Science.gov

Sample records for composite armoured actively

  1. Estimation of carbon fibre composites as ITER divertor armour

    NASA Astrophysics Data System (ADS)

    Pestchanyi, S.; Safronov, V.; Landman, I.

    2004-08-01

    Exposure of the carbon fibre composites (CFC) NB31 and NS31 by multiple plasma pulses has been performed at the plasma guns MK-200UG and QSPA. Numerical simulation for the same CFCs under ITER type I ELM typical heat load has been carried out using the code PEGASUS-3D. Comparative analysis of the numerical and experimental results allowed understanding the erosion mechanism of CFC based on the simulation results. A modification of CFC structure has been proposed in order to decrease the armour erosion rate.

  2. Hybrid S2/Carbon Epoxy Composite Armours Under Blast Loads

    NASA Astrophysics Data System (ADS)

    Dolce, F.; Meo, Michele; Wright, A.; French, M.; Bernabei, M.

    2012-06-01

    Civil and military structures, such as helicopters, aircrafts, naval ships, tanks or buildings are susceptible to blast loads as terroristic attacks increases, therefore there is the need to design blast resistant structures. During an explosion the peak pressure produced by shock wave is much greater than the static collapse pressure. Metallic structures usually undergo large plastic deformations absorbing blast energy before reaching equilibrium. Due to their high specific properties, fibre-reinforced polymers are being considered for energy absorption applications in blast resistant armours. A deep insight into the relationship between explosion loads, composite architecture and deformation/fracture behaviour will offer the possibility to design structures with significantly enhanced energy absorption and blast resistance performance. This study presents the results of a numerical investigation aimed at understanding the performance of a hybrid composite (glass/carbon fibre) plate subjected to blast loads using commercial LS-DYNA software. In particular, the paper deals with numerical 3D simulations of damages caused by air blast waves generated by C4 charges on two fully clamped rectangular plates made of steel and hybrid (S2/Carbon) composite, respectively. A Multi Materials Arbitrary Lagrangian Eulerian (MMALE) formulation was used to simulate the shock phenomenon. For the steel plates, the Johnson-Cook material model was employed. For the composite plates both in-plane and out-of-plane failure criteria were employed. In particular, a contact tiebreak formulation with a mixed mode failure criteria was employed to simulate delamination failure. As for the steel plates the results showed that excellent correlation with the experimental data for the two blast load conditions in terms of dynamic and residual deflection for two different C4 charges. For the composite plates the numerical results showed that, as expected, a wider delamination damage was observed

  3. The Influence of impact on Composite Armour System Kevlar-29/polyester-Al2O3

    NASA Astrophysics Data System (ADS)

    Ramadhan, A. A.; Abu Talib, A. R.; Mohd Rafie, A. S.; Zahari, R.

    2012-09-01

    An experimental investigation of high velocity impact responses of composite laminated plates using a helium gas gun has been presented in this paper. The aim of this study was to develop the novel composite structure that meets the specific requirements of ballistic resistance which used for body protections, vehicles and other applications. Thus the high velocity impact tests were performed on composite Kevlar-29 fiber/polyester resin with alumina powder (Al2O3). The impact test was conducted by using a cylindrical steel projectile of 7.62mm diameter at a velocity range of 160-400 m/s. The results (shown in this work) are in terms of varying plate thickness and the amount of energy absorbed by the laminated plates meanwhile we obtained that the 12mm thickness of composite plate suitable for impact loading up to 200m/s impact velocity. Therefore this composite structure (it is used to reduce the amount of Kevlar) considered most economical armoure products. We used the ANSYS AUTODYN 3D- v.12 software for our simulations. The results have been obtained a4.1% maximum errors with experimental work of energy absorption.

  4. Behind armour blunt trauma--an emerging problem.

    PubMed

    Cannon, L

    2001-02-01

    Behind Armour Blunt Trauma (BABT) is the non-penetrating injury resulting from the rapid deformation of armours covering the body. The deformation of the surface of an armour in contact with the body wall arises from the impact of a bullet or other projectile on its front face. The deformation is part of the retardation and energy absorbing process that captures the projectile. In extreme circumstances, the BABT may result in death, even though the projectile has not perforated the armour. An escalation of the available energy of bullets and the desire of armour designers to minimise the weight and bulk of personal armour systems will increase the risk of BABT in military and security forces personnel. In order to develop materials that can be interposed between the armour and the body wall to attenuate the transfer of energy into the body, it is essential that the mechanism of BABT is known. There is a great deal of activity within UK and NATO to unravel the interactions; the mechanism is likely to be a combination of stress (pressure) waves generated by the rapid initial motion of the rear of the armour, and shear deformation to viscera produced by gross deflection of the body wall. Physical and computer model systems are under development to characterise the biophysical processes and provide performance targets for materials to be placed between armours and the body wall in order to attenuate the injuries (trauma attenuating backings-TABs). The patho-physiological consequences of BABT are being clarified by research, but the injuries will have some of the features of blunt chest trauma observed in road traffic accidents and other forms of civilian blunt impact injury. The injuries also have characteristics of primary blast injury. An overview diagnosis and treatment is described. PMID:11307682

  5. Thermal conductivity and retention characteristics of composites made of boron carbide and carbon fibers with extremely high thermal conductivity for first wall armour

    NASA Astrophysics Data System (ADS)

    Jimbou, R.; Kodama, K.; Saidoh, M.; Suzuki, Y.; Nakagawa, M.; Morita, K.; Tsuchiya, B.

    1997-02-01

    The thermal conductivity of the composite hot-pressed at 2100°C including B 4C and carbon fibers with a thermal conductivity of 1100 W/ m· K was nearly the same as that of the composite including carbon fibers with a thermal conductivity of 600 W/ m· K. This resulted from the higher amount of B diffused into the carbon fibers through the larger interface. The B 4C content in the composite can be reduced from 35 to 20 vol% which resulted from the more uniform distribution of B 4C by stacking the flat cloth woven of carbon fibers (carbon fiber plain fabrics) than in the composite with 35 vol% B 4C including curled carbon fiber plain fabrics. The decrease in the B 4C content does not result in the degradation of D (deuterium)-retention characteristics or D-recycling property, but will bring about the decreased amount of the surface layer to be melted under the bombardment of high energy hydrogen ions such as disruptions because of higher thermal conduction of the composite.

  6. The destabilizing effect of body armour on military rifle bullets.

    PubMed

    Knudsen, P J; Sørensen, O H

    1997-01-01

    Soft body armour is designed to give protection against fragments and some low velocity bullets but is not designed to stop high velocity rifle bullets. Reports have claimed that soft body armour might disturb the stability of bullets that penetrate it, and that this might increase the size of the lesions. The reason for such an effect might be early yaw of the bullet, so we studied the behaviour of bullets which had passed through soft body armour. A 7.62 x 39 mm AK-47 rifle was fired from a permanent stand using full metal jacketed lead core bullets at a range of 30 m. Soft body armour composed for 14 and 28 layers of aramid fibres (Kevlar) was placed at 90 degrees and 60 degrees to the line of fire. Yaw was measured by the shadowgraph technique and a TERMA Doppler radar. A total of ten shots without body armour, and ten shots with each of the two types of body armour at the two angles were used. The results of the shadowgraph and Doppler radar measurements showed a proportional correlation between the two methods of determining the bullet yaw. The semiquantitative approach of the Doppler radar measurement was in agreement with the more concise measurement using the photographic technique. Velocity loss and loss of spin rate from penetrating 14 or 28 ply Kevlar was negligible. We observed induced instability after penetration of 14 and particularly 28 ply Kevlar, dependence of yaw with respect to the number of layers of Kevlar as well as to the angle of the body armour with respect to the line of fire. PMID:9168325

  7. The effect of flexible body armour on pulmonary function.

    PubMed

    Armstrong, Nicola C; Gay, Louise A

    2016-05-01

    The additional mass and fit of current military in-service body armour (ISBA) can reduce pulmonary function in a way that is characteristic of a restrictive respiratory impairment. This could ultimately impair exercise capacity and military performance. This study compared pulmonary function (forced vital capacity [FVC] and forced expiratory volume in 1 s [FEV1]) in UK ISBA (15.3 kg) and three flexible body armours (BAs) (FA1: 10 kg; FA2: 7.8 kg; FA3: 10 kg) in eight male soldiers. The design of the ballistic plates differed between the BAs to improve the flexibility. FVC and FEV1 were reduced by 4-6%, without reduction in FEV1/FVC for ISBA, FA2 and FA3, when compared to NoBA (p < 0.05). No difference was observed between FA1 and NoBA. As expected, wearing BA caused a mild restrictive ventilatory impairment; however, modifications to BA design can reduce the degree of this impairment. Practitioner Summary: This study showed that wearing body armour caused a mild restrictive ventilatory impairment. However, the design of the armour can be modified to reduce the degree of this impairment. This may lead to improvements in soldier performance during tasks that require body armour. PMID:26548548

  8. Hypervelocity impact of tungsten cubes on spaced armour

    NASA Astrophysics Data System (ADS)

    Chandel, Pradeep S.; Sood, Dharmanshu; Kumar, Rajeev; Sharma, Prince; Sewak, Bhupinder; Bhardwaj, Vikas; Athwal, Manoj; Mangla, Vikas; Biswas, Ipsita; Singh, Manjit

    2012-07-01

    The paper summarizes the experimental observations and simulation studies of damage potential of tungsten alloy cubes on relatively thin mild steel spaced armour target plates in the velocity regime 1300 - 4000 ms-1 using Two Stage Light Gas Gun technique. The cubes of size 9.5 mm and 12 mm having mass 15 g and 30 g respectively were made to impact normally on three target plates of size 300 mm × 300 mm of thickness 4, 4 and 10 mm at 100 mm distance apart. Flash radiography has been used to image the projectile-target interaction in the nitrogen environment at 300 mbar vacuum at room temperature. The results reveal clear perforation by 9.5 mm cube in all the three target plates up to impact velocity of about 2000 m/s. While 12 mm cube can perforate the spaced armour upto impact velocity of 4000 m/s. This shows that 9.5mm tungsten alloy cube is not effective beyond 2000 m/s while 12 mm tungsten alloy cube can defeat the spaced armour upto 4000 m/s. The simulation studies have been carried out using Autodyn 3D nonlinear code using Lagrange solver at velocities 1200 - 4000 m/s. The simulation results are in good agreement with the experimental findings.

  9. Modeling the reduction in soil loss due to soil armouring caused by rainfall erosion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface soil properties can change as a result of soil disturbances, erosion, or deposition. One process that can significantly change surface soil properties is soil armouring, which is the selective removal of finer particles by rill or interrill erosion, leaving an armoured layer of coarser parti...

  10. Long-term responses of sandy beach crustaceans to the effects of coastal armouring after the 2010 Maule earthquake in South Central Chile

    NASA Astrophysics Data System (ADS)

    Rodil, Iván F.; Jaramillo, Eduardo; Acuña, Emilio; Manzano, Mario; Velasquez, Carlos

    2016-02-01

    Earthquakes and tsunamis are large physical disturbances frequently striking the coast of Chile with dramatic effects on intertidal habitats. Armouring structures built as societal responses to beach erosion and shoreline retreat are also responsible of coastal squeeze and habitat loss. The ecological implications of interactions between coastal armouring and earthquakes have recently started to be studied for beach ecosystems. How long interactive impacts persist is still unclear because monitoring after disturbance generally extends for a few months. During five years after the Maule earthquake (South Central Chile, February 27th 2010) we monitored the variability in population abundances of the most common crustacean inhabitants of different beach zones (i.e. upper, medium, and lower intertidal) at two armoured (one concrete seawall and one rocky revetment) and one unarmoured sites along the sandy beach of Llico. Beach morphology changed after the earthquake-mediated uplift, restoring upper- and mid-shore armoured levels that were rapidly colonized by typical crustacean species. However, post-earthquake increasing human activities affected the colonization process of sandy beach crustaceans in front of the seawall. Lower-shore crab Emerita analoga was the less affected by armouring structures, and it was the only crustacean species present at the three sites before and after the earthquake. This study shows that field sampling carried out promptly after major disturbances, and monitoring of the affected sites long after the disturbance is gone are effective approaches to increase the knowledge on the interactive effects of large-scale natural phenomena and artificial defences on beach ecology.

  11. Deviatoric Response of AN Armour-Grade Aluminium Alloy

    NASA Astrophysics Data System (ADS)

    Appleby-Thomas, G. J.; Hazell, P. J.; Millett, J.; Bourne, N. K.

    2009-12-01

    Aluminium alloys such as 5083 H32 are established light-weight armour materials. As such, the shock response of these materials is of great importance. The shear strength of a material under shock loading provides an insight into its ballistic performance. In this investigation embedded manganin stress gauges have been employed to measure both the longitudinal and lateral components of stress during plate-impact experiments over a range of impact stresses. In turn, these results were used to determine the shear strength and to investigate the time dependence of lateral stress behind the shock front to give an indication of material response.

  12. Concurrent validity of the Armour39 heart rate monitor strap.

    PubMed

    Flanagan, Shawn D; Comstock, Brett A; Dupont, William H; Sterczala, Adam R; Looney, Dave P; Dombrowski, Dylan H; McDermott, Danielle M; Bryce, Alexander; Maladouangdock, Jesse; Dunn-Lewis, Courtenay; Luk, Hui-Ying; Szivak, Tunde K; Hooper, David R; Kraemer, William J

    2014-03-01

    New technology offers potential advantages in physically demanding environments where convenience and comfort are important and accurate and reliable data collection is challenging. Nevertheless, it is important to validate the accuracy and reliability of such biological monitoring systems (BMS) before they are adopted. The purpose of this investigation was to assess the concurrent validity of a new heart rate monitor across a range of exercise intensities and with a large and diverse group of male subjects in a large cohort with diverse physical fitness characteristics. Seventy-five men (age, 23 ± 4 years; height, 181 ± 8 cm; body mass, 83 ± 12 kg; estimated V[Combining Dot Above]O2peak, 3.16 ± 0.63 [L·min]) volunteered and completed a graded cycle ergometer exercise protocol while heart rate was continuously monitored before, during, and after exercise with the new device (Armour39) and the gold standard (electrocardiogram). The 2-minute stages included sitting, standing, and cycling with 35 W increments until volitional fatigue. The coefficient of determination between mean heart rate values at each stage was R = 0.99, whereas Pearson correlations (r) at each stage were ≥ 0.99. Heart rates during exercise were typically within 1 beat of each other. The Armour39 BMS, therefore, is an acceptable means for the valid and reliable determination of heart rate under various bodily positions and levels of exertion, including maximal exercise intensity. PMID:23860286

  13. Material characterization of a novel new armour steel

    NASA Astrophysics Data System (ADS)

    Bester, J. N.; Stumpf, W. E.

    2012-08-01

    The material characterization of a novel new armour steel with comparison to a leading commercial benchmark alloy is presented. Direct ballistic and experimental comparison is drawn. The 5.56 × 45 mm [M193] and 7.62 × 51 mm [NATO Ball] projectiles were used in a cartridge type high pressure barrel configuration to evaluate the superior plugging resistance of the new steel over a range of plate thicknesses. To characterize the dynamic plasticity of the materials, quasi-static, notched and high temperature tensile tests as well as Split Hopkinson Pressure Bar tests in tension and compression were performed. The open source explicit solver, IMPACT (sourceforge.net) is used in an ongoing numerical and sensitivity analysis of ballistic impact. A simultaneous multi variable fitting algorithm is planned to evaluate several selected numerical material models and show their relative correlation to experimental data. This study as well as micro-metallurgical investigation of adiabatic shear bands and localized deformation zones should result in new insights in to the underlying metallurgical and physical behavior of armour plate steels during ballistic perforation.

  14. The Damage To The Armour Layer Due To Extreme Waves

    NASA Astrophysics Data System (ADS)

    Oztunali Ozbahceci, Berguzar; Ergin, Aysen; Takayama, Tomotsuka

    2010-05-01

    The sea waves are not regular but random and chaotic. In order to understand this randomness, it is common to make individual wave analysis in time domain or spectral analysis in frequency domain. Characteristic wave heights like Hmax, H%2,H1-10, H1-3, Hmean are obtained through individual wave analysis in time domain. These characteristic wave heights are important because they are used in the design of different type of coastal structures. It is common to use significant wave height, H1-3,for the design of rubble mound structures. Therefore, only spectrally derived or zero-crossing significant wave height is usually reported for the rubble mound breakwaters without any information on larger waves. However, even the values of H1-3are similar; some train of irregular waves may exhibit a large fluctuation of instantaneous wave energy, while another train may not show such a fluctuation (Goda, 1998). Moreover, freak or rogue wave, simply defined as the wave exceeding at least twice the significant wave height may also occur. Those larger waves were called as extreme waves in this study and the effect of extreme waves on the damage to the armour layer of rubble mound breakwaters was investigated by means of hydraulic model experiment. Rock armored rubble mound breakwater model with 1:1.5 slope was constructed in the wave channel of Hydraulics Laboratory of the Disaster Prevention Research Institute of Kyoto University, Japan. The model was consisted of a permeable core layer, a filter and armour layer with two stones thicknesses. Size of stones were same for both of the slopes as Dn50(armour)=0.034m, Dn50(filter)=0.021m and Dn50(core)=0.0148m for armour, filter and core layers, respectively. Time series which are approximately equal to 1000 waves, with similar significant wave height but different extreme wave height cases were generated. In order to generate necessary time series in the wave channel, they were firstly computed by numerically. For the numerical

  15. The Damage To The Armour Layer Due To Extreme Waves

    NASA Astrophysics Data System (ADS)

    Oztunali Ozbahceci, Berguzar; Ergin, Aysen; Takayama, Tomotsuka

    2010-05-01

    The sea waves are not regular but random and chaotic. In order to understand this randomness, it is common to make individual wave analysis in time domain or spectral analysis in frequency domain. Characteristic wave heights like Hmax, H%2,H1-10, H1-3, Hmean are obtained through individual wave analysis in time domain. These characteristic wave heights are important because they are used in the design of different type of coastal structures. It is common to use significant wave height, H1-3,for the design of rubble mound structures. Therefore, only spectrally derived or zero-crossing significant wave height is usually reported for the rubble mound breakwaters without any information on larger waves. However, even the values of H1-3are similar; some train of irregular waves may exhibit a large fluctuation of instantaneous wave energy, while another train may not show such a fluctuation (Goda, 1998). Moreover, freak or rogue wave, simply defined as the wave exceeding at least twice the significant wave height may also occur. Those larger waves were called as extreme waves in this study and the effect of extreme waves on the damage to the armour layer of rubble mound breakwaters was investigated by means of hydraulic model experiment. Rock armored rubble mound breakwater model with 1:1.5 slope was constructed in the wave channel of Hydraulics Laboratory of the Disaster Prevention Research Institute of Kyoto University, Japan. The model was consisted of a permeable core layer, a filter and armour layer with two stones thicknesses. Size of stones were same for both of the slopes as Dn50(armour)=0.034m, Dn50(filter)=0.021m and Dn50(core)=0.0148m for armour, filter and core layers, respectively. Time series which are approximately equal to 1000 waves, with similar significant wave height but different extreme wave height cases were generated. In order to generate necessary time series in the wave channel, they were firstly computed by numerically. For the numerical

  16. Bagworm bags as portable armour against invertebrate predators

    PubMed Central

    2016-01-01

    Some animals have evolved the use of environmental materials as “portable armour” against natural enemies. Portable bags that bagworm larvae (Lepidoptera: Psychidae) construct using their own silk and plant parts are generally believed to play an important role as a physical barrier against natural enemies. However, no experimental studies have tested the importance of bags as portable armour against predators. To clarify the defensive function, I studied the bagworm Eumeta minuscula and a potential predator Calosoma maximoviczi (Coleoptera: Carabidae). Under laboratory conditions, all bagworm larvae were attacked by carabid adults, but successfully defended themselves against the predators’ mandibles using their own bags. The portable bags, which are composed mainly of host plant twigs, may function as a physical barrier against predator mandibles. To test this hypothesis, I removed the twig bags and replaced some with herb leaf bags; all bag-removed larvae were easily caught and predated by carabids, while all bag-replaced larvae could successfully defend themselves against carabid attacks. Therefore, various types of portable bags can protect bagworm larvae from carabid attacks. This is the first study to test the defensive function of bagworm portable bags against invertebrate predators. PMID:26893969

  17. Vascularised endosteal bone tissue in armoured sauropod dinosaurs.

    PubMed

    Chinsamy, Anusuya; Cerda, Ignacio; Powell, Jaime

    2016-01-01

    The presence of well-vascularised, endosteal bone in the medullary region of long bones of nonavian dinosaurs has been invoked as being homologous to medullary bone, a specialised bone tissue formed during ovulation in birds. However, similar bone tissues can result as a pathological response in modern birds and in nonavian dinosaurs, and has also been reported in an immature nonavian dinosaur. Here we report on the occurrence of well-vascularised endosteally formed bone tissue in three skeletal elements of armoured titanosaur sauropods from the Upper Cretaceous of Argentina: i) within the medullary cavity of a metatarsal, ii) inside a pneumatic cavity of a posterior caudal vertebra, iii) in intra-trabecular spaces in an osteoderm. We show that considering the criteria of location, origin (or development), and histology, these endosteally derived tissues in the saltasaurine titanosaurs could be described as either medullary bone or pathological bone. Furthermore, we show that similar endosteally formed well-vascularised bone tissue is fairly widely distributed among nondinosaurian Archosauriformes, and are not restricted to long bones, but can occur in the axial, and dermal skeleton. We propose that independent evidence is required to verify whether vascularised endosteal bone tissues in extinct archosaurs are pathological or reproductive in nature. PMID:27112710

  18. [Armourer and mad cow disease: images of veterinarians in music].

    PubMed

    Schäffer, J

    2001-01-01

    This contribution is not about animals in music; it rather attempts to describe how veterinary medicine as a discipline and veterinarians as representatives of the profession are perceived of and portrayed in music. Aside from Gioacchino Rossini's "Barber of Seville", in which Count Almaviva impersonates a veterinarian of the day, the most sympathetic veterinarian character ever created by a lyricist or composer in surely Hans Stadinger, the "armourer" and vet in Albert Lortzings opera. In other musical genres such as artsongs and folksongs, the only such figure worthy of musical interpretation seems to have been those masters of the fiery forge who were also wise in the veterinary healing arts. In the past 20 years vets and veterinary medicine have been included in new musical trends: There are musicals and radio plays in which even the youngest members of the audience are exposed to the veterinarian profession. A number of pop groups are also to be mentioned here. For example, animal welfare has been thematized by punk rockers, and a pop group for Hamburg has put a medieval horse blessing to music. Last but not least, a number of vets in Berlin turn their everyday troubles and worries into musical parodies. PMID:11762436

  19. Vascularised endosteal bone tissue in armoured sauropod dinosaurs

    PubMed Central

    Chinsamy, Anusuya; Cerda, Ignacio; Powell, Jaime

    2016-01-01

    The presence of well-vascularised, endosteal bone in the medullary region of long bones of nonavian dinosaurs has been invoked as being homologous to medullary bone, a specialised bone tissue formed during ovulation in birds. However, similar bone tissues can result as a pathological response in modern birds and in nonavian dinosaurs, and has also been reported in an immature nonavian dinosaur. Here we report on the occurrence of well-vascularised endosteally formed bone tissue in three skeletal elements of armoured titanosaur sauropods from the Upper Cretaceous of Argentina: i) within the medullary cavity of a metatarsal, ii) inside a pneumatic cavity of a posterior caudal vertebra, iii) in intra-trabecular spaces in an osteoderm. We show that considering the criteria of location, origin (or development), and histology, these endosteally derived tissues in the saltasaurine titanosaurs could be described as either medullary bone or pathological bone. Furthermore, we show that similar endosteally formed well-vascularised bone tissue is fairly widely distributed among nondinosaurian Archosauriformes, and are not restricted to long bones, but can occur in the axial, and dermal skeleton. We propose that independent evidence is required to verify whether vascularised endosteal bone tissues in extinct archosaurs are pathological or reproductive in nature. PMID:27112710

  20. Two-material optimization of plate armour for blast mitigation using hybrid cellular automata

    NASA Astrophysics Data System (ADS)

    Goetz, J.; Tan, H.; Renaud, J.; Tovar, A.

    2012-08-01

    With the increased use of improvised explosive devices in regions at war, the threat to military and civilian life has risen. Cabin penetration and gross acceleration are the primary threats in an explosive event. Cabin penetration crushes occupants, damaging the lower body. Acceleration causes death at high magnitudes. This investigation develops a process of designing armour that simultaneously mitigates cabin penetration and acceleration. The hybrid cellular automaton (HCA) method of topology optimization has proven efficient and robust in problems involving large, plastic deformations such as crash impact. Here HCA is extended to the design of armour under blast loading. The ability to distribute two metallic phases, as opposed to one material and void, is also added. The blast wave energy transforms on impact into internal energy (IE) inside the solid medium. Maximum attenuation occurs with maximized IE. The resulting structures show HCA's potential for designing blast mitigating armour structures.

  1. Biology of two species of Microcera associated with armoured scales on citrus in Australia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microcera coccophila has been regarded as an entomopathogen of armoured scales in Australia since the late 1800s. We confirmed its identity using morphological and molecular data. In addition, we report the related species M. larvarum for the first time in Australia. The sexual and asexual states of...

  2. Influence of the vacuum resin process, on the ballistic behaviour of lightweight armouring solutions

    NASA Astrophysics Data System (ADS)

    Lefebvre, M.; Boussu, F.; Coutellier, D.; Vallee, D.

    2012-08-01

    The armour of vehicles against conventional threats is mainly composed with steel or aluminium panels. Efficient heavy solutions exist, but the involved industries require new lightweight structures. Moreover, unconventional threats as IEDs (Improvised Explosive Devices) may cause severe damages on these structural and protective panel solutions. Thus, combination of aluminium or steel plates with textile composite structures used as a backing, leads to the mass reduction and better performance under delamination behaviour against these new threats. This paper is a part of a study dealing with the impact behaviour of three warp interlocks weaving structures under Fragment Simulating Projectile (FSP) impact. During this research, several parameters has being studied as the influence of the yarns insertions [1-4], the degradation of the yarns during the weaving process [5-7], and the influence of the resin rate on the ballistic behaviour. The resin rate inside composite materials is dependant on the final application. In ballistic protection, we need to control the resin rate in order to have a deformable structure in order to absorb the maximum of energy. However, with the warp interlocks weaving structure, the yarns insertions induce empty spaces between the yarns where the resin takes place without being evacuated. The resin rate inside the warp interlocks structures is in the most of cases less than 50%, which lead to have brittle and hard material during the impact. Contrary to interlocks structures, the existing protection based on prepreg structure have a high fibres ratio around 88% of weight. That leads to have the best ballistic properties during the impact and good deformability of the structure. The aim of this paper is to evaluate the influence of the resin rate on the ballistic results of the composites materials. For that, we have chosen two kinds of warp interlocks fabrics which were infused with epoxy resin following two processes. The first is a

  3. High performance composites with active stiffness control.

    PubMed

    Tridech, Charnwit; Maples, Henry A; Robinson, Paul; Bismarck, Alexander

    2013-09-25

    High performance carbon fiber reinforced composites with controllable stiffness could revolutionize the use of composite materials in structural applications. Here we describe a structural material, which has a stiffness that can be actively controlled on demand. Such a material could have applications in morphing wings or deployable structures. A carbon fiber reinforced-epoxy composite is described that can undergo an 88% reduction in flexural stiffness at elevated temperatures and fully recover when cooled, with no discernible damage or loss in properties. Once the stiffness has been reduced, the required deformations can be achieved at much lower actuation forces. For this proof-of-concept study a thin polyacrylamide (PAAm) layer was electrocoated onto carbon fibers that were then embedded into an epoxy matrix via resin infusion. Heating the PAAm coating above its glass transition temperature caused it to soften and allowed the fibers to slide within the matrix. To produce the stiffness change the carbon fibers were used as resistance heating elements by passing a current through them. When the PAAm coating had softened, the ability of the interphase to transfer load to the fibers was significantly reduced, greatly lowering the flexural stiffness of the composite. By changing the moisture content in PAAm fiber coating, the temperature at which the PAAm softens and the composites undergo a reduction in stiffness can be tuned. PMID:23978266

  4. What doesn't kill you might make you stronger: functional basis for variation in body armour.

    PubMed

    Broeckhoven, Chris; Diedericks, Genevieve; Mouton, P le Fras N

    2015-09-01

    1. Predation has been proposed to be a selective agent in the evolution of morphological antipredator strategies in prey. Among vertebrates, one of the morphological traits that evolved multiple times is body armour, including carapaces, thickened keratinized scales and plates of dermal bone. 2. It has been generally assumed that body armour provides protection against a predatory attack; yet, few explicit tests of the hypothesis exist. Cordylidae, a relatively small family of southern African lizards, show considerable variation in the degree of body armour. Hence, this family provides an opportunity to test the hypothesis that body armour serves as protection against predators. 3. Experiments were conducted to test whether the bite forces of four species of mammalian predators were high enough to penetrate the skins of Karusasaurus polyzonus, Namazonurus peersi, Cordylus cordylus and Cordylus macropholis, as well as those of Ouroborus cataphractus individuals originating from three localities that differed in their predator diversity. Furthermore, histological techniques were used to test whether variation in skin toughness was associated with concomitant changes in the degree of epidermal (i.e. β-keratin) and dermal (i.e. osteoderm) armour. 4. The skin toughness values for four out of five cordylid lizards tested in this study were well below the bite forces of the mammalian predators. In contrast, the thick osteoderms in the dermis of O. cataphractus can withstand bites from several mongoose species. However, the significant variation in body armour that is present between the three populations of O. cataphractus does not seem to be related to predator diversity. 5. It is concluded that body armour can serve as protection against predation in O. cataphractus, but that alternative selection pressures, such as thermoregulation or predation by snakes, presumably underlie variation in defensive morphology in the other cordylid lizards. PMID:26104546

  5. Ice composition at active Mars Gullies

    NASA Astrophysics Data System (ADS)

    Vincendon, M.

    2015-10-01

    Current activity at gullied sites includes occurrence of bright/dark deposits within pre-existing gullies, channel widening/lengthening, and formation of new channels[e.g., 1]. Whether present-day gully formation and modification mechanisms are representative or not of all gullies formation pathways remains an open question[e.g., 2].This activity is observed during winter / spring seasons in relation with surface ice which strongly suggests that condensed volatiles are a key factor controlling present-day gully modifications[e.g., 1].CO2 ice, the main component of seasonal ice, is t hought to be the main driver of current gully activity[e.g., 1], which could imply that gullies arenot primarily formed by liquid water, as previously thought. However, CO2 ice has not yet been detected at all currently active gullies[1, 3]. In this study, we perform an extended survey of near-infrared observations of active gullies to identify the presence and composition of seasonal ice.

  6. Direct numerical simulation of active fiber composite

    NASA Astrophysics Data System (ADS)

    Kim, Seung J.; Hwang, Joon S.; Paik, Seung H.

    2003-08-01

    Active Fiber Composites (AFC) possess desirable characteristics for smart structure applications. One major advantage of AFC is the ability to create anisotropic laminate layers useful in applications requiring off-axis or twisting motions. AFC is naturally composed of two different constituents: piezoelectric fiber and matrix. Therefore, homogenization method, which is utilized in the analysis of laminated composite material, has been used to characterize the material properties. Using this approach, the global behaviors of the structures are predicted in an averaged sense. However, this approach has intrinsic limitations in describing the local behaviors in the level of the constituents. Actually, the failure analysis of AFC requires the knowledge of the local behaviors. Therefore, microscopic approach is necessary to predict the behaviors of AFC. In this work, a microscopic approach for the analysis of AFC was performed. Piezoelectric fiber and matrix were modeled separately and finite element method using three-dimensional solid elements was utilized. Because fine mesh is essential, high performance computing technology was applied to the solution of the immense degree-of-freedom problem. This approach is called Direct Numerical Simulation (DNS) of structure. Through the DNS of AFC, local stress distribution around the interface of fiber and matrix was analyzed.

  7. [Oregano: properties, composition and biological activity].

    PubMed

    Arcila-Lozano, Cynthia Cristina; Loarca-Piña, Guadalupe; Lecona-Uribe, Salvador; González de Mejía, Elvira

    2004-03-01

    The oregano spice includes various plant species. The most common are the genus Origanum, native of Europe, and the Lippia, native of Mexico. Among the species of Origanum. their most important components are the limonene, gamma-cariofilene, rho-cymenene, canfor, linalol, alpha-pinene, carvacrol and thymol. In the genus Lippia, the same compounds can be found. The oregano composition depends on the specie, climate, altitude, time of recollection and the stage of growth. Some of the properties of this plant's extracts are being currently studied due to the growing interest for substituting synthetic additives commonly found in foods. Oregano has a good antioxidant capacity and also presents antimicrobial activity against pathogenic microorganisms like Salmonella typhimurium, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, among others. These are all characteristics of interest for the food industry because they may enhance the safety and stability of foods. There are also some reports regarding the antimutagenic and anticarcinogenic effect of oregano; representing an alternative for the potential treatment and/or prevention of certain chronic ailments, like cancer. PMID:15332363

  8. Activated Carbon Composites for Air Separation

    SciTech Connect

    Baker, Frederick S; Contescu, Cristian I; Tsouris, Costas; Burchell, Timothy D

    2011-09-01

    Coal-derived synthesis gas is a potential major source of hydrogen for fuel cells. Oxygen-blown coal gasification is an efficient approach to achieving the goal of producing hydrogen from coal, but a cost-effective means of enriching O2 concentration in air is required. A key objective of this project is to assess the utility of a system that exploits porous carbon materials and electrical swing adsorption to produce an O2-enriched air stream for coal gasification. As a complement to O2 and N2 adsorption measurements, CO2 was used as a more sensitive probe molecule for the characterization of molecular sieving effects. To further enhance the potential of activated carbon composite materials for air separation, work was implemented on incorporating a novel twist into the system; namely the addition of a magnetic field to influence O2 adsorption, which is accompanied by a transition between the paramagnetic and diamagnetic states. The preliminary findings in this respect are discussed.

  9. Activated aluminum hydride hydrogen storage compositions and uses thereof

    DOEpatents

    Sandrock, Gary; Reilly, James; Graetz, Jason; Wegrzyn, James E.

