. The developed MC&A performance-testing procedures were the basis for a pilot Guide for MC&A Performance Testing at the MBAs of SSC RF IPPE.

  17. Curved flow wind tunnnel test of F-18 aircraft

    NASA Technical Reports Server (NTRS)

    Lutze, F. H.

    1980-01-01

    The curved flow capability of a stability wind tunnel was used to investigate the lateral directional characteristics of an F-18 aircraft. The model is described and the procedures used to obtain and correct the data and a graphical presentation of the results are presented. The results include graphs of lateral directional derivatives versus sideslip or static plots, the lateral directional static stability derivatives versus angle of attack, and finally the lateral directional derivatives versus nondimensional yaw rate for different angles of attack and sideslip. Results are presented for several configurations including complete, complete without vertical tails, complete without horizontal tails, fuselage wing and fuselage alone. Each of these were tested with and without wing leading edge extensions.

  18. Aeroacoustic Characteristics of Model Jet Test Facility Flow Conditioners

    NASA Technical Reports Server (NTRS)

    Kinzie, Kevin W.; Henderson, Brenda S.; Haskin, Harry H.

    2005-01-01

    An experimental investigation of flow conditioning devices used to suppress internal rig noise in high speed, high temperature experimental jet facilities is discussed. The aerodynamic and acoustic characteristics of a number of devices including pressure loss and extraneous noise generation are measured. Both aerodynamic and acoustic characteristics are strongly dependent on the porosity of the flow conditioner and the closure ratio of the duct system. For unchoked flow conditioners, the pressure loss follows conventional incompressible flow models. However, for choked flow conditioners, a compressible flow model where the duct and flow conditioner system is modeled as a convergent-divergent nozzle can be used to estimate pressure loss. Choked flow conditioners generate significantly more noise than unchoked conditioners. In addition, flow conditioners with small hole diameters or sintered metal felt material generate less self-noise noise compared to flow conditioners with larger holes.

  19. Results of molten salt panel and component experiments for solar central receivers: Cold fill, freeze/thaw, thermal cycling and shock, and instrumentation tests

    SciTech Connect

    Pacheco, J.E.; Ralph, M.E.; Chavez, J.M.; Dunkin, S.R.; Rush, E.E.; Ghanbari, C.M.; Matthews, M.W.

    1995-01-01

    Experiments have been conducted with a molten salt loop at Sandia National Laboratories in Albuquerque, NM to resolve issues associated with the operation of the 10MW{sub e} Solar Two Central Receiver Power Plant located near Barstow, CA. The salt loop contained two receiver panels, components such as flanges and a check valve, vortex shedding and ultrasonic flow meters, and an impedance pressure transducer. Tests were conducted on procedures for filling and thawing a panel, and assessing components and instrumentation in a molten salt environment. Four categories of experiments were conducted: (1) cold filling procedures, (2) freeze/thaw procedures, (3) component tests, and (4) instrumentation tests. Cold-panel and -piping fill experiments are described, in which the panels and piping were preheated to temperatures below the salt freezing point prior to initiating flow, to determine the feasibility of cold filling the receiver and piping. The transient thermal response was measured, and heat transfer coefficients and transient stresses were calculated from the data. Freeze/thaw experiments were conducted with the panels, in which the salt was intentionally allowed to freeze in the receiver tubes, then thawed with heliostat beams. Slow thermal cycling tests were conducted to measure both how well various designs of flanges (e.g., tapered flanges or clamp type flanges) hold a seal under thermal conditions typical of nightly shut down, and the practicality of using these flanges on high maintenance components. In addition, the flanges were thermally shocked to simulate cold starting the system. Instrumentation such as vortex shedding and ultrasonic flow meters were tested alongside each other, and compared with flow measurements from calibration tanks in the flow loop.

  20. Computed Tomography (CT) as a nondestructive test method used for composite helicopter components

    NASA Astrophysics Data System (ADS)

    Oster, Reinhold

    The first components of primary helicopter structures to be made of glass fiber reinforced plastics were the main and tail rotor blades of the Bo105 and BK117 helicopters. These blades are now successfully produced in series. New developments in rotor components, e.g. the rotor blade technology of the Bo108 and PAH2 programs, make use of very complex fiber reinforced structures to achieve simplicity and strength. Computer tomography was found to be an outstanding nondestructive test method for examining the internal structure of components. A CT scanner generates x-ray attenuation measurements which are used to produce computer reconstructed images of any desired part of an object. The system images a range of flaws in composites in a number of views and planes. Several CT investigations and their results are reported taking composite helicopter components as an example.

  1. Computed tomography (CT) as a nondestructive test method used for composite helicopter components

    NASA Astrophysics Data System (ADS)

    Oster, Reinhold

    1991-09-01

    The first components of primary helicopter structures to be made of glass fiber reinforced plastics were the main and tail rotor blades of the Bo105 and BK 117 helicopters. These blades are now successfully produced in series. New developments in rotor components, e.g., the rotor blade technology of the Bo108 and PAH2 programs, make use of very complex fiber reinforced structures to achieve simplicity and strength. Computer tomography was found to be an outstanding nondestructive test method for examining the internal structure of components. A CT scanner generates x-ray attenuation measurements which are used to produce computer reconstructed images of any desired part of an object. The system images a range of flaws in composites in a number of views and planes. Several CT investigations and their results are reported taking composite helicopter components as an example.

  2. Test-Anchored Vibration Response Predictions for an Acoustically Energized Curved Orthogrid Panel with Mounted Components

    NASA Technical Reports Server (NTRS)

    Frady, Gregory P.; Duvall, Lowery D.; Fulcher, Clay W. G.; Laverde, Bruce T.; Hunt, Ronald A.

    2011-01-01

    A rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for a curved orthogrid panel typical of launch vehicle skin structures. Several test article configurations were produced by adding component equipment of differing weights to the flight-like vehicle panel. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was employed to describe the assumed correlation of phased input sound pressures across the energized panel. This application demonstrates the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software modules developed for the RPTF method can be easily adapted for

  3. Shuttle Return-to-Flight IH-108 Aerothermal Test at CUBRC - Flow Field Calibration and CFD

    NASA Technical Reports Server (NTRS)

    Lau, Kei Y.; Holden, Michael

    2010-01-01

    This paper discusses one specific aspect of the Shuttle Retrun-To-Flight IH-108 Aerothermal Test at CUBRC, the test flow field calibration. It showed the versatility of the CUBRC LENS II wind tunnel for an aerothermal test with unique and demanding requirements. CFD analyses were used effectively to extend the test range at the low end of the Mach range. It demonstrated how ground test facility and CFD synergy can be utilitzed iteratively to enhance the confidence in the fedility of both tools. It addressed the lingering concerns of the aerothermal community on use of inpulse facility and CFD analysis. At the conclusion of the test program, members from the NASA Marshall (MSFC), CUBRC and USA (United Space Alliance) Consultants (The Grey Beards) were asked to independently verify the flight scaling data generated by Boeing for flight certification of the re-designed external tank (ET) components. The blind test comparison showed very good results. A more comprehensive discussion of the topics in this paper can be found in Chapter 6 of Reference [1]. The overall aspect of the test program has been discussed in an AIAA paper by Tim Wadhams [2]. The Shuttle Ascent Stack performance and related issues discussed in the Report [1] are not included in this paper. No ITAR data is included in this paper.

  4. Association between anaerobic components of the maximal accumulated oxygen deficit and 30-second Wingate test

    PubMed Central

    Bertuzzi, R.; Kiss, M.A.P.D.M.; Damasceno, M.; Oliveira, R.S.F.; Lima-Silva, A.E.

    2015-01-01

    The purpose of this study was to analyze the relationship between the anaerobic components of the maximal accumulated oxygen deficit (MAOD) and of the 30-second Wingate anaerobic test (30-WAnT). Nine male physical education students performed: a) a maximal incremental exercise test; b) a supramaximal constant workload test to determine the anaerobic components of the MAOD; and c) a 30-WAnT to measure the peak power (PP) and mean power (MP). The fast component of the excess post-exercise oxygen consumption and blood lactate accumulation were measured after the supramaximal constant workload test in order to determine the contributions made by alactic (ALMET) and lactic (LAMET) metabolism. Significant correlations were found between PP and ALMET (r=0.71; P=0.033) and between MP and LAMET (r=0.72; P=0.030). The study results suggested that the anaerobic components of the MAOD and of the 30-WAnT are similarly applicable in the assessment of ALMET and LAMET during high-intensity exercise. PMID:25627804

  5. 46 CFR 162.060-30 - Testing requirements for ballast water management system (BWMS) components.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Testing requirements for ballast water management system (BWMS) components. 162.060-30 Section 162.060-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Ballast Water Management Systems §...

  6. 46 CFR 162.060-30 - Testing requirements for ballast water management system (BWMS) components.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 6 2012-10-01 2012-10-01 false Testing requirements for ballast water management system (BWMS) components. 162.060-30 Section 162.060-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Ballast Water Management Systems §...

  7. 46 CFR 162.060-30 - Testing requirements for ballast water management system (BWMS) components.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 6 2013-10-01 2013-10-01 false Testing requirements for ballast water management system (BWMS) components. 162.060-30 Section 162.060-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Ballast Water Management Systems §...

  8. 75 FR 28208 - Conditions and Requirements for Testing Component Parts of Consumer Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-20

    ... November 13, 2009, at 74 FR 58611, 58616; and (5) an Interim Enforcement Policy on Component Testing and... and published in the Federal Register on December 29, 2009 (74 FR 68593)). The proposed rule also... products for compliance with lead limits. 74 FR 68593 (December 28, 2009). Section 101(f)(1) of the...

  9. 21 CFR 866.5380 - Free secretory component immuno-logical test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... system. 866.5380 Section 866.5380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test... body fluids. Measurement of free secretory component (protein molecules) aids in the diagnosis...

  10. 21 CFR 866.5380 - Free secretory component immuno-logical test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... system. 866.5380 Section 866.5380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test... body fluids. Measurement of free secretory component (protein molecules) aids in the diagnosis...

  11. 21 CFR 866.5380 - Free secretory component immuno-logical test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... system. 866.5380 Section 866.5380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test... body fluids. Measurement of free secretory component (protein molecules) aids in the diagnosis...

  12. 21 CFR 866.5380 - Free secretory component immuno-logical test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... system. 866.5380 Section 866.5380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test... body fluids. Measurement of free secretory component (protein molecules) aids in the diagnosis...

  13. Components of Spatial Thinking: Evidence from a Spatial Thinking Ability Test

    ERIC Educational Resources Information Center

    Lee, Jongwon; Bednarz, Robert

    2012-01-01

    This article introduces the development and validation of the spatial thinking ability test (STAT). The STAT consists of sixteen multiple-choice questions of eight types. The STAT was validated by administering it to a sample of 532 junior high, high school, and university students. Factor analysis using principal components extraction was applied…

  14. Concentrating Solar Power Central Receiver Panel Component Fabrication and Testing FINAL REPORT

    SciTech Connect

    McDowell, Michael W; Miner, Kris

    2013-03-30

    The objective of this project is to complete a design of an advanced concentrated solar panel and demonstrate the manufacturability of key components. Then confirm the operation of the key components under prototypic solar flux conditions. This work is an important step in reducing the levelized cost of energy (LCOE) from a central receiver solar power plant. The key technical risk to building larger power towers is building the larger receiver systems. Therefore, this proposed technology project includes the design of an advanced molten salt prototypic sub-scale receiver panel that can be utilized into a large receiver system. Then complete the fabrication and testing of key components of the receive design that will be used to validate the design. This project shall have a significant impact on solar thermal power plant design. Receiver panels of suitable size for utility scale plants are a key element to a solar power tower plant. Many subtle and complex manufacturing processes are involved in producing a reliable, robust receiver panel. Given the substantial size difference between receiver panels manufactured in the past and those needed for large plant designs, the manufacture and demonstration on prototype receiver panel components with representative features of a full-sized panel will be important to improving the build process for commercial success. Given the thermal flux limitations of the test facility, the panel components cannot be rendered full size. Significance changes occurred in the projects technical strategies from project initiation to the accomplishments described herein. The initial strategy was to define cost improvements for the receiver, design and build a scale prototype receiver and test, on sun, with a molten salt heat transport system. DOE had committed to constructing a molten salt heat transport loop to support receiver testing at the top of the NSTTF tower. Because of funding constraints this did not happen. A subsequent plan to

  15. Generation and Reaction of Carbamoyl Anions in Flow: Applications in the Three-Component Synthesis of Functionalized α-Ketoamides.

    PubMed

    Nagaki, Aiichiro; Takahashi, Yusuke; Yoshida, Jun-Ichi

    2016-04-18

    Using a flow microreactor system, carbamoyllithium compounds were successfully generated and used for reactions with electrophiles to give various amides, including α-ketoamides. The present method could be applied to the three-component synthesis of functionalized α-ketoamides using a carbamoyllithium compound, methyl chloroformate, and a functionalized organolithium reagent. PMID:26990703

  16. Cinematics and sticking of heart valves in pulsatile flow test.

    PubMed

    Köhler, J; Wirtz, R

    1991-05-01

    The aim of the project was to develop laboratory test devices for studies of the cinematics and sticking behaviour of technical valve protheses. The second step includes testing technical valves of different types and sizes under static and dynamic conditions. A force-deflection balance was developed in order to load valve rims by static radial forces until sticking or loss of a disc (sticking- and clamping-mould point) with computer-controlled force deflection curves. A second deflection device was developed and used for prosthetic valves in the aortic position of a pulsatile mock circulation loop with simultaneous video-cinematography. The stiffness of technical valve rims varied between 0.20 (St. Jude) and about 1.0 N/micron (metal rim valves). The stiffness decreased significantly with increasing valve size. Sticking under pulsatile flow conditions was in good agreement with the static deflection measurements. Hence, valve sticking with increasing danger of thrombus formation is more likely with a less stiff valve rim. In the case of forces acting perpendicularly to the pendulum axis, the clamping mould-point of the valve can be reached, followed by disc dislodgement. PMID:1864654

  17. Boeing Helicopters Advanced Rotorcraft Transmission (ART) Program summary of component tests

    NASA Astrophysics Data System (ADS)

    Lenski, Joseph W., Jr.; Valco, Mark J.

    1992-07-01

    The principal objectives of the ART program are briefly reviewed, and the results of advanced technology component tests are summarized. The tests discussed include noise reduction by active cancellation, hybrid bidirectional tapered roller bearings, improved bearing life theory and friction tests, transmission lube study with hybrid bearings, and precision near-net-shape forged spur gears. Attention is also given to the study of high profile contact ratio noninvolute tooth form spur gears, parallel axis gear noise study, and surface modified titanium accessory spur gears.

  18. Testing of optical components to assure performance in a high acerage power environment

    SciTech Connect

    Chow, R.; Taylor, J.R.; Eickelberg, W.K.; Primdahl, K.A.

    1997-06-24

    Evaluation and testing of the optical components used in the Atomic Vapor Laser Isotope Separation (AVLIS) plant is critical for qualification of suppliers, development of new optical multilayer designs and monufacturing processes, and assurance of performance in the production cycle. The range of specifications requires development of specialized test equipment and methods which are not routine or readily available in industry. Specifications are given on material characteristics such as index homogeneity, subsurface damage left after polishing, microscopic surface defects and contamination, coating absorption, and high average power laser damage. The approach to testing these performance characteristics and assuring the quality throughout the production cycle is described.

