Sample records for composite leading edge

  1. Sharp Refractory Composite Leading Edges on Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.; Sullivan, Brian J.

    2003-01-01

    On-going research of advanced sharp refractory composite leading edges for use on hypersonic air-breathing vehicles is presented in this paper. Intense magnitudes of heating and of heating gradients on the leading edge lead to thermal stresses that challenge the survivability of current material systems. A fundamental understanding of the problem is needed to further design development. Methodology for furthering the technology along with the use of advanced fiber architectures to improve the thermal-structural response is explored in the current work. Thermal and structural finite element analyses are conducted for several advanced fiber architectures of interest. A tailored thermal shock parameter for sharp orthotropic leading edges is identified for evaluating composite material systems. The use of the tailored thermal shock parameter has the potential to eliminate the need for detailed thermal-structural finite element analyses for initial screening of material systems being considered for a leading edge component.

  2. Arc Jet Results on Candidate High Temperature Coatings for NASA's NGLT Refractory Composite Leading Edge Task

    NASA Technical Reports Server (NTRS)

    Ohlhorst, C. W.; Vaughn, W. L.; Lewis, R. K.; Milhoan, J. D.

    2004-01-01

    In 2000, arc jet testing was conducted on thirteen material systems for possible use on the nose leading edge of the Hyper-X program s X-43A Mach 10 vehicle. Six material systems survived 3, 130- second cycles. To support NASA s Next Generation Launch Technology Programs (NGLT) need for passive refractory composite leading edges with multiple reuse capability at temperatures up to 3600 F, these six materials were subjected to an expanded arc jet test program. This expanded arc jet test program included three phases. The purpose of the first phase was to generate emissivity data as a function of temperature. The purpose of the second phase was to determine if the material systems had any thermal cycling durability, and the third phase was to determine whether the materials could survive an arc jet test of one hour duration. Some of the coating systems were found to have very low emissivities, suggesting that they would not be good candidates for leading edges coating. Other coating systems survived both the second and third phases of the test program and showed potential for use as an oxidation protection coating for leading edges. This presentation summarizes the test program results.

  3. Space environmental effects on LDEF composites: Leading graphite/epoxy panel, selected trailing edge specimens

    NASA Technical Reports Server (NTRS)

    Dursch, Harry; George, Pete; Hill, Sylvester

    1992-01-01

    The composite electronics-module cover for the leading edge (row D9) experiment M0003-8 was fabricated from T300 graphite/934 epoxy unidirectional prepreg tape in a multi-oriented layup. This panel contained thermal control coatings in three of the four quadrants with the fourth quadrant left uncoated as a control. The composite experienced different thermal cycling extremes in each quadrant due to the differing optical properties of the coatings. Results will be presented on microcracking and other Low Earth Orbital (LEO) effects on the coated panel substrate.

  4. Space environmental effects on LDEF composites: A leading edge coated graphite epoxy panel

    NASA Technical Reports Server (NTRS)

    George, Pete E.; Dursch, Harry W.; Hill, Sylvester G.

    1993-01-01

    The electronics module cover for the leading edge (Row D 9) experiment M0003-8 was fabricated from T300 graphite/934 epoxy unidirectional prepreg tape in a (O(sub 2), +/- 45, O(sub 2), +/- 45, 90, 0)(sub s) layup. This 11.75 in x 16.75 in panel was covered with thermal control coatings in three of the four quadrants with the fourth quadrant uncoated. The composite panel experienced different thermal cycling extremes in each quadrant due to the different optical properties of the coatings and bare composite. The panel also experienced ultraviolet (UV) and atomic oxygen (AO) attack as well as micrometeoroid and space debris impacts. An AO reactivity of 0.99 x 10(exp -24) cm(sup 3)/atom was calculated for the bare composite based on thickness loss. The white urethane thermal control coatings (A276 and BMS 1060) prevented AO attack of the composite substrate. However, the black urethane thermal control coating (Z306) was severely eroded by AO, allowing some AO attack of the composite substrate. An interesting banding pattern on the AO eroded bare composite surface was investigated and found to match the dimensions of the graphite fiber tow widths as prepregged. Also, erosion depths were greater in the darker bands. Five micrometeoroid/space debris impacts were cross sectioned to investigate possible structural damage as well as impact/AO interactions. Local crushing and delaminations were found to some extent in all of the impacts. No signs of coating undercutting were observed despite the extensive AO erosion patterns seen in the exposed composite material at the impact sites. An extensive microcrack study was performed on the panel along with modeling of the thermal environment to estimate temperature extremes and thermal shock. The white coated composite substrate displayed almost no microcracking while the black coated and bare composite showed extensive microcracking. Significant AO erosion was seen in many of the cracks in the bare composite.

  5. Supersonic Leading Edge Receptivity

    NASA Technical Reports Server (NTRS)

    Maslov, Anatoly A.

    1998-01-01

    This paper describes experimental studies of leading edge boundary layer receptivity for imposed stream disturbances. Studies were conducted in the supersonic T-325 facility at ITAM and include data for both sharp and blunt leading edges. The data are in agreement with existing theory and should provide guidance for the development of more complete theories and numerical computations of this phenomena.

  6. Materials, Manufacturing, and Test Development of a Composite Fan Blade Leading Edge Subcomponent for Improved Impact Resistance

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Handschuh, Katherine; Sinnott, Matthew J.; Kohlman, Lee W.; Roberts, Gary D.; Martin, Richard E.; Ruggeri, Charles R.; Pereira, J. Michael

    2015-01-01

    Application of polymer matrix composite materials for jet engine fan blades is becoming attractive as an alternative to metallic blades; particularly for large engines where significant weight savings are recognized on moving to a composite structure. However, the weight benefit of the composite is offset by a reduction of aerodynamic efficiency resulting from a necessary increase in blade thickness; relative to the titanium blades. Blade dimensions are largely driven by resistance to damage on bird strike. Further development of the composite material is necessary to allow composite blade designs to approximate the dimensions of a metallic fan blade. The reduction in thickness over the state of the art composite blades is expected to translate into structural weight reduction, improved aerodynamic efficiency, and therefore reduced fuel consumption. This paper presents test article design, subcomponent blade leading edge fabrication, test method development, and initial results from ballistic impact of a gelatin projectile on the leading edge of composite fan blades. The simplified test article geometry was developed to realistically simulate a blade leading edge while decreasing fabrication complexity. Impact data is presented on baseline composite blades and toughened blades; where a considerable improvement to impact resistance was recorded.

  7. Compressor leading edges

    E-print Network

    Goodhand, Martin

    2011-02-08

    that these spikes will increase the loss generated by a blade only when they become large enough to initiate boundary layer transition at the leading edge through a separation bubble; this process increases profile loss by about 30%. A criterion is presented, based...

  8. Leading Edge Book Review

    E-print Network

    Alvarado, Alejandro Sánchez

    that Charles Darwin himself praised as being "one of the few who clearly understands natural selection" (p. 98Leading Edge Book Review Cell 135, December 12, 2008 ©2008 Elsevier Inc. 1 What do Charles Darwin of "ontogeny recapitulates phylogeny," often fol- lowed by a repudiation of the name and charges of fraud, anti-Darwinism

  9. Leading Edge `Fore Brain

    E-print Network

    Luo, Liqun

    Leading Edge Previews `Fore Brain: A Hint of the Ancestral Cortex Lora B. Sweeney1,2,3 and Liqun. (2010) follow the latter approach and identify a brain region of the seg- mented worm Platynereis,'' pallium refers to the outer layer of the brain. The mammalian palium consists of the cerebral cortex

  10. Advanced X-Ray Inspection of Reinforced Carbon Composite Materials on the Orbiter Leading Edge Structural Subsystem (LESS)

    NASA Technical Reports Server (NTRS)

    Hernandez, Jose M.; Berry, Robert F.; Osborn, Robin; Bueno, Clifford; Osterlitz, Mark; Mills, Richard; Morris, Philip; Phalen, Robert; McNab, Jim; Thibodeaux, Tahanie; Thompson, Kyle

    2004-01-01

    The post return-to-flight (RTF) inspection methodology for the Orbiter Leading Edge Structural Subsystem (LESS) is currently being defined. Numerous NDT modalities and techniques are being explored to perform the flight-to-flight inspections of the reinforced carbon/carbon (RCC) composite material for impact damage, general loss of mass in the bulk layers, or other anomalous conditions that would pose risk to safe return upon re-entry. It is possible to have an impact upon ascent that is not visually observable on the surface, yet causes internal damage. Radiographic testing may be a useful NDT technique for such occurrences. The authors have performed radiographic tests on full-sized mock samples of LESS hardware with embedded image quality phantoms. Digitized radiographic film, computed radiography and flat panel digital real-time radiography was acquired using a GE Eresco 200 x-ray tube, and Se-75 and Yb-169 radioisotopes.

  11. Icing tunnel tests of a composite porous leading edge for use with a liquid anti-ice system. [Lewis icing research tunnel

    NASA Technical Reports Server (NTRS)

    Kohlman, D. L.

    1981-01-01

    The efficacy of liquid ice protection systems which distribute a glycol-water solution onto leading edge surfaces through a porous skin was demonstrated in tests conducted in the NASA Lewis icing research tunnel using a composite porous leading edge panels. The data obtained were compared with the performance of previously tested stainless steel leading edge with the same geometry. Results show: (1) anti-ice protection of a composite leading edge is possible for all the simulated conditions tested; (2) the glycol flow rates required to achieve anti-ice protection were generally much higher than those required for a stainless steel panel; (3) the low reservoir pressures of the glycol during test runs indicates that more uniform distribution of glycol, and therefore lower glycol flow rates, can probably be achieved by decreasing the porosity of the panel; and (4) significant weight savings can be achieved in fluid ice protection systems with composite porous leading edges. The resistance of composite panels to abrasion and erosion must yet be determined before they can be incorporated in production systems.

  12. Leading-edge receptivity by adjoint methods

    Microsoft Academic Search

    Flavio Giannetti; Paolo Luchini

    2006-01-01

    The properties of adjoint operators and the method of composite expansion are used to study the generation of Tollmien Schlichting (TS) waves in the leading-edge region of an incompressible, flat-plate boundary layer. Following the classical asymptotic approach, the flow field is divided into an initial receptivity region, where the unsteady motion is governed by the linearized unsteady boundary-layer equation (LUBLE),

  13. Fiber optic damage detection for an aircraft leading edge

    Microsoft Academic Search

    Raymond M. Measures; M. Leblanc; D. Hogg; K. McEwen

    1990-01-01

    First test results of a multilayered fiber optic impact damage detection system fabricated within an aircraft wing composite leading edge are reported. The graphically presented results indicate that embedded optical fiber will track the growth of a delamination region. These results strongly support the concept of structurally integrated fiber optic damage assessment system for composites.

  14. Leading-edge receptivity by adjoint methods

    NASA Astrophysics Data System (ADS)

    Giannetti, Flavio; Luchini, Paolo

    The properties of adjoint operators and the method of composite expansion are used to study the generation of Tollmien Schlichting (TS) waves in the leading-edge region of an incompressible, flat-plate boundary layer. Following the classical asymptotic approach, the flow field is divided into an initial receptivity region, where the unsteady motion is governed by the linearized unsteady boundary-layer equation (LUBLE), and a downstream linear amplification area, where the evolution of the unstable mode is described by the classical Orr Sommerfeld equation (OSE). The large bar{x} behaviour of the LUBLE is analysed using a multiple-scale expansion which leads to a set of composite differential equations uniformly valid in the wall-normal direction. These are solved numerically as an eigenvalue problem to determine the local properties of the Lam and Rott eigensolutions. The receptivity coefficient for an impinging acoustic wave is extracted by projecting the numerical solution of the LUBLE onto the adjoint of the Lam and Rott eigenfunction which, further downstream, turns into an unstable TS wave. In the linear amplification region, the main characteristics of the instability are recovered by using a multiple-scale expansion of the Navier Stokes equations and solving numerically the derived eigenvalue problems. A new matching procedure, based on the properties of the adjoint Orr Sommerfeld operator, is then used to check the existence and the extent of an overlapping domain between the two asymptotic regions. Results for different frequencies are discussed.

  15. Simulation of leading-edge vortex flows

    NASA Technical Reports Server (NTRS)

    Hsu, C.-H.; Liu, C. H.

    1990-01-01

    An implicit upwind-relaxation finite-difference algorithm solving the incompressible Navier-Stokes equations is employed to simulate low-speed, three-dimensional, laminar, leading-edge vortex flows over three round-edged low-aspect-ratio wings. The effects of grid density, angle of attack, Reynolds number, and wing planform on the flowfield structures and integral values are studied. Computed results are presented and compared with experimental data.

  16. Thermal Management at Hypersonic Leading Edges A Dissertation

    E-print Network

    Wadley, Haydn

    Thermal Management at Hypersonic Leading Edges ________________________________________________________________________ Abstract The intense heat flux incident upon the leading edges of hypersonic vehicles traveling through

  17. Leading Edge Bacterial Genomics and Pathogen Evolution

    E-print Network

    Mekalanos, John

    Leading Edge Review Bacterial Genomics and Pathogen Evolution David M. Raskin,1 Rekha Seshadri,2 Medical School, Boston, MA 02115, USA 2 The Institute for Genomic Research, 9712 Medical Center Drive.02.002 The availability of hundreds of bacterial genome sequences has altered the study of bacte- rial pathogenesis

  18. Leading Edge Measuring and Modeling Apoptosis

    E-print Network

    Gauthier, Eric

    Leading Edge Review Measuring and Modeling Apoptosis in Single Cells Sabrina L. Spencer1 mathematical models and quantitative, often single-cell, data to study apoptosis. We discuss the delay and systems pharmacology. Introduction Apoptosis is a form of programmed cell death involving caspases

  19. Leading Edge The Molecular and Systems

    E-print Network

    Dudai, Yadin

    Leading Edge Review The Molecular and Systems Biology of Memory Eric R. Kandel,1,2,3,4,* Yadin.03.001 Learning and memory are two of the most magical capabilities of our mind. Learning is the biolog- ical and discuss the molecular biology and structural mechanisms of short-, inter- mediate- and long-term memory

  20. Leading Edge Democracy Derived? New Trajectories

    E-print Network

    Leading Edge Commentary Democracy Derived? New Trajectories in Pluripotent Stem Cell Research of stem cell research? Here, coauthorship networks of stem cell research articles and analysis of cell lines used in stem cell research indicate that hiPSCs are not replacing human embryonic stem cells

  1. Cavitation on Hydrofoils with Leading Edge Protuberances

    NASA Astrophysics Data System (ADS)

    Custodio, Derrick; Henoch, Charles; Johari, Hamid; Office of Naval Research Collaboration

    2012-11-01

    The effects of spanwise-uniform sinusoidal leading edge protuberances on the flow characteristics and forces of finite-span hydrofoils under vaporous cavitation conditions were examined experimentally over angles of attack ranging from -9° ? <= 27°. Two planforms were studied, rectangular and swept, at a Reynolds number of ~ 720,000. Two protuberance wavelengths, ? = 0.25 c and 0.50 c, and three amplitudes, A = 0.025 c, 0.05 c, and 0.12 c, were examined as they resemble the humpback whale flipper morphology. All hydrofoils retain a mean NACA 634-021 profile. The forces and moments were measured at a freestream velocity of 7.2 m/s, and high-speed digital photography was used to capture flow field images at several angles of attack. The cavitation number corresponding to incipient leading edge cavitation was also calculated. As far as forces and cavitation number are concerned, results show that the baseline hydrofoil tends to have nearly equal or improved performance over the modified hydrofoils at most angles of attack tested. Flow images reveal that it is possible that the extent of sheet and tip vortex cavitation can be reduced with the introduction of leading edge protuberances. The forces and cavitation characteristics will be presented. Sponsored by the ONR-ULI program.

  2. Investigation of a Laminar Flow Leading Edge

    NASA Technical Reports Server (NTRS)

    Drake, Aaron; Kennelly, Robert A., Jr.; Koga, Dennis J.; Westphal, Russell V.; Zuniga, Fanny

    1994-01-01

    The recent resurgence of interest in utilizing laminar flow on aircraft surfaces for reduction in skin friction drag has generated a considerable amount of research in natural laminar flow (NLF) and hybrid laminar flow control (HLFC) on transonic aircraft wings. This research has focused primarily on airfoil design and understanding transition behavior with little concern for the surface imperfections and manufacturing variations inherent to most production aircraft. In order for laminar flow to find wide-spread use on production aircraft, techniques for constructing the wings must be found such that the large surface imperfections present in the leading edge region of current aircraft do not occur. Toward this end, a modification to existing leading edge construction techniques was devised such that the resulting surface did not contain large gaps and steps as are common on current production aircraft of this class. A lowspeed experiment was first conducted on a simulation of the surface that would result from this construction technique. Preston tube measurements of the boundary layer downstream of the simulated joint and flow visualization using sublimation chemicals validated the literature on the effects of steps on a laminar boundary layer. These results also indicated that the construction technique was indeed compatible with laminar flow. In order to fully validate the compatibility of this construction technique with laminar flow, thus proving that it is possible to build wings that are smooth enough to be used on business jets and light transports in a manner compatible with laminar flow, a flight experiment is being conducted. In this experiment Mach number and Reynolds number will be matched in a real flight environment. The experiment is being conducted using the NASA Dryden F-104 Flight Test Fixture (FTF). The FTF is a low aspect ratio ventral fin mounted beneath an F-104G research aircraft. A new nose shape was designed and constructed for this experiment. This nose shape provides an accelerating pressure gradient in the leading edge region. By flying the aircraft at appropriate Mach numbers and altitudes, this nose shape simulates the leading edge region of a laminar flow wing for a business jet or light transport. Manufactured into the nose shape is a spanwise slot located approximately four inches downstream of the leading edge. The slot, which is an inch wide and one-eighth of an inch deep allows the simulation of surface imperfections, such as gaps and steps at skin joints, which will occur on aircraft using this new construction technique. By placing strips of aluminum of various sizes and shapes in the slot, the effect on the boundary layer of different sizes and shapes of steps and gaps will be examined. It is planned to use five different configurations, differing primarily in the size and number of gaps. Downstream of the slot, the state of the boundary layer is determined using hot film gages and Stanton gages. Agreement between these two very different techniques of measuring boundary layer properties is considered important to being able to state with confidence the effects on the boundary layer of the simulated manufacturing imperfections. To date, the aircraft has not flown. First flights of the aircraft are on schedule to begin October 4, 1993. Low-speed, preliminary experiments at matching Reynolds numbers have been completed.

  3. Textbook Multigrid Efficiency for Leading Edge Stagnation

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.; Mineck, Raymond E.

    2004-01-01

    A multigrid solver is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work which is a small (less than 10) multiple of the operation count in evaluating the discrete residuals. TME in solving the incompressible inviscid fluid equations is demonstrated for leading-edge stagnation flows. The contributions of this paper include (1) a special formulation of the boundary conditions near stagnation allowing convergence of the Newton iterations on coarse grids, (2) the boundary relaxation technique to facilitate relaxation and residual restriction near the boundaries, (3) a modified relaxation scheme to prevent initial error amplification, and (4) new general analysis techniques for multigrid solvers. Convergence of algebraic errors below the level of discretization errors is attained by a full multigrid (FMG) solver with one full approximation scheme (FAS) cycle per grid. Asymptotic convergence rates of the FAS cycles for the full system of flow equations are very fast, approaching those for scalar elliptic equations.

  4. Textbook Multigrid Efficiency for Leading Edge Stagnation

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.; Mineck, Raymond E.

    2004-01-01

    A multigrid solver is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work which is a small (less than 10) multiple of the operation count in evaluating the discrete residuals. TME in solving the incompressible inviscid fluid equations is demonstrated for leading- edge stagnation flows. The contributions of this paper include (1) a special formulation of the boundary conditions near stagnation allowing convergence of the Newton iterations on coarse grids, (2) the boundary relaxation technique to facilitate relaxation and residual restriction near the boundaries, (3) a modified relaxation scheme to prevent initial error amplification, and (4) new general analysis techniques for multigrid solvers. Convergence of algebraic errors below the level of discretization errors is attained by a full multigrid (FMG) solver with one full approximation scheme (F.4S) cycle per grid. Asymptotic convergence rates of the F.4S cycles for the full system of flow equations are very fast, approaching those for scalar elliptic equations.

  5. Separation bubble around a leading edge of compressor blade

    Microsoft Academic Search

    Huo-xing Liu; Bao-jie Liu; Ling Li; Hao-Kang Jiang

    2003-01-01

    This paper presents an experimental study of the influence of 2D leading-edge geometry on transition and performance. The measurements were conducted on a special large-scale experimental facility, the pressure distribution and flow field were measured. The test model used in this study consists of circular leading edge and elliptic leading edge. Results are presented for a range of incidence. The

  6. Numerical simulations of leading-edge acoustic receptivity

    Microsoft Academic Search

    David A. Fuciarelli

    1997-01-01

    Numerical simulations of leading-edge acoustic receptivity are performed for a flat-plate with an elliptical leading-edge. The Modified Super Ellipse is chosen as the leading-edge geometry. The flow is simulated by solving the incompressible Navier-Stokes equations in a general curvilinear coordinate system in stream-function\\/vorticity form. The Modified Strongly Implicit Procedure is the second-order-accurate, robust, and memory-conservative numerical scheme used. A time-harmonic

  7. Separation bubble around a leading edge of compressor blade

    NASA Astrophysics Data System (ADS)

    Liu, Huo-xing; Liu, Bao-jie; Li, Ling; Jiang, Hao-Kang

    2003-04-01

    This paper presents an experimental study of the influence of 2D leading-edge geometry on transition and performance. The measurements were conducted on a special large-scale experimental facility, the pressure distribution and flow field were measured. The test model used in this study consists of circular leading edge and elliptic leading edge. Results are presented for a range of incidence. The measurement result indicated that the leading edge shape has a large influence on flow details, separation and transition as well as the boundary layer properties after reattached point.

  8. Leading-edge singularities in thin-airfoil theory

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1976-01-01

    If the thin airfoil theory is applied to an airfoil having a rounded leading edge, a certain error will arise in the determination of the pressure distribution around the nose. It is shown that the evaluation of the drag of such a blunt nosed airfoil by the thin airfoil theory requires the addition of a leading edge force, analogous to the leading edge thrust of the lifting airfoil. The method of calculation is illustrated by application to: (1) The Joukowski airfoil in subsonic flow; and (2) the thin elliptic cone in supersonic flow. A general formula for the edge force is provided which is applicable to a variety of wing forms.

  9. Numerical study of delta wing leading edge blowing

    NASA Technical Reports Server (NTRS)

    Yeh, David; Tavella, Domingo; Roberts, Leonard

    1988-01-01

    Spanwise and tangential leading edge blowing as a means of controlling the position and strength of the leading edge vortices are studied by numerical solution of the three-dimensional Navier-Stokes equations. The leading edge jet is simulated by defining a permeable boundary, corresponding to the jet slot, where suitable boundary conditions are implemented. Numerical results are shown to compare favorably with experimental measurements. It is found that the use of spanwise leading edge blowing at moderate angle of attack magnifies the size and strength of the leading edge vortices, and moves the vortex cores outboard and upward. The increase in lift primarily comes from the greater nonlinear vortex lift. However, spanwise blowing causes earlier vortex breakdown, thus decreasing the stall angle. The effects of tangential blowing at low to moderate angles of attack tend to reduce the pressure peaks associated with leading edge vortices and to increase the suction peak around the leading edge, so that the integrated value of the surface pressure remains about the same. Tangential leading edge blowing in post-stall conditions is shown to re-establish vortical flow and delay vortex bursting, thus increasing C sub L sub max and stall angle.

  10. Leading-edge receptivity for bodies with mean aerodynamic loading

    Microsoft Academic Search

    P. W. H AMMERTON

    2005-01-01

    are considered. Asymptotic results based on large Reynolds number (U 2\\/?? ? 1) are presented, supplemented by numerical solutions. The influence of mean aerodynamic loading enters the theory through a parameter µ, which provides a measure of the flow speed variations in the leading-edge region, due to flow around the leading edge from the lower surface to the upper. A

  11. Heat-Pipe-Cooled Leading Edges for Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    2006-01-01

    Heat pipes can be used to effectively cool wing leading edges of hypersonic vehicles. . Heat-pipe leading edge development. Design validation heat pipe testing confirmed design. Three heat pipes embedded and tested in C/C. Single J-tube heat pipe fabricated and testing initiated. HPCLE work is currently underway at several locations.

  12. Edge effects in composites by moire interferometry

    NASA Technical Reports Server (NTRS)

    Czarnek, R.; Post, D.; Herakovich, C.

    1983-01-01

    The very high sensitivity of moire interferometry has permitted the present edge effect experiments to be conducted at a low average stress and strain level, assuring linear and elastic behavior in the composite material samples tested. Sensitivity corresponding to 2450 line/mm moire was achieved with a 0.408 micron/fringe. Simultaneous observations of the specimen face and edge displacement fields showed good fringe definition despite the 1-mm thickness of the specimens and the high gradients, and it is noted that the use of a carrier pattern and optical filtering was effective in even these conditions. Edge effects and dramatic displacement gradients were confirmed in angle-ply composite laminates.

  13. Vortex leading edge flap assembly for supersonic airplanes

    NASA Technical Reports Server (NTRS)

    Rudolph, Peter K. C. (Inventor)

    1997-01-01

    A leading edge flap (16) for supersonic transport airplanes is disclosed. In its stowed position, the leading edge flap forms the lower surface of the wing leading edge up to the horizontal center of the leading edge radius. For low speed operation, the vortex leading edge flap moves forward and rotates down. The upward curve of the flap leading edge triggers flow separation on the flap and rotational flow on the upper surface of the flap (vortex). The rounded shape of the upper fixed leading edge provides the conditions for a controlled reattachment of the flow on the upper wing surface and therefore a stable vortex. The vortex generates lift and a nose-up pitching moment. This improves maximum lift at low speed, reduces attitude for a given lift coefficient and improves lift to drag ratio. The mechanism (27) to move the vortex flap consists of two spanwise supports (24) with two diverging straight tracks (64 and 68) each and a screw drive mechanism (62) in the center of the flap panel (29). The flap motion is essentially normal to the airloads and therefore requires only low actuation forces.

  14. Robust UHTC for Sharp Leading Edge Applications

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.; Singh, Mrityunjay; Opila, Elizabeth J.

    2003-01-01

    Ultrahigh temperature ceramics have performed unreliably due to material flaws and attachment design. These deficiencies are brought to the fore by the low fracture toughness and thermal shock resistance of UHTCs. If these deficiencies are overcome, we are still faced with poor oxidation resistance as a limitation on UHTC applicability to reusable launch vehicles. We have been addressing the deficiencies of UHTCs for the past year via a small task at GRC that is part of the 3rd Gen TPS effort. Our focus is on composite constructions and functional grading to address the mechanical issues and on composition modification to address the oxidation issue. The approaches and progress will be reported.

  15. Timing discriminator using leading-edge extrapolation

    DOEpatents

    Gottschalk, B.

    1981-07-30

    A discriminator circuit to recover timing information from slow-rising pulses by means of an output trailing edge, a fixed time after the starting corner of the input pulse, which is nearly independent of risetime and threshold setting is described. This apparatus comprises means for comparing pulses with a threshold voltage; a capacitor to be charged at a certain rate when the input signal is one-third threshold voltage, and at a lower rate when the input signal is two-thirds threshold voltage; current-generating means for charging the capacitor; means for comparing voltage capacitor with a bias voltage; a flip-flop to be set when the input pulse reaches threshold voltage and reset when capacitor voltage reaches the bias voltage; and a clamping means for discharging the capacitor when the input signal returns below one-third threshold voltage.

  16. Leading Edge Spinning the Web of Cell Fate

    E-print Network

    Corces, Victor G.

    Leading Edge Minireview Spinning the Web of Cell Fate Kevin Van Bortle1 and Victor G. Corces1,* 1 involved in spinning the web of cell fate. Chromatin at the Nuclear Lamina The nuclear lamina is a thin

  17. Leading-edge receptivity for blunt-nose bodies

    NASA Technical Reports Server (NTRS)

    Hammerton, P. W.; Kerschen, E. J.

    1992-01-01

    Boundary-layer receptivity in the leading edge region for bodies with blunt leading edges is investigated in this research program. Receptivity theory provides the link between the unsteady disturbance environment in the freestream and the initial amplitudes of instability waves in the boundary layer. This is a critical problem which must be addressed in order to develop more accurate prediction methods for boundary-layer transition.