    2010-11-23

    In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

  10. ACT/ICAPS: Thermoplastic composite activities

    NASA Technical Reports Server (NTRS)

    Renieri, M. P.; Burpo, S. J.; Roundy, L. M.; Todd, S. M.

    1992-01-01

    McDonnell Aircraft Company (MCAIR) is teamed with Douglas Aircraft Company (DAC) under NASA's Advanced Composite Technology (ACT) initiative in a program entitled Innovative Composite Aircraft Primary Structures (ICAPS). Efforts at MCAIR have focused on the use of thermoplastic composite materials in the development of structural details associated with an advanced fighter fuselage section with applicability to transport design. Based on innovative design/manufacturing concepts for the fuselage section primary structure, elements were designed, fabricated, and structurally tested. These elements focused on key issues such as thick composite lugs and low cost forming of fastenerless, stiffener/moldline concepts. Manufacturing techniques included autoclave consideration, single diaphragm co-consolidation (SDCC), and roll-forming.

  11. Activated carbon fiber composite material and method of making

    DOEpatents

    Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit

    2001-01-01

    An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

  12. Activated carbon fiber composite material and method of making

    DOEpatents

    Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit

    2000-01-01

    An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

  13. Mechanical adaptability of the Bouligand-type structure in natural dermal armour.

    PubMed

    Zimmermann, Elizabeth A; Gludovatz, Bernd; Schaible, Eric; Dave, Neil K N; Yang, Wen; Meyers, Marc A; Ritchie, Robert O

    2013-01-01

    Arapaima gigas, a fresh water fish found in the Amazon Basin, resist predation by piranhas through the strength and toughness of their scales, which act as natural dermal armour. Arapaima scales consist of a hard, mineralized outer shell surrounding a more ductile core. This core region is composed of aligned mineralized collagen fibrils arranged in distinct lamellae. Here we show how the Bouligand-type (twisted plywood) arrangement of collagen fibril lamellae has a key role in developing their unique protective properties, by using in situ synchrotron small-angle X-ray scattering during mechanical tensile tests to observe deformation mechanisms in the fibrils. Specifically, the Bouligand-type structure allows the lamellae to reorient in response to the loading environment; remarkably, most lamellae reorient towards the tensile axis and deform in tension through stretching/sliding mechanisms, whereas other lamellae sympathetically rotate away from the tensile axis and compress, thereby enhancing the scale's ductility and toughness to prevent fracture. PMID:24129554

  14. Strain rate effects on mechanical properties in tension of aluminium alloys used in armour applications

    NASA Astrophysics Data System (ADS)

    Cadoni, E.; Dotta, M.; Forni, D.; Bianchi, S.; Kaufmann, H.

    2012-08-01

    The mechanical properties in tension of two aluminium alloys (AA5059-H131 and AA7039-T651) used in armour applications were determined from tests carried out over a wide range of strain-rates on round specimens. The experimental research was developed in the DynaMat laboratory of the University of Applied Sciences of Southern Switzerland. The target strain rates were set at the following four levels: 10-3, 30, 300 and 1000s-1. The quasi-static tests were performed with a universal electromechanical machine, whereas a hydro-pneumatic machine and a Split Hopkinson Tensile Bar apparatus were used for medium and high strain-rates respectively. The required parameters by the Johnson-Cook constitutive law were also determined.

  15. Scaled long rod perforation experiments using multiple diagnostics: Mild steel against rolled homogeneous armour

    NASA Astrophysics Data System (ADS)

    Cross, Daniel; Proud, William

    2012-03-01

    A series of angled small-scale reverse ballistic long rod experiments were conducted using mild steel rods (6 mm dia., 90 mm long) against both 3 mm and 6 mm rolled homogeneous armour (RHA) plates at 60°. The impact velocity was varied from 450-780 m s-1 and the response of the system monitored by laser velocimetry, strain gauges and high-speed photography. This provided insight into the flexing of the rod during impact, the acceleration of the rear of the rod and the global penetration process. This experimental series involved ricochet, near-ricochet and full perforation, and so allows the sensitivity of the differing diagnostic outputs for these processes to be compared.

  16. Mechanical adaptability of the Bouligand-type structure in natural dermal armour

    NASA Astrophysics Data System (ADS)

    Zimmermann, Elizabeth A.; Gludovatz, Bernd; Schaible, Eric; Dave, Neil K. N.; Yang, Wen; Meyers, Marc A.; Ritchie, Robert O.

    2013-10-01

    Arapaima gigas, a fresh water fish found in the Amazon Basin, resist predation by piranhas through the strength and toughness of their scales, which act as natural dermal armour. Arapaima scales consist of a hard, mineralized outer shell surrounding a more ductile core. This core region is composed of aligned mineralized collagen fibrils arranged in distinct lamellae. Here we show how the Bouligand-type (twisted plywood) arrangement of collagen fibril lamellae has a key role in developing their unique protective properties, by using in situ synchrotron small-angle X-ray scattering during mechanical tensile tests to observe deformation mechanisms in the fibrils. Specifically, the Bouligand-type structure allows the lamellae to reorient in response to the loading environment; remarkably, most lamellae reorient towards the tensile axis and deform in tension through stretching/sliding mechanisms, whereas other lamellae sympathetically rotate away from the tensile axis and compress, thereby enhancing the scale’s ductility and toughness to prevent fracture.

  17. Activation and Micropore Structure Determination of Activated Carbon-Fiber Composites

    SciTech Connect

    Jagtoyen, M.; Derbyshire, F.

    1999-04-23

    Previous work focused on the production of carbon fiber composites and subsequently activating them to induce adsorbent properties. One problem related to this approach is the difficulty of uniformly activating large composites. In order to overcome this problem, composites have been made from pre-activated fibers. The loss of surface area upon forming the composites after activation of the fibers was investigated. The electrical resistivity and strength of these composites were compared to those made by activation after forming. It was found that the surface area is reduced by about 35% by forming the composite from pre-activated fibers. However, the properties of the activated sample are very uniform: the variation in surface area is less than {+-}0.5%. So, although the surface area is somewhat reduced, it is believed that making composites from pre-activated fibers could be useful in applications where the BET surface area is not required to be very high. The strength of the composites produced from pre-activated fibers is lower than for composites activated after forming when the carbon burnoff is below 45%. For higher burnoffs, the strength of composites made with pre-activated fibers is as good or better. In both cases, there is a dramatic decrease in strength when the fiber:binder ratio is reduced below 4:1. The electrical resistivity is slightly higher for composites made from pre-activated fibers than for composites that are activated after forming, other parameters being constant (P-200 fibers, similar carbon burnoffs). For both types of composite the resistivity was also found to increase with carbon burnoff. This is attributed to breakage of the fiber causing shorter conductive paths. The electrical resistivity also increases when the binder content is lowered, which suggests that there are fewer solid contact points between the fibers.

  18. Activity composition relationships in silicate melts

    SciTech Connect

    Glazner, A.F.

    1990-01-01

    Equipment progress include furnace construction and electron microprobe installation. The following studies are underway: phase equilibria along basalt-rhyolite mixing line (olivine crystallization from natural silicic andensites, distribution of Fe and Mg between olivine and liquid, dist. of Ca and Na between plagioclase and liquid), enthalpy-composition relations in magmas (bulk heat capacity of alkali basalt), density model for magma ascent and contamination, thermobarometry in igneous systems (olivine/plagioclase phenocryst growth in Quat. basalt), high-pressure phase equilibria of alkali basalt, basalt-quartz mixing experiments, phase equilibria of East African basalts, and granitic minerals in mafic magma. (DLC)

  19. Activated Carbon Composites for Air Separation

    SciTech Connect

    Contescu, Cristian I; Baker, Frederick S; Tsouris, Costas; McFarlane, Joanna

    2008-03-01

    In continuation of the development of composite materials for air separation based on molecular sieving properties and magnetic fields effects, several molecular sieve materials were tested in a flow system, and the effects of temperature, flow conditions, and magnetic fields were investigated. New carbon materials adsorbents, with and without pre-loaded super-paramagnetic nanoparticles of Fe3O4 were synthesized; all materials were packed in chromatographic type columns which were placed between the poles of a high intensity, water-cooled, magnet (1.5 Tesla). In order to verify the existence of magnetodesorption effect, separation tests were conducted by injecting controlled volumes of air in a flow of inert gas, while the magnetic field was switched on and off. Gas composition downstream the column was analyzed by gas chromatography and by mass spectrometry. Under the conditions employed, the tests confirmed that N2 - O2 separation occurred at various degrees, depending on material's intrinsic properties, temperature and flow rate. The effect of magnetic fields, reported previously for static conditions, was not confirmed in the flow system. The best separation was obtained for zeolite 13X at sub-ambient temperatures. Future directions for the project include evaluation of a combined system, comprising carbon and zeolite molecular sieves, and testing the effect of stronger magnetic fields produced by cryogenic magnets.

  20. Effect of physical activity on body composition

    SciTech Connect

    Zanzi, I; Ellis, K J; Aloia, J; Cohn, S H

    1980-01-01

    It has been noted that the deleterious effects on bone calcium of prolonged periods of inactivity, such as bed rest, are halted following resumption of activity. It would seem possible in light of the observations that have been made, that exercise may stimulate bone formation and perhaps counter, to some extent, bone loss as observed in the osteoporosis of aging. The present study was designed to determine the relation between total body calcium, total body potassium and bone mineral content of the radius to the degree of physical activity in a population of normal subjects. Measurement of the calcium was made by in-vivo total body neutron activation analysis. Bone mineral content of the radius and total body potassium, (an index of lean body mass) were measured by photon absorptiometry and the whole body counter, respectively.

  1. Active healing of delaminated composite structure using piezoelectric actuator

    NASA Astrophysics Data System (ADS)

    Sohn, Jung Woo; Kim, Heung Soo

    2014-03-01

    Recently, light weight structure becomes an object of attention because increase of energy efficiency becomes the most important global hot issue. Then, composite structures, which have inherent high strength and stiffness to weight ratio, are in the limelight for light weight structures. However, complex failure modes of composite structure are still remains unsolved problem and become main obstacle of wide application of composite structures. Delamination is one of frequent damage phenomenon of laminated composite structure. Delamination can cause reduction of structural stiffness and decrement of natural frequencies. This might induce increase of structural vibration and resonant phenomenon of operating structures. Then, delamination should be detected and complemented. In this work, active control scheme and piezoelectric actuators are used to reduce the delamination effect of damaged composite structure. At first, finite element model for delaminated composite structure is constructed based on improved layerwise theory and then state space control model is established. After design and implementation of active controller, dynamic characteristics and structural performances of damaged composite structure are investigated and effectiveness of active healing is evaluated.

  2. Enzyme-polymer composites with high biocatalytic activity and stability

    SciTech Connect

    Kim, Jungbae; Kosto, Timothy J.; Manimala, Joseph C.; Nauman, E B.; Dordick, Jonathan S.

    2004-08-22

    We have applied vacuum-spraying and electrospinning to incorporate an enzyme into a polymer matrix, creating a novel and highly active biocatalytic composite. As a unique technical approach, enzymes were co-dissolved in toluene with polymers, and the solvent was then rapidly removed by injecting the mixture into a vacuum chamber or by electrospinning. Subsequent crosslinking of the enzyme with glutaraldehyde resulted in stable entrapped enzyme within the polymeric matrices. For example, an amorphous composite of alpha-chymotrypsin and polyethylene showed no significant loss of enzymatic activity in aqueous buffer for one month. Nanofibers of alpha-chymotrypsin and polystyrene also showed no decrease in activity for more than two weeks. The normalized activity of amorphous composite in organic solvents was 3-13 times higher than that of native alpha-chymotrypsin. The activity of nanofibers was 5-7 times higher than that of amorphous composite in aqueous buffer solution. The composites of alpha-chymotrypsin and polymers demonstrate the feasibility of obtaining a wide variety of active and stable biocatalytic materials with many combinations of enzymes and polymers.

  3. Activation and micropore structure of carbon-fiber composites

    SciTech Connect

    Jagtoyen, M.; Derbyshire, F.; Kimber, G.

    1997-12-01

    Rigid, high surface area activated carbon fiber composites have been produced with high permeabilities for environmental applications in gas and water purification. The project involves a collaboration between the Oak Ridge National Laboratory (ORNL) and the Center for Applied Energy Research (CAER), University of Kentucky. The main focus of recent work has been to find a satisfactory means to uniformly activate large samples of carbon fiber composites to produce controlled pore structures. Processes have been developed using activation in steam and CO{sub 2}, and a less conventional method involving oxygen chemisorption and subsequent heat treatment. Another objective has been to explore applications for the activated composites in environmental applications related to fossil energy production.

  4. The composition of a coronal active region

    NASA Technical Reports Server (NTRS)

    Waljeski, K.; Moses, D.; Dere, K. P.; Saba, J. L. R.; Strong, K. T.; Webb, D. F.; Zarro, D. M.

    1994-01-01

    The relative abundances of iron, oxygen, magnesium, and neon in a coronal active region are determined from measurements of soft X-ray line and broadband intensities. The emission measure, temperature, and column density are derived from these measured intensities and are used to place a constraint on the abundances of the heavier elements relative to hydrogen in the corona. The intensity measurements were made on 1987 December 11, when an active region was observed jointly by the American Science and Engineering (AS&E) High Resolution Soft X-Ray Imaging Sounding-Rocket Payload and the X-Ray Polychromator Flat Crystal Spectrometer (FCS) onboard the Solar Maximum Mission spacecraft. The coordinated observations include images through two broadband filters (8 to 29 A and 8 to 39, 44 to 60 A) and profiles of six emission lines: Fe XVII (15.01 A), FE VIII (15.26 A), O VIII (18.97 A), Mg XI (9.17 A), Ne IX (13.44 A), and Fe XVIII (14.21 A). The effects of resonance scattering are considered in the interpretation of the FCS line intensities. We calculated the expected intensity ratio of the two Fe XVII lines as a function of optical depth and compared this ratio with the observed intensity ratio to obtain the optical depths of each of the lines and the column density. The line intensities and the broadband filtered images are consistent with the emission from a thermal plasma where Fe, O, Mg, and Ne have the 'adopted coronal' abundances of Meyer (1985b) relative to one another, but are not consistent with the emission from a plasma having photospheric abundances: The ratios of the abundances of the low first ionization potential (FIP) elements (Fe and Mg) to the abundances of the high-FIP elements (Ne and O) are higher than the ratios seen in the photosphere by a factor of about 3.5. This conclusion is independent of the assumption of either an isothermal or a multithermal plasma. The column densities derived from the Fe XVII line ratio and the geometry of the active

  5. Sedentary Activity and Body Composition of Middle School Girls: The Trial of Activity for Adolescent Girls

    ERIC Educational Resources Information Center

    Pratt, Charlotte; Webber, Larry S.; Baggett, Chris D.; Ward, Dianne; Pate, Russell R.; Murray, David; Lohman, Timothy; Lytle, Leslie; Elder, John P.

    2008-01-01

    This study describes the relationships between sedentary activity and body composition in 1,458 sixth-grade girls from 36 middle schools across the United States. Multivariate associations between sedentary activity and body composition were examined with regression analyses using general linear mixed models. Mean age, body mass index, and…

  6. Relationships among Fitness, Body Composition, and Physical Activity

    PubMed Central

    LOHMAN, TIMOTHY G.; RING, KIMBERLY; PFEIFFER, KARIN; CAMHI, SARAH; ARREDONDO, ELVA; PRATT, CHARLOTTE; PATE, RUSS; WEBBER, LARRY S.

    2008-01-01

    Purpose This study was designed to examine the associations of physical activity and body composition with cardiorespiratory fitness in eighth grade girls. Methods A random sample of 1440 eighth grade girls at 36 schools participated in this cross-sectional investigation, which represented an ethnically and geographically diverse group. Cardiorespiratory fitness was assessed using a modified physical work capacity test on a cycle ergometer that predicted workload at a heart rate of 170 beats·min−1. Physical activity was assessed over 6 d in each girl using an accelerometer and body composition was estimated from body mass index and triceps skinfolds using a previously validated equation. Pearson correlations and multiple regression analyses were used to determine the relationships among fitness, physical activity, and body composition. Results Significant linear relationships among cardiorespiratory fitness, body composition, and physical activity were found. The combination of fat and fat-free mass along with racial group and a race by fat-free-mass interaction accounted for 18% (R2) of the variation in physical fitness. Adding moderate-to-vigorous physical activity to the regression model increased the R2 to 22%. Black girls had somewhat lower fitness levels (P < 0.05) especially at higher levels of fat and fat-free mass than other racial/ethnic groups. Conclusions Physical activity, fat-free mass, and the interaction between fat-free mass and racial group are significantly associated with cardiorespiratory fitness in adolescent girls. PMID:18460987

  7. Transcriptome Analysis of Kiwifruit (Actinidia chinensis) Bark in Response to Armoured Scale Insect (Hemiberlesia lataniae) Feeding

    PubMed Central

    Hill, M. Garry; Wurms, Kirstin V.; Davy, Marcus W.; Gould, Elaine; Allan, Andrew; Mauchline, Nicola A.; Luo, Zhiwei; Ah Chee, Annette; Stannard, Kate; Storey, Roy D.; Rikkerink, Erik H.

    2015-01-01

    The kiwifruit cultivar Actinidia chinensis ‘Hort16A’ is resistant to the polyphagous armoured scale insect pest Hemiberlesia lataniae (Hemiptera: Diaspididae). A cDNA microarray consisting of 17,512 unigenes selected from over 132,000 expressed sequence tags (ESTs) was used to measure the transcriptomic profile of the A. chinensis ‘Hort16A’ canes in response to a controlled infestation of H. lataniae. After 2 days, 272 transcripts were differentially expressed. After 7 days, 5,284 (30%) transcripts were differentially expressed. The transcripts were grouped into 22 major functional categories using MapMan software. After 7 days, transcripts associated with photosynthesis (photosystem II) were significantly down-regulated, while those associated with secondary metabolism were significantly up-regulated. A total of 643 transcripts associated with response to stress were differentially expressed. This included biotic stress-related transcripts orthologous with pathogenesis related proteins, the phenylpropanoid pathway, NBS-LRR (R) genes, and receptor-like kinase–leucine rich repeat signalling proteins. While transcriptional studies are not conclusive in their own right, results were suggestive of a defence response involving both ETI and PTI, with predominance of the SA signalling pathway. Exogenous application of an SA-mimic decreased H. lataniae growth on A. chinensis ‘Hort16A’ plants in two laboratory experiments. PMID:26571404

  8. Ti-doped isotropic graphite: A promising armour material for plasma-facing components

    NASA Astrophysics Data System (ADS)

    García-Rosales, C.; López-Galilea, I.; Ordás, N.; Adelhelm, C.; Balden, M.; Pintsuk, G.; Grattarola, M.; Gualco, C.

    2009-04-01

    Finely dispersed Ti-doped isotropic graphites with 4 at.% Ti have been manufactured using synthetic mesophase pitch 'AR' as raw material. These new materials show a thermal conductivity at room temperature of ˜200 W/mK and flexural strength close to 100 MPa. Measurement of the total erosion yield by deuterium bombardment at ion energies and sample temperatures for which pure carbon shows maximum values, resulted in a reduction of at least a factor of 4, mainly due to dopant enrichment at the surface caused by preferential erosion of carbon. In addition, ITER relevant thermal shock loads were applied with an energetic electron beam at the JUDITH facility. The results demonstrated a significantly improved performance of Ti-doped graphite compared to pure graphite. Finally, Ti-doped graphite was successfully brazed to a CuCrZr block using a Mo interlayer. These results let assume that Ti-doped graphite can be a promising armour material for divertor plasma-facing components.

  9. Uncovering three-dimensional gradients in fibrillar orientation in an impact-resistant biological armour.

    PubMed

    Zhang, Y; Paris, O; Terrill, N J; Gupta, H S

    2016-01-01

    The complex hierarchical structure in biological and synthetic fibrous nanocomposites entails considerable difficulties in the interpretation of the crystallographic texture from diffraction data. Here, we present a novel reconstruction method to obtain the 3D distribution of fibres in such systems. An analytical expression is derived for the diffraction intensity from fibres, explaining the azimuthal intensity distribution in terms of the angles of the three dimensional fibre orientation distributions. The telson of stomatopod (mantis shrimp) serves as an example of natural biological armour whose high impact resistance property is believed to arise from the hierarchical organization of alpha chitin nanofibrils into fibres and twisted plywood (Bouligand) structures at the sub-micron and micron scale. Synchrotron microfocus scanning X-ray diffraction data on stomatopod telson were used as a test case to map the 3D fibre orientation across the entire tissue section. The method is applicable to a range of biological and biomimetic structures with graded 3D fibre texture at the sub-micron and micron length scales. PMID:27211574

  10. Uncovering three-dimensional gradients in fibrillar orientation in an impact-resistant biological armour

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Paris, O.; Terrill, N. J.; Gupta, H. S.

    2016-05-01

    The complex hierarchical structure in biological and synthetic fibrous nanocomposites entails considerable difficulties in the interpretation of the crystallographic texture from diffraction data. Here, we present a novel reconstruction method to obtain the 3D distribution of fibres in such systems. An analytical expression is derived for the diffraction intensity from fibres, explaining the azimuthal intensity distribution in terms of the angles of the three dimensional fibre orientation distributions. The telson of stomatopod (mantis shrimp) serves as an example of natural biological armour whose high impact resistance property is believed to arise from the hierarchical organization of alpha chitin nanofibrils into fibres and twisted plywood (Bouligand) structures at the sub-micron and micron scale. Synchrotron microfocus scanning X-ray diffraction data on stomatopod telson were used as a test case to map the 3D fibre orientation across the entire tissue section. The method is applicable to a range of biological and biomimetic structures with graded 3D fibre texture at the sub-micron and micron length scales.

  11. Uncovering three-dimensional gradients in fibrillar orientation in an impact-resistant biological armour

    PubMed Central

    Zhang, Y.; Paris, O.; Terrill, N. J.; Gupta, H. S.

    2016-01-01

    The complex hierarchical structure in biological and synthetic fibrous nanocomposites entails considerable difficulties in the interpretation of the crystallographic texture from diffraction data. Here, we present a novel reconstruction method to obtain the 3D distribution of fibres in such systems. An analytical expression is derived for the diffraction intensity from fibres, explaining the azimuthal intensity distribution in terms of the angles of the three dimensional fibre orientation distributions. The telson of stomatopod (mantis shrimp) serves as an example of natural biological armour whose high impact resistance property is believed to arise from the hierarchical organization of alpha chitin nanofibrils into fibres and twisted plywood (Bouligand) structures at the sub-micron and micron scale. Synchrotron microfocus scanning X-ray diffraction data on stomatopod telson were used as a test case to map the 3D fibre orientation across the entire tissue section. The method is applicable to a range of biological and biomimetic structures with graded 3D fibre texture at the sub-micron and micron length scales. PMID:27211574

  12. An armoured Cambrian lobopodian from China with arthropod-like appendages.

    PubMed

    Liu, Jianni; Steiner, Michael; Dunlop, Jason A; Keupp, Helmut; Shu, Degan; Ou, Qiang; Han, Jian; Zhang, Zhifei; Zhang, Xingliang

    2011-02-24

    Cambrian fossil Lagerstätten preserving soft-bodied organisms have contributed much towards our understanding of metazoan origins. Lobopodians are a particularly interesting group that diversified and flourished in the Cambrian seas. Resembling 'worms with legs', they have long attracted much attention in that they may have given rise to both Onychophora (velvet worms) and Tardigrada (water bears), as well as to arthropods in general. Here we describe Diania cactiformis gen. et sp. nov. as an 'armoured' lobopodian from the Chengjiang fossil Lagerstätte (Cambrian Stage 3), Yunnan, southwestern China. Although sharing features with other typical lobopodians, it is remarkable for possessing robust and probably sclerotized appendages, with what appear to be articulated elements. In terms of limb morphology it is therefore closer to the arthropod condition, to our knowledge, than any lobopodian recorded until now. Phylogenetic analysis recovers it in a derived position, close to Arthropoda; thus, it seems to belong to a grade of organization close to the point of becoming a true arthropod. Further, D. cactiformis could imply that arthropodization (sclerotization of the limbs) preceded arthrodization (sclerotization of the body). Comparing our fossils with other lobopodian appendage morphologies--see Kerygmachela, Jianshanopodia and Megadictyon--reinforces the hypothesis that the group as a whole is paraphyletic, with different taxa expressing different grades of arthropodization. PMID:21350485

  13. C-SiC Composite Structures for Active Cooling

    NASA Technical Reports Server (NTRS)

    Marshall, D. B.; Cox, B. N.; Berbon, M. Z.; Porter, J. R.

    2003-01-01

    This viewgraph presentation provides an overview of research being conducted on the use of C-SiC composite structures for actively cooling rocket nozzles. Potential payoffs and design constraints are discussed. Other topics covered include: testing parameters, material selection, thermal analysis of joined tube structure, pressure containment, H2O2 combustion testing, and cooled re-entry.

  14. Activation and micropore structure determination of activated carbon-fiber composites

    SciTech Connect

    Jagtoyen, M.; Derbyshire, F.; Kimber, G.

    1997-09-05

    Rigid, high surface area activated carbon fiber composites have been produced with high permeabilities for environmental applications in gas and water purification. These novel monolithic adsorbents can be produced in single pieces to a given size and shape. The project involves a collaboration between the Oak Ridge National Laboratory (ORNL) and the Center for Applied Energy Research (CAER), University of Kentucky. The carbon fiber composites are produced at the ORNL and activated at the CAER using different methods, with the aims of producing a uniform degree of activation, and of closely controlling pore structure and adsorptive properties. The main focus of the present work has been to find a satisfactory means to uniformly activate large samples of carbon fiber composites and produce controlled pore structures. Several environmental applications have been explored for the activated carbon fiber composites. One of these was to evaluate the activated composites for the separation of CH{sub 4}-CO{sub 2} mixtures, and an apparatus was constructed specifically for this purpose. The composites were further evaluated in the cyclic recovery of volatile organics. The activated carbon fiber composites have also been tested for possible water treatment applications by studying the adsorption of sodium pentachlorophenolate, PCP.

  15. Antimicrobial activity and chemical composition of some essential oils.

    PubMed

    Aridoğan, Buket Cicioğlu; Baydar, Hasan; Kaya, Selçuk; Demirci, Mustafa; Ozbaşar, Demir; Mumcu, Ethem

    2002-12-01

    In this study the composition and antimicrobial properties of essential oils obtained from Origanum onites, Mentha piperita, Juniperus exalsa, Chrysanthemum indicum, Lavandula hybrida, Rosa damascena, Echinophora tenuifolia, Foeniculum vulgare were examined. To evaluate the in vitro antibacterial activities of these eight aromatic extracts; their in vitro antimicrobial activities were determined by disk diffusion testing, according to the NCCLS criteria. Escherichia coli (ATTC 25922), Staphylococcus aureus (ATCC 25923) and Pseudomonas aeruginosa (ATTC 27853 were used as standard test bacterial strains. Origanum onites recorded antimicrobial activity against all test bacteria, and was strongest against Staphylococcus aureus. For Rosa damascena, Mentha piperita and Lavandula hybrida antimicrobial activity was recorded only to Staphylococcus aureus. Juniperus exalsa, and Chrysanthemum indicum exhibited antibacterial activities against both Staphylococcus aureus and Escherichia coli. We also examined the in vitro antimicrobial activities of some components of the essential oils and found some components with antimicrobial activity. PMID:12510839

  16. Inappropriate analysis does not reveal the ecological causes of evolution of stickleback armour: a critique of Spence et al. 2013

    PubMed Central

    MacColl, Andrew D C; Aucott, Beth

    2014-01-01

    In a recent paper in this journal, Spence et al. (2013) sought to identify the ecological causes of morphological evolution in three-spined sticklebacks Gasterosteus aculeatus, by examining phenotypic and environmental variation between populations on the island of North Uist, Scotland. However, by using simple qualitative assessments of phenotype and inappropriate measures of environmental variation, Spence et al. have come to a conclusion that is diametrically opposite to that which we have arrived at in studying the same populations. Our criticisms of their paper are threefold: (1) using a binomial qualitative measure of the variation in stickleback armour (“low” versus “minimal” (i.e., “normal” low-plated freshwater sticklebacks versus spineless and/or plateless fish)) does not represent the full range of phenotypes that can be described by quantitative measures of the individual elements of armour. (2) Their use of unspecified test kits, with a probable accuracy of 4 ppm, may not be accurate in the range of water chemistry on North Uist (1 to 30 ppm calcium). (3) Their qualitative assessment of the abundance of brown trout Salmo trutta as the major predator of sticklebacks does not accurately describe the variation in brown trout abundance that is revealed by catch-per-unit-effort statistics. Repeating Spence et al.’s analysis using our own measurements, we find, in direct contradiction to them, that variation in stickleback bony armour is strongly correlated with variation in trout abundance, and unrelated to variation in the concentration of calcium in the lochs in which they live. Field studies in ecology and evolution seldom address the same question in the same system at the same time, and it is salutary that in this rare instance two such studies arrived at diametrically opposite answers. PMID:25478143

  17. Body armour: the effect of load, exercise and distraction on landing forces.

    PubMed

    Dempsey, Paddy C; Handcock, Phil J; Rehrer, Nancy J

    2014-01-01

    We investigated the effect of added load and intense exercise on jump and landing performance and ground reaction force (GRF) during landings where attentional demand was varied. Fifty-two males (37 ± 9.2 years, 180.7 ± 6.1 cm, 90.2 ± 11.6 kg, maximal aerobic fitness (VO(₂max)) 50 ± 8.5 ml (.) kg(-1 .) min(-1), BMI 27.6 ± 3.1, mean ± s) completed a VO(₂max) test. Experimental sessions were completed (≥4 days in between) in a randomised counterbalanced order, one while wearing body armour and appointments (loaded) and one without load (unloaded). A vertical jump, a drop landing concentrating on safe touchdown, a drop jump and a drop landing with an attentional distraction were performed. These were repeated 1 min after a 5-min treadmill run. Mean jump height decreased by 12% (P < 0.001) with loading and a further by 6% following the running task. Peak GRFs were increased by 13-19% with loading (P < 0.001) depending on the landing task demands and a further by 4-9% following intense exercise. The distracted drop landing had significantly higher GRFs compared to all other landings. Results demonstrate that added load impacts on jumping and landing performance, an effect that is amplified by prior intense exercise, and distraction during landing. Such increases in GRF apply to police officer performance in their duties and may increase the risk of injury. PMID:24050682

  18. Experimental and numerical analysis of the dynamic behaviour in tension of an armour steel for applications in defence industry

    NASA Astrophysics Data System (ADS)

    Cadoni, Ezio; Dotta, Matteo; Forni, Daniele; Riganti, Gianmario; Kaufmann, Hanspeter

    2015-09-01

    The dynamic behaviour of armour steel in tension was investigated over a wide range of strain-rates on round specimens. The experiments were carried out by means of a Split Hopkinson Tensile Bar device and by a Hydro Pneumatic Machine. The target strain rate were set at the following six levels: 10-3, 5, 25, 100, 500 and 1000 s-1. Two material models were calibrated and used to replicate the experiments and to simulate blasting event on steel plate. Finally, the two responses are compared.

  19. Magnetite decorated activated carbon composites for water purification

    NASA Astrophysics Data System (ADS)

    Barala, Sunil Kumar; Arora, Manju; Saini, Parveen

    2013-06-01

    Activated carbon decorated with magnetite (ACMG) nanoparticles composites have been prepared by facile method via impregnation of AC with stable dispersion of superparamagnetic MG nanoparticles followed by drying. These composites exhibit both magnetic and porosity behavior which can be easily optimized by controlling the weight ratio of two phases. The structural, magnetic, thermal and morphological properties of these as synthesized ACMG samples were characterized by powder XRD, FTIR, VSM and SEM techniques. The ACMG powder has been used for water purification having methylene blue (MB) dye as an impurity. The nanoporosity of these composites allow rapid adsorption of MB and their magnetic behavior helps in single step separation of MB adsorbed ACMG particles by the application of external magnetic field.

  20. Large-scale scour of the sea floor and the effect of natural armouring processes, land reclamation Maasvlakte 2, port of Rotterdam

    USGS Publications Warehouse

    Boer, S.; Elias, E.; Aarninkhof, S.; Roelvink, D.; Vellinga, T.

    2007-01-01

    Morphological model computations based on uniform (non-graded) sediment revealed an unrealistically strong scour of the sea floor in the immediate vicinity to the west of Maasvlakte 2. By means of a state-of-the-art graded sediment transport model the effect of natural armouring and sorting of bed material on the scour process has been examined. Sensitivity computations confirm that the development of the scour hole is strongly reduced due to the incorporation of armouring processes, suggesting an approximately 30% decrease in terms of erosion area below the -20m depth contour. ?? 2007 ASCE.

  1. Compositions comprising a polypeptide having cellulolytic enhancing activity and a quinone compound and uses thereof

    DOEpatents

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    2016-03-01

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a quinone compound. The present invention also relates to methods of using the compositions.

  2. Compositions comprising a polypeptide having cellulolytic enhancing activity and a heterocyclic compound and uses thereof

    DOEpatents

    Xu, Feng; Sweeney, Matthew; Quinlan, Jason

    2016-08-02

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a heterocyclic compound. The present invention also relates to methods of using the compositions.

  3. Compositions comprising a polypeptide having cellulolytic enhancing activity and a bicycle compound and uses thereof

    DOEpatents

    Xu, Feng; Sweeney, Matthew; Quinlan, Jason

    2015-06-16

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a bicyclic compound. The present invention also relates to methods of using the compositions.

  4. Compositions comprising a polypeptide having cellulolytic enhancing activity and a dioxy compound and uses thereof

    DOEpatents

    Sweeney, Matthew; Xu, Feng; Quinlan, Jason

    2016-07-19

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a dioxy compound. The present invention also relates to methods of using the compositions.

  5. Materials and Process Activities for NASA's Composite Crew Module

    NASA Technical Reports Server (NTRS)

    Polis, Daniel L.