  19. Field Testing of Nano-PCM-Enhanced Building Envelope Components in a Warm-Humid Climate

    SciTech Connect

    Biswas, Kaushik; LuPh.D., Jue; Soroushian, Parviz

    2013-01-01

    The U.S. Department of Energy Building Technologies Program s goal of developing high-performance, energy-efficient buildings will require more cost-effective, durable, energy-efficient building envelopes. Forty-eight percent of the residential enduse energy consumption is spent on space heating and air conditioning. Reducing envelope-generated heating and cooling loads through application of phase-change material (PCM) enhanced envelope components can facilitate maximizing the energy efficiency of buildings. Field testing of prototype envelope components is an important step in estimating their energy benefits. An innovative PCM (nano-PCM) was developed with PCM encapsulated with expanded graphite (interconnected) nanosheets, which is highly conducive for enhanced thermal storage and energy distribution, and is shape-stable for convenient incorporation into lightweight building components. During 2012, two test walls with cellulose cavity insulation and prototype PCM-enhanced interior wallboards were installed in a natural exposure test (NET) facility in Charleston, SC. The first test wall was divided into four sections separated by wood studs and thin layers of foam insulation. Two sections contained nano-PCMenhanced wallboards: one was a three-layer structure in which nano-PCM was sandwiched between two gypsum boards, and the other one had PCM dispersed homogeneously throughout graphite nanosheet-enhanced gypsum board. The second test wall also contained two sections with interior PCM wallboards; one contained nano-PCM dispersed homogeneously in gypsum and the other was gypsum board containing a commercial microencapsulated PCM (MEPCM) for comparison. Each test wall contained a section covered with gypsum board on the interior side that served as control or a baseline for evaluation of the PCM wallboards. The walls were instrumented with arrays of thermocouples and heat flux transducers. This paper presents the measured performance and analysis to evaluate the

  20. Status of Proof-Of-Concept testing at the Coal-Fired-Flow Facility, 1993

    SciTech Connect

    Attig, R.C.; Chapman, J.N.; Johanson, N.R.

    1993-06-01

    Proof-of-concept (POC) testing, and collection and evaluation of data continued at the Coal-Fired-Flow Facility during the past year. Following four preliminary tests firing Rosebud coal in 1991 to establish base conditions for the Rosebud coal POC tests, three POC tests were run in 1992, and a fourth test early in 1993. Major equipment additions or modifications included installation of a wet electrostatic precipitator (ESP), which replaced a badly deteriorated venturi. This component also provides improved capability to meet Tennessee pollution regulations while operating the dry ESP and/or baghouse off design, or if one of these two control devices does not function properly. Improvements were also made to the dry ESP prior to the 1993 test, which appear to have improved the performance of this equipment. This paper will present an overview of the major results obtained during the Rosebud coal POC tests, including the performance of the dry and wet electrostatic precipitators. Differences between the Rosebud and Illinois coals will be described, but it is emphasized that these observations are based on incomplete results for the Rosebud coal.

  1. Shuttle Return-to-Flight IH-108 Aerothermal Test at CUBRC - Flow Field Calibration and CFD

    NASA Technical Reports Server (NTRS)

    Lau, Kei Y.; Holden, M. S.

    2011-01-01

    This paper discusses one specific aspect of the Shuttle Retrun-To-Flight IH-108 Aerothermal Test at Calspan-University of Buffalo Research Center (CUBRC), the test flow field calibration. It showed the versatility of the CUBRC Large Energy National Shock Tunnel (LENS) II wind tunnel for an aerothermal test with unique and demanding requirements. CFD analyses were used effectively to extend the test range at the low end of the Mach range. It demonstrated how ground test facility and CFD synergy can be utilitzed iteratively to enhance the confidence in the fedility of both tools. It addressed the lingering concerns of the aerothermal community on use of inpulse facility and CFD analysis. At the conclusion of the test program, members from the NASA Marshall (MSFC), CUBRC and USA (United Space Alliance) Consultants (The Grey Beards) were asked to independently verify the flight scaling data generated by Boeing for flight certification of the re-designed external tank (ET) components. The blind test comparison showed very good results.

  2. Facility Activation and Characterization for IPD Oxidizer Turbopump Cold-Flow Testing at NASA Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Sass, J. P.; Raines, N. G.; Farner, B. R.; Ryan, H. M.

    2004-01-01

    The Integrated Powerhead Demonstrator (IPD) is a 250K lbf (1.1 MN) thrust cryogenic hydrogen/oxygen engine technology demonstrator that utilizes a full flow staged combustion engine cycle. The Integrated Powerhead Demonstrator (IPD) is part of NASA's Next Generation Launch Technology (NGLT) program, which seeks to provide safe, dependable, cost-cutting technologies for future space launch systems. The project also is part of the Department of Defense's Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program, which seeks to increase the performance and capability of today s state-of-the-art rocket propulsion systems while decreasing costs associated with military and commercial access to space. The primary industry participants include Boeing-Rocketdyne and GenCorp Aerojet. The intended full flow engine cycle is a key component in achieving all of the aforementioned goals. The IPD Program achieved a major milestone with the successful completion of the IPD Oxidizer Turbopump (OTP) cold-flow test project at the NASA John C. Stennis Space Center (SSC) E-1 test facility in November 2001. A total of 11 IPD OTP cold-flow tests were completed. Following an overview of the NASA SSC E-1 test facility, this paper addresses the facility aspects pertaining to the activation and the cold-flow testing of the IPD OTP. In addition, some of the facility challenges encountered during the test project are addressed.

  3. Test-Anchored Vibration Response Predictions for an Acoustically Energized Curved Orthogrid Panel with Mounted Components

    NASA Technical Reports Server (NTRS)

    Frady, Gregory P.; Duvall, Lowery D.; Fulcher, Clay W. G.; Laverde, Bruce T.; Hunt, Ronald A.

    2011-01-01

    rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for component-loaded curved orthogrid panels typical of launch vehicle skin structures. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was applied to correlate the measured input sound pressures across the energized panel. This application quantifies the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software developed for the RPTF method allows easy replacement of the diffuse acoustic field with other pressure fields such as a turbulent boundary layer (TBL) model suitable for vehicle ascent. Structural responses

  4. Quality assurance and functionality tests on electrical components during the ATLAS IBL production

    NASA Astrophysics Data System (ADS)

    Bassalat, A.

    2014-01-01

    During the shutdown of 2013-2014, for the enhancement of the current ATLAS Pixel Detector, a fourth layer (Insertable B Layer, IBL) is being built and will be installed between the innermost layer and a new beam pipe. A new generation of readout chip has been developed, and two different sensor designs, a rather conventional planar and a 3D design, have been bump bonded to the Front Ends. Additionally, new staves and module flex circuits have been developed. A production QA test bench was therefore established to test all production staves before integration with the new beam pipe. Quality assurance measurements under cleanroom conditions, including temperature and humidity control, are being performed on the individual components during the various production steps of the IBL; namely, connectivity tests, electrical tests and signal probing on individual parts and assembled subsystems. This paper discusses the pre-assembly QC procedures, the capabilities of the stave qualification setup, and recent results from stave testing.

  5. 42 CFR 84.94 - Gas flow test; closed-circuit apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Gas flow test; closed-circuit apparatus. 84.94...-Contained Breathing Apparatus § 84.94 Gas flow test; closed-circuit apparatus. (a) Where oxygen is supplied... rated service time of the apparatus. (b) Where constant flow is used in conjunction with demand...

  6. Oscillating-flow loss test results in rectangular heat exchanger passages

    NASA Technical Reports Server (NTRS)

    Wood, J. Gary

    1991-01-01

    Test results of oscillating flow losses in rectangular heat exchanger passages of various aspect ratios are given. This work was performed in support of the design of a free-piston Stirling engine (FPSE) for a dynamic space power conversion system. Oscillating flow loss testing was performed using an oscillating flow rig, which was based on a variable stroke and variable frequency linear drive motor. Tests were run over a range of oscillating flow parameters encompassing the flow regimes of the proposed engine design. Test results are presented in both tabular and graphical form and are compared against analytical predictions.

  7. Development of an Automated LIBS Analytical Test System Integrated with Component Control and Spectrum Analysis Capabilities

    NASA Astrophysics Data System (ADS)

    Ding, Yu; Tian, Di; Chen, Feipeng; Chen, Pengfei; Qiao, Shujun; Yang, Guang; Li, Chunsheng

    2015-08-01

    The present paper proposes an automated Laser-Induced Breakdown Spectroscopy (LIBS) analytical test system, which consists of a LIBS measurement and control platform based on a modular design concept, and a LIBS qualitative spectrum analysis software and is developed in C#. The platform provides flexible interfacing and automated control; it is compatible with different manufacturer component models and is constructed in modularized form for easy expandability. During peak identification, a more robust peak identification method with improved stability in peak identification has been achieved by applying additional smoothing on the slope obtained by calculation before peak identification. For the purpose of element identification, an improved main lines analysis method, which detects all elements on the spectral peak to avoid omission of certain elements without strong spectral lines, is applied to element identification in the tested LIBS samples. This method also increases the identification speed. In this paper, actual applications have been carried out. According to tests, the analytical test system is compatible with components of various models made by different manufacturers. It can automatically control components to get experimental data and conduct filtering, peak identification and qualitative analysis, etc. on spectral data. supported by the National Major Scientific Instruments and Equipment Development Special Funds of China (No. 2011YQ030113)

  8. CHARACTERIZATION OF RADIOACTIVITY IN THE REACTOR VESSEL OF THE HEAVY WATER COMPONENT TEST REACTOR

    SciTech Connect

    Vinson, Dennis

    2010-06-01

    The Heavy Water Component Test Reactor (HWCTR) facility is a pressurized heavy water reactor that was used to test candidate fuel designs for heavy water power reactors. The reactor operated at nominal power of 50 MW{sub th}. The reactor coolant loop operated at 1200 psig and 250 C. Two isolated test loop were designed into the reactor to provide special test conditions. Fig. 1 shows a cut-away view of the reactor. The two loops are contained in four inch diameter stainless steel piping. The HWCTR was operated for only a short duration, from March 1962 to December 1964 in order to test the viability of test fuel elements and other reactor components for use in a heavy water power reactor. The reactor achieved 13,882 MWd of total power while testing 36 different fuel assemblies. In the course of operation, HWCTR experienced the cladding failures of 10 separate test fuel assemblies. In each case, the cladding was breached with some release of fuel core material into the isolated test loop, causing fission product and actinide contamination in the main coolant loop and the liquid and boiling test loops. Despite the contribution of the contamination from the failed fuel, the primary source of radioactivity in the HWCTR vessel and internals is the activation products in the thermal shields, and to a lesser degree, activation products in the reactor vessel walls and liner. A detailed facility characterization report of the HWCTR facility was completed in 1996. Many of the inputs and assumptions in the 1996 characterization report were derived from the HWCTR decommissioning plan published in 1975. The current paper provides an updated assessment of the radioisotopic characteristics of the HWCTR vessel and internals to support decommissioning activities on the facility.

  9. Extracting flow parameters of H 1743-322 during early phase of its 2010 outburst using two component advective flow model

    NASA Astrophysics Data System (ADS)

    Debnath, Dipak; Chakrabarti, Sandip K.; Mondal, Santanu

    We study the spectral properties of Galactic transient black hole candidate H~1743-322 during its early phase of 2010 outburst with Two Component Advective Flow (TCAF) model, after its inclusion in spectral analysis software package XSPEC as a local model. For the analysis, spectral data from RXTE/PCA instrument in 2.5-25 keV energy band are used. From the spectral fit, accretion flow parameters such as Keplerian (disk) rate, sub-Keplerian (halo) rate, location of the shock and strength of the shock are directly extracted. QPO frequencies are predicted from the TCAF model spectral fitted shock parameters, `closely' matches with the observed frequencies.

  10. High fidelity replication of surface texture and geometric form of a high aspect ratio aerodynamic test component

    NASA Astrophysics Data System (ADS)

    Walton, Karl; Fleming, Leigh; Goodhand, Martin; Racasan, Radu; Zeng, Wenhan

    2016-06-01

    This paper details, assesses and validates a technique for the replication of a titanium wind tunnel test aerofoil in polyurethane resin. Existing resin replication techniques are adapted to overcome the technical difficulties associated with casting a high aspect ratio component. The technique is shown to have high replication fidelity over all important length-scales. The blade chord was accurate to 0.02%, and the maximum blade thickness was accurate to 2.5%. Important spatial and amplitude areal surface texture parameter were accurate to within 2%. Compared to an existing similar system using correlation areal parameters the current technique is shown to have lower fidelity and this difference is discussed. The current technique was developed for the measurement of boundary layer flow ‘laminar to turbulent’ transition for gas turbine compressor blade profiles and this application is illustrated.

  11. High heat flux testing of divertor plasma facing materials and components using the HHF test facility at IPR

    NASA Astrophysics Data System (ADS)

    Patil, Yashashri; Khirwadkar, S. S.; Belsare, Sunil; Swamy, Rajamannar; Tripathi, Sudhir; Bhope, Kedar; Kanpara, Shailesh

    2016-02-01

    The High Heat Flux Test Facility (HHFTF) was designed and established recently at Institute for Plasma Research (IPR) in India for testing heat removal capability and operational life time of plasma facing materials and components of the ITER-like tokamak. The HHFTF is equipped with various diagnostics such as IR cameras and IR-pyrometers for surface temperature measurements, coolant water calorimetry for absorbed power measurements and thermocouples for bulk temperature measurements. The HHFTF is capable of simulating steady state heat load of several MW m-2 as well as short transient heat loads of MJ m-2. This paper presents the current status of the HHFTF at IPR and high heat flux tests performed on the curved tungsten monoblock type of test mock-ups as well as transient heat flux tests carried out on pure tungsten materials using the HHFTF. Curved tungsten monoblock type of test mock-ups were fabricated using hot radial pressing (HRP) technique. Two curved tungsten monoblock type test mock-ups successfully sustained absorbed heat flux up to 14 MW m-2 with thermal cycles of 30 s ON and 30 s OFF duration. Transient high heat flux tests or thermal shock tests were carried out on pure tungsten hot-rolled plate material (Make:PLANSEE) with incident power density of 0.49 GW m-2 for 20 milliseconds ON and 1000 milliseconds OFF time. A total of 6000 thermal shock cycles were completed on pure tungsten material. Experimental results were compared with mathematical simulations carried out using COMSOL Multiphysics for transient high heat flux tests.

  12. EFFECTS OF TEST TEMPERATURE ON FLOW OF METALLIC GLASSES

    SciTech Connect

    A.S. NOURI; Y. LIU; P. WESSELING; J. LEWANDOWSKI

    2006-04-12

    Micro-hardness experiments were conducted over a range of temperatures using a Nikon QM micro-hardness machine on a number of metallic glass (e.g. Zr-, Fe-, Al-) systems. Although high micro-hardness was exhibited at room temperature, significant hardness reductions were exhibited near the glass transition temperature, T{sub g}. The effects of changes in test temperature on the micro-hardness will be reported. The effects of exposure time on the hardness evolution at a given temperature will also be summarized to illustrate some of the differences in behavior of the systems shown. The extreme softening near T{sub g}, characteristic of bulk metallic glass systems, enables the exploration of novel deformation processing. In order to develop deformation processing windows, the evaluation of bulk metallic glass mechanical properties under quasi-static conditions and the determination of flow properties at different temperatures and strain rates are reported. The use of such information to create layered/composite bulk metallic glasses will be summarized.

  13. Testing the large aperture optical components by the sub-aperture stitching interferometer

    NASA Astrophysics Data System (ADS)

    He, Yong; Wang, Zhao-xuan; Wang, Qing; Ji, Bo

    2008-03-01

    Nowadays many large aperture optical components are widely used in the high-tech area, how to test them become more and more important. Here describes a new method to test the large aperture optical components using the small aperture interferometer, deduce how to get the aperture number and the concrete process of the stitching parameter in a systematic way, finally get the best plan to choose the sub-aperture of the square and circular optical plane. To specify the stability of the method we operate an experiment, the result shows that the stitching accuracy can reach λ/10, it meet the need of the inertia constraint fusion etc, that is good enough to be used in the high-tech area.

  14. Sub-picosecond laser induced damage test facility for petawatt reflective optical components characterizations

    NASA Astrophysics Data System (ADS)

    Sozet, Martin; Néauport, Jérôme; Lavastre, Eric; Roquin, Nadja; Gallais, Laurent; Lamaignère, Laurent

    2015-05-01

    While considering long pulse or short pulse high power laser facilities, optical components performances and in particular laser damage resistance are always factors limiting the overall system performances. Consequently, getting a detailed knowledge of the behavior of these optical components under irradiations with large beam in short pulse range is of major importance. In this context, a Laser Induced Damage Threshold test facility called DERIC has been developed at the Commissariat à l'Energie Atomique et aux Energies Alternatives, Bordeaux. It uses an Amplitude Systemes laser source which delivers Gaussian pulses of 500 fs at 1053 nm. 1-on-1, S-on-1 and RasterScan test procedures are implemented to study the behavior of monolayer and multilayer dielectric coatings.