  18. Leading-Edge Receptivity to Oblique Acoustic Waves

    Microsoft Academic Search

    Helen Reed

    1997-01-01

    Numerical simulations of leading-edge acoustic receptivity are performed for a flat-plate with a modified-super-elliptic (MSE) leading edge. For small freestream amplitude, the effect of angle of incidence of the impinging wave is investigated and found to produce higher receptivity coefficients than in the symmetric case. The slope of receptivity coefficient versus angle of incidence of the impinging wave is found

  19. Direct numerical simulation of leading edge receptivity to sound

    Microsoft Academic Search

    H. L. Reed; D. A. Fuciarelli; I. J. Lyttle

    1998-01-01

    Numerical simulations of leading-edge acoustic receptivity are performed for a flat plate with a modified-super-elliptic (MSE) leading edge. For small freestream amplitude, the agreement between Branch I receptivity coefficients predicted from the DNS and the experiments of Saric and White (AIAA-98-2645, 1998) for acoustic waves at zero incidence is excellent. The effect of angle of incidence of the impinging wave

  20. Flat plate leading edge receptivity to various freestream disturbance structures

    Microsoft Academic Search

    Roland Adolf Eberhard Heinrich

    1989-01-01

    The receptivity process by which two-dimensional, time-harmonic freestream disturbances generate instability waves in the incompressible Blasius boundary layer is investigated analytically. The importance of the leading edge region and the linear nature of the receptivity process are discussed, and Goldstein's (1983a, 1983b) theoretical framework for the leading edge receptivity problem is reviewed. The approach utilizes asymptotic matching of a region

  1. Heat pipes for wing leading edges of hypersonic vehicles

    Microsoft Academic Search

    B. L. Boman; K. M. Citrin; E. C. Garner; J. E. Stone

    1990-01-01

    Wing leading edge heat pipes were conceptually designed for three types of vehicle: an entry research vehicle, aero-space plane, and advanced shuttle. A full scale, internally instrumented sodium\\/Hastelloy X heat pipe was successfully designed and fabricated for the advanced shuttle application. The 69.4 inch long heat pipe reduces peak leading edge temperatures from 3500 F to 1800 F. It is

  2. Dynamic Stall Characteristics of Drooped Leading Edge Airfoils

    NASA Technical Reports Server (NTRS)

    Sankar, Lakshmi N.; Sahin, Mehmet; Gopal, Naveen

    2000-01-01

    Helicopters in high-speed forward flight usually experience large regions of dynamic stall over the retreating side of the rotor disk. The rapid variations in the lift and pitching moments associated with the stall process can result in vibratory loads, and can cause fatigue and failure of pitch links. In some instances, the large time lag between the aerodynamic forces and the blade motion can trigger stall flutter. A number of techniques for the alleviation of dynamic stall have been proposed and studied by researchers. Passive and active control techniques have both been explored. Passive techniques include the use of high solidity rotors that reduce the lift coefficients of individual blades, leading edge slots and leading edge slats. Active control techniques include steady and unsteady blowing, and dynamically deformable leading edge (DDLE) airfoils. Considerable amount of experimental and numerical data has been collected on the effectiveness of these concepts. One concept that has not received as much attention is the drooped-leading edge airfoil idea. It has been observed in wind tunnel studies and flight tests that drooped leading edge airfoils can have a milder dynamic stall, with a significantly milder load hysteresis. Drooped leading edge airfoils may not, however, be suitable at other conditions, e.g. in hover, or in transonic flow. Work needs to be done on the analysis and design of drooped leading edge airfoils for efficient operation in a variety of flight regimes (hover, dynamic stall, and transonic flow). One concept that is worthy of investigation is the dynamically drooping airfoil, where the leading edge shape is changed roughly once-per-rev to mitigate the dynamic stall.

  3. Influence of high mainstream turbulence on leading edge heat transfer

    SciTech Connect

    Mehendale, A.B.; Han, J.C.; Ou, S. (Texas A and M Univ., College Station (United States))

    1991-11-01

    The influence of high mainstream turbulence on leading edge heat transfer was studied. High mainstream turbulence was produced by a bar grid (Tu = 3.3-5.1 percent), passive grid (Tu = 7.6-9.7 percent), and jet grid (Tu = 12.9-15.2 percent). Experiments were performed using a blunt body with a semicylinder leading edge and flat sidewalls. The mainstream Reynolds numbers based on leading edge diameter were 25,000, 40,000, and 100,000. Spanwise and streamwise distributions of local heat transfer coefficients on the leading edge and flat sidewall were obtained. The results indicate that the leading edge heat transfer increases significantly with increasing mainstream turbulence decay. Stagnation point heat transfer results for high turbulence intensity flows agree with the Lowery and Vachon correlation, but the overall heat transfer results for the leading edge quarter-cylinder region are higher than their overall correlation for the entire circular cylinder region. High mainstream turbulence tends not to shift the location of the separation-reattachment region. The reattachment heat transfer results are about the same regardless of mainstream turbulence levels and are much higher than the turbulent flat plate correlation.

  4. Symmetric airfoil geometry effects on leading edge noise.

    PubMed

    Gill, James; Zhang, X; Joseph, P

    2013-10-01

    Computational aeroacoustic methods are applied to the modeling of noise due to interactions between gusts and the leading edge of real symmetric airfoils. Single frequency harmonic gusts are interacted with various airfoil geometries at zero angle of attack. The effects of airfoil thickness and leading edge radius on noise are investigated systematically and independently for the first time, at higher frequencies than previously used in computational methods. Increases in both leading edge radius and thickness are found to reduce the predicted noise. This noise reduction effect becomes greater with increasing frequency and Mach number. The dominant noise reduction mechanism for airfoils with real geometry is found to be related to the leading edge stagnation region. It is shown that accurate leading edge noise predictions can be made when assuming an inviscid meanflow, but that it is not valid to assume a uniform meanflow. Analytic flat plate predictions are found to over-predict the noise due to a NACA 0002 airfoil by up to 3 dB at high frequencies. The accuracy of analytic flat plate solutions can be expected to decrease with increasing airfoil thickness, leading edge radius, gust frequency, and Mach number. PMID:24116405

  5. Free edge effects in laminated composites

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.

    1989-01-01

    The fundamental mechanics of free-edge effects in laminated fiber-reinforced composites is examined, reviewing the results of recent experimental and analytical investigations. The derivation of the governing equations for the basic problem is outlined, including the equilibrium and mismatch conditions and the elasticity formulation, and experimental data on axial displacement and shear strain in angle-ply laminates are summarized. Numerical predictions of free-edge deformation and interlaminar and through-thickness stress distributions are presented for cross-ply, angle-ply, and quasi-isotropic laminates, and the mechanisms of edge damage and failure in angle-ply laminates are briefly characterized. Extensive diagrams, drawings, graphs, and photographs are provided.

  6. Task 4 supporting technology. Part 1: Detailed test plan for leading edge tile development. Leading edge material development and testing

    NASA Technical Reports Server (NTRS)

    Hogenson, P. A.; Staszak, Paul; Hinkle, Karrie

    1995-01-01

    This task develops two alternative candidate tile materials for leading edge applications: coated alumina enhanced thermal barrier (AETB) tile and silicone impregnated reusable ceramic ablator (SIRCA) tile. Upon reentry of the X-33/RLV space vehicle, the leading edges experience the highest heating rates and temperatures. The wing leading edge and nose cap experience peak temperatures in the range 2000 to 2700 F. Replacing reinforced carbon-carbon (RCC) with tile-based thermal protection system (TPS) materials is the primary objective. Weight, complexity, coating impact damage, and repairability are among the problems that this tile technology development addresses. The following subtasks will be performed in this development effort: tile coating development; SIRCA tile development; robustness testing of tiles; tile repair development; tile operations/processing; tile leading edge configuration; and life cycle testing.

  7. On thermal edge effects in composite laminates

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.

    1976-01-01

    Results are presented for a finite-element investigation of the combined influence of edge effects due to mechanical and thermal mismatch in composite laminates with free edges. Laminates of unidirectional boron/epoxy symmetrically bonded to sheets of aluminum and titanium were studied. It is shown that interlaminar thermal stresses may be more significant than the interlaminar stresses due to loading only. In addition, the stresses due to thermal mismatch may be of the same sign as those due to Poisson's mismatch or they may be of opposite sign depending upon material properties, stacking sequence, and direction of loading. The paper concludes with a brief discussion of thermal stresses in all-composite laminates.

  8. Design and Analysis of UHTC Leading Edge Attachment

    NASA Technical Reports Server (NTRS)

    Thomas, David J.; Nemeth, Noel N. (Technical Monitor)

    2002-01-01

    NASA Glenn Research Center was contacted to provide technical support to NASA Ames Research Center in the design and analysis of an ultra high temperature ceramic (UHTC) leading edge. UHTC materials are being considered for reusable launch vehicles because their high temperature capability may allow for un-cooled sharp leading edge designs. While ceramic materials have the design benefit of allowing subcomponents to run hot, they also provide a design challenge in that they invariably must be in contact with cooler subcomponents elsewhere in the structure. NASA Glenn Research Center proposed a modification to an existing attachment design. Thermal and structural analyses of the leading edge assembly were carried out using ABAQUS finite element software. Final results showed that the proposed modifications aided in thermally isolating hot and cold subcomponents and reducing bearing stresses at the attachment location.

  9. Refinement of breast cancer risk prediction with concordant leading edge subsets from prognostic gene signatures.

    PubMed

    Huang, Chi-Cheng; Tu, Shih-Hsin; Lien, Heng-Hui; Huang, Ching-Shui; Huang, Chi-Jung; Lai, Liang-Chuan; Tsai, Mon-Hsun; Chuang, Eric Y

    2014-09-01

    Several prognostic signatures have been identified for breast cancer. However, these signatures vary extensively in their gene compositions, and the poor concordance of the risk groups defined by the prognostic signatures hinders their clinical applicability. Breast cancer risk prediction was refined with a novel approach to finding concordant genes from leading edge analysis of prognostic signatures. Each signature was split into two gene sets, which contained either up-regulated or down-regulated genes, and leading edge analysis was performed within each array study for all up-/down-regulated gene sets of the same signature from all training datasets. Consensus of leading edge subsets among all training microarrays was used to synthesize a predictive model, which was then tested in independent studies by partial least squares regression. Only a small portion of six prognostic signatures (Amsterdam, Rotterdam, Genomic Grade Index, Recurrence Score, and Hu306 and PAM50 of intrinsic subtypes) was significantly enriched in the leading edge analysis in five training datasets (n = 2,380), and that the concordant leading edge subsets (43 genes) could identify the core signature genes that account for the enrichment signals providing prognostic power across all assayed samples. The proposed concordant leading edge algorithm was able to discriminate high-risk from low-risk patients in terms of relapse-free or distant metastasis-free survival in all training samples (hazard ratios: 1.84-2.20) and in three out of four independent studies (hazard ratios: 3.91-8.31). In some studies, the concordant leading edge subset remained a significant prognostic factor independent of clinical ER, HER2, and lymph node status. The present study provides a statistical framework for identifying core consensus across microarray studies with leading edge analysis, and a breast cancer risk predictive model was established. PMID:25158930

  10. Leading-edge receptivity for blunt-nose bodies

    NASA Technical Reports Server (NTRS)

    Kerschen, Edward J.

    1991-01-01

    This research program investigates boundary-layer receptivity in the leading-edge region for bodies with blunt leading edges. Receptivity theory provides the link between the unsteady distrubance environment in the free stream and the initial amplitudes of the instability waves in the boundary layer. This is a critical problem which must be addressed in order to develop more accurate prediction methods for boundary-layer transition. The first phase of this project examines the effects of leading-edge bluntness and aerodynamic loading for low Mach number flows. In the second phase of the project, the investigation is extended to supersonic Mach numbers. Singular perturbation techniques are utilized to develop an asymptotic theory for high Reynolds numbers. In the first year, the asymptotic theory was developed for leading-edge receptivity in low Mach number flows. The case of a parabolic nose is considered. Substantial progress was made on the Navier-Sotkes computations. Analytical solutions for the steady and unsteady potential flow fields were incorporated into the code, greatly expanding the types of free-stream disturbances that can be considered while also significantly reducing the the computational requirements. The time-stepping algorithm was modified so that the potential flow perturbations induced by the unsteady pressure field are directly introduced throughout the computational domain, avoiding an artificial 'numerical diffusion' of these from the outer boundary. In addition, the start-up process was modified by introducing the transient Stokes wave solution into the downstream boundary conditions.

  11. Topology Optimization of Adaptive Compliant Aircraft Wing Leading Edge

    E-print Network

    Pellegrino, Sergio

    Topology Optimization of Adaptive Compliant Aircraft Wing Leading Edge M.J. Santer and S compliant aircraft wing rib from conception via optimization to fabrication of a demonstration model is illustrated. I. Introduction Compliant structures replace the functionality of conventional mechanism elements

  12. Detail view of the leading and top edge of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the leading and top edge of the vertical stabilizer of the Orbiter Discovery showing the thermal protection system components with the white Advanced Flexible Reusable Surface Insulation (AFRSI) blanket and the black High-temperature Reusable Surface Insulation (HRSI) tiles along the outer edges. The marks seen on the HRSI tiles are injection point marks and holes for the application of waterproofing material. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  13. Fabrication and Testing of a Leading-Edge-Shaped Heat Pipe

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Merrigan, Michael A.; Sena, J. Tom; Reid, Robert S.

    1998-01-01

    The development of a refractory-composite/heat-pipe-cooled leading edge has evolved from the design stage to the fabrication and testing of a full size, leading-edge-shaped heat pipe. The heat pipe had a 'D-shaped' cross section and was fabricated from arc cast Mo-4lRe. An artery was included in the wick. Several issues were resolved with the fabrication of the sharp leading edge radius heat pipe. The heat pipe was tested in a vacuum chamber at Los Alamos National Laboratory using induction heating and was started up from the frozen state several times. However, design temperatures and heat fluxes were not obtained due to premature failure of the heat pipe resulting from electrical discharge between the induction heating apparatus and the heat pipe. Though a testing anomaly caused premature failure of the heat pipe, successful startup and operation of the heat pipe was demonstrated.

  14. The fish tail motion forms an attached leading edge vortex.

    PubMed

    Borazjani, Iman; Daghooghi, Mohsen

    2013-04-01

    The tail (caudal fin) is one of the most prominent characteristics of fishes, and the analysis of the flow pattern it creates is fundamental to understanding how its motion generates locomotor forces. A mechanism that is known to greatly enhance locomotor forces in insect and bird flight is the leading edge vortex (LEV) reattachment, i.e. a vortex (separation bubble) that stays attached at the leading edge of a wing. However, this mechanism has not been reported in fish-like swimming probably owing to the overemphasis on the trailing wake, and the fact that the flow does not separate along the body of undulating swimmers. We provide, to our knowledge, the first evidence of the vortex reattachment at the leading edge of the fish tail using three-dimensional high-resolution numerical simulations of self-propelled virtual swimmers with different tail shapes. We show that at Strouhal numbers (a measure of lateral velocity to the axial velocity) at which most fish swim in nature (approx. 0.25) an attached LEV is formed, whereas at a higher Strouhal number of approximately 0.6 the LEV does not reattach. We show that the evolution of the LEV drastically alters the pressure distribution on the tail and the force it generates. We also show that the tail's delta shape is not necessary for the LEV reattachment and fish-like kinematics is capable of stabilising the LEV. Our results suggest the need for a paradigm shift in fish-like swimming research to turn the focus from the trailing edge to the leading edge of the tail. PMID:23407826

  15. The fish tail motion forms an attached leading edge vortex

    PubMed Central

    Borazjani, Iman; Daghooghi, Mohsen

    2013-01-01

    The tail (caudal fin) is one of the most prominent characteristics of fishes, and the analysis of the flow pattern it creates is fundamental to understanding how its motion generates locomotor forces. A mechanism that is known to greatly enhance locomotor forces in insect and bird flight is the leading edge vortex (LEV) reattachment, i.e. a vortex (separation bubble) that stays attached at the leading edge of a wing. However, this mechanism has not been reported in fish-like swimming probably owing to the overemphasis on the trailing wake, and the fact that the flow does not separate along the body of undulating swimmers. We provide, to our knowledge, the first evidence of the vortex reattachment at the leading edge of the fish tail using three-dimensional high-resolution numerical simulations of self-propelled virtual swimmers with different tail shapes. We show that at Strouhal numbers (a measure of lateral velocity to the axial velocity) at which most fish swim in nature (approx. 0.25) an attached LEV is formed, whereas at a higher Strouhal number of approximately 0.6 the LEV does not reattach. We show that the evolution of the LEV drastically alters the pressure distribution on the tail and the force it generates. We also show that the tail's delta shape is not necessary for the LEV reattachment and fish-like kinematics is capable of stabilising the LEV. Our results suggest the need for a paradigm shift in fish-like swimming research to turn the focus from the trailing edge to the leading edge of the tail. PMID:23407826

  16. Industrial cooling tower fan blade having abrasion resistant leading edge

    SciTech Connect

    Burdick, L.F.; Mayes, S.E.

    1992-06-23

    This patent describes a glass fiber reinforced, synthetic resin fan blade for large diameter industrial water cooling tower fans, wherein the outer body portion of the blade is constructed of a thermoset resin and has upper and lower surfaces of which a part thereof define an elongated leading which would be subject to abrasion deterioration during use of the blade. This patent describes improvement in an elongated protective outermost sheet member having opposed, longitudinally extending edges and wrapped over at least a part of the longitudinal extent of the leading edge of the blade with one of the longitudinally extending edges of the member overlying the upper surface of the blade outer body portion and the other longitudinally extending edge of the member on the lower surface of the blade outer body portion, means for mechanically attaching the member to the blade outer body portion substantially throughout the length of the member; and means for attaching the member to the blade outer body portion including upper and lower hold down strips of a synthetic resin and disposed in overlying relationship to the longitudinally extending edges of the member on the upper and lower surfaces of the blade outer body portion and over the longitudinally extending areas of the blade outer body portion which are adjacent respective longitudinally extending edges of the member, the member being provided with a series of openings therein, the thermoset resin making up the blade outer body portion extending through respective openings in the member and being joined with an overlying hold down strip.

  17. Nondestructive Evaluation for the Space Shuttle's Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Winfree, William P.; Prosser, William H.; Wincheski, Russell A.; Cramer, K. Elliot

    2005-01-01

    The loss of the Space Shuttle Columbia highlighted concerns about the integrity of the Shuttle's thermal protection system, which includes Reinforced Carbon-Carbon (RCC) on the leading edge. This led NASA to investigate nondestructive evaluation (NDE) methods for certifying the integrity of the Shuttle's wing leading edge. That investigation was performed simultaneously with a large study conducted to understand the impact damage caused by errant debris. Among the many advanced NDE methods investigated for applicability to the RCC material, advanced digital radiography, high resolution computed tomography, thermography, ultrasound, acoustic emission and eddy current systems have demonstrated the maturity and success for application to the Shuttle RCC panels. For the purposes of evaluating the RCC panels while they are installed on the orbiters, thermographic detection incorporating principal component analysis (PCA) and eddy current array scanning systems demonstrated the ability to measure the RCC panels from one side only and to detect several flaw types of concern. These systems were field tested at Kennedy Space Center (KSC) and at several locations where impact testing was being conducted. Another advanced method that NASA has been investigating is an automated acoustic based detection system. Such a system would be based in part on methods developed over the years for acoustic emission testing. Impact sensing has been demonstrated through numerous impact tests on both reinforced carbon-carbon (RCC) leading edge materials as well as Shuttle tile materials on representative aluminum wing structures. A variety of impact materials and conditions have been evaluated including foam, ice, and ablator materials at ascent velocities as well as simulated hypervelocity micrometeoroid and orbital debris impacts. These tests have successfully demonstrated the capability to detect and localize impact events on Shuttle's wing structures. A first generation impact sensing system has been designed for the next Shuttle flight and is undergoing final evaluation for deployment on the Shuttle's first return to flight. This system will employ wireless accelerometer sensors that were qualified for other applications on previous Shuttle flights. These sensors will be deployed on the wing's leading edge to detect impacts on the RCC leading edge panels. The application of these methods will help to insure the continued integrity of the Shuttle wing's leading edge system as the Shuttle flights resume and until their retirement.

  18. Heat pipes for wing leading edges of hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Boman, B. L.; Citrin, K. M.; Garner, E. C.; Stone, J. E.

    1990-01-01

    Wing leading edge heat pipes were conceptually designed for three types of vehicle: an entry research vehicle, aero-space plane, and advanced shuttle. A full scale, internally instrumented sodium/Hastelloy X heat pipe was successfully designed and fabricated for the advanced shuttle application. The 69.4 inch long heat pipe reduces peak leading edge temperatures from 3500 F to 1800 F. It is internally instrumented with thermocouples and pressure transducers to measure sodium vapor qualities. Large thermal gradients and consequently large thermal stresses, which have the potential of limiting heat pipe life, were predicted to occur during startup. A test stand and test plan were developed for subsequent testing of this heat pipe. Heat pipe manufacturing technology was advanced during this program, including the development of an innovative technique for wick installation.

  19. Receptivity to surface roughness near a swept leading edge

    Microsoft Academic Search

    S. S COTT C OLLIS; SANJIVA K. L ELE

    1999-01-01

    The formation of stationary crossflow vortices in a three-dimensional boundary layer due to surface roughness located near the leading edge of a swept wing is investigated using numerical solutions of the compressible Navier{Stokes equations. The numerical solutions are used to evaluate the accuracy of theoretical receptivity predictions which are based on the parallel-flow approximation. By reformulating the receptivity theory to

  20. Boundary-layer receptivity for a parabolic leading edge

    Microsoft Academic Search

    P. W. Hammerton; E. J. Kerschen

    1996-01-01

    The eect of the nose radius of a body on boundary-layer receptivity is analyzed for the case of a symmetric mean flow past a body with a parabolic leading edge. Asymptotic methods based on large Reynolds number are used, supplemented by numerical results. The Mach number is assumed small, and acoustic free-stream disturbances are consid- ered. The case of free-stream

  1. Leading-edge receptivity for bodies with mean aerodynamic loading

    Microsoft Academic Search

    P. W. Hammerton; E. J. Kerschen

    2005-01-01

    Boundary-layer receptivity in the leading-edge region of a cambered thin airfoil is analysed for the case of a low-Mach-number flow. Acoustic free-stream disturbances are considered. Asymptotic results based on large Reynolds number (U^2 \\/ omega nu ≫ 1) are presented, supplemented by numerical solutions. The influence of mean aerodynamic loading enters the theory through a parameter mu, which provides a

  2. Aerothermal Performance Constraint Analysis of Sharp Nosecaps and Leading Edges

    NASA Technical Reports Server (NTRS)

    Rizk, Yehia; Gee, Ken

    2004-01-01

    The main objective of this work is to predict the Aerothermal Performance Constraint (APC) for a class of Crew Transfer Vehicles (CTV) with shap noses and wing leading edges made out of UHTC which is a family of Ultra High Temperature Ceramics materials developed at NASA Ames. The APC is based on the theoretical temperature limit of the material which is usually encountered at the CTV nose or wing leading edge. The APC places a lower limit on the trajectory of the CTV in the altitude velocity space. The APC is used as one of the constraints in developing reentry and abort trajectories for the CTV. The trajectories are then used to generate transient thermal response of the nosecaps and wing leading edges which are represented as either a one piece of UHTC or two piece (UHTC + RCC) with perfect axial contact. The final paper will include more details about the analysis procedure and will also include results for reentry and abort design trajectories.

  3. Simulated big sagebrush regeneration supports predicted changes at the trailing and leading edges of distribution shifts

    USGS Publications Warehouse

    Schlaepfer, Daniel R.; Taylor, Kyle A.; Pennington, Victoria E.; Nelson, Kellen N.; Martin, Trace E.; Rottler, Caitlin M.; Lauenroth, William K.; Bradford, John B.

    2015-01-01

    Many semi-arid plant communities in western North America are dominated by big sagebrush. These ecosystems are being reduced in extent and quality due to economic development, invasive species, and climate change. These pervasive modifications have generated concern about the long-term viability of sagebrush habitat and sagebrush-obligate wildlife species (notably greater sage-grouse), highlighting the need for better understanding of the future big sagebrush distribution, particularly at the species' range margins. These leading and trailing edges of potential climate-driven sagebrush distribution shifts are likely to be areas most sensitive to climate change. We used a process-based regeneration model for big sagebrush, which simulates potential germination and seedling survival in response to climatic and edaphic conditions and tested expectations about current and future regeneration responses at trailing and leading edges that were previously identified using traditional species distribution models. Our results confirmed expectations of increased probability of regeneration at the leading edge and decreased probability of regeneration at the trailing edge below current levels. Our simulations indicated that soil water dynamics at the leading edge became more similar to the typical seasonal ecohydrological conditions observed within the current range of big sagebrush ecosystems. At the trailing edge, an increased winter and spring dryness represented a departure from conditions typically supportive of big sagebrush. Our results highlighted that minimum and maximum daily temperatures as well as soil water recharge and summer dry periods are important constraints for big sagebrush regeneration. Overall, our results confirmed previous predictions, i.e., we see consistent changes in areas identified as trailing and leading edges; however, we also identified potential local refugia within the trailing edge, mostly at sites at higher elevation. Decreasing regeneration probability at the trailing edge underscores the Schlaepfer et al. Future regeneration potential of big sagebrush potential futility of efforts to preserve and/or restore big sagebrush in these areas. Conversely, increasing regeneration probability at the leading edge suggest a growing potential for conflicts in management goals between maintaining existing grasslands by preventing sagebrush expansion versus accepting a shift in plant community composition to sagebrush dominance.

  4. An Aeroacoustic Study of a Leading Edge Slat Configuration

    NASA Technical Reports Server (NTRS)

    Mendoza, J. M.; Brooks, T. F.; Humphreys, W. M., Jr.

    2002-01-01

    Aeroacoustic evaluations of high-lift devices have been carried out in the Quiet Flow Facility of the NASA Langley Research Center. The present paper describes detailed flow and acoustic measurements that have been made in order to better understand the noise generated from airflow over a wing leading edge slat configuration, and to possibly predict and reduce this noise source. The acoustic database is obtained by a moveable Small Aperture Directional Array of microphones designed to electronically steer to different portions of models under study. The slat is shown to be a uniform distributed noise source. The data was processed such that spectra and directivity were determined with respect to a one-foot span of slat. The spectra are normalized in various fashions to demonstrate slat noise character. In order to equate portions of the spectra to different slat noise components, trailing edge noise predictions using measured slat boundary layer parameters as inputs are compared to the measured slat noise spectra.

  5. Flexible Plug Repair for Shuttle Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J.; Sikora, Joseph; Smith, Russel; Rivers, H.; Scotti, Stephen J.; Fuller, Alan M.; Klacka, Robert; Reinders, Martin; Schwind, Francis; Sullivan, Brian; Lester, Dean

    2012-01-01

    In response to the Columbia Accident Investigation Board report, a plug repair kit has been developed to enable astronauts to repair the space shuttle's wing leading edge (WLE) during orbit. The plug repair kit consists of several 17.78- cm-diameter carbon/silicon carbide (C/SiC) cover plates of various curvatures that can be attached to the refractory carbon-carbon WLE panels using a TZM refractory metal attach mechanism. The attach mechanism is inserted through the damage in the WLE panel and, as it is tightened, the cover plate flexes to conform to the curvature of the WLE panel within 0.050 mm. An astronaut installs the repair during an extravehicular activity (EVA). After installing the plug repair, edge gaps are checked and the perimeter of the repair is sealed using a proprietary material, developed to fill cracks and small holes in the WLE.

  6. Thermostructural applications of heat pipes for cooling leading edges of high-speed aerospace vehicles

    NASA Astrophysics Data System (ADS)

    Camarda, Charles J.; Glass, David E.

    1992-10-01

    Heat pipes have been considered for use on wing leading edge for over 20 years. Early concepts envisioned metal heat pipes cooling a metallic leading edge. Several superalloy/sodium heat pipes were fabricated and successfully tested for wing leading edge cooling. Results of radiant heat and aerothermal testing indicate the feasibility of using heat pipes to cool the stagnation region of shuttle-type space transportation systems. The test model withstood a total seven radiant heating tests, eight aerothermal tests, and twenty-seven supplemental radiant heating tests. Cold-wall heating rates ranged from 21 to 57 Btu/sq ft-s and maximum operating temperatures ranged from 1090 to 1520 F. Follow-on studies investigated the application of heat pipes to cool the stagnation regions of single-stage-to-orbit and advanced shuttle vehicles. Results of those studies indicate that a 'D-shaped' structural design can reduce the mass of the heat-pipe concept by over 44 percent compared to a circular heat-pipe geometry. Simple analytical models for heat-pipe startup from the frozen state (working fluid initially frozen) were adequate to approximate transient, startup, and steady-state heat-pipe performance. Improvement in analysis methods has resulted in the development of a finite-element analysis technique to predict heat-pipe startup from the frozen state. However, current requirements of light-weight design and reliability suggest that metallic heat pipes embedded in a refractory composite material should be used. This concept is the concept presently being evaluated for NASP. A refractory-composite/heat-pipe-cooled wing leading edge is currently being considered for the National Aero-Space Plane (NASP). This concept uses high-temperature refractory-metal/lithium heat pipes embedded within a refractory-composite structure and is significantly lighter than an actively cooled wing leading edge because it eliminates the need for active cooling during ascent and descent. Since the NASP vehicle uses cryogenic hydrogen to cool structural components and then burns this fuel in the combustor, hydrogen necessary for descent cooling only, when the vehicle is unpowered, is considered to be a weight penalty. Details of the design of the refractory-composite/heat-pipe-cooled wing leading edge are currently being investigated. Issues such as thermal contact resistance and thermal stress are also being investigated.