    2012-01-01

    In January 2007, the NASA Administrator and Associate Administrator for the Exploration Systems Mission Directorate chartered the NASA Engineering and Safety Center (NESC) to design, build, and test a full-scale Composite Crew Module (CCM). The overall goal of the CCM project was to develop a team from the NASA family with hands-on experience in composite design, manufacturing, and testing in anticipation of future space exploration systems being made of composite materials. The CCM project was planned to run concurrently with the Orion project s baseline metallic design within the Constellation Program so that features could be compared and discussed without inducing risk to the overall Program. The materials and process activities were prioritized based on a rapid prototype approach. This approach focused developmental activities on design details with greater risk and uncertainty, such as out-of-autoclave joining, over some of the more traditional lamina and laminate building block levels. While process development and associated building block testing were performed, several anomalies were still observed at the full-scale level due to interactions between process robustness and manufacturing scale-up. This paper describes the process anomalies that were encountered during the CCM development and the subsequent root cause investigations that led to the final design solutions. These investigations highlight the importance of full-scale developmental work early in the schedule of a complex composite design/build project.

  6. Composition and Antimicrobial Activity of Euphrasia rostkoviana Hayne Essential Oil.

    PubMed

    Novy, Pavel; Davidova, Hana; Serrano-Rojero, Cecilia Suqued; Rondevaldova, Johana; Pulkrabek, Josef; Kokoska, Ladislav

    2015-01-01

    Eyebright, Euphrasia rostkoviana Hayne (Scrophulariaceae), is a medicinal plant traditionally used in Europe for the treatment of various health disorders, especially as eyewash to treat eye ailments such as conjunctivitis and blepharitis that can be associated with bacterial infections. Some Euphrasia species have been previously reported to contain essential oil. However, the composition and bioactivity of E. rostkoviana oil are unknown. Therefore, in this study, we investigated the chemical composition and antimicrobial activity of the eyebright essential oil against some organisms associated with eye infections: Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, and Candida albicans. GC-MS analysis revealed more than 70 constituents, with n-hexadecanoic acid (18.47%) as the main constituent followed by thymol (7.97%), myristic acid (4.71%), linalool (4.65%), and anethole (4.09%). The essential oil showed antimicrobial effect against all organisms tested with the exception of P. aeruginosa. The best activity was observed against all Gram-positive bacteria tested with the minimum inhibitory concentrations of 512 µg/mL. This is the first report on the chemical composition of E. rostkoviana essential oil and its antimicrobial activity. PMID:26000025

  7. Composition and Antimicrobial Activity of Euphrasia rostkoviana Hayne Essential Oil

    PubMed Central

    Novy, Pavel; Davidova, Hana; Serrano-Rojero, Cecilia Suqued; Rondevaldova, Johana; Pulkrabek, Josef

    2015-01-01

    Eyebright, Euphrasia rostkoviana Hayne (Scrophulariaceae), is a medicinal plant traditionally used in Europe for the treatment of various health disorders, especially as eyewash to treat eye ailments such as conjunctivitis and blepharitis that can be associated with bacterial infections. Some Euphrasia species have been previously reported to contain essential oil. However, the composition and bioactivity of E. rostkoviana oil are unknown. Therefore, in this study, we investigated the chemical composition and antimicrobial activity of the eyebright essential oil against some organisms associated with eye infections: Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, and Candida albicans. GC-MS analysis revealed more than 70 constituents, with n-hexadecanoic acid (18.47%) as the main constituent followed by thymol (7.97%), myristic acid (4.71%), linalool (4.65%), and anethole (4.09%). The essential oil showed antimicrobial effect against all organisms tested with the exception of P. aeruginosa. The best activity was observed against all Gram-positive bacteria tested with the minimum inhibitory concentrations of 512 µg/mL. This is the first report on the chemical composition of E. rostkoviana essential oil and its antimicrobial activity. PMID:26000025

  8. Essential Oil Composition and Antigermination Activity of Artemisia dracunculus (Tarragon).

    PubMed

    Fraternale, Daniele; Flamini, Guido; Ricci, Donata

    2015-08-01

    The chemical composition of an Italian oil of tarragon (Artemisia dracunculus L.) was analyzed by GC/EIMS. The major compound of the oil was estragole (73.3%), followed by limonene (5.4%), (E)-β-ocimene (5.3%), β-pinene (3.4%) and (Z)-β-ocimene (3.0%). The essential oil was tested "in vitro" for its antigermination activity against Raphanus sativus L., Lepidium sativum L, Papaver rhoeas L. and Avena fatua L. seeds and demonstrating a good inhibitory activity in a dose-dependent way. PMID:26434144

  9. Passive and Active Vibration Control With Piezoelectric Fiber Composites

    SciTech Connect

    Vigier, Yves; Agbossou, Amen; Richard, Claude

    2002-07-01

    The possibility of dissipating mechanical energy with piezoelectric fiber composites (PFC) is investigated. The techniques for manufacturing an active beam with integrated (PFC) are presented and applied to a cantilevered beam experiment. We evaluated experimentally the performances of the active beam in passive energy dissipation. Three vibration cases were analysed: electrodes of the PFCs are (i) in open circuit, (ii) short circuit and (iii) shunted with electrical impedance designed to dissipate the electrical energy, which has been converted from the beam mechanical energy by the PFCs. Then we presented numerical models to analyze the vibration of active beams connect to electrical impedance. The proposed models point out with an accurate order of magnitude the change in vibration amplitude of the analysed beam. Hence we validate experimentally and numerically the concept of vibration control with PFCs and point out some new contributions of PFCs in active or passive damping. (authors)

  10. Phenolic Composition and Antioxidant Activity of Malus domestica Leaves

    PubMed Central

    Viškelis, Pranas; Uselis, Norbertas

    2014-01-01

    The aim of this study was to determine the composition and content of phenolic compounds in the ethanol extracts of apple leaves and to evaluate the antioxidant activity of these extracts. The total phenolic content was determined spectrophotometrically, as well as the total flavonoid content in the ethanol extracts of apple leaves and the antioxidant activity of these extracts, by the ABTS, DPPH, and FRAP assays. The highest amount of phenolic compounds and flavonoids as well as the highest antioxidant activity was determined in the ethanol extracts obtained from the apple leaves of the cv. Aldas. The analysis by the HPLC method revealed that phloridzin was a predominant component in the ethanol extracts of the apple leaves of all cultivars investigated. The following quercetin glycosides were identified and quantified in the ethanol extracts of apple leaves: hyperoside, isoquercitrin, avicularin, rutin, and quercitrin. Quercitrin was the major compound among quercetin glycosides. PMID:25302319

  11. Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities.

    PubMed

    Souza, Lucèia Fàtima; Caputo, Lucia; Inchausti De Barros, Ingrid Bergman; Fratianni, Florinda; Nazzaro, Filomena; De Feo, Vincenzo

    2016-01-01

    The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL) and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE)/g). The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY) expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression. PMID:27598154

  12. Active Piezoelectric Vibration Control of Subscale Composite Fan Blades

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Min, James B.; Kray, Nicholas

    2012-01-01

    As part of the Fundamental Aeronautics program, researchers at NASA Glenn Research Center (GRC) are investigating new technologies supporting the development of lighter, quieter, and more efficient fans for turbomachinery applications. High performance fan blades designed to achieve such goals will be subjected to higher levels of aerodynamic excitations which could lead to more serious and complex vibration problems. Piezoelectric materials have been proposed as a means of decreasing engine blade vibration either through a passive damping scheme, or as part of an active vibration control system. For polymer matrix fiber composite blades, the piezoelectric elements could be embedded within the blade material, protecting the brittle piezoceramic material from the airflow and from debris. To investigate this idea, spin testing was performed on two General Electric Aviation (GE) subscale composite fan blades in the NASA GRC Dynamic Spin Rig Facility. The first bending mode (1B) was targeted for vibration control. Because these subscale blades are very thin, the piezoelectric material was surface-mounted on the blades. Three thin piezoelectric patches were applied to each blade two actuator patches and one small sensor patch. These flexible macro-fiber-composite patches were placed in a location of high resonant strain for the 1B mode. The blades were tested up to 5000 rpm, with patches used as sensors, as excitation for the blade, and as part of open- and closed-loop vibration control. Results show that with a single actuator patch, active vibration control causes the damping ratio to increase from a baseline of 0.3% critical damping to about 1.0% damping at 0 RPM. As the rotor speed approaches 5000 RPM, the actively controlled blade damping ratio decreases to about 0.5% damping. This occurs primarily because of centrifugal blade stiffening, and can be observed by the decrease in the generalized electromechanical coupling with rotor speed.

  13. Correcting Thermal Deformations in an Active Composite Reflector

    NASA Technical Reports Server (NTRS)

    Bradford, Samuel C.; Agnes, Gregory S.; Wilkie, William K.

    2011-01-01

    Large, high-precision composite reflectors for future space missions are costly to manufacture, and heavy. An active composite reflector capable of adjusting shape in situ to maintain required tolerances can be lighter and cheaper to manufacture. An active composite reflector testbed was developed that uses an array of piezoelectric composite actuators embedded in the back face sheet of a 0.8-m reflector panel. Each individually addressable actuator can be commanded from 500 to +1,500 V, and the flatness of the panel can be controlled to tolerances of 100 nm. Measuring the surface flatness at this resolution required the use of a speckle holography interferometer system in the Precision Environmental Test Enclosure (PETE) at JPL. The existing testbed combines the PETE for test environment stability, the speckle holography system for measuring out-of-plane deformations, the active panel including an array of individually addressable actuators, a FLIR thermal camera to measure thermal profiles across the reflector, and a heat source. Use of an array of flat piezoelectric actuators to correct thermal deformations is a promising new application for these actuators, as is the use of this actuator technology for surface flatness and wavefront control. An isogrid of these actuators is moving one step closer to a fully active face sheet, with the significant advantage of ease in manufacturing. No extensive rib structure or other actuation backing structure is required, as these actuators can be applied directly to an easy-to-manufacture flat surface. Any mission with a surface flatness requirement for a panel or reflector structure could adopt this actuator array concept to create lighter structures and enable improved performance on orbit. The thermal environment on orbit tends to include variations in temperature during shadowing or changes in angle. Because of this, a purely passive system is not an effective way to maintain flatness at the scale of microns over several

  14. Active shape control of composite structures under thermal loading

    NASA Astrophysics Data System (ADS)

    Binette, P.; Dano, M.-L.; Gendron, G.

    2009-02-01

    Maintaining the shape of high-precision structures such as space antennas and optical mirrors is still a challenging issue for designers. These structures are subjected to varying temperature conditions which often introduce thermal distortions. The development of smart materials offers great potential to correct the shape and to minimize the surface error. In this study, shape control of a composite structure under thermal loading using piezocomposites is investigated. The composite structure is made of a foam core and two carbon-epoxy face sheets. Macro-fiber composite (MFC™) patches are bonded on one side of the structure. The structure is subjected to a through-the-thickness temperature gradient which induces thermal distortion, essentially in the form of bending. The objective is to apply electric potential to the MFC™ actuators such that the deflection can be minimized. Finite-element analyses are conducted using the commercial software ABAQUS. Experiments are performed to study thermally induced distortion, piezoelectric actuation, and compensation of thermal distortion using MFC™ actuators. Numerical and experimental results are compared. A control loop based on strain measurements is used to actively control the structure. The results show that MFC™ actuators can compensate thermal distortion at all times, and that this is an efficient methodology.

  15. Active vibration control of basic structures using macro fiber composites

    NASA Astrophysics Data System (ADS)

    Yi, Guo; Wang, Jinming; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2011-03-01

    In the modern naval battle, as the anti-detection technique developing fleetly, enhancing submarine's hidden ability is becoming more and more important. However, in view of the worse control effect at low-frequency and weak adjustability to external influence, conventional passive vibration control can't satisfy the modern naval rigorous demands. Fortunately, active vibration control technology not only monitors the structure's real-time vibration, but also has more remarkable control effects and superior suitability. At the present time, it has a primary application in the vibration damping of ship engineering. In addition, due to functional materials rapidly developing, with the coming of piezoelectric composite materials, the advanced active control techniques have more applicability, lager damp amplitude and wider applied field, which basing on the piezoelectric-effect and inverse- piezoelectric-effect of piezoelectric materials. Especially, in the end of nineties, NASA had successfully manufactured the excellent macro fiber composite (MFC), which assembles actuating and sensing abilities. Comparing with the conventional piezoelectric ceramic materials, it provides the required durability, excellent flexibility, higher electromechanical coupling factors and stronger longitudinal actuating force by using interdigital electrodes. On the basis of the application of cantilever beam' active vibration control by using MFC actuators, this paper started with the mechanical characteristics of its actuating and sensing equations, and then investigated its piezoelectric feedback scale factor when equipped on the honeycomb aluminous panel. Finally, in order to validate the theoretical analysis method, the vibration control experiment of cantilever beam and honeycomb aluminous panel are built and tested with different activating force. The experimental results verify that MFC used in submarine structures' active vibration control are feasible and effective.

  16. Metatranscriptomics reveals overall active bacterial composition in caries lesions

    PubMed Central

    Simón-Soro, Aurea; Guillen-Navarro, Miriam; Mira, Alex

    2014-01-01

    Background Identifying the microbial species in caries lesions is instrumental to determine the etiology of dental caries. However, a significant proportion of bacteria in carious lesions have not been cultured, and the use of molecular methods has been limited to DNA-based approaches, which detect both active and inactive or dead microorganisms. Objective To identify the RNA-based, metabolically active bacterial composition of caries lesions at different stages of disease progression in order to provide a list of potential etiological agents of tooth decay. Design Non-cavitated enamel caries lesions (n=15) and dentin caries lesions samples (n=12) were collected from 13 individuals. RNA was extracted and cDNA was constructed, which was used to amplify the 16S rRNA gene. The resulting 780 bp polymerase chain reaction products were pyrosequenced using Titanium-plus chemistry, and the sequences obtained were used to determine the bacterial composition. Results A mean of 4,900 sequences of the 16S rRNA gene with an average read length of 661 bp was obtained per sample, giving a comprehensive view of the active bacterial communities in caries lesions. Estimates of bacterial diversity indicate that the microbiota of cavities is highly complex, each sample containing between 70 and 400 metabolically active species. The composition of these bacterial consortia varied among individuals and between caries lesions of the same individuals. In addition, enamel and dentin lesions had a different bacterial makeup. Lactobacilli were found almost exclusively in dentin cavities. Streptococci accounted for 40% of the total active community in enamel caries, and 20% in dentin caries. However, Streptococcus mutans represented only 0.02–0.73% of the total bacterial community. Conclusions The data indicate that the etiology of dental caries is tissue dependent and that the disease has a clear polymicrobial origin. The low proportion of mutans streptococci detected confirms that they

  17. Dispersants having antioxidant activity and lubricating compositions containing them

    SciTech Connect

    Crawford, J.; Hill, G. A.

    1981-02-03

    Lubricating oil additives having both dispersant and antioxidant activity, particularly useful for incorporation in two-stroke petrol engine lubricating oil compositions, are produced when a dispersant having free >n-h groups, E.G., a substituted succinimide, is reacted with an aldehyde and a compound having antioxidant activity containing in its molecular structure a group or groups capable of condensing with the aldehyde and >n-h groups present in the dispersant, thereby chemically bonding the compound to the dispersant. Representative antioxidants are mononuclear and polynuclear substituted phenols having at least one unsubstituted ortho- or para-position, E.G. 2,6-di-tert-butyl phenol and secondary aromatic amines. Typical reaction conditions are a temperature in the range 100* to 175/sup 0/C, and atmospheric pressure.

  18. Milk kefir: composition, microbial cultures, biological activities, and related products

    PubMed Central

    Prado, Maria R.; Blandón, Lina Marcela; Vandenberghe, Luciana P. S.; Rodrigues, Cristine; Castro, Guillermo R.; Thomaz-Soccol, Vanete; Soccol, Carlos R.

    2015-01-01

    In recent years, there has been a strong focus on beneficial foods with probiotic microorganisms and functional organic substances. In this context, there is an increasing interest in the commercial use of kefir, since it can be marketed as a natural beverage that has health promoting bacteria. There are numerous commercially available kefir based-products. Kefir may act as a matrix in the effective delivery of probiotic microorganisms in different types of products. Also, the presence of kefir’s exopolysaccharides, known as kefiran, which has biological activity, certainly adds value to products. Kefiran can also be used separately in other food products and as a coating film for various food and pharmaceutical products. This article aims to update the information about kefir and its microbiological composition, biological activity of the kefir’s microflora and the importance of kefiran as a beneficial health substance. PMID:26579086

  19. Environmental impact on crew of armoured vehicles: Effects of 24 h combat exercise in a hot desert

    NASA Astrophysics Data System (ADS)

    Singh, A. P.; Majumdar, D.; Bhatia, M. R.; Srivastava, K. K.; Selvamurthy, W.

    1995-06-01

    A field study was undertaken to investigate the effects of combined noise, vibration and heat stress on the physiological functions of the crew of armoured vehicles during prolonged combat exercise in a desert. The sound pressure level of noise was measured with a sound level meter and accelerations by vibration analyser. The thermal load on the crew was evaluated by calculating the wet bulb globe temperature index. The physiological responses of the subjects ( n=9), included significant increases in the heart rate, 24 h water intake and urinary catecholamine concentration. A significant decrease was recorded in body mass, peak expiratory flow rate and 24 h urinary output. The high heat load on the crew resulted in a hypohydration of 3% body mass and appeared to be the dominant factor in producing the physiological strain.

  20. Biological activities and chemical composition of lichens from Serbia

    PubMed Central

    Kosanic, Marijana; Rankovic, Branislav; Stanojkovic, Tatjana; Vasiljevic, Perica; Manojlovic, Nedeljko

    2014-01-01

    The aim of this study is to investigate chemical composition of acetone extracts of the lichens Parmelia arseneana and Acarospora fuscata and in vitro antioxidant, antimicrobial, and anticancer activities of these extracts and gyrophoric acid isolated from A. fuscata. The HPLC-UV method was used for the identification of secondary metabolites. Stictic acid, norstictic acid, gyrophoric acid, usnic acid, atranorin and chloroatranorin were identified in the A. fuscata. In P. arseneana, we detected stictic acid, norstictic acid, usnic acid and atranorin, while gyrophoric acid was not identified. Antioxidant activity was evaluated by measuring the scavenging capacity of tested samples on DPPH and superoxide anion radicals, reducing the power of samples and determination of total phenolic compounds in extracts. As a result of the study, gyrophoric acid was found to have the largest DPPH radical scavenging activity with an IC50 value of 105.75 µg/ml. Moreover, the tested samples had an effective superoxide anion radical scavenging and reducing power. The total content of phenol in extracts was determined as pyrocatechol equivalent. The antimicrobial activity was estimated by determination of the minimal inhibitory concentration by the broth microdilution method. The most active was also gyrophoric acid, with minimum inhibitory concentration values ranging from 0.019 to 1.25 mg/ml. Anticancer activity was tested against LS174 (human colon carcinoma cell line), A549 (human lung carcinoma cell line), Fem-x (malignant melanoma cell line), and a chronic myelogeneous leukaemia K562 cell line using the MTT method. Extract of P. arseneana expressed the strongest anticancer activity against all cell lines with IC50 values ranging from 11.61 to 47.06 µg/ml. PMID:26417336

  1. Anti-inflammatory activity and composition of Senecio salignus Kunth.

    PubMed

    González, Cuauhtemoc Pérez; Vega, Roberto Serrano; González-Chávez, Marco; Sánchez, Miguel Angel Zavala; Gutiérrez, Salud Pérez

    2013-01-01

    We investigated the anti-inflammatory activity of Senecio salignus. This medicinal plant is often used in Mexico for the treatment of fever and rheumatism. Chloroform and methanol extracts of the plant were tested on 12-O-tetradecanoylphorbol-13-acetate- (TPA-) induced edema in mice ears. The methanol extract of the plant inhibited edema by 36 ± 4.4% compared with the control, while the chloroform extract exhibited an even greater level of inhibition (64.1%). The chloroform extract was then fractionated, and the composition of the active fraction was determined by GC-MS. The anti-inflammatory activity of this fraction was then tested on TPA-induced ear edema in mice, and we found that the active fraction could inhibit edema by 46.9%. The anti-inflammatory effect of the fraction was also tested on carrageenan-induced paw edema in rats at doses of 100 mg/kg; a 58.9 ± 2.8% reduction of the edema was observed 4 h after administration of carrageenan, and the effect was maintained for 5 h. PMID:23691512

  2. Anti-Inflammatory Activity and Composition of Senecio salignus Kunth

    PubMed Central

    Pérez González, Cuauhtemoc; Serrano Vega, Roberto; González-Chávez, Marco; Zavala Sánchez, Miguel Angel; Pérez Gutiérrez, Salud

    2013-01-01

    We investigated the anti-inflammatory activity of Senecio salignus. This medicinal plant is often used in Mexico for the treatment of fever and rheumatism. Chloroform and methanol extracts of the plant were tested on 12-O-tetradecanoylphorbol-13-acetate- (TPA-) induced edema in mice ears. The methanol extract of the plant inhibited edema by 36 ± 4.4% compared with the control, while the chloroform extract exhibited an even greater level of inhibition (64.1%). The chloroform extract was then fractionated, and the composition of the active fraction was determined by GC-MS. The anti-inflammatory activity of this fraction was then tested on TPA-induced ear edema in mice, and we found that the active fraction could inhibit edema by 46.9%. The anti-inflammatory effect of the fraction was also tested on carrageenan-induced paw edema in rats at doses of 100 mg/kg; a 58.9 ± 2.8% reduction of the edema was observed 4 h after administration of carrageenan, and the effect was maintained for 5 h. PMID:23691512

  3. Composition and antibacterial activity of Abies balsamea essential oil.

    PubMed

    Pichette, André; Larouche, Pierre-Luc; Lebrun, Maxime; Legault, Jean

    2006-05-01

    The antibacterial activity of the essential oil of Abies balsamea (balsam fir) was evaluated against Escherichia coli and Staphylococcus aureus. The essential oil of A. balsamea was found to be inactive against E. coli (>100 microg/mL) and active against S. aureus, with an MIC of 56 microg/mL. The oil composition was analysed by GC-MS and the antibacterial activity of each oil constituent was determined. The essential oil of A. balsamea is essentially constituted of monoterpenes (>96%) and some sesquiterpenes. beta-pinene (29.9%), delta-3-carene (19.6%) and alpha-pinene (14.6%) were the major components. beta-pinene and delta-3-carene were found inactive against both bacteria strains. However, three constituents of the essential oil were active against S. aureus: alpha-pinene, beta-caryophyllene (0.4%) and alpha-humulene (0.2%) with MIC values of 13.6 microg/mL, 5.1 microg/mL and 2.6 microg/mL, respectively. PMID:16619365

  4. Chemical Composition and Antioxidant Activities of Broussonetia papyrifera Fruits

    PubMed Central

    Sun, Jie; Liu, Shao-fang; Zhang, Chu-shu; Yu, Li-na; Bi, Jie; Zhu, Feng; Yang, Qing-li

    2012-01-01

    Fruits of Broussonetia papyrifera from South China were analyzed for their total chemical composition, and antioxidant activities in ethanol and aqueous extracts. In the fruit of this plant, the crude protein, crude fat and carbohydrates was 7.08%, 3.72% and 64.73% of dry weight, respectively. The crude protein, crude fat and carbohydrates were 15.71%, 20.51% and 36.09% of dry weight, respectively. Fatty acid and amino acid composition of the fruit were analyzed. Unsaturated fatty acid concentration was 70.6% of the total fatty acids. The percentage of the essential amino acids (EAAs) was 40.60% of the total amino acids. Furthermore, B. papyrifera fruit are rich in many mineral elements and vitamins. Total phenolic content was assessed using the Folin-Ciocalteau assay, whereas antioxidant activities were assessed by measuring the ability of the two extracts to scavenge DPPH radicals, inhibit peroxidation, and chelate ferric ions. Their reducing power was also assessed. Results indicated that the aqueous extract of B. papyrifera was a more potent reducing agent and radical-scavenger than the ethanol extract. GC–MS analysis of the ethanol extract showed the presence of some acid-containing compounds. The changes in total phenolic content and antioxidant capacity in B. papyrifera from four different regions grown under normal conditions were assessed. The antioxidant activity of different extracts was positively associated with their total phenolic content. These results suggest that the fruit of B. papyrifera could be used in dietary supplement preparations, or as a food additive, for nutritional gain, or to prevent oxidation in food products. PMID:22389678

  5. Biological Activities and Composition of Ferulago carduchorum Essential Oil

    PubMed Central

    Golfakhrabadi, Fereshteh; Khanavi, Mahnaz; Ostad, Seyed Nasser; Saeidnia, Soodabeh; Vatandoost, Hassan; Abai, Mohammad Reza; Hafizi, Mitra; Yousefbeyk, Fatemeh; Rad, Yaghoob Razzaghi; Baghenegadian, Ameneh; Ardekani, Mohammad Reza Shams

    2015-01-01

    Background: Ferulago carduchorum Boiss and Hausskn belongs to the Apiaceae family. This plant grows in west part of Iran that local people added it to dairy and oil ghee to delay expiration date and give them a pleasant taste. The aim of this study was to investigate the antioxidant, antimicrobial, acetyl cholinesterase inhibition, cytotoxic, larvicidal activities and composition of essential oil of F. carduchorum. Methods: Acetyl cholinesterase (AChE) inhibitory, larvicidal activities and chemical composition of essential oil of F. carduchorum were investigated. Besides, antioxidant, antimicrobial and cytotoxic activities of essential oil were tested using DPPH, microdilution method and MTT assay, respectively. Results: The major components of essential oil were (z)-β-ocimene (43.3%), α-pinene (18.23%) and bornyl acetate (3.98%). Among 43 identified components, monoterpenes were the most compounds (84.63%). The essential oil had noticeable efficiency against Candida albicans (MIC= 2340 μg ml−1) and it was effective against Anopheles stephensi with LC50 and LC90 values of 12.78 and 47.43 ppm, respectively. The essential oil could inhibit AChE (IC50= 23.6 μl ml−1). The essential oil showed high cytotoxicity on T47D, HEP-G2 and HT-29 cell lines (IC50< 2 μg ml−1). Conclusion: The essential oil of F. carduchorum collected from west of Iran had anti-Candida, larvicidal and cytotoxicity effects and should be further investigated in others in vitro and in vivo experimental models. PMID:26114148

  6. Designation of alloy composition of reduced-activation martensitic steel

    NASA Astrophysics Data System (ADS)

    Kimura, A.; Kayano, H.; Misawa, T.; Matsui, H.

    1994-09-01

    An alloy composition of reduced-activation martensitic steel for fusion reactor is designed on the basis of the experimental results of postirradiation microstructure, mechanical properties, such as creep, fracture toughness and tensile properties, hydrogen effects and corrosion. At present, a desired composition of the steel is 0.1C-0.05Si-0.5Mn-9Cr-2W-0.25V-0.02Ti-0.05Ta- < 0.002S- < 0.002P by weight percent. Effects of the other minor elements such as Al, Zr and B are also inspected. An addition of 0.05 wt% Ta increases the high temperature strength but reduces the fracture toughness. Susceptibility to hydrogen-induced cracking is reduced by an addition of 0.03 wt% Al, though it results in a severe degradation of the fracture toughness. An addition of 30 wppm B together with the addition of 0.02 wt% Ti increases the fracture toughness. Void nucleation at grain boundaries, however, is enhanced by the B addition under the FFTF irradiation at 638 K in 10 dpa.

  7. Physical Activity, Body Composition and Metabolic Syndrome in Young Adults

    PubMed Central

    Salonen, Minna K.; Wasenius, Niko; Kajantie, Eero; Lano, Aulikki; Lahti, Jari; Heinonen, Kati; Räikkönen, Katri; Eriksson, Johan G.

    2015-01-01

    Objective Low physical activity (PA) is a major risk factor for cardiovascular and metabolic disorders in all age groups. We measured intensity and volume of PA and examined the associations between PA and the metabolic syndrome (MS), its components and body composition among young Finnish adults. Research Design and Methods The study comprises 991 men and women born 1985-86, who participated in a clinical study during the years 2009-11 which included assessments of metabolism, body composition and PA. Objectively measured (SenseWear Armband) five-day PA data was available from 737 participants and was expressed in metabolic equivalents of task (MET). Results The prevalence of MS ranged between 8-10%. Higher total mean volume (MET-hours) or intensity (MET) were negatively associated with the risk of MS and separate components of MS, while the time spent at sedentary level of PA was positively associated with MS. Conclusions MS was prevalent in approximately every tenth of the young adults at the age of 24 years. Higher total mean intensity and volume rates as well as longer duration spent at moderate and vigorous PA level had a beneficial impact on the risk of MS. Longer time spent at the sedentary level of PA increased the risk of MS. PMID:25992848

  8. Thymus vulgaris essential oil: chemical composition and antimicrobial activity.

    PubMed

    Borugă, O; Jianu, C; Mişcă, C; Goleţ, I; Gruia, A T; Horhat, F G

    2014-01-01

    The study was designed to determine the chemical composition and antimicrobial properties of the essential oil of Thymus vulgaris cultivated in Romania. The essential oil was isolated in a yield of 1.25% by steam distillation from the aerial part of the plant and subsequently analyzed by GC-MS. The major components were p-cymene (8.41%), γ-terpinene (30.90%) and thymol (47.59%). Its antimicrobial activity was evaluated on 7 common food-related bacteria and fungus by using the disk diffusion method. The results demonstrate that the Thymus vulgaris essential oil tested possesses strong antimicrobial properties, and may in the future represent a new source of natural antiseptics with applications in the pharmaceutical and food industry. PMID:25870697

  9. Active vibration control based on piezoelectric smart composite

    NASA Astrophysics Data System (ADS)

    Gao, Le; Lu, Qingqing; Fei, Fan; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2013-12-01

    An aircraft’s vertical fin may experience dramatic buffet loads in high angle of attack flight conditions, and these buffet loads would cause huge vibration and dynamic stress on the vertical fin structure. To reduce the dynamic vibration of the vertical fin structure, macro fiber composite (MFC) actuators were used in this paper. The drive moment equations and sensing voltage equations of the MFC actuators were developed. Finite element analysis models based on three kinds of models of simplified vertical fin structures with surface-bonded MFC actuators were established in ABAQUS. The equivalent damping ratio of the structure was employed in finite element analysis, in order to measure the effectiveness of vibration control. Further, an open-loop test for the active vibration control system of the vertical fin with MFC actuators was designed and developed. The experimental results validated the effectiveness of the MFC actuators as well as the developed methodology.

  10. Active stiffness modulation of fins using macro fiber composites

    NASA Astrophysics Data System (ADS)

    Kancharala, Ashok K.; Philen, Michael K.

    2013-04-01

    Studies on the role of body flexibility in propulsion suggest that fish have the ability to control or modulate the stiffness of the fin for optimized propulsive performance. Fins with certain stiffness might be efficient for a particular set of operating parameters but may be inefficient for other parameters. Therefore active stiffness modulation of a fin can improve the propulsive performance for a range of operating conditions. This paper discusses the preliminary experimental work on the open loop active deformation control of heaving flexible fins using Macro Fiber Composites (MFCs). The effect of important parameters such as oscillation frequency, flexibility of the fin, applied voltage and the phase difference between applied voltage and heaving on propulsive performance are studied and reported. The results indicate that propulsive performance can be improved by active control of the fins. The mean thrust improved by 30- 38% for the fins used in the experiments. The phase difference of ~90° is found to be optimal for maximized propulsive performance for the parameters considered in the study. Furthermore, there exists an optimal voltage magnitude at which the propulsive performance is a maximum for the range of operating conditions.

  11. 12 CFR 7.5003 - Composite authority to engage in electronic activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Composite authority to engage in electronic activities. 7.5003 Section 7.5003 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Electronic Activities § 7.5003 Composite authority to engage in electronic activities. Unless otherwise...

  12. Magnetoresponsive squalenoyl gemcitabine composite nanoparticles for cancer active targeting.

    PubMed

    Arias, José L; Reddy, L Harivardhan; Couvreur, Patrick

    2008-07-15

    Gemcitabine is widely used against a variety of solid tumors; however, it possesses some important drawbacks such as rapid deamination leading to short biological half-life and induction of tumor resistance. We have shown previously that the covalent coupling of squalene (a precursor of cholesterol in sterol biosynthesis) to gemcitabine resulted in a potent nanomedicine, squalenoyl gemcitabine (SQdFdC), which displayed appreciable anticancer activity. Now, the present study describes the concept of magnetic responsiveness of SQdFdC nanoparticles obtained by the nanoprecipitation of SQdFdC around magnetite nanoparticles. To investigate these new core/shell nanoparticles, we have compared their structure, chemical composition and surface properties with those of either the magnetic core alone or of the SQdFdC coating material. X-ray diffraction and infrared spectroscopy studies have shown that the composite core/shell particles displayed an intermediate behavior between that of pure magnetite and of pure SQdFdC nanoparticles, whereas dark-field, high-resolution transmission electron microscopy allowed clear demonstration of the core/shell structure. Electrophoresis measurements as a function of both pH and ionic strength, as well as thermodynamic consideration, showed similar behavior of core/shell and pure SQdFdC nanoparticles, suggesting again the coating of the magnetite core by the SQdFdC prodrug. The two important parameters to be controlled in the efficient adsorption of SQdFdC onto magnetite nanocores were the magnetite/SQdFdC weight ratio and the pluronic F-68 concentration. Pluronic F-68 was found to play a key role as a surfactant in the generation of stable composite core/shell nanoparticle suspensions. Finally, the characterization of the magnetic properties of these core/shell nanoparticles revealed that if the squalenoyl shell reduced the magnetic responsiveness of the particles, it kept unchanged their soft ferrimagnetic character. Thus, the

  13. Composition and antioxidant activity of Trigona carbonaria honey from Australia.

    PubMed

    Oddo, Livia Persano; Heard, Tim A; Rodríguez-Malaver, Antonio; Pérez, Rosa Ana; Fernández-Muiño, Miguel; Sancho, María Teresa; Sesta, Giulio; Lusco, Lorenzo; Vit, Patricia

    2008-12-01

    Stingless bees (Tribe Meliponini) are a diverse group of highly eusocial bees distributed throughout the tropics and subtropics. Trigona carbonaria honey, from Australia, was characterized by traditional physicochemical parameters (acidity, sugars, diastase, electrical conductivity, hydroxymethylfurfural, invertase, nitrogen, and water content) and other compositional factors (flavonoids, polyphenols, organic acids, and water activity), as well as total antioxidant capacity and radical scavenging activity. For the Australian T. carbonaria, the traditional analytical parameters were similar to those previously reported for neotropical stingless bee honey and confirm that honeys produced by Meliponini bees possess several physicochemical properties that are distinctly different from Apis mellifera honey, with higher values of moisture (26.5 +/- 0.8 g of water/100 g of honey), water activity (0.74 +/- 0.01), electrical conductivity (1.64 +/- 0.12 mS/cm), and free acidity (124.2 +/- 22.9 mEq/kg of honey) and a very low diastase activity (0.4 +/- 0.5 diastase number) and invertase activity (5.7 +/- 1.5 invertase number). The sugar spectrum was quite different from that of A. mellifera honey, with 20.3 +/- 2.9 g of maltose/100 g of honey. The values of pH (4.0 +/- 0.1), lactonic acidity (4.7 +/- 0.8 mEq/kg of honey), sucrose (1.8 +/- 0.4 g/100 g of honey), and fructose/glucose ratio (1.42 +/- 0.13) fell in the same ranges as those of A. mellifera honey. Citric (0.23 +/- 0.09) and malic (0.12 +/- 0.03) acid concentrations (in g/kg of honey) of T. carbonaria honeys were in the range described for A. mellifera honey. D-Gluconic was more concentrated (9.9 +/- 1.3 g/kg of honey), in the range of Italian Castanea, Thymus, Arbutus, and honeydew honeys. Flavonoid content was 10.02 +/- 1.59 mg of quercetin equivalents/100 g of honey, and polyphenol contents were 55.74 +/- 6.11 mg of gallic acid equivalents/100 g of honey. The antioxidant activity, expressed as percentage of 2

  14. Composition and Antidiarrheal Activity of Bidens odorata Cav.

    PubMed Central

    Zavala-Mendoza, Daniel; Alarcon-Aguilar, Francisco J.; Pérez-Gutierrez, Salud; Escobar-Villanueva, M. Carmen; Zavala-Sánchez, Miguel A.