  15. Groundwater Flow Systems at the Nevada Test Site, Nevada: A Synthesis of Potentiometric Contours, Hydrostratigraphy, and Geologic Structures

    SciTech Connect

    Fenelon, Joseph M.; Sweetkind, Donald S.; Laczniak, Randell J.

    2010-01-25

    Contaminants introduced into the subsurface of the Nevada Test Site by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. The potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by groundwater transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the hydraulic-head distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. A map of the hydraulic-head distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped and discussed in general terms as being one of two types: alluvial-volcanic, or carbonate. Both aquifer types are subdivided and mapped as independent regional and local aquifers, based on the continuity of their component rock. Groundwater-flow directions, approximated from potentiometric contours that were developed from the hydraulic-head distribution, are indicated on the maps and discussed for each of the regional aquifers and for selected local aquifers. Hydraulic heads vary across the study area and are interpreted to range in altitude from greater than 5,000 feet in a regional alluvial-volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,300 feet in regional alluvial-volcanic and carbonate aquifers in the southwestern part of the study area. Flow directions throughout the study area are dominantly south-southwest with some local deviations. Vertical hydraulic

  16. Groundwater Flow Systems at the Nevada Test Site, Nevada: A Synthesis of Potentiometric Contours, Hydrostratigraphy, and Geologic Structures

    USGS Publications Warehouse

    Fenelon, Joseph M.; Sweetkind, Donald S.; Laczniak, Randell J.

    2010-01-01

    Contaminants introduced into the subsurface of the Nevada Test Site by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. The potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by groundwater transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the hydraulic-head distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. A map of the hydraulic-head distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped and discussed in general terms as being one of two types: alluvial-volcanic, or carbonate. Both aquifer types are subdivided and mapped as independent regional and local aquifers, based on the continuity of their component rock. Groundwater-flow directions, approximated from potentiometric contours that were developed from the hydraulic-head distribution, are indicated on the maps and discussed for each of the regional aquifers and for selected local aquifers. Hydraulic heads vary across the study area and are interpreted to range in altitude from greater than 5,000 feet in a regional alluvial-volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,300 feet in regional alluvial-volcanic and carbonate aquifers in the southwestern part of the study area. Flow directions throughout the study area are dominantly south-southwest with some local deviations. Vertical hydraulic

  17. Parallel-dominant and perpendicular-dominant components of the fast bulk flow: Comparing with the PSBL beams

    NASA Astrophysics Data System (ADS)

    Zhang, L. Q.; Dai, L.; Baumjohann, W.; Rème, H.; Dunlop, M. W.; Wei, X. H.

    2015-11-01

    Utilizing multipoint observations by the Cluster satellites, we investigated the ion distributions of the fast bulk flows (FBFs) in the plasma sheet. Simultaneous observation by C1 and C3 revealed that parallel-dominant and perpendicular-dominant components of the flows coexist and correspond to Bx-dominant and Bz-dominant magnetic field regions within the FBFs, respectively. In both cases, the ions distributions are characterized by a single-beam/crescent shape. In particular, no reflected ions are found within the FBFs. Statistical analysis showed that within the FBFs, the strength of the Bx component is typically less than 5 nT for Bz-dominant regions and above 10 nT for Bx-dominant regions. To distinguish between the parallel-dominant component of the FBFs and the field-aligned beams in the plasma sheet boundary layer (PSBL), we further statistically analyzed the tailward parallel flows (TPF) with positive Bz in the plasma sheet. The results indicated that the FBFs tend to have higher velocity, weaker B, and higher magnetic tilt angle (θMTA) than the TPFs/PSBL beams. Statistically, in the region of B > 30 nT (θMTA > 10°), only PSBL beams can be observed, while in the region of B < 10 nT (θMTA > 30°), the FBFs are dominant. In the intermediate region (10° < θMTA < 30°) of the plasma sheet, the FBFs and the PSBL beams cooccur. These Cluster observations suggest that the X line can produce both perpendicular flow in central plasma sheet and parallel flow in the PSBL. In addition, the parallel-dominant component of the FBFs could be an important origin for the PSBL beams.

  18. Development and testing of hermetic, laser-ignited pyrotechnic and explosive components

    NASA Technical Reports Server (NTRS)

    Kramer, Daniel P.; Beckman, Thomas M.; Spangler, Ed M.; Munger, Alan C.; Woods, C. M.

    1993-01-01

    During the last decade there has been increasing interest in the use of lasers in place of electrical systems to ignite various pyrotechnic and explosive materials. The principal driving force for this work was the requirement for safer energetic components which would be insensitive to electrostatic and electromagnetic radiation. In the last few years this research has accelerated since the basic concepts have proven viable. At the present time it is appropriate to shift the research emphasis in laser initiation from the scientific arena--whether it can be done--to the engineering realm--how it can be put into actual practice in the field. Laser initiation research and development at EG&G Mound was in three principal areas: (1) laser/energetic material interactions; (2) development of novel processing techniques for fabricating hermetic (helium leak rate of less than 1 x 10(exp -8) cu cm/s) laser components; and (3) evaluation and testing of laser-ignited components. Research in these three areas has resulted in the development of high quality, hermetic, laser initiated components. Examples are presented which demonstrate the practicality of fabricating hermetic, laser initiated explosive or pyrotechnic components that can be used in the next generation of ignitors, actuators, and detonators.

  19. Scaling Analysis Techniques to Establish Experimental Infrastructure for Component, Subsystem, and Integrated System Testing

    SciTech Connect

    Sabharwall, Piyush; O'Brien, James E.; McKellar, Michael G.; Housley, Gregory K.; Bragg-Sitton, Shannon M.

    2015-03-01

    Hybrid energy system research has the potential to expand the application for nuclear reactor technology beyond electricity. The purpose of this research is to reduce both technical and economic risks associated with energy systems of the future. Nuclear hybrid energy systems (NHES) mitigate the variability of renewable energy sources, provide opportunities to produce revenue from different product streams, and avoid capital inefficiencies by matching electrical output to demand by using excess generation capacity for other purposes when it is available. An essential step in the commercialization and deployment of this advanced technology is scaled testing to demonstrate integrated dynamic performance of advanced systems and components when risks cannot be mitigated adequately by analysis or simulation. Further testing in a prototypical environment is needed for validation and higher confidence. This research supports the development of advanced nuclear reactor technology and NHES, and their adaptation to commercial industrial applications that will potentially advance U.S. energy security, economy, and reliability and further reduce carbon emissions. Experimental infrastructure development for testing and feasibility studies of coupled systems can similarly support other projects having similar developmental needs and can generate data required for validation of models in thermal energy storage and transport, energy, and conversion process development. Experiments performed in the Systems Integration Laboratory will acquire performance data, identify scalability issues, and quantify technology gaps and needs for various hybrid or other energy systems. This report discusses detailed scaling (component and integrated system) and heat transfer figures of merit that will establish the experimental infrastructure for component, subsystem, and integrated system testing to advance the technology readiness of components and systems to the level required for commercial

  20. Spence and Robbins' measures of workaholism components: test-retest stability.

    PubMed

    Burke, R J

    2001-06-01

    There has been a recent increase in research devoted to the study of workaholism, specifically concerning issues of definition and measurement. The present investigation examined the test-retest stability of Spence and Robbins' measures of the components of workaholism (1992), one of two measures that has been fairly widely used. These measures were found to be relatively stable in a sample of early-career managers (n = 67) over a 12-wk. period. PMID:11508039

  1. Full scale technology demonstration of a modern counterrotating unducted fan engine concept: Component test

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The UDF trademark (Unducted Fan) engine is a new aircraft engine concept based on an ungeared, counterrotating, unducted, ultra-high-bypass turbofan configuration. This engine is being developed to provide a high thrust-to-weight ratio powerplant with exceptional fuel efficiency for subsonic aircraft application. This report covers the testing of pertinent components of this engine such as the fan blades, control and actuation system, turbine blades and spools, seals, and mixer frame.

  2. The development of pyro shock test requirements for Viking Lander Capsule components

    NASA Technical Reports Server (NTRS)

    Barrett, S.

    1975-01-01

    The procedure used to derive component-level pyro shock specifications for the Viking Lander Capsule (VLC) is described. Effects of shock path distance and mechanical joints between the device and the point at which the environment is to be estimated are accounted for in the method. The validity of the prediction technique was verified by a series of shock tests on a full-scale structural model of the lander body.

  3. 21 CFR 212.60 - What requirements apply to the laboratories where I test components, in-process materials, and...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... I test components, in-process materials, and finished PET drug products? 212.60 Section 212.60 Food... finished PET drug products? (a) Testing procedures. Each laboratory used to conduct testing of components, in-process materials, and finished PET drug products must have and follow written procedures for...

  4. Fracture Tests of Etched Components Using a Focused Ion Beam Machine

    NASA Technical Reports Server (NTRS)

    Kuhn, Jonathan, L.; Fettig, Rainer K.; Moseley, S. Harvey; Kutyrev, Alexander S.; Orloff, Jon; Powers, Edward I. (Technical Monitor)

    2000-01-01

    Many optical MEMS device designs involve large arrays of thin (0.5 to 1 micron components subjected to high stresses due to cyclic loading. These devices are fabricated from a variety of materials, and the properties strongly depend on size and processing. Our objective is to develop standard and convenient test methods that can be used to measure the properties of large numbers of witness samples, for every device we build. In this work we explore a variety of fracture test configurations for 0.5 micron thick silicon nitride membranes machined using the Reactive Ion Etching (RIE) process. Testing was completed using an FEI 620 dual focused ion beam milling machine. Static loads were applied using a probe. and dynamic loads were applied through a piezo-electric stack mounted at the base of the probe. Results from the tests are presented and compared, and application for predicting fracture probability of large arrays of devices are considered.

  5. Development and tests of molybdenum armored copper components for MITICA ion source

    NASA Astrophysics Data System (ADS)

    Pavei, Mauro; Böswirth, Bernd; Greuner, Henri; Marcuzzi, Diego; Rizzolo, Andrea; Valente, Matteo

    2016-02-01

    In order to prevent detrimental material erosion of components impinged by back-streaming positive D or H ions in the megavolt ITER injector and concept advancement beam source, a solution based on explosion bonding technique has been identified for producing a 1 mm thick molybdenum armour layer on copper substrate, compatible with ITER requirements. Prototypes have been recently manufactured and tested in the high heat flux test facility Garching Large Divertor Sample Test Facility (GLADIS) to check the capability of the molybdenum-copper interface to withstand several thermal shock cycles at high power density. This paper presents both the numerical fluid-dynamic analyses of the prototypes simulating the test conditions in GLADIS as well as the experimental results.

  6. Design, fabrication and test of graphite/epoxy metering truss structure components, phase 3

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design, materials, tooling, manufacturing processes, quality control, test procedures, and results associated with the fabrication and test of graphite/epoxy metering truss structure components exhibiting a near zero coefficient of thermal expansion are described. Analytical methods were utilized, with the aid of a computer program, to define the most efficient laminate configurations in terms of thermal behavior and structural requirements. This was followed by an extensive material characterization and selection program, conducted for several graphite/graphite/hybrid laminate systems to obtain experimental data in support of the analytical predictions. Mechanical property tests as well as the coefficient of thermal expansion tests were run on each laminate under study, the results of which were used as the selection criteria for the single most promising laminate. Further coefficient of thermal expansion measurement was successfully performed on three subcomponent tubes utilizing the selected laminate.

  7. Component design challenges for the ground-based SP-100 nuclear assembly test

    SciTech Connect

    Markley, R.A.; Disney, R.K.; Brown, G.B. )

    1989-01-01

    The SP-100 ground engineering system (GES) program involves a ground test of the nuclear subsystems to demonstrate their design. The GES nuclear assembly test (NAT) will be performed in a simulated space environment within a vessel maintained at ultrahigh vacuum. The NAT employs a radiation shielding system that is comprised of both prototypical and nonprototypical shield subsystems to attenuate the reactor radiation leakage and also nonprototypical heat transport subsystems to remove the heat generated by the reactor. The reactor is cooled by liquid lithium, which will operate at temperatures prototypical of the flight system. In designing the components for these systems, a number of design challenges were encountered in meeting the operational requirements of the simulated space environment (and where necessary, prototypical requirements) while also accommodating the restrictions of a ground-based test facility with its limited available space. This paper presents a discussion of the design challenges associated with the radiation shield subsystem components and key components of the heat transport systems.

  8. F-16XL-2 Supersonic Laminar Flow Control Flight Test Experiment

    NASA Technical Reports Server (NTRS)

    Anders, Scott G.; Fischer, Michael C.

    1999-01-01

    The F-16XL-2 Supersonic Laminar Flow Control Flight Test Experiment was part of the NASA High-Speed Research Program. The goal of the experiment was to demonstrate extensive laminar flow, to validate computational fluid dynamics (CFD) codes and design methodology, and to establish laminar flow control design criteria. Topics include the flight test hardware and design, airplane modification, the pressure and suction distributions achieved, the laminar flow achieved, and the data analysis and code correlation.

  9. SR-71 LASRE during in-flight cold flow test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This shot, from above and behind the SR-71 in flight, runs 11 seconds and shows the Aerospike engine and its fuel system being charged with gaseous helium and liquid nitrogen during one of two tests. The tests are to check for leaks and check the flow characteristics of cryogenic fuels to be used in the engine. The NASA/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) concluded its flight operations phase at the NASA Dryden Flight Research Center, Edwards, California, in November 1998. The goal of this experiment was to provide in-flight data to help Lockheed Martin, Bethesda, Maryland, validate the computational predictive tools it was using to determine the aerodynamic performance of a future potential reusable launch vehicle. Information from the LASRE experiment will help Lockheed Martin maximize its design for a future potential reusable launch vehicle. It gave Lockheed an understanding of the performance of the lifting body and linear aerospike engine combination even before the X-33 Advanced Technology Demonstrator flies. LASRE was a small, half-span model of a lifting body with eight thrust cells of an aerospike engine. The experiment, mounted on the back of an SR-71 aircraft, operates like a kind of 'flying wind tunnel.' The experiment focused on determining how the engine plume of a reusable launch vehicle engine plume would affect the aerodynamics of its lifting body shape at specific altitudes and speeds reaching approximately 750 miles per hour. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements look to minimize that interaction. During the flight research program, the aircraft completed seven research flights. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus on the back of the aircraft. The first of those two flights occurred October 31, 1997. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a

  10. Preparation of a Frozen Regolith Simulant Bed for ISRU Component Testing in a Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Klenhenz, Julie; Linne, Diane

    2013-01-01

    In-Situ Resource Utilization (ISRU) systems and components have undergone extensive laboratory and field tests to expose hardware to relevant soil environments. The next step is to combine these soil environments with relevant pressure and temperature conditions. Previous testing has demonstrated how to incorporate large bins of unconsolidated lunar regolith into sufficiently sized vacuum chambers. In order to create appropriate depth dependent soil characteristics that are needed to test drilling operations for the lunar surface, the regolith simulant bed must by properly compacted and frozen. While small cryogenic simulant beds have been created for laboratory tests, this scale effort will allow testing of a full 1m drill which has been developed for a potential lunar prospector mission. Compacted bulk densities were measured at various moisture contents for GRC-3 and Chenobi regolith simulants. Vibrational compaction methods were compared with the previously used hammer compaction, or "Proctor", method. All testing was done per ASTM standard methods. A full 6.13 m3 simulant bed with 6 percent moisture by weight was prepared, compacted in layers, and frozen in a commercial freezer. Temperature and desiccation data was collected to determine logistics for preparation and transport of the simulant bed for thermal vacuum testing. Once in the vacuum facility, the simulant bed will be cryogenically frozen with liquid nitrogen. These cryogenic vacuum tests are underway, but results will not be included in this manuscript.