  7. Thermostructural applications of heat pipes for cooling leading edges of high-speed aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J.; Glass, David E.

    1992-01-01

    Heat pipes have been considered for use on wing leading edge for over 20 years. Early concepts envisioned metal heat pipes cooling a metallic leading edge. Several superalloy/sodium heat pipes were fabricated and successfully tested for wing leading edge cooling. Results of radiant heat and aerothermal testing indicate the feasibility of using heat pipes to cool the stagnation region of shuttle-type space transportation systems. The test model withstood a total seven radiant heating tests, eight aerothermal tests, and twenty-seven supplemental radiant heating tests. Cold-wall heating rates ranged from 21 to 57 Btu/sq ft-s and maximum operating temperatures ranged from 1090 to 1520 F. Follow-on studies investigated the application of heat pipes to cool the stagnation regions of single-stage-to-orbit and advanced shuttle vehicles. Results of those studies indicate that a 'D-shaped' structural design can reduce the mass of the heat-pipe concept by over 44 percent compared to a circular heat-pipe geometry. Simple analytical models for heat-pipe startup from the frozen state (working fluid initially frozen) were adequate to approximate transient, startup, and steady-state heat-pipe performance. Improvement in analysis methods has resulted in the development of a finite-element analysis technique to predict heat-pipe startup from the frozen state. However, current requirements of light-weight design and reliability suggest that metallic heat pipes embedded in a refractory composite material should be used. This concept is the concept presently being evaluated for NASP. A refractory-composite/heat-pipe-cooled wing leading edge is currently being considered for the National Aero-Space Plane (NASP). This concept uses high-temperature refractory-metal/lithium heat pipes embedded within a refractory-composite structure and is significantly lighter than an actively cooled wing leading edge because it eliminates the need for active cooling during ascent and descent. Since the NASP vehicle uses cryogenic hydrogen to cool structural components and then burns this fuel in the combustor, hydrogen necessary for descent cooling only, when the vehicle is unpowered, is considered to be a weight penalty. Details of the design of the refractory-composite/heat-pipe-cooled wing leading edge are currently being investigated. Issues such as thermal contact resistance and thermal stress are also being investigated.

  8. Laminar flow control leading edge systems in simulated airline service

    NASA Technical Reports Server (NTRS)

    Wagner, R. D.; Maddalon, D. V.; Fisher, D. F.

    1988-01-01

    The feasibility of two candidate leading-edge flow laminarization systems applicable to airline service was tested using representative airline operational conditions with respect to air traffic, weather, and airport insect infestation. One of the systems involved a perforated Ti alloy suction surface with about 1 million 0.0025-in. diameter holes drilled by electron beam, as well as a Krueger-type flap that offered protective shielding against insect impingement; the other supplied surface suction through a slotted Ti alloy skin with 27 spanwise slots on the upper and lower surface.

  9. The effect of leading edge tubercles on dynamic stall

    NASA Astrophysics Data System (ADS)

    Hrynuk, John

    The effect of the leading edge tubercles of humpback whales has been heavily studied for their static benefits. These studies have shown that tubercles inhibit flow separation, limit spanwise flow, and extend the operating angle of a wing beyond the static stall point while maintaining lift, all while having a comparatively low negative impact on drag. The current study extends the prior work to investigating the effect of tubercles on dynamic stall, a fundamental flow phenomenon that occurs when wings undergo dynamic pitching motions. Flow fields around the wing models tested were studied using Laser Induced Fluorescence (LIF) and Molecular Tagging Velocimetry (MTV).Resulting velocity fields show that the dynamics of the formation and separation of the leading edge vortex were fundamentally different between the straight wing and the tubercled wing. Tracking of the Dynamic Stall Vortex (DSV) and Shear Layer Vortices (SLVs), which may have a significant impact on the overall flow behavior, was done along with calculations of vortex circulation. Proximity to the wing surface and total circulation were used to evaluate potential dynamic lift increases provided by the tubercles. The effects of pitch rate on the formation process and benefits of the tubercles were also studied and were generally consistent with prior dynamic stall studies. However, tubercles were shown to affect the SLV formation and the circulation differently at higher pitch rates.

  10. Separation Control on a Hydrofoil Using Leading Edge Protuberances

    NASA Astrophysics Data System (ADS)

    Custodio, Derrick; Henoch, Charles; Johari, Hamid

    2007-11-01

    The humpback whale's maneuvarability has been attributed to their use of pectoral flippers, on which protuberances are present along the leading edge. To examine the effects of protuberances on hydrofoil performance, the lift, drag, and pitching moments of two-dimensional hydrofoils with leading edge sinusoidal protuberances were measured in a water tunnel and compared to those of a baseline NACA 63(4)-021 hydrofoil. The amplitude and spanwise wavelengths of the protuberances ranged from 2.5% to 12% and 25% to 50% of the mean chord length respectively. Flow visualizations using tufts and dye, as well as Laser Doppler Velocimetry (LDV) measurements were performed to examine the flow patterns surrounding the hydrofoils. At angles of attack lower than the stall angle of the baseline, the modified foils revealed lower lift and increased drag. However, above this angle the lift generated by the modified foils was up to 50% greater than the baseline foil with little or no drag penalty. The amplitude of the protuberances has a large effect on the performance of the hydrofoils whereas the wavelength has little. Flow topology on the protuberances will be discussed by means of the visualization and measured velocities.

  11. Leading Edge Aerothermal Inverse Design of Hyersonic Vehicle Based on Homotopy Optimization Method

    Microsoft Academic Search

    K. Cui; S. C. Hu; T. Y. Gao; X. P. Wang; G. W. Yang

    2011-01-01

    Blunt leading edge with profiles of circular or power law shape is often used to decrease the aerodynamic heating of a vehicle when it flights into hypersonic regime. In order to further reduce the peak of heat flux of the leading edge, an inverse shape design method is presented in this paper. The leading edge is parameterized by using B-spline

  12. Thermostructural applications of heat pipes for cooling leading edges of high-speed aerospace vehicles

    Microsoft Academic Search

    Charles J. Camarda; David E. Glass

    1992-01-01

    Heat pipes have been considered for use on wing leading edge for over 20 years. Early concepts envisioned metal heat pipes cooling a metallic leading edge. Several superalloy\\/sodium heat pipes were fabricated and successfully tested for wing leading edge cooling. Results of radiant heat and aerothermal testing indicate the feasibility of using heat pipes to cool the stagnation region of

  13. Composition of White Lead and Paints.

    E-print Network

    Fraps, G. S. (George Stronach)

    1908-01-01

    ................................ R. P. MARSTELLER. .Assistant Veterinari .............................................. C. W. CRISLER .Chief Cle ............................................ ,I?. ,R. NAVA1I;LE. Stenograph ................................................ A. S... white lead can be purchased in the State, there are s number of pigments sold under this name which either are not white lead at all, or are highly adulterated, TABLE I.-PERCENTAGE, COMPOSITION OF ADULTERATED LEAD f PTGMENT) . WHITE 1286 1291 1292...

  14. High current composite superconductor electrical power lead

    NASA Astrophysics Data System (ADS)

    Zimmerman, G. O.; Negm, Y. Z.; Tahar, M. Z.; Buczkowski, S.; Powers, R. E.; McConeghy, R.

    1993-04-01

    We have developed and tested a nominal 100A lead to conduct electrical current between room and helium temperatures. The lead affords considerable savings in refrigeration costs by incorporating elements made of high transition temperature superconductors (HTSC). The lead was designed to operate both in the conduction mode and in the vapor cooled mode. Several leads have been combined to make a high current composite electrical conductor which carries currents of up to 1200A.

  15. Edge delamination in angle-ply composite laminates, part 5

    NASA Technical Reports Server (NTRS)

    Wang, S. S.

    1981-01-01

    A theoretical method was developed for describing the edge delamination stress intensity characteristics in angle-ply composite laminates. The method is based on the theory of anisotropic elasticity. The edge delamination problem is formulated using Lekhnitskii's complex-variable stress potentials and an especially developed eigenfunction expansion method. The method predicts exact orders of the three-dimensional stress singularity in a delamination crack tip region. With the aid of boundary collocation, the method predicts the complete stress and displacement fields in a finite-dimensional, delaminated composite. Fracture mechanics parameters such as the mixed-mode stress intensity factors and associated energy release rates for edge delamination can be calculated explicity. Solutions are obtained for edge delaminated (theta/-theta theta/-theta) angle-ply composites under uniform axial extension. Effects of delamination lengths, fiber orientations, lamination and geometric variables are studied.

  16. Characteristics of surface roughness associated with leading edge ice accretion

    NASA Technical Reports Server (NTRS)

    Shin, Jaiwon

    1994-01-01

    Detailed size measurements of surface roughness associated with leading edge ice accretions are presented to provide information on characteristics of roughness and trends of roughness development with various icing parameters. Data was obtained from icing tests conducted in the Icing Research Tunnel (IRT) at NASA Lewis Research Center (LeRC) using a NACA 0012 airfoil. Measurements include diameters, heights, and spacing of roughness elements along with chordwise icing limits. Results confirm the existence of smooth and rough ice zones and that the boundary between the two zones (surface roughness transition region) moves upstream towards stagnation region with time. The height of roughness grows as the air temperature and the liquid water content increase, however, the airspeed has little effect on the roughness height. Results also show that the roughness in the surface roughness transition region grows during a very early stage of accretion but reaches a critical height and then remains fairly constant. Results also indicate that a uniformly distributed roughness model is only valid at a very initial stage of the ice accretion process.

  17. Mechanisms of leading edge protrusion in interstitial migration

    NASA Astrophysics Data System (ADS)

    Wilson, Kerry; Lewalle, Alexandre; Fritzsche, Marco; Thorogate, Richard; Duke, Tom; Charras, Guillaume

    2013-12-01

    While the molecular and biophysical mechanisms underlying cell protrusion on two-dimensional substrates are well understood, our knowledge of the actin structures driving protrusion in three-dimensional environments is poor, despite relevance to inflammation, development and cancer. Here we report that, during chemotactic migration through microchannels with 5??m × 5??m cross-sections, HL60 neutrophil-like cells assemble an actin-rich slab filling the whole channel cross-section at their front. This leading edge comprises two distinct F-actin networks: an adherent network that polymerizes perpendicular to cell-wall interfaces and a ‘free’ network that grows from the free membrane at the cell front. Each network is polymerized by a distinct nucleator and, due to their geometrical arrangement, the networks interact mechanically. On the basis of our experimental data, we propose that, during interstitial migration, medial growth of the adherent network compresses the free network preventing its retrograde movement and enabling new polymerization to be converted into forward protrusion.

  18. Turbulent Coherence Measurements on a Leading Edge Slat

    NASA Astrophysics Data System (ADS)

    Moriarty, Patrick J.; Storms, Bruce L.; Ross, James C.; Horne, W. Clifton; Dougherty, Robert P.

    1997-11-01

    Turbulence spectra have been measured downstream of the gap between the leading-edge slat and the main airfoil of a generic transport aircraft wing model. The model consisted of a NACA 63_2-215 Mod. B main element with a half span Fowler flap and a full span LB-546 slat. Velocity-pressure coherence spectra were determined using signals from a hot-wire anemometer probe in the flow and unsteady-pressure transducers on the wing surface. The coherence coefficient was significant only in a narrow bandwidth, of the order of 15 percent of the peak frequency. Coherence coefficient magnitudes were as large as 0.25. Coherence coefficient magnitude and frequency were found to depend on the flow velocity through the slat gap, which increased with (negative) slat deflection angle. Frequencies and relative strengths of coherence peaks were in agreement with those of radiated noise spectra (measured in a separate experiment). The results demonstrate a close connection between velocity fluctuation in the slat wake and pressure fluctuations on both surfaces of the slat and the upper surface of the main airfoil. Further work is planned to investigate a postulated hydrodynamic-acoustic resonance.

  19. Mechanisms of leading edge protrusion in interstitial migration

    PubMed Central

    Wilson, Kerry; Lewalle, Alexandre; Fritzsche, Marco; Thorogate, Richard; Duke, Tom; Charras, Guillaume

    2013-01-01

    While the molecular and biophysical mechanisms underlying cell protrusion on two-dimensional substrates are well understood, our knowledge of the actin structures driving protrusion in three-dimensional environments is poor, despite relevance to inflammation, development and cancer. Here we report that, during chemotactic migration through microchannels with 5??m × 5??m cross-sections, HL60 neutrophil-like cells assemble an actin-rich slab filling the whole channel cross-section at their front. This leading edge comprises two distinct F-actin networks: an adherent network that polymerizes perpendicular to cell-wall interfaces and a ‘free’ network that grows from the free membrane at the cell front. Each network is polymerized by a distinct nucleator and, due to their geometrical arrangement, the networks interact mechanically. On the basis of our experimental data, we propose that, during interstitial migration, medial growth of the adherent network compresses the free network preventing its retrograde movement and enabling new polymerization to be converted into forward protrusion. PMID:24305616

  20. The artificially blunted leading edge concept for aerothermodynamic performance enhancement

    NASA Astrophysics Data System (ADS)

    Gupta, Anurag

    An innovative aerothermodynamic performance enhancement concept for blunted geometries in hypervelocity flight is described. An Artificially Blunted Leading Edge (ABLE) is sought to be created by the use of a flow-through channel sized to choke at supersonic (in the normal direction) conditions. As a result, a normal shock stands off the channel but the high post-shock pressures have no wall to act on, leading to a reduction in wave drag. The effective blunt body flow structure can be effective at preventing the rise in heat transfer rates at channel entrance lips. In lifting flight, the flow in the channel creates suction at the lip, significantly enhancing lift for non-slender shapes. CFD studies using Reynolds Averaged Navier-Stokes simulations provide proof-of- concept for drag reduction for blunted slender geometries and L/D enhancements for sphere-cones. The ABLE flow mechanism's robustness and its effectiveness at off- design conditions is demonstrated. The computed sphere- cone L/D enhancements are also validated with experimental results from Aeroballistic Range tests. As opposed to straight channels, ABLE variants with curved channels that provide for better volumetric efficiency, reduced viscous drag penalties and better performance were designed and investigated. The channels curve outward and exhaust the flow close to the leading edge. Even while exhausting tangentially, the exhaust-mean flow interactions were shown to enhance or create lift. The force amplification due to such interactions can also be leveraged with the channel flow exhausting nearly normal to the surface. The potential of such thrust vectoring to reduce trim drag and augment directional control in the high-speed regime was demonstrated numerically. To evaluate the concept's effectiveness at improving cd or L/D values without paying any penalties in lift, enclosed volume and peak heating rates, Multidisciplinary Design Optimization techniques are used to characterize the design space efficiently. The Response Surface Method creates analytical models for force coefficients and heat transfer rates that were then used to generate optimal ABLE designs, e.g., an ABLE variant of a 4% thick blunted diamond airfoil has a 19% lower c d. The models were accurate to within 5% of the Navier-Stokes values and were able to smoothly capture trends in system responses while filtering out numerical noise. The application of the ABLE concept on a notional HSCT-class arrow wing, and to a flyback Booster forebody was studied. The estimated drag reduction benefits were then used in a preliminary design level system sensitivity analysis to estimate overall benefits of ABLE technology integration. These studies indicate that significant weight savings can be obtained from the use of ABLE and that it can be an enabling technology for vehicles with small structural mass fractions.

  1. A simplified method for thermal analysis of a cowl leading edge subject to intense local shock-wave-interference heating

    NASA Technical Reports Server (NTRS)

    Mcgowan, David M.; Camarda, Charles J.; Scotti, Stephen J.

    1992-01-01

    Type IV shock wave interference heating on a blunt body causes extremely intense heating over a very localized region of the body. An analytical solution is presented to a heat transfer problem that approximates the shock wave interference heating of an engine cowl leading edge of the National Aero-Space Plane. The problem uses a simplified geometry to represent the leading edge. An analytical solution is developed that provides a means for approximating maximum temperature differences between the outer and inner surface temperatures of the leading edge. The solution is computationally efficient and, as a result, is well suited for conceptual and preliminary design or trade studies. Transient and steady state analyses are conducted, and results obtained from the analytical solution are compared with results of 2-D thermal finite element analyses over a wide range of design parameters. Isotropic materials as well as laminated composite materials are studied. Results of parametric studies are presented to indicate the effects of the thickness of the cowl leading edge and the width of the region heated by the shock wave interference on the thermal response of the leading edge.

  2. Characteristic length scales for vortex detachment on plunging profiles with varying leading-edge geometry

    NASA Astrophysics Data System (ADS)

    Rival, David E.; Kriegseis, Jochen; Schaub, Pascal; Widmann, Alexander; Tropea, Cameron

    2014-01-01

    Experiments on leading-edge vortex (LEV) growth and detachment from a plunging profile have been conducted in a free-surface water tunnel. Direct-force and velocity-field measurements have been performed at a Reynolds number of Re = 10,000, a reduced frequency of k = 0.25, and a Strouhal number of St = 0.16, for three varying leading-edge geometries. The leading-edge shape is shown to influence the shear layer feeding the LEV, and thus to some extent the development of the LEV and associated flow topology. This effect in turn influences the arrival time of the rear (LEV) stagnation point at the trailing edge, which, once breached, constitutes a detachment of the LEV. It is found that despite minor phase changes in LEV detachment through leading-edge shape, the position of the trailing edge (chord length) should be chosen as the characteristic length scale for the vortex separation process.

  3. Leading-edge rotating cylinder for boundary-layer control on lifting surfaces

    Microsoft Academic Search

    W. S. Johnson; J. S. Tennant; R. E. Stamps

    1975-01-01

    Wind tunnel experiments are conducted to study the boundary layer control attained on a symmetrical afterbody by means of a rotating cylinder at its leading edge. Experimental results indicate that a rotating cylinder at the leading edge of a lifting body can effectively control boundary layer separation. It is found that the upper limit on the angle of attack without

  4. Leading-Edge Acoustic Receptivity Measurements Using a Pulsed-Sound

    E-print Network

    Leading-Edge Acoustic Receptivity Measurements Using a Pulsed-Sound Technique Edward B. White to planar acoustic waves · Calculate linear receptivity coefficients defined relative to Branch I: KS = u Unsteady Wind Tunnel 2 #12;Objectives · Present study concerns receptivity of a flat-plate leading edge

  5. Numerical simulation of receptivity to acoustic waves on elliptic leading edges

    Microsoft Academic Search

    Juan Bautista Villa Wanderley

    1998-01-01

    The leading edge receptivity to acoustic waves of flat- plates with elliptic leading edges was investigated using the spatial approach. The incompressible flow around these bodies was obtained by solving the full Navier- Stokes equations. The equations were written in terms of vorticity and stream function and in general curvilinear coordinates. In the spatial approach, the freestream is composed of

  6. Edge effects in angle-ply composite laminates

    NASA Technical Reports Server (NTRS)

    Hsu, P. W.; Herakovich, C. T.

    1977-01-01

    This paper presents the results of a zeroth-order solution for edge effects in angle-ply composite laminates obtained using perturbation techniques and a limiting free body approach. The general solution for edge effects in laminates of arbitrary angle ply is applied to the special case of a (+ or - 45)s graphite/epoxy laminate. Interlaminar stress distributions are obtained as a function of the laminate thickness-to-width ratio and compared to finite difference results. The solution predicts stable, continuous stress distributions, determines finite maximum tensile interlaminar normal stress and provides mathematical evidence for singular interlaminar shear stresses in (+ or - 45) graphite/epoxy laminates.

  7. Study of supersonic wings employing the attainable leading-edge thrust concept

    NASA Technical Reports Server (NTRS)

    Middleton, W. D.

    1982-01-01

    A theoretical study was made of supersonic wing geometries at Mach 1.8, using the attainable leading-edge thrust concept. The attainable thrust method offers a powerful means to improve overall aerodynamic efficiency by identifying wing leading-edge geometries that promote attached flow and by defining a local angle-of-attack range over which attached flow may be obtained. The concept applies to flat and to cambered wings, which leads to the consideration of drooped-wing leading edges for attached flow at high lift coefficients.

  8. Modeling the Nonlinear Strain Rate Dependent Deformation of Shuttle Leading Edge Materials with Hydrostatic Stress Effects Included

    Microsoft Academic Search

    Robert K. Goldberg; Kelly S. Carney

    Abstract ,An analysis method,based on a,deformation (as opposed to damage),approach,has been developed to model,the strain rate dependent, nonlinear deformation of woven ceramic matrix composites, such as the Reinforced Carbon Carbon (RCC) material used on the leading edges of the Space Shuttle. In the developed model, the differences in the tension and compression ,deformation ,behaviors have also been accounted ,for. State

  9. Analysis of edge impact stresses in composite plates

    NASA Technical Reports Server (NTRS)

    Moon, F. C.; Kang, C. K.

    1974-01-01

    The in-plane edge impact of composite plates, with or without a protection strip, is investigated. A computational analysis based on the Fast Fourier Transform technique is presented. The particular application of the present method is in the understanding of the foreign object damage problem of composite fan blades. The method is completely general and may be applied to the study of other stress wave propagation problems in a half space. Results indicate that for the protective strip to be effective in reducing impact stresses in the composite the thickness must be equal or greater than the impact contact dimension. Large interface shear stresses at the strip - composite boundary can be induced under impact.

  10. Compressibility and Leading-Edge Bluntness Effects for a 65 Deg Delta Wing

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    2004-01-01

    A 65 deg. delta wing has been tested in the National Transonic Facility (NTF) at mean aerodynamic chord Reynolds numbers from 6 million to 120 million at subsonic and transonic speeds. The configuration incorporated a systematic variation of the leading edge bluntness. The analysis for this paper is focused on the compressibility and bluntness effects primarily at a Reynolds number of 6 million from this data set. Emphasis is placed upon on the onset and progression of leading-edge vortex separation, and compressibility is shown to promote this separation. Comparisons with recent publications show that compressibility and Reynolds number have opposite effects on blunt leading edge vortex separation

  11. Generation of instability waves at a leading edge

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.

    1982-01-01

    Two cases are considered. The first is concerned with mean flows of the Blasius type wherein the instabilities are represented by Tollmien-Schlichting waves. It is shown that the latter are generated fairly far downstream of the edge and are the result of a wave length reduction process that tunes the free stream disturbances to the Tollmien-Schlichting wave length. The other case is concerned with inflectional, uni-directional, transversely sheared mean flows. Such idealized flows provide a fairly good local representation to the nearly parallel flows in jets. They can support inviscid instabilities of the Kelvin-Helmholtz type. The various mathematically permissible mechanisms that can couple these instabilities to the upstream disturbances are discussed.

  12. FORTRAN program for calculating leading and trailing-edge geometry of turbomachine blades

    NASA Technical Reports Server (NTRS)

    Schumann, L. F.

    1977-01-01

    A FORTRAN IV program which calculates leading- and trailing-edge circle radii, tangency angles on the leading- and trailing-edge circles, and stagger angles of turbomachinery blade sections using only spline points defining the blade surfaces is described. The program shifts the origin of the blade coordinates to the leading edge of the blade. Required input includes (m, theta) coordinates of a sufficient number of spline points to adequately define the two surfaces of the blade. Other required input are the radii from the axis of rotation of the leading- and trailing-edges. The output from this program is used directly as the geometrical input for a NASA developed program for calculating transonic velocities on a blade-to-blade stream surface of a turbomachine. The program is used for axial, radial, and mixed flow turbomachine blades.

  13. Reynolds Number Effects on Leading Edge Radius Variations of a Supersonic Transport at Transonic Conditions

    NASA Technical Reports Server (NTRS)

    Rivers, S. M. B.; Wahls, R. A.; Owens, L. R.

    2001-01-01

    A computational study focused on leading-edge radius effects and associated Reynolds number sensitivity for a High Speed Civil Transport configuration at transonic conditions was conducted as part of NASA's High Speed Research Program. The primary purposes were to assess the capabilities of computational fluid dynamics to predict Reynolds number effects for a range of leading-edge radius distributions on a second-generation supersonic transport configuration, and to evaluate the potential performance benefits of each at the transonic cruise condition. Five leading-edge radius distributions are described, and the potential performance benefit including the Reynolds number sensitivity for each is presented. Computational results for two leading-edge radius distributions are compared with experimental results acquired in the National Transonic Facility over a broad Reynolds number range.

  14. User's manual for interfacing a leading edge, vortex rollup program with two linear panel methods

    NASA Technical Reports Server (NTRS)

    Desilva, B. M. E.; Medan, R. T.

    1979-01-01

    Sufficient instructions are provided for interfacing the Mangler-Smith, leading edge vortex rollup program with a vortex lattice (POTFAN) method and an advanced higher order, singularity linear analysis for computing the vortex effects for simple canard wing combinations.

  15. Metallic Concepts for Repair of Reinforced Carbon-Carbon Space Shuttle Leading Edges

    NASA Technical Reports Server (NTRS)

    Ritzert, Frank; Nesbitt, James

    2007-01-01

    The Columbia accident has focused attention on the critical need for on-orbit repair concepts for wing leading edges in the event that potentially catastrophic damage is incurred during Space Shuttle Orbiter flight. The leading edge of the space shuttle wings consists of a series of eleven panels on each side of the orbiter. These panels are fabricated from reinforced carbon-carbon (RCC) which is a light weight composite with attractive strength at very high temperatures. The damage that was responsible for the loss of the Colombia space shuttle was deemed due to formation of a large hole in one these RCC leading edge panels produced by the impact of a large piece of foam. However, even small cracks in the RCC are considered as potentially catastrophic because of the high temperature re-entry environment. After the Columbia accident, NASA has explored various means to perform on-orbit repairs in the event that damage is sustained in future shuttle flights. Although large areas of damage, such as that which doomed Columbia, are not anticipated to re-occur due to various improvements to the shuttle, especially the foam attachment, NASA has also explored various options for both small and large area repair. This paper reports one large area repair concept referred to as the "metallic over-wrap." Environmental conditions during re-entry of the orbiter impose extreme requirements on the RCC leading edges as well as on any repair concepts. These requirements include temperatures up to 3000 F (1650 C) for up to 15 minutes in the presence of an extremely oxidizing plasma environment. Figure 1 shows the temperature profile across one panel (#9) which is subject to the highest temperatures during re-entry. Although the RCC possesses adequate mechanical strength at these temperatures, it lacks oxidation resistance. Oxidation protection is afforded by converting the outer layers of the RCC to SiC by chemical vapor deposition (CVD). At high temperatures in an oxidizing environment, the SiC layer forms a protective SiO2 scale. However, CVD processing to form the SiC layer can result in the formation of small cracks in the outer surface. Hence, as a final fabrication step, a sodium silicate glass, known as "Type A," is applied as a sealant to fill any surface porosity and/or cracks in the coating and the outer portions of the RCC[1]. At relatively low temperatures, the Type A glass melts and flows into the cracks providing oxidation protection at the higher temperatures. In addition, the Type A coating, provides a "dark" coating with a high emissivity. This high emissivity allows the RCC to transfer heat by radiating outward to space as well as dispersing heat within the leading edge cavity. Lastly, the Type A possesses low catalycity which reduces surface temperatures by limiting oxygen recombination on the surface during re-entry.

  16. Investigation of acoustic effects of leading-edge serrations on airfoils

    NASA Technical Reports Server (NTRS)

    Hersh, A. S.; Soderman, P. T.; Hayden, R. E.

    1974-01-01

    This paper presents and interprets a series of extensive studies of the application of leading-edge serrations as a device for reducing the vortex noise radiated from stationary and rotating airfoils in low Reynolds number flow. In these studies, a variety of serrations were attached at selected locations near the leading edge of stationary and rotating airfoils. The noise levels of the airfoils were reduced considerably with the serrations attached. An explanation of the aeroacoustic flow mechanisms involved is given.

  17. Acoustic receptivity of Mach 4.5 boundary layer with leading-edge bluntness

    Microsoft Academic Search

    M. R. Malik; P. Balakumar

    2007-01-01

    Boundary layer receptivity to two-dimensional slow and fast acoustic waves is investigated by solving Navier–Stokes equations\\u000a for Mach 4.5 flow over a flat plate with a finite-thickness leading edge. Higher order spatial and temporal schemes are employed\\u000a to obtain the solution whereby the flat-plate leading edge region is resolved by providing a sufficiently refined grid. The\\u000a results show that the

  18. Industrial cooling tower fan blade having abrasion resistant leading edge

    Microsoft Academic Search

    L. F. Burdick; S. E. Mayes

    1992-01-01

    This patent describes a glass fiber reinforced, synthetic resin fan blade for large diameter industrial water cooling tower fans, wherein the outer body portion of the blade is constructed of a thermoset resin and has upper and lower surfaces of which a part thereof define an elongated leading which would be subject to abrasion deterioration during use of the blade.