    2013-01-01

    The antidiarrheal effects of chloroform, methanol, and aqueous extracts of Bidens odorata Cav. were investigated at doses of 200 mg/kg on castor-oil-induced diarrhea. The chloroform extract of B. odorata (CBO) reduced diarrhea by 72.72%. The effect of CBO was evaluated on mice with diarrhea induced by castor oil, MgSO4, arachidonic acid, or prostaglandin E2. CBO inhibited the contraction induced by carbachol chloride on ileum (100 µg/mL) and intestinal transit (200 mg/kg) in Wistar rats. The active fraction of CBO (F4) at doses of 100 mg/kg inhibited the diarrhea induced by castor oil (90.1%) or arachidonic acid (72.9%) but did not inhibit the diarrhea induced by PGE2. The active fraction of F4 (FR5) only was tested on diarrhea induced with castor oil and inhibited this diarrhea by 92.1%. The compositions of F4 and FR5 were determined by GC-MS, and oleic, palmitic, linoleic, and stearic acids were found. F4 and a mixture of the four fatty acids inhibited diarrhea at doses of 100 mg/kg (90.1% and 70.6%, resp.). The results of this study show that B. odorata has antidiarrheal effects, as is claimed by folk medicine, and could possibly be used for the production of a phytomedicine. PMID:24282432

  15. Active control of structures using macro-fiber composite (MFC)

    NASA Astrophysics Data System (ADS)

    Kovalovs, A.; Barkanov, E.; Gluhihs, S.

    2007-12-01

    This paper presents the use of macro-fiber composites (MFC) for vibration reduces of structures. The MFC consist of polyimid films with IDE-electrodes that are glued on the top and the bottom of rectangular piezoceramic fibers. The interdigitated electrodes deliver the electric field required to activate the piezoelectric effect in the fibers and allows to invoke the stronger longitudinal piezoelectric effect along the length of the fibers. When this actuator embedded in a surface or attached to flexible structures, the MFC actuator provides distributed solid-state deflection and vibration control. The major advantages of the piezoelectric fibre composite actuators are their high performance, flexibility, and durability when compared with the traditional piezoceramic (PZT) actuators. In addition, the ability of MFC devices to couple the electrical and mechanical fields is larger than in monolithic PZT. In this study, we showed the experimental results that an MFC could be used as actuator to find modal parameters and reduce vibration for structures such as an aluminium beam and metal music plate. Two MFC actuators were attached to the surfaces of test subjects. First MFC actuator used to supply a signal as exciter of vibration and second MFC show his application for reduction of vibration in the range of resonance frequencies. Experimental results of aluminium beam with MFC actuators compared with finite element model which modelled in ANSYS software. The applied voltage is modelled as a thermal load according to thermal analogy for MFC. The experimental and numerical results presented in this paper confirm the potential of MFC for use in the vibration control of structures.

  16. Brazilian Propolis: Correlation Between Chemical Composition and Antimicrobial Activity

    PubMed Central

    Salomão, Kelly; Pereira, Paulo Roberto S.; Campos, Leila C.; Borba, Cintia M.; Cabello, Pedro H.; Marcucci, Maria Cristina

    2008-01-01

    The chemical composition of ethanol extracts from samples of Brazilian propolis (EEPs) determined by HPLC and their activity against Trypanosoma cruzi, Staphylococcus aureus, Streptococcus pneumoniae, Klebisiella pneumoniae, Candida albicans, Sporothrix schenckii and Paracoccidioides brasiliensis were determined. Based on the predominant botanical origin in the region of samples' collection, the 10 extracts were separated into three groups: A (B. dracunculifolia + Auraucaria spp), B (B. dracunculifolia) and C (Araucaria spp). Analysis by the multiple regression of all the extracts together showed a positive correlation, higher concentrations leading to higher biological effect, of S. aureus with p-coumaric acid (PCUM) and 3-(4-hydroxy-3-(oxo-butenyl)-phenylacrylic acid (DHCA1) and of trypomastigotes of T. cruzi with 3,5-diprenyl-4-hydroxycinnamic acid derivative 4 (DHCA4) and 2,2-dimethyl-6-carboxyethenyl-2H-1-benzopyran (DCBEN). When the same approach was employed for each group, due to the small number of observations, the statistical test gave unreliable results. However, an overall analysis revealed for group A an association of S. aureus with caffeic acid (CAF) and dicaffeoylquinic acid 3 (CAFQ3), of S. pneumoniae with CAFQ3 and monocaffeoylquinic acid 2 (CAFQ2) and of T. cruzi also with CAFQ3. For group B, a higher activity against S. pneumoniae was associated DCBEN and for T. cruzi with CAF. For group C no association was observed between the anitmicrobial effect and any component of the extracts. The present study reinforces the relevance of PCUM and derivatives, especially prenylated ones and also of caffeolyquinic acids, on the biological activity of Brazilian propolis. PMID:18830454

  17. 12 CFR 7.5003 - Composite authority to engage in electronic activities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 1 2012-01-01 2012-01-01 false Composite authority to engage in electronic activities. 7.5003 Section 7.5003 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Electronic Activities § 7.5003 Composite authority to engage...

  18. 12 CFR 7.5003 - Composite authority to engage in electronic activities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 1 2013-01-01 2013-01-01 false Composite authority to engage in electronic activities. 7.5003 Section 7.5003 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Electronic Activities § 7.5003 Composite authority to engage...

  19. 12 CFR 7.5003 - Composite authority to engage in electronic activities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Composite authority to engage in electronic activities. 7.5003 Section 7.5003 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Electronic Activities § 7.5003 Composite authority to engage...

  20. 12 CFR 7.5003 - Composite authority to engage in electronic activities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Composite authority to engage in electronic activities. 7.5003 Section 7.5003 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Electronic Activities § 7.5003 Composite authority to engage...

  1. AC Electric Field Activated Shape Memory Polymer Composite

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Siochi, Emilie J.; Penner, Ronald K.; Turner, Travis L.

    2011-01-01

    Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz.

  2. [Pigment composition and photosynthetic activity of pea chlorophyll mutants].

    PubMed

    Ladygin, V G

    2003-01-01

    Pea chlorophyll mutants chlorotica 2004 and 2014 have been studied. The mutants differ from the initial form (pea cultivar Torsdag) in stem and leaf color (light green in the mutant 2004 and yellow-green in the mutant 2014), relative chlorophyll content (approximately 80 and 50%, respectively), and the composition of carotenoids: the mutant 2004 contains a significantly smaller amount of carotene but accumulates more lutein and violaxanthine; in the mutant 2014, the contents of all carotenoids are decreased proportionally to the decrease in chlorophyll content. It is shown that the rates of CO2 assimilation and oxygen production in the mutant chlorotica 2004 and 2014 plants are reduced. The quantum efficiency of photosynthesis in the mutants is 29-30% lower than in the control plants; in their hybrids, however, it is 1.5-2 higher. It is proposed that both the greater role of dark respiration in gas exchange and the reduced photosynthetic activity in chlorotica mutants are responsible for the decreased phytomass increment in these plants. On the basis of these results, the conclusion is drawn that the mutations chlorotica 2004 and 2014 affect the genes controlling the formation and functioning of various components of the photosynthetic apparatus. PMID:12942751

  3. Plasma composition in a sigmoidal anemone active region

    SciTech Connect

    Baker, D.; Van Driel-Gesztelyi, L.; Green, L. M.; Carlyle, J.; Brooks, D. H.; Démoulin, P.; Steed, K.

    2013-11-20

    Using spectra obtained by the EUV Imaging Spectrometer (EIS) instrument onboard Hinode, we present a detailed spatially resolved abundance map of an active region (AR)-coronal hole (CH) complex that covers an area of 359'' × 485''. The abundance map provides first ionization potential (FIP) bias levels in various coronal structures within the large EIS field of view. Overall, FIP bias in the small, relatively young AR is 2-3. This modest FIP bias is a consequence of the age of the AR, its weak heating, and its partial reconnection with the surrounding CH. Plasma with a coronal composition is concentrated at AR loop footpoints, close to where fractionation is believed to take place in the chromosphere. In the AR, we found a moderate positive correlation of FIP bias with nonthermal velocity and magnetic flux density, both of which are also strongest at the AR loop footpoints. Pathways of slightly enhanced FIP bias are traced along some of the loops connecting opposite polarities within the AR. We interpret the traces of enhanced FIP bias along these loops to be the beginning of fractionated plasma mixing in the loops. Low FIP bias in a sigmoidal channel above the AR's main polarity inversion line, where ongoing flux cancellation is taking place, provides new evidence of a bald patch magnetic topology of a sigmoid/flux rope configuration.

  4. Plasma Composition in a Sigmoidal Anemone Active Region

    NASA Astrophysics Data System (ADS)

    Baker, D.; Brooks, D. H.; Démoulin, P.; van Driel-Gesztelyi, L.; Green, L. M.; Steed, K.; Carlyle, J.

    2013-11-01

    Using spectra obtained by the EUV Imaging Spectrometer (EIS) instrument onboard Hinode, we present a detailed spatially resolved abundance map of an active region (AR)-coronal hole (CH) complex that covers an area of 359'' × 485''. The abundance map provides first ionization potential (FIP) bias levels in various coronal structures within the large EIS field of view. Overall, FIP bias in the small, relatively young AR is 2-3. This modest FIP bias is a consequence of the age of the AR, its weak heating, and its partial reconnection with the surrounding CH. Plasma with a coronal composition is concentrated at AR loop footpoints, close to where fractionation is believed to take place in the chromosphere. In the AR, we found a moderate positive correlation of FIP bias with nonthermal velocity and magnetic flux density, both of which are also strongest at the AR loop footpoints. Pathways of slightly enhanced FIP bias are traced along some of the loops connecting opposite polarities within the AR. We interpret the traces of enhanced FIP bias along these loops to be the beginning of fractionated plasma mixing in the loops. Low FIP bias in a sigmoidal channel above the AR's main polarity inversion line, where ongoing flux cancellation is taking place, provides new evidence of a bald patch magnetic topology of a sigmoid/flux rope configuration.

  5. An experimental investigation of the early dynamic impact behaviour of textile armour systems: Decoupling material from system response

    NASA Astrophysics Data System (ADS)

    Cepus, Elvis

    This work focuses on the early impact response of textile armour systems. A relatively new data acquisition system, the Enhanced Laser Velocity Sensor (ELVS), was refined and used to generate a large database of results for a 5.57 mm diameter, 3 gram, non-deforming projectile impacting single-ply configurations of Ballistic Nylon, two weaves of Kevlar 129, and Zylon (PBO) over a range of velocities from 61 m/s to 248 m/s. In addition, one Kevlar 129 material was tested in configurations of 2, 3, 4, 8 and 16 plies over a range of strike velocities from 90 m/s to 481 m/s. ELVS results consisted of high-resolution timehistories of displacement, velocity and energy for each system tested. The strain wave velocity and ballistic performance of each system was also determined. Results taken from during the impact event were analysed up to just prior to the strain-wave rebounding from the boundary and returning to the impact point---effectively removing boundary influences. Regardless of system type, a constant rate of energy absorption within the pre-rebound timeframe was found to exist, which scales with the strike velocity to approximately the 8/3-power. Well-established single fibre theory was modified and applied to woven materials. It was assumed that three primary energy absorption mechanisms exist; elastic strain, in-plane kinetic and out-of-plane kinetic. This simple model yields the experimentally observed 8/3 exponent and parametrically predicts the difference between the different single-ply material systems, but underpredicts the observed behaviour by a factor of 2 and cannot address the performance reduction with increasing ply count. This combined experimental and analytical work confirms the long-held assumption that single fibre wave physics is applicable to multi-ply woven systems. More significantly, for the first time, it decouples material response from overall system response and provides the experimental tools and methodology required to analyse

  6. Self-healing polymers and composites based on thermal activation

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Bolanos, Ed; Wudl, Fred; Hahn, Thomas; Kwok, Nathan

    2007-04-01

    Structural polymer composites are susceptible to premature failure in the form of microcracks in the matrix. Although benign initially when they form, these matrix cracks tend to coalesce and lead in service to critical damage modes such as ply delamination. The matrix cracks are difficult to detect and almost impossible to repair because they form inside the composite laminate. Therefore, polymers with self-healing capability would provide a promising potential to minimize maintenance costs while extending the service lifetime of composite structures. In this paper we report on a group of polymers and their composites which exhibit mendable property upon heating. The failure and healing mechanisms of the polymers involve Diels-Alder (DA) and retro-Diels-Alder (RDA) reactions on the polymer back-bone chain, which are thermally reversible reactions requiring no catalyst. The polymers exhibited good healing property in bulk form. Composite panels were prepared by sandwiching the monomers between carbon fiber fabric layers and cured in autoclave. Microcracks were induced on the resin-rich surface of composite with Instron machine at room temperature by holding at 1% strain for 1 min. The healing ability of the composite was also demonstrated by the disappearance of microcracks after heating. In addition to the self-healing ability, the polymers and composites also exhibited shape memory property. These unique properties may provide the material multi-functional applications. Resistance heating of traditional composites and its applicability in self-healing composites is also studied to lay groundwork for a fully integrated self-healing composite.

  7. Speaking as a Pre-Writing Activity: Its Application to Teaching Community College Freshman Composition Pupils.

    ERIC Educational Resources Information Center

    Meyers, George Douglas

    A study conducted to determine if speaking activities facilitated growth in writing involved approximately 60 community college students enrolled in freshman composition. A review of the literature supported the notions that a definite relationship exists between talking and writing, that prewriting activities affect the quality of composition,…

  8. Phytochemical Composition, Anti-inflammatory, and Antiproliferative Activity of Whole Wheat Flour

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Five wheat cultivars (Macon, Louise, WestBred 936, Alpowa, and Blanca Grande) were evaluated for phenolics composition, carotenoid, and tocopherol composition, anti-inflammatory activity, and antiproliferative activity against HT-29 cells. Total ferulic acid ranged from 451.7-731.3 µg/g , with the ...

  9. Quantifying the Relationship between Organic Aerosol Composition and Hygroscopicity/CCN Activity

    SciTech Connect

    Ziemann, Paul J.; Kreidenweis, Sonia M.; Petters, Markus D.

    2013-06-30

    The overall objective for this project was to provide the data and underlying process level understanding necessary to facilitate the dynamic treatment of organic aerosol CCN activity in future climate models. The specific objectives were as follows: (1) employ novel approaches to link organic aerosol composition and CCN activity, (2) evaluate the effects of temperature and relative humidity on organic aerosol CCN activity, and (3) develop parameterizations to link organic aerosol composition and CCN activity.

  10. Textural and electronic characteristics of mechanochemically activated composites with nanosilica and activated carbon

    NASA Astrophysics Data System (ADS)

    Gun'ko, V. M.; Zaulychnyy, Ya. V.; Ilkiv, B. I.; Zarko, V. I.; Nychiporuk, Yu. M.; Pakhlov, E. M.; Ptushinskii, Yu. G.; Leboda, R.; Skubiszewska-Zięba, J.

    2011-11-01

    Nanosilicas (A-50, A-300, A-500)/activated carbon (AC, SBET = 1520 m2/g) composites were prepared using short-term (5 min) mechanochemical activation (MCA) of powder mixtures in a microbreaker. Smaller silica nanoparticles of A-500 (average diameter dav = 5.5 nm) can more easily penetrate into broad mesopores and macropores of AC microparticles than larger nanoparticles of A-50 (dav = 52.4 nm) or A-300 (dav = 8.1 nm). After MCA of silica/AC, nanopores of non-broken AC nanoparticles remained accessible for adsorbed N2 molecules. According to ultra-soft X-ray emission spectra (USXES), MCA of silica/AC caused formation of chemical bonds Si-O-C; however, Si-C and Si-Si bonds were practically not formed. A decrease in intensity of OKα band in respect to CKα band of silica/AC composites with diminishing sizes of silica nanoparticles is due to both changes in the surface structure of particles and penetration of a greater number of silica nanoparticles into broad pores of AC microparticles and restriction of penetration depth of exciting electron beam into the AC particles.

  11. Impurities and evaluation of induced activity of SiC f/SiC composites

    NASA Astrophysics Data System (ADS)

    Stamatelatos, I. E.; Mergia, K.; Lefkopoulos, G.; Forrest, R.

    2004-01-01

    The impurities in industrially produced SiC f/SiC composites were determined by neutron activation analysis. The evaluation of the induced activity based on the atomic composition was made using the European Activation System (EASY-2001) for a fusion power plant first wall. The effect of trace element impurities on contact gamma dose rate is discussed and the trace elements of radiological importance are identified.

  12. Electrochemically Active Polyaniline (PANi) Coated Carbon Nanopipes and PANi Nanofibers Containing Composite.

    PubMed

    Ramana, G Venkata; Kumar, P Sampath; Srikanth, Vadali V S S; Padya, Balaji; Jain, P K

    2015-02-01

    A composite constituted by carbon nanopipes (CNPs) and polyaniline nanofibers (PANi NFs) is synthesized using in-situ chemical oxidative polymerization. Owing to its electrochemical activity the composite is found to be suitable as a working electrode material in hybrid type supercapacitors. Microstructural and phase analyses of the composite showed that (i) CNP surfaces are coated with PANi and (ii) PANi coated CNPs are distributed among PANi NFs. The composite shows an excellent electrochemical activity and a high specific capacitance of ~224.39 F/g. The electro-chemical activity of the composite is explicated in correlation with crystallinity, intrinsic oxidation state, and doping degree of PANi in the composite. The electro-chemical activity of the composite is also explicated in correlation with BET surface area and ordered meso-porosity pertaining to the composite. Charge/discharge curves indicate that the specific capacitance of the composite is a result of electric double-layer capacitance offered by CNPs and Faradaic pseudo capacitance offered by PANi NFs. PMID:26353652

  13. Constituent composition and biological activity of Nepeta manchuriensis essential oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The essential oil present in the aerial parts of the plant Nepeta manchuriensis was prepared by steam distillation using clevenger apparatus. The chemical composition of the oil was studied by GCMS. Sabinene, elemol, selinene, 4-terpineol, menthatriene and neoisothujol are the major components and r...

  14. Novel, inorganic composites using porous, alkali-activated, aluminosilicate binders

    NASA Astrophysics Data System (ADS)

    Musil, Sean

    Geopolymers are an inorganic polymeric material composed of alumina, silica, and alkali metal oxides. Geopolymers are chemical and fire resistant, can be used as refractory adhesives, and are processed at or near ambient temperature. These properties make geopolymer an attractive choice as a matrix material for elevated temperature composites. This body of research investigated numerous different reinforcement possibilities and variants of geopolymer matrix material and characterized their mechanical performance in tension, flexure and flexural creep. Reinforcements can then be chosen based on the resulting properties to tailor the geopolymer matrix composites to a specific application condition. Geopolymer matrix composites combine the ease of processing of polymer matrix composites with the high temperature capability of ceramic matrix composites. This study incorporated particulate, unidirectional fiber and woven fiber reinforcements. Sodium, potassium, and cesium based geopolymer matrices were evaluated with cesium based geopolymer showing great promise as a high temperature matrix material. It showed the best strength retention at elevated temperature, as well as a very low coefficient of thermal expansion when crystallized into pollucite. These qualities made cesium geopolymer the best choice for creep resistant applications. Cesium geopolymer binders were combined with unidirectional continuous polycrystalline mullite fibers (Nextel(TM) 720) and single crystal mullite fibers, then the matrix was crystallized to form cubic pollucite. Single crystal mullite fibers were obtained by the internal crystallization method and show excellent creep resistance up to 1400°C. High temperature flexural strength and flexural creep resistance of pollucite and polycrystalline/single-crystal fibers was evaluated at 1000-1400°C.

  15. Sex-Specific Differences in Agonistic Behaviour, Sound Production and Auditory Sensitivity in the Callichthyid Armoured Catfish Megalechis thoracata

    PubMed Central

    Hadjiaghai, Oliwia; Ladich, Friedrich

    2015-01-01

    Background Data on sex-specific differences in sound production, acoustic behaviour and hearing abilities in fishes are rare. Representatives of numerous catfish families are known to produce sounds in agonistic contexts (intraspecific aggression and interspecific disturbance situations) using their pectoral fins. The present study investigates differences in agonistic behaviour, sound production and hearing abilities in males and females of a callichthyid catfish. Methodology/Principal Findings Eight males and nine females of the armoured catfish Megalechis thoracata were investigated. Agonistic behaviour displayed during male-male and female-female dyadic contests and sounds emitted were recorded, sound characteristics analysed and hearing thresholds measured using the auditory evoked potential (AEP) recording technique. Male pectoral spines were on average 1.7-fold longer than those of same-sized females. Visual and acoustic threat displays differed between sexes. Males produced low-frequency harmonic barks at longer distances and thumps at close distances, whereas females emitted broad-band pulsed crackles when close to each other. Female aggressive sounds were significantly shorter than those of males (167 ms versus 219 to 240 ms) and of higher dominant frequency (562 Hz versus 132 to 403 Hz). Sound duration and sound level were positively correlated with body and pectoral spine length, but dominant frequency was inversely correlated only to spine length. Both sexes showed a similar U-shaped hearing curve with lowest thresholds between 0.2 and 1 kHz and a drop in sensitivity above 1 kHz. The main energies of sounds were located at the most sensitive frequencies. Conclusions/Significance Current data demonstrate that both male and female M. thoracata produce aggressive sounds, but the behavioural contexts and sound characteristics differ between sexes. Sexes do not differ in hearing, but it remains to be clarified if this is a general pattern among fish. This

  16. Adsorption properties and photocatalytic activity of TiO2/activated carbon fiber composite

    NASA Astrophysics Data System (ADS)

    Yao, Shuhua; Song, Shuangping; Shi, Zhongliang

    2014-06-01

    Photocatalysts of titanium dioxide (TiO2) and TiO2/activated carbon fiber (TiO2/ACF) composite were prepared by sol-gel method, followed by calcining the pure TiO2 sols and the TiO2/ACF sols at 500°C for 2 h in a N2 atmosphere, respectively. These photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and N2 adsorption-desorption isotherms measurement. Batch experiments were conducted to study the adsorption property of TiO2/ACF composite using methylene blue as adsorbate. The adsorption data obtained from different batch experiments were analyzed using pseudo-second-order kinetic model, the experimental data can be adequately described by the pseudo-second-order equation. The photodecomposition behavior of TiO2/ACF was investigated in aqueous solution using methylene blue as target pollutant. It was found that methylene blue could be removed rapidly from water by TiO2/ACF, the photocatalytic decomposition was obviously improved when the photocatalyst was used. Kinetics analysis revealed that the photocatalytic decomposition reaction can be described well by a first-order rate equation.

  17. Molecular and structural properties of polymer composites filled with activated charcoal particles

    NASA Astrophysics Data System (ADS)

    Tahir, Dahlang; Liong, Syarifuddin; Bakri, Fahrul

    2016-03-01

    We have studied the molecular properties, structural properties, and chemical composition of composites by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) spectroscopy, and X-ray fluorescence (XRF) spectroscopy, respectively. FTIR spectra shows absorption band of hydroxyl group (-OH), methyl group (-CH3) and aromatic group (C-C). The absorption band for aromatic group (C-C) shows the formation of carbonaceous in composites. XRF shows chemical composition of composites, which the main chemicals are SO3, Cl, and ZnO. The loss on ignition value (LOI) of activated charcoal indicates high carbonaceous matter. The crystallite size for diffraction pattern from hydrogel polymer is about 17 nm and for activated charcoal are about 19 nm. The crystallite size of the polymer is lower than that of activated charcoal, which make possible of the particle from filler in contact with each other to form continuous conducting polymer through polymer matrix.

  18. HITCAN for actively cooled hot-composite thermostructural analysis

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Murthy, P. L. N.; Singhal, S. N.; Lackney, J. J.

    1991-01-01

    A computer code, high temperature composite analyzer (HITCAN), was developed to analyze/design hot metal matrix composite structures. HITCAN is a general purpose code for predicting the global structural and local stress-strain response of multilayered (arbitrarily oriented) metal matrix structures both at the constituent (fiber, matrix, and interphase) and the structural level, including the fabrication process effects. The thermomechanical properties of the constituents are considered to be nonlinearly dependent on several parameters, including temperature, stress, and stress rate. The computational procedure employs an incremental iterative nonlinear approach utilizing a multifactor-interaction material behavior model, i.e., the material properties are expressed in terms of a product of several factors that affect the properties. HITCAN structural analysis capabilities (static, load stepping - a multistep static analysis with material properties updated at each step, modal, and buckling) for cooled hot structures are demonstrated through a specific example problem.

  19. Composition and Antimicrobial Activity of Anemopsis californica leaf oil.

    PubMed

    Medina, Andrea L; Lucero, Mary E; Holguin, F Omar; Estell, Rick E; Posakony, Jeff J; Simon, Julian; O'Connell, Mary A

    2005-11-01

    Isolation and characterization of leaf volatiles in Anemopsis californica (Nutt.) Hook. and Arn. (A. californica) was performed using steam distillation, solid-phase microextraction, and supercritical fluid extraction. Thirty-eight compounds were detected and identified by gas chromatography; elemicin was the major component of the leaf volatiles. While the composition of the leaf volatiles varied with method of extraction, alpha-pinene, sabinene, beta-phellandrene, 1,8-cineole, piperitone, methyl eugenol, (E)-caryophyllene, and elemicin were usually present in readily detectable amounts. Greenhouse-reared clones of a wild population of A. californica had an identical leaf volatile composition with the parent plants. Steam-distilled oil had antimicrobial properties against 3 (Staphylococcus aureus, Streptococcus pneumoniae, and Geotrichim candidum) of 11 microbial species tested. Some of this bioactivity could be accounted for by the alpha-pinene in the oil. PMID:16248573

  20. HITCAN for actively cooled hot-composite thermostructural analysis

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Murthy, P. L. N.; Singhal, S. N.; Lackney, J. J.

    1992-01-01

    A computer code, high temperature composite analyzer (HITCAN), was developed to analyze/design hot metal matrix composite structures. HITCAN is a general purpose code for predicting the global structural and local stress-strain response of multilayered (arbitrarily oriented) metal matrix structures both at the constituent (fiber, matrix, and interphase) and the structural level, including the fabrication process effects. The thermomechanical properties of the constituents are considered to be nonlinearly dependent on several parameters, including temperature, stress, and stress rate. The computational procedure employs an incremental iterative nonlinear approach utilizing a multifactor-interaction material behavior model, i.e., the material properties are expressed in terms of a product of several factors that affect the properties. HITCAN structural analysis capabilities (static, load stepping - a multistep static analysis with material properties updated at each step, modal, and buckling) for cooled hot structures are demonstrated through a specific example problem.

  1. Active Metal Brazing of Carbon-Carbon Composites to Titanium

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, T. P.; Morscher, G.; Asthana, R.

    2004-01-01

    The Ti-metal/C-C composite joints were formed by reactive brazing with three commercial brazes, namely, Cu-ABA, TiCuNi, and TiCuSil. The joint microstructures were examined using optical microscopy, and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). The results of the microstructure analysis indicate solute redistribution across the joint which led to good wetting, spreading, and metallurgical bond formation via interdiffusion.

  2. Redox-Active Metal-Organic Composites for Highly Selective Oxygen Separation Applications.

    PubMed

    Zhang, Wen; Banerjee, Debasis; Liu, Jian; Schaef, Herbert T; Crum, Jarrod V; Fernandez, Carlos A; Kukkadapu, Ravi K; Nie, Zimin; Nune, Satish K; Motkuri, Radha K; Chapman, Karena W; Engelhard, Mark H; Hayes, James C; Silvers, Kurt L; Krishna, Rajamani; McGrail, B Peter; Liu, Jun; Thallapally, Praveen K

    2016-05-01

    A redox-active metal-organic composite material shows improved and selective O2 adsorption over N2 with respect to individual components (MIL-101 and ferrocene). The O2 sensitivity of the composite material arises due to the formation of maghemite nanoparticles with the pore of the metal-organic framework material. PMID:26953336

  3. Active metal-matrix composites with embedded smart materials by ultrasonic additive manufacturing

    NASA Astrophysics Data System (ADS)

    Hahnlen, Ryan; Dapino, Marcelo J.

    2010-04-01

    This paper presents the development of active aluminum-matrix composites manufactured by Ultrasonic Additive Manufacturing (UAM), an emerging rapid prototyping process based on ultrasonic metal welding. Composites created through this process experience temperatures as low as 25 °C during fabrication, in contrast to current metal-matrix fabrication processes which require temperatures of 500 °C and above. UAM thus provides unprecedented opportunities to develop adaptive structures with seamlessly embedded smart materials and electronic components without degrading the properties that make these materials and components attractive. This research focuses on developing UAM composites with aluminum matrices and embedded shape memory NiTi, magnetostrictive Galfenol, and electroactive PVDF phases. The research on these composites will focus on: (i) electrical insulation between NiTi and Al phases for strain sensors, investigation and modeling of NiTi-Al composites as tunable stiffness materials and thermally invariant structures based on the shape memory effect; (ii) process development and composite testing for Galfenol-Al composites; and (iii) development of PVDF-Al composites for embedded sensing applications. We demonstrate a method to electrically insulate embedded materials from the UAM matrix, the ability create composites containing up to 22.3% NiTi, and their resulting dimensional stability and thermal actuation characteristics. Also demonstrated is Galfenol-Al composite magnetic actuation of up to 54 μ(see manuscript), and creation of a PVDF-Al composite sensor.

  4. Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus

    NASA Astrophysics Data System (ADS)

    Mori, Yasutaka; Ono, Takeshi; Miyahira, Yasushi; Nguyen, Vinh Quang; Matsui, Takemi; Ishihara, Masayuki

    2013-02-01

    Silver nanoparticle (Ag NP)/chitosan (Ch) composites with antiviral activity against H1N1 influenza A virus were prepared. The Ag NP/Ch composites were obtained as yellow or brown floc-like powders following reaction at room temperature in aqueous medium. Ag NPs (3.5, 6.5, and 12.9 nm average diameters) were embedded into the chitosan matrix without aggregation or size alternation. The antiviral activity of the Ag NP/Ch composites was evaluated by comparing the TCID50 ratio of viral suspensions treated with the composites to untreated suspensions. For all sizes of Ag NPs tested, antiviral activity against H1N1 influenza A virus increased as the concentration of Ag NPs increased; chitosan alone exhibited no antiviral activity. Size dependence of the Ag NPs on antiviral activity was also observed: antiviral activity was generally stronger with smaller Ag NPs in the composites. These results indicate that Ag NP/Ch composites interacting with viruses exhibit antiviral activity.

  5. Analyzing Number Composition and Decomposition Activities in Kindergarten from a Numeracy Perspective

    ERIC Educational Resources Information Center

    Tsamir, Pessia; Tirosh, Dina; Levenson, Esther; Tabach, Michal; Barkai, Ruthi

    2015-01-01

    This study explores two number composition and decomposition activities from a numeracy perspective. Both activities have the same mathematical structure but each employs different tools and contexts. Twenty kindergarten children engaged individually with these activities. Verbal utterances as well as actions of the child and interviewer were…

  6. Activity composition relationships in silicate melts. Final report

    SciTech Connect

    Glazner, A.F.

    1990-12-31

    Equipment progress include furnace construction and electron microprobe installation. The following studies are underway: phase equilibria along basalt-rhyolite mixing line (olivine crystallization from natural silicic andensites, distribution of Fe and Mg between olivine and liquid, dist. of Ca and Na between plagioclase and liquid), enthalpy-composition relations in magmas (bulk heat capacity of alkali basalt), density model for magma ascent and contamination, thermobarometry in igneous systems (olivine/plagioclase phenocryst growth in Quat. basalt), high-pressure phase equilibria of alkali basalt, basalt-quartz mixing experiments, phase equilibria of East African basalts, and granitic minerals in mafic magma. (DLC)

  7. Activity composition relationships in silicate melts: Annual performance report

    SciTech Connect

    Glazner, A.F.

    1987-01-01

    Work performed during the first two years of this project includes construction of furnace laboratory and calibration of instruments, installation of an electron microprobe, and determination of phase equilibria along a basalt-rhyolite mixing line. This latter study comprises the bulk of work performed to date. We completed approximately 100 experiments on the one-atmosphere phase equilibria of balalt-rhyolite mixtures. Starting materials were an alkali basalt from Pisgah Crater, California, and a high-silica rhyolite from the Bishop Tuff, Owens Valley, California. These materials were chosen because the compositional trend of the mixtures mimics many continental calc-alkaline suites. 5 figs.