  11. Integrated elastomeric components for autonomous regulation of sequential and oscillatory flow switching in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Mosadegh, Bobak; Kuo, Chuan-Hsien; Tung, Yi-Chung; Torisawa, Yu-Suke; Bersano-Begey, Tommaso; Tavana, Hossein; Takayama, Shuichi

    2010-06-01

    A critical need for enhancing the usability and capabilities of microfluidic technologies is the development of standardized, scalable and versatile control systems. Electronically controlled valves and pumps typically used for dynamic flow regulation, although useful, can limit convenience, scalability and robustness. This shortcoming has motivated the development of device-embedded non-electrical flow-control systems. Existing approaches to regulate operation timing on-chip, however, still require external signals such as timed generation of fluid flow, bubbles, liquid plugs or droplets or an alteration of chemical compositions or temperature. Here, we describe a strategy to provide device-embedded flow switching and clocking functions. Physical gaps and cavities interconnected by holes are fabricated into a three-layer elastomer structure to form networks of fluidic gates that can spontaneously generate cascading and oscillatory flow output using only a constant flow of Newtonian fluids as the device input. The resulting microfluidic substrate architecture is simple, scalable and should be applicable to various materials. This flow-powered fluidic gating scheme brings the autonomous signal processing ability of microelectronic circuits to microfluidics where there is the added diversity in current information of having distinct chemical or particulate species and richness in current operation of having chemical reactions and physical interactions.

  12. Component-cost and performance based comparison of flow and static batteries

    NASA Astrophysics Data System (ADS)

    Hopkins, Brandon J.; Smith, Kyle C.; Slocum, Alexander H.; Chiang, Yet-Ming

    2015-10-01

    Flow batteries are a promising grid-storage technology that is scalable, inherently flexible in power/energy ratio, and potentially low cost in comparison to conventional or "static" battery architectures. Recent advances in flow chemistries are enabling significantly higher energy density flow electrodes. When the same battery chemistry can arguably be used in either a flow or static electrode design, the relative merits of either design choice become of interest. Here, we analyze the costs of the electrochemically active stack for both architectures under the constraint of constant energy efficiency and charge and discharge rates, using as case studies the aqueous vanadium-redox chemistry, widely used in conventional flow batteries, and aqueous lithium-iron-phosphate (LFP)/lithium-titanium-phosphate (LTP) suspensions, an example of a higher energy density suspension-based electrode. It is found that although flow batteries always have a cost advantage (kWh-1) at the stack level modeled, the advantage is a strong function of flow electrode energy density. For the LFP/LTP case, the cost advantages decreases from ∼50% to ∼10% over experimentally reasonable ranges of suspension loading. Such results are important input for design choices when both battery architectures are viable options.

  13. Empirical expressions for estimating length and weight of axial-flow components of VTOL powerplants

    NASA Technical Reports Server (NTRS)

    Sagerser, D. A.; Lieblein, S.; Krebs, R. P.

    1971-01-01

    Simplified equations are presented for estimating the length and weight of major powerplant components of VTOL aircraft. The equations were developed from correlations of lift and cruise engine data. Components involved include fan, fan duct, compressor, combustor, turbine, structure, and accessories. Comparisons of actual and calculated total engine weights are included for several representative engines.

  14. A novel concealed information test method based on independent component analysis and support vector machine.

    PubMed

    Gao, Junfeng; Lu, Liang; Yang, Yong; Yu, Gang; Na, Liantao; Rao, NiNi

    2012-01-01

    The concealed information test (CIT) has drawn much attention and has been widely investigated in recent years. In this study, a novel CIT method based on denoised P3 and machine learning was proposed to improve the accuracy of lie detection. Thirty participants were chosen as the guilty and innocent participants to perform the paradigms of 3 types of stimuli. The electroencephalogram (EEG) signals were recorded and separated into many single trials. In order to enhance the signal noise ratio (SNR) of P3 components, the independent component analysis (ICA) method was adopted to separate non-P3 components (i.e., artifacts) from every single trial. In order to automatically identify the P3 independent components (ICs), a new method based on topography template was proposed to automatically identify the P3 ICs. Then the P3 waveforms with high SNR were reconstructed on Pz electrodes. Second, the 3 groups of features based on time,frequency, and wavelets were extracted from the reconstructed P3 waveforms. Finally, 2 classes of feature samples were used to train a support vector machine (SVM) classifier because it has higher performance compared with several other classifiers. Meanwhile, the optimal number of P3 ICs and some other parameter values in the classifiers were determined by the cross-validation procedures. The presented method achieved a balance test accuracy of 84.29% on detecting P3 components for the guilty and innocent participants. The presented method improves the efficiency of CIT in comparison with previous reported methods. PMID:22423552

  15. Developing standard performance testing procedures for material control and accounting components at a site

    SciTech Connect

    Scherer, Carolynn P; Bushlya, Anatoly V; Efimenko, Vladimir F; Ilyanstev, Anatoly; Regoushevsky, Victor I

    2010-01-01

    The condition of a nuclear material control and accountability system (MC&A) and its individual components, as with any system combining technical elements and documentation, may be characterized through an aggregate of values for the various parameters that determine the system's ability to perform. The MC&A system's status may be functioning effectively, marginally or not functioning based on a summary of the values of the individual parameters. This work included a review of the following subsystems, MC&A and Detecting Material Losses, and their respective elements for the material control and accountability system: (a) Elements of the MC&A Subsystem - Information subsystem (Accountancy/Inventory), Measurement subsystem, Nuclear Material Access subsystem, including tamper-indicating device (TID) program, and Automated Information-gathering subsystem; (b) Elements for Detecting Nuclear Material Loses Subsystem - Inventory Differences, Shipper/receiver Differences, Confirmatory Measurements and differences with accounting data, and TID or Seal Violations. In order to detect the absence or loss of nuclear material there must be appropriate interactions among the elements and their respective subsystems from the list above. Additionally this work includes a review of regulatory requirements for the MC&A system component characteristics and criteria that support the evaluation of the performance of the listed components. The listed components had performance testing algorithms and procedures developed that took into consideration the regulatory criteria. The developed MC&A performance-testing procedures were the basis for a Guide for MC&A Performance Testing at the material balance areas (MBAs) of State Scientific Center of the Russian Federation - Institute for Physics and Power Engineering (SSC RF-IPPE).

  16. A Single-Block TRL Test Fixture for the Cryogenic Characterization of Planar Microwave Components

    NASA Technical Reports Server (NTRS)

    Mejia, M.; Creason, A. S.; Toncich, S. S.; Ebihara, B. T.; Miranda, F. A.

    1996-01-01

    The High-Temperature-Superconductivity (HTS) group of the RF Technology Branch, Space Electronics Division, is actively involved in the fabrication and cryogenic characterization of planar microwave components for space applications. This process requires fast, reliable, and accurate measurement techniques not readily available. A new calibration standard/test fixture that enhances the integrity and reliability of the component characterization process has been developed. The fixture consists of 50 omega thru, reflect, delay, and device under test gold lines etched onto a 254 microns (0.010 in) thick alumina substrate. The Thru-Reflect-Line (TRL) fixture was tested at room temperature using a 30 omega, 7.62 mm (300 mil) long, gold line as a known standard. Good agreement between the experimental data and the data modelled using Sonnet's em(C) software was obtained for both the return (S(sub 11)) and insertion (S( 21)) losses. A gold two-pole bandpass filter with a 7.3 GHz center frequency was used as our Device Under Test (DUT), and the results compared with those obtained using a Short-Open-Load-Thru (SOLT) calibration technique.

  17. Component Fragility Research Program: Phase 1, Demonstration tests: Volume 1, Summary report

    SciTech Connect

    Holman, G.S.; Chou, C.K.; Shipway, G.D.; Glozman, V.

    1987-08-01

    This report describes tests performed in Phase I of the NRC Component Fragility Research Program. The purpose of these tests was to demonstrate procedures for characterizing the seismic fragility of a selected component, investigating how various parameters affect fragility, and finally using test data to develop practical fragility descriptions suitable for application in probabilistic risk assessments. A three-column motor control center housing motor controllers of various types and sizes as well as relays of different types and manufacturers was subjected to seismic input motions up to 2.5g zero period acceleration. To investigate the effect of base flexibility on the structural behavior of the MCC and on the functional behavior of the electrical devices, multiple tests were performed on each of four mounting configurations: four bolts per column with top bracking, four bolts per column with no top brace, four bolts per column with internal diagonal bracking, and two bolts per column with no top or internal bracking. Device fragility was characterized by contact chatter correlated to local in-cabinet response at the device location. Seismic capacities were developed for each device on the basis of local input motion required to cause chatter; these results were then applied to develop probabilistic fragility curves for each type of device, including estimates of the ''high-confidence low probability of failure'' capacity of each.

  18. Investigation of turbulent flow in highly curved ducts with application to turbomachinery components

    NASA Technical Reports Server (NTRS)

    Humphrey, J. A. C.; Arnal, M. P.

    1987-01-01

    Numerical predictions were performed using a semi-elliptic calculation procedure for the case of turbulent flow in passage through a 90 deg bend of square cross section. Two versions of the isotropic turbulent viscosity two equation k-epsilon model were used. The first, the wall function model (WFM), employs the logarithmic law-of-the-wall relation and the notion of equilibrium flow to set all the necessary boundary conditions at the first grid point adjacent to a solid wall. The second model, the Van Driest model (VDM), employs Prandtl's original mixing length formulation, in conjunction with Van Driest's semi-empirical relation for the mixing length, to calculate the turbulent viscosity in the near wall regions of the flow. In this case, boundary conditions for k and epsilon, required to calculate these quantities in the core of the flow, are obtained by matching the mixing length and Reynolds number model formulations in an overlapping region of the flow near the walls. In both cases the results obtained show an improvement over earlier calculations using an elliptic numerical procedure. This is attributed to the finer grids possible in the present work. Of the two models, the VDM formulation shows better overall conformity with the mean flow measurements. Neither model reproduces well the details of the stress distribution as a result of the implied isotropic turbulent viscosity.

  19. Testing low mass flow train in the DOE Coal Fired Flow Facility. Quarterly technical progress report, July-September 1983

    SciTech Connect

    Not Available

    1984-06-01

    UTSI reports on testing of the Low Mass Flow Train in the DOE Coal Fired Flow Facility. During this period eight tests were conducted, which complete the seed/slag interaction test series. Preliminary results of these tests are reported. Additional nitrogen oxide (NO/sub x/) measurements are included, as are SO/sub 2/ removal results. An analysis of deposit accumulation on the tubes in the materials test module is reported. Data obtained from high velocity thermocouple (HVT) probes in the radiant furnace are included for the first time and show essentially a flat temperature profile in the furnace. Heat transfer calculations for the flow train are correlated with experimental measurements, including those obtained from both UTSI and MSU line reversal systems.

  20. Computation of aircraft component flow fields at transonic Mach numbers using a three-dimensional Navier-Stokes algorithm

    NASA Technical Reports Server (NTRS)

    Shrewsbury, George D.; Vadyak, Joseph; Schuster, David M.; Smith, Marilyn J.

    1989-01-01

    A computer analysis was developed for calculating steady (or unsteady) three-dimensional aircraft component flow fields. This algorithm, called ENS3D, can compute the flow field for the following configurations: diffuser duct/thrust nozzle, isolated wing, isolated fuselage, wing/fuselage with or without integrated inlet and exhaust, nacelle/inlet, nacelle (fuselage) afterbody/exhaust jet, complete transport engine installation, and multicomponent configurations using zonal grid generation technique. Solutions can be obtained for subsonic, transonic, or hypersonic freestream speeds. The algorithm can solve either the Euler equations for inviscid flow, the thin shear layer Navier-Stokes equations for viscous flow, or the full Navier-Stokes equations for viscous flow. The flow field solution is determined on a body-fitted computational grid. A fully-implicit alternating direction implicit method is employed for the solution of the finite difference equations. For viscous computations, either a two layer eddy-viscosity turbulence model or the k-epsilon two equation transport model can be used to achieve mathematical closure.

  1. Phosphorylated SAP155, the spliceosomal component, is localized to chromatin in postnatal mouse testes

    SciTech Connect

    Eto, Ko; Sonoda, Yoshiyuki; Jin, Yuji; Abe, Shin-ichi

    2010-03-19

    SAP155 is an essential component of the spliceosome and its phosphorylation is required for splicing catalysis, but little is known concerning its expression and regulation during spermatogenesis in postnatal mouse testes. We report that SAP155 is ubiquitously expressed in nuclei of germ and Sertoli cells within the seminiferous tubules of 6- and 35-day postpartum (dpp) testes. Analyses by fractionation of testes revealed that (1) phosphorylated SAP155 was found in the fraction containing nuclear structures at 6 dpp in amounts much larger than that at other ages; (2) non-phosphorylated SAP155 was detected in the fraction containing nucleoplasm; and (3) phosphorylated SAP155 was preferentially associated with chromatin. Our findings suggest that the active spliceosome, containing phosphorylated SAP155, performs pre-mRNA splicing on chromatin concomitant with transcription during testicular development.

  2. Smart licensing and environmental flows: Modeling framework and sensitivity testing

    NASA Astrophysics Data System (ADS)

    Wilby, R. L.; Fenn, C. R.; Wood, P. J.; Timlett, R.; Lequesne, T.

    2011-12-01

    Adapting to climate change is just one among many challenges facing river managers. The response will involve balancing the long-term water demands of society with the changing needs of the environment in sustainable and cost effective ways. This paper describes a modeling framework for evaluating the sensitivity of low river flows to different configurations of abstraction licensing under both historical climate variability and expected climate change. A rainfall-runoff model is used to quantify trade-offs among environmental flow (e-flow) requirements, potential surface and groundwater abstraction volumes, and the frequency of harmful low-flow conditions. Using the River Itchen in southern England as a case study it is shown that the abstraction volume is more sensitive to uncertainty in the regional climate change projection than to the e-flow target. It is also found that "smarter" licensing arrangements (involving a mix of hands off flows and "rising block" abstraction rules) could achieve e-flow targets more frequently than conventional seasonal abstraction limits, with only modest reductions in average annual yield, even under a hotter, drier climate change scenario.

  3. A tension-torsional fatigue testing apparatus for micro-scale components

    NASA Astrophysics Data System (ADS)

    Fu, Sichao; Wang, Lei; Chen, Gang; Yu, Dunji; Chen, Xu

    2016-01-01

    Mechanical characterization of micro-scale components under complex loading conditions is a great challenge. To meet such a challenge, a microtension-torsional fatigue testing apparatus is developed in this study that specializes in the evaluation of multiaxial fatigue behavior of thin stent wires. The actuation and measurement in two controlled directions are incorporated in the tensile and torsional load frames, respectively, and a thrust air bearing is applied for the coupling of the two frames. The axial deformation of specimens measured by a grating sensor built in the linear motor and by a non-contact displacement detect system is compared and corrected. The accuracy of the torque measurement is proved by torsion tests on thin wires of 316L stainless steel in nominal diameters of 100 μm. Multistep torsion test, multiaxial ratcheting test, and a fully strain controlled multiaxial cyclic test are performed on 100 μm and 200 μm-diameter 316L wires using this apparatus. The capability of the equipment in tension-torsional cyclic tests for micro-scale specimens is demonstrated by the experimental results.

  4. A tension-torsional fatigue testing apparatus for micro-scale components.

    PubMed

    Fu, Sichao; Wang, Lei; Chen, Gang; Yu, Dunji; Chen, Xu

    2016-01-01

    Mechanical characterization of micro-scale components under complex loading conditions is a great challenge. To meet such a challenge, a microtension-torsional fatigue testing apparatus is developed in this study that specializes in the evaluation of multiaxial fatigue behavior of thin stent wires. The actuation and measurement in two controlled directions are incorporated in the tensile and torsional load frames, respectively, and a thrust air bearing is applied for the coupling of the two frames. The axial deformation of specimens measured by a grating sensor built in the linear motor and by a non-contact displacement detect system is compared and corrected. The accuracy of the torque measurement is proved by torsion tests on thin wires of 316L stainless steel in nominal diameters of 100 μm. Multistep torsion test, multiaxial ratcheting test, and a fully strain controlled multiaxial cyclic test are performed on 100 μm and 200 μm-diameter 316L wires using this apparatus. The capability of the equipment in tension-torsional cyclic tests for micro-scale specimens is demonstrated by the experimental results. PMID:26827357

  5. Department of Defense picture archiving and communication system acceptance testing: results and identification of problem components.