  19. Edge crack growth of thermally aged graphite/polyimide composites

    NASA Technical Reports Server (NTRS)

    Nelson, J. B.

    1984-01-01

    Laminates of Celion 6000/LARC-160 and Celion 6000/PMR-15 graphite/polyimide composite materials were aged in air at temperatures of 202, 232, 260 and 288 C for various times up to 15,000 hours. Three unidirectional specimen types were studied: short beam shear (SBS), flexure, and 153 mm square panels. The interior region of the square panels exhibited little or no property degradation, whereas both laminate materials degraded and cracked preferentially at the specimen edge perpendicular to the fibers. Using a dye penetrant, the specimens were X-rayed and the crack depth measured as a function of time and temperature. A time temperature superposition of the crack data was successfully performed using an Arrhenius form for the shift factor. A direct correlation was found for edge crack depth and SBS strength for the LARC-160 laminates but the correlation for PMR-15 laminates was more complex.

  20. A mechanism of leading-edge protrusion in the absence of Arp2/3 complex

    PubMed Central

    Suraneni, Praveen; Fogelson, Ben; Rubinstein, Boris; Noguera, Philippe; Volkmann, Niels; Hanein, Dorit; Mogilner, Alex; Li, Rong

    2015-01-01

    Cells employ protrusive leading edges to navigate and promote their migration in diverse physiological environments. Classical models of leading-edge protrusion rely on a treadmilling dendritic actin network that undergoes continuous assembly nucleated by the Arp2/3 complex, forming ruffling lamellipodia. Recent work demonstrated, however, that, in the absence of the Arp2/3 complex, fibroblast cells adopt a leading edge with filopodia-like protrusions (FLPs) and maintain an ability to move, albeit with altered responses to different environmental signals. We show that formin-family actin nucleators are required for the extension of FLPs but are insufficient to produce a continuous leading edge in fibroblasts lacking Arp2/3 complex. Myosin II is concentrated in arc-like regions of the leading edge in between FLPs, and its activity is required for coordinated advancement of these regions with formin-generated FLPs. We propose that actomyosin contraction acting against membrane tension advances the web of arcs between FLPs. Predictions of this model are verified experimentally. The dependence of myosin II in leading-edge advancement helps explain the previously reported defect in directional movement in the Arpc3-null fibroblasts. We provide further evidence that this defect is cell autonomous during chemotaxis. PMID:25568333

  1. Hypersonic Engine Leading Edge Experiments in a High Heat Flux, Supersonic Flow Environment

    NASA Technical Reports Server (NTRS)

    Gladden, Herbert J.; Melis, Matthew E.

    1994-01-01

    A major concern in advancing the state-of-the-art technologies for hypersonic vehicles is the development of an aeropropulsion system capable of withstanding the sustained high thermal loads expected during hypersonic flight. Three aerothermal load related concerns are the boundary layer transition from laminar to turbulent flow, articulating panel seals in high temperature environments, and strut (or cowl) leading edges with shock-on-shock interactions. A multidisciplinary approach is required to address these technical concerns. A hydrogen/oxygen rocket engine heat source has been developed at the NASA Lewis Research Center as one element in a series of facilities at national laboratories designed to experimentally evaluate the heat transfer and structural response of the strut (or cowl) leading edge. A recent experimental program conducted in this facility is discussed and related to cooling technology capability. The specific objective of the experiment discussed is to evaluate the erosion and oxidation characteristics of a coating on a cowl leading edge (or strut leading edge) in a supersonic, high heat flux environment. Heat transfer analyses of a similar leading edge concept cooled with gaseous hydrogen is included to demonstrate the complexity of the problem resulting from plastic deformation of the structures. Macro-photographic data from a coated leading edge model show progressive degradation over several thermal cycles at aerothermal conditions representative of high Mach number flight.

  2. Leading Edge Aerothermal Inverse Design of Hyersonic Vehicle Based on Homotopy Optimization Method

    NASA Astrophysics Data System (ADS)

    Cui, K.; Hu, S. C.; Gao, T. Y.; Wang, X. P.; Yang, G. W.

    2011-09-01

    Blunt leading edge with profiles of circular or power law shape is often used to decrease the aerodynamic heating of a vehicle when it flights into hypersonic regime. In order to further reduce the peak of heat flux of the leading edge, an inverse shape design method is presented in this paper. The leading edge is parameterized by using B-spline curve method. The hypersonic flow field and the heat flux distribution around the leading edge is evaluated by computational fluid dynamics. A homotopy method is developed as the optimizer. The computational heat flux distribution is driven by the optimizer to meet the objective . In order to verify the validity of the method, the inverse aerothermal design of a 2D leading edge with the thickness of 5 mm was carried out in the design condition Mach number is 6.5. The initial profile of the leading edge approximates to a circular arc. An H-type structured grid was used to discrete the computational domain. A 2D thin-layer Reynolds-averaged Navier-Stokes equations in strong conservation law form was employed as the solver. The results have shown that the peak value of the heat flux decreases about 4.6%.

  3. An experimental investigation of leading-edge vortex augmentation by blowing

    NASA Technical Reports Server (NTRS)

    Bradley, R. G.; Wray, W. O.; Smith, C. W.

    1974-01-01

    A wind tunnel test was conducted to determine the effects of over-the-wing blowing as a means of augmenting the leading-edge vortex flow of several pointed-tip, sharp-edged planforms. Arrow, delta, and diamond wings with leading-edge sweeps of 30 and 45 degrees were mounted on a body-of-revolution fuselage and tested in a low-speed wind tunnel at a Mach number of 0.2. Nozzle location data, pitch data, and flow-visualization pictures were obtained for a range of blowing rates. Results show pronounced increases in vortex lift due to the blowing.

  4. Edge Effects on Species Composition and Exotic Species Abundance in the North Carolina Piedmont

    Microsoft Academic Search

    Robert I. McDonald; Dean L. Urban

    2006-01-01

    Edges between forest and non-forest habitats often have significant effects on forest microclimate and resource availability, with corresponding effects on species composition and abundance. Exotic species are often increased in abundance near forest edges. This increase in abundance could be either because of the increase in resource availability near edges, or because of increased dispersal into forest edges. We measured

  5. Acoustic Receptivity of Mach 4.5 Boundary Layer with Leading- Edge Bluntness

    NASA Technical Reports Server (NTRS)

    Malik, Mujeeb R.; Balakumar, Ponnampalam

    2007-01-01

    Boundary layer receptivity to two-dimensional slow and fast acoustic waves is investigated by solving Navier-Stokes equations for Mach 4.5 flow over a flat plate with a finite-thickness leading edge. Higher order spatial and temporal schemes are employed to obtain the solution whereby the flat-plate leading edge region is resolved by providing a sufficiently refined grid. The results show that the instability waves are generated in the leading edge region and that the boundary-layer is much more receptive to slow acoustic waves (by almost a factor of 20) as compared to the fast waves. Hence, this leading-edge receptivity mechanism is expected to be more relevant in the transition process for high Mach number flows where second mode instability is dominant. Computations are performed to investigate the effect of leading-edge thickness and it is found that bluntness tends to stabilize the boundary layer. Furthermore, the relative significance of fast acoustic waves is enhanced in the presence of bluntness. The effect of acoustic wave incidence angle is also studied and it is found that the receptivity of the boundary layer on the windward side (with respect to the acoustic forcing) decreases by more than a factor of 4 when the incidence angle is increased from 0 to 45 deg. However, the receptivity coefficient for the leeward side is found to vary relatively weakly with the incidence angle.

  6. Subsonic balance and pressure investigation of a 60 deg delta wing with leading edge devices

    NASA Technical Reports Server (NTRS)

    Tingas, S. A.; Rao, D. M.

    1982-01-01

    Low supersonic wave drag makes the thin highly swept delta wing the logical choice for use on aircraft designed for supersonic cruise. However, the high-lift maneuver capability of the aircraft is limited by severe induced-drag penalties attributed to loss of potential flow leading-edge suction. This drag increase may be alleviated through leading-edge flow control to recover lost aerodynamic thrust through either retention of attached leading-edge flow to higher angles of attack or exploitation of the increased suction potential of separation-induced vortex flow. A low-speed wind-tunnel investigation was undertaken to examine the high-lift devices such as fences, chordwise slots, pylon vortex generators, leading-edge vortex flaps, and sharp leading-edge extensions. The devices were tested individually and in combinations in an attempt to improve high-alpha drag performance with a minimum of low-alpha drag penalty. This report presents an analysis of the force, moment, and static pressure data obtained in angles of attack up to 23 deg, at Mach and Reynolds numbers of 0.16 and 3.85 x 10 to the 6th power per meter, respectively. The results indicate that all the devices produced drag and longitudinal/lateral stability improvements at high lift with, in most cases, minor drag penalties at low angles of attack.

  7. The three-dimensional leading-edge vortex of a 'hovering' model hawkmoth

    PubMed Central

    Berg, C. van den; Ellington, C.P.

    1997-01-01

    Recent flow visualisation experiments with the hawkmoth, Manduca sexta, revealed small but clear leading-edge vortex and a pronounced three-dimensional flow. Details of this flow pattern were studied with a scaled-up, robotic insect ('the flapper') that accurately mimicked the wing movements of a hovering hawkmoth. Smoke released from the leading edge of the flapper wing confirmed the existence of a small, strong and stable leading-edge vortex, increasing in size from wingbase to wingtip. Between 25 and 75 per cent of the wing length, its diameter increased approximately from 10 to 50 per cent of the wing chord. The leading-edge vortex had a strong axial flow veolocity, which stabilized it and reduced its diamater. The vortex separated from the wing at approximately 75 per cent of the wing length and thus fed vorticity into a large, tangled tip vortex. If the circulation of the leading-edge vortex were fully used for lift generation, it could support up to two-thirds of the hawkmoth's weight during the downstroke. The growth of this circulation with time and spanwise position clearly identify dynamic stall as the unsteady aerodynamic mechanism responsible for high lift production by hovering hawkmoths and possibly also by many other insect species.

  8. Extension of leading-edge-suction analogy to wings with separated flow around the side edges at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Lamar, J. E.

    1974-01-01

    A method for determining the lift, drag, and pitching moment for wings which have separated flow at the leading and side edges with subsequently reattached flow downstream and inboard is presented. Limiting values of the contribution to lift of the side-edge reattached flow are determined for rectangular wings. The general behavior of this contribution is computed for rectangular, cropped-delta, cropped-diamond, and cropped-arrow wings. Comparisons of the results of the method and experiment indicate reasonably good correlation of the lift, drag, and pitching moment for a wide planform range. The agreement of the method with experiment was as good as, or better than, that obtained by other methods. The procedure is computerized and is available from COSMIC as NASA Langley computer program A0313.

  9. The isotopic composition of lead in Easter Island rhyolite

    Microsoft Academic Search

    C. Patterson; B. Duffield

    1963-01-01

    A sample of Cerro Ourito obsidian, a rhyolite from the Mount Ourito flow ; on Easter Island, was analyzed for its lead isotope composition. The isotopic ; compositions of the leads were found to be identical to the compositions found in ; a dredge sample of K-feldspar, which was collected about 1000 miles apart from ; the rhyolite on the

  10. Improved Method for Prediction of Attainable Wing Leading-Edge Thrust

    NASA Technical Reports Server (NTRS)

    Carlson, Harry W.; McElroy, Marcus O.; Lessard, Wendy B.; McCullers, L. Arnold

    1996-01-01

    Prediction of the loss of wing leading-edge thrust and the accompanying increase in drag due to lift, when flow is not completely attached, presents a difficult but commonly encountered problem. A method (called the previous method) for the prediction of attainable leading-edge thrust and the resultant effect on airplane aerodynamic performance has been in use for more than a decade. Recently, the method has been revised to enhance its applicability to current airplane design and evaluation problems. The improved method (called the present method) provides for a greater range of airfoil shapes from very sharp to very blunt leading edges. It is also based on a wider range of Reynolds numbers than was available for the previous method. The present method, when employed in computer codes for aerodynamic analysis, generally results in improved correlation with experimental wing-body axial-force data and provides reasonable estimates of the measured drag.

  11. Influence of blade angle distribution along leading edge on cavitation performance of a centrifugal pump

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Tan, L.; Cao, S. L.; Wang, Y. C.; Meng, G.; Qu, W. S.

    2015-01-01

    The influence of blade angle distribution along leading edge on cavitation performance of centrifugal pumps is analysed in the present paper. Three sets of blade angle distribution along leading edge for three blade inlet angles are chosen to design nine centrifugal pump impellers. The RNG k-epsilon turbulence model and the Zwart-Gerber-Belamri cavitation model are employed to simulate the cavitation flows in centrifugal pumps with different impellers and the same volute. The numerical results are compared with the experimental data, and the comparison proves that the numerical simulation can accurately predict the cavitation performance of centrifugal pumps. On the basis of the numerical simulations, the pump head variations with pump inlet pressure, and the flow details in centrifugal pump are revealed to demonstrate the influence of blade angle distribution along leading edge on cavitation performances of centrifugal pumps.

  12. An analytical design procedure for the determination of effective leading edge extensions on thick delta wings

    NASA Technical Reports Server (NTRS)

    Ghaffari, F.; Chaturvedi, S. K.

    1984-01-01

    An analytical design procedure for leading edge extensions (LEE) was developed for thick delta wings. This LEE device is designed to be mounted to a wing along the pseudo-stagnation stream surface associated with the attached flow design lift coefficient of greater than zero. The intended purpose of this device is to improve the aerodynamic performance of high subsonic and low supersonic aircraft at incidences above that of attached flow design lift coefficient, by using a vortex system emanating along the leading edges of the device. The low pressure associated with these vortices would act on the LEE upper surface and the forward facing area at the wing leading edges, providing an additional lift and effective leading edge thrust recovery. The first application of this technique was to a thick, round edged, twisted and cambered wing of approximately triangular planform having a sweep of 58 deg and aspect ratio of 2.30. The panel aerodynamics and vortex lattice method with suction analogy computer codes were employed to determine the pseudo-stagnation stream surface and an optimized LEE planform shape.

  13. High current composite superconductor electrical power lead

    Microsoft Academic Search

    G. O. Zimmerman; Y. Z. Negm; M. Z. Tahar; S. Buczkowski; R. E. Powers; R. McConeghy

    1993-01-01

    We have developed and tested a nominal 100A lead to conduct electrical current between room and helium temperatures. The lead affords considerable savings in refrigeration costs by incorporating elements made of high transition temperature superconductors (HTSC). The lead was designed to operate both in the conduction mode and in the vapor cooled mode. Several leads have been combined to make

  14. Transonic Reynolds Number and Leading-Edge Bluntness Effects on a 65 deg Delta Wing

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    2003-01-01

    A 65 degree delta wing has been tested in the National Transonic Facility (NTF) at mean aerodynamic chord Reynolds numbers from 6 million to 120 million at subsonic and transonic speeds. The configuration incorporated a systematic variation of the leading edge bluntness. The analysis for this paper is focused on the Reynolds number and bluntness effects at transonic speeds (M = 0.85) from this data set. The results show significant effects of both these parameters on the onset and progression of leading edge vortex separation.

  15. Experimental Investigation of Dynamic Stall on an Airfoil with Leading Edge Tubercles

    NASA Astrophysics Data System (ADS)

    Hrynuk, John; Bohl, Douglas

    2013-11-01

    Humpback whales are unique in that their flippers have leading edge ``bumps'' or tubercles. Past work on airfoils modeled after whale flippers has centered on the static aerodynamic characteristics of these airfoils. In the current work, NACA 0012 airfoils modified with leading edge tubercles are investigated to determine the effect of the tubercles on the dynamic characteristics, specifically on dynamic stall vortex formation, of the airfoils. Molecular Tagging Velocimetry (MTV) is used to measure the flow field around the modified airfoils at nondimensional pitch rates of ? = 0.1, 0.2, and 0.4. The results show that the characteristics of the dynamics stall vortex are dependent on the location relative to the peak or valley of the leading edge bumps. These characteristics are also found to be different than those observed in dynamic stall on a smooth leading edge airfoil. In specific, the location of the dynamic stall vortex appears to form further aft on the airfoil for the tubercle case versus the smooth case. Humpback whales are unique in that their flippers have leading edge ``bumps'' or tubercles. Past work on airfoils modeled after whale flippers has centered on the static aerodynamic characteristics of these airfoils. In the current work, NACA 0012 airfoils modified with leading edge tubercles are investigated to determine the effect of the tubercles on the dynamic characteristics, specifically on dynamic stall vortex formation, of the airfoils. Molecular Tagging Velocimetry (MTV) is used to measure the flow field around the modified airfoils at nondimensional pitch rates of ? = 0.1, 0.2, and 0.4. The results show that the characteristics of the dynamics stall vortex are dependent on the location relative to the peak or valley of the leading edge bumps. These characteristics are also found to be different than those observed in dynamic stall on a smooth leading edge airfoil. In specific, the location of the dynamic stall vortex appears to form further aft on the airfoil for the tubercle case versus the smooth case. This work supported by NSF Grant # 0845882.

  16. Transonic Reynolds Number and Leading-Edge Bluntness Effects on a 65 deg Delta Wing

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    2003-01-01

    A 65 deg delta wing has been tested in the National Transonic Facility (NTF) at mean aerodynamic chord Reynolds numbers from 6 million to 120 million at subsonic and transonic speeds. The configuration incorporated a systematic variation of the leading edge bluntness. The analysis for this paper is focused on the Reynolds number and bluntness effects at transonic speeds (M = 0.85) from this data set. The results show significant effects of both these parameters on the onset and progression of leading- edge vortex separation.

  17. Transonic Reynolds Number and Leading-Edge Bluntness Effects on a 65 deg Delta Wing

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    2003-01-01

    A 65 deg delta wing has been tested in the National Transonic Facility (NTF) at mean aerodynamic chord Reynolds numbers from 6 million to 120 million at subsonic and transonic speeds. The configuration incorporated a systematic variation of the leading edge bluntness. The analysis for this paper is focused on the Reynolds number and bluntness effects at transonic speeds (M=0.85) from this data set. The results show significant effects of both these parameters on the onset and progression of leading-edge vortex separation.

  18. Reynolds Number, Compressibility, and Leading-Edge Bluntness Effects on Delta-Wing Aerodynamics

    NASA Technical Reports Server (NTRS)

    Luckring, James M.

    2004-01-01

    An overview of Reynolds number, compressibility, and leading edge bluntness effects is presented for a 65 degree delta wing. The results of this study address both attached and vortex-flow aerodynamics and are based upon a unique data set obtained in the NASA-Langley National Transonic Facility (NTF) for i) Reynolds numbers ranging from conventional wind-tunnel to flight values, ii) Mach numbers ranging from subsonic to transonic speeds, and iii) leading-edge bluntness values that span practical slender wing applications. The data were obtained so as to isolate the subject effects and they present many challenges for Computational Fluid Dynamics (CFD) studies.

  19. Modeling of liquid hydrogen flows and heat transfer in leading edge coolant systems

    NASA Astrophysics Data System (ADS)

    Carlisle, Robert G.; Wood, Houston G., III

    1991-01-01

    The results of a numerical model analogous to the flow of liquid hydrogen coolant within the leading edge of the NASP engine structure is presented. The model involves the marching of the finite difference representation of the two dimensional reduced Navier-Stokes equations down a coolant passage. The model includes consideration of the effects of the variable thermophysical properties of hydrogen, axial conduction within the leading edge material, and the coupling of the energy and momentum equations in the flow. It predicts that the maximum temperature experienced in the simplified system described would be excessive under the worst-case heat transfer loads.

  20. Effect of leading-edge geometry on boundary-layer receptivity to freestream sound

    NASA Technical Reports Server (NTRS)

    Lin, Nay; Reed, Helen L.; Saric, W. S.

    1991-01-01

    The receptivity to freestream sound of the laminar boundary layer over a semi-infinite flat plate with an elliptic leading edge is simulated numerically. The incompressible flow past the flat plate is computed by solving the full Navier-Stokes equations in general curvilinear coordinates. A finite-difference method which is second-order accurate in space and time is used. Spatial and temporal developments of the Tollmien-Schlichting wave in the boundary layer, due to small-amplitude time-harmonic oscillations of the freestream velocity that closely simulate a sound wave travelling parallel to the plate, are observed. The effect of leading-edge curvature is studied by varying the aspect ratio of the ellipse. The boundary layer over the flat plate with a sharper leading edge is found to be less receptive. The relative contribution of the discontinuity in curvature at the ellipse-flat-plate juncture to receptivity is investigated by smoothing the juncture with a polynomial. Continuous curvature leads to less receptivity. A new geometry of the leading edge, a modified super ellipse, which provides continuous curvature at the juncture with the flat plate, is used to study the effect of continuous curvature and inherent pressure gradient on receptivity.

  1. Visualization of the separation and subsequent transition near the leading edge of airfoils

    NASA Technical Reports Server (NTRS)

    Arena, A. V.; Mueller, T. J.

    1978-01-01

    A visual study was performed using the low speed smoke wind tunnels with the objective of obtaining a better understanding of the structure of leading edge separation bubbles on airfoils. The location of separation, transition and reattachment for a cylindrical nose constant-thickness airfoil model were obtained from smoke photographs and surface oil flow techniques. These data, together with static pressure distributions along the leading edge and upper surface of the model, produced the influence of Reynolds number, angle of attack, and trailing edge flap angle on the size and characteristics of the bubble. Additional visual insight into the unsteady nature of the separation bubble was provided by high speed 16 mm movies. The 8 mm color movies taken of the surface oil flow supported the findings of the high speed movies and clearly showed the formation of a scalloped spanwise separation line at the higher Reynolds number.

  2. Critique of the Hughes Aircraft shuttle Ku band leading edge bit synchronizer

    NASA Technical Reports Server (NTRS)

    Holmes, J. K.

    1980-01-01

    A bit synchronizer is analyzed via timing diagrams in a noise-free environment. It is believed that this new bit synchronizer will track the rising edge of the data bits with 25% asymmetry and up to a 90 deg phase shift between the received clock and data bit timing. In addition, the data bits will be demodulated correctly. It is not true that phase shifts larger than 90 deg will necessarily be corrected by this bit synchronizer. However, the specifications currently require the loop to operate over only a + or - 75 deg phase shift between the received data stream leading edges and the bit synchronizer leading edges; consequently, there should be no problem.

  3. Influence of flow injection angle on a leading-edge horseshoe vortex Alan A. Thrift

    E-print Network

    Thole, Karen A.

    ° injection. For low momentum injection, a vortex turning into the end- wall was formed at all injection injection at 90° and 65° while a leading-edge vortex turning away from the wall was formed for 45° and 30 and Dannhauer [15] utilized an axisymmetric contoured blade passage to investigate the effects of tangential

  4. Space shuttle wing leading edge heating environment prediction derived from development flight data

    NASA Technical Reports Server (NTRS)

    Cunningham, J. A.; Haney, J. W., Jr.

    1983-01-01

    An analytical program is in progress at Rockwell International to revise wing leading edge heating predictions in order to improve correlation with STS-1 to -5 flight radiometer data. This paper discusses the methods that have been used to improve agreement between prediction and flight and summarizes the aerodynamic correlations which, when updated, will be used to analyze future orbiter missions.

  5. Effects of Fin Leading Edge Sweep on Shock-Shock Interaction at Mach 6

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Nowak, Robert J.

    1996-01-01

    The effects of fin leading edge sweep on peak heating rates due to shock-shock interaction have been experimentally examined in the Langley 20-Inch Mach 6 Tunnel. The shock interaction was produced by the intersection of a planar incident shock (16.8 deg shock angle relative to the freestream, generated by a 9 deg wedge) with the bow shock formed around a O.5-inch diameter cylindrical leading edge fin. Heating distributions along the leading edge stagnation line have been obtained using densely spaced thin film resistive-type sensors. Schlieren images were obtained to illustrate the very complex shock-shock interactions. The fin leading edge sweep angle was varied from 15-degrees swept back to 45-degrees swept forward for a freestream unit Reynolds number of 2 x 10(exp 6)/ft. Two models were utilized during the study, one with 0.025-inch spacing between gage centers, and the other 0.015-inch spacing. Gage spatial resolution on the order of 0.015-in appeared to accurately capture the narrow spike in heating. Peak heating due to shock interaction was maximized when the fin was swept forward 15 deg and 25 deg, both promoting augmentations about 7 times the baseline value. The schlieren images for these cases revealed Type 4 and Type 3 interactions, respectively.

  6. Influence of Trenched Shaped Holes on Turbine Blade Leading Edge Film Cooling

    Microsoft Academic Search

    Sima Baheri Islami; S. P. Alavi Tabrizi; Bassam A. Jubran; Esmaeil Esmaeilzadeh

    2010-01-01

    Computational results are presented for a row of coolant injection holes on each side of a high-pressure turbine blade near the leading edge. Seven hole configurations have been used to show the effect of various diffusion shaped holes and their trenching on film cooling effectiveness: (1) cylindrical film hole; (2) forward diffused film hole; (3) trenched forward diffused film hole;

  7. A leading edge heating array and a flat surface heating array - operation, maintenance and repair manual

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A general description of the leading edge/flat surface heating array is presented along with its components, assembly instructions, installation instructions, operation procedures, maintenance instructions, repair procedures, schematics, spare parts lists, engineering drawings of the array, and functional acceptance test log sheets. The proper replacement of components, correct torque values, step-by-step maintenance instructions, and pretest checkouts are described.

  8. Leading Edge Flow Structure of a Dynamically Pitching NACA 0012 Airfoil

    E-print Network

    Pruski, Brandon

    2012-11-27

    the 1/4 chord at a reduced frequency, k = 0.1. As expected, on the upstroke the flow remains attached in the leading edge region above the static stall angle, whereas during downstroke, the flow remains separated below the static stall angle. A phase...

  9. Leading Edge Cell 125, May 19, 2006 2006 Elsevier Inc. 655

    E-print Network

    Howard, Martin

    as endogenous signals transmitted by plant hormones. Cold temperature and stress affect germination- sition from the embryonic to the postembryonic mode of growth. After germination, the seedling passesLeading Edge Review Cell 125, May 19, 2006 ©2006 Elsevier Inc. 655 Introduction Plants undergo

  10. Low Reynolds Number Aerodynamics of Leading Edge Flaps A. R. Jones

    E-print Network

    Alonso, Juan J.

    to the ow which, at high angles of attack, propagate over the airfoil surface and prevent the formation. Leading edge ap performance is compared to that of conventional surface-mounted transition trips over a range of Reynolds numbers from 4:0 ¢104 to 1:2 ¢105. It was found that while surface-mounted tape

  11. Low Reynolds Number Flow Dynamics of a Thin Airfoil with an Actuated Leading Edge

    E-print Network

    Apte, Sourabh V.

    Heather Johnson Sourabh V. Apte James A. Liburdy School of Mechanical Industrial and Manufacturing dynamic variations in the effective angle of attack through specified oscilla- tions (flapping). This leading edge actuation results in transient variations in the effective camber and angle of attack

  12. 972 The Leading Edge August 2013 Controlled-source electromagnetics (CSEM) is a geo-

    E-print Network

    Snieder, Roel

    972 The Leading Edge August 2013 C S E M Controlled-source electromagnetics (CSEM) is a geo- physical electromagnetic method used to detect hydrocarbon reservoirs in marine settings. Used mainly gained from CSEM survey data. Introduction Controlled-source electromagnetics (CSEM) is a geophysi- cal

  13. Closed-loop control of leading-edge and tip vortices for small UAV

    Microsoft Academic Search

    Tim Colonius; Clarence W. Rowley; Gilead Tadmor; David R. Williams; Kunihiko Taira; Will B. Dickson; Morteza Gharib; Michael Dickinson

    Summary We present plans and preliminary results for a recently initiated multidis- ciplinary research effort aimed at closed-loop control of three-dimensional leading edge and tip vortices on low aspect ratio wings relevant to micro and small unmanned air vehicles. The goal of control is to extend the parameter space for which steady lift can be maintained at high angles of

  14. Leading edge boundary layer receptivitivy to oblique free stream acoustic waves on parabolic bodies

    Microsoft Academic Search

    Ercan Erturk

    1999-01-01

    In this study, the effect of the incidence angle of free strewn acoustic waves on the leading edge boundary layer receptivity of a two dimensional laminar incompressible flow over parabolic bodies is investigated. For this, the full Navier-Stokes equations in parabolic coordinates in streamfunction and vorticity variables were solved numerically. For the receptivity problem a spatial approach is used. With

  15. The Leading Edge: A Career Development Workshop Series for Young Adults. Participant Workbook.

    ERIC Educational Resources Information Center

    Canadian Career Development Foundation, Ottawa (Ontario).