  8. Boron Nitride Surface Activity as Route to Composite Dielectric Films.

    PubMed

    Cui, Zhenhua; Cao, Zhen; Ma, Rui; Dobrynin, Andrey V; Adamson, Douglas H

    2015-08-12

    The propensity of boron nitride sheets to stack creates obstacles for their application as multifunctional materials despite their unique thermal, mechanical, and electrical properties. To address this challenge, we use a combination of molecular dynamics simulations and experimental techniques to demonstrate surfactant-like properties of BN sheets at the interface between immiscible solvents. The spreading of two-dimensional BN sheets at a high-energy oil/water interface lowers the free energy of the system, creating films of overlapping BN sheets that are more thermodynamically favorable than stacked sheets. Coating such films onto polymers results in composite materials with exceptional barrier and dielectric properties. PMID:26214048

  9. Magnetorheological composites as semi-active elements of dampers

    NASA Astrophysics Data System (ADS)

    Kaleta, Jerzy; Lewandowski, Daniel; Zając, Piotr; Kustroń, Pawel

    2009-02-01

    An original magnetorheological composite (MRC) with porous elastomeric matrix and filled with magnetorheological fluid was created at the work. It was used later on to build a damper working in the shearing mode without friction against external surfaces of the so-called skid. This prototype construction was used for damping free vibrations in the beam. An analysis of the effectiveness in the magnetic field function steering the damper was performed. As a result an important relationship between the change of damping in the material under the influence of the magnetic field and the length of time needed for damping the vibrations in the beam was demonstrated.

  10. Influence of source composition and particle energy on the determination of gross alpha activity.

    PubMed

    Timón, A Fernández; Vargas, M Jurado; Sánchez, A B Ruano; Pérez, J de la Torre; Sánchez, A Martín

    2013-12-01

    The influence of different source compositions and α-particle energies on the detection efficiency of a gas-flow proportional counter was examined using experimental measurements and Monte Carlo simulations. Efficiency variation with alpha-particle energy was very marked, being less significant with the substrate composition. These results show that the determination of gross alpha activity in an unknown sample must be carried out very carefully in order to give a correct estimation of its activity. PMID:24184741

  11. Surface active compositions and method of use in dispersing or collecting oil slick

    SciTech Connect

    Lepain, A.O.

    1980-09-23

    Disclosed are surface-active compositions for dispersing or collecting oil slicks on water or for protecting or cleaning beaches, which compositions comprise (A) a mixture of surface-active compounds comprising at least one solid compound and at least one liquid compound, and (B) a mixture of solvents comprising a glycol ether and at least one n-paraffin having from about 10 to 16 carbon atoms.

  12. Pervasive nanoscale deformation twinning as a catalyst for efficient energy dissipation in a bioceramic armour

    NASA Astrophysics Data System (ADS)

    Li, Ling; Ortiz, Christine

    2014-05-01

    Hierarchical composite materials design in biological exoskeletons achieves penetration resistance through a variety of energy-dissipating mechanisms while simultaneously balancing the need for damage localization to avoid compromising the mechanical integrity of the entire structure and to maintain multi-hit capability. Here, we show that the shell of the bivalve Placuna placenta (~99 wt% calcite), which possesses the unique optical property of ~80% total transmission of visible light, simultaneously achieves penetration resistance and deformation localization via increasing energy dissipation density (0.290 ± 0.072 nJ μm-3) by approximately an order of magnitude relative to single-crystal geological calcite (0.034 ± 0.013 nJ μm-3). P. placenta, which is composed of a layered assembly of elongated diamond-shaped calcite crystals, undergoes pervasive nanoscale deformation twinning (width ~50 nm) surrounding the penetration zone, which catalyses a series of additional inelastic energy dissipating mechanisms such as interfacial and intracrystalline nanocracking, viscoplastic stretching of interfacial organic material, and nanograin formation and reorientation.

  13. Pervasive nanoscale deformation twinning as a catalyst for efficient energy dissipation in a bioceramic armour.

    PubMed

    Li, Ling; Ortiz, Christine

    2014-05-01

    Hierarchical composite materials design in biological exoskeletons achieves penetration resistance through a variety of energy-dissipating mechanisms while simultaneously balancing the need for damage localization to avoid compromising the mechanical integrity of the entire structure and to maintain multi-hit capability. Here, we show that the shell of the bivalve Placuna placenta (~99 wt% calcite), which possesses the unique optical property of ~80% total transmission of visible light, simultaneously achieves penetration resistance and deformation localization via increasing energy dissipation density (0.290 ± 0.072 nJ μm(-3)) by approximately an order of magnitude relative to single-crystal geological calcite (0.034 ± 0.013 nJ μm(-3)). P. placenta, which is composed of a layered assembly of elongated diamond-shaped calcite crystals, undergoes pervasive nanoscale deformation twinning (width ~50 nm) surrounding the penetration zone, which catalyses a series of additional inelastic energy dissipating mechanisms such as interfacial and intracrystalline nanocracking, viscoplastic stretching of interfacial organic material, and nanograin formation and reorientation. PMID:24681646

  14. Controlled release and antibacterial activity of tetracycline hydrochloride-loaded bacterial cellulose composite membranes.

    PubMed

    Shao, Wei; Liu, Hui; Wang, Shuxia; Wu, Jimin; Huang, Min; Min, Huihua; Liu, Xiufeng

    2016-07-10

    Bacterial cellulose (BC) is widely used in biomedical applications. In this study, we prepared an antibiotic drug tetracycline hydrochloride (TCH)-loaded bacterial cellulose (BC) composite membranes, and evaluated the drug release, antibacterial activity and biocompatibility. The structure and morphology of the fabricated BC-TCH composite membranes were characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The TCH release results show that the incorporation of BC matrix to load TCH is able to control the release. In vitro antibacterial assay demonstrate that the developed BC-TCH composites displayed excellent antibacterial activity solely associated with the loaded TCH drug. More importantly, the BC-TCH composite membranes display good biocompatibility. These characteristics of BC-TCH composite membranes indicate that they may successfully serve as wound dressings and other medical biomaterials. PMID:27106158

  15. Composition.

    ERIC Educational Resources Information Center

    Nemanich, Donald, Ed.

    1974-01-01

    The articles in this special issue of the "Illinois English Bulletin" concern the state of composition instruction at the secondary and college levels. The titles and authors are "Monologues or Dialogues? A Plea for Literacy" by Dr. Alfred J. Lindsey, "Teaching Composition: Curiouser and Curiouser" by Denny Brandon, and "Teaching Writing to High…

  16. The effects of military body armour on the lower back and knee mechanics during box drop and prone to standing tasks.

    PubMed

    Phillips, Megan P; Shapiro, Robert; Bazrgari, Babak

    2016-05-01

    Modern day body armour (BA) has been successful at increasing survivability from previously lethal explosives; however, it has been suggested to reduce warfighter's performance and increase risk of injury. Joint biomechanics have a foremost impact on performance and risk of injury. The immediate and prolonged effects of wearing BA on biomechanics of the lower back and knee during box drop (BD) and prone to standing tasks were investigated. The immediate effects of BA on both tasks were an increase of ≥4% (p ≤ 0.02) in temporal task durations and a decrease of ~1.66 N/kg (p = 0.03) in normalised peak ground reaction force for the BD test. The prolonged duration of walking with BA (i.e. 45 min) was not found to cause more changes in our measures than walking without BA. Quantitative data related to the effects of BA are important for risk assessment and mission design such to reduce the risk of injury without compromising performance. Practitioner Summary: The effects of wearing military body armour (BA) on biomechanics of the lower back and knee were investigated. Though wearing BA was found to affect some biomechanical measures related to performance, the prolonged effects of exposure on our measures were the same whether or not the participants wore BA. PMID:26269149

  17. The Activity Chain Safety and Liveness Specification of Composite Web Services

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Huang, Xiaomei

    Web service composition is most impressing method for development and deployment of e-business. Description and modeling the behavior requirements of composite Web services for users and verifying composite Web service compliance to specific requirements is an important key in design of services. But most work does not address the issue of how to model the requirements that the BPEL4WS processes are supposed to satisfy. The specifications in verification works are general temporal relation based on activity or scenario in essence. Distinguish with these work, we propose a novel concept of behavior specification based on activity chain in which granularity is between activity and scenario. Chain existence mode, chain absence mode are designed to express such behavioral requirements based on activity chain that is similar with safety or liveness specification based on activity respectively. Encode them on Labeled Transition System LTS and then give them exact operation semantics. Finally, an example is illustrated.

  18. A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water.

    PubMed

    Zhang, Qiao Li; Lin, Y C; Chen, X; Gao, Nai Yun

    2007-09-30

    Iron oxide/activated carbon (FeO/AC) composite adsorbent material, which was used to modify the coal-based activated carbon (AC) 12 x 40, was prepared by the special ferric oxide microcrystal in this study. This composite can be used as the adsorbent to remove arsenic from drinking water, and Langmuir isotherm adsorption equation well describes the experimental adsorption isotherms. Then, the arsenic desorption can subsequently be separated from the medium by using a 1% aqueous NaOH solution. The apparent characters and physical chemistry performances of FeO/AC composite were investigated by X-ray diffraction (XRD), nitrogen adsorption, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Batch and column adsorption experiments were carried out to investigate and compare the arsenic removal capability of the prepared FeO/AC composite material and virgin activated carbon. It can be concluded that: (1) the main phase present in this composite are magnetite (Fe(3)O(4)), maghemite (gamma-Fe(2)O(3)), hematite (alpha-Fe(2)O(3)) and goethite (alpha-FeO(OH)); (2) the presence of iron oxides did not significantly affect the surface area or the pore structure of the activated carbon; (3) the comparisons between the adsorption isotherms of arsenic from aqueous solution onto the composite and virgin activated carbon showed that the FeO/AC composite behave an excellent capacity of adsorption arsenic than the virgin activated carbon; (4) column adsorption experiments with FeO/AC composite adsorbent showed that the arsenic could be removed to below 0.01 mg/L within 1250 mL empty bed volume when influent concentration was 0.5mg/L. PMID:17434260

  19. Correlations between polyphenolic composition and antioxidant activity of Venetian propolis.

    PubMed

    Gregoris, Elena; Stevanato, Roberto

    2010-01-01

    Four propolis samples have been picked up in the Venetian region, from different orography and habitative density areas with the purpose to: (i) evaluate propolis' antioxidant activity, measured by inhibition of lipid peroxidation; (ii) determine the polyphenolic components--flavonoids and caffeic acid derivatives--which give antioxidant activity to propolis; (iii) verify the potential correlations between antioxidant activity, polyphenolic content, that has been determined by Folin-Ciocalteu, enzymatic, DPPH quenching, TEAC-like assays, and spectroscopic characteristics of propolis and (iv) correlate chemical structure and antioxidant efficacy of each of the major components. The possible localization of the lipophylic components of propolis into the phospholipidic bilayer by thermal analysis (DSC) and spin label EPR techniques has also been investigated. PMID:19766694

  20. Antifungal activities and chemical composition of some medicinal plants.

    PubMed

    Mohammadi, A; Nazari, H; Imani, S; Amrollahi, H

    2014-06-01

    The use of and search for drugs and dietary supplements derived from plants have accelerated in recent years. Ethnopharmacologists, botanists, microbiologists and natural-products scientists are combing the earth for phytochemicals and leads, which could be developed for treatment of infectious diseases. The aim of this study was to investigate the antifungal activities of the essential oils of some medicinal plants such as Stachys pubescens, Thymus kotschyanus, Thymus daenensis and Bupleurum falcatum against Fusarium oxysporum, Aspergillus flavus and Alternaria alternata. The essential oils were used to evaluate their MICs and MFCs compared to the amphotricin B as a standard drug. The essential oils were also analyzed by GC/MS. Essential oils isolated from the S. pubescens, T. kotschyanus and B. falcatum showed strong antifungal activities. The essential oil of T. daenensis exhibited a moderate activity against the selected fungi in comparison with the other plants' essential oils. In addition, the results showed that 26, 23, 22 and 15 components were identified from the essential oils of T. kotschyanus, S. pubescens, T. daenensis and B. falcatum, respectively. These oils exhibited a noticeable antifungal activity against the selected fungi. Regarding obtained results and that natural antimicrobial substances are inexpensive and have fewer side effects, they convey potential for implementation in fungal pathogenic systems. PMID:24768063

  1. Composition, assembly and activation of the avian progesterone receptor.

    PubMed

    Smith, D F; Toft, D O

    1992-03-01

    When isolated from chick oviduct cytosol by antibody adsorption, the inactive progesterone receptor is associated with the two heat shock proteins, hsp90 and hsp70, plus three additional proteins termed p54, p50, and p23 according to their molecular weights. While their functions remain unknown, all of these receptor associated proteins are dissociated upon receptor activation in intact cells. To better understand the assembly and activation mechanisms of progesterone receptor complexes, we have developed a cell-free system for studying receptor interactions with hsp90 and hsp70 and have used this system to examine requirements for hsp90 binding to the receptor. Purified receptor, free of hsp90 and immobilized on an antibody affinity resin, will rebind hsp90 in rabbit reticulocyte lysate when several conditions are met. These include: (1) absence of progesterone, (2) elevated temperature (30 degrees C), (3) presence of ATP, and (4) presence of Mg2+. We have obtained maximal hsp90 binding to receptor when lysate is supplemented with 3 mM MgCl2 and an ATP regenerating system. ATP depletion of lysate by dialysis or ATPase addition blocks hsp90 binding to the receptor. When progesterone is added to pre-formed receptor complexes in reticulocyte lysate it promotes activation and the dissociation of hsp90. This process is also dependent upon ATP. Thus, both the assembly, and activation of the progesterone receptor can be accomplished in the reticulocyte lysate system. PMID:1562503

  2. Active vertical tail buffeting suppression based on macro fiber composites

    NASA Astrophysics Data System (ADS)

    Zou, Chengzhe; Li, Bin; Liang, Li; Wang, Wei

    2016-04-01

    Aerodynamic buffet is unsteady airflow exerting forces onto a surface, which can lead to premature fatigue damage of aircraft vertical tail structures, especially for aircrafts with twin vertical tails at high angles of attack. In this work, Macro Fiber Composite (MFC), which can provide strain actuation, was used as the actuator for the buffet-induced vibration control, and the positioning of the MFC patches was led by the strain energy distribution on the vertical tail. Positive Position Feedback (PPF) control algorithm has been widely used for its robustness and simplicity in practice, and consequently it was developed to suppress the buffet responses of first bending and torsional mode of vertical tail. However, its performance is usually attenuated by the phase contributions from non-collocated sensor/actuator configuration and plants. The phase lag between the input and output signals of the control system was identified experimentally, and the phase compensation was considered in the PPF control algorithm. The simulation results of the amplitude frequency of the closed-loop system showed that the buffet response was alleviated notably around the concerned bandwidth. Then the wind tunnel experiment was conducted to verify the effectiveness of MFC actuators and compensated PPF, and the Root Mean Square (RMS) of the acceleration response was reduced 43.4%, 28.4% and 39.5%, respectively, under three different buffeting conditions.

  3. Serum Paraoxonase 1 Activity Is Associated with Fatty Acid Composition of High Density Lipoprotein

    PubMed Central

    Boshtam, Maryam; Pourfarzam, Morteza; Ani, Mohsen; Naderi, Gholam Ali; Basati, Gholam; Mansourian, Marjan; Dinani, Narges Jafari; Asgary, Seddigheh; Abdi, Soheila

    2013-01-01

    Introduction. Cardioprotective effect of high density lipoprotein (HDL) is, in part, dependent on its related enzyme, paraoxonase 1 (PON1). Fatty acid composition of HDL could affect its size and structure. On the other hand, PON1 activity is directly related to the structure of HDL. This study was designed to investigate the association between serum PON1 activity and fatty acid composition of HDL in healthy men. Methods. One hundred and forty healthy men participated in this research. HDL was separated by sequential ultracentrifugation, and its fatty acid composition was analyzed by gas chromatography. PON1 activity was measured spectrophotometrically using paraxon as substrate. Results. Serum PON1 activity was directly correlated with the amount of stearic acid and dihomo-gamma-linolenic acid (DGLA). PON1/HDL-C was directly correlated with the amount of miristic acid, stearic acid, and DGLA and was inversely correlated with total amount of ω6 fatty acids of HDL. Conclusion. The fatty acid composition of HDL could affect the activity of its associated enzyme, PON1. As dietary fats are the major determinants of serum lipids and lipoprotein composition, consuming some special dietary fatty acids may improve the activity of PON1 and thereby have beneficial effects on health. PMID:24167374

  4. Positive Youth Development through an Outdoor Physical Activity Programme: Evidence from a Four-Year Evaluation

    ERIC Educational Resources Information Center

    Armour, Kathleen; Sandford, Rachel

    2013-01-01

    In 2006, Sandford, Armour and Warmington undertook a comprehensive review of the literature on the role of physical activity/sport and physical education in promoting positive development for disaffected youth. This paper revisits the findings of the literature review in light of data from a four-year evaluation of one corporate-sponsored physical…

  5. Composition and topology of activity cliff clusters formed by bioactive compounds.

    PubMed

    Stumpfe, Dagmar; Dimova, Dilyana; Bajorath, Jürgen

    2014-02-24

    The assessment of activity cliffs has thus far mostly focused on compound pairs, although the majority of activity cliffs are not formed in isolation but in a coordinated manner involving multiple active compounds and cliffs. However, the composition of coordinated activity cliff configurations and their topologies are unknown. Therefore, we have identified all activity cliff configurations formed by currently available bioactive compounds and analyzed them in network representations where activity cliff configurations occur as clusters. The composition, topology, frequency of occurrence, and target distribution of activity cliff clusters have been determined. A limited number of large cliff clusters with unique topologies were identified that were centers of activity cliff formation. These clusters originated from a small number of target sets. However, most clusters were of small to moderate size. Three basic topologies were sufficient to describe recurrent activity cliff cluster motifs/topologies. For example, frequently occurring clusters with star topology determined the scale-free character of the global activity cliff network and represented a characteristic activity cliff configuration. Large clusters with complex topology were often found to contain different combinations of basic topologies. Our study provides a first view of activity cliff configurations formed by currently available bioactive compounds and of the recurrent topologies of activity cliff clusters. Activity cliff clusters of defined topology can be selected, and from compounds forming the clusters, SAR information can be obtained. The SAR information of activity cliff clusters sharing a/one specific activity and topology can be compared. PMID:24437577

  6. Identification of Mars gully activity types associated with ice composition

    NASA Astrophysics Data System (ADS)

    Vincendon, Mathieu

    2015-11-01

    The detection of geologically recent channels at the end of the twentieth century rapidly suggested that liquid water could have been present on Mars up to recent times. A mechanism involving melting of water ice during ice ages in the last several million years progressively emerged during years following the first observations of these gullies. However, the recent discovery of current activity within gullies now suggests a paradigm shift where a contemporary CO2 ice-based and liquid water-free mechanism may form all gullies. Here we perform a survey of near-infrared observations and construct time sequences of water and CO2 ice formation and sublimation at active gully sites. We observe that all major new erosive features such as channel development or lengthening systematically occur where and, if applicable, when CO2 ice is observed or probable. CO2 ice layers are, however, estimated to be only 1 mm to 1 cm thick for low-latitude sites, which may have implication for potential formation mechanisms. We also observe that part of current gully activity, notably the formation of some new deposits, is poorly compatible with the presence of CO2 ice. In particular, all new bright deposits reported in the literature have a low CO2 ice probability while water ice should be present at most sites. Our results confirm that CO2 ice is a key factor controlling present-day channel development on Mars and show that other mechanisms, potentially involving sublimation or melting of water ice, are also contributing to current gully activity.

  7. Armoured spiderman: morphological and behavioural adaptations of a specialised araneophagous predator (Araneae: Palpimanidae)

    NASA Astrophysics Data System (ADS)

    Pekár, Stano; Šobotník, Jan; Lubin, Yael

    2011-07-01

    In a predator-prey system where both intervenients come from the same taxon, one can expect a strong selection on behavioural and morphological traits involved in prey capture. For example, in specialised snake-eating snakes, the predator is unaffetced by the venom of the prey. We predicted that similar adaptations should have evolved in spider-eating (araneophagous) spiders. We investigated potential and actual prey of two Palpimanus spiders ( P. gibbulus, P. orientalis) to support the prediction that these are araneophagous predators. Specific behavioural adaptations were investigated using a high-speed camera during staged encounters with prey, while morphological adaptations were investigated using electron microscopy. Both Palpimanus species captured a wide assortment of spider species from various guilds but also a few insect species. Analysis of the potential prey suggested that Palpimanus is a retreat-invading predator that actively searches for spiders that hide in a retreat. Behavioural capture adaptations include a slow, stealthy approach to the prey followed by a very fast attack. Morphological capture adaptations include scopulae on forelegs used in grabbing prey body parts, stout forelegs to hold the prey firmly, and an extremely thick cuticle all over the body preventing injury from a counter bite of the prey. Palpimanus overwhelmed prey that was more than 200% larger than itself. In trials with another araneophagous spider, Cyrba algerina (Salticidae), Palpimanus captured C. algerina in more than 90% of cases independent of the size ratio between the spiders. Evidence indicates that both Palpimanus species possesses remarkable adaptations that increase its efficiency in capturing spider prey.

  8. Composition and antioxidant activity of red fruit liqueurs.

    PubMed

    Sokół-Łętowska, Anna; Kucharska, Alicja Z; Wińska, Katarzyna; Szumny, Antoni; Nawirska-Olszańska, Agnieszka; Mizgier, Paulina; Wyspiańska, Dorota

    2014-08-15

    Fruits traditionally used for liqueurs are a good source of phenolic compounds endowed with antioxidant activity. The aim of this study was to compare the content of phenolic compounds and anthocyanins and the antioxidant capacity of liqueurs made from red fruits. The liqueurs were made from fruits of 10 species: chokeberry, cornelian cherry, black rose, blackcurrant, blackberry, raspberry, mahonia, sloe, strawberry, and sour cherry. The liqueurs from black rose, chokeberry, sloe and mahonia fruits contained the most of substances which react with the Folin-Ciocalteu reagent (671, 329, 271 and 218 mg GAE/100 mL, respectively) and had the highest antioxidant activity. The samples stored at a temperature of 30 °C had antioxidant activity from 3% to 11% lower than the fresh samples. After 6 months, anthocyanins degraded almost completely in the samples stored at 30 °C and at 15 °C there was from 0% (blackcurrant liqueurs) to 47% (sloe liqueurs) of their initial content and slightly more in sweet liqueurs. PMID:24679815

  9. Walking Activity, Body Composition and Blood Pressure in Adults with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Stanish, Heidi I.; Draheim, Christopher C.

    2007-01-01

    Background: Individuals with intellectual disabilities engage in limited physical activity which places their health at risk. This study examined the walking activity, body composition and blood pressure of adults with intellectual disabilities. Methods: A group of male and female adults (n = 103) wore a pedometer for 7 days and were categorized…

  10. Body composition of active persons with spinal cord injury and with poliomyelitis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study sought to evaluate the body composition of subjects with active spinal cord injuries and polio. Two groups of males and females, active, free-living, of similar ages and body mass index (BMI), were distributed according to the source of deficiency: SCI – low spinal cord injury (T5-T12) an...

  11. Effect of glass composition on activation energy of viscosity in glass-melting-temperature range

    SciTech Connect

    Hrma, Pavel R.; Han, Sang Soo

    2012-08-01

    In the high-temperature range, where the viscosity (Eta) of molten glass is <10{sup 3} Pa s, the activation energy (B) is virtually ln(Eta) = A + B/T, is nearly independent of melt composition. Hence, the viscosity-composition relationship for Eta < 10{sup 3} Pa s is defined by B as a function of composition. Using a database encompassing over 1300 compositions of high-level waste glasses with nearly 7000 viscosity data, we developed mathematical models for B(x), where x is the composition vector in terms of mass fractions of components. In this paper, we present 13 versions of B(x) as first- and second-order polynomials with coefficients for 15 to 39 components, including Others, a component that sums constituents having little effect on viscosity.

  12. Osteogenic activity of cyclodextrin-encapsulated doxycycline in a calcium phosphate PCL and PLGA composite.

    PubMed

    Trajano, V C C; Costa, K J R; Lanza, C R M; Sinisterra, R D; Cortés, M E

    2016-07-01

    Composites of biodegradable polymers and calcium phosphate are bioactive and flexible, and have been proposed for use in tissue engineering and bone regeneration. When associated with the broad-spectrum antibiotic doxycycline (DOX), they could favor antimicrobial action and enhance the action of osteogenic composites. Composites of polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and a bioceramic of biphasic calcium phosphate Osteosynt® (BCP) were loaded with DOX encapsulated in β-cyclodextrin (βCD) and were evaluated for effects on osteoblastic cell cultures. The DOX/βCD composite was prepared with a double mixing method. Osteoblast viability was assessed with methyl tetrazolium (MTT) assays after 1day, 7day, and 14days of composite exposure; alkaline phosphatase (AP) activity and collagen production were evaluated after 7days and 14days, and mineral nodule formation after 14days. Composite structures were evaluated by scanning electron microscopy (SEM). Osteoblasts exposed to the composite containing 25μg/mL DOX/βCD had increased cell proliferation (p<0.05) compared to control osteoblast cultures at all experimental time points, reaching a maximum in the second week. AP activity and collagen secretion levels were also elevated in osteoblasts exposed to the DOX/βCD composite (p<0.05 vs. controls) and reached a maximum after 14days. These results were corroborated by Von Kossa test results, which showed strong formation of mineralization nodules during the same time period. SEM of the composite material revealed a surface topography with pore sizes suitable for growing osteoblasts. Together, these results suggest that osteoblasts are viable, proliferative, and osteogenic in the presence of a DOX/βCD-containing BCP ceramic composite. PMID:27127066

  13. Compositions and methods for adoptive and active immunotherapy

    DOEpatents

    Fahmy, Tarek; Steenblock, Erin

    2014-01-14

    Modular aAPCs and methods of their manufacture and use are provided. The modular aAPCs are constructed from polymeric microparticles. The aAPCs include encapsulated cytokines and coupling agents which modularly couple functional elements including T cell receptor activators, co-stimulatory molecules and adhesion molecules to the particle. The ability of these aAPCs to release cytokines in a controlled manner, coupled with their modular nature and ease of ligand attachment, results in an ideal, tunable APC capable of stimulating and expanding primary T cells.

  14. Composites

    SciTech Connect

    Chou, T.; McCullough, R.L.; Pipes, R.B.

    1986-10-01

    The degree of control over material properties that is typified by hybrid composites is transforming engineering design. In part because homogeneous materials such as metals and alloys do not offer comparable control, specifying a material and designing a component have traditionally taken place separately. As composites begin to replace traditional materials in fields and such as aerospace, component design and the specification of a material are merging and becoming aspects of a single process. The controllable microstructure of a composite allows it to be tailored to match the distribution of stresses to which it will be subject. At the same time components must come to reflect the distinctive nature of composites: their directional properties and the intricate forms they can be given through processes such as injection molding, filament winding and three-dimensional weaving. The complexity inherent in conceiving components and their materials at the same time suggests engineering design will grow increasingly dependent on computers and multidisciplinary teams. Such an approach will harness the full potential of composites for the technologies of the future. 10 figures.

  15. Assessment of denitrifying bacterial composition in activated sludge.

    PubMed

    Srinandan, C S; Shah, Mrinal; Patel, Bhavita; Nerurkar, Anuradha S

    2011-10-01

    The abundance and structure of denitrifying bacterial community in different activated sludge samples were assessed, where the abundance of denitrifying functional genes showed nirS in the range of 10(4)-10(5), nosZ with 10(4)-10(6) and 16S rRNA gene in the range 10(9)-10(10) copy number per ml of sludge. The culturable approach revealed Pseudomonas sp. and Alcaligenes sp. to be numerically high, whereas culture independent method showed betaproteobacteria to dominate the sludge samples. Comamonas sp. and Pseudomonas fluorescens isolates showed efficient denitrification, while Pseudomonas mendocina, Pseudomonas stutzeri and Brevundimonas diminuta accumulated nitrite during denitrification. Numerically dominant RFLP OTUs of the nosZ gene from the fertilizer factory sludge samples clustered with the known isolates of betaproteobacteria. The data also suggests the presence of different truncated denitrifiers with high numbers in sludge habitat. PMID:21868215

  16. Synthesis and photocatalytic activity of three-dimensional ZnS/CdS composites

    SciTech Connect

    Liu, Shuling Li, Honglin; Yan, Lu

    2013-09-01

    Graphical abstract: - Highlights: • 3D urchin-like ZnS/CdS composites were synthesized via a two-step method. • The CdS nanoparticles were assembled on the thorns of 3D ZnS urchins. • The ZnS/CdS composites show excellent photocatalytic degradation activities. • The modification of CdS on ZnS is responsible for the enhanced property. - Abstract: Urchin-like ZnS/CdS semiconductor composites were successfully synthesized by combining solvothermal route with homogeneous precipitation process. The as-obtained samples were characterized by means of XRD, EDX, TEM, HR-TEM, ED and FE-SEM techniques. The results show that the as-obtained composites were comprised of the hexagonal structure ZnS and CdS, and CdS nanoparticles were assembled on the surfaces of the thorns of urchin-like ZnS. In addition, the optical properties and photocatalytic activities of the as-prepared ZnS/CdS composites toward some organic dyes (such as Methyl Orange, Pyronine B, Rhodamine B and Methylene Blue) were separately investigated. It is found that the ZnS/CdS composites exhibit excellent photocatalytic degradation activity for these dyes under UV irradiation, as compared to corresponding pure ZnS urchins and commercial anatase TiO{sub 2} (P-25). This enhanced activity may be related to the modification of CdS nanoparticles on the surfaces of thorns of ZnS urchins and a tentative mechanism for the enhanced photocatalytic degradation activities of the ZnS/CdS composite catalyst was proposed.

  17. Analysis of essential oils from Voacanga africana seeds at different hydrodistillation extraction stages: chemical composition, antioxidant activity and antimicrobial activity.

    PubMed

    Liu, Xiong; Yang, Dongliang; Liu, Jiajia; Ren, Na

    2015-01-01

    In this study, essential oils from Voacanga africana seeds at different extraction stages were investigated. In the chemical composition analysis, 27 compounds representing 86.69-95.03% of the total essential oils were identified and quantified. The main constituents in essential oils were terpenoids, alcohols and fatty acids accounting for 15.03-24.36%, 21.57-34.43% and 33.06-57.37%, respectively. Moreover, the analysis also revealed that essential oils from different extraction stages possessed different chemical compositions. In the antioxidant evaluation, all analysed oils showed similar antioxidant behaviours, and the concentrations of essential oils providing 50% inhibition of DPPH-scavenging activity (IC50) were about 25 mg/mL. In the antimicrobial experiments, essential oils from different extraction stages exhibited different antimicrobial activities. The antimicrobial activity of oils was affected by extraction stages. By controlling extraction stages, it is promising to obtain essential oils with desired antimicrobial activities. PMID:25686854

  18. Compositions comprising a polypeptide having cellulolytic enhancing activity and a nitrogen-containing compound and uses thereof

    DOEpatents

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    2016-05-31

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a nitrogen-containing compound. The present invention also relates to methods of using the compositions.

  19. Chemical composition and antibacterial activity of Opuntia ficus-indica f. inermis (cactus pear) flowers.

    PubMed

    Ennouri, Monia; Ammar, Imene; Khemakhem, Bassem; Attia, Hamadi

    2014-08-01

    Opuntia ficus-indica f. inermis (cactus pear) flowers have wide application in folk medicine. However, there are few reports focusing on their biological activity and were no reports on their chemical composition. The nutrient composition and hexane extracts of Opuntia flowers at 4 flowering stages and their antibacterial and antifungal activities were investigated. The chemical composition showed considerable amounts of fiber, protein, and minerals. Potassium (K) was the predominant mineral followed by calcium (Ca), magnesium (Mg), sodium (Na), iron (Fe), and zinc (Zn). The main compounds in the various hexane extracts were 9.12-octadecadienoic acid (29-44%) and hexadecanoic acid (8.6-32%). The antibacterial activity tests showed that O. inermis hexane extracts have high effectiveness against Escherichia coli and Staphylococcus aureus, making this botanical source a potential contender as a food preservative or food control additive. PMID:24650181

  20. Facile Preparation of Ag/NiO Composite Nanosheets and Their Antibacterial Activity

    NASA Astrophysics Data System (ADS)

    Shi, Cui-E.; Pan, Lu; Wang, Cheng-Run; He, Yi; Wu, Yong-Feng; Xue, Sai-Sai

    2016-01-01

    Sheet-like precursors of NiO and Ag/NiO with different Ag contents were synthesized by a facile and easily controlled hydrothermal method. The NiO and Ag/NiO composite nanosheets were prepared by calcination of the corresponding precursors at 400°C for 3 h. The as-synthesized samples were characterized by thermogravimetric analysis, x-ray diffraction, transmission electron microscopy, and scanning electron microscopy. The antibacterial activity of NiO and Ag/NiO composites to several gram-positive and gram-negative bacteria was examined. Results showed that NiO nanosheets hardly exhibited antibacterial activity; however, Ag/NiO composites displayed higher activity even with low Ag content.

  1. Highly active composite catalysts for reforming of methane into syngas

    SciTech Connect

    Inui, T.; Saigo, K.; Ichino, K.

    1997-12-31

    Development in highly active catalysts for the reforming of methane with H{sub 2}O, CO{sub 2}, H{sub 2}O + CO{sub 2}, and partial oxidation of methane was conducted to produce hydrogen with high reaction rates. A Ni-based four component catalyst, Ni-Ce{sub 2}O{sub 3}-Pt-Rh supported on an alumina wash-coated ceramic fiber in a plate shape was suitable for the objective reaction. By combining the catalytic combustion reaction, methane conversion was markedly enhanced. Furthermore, by combining the combustion of ethane or ethylene, significantly high space-time yields of hydrogen such as 6,731 mol/1-h or 6,907 mol/l{center_dot}h, respectively at 700{degrees}C. In a reaction of CH{sub 4}-CO{sub 2}-H{sub 2}O-O{sub 2} on the four component catalyst, an extraordinary high space-time yield of hydrogen, 12,190 mol/l{center_dot}h was realized even under the very rapid operation conditions as 3 m-sec short contact time.