    PubMed

    Allison, Scott A; Sweet, Clifford F; Beall, Douglas P; Lewis, Thomas E; Monroe, Thomas

    2005-09-01

    The PACS implementation process is complicated requiring a tremendous amount of time, resources, and planning. The Department of Defense (DOD) has significant experience in developing and refining PACS acceptance testing (AT) protocols that assure contract compliance, clinical safety, and functionality. The DOD's AT experience under the initial Medical Diagnostic Imaging Support System contract led to the current Digital Imaging Network-Picture Archiving and Communications Systems (DIN-PACS) contract AT protocol. To identify the most common system and component deficiencies under the current DIN-PACS AT protocol, 14 tri-service sites were evaluated during 1998-2000. Sixteen system deficiency citations with 154 separate types of limitations were noted with problems involving the workstation, interfaces, and the Radiology Information System comprising more than 50% of the citations. Larger PACS deployments were associated with a higher number of deficiencies. The most commonly cited systems deficiencies were among the most expensive components of the PACS. PMID:15924273

  6. High resolution gamma ray tomography scanner for flow measurement and non-destructive testing applications

    SciTech Connect

    Hampel, U.; Bieberle, A.; Hoppe, D.; Kronenberg, J.; Schleicher, E.; Suehnel, T.; Zimmermann, F.; Zippe, C.

    2007-10-15

    We report on the development of a high resolution gamma ray tomography scanner that is operated with a Cs-137 isotopic source at 662 keV gamma photon energy and achieves a spatial image resolution of 0.2 line pairs/mm at 10% modulation transfer function for noncollimated detectors. It is primarily intended for the scientific study of flow regimes and phase fraction distributions in fuel element assemblies, chemical reactors, pipelines, and hydrodynamic machines. Furthermore, it is applicable to nondestructive testing of larger radiologically dense objects. The radiation detector is based on advanced avalanche photodiode technology in conjunction with lutetium yttrium orthosilicate scintillation crystals. The detector arc comprises 320 single detector elements which are operated in pulse counting mode. For measurements at fixed vessels or plant components, we built a computed tomography scanner gantry that comprises rotational and translational stages, power supply via slip rings, and data communication to the measurement personal computer via wireless local area network.

  7. High resolution gamma ray tomography scanner for flow measurement and non-destructive testing applications

    NASA Astrophysics Data System (ADS)

    Hampel, U.; Bieberle, A.; Hoppe, D.; Kronenberg, J.; Schleicher, E.; Sühnel, T.; Zimmermann, F.; Zippe, C.

    2007-10-01

    We report on the development of a high resolution gamma ray tomography scanner that is operated with a Cs-137 isotopic source at 662keV gamma photon energy and achieves a spatial image resolution of 0.2linepairs/mm at 10% modulation transfer function for noncollimated detectors. It is primarily intended for the scientific study of flow regimes and phase fraction distributions in fuel element assemblies, chemical reactors, pipelines, and hydrodynamic machines. Furthermore, it is applicable to nondestructive testing of larger radiologically dense objects. The radiation detector is based on advanced avalanche photodiode technology in conjunction with lutetium yttrium orthosilicate scintillation crystals. The detector arc comprises 320 single detector elements which are operated in pulse counting mode. For measurements at fixed vessels or plant components, we built a computed tomography scanner gantry that comprises rotational and translational stages, power supply via slip rings, and data communication to the measurement personal computer via wireless local area network.

  8. Columbia University flow instability experimental program: Volume 3. Single tube parallel flow tests

    SciTech Connect

    Dougherty, T.; Maciuca, C.; McAssey, E.V. Jr.; Reddy, D.G.; Yang, B.W.

    1990-06-01

    The coolant in the Savannah River Site (SRS) production nuclear reactor assemblies is circulated as a subcooled liquid under normal operating conditions. This coolant is evenly distributed throughout multiple annular flow channels with a uniform pressure profile across each coolant flow channel. During the postulated Loss of Coolant Accident (LOCA), which is initiated by a hypothetical guillotine pipe break, the coolant flow through the reactor assemblies is significantly reduced. The flow reduction and accompanying power reduction (after shutdown is initiated) occur in the first 1--2 seconds of the LOCA. This portion of the LOCA is referred to as the Flow Instability phase. A series of down flow experiments have been conducted on three different size single tubes. The objective of these experiments was to determine the effect of a parallel flow path on the occurrence of flow instability. In all cases, it has been shown that the point of flow instability (OFI) determined under controlled flow operation does not change when operating in a controlled pressure drop mode (parallel path operation).

  9. The application of flow cytometry to histocompatibility testing.

    PubMed

    Horsburgh, T; Martin, S; Robson, A J

    2000-03-01

    Flow cytometry is a powerful technique that enables the sensitive and quantitative detection of both cellular antigens and bound biological moieties. This article reviews how flow cytometry is increasingly being used as histocompatibility laboratories for the analysis of antibody specificity and HLA antigen expression. A basic description of flow cytometry principles and standardisation is given, together with an outline of clinical application in the areas of pre-transplant cross-matching, antibody screening, post-transplant antibody monitoring and HLA-B27 detection. It is concluded that flow cytometry is a useful multi-parametric analytical tool, yielding clinical benefit especially in the identification of patients at risk of early transplant rejection. PMID:10834606

  10. NSTX Progress and Plan of Interest to Component Test Facility (CTF)

    NASA Astrophysics Data System (ADS)

    Peng, Yueng Kay Martin

    2006-10-01

    Continued rapid progress on NSTX and more broadly in Tokamak and ST plasma science has indicated relatively robust physics conditions in a broad number of topical areas for a compact CTF [1], which is included in the DOE Office of Science Strategic Plan [2]. This progress has enabled an updated projection of the practical CTF plasma conditions. The results indicate appropriate designs with R0 = 1.1-1.2 m, A = 1.5, elongation ˜ 3, BT ˜ 1.5-2.5 T, and a range of Ip = 6-12 MA to deliver a fusion neutron flux of 0.5-4.0 MW/m2, requiring a range of 30-70 MW of combined neutral beam and RF heating and current drive power. Database is evaluated to be adequate in Macroscopic Plasma Physics; Multi-scale Plasma Physics; Waves and Energetic Particles; and Physics Integration; but not yet adequate in Plasma Boundary Interface (high divertor heat flux) and Solenoid-Free Operations (current initiation and ramp-up). Near-term ST research to strengthen and fill in the needed database will be described, including a discussion on how the CTF testing program could begin with plasma facing component testing in D-D at low currents followed by fusion component testing in D-T at higher currents. [1] Plasma Phys. Contol. Fusion {47} (2005) B263. [2] http://www.sc.doe.gov/bes/archives/plans/SCSP/12FEB04.pdf.

  11. WIPP/SRL in-situ tests: MIIT program--The effects of metal package components

    SciTech Connect

    Covington, J.A.; Wicks, G.G.; Molecke, M.A.

    1991-12-31

    The Materials Interface Interactions Tests or MIIT is the largest in-situ testing program in progress, involving burial of many simulated nuclear waste systems and accompanying package components. In MIIT, waste glass samples were fabricated into the shape of `pineapple slices`, polished on one side. Proposed package components were also made into a similar configuration and the various glasses, metals, and geologic samples were than stacked onto heater elements within Teflon assemblies. This produced interactions of interest by creating glass/glass, glass/salt, and glass/metal interfaces. Since the outer diameter of the metal was smaller than the outer diameter of the glass, a lip was created which was also produced a glass/liquid interface, which was also studied. Overall, a total of 50 stacks or assemblies of pineapple slices were created in seven different stacking arrangements. Each individual assembly was then installed in an instrumented borehole at WIPP. Brine was then added to most of boreholes and the assemblies heated and maintained at 90{degrees}C. This was achieved by energizing the central heating and rod that traversed through the middle opening of each of the pineapple slices in each assembly. Due to the design of these units, glass, metal and geologic samples could be removed at time intervals of 6 mos., 1 year, 2 years, and 5 years. Currently, all but the 5 year samples have been removed from test and are being evaluated in laboratories of MIIT participants.

  12. WIPP/SRL in-situ tests: MIIT program--The effects of metal package components

    SciTech Connect

    Covington, J.A. ); Wicks, G.G. ); Molecke, M.A. )

    1991-01-01

    The Materials Interface Interactions Tests or MIIT is the largest in-situ testing program in progress, involving burial of many simulated nuclear waste systems and accompanying package components. In MIIT, waste glass samples were fabricated into the shape of pineapple slices', polished on one side. Proposed package components were also made into a similar configuration and the various glasses, metals, and geologic samples were than stacked onto heater elements within Teflon assemblies. This produced interactions of interest by creating glass/glass, glass/salt, and glass/metal interfaces. Since the outer diameter of the metal was smaller than the outer diameter of the glass, a lip was created which was also produced a glass/liquid interface, which was also studied. Overall, a total of 50 stacks or assemblies of pineapple slices were created in seven different stacking arrangements. Each individual assembly was then installed in an instrumented borehole at WIPP. Brine was then added to most of boreholes and the assemblies heated and maintained at 90{degrees}C. This was achieved by energizing the central heating and rod that traversed through the middle opening of each of the pineapple slices in each assembly. Due to the design of these units, glass, metal and geologic samples could be removed at time intervals of 6 mos., 1 year, 2 years, and 5 years. Currently, all but the 5 year samples have been removed from test and are being evaluated in laboratories of MIIT participants.

  13. Testing Requirements for Performance and Reliability of Marine Hydrokinetic Components and Systems

    NASA Astrophysics Data System (ADS)

    Jepsen, R. A.; Metzinger, C.; Schluntz, J.

    2010-12-01

    The development of Marine Hydrokinetic (MHK) energy is an emerging industry and a recent surge of interest has produced over 100 new device concepts and designs for extracting energy from waves, tides, ocean and river currents, and ocean thermal gradients. Improved testing, analysis, and design tools are needed to more accurately model operational conditions, to optimize design parameters, and predict technology viability. With more interest and investment occurring in the MHK industry, it is imperative to apply up to date research and development principals to reliably accelerate the deployment and integration of this renewable resource. When developing any technology or understanding of a system, one must go through an iterative analysis and test process. This generally begins from a small proof of concept test based on an innovative idea to progressively larger scale component and system tests. The progression of testing and analysis eventually has a goal of reaching a full scale validation once process understanding and designs are refined enough for confidence in predicting the performance of the full scale application. There are several documented process descriptions for this approach such as Verification and Validation (V&V), Stage Gate progression, and Technology Readiness Level (TRL) progression. Any one of these is directly applicable to the development of MHK technologies. However, in order to follow the outline of these procedures, a developer must have both the analysis and test capabilities to ultimately reach a full understanding of a deployed system. A review of the development and testing history for MHK devices along with current testing requirements and capabilities regarding MHK development will be presented with items such as scaling, performance and reliability addressed.

  14. High Precision Mechanical Components for Soft X-ray Beamline: Engineering Goal and Testing Results

    SciTech Connect

    Kaznacheyev, K. V.; Karunakaran, Ch.; Sitnikov, A.; Loken, D.; Warwick, T.; Nagy, M.; Hitchcock, A. P.

    2007-01-19

    As the emittance of SR rings approaches the diffraction limit for soft x-rays, one requires not only excellence in design and performance of the optical elements, but also precision and performance of mechanical components, such as mirror manipulators, monochromator scanners and exit slits. We will present simple but efficient solutions for the mechanical systems of this type, commonly encountered in soft x-ray beamlines. These solutions have been implemented and their performance evaluated with test results from the spectromicroscopy beamline at the Canadian Light Source.

  15. High Precision Mechanical Components for Soft X-ray Beamline: Engineering Goal and Testing Results

    NASA Astrophysics Data System (ADS)

    Kaznacheyev, K. V.; Karunakaran, Ch.; Sitnikov, A.; Loken, D.; Warwick, T.; Nagy, M.; Hitchcock, A. P.

    2007-01-01

    As the emittance of SR rings approaches the diffraction limit for soft x-rays, one requires not only excellence in design and performance of the optical elements, but also precision and performance of mechanical components, such as mirror manipulators, monochromator scanners and exit slits. We will present simple but efficient solutions for the mechanical systems of this type, commonly encountered in soft x-ray beamlines. These solutions have been implemented and their performance evaluated with test results from the spectromicroscopy beamline at the Canadian Light Source.

  16. ATF (Advanced Toroidal Facility) ECH (Electron Cyclotron Heating) waveguide component development and testing

    SciTech Connect

    Bigelow, T.S.; White, T.L.; Kimrey, H.D.

    1987-01-01

    The Advanced Toroidal Facility (ATF) Electron Cyclotron Heating (ECH) system presently under construction will consist of two 53.2-GHz, 200-kW continuous-wave (cw) gyrotrons with a mode-controlled waveguide system and polarized launcher optimized for maximum power in the ATF plasma. Several components, such as a waveguide mode-analyzing directional coupler, a TiO/sub 2/ mode absorber, miter bends, and a polarization-selectable beamed launcher, have been developed and tested. Laboratory results and initial high-power operation of the system are presented. 2 refs., 2 figs.

  17. POD-Based Model Reduction toward Efficient Simulation of Flow in NuclearReactor Components

    NASA Astrophysics Data System (ADS)

    Ahmadpoor, Mohammad; Banyay, Greg; Mazumdar, Sagnik; Jana, Anirban; Kimber, Mark; Brigham, John

    2013-11-01

    The long-term objective of this research is reduced-order modeling (ROM) to simulate and understand the turbulent mixing inside the lower plenum of a Very High Temperature Reactor, while the present study focuses on confined isothermal jet flow. In general, two steps are required to generate a basis for a ROM: (1) acquisition of an ensemble of possible solution fields for the system; and (2) extracting key features of the ensemble to create the basis. Proper Orthogonal Decomposition (POD) is one approach for extracting features from an ensemble. For this work POD is used to capture the parametric variation of a flow with Reynolds (Re) number and time. Two approaches are considered for model reduction: (1) a regression-based approach, which does not keep the mathematical structure of the modeling, but rather uses interpolation and/or extrapolation to predict flow fields at different Re number or different times and (2) a Galerkin-projection approach in which the Navier-Stokes equations are projected onto the POD modes to obtain low-dimensional ordinary differential equations to represent the fluid flow under conditions outside of the original ensemble.

  18. Preliminary vibration, acoustic, and shock design and test criteria for components on the HEAO-C spacecraft

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The vibration, acoustic, and shock specification test criteria for spacecraft components and subassemblies and for the high Energy Astronomy Observatory (HEAO-C) experiments are presented. The HEAO-C was divided into zones and subzones to obtain simple component groupings. Zones are designated primarily to assist in determining the applicable specification. A subzone (general specification) is available for use when the location of the component is known but component design and weight are not well defined. When the location, weight, and mounting configuration of the component are known, the appropriate subzone weight ranges (-A, -B, etc. ) are available. Experiment and specific component specifications are available.

  19. Preliminary vibration, acoustic, and shock design and test criteria for components on the HEAO-A spacecraft

    NASA Technical Reports Server (NTRS)

    1975-01-01

    These vibration, acoustic, and shock specifications provide the qualification test criteria for spacecraft components and subassemblies and for the High Energy Astronomy Observatory (HEAO-A) experiments. The HEAO-A was divided into zones and subzones to obtain simple component groupings. Zones are designated primarily to assist in determining the applicable specification. A Subzone is available for use when the location of the component is known but component design and weight are not well defined. When the location, weight, and mounting configuration of the component are known, the appropriate Subzone weight ranges are available. Experiment and specific component specifications are available.

  20. Implementation of Leak Test Methods for the International Space Station (ISS) Elements, Systems and Components

    NASA Technical Reports Server (NTRS)

    Underwood, Steve; Lvovsky, Oleg

    2007-01-01

    The International Space Station (ISS has Qualification and Acceptance Environmental Test Requirements document, SSP 41172 that includes many environmental tests such as Thermal vacuum & Cycling, Depress/Repress, Sinusoidal, Random, and Acoustic Vibration, Pyro Shock, Acceleration, Humidity, Pressure, Electromatic Interference (EMI)/Electromagnetic Compatibility (EMCO), etc. This document also includes (13) leak test methods for Pressure Integrity Verification of the ISS Elements, Systems, and Components. These leak test methods are well known, however, the test procedure for specific leak test method shall be written and implemented paying attention to the important procedural steps/details that, if omitted or deviated, could impact the quality of the final product and affect the crew safety. Such procedural steps/details for different methods include, but not limited to: - Sequence of testing, f or example, pressurization and submersion steps for Method I (Immersion); - Stabilization of the mass spectrometer leak detector outputs fo r Method II (vacuum Chamber or Bell jar); - Proper data processing an d taking a conservative approach while making predictions for on-orbit leakage rate for Method III(Pressure Change); - Proper Calibration o f the mass spectrometer leak detector for all the tracer gas (mostly Helium) Methods such as Method V (Detector Probe), Method VI (Hood), Method VII (Tracer Probe), Method VIII(Accumulation); - Usage of visibl ility aides for Method I (Immersion), Method IV (Chemical Indicator), Method XII (Foam/Liquid Application), and Method XIII (Hydrostatic/Visual Inspection); While some methods could be used for the total leaka ge (either internal-to-external or external-to-internal) rate requirement verification (Vacuum Chamber, Pressure Decay, Hood, Accumulation), other methods shall be used only as a pass/fail test for individual joints (e.g., welds, fittings, and plugs) or for troubleshooting purposes (Chemical Indicator, Detector Probe

  1. Operational evaluation of a proppeller test stand in the quiet flow facility at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Block, P. J. W.