    This booklet is designed for participants in "The Leading Edge: A Career Development Workshop Series for Young Adults." It provides the 27 participant handouts for the six workshops in the series. The first in the series, "Setting the Stage: The Changing World of Work," is a workshop to clarify what is occurring in the world of work and apply that…

  16. A role for actin arcs in the leading edge advance of migrating cells

    PubMed Central

    Burnette, Dylan T.; Manley, Suliana; Sengupta, Prabuddha; Sougrat, Rachid; Davidson, Michael W.; Kachar, Bechara; Lippincott-Schwartz, Jennifer

    2013-01-01

    The migration of epithelial cells requires coordination of two actin modules at the leading edge: one in the lamellipodium and one in the lamella. How the two modules connect mechanistically to regulate directed edge motion is not understood. Using a combination of live-cell imaging and photoactivation approaches, we demonstrate that the actin network of the lamellipodium evolves spatio-temporally into the lamella. This occurs during the retraction phase of edge motion when myosin II redistributes to the cell edge and condenses the lamellipodial-actin into an arc-like bundle (i.e., actin arc) parallel to the edge. The newly formed actin arc moves rearward and couples to focal adhesions as it enters the lamella. We propose net edge extension occurs by nascent focal adhesions advancing the site at which new actin arcs slow down and form the base of the next protrusion event. The actin arc thus serves as a structural element underlying the temporal and spatial connection between the lamellipodium and lamella to drive directed cell motion. PMID:21423177

  17. Design & fabrication of two seated aircraft with an advanced rotating leading edge wing

    NASA Astrophysics Data System (ADS)

    Al Ahmari, Saeed Abdullah Saeed

    The title of this thesis is "Design & Fabrication of two Seated Aircraft with an Advanced Rotating Leading Edge Wing", this gives almost a good description of the work has been done. In this research, the moving surface boundary-layer control (MSBC) concept was investigated and implemented. An experimental model was constructed and tested in wind tunnel to determine the aerodynamic characteristics using the leading edge moving surface of modified semi-symmetric airfoil NACA1214. The moving surface is provided by a high speed rotating cylinder, which replaces the leading edge of the airfoil. The angle of attack, the cylinder surfaces velocity ratio Uc/U, and the flap deflection angle effects on the lift and drag coefficients and the stall angle of attack were investigated. This new technology was applied to a 2-seat light-sport aircraft that is designed and built in the Aerospace Engineering Department at KFUPM. The project team is led by the aerospace department chairman Dr. Ahmed Z. AL-Garni and Dr. Wael G. Abdelrahman and includes graduate and under graduate student. The wing was modified to include a rotating cylinder along the leading edge of the flap portion. This produced very promising results such as the increase of the maximum lift coefficient at Uc/U=3 by 82% when flaps up and 111% when flaps down at 40° and stall was delayed by 8degrees in both cases. The laboratory results also showed that the effective range of the leading-edge rotating cylinder is at low angles of attack which reduce the need for higher angles of attack for STOL aircraft.

  18. Zinc halogen battery electrolyte composition with lead additive

    DOEpatents

    Henriksen, Gary L. (Troy, MI)

    1981-01-01

    This disclosure relates to a zinc halogen battery electrolyte composition containing an additive providing improved zinc-on-zinc recyclability. The improved electrolyte composition involves the use of a lead additive to inhibit undesirable irregular plating and reduce nodular or dendritic growth on the electrode surface. The lead-containing electrolyte composition of the present invention appears to influence not only the morphology of the base plate zinc, but also the morphology of the zinc-on-zinc replate. In addition, such lead-containing electrolyte compositions appear to reduce hydrogen formation.

  19. A theoretical investigation of the aerodynamics of low-aspect-ratio wings with partial leading-edge separation

    NASA Technical Reports Server (NTRS)

    Mehrotra, S. C.; Lan, C. E.

    1978-01-01

    A numerical method is developed to predict distributed and total aerodynamic characteristics for low aspect-ratio wings with partial leading-edge separation. The flow is assumed to be steady and inviscid. The wing boundary condition is formulated by the quasi-vortex-lattice method. The leading-edge separated vortices are represented by discrete free vortex elements which are aligned with the local velocity vector at mid-points to satisfy the force free condition. The wake behind the trailing-edge is also force free. The flow tangency boundary condition is satisfied on the wing, including the leading- and trailing-edges. Comparison of the predicted results with complete leading-edge separation has shown reasonably good agreement. For cases with partial leading-edge separation, the lift is found to be highly nonlinear with angle of attack.

  20. Composition of White Lead and Paints. 

    E-print Network

    Fraps, G. S. (George Stronach)

    1908-01-01

    ~ts. The first class includes white lead, zinc oxide, pure linseed oil, turpentine, and pure colors. In the second class belongs carbonate of lime, silicates, barptes, petroleum ~woclucts, water, etc. STANDARD PIGMENTS AND OILS. TT'hife Lead.-WI-:te lead iq... paint that flom easily from the brush, whereas, most other pigments do not ~~~crk well. It appears to enter into combination with linseed cil, and form a coating of great permanency. Zinc Oxide.-This is also called zinc white and '-Chinese white...

  1. Directly deposited fluxless lead-indium-gold composite solder

    Microsoft Academic Search

    Chen Y. Wang; Yi C. Chen; Chin C. Lee

    1993-01-01

    Lead-indium-gold multilayer composite solder has been developed for bonding electronic devices without the use of flux. The composite is deposited directly on GaAs wafers in high vacuum to inhibit indium oxidation. The gold layer on the composite further protects the indium layer from oxidation in atmosphere. Using the composite solder without flux, GaAs dies have been successfully bonded to alumina

  2. Cooling Strategies for Vane Leading Edges in a Syngas Environment Including Effects of Deposition and Turbulence

    SciTech Connect

    Ames, Forrest; Bons, Jeffrey

    2014-09-30

    The Department of Energy has goals to move land based gas turbine systems to alternate fuels including coal derived synthetic gas and hydrogen. Coal is the most abundant energy resource in the US and in the world and it is economically advantageous to develop power systems which can use coal. Integrated gasification combined cycles are (IGCC) expected to allow the clean use of coal derived fuels while improving the ability to capture and sequester carbon dioxide. These cycles will need to maintain or increase turbine entry temperatures to develop competitive efficiencies. The use of coal derived syngas introduces a range of potential contaminants into the hot section of the gas turbine including sulfur, iron, calcium, and various alkali metals. Depending on the effectiveness of the gas clean up processes, there exists significant likelihood that the remaining materials will become molten in the combustion process and potentially deposit on downstream turbine surfaces. Past evidence suggests that deposition will be a strong function of increasing temperature. Currently, even with the best gas cleanup processes a small level of particulate matter in the syngas is expected. Consequently, particulate deposition is expected to be an important consideration in the design of turbine components. The leading edge region of first stage vanes most often have higher deposition rates than other areas due to strong fluid acceleration and streamline curvature in the vicinity of the surface. This region remains one of the most difficult areas in a turbine nozzle to cool due to high inlet temperatures and only a small pressure ratio for cooling. The leading edge of a vane often has relatively high heat transfer coefficients and is often cooled using showerhead film cooling arrays. The throat of the first stage nozzle is another area where deposition potentially has a strongly adverse effect on turbine performance as this region meters the turbine inlet flow. Based on roughness levels found on in service vanes (Bons, et al., 2001, up to 300 microns) flow blockage in first stage turbine nozzles can easily reach 1 to 2 percent in conventional turbines. Deposition levels in syngas fueled gas turbines are expected to be even more problematic. The likelihood of significant deposition to the leading edge of vanes in a syngas environment indicates the need to examine this effect on the leading edge cooling problem. It is critical to understand the influence of leading edge geometry and turbulence on deposition rates for both internally and showerhead cooled leading edge regions. The expected level of deposition in a vane stagnation region not only significantly changes the heat transfer problem but also suggests that cooling arrays may clog. Addressing the cooling issue suggests a need to better understand stagnation region heat transfer with realistic roughness as well as the other variables affecting transport near the leading edge. Also, the question of whether leading edge regions can be cooled internally with modern cooling approaches should also be raised, thus avoiding the clogging issue. Addressing deposition in the pressure side throat region of the nozzle is another critical issue for this environment. Issues such as examining the protective effect of slot and full coverage discrete-hole film cooling on limiting deposition as well as the influence of roughness and turbulence on effectiveness should be raised. The objective of this present study is to address these technical challenges to help enable the development of high efficiency syngas tolerant gas turbine engines.

  3. Single velocity-component modeling of leading edge turbulence interaction noise.

    PubMed

    Gill, J; Zhang, X; Joseph, P

    2015-06-01

    A computational aeroacoustics approach is used to predict leading edge turbulence interaction noise for real airfoils. One-component (transverse), two-component (transverse and streamwise), and three-component (transverse, streamwise, and spanwise) synthesized turbulence disturbances are modeled instead of harmonic transverse gusts, to which previous computational studies of leading edge noise have often been confined. The effects of the inclusion of streamwise and spanwise disturbances on the noise are assessed. It is shown that accurate noise predictions can be made by modeling only transverse disturbances which reduces the computational expense of simulations. The accuracy of using only transverse disturbances is assessed for symmetric and cambered airfoils, and also for airfoils at non-zero angle of attack. PMID:26093411

  4. Integrated production overlay field-by-field control for leading edge technology nodes

    NASA Astrophysics Data System (ADS)

    Chung, Woong Jae; Tristan, John; Gutjahr, Karsten; Subramany, Lokesh; Li, Chen; Sun, Yulei; Yelverton, Mark; Kim, Young Ki; Kim, Jeong Soo; Huang, Chin-Chou Kevin; Pierson, William; Karur-Shanmugam, Ramkumar; Riggs, Brent; Jug, Sven; Robinson, John C.; Yap, Lipkong; Ramanathan, Vidya

    2014-04-01

    As photolithography will continue with 193nm immersion multiple patterning technologies for the leading edge HVM process node, the production overlay requirement for critical layers in logic devices has almost reached the scanner hardware performance limit. To meet the extreme overlay requirements in HVM production environment, this study investigates a new integrated overlay control concept for leading edge technology nodes that combines the run-to-run (R2R) linear or high order control loop, the periodic field-by-field or correction per exposure (CPE) wafer process signature control loop, and the scanner baseline control loop into a single integrated overlay control path through the fab host APC system. The goal is to meet the fab requirements for overlay performance, lower the cost of ownership, and provide freedom of control methodology. In this paper, a detailed implementation of this concept will be discussed, along with some preliminary results.

  5. Wind-tunnel studies of advanced cargo aircraft concepts. [leading edge vortex flaps for drag reduction

    NASA Technical Reports Server (NTRS)

    Rao, D. M.; Goglia, G. L.

    1981-01-01

    Accomplishments in vortex flap research are summarized. A singular feature of the vortex flap is that, throughout the range of angle of attack range, the flow type remains qualitatively unchanged. Accordingly, no large or sudden change in the aerodynamic characteristics, as happens when forcibly maintained attached flow suddenly reverts to separation, will occur with the vortex flap. Typical wind tunnel test data are presented which show the drag reduction potential of the vortex flap concept applied to a supersonic cruise airplane configuration. The new technology offers a means of aerodynamically augmenting roll-control effectiveness on slender wings at higher angles of attack by manipulating the vortex flow generated from leading edge separation. The proposed manipulator takes the form of a flap hinged at or close to the leading edge, normally retracted flush with the wing upper surface to conform to the airfoil shape.

  6. A Reynolds Number Study of Wing Leading-Edge Effects on a Supersonic Transport Model at Mach 0.3

    NASA Technical Reports Server (NTRS)

    Williams, M. Susan; Owens, Lewis R., Jr.; Chu, Julio

    1999-01-01

    A representative supersonic transport design was tested in the National Transonic Facility (NTF) in its original configuration with small-radius leading-edge flaps and also with modified large-radius inboard leading-edge flaps. Aerodynamic data were obtained over a range of Reynolds numbers at a Mach number of 0.3 and angles of attack up to 16 deg. Increasing the radius of the inboard leading-edge flap delayed nose-up pitching moment to a higher lift coefficient. Deflecting the large-radius leading-edge flap produced an overall decrease in lift coefficient and delayed nose-up pitching moment to even higher angles of attack as compared with the undeflected large- radius leading-edge flap. At angles of attack corresponding to the maximum untrimmed lift-to-drag ratio, lift and drag coefficients decreased while lift-to-drag ratio increased with increasing Reynolds number. At an angle of attack of 13.5 deg., the pitching-moment coefficient was nearly constant with increasing Reynolds number for both the small-radius leading-edge flap and the deflected large-radius leading-edge flap. However, the pitching moment coefficient increased with increasing Reynolds number for the undeflected large-radius leading-edge flap above a chord Reynolds number of about 35 x 10 (exp 6).

  7. Low Reynolds Number Flow Dynamics of a Thin Airfoil with an Actuated Leading Edge using Direct Numerical Simulation

    Microsoft Academic Search

    Kevin Drost; Sourabh Apte

    2010-01-01

    Direct numerical simulations are performed to investigate the effect of a movable leading edge on the unsteady flow at high angles of attack over a flat, thin airfoil at Reynolds number of 14700 based on the chord length. The leading edge of the airfoil is hinged at one-third chord length allowing dynamic variations in the effective angle of attack through

  8. Visualization of leading edge vortices on a series of flat plate delta wings

    NASA Technical Reports Server (NTRS)

    Payne, Francis M.; Ng, T. Terry; Nelson, Robert C.

    1991-01-01

    A summary of flow visualization data obtained as part of NASA Grant NAG2-258 is presented. During the course of this study, many still and high speed motion pictures were taken of the leading edge vortices on a series of flat plate delta wings at varying angles of attack. The purpose is to present a systematic collection of photographs showing the state of vortices as a function of the angle of attack for the four models tested.

  9. Leading-Edge Boundary Layer Flow (Prandtl's Vision, Current Developments and Future Perspectives)

    Microsoft Academic Search

    V. Theofilis; A. V. Fedorov; S. S. Collis

    2004-01-01

    The first viscous compressible three-dimensional BiGlobal linear instability analysis of leading-edge boundary layer flow has been performed. Results have been obtained by independent application of asymptotic analysis and numerical solution of the appropriate partial-differential eigenvalue problem. It has been shown that the classification of three-dimensional linear instabilities of the related incompressible flow (13) into symmetric and anti- symmetric mode expansions

  10. Leading-edge receptivity of a hypersonic boundary layer on a flat plate

    Microsoft Academic Search

    A. A. Maslov; A. N. Shiplyuk; A. A. Sidorenko; D. Arnal

    2001-01-01

    Experimental investigations of the boundary layer receptivity, on the sharp leading edge of a at plate, to acoustic waves induced by two-dimensional and three- dimensional perturbers, have been performed for a free-stream Mach number M[infty infinity] = 5.92. The fields of controlled free-stream disturbances were studied. It was shown that two-dimensional and three-dimensional perturbers radiate acoustic waves and that these

  11. Boundary layer leading-edge receptivity to sound at incidence angles

    Microsoft Academic Search

    THOMAS C. C ORKE

    2001-01-01

    The leading-edge receptivity to acoustic waves of two-dimensional parabolic bodies was investigated using a spatial solution of the Navier-Stokes equations in vortic- ity\\/streamfunction form in parabolic coordinates. The free stream is composed of a uniform flow with a superposed periodic velocity fluctuation of small amplitude. The method follows that of Haddad & Corke (1998) in which the solution for the

  12. Receptivity to Sound of an Elliptic Leading Edge on a Flat Plate

    Microsoft Academic Search

    J. Wanderley; T. C. Corke

    1998-01-01

    The leading edge receptivity to acoustic waves of two-dimensional bodies is investigated using a spatial solution of the Navier-Stokes equations in vorticity\\/stream function form in general curvilinear coordinates. The free-stream is composed of a uniform flow with a superposed periodic velocity fluctuation of small amplitude. The method follows that of Haddad & Corke(J. Fluid Mech.), 368, 1998 in which the

  13. Effects of Nose Radius and Aerodynamic Loading on Leading Edge Receptivity

    NASA Technical Reports Server (NTRS)

    Hammerton, P. W.; Kerschen, E. J.

    1998-01-01

    An analysis is presented of the effects of airfoil thickness and mean aerodynamic loading on boundary-layer receptivity in the leading-edge region. The case of acoustic free-stream disturbances, incident on a thin cambered airfoil with a parabolic leading edge in a low Mach number flow, is considered. An asymptotic analysis based on large Reynolds number is developed, supplemented by numerical results. The airfoil thickness distribution enters the theory through a Strouhal number based on the nose radius of the airfoil, S = (omega)tau(sub n)/U, where omega is the frequency of the acoustic wave and U is the mean flow speed. The influence of mean aerodynamic loading enters through an effective angle-of-attack parameter ti, related to flow around the leading edge from the lower surface to the upper. The variation of the receptivity level is analyzed as a function of S, mu, and characteristics of the free-stream acoustic wave. For an unloaded leading edge, a finite nose radius dramatically reduces the receptivity level compared to that for a flat plate, the amplitude of the instability waves in the boundary layer being decreased by an order of magnitude when S = 0.3. Modest levels of aerodynamic loading are found to further decrease the receptivity level for the upper surface of the airfoil, while an increase in receptivity level occurs for the lower surface. For larger angles of attack close to the critical angle for boundary layer separation, a local rise in the receptivity level occurs for the upper surface, while for the lower surface the receptivity decreases. The effects of aerodynamic loading are more pronounced at larger values of S. Oblique acoustic waves produce much higher receptivity levels than acoustic waves propagating downstream parallel to the airfoil chord.

  14. Boundary layer receptivity to free-stream sound on elliptic leading edges of flat plates

    Microsoft Academic Search

    Juan B. V. Wanderley; Thomas C. Corke

    2001-01-01

    The leading-edge receptivity to acoustic waves of two-dimensional bodies is investigated using a spatial solution of the Navier Stokes equations in vorticity\\/stream function form in general curvilinear coordinates. The free stream is composed of a uniform flow with a superposed periodic velocity fluctuation of small amplitude. The method follows that of Haddad & Corke (1998), in which the solution for

  15. Relative Kinematics of the Leading Edge and the Prominence in Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Mari?i?, Darije; Vršnak, Bojan; Roša, Dragan

    2009-11-01

    We present a statistical analysis of the relationship between the kinematics of the leading edge and the eruptive prominence in coronal mass ejections (CMEs). We study the acceleration phase of 18 CMEs in which kinematics was measured from the pre-eruption stage up to the post-acceleration phase. In all CMEs, the three part structure (the leading edge, the cavity, and the prominence) was clearly recognizable from early stages of the eruption. The data show a distinct correlation between the duration of the leading edge (LE) acceleration and eruptive prominence (EP) acceleration. In the majority of events (78%) the acceleration phase onset of the LE is very closely synchronized (within ± 20 min) with the acceleration of EP. However, in two events the LE acceleration started significantly earlier than the EP acceleration (> 50 min), and in two events the EP acceleration started earlier than the LE acceleration (> 40 min). The average peak acceleration of LEs (281 m s-2) is about two times larger than the average peak acceleration of EPs (136 m s-2). For the first time, our results quantitatively demonstrate the level of synchronization of the acceleration phase of LE and EP in a rather large sample of events, i.e., we quantify how often the eruption develops in a “self-similar” manner.

  16. Increased heat transfer to a cylindrical leading edge due to spanwise variations in the freestream velocity

    NASA Technical Reports Server (NTRS)

    Rigby, D. L.; Vanfossen, G. J.

    1991-01-01

    The present study numerically demonstrates how small spanwise variations in velocity upstream of a body can cause relatively large increases in the spanwise-averaged heat transfer to the leading edge. Vorticity introduced by spanwise variations, first decays as it drifts downstream, then amplifies in the stagnation region as a result of vortex stretching. This amplification can cause a periodic array of 3 D structures, similar to horseshoe vortices, to form. The numerical results indicate that, for the given wavelength, there is an amplitude threshold below which a structure does not form. A one-dimensional analysis, to predict the decay of vorticity in the absence of the body, in conjunction with the full numerical results indicated that the threshold is more accurately stated as minimum level of vorticity required in the leading edge region for a structure to form. It is possible, using the one-dimensional analysis, to compute an optimum wavelength in terms of the maximum vorticity reaching the leading edge region for given amplitude. A discussion is presented which relates experimentally observed trends to the trends of the present phenomena.

  17. Influence of Additional Leading-Edge Surface Roughness on Performances in Highly Loaded Compressor Cascade

    NASA Astrophysics Data System (ADS)

    Chen, Shaowen; Xu, Hao; Sun, Shijun; Zhang, Longxin; Wang, Songtao

    2015-05-01

    Experimental research has been carried out at low speed to investigate the effect of additional leading-edge surface roughness on a highly-loaded axial compressor cascade. A 5-hole aerodynamic probe has been traversed across one pitch to obtain the distribution of total pressure loss coefficient, secondary flow vector, flow angles and other aerodynamic parameters at the exit section. Meanwhile, ink-trace flow visualization has been used to measure the flow fields on the walls of cascades and a detailed topology structure of the flow on the walls has been obtained. Aerodynamic parameters and flow characteristics are compared by arranging different levels of roughness on various parts of the leading edge. The results show that adding surface roughness at the leading edge and on the suction side obviously influences cascade performance. Aggravated 3-D flow separation significantly increases the loss in cascades, and the loss increases till 60% when the level of emery paper is 80 mm. Even there is the potential to improve cascade performance in local area of cascade passage. The influence of the length of surface roughness on cascade performance is not always adverse, and which depends on the position of surface roughness.

  18. LFC leading edge glove flight: Aircraft modification design, test article development and systems integration

    NASA Technical Reports Server (NTRS)

    Etchberger, F. R.

    1983-01-01

    Reduction of skin friction drag by suction of boundary layer air to maintain laminar flow has been known since Prandtl's published work in 1904. The dramatic increases in fuel costs and the potential for periods of limited fuel availability provided the impetus to explore technologies to reduce transport aircraft fuel consumption. NASA sponsored the Aircraft Energy Efficiency (ACEE) program in 1976 to develop technologies to improve fuel efficiency. This report documents the Lockheed-Georgia Company accomplishments in designing and fabricating a leading-edge flight test article incorporating boundary layer suction slots to be flown by NASA on their modified JetStar aircraft. Lockheed-Georgia Company performed as the integration contractor to design the JetStar aircraft modification to accept both a Lockheed and a McDonnell Douglas flight test article. McDonnell Douglas uses a porous skin concept. The report describes aerodynamic analyses, fabrication techniques, JetStar modifications, instrumentation requirements, and structural analyses and testing for the Lockheed test article. NASA will flight test the two LFC leading-edge test articles in a simulated commercial environment over a 6 to 8 month period in 1984. The objective of the flight test program is to evaluate the effectiveness of LFC leading-edge systems in reducing skin friction drag and consequently improving fuel efficiency.

  19. Numerical investigation of rarefaction effects in the vicinity of a sharp leading edge

    NASA Astrophysics Data System (ADS)

    Pan, Shaowu; Gao, Zhenxun; Lee, Chunhian

    2014-12-01

    This paper presents a study of rarefaction effect on hypersonic flow over a sharp leading edge. Both continuum approach and kinetic method: a widely spread commercial Computational Fluid Dynamics-Navior-Stokes-Fourier (CFD-NSF) software - Fluent together with a direct simulation Monte Carlo (DSMC) code developed by the authors are employed for simulation of transition regime with Knudsen number ranging from 0.005 to 0.2. It is found that Fluent can predict the wall fluxes in the case of hypersonic argon flow over the sharp leading edge for the lowest Kn case (Kn = 0.005) in current paper while for other cases it also has a good agreement with DSMC except at the location near the sharp leading edge. Among all of the wall fluxes, it is found that coefficient of pressure is the most sensitive to rarefaction while heat transfer is the least one. A parameter based on translational nonequilibrium and a cut-off value of 0.34 is proposed for continuum breakdown in this paper. The structure of entropy and velocity profile in boundary layer is analyzed. Also, it is found that the ratio of heat transfer coefficient to skin friction coefficient remains uniform along the surface for the four cases in this paper.

  20. Application of a flush airdata sensing system to a wing leading edge (LE-FADS)

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Moes, Timothy R.; Czerniejewski, Mark W.; Nichols, Douglas A.

    1993-01-01

    This paper investigates the feasibility of locating a flush air-data sensing (FADS) system on a wing leading edge where the operation of the avionics or fire control radar system will not be hindered. The leading-edge FADS system (LE-FADS) was installed on an unswept symmetrical airfoil, and a series of low-speed wind-tunnel tests were conducted to evaluate the performance of the system. As a result of the tests it is concluded that the aerodynamic models formulated for use on aircraft nosetips are directly applicable to wing leading edges and that the calibration process is similar. Furthermore, the agreement between the air-data calculations for angle of attack and total pressure from the LE-FADS and known wind-tunnel values suggest that wing-based flush air-data systems can be calibrated to a high degree of accuracy. Static wind-tunnel tests for angles of attack from -50 to 50 deg and dynamic pressures from 3.6 to 11.4 lb/sq ft were performed.

  1. Application of a flush airdata sensing system to a wing leading edge (LE-FADS)

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Moes, Timothy R.; Czerniejewski, Mark W.; Nichols, Douglas A.

    1993-01-01

    The feasibility of locating a flush airdata sensing (FADS) system on a wing leading edge where the operation of the avionics or fire control radar system will not be hindered is investigated. The leading-edge FADS system (LE-FADS) was installed on an unswept symmetrical airfoil and a series of low-speed wind-tunnel tests were conducted to evaluate the performance of the system. As a result of the tests it is concluded that the aerodynamic models formulated for use on aircraft nosetips are directly applicable to wing leading edges and that the calibration process is similar. Furthermore, the agreement between the airdata calculations for angle of attack and total pressure from the LE-FADS and known wind-tunnel values suggest that wing-based flush airdata systems can be calibrated to a high degree of accuracy. Static wind-tunnel tests for angles of attack from -50 deg to 50 deg and dynamic pressures from 3.6 to 11.4 lb/sq ft were performed.

  2. Role of leading-edge vortex flows in prop-fan interaction noise

    NASA Astrophysics Data System (ADS)

    Simonich, J. C.; McCormick, D. C.; Lavrich, P. L.

    1993-04-01

    An experimental investigation has been carried out to study the interaction mechanisms associated with wakes from unswept, aft-, and forward-swept vanes incident on rotating prop-fan blades. Wakes from a single, stationary upstream vane interacted with a single rotating prop-fan. Comprehensive flowfield and acoustic measurements were acquired over a range of takeoff operating conditions. The forward-swept vane caused the leading-edge vortex and a core velocity defect associated with it to move inboard towards the hub and away from the high-speed tip region of the prop-fan. The tip vortex had only a small axial velocity disturbance associated with it. This is in contrast to the aft-swept vane which directed the leading-edge vortex out towards the tip, and led a large axial velocity disturbance to be swept toward the prop-fan tip region. Noise measurements revealed that the forward-swept vane wakes generated relatively less interaction noise than the aft-swept vane wakes, at equivalent vane loadings. From this simulation study, a potential noise reduction strategy for the counter-rotating prop-fan is suggested which uses a forward-swept/aft-swept counter-rotating prop-fan combination. By reducing the sweep or modifying the spanwise loading on the blades, it may be possible to control the magnitude and/or location of the velocity defect associated with the leading-edge vortex.

  3. Structure and properties of aluminum bronze-lead composite material

    Microsoft Academic Search

    V. S. Voropaev; G. Y. Kalutskii

    1999-01-01

    The effect of sintering regime on the structure and properties of aluminum bronze-lead composite material is studied by experiment.\\u000a It is established that in order to prepare material with a uniform lead distribution and high mechanical properties the sintering\\u000a duration should not exceed 5 min. More prolonged heat treatment leads to redistribution of lead with formation of a coarse-grained\\u000a structure

  4. Thermal Degradation of Lead Monoxide Filled Polymer Composite Radiation Shields

    SciTech Connect

    Harish, V. [Department of Physics, Government First Grade College, Shivamogga-577201 (India); Nagaiah, N. [Department of Physics, Bangalore University, Jnanabharati, Bangalore-560056 (India)

    2011-07-15

    Lead monoxide filled Isophthalate resin particulate polymer composites were prepared with different filler concentrations and investigated for physical, thermal, mechanical and gamma radiation shielding characteristics. This paper discusses about the thermo gravimetric analysis of the composites done to understand their thermal properties especially the effect of filler concentration on the thermal stability and degradation rate of composites. Pristine polymer exhibits single stage degradation whereas filled composites exhibit two stage degradation processes. Further, the IDT values as well as degradation rates decrease with the increased filler content in the composite.