  2. Extracellular Streptomyces lividans vesicles: composition, biogenesis and antimicrobial activity

    PubMed Central

    Schrempf, Hildgund; Merling, Philipp

    2015-01-01

    We selected Streptomyces lividans to elucidate firstly the biogenesis and antimicrobial activities of extracellular vesicles that a filamentous and highly differentiated Gram-positive bacterium produces. Vesicle types range in diameter from 110 to 230 nm and 20 to 60 nm, respectively; they assemble to clusters, and contain lipids and phospholipids allowing their in situ imaging by specific fluorescent dyes. The presence of the identified secondary metabolite undecylprodigiosin provokes red fluorescence of a portion of the heterogeneous vesicle populations facilitating in vivo monitoring. Protuberances containing vesicles generate at tips, and alongside of substrate hyphae, and enumerate during late vegetative growth to droplet-like exudates. Owing to in situ imaging in the presence and absence of a green fluorescent vancomycin derivative, we conclude that protuberances comprising vesicles arise at sites with enhanced levels of peptidoglycan subunits [pentapeptide of lipid II (C55)-linked disaccharides], and reduced levels of polymerized and cross-linked peptidoglycan within hyphae. These sites correlate with enhanced levels of anionic phospholipids and lipids. Vesicles provoke pronounced damages of Aspergillus proliferans, Verticillium dahliae and induced clumping and distortion of Escherichia coli. These harmful effects are likely attributable to the action of the identified vesicular compounds including different enzyme types, components of signal transduction cascades and undecylprodigiosin. Based on our pioneering findings, we highlight novel clues with environmental implications and application potential. PMID:25851532

  3. Evaluating apatite formation and osteogenic activity of electrospun composites for bone tissue engineering.

    PubMed

    Patlolla, Ajitha; Arinzeh, Treena Livingston

    2014-05-01

    Significant interest has been in examining calcium phosphate ceramics, specifically β-tricalcium phosphate (β-TCP) (Ca3 (PO4)2 ) and synthetic hydroxyapatite (HA) (Ca10 (PO4)6 (OH)2 ), in composites and more recently, in fibrous composites formed using the electrospinning technique for bone tissue engineering applications. Calcium phosphate ceramics are sought because they can be bone bioactive, which means an apatite forms on their surface that facilitates bonding to bone tissue, and are osteoconductive. However, studies examining the bioactivity of electrospun composites containing calcium phosphates and their corresponding osteogenic activity have been limited. In this study, electrospun composites consisting of (20/80) HA/TCP nanoceramics and poly (ϵ-caprolactone) (PCL) were fabricated. Solvent and solvent combinations were evaluated to form scaffolds with a maximum concentration and dispersion of ceramic and pore sizes large enough for cell infiltration and tissue growth. PCL was dissolved in either methylene chloride (Composite-MC) or a combination of methylene chloride (80%) and dimethylformamide (20%; Composite-MC + DMF). Composites were evaluated in vitro for degradation, apatite formation, and osteogenic differentiation of human mesenchymal stem cells (MSCs) with an emphasis on temporal gene expression of osteogenic markers and the pluripotent gene Sox-2. Apatite formation and the osteogenic differentiation was the greatest for Composite-MC as determined by gene expression, protein production and biochemical markers, even without the presence of osteoinductive factors in the media, in comparison to Composite-MC + DMF and unfilled PCL mats. Sox-2 levels also reduced over time. The results of this study demonstrate that the solvent or solvent combination used in preparing the electrospun composite mats plays a critical role in determining their bioactivity which may, in turn, affect cell behavior. PMID:24264603

  4. Ultrathin and stable active layer of dense composite membrane enabled by poly(dopamine).

    PubMed

    Li, Ben; Liu, Wanpeng; Jiang, Zhongyi; Dong, Xiao; Wang, Baoyi; Zhong, Yurong

    2009-07-01

    We demonstrate that dopamine is able to self-polymerize and adhere firmly onto the substrate, which can create a hierarchical structure comprising an ultrathin active layer and a porous support layer. Such an approach opens a novel way to fabricating highly efficient and stable composite materials including composite membranes. More specifically, in this study the composite membranes are fabricated by simply dipping microporous substrate in aqueous dopamine solution under mild conditions. Nanoindentation measurement reveals the tight adhesion of dopamine onto microporous substrate, which is ascribed to numerous pi-pi and hydrogen-bonding interactions. The chemical composition of the active layer is analyzed by XPS, which demonstrates the self-polymerization of dopamine. The water contact angle of the dopamine coated membranes is reduced remarkably compared with that of the uncoated counterpart. Stylus profiler measurements display that the poly(dopamine) thickness increases as the coating time increases. FESEM images of the membranes' cross section show that an active layer (<100 nm) is deposited on the porous polysulfone (PS) substrate. Positron annihilation spectroscopy (PAS) is introduced to probe the fractional free volume properties throughout the cross section of the composite membranes and reveal that after dopamine double-coating the active layer becomes thicker and more compact. Moreover, pH and concentration of the dopamine solution exert notable influence on the fractional free volume of the composite membranes. The as-prepared membranes are tentatively employed for pervaporative desulfurization and exhibits satisfying separation performance as well as durability. This facile, versatile, and efficient approach enables a promising prospect for the wide applications of such novel kinds of ultrathin composite materials. PMID:19366196

  5. Activation and Micropore Structure Determination of Carbon-Fiber Composite Molecular Sieves

    SciTech Connect

    Jagtoyen, M.

    1995-01-01

    The progress of research in the development of novel, rigid, monolithic adsorbent carbon fiber composites is described. Carbon fiber composites am produced at ORNL and activated at the CAER using steam or CO{sub 2} under different conditions, with the aims of producing a uniform degree of activation through the material, and of closely controlling pore structure and adsorptive properties. The principal focus of the work to date has been to produce materials with narrow porosity far use in gas separations. Carbon fiber composites are prepared at ORNL, usually in plate or tubular form, by vacuum molding from water slurries containing phenolic resin and chopped isotropic petroleum pitch fibers. The composites are activated at the CAER in steam or CO{sub 2} using samples of dimensions up to 1.5 x 4 x 12 cm that are cut from the original plates. One of the objectives is to produce uniformly activated composites, which is especially critical when attempting to active large monoliths. It has been found that there are appreciable variations in the density and permeability of the as-formed composites that must relate to the forming technique. These variations are expected to exert some influence on the rate and extent of reaction and surface area development. In attempting to uniformly activate the composites, two reactor configurations have been investigated. In the more successful arrangement, steam ''is introduced at several points along the length of the composite. A reduction in steam partial pressure from 95vol% to 44vol% significantly improved the uniformity of surface area distribution. Activation with CO{sub 2} was still better, which is attributed to the much slower reaction rate than with steam. Measurements of composite dimensions have shown that there is an overall shrinkage during activation. A direct correlation is found between dimensional shrinkage and burnoff, and is similar for a and steam activation. The causes of the shrinkage are not yet clear. At

  6. Antibacterial activity of kaolinite/nanoTiO2 composites in relation to irradiation time.

    PubMed

    Dědková, Kateřina; Matějová, Kateřina; Lang, Jaroslav; Peikertová, Pavlína; Kutláková, Kateřina Mamulová; Neuwirthová, Lucie; Frydrýšek, Karel; Kukutschová, Jana

    2014-06-01

    The paper addresses laboratory preparation and antibacterial activity testing of kaolinite/nanoTiO2 composite in respect of the daylight irradiation time. Kaolinite/nanoTiO2 composites with 20 and 40 wt% of TiO2 were laboratory prepared, dried at 105 °C and calcined at 600 °C. The calcination caused transformation of kaolinite to metakaolinite and origination of the metakaolinite/nanoTiO2 composite. X-ray powder diffraction, Raman and FTIR spectroscopic methods revealed titanium dioxide only in the form of anatase in all evaluated samples (non-calcined and calcined) and also transformation of kaolinite to metakaolinite after the calcination treatment. Scanning electron microscopy was used as a method for characterization of morphology and elemental composition of the studied samples. A standard microdilution test was used to determine the antibacterial activity using four human pathogenic bacterial strains (Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa). A lamp with a wide spectrum bulb simulating daylight was used for induction of photocatalysis. The antibacterial assays found all the KATI samples to have antibacterial potency with different onset of the activity when calcined samples exhibited antibacterial activity earlier than the non-calcined. Significant difference in antibacterial activity of KATI samples for different bacterial strains was not observed. PMID:24792569

  7. Two-Step Bipolar Electrochemistry: Generation of Composition Gradient and Visual Screening of Electrocatalytic Activity.

    PubMed

    Termebaf, Hajar; Shayan, Mohsen; Kiani, Abolfazl

    2015-12-01

    Bipolar electrochemistry (BE) is employed for both creating electrocatalysts composition gradient and visual screening of the prepared composition on a single substrate in just two experiment runs. In a series of proof-of-principle experiments, we demonstrate gradient electrodeposition of Ni-Cu using BE; then the electrocatalytic activity of the prepared composition gradient toward the hydrogen evolution reaction (HER) is visually screened in the BE system using array of BPEs. Moreover, the morphology and the chemical composition of the Ni-Cu gradient are screened along the length of the bipolar electrode (BPE). By measuring the potential gradient over the BPE, it is also demonstrated that by controlling the concentration of the metals precursor and the supporting electrolyte, the length of the bipolar electrodeposited gradient can be controlled. PMID:26595192

  8. Composite Mg II solar activity index for solar cycles 21 and 22

    NASA Technical Reports Server (NTRS)

    Deland, Matthew T.; Cebula, Richard P.

    1993-01-01

    On the basis of version 1.0 of the composite MG II solar activity index data set, it is shown that the change in the 27-day running average of the Mg II index from solar maximum to solar minimum is about 8 percent for solar cycle 21 and about 9 percent for solar cycle 22 through January 1992. Scaling factors based on the short-term variations in the Mg II index and solar irradiance data sets are developed for each instrument to estimate solar variability at mid-UV and near-UV wavelengths. A set of composite scale factors are derived for use with the present composite MG index. Near 205 cm, where solar irradiance variations are important for stratospheric chemistry, the estimated change in irradiance during solar cycle 22 is about 10 +/- 1 percent using the composite Mg II index (version 1.0) and scale factors.

  9. Synthesis of Multi-Walled Carbon Nanotubes/TiO2 Composite and Its Photocatalytic Activity.

    PubMed

    Dong, Hongying; Qu, Caifeng; Zhang, Tingting; Zhu, Liwei; Ma, Wen

    2016-03-01

    TiO2 particles coated Multi-walled carbon nanotubes (MWCNT/TiO2 composite) were prepared via a sol-gel method using Multi-walled carbon nanotubes (MWCNT) and tetrabutyl titanate as raw materials. The phase constitutes and microstructures of the prepared composite were analyzed by XRD and TEM, respectively. Their photocatalytic activities were investigated under simulated ultra-violet light and visible-light irradiation for the degradation of methyl orange (MO) and methylene blue (MB) aqueous solution, respectively. The experimental results indicated that TiO2 calcined at temperatures of 400-600 degrees C in the MWCNT/TiO2 composite was mainly composed of nanometric anatase. The composite exhibited enhanced absorption properties in the visible-light region compared to pure TiO2, which was attributed to the enhanced light electron-hole separation by adding MWCNTs. PMID:27455683

  10. Composites

    NASA Astrophysics Data System (ADS)

    Taylor, John G.

    The Composites market is arguably the most challenging and profitable market for phenolic resins aside from electronics. The variety of products and processes encountered creates the challenges, and the demand for high performance in critical operations brings value. Phenolic composite materials are rendered into a wide range of components to supply a diverse and fragmented commercial base that includes customers in aerospace (Space Shuttle), aircraft (interiors and brakes), mass transit (interiors), defense (blast protection), marine, mine ducting, off-shore (ducts and grating) and infrastructure (architectural) to name a few. For example, phenolic resin is a critical adhesive in the manufacture of honeycomb sandwich panels. Various solvent and water based resins are described along with resin characteristics and the role of metal ions for enhanced thermal stability of the resin used to coat the honeycomb. Featured new developments include pultrusion of phenolic grating, success in RTM/VARTM fabricated parts, new ballistic developments for military vehicles and high char yield carbon-carbon composites along with many others. Additionally, global regional market resin volumes and sales are presented and compared with other thermosetting resin systems.

  11. Non-destructive measurement of carbonic anhydrase activity and the oxygen isotope composition of soil water

    NASA Astrophysics Data System (ADS)

    Jones, Sam; Sauze, Joana; Ogée, Jérôme; Wohl, Steven; Bosc, Alexandre; Wingate, Lisa

    2016-04-01

    Carbonic anhydrases are a group of metalloenzymes that catalyse the hydration of aqueous carbon dioxide (CO2). The expression of carbonic anhydrase by bacteria, archaea and eukarya has been linked to a variety of important biological processes including pH regulation, substrate supply and biomineralisation. As oxygen isotopes are exchanged between CO2 and water during hydration, the presence of carbonic anhydrase in plants and soil organisms also influences the oxygen isotope budget of atmospheric CO2. Leaf and soil water pools have distinct oxygen isotope compositions, owing to differences in pool sizes and evaporation rates, which are imparted on CO2during hydration. These differences in the isotopic signature of CO2 interacting with leaves and soil can be used to partition the contribution of photosynthesis and soil respiration to net terrestrial CO2 exchange. However, this relies on our knowledge of soil carbonic anhydrase activity and currently, the prevalence and function of these enzymes in soils is poorly understood. Isotopic approaches used to estimate soil carbonic anhydrase activity typically involve the inversion of models describing the oxygen isotope composition of CO2 fluxes to solve for the apparent, potentially catalysed, rate of oxygen exchange during hydration. This requires information about the composition of CO2 in isotopic equilibrium with soil water obtained from destructive, depth-resolved soil water sampling. This can represent a significant challenge in data collection given the considerable potential for spatial and temporal variability in the isotopic composition of soil water and limited a priori information with respect to the appropriate sampling resolution and depth. We investigated whether we could circumvent this requirement by constraining carbonic anhydrase activity and the composition of soil water in isotopic equilibrium with CO2 by solving simultaneously the mass balance for two soil CO2 steady states differing only in the

  12. Facile synthesis of Ag–Cu{sub 2}O composites with enhanced photocatalytic activity

    SciTech Connect

    Yang, Jianbo; Li, Zhen; Zhao, Caixin; Wang, Yang; Liu, Xueqin

    2014-12-15

    Highlights: • Ag–Cu{sub 2}O nanocomposites were synthesized via awet-chemical precipitation route. • The growth temperature does not exceed 50 °C in any step of the synthesis. • Enhanced photocurrent of Ag–Cu{sub 2}O composites, compared to pure Cu{sub 2}O particles. • The photocatalytic property was studied upon simulated sunlight. • Enhanced photocatalytic property of Ag–Cu{sub 2}O composites, compared to pure Cu{sub 2}O particles. - Abstract: Silver–cuprous oxide (Ag–Cu{sub 2}O) microcomposites are successfully prepared by a facile low-cost solution method. The obtained materials were characterized by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), field emission scanning electron microscopy (FESEM), ultraviolet–visible (UV–vis) spectroscopy, X-ray photoelectron spectroscopy (XPS). Experiments demonstrated that the formation of Ag–Cu{sub 2}O microcomposites was significantly influenced by the concentration of AgNO{sub 3}, and with increasing the concentration of AgNO{sub 3}, the optical absorption of the composites becomes strong. The photocatalytic activity of the prepared Ag–Cu{sub 2}O composites was determined by measuring the degradation of methyl orange solution under visible light, to find out its potential application in waste water treatment. The results reveal that the photocurrent of the composite is about 4 times higher than that of pure Cu{sub 2}O and the visible light photocatalytic activity of the composite is enhanced greatly on degradation of methyl orange. The reason for improvement in photocatalytic activity of the Ag–Cu{sub 2}O composites was also discussed.

  13. Essential Oil Composition of Phagnalon sordidum (L.) from Corsica, Chemical Variability and Antimicrobial Activity.

    PubMed

    Brunel, Marion; Vitrac, Caroline; Costa, Jean; Mzali, Fatima; Vitrac, Xavier; Muselli, Alain

    2016-03-01

    The chemical composition of Phagnalon sordidum (L.) essential oil was investigated for the first time using gas chromatography and chromatography/mass spectrometry. Seventy-six compounds, which accounted for 87.9% of the total amount, were identified in a collective essential oil of P. sordidum from Corsica. The main essential oil components were (E)-β-caryophyllene (14.4%), β-pinene (11.0%), thymol (9.0%), and hexadecanoic acid (5.3%). The chemical compositions of essential oils from 19 Corsican locations were investigated. The study of the chemical variability using statistical analysis allowed identifying direct correlation between the three populations of P. sordidum widespread in Corsica and the essential oil compositions they produce. The in vitro antimicrobial activity of P. sordidum essential oil was evaluated and it exhibited a notable activity on a large panel of clinically significant microorganisms. PMID:26916729

  14. Self-folding origami: shape memory composites activated by uniform heating

    NASA Astrophysics Data System (ADS)

    Tolley, Michael T.; Felton, Samuel M.; Miyashita, Shuhei; Aukes, Daniel; Rus, Daniela; Wood, Robert J.

    2014-09-01

    Self-folding is an approach used frequently in nature for the efficient fabrication of structures, but is seldom used in engineered systems. Here, self-folding origami are presented, which consist of shape memory composites that are activated with uniform heating in an oven. These composites are rapidly fabricated using inexpensive materials and tools. The folding mechanism based on the in-plane contraction of a sheet of shape memory polymer is modeled, and parameters for the design of composites that self-fold into target shapes are characterized. Four self-folding shapes are demonstrated: a cube, an icosahedron, a flower, and a Miura pattern; each of which is activated in an oven in less than 4 min. Self-sealing is also investigated using hot melt adhesive, and the resulting structures are found to bear up to twice the load of unsealed structures.

  15. Human activities cause distinct dissolved organic matter composition across freshwater ecosystems.

    PubMed

    Williams, Clayton J; Frost, Paul C; Morales-Williams, Ana M; Larson, James H; Richardson, William B; Chiandet, Aisha S; Xenopoulos, Marguerite A

    2016-02-01

    Dissolved organic matter (DOM) composition in freshwater ecosystems is influenced by the interactions among physical, chemical, and biological processes that are controlled, at one level, by watershed landscape, hydrology, and their connections. Against this environmental template, humans may strongly influence DOM composition. Yet, we lack a comprehensive understanding of DOM composition variation across freshwater ecosystems differentially affected by human activity. Using optical properties, we described DOM variation across five ecosystem groups of the Laurentian Great Lakes region: large lakes, Kawartha Lakes, Experimental Lakes Area, urban stormwater ponds, and rivers (n = 184 sites). We determined how between ecosystem variation in DOM composition related to watershed size, land use and cover, water quality measures (conductivity, dissolved organic carbon (DOC), nutrient concentration, chlorophyll a), and human population density. The five freshwater ecosystem groups had distinctive DOM composition from each other. These significant differences were not explained completely through differences in watershed size nor spatial autocorrelation. Instead, multivariate partial least squares regression showed that DOM composition was related to differences in human impact across freshwater ecosystems. In particular, urban/developed watersheds with higher human population densities had a unique DOM composition with a clear anthropogenic influence that was distinct from DOM composition in natural land cover and/or agricultural watersheds. This nonagricultural, human developed impact on aquatic DOM was most evident through increased levels of a microbial, humic-like parallel factor analysis component (C6). Lotic and lentic ecosystems with low human population densities had DOM compositions more typical of clear water to humic-rich freshwater ecosystems but C6 was only present at trace to background levels. Consequently, humans are strongly altering the quality of DOM in

  16. Human activities cause distinct dissolved organic matter composition across freshwater ecosystems

    USGS Publications Warehouse

    Williams, Clayton J.; Frost, Paul C.; Morales-Williams, Ana M.; Larson, James H.; Richardson, William B.; Chiandet, Aisha S.; Xenopoulos, Marguerite A.

    2016-01-01

    Dissolved organic matter (DOM) composition in freshwater ecosystems is influenced by interactions between physical, chemical, and biological processes that are controlled, at one level, by watershed landscape, hydrology, and their connections. Against this environmental template, humans may strongly influence DOM composition. Yet, we lack a comprehensive understanding of DOM composition variation across freshwater ecosystems differentially affected by human activity. Using optical properties, we described DOM variation across five ecosystem groups of the Laurentian Great Lakes Region: large lakes, Kawartha Lakes, Experimental Lakes Area, urban stormwater ponds, and rivers (n = 184 sites). We determined how between ecosystem variation in DOM composition related to watershed size, land use and cover, water quality measures (conductivity, dissolved organic carbon (DOC), nutrient concentration, chlorophyll a), and human population density. The five freshwater ecosystem groups had distinctive DOM composition from each other. These significant differences were not explained completely through differences in watershed size nor spatial autocorrelation. Instead, multivariate partial least squares regression showed that DOM composition was related to differences in human impact across freshwater ecosystems. In particular, urban/developed watersheds with higher human population densities had a unique DOM composition with a clear anthropogenic influence that was distinct from DOM composition in natural land cover and/or agricultural watersheds. This nonagricultural, human developed impact on aquatic DOM was most evident through increased levels of a microbial, humic-like parallel factor analysis component (C6). Lotic and lentic ecosystems with low human population densities had DOM compositions more typical of clear water to humic-rich freshwater ecosystems but C6 was only present at trace to background levels. Consequently, humans are strongly altering the quality of DOM in

  17. Physical activity and body composition in outpatients recovering from anorexia nervosa and healthy controls.

    PubMed

    Hechler, Tanja; Rieger, Elizabeth; Touyz, Stephen; Beumont, Pierre; Plasqui, Guy; Westerterp, Klaas

    2008-04-01

    The study aimed to compare differences in physical activity, the relationship between physical activity and body composition, and seasonal variation in physical activity in outpatients with anorexia nervosa (AN) and healthy controls. Physical activity (CM-AMT) and time spent in different intensities of 10 female individuals with AN and 15 female controls was assessed across three seasons along with the percentage body fat. The two groups did not differ in their physical activity and both demonstrated seasonal variation. The percentage body fat of individuals with AN, but not that of the controls, was negatively related to CM-AMT and time spent in low-moderate intensity activity (LMI). Seasonal variation in physical activity emerged with increases in engagement in LMI during the summer period for both groups. Possible interpretations of the finding that decreased physical activity was related to a normalization of percentage body fat in the individuals with AN are discussed and implications for treatment are highlighted. PMID:18493090

  18. Chemical composition and antibacterial activity of essential oil and extracts of Citharexylum spinosum flowers from Thailand.

    PubMed

    Mar, Ae; Pripdeevech, Patcharee

    2014-05-01

    The chemical composition and antibacterial and antioxidant activities of the essential oil and various solvent extracts of Citharexylum spinosum flowers are reported. The chemical compositions were determined by GC-MS with 151 volatile constituents identified. Methyl benzoate, piperitone, maltol, and maple furanone were the major constituents. All extracts were tested for their antibacterial activity against eight microorganisms. The flower oil had the greatest antibacterial activity against all bacterial strains (MIC values of 31.2 microg/mL), while the other solvent extracts had MIC values ranging from 31.2 to 1000 microg/mL. The essential oil had the highest antioxidant activity and total phenol content with IC50 values of 62.7 and 107.3 microg/mL, respectively. PMID:25026728

  19. Antioxidant activity of commercial buckwheat flours and their free and bound phenolic compositions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Buckwheat flours (Whole, Farinetta, Supreme, and Fancy) were investigated for their compositions, free and bound phenolic contents, antioxidant activities, and flavonoid contents using spectrophotometer and LC-ESI-IT- MS (LC-MS). Farinetta flour contained the highest oil, protein, and free and boun...

  20. Effect of amine activators on the properties of chemical cured dental composites.

    PubMed

    Mathew, L; Joseph, R; Krishnan, V K

    1997-01-01

    The purpose of this study was to evaluate the reactivity and the effect of concentration of three tertiary amines upon the mechanical properties of a chemical curing dental composite. Chemical cured composite pastes were prepared by keeping peroxide concentration constant at 1 wt% (by weight of resin mixture) and by varying the amine/peroxide molar ratio from 0.25 to 1.5. Composite samples were prepared for all three amine pastes aged for 1, 15, 30, 45, and 60 d stored at 8, 22, and 37 degrees C. The loss in activity of the tertiary amine with time was measured. Changes in compressive strength, diametral tensile strength, and microhardness were also measured. A sharp decrease in working and setting times corresponding to increased activity was noticed with an increased amine content. The activity was found to vary in the order N,N-dimethyl p-toluidine (DMPT) > 2-(4-dimethylaminophenyl)ethanol (DMAPEA) > N,Ndiethanol p-toluidine (DEPT). DMPT is found to be more temperature sensitive than DMAPEA and DEPT. However, DEPT is found to provide better storage stability out of all three amines tested. Each amine was found to possess optimum concentrations at which the mechanical properties showed maximum values. DEPT is preferred for long-term storage stability in chemical-cured dental composites where aging tends to reduce the activity of the amine. PMID:9067811

  1. Antimicrobial activity of nisin incorporated in pectin and polylactic acid composite films against Listeria monocytogenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extruded composite films from 20% pectin and 80% polylactic acids (PLA) were developed and nisin was loaded into films by a diffusion post extrusion. Inhibitory activities of the films against Listeria monocytogenes were evaluated in brain heart infusion (BHI) broth, liquid egg white and orange juic...

  2. Chemical composition and biological activity of the essential oil of rhizome of Zingiber zerumbet (L.) smith

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical Abstract: The aim was designed to study the biological activity and chemical composition of essential oil of Zingiber zerumbet (L.) Smith. The essential oil extracted from the rhizome of the plant was analysed by gas chromatography-mass spectroscopy and its major components amounting t...

  3. Physical Activity, Body Composition, and Perceived Quality of Life of Adults with Visual Impairments

    ERIC Educational Resources Information Center

    Holbrook, Elizabeth A.; Caputo, Jennifer L.; Perry, Tara L.; Fuller, Dana K.; Morgan, Don W.

    2009-01-01

    Relatively little is known about the health and fitness of adults with visual impairments. This article documents the physical activity levels and body-composition profiles of young and middle-aged adults with visual impairments and addresses the concomitant effects of these factors on perceived quality of life. (Contains 2 tables.)

  4. Glyphosate Effect on Shikimate, Nitrate Reductase Activity, Yield, and Seed Composition in Corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 2-yr field study investigated the effects of glyphosate drift rate on plant injury, shikimate accumulation, nitrate reductase activity, leaf nitrogen, yield, and seed composition in non-glyphosate-resistant (non-GR) corn (Zea mays L.) and the effects of glyphosate at label rates on nitrate reducta...

  5. Lantana montevidensis Essential Oil: Chemical Composition and Mosquito Repellent Activity against Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The essential oil (EO) of Lantana montevidensis (Spreng.) Briq. (L. sellowiana Link & Otto) was investigated for its chemical composition and mosquito repellent activity. The essential oil obtained by hydrodistillation of aerial plant parts was analyzed by GC-FID and GC-MS. The major constituents we...

  6. Composition and antimicrobial activity of the leaf essential oil of Litsea nakaii from Taiwan.

    PubMed

    Ho, Chen-Lung; Wang, Eugene I-Chen; Lee, Pei-Yeh; Su, Yu-Chang

    2009-06-01

    The leaf essential oil of Litsea nakaii was isolated by hydrodistillation and analyzed to determine its composition and yield. Fifty-five compounds were identified, the main components being alpha-humulene (15.5%), delta-cadinene (9.2%), (E)-beta-ocimene (8.1%), and delta-selinene (7.1%). The leaf oil exhibited excellent antimicrobial activities. PMID:19634339

  7. Agar composition affects in vitro screening of biocontrol activity of antagonistic microorganisms.

    PubMed

    Bosmans, L; De Bruijn, I; De Mot, R; Rediers, H; Lievens, B

    2016-08-01

    Agar-based screening assays are the method of choice when evaluating antagonistic potential of bacterial biocontrol-candidates against pathogens. We showed that when using the same medium, but different agar compositions, the activity of a bacterial antagonist against Agrobacterium was strongly affected. Consequently, results from in vitro screenings should be interpreted cautiously. PMID:27166668

  8. Seasonal composition and activity of sulfate-reducing prokaryotic communities in seagrass bed sediments

    EPA Science Inventory

    Sulfate-reducing prokaryotes (SRP) play a key role in the carbon and nutrient cycles of coastal marine, vegetated ecosystems, but the interactions of SRP communities with aquatic plants remain little studied. The abundance, activity, and community composition of SRP was studied i...

  9. Phoenix dactylifera L. spathe essential oil: Chemical composition and repellent activity against the yellow fever mosquito

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Date palm, Phoenix dactylifera L. (Arecaceae), grows commonly in the Arabian Peninsula and is traditionally used to treat various diseases. The aim of the present study was to identify chemical composition of the essential oil and to investigate the repellent activity. The essential oil of P. dacty...

  10. Multi-shape active composites by 3D printing of digital shape memory polymers

    PubMed Central

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry

    2016-01-01

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers – digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications. PMID:27071543

  11. Multi-shape active composites by 3D printing of digital shape memory polymers

    NASA Astrophysics Data System (ADS)

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry

    2016-04-01

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers – digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications.

  12. Multi-shape active composites by 3D printing of digital shape memory polymers.

    PubMed

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L; Qi, H Jerry

    2016-01-01

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers - digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications. PMID:27071543

  13. Evaluation of Radical Scavenging Activity of Sempervivum tectorum and Corylus avellana Extracts with Different Phenolic Composition.

    PubMed

    Alberti, Ágnes; Riethmüller, Eszter; Béni, Szabolcs; Kéry, Ágnes

    2016-04-01

    Semnpervivum tectorum L. and Corylus avellana L. are traditional herbal remedies exhibiting antioxidant activity and representing diverse phenolic composition. The aim of this study was to reveal the contribution of certain compounds to total radical scavenging activity by studying S. tectorum and C. avellana extracts prepared with solvents of different selectivity for diverse classes of phenolics. Antioxidant activity of S. tectorum and C. avellana samples was determined in the ABTS and DPPH radical scavenging assays, and phenolic composition was evaluated by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Correlations between antioxidant activity and phenolic content of houseleek extracts have been revealed. Significant differences regarding antioxidant activity have been shown between S. tectorum 80% (v/v) methanol extract and its fractions. Additionally, synergism among the constituents present together in the whole extract was assumed. Significantly higher radical scavenging activity of hazel extracts has been attributed to the differences in phenolic composition compared with houseleek extracts. PMID:27396195

  14. Composites

    NASA Astrophysics Data System (ADS)

    Chmielewski, M.; Nosewicz, S.; Pietrzak, K.; Rojek, J.; Strojny-Nędza, A.; Mackiewicz, S.; Dutkiewicz, J.

    2014-11-01

    It is commonly known that the properties of sintered materials are strongly related to technological conditions of the densification process. This paper shows the sintering behavior of a NiAl-Al2O3 composite, and its individual components sintered separately. Each kind of material was processed via the powder metallurgy route (hot pressing). The progress of sintering at different stages of the process was tested. Changes in the microstructure were examined using scanning and transmission electron microscopy. Metal-ceramics interface was clean and no additional phases were detected. Correlation between the microstructure, density, and mechanical properties of the sintered materials was analyzed. The values of elastic constants of NiAl/Al2O3 were close to intermetallic ones due to the volume content of the NiAl phase particularly at low densities, where small alumina particles had no impact on the composite's stiffness. The influence of the external pressure of 30 MPa seemed crucial for obtaining satisfactory stiffness for three kinds of the studied materials which were characterized by a high dense microstructure with a low number of isolated spherical pores.

  15. Antimicrobial Activity Evaluation on Silver Doped Hydroxyapatite/Polydimethylsiloxane Composite Layer

    PubMed Central

    Ciobanu, C. S.; Groza, A.; Iconaru, S. L.; Popa, C. L.; Chapon, P.; Chifiriuc, M. C.; Hristu, R.; Stanciu, G. A.; Negrila, C. C.; Ghita, R. V.; Ganciu, M.; Predoi, D.

    2015-01-01

    The goal of this study was the preparation, physicochemical characterization, and microbiological evaluation of novel hydroxyapatite doped with silver/polydimethylsiloxane (Ag:HAp-PDMS) composite layers. In the first stage, the deposition of polydimethylsiloxane (PDMS) polymer layer on commercially pure Si disks has been produced in atmospheric pressure corona discharges. Finally, the new silver doped hydroxyapatite/polydimethylsiloxane composite layer has been obtained by the thermal evaporation technique. The Ag:HAp-PDMS composite layers were characterized by various techniques, such as Scanning Electron Microscopy (SEM), Glow Discharge Optical Emission Spectroscopy (GDOES), and X-ray photoelectron spectroscopy (XPS). The antimicrobial activity of the Ag:HAp-PDMS composite layer was assessed against Candida albicans ATCC 10231 (ATCC—American Type Culture Collection) by culture based and confirmed by SEM and Confocal Laser Scanning Microscopy (CLSM) methods. This is the first study reporting the antimicrobial effect of the Ag:HAp-PDMS composite layer, which proved to be active against Candida albicans biofilm embedded cells. PMID:26504849

  16. Synthesis and photocatalytic activity of ytterbium-doped titania/diatomite composite photocatalysts

    NASA Astrophysics Data System (ADS)

    Tang, Wenjian; Qiu, Kehui; Zhang, Peicong; Yuan, Xiqiang

    2016-01-01

    Ytterbium-doped titanium dioxide (Yb-TiO2)/diatomite composite materials with different Yb concentrations were prepared by sol-gel method. The phase structure, morphology, and chemical composition of the as-prepared composites were well characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), and ultraviolet-visible (UV-vis) diffuse reflection spectroscopy. The XRD and Raman spectroscopy analysis indicated that the TiO2 existed in the form of pure anatase in the composites. The SEM images exhibited the well deposition and dispersion of TiO2 nanoparticles with little agglomeration on the surfaces of diatoms. The UV-vis diffuse reflection spectra showed that the band gap of TiO2 could be narrowed by the introduction of Yb species, which was further affected by doping concentration of Yb. The photocatalytic activity of synthesized samples was investigated by the degradation of methylene blue (MB) under UV light irradiation. It was observed that the photocatalytic degradation followed a pseudo-first-order kinetics according to the Langmuir-Hinshelwood model. Compared to TiO2 and TiO2/diatomite, the Yb-TiO2/diatomite composites exhibited higher photocatalytic activity toward degradation of MB using UV light irradiation.