    1982-01-01

    Operational proof tests of a propeller test stand (PTS) in a quiet flow facility (QFF) are presented. The PTS is an experimental test bed for acoustic propeller research in the quiet flow environment of the QFF. These proof tests validate thrust and torque predictions, examine the repeatability of measurements on the PTS, and determine the effect of applying artificial roughness to the propeller blades. Since a thrusting propeller causes an open jet to contract, the potential flow core was surveyed to examine the magnitude of the contraction. These measurements are compared with predicted values. The predictions are used to determine operational limitations for testing a given propeller design in the QFF.

  2. Chlorine-36 data at Yucca Mountain: Statistical tests of conceptual models for unsaturated-zone flow

    USGS Publications Warehouse

    Campbell, K.; Wolfsberg, A.; Fabryka-Martin, J.; Sweetkind, D.

    2003-01-01

    An extensive set of chlorine-36 (36Cl) data has been collected in the Exploratory Studies Facility (ESF), an 8-km-long tunnel at Yucca Mountain, Nevada, for the purpose of developing and testing conceptual models of flow and transport in the unsaturated zone (UZ) at this site. At several locations, the measured values of 36Cl/Cl ratios for salts leached from rock samples are high enough to provide strong evidence that at least a small component of bomb-pulse 36Cl, fallout from atmospheric testing of nuclear devices in the 1950s and 1960s, was measured, implying that some fraction of the water traveled from the ground surface through 200-300 m of unsaturated rock to the level of the ESF during the last 50 years. These data are analyzed here using a formal statistical approach based on log-linear models to evaluate alternative conceptual models for the distribution of such fast flow paths. The most significant determinant of the presence of bomb-pulse 36Cl in a sample from the welded Topopah Spring unit (TSw) is the structural setting from which the sample was collected. Our analysis generally supports the conceptual model that a fault that cuts through the nonwelded Paintbrush tuff unit (PTn) that overlies the TSw is required in order for bomb-pulse 36Cl to be transmitted to the sample depth in less than 50 years. Away from PTn-cutting faults, the ages of water samples at the ESF appear to be a strong function of the thickness of the nonwelded tuff between the ground surface and the ESF, due to slow matrix flow in that unit. ?? 2002 Elsevier Science B.V. All rights reserved.

  3. Chlorine-36 data at Yucca Mountain: statistical tests of conceptual models for unsaturated-zone flow.

    PubMed

    Campbell, Katherine; Wolfsberg, Andrew; Fabryka-Martin, June; Sweetkind, Donald

    2003-01-01

    An extensive set of chlorine-36 (36Cl) data has been collected in the Exploratory Studies Facility (ESF), an 8-km-long tunnel at Yucca Mountain, Nevada, for the purpose of developing and testing conceptual models of flow and transport in the unsaturated zone (UZ) at this site. At several locations, the measured values of 36Cl/Cl ratios for salts leached from rock samples are high enough to provide strong evidence that at least a small component of bomb-pulse 36Cl, fallout from atmospheric testing of nuclear devices in the 1950s and 1960s, was measured, implying that some fraction of the water traveled from the ground surface through 200-300 m of unsaturated rock to the level of the ESF during the last 50 years. These data are analyzed here using a formal statistical approach based on log-linear models to evaluate alternative conceptual models for the distribution of such fast flow paths. The most significant determinant of the presence of bomb-pulse 36Cl in a sample from the welded Topopah Spring unit (TSw) is the structural setting from which the sample was collected. Our analysis generally supports the conceptual model that a fault that cuts through the nonwelded Paintbrush tuff unit (PTn) that overlies the TSw is required in order for bomb-pulse 36Cl to be transmitted to the sample depth in less than 50 years. Away from PTn-cutting faults, the ages of water samples at the ESF appear to be a strong function of the thickness of the nonwelded tuff between the ground surface and the ESF, due to slow matrix flow in that unit. PMID:12714284

  4. J-2X Engine Components Tested at Marshall Space Flight Center (MSFC)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Chosen to power the upper stages of the new Ares I Crew Launch Vehicle (CLV) and the Ares V cargo segment, the J-2X engine is a stepped up version of the hydrogen/oxygen-fuelled Apollo-era J-2 engine. It was developed for NASA by Pratt & Whitney Rocketdyne (PWR), a business unit of United Technologies Corporation of Canoga Park, California. As seen in this photograph, the engine underwent a series of hot fire tests, performed on sub scale main injector hardware in the Test Stand 116 at Marshall Space Flight Center (MSFC). The injector is a major component of the engine that injects and mixes propellants in the combustion chamber, where they are ignited and burned to produce thrust.

  5. The large-area hybrid-optics CLAS12 RICH detector: Tests of innovative components

    SciTech Connect

    Contalbrigo, M; Baltzell, N; Benmokhtar, F; Barion, L; Cisbani, E; El Alaoui, A; Hafidi, K; Hoek, M; Kubarovsky, V; Lagamba, L; Lucherini, V; Malaguti, R; Mirazita, M; Montgomery, R; Movsisyan, A; Musico, P; Orecchini, D; Orlandi, A; Pappalardo, L L; Pereira, S; Perrino, R; Phillips, J; Pisano, S; Rossi, P; Squerzanti, S; Tomassini, S; Turisini, M; Viticchiè, A

    2014-07-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadronization and hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and densely packed and highly segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). The preliminary results of individual detector component tests and of the prototype performance at test-beams are reported here.

  6. The large-area hybrid-optics CLAS12 RICH detector: Tests of innovative components

    NASA Astrophysics Data System (ADS)

    Contalbrigo, M.; Baltzell, N.; Benmokhtar, F.; Barion, L.; Cisbani, E.; El Alaoui, A.; Hafidi, K.; Hoek, M.; Kubarovsky, V.; Lagamba, L.; Lucherini, V.; Malaguti, R.; Mirazita, M.; Montgomery, R.; Movsisyan, A.; Musico, P.; Orecchini, D.; Orlandi, A.; Pappalardo, L. L.; Pereira, S.; Perrino, R.; Phillips, J.; Pisano, S.; Rossi, P.; Squerzanti, S.; Tomassini, S.; Turisini, M.; Viticchiè, A.

    2014-12-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadronization and hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and densely packed and highly segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). The preliminary results of individual detector component tests and of the prototype performance at test-beams are reported here.

  7. Standardization Efforts for Mechanical Testing and Design of Advanced Ceramic Materials and Components

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Jenkins, Michael G.

    2003-01-01

    Advanced aerospace systems occasionally require the use of very brittle materials such as sapphire and ultra-high temperature ceramics. Although great progress has been made in the development of methods and standards for machining, testing and design of component from these materials, additional development and dissemination of standard practices is needed. ASTM Committee C28 on Advanced Ceramics and ISO TC 206 have taken a lead role in the standardization of testing for ceramics, and recent efforts and needs in standards development by Committee C28 on Advanced Ceramics will be summarized. In some cases, the engineers, etc. involved are unaware of the latest developments, and traditional approaches applicable to other material systems are applied. Two examples of flight hardware failures that might have been prevented via education and standardization will be presented.

  8. Shock Desensitization Effect in the STANAG 4363 Confined Explosive Component Water Gap Test

    SciTech Connect

    Lefrancois, A S; Lee, R S; Tarver, C M

    2006-06-07

    The Explosive Component Water Gap Test (ECWGT) in the Stanag 4363 has been recently investigated to assess the shock sensitivity of lead and booster components having a diameter less than 5 mm. For that purpose, Pentaerythritol Tetranitrate (PETN) based pellets having a height and diameter of 3 mm have been confined by a steel annulus of wall thickness 1-3.5 mm and with the same height as the pellet. 1-mm wall thickness makes the component more sensitive (larger gap). As the wall thickness is increased to 2-mm, the gap increases a lesser amount, but when the wall thickness is increased to 3.5-mm a decrease in sensitivity is observed (smaller gap). This decrease of the water gap has been reproduced experimentally by many nations. Numerical simulations using Ignition and Growth model have been performed in this paper and have reproduced the experimental results for the steel confinement up to 2 mm thick and aluminum confinement. A stronger re-shock following the first input shock from the water is focusing on the axis due to the confinement. The double shock configuration is well-known to lead in some cases to shock desensitization.

  9. Three-dimensional NDE of VHTR core components via simulation-based testing. Final report

    SciTech Connect

    Guzina, Bojan; Kunerth, Dennis

    2014-09-30

    A next generation, simulation-driven-and-enabled testing platform is developed for the 3D detection and characterization of defects and damage in nuclear graphite and composite structures in Very High Temperature Reactors (VHTRs). The proposed work addresses the critical need for the development of high-fidelity Non-Destructive Examination (NDE) technologies for as-manufactured and replaceable in-service VHTR components. Centered around the novel use of elastic (sonic and ultrasonic) waves, this project deploys a robust, non-iterative inverse solution for the 3D defect reconstruction together with a non-contact, laser-based approach to the measurement of experimental waveforms in VHTR core components. In particular, this research (1) deploys three-dimensional Scanning Laser Doppler Vibrometry (3D SLDV) as a means to accurately and remotely measure 3D displacement waveforms over the accessible surface of a VHTR core component excited by mechanical vibratory source; (2) implements a powerful new inverse technique, based on the concept of Topological Sensitivity (TS), for non-iterative elastic waveform tomography of internal defects - that permits robust 3D detection, reconstruction and characterization of discrete damage (e.g. holes and fractures) in nuclear graphite from limited-aperture NDE measurements; (3) implements state-of-the art computational (finite element) model that caters for accurately simulating elastic wave propagation in 3D blocks of nuclear graphite; (4) integrates the SLDV testing methodology with the TS imaging algorithm into a non-contact, high-fidelity NDE platform for the 3D reconstruction and characterization of defects and damage in VHTR core components; and (5) applies the proposed methodology to VHTR core component samples (both two- and three-dimensional) with a priori induced, discrete damage in the form of holes and fractures. Overall, the newly established SLDV-TS testing platform represents a next-generation NDE tool that surpasses

  10. FUSION NUCLEAR SCIENCE FACILITY (FNSF) BEFORE UPGRADE TO COMPONENT TEST FACILITY (CTF)

    SciTech Connect

    Peng, Yueng Kay Martin; Canik, John; Diem, Stephanie J; Milora, Stanley L; Park, J. M.; Sontag, Aaron C; Fogarty, P. J.; Lumsdaine, Arnold; Murakami, Masanori; Burgess, Thomas W; Cole, Michael J; Katoh, Yutai; Korsah, Kofi; Patton, Bradley D; Wagner, John C; Yoder, III, Graydon L

    2011-01-01

    The compact (R0~1.2-1.3m) Fusion Nuclear Science Facility (FNSF) is aimed at providing a fully integrated, continuously driven fusion nuclear environment of copious fusion neutrons. This facility would be used to test, discover, and understand the complex challenges of fusion plasma material interactions, nuclear material interactions, tritium fuel management, and power extraction. Such a facility properly designed would provide, initially at the JET-level plasma pressure (~30%T2) and conditions (e.g., Hot-Ion H-Mode, Q<1)), an outboard fusion neutron flux of 0.25 MW/m2 while requiring a fusion power of ~19 MW. If and when this research is successful, its performance can be extended to 1 MW/m2 and ~76 MW by reaching for twice the JET plasma pressure and Q. High-safety factor q and moderate-plasmas are used to minimize or eliminate plasma-induced disruptions, to deliver reliably a neutron fluence of 1 MW-yr/m2 and a duty factor of 10% presently anticipated for the FNS research. Success of this research will depend on achieving time-efficient installation and replacement of all internal components using remote handling (RH). This in turn requires modular designs for the internal components, including the single-turn toroidal field coil center-post. These device goals would further dictate placement of support structures and vacuum weld seals behind the internal and shielding components. If these goals could be achieved, the FNSF would further provide a ready upgrade path to the Component Test Facility (CTF), which would aim to test, for 6 MW-yr/m2 and 30% duty cycle, the demanding fusion nuclear engineering and technologies for DEMO. This FNSF-CTF would thereby complement the ITER Program, and support and help mitigate the risks of an aggressive world fusion DEMO R&D Program. The key physics and technology research needed in the next decade to manage the potential risks of this FNSF are identified.

  11. Fusion Nuclear Science Facility (FNSF) before Upgrade to Component Test Facility (CTF)

    SciTech Connect

    Peng, Yueng Kay Martin

    2010-01-01

    The compact (R0~1.2-1.3m) Fusion Nuclear Science Facility (FNSF) is aimed at providing a fully integrated, continuously driven fusion nuclear environment of copious fusion neutrons. This facility would be used to test, discover, understand, and innovate scientific and technical solutions for the challenges facing DEMO, by addressing the multi-scale synergistic interactions involving fusion plasma material interactions, tritium fuel cycle, power extraction, and the nuclear effects on materials. Such a facility properly designed would provide, initially at the JET-level plasma pressure (~30%T2) and conditions (e.g., Hot-Ion H-Mode), an outboard fusion neutron flux of 0.25 MW/m2 while requiring a fusion power of 19 MW. If and when this research operation is successful, its performance can be extended to 1 MW/m2 and 76 MW by reaching for twice the JET plasma pressure and Q. High-safety factor q and moderate- plasmas would minimize plasma-induced disruptions, helping to deliver reliably a neutron fluence of 1 MW-yr/m2 and a duty factor of 10% presently anticipated for the FNS research. Success of this research will depend on achieving time-efficient installation and replacement of all components using extensive remote handling (RH). This in turn requires modular designs for all internal components, including the single-turn toroidal field coil center-post with RH-compatible bi-directional sliding joints. Such device goals would further dictate placement of support structures and vacuum seal welds behind the internal and shielding components. If these further goals could be achieved, the FNSF would provide a ready upgrade path to the Component Test Facility (CTF), which would aim to test, at higher neutron fluence and duty cycle, the demanding fusion nuclear engineering and technologies for DEMO. This FNSF-CTF strategy would be complementary to the ITER and the Broader Approach programs, and thereby help mitigate the risks of an aggressive world fusion DEMO R&D Program

  12. Experimental testing of flexible barriers for containment of debris flows

    USGS Publications Warehouse

    DeNatale, Jay S.; Iverson, Richard M.; Major, Jon J.; LaHusen, Richard G.; Fliegel, Gregg L.; Duffy, John D.

    1999-01-01

    In June 1996, six experiments conducted at the U.S. Geological Survey Debris Flow Flume demonstrated that flexible, vertical barriers constructed of wire rope netting can stop small debris flows. All experimental debris flows consisted of water-saturated gravelly sand with less than two percent finer sediment by weight. All debris flows had volumes of about 10 cubic meters, masses of about 20 metre tons, and impact velocities of 5 to 9 meters per second. In four experiments, the debris flow impacted pristine, unreformed barriers of varying design; in the other two experiments, the debris flow impacted barriers already loaded with sediment from a previous flow. Differences in barrier design led to differences in barrier performance. Experiments were conducted with barriers constructed of square-mesh wire-rope netting with 30centimeter, 20centimeter, and 15 centimeter mesh openings as well as 30centimeter diameter interlocking steel rings. In all cases, sediment cascading downslope at the leading edge of the debris flows tended to spray through the nets. Nets fitted with finer-mesh chain link or chicken wire liners contained more sediment than did unlined nets, and a ring net fitted with a synthetic silt screen liner contained nearly 100 percent of the sediment. Irreversible net displacements of up to 2 meters and friction brake engagement on the support and anchor cables dissipated some of the impact energy. However, substantial forces developed in the steel support columns and the lateral and tie-back anchor cables attached to these columns. As predicted by elementary mechanics, the anchor cables experienced larger tensile forces when the support columns were hinged at the base rather than bolted rigidly to the foundation. Measured loads in the lateral anchor cables exceeded those in the tie-back anchor cables and the load cell capacity of 45 kilo-Newtons. Measurements also indicated that the peak loads in the tie- back anchors were highly transient and occurred at

  13. Performance testing of a Savonius windmill rotor in shear flows

    NASA Astrophysics Data System (ADS)

    Mojola, O. O.; Onasanya, O. E.