  5. Directly deposited lead-indium-gold composite solder

    Microsoft Academic Search

    Yi-Chia Chen; Chen Y. Wang; Chin C. Lee

    1993-01-01

    Lead-indium-gold multilayer composite solder has been developed for bonding electronic devices. The composite is deposited directly on GaAs wafers in high vacuum to prevent indium oxidation. The gold layer on the composite further protects the indium layer from oxidation in the atmosphere. The GaAs dies are bonded to a gold-coated alumina substrate at a process temperature of 250°C. Nearly perfect

  6. Piezoelectric Properties of Polycrystalline Lead Titanate Zirconate Compositions

    Microsoft Academic Search

    D. A. Berlincourt; C. Cmolik; H. Jaffe

    1960-01-01

    Detailed data are given for the piezoelectric, elastic, and dielectric properties of lead titanate zirconate ceramic compositions near the rhombohedral-tetragonal phase boundary. These compositions have markedly higher electromechanical coupling factors, remanent ferroelectric charge, and coercive field, than ceramic barium titanate. Another interesting feature is a pronounced change in the free permittivity ¿33T by the poling process; this change is in

  7. Experimental determination of probabilistic edge-delamination strength of a graphite–fiber\\/epoxy composite

    Microsoft Academic Search

    Xiang-Fa Wu; Yuris A. Dzenis

    2005-01-01

    Probabilistic edge-delamination strength of a thermosetting polymer composite was studied experimentally in this work. During the procedure, by means of edge-delamination tensile test, the graphite–fiber\\/epoxy laminate made of unidirectional Toray P7051S-20Q-1000 prepregs with an optimized lay-up of [122\\/–122\\/02]S was used for examining its probabilistic distributions of the edge-delamination onset stress and the ultimate tensile strength. Acoustic emission (AE) equipment and

  8. The effects of leading-edge serrations on reducing flow unsteadiness about airfoils.

    NASA Technical Reports Server (NTRS)

    Schwind, R. G.; Allen, H. J.

    1973-01-01

    High frequency surface pressure measurements were obtained from wind-tunnel tests over the Reynolds number range 1.2 x 1,000,000 to 6.2 x 1,000,000 on a rectangular wing of NACA 63-009 airfoil section. A wide selection of leading-edge serrations were also added to the basic airfoil. Under a two-dimensional laminar bubble very close to the leading edge of the basic airfoil there is a large peak in rms pressure, which is interpreted as an oscillation in size and position of the bubble. The serrations divide the bubble into segments and reduce the peak rms pressures. A low Reynolds number flow visualization test on a hydrofoil in water was also conducted. A von Karman vortex street was found trailing from the rear of the foil. Its frequency is at a much lower Strouhal number than in the high Reynolds number experiment, and is related mathematically to the airfoil trailing-edge and boundary-layer thicknesses.

  9. Lift Augmentation on a Delta Wing via Leading Edge Fences and the Gurney Flap

    NASA Technical Reports Server (NTRS)

    Buchholz, Mark D.; Tso, Jin

    1993-01-01

    Wind tunnel tests have been conducted on two devices for the purpose of lift augmentation on a 60 deg delta wing at low speed. Lift, drag, pitching moment, and surface pressures were measured. Detailed flow visualization was also obtained. Both the leading edge fence and the Gurney flap are shown to increase lift. The fences and flap shift the lift curve by as much as 5 deg and 10 deg, respectively. The fences aid in trapping vortices on the upper surface, thereby increasing suction. The Gurney flap improves circulation at the trailing edge. The individual influences of both devices are roughly additive, creating high lift gain. However, the lower lift to drag ratio and the precipitation of vortex burst caused by the fences, and the nose down pitching moment created by the flap are also significant factors.

  10. Hypersonic aerospace vehicle leading-edge cooling using heat-pipe, transpiration and film-cooling techniques

    SciTech Connect

    Modlin, J.M.

    1991-01-01

    The feasibility of cooling hypersonic-vehicle leading-edge structures exposed to severe aerodynamic surface heat fluxes was studied, using a combination of liquid-metal heat pipes and surface-mass-transfer cooling techniques. A generalized, transient, finite-difference-based hypersonic leading-edge cooling model was developed that incorporated these effects and was demonstrated on an assumed aerospace plane-type wing leading edge section and a SCRAMJET engine inlet leading-edge section. The hypersonic leading-edge cooling model was developed using an existing, experimentally verified heat-pipe model. Then the existing heat-pipe model was modified by adding both transpiration and film-cooling options as new surface boundary conditions. The models used to predict the leading-edge surface heat-transfer reduction effects of the transpiration and film cooling were modifications of more-generalized, empirically based models obtained from the literature. It is concluded that cooling leading-edge structures exposed to severe hypersonic-flight environments using a combination of liquid-metal heat pipe, surface transpiration, and film cooling methods appears feasible.

  11. Kinetic Study of Lead Adsorption to Composite Biopolymer Adsorbent

    Microsoft Academic Search

    Hideshi Seki; Akira Suzuki

    1999-01-01

    A kinetic study of lead adsorption to composite biopolymer adsorbents was carried out. Spherical and membranous adsorbents containing two biopolymers, humic acid and alginic acid, were used for lead adsorption in dilute acidic solutions. The shrinking core model derived by M. G. Rao and A. K. Gupta (Chem. Eng. J. 24, 181, 1982) was applied to describe the rate process

  12. Increased heat transfer to elliptical leading edges due to spanwise variations in the freestream momentum: Numerical and experimental results

    NASA Technical Reports Server (NTRS)

    Rigby, D. L.; Vanfossen, G. J.

    1992-01-01

    A study of the effect of spanwise variation in momentum on leading edge heat transfer is discussed. Numerical and experimental results are presented for both a circular leading edge and a 3:1 elliptical leading edge. Reynolds numbers in the range of 10,000 to 240,000 based on leading edge diameter are investigated. The surface of the body is held at a constant uniform temperature. Numerical and experimental results with and without spanwise variations are presented. Direct comparison of the two-dimensional results, that is, with no spanwise variations, to the analytical results of Frossling is very good. The numerical calculation, which uses the PARC3D code, solves the three-dimensional Navier-Stokes equations, assuming steady laminar flow on the leading edge region. Experimentally, increases in the spanwise-averaged heat transfer coefficient as high as 50 percent above the two-dimensional value were observed. Numerically, the heat transfer coefficient was seen to increase by as much as 25 percent. In general, under the same flow conditions, the circular leading edge produced a higher heat transfer rate than the elliptical leading edge. As a percentage of the respective two-dimensional values, the circular and elliptical leading edges showed similar sensitivity to span wise variations in momentum. By equating the root mean square of the amplitude of the spanwise variation in momentum to the turbulence intensity, a qualitative comparison between the present work and turbulent results was possible. It is shown that increases in leading edge heat transfer due to spanwise variations in freestream momentum are comparable to those due to freestream turbulence.

  13. An improved Woodward's panel method for calculating leading-edge and side-edge suction forces at subsonic and supersonic speeds

    NASA Technical Reports Server (NTRS)

    Lan, C. E.; Mehrotra, S. C.

    1979-01-01

    Woodward's panel method for subsonic and supersonic flow was improved by employing control points determined by exactly matching two-dimensional pressure at a finite number of points. The results show great improvement in the predicted pressure distribution of a flapped airfoil. With the paneling scheme of cosine law in both chordwise and spanwise directions, the method is shown to accurately predict leading edge and side edge suction forces of various configurations in subsonic and supersonic flow.

  14. Subsonic balance and pressure investigation of a 60-deg delta wing with leading-edge devices (data report)

    NASA Technical Reports Server (NTRS)

    Rao, D. M.; Tingas, S. A.

    1981-01-01

    The drag reduction potential of leading edge devices on a 60 degree delta wing at high lift was examined. Geometric variations of fences, chordwise slots, pylon type vortex generators, leading edge vortex flaps, and sharp leading edge extensions were tested individually and in specific combinations to improve high-alpha drag performance with a minimum of low-alpha drag penalty. The force, moment, and surface static pressure data for angles of attack up to 23 degrees, at Mach and Reynolds numbers of 0.16 and 3.85 x 10 to the 6th power per meter are documented.

  15. Flexible Metallic Overwrap Concept Developed for On-Orbit Repair of Space Shuttle Orbiter Leading Edges

    NASA Technical Reports Server (NTRS)

    Ritzert, Frank J.; Nesbitt, James A.

    2005-01-01

    The Columbia accident has focused attention on the critical need for on-orbit repair concepts for leading edges in the event that damage is incurred during space shuttle orbiter flight. Damage that is considered as potentially catastrophic for orbiter leading edges ranges from simple cracks to holes as large as 16 in. in diameter. NASA is particularly interested in examining potential solutions for areas of larger damage since such a problem was identified as the cause for the Columbia disaster. One possible idea for the on-orbit repair of the reinforced carbon/carbon (RCC) leading edges is an overwrap concept that would use a metallic sheet flexible enough to conform to the contours of the orbiter and robust enough to protect any problem area from catastrophic failure during reentry. The simplified view of the application of a refractory metal sheet over a mockup of shuttle orbiter panel 9, which experiences the highest temperatures on the shuttle during reentry is shown. The metallic overwrap concept is attractive because of its versatility as well as the ease with which it can be included in an onboard repair kit. Reentry of the orbiter into Earth's atmosphere imposes extreme requirements on repair materials. Temperatures can exceed 1650 C for up to 15 min in the presence of an extremely oxidizing plasma environment. Several other factors are critical, including catalysity, emissivity, and vibrational and aerodynamic loads. Materials chosen for this application will need to be evaluated with respect to high-temperature capability, resistance to oxidation, strength, coefficient of thermal expansion, and thermal conductivity. The temperature profile across panel 9 during reentry as well as a schematic of the overwrap concept itself is shown.

  16. Compilation of Information on the Transonic Attachment of Flows at the Leading Edges of Airfoils

    NASA Technical Reports Server (NTRS)

    Lindsey, Walter F; Landrum, Emma Jean

    1958-01-01

    Schlieren photographs have been compiled of the two-dimensional flow at transonic speeds past 37 airfoils. These airfoils have variously shaped profiles, and some are related in thickness and camber. The data for these airfoils were analyzed to provide basic information on the flow changes involved and to determine factors affecting transonic-flow attachment, which is a transition from separated to unseparated flow at the leading edges of two-dimensional airfoils at fixed angles as the subsonic Mach number is increased.

  17. Heat transfer characteristics of hypersonic waveriders with an emphasis on leading edge effects

    NASA Technical Reports Server (NTRS)

    Vanmol, Denis O.; Anderson, John D., Jr.

    1992-01-01

    The present analysis of the heat-transfer characteristics of a family of viscous-optimized, 60 m-long waverider hypersonic vehicles gives attention to the transition from laminar to turbulent flow, and to how the transition affects aerodynamic heating distributions over the waverider surface. Two different constant-dynamic-pressure flight trajectories are considered, at 0.2 and 1.0 freestream atmospheres. For Mach numbers below 10, it is found that passive radiative cooling of the surface is sufficient. The degree of leading-edge bluntness required by aerodynamic heating constraints does not significantly degrade the aerodynamic performance of these waveriders.

  18. Compressible Navier-Stokes equations: A study of leading edge effects

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Karbhari, P. R.

    1987-01-01

    A computational method is developed that allows numerical calculations of the time dependent compressible Navier-Stokes equations.The current results concern a study of flow past a semi-infinite flat plate.Flow develops from given inflow conditions upstream and passes over the flat plate to leave the computational domain without reflecting at the downstream boundary. Leading edge effects are included in this paper. In addition, specification of a heated region which gets convected with the flow is considered. The time history of this convection is obtained, and it exhibits a wave phenomena.

  19. Leading-edge boundary layer flow : Prandtl's vision, current developments and future perspectives.

    SciTech Connect

    Collis, Samuel Scott; Theofilis, Vassilis (U. Politecnica de Madrid, E-28040 Madrid, Spain); Fedorov, Alexander V. (Moscow Institute of Physics and Technology, 141700 Moscow Region, Russia)

    2004-09-01

    The first viscous compressible three-dimensional BiGlobal linear instability analysis of leading-edge boundary layer flow has been performed. Results have been obtained by independent application of asymptotic analysis and numerical solution of the appropriate partial-differential eigenvalue problem. It has been shown that the classification of three-dimensional linear instabilities of the related incompressible flow [13] into symmetric and antisymmetric mode expansions in the chordwise coordinate persists for compressible, subsonic flow-regime at sufficiently large Reynolds numbers.

  20. Carbon dioxide gas purification and analytical measurement for leading edge 193nm lithography

    NASA Astrophysics Data System (ADS)

    Riddle Vogt, Sarah; Landoni, Cristian; Applegarth, Chuck; Browning, Matt; Succi, Marco; Pirola, Simona; Macchi, Giorgio

    2015-03-01

    The use of purified carbon dioxide (CO2) has become a reality for leading edge 193 nm immersion lithography scanners. Traditionally, both dry and immersion 193 nm lithographic processes have constantly purged the optics stack with ultrahigh purity compressed dry air (UHPCDA). CO2 has been utilized for a similar purpose as UHPCDA. Airborne molecular contamniation (AMC) purification technologies and analytical measurement methods have been extensively developed to support the Lithography Tool Manufacturers purity requirements. This paper covers the analytical tests and characterizations carried out to assess impurity removal from 3.0 N CO2 (beverage grade) for its final utilization in 193 nm and EUV scanners.

  1. Initial development of an ablative leading edge for the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Daforno, G.; Rose, L.; Graham, J.; Roy, P.

    1974-01-01

    A state-of-the-art preliminary design for typical wing areas is developed. Seven medium-density ablators (with/without honeycomb, flown on Apollo, Prime, X15A2) are evaluated. The screening tests include: (1) leading-edge models sequentially subjected to ascent heating, cold soak, entry heating, post-entry pressure fluctuations, and touchdown shock, and (2) virgin/charred models subjected to bondline strains. Two honeycomb reinforced 30 pcf elastomeric ablators were selected. Roughness/recession degradation of low speed aerodynamics appears acceptable. The design, including attachments, substructure and joints, is presented.

  2. Stochastic Model of Integrin-Mediated Signaling and Adhesion Dynamics at the Leading Edges of Migrating Cells

    Microsoft Academic Search

    Murat Cirit; Matej Krajcovic; Colin K. Choi; Erik S. Welf; Alan F. Horwitz; Jason M. Haugh; Anand R. Asthagiri

    2010-01-01

    Productive cell migration requires the spatiotemporal coordination of cell adhesion, membrane protrusion, and actomyosin-mediated contraction. Integrins, engaged by the extracellular matrix (ECM), nucleate the formation of adhesive contacts at the cell's leading edge(s), and maturation of nascent adhesions to form stable focal adhesions constitutes a functional switch between protrusive and contractile activities. To shed additional light on the coupling between

  3. Leading-edge receptivity to a vortical freestream disturbance: A numerical analysis

    NASA Technical Reports Server (NTRS)

    Buter, Thomas A.; Reed, Helen L.

    1991-01-01

    The receptivity to freestream vorticity of the boundary layer over a flat plate with an elliptic leading edge is investigated numerically. The flow is simulated by solving the incompressible Navier-Stokes system in general curvilinear coordinates with the vorticity and stream function as dependent variables. A finite-difference scheme which is second-order accurate in both space and time is used. As a first step, the steady basic-state solution is computed. Then a small amplitude vortical disturbance is introduced at the upstream boundary and the governing equations are solved time-accurately to evaluate the spatial and temporal growth of the perturbations leading to instability waves (Tollmien-Schlichting waves) inside the boundary layer. Preliminary results for a symmetric, 2-D disturbance reveal the presence of Tollmien-Schlichting waves aft of the flat-plate/ellipse juncture.

  4. Space Shuttle Orbiter Wing-Leading-Edge Panel Thermo-Mechanical Analysis for Entry Conditions

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Song, Kyongchan; Raju, Ivatury S.

    2010-01-01

    Linear elastic, thermo-mechanical stress analyses of the Space Shuttle Orbiter wing-leading-edge panels is presented for entry heating conditions. The wing-leading-edge panels are made from reinforced carbon-carbon and serve as a part of the overall thermal protection system. Three-dimensional finite element models are described for three configurations: integrated configuration, an independent single-panel configuration, and a local lower-apex joggle segment. Entry temperature conditions are imposed and the through-the-thickness response is examined. From the integrated model, it was concluded that individual panels can be analyzed independently since minimal interaction between adjacent components occurred. From the independent single-panel model, it was concluded that increased through-the-thickness stress levels developed all along the chord of a panel s slip-side joggle region, and hence isolated local joggle sections will exhibit the same trend. From the local joggle models, it was concluded that two-dimensional plane-strain models can be used to study the influence of subsurface defects along the slip-side joggle region of these panels.

  5. The effects of leading edge and downstream film cooling on turbine vane heat transfer

    NASA Astrophysics Data System (ADS)

    Hylton, L. D.; Nirmalan, V.; Sultanian, B. K.; Kaufman, R. M.

    1988-11-01

    The progress under contract NAS3-24619 toward the goal of establishing a relevant data base for use in improving the predictive design capabilities for external heat transfer to turbine vanes, including the effect of downstream film cooling with and without leading edge showerhead film cooling. Experimental measurements were made in a two-dimensional cascade previously used to obtain vane surface heat transfer distributions on nonfilm cooled airfoils under contract NAS3-22761 and leading edge showerhead film cooled airfoils under contract NAS3-23695. The principal independent parameters (Mach number, Reynolds number, turbulence, wall-to-gas temperature ratio, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio) were maintained over ranges consistent with actual engine conditions and the test matrix was structured to provide an assessment of the independent influence of parameters of interest, namely, exit Mach number, exit Reynolds number, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio. Data provide a data base for downstream film cooled turbine vanes and extends the data bases generated in the two previous studies. The vane external heat transfer obtained indicate that considerable cooling benefits can be achieved by utilizing downstream film cooling. The data obtained and presented illustrate the interaction of the variables and should provide the airfoil designer and computational analyst the information required to improve heat transfer design capabilities for film cooled turbine airfoils.

  6. The effect of undulating leading-edge modifications on NACA 0021 airfoil characteristics

    NASA Astrophysics Data System (ADS)

    Rostamzadeh, N.; Kelso, R. M.; Dally, B. B.; Hansen, K. L.

    2013-11-01

    In spite of its mammoth physical size, the humpback whale's manoeuvrability in hunting has captured the attention of biologists as well as fluid mechanists. It has now been established that the protrusions on the leading-edges of the humpback's pectoral flippers, known as tubercles, account for this species' agility and manoeuvrability. In the present work, Prandtl's nonlinear lifting-line theory was employed to propose a hypothesis that the favourable traits observed in the performance of tubercled lifting bodies are not exclusive to this form of leading-edge configuration. Accordingly, a novel alternative to tubercles was introduced and incorporated into the design of four airfoils that underwent wind tunnel force and pressure measurement tests in the transitional flow regime. In addition, a Computation Fluid Dynamics study was performed using the Shear Stress Transport transitional model in the context of unsteady Reynolds-Averaged Navier-Stokes at several attack angles. The results from the numerical investigation are in reasonable agreement with those of the experiments, and suggest the presence of features that are also observed in flows over tubercled foils, most notably a distinct pair of streamwise vortices for each wavelength of the tubercle-like feature.

  7. Efficient mitigation of founder effects during the establishment of a leading-edge oak population.

    PubMed

    Hampe, Arndt; Pemonge, Marie-Hélène; Petit, Rémy J

    2013-08-01

    Numerous plant species are shifting their range polewards in response to ongoing climate change. Range shifts typically involve the repeated establishment and growth of leading-edge populations well ahead of the main species range. How these populations recover from founder events and associated diversity loss remains poorly understood. To help fill this gap, we exhaustively investigated a newly established population of holm oak (Quercus ilex) growing more than 30 km ahead of the nearest larger stands. Pedigree reconstructions showed that plants belong to two non-overlapping generations and that the whole population originates from only two founder trees. The four first-generation trees that have reached maturity showed disparate mating patterns despite being full-sibs. Long-distance pollen immigration was notable despite the strong isolation of the stand: 6 per cent gene flow events in acorns collected on the trees (n = 255), and as much as 27 per cent among their established offspring (n = 33). Our results show that isolated leading-edge populations of wind-pollinated forest trees can rapidly restore their genetic diversity through the interacting effects of efficient long-distance pollen flow and purging of inbred individuals during recruitment. They imply that range expansions of these species are primarily constrained by initial propagule arrival rather than by subsequent gene flow. PMID:23782887

  8. Navier-Stokes analysis of airfoils with leading edge ice accretions

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark G.

    1993-01-01

    A numerical analysis of the flowfield characteristics and the performance degradation of an airfoil with leading edge ice accretions was performed. The important fluid dynamic processes were identified and calculated. Among these were the leading edge separation bubble at low angles of attack, complete separation on the low pressure surface resulting in premature shell, drag rise due to the ice shape, and the effects of angle of attack on the separated flow field. Comparisons to experimental results were conducted to confirm these calculations. A computer code which solves the Navier-Stokes equations in two dimensions, ARC2D, was used to perform the calculations. A Modified Mixing Length turbulence model was developed to produce grids for several ice shape and airfoil combinations. Results indicate that the ability to predict overall performance characteristics, such as lift and drag, at low angles of attack is excellent. Transition location is important for accurately determining separation bubble shape. Details of the flowfield in and downstream of the separated regions requires some modifications. Calculations for the stalled airfoil indicate periodic shedding of vorticity that was generated aft of the ice accretion. Time averaged pressure values produce results which compare favorably with experimental information. A turbulence model which accounts for the history effects in the flow may be justified.

  9. Flow Field Characteristics of Finite-span Hydrofoils with Leading Edge Protuberances

    NASA Astrophysics Data System (ADS)

    Custodio, Derrick; Henoch, Charles; Johari, Hamid; Office of Naval Research Collaboration

    2011-11-01

    Past work has shown that humpback whale-like leading edge protuberances can significantly alter the load characteristics of both 2D and finite-span hydrofoils. To understand the mechanisms responsible for observed performance changes, the flow field characteristics of a baseline hydrofoil and models with leading edge protuberances were examined using the Stereo Particle Image Velocimetry (SPIV) technique. The near surface flow field on the hydrofoils was measured along with the tip vortex flow field on finite-span hydrofoils. Angles of attack ranging from 6 to 24 degrees were examined at freestream velocities of 1.8 m/s and 4.5 m/s, corresponding to Reynolds numbers of 180 and 450 thousand, respectively. While Reynolds number does not play a major role in establishing the flow field trends, both the protuberance geometry and spatial proximity to protuberances affect the velocity and vorticity characteristics near the foil surface, and in the wake and tip vortex. Near surface measurements reveal counter-rotating vortices on protuberance shoulders, while tip vortex measurements show that streamwise vorticity can be strongly affected by the presence of protuberances. The observed flow field characteristics will be presented. Sponsored by the ONR-ULI program.

  10. Experimental Study of Shock Wave Interference Heating on a Cylindrical Leading Edge. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wieting, Allan R.

    1987-01-01

    An experimental study of shock wave interference heating on a cylindrical leading edge representative of the cowl of a rectangular hypersonic engine inlet at Mach numbers of 6.3, 6.5, and 8.0 is presented. Stream Reynolds numbers ranged from 0.5 x 106 to 4.9 x 106 per ft. and stream total temperature ranged from 2100 to 3400 R. The model consisted of a 3" dia. cylinder and a shock generation wedge articulated to angles of 10, 12.5, and 15 deg. A fundamental understanding was obtained of the fluid mechanics of shock wave interference induced flow impingement on a cylindrical leading edge and the attendant surface pressure and heat flux distributions. The first detailed heat transfer rate and pressure distributions for two dimensional shock wave interference on a cylinder was provided along with insight into the effects of specific heat variation with temperature on the phenomena. Results show that the flow around a body in hypersonic flow is altered significantly by the shock wave interference pattern that is created by an oblique shock wave from an external source intersecting the bow shock wave produced in front of the body.

  11. Leading edge vortex dynamics on a pitching delta wing. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Lemay, Scott P.

    1988-01-01

    The leading edge flow structure was investigated on a 70 deg flat plate delta wing which was pitched about its 1/2 chord position, to increase understanding of the high angle of attack aerodynamics on an unsteady delta wing. The wing was sinusoidally pitched at reduced frequencies ranging from k being identical with 2pi fc/u = 0.05 to 0.30 at chord Reynolds numbers between 90,000 and 350,000, for angle of attack ranges of alpha = 29 to 39 deg and alpha = 0 to 45 deg. The wing was also impulsively pitched at an approximate rate of 0.7 rad/s. During these dynamic motions, visualization of the leading edge vorticies was obtained by entraining titanium tetrachloride into the flow at the model apex. The location of vortex breakdown was recorded using 16mm high speed motion picture photography. When the wing was sinusoidally pitched, a hysteresis was observed in the location of breakdown position. This hysteresis increased with reduced frequency. The velocity of breakdown propagation along the wing, and the phase lag between model motion and breakdown location were also determined. When the wing was impulsively pitched, several convective times were required for the vortex flow to reach a steady state. Detailed information was also obtained on the oscillation of breakdown position in both static and dynamic cases.

  12. Numerical Study of the Effect of the Leading Edge Shape on Cavitation Around Inducer Blade Sections

    NASA Astrophysics Data System (ADS)

    Coutier-Delgosha, Olivier; Reboud, Jean-Luc; Fortes-Patella, Regiane

    A numerical study of the cavitation behaviour of two-dimensional hydrofoils simulating a section of an inducer blade is presented. Two leading edge shapes were chosen to approach rocket engine inducer designs. They were tested with respect to the development of sheet cavitation. The numerical model of cavitating flows is based on the 3D code FINE/TURBOTM, developed by NUMECA International. The cavitation process is taken into account by using a single fluid model, which considers the liquid vapour mixture as a homogeneous fluid whose density varies with respect to the static pressure. Numerical results are compared with experimental ones, obtained in the CREMHyG large cavitation tunnel(1). Pressure distributions along the foil suction side and the tunnel walls were measured for different cavity lengths. Total pressure measurements along the foil suction side allow characterizing the effects of cavitation on the liquid flow. Influence of the leading edge shape on the cavitation behaviour and comparison between experiments and numerical predictions are discussed.

  13. Analytical observations on the aerodynamics of a delta wing with leading edge flaps

    NASA Technical Reports Server (NTRS)

    Oh, S.; Tavella, D.

    1986-01-01

    The effect of a leading edge flap on the aerodynamics of a low aspect ratio delta wing is studied analytically. The separated flow field about the wing is represented by a simple vortex model composed of a conical straight vortex sheet and a concentrated vortex. The analysis is carried out in the cross flow plane by mapping the wing trace, by means of the Schwarz-Christoffel transformation into the real axis of the transformed plane. Particular attention is given to the influence of the angle of attack and flap deflection angle on lift and drag forces. Both lift and drag decrease with flap deflection, while the lift-to-drag ratioe increases. A simple coordinate transformation is used to obtain a closed form expression for the lift-to-drag ratio as a function of flap deflection. The main effect of leading edge flap deflection is a partial suppression of the separated flow on the leeside of the wing. Qualitative comparison with experiments is presented, showing agreement in the general trends.

  14. Low-speed cascade investigation of loaded leading-edge compressor blades

    NASA Technical Reports Server (NTRS)

    Emery, James C

    1956-01-01

    Six percent thick NACA 63-series compressor-blade sections having a loaded leading-edge A4K6 mean line have been investigated systematically in a two-dimensional porous-wall cascade over a range of Reynolds numbers from 160,000 to 385,000. Blades cambered to have isolated-airfoil lift coefficients of 0.6, 1.2, 1.8, and 2.4 were tested over the usable angle-of-attack range at inlet-air angles of 30 degrees, 45 degrees, and 60 degrees and solidities of 1.0 and 1.5. A comparison with data of NACA RM L51G31, shows that the angle-of-attack operating range is 2 degrees to 4 degrees less than the range for the uniformly loaded section; however, the wake losses near design angle of attack are slightly lower than those for the uniformly loaded section. Except for highly cambered blades at high inlet angles, the 63-(C s oA4K6)06 compressor-blade sections are capable of more efficient operation for moderate-speed subsonic compressors at design angle of attack than are the 65-(C s oa10)10 or the 65-(c s oA2I8b)10 compressor-blade sections. In contrast to the other sections, the loaded leading-edge sections are capable of operating efficiently at the lower Reynolds numbers.

  15. Experimental investigation of the transonic flow around the leading edge of an eroded fan airfoil

    NASA Astrophysics Data System (ADS)

    Klinner, Joachim; Hergt, Alexander; Willert, Christian

    2014-09-01

    The influence of leading edge modification on the time-averaged and instantaneous flow around a fan airfoil is investigated by particle image velocimetry (PIV), schlieren imaging and high-speed shock shadowgraphs in a transonic cascade windtunnel. In addition to a global characterization of the time-averaged flow using PIV, the instantaneous passage shock position was extracted from single-shot PIV measurements by matching the tracer velocity across the normal shock with an exponential fit. The instantaneous shock positions are assigned to a probability density distribution in order to obtain the average position and the range of fluctuations of the eroded and reference leading edge. The profiles are used to estimate the response time of the particles to the normal shock which was found to be in the sub-microsecond range. Averaged PIV measurements and the probability density of shock position from both geometries are obtained at near stall and choked conditions. In order to extract the frequency range of the shock motion, the shadow of the shock wave was tracked using high-speed shadowgraphy. The paper also provides details on the experimental implementation such as a specifically designed light-sheet probe.