  17. Antimicrobial Activity Evaluation on Silver Doped Hydroxyapatite/Polydimethylsiloxane Composite Layer.

    PubMed

    Ciobanu, C S; Groza, A; Iconaru, S L; Popa, C L; Chapon, P; Chifiriuc, M C; Hristu, R; Stanciu, G A; Negrila, C C; Ghita, R V; Ganciu, M; Predoi, D

    2015-01-01

    The goal of this study was the preparation, physicochemical characterization, and microbiological evaluation of novel hydroxyapatite doped with silver/polydimethylsiloxane (Ag:HAp-PDMS) composite layers. In the first stage, the deposition of polydimethylsiloxane (PDMS) polymer layer on commercially pure Si disks has been produced in atmospheric pressure corona discharges. Finally, the new silver doped hydroxyapatite/polydimethylsiloxane composite layer has been obtained by the thermal evaporation technique. The Ag:HAp-PDMS composite layers were characterized by various techniques, such as Scanning Electron Microscopy (SEM), Glow Discharge Optical Emission Spectroscopy (GDOES), and X-ray photoelectron spectroscopy (XPS). The antimicrobial activity of the Ag:HAp-PDMS composite layer was assessed against Candida albicans ATCC 10231 (ATCC-American Type Culture Collection) by culture based and confirmed by SEM and Confocal Laser Scanning Microscopy (CLSM) methods. This is the first study reporting the antimicrobial effect of the Ag:HAp-PDMS composite layer, which proved to be active against Candida albicans biofilm embedded cells. PMID:26504849

  18. Micromechanical analysis and finite element modeling of electromechanical properties of active piezoelectric structural fiber (PSF) composites

    NASA Astrophysics Data System (ADS)

    Dai, Qingli; Ng, Kenny

    2013-04-01

    This paper presents the combined micromechanics analysis and finite element modeling of the electromechanical properties of piezoelectric structural fiber (PSF) composites. The active piezoelectric materials are widely used due to their high stiffness, voltage-dependent actuation capability, and broadband electro-mechanical interactions. However, the fragile nature of piezoceramics limits their sensing and actuating applications. In this study, the active PSF composites were made by deploying the longitudinally poled PSFs into a polymer matrix. The PSF itself consists a silicon carbide (SiC) or carbon core fiber as reinforcement to the fragile piezoceramic shell. To predict the electromechanical properties of PSF composites, the micromechanics analysis was firstly conducted with the dilute approximation model and the Mori-Tanaka approach. The extended Rule of Mixtures was also applied to accurately predict the transverse properties by considering the effects of microstructure including inclusion sizes and geometries. The piezoelectric finite element (FE) modeling was developed with the ABAQUS software to predict the detailed mechanical and electrical field distribution within a representative volume element (RVE) of PSF composites. The simulated energy or deformation under imposed specific boundary conditions was used to calculate each individual property with constitutive laws. The comparison between micromechanical analysis and finite element modeling indicates the combination of the dilute approximation model, the Mori-Tanaka approach and the extended Rule of Mixtures can favorably predict the electromechanical properties of three-phase PSF composites.

  19. Piezoelectric properties of the new generation active matrix hybrid (micro-nano) composites

    NASA Astrophysics Data System (ADS)

    Parali, Levent; Şabikoğlu, İsrafil; Kurbanov, Mirza A.

    2014-11-01

    A hybrid piezoelectric composite structure is obtained by addition of nano-sized BaTiO3, SiO2 to the micro-sized PZT and polymers composition. Although the PZT material itself has excellent piezoelectric properties, PZT-based composite variety is limited. Piezoelectric properties of PZT materials can be varied with an acceptor or a donor added to the material. In addition, varieties of PZT-based sensors can be increased with doping polymers which have physical-mechanical, electrophysical, thermophysical and photoelectrical properties. The active matrix hybrid structure occurs when bringing together the unique piezoelectric properties of micro-sized PZT with electron trapping properties of nano-sized insulators (BaTiO3 or SiO2), and their piezoelectric, mechanic and electromechanic properties significantly change. In this study, the relationship between the piezoelectric constant and the coupling factor values of microstructure (PZT-PVDF) and the hybrid structure (PZT-PVDF-BaTiO3) composite are compared. The d33 value and the coupling factor of the hybrid structure have shown an average of 54 and 62% increase according to microstructure composite, respectively. In addition, the d33 value and the coupling factor of the hybrid structure (PZT-HDPE-SiO2) have exhibited about 68 and 52% increase according to microstructure composite (PZT-HDPE), respectively.

  20. Microbial Community Composition and Denitrifying Enzyme Activities in Salt Marsh Sediments▿

    PubMed Central

    Cao, Yiping; Green, Peter G.; Holden, Patricia A.

    2008-01-01

    Denitrifying microbial communities and denitrification in salt marsh sediments may be affected by many factors, including environmental conditions, nutrient availability, and levels of pollutants. The objective of this study was to examine how microbial community composition and denitrification enzyme activities (DEA) at a California salt marsh with high nutrient loading vary with such factors. Sediments were sampled from three elevations, each with different inundation and vegetation patterns, across 12 stations representing various salinity and nutrient conditions. Analyses included determination of cell abundance, total and denitrifier community compositions (by terminal restriction fragment length polymorphism), DEA, nutrients, and eluted metals. Total bacterial (16S rRNA) and denitrifier (nirS) community compositions and DEA were analyzed for their relationships to environmental variables and metal concentrations via multivariate direct gradient and regression analyses, respectively. Community composition and DEA were highly variable within the dynamic salt marsh system, but each was strongly affected by elevation (i.e., degree of inundation) and carbon content as well as by selected metals. Carbon content was highly related to elevation, and the relationships between DEA and carbon content were found to be elevation specific when evaluated across the entire marsh. There were also lateral gradients in the marsh, as evidenced by an even stronger association between community composition and elevation for a marsh subsystem. Lastly, though correlated with similar environmental factors and selected metals, denitrifier community composition and function appeared uncoupled in the marsh. PMID:18978080

  1. Compressive strength of dental composites photo-activated with different light tips

    NASA Astrophysics Data System (ADS)

    Galvão, M. R.; Caldas, S. G. F. R.; Calabrez-Filho, S.; Campos, E. A.; Bagnato, V. S.; Rastelli, A. N. S.; Andrade, M. F.

    2013-04-01

    The aim of this study was to evaluate the compressive strength of microhybrid (Filtek™ Z250) and nanofilled (Filtek™ Supreme XT) composite resins photo-activated with two different light guide tips, fiber optic and polymer, coupled with one LED. The power density was 653 mW cm-2 when using the fiber optic light tip and 596 mW cm-2 with the polymer. After storage in distilled water at 37 ± 2 °C for seven days, the samples were subjected to mechanical testing of compressive strength in an EMIC universal mechanical testing machine with a load cell of 5 kN and speed of 0.5 mm min-1. The statistical analysis was performed using ANOVA with a confidence interval of 95% and Tamhane’s test. The results showed that the mean values of compressive strength were not influenced by the different light tips (p > 0.05). However, a statistical difference was observed (p < 0.001) between the microhybrid composite resin photo-activated with the fiber optic light tip and the nanofilled composite resin. Based on these results, it can be concluded that microhybrid composite resin photo-activated with the fiber optic light tip showed better results than nanofilled, regardless of the tip used, and the type of the light tip did not influence the compressive strength of either composite. Thus, the presented results suggest that both the fiber optic and polymer light guide tips provide adequate compressive strength to be used to make restorations. However, the fiber optic light tip associated with microhybrid composite resin may be an interesting option for restorations mainly in posterior teeth.

  2. Doxorubicin/heparin composite nanoparticles for caspase-activated prodrug chemotherapy.

    PubMed

    Khaliq, Nisar Ul; Sandra, Febrina Carolina; Park, Dal Yong; Lee, Jae Young; Oh, Keun Sang; Kim, Dongkyu; Byun, Youngro; Kim, In-San; Kwon, Ick Chan; Kim, Sang Yoon; Yuk, Soon Hong

    2016-09-01

    Caspase-activated prodrug chemotherapy is introduced and demonstrated using the composite nanoparticles (NPs), which deliver doxorubicin (DOX) and DEVD-S-DOX together to the tumor tissue. DEVD-S-DOX, DOX linked to a peptide moiety (DEVD), is a prodrug that is cleaved into free DOX by caspase-3 upon apoptosis. DEVD-S-DOX has no therapeutic efficacy, but it changes into free DOX with the expression of caspase-3. With the accumulation of the composite NPs in the tumor tissue by the enhanced permeation and retention (EPR) effect, a small exposure of DOX in the tumor cells initiated apoptosis in a localized area of the tumor tissue, which induced caspase-3 activation. Cleavage of DEVD-S-DOX into free DOX by caspase-3 continued with repetitive activation of caspase-3 and cleavage of DEVD-S-DOX at the tumor site. The composite NPs were characterized with transmittance electron microscopy (TEM) and particle size analyzer. We then evaluated the nanoparticle drug release, therapeutic efficacy, and in vivo biodistribution for tumor targeting using a non-invasive live animal imaging technology and the quantification of DOX with high performance liquid chromatography. DOX-induced apoptosis-targeted chemotherapy (DIATC) was verified by in vitro/in vivo DEVD-S-DOX response to free DOX and cellular uptake behavior of the composite NPs with flow cytometry analysis. Significant antitumor efficacy with minimal cardiotoxicity was also observed, which supported DIATC for improved chemotherapy. PMID:27286189

  3. Enhanced photoelectrocatalytic activity for dye degradation by graphene-titania composite film electrodes.

    PubMed

    Wang, Peifang; Ao, Yanhui; Wang, Chao; Hou, Jun; Qian, Jin

    2012-07-15

    Graphene-titania composite film electrodes have been fabricated by a dip-coating method. Transmission electron microscopy (TEM) images show that the titania nanoparticles were dispersed uniformly, with only a little aggregation on the surface and edges of the graphene sheets. XRD analysis showed that the composite electrodes comprised the anatase phase of titania with just a little rutile phase. The photoelectrocatalytic activities of the as-prepared samples were investigated by studies of the degradation of Reactive Brilliant Red dye X-3B (C.I. reactive red 2). An enhancement of the photocurrents was observed using the graphene-titania composite electrodes, compared with pure titania film electrodes, under UV light irradiation. This improvement is attributed to the following two reasons: enhanced migration efficiency of the photo-induced electrons and enhanced adsorption activity of the dye molecules. In addition, we investigated the effects of graphene content and pH values on the photoelectrocatalytic activity of the as-prepared composite film electrodes. Results showed that there was an optimal amount of 5% (initial graphite oxide content). PMID:22579760

  4. Amazonian palm Oenocarpus bataua ("patawa"): chemical and biological antioxidant activity--phytochemical composition.

    PubMed

    Rezaire, A; Robinson, J-C; Bereau, D; Verbaere, A; Sommerer, N; Khan, M K; Durand, P; Prost, E; Fils-Lycaon, B

    2014-04-15

    In French Guiana, "diversity" within the Palm family is obvious since more than 75 species have been identified. Oenocarpus bataua Mart., called "patawa" is well known for its culinary uses whereas literature on its phytochemical composition and biological properties remains poor. This work deals with determining the antioxidant activity of this palm fruit and its polyphenol composition; Euterpe oleracea (açai) used as a reference. It turned out that patawa had a stronger antioxidant activity than açai in TEAC and FRAP tests. A similar activity was observed by DPPH assay whereas in ORAC and KRL tests, that açai showed an antioxidant activity respectively 2.6 and 1.5 fold higher than patawa. Polyphenolic composition, determined by UPLC/MS(n), would imply the presence of anthocyanins, condensed tannins, stilbenes and phenolic acids, well known for their biological activities. These results present patawa fruit as a new amazonian resource for cosmetics, food and pharmaceuticals purposes. PMID:24295677

  5. Chemical composition and antibacterial activity of essential oils from the Tunisian Allium nigrum L.

    PubMed Central

    Rouis-Soussi, Lamia Sakka; Ayeb-Zakhama, Asma El; Mahjoub, Aouni; Flamini, Guido; Jannet, Hichem Ben; Harzallah-Skhiri, Fethia

    2014-01-01

    The chemical composition of the essential oils of different Allium nigrum L. organs and the antibacterial activity were evaluated. The study is particularly interesting because hitherto there are no reports on the antibacterial screening of this species with specific chemical composition. Therefore, essential oils from different organs (flowers, stems, leaves and bulbs) obtained separately by hydrodistillation were analyzed using gas chromatography–mass spectrometry (GC–MS). The antibacterial activity was evaluated using the disc and microdilution assays. In total, 39 compounds, representing 90.8-96.9 % of the total oil composition, were identified. The major component was hexadecanoic acid (synonym: palmitic acid) in all the A. nigrum organs oils (39.1-77.2 %). We also noted the presence of some sesquiterpenes, mainly germacrene D (12.8 %) in leaves oil) and some aliphatic compounds such as n-octadecane (30.5 %) in bulbs oil. Isopentyl isovalerate, 14-oxy-α-muurolene and germacrene D were identified for the first time in the genus Allium L. All the essential oils exhibited antimicrobial activity, especially against Enterococcus faecalis and Staphylococcus aureus. The oil obtained from the leaves exhibited an interesting antibacterial activity, with a Minimum Inhibitory Concentration (MIC) of 62.50 µg/mL against these two latter strains. The findings showed that the studied oils have antibacterial activity, and thus great potential for their application in food preservation and natural health products. PMID:26417280

  6. Antimicrobial Activity and Chemical Composition of Essential Oil From the Seeds of Artemisia aucheri Boiss

    PubMed Central

    Asghari, Gholamreza; Jalali, Mohamad; Sadoughi, Ehsan

    2012-01-01

    Background Artemisia aerial parts are well known for antimicrobial activities including anti malaria. Objectives This study was carried out to evaluate the antimicrobial activity and chemical composition of essential oil from the seeds of Artemisia aucheri Boiss (Asteraceae). Materials and Methods Essential oil was extracted from the powdered seeds of Artemisia aucheri by hydrodistillation. Antimicrobial activity against five bacterial species was tested using the disc diffusion method, and the chemical composition of the essential oil was analyzed by gas chromatography-mass spectrometry (GC-MS). Results The essential oil of Artemisia aucheri seed showed activity against Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes. The essential oil constituents identified by GC-MS were as follows: decane, ρ-cymene, 1,8-cineole, linalool, ρ-mentha-8-ol, triene, borneol, lavandulol, bornyl acetate, chrysanthenyl acetate, dehydro aromadenderene, and caryophyllene oxide. Most of these compounds are also found in the aerial parts of Artemisia aucheri. Conclusions Variation in the compositions of essential oils from Artemisia aucheri, and thus variation in the antimicrobial activity of these oils, may be due to the plant parts used for essential oil prepration. PMID:24624145

  7. Composite electrodes of activated carbon derived from cassava peel and carbon nanotubes for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Taer, E.; Iwantono, Yulita, M.; Taslim, R.; Subagio, A.; Salomo, Deraman, M.

    2013-09-01

    In this paper, a composite electrode was prepared from a mixture of activated carbon derived from precarbonization of cassava peel (CP) and carbon nanotubes (CNTs). The activated carbon was produced by pyrolysis process using ZnCl2 as an activation agent. A N2 adsorption-desorption analysis for the sample indicated that the BET surface area of the activated carbon was 1336 m2 g-1. Difference percentage of CNTs of 0, 5, 10, 15 and 20% with 5% of PVDF binder were added into CP based activated carbon in order to fabricate the composite electrodes. The morphology and structure of the composite electrodes were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The SEM image observed that the distribution of CNTs was homogeneous between carbon particles and the XRD pattern shown the amorphous structure of the sample. The electrodes were fabricated for supercapacitor cells with 316L stainless steel as current collector and 1 M sulfuric acid as electrolyte. An electrochemical characterization was performed by using an electrochemical impedance spectroscopy (EIS) method using a Solatron 1286 instrument and the addition of CNTs revealed to improve the resistant and capacitive properties of supercapacitor cell.

  8. Actomyosin dynamics drive local membrane component organization in an in vitro active composite layer.

    PubMed

    Köster, Darius Vasco; Husain, Kabir; Iljazi, Elda; Bhat, Abrar; Bieling, Peter; Mullins, R Dyche; Rao, Madan; Mayor, Satyajit

    2016-03-22

    The surface of a living cell provides a platform for receptor signaling, protein sorting, transport, and endocytosis, whose regulation requires the local control of membrane organization. Previous work has revealed a role for dynamic actomyosin in membrane protein and lipid organization, suggesting that the cell surface behaves as an active composite composed of a fluid bilayer and a thin film of active actomyosin. We reconstitute an analogous system in vitro that consists of a fluid lipid bilayer coupled via membrane-associated actin-binding proteins to dynamic actin filaments and myosin motors. Upon complete consumption of ATP, this system settles into distinct phases of actin organization, namely bundled filaments, linked apolar asters, and a lattice of polar asters. These depend on actin concentration, filament length, and actin/myosin ratio. During formation of the polar aster phase, advection of the self-organizing actomyosin network drives transient clustering of actin-associated membrane components. Regeneration of ATP supports a constitutively remodeling actomyosin state, which in turn drives active fluctuations of coupled membrane components, resembling those observed at the cell surface. In a multicomponent membrane bilayer, this remodeling actomyosin layer contributes to changes in the extent and dynamics of phase-segregating domains. These results show how local membrane composition can be driven by active processes arising from actomyosin, highlighting the fundamental basis of the active composite model of the cell surface, and indicate its relevance to the study of membrane organization. PMID:26929326

  9. Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction

    PubMed Central

    Chung, Hoon T.; Won, Jong H.; Zelenay, Piotr

    2013-01-01

    Nanostructured carbon-based materials, such as nitrogen-doped carbon nanotube arrays, Co3O4/nitrogen-doped graphene hybrids and carbon nanotube–graphene complexes have shown respectable oxygen reduction reaction activity in alkaline media. Although certainly promising, the performance of these materials does not yet warrant implementation in the energy conversion/storage devices utilizing basic electrolytes, for example, alkaline fuel cells, metal-air batteries and certain electrolysers. Here we demonstrate a new type of nitrogen-doped carbon nanotube/nanoparticle composite oxygen reduction reaction electrocatalyst obtained from iron acetate as an iron precursor and from cyanamide as a nitrogen and carbon nanotube precursor in a simple, scalable and single-step method. The composite has the highest oxygen reduction reaction activity in alkaline media of any non-precious metal catalysts. When used at a sufficiently high loading, this catalyst also outperforms the most active platinum-based catalysts. PMID:23715281

  10. Manufacture of magnetically active fiber-reinforced composites for use in power generation

    NASA Astrophysics Data System (ADS)

    Etches, Julie; Bond, Ian; Mellor, Phil

    2004-07-01

    A major issue yet to be resolved for embedding sensors, actuators and microelectromechanical systems (MEMS) in 'smart' structures is that of providing power. Work is ongoing in the field with examples of micro battery technology, use of solar power and micro fuel cells. The work presented here considers a technology to enable the development of integrated power generation and actuation. Magnetic fibre reinforced composite material has been developed which utilises hollow glass fibres filled with active magnetic material. The resulting material maintains structural integrity as well as providing a possible means of electrical power generation from a dynamically loaded structure. The hollow glass fibres were manufactured in-house using a bespoke fibre drawing facility. Hard magnetic powder materials were introduced into the hollow fibre cores to provide an active electromagnetic function. This paper will discuss the manufacture, characterization and optimisation of active magnetic fibre reinforced composite materials.

  11. Nanostructured composite material graphite/TiO2 and its antibacterial activity under visible light irradiation.

    PubMed

    Dědková, Kateřina; Lang, Jaroslav; Matějová, Kateřina; Peikertová, Pavlína; Holešinský, Jan; Vodárek, Vlastimil; Kukutschová, Jana

    2015-08-01

    The paper addresses laboratory preparation, characterization and in vitro evaluation of antibacterial activity of graphite/TiO2 nanocomposites. Composites graphite/TiO2 with various ratio of TiO2 nanoparticles (30wt.%, and 50wt.%) to graphite were prepared using a thermal hydrolysis of titanylsulfate in the presence of graphite particles, and subsequently dried at 80°C. X-ray powder diffraction, transmission electron microscopy and Raman microspectroscopy served as phase-analytical methods distinguishing anatase and rutile phases in the prepared composites. Scanning and transmission electron microscopy techniques were used for characterization of morphology of the prepared samples. A developed modification of the standard microdilution test was used for in vitro evaluation of daylight induced antibacterial activity, using four common human pathogenic bacterial strains (Staphylococcus aureus, Escherichia coli, Enterococcus faecalis and Pseudomonas aeruginosa). Antibacterial activity of the graphite/TiO2 nanocomposites could be based mainly on photocatalytic reaction with subsequent potential interaction of reactive oxygen species with bacterial cells. During the antibacterial activity experiments, the graphite/TiO2 nanocomposites exhibited antibacterial activity, where differences in the onset of activity and activity against bacterial strains were observed. The highest antibacterial activity evaluated as minimum inhibitory concentration was observed against P. aeruginosa after 180min of irradiation. PMID:26114221

  12. Bacterial Community Composition and Extracellular Enzyme Activity in Temperate Streambed Sediment during Drying and Rewetting

    PubMed Central

    Pohlon, Elisabeth; Ochoa Fandino, Adriana; Marxsen, Jürgen

    2013-01-01

    Droughts are among the most important disturbance events for stream ecosystems; they not only affect stream hydrology but also the stream biota. Although desiccation of streams is common in Mediterranean regions, phases of dryness in headwaters have been observed more often and for longer periods in extended temperate regions, including Central Europe, reflecting global climate change and enhanced water withdrawal. The effects of desiccation and rewetting on the bacterial community composition and extracellular enzyme activity, a key process in the carbon flow of streams and rivers, were investigated in a typical Central European stream, the Breitenbach (Hesse, Germany). Wet streambed sediment is an important habitat in streams. It was sampled and exposed in the laboratory to different drying scenarios (fast, intermediate, slow) for 13 weeks, followed by rewetting of the sediment from the fast drying scenario via a sediment core perfusion technique for 2 weeks. Bacterial community structure was analyzed using CARD-FISH and TGGE, and extracellular enzyme activity was assessed using fluorogenic model substrates. During desiccation the bacterial community composition shifted toward composition in soil, exhibiting increasing proportions of Actinobacteria and Alphaproteobacteria and decreasing proportions of Bacteroidetes and Betaproteobacteria. Simultaneously the activities of extracellular enzymes decreased, most pronounced with aminopeptidases and less pronounced with enzymes involved in the degradation of polymeric carbohydrates. After rewetting, the general ecosystem functioning, with respect to extracellular enzyme activity, recovered after 10 to 14 days. However, the bacterial community composition had not yet achieved its original composition as in unaffected sediments within this time. Thus, whether the bacterial community eventually recovers completely after these events remains unknown. Perhaps this community undergoes permanent changes, especially after

  13. Familial resemblance of body composition, physical activity, and resting metabolic rate in pre-school children

    PubMed Central

    Djafarian, Kurosh; Speakman, John R; Stewart, Joanne; M Jackson, Diane

    2013-01-01

    Background: Although parental obesity is a well-established predisposing factor for the development of obesity, associations between regional body compositions, resting metabolic rates (RMR), and physical activity (PA) of parents and their pre-school children remain unknown. The objective of this study was to investigate parent-child correlations for total and regional body compositions, resting energy expenditures, and physical activity. Methods: Participants were 89 children aged 2-6 years and their parents, consisting of 61 families. Resting metabolic rate was assessed using indirect calorimetry. Total and regional body compositions were measured by both dual energy X-ray absorptiometry (DXA) and deuterium dilution. Physical activity was assessed by an accelerometer. Results: There was a significant parent-offspring regression for total fat free mass (FFM) between children and their mothers (P=0.02), fathers (P=0.02), and mid-parent (average of father and mother value) (P=0.002) when measured by DXA. The same was true for fat mass (FM) between children and mothers (P<0.01), fathers (P=0.02), and mid-parent (P=0.001). There was no significant association between children and parents for physical activity during the entire week, weekend, weekdays, and different parts of days, except for morning activity, which was positively related to the mothers’ morning activities (P<0.01) and mid-parent (P=0.009). No association was found between RMR of children and parents before and after correction for FFM and FM. Conclusion: These data suggest a familial resemblance for total body composition between children and their parents. Our data showed no familial resemblance for PA and RMR between children and their parents. PMID:26989715

  14. Isotopic composition of high-activity particles released in the Chernobyl accident

    SciTech Connect

    Osuch, S.; Dabrowska, M.; Jaracz, P.; Kaczanowski, J.; Le Van Kho; Mirowski, S.; Piasecki, E.; Szeflinska, G.; Szeflinski, Z.; Tropilo, J.; )

    1989-11-01

    Gamma spectra were measured and activities of the detected isotopes were analyzed for 206 high-activity particles (hot particles, HPs) found in northeastern Poland after the Chernobyl accident. The isotopic composition of HPs observed in gamma-activity is compared with that of the general fallout and core inventory calculations. Particle formation and a process of depletion in Ru and Cs isotopes are discussed. On the basis of a search performed a year later, some comments on the behavior of HPs in the soil are made.

  15. Enhanced Photocatalytic Activity of TiO2 - niobate nanosheet composites

    SciTech Connect

    Liu, Jian; Nichols, Eric; Howe, Jane Y; Misture, S T

    2013-01-01

    Protonized niobate nanosheets H1.8Bi0.2CaNaNb3O10 were synthesized using a new, organic-free simultaneous ion-exchange and exfoliation process from the Aurivillius phase Bi2CaNaNb3O12. Nanosheet/TiO2 composites were prepared by thermal treatment of physical mixtures of commercially available anatase TiO2 and the nanosheet suspension. Methylene blue dye degradation studies for the composite show a clear correlation between the methylene blue surface adsorption and the degradation rate. The composite exhibits strongly enhanced photocatalytic activity as the calcination temperature increases, suggesting the possibility of the charge transfer at BCNN-TiO2 interface and the existence of Nb5+ and O2- acid-base pairs. Both phenomena are attributed to the processing approach, which includes topochemcial dehydration of the BCNN nanosheets during heat treatment.

  16. Biomechanical model produced from light-activated dental composite resins: a holographic analysis

    NASA Astrophysics Data System (ADS)

    Pantelić, Dejan; Vasiljević, Darko; Blažić, Larisa; Savić-Šević, Svetlana; Murić, Branka; Nikolić, Marko

    2013-11-01

    Light-activated dental composites, commonly applied in dentistry, can be used as excellent material for producing biomechanical models. They can be cast in almost any shape in an appropriate silicone mold and quickly solidified by irradiation with light in the blue part of the spectrum. In that way, it is possible to obtain any number of nearly identical casts. The models can be used to study the behavior of arbitrary structure under mechanical loads. To test the technique, a simple mechanical model of the tooth with a mesio-occluso-distal cavity was manufactured. Composite resin restoration was placed inside the cavity and light cured. Real-time holographic interferometry was used to analyze the contraction of the composite resin and its effect on the surrounding material. The results obtained in the holographic experiment were in good agreement with those obtained using the finite element method.

  17. Copper-containing polyvinyl alcohol composite systems: Preparation, characterization and biological activity

    NASA Astrophysics Data System (ADS)

    Reza Hajipour, Abdol; Mohammadsaleh, Fatemeh; Reza Sabzalian, Mohammad

    2015-08-01

    The present investigation reports, the complex formation of Cu(II) with polyvinyl alcohol (PVA) and the synthesis of PVA-stabilized Cu2O particles. This PVA-Cu2O composite has been prepared via chemical reduction method using PVA-Cu(II) complex as precursor. At first, Cu(II) ions were stabilized in PVA matrix via complex formation with OH groups; subsequently, this PVA-Cu(II) macromolecular complex as precursor reacted with ascorbic acid as reducing agent at pH=12 to prepare PVA-Cu2O composite. The products were characterized by FTIR, XRD, FE-SEM, HRTEM, Visible Spectroscopy and atomic absorption. In the following, the antibacterial properties of as-prepared composites were examined against Gram-positive (Bacillus thuringiensis) and Gram-negative bacteria (Escherichia coli), and the results showed excellent antibacterial activity of these materials.

  18. Comparison of the Essential Oil Composition of Selected Impatiens Species and Its Antioxidant Activities.

    PubMed

    Szewczyk, Katarzyna; Kalemba, Danuta; Komsta, Łukasz; Nowak, Renata

    2016-01-01

    The present paper describes the chemical composition of the essential oils obtained by hydrodistillation from four Impatiens species, Impatiens glandulifera Royle, I. parviflora DC., I. balsamina L. and I. noli-tangere L. The GC and GC-MS methods resulted in identification of 226 volatile compounds comprising from 61.7%-88.2% of the total amount. The essential oils differed significantly in their composition. Fifteen compounds were shared among the essential oils of all investigated Impatiens species. The majority of these constituents was linalool (0.7%-15.1%), hexanal (0.2%-5.3%) and benzaldehyde (0.1%-10.2%). Moreover, the antioxidant activity of the essential oils was investigated using different methods. The chemical composition of the essential oils and its antioxidant evaluation are reported for the first time from the investigated taxon. PMID:27598111

  19. Lightweight, Actively Cooled Ceramic Matrix Composite Thrustcells Successfully Tested in Rocket Combustion Lab

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.; Elam, Sandra K.; Effinger, Michael R.

    2002-01-01

    In a joint effort between the NASA Glenn Research Center and the NASA Marshall Space Flight Center, regeneratively cooled ceramic matrix composite (CMC) thrustcells were developed and successfully tested in Glenn's Rocket Combustion Lab. Cooled CMC's offer the potential for substantial weight savings over more traditional metallic parts. Two CMC concepts were investigated. In the first of these concepts, an innovative processing approach utilized by Hyper-Therm, Inc., allowed woven CMC coolant containment tubes to be incorporated into the complex thruster design. In this unique design, the coolant passages had varying cross-sectional shapes but maintained a constant cross-sectional area along the length of the thruster. These thrusters were silicon carbide matrix composites reinforced with silicon carbide fibers. The second concept, which was supplied by Ceramic Composites, Inc., utilized copper cooling coils surrounding a carbon-fiber-reinforced carbon matrix composite. In this design, a protective gradient coating was applied to the inner thruster wall. Ceramic Composites, Inc.'s, method of incorporating the coating into the fiber and matrix eliminated the spallation problem often observed with thermal barrier coatings during hotfire testing. The focus of the testing effort was on screening the CMC material's capabilities as well as evaluating the performance of the thermal barrier or fiber-matrix interfacial coatings. Both concepts were hot-fire tested in gaseous O2/H2 environments. The test matrix included oxygen-to-fuel ratios ranging from 1.5 to 7 with chamber pressures to 400 psi. Steady-state internal wall temperatures in excess of 4300 F were measured in situ for successful 30-sec test runs. Photograph of actively cooled composite thrustcell fabricated by Hyper-Therm is shown. The thrustcell is a silicon-carbide-fiber-reinforced silicon carbide matrix composite with woven cooling channels. The matrix is formed via chemical vapor infiltration. Photograph of

  20. Role of physical activity and sleep duration in growth and body composition of preschool-aged children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of physical activity patterns and sleep duration on growth and body composition of preschool-aged children remains unresolved. Aims were (1) to delineate cross-sectional associations among physical activity components, sleep, total energy expenditure (TEE), and body size and composition; ...

  1. Preparation and photocatalytic activity of CeO 2/TiO 2 interface composite film

    NASA Astrophysics Data System (ADS)

    Jiang, Bangtong; Zhang, Shengyi; Guo, Xiaozhu; Jin, Baokang; Tian, Yupeng

    2009-03-01

    The CeO 2/TiO 2 and TiO 2/CeO 2 interface composite films were prepared on glass substrates by the sol-gel process via dip-coating and calcining technique. The scanning electron microscopy (SEM) revealed that the TiO 2 layer has a compact and uniformity glasslike surface with 200 nm in thickness, and the CeO 2 layer has a coarse surface with 240 nm in thickness. The X-ray diffractometer (XRD) analysis showed that the TiO 2 layer is made up of anatase phase, and the CeO 2 layer is structured by cubic fluorite phase. Through a series of photo-degradation experiments, the relationship of the photocatalytic activity with the constituents of the films was studied. In virtue of the efficient interfacial charge separation via the process of electron transfer from TiO 2 to CeO 2, the photocatalytic activity of the CeO 2/TiO 2 composite film is high. Contrarily, the photocatalytic activity of the TiO 2/CeO 2 composite film is low, due to its inert surface made up of CeO 2 with broad bandwidth. Apart from the effect of the film structure, the effect of film thickness on photocatalytic activity was also discussed.

  2. Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans.

    PubMed

    Beyth, Nurit; Yudovin-Farber, Ira; Bahir, Ran; Domb, Abraham J; Weiss, Ervin I

    2006-07-01

    The antibacterial activity of quaternary ammonium polyethylenimine (PEI) nanoparticles embedded at 1%w/w with clinically used bonding, flowable and hybrid dental composite resins and cured by light polymerization was studied. The antibacterial activity was tested with Streptoccocus mutans by: (i) the agar diffusion test (ADT); (ii) the direct contact test; (iii) bacterial growth in the materials elute; (iv) and scanning electron microscope (SEM). Using the direct contact test, antibacterial activity (p<0.001) was found in all three types of composite resins incorporated with the synthesized nanoparticles. The effect lasted for at least 1 month. SEM demonstrated bacterial debris and no streptococcal chains at 24h of bacterial contact. The addition of 1%w/w of nanoparticles did not affect the flexural modulus and the flexural strength of the dental composite materials. The results indicate that quaternary ammonium PEI nanoparticles immobilized in resin-based materials have a strong antibacterial activity upon contact without leach-out of the nanoparticles and without compromise in mechanical properties. PMID:16564083

  3. Chemical composition and lipoxygenase activity in soybeans (Glycine max L. Merr.) submitted to gamma irradiation

    NASA Astrophysics Data System (ADS)

    Barros, Érica Amanda de; Broetto, Fernando; Bressan, Dayanne F.; Sartori, Maria M. P.; Costa, Vladimir E.