    The effects of flow shear and/or unsteady behavior on the power generation capability of a Savonius wind turbine rotor are assessed in view of measurements conducted, both in two statistically steady shear flows and in the wind, of rotor tip speed and torque at a number of streamwise stations for each of four values of the rotor bucket overlap ratio. It is found that, even in the absence of shear, the power coefficient of a Savonius wind turbine rotor is most strongly dependent on tip speed ratio.

  14. Performance Testing of Lidar Components Subjected to Space Exposure in Space via MISSE 7 Mission

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.

    2012-01-01

    .The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. MISSE missions provide an opportunity for developing space qualifiable materials. Several laser and lidar components were sent by NASA Langley Research Center (LaRC) as a part of the MISSE 7 mission. The MISSE 7 module was transported to the international space station (ISS) via STS 129 mission that was launched on Nov 16, 2009. Later, the MISSE 7 module was brought back to the earth via the STS 134 that landed on June 1, 2011. The MISSE 7 module that was subjected to exposure in space environment for more than one and a half year included fiber laser, solid-state laser gain materials, detectors, and semiconductor laser diode. Performance testing of these components is now progressing. In this paper, the current progress on post-flight performance testing of a high-speed photodetector and a balanced receiver is discussed. Preliminary findings show that detector characteristics did not undergo any significant degradation.

  15. Component Selection, Accelerated Testing, and Improved Modeling of AMTEC Systems for Space Power (abstract)

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; Suitor, J.; O'Connor, D.

    1993-01-01

    Alkali metal thermal to electric converter (AMTEC) designs for space power are numerous, but selection of materials for construction of long-lived AMTEC devices has been limited to electrodes, current collectors, and the solid electrolyte. AMTEC devices with lifetimes greater than 5 years require careful selection and life testing of all hot-side components. The likely selection of a remote condensed design for initial flight test and probable use with a GPHS in AMTEC powered outer planet probes requires the device to be constructed to tolerate T greater than 1150K, as well as exposure to Na(sub (g)), and Na(sub (liq)) on the high pressure side. The temperatures involved make critical high strength and chemical resistance to Na containing Na(sub 2)O. Selection among materials which can be worked should not be driven by ease of fabricability, as high temperature stability is the critical issue. These concepts drive the selection of Mo alloys for Na(sub (liq)) containment in AMTEC cells for T to 1150K operation, as they are significantly stronger than comparable NB or Ta alloys, are less soluble in Na(sub (liq)) containing dissolved Na(sub 2)O, are workable compared to W alloys (which might be used for certain components), and are ductile at the T greater than 500K of proposed AMTEC modules in space applications.

  16. Performance testing of lidar components subjected to exposure in space via MISSE 7 mission

    NASA Astrophysics Data System (ADS)

    Prasad, Narasimha S.

    2012-10-01

    The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. MISSE missions provide an opportunity for developing space qualifiable materials. Several laser and lidar components were sent by NASA Langley Research Center (LaRC) as a part of the MISSE 7 mission. The MISSE 7 module was transported to the international space station (ISS) via STS 129 mission that was launched on Nov 16, 2009. Later, the MISSE 7 module was brought back to the earth via the STS 134 that landed on June 1, 2011. The MISSE 7 module that was subjected to exposure in space environment for more than one and a half year included fiber laser, solid-state laser gain materials, detectors, and semiconductor laser diode. Performance testing of these components is now progressing. In this paper, the current progress on post-flight performance testing of a high-speed photodetector and a balanced receiver is discussed. Preliminary findings show that detector characteristics did not undergo any significant degradation.

  17. Modelling of evaporation of a dispersed liquid component in a chemically active gas flow

    NASA Astrophysics Data System (ADS)

    Kryukov, V. G.; Naumov, V. I.; Kotov, V. Yu.

    1994-01-01

    A model has been developed to investigate evaporation of dispersed liquids in chemically active gas flow. Major efforts have been directed at the development of algorithms for implementing this model. The numerical experiments demonstrate that, in the boundary layer, significant changes in the composition and temperature of combustion products take place. This gives the opportunity to more correctly model energy release processes in combustion chambers of liquid-propellant rocket engines, gas-turbine engines, and other power devices.

  18. Characterization of GX 339-4 outburst of 2010-11: analysis by XSPEC using two component advective flow model

    NASA Astrophysics Data System (ADS)

    Debnath, Dipak; Mondal, Santanu; Chakrabarti, Sandip K.

    2015-02-01

    We study spectral properties of GX 339-4 during its 2010-11 outburst with two component advective flow (TCAF) model after its inclusion in XSPEC as a table model. We compare results fitted by TCAF model with combined disc blackbody and power-law model. For a spectral fit, we use 2.5-25 keV spectral data of the Proportional Counter Array instrument onboard RXTE satellite. From our fit, accretion flow parameters such as Keplerian (disc) rate, sub-Keplerian (halo) rate, location and strength of shock are extracted. We quantify how the disc and the halo rates vary during the entire outburst. We study how the halo to disc accretion rate ratio (ARR), quasi-periodic oscillations (QPOs), shock locations and its strength vary when the system passes through hard, hard-intermediate, soft-intermediate and soft states. We find pieces of evidence of monotonically increasing and decreasing nature of QPO frequencies depending on the variation of ARR during rising and declining phases. Interestingly, on days of transition from hard state to hard-intermediate spectral state (during the rising phase) or vice-versa (during decline phase), ARR is observed to be locally maximum. Non-constancy of ARR while obtaining reasonable fits points to the presence of two independent components in the flow.

  19. Component flow processes at four streams in the Catskill Mountains, New York, analysed using episodic concentration/discharge relationships

    NASA Astrophysics Data System (ADS)

    Evans, C.; Davies, T. D.; Murdoch, P. S.

    1999-03-01

    Plots of solute concentration against discharge have been used to relate stream hydrochemical variations to processes of flow generation, using data collected at four streams in the Catskill Mountains, New York, during the Episodic Response Project of the US Environmental Protection Agency. Results suggest that a two-component system of shallow and deep saturated subsurface flow, in which the two components respond simultaneously during hydrologic events, may be applicable to the study basins. Using a large natural sea-salt sodium input as a tracer for precipitation, it is argued that an additional distinction can be made between pre-event and event water travelling along the shallow subsurface flow path. Pre-event water is thought to be displaced by infiltrating event water, which becomes dominant on the falling limb of the hydrograph. Where, as appears to be the case for sulfate, a solute equilibrates rapidly within the soil, the pre-event-event water distinction is unimportant. However, for some solutes there are clear and consistent compositional differences between water from the two sources, evident as a hysteresis loop in concentration-discharge plots. Nitrate and acidity, in particular, appear to be elevated in event water following percolation through the organic horizon. Consequently, the most acidic, high nitrate conditions during an episode generally occur after peak discharge. A simple conceptual model of episode runoff generation is presented on the basis of these results.

  20. Evaluation of early conception factor lateral flow test to determine nonpregnancy in dairy cattle.

    PubMed

    Ambrose, Divakar J; Radke, Brian; Pitney, Phyllis A; Goonewardene, Laksiri A

    2007-08-01

    The early conception factor (ECF) lateral flow test was evaluated for its ability to accurately determine nonpregnant status in dairy cattle. Results of 2 field trials involving 191 cows and 832 tests indicated the probability that a cow can be correctly diagnosed as nonpregnant by using the ECF test is only about 50%. Agreement of test results between milk and serum obtained from the same cow was 57.5%. The ECF test was not consistent in identifying nonpregnancy when the same cows were tested repeatedly over a period of 4 weeks. We conclude that the ECF lateral flow test does not accurately identify nonpregnancy in dairy cattle. PMID:17824326

  1. Screening tests of representative nuclear power plant components exposed to secondary environments created by fires

    SciTech Connect

    Jacobus, M.J.

    1986-06-01

    This report presents results of screening tests to determine component survivability in secondary environments created by fires, specifically increased temperatures, increased humidity, and the presence of particulates and corrosive vapors. Additionally, chloride concentrations were measured in the exhaust from several of the tests used to provide fire environments. Results show actual failure or some indication of failure for strip chart recorders, electronic counters, an oscilloscope amplifier, and switches and relays. The chart recorder failures resulted from accumulation of particulates on the pen slider mechanisms. The electronic counter experienced leakage current failures on circuit boards after the fire exposure and exposure to high humidity. The oscillosocpe amplifier experienced thermal-related drift as high as 20% before thermal protective circuitry shut the unit down. In some cases, switches and relays experienced high contact resistances with the low voltages levels used for the mesurements. Finally, relays tested to thermal failure experienced various failures, all at temperatures ranging from 150/sup 0/C to above 350/sup 0/C. The chloride measurements show that most of the hydrogen chloride generated in the test fires is combined with particulate by the time it reaches the exhaust duct, indicating that hydrogen chloride condensation may be less likely than small scale data implies. 13 refs., 36 figs.

  2. The Reliability of an Instrumented Device for Measuring Components of the Star Excursion Balance Test

    PubMed Central

    Gorman, Paul P.; Butler, Robert J.; Kiesel, Kyle B.; Underwood, Frank B.; Elkins, Bryant

    2009-01-01

    Background The Star Excursion Balance Test (SEBT) is a dynamic test that requires strength, flexibility, and proprioception and has been used to assess physical performance, identify chronic ankle instability, and identify athletes at greater risk for lower extremity injury. In order to improve the repeatability in measuring components of the SEBT, the Y Balance Test™ has been developed. Objective The purpose of this paper is to report the development and reliability of the Y Balance Test™. Methods Single limb stance excursion distances were measured using the Y Balance Test™ on a sample of 15 male collegiate soccer players. Intraclass Correlation Coefficients (ICC) were used to determine the reliability of the test. Results The ICC for intrarater reliability ranged from 0.85 to 0.91 and for interrater reliability ranged from 0.99 to 1.00. Composite reach score reliability was 0.91 for intrarater and 0.99 for interrater reliability. Discussion This study demonstrated that the Y Balance Test™ has good to excellent intrarater and interrater reliability. The device and protocol attempted to address the common sources of error and method variation in the SEBT including whether touch down is allowed with the reach foot, where the stance foot is aligned, movement allowed of the stance foot, instantaneous measurement of furthest reach distance, standard reach height from the ground, standard testing order, and well defined pass/fail criteria. Conclusion The Y Balance Test™ is a reliable test for measuring single limb stance excursion distances while performing dynamic balance testing in collegiate soccer players. PMID:21509114

  3. Testing MODFLOW-LGR for simulating flow around buried Quaternary valleys - synthetic test cases

    NASA Astrophysics Data System (ADS)

    Vilhelmsen, T. N.; Christensen, S.

    2009-12-01

    In this study the Local Grid Refinement (LGR) method developed for MODFLOW-2005 (Mehl and Hill, 2005) is utilized to describe groundwater flow in areas containing buried Quaternary valley structures. The tests are conducted as comparative analysis between simulations run with a globally refined model, a locally refined model, and a globally coarse model, respectively. The models vary from simple one layer models to more complex ones with up to 25 model layers. The comparisons of accuracy are conducted within the locally refined area and focus on water budgets, simulated heads, and simulated particle traces. Simulations made with the globally refined model are used as reference (regarded as “true” values). As expected, for all test cases the application of local grid refinement resulted in more accurate results than when using the globally coarse model. A significant advantage of utilizing MODFLOW-LGR was that it allows increased numbers of model layers to better resolve complex geology within local areas. This resulted in more accurate simulations than when using either a globally coarse model grid or a locally refined model with lower geological resolution. Improved accuracy in the latter case could not be expected beforehand because difference in geological resolution between the coarse parent model and the refined child model contradicts the assumptions of the Darcy weighted interpolation used in MODFLOW-LGR. With respect to model runtimes, it was sometimes found that the runtime for the locally refined model is much longer than for the globally refined model. This was the case even when the closure criteria were relaxed compared to the globally refined model. These results are contradictory to those presented by Mehl and Hill (2005). Furthermore, in the complex cases it took some testing (model runs) to identify the closure criteria and the damping factor that secured convergence, accurate solutions, and reasonable runtimes. For our cases this is judged to

  4. Construction and component testing of TAMU3, a 14 Tesla stress-managed Nb3Sn model dipole

    NASA Astrophysics Data System (ADS)

    Holik, Eddie Frank, III; Benson, Chris; Blackburn, Raymond; Diaczenko, Nick; Elliott, Timothy; Jaisle, Andrew; McInturff, A.; McIntyre, P.; Sattarov, Akhdiyor

    2012-06-01

    We report the construction and testing of components of TAMU3, a 14 Tesla Nb3Sn block-coil dipole. A primary goal in developing this model dipole is to test a method of stress management in which Lorentz stress is intercepted within the coil assembly and bypassed so that it cannot accumulate to a level that would cause strain degradation in the superconducting windings. Details of the fabrication, tooling, and results of construction and magnet component testing will be presented.

  5. The Oscillating Component of the Internal Jugular Vein Flow: The Overlooked Element of Cerebral Circulation

    PubMed Central

    Sisini, Francesco; Toro, Eleuterio; Gambaccini, Mauro; Zamboni, Paolo

    2015-01-01

    The jugular venous pulse (JVP) provides valuable information about cardiac haemodynamics and filling pressures and is an indirect estimate of the central venous pressure (CVP). Recently it has been proven that JVP can be obtained by measuring the cross-sectional area (CSA) of the IJV on each sonogram of an ultrasound B-mode sonogram sequence. It has also been proven that during its pulsation the IJV is distended and hence that the pressure gradient drives the IJV haemodynamics. If this is true, then it will imply the following: (i) the blood velocity in the IJV is a periodic function of the time with period equal to the cardiac period and (ii) the instantaneous blood velocity is given by a time function that can be derived from a flow-dynamics theory that uses the instantaneous pressure gradient as a parameter. The aim of the present study is to confirm the hypothesis that JVP regulates the IJV blood flow and that pressure waves are transmitted from the heart toward the brain through the IJV wall. PMID:26783380

  6. Seismic monitoring of a flow test in the Salton Sea Geothermal Field

    SciTech Connect

    Jarpe, S.P.; Kasameyer, P.W.; Johnston, C.

    1989-06-01

    The purpose of this seismic monitoring project was to characterize in detail the micro-seismic activity related to the flow-injection test in the Salton Sea Geothermal Field. Our goal was to determine if any sources of seismic energy related to the test were observable at the surface, using both conventional seismic network techniques and relatively newer array techniques. These methods allowed us to detect and locate both impulsive microearthquakes and continuous sources of seismic energy. Our network, which was sensitive enough to be triggered by magnitude 0.0 or larger events, found no impulsive microearthquakes in the vicinity of the flow test in the 8 month period before the test and only one event during the flow test. We have observed some continuous seismic noise sources that may be attributed to the flow test. 4 refs., 4 figs.

  7. A two-stage approach for a multi-objective component assignment problem for a stochastic-flow network

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Kuei; Yeh, Cheng-Ta

    2013-03-01

    Many real-life systems, such as computer systems, manufacturing systems and logistics systems, are modelled as stochastic-flow networks (SFNs) to evaluate network reliability. Here, network reliability, defined as the probability that the network successfully transmits d units of data/commodity from an origin to a destination, is a performance indicator of the systems. Network reliability maximization is a particular objective, but is costly for many system supervisors. This article solves the multi-objective problem of reliability maximization and cost minimization by finding the optimal component assignment for SFN, in which a set of multi-state components is ready to be assigned to the network. A two-stage approach integrating Non-dominated Sorting Genetic Algorithm II and simple additive weighting are proposed to solve this problem, where network reliability is evaluated in terms of minimal paths and recursive sum of disjoint products. Several practical examples related to computer networks are utilized to demonstrate the proposed approach.