  16. The effects of leading edge and downstream film cooling on turbine vane heat transfer

    NASA Technical Reports Server (NTRS)

    Hylton, L. D.; Nirmalan, V.; Sultanian, B. K.; Kaufman, R. M.

    1988-01-01

    The progress under contract NAS3-24619 toward the goal of establishing a relevant data base for use in improving the predictive design capabilities for external heat transfer to turbine vanes, including the effect of downstream film cooling with and without leading edge showerhead film cooling. Experimental measurements were made in a two-dimensional cascade previously used to obtain vane surface heat transfer distributions on nonfilm cooled airfoils under contract NAS3-22761 and leading edge showerhead film cooled airfoils under contract NAS3-23695. The principal independent parameters (Mach number, Reynolds number, turbulence, wall-to-gas temperature ratio, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio) were maintained over ranges consistent with actual engine conditions and the test matrix was structured to provide an assessment of the independent influence of parameters of interest, namely, exit Mach number, exit Reynolds number, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio. Data provide a data base for downstream film cooled turbine vanes and extends the data bases generated in the two previous studies. The vane external heat transfer obtained indicate that considerable cooling benefits can be achieved by utilizing downstream film cooling. The data obtained and presented illustrate the interaction of the variables and should provide the airfoil designer and computational analyst the information required to improve heat transfer design capabilities for film cooled turbine airfoils.

  17. A Mesh Refinement Study on the Impact Response of a Shuttle Leading-Edge Panel Finite Element Simulation

    Microsoft Academic Search

    Karen E. Jackson; Edwin L. Fasanella; Karen H. Lyle; Regina L. Spellman

    A study was performed to examine the influence of varying mesh density on an LS-DYNA simulation of a rectangular-shaped foam projectile impacting the space shuttle leading edge Panel 6. The shuttle leading-edge panels are fabricated of reinforced carbon-carbon (RCC) material. Nine cases were executed with all possible combinations of coarse, baseline, and fine meshes of the foam and panel. For

  18. Boundary-layer receptivity for a parabolic leading edge. Part 2. The small-Strouhal-number limit

    Microsoft Academic Search

    P. W. Hammerton; E. J. Kerschen

    1997-01-01

    In Hammerton & Kerschen (1996), the effect of the nose radius of a body on boundary-layer receptivity was analysed for the case of a symmetric mean flow past a two-dimensional body with a parabolic leading edge. A low-Mach-number two-dimensional flow was considered. The radius of curvature of the leading edge, rn, enters the theory through a Strouhal number, S=[omega]rn\\/U, where

  19. A solution for the vibration and buckling of composite laminates with elastically restrained edges

    Microsoft Academic Search

    A. R. Setoodeh; G. Karami

    2003-01-01

    A three-dimensional elasticity approach is used to develop a general free vibration and buckling analysis of composite plates with elastic restrained edges. The employed refined layerwise laminated theory guaranties an optimum and an economical solution procedure. The computation algorithm is based on finite elements analysis. The procedure permits a systematic and a straightforward modeling of restrained supports for anisotropic composite

  20. Influence of interfacial debonding and free edges upon compressive strength of unidirectional FRP composite

    SciTech Connect

    Zhang, G.; Latour, R.A. Jr. [Clemson Univ., SC (United States). Dept. of Bioengineering

    1994-12-31

    The uniaxial compressive behavior of fiber reinforced polymer (FRP) composites is discussed in this paper. In the present study, the analytical model developed by the authors in previous studies is applied to investigate the effect of free edges and interfacial debonding upon the compressive strength of unidirectional composites. Results show that interfacial debonding has a great effect on the compressive strength. It is also found that free edges significantly affect the microbuckling behavior of unidirectional FRP composites by lowering the compressive strength of fibers located along a free edge as compared to that of inner fibers. Furthermore, the model indicates that the compressive strength of surface fibers can be strengthened by increasing the thickness of outer matrix coating to the extent to being up to twice as strong as the inner fibers. This finding has very significant implications for the strengthening of composite structures under compression.

  1. A computer program for calculating aerodynamic characteristics of low aspect-ratio wings with partial leading-edge separation

    NASA Technical Reports Server (NTRS)

    Mehrotra, S. C.; Lan, C. E.

    1978-01-01

    The necessary information for using a computer program to predict distributed and total aerodynamic characteristics for low aspect ratio wings with partial leading-edge separation is presented. The flow is assumed to be steady and inviscid. The wing boundary condition is formulated by the Quasi-Vortex-Lattice method. The leading edge separated vortices are represented by discrete free vortex elements which are aligned with the local velocity vector at midpoints to satisfy the force free condition. The wake behind the trailing edge is also force free. The flow tangency boundary condition is satisfied on the wing, including the leading and trailing edges. The program is restricted to delta wings with zero thickness and no camber. It is written in FORTRAN language and runs on CDC 6600 computer.

  2. ALES, the multi­mission Adaptive Leading Edge Sub­Waveform Retracker, design and validation

    NASA Astrophysics Data System (ADS)

    Passaro, Marcello; Benveniste, Jérôme; Vignudelli, Stefano; Cipollini, Paolo; Quartly, Graham; Snaith, Helen

    Satellite altimetry has revolutionized our understanding of ocean dynamics thanks to high repetition rate and global coverage. Nevertheless, coastal data has been flagged as unreliable due to land and calm water interference in the altimeter and radiometer footprint and high frequency tidal and atmospheric forcing. Our study addresses the first issue, i.e. retracking, presenting ALES, the Adaptive Leading Edge Subwaveform Retracker. ALES is potentially applicable to all the pulse­limited altimetry altimetry missions and its aim is to retrack with the same precision both open ocean and coastal data with the same algorithm. ALES selects part of each returned echo and models it with a classic ‘open ocean’ Brown functional form, by means of least square estimation whose convergence is found through the Nelder­Mead nonlinear optimization technique. By avoiding echoes from bright targets along the trailing edge, it is capable of retrieving the majority of coastal waveform up to 2 to 3 Km from the coasts. By adapting the estimation window to the significant wave height, it aims at preserving the precision of the standard data both in open ocean and in the coastal strip. ALES is validated against tide gauges in the Adriatic Sea and in the Greater Agulhas System for three different missions: Envisat, Jason­1 and Jason­2. Considerations on noise and biases provide a further verification of the strategy.

  3. An experimental study of turbine vane heat transfer with leading edge and downstream film cooling

    NASA Astrophysics Data System (ADS)

    Nirmalan, V.; Hylton, L. D.

    1989-06-01

    This paper presents the effects of downstream film cooling, with and without leading edge showerhead film cooling, on turbine-vane external heat transfer. Steady-state experimental measurements were made in a three-vane linear two-dimensional cascade. The principal independent parameters were maintained over ranges consistent with actual engine conditions. The test matrix was structured to provide an assessment of the independent influence of parameters of interest, namely, exit Mach number, exit Reynolds number, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio. The data obtained indicate that considerable cooling benefits can be achieved by utilizing downstream film cooling. The downstream film cooling process was shown to be a complex interaction of two competing mechanisms. The thermal dilution effect, associated with the injection of relatively cold fluid, results in a decrease in the heat transfer to the airfoil. Conversely, the turbulence augmentation, produced by the injection process, results in increased heat transfer to the airfoil.

  4. Airfoil leading-edge suction and energy conservation for compressible flow

    SciTech Connect

    Amiet, R.K.

    1995-04-01

    The leading-edge suction force produced when a flat-plate airfoil at zero angle of attack encounters a vertical gust was examined for compressible flow with a time-dependent gust. A simple derivation of the thrust force shows that the acoustic energy can be calculated using compact assumptions at low frequency, but that it must be calculated non-compactly at high frequency. For a general gust, the work done on the airfoil equals the energy taken from the fluid. For a sinusoidal gust the energy contained in the incident gust equals the sum of the energy remaining in the wake, the work done on the airfoil and the acoustic energy radiated away. Also, the relative proportions of the energy going to these three energy types depend on the gust frequency.

  5. An experimental study of pressures on 60 deg Delta wings with leading edge vortex flaps

    NASA Technical Reports Server (NTRS)

    Marchman, J. F., III; Terry, J. E.; Donatelli, D. A.

    1983-01-01

    An experimental study was conducted in the Virginia Tech Stability Wind Tunnel to determine surface pressures over a 60 deg sweep delta wing with three vortex flap designs. Extensive pressure data was collected to provide a base data set for comparison with computational design codes and to allow a better understanding of the flow over vortex flaps. The results indicated that vortex flaps can be designed which will contain the leading edge vortex with no spillage onto the wing upper surface. However, the tests also showed that flaps designed without accounting for flap thickness will not be optimum and the result can be oversized flaps, early flap vortex reattachment and a second separation and vortex at the wing/flap hinge line.

  6. Multiple leading edge vortices of unexpected strength in freely flying hawkmoth

    PubMed Central

    Johansson, L. Christoffer; Engel, Sophia; Kelber, Almut; Heerenbrink, Marco Klein; Hedenström, Anders

    2013-01-01

    The Leading Edge Vortex (LEV) is a universal mechanism enhancing lift in flying organisms. LEVs, generally illustrated as a single vortex attached to the wing throughout the downstroke, have not been studied quantitatively in freely flying insects. Previous findings are either qualitative or from flappers and tethered insects. We measure the flow above the wing of freely flying hawkmoths and find multiple simultaneous LEVs of varying strength and structure along the wingspan. At the inner wing there is a single, attached LEV, while at mid wing there are multiple LEVs, and towards the wingtip flow separates. At mid wing the LEV circulation is ~40% higher than in the wake, implying that the circulation unrelated to the LEV may reduce lift. The strong and complex LEV suggests relatively high flight power in hawmoths. The variable LEV structure may result in variable force production, influencing flight control in the animals. PMID:24253180

  7. Cavitation on a semicircular leading-edge plate and NACA0015 hydrofoil: Visualization and velocity measurement

    NASA Astrophysics Data System (ADS)

    Kravtsova, A. Yu.; Markovich, D. M.; Pervunin, K. S.; Timoshevskii, M. V.; Hanjali?, K.

    2014-12-01

    Using high-speed visualization and particle image velocimetry (PIV), cavitating flows near a plane plate with a rounded leading edge and NACA0015 hydrofoil at angles of attack from 0° to 9° are studied. In the experiments, several known types of cavitation, as well as some differences, were detected with variation of the cavitation number. In particular, at small angles of attack (up to 3°), cavitation on the plate appears in the form of a streak array; on the hydrofoil, it appears in the form of individual bubbles. For the NACA0015 hydrofoil, isolated and intermittent streaks are divided and grow in regimes with developed cavitation; then, however, they merge in bubble clouds and form an extremely regular cellular structure. With an increase in the angle of attack to 9°, the structure of the cavitation cavity on the hydrofoil is changed by the streak structure, like in the case with the plate. In this work, it is shown that PIV permits one to measure the velocity in cavitating flows, in particular, within the gas-vapor phase. It was established from the analysis of distributions of the average flow velocity and moments of velocity fluctuations that the cavitation generation is caused by the development of the carrier fluid flow near the leading edge of the hydrofoil. Down the stream, however, the flow structure strongly depends on the cavitation regime, which is seen from the comparison of the distributions with the case of a single-phase flow. The presented measurements qualitatively verify general trends and show some quantitative distinctions for the two considered flowpast bodies.

  8. Insect Residue Contamination on Wing Leading Edge Surfaces: A Materials Investigation for Mitigation

    NASA Technical Reports Server (NTRS)

    Lorenzi, Tyler M.; Wohl, Christopher J.; Penner, Ronald K.; Smith, Joseph G.; Siochi, Emilie J.

    2011-01-01

    Flight tests have shown that residue from insect strikes on aircraft wing leading edge surfaces may induce localized transition of laminar to turbulent flow. The highest density of insect populations have been observed between ground level and 153 m during light winds (2.6 -- 5.1 m/s), high humidity, and temperatures from 21 -- 29 C. At a critical residue height, dependent on the airfoil and Reynolds number, boundary layer transition from laminar to turbulent results in increased drag and fuel consumption. Although this represents a minimal increase in fuel burn for conventional transport aircraft, future aircraft designs will rely on maintaining laminar flow across a larger portion of wing surfaces to reduce fuel burn during cruise. Thus, insect residue adhesion mitigation is most critical during takeoff and initial climb to maintain laminar flow in fuel-efficient aircraft configurations. Several exterior treatments investigated to mitigate insect residue buildup (e.g., paper, scrapers, surfactants, flexible surfaces) have shown potential; however, implementation has proven to be impractical. Current research is focused on evaluation of wing leading edge surface coatings that may reduce insect residue adhesion. Initial work under NASA's Environmentally Responsible Aviation Program focused on evaluation of several commercially available products (commercial off-the-shelf, COTS), polymers, and substituted alkoxy silanes that were applied to aluminum (Al) substrates. Surface energies of these coatings were determined from contact angle data and were correlated to residual insect excrescence on coated aluminum substrates using a custom-built "bug gun." Quantification of insect excrescence surface coverage was evaluated by a series of digital photographic image processing techniques.

  9. An Attached Flow Design of a Noninterferring Leading Edge Extension to a Thick Delta Wing

    NASA Technical Reports Server (NTRS)

    Lamar, John E.; Ghaffari, Farhad

    1985-01-01

    An analytical procedure for the determination of the shape of a Leading-Edge Extension (LEE) which satisfies design criteria, including especially noninterference at the wing design point, has been developed for thick delta wings. The LEE device best satisfying all criteria is designed to be mounted on a wing along a dividing stream surface associated with an attached flow design lift coefficient (C(sub L,d)) of greater than zero. This device is intended to improve the aerodynamic performance of transonic aircraft at C(sub L) greater than C(sub L,d) system emanating from the LEE leading edge. In order to quantify this process a twisted and cambered thick delta wing was chosen for the initial application of this design procedure. Appropriate computer codes representing potential and vortex flows were employed to determine the dividing stream surface at C(sub L,d) and an optimized LEE planform shape at C(sub L) greater than C(sub L,d), respectively. To aid in the LEE selection, the aerodynamic effectiveness of 36 planforms was investigated at C(sub L) greater than C(sub L,d). This study showed that reducing the span of the candidate LEEs has the most detrimental effect on overall aerodynamic efficiency, regardless of the shape or area. Furthermore, for a fixed area, constant-chord LEE candidates were relatively more efficient than those with sweep less than the wing. At C(sub L,d), the presence of the LEE planform best satisfying the design criteria was found to have no effect on the wing alone aerodynamic performance.

  10. Effect of leading- and trailing-edge flaps on clipped delta wings with and without wing camber at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Hernandez, Gloria; Wood, Richard M.; Covell, Peter F.

    1994-01-01

    An experimental investigation of the aerodynamic characteristics of thin, moderately swept fighter wings has been conducted to evaluate the effect of camber and twist on the effectiveness of leading- and trailing-edge flaps at supersonic speeds in the Langley Unitary Plan Wind Tunnel. The study geometry consisted of a generic fuselage with camber typical of advanced fighter designs without inlets, canopy, or vertical tail. The model was tested with two wing configurations an uncambered (flat) wing and a cambered and twisted wing. Each wing had an identical clipped delta planform with an inboard leading edge swept back 65 deg and an outboard leading edge swept back 50 deg. The trailing edge was swept forward 25 deg. The leading-edge flaps were deflected 4 deg to 15 deg, and the trailing-edge flaps were deflected from -30 deg to 10 deg. Longitudinal force and moment data were obtained at Mach numbers of 1.60, 1.80, 2.00, and 2.16 for an angle-of-attack range 4 deg to 20 deg at a Reynolds number of 2.16 x 10(exp 6) per foot and for an angle-of-attack range 4 deg to 20 deg at a Reynolds number of 2.0 x 10(exp 6) per foot. Vapor screen, tuft, and oil flow visualization data are also included.

  11. A Mesh Refinement Study on the Impact Response of a Shuttle Leading-Edge Panel Finite Element Simulation

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Spellman, Regina L.

    2006-01-01

    A study was performed to examine the influence of varying mesh density on an LS-DYNA simulation of a rectangular-shaped foam projectile impacting the space shuttle leading edge Panel 6. The shuttle leading-edge panels are fabricated of reinforced carbon-carbon (RCC) material. During the study, nine cases were executed with all possible combinations of coarse, baseline, and fine meshes of the foam and panel. For each simulation, the same material properties and impact conditions were specified and only the mesh density was varied. In the baseline model, the shell elements representing the RCC panel are approximately 0.2-in. on edge, whereas the foam elements are about 0.5-in. on edge. The element nominal edge-length for the baseline panel was halved to create a fine panel (0.1-in. edge length) mesh and doubled to create a coarse panel (0.4-in. edge length) mesh. In addition, the element nominal edge-length of the baseline foam projectile was halved (0.25-in. edge length) to create a fine foam mesh and doubled (1.0-in. edge length) to create a coarse foam mesh. The initial impact velocity of the foam was 775 ft/s. The simulations were executed in LS-DYNA for 6 ms of simulation time. Contour plots of resultant panel displacement and effective stress in the foam were compared at four discrete time intervals. Also, time-history responses of internal and kinetic energy of the panel, kinetic and hourglass energy of the foam, and resultant contact force were plotted to determine the influence of mesh density.

  12. Studies on lead-free multiferroic magnetoelectric composites

    Microsoft Academic Search

    S. Narendra Babu; K. Srinivas; T. Bhimasankaram

    2009-01-01

    Lead-free multiferroic magnetoelectric composites consisting of ferrimagnetic Ni0.93Co0.02Mn0.05Fe1.95O4 (NMF) and ferroelectric Na0.5Bi0.5TiO3 (NBT) phases were synthesized by the solid-state sintering method. The presence of constituent phases in composites was confirmed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). A systematic study of dc conductivity as a function of temperature (RT ?450°C) revealed that the conduction is due to small

  13. Influence of leading edge bluntness on hypersonic flow in a generic internal-compression inlet

    NASA Astrophysics Data System (ADS)

    Borovoy, V.; Egorov, I.; Mosharov, V.; Radchenko, V.; Skuratov, A.; Struminskaya, I.

    2015-06-01

    Flow and heat transfer inside a generic inlet are investigated experimentally. The cross section of the inlet is rectangular. The inlet is installed on a flat plat at a significant distance from the leading edge. The experiments are performed in TsAGI wind tunnel UT-1M working in the Ludwieg tube mode at Mach number M? = 5 and Reynolds numbers (based on the plate length L = 320 mm) Re?L = 23 · 106 and 13 · 106. Steady flow duration is 40 ms. Optical panoramic methods are used for investigation of flow outside and inside the inlet as well. For this purpose, the cowl and one of two compressing wedges are made of a transparent material. Heat flux distribution is measured by thin luminescent Temperature Sensitive Paint (TSP). Surface flow and shear stress visualization is performed by viscous oil containing luminophor particles. The investigation shows that at high contraction ratio of the inlet, an increase of plate or cowl bluntness to some critical value leads to sudden change of the flow structure.

  14. Spin-dependent transport for armchair-edge graphene nanoribbons between ferromagnetic leads

    NASA Astrophysics Data System (ADS)

    Zhou, Benhu; Chen, Xiongwen; Zhou, Benliang; Ding, Kai-He; Zhou, Guanghui

    2011-04-01

    We theoretically investigate the spin-dependent transport for the system of an armchair-edge graphene nanoribbon (AGNR) between two ferromagnetic (FM) leads with arbitrary polarization directions at low temperatures, where a magnetic insulator is deposited on the AGNR to induce an exchange splitting between spin-up and -down carriers. By using the standard nonequilibrium Green's function (NGF) technique, it is demonstrated that the spin-resolved transport property for the system depends sensitively on both the width of AGNR and the polarization strength of FM leads. The tunneling magnetoresistance (TMR) around zero bias voltage possesses a pronounced plateau structure for a system with semiconducting 7-AGNR or metallic 8-AGNR in the absence of exchange splitting, but this plateau structure for the 8-AGNR system is remarkably broader than that for the 7-AGNR one. Interestingly, an increase of the exchange splitting ? suppresses the amplitude of the structure for the 7-AGNR system. However, the TMR is much enhanced for the 8-AGNR system under a bias amplitude comparable to the splitting strength. Further, the current-induced spin-transfer torque (STT) for the 7-AGNR system is systematically larger than that for the 8-AGNR one. The findings here suggest the design of GNR-based spintronic devices by using a metallic AGNR, but it is more favorable to fabricate a current-controlled magnetic memory element by using a semiconducting AGNR.

  15. Stresses from flexure in composite helical implantable leads.

    PubMed

    Meagher, J M; Altman, P

    1997-10-01

    This study presents a theoretical model of the general stress state found in helical implantable leads in bending. The model accurately predicts stress in large filarity coils made from clad wire. The stress is predicted using flexural rigidity of the coil and is developed to include the effects of coil pitch and the relative amounts and composition of the coil materials. The results is verified using finite element models of coils made from MP35N wire and MP35N clad silver wire. The resulting model will be especially useful for the fatigue analysis and engineering design of implantable leads which are built in this manner. PMID:9457700

  16. Lead and zinc dust depositions from ore trains characterised using lead isotopic compositions.

    PubMed

    Kristensen, L J; Taylor, M P; Morrison, A L

    2015-03-01

    This study investigates an unusual source of environmental lead contamination - the emission and deposition of lead and zinc concentrates along train lines into and out of Australia's oldest silver-lead-zinc mine at Broken Hill, Australia. Transport of lead and zinc ore concentrates from the Broken Hill mines has occurred for more than 125 years, during which time the majority was moved in uncovered rail wagons. A significant amount of ore was lost to the adjoining environments, resulting in soil immediately adjacent to train lines elevated with concentrations of lead (695 mg kg(-1)) and zinc (2230 mg kg(-1)). Concentrations of lead and zinc decreased away from the train line and also with depth shown in soil profiles. Lead isotopic compositions demonstrated the soil lead contained Broken Hill ore in increasing percentages closer to the train line, with up to 97% apportioned to the mined Broken Hill ore body. SEM examination showed ceiling dusts collected from houses along the train line were composed of unweathered galena particles, characteristic of the concentrate transported in the rail wagons. The loss of ore from the uncovered wagons has significantly extended the environmental footprint of contamination from local mining operations over an area extending hundreds of kilometres along each of the three train lines. PMID:25627173

  17. Numerical study of the influence of the Reynolds-number on the lift created by a leading edge vortex

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqin; Schlüter, Jörg U.

    2012-06-01

    We present a numerical study on the influence of the Reynolds-number on the lift enhancing effect of a leading edge vortex. Our approach is based on a combination of large-eddy simulations and the immersed boundary technique. We determine the influence of the leading edge vortex on the unsteady lift by simulating a fast pitch-up motion of the plate and studying the lift evolution after holding the flat plate fixed at an angle of attack. Our results suggest that an optimal Reynolds-number exists that maximizes the lift of the leading edge vortex, but that the lift-to-drag ratio is largely independent of the Reynolds-number above a Reynolds-number of Rec > 2000.

  18. On the bi-polar magnetic structure at the leading-edge of reconnection jets

    NASA Astrophysics Data System (ADS)

    Fujimoto, M.; Shirataka, N.; Tandokoro, R.

    A recent paper by Slavin et al. [2003] shows thatsome of the jets in the magnetotail have a bi-polar magnetic structure at their leading edges. It is characterized by southward-then-northward variation for earthward jets, and vice versa. In this paper, we try to model this feature in terms of three-dimensional reconnection with non-zero guide field. As the initial condition for the three-dimensional MHD simulations, we set a Harris current sheet with uniform guide field By=By0. Reconnection is initiated by putting an ad-hoc anomalous resistivity in a localized region that has a finite extent in the y (dawn-dusk) direction as well, whose half-width is denoted by Ry. Such a three-dimensional reconnection in the presence of the guide field results in the leading-edge structure that has southward magnetic field in front of the body of the jet filled with northward field. Data from a spacecraft situated at the equator over which this earthward jet passes records southward-then-northward variation in the magnetic field, which is indeed reported by Slavin et al. The behavior of the By component, the Vx component, and the plasma density also show good qualitative agreement with the data. These hold the same when By is negative. To make an quantitative assessment, we have focused on the minimum Bz during the events, which is reported to be -3 nT on average, and explored in what (By0, Ry)-space the initial condition has to be to have the minimum Bz to be equal to this value. For By0=4-6nT, which is the reported typical guide field strength, we find that Ry must be 3-7 times the half current sheet thickness. Taking the half-thickness to be 3,000 km, the dawn-dusk width of the reconnection jet (2Ry) is determined to be 3-7 Re. It is confirmed that this conclusion is not affected by the Hall effects.

  19. Evaluation of leading- and trailing-edge flaps on flat and cambered delta wings at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Hernandez, Gloria; Wood, Richard M.; Collins, Robert E.

    1989-01-01

    An experimental investigation has been conducted to evaluate the effectiveness of leading- and trailing-edge flaps on a flat and cambered wing at superconic speeds. Results from the experimental tests showed that highly complex and three-dimensional flow can occur over the wings with leading- and/or trailing-edge flaps deflected. An analysis of the data also showed that flap effectiveness varies significantly between a cambered and flat wing of identical planform and flap geometry. Mach number effects are similar for both flat and cambered wings for all aerodynamic parameters.

  20. Mass loss of TEOS-coated RCC subjected to the environment at the shuttle wing leading edge

    NASA Technical Reports Server (NTRS)

    Stroud, C. W.; Rummler, D. R.

    1981-01-01

    Coated, reinforced carbon-carbon (RCC) is used for the leading edges of the Space Shuttle. The mass loss characteristics of RCC specimens coated with tetra-ethyl-ortho-silicate (TEOS) were determined for conditions which simulated the entry environment expected at the stagnation area of the wing leading edge. Maximum specimen temperature was 1632 K. Specimens were exposed for up to 100 missions. Stress levels up to 8.274 MPa caused an average increase in oxidation of 6 percent over unstressed specimens. Experimentally determined mass losses were compared with those predicted by an existing empirical analysis.

  1. Method and System for Weakening Shock Wave Strength at Leading Edge Surfaces of Vehicle in Supersonic Atmospheric Flight

    NASA Technical Reports Server (NTRS)

    Daso, Endwell O. (Inventor); Pritchett, Victor E., II (Inventor); Wang, Ten-See (Inventor); Farr, Rebecca Ann (Inventor); Auslender, Aaron Howard (Inventor); Blankson, Isaiah M. (Inventor); Plotkin, Kenneth J. (Inventor)

    2015-01-01

    A method and system are provided to weaken shock wave strength at leading edge surfaces of a vehicle in atmospheric flight. One or more flight-related attribute sensed along a vehicle's outer mold line are used to control the injection of a non-heated, non-plasma-producing gas into a local external flowfield of the vehicle from at least one leading-edge surface location along the vehicle's outer mold line. Pressure and/or mass flow rate of the gas so-injected is adjusted in order to cause a Rankine-Hugoniot Jump Condition along the vehicle's outer mold line to be violated.

  2. HTS current lead using a composite heat pipe

    SciTech Connect

    Daugherty, M.A.; Prenger, F.C.; Hill, D.D.; Daney, D.E.; Woloshun, K.A.

    1995-12-31

    This paper discusses the design and fabrication of HTS current leads being built by Los Alamos to supply power to a demonstration HTS coil which will operate in a vacuum cooled by a cryocooler. Because vapor cooling is not an option for this application the leads must be entirely conductively cooled. In the design of HTS current leads for this type of application, it is desirable to intercept part of the heat load at an intermediate temperature. This thermal intercept or connection must be electrically insulating but thermally conductive, two mutually exclusive properties of most candidate solid materials. To achieve this end we incorporate a composite nitrogen heat pipe, constructed of conducting and non-conducting materials, to provide efficient thermal communication and simultaneously, electrical isolation between the lead and the intermediate temperature heat sink. Another important feature of the current lead design is the use of high Jc thick film superconductors deposited on a non-conducting substrate to reduce the conductive heat leak through the lower portion of the lead. Two flexible electrical conductors are incorporated to accommodate handling, assembly and the dissimilar expansion coefficients of the various materials.

  3. Drag Coefficient of Water Droplets Approaching the Leading Edge of an Airfoil

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Sor, Suthyvann; Magarino, Adelaida Garcia

    2013-01-01

    This work presents results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de Tecnica Aeroespacial (INTA) in Madrid, Spain. An airfoil model was placed at the end of the rotating arm and a monosize droplet generator produced droplets that fell from above, perpendicular to the path of the airfoil. The interaction between the droplets and the airfoil was captured with high speed imaging and allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. Image processing software was used to measure the position of the droplet centroid, equivalent diameter, perimeter, area, and the major and minor axes of an ellipse superimposed over the deforming droplet. The horizontal and vertical displacement of each droplet against time was also measured, and the velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of the droplet to the beginning of breakup. Results are presented and discussed for drag coefficients of droplets with diameters in the range of 300 to 1800 micrometers, and airfoil velocities of 50, 70 and 90 meters/second. The effect of droplet oscillation on the drag coefficient is discussed.