    2014-05-01

    Soybeans are an important food due to their functional and nutritional characteristics. However, consumption by western populations is limited by the astringent taste of soybeans and their derivatives which results from the action of lipoxygenase, an enzyme activated during product processing. The aim of this study was to evaluate the effect of gamma irradiation on the chemical composition and specific activity of lipoxygenase in different soybean cultivars. Soybeans were stored in plastic bags and irradiated with doses of 2.5, 5 and 10 kGy. The chemical composition (moisture, protein, lipids, ashes, crude fiber, and carbohydrates) and lipoxygenase specific activity were determined for each sample. Gamma irradiation induced a small increase of protein and lipid content in some soybean cultivars, which did not exceed the highest content of 5% and 26%, respectively, when compared to control. Lipoxygenase specific activity decreased in the three cultivars with increasing gamma irradiation dose. In conclusion, the gamma irradiation doses used are suitable to inactivate part of lipoxygenase while not causing expressive changes in the chemical composition of the cultivars studied.

  4. Preparation and electrochemical characterization of polyaniline/activated carbon composites as an electrode material for supercapacitors.

    PubMed

    Oh, Misoon; Kim, Seok

    2012-01-01

    Polyaniline (PANI)/activated carbon (AC) composites were prepared by a chemical oxidation polymerization. To find an optimum ratio between PANI and AC which shows superior electrochemical properties, the preparation was carried out in changing the amount of added aniline monomers. The morphology of prepared composites was investigated by scanning electron microscopy (SEM) and transmission electron microscope (TEM). The structural and thermal properties were investigated by Fourier transform infrared spectra (FT-IR) and thermal gravimetric analysis (TGA), respectively. The electrochemical properties were characterized by cyclic voltammetry (CV). Composites showed a summation of capacitances that consisted of two origins. One is double-layer capacitance by ACs and the other is faradic capacitance by redox reaction of PANI. Fiber-like PANIs are coated on the surface of ACs and they contribute to the large surface for redox reaction. The vacancy among fibers provided the better diffusion and accessibility of ion. High capacitances of composites were originated from the network structure having vacancy made by PANI fibers. It was found that the composite prepared with 5 ml of aniline monomer and 0.25 g of AC showed the highest capacitance. Capacitance of 771 F/g was obtained at a scan rate of 5 mV/s. PMID:22524013

  5. Micromechanical analysis of constitutive properties of active piezoelectric structural fiber (PSF) composites

    NASA Astrophysics Data System (ADS)

    Ng, Kenny; Dai, Qingli

    2011-04-01

    Recent studies showed that the active piezoelectric structural fiber (PSF) composites may achieve significant and simultaneous improvements in sensing/actuating, stiffness, fracture toughness and vibration damping. These characteristics can be very important in the application of civil, mechanical and aerospace structures. The PSF is fabricated by coating the piezoceramic onto the silicon carbide core fiber with electrophoretic deposition (EPD) process to overcome the fragile nature of the monolithic piezoelectric materials. The PSF composite laminates are made of longitudinally poled PSFs that are unidirectionally deployed in the polymer binding matrix. The PSF laminate transducer has electrical inputs/outputs that are delivered through a separate etched interdigital electrode layer. This study analyzed the electromechanical properties with the generalized dilute scheme for active PSF composite laminate by considering multiinclusions. The well-known Mori-Tanaka approach was used to evaluate the concentration tensor in the multi-inclusion micromechanics model. To accurately predict the transverse properties, the extended role of mixtures were applied by considering the inclusions' geometry and shape. The micromechanical finite element modeling was also conducted with representative volume element (RVE) to compare with the micromechanics analysis on the electromechanical properties. The micromechanics analysis and finite element micromechanical modeling were conducted with varied fiber geometry dimensions and volume fractions. These comparison studies indicate the combined micromechanics models with the generalized dilute scheme can effectively predict the electro-elastic properties of multi-inclusion PSF composites.

  6. Chemical Composition, Antioxidant, and Antimicrobial Activities of Lichen Umbilicaria cylindrica (L.) Delise (Umbilicariaceae)

    PubMed Central

    Manojlovic, Nedeljko T.; Vasiljevic, Perica J.; Maskovic, Pavle Z.; Juskovic, Marina; Bogdanovic-Dusanovic, Gordana

    2012-01-01

    The phytochemical analysis of methanol and chloroform extracts of Umbilicaria cylindrica was determined by HPLC-UV method. The predominant phenolic compound in both extracts was depsidone, salazinic acid (1). Besides salazinic acid, the tested extracts of U. cylindrica contain norstictic acid (2), methyl-β-orcinol carboxylate (3), ethyl haematommate (4), atranorin (5), and usnic acid (6), in different amounts and relations. The lichen extracts showed comparable and strong antioxidant activity, exhibited higher DPPH and hydroxyl radical scavengings, chelating activity, and inhibitory activity towards lipid peroxidation. The lichen extracts demonstrated important antimicrobial activity against eight strains with MIC values from 15.62 to 62.50 μg/mL. This is the first report of the detail chemical composition and antioxidant activity of the lichen Umbilicaria cylindrica, and the results suggest that this lichen can be used as a new source of the natural antioxidants and the substances with antimicrobial features. PMID:21915186

  7. Synthesis of supported bimetallic nanoparticles with controlled size and composition distributions for active site elucidation

    SciTech Connect

    Hakim, Sikander H.; Sener, Canan; Alba Rubio, Ana C.; Gostanian, Thomas M.; O'neill, Brandon J; Ribeiro, Fabio H.; Miller, Jeffrey T.; Dumesic, James A

    2015-08-01

    Elucidation of active sites in supported bimetallic catalysts is complicated by the high level of dispersity in the nanoparticle size and composition that is inherent in conventional methods of catalyst preparation. We present a synthesis strategy that leads to highly dispersed, bimetallic nanoparticles with uniform particle size and composition by means of controlled surface reactions. We demonstrate the synthesis of three systems, RhMo, PtMo, and RhRe, consisting of a highly reducible metal with an oxophilic promoter. These catalysts are characterized by FTIR, CO chemisorption, STEM/EDS, TPR, and XAS analysis. The catalytic properties of these bimetallic nanoparticles were probed for the selective CO hydrogenolysis of (hydroxymethyl)tetrahydropyran to produce 1,6 hexanediol. Based on the characterization results and reactivity trends, the active sites in the hydrogenolysis reaction are identified to be small ensembles of the more noble metal (Rh, Pt) adjacent to highly reduced moieties of the more oxophilic metal (Mo, Re).

  8. Chemical composition and antibacterial activity of essential oil of Nepeta graciliflora Benth. (Lamiaceae).

    PubMed

    Sharma, Pankaj; Shah, G C; Sharma, Rabia; Dhyani, Praveen

    2016-06-01

    The chemical composition of the essential oil obtained from aerial parts of Nepeta graciliflora was analysed, for the first time, by GC-FID and GC-MS. A total of 27 compounds were identified, constituting over 91.44% of oil composition. The oil was strongly characterised by sesquiterpenes (86.72%), with β-sesquiphellandrene (28.75%), caryophyllene oxide (12.15%), α-bisabolol (8.97%), α-bergamotene (8.51%), β-bisabolene (6.33%) and β-Caryophyllene (5.34%) as the main constituents. The in vitro activity of the essential oil was determined against four micro-organisms in comparison with chloramphenicol by the agar well diffusion and broth dilution method. The oil exhibited good activity against all tested organisms. PMID:26140331

  9. Chemical Composition and Antibacterial Activity of Essential Oils of Two Species of Lamiaceae against Phytopathogenic Bacteria.

    PubMed

    Gormez, Arzu; Bozari, Sedat; Yanmis, Derya; Gulluce, Medine; Sahin, Fikrettin; Agar, Guleray

    2015-01-01

    In this study, we aimed to determine chemical composition and antibacterial activities of Satureja hortensis and Calamintha nepeta against to 20 phytopathogenic bacteria causing serious crop loss. The essential oils of S. hortensis and C. nepeta were isolated by the hydrodistillation method and the chemical composition of the essential oils were analyzed by GC-MS. The antibacterial properties of the essential oils were evaluated against 20 phytopathogenic bacteria through Disc diffusion assay and micro dilution assay. The results revealed that the essential oils of S. hortensis and C. nepeta have significant antibacterial activity. Furthermore, the findings of the study are valuable for future investigations focusing on the alternative natural compounds to control plant diseases. PMID:26373171

  10. Chemical Composition Analysis, Antimicrobial Activity and Cytotoxicity Screening of Moss Extracts (Moss Phytochemistry).

    PubMed

    Klavina, Laura; Springe, Gunta; Nikolajeva, Vizma; Martsinkevich, Illia; Nakurte, Ilva; Dzabijeva, Diana; Steinberga, Iveta

    2015-01-01

    Mosses have been neglected as a study subject for a long time. Recent research shows that mosses contain remarkable and unique substances with high biological activity. The aim of this study, accordingly, was to analyze the composition of mosses and to screen their antimicrobial and anticancer activity. The total concentration of polyphenols and carbohydrates, the amount of dry residue and the radical scavenging activity were determined for a preliminary evaluation of the chemical composition of moss extracts. In order to analyze and identify the substances present in mosses, two types of extrahents (chloroform, ethanol) and the GC/MS and LC-TOF-MS methods were used. The antimicrobial activity was tested on four bacteria strains, and the anticancer activity on six cancer cell lines. The obtained results show the presence of a high number of primary (fatty acids and amino acids), but mainly secondary metabolites in moss extracts-including, sterols, terpenoids, polyphenols and others-and a high activity with respect to the studied test organisms. PMID:26393559

  11. ZnO/graphite composites and its antibacterial activity at different conditions.

    PubMed

    Dědková, Kateřina; Janíková, Barbora; Matějová, Kateřina; Čabanová, Kristina; Váňa, Rostislav; Kalup, Aleš; Hundáková, Marianna; Kukutschová, Jana

    2015-10-01

    The paper reports laboratory preparation, characterization and in vitro evaluation of antibacterial activity of ZnO/graphite nanocomposites. Zinc chloride and sodium carbonate served as precursors for synthesis of zinc oxide, while micromilled and natural graphite were used as the matrix for ZnO nanoparticles anchoring. During the reaction of ZnCl2 with saturated aqueous solution of Na2CO3a new compound is created. During the calcination at the temperature of 500 °C this new precursors decomposes and ZnO nanoparticles are formed. Composites ZnO/graphite with 50 wt.% of ZnO particles were prepared. X-ray powder diffraction and Raman microspectroscopy served as phase-analytical methods. Scanning electron microscopy technique was used for morphology characterization of the prepared samples and EDS mapping for visualization of elemental distribution. A developed modification of the standard microdilution test was used for in vitro evaluation of daylight induced antibacterial activity and antibacterial activity at dark conditions. Common human pathogens served as microorganism for antibacterial assay. Antibacterial activity of ZnO/graphite composites could be based on photocatalytic reaction; however there is a role of Zn(2+) ions on the resulting antibacterial activity which proved the experiments in dark condition. There is synergistic effect between Zn(2+) caused and reactive oxygen species caused antibacterial activity. PMID:26318283

  12. Thin-disk laser based on an Yb:YAG / YAG composite active element

    NASA Astrophysics Data System (ADS)

    Kuznetsov, I. I.; Mukhin, I. B.; Vadimova, O. L.; Palashov, O. V.

    2015-03-01

    A thin-disk laser module based on an Yb:YAG / YAG composite active element is developed with a small-signal gain of 1.25 and a stored energy of 400 mJ under cw pumping. The gain and thermally induced phase distortions in the module are studied experimentally. Based on this module, a thin-disk laser with an average power of 300 W and a slope efficiency of 42% is designed.

  13. Composition and antimicrobial activity of the leaf essential oil of Litsea kostermansii from Taiwan.

    PubMed

    Ho, Chen-Lung; Wang, Eugene I-Chen; Hsu, Kuang-Ping; Lee, Pei-Yeh; Su, Yu-Chang

    2009-08-01

    The hydrodistillated leaf essential oil of Litsea kostermansii was analyzed to determine its composition and yield. Seventy-three compounds were identified, the main components being beta-eudesmol (22.5%), gamma-eudesmol (18.6%), delta-selinene (8.5%), alpha-eudesmol (6.0%), and gamma-muurolene (4.7%). Oxygenated sesquiterpenes (66.2%) and sesquiterpene hydrocarbons (32.8%) were the predominant groups of compounds. The leaf oil exhibited excellent antimicrobial activities. PMID:19768997

  14. Chemical Composition and Biological Activities of Fragrant Mexican Copal (Bursera spp.).

    PubMed

    Gigliarelli, Giulia; Becerra, Judith X; Curini, Massimo; Marcotullio, Maria Carla

    2015-01-01

    Copal is the Spanish word used to describe aromatic resins from several genera of plants. Mexican copal derives from several Bursera spp., Protium copal, some Pinus spp. (e.g., P. pseudostrobus) and a few Fabaceae spp. It has been used for centuries as incense for religious ceremonies, as a food preservative, and as a treatment for several illnesses. The aim of this review is to analyze the chemical composition and biological activity of commercial Mexican Bursera copal. PMID:26703535

  15. Alkali-Activated Aluminium-Silicate Composites as Insulation Materials for Industrial Application

    NASA Astrophysics Data System (ADS)

    Dembovska, L.; Bajare, D.; Pundiene, I.; Bumanis, G.

    2015-11-01

    The article reports on the study of thermal stability of alkali-activated aluminium- silicate composites (ASC) at temperature 800-1100°C. ASC were prepared by using calcined kaolinite clay, aluminium scrap recycling waste, lead-silicate glass waste and quartz sand. As alkali activator, commercial sodium silicate solution modified with an addition of sodium hydroxide was used. The obtained alkali activation solution had silica modulus Ms=1.67. Components of aluminium scrap recycling waste (aluminium nitride (AlN) and iron sulphite (FeSO3)) react in the alkali media and create gases - ammonia and sulphur dioxide, which provide the porous structure of the material [1]. Changes in the chemical composition of ASC during heating were identified and quantitatively analysed by using DTA/TG, dimension changes during the heating process were determined by using HTOM, pore microstructure was examined by SEM, and mineralogical composition of ASC was determined by XRD. The density of ASC was measured in accordance with EN 1097-7. ASC with density around 560 kg/m3 and heat resistance up to 1100°C with shrinkage less than 5% were obtained. The intended use of this material is the application as an insulation material for industrial purposes at elevated temperatures.

  16. Synthesis of TiO2 /CNT Composites and its Photocatalytic Activity Toward Sudan (I) Degradation.

    PubMed

    Miribangul, Amat; Ma, Xiaoli; Zeng, Chen; Zou, Huan; Wu, Yahui; Fan, Tengpeng; Su, Zhi

    2016-07-01

    Semiconductor photocatalysis has the potential for achieving sustainable energy generation and degrading organic contaminants. In TiO2 , the addition of carbonaceous nanomaterials has attracted extensive attention as a means to increase its photocatalytic activity. In this study, composites of TiO2 and carbon nanotubes (CNT) in various proportions were synthesized by the hydrothermal method. The crystalline structures, morphologies, and light absorption properties of the TiO2 /CNT photocatalysts were characterized by PXRD, TEM and UV-Vis absorption spectra. The photocatalytic efficiency of the composites was evaluated by the degradation of Sudan (I) in UV-Vis light. Introducing 0.1-0.5 wt% CNT was shown to substantially improve the photoactivity of TiO2 . The composite with 0.3 wt% CNT showed the best catalytic activity, and its reaction activation energy was calculated as 39.57 kJ mol(-1) from experimental rates. The degradation products of Sudan (I) with different irradiation durations were characterized by Fourier transform infrared spectroscopy, and a degradation reaction process was proposed. PMID:27221342

  17. Aerosol measurements at a high-elevation site: composition, size, and cloud condensation nuclei activity

    SciTech Connect

    Friedman, Beth; Zelenyuk, Alla; Beranek, Josef; Kulkarni, Gourihar R.; Pekour, Mikhail S.; Hallar, Anna G.; McCubbin, Ian; Thornton, Joel A.; Cziczo, D. J.

    2013-12-09

    We present measurements of CCN concentrations and associated aerosol composition and size properties at a high-elevation research site in March 2011. CCN closure and aerosol hygroscopicity were assessed using simplified assumptions of bulk aerosol properties as well as a new method utilizing single particle composition and size to assess the importance of particle mixing state in CCN activation. Free troposphere analysis found no significant difference between the CCN activity of free tropospheric aerosol and boundary layer aerosol at this location. Closure results indicate that using only size and number information leads to adequate prediction, in the majority of cases within 50%, of CCN concentrations, while incorporating the hygroscopicity parameters of the individual aerosol components measured by single particle mass spectrometry adds to the agreement, in most cases within 20%, between predicted and measured CCN concentrations. For high-elevation continental sites, with largely aged aerosol and low amounts of local area emissions, a lack of chemical knowledge and hygroscopicity may not hinder models in predicting CCN concentrations. At sites influenced by fresh emissions or more heterogeneous particle types, single particle composition information may be more useful in predicting CCN concentrations and understanding the importance of particle mixing state on CCN activation.

  18. Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss

    USGS Publications Warehouse

    Sinsabaugh, R. L.; Carreiro, M.M.; Repert, D.A.

    2002-01-01

    Decomposition of plant material is a complex process that requires interaction among a diversity of microorganisms whose presence and activity is subject to regulation by a wide range of environmental factors. Analysis of extracellular enzyme activity (EEA) provides a way to relate the functional organization of microdecomposer communities to environmental variables. In this study, we examined EEA in relation to litter composition and nitrogen deposition. Mesh bags containing senescent leaves of Quercus borealis (red oak), Acer rubrum (red maple) and Cornus florida (flowering dogwood) were placed on forest floor plots in southeastern New York. One-third of the plots were sprayed monthly with distilled water. The other plots were sprayed monthly with NH4NO3 solution at dose rates equivalent to 2 or 8 g N m-2 y-1. Mass loss, litter composition, fungal mass, and the activities of eight enzymes were measured on 13 dates for each litter type. Dogwood was followed for one year, maple for two, oak for three, For each litter type and treatment, enzymatic turnover activities were calculated from regressions of LN (%mass remaining) vs. cumulative activity. The decomposition of dogwood litter was more efficient than that of maple and oak. Maple litter had the lowest fungal mass and required the most enzymatic work to decompose, even though its mass loss rate was twice that of oak. Across litter types, N amendment reduced apparent enzymatic efficiencies and shifted EEA away from N acquisition and toward P acquisition, and away from polyphenol oxidation and toward polysaccharide hydrolysis. The effect of these shifts on decomposition rate varied with litter composition: dogwood was stimulated, oak was inhibited and maple showed mixed effects. The results show that relatively small shifts in the activity of one or two critical enzymes can significantly alter decomposition rates.

  19. Dissecting the Effects of Simulated Cattle Activity on Floristic Composition and Functional Traits in Mediterranean Grasslands

    PubMed Central

    Dobarro, Iker; Pérez Carmona, Carlos; Peco, Begoña

    2013-01-01

    Livestock exerts direct and indirect effects on plant communities, changing colonization and extinction rates of species and the surrounding environmental conditions. There is scarce knowledge on how and to what extent these effects control the floristic and functional composition of plant communities in grasslands. We performed an experiment that included several treatments simulating trampling, defoliation, faeces addition and their combinations in a Mediterranean scrub community grazing-abandoned for at least 50 years. We monitored the plots for four years, and collected data on species composition, photosynthetically active radiation (PAR) and red∶far-red ratio (R∶FR), soil moisture and compaction. We estimated community weighted means (CWM) for height, habit, life cycle, seed mass and SLA. Neither compaction nor soil moisture were modified by the treatments, while PAR and R∶FR increased in all treatments in comparison to the Control and Faeces treatments. The floristic composition of all treatments, except for Faeces, converged over time, but deviated from that of the Control. The functional traits displayed the trends expected in the presence of grazing: loss of erect species and increased cover of short species with light seeds, with rosettes and prostrate habit. However, contrary to the results in literature, SLA was lower in all the treatments than Control plots. Like the results for floristic composition, all treatments except for Faeces converged towards a similar functional composition at the end of the four year period. The results of this study show the initial evolution of a Mediterranean plant community in the presence of grazing, driven primarily by the destructive action of livestock. These actions seem to directly affect the rates of extinction/colonization, and indirectly affect the light environment but not the soil conditions. However, their effects on floristic and trait composition do not seem to differ, at least at the small spatio

  20. Compositional studies: antioxidant and antidiabetic activities of Capparis decidua (Forsk.) Edgew.

    PubMed

    Zia-Ul-Haq, Muhammad; Cavar, Sanja; Qayum, Mughal; Imran, Imran; de Feo, Vincenzo

    2011-01-01

    Capparis decidua is one of the traditional remedies used for various medicinal treatments in Pakistan. This study presents the determination of proximate composition, amino acids, fatty acids, tocopherols, sterols, glucosinolate and phenolic content in extracts obtained from different aerial parts of C. decidua, as well as their antidiabetic and antioxidant activity. All examined extracts were prominently rich in phenolics and glucosinates, and they showed potent antidiabetic and antihemolytic activity. The present study could be helpful in developing medicinal preparations for the treatment of diabetes and related symptoms. PMID:22272107

  1. [Composition and biological activity of triterpenes and steroids from Inonotus obliquus (chaga)].

    PubMed

    Nikitina, S A; Khabibrakhmanova, V R; Sysoeva, M A

    2016-05-01

    Data on the chemical composition of triterpenic and steroid compounds, isolated from the chaga mushroom grown in natural environment or in a synthetic culture have been summarized. Special attention has been paid to the biological activity of chaga mushroom extracts and these particular compounds against various cancer cell lines in vitro and in vivo. This analysis has demonstrated some common features in inhibition of growth of various cell lines by chaga mushroom components. In this context, the most active are triterpene compounds containing OH group at C-22 and a side chain unsaturated bond. PMID:27562990

  2. [Evaluation of the total biological activity and allergenic composition of allergenic extracts].

    PubMed

    Lombardero, M; González, R; Duffort, O; Juan, F; Ayuso, R; Ventas, P; Cortés, C; Carreira, J

    1986-01-01

    In the present study, a complete procedure is presented in order to standardize allergenic extracts, the meaning of which is the measurement of the total allergenic activity and the determination of the allergenic composition. The measurement of the biological activity comprises 2 steps: Preparation of Reference Extracts and determination of their "in vivo" activity. Evaluation of the total allergenic activity of extracts for clinical use. Reference extracts were prepared from the main allergens and their "in vivo" biological activity was determined by a quantitative skin prick test in a sample of at least 30 allergic patients. By definition, the protein concentration of Reference Extract that produces, in the allergic population, a geometric mean wheal of 75 mm.2 has an activity of 100 biological units (BUs). The determination of the biological activity of a problem extract is made by RAST inhibition. The sample is compared with the corresponding Reference Extract by this technique and, from this comparison, it is possible to quantify the activity of the problem extract in biologic units (BUs) with clinical significance. Likewise, different techniques have been used to determine the allergenic composition of extracts. These techniques comprise 2 steps: Separation of the components of the extract. Identification of the components that bind specific human IgE. The separation of the components of the extract has been carried out by isoelectric focusing (IEF) and electrophoresis in the presence of sodium dodecyl sulphate (SDS-PAGE). In order to identify the allergenic components, an immunoblotting technique has been employed. The separated components in the IEF gel or SDS-PAGE gel are transferred to a nitrocellulose sheet and later on, this membrane is overlaid with a serum pool from allergic patients and a mouse monoclonal anti-human IgE, labelled with 125I. Finally, the autoradiography of the nitrocellulose membrane is obtained. In this way it is possible to compare

  3. Phenolic Content, Antioxidant Activity, Antibacterial Activity and Phytochemical Composition of Garcinia lancifolia.

    PubMed

    Policegoudra, R S; Saikia, S; Das, J; Chattopadhyay, P; Singh, L; Veer, V

    2012-05-01

    Garcinia lancifolia (Clusiaceae) is an unexplored medicinal plant used as stomachic, diuretic and its fruit is used to cure dysentery and diarrhoea. The acidic fruits are used to prepare juice, pickle and curries. The phytochemical analysis of different extracts of G. lancifolia leaf, stem and fruit revealed the presence of tannins, saponins, flavonoids, terpenoids, alkaloids and cardiac glycosides. The high phenolic content was observed in the methanol extract of leaf followed by methanol extract of stem and dichloromethane extract of leaf. The G. lancifolia fruit juice exhibited high antibacterial activity against Pseudomonas aeruginosa, Escherichia coli, Micrococcus luteus, Streptococcus mutans, Bacillus mycoides and Bacillus subtilis. The methanol extract of fruit pulp was also very effective against Gram-positive bacteria when compared with Gram-negative bacteria. The radical scavenging activity of 1,1-diphenyl-2-picrylhydrazyl was highest in fruit juice followed by methanol extract of leaf and stem. All extracts showed concentration-dependent increase in the antioxidant activity. PMID:23439879

  4. Gamma irradiation effect on the chemical composition and the antioxidant activity of Ipomoea batatas L.

    NASA Astrophysics Data System (ADS)

    Tahir, D.; Halide, H.; Wahab, A. W.; Kurniawan, D.

    2014-09-01

    The chemical composition and antioxidant activity of Ipomoea batatas L. (sweet potato) were studied by x-ray fluorescence (XRF) spectroscopy, Fourier transform infrared spectroscopy, and by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity. The irradiation treatment was performed by using Cs-137 as a gamma sources in experimental equipment. Treatment by irradiation emerges as a possible conservation technique that has been tested successfully in several food products. The amount of chemical composition was changed and resulting new chemical for absorbed dose 40 mSv. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by DPPH radical scavenging capacity. The antioxidant activity of Ipomoea batatas L. extract was dramatically increased in the non-irradiated sample to the sample irradiated at 40 mSv. These results indicate that gamma irradiation of Ipomoea batatas L. extract can enhance its antioxidant activity through the formation of a new chemical compound. Based on these results, increased antioxidant activity of Ipomoea batatas L. extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  5. Antioxidant and lipase inhibitory activities and essential oil composition of pomegranate peel extracts.

    PubMed

    Hadrich, Fatma; Cher, Slim; Gargouri, Youssef Talel; Adel, Sayari

    2014-01-01

    The chemical composition of essential oil, antioxidant and pancreatic lipase inhibitory activities of various solvent extracts obtained from pomegranate peelTunisian cultivar was evaluated. Gas chromatography/mass spectrometry was used to determine the composition of the PP essential oil. Nine-teen components were identified and the main compounds were the camphor (60.32%) and the benzaldehyde (20.98%). The phenolic and flavonoids content varied from 0 to 290.10 mg Gallic acid equivalent and from 5.2 to 20.43 mg catechin equivalent/g dried extract. The antioxidant activity of various solvent extracts from pomegranate peel was also investigated using various in vitro assays as the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical method, β-carotene bleaching and reducing power assays.Methanol and ethanol extracts showed the most potent antioxidant activity in all assays tested followed by water and acetone extracts. The inhibitory effect of the pomegranate peelextracts on porcine pancreatic lipase was evaluated and the results showed that ethanol and methanol extracts markedly reduced lipase activity. Generally, the highestlipase activity inhibitory (100%) was observed at a concentration of 1 mg/ml after 30 min of incubation. LC-MS analysis of ethanol extract showed the presence of four components which are cholorogenic acid, mannogalloylhexoside, gallic acid and ellagic acid. Our findings demonstrate that the ethanol extract from pomegranate peel might be a good candidate for furtherinvestigations of new bioactive substances. PMID:24770478

  6. Gamma irradiation effect on the chemical composition and the antioxidant activity of Ipomoea batatas L

    SciTech Connect

    Tahir, D. Halide, H. Kurniawan, D.; Wahab, A. W.

    2014-09-25

    The chemical composition and antioxidant activity of Ipomoea batatas L. (sweet potato) were studied by x-ray fluorescence (XRF) spectroscopy, Fourier transform infrared spectroscopy, and by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity. The irradiation treatment was performed by using Cs-137 as a gamma sources in experimental equipment. Treatment by irradiation emerges as a possible conservation technique that has been tested successfully in several food products. The amount of chemical composition was changed and resulting new chemical for absorbed dose 40 mSv. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by DPPH radical scavenging capacity. The antioxidant activity of Ipomoea batatas L. extract was dramatically increased in the non-irradiated sample to the sample irradiated at 40 mSv. These results indicate that gamma irradiation of Ipomoea batatas L. extract can enhance its antioxidant activity through the formation of a new chemical compound. Based on these results, increased antioxidant activity of Ipomoea batatas L. extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  7. Cthrc1 Controls Adipose Tissue Formation, Body Composition, and Physical Activity

    PubMed Central

    Stohn, J. Patrizia; Wang, Qiaozeng; Siviski, Matthew E.; Kennedy, Kevin; Jin, Yong-Ri; Kacer, Doreen; DeMambro, Victoria; Liaw, Lucy; Vary, Calvin P.; Rosen, Clifford J.; Prudovsky, Igor; Lindner, Volkhard

    2015-01-01

    Objective This study investigated the effects of loss of Cthrc1 on adipogenesis, body composition, metabolism, physical activity and muscle physiology. Methods Complete metabolic and activity monitoring as well as grip strength measurements and muscle myography were performed in Cthrc1 null and wildtype mice. Results Compared to wildtypes, Cthrc1 null mice had similar body weights but significantly reduced energy expenditure, decreased lean mass and increased fat mass, especially visceral fat. In vitro studies demonstrated that Cthrc1 inhibited adipocyte differentiation as well as PPAR and CREB reporter activity, while preadipocytes isolated from Cthrc1 null mice exhibited enhanced adipogenic differentiation. Voluntary physical activity in Cthrc1 null mice as assessed by wheel running was reduced to approximately half the distance covered by wildtypes. Reduced grip strength was observed in Cthrc1 null mice at the age of 15 weeks or older with reduced performance and mass of fast twitch muscle. In the brain, Cthrc1 expression was most prominent in neurons of thalamic and hypothalamic nuclei with evidence for secretion into the circulation in the median eminence. Conclusions Our data indicate that Cthrc1 regulates body composition through inhibition of adipogenesis. In addition, central Cthrc1 may be a mediator of muscle function and physical activity. PMID:26148471

  8. Studies on Chemical Composition, Antimicrobial and Antioxidant Activities of Five Thymus vulgaris L. Essential Oils.

    PubMed

    Mancini, Emilia; Senatore, Federica; Del Monte, Donato; De Martino, Laura; Grulova, Daniela; Scognamiglio, Mariarosa; Snoussi, Mejdi; De Feo, Vincenzo

    2015-01-01

    This study is aimed at assessing the essential oil composition, total phenolic content, antimicrobial and antioxidant activities of Thymus vulgaris collected in five different area of the Campania Region, Southern Italy. The chemical composition of the essential oils was studied by GC-flame ionization detector (FID) and GC/MS; the biological activities were evaluated through determination of MIC and minimum bactericidal concentration (MBC) and evaluation of antioxidant activity. In total, 134 compounds were identified. The oils were mainly composed of phenolic compounds, and all oils belonged to the chemotype thymol. The antimicrobial activity of the five oils was assayed against ten bacterial strains. The oils showed different inhibitory activity against some Gram-positive pathogens. The total phenol content in the essential oils ranged from 77.6-165.1 mg gallic acid equivalents (GAE)/g. The results reported here may help to shed light on the complex chemotaxonomy of the genus Thymus. These oils could be used in many fields as natural preservatives of food and as nutraceuticals. PMID:26140436

  9. Investigation of the chemical composition-antibacterial activity relationship of essential oils by chemometric methods.

    PubMed

    Miladinović, Dragoljub L; Ilić, Budimir S; Mihajilov-Krstev, Tatjana M; Nikolić, Nikola D; Miladinović, Ljiljana C; Cvetković, Olga G

    2012-05-01

    The antibacterial effects of Thymus vulgaris (Lamiaceae), Lavandula angustifolia (Lamiaceae), and Calamintha nepeta (Lamiaceae) Savi subsp. nepeta var. subisodonda (Borb.) Hayek essential oils on five different bacteria were estimated. Laboratory control strain and clinical isolates from different pathogenic media were researched by broth microdilution method, with an emphasis on a chemical composition-antibacterial activity relationship. The main constituents of thyme oil were thymol (59.95%) and p-cymene (18.34%). Linalool acetate (38.23%) and β-linalool (35.01%) were main compounds in lavender oil. C. nepeta essential oil was characterized by a high percentage of piperitone oxide (59.07%) and limonene (9.05%). Essential oils have been found to have antimicrobial activity against all tested microorganisms. Classification and comparison of essential oils on the basis of their chemical composition and antibacterial activity were made by utilization of appropriate chemometric methods. The chemical principal component analysis (PCA) and hierachical cluster analysis (HCA) separated essential oils into two groups and two sub-groups. Thyme essential oil forms separate chemical HCA group and exhibits highest antibacterial activity, similar to tetracycline. Essential oils of lavender and C. nepeta in the same chemical HCA group were classified in different groups, within antibacterial PCA and HCA analyses. Lavender oil exhibits higher antibacterial ability in comparison with C. nepeta essential oil, probably based on the concept of synergistic activity of essential oil components. PMID:22389175

  10. Evaluation of nutritional composition and antioxidant activity of Borage (Echium amoenum) and Valerian (Valerian officinalis).

    PubMed

    Adel Pilerood, Shirin; Prakash, Jamuna

    2014-05-01

    The nutritional composition and antioxidant activity (in aqueose and solvent extracts) of two medicinal plants of Iranian origin Borage (Echium amoenum) and Valerian (Valerian officinalis) used as tea were determined. Samples were analyzed for antioxidant components viz. polyphenols, vitamin C, β carotene, flavonoids, anthocyanins and tannins. Antioxidant assays such as free radical scavenging activity, reducing power and total antioxidant activity were carried out for ethanol, methanol, acetone, 80% methanol and 80% ethanolic extracts. In borage highest and least activity was observed in water and acetone extract respectively in all assays. In Valerian, 80% methanolic extract showed highest activity in reducing power and free radical scavenging activity assay. Total polyphenols in borage and valerian were 1,220 and 500 mg in ethanolic extracts and 25 and 130 mg in acetonic extracts respectively. Total carotenoids and vitamin C contents were 31.6 and 133.69 mg and 51.2 and 44.87 mg for borage and valerian respectively. Highest amount of tannins were extracted in 80% methanolic extract. It can be concluded that borage and valerian exhibited antioxidant activity in all extracts. The antioxidant activity could be attributed to their polyphenol and tannin and flavonoids contents. In all assays borage showed higher activity than valerian. PMID:24803690