  8. Pre-test CFD Calculations for a Bypass Flow Standard Problem

    SciTech Connect

    Rich Johnson

    2011-11-01

    The bypass flow in a prismatic high temperature gas-cooled reactor (HTGR) is the flow that occurs between adjacent graphite blocks. Gaps exist between blocks due to variances in their manufacture and installation and because of the expansion and shrinkage of the blocks from heating and irradiation. Although the temperature of fuel compacts and graphite is sensitive to the presence of bypass flow, there is great uncertainty in the level and effects of the bypass flow. The Next Generation Nuclear Plant (NGNP) program at the Idaho National Laboratory has undertaken to produce experimental data of isothermal bypass flow between three adjacent graphite blocks. These data are intended to provide validation for computational fluid dynamic (CFD) analyses of the bypass flow. Such validation data sets are called Standard Problems in the nuclear safety analysis field. Details of the experimental apparatus as well as several pre-test calculations of the bypass flow are provided. Pre-test calculations are useful in examining the nature of the flow and to see if there are any problems associated with the flow and its measurement. The apparatus is designed to be able to provide three different gap widths in the vertical direction (the direction of the normal coolant flow) and two gap widths in the horizontal direction. It is expected that the vertical bypass flow will range from laminar to transitional to turbulent flow for the different gap widths that will be available.

  9. Field test of a biological assumption of instream flow models

    SciTech Connect

    Cada, G.F.; Sale, M.J.; Cushman, R.M.; Loar, J.M.

    1983-01-01

    Hydraulic-rating methods are an attractive means of deriving instream flow recommendations at many small hydropower sites because they represent a compromise between relatively inexpensive, low-resolution, discharge methods and the costly, complex, habitat evaluation models. Like the other methods, however, they rely on certain biological assumptions about the relationship between aquatic biota and streamflow characteristics. One such assumption is that benthic production available as food for fishes is proportional to stream bottom area. Wetted perimeter is an easily measured physical parameter which represents bottom area and that is a function of discharge. Therefore, wetted perimeter should reflect the benthic food resource available to support stream fishes under varying flows. As part of a larger effort to compare a number of existing instream flow assessment methods in southern Appalachian trout streams, we examined the validity of the benthos/wetted perimeter relationship at four field sites. Benthos samples were taken at permanent riffle transects over a variety of discharges and were used to relate observed benthos densities to the fluctuations in wetted perimeter and streamflow in these systems. For most of the sites and taxa examined, benthic densities did not show a consistent relationship with discharge/wetted perimeter dynamics. Our analysis indicates that simple physical habitat descriptors obtained from hydraulic-rating models do not provide sufficient information on the response of benthic organisms to decreased discharges. Consequently, these methods may not be sufficient to protect aquatic resources in water-use conflicts.

  10. Numerical Calibration of Mass Flow Plug for Inlet Testing

    NASA Technical Reports Server (NTRS)

    Sasson, Jonathan; Barnhart, Paul; Davis, David O.

    2015-01-01

    A simple control volume model has been developed to calculate the discharge coefficient through a mass flow plug (MFP) and validated with a calibration experiment. The maximum error of the model within the operating region of the MFP is 0.54%. The control volume analysis developed work is comprised of a sequence of flow calculations through the MFP. The model uses the MFP geometry and operating pressure and temperature to couple continuity, momentum, energy, an equation of state, and wall shear. The discharge coefficient calculation also includes the effects of boundary layer growth, including the reduction in cross-sectional flow area as characterized by the boundary layer displacement thickness. The last calculation in the sequence uses an integral method to calculate the growth of the boundary layer, from which the displacement thickness is then determined. The result of these successive calculations is an accurate one-dimension model of the velocity, pressure, and temperature through the MFP. For comparison, a computational fluid dynamic (CFD) calibration is shown, which when compared to the presented numerical model, had a lower accuracy with a maximum error of 1.35% in addition to being slower by a factor of 100."

  11. Testing paleointensity determinations on recent lava flows and scorias from Miyakejima, Japan

    NASA Astrophysics Data System (ADS)

    Fukuma, K.

    2013-12-01

    Still no consensus has been reached on paleointensity method. Even the classical Thellier method has not been fully tested on recent lava flows with known geomagnetic field intensity based on a systematic sampling scheme. In this study, Thellier method was applied for 1983, 1962 and 1940 basaltic lava flows and scorias from Miyakejima, Japan. Several vertical lava sections and quenched scorias, which are quite variable in magnetic mineralogy and grain size, provide an unparalleled opportunity to test paleointensity methods. Thellier experiments were conducted on a completely automated three-component spinner magnetometer with thermal demagnetizer 'tspin'. Specimens were heated in air, applied laboratory field was 45 microT, and pTRM checks were performed at every two heating steps. Curie points and hysteresis properties were obtained on small fragments removed from cylindrical specimens. For lava flows sigmoidal curves were commonly observed on the Arai diagrams. Especially the interior part of lava flows always revealed sigmoidal patterns and sometimes resulted in erroneously blurred behaviors. The directions after zero-field heating were not necessarily stable in the course of the Thellier experiments. It was very difficult, for the interior part, to ascertain linear segments on Arai diagrams corresponding to the geomagnetic field intensity at the eruption. Upper and lower clinker samples also generally revealed sigmoidal or upward concave curves on Arai diagrams. Neither lower nor higher temperature portions of the sigmoids or concaves gave the expected geomagnetic field intensities. However, there were two exceptional cases of lava flows giving correct field intensities: upper clinkers with relatively low unblocking temperatures (< 400 deg.C) and lower clinkers with broad unblocking temperature ranges from room temperature to 600 deg.C. A most promising target for paleointensity experiments within the volcanic rocks is scoria. Scoria samples always carry single

  12. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    SciTech Connect

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-04-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

  13. Efficient testing of ITER materials and components at the Research Institute of Atomic Reactors` experimental facilities

    SciTech Connect

    Ivanov, V.; Kazakov, V.; Pokrovsky, A.; Shamardin, V.; Melder, R.; Revyakin, Yu.; Sandakov, V.

    1995-12-31

    The Research Institute of Atomic Reactors (RIAR) of the State Scientific Centre of the Russian Federation has carried out reactor tests of fusion reactor materials and components. RIAR contains an ideal complex of installations, experimental setups, and diagnostics for such investigations. It includes several different types of reactors, including a fast neutron reactor, a high-flux intermediate-neutron SM-3 reactor, a intermediate-neutron loop reactor, and two RBT-type reactors, and a hot cells complex with remote handling facilities to allow study of the physical-mechanical properties, structure, and elemental composition of irradiated materials. RIAR has carried out a number of initial experiments, including testing of copper and vanadium alloys, electro-insulative coatings, steels, ceramics, diagnostic systems materials, and in-core and hot cell set-ups for divertor mock-up testing, and has collaborative efforts underway with the Scientific Research Institute Electrophysical Apparatus-St. Petersburg (SRIEA), Oak Ridge National Laboratory (ORNL), Argonne National Laboratory (ANL), Red Star, the Institute of Physics and Power engineering (IPPE), the Scientific Research Institute of Inorganic Materials (SRIIM), and Pacific Northwest Laboratory (PNL).

  14. Component-Level Electronic-Assembly Repair (CLEAR) Synthetic Instrument Capabilities Assessment and Test Report

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Bradish, Martin A.

    2011-01-01

    The role of synthetic instruments (SIs) for Component-Level Electronic-Assembly Repair (CLEAR) is to provide an external lower-level diagnostic and functional test capability beyond the built-in-test capabilities of spacecraft electronics. Built-in diagnostics can report faults and symptoms, but isolating the root cause and performing corrective action requires specialized instruments. Often a fault can be revealed by emulating the operation of external hardware. This implies complex hardware that is too massive to be accommodated in spacecraft. The SI strategy is aimed at minimizing complexity and mass by employing highly reconfigurable instruments that perform diagnostics and emulate external functions. In effect, SI can synthesize an instrument on demand. The SI architecture section of this document summarizes the result of a recent program diagnostic and test needs assessment based on the International Space Station. The SI architecture addresses operational issues such as minimizing crew time and crew skill level, and the SI data transactions between the crew and supporting ground engineering searching for the root cause and formulating corrective actions. SI technology is described within a teleoperations framework. The remaining sections describe a lab demonstration intended to show that a single SI circuit could synthesize an instrument in hardware and subsequently clear the hardware and synthesize a completely different instrument on demand. An analysis of the capabilities and limitations of commercially available SI hardware and programming tools is included. Future work in SI technology is also described.

  15. Non-Newtonian Liquid Flow through Small Diameter Piping Components: CFD Analysis

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Tarun Kanti; Das, Sudip Kumar

    2016-05-01

    Computational Fluid Dynamics (CFD) analysis have been carried out to evaluate the frictional pressure drop across the horizontal pipeline and different piping components, like elbows, orifices, gate and globe valves for non-Newtonian liquid through 0.0127 m pipe line. The mesh generation is done using GAMBIT 6.3 and FLUENT 6.3 is used for CFD analysis. The CFD results are verified with our earlier published experimental data. The CFD results show the very good agreement with the experimental values.

  16. Peroxynitrite reduces the endothelium-derived hyperpolarizing factor component of coronary flow-mediated dilation in PECAM-1-knockout mice.

    PubMed

    Liu, Yanping; Bubolz, Aaron H; Shi, Yang; Newman, Peter J; Newman, Debra K; Gutterman, David D

    2006-01-01

    Platelet endothelial cell adhesion molecule 1 (PECAM-1) is capable of transducing signals in endothelial cells exposed to shear; however, the biological consequences of this signal transduction are unknown. Because shear stress elicits flow-mediated dilation (FMD), we examined whether steady-state FMD in mouse coronary arteries (MCAs) is affected in the PECAM-1 knockout (KO) mouse. MCAs were isolated from wild-type (WT) or KO mice and prepared for videomicroscopy, histofluorescence, Western blotting, and immunohistochemistry. FMD was examined in the absence and presence of N(omega)-nitro-l-arginine methyl ester (l-NAME) and l-NAME+indomethacin (INDO). FMD was reduced in KO relative to WT MCAs, but the l-NAME-inhibitable portion of FMD was similar between the two. The INDO-sensitive component of FMD was diminished in KO MCAs. In contrast, the residual component of dilation, presumably because of endothelium-derived hyperpolarizing factor (EDHF), was abolished in KO MCAs. Histofluorescence showed relatively more superoxide (O2-.; oxy-ethidium fluorescence) and peroxide production (dihydrochlorofluorescene fluoresecence) in KO MCAs at rest. Flow augmented O2-. and peroxide production in WT MCAs but had little effect on KO MCAs. Enhanced nitric oxide generation was observed in arteries from KO mice, accompanied with increased eNOS S1177 phosphorylation. In vessels from KO mice, treatment with ebselen decreased peroxynitrite (ONOO-) formation and improved the reduced FMD, largely due to restoration of the presumed EDHF component. These results suggest that PECAM-1 is necessary for normal FMD in the mouse coronary circulation. In the absence of this adhesion and signaling molecule, ONOO- production is increased concomitant with a reduction in both the EDHF and INDO-sensitive components of FMD. PMID:16166207

  17. Notes on Well-Posed, Ensemble Averaged Conservation Equations for Multiphase, Multi-Component, and Multi-Material Flows

    SciTech Connect

    Ray A. Berry

    2005-07-01

    At the INL researchers and engineers routinely encounter multiphase, multi-component, and/or multi-material flows. Some examples include: Reactor coolant flows Molten corium flows Dynamic compaction of metal powders Spray forming and thermal plasma spraying Plasma quench reactor Subsurface flows, particularly in the vadose zone Internal flows within fuel cells Black liquor atomization and combustion Wheat-chaff classification in combine harvesters Generation IV pebble bed, high temperature gas reactor The complexity of these flows dictates that they be examined in an averaged sense. Typically one would begin with known (or at least postulated) microscopic flow relations that hold on the “small” scale. These include continuum level conservation of mass, balance of species mass and momentum, conservation of energy, and a statement of the second law of thermodynamics often in the form of an entropy inequality (such as the Clausius-Duhem inequality). The averaged or macroscopic conservation equations and entropy inequalities are then obtained from the microscopic equations through suitable averaging procedures. At this stage a stronger form of the second law may also be postulated for the mixture of phases or materials. To render the evolutionary material flow balance system unique, constitutive equations and phase or material interaction relations are introduced from experimental observation, or by postulation, through strict enforcement of the constraints or restrictions resulting from the averaged entropy inequalities. These averaged equations form the governing equation system for the dynamic evolution of these mixture flows. Most commonly, the averaging technique utilized is either volume or time averaging or a combination of the two. The flow restrictions required for volume and time averaging to be valid can be severe, and violations of these restrictions are often found. A more general, less restrictive (and far less commonly used) type of averaging known

  18. Validation of non-Darcian flow effects in slug tests conducted in fractured rock boreholes

    NASA Astrophysics Data System (ADS)

    Quinn, Patryk M.; Parker, Beth L.; Cherry, John A.

    2013-04-01

    SummaryA series of rising and falling head slug tests with different initial applied head differentials (ΔHo) were conducted in open fractured dolostone and sandstone boreholes using straddle packers isolating specific depth intervals (1.5 m length) to examine the influence of non-Darcian flow. The open holes were developed and inspected using video and acoustic televiewing (ATV) to ensure that evidence of skin effects due to drilling were absent. The transmissivity (T) values obtained from both the rising and falling head slug tests were very similar at low initial applied head; however, the T values were progressively smaller at larger ΔHo, suggesting error due to non-Darcian flow. Non-Darcian flow behavior was confirmed by constant head step tests conducted in the same test intervals where the injection rate (Q) vs. applied head (dH) relationship became non-linear at relatively low injection rates, and the non-Darcian data also resulted in lower T values. For a series of slug tests conducted at different ΔHo, non-Darcian flow effects gradually increased as ΔHo increased, consistent with the trends for constant head step tests conducted in the same test intervals. To maintain Darcian flow conditions in the fractured dolostone and sandstone tested in this study, ΔHo must be kept small, generally less than 0.2 m. This study demonstrates that by conducting both "stepped" slug tests and constant head step tests, the Darcian flow assumption for both types of tests can be rigorously validated. However, when only slug tests are conducted, it is necessary to conduct a series of "stepped" slug tests, including tests with small applied head differentials, to avoid errors due to non-Darcian flow.

  19. Photogrammetric Deflection Measurements for the Tiltrotor Test Rig (TTR) Multi-Component Rotor Balance Calibration

    NASA Technical Reports Server (NTRS)

    Solis, Eduardo; Meyn, Larry

    2016-01-01

    Calibrating the internal, multi-component balance mounted in the Tiltrotor Test Rig (TTR) required photogrammetric measurements to determine the location and orientation of forces applied to the balance. The TTR, with the balance and calibration hardware attached, was mounted in a custom calibration stand. Calibration loads were applied using eleven hydraulic actuators, operating in tension only, that were attached to the forward frame of the calibration stand and the TTR calibration hardware via linkages with in-line load cells. Before the linkages were installed, photogrammetry was used to determine the location of the linkage attachment points on the forward frame and on the TTR calibration hardware. Photogrammetric measurements were used to determine the displacement of the linkage attachment points on the TTR due to deflection of the hardware under applied loads. These measurements represent the first photogrammetric deflection measurements to be made to support 6-component rotor balance calibration. This paper describes the design of the TTR and the calibration hardware, and presents the development, set-up and use of the photogrammetry system, along with some selected measurement results.

  20. Design, process development, manufacture, test and evaluation of boron-aluminum for space shuttle components

    NASA Technical Reports Server (NTRS)

    Garrett, R. A.; Niemann, J. T.; Otto, O. R.; Brown, N. M.; Heinrich, R. E.

    1973-01-01

    A multi phase boron-aluminum design and evaluation program for space shuttle components was conducted, culminating in the fabrication of a 1.22 m (48 inch) x 1.83 m (72 inch) boron-aluminum compression panel capable of distributing a point load of 1555 kN (350,000 lbs) into a uniform running load at a temperature of 589 K (600 F). This panel was of the skin-stringer construction with two intermediate frame supports; seven unidirectional stringers varied in thickness from 5 plies to 52 plies and the skin was contoured to thicknesses ranging from 10 plies to 62 plies. Both the stringers and the skin incorporated Ti-6Al-4V titanium interleaves to increase bearing and in-plane shear strength. The discrete program phases were materials evaluation, design studies, process technology development, fabrication and assembly, and test and evaluation.