  4. Mechanism of Water Droplet Breakup Near the Leading Edge of an Airfoil

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Sor, Suthyvann; Magarino, Adelaida, Garcia

    2012-01-01

    This work presents results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de Tecnica Aeroespacial (INTA) in Madrid, Spain. The airfoil model was placed at the end of the rotating arm and a monosize droplet generator produced droplets that fell from above, perpendicular to the path of the airfoil. The interaction between the droplets and the airfoil was captured with high speed imaging and allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. Image processing software was used to measure the position of the droplet centroid, equivalent diameter, perimeter, area, and the major and minor axes of an ellipse superimposed over the deforming droplet. The horizontal and vertical displacement of each droplet against time was also measured, and the velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of the droplet to the beginning of breakup. Droplet deformation is defined and studied against main parameters. The high speed imaging allowed observation of the actual mechanism of breakup and identification of the sequence of configurations from the initiation of the breakup to the disintegration of the droplet. Results and comparisons are presented for droplets of diameters in the range of 500 to 1800 microns, and airfoil velocities of 70 and 90 m/sec.

  5. Development of a design model for airfoil leading edge film cooling

    NASA Astrophysics Data System (ADS)

    Wadia, A. R.; Nealy, D. A.

    1985-03-01

    A series of experiments on scaled cylinder models having injection through holes inclined at 20, 30, 45, and 90 degrees are presented. The experiments were conducted in a wind tunnel on several stainless steel test specimens in which flow and heat transfer parameters were measured over simulated airfoil leading edge surfaces. On the basis of the experimental results, an engineering design model is proposed that treats the gas-to-surface heat transfer coefficient with film cooling in a manner suggested by Luckey and L'Ecuyer (1981). It is shown that the main factor influencing the averaged film cooling effectiveness in the showerhead region is the inclination of the injection holes. The effectiveness parameter was not affected by variations in the coolant-to-gas stream pressure ratio, the freestream Mach number, the gas to coolant temperature ratio, or the gas stream Reynolds number. Experience in the wind tunnel tests is reflected in the design of the model in which the coolant side heat transfer coefficient is offset by a simultaneous increase in the gas side film coefficient. The design applications of the analytical model are discussed, with emphasis given to high temperature first stage turbine vanes and rotor blades.

  6. Turbulent Wing-Leading-Edge Correlation Assessment for the Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    King, Rudolph A.; Vaughan, Matthew P.

    2009-01-01

    This study was conducted in support of the Orbiter damage assessment activity that takes place for each Shuttle mission since STS-107 (STS - Space Transportation System). As part of the damage assessment activity, the state of boundary layer (laminar or turbulent) during reentry needs to be estimated in order to define the aerothermal environment on the Orbiter. Premature turbulence on the wing leading edge (WLE) is possible if a surface irregularity promotes early transition and the resulting turbulent wedge flow contaminates the WLE flow. The objective of this analysis is to develop a criterion to determine if and when the flow along the WLE experiences turbulent heating given an incoming turbulent boundary layer that contaminates the attachment line. The data to be analyzed were all obtained as part of the MH-13 Space Shuttle Orbiter Aerothermodynamic Test conducted on a 1.8%-scale Orbiter model at Calspan/University of Buffalo Research Center in the Large Energy National Shock Tunnels facility. A rational framework was used to develop a means to assess the state of the WLE flow on the Orbiter during reentry given a contaminated attachment-line flow. Evidence of turbulent flow on the WLE has been recently documented for a few STS missions during the Orbiter s flight history, albeit late in the reentry trajectory. The criterion developed herein will be compared to these flight results.

  7. Numerical Predictions of Sonic Boom Signatures for a Straight Line Segmented Leading Edge Model

    NASA Technical Reports Server (NTRS)

    Elmiligui, Alaa A.; Wilcox, Floyd J.; Cliff, Susan; Thomas, Scott

    2012-01-01

    A sonic boom wind tunnel test was conducted on a straight-line segmented leading edge (SLSLE) model in the NASA Langley 4- by 4- Foot Unitary Plan Wind Tunnel (UPWT). The purpose of the test was to determine whether accurate sonic boom measurements could be obtained while continuously moving the SLSLE model past a conical pressure probe. Sonic boom signatures were also obtained using the conventional move-pause data acquisition method for comparison. The continuous data acquisition approach allows for accurate signatures approximately 15 times faster than a move-pause technique. These successful results provide an incentive for future testing with greatly increased efficiency using the continuous model translation technique with the single probe to measure sonic boom signatures. Two widely used NASA codes, USM3D (Navier-Stokes) and CART3D-AERO (Euler, adjoint-based adaptive mesh), were used to compute off-body sonic boom pressure signatures of the SLSLE model at several different altitudes below the model at Mach 2.0. The computed pressure signatures compared well with wind tunnel data. The effect of the different altitude for signature extraction was evaluated by extrapolating the near field signatures to the ground and comparing pressure signatures and sonic boom loudness levels.

  8. Effect of Impact Location on the Response of Shuttle Wing Leading Edge Panel 9

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Spellman, Regina L.; Hardy, Robin C.; Fasanella, Edwin L.; Jackson, Karen E.

    2005-01-01

    The objective of this paper is to compare the results of several simulations performed to determine the worst-case location for a foam impact on the Space Shuttle wing leading edge. The simulations were performed using the commercial non-linear transient dynamic finite element code, LS-DYNA. These simulations represent the first in a series of parametric studies performed to support the selection of the worst-case impact scenario. Panel 9 was selected for this study to enable comparisons with previous simulations performed during the Columbia Accident Investigation. The projectile for this study is a 5.5-in cube of typical external tank foam weighing 0.23 lb. Seven locations spanning the panel surface were impacted with the foam cube. For each of these cases, the foam was traveling at 1000 ft/s directly aft, along the orbiter X-axis. Results compared from the parametric studies included strains, contact forces, and material energies for various simulations. The results show that the worst case impact location was on the top surface, near the apex.

  9. Thermostructural Evaluation of Joggle Region on the Shuttle Orbiter's Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.; Warren, Jerry E.

    2012-01-01

    An investigation was initiated to determine the cause of coating spallation occurring on the Shuttle Orbiter's wing leading edge panels in the slip-side joggle region. The coating spallation events were observed, post flight, on differing panels on different missions. As part of the investigation, the high re-entry heating occurring on the joggles was considered here as a possible cause. Thus, a thermostructural evaluation was conducted to determine the detailed state-of-stress in the joggle region during re-entry and the feasibility of a laboratory test on a local joggle specimen to replicate this state-of-stress. A detailed three-dimensional finite element model of a panel slip-side joggle region was developed. Parametric and sensitivity studies revealed significant stresses occur in the joggle during peak heating. A critical interlaminar normal stress concentration was predicted in the substrate at the coating interface and was confined to the curved joggle region. Specifically, the high interlaminar normal stress is identified to be the cause for the occurrence of failure in the form of local subsurface material separation occurring in the slip-side joggle. The predicted critical stresses are coincident with material separations that had been observed with microscopy in joggle specimens obtained from flight panels.

  10. The structure of separated flow regions occurring near the leading edge of airfoils, including transition

    NASA Technical Reports Server (NTRS)

    Mueller, T. J.

    1983-01-01

    Data was obtained for the NACA 663-018 airfoil in order to assess the advantages of tripping the boundary layer very near the leading edge for chord Reynolds numbers between 40,000 and 200,000. Single element trips were made from tape 2.5 mm wide and 0.15 mm thick. The unmodified tape trip in five thicknesses was placed across the span at 1.1% chord and the results of lift and drag measurements compared with the smooth airfoil case. Saw tooth geometry trips were also cut from tape and studied using five thicknesses. The saw tooth trips were placed across the span with the sharp points facing upstream at 1.1% chord and with the valley of the teeth at the 2.5% chord position. A large number of bumps and wiggles were produced in the lift coefficient versus angle of attack curves with various combinations of Reynolds number, thickness, and type of trips. The main result in the drag coefficient was an increase in C sub d min with increase in trip thickness.

  11. A practical study of the aerodynamic impact of wind turbine blade leading edge erosion

    NASA Astrophysics Data System (ADS)

    Gaudern, N.

    2014-06-01

    During operation wind turbine blades are exposed to a wide variety of atmospheric and environmental conditions; inspection reports for blades that have been operating for several years show varying degrees of leading edge erosion. It is important to be able to estimate the impact of different stages of erosion on wind turbine performance, but this is very difficult even with advanced CFD models. In this study, wind tunnel testing was used to evaluate a range of complex erosion stages. Erosion patterns were transferred to thin films that were applied to 18% thick commercial wind turbine aerofoils and full lift and drag polars were measured in a wind tunnel. Tests were conducted up to a Reynolds number of 2.20 × 106 scaling based on the local roughness Reynolds number was used in combination with different film thicknesses to simulate a variety of erosion depths. The results will be very useful for conducting cost/benefit analyses of different methods of blade protection and repair, as well as for defining the appropriate timescales for these processes.

  12. Subsonic Investigation of a Leading-Edge Boundary Layer Control Suction System on a High-Speed Civil Transport Configuration

    NASA Technical Reports Server (NTRS)

    Campbell, Bryan A.; Applin, Zachary T.; Kemmerly, Guy T.; Coe, Paul L., Jr.; Owens, D. Bruce; Gile, Brenda E.; Parikh, Pradip G.; Smith, Don

    1999-01-01

    A wind tunnel investigation of a leading edge boundary layer control system was conducted on a High Speed Civil Transport (HSCT) configuration in the Langley 14- by 22-Foot Subsonic Tunnel. Data were obtained over a Mach number range of 0.08 to 0.27, with corresponding chord Reynolds numbers of 1.79 x 10(exp 6) to 5.76 x 10(exp 6). Variations in the amount of suction, as well as the size and location of the suction area, were tested with outboard leading edge flaps deflected 0 and 30 deg and trailing-edge flaps deflected 0 and 20 deg. The longitudinal and lateral aerodynamic data are presented without analysis. A complete tabulated data listing is also presented herein.

  13. Theoretical lift and damping in roll at supersonic speeds of thin sweptback tapered wings with streamwise tips, subsonic leading edges, and supersonic trailing edges

    NASA Technical Reports Server (NTRS)

    Malvestuto, Frank S , Jr; Margolis, Kenneth; Ribner, Herbert S

    1950-01-01

    On the basis of linearized supersonic-flow theory, generalized equations were derived and calculations made for the lift and damping in roll of a limited series of thin sweptback tapered wings. Results are applicable to wings with streamwise tips and for a range of supersonic speeds for which the wing is wholly contained between the Mach cones springing from the wing apex and from the trailing edge of the root section. A further limitation is that the tip Mach lines may not intersect on the wing. For the portion of the wing external to the Mach cones springing from the leading edge of the wing tips, the pressure distributions for lift and roll previously obtained for the triangular wing are valid. For the portion of the wing contained within the wing-tip Mach cones a satisfactory approximation to the exact pressure distribution was obtained by application of a point-source-distribution method developed in NACA-TN-1382. A series of design curves are presented which permit rapid estimation of the lift-curve slope and damping-in-roll derivative for given values of aspect ratio, taper ratio, Mach number, and leading-edge sweep. (author)

  14. Thermal\\/structural analyses of several hydrogen-cooled leading-edge concepts for hypersonic flight vehicles

    Microsoft Academic Search

    Herbert J. Gladden; Matthew E. Melis; Theodore T. Mockler; Mike Tong

    1990-01-01

    The aerodynamic heating at high flight Mach numbers, when shock interference heating is included, can be extremely high and can exceed the capability of most conventional metallic and potential ceramic materials available. Numerical analyses of the heat transfer and thermal stresses are performed on three actively cooled leading-edge geometries (models) made of three different materials to address the issue of

  15. Prediction of turbulent flow and local heat transfer in internally cooled turbine airfoils: the leading edge region

    E-print Network

    Pontaza, Juan Pablo

    2013-02-22

    A multiblock numerical method has been employed for the calculation of three-dimensional flow and heat transfer in the leading edge of a large-scale impingiment-cooled turbine airfoil. The finite-analytic method solves the Reynolds-Averaged Naviers...

  16. Eliciting a human understandable model of ice adhesion strength for rotor blade leading edge materials from uncertain experimental data

    E-print Network

    Granada, Universidad de

    aerodynamics, create excessive vibration, increase drag (Withington, 2010), and introduce ballistic concerns de-icing mechanism is turned on cyclically to limit power consumption or introduce excessive heat not protected during de-icing continue to accumulate ice until the heating mats under that specific leading edge

  17. Turbulent Vortex-Flow Simulation Over a 65 deg Sharp and Blunt Leading-Edge Delta Wing at Subsonic Speeds

    NASA Technical Reports Server (NTRS)

    Ghaffari, Farhad

    2005-01-01

    Turbulent thin-layer, Reynolds-Averaged Navier-Stokes solutions, based on a multi-block structured grid, are presented for a 65 deg delta wing having either a sharp leading edge (SLE) or blunt leading edge (BLE) geometry. The primary objective of the study is to assess the prediction capability of the method for simulating the leading-edge flow separation and the ensuing vortex flow characteristics. Computational results are obtained for two angles of attack of approximately 13 and 20 deg, at free-stream Mach number of 0.40 and Reynolds number of 6 million based on the wing mean aerodynamic chord. The effects of two turbulence models of Baldwin-Lomax with Degani-Schiff (BL/DS) and the Spalart-Allmaras (SA) on the numerical results are also discussed. The computations also explore the effects of two numerical flux-splitting schemes, i.e., flux difference splitting (fds) and flux vector splitting (fvs), on the solution development and convergence characteristics. The resulting trends in solution sensitivity to grid resolution for the selected leading-edge geometries, angles of attack, turbulence models and flux splitting schemes are also presented. The validity of the numerical results is evaluated against a unique set of experimental wind-tunnel data that was obtained in the National Transonic Facility at the NASA Langley Research Center.

  18. Mixed-mode strain-energy-release rate effects on edge delamination of composites

    NASA Technical Reports Server (NTRS)

    Obrien, T. K.

    1983-01-01

    Unnotched graphite/epoxy laminates, designed to delaminate at the edges under static and cyclic tensile loads, were tested and analyzed. The specimen stacking sequences were chosen so that the total strain-energy-release rate, G, for edge delamination was identical for all three layups. However, each layup had different percentages of crack-opening and shear-mode strain-energy-release rates, G sub 1 and G sub 2, respectively. Results with composites made from T300 graphite fibers and 5208 epoxy, a brittle resin, indicated that only G sub 1 contributed to delamination onset under static loading. However, results with composites made from C6000 fibers and H205 epoxy, a tougher resin, indicated that the total F governed the onset of edge delaminations under cyclic loads. In addition, for both materials, the threshold level of G for delamination onset in fatigue was significantly less than the critical G sub c measured in static tests. Futhermore, although the C6000/H205 material had a much higher static G sub c than T300/5208, its fatigue resistance was only slightly better. A series of mixed-mode tests, like the ones in this study, may be needed to evaluate toughened-resin composites developed for highly strained composite structures subjected to cyclic loads.

  19. Characterization of multifunctional skin-material for morphing leading-edge applications

    NASA Astrophysics Data System (ADS)

    Geier, Sebastian; Kintscher, Markus; Mahrholz, Thorsten; Wierach, Peter; Monner, Hans-Peter; Wiedemann, Martin

    2013-04-01

    Former research on morphing droop-nose applications revealed great economical and social ecological advantages in terms of providing gapless surfaces for long areas of laminar flow. Furthermore a droop-nose for laminar flow applications provides a low noise exposing high-lift system at the leading-edge. Various kinematic concepts for the active deployment of such devices are already published but the major challenge is still an open issue: a skin material which meets the compromise of needed stiffness and flexibility. Moreover additional functions have to be added to keep up with standard systems. As a result of several national and European projects the DLR developed a gapless 3D smart droop-nose concept, which was successfully analyzed in a low speed wind tunnel test under relevant loads to prove the functionality and efficiency. The main structure of this concept is made of commercial available glass fiber reinforced plastics (GRFP). This paper presents elementary tests to characterize material lay-ups and their integrity by applying different loads under extreme thermal conditions using aged specimens. On the one hand the presented work is focused on the integrity of material-interfaces and on the other hand the efficiency and feasibility of embedded functions. It can be concluded that different preparations, different adhesives and used materials have their significant influence to the interface stability and mechanical property of the whole lay-up. Especially the laminate design can be optimized due to the e. g. mechanical exploitation of the added systems beyond their main function in order to reduce structural mass.

  20. Data acquisition electronics for gamma ray emission tomography using width-modulated leading-edge discriminators.

    PubMed

    Lage, E; Tapias, G; Villena, J; Desco, M; Vaquero, J J

    2010-08-01

    We present a new high-performance and low-cost approach for implementing radiation detection acquisition systems. The basic elements used are charge-integrating ADCs and a set of components encapsulated in an HDL (hardware definition language) library which makes it possible to implement several acquisition tasks such as time pickoff and coincidence detection using a new and simple trigger technique that we name WMLET (width-modulated leading-edge timing). As proof of concept, a 32-channel hybrid PET/SPECT acquisition system based on these elements was developed and tested. This demonstrator consists of a master module responsible for the generation and distribution of trigger signals, 2 x 16-channel ADC cards (12-bit resolution) for data digitization and a 32-bit digital I/O PCI card for handling data transmission to a personal computer. System characteristics such as linearity, maximum transmission rates or timing resolution in coincidence mode were evaluated with test and real detector signals. Imaging capabilities of the prototype were also evaluated using different detector configurations. The performance tests showed that this implementation is able to handle data rates in excess of 600k events s(-1) when acquiring simultaneously 32 channels (96-byte events). ADC channel linearity is >98.5% in energy quantification. Time resolution in PET mode for the tested configurations ranges from 3.64 ns FWHM to 7.88 ns FWHM when signals from LYSO-based detectors are used. The measured energy resolution matched the expected values for the detectors evaluated and single elements of crystal matrices can be neatly separated in the acquired flood histograms. PMID:20647602

  1. Data acquisition electronics for gamma ray emission tomography using width-modulated leading-edge discriminators

    NASA Astrophysics Data System (ADS)

    Lage, E.; Tapias, G.; Villena, J.; Desco, M.; Vaquero, J. J.

    2010-08-01

    We present a new high-performance and low-cost approach for implementing radiation detection acquisition systems. The basic elements used are charge-integrating ADCs and a set of components encapsulated in an HDL (hardware definition language) library which makes it possible to implement several acquisition tasks such as time pickoff and coincidence detection using a new and simple trigger technique that we name WMLET (width-modulated leading-edge timing). As proof of concept, a 32-channel hybrid PET/SPECT acquisition system based on these elements was developed and tested. This demonstrator consists of a master module responsible for the generation and distribution of trigger signals, 2 × 16-channel ADC cards (12-bit resolution) for data digitization and a 32-bit digital I/O PCI card for handling data transmission to a personal computer. System characteristics such as linearity, maximum transmission rates or timing resolution in coincidence mode were evaluated with test and real detector signals. Imaging capabilities of the prototype were also evaluated using different detector configurations. The performance tests showed that this implementation is able to handle data rates in excess of 600k events s-1 when acquiring simultaneously 32 channels (96-byte events). ADC channel linearity is >98.5% in energy quantification. Time resolution in PET mode for the tested configurations ranges from 3.64 ns FWHM to 7.88 ns FWHM when signals from LYSO-based detectors are used. The measured energy resolution matched the expected values for the detectors evaluated and single elements of crystal matrices can be neatly separated in the acquired flood histograms.

  2. Free edge strain concentrations in real composite laminates: Experimental-theoretical correlation

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.; Post, D.; Buczek, M. B.; Czarnek, R.

    1984-01-01

    The magnitude of the maximum shear strain at the free edge of axially loaded theta (2)/-theta(2)(s) and (+ or - theta(2) (s) composite laminates was investigated experimentally and numerically to ascertain the actual value of strain concentration in resin matrix laminates and to determine the accuracy of finite element results. Experimental results using moire interferometry show large, but finite, shear strain concentrations at the free edge of graphite-epoxy and graphite-polyimide laminates. Comparison of the experimental results with those obtained using several different finite element representations showed that a four node isoparametric finite element provided the best and most trouble free numerical results. The results indicate that the ratio of maxium shear strain at the free edge to applied axial strain varies with fiber orientation and does not exceed nine for the most critical angle which is 15 deg.

  3. Reduction of Free Edge Peeling Stress of Laminated Composites Using Active Piezoelectric Layers

    PubMed Central

    Huang, Bin; Kim, Heung Soo

    2014-01-01

    An analytical approach is proposed in the reduction of free edge peeling stresses of laminated composites using active piezoelectric layers. The approach is the extended Kantorovich method which is an iterative method. Multiterms of trial function are employed and governing equations are derived by taking the principle of complementary virtual work. The solutions are obtained by solving a generalized eigenvalue problem. By this approach, the stresses automatically satisfy not only the traction-free boundary conditions, but also the free edge boundary conditions. Through the iteration processes, the free edge stresses converge very quickly. It is found that the peeling stresses generated by mechanical loadings are significantly reduced by applying a proper electric field to the piezoelectric actuators. PMID:25025088

  4. Thermal Edge-Effects Model for Automated Tape Placement of Thermoplastic Composites

    NASA Technical Reports Server (NTRS)

    Costen, Robert C.

    2000-01-01

    Two-dimensional thermal models for automated tape placement (ATP) of thermoplastic composites neglect the diffusive heat transport that occurs between the newly placed tape and the cool substrate beside it. Such lateral transport can cool the tape edges prematurely and weaken the bond. The three-dimensional, steady state, thermal transport equation is solved by the Green's function method for a tape of finite width being placed on an infinitely wide substrate. The isotherm for the glass transition temperature on the weld interface is used to determine the distance inward from the tape edge that is prematurely cooled, called the cooling incursion Delta a. For the Langley ATP robot, Delta a = 0.4 mm for a unidirectional lay-up of PEEK/carbon fiber composite, and Delta a = 1.2 mm for an isotropic lay-up. A formula for Delta a is developed and applied to a wide range of operating conditions. A surprise finding is that Delta a need not decrease as the Peclet number Pe becomes very large, where Pe is the dimensionless ratio of inertial to diffusive heat transport. Conformable rollers that increase the consolidation length would also increase Delta a, unless other changes are made, such as proportionally increasing the material speed. To compensate for premature edge cooling, the thermal input could be extended past the tape edges by the amount Delta a. This method should help achieve uniform weld strength and crystallinity across the width of the tape.

  5. Novel lead-graphene and lead-graphite metallic composite materials for possible applications as positive electrode grid in lead-acid battery

    NASA Astrophysics Data System (ADS)

    Yolshina, L. A.; Yolshina, V. A.; Yolshin, A. N.; Plaksin, S. V.

    2015-03-01

    Novel lead-graphene and lead-graphite metallic composites which melt at temperature of the melting point of lead were investigated as possible positive current collectors for lead acid batteries in sulfuric acid solution. Scanning electron microscopy, Raman spectroscopy, difference scanning calorimetry, cyclic voltammetry and prolonged corrosion tests were employed to characterize the effect of the newly proposed lead-carbon metallic composites on the structure and electrochemical properties of positive grid material. Both lead-graphene and lead-graphite metallic composite materials show the similar electrochemical characteristics to metallic lead in the voltage range where the positive electrodes of lead acid batteries operate. It has been shown that carbon both as graphene and graphite does not participate in the electrochemical process but improve corrosion and electrochemical characteristics of both metallic composite materials. No products of interaction of lead with sulfuric acid were formed on the surface of graphene and graphite so as it was not found additional peaks of carbon discharge on voltammograms which could be attributed to the carbon. Graphene inclusions in lead prevent formation of leady oxide nanocrystals which deteriorate discharge characteristics of positive electrode of LAB. Both lead-graphene alloy and lead-graphite metallic composite proved excellent electrochemical and corrosion behavior and can be used as positive grids in lead acid batteries of new generation.

  6. Penetration of carbon-fabric-reinforced composites by edge cracks during thermal aging

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Kamvouris, John E.

    1994-01-01

    Thermo-oxidative stability (TOS) test results are significantly influenced by the formation and growth or presence of interlaminar and interlaminar cracks in the cut edges of all carbon-fiber-crosslinked high-temperature polymer matrix composites(exp 1-5) (i.e., unidirectional, crossplied, angle-plied, and fabric composites). The thermo-oxidative degradation of these composites is heavily dependent on the surface area that is exposed to the harmful environment and on the surface-to-volume ratio of the structure under study. Since the growth of cracks and voids on the composite surfaces significantly increases the exposed surface areas, it is imperative that the interaction between the aging process and the formation of new surface area as the aging time progresses be understood.

  7. Control of free-edge interlaminar stresses in composite laminates using piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Huang, Bin; Kim, Heung Soo

    2014-07-01

    The control of free-edge interlaminar stresses in laminated composite structures using a stress function-based approach is proposed. The assumed stress fields satisfy pointwise traction and free boundary conditions at surfaces. Governing equations are derived using the principle of complementary virtual work. A general eigenvalue solution procedure was adopted to obtain accurate stress states of the laminated composite structure. The results obtained from the proposed method were compared with those obtained by three-dimensional finite element analyses. It was found that interlaminar stresses generated by mechanical loadings could be significantly reduced by applying proper electric fields to piezoelectric actuators, which were surface bonded or embedded in composite laminates. Locations of piezoelectric actuators also influenced the distributions of interlaminar stresses. The results provided that piezoelectric actuators have potential in the application to actively control interlaminar stresses in composite laminates.

  8. Calculation of the 3-D viscous flow at the endwall leading edge region of an axial annular turbine cascade

    NASA Technical Reports Server (NTRS)

    Walitt, L.

    1984-01-01

    A three-dimensional viscous computer code (VANS/MD) was employed to calculate the turbulent flow field at the end wall leading edge region of a 20 inch axial annular turbine cascade. The initial boundary layer roll-up and formation of the end wall vortices were computed at the vane leading edge. The calculated flow field was found to be periodic with a frequency of approximately 1600 Hz. The calculated size of the separation region for the hub endwall vortex compared favorably with measured endwall oil traces. In an effort to determine the effects of the turbulence model on the calculated unsteadiness, a laminar calculation was made. The periodic nature of the calculated flow field persisted with the frequency essentially unchanged.

  9. Alignment of leading-edge and peak-picking time of arrival methods to obtain accurate source locations

    SciTech Connect

    Roussel-Dupre, R.; Symbalisty, E.; Fox, C.; and Vanderlinde, O.

    2009-08-01

    The location of a radiating source can be determined by time-tagging the arrival of the radiated signal at a network of spatially distributed sensors. The accuracy of this approach depends strongly on the particular time-tagging algorithm employed at each of the sensors. If different techniques are used across the network, then the time tags must be referenced to a common fiducial for maximum location accuracy. In this report we derive the time corrections needed to temporally align leading-edge, time-tagging techniques with peak-picking algorithms. We focus on broadband radio frequency (RF) sources, an ionospheric propagation channel, and narrowband receivers, but the final results can be generalized to apply to any source, propagation environment, and sensor. Our analytic results are checked against numerical simulations for a number of representative cases and agree with the specific leading-edge algorithm studied independently by Kim and Eng (1995) and Pongratz (2005 and 2007).

  10. LESAM 2009 3rd Leading-Edge conference on Strategic Asset Management IWA & AWWA, Miami, Florida, November 11-13, 2009 1

    E-print Network

    Paris-Sud XI, Université de

    LESAM 2009 LESAM 2009 ­ 3rd Leading-Edge conference on Strategic Asset Management IWA & AWWA, Miami2009 Author manuscript, published in "LESAM 2009, Miami : United States (2009)" #12;LESAM 2009 LESAM 2009 ­ 3rd Leading-Edge conference on Strategic Asset Management IWA & AWWA, Miami, Florida, November

  11. Development of composite materials for non-leaded glove for use in radiological hand protection

    NASA Astrophysics Data System (ADS)

    Dodoo-Amoo, David Nii Amoo

    Lead is a hazardous material and US congress has mandated the rapid reduction of all hazardous waste generation as a matter of national policy. With the large amount of plutonium handling in numerous projects including the development of MOX fuel, power source etc., hand glove protection for the emitted alpha-beta- and low energy photons is an important issue. Leaded gloves are the prime shields used for radiological hand protection. US Department of Energy laboratories require a substitute material for the lead oxide in the gloves, as a way to reduced mixed waste. To solve this problem, a new blend of non-hazardous materials that have the same radiological properties, approximately the same cost of production, and lastly not potentially fall under the Resource Conservation and Recovery Act (RCRA) regulation, to replace the lead oxide currently used in the gloves had been investigated. The investigations have produced alternative materials using calculations (deterministic and Monte Carlo, MCNP) and experiments. The selection of the constituent compounds for the new composite materials, were based on the k-absorption edge energy of the main constituent element(s) in the compound. The formulations of these composites were fashioned on the principle of blending neoprene rubber formulation with several constituent compounds. Calculations based on the Lambert-Beer attenuation law together with the mass attenuation coefficient values from the XCOM cross section database program were used to determine the transmission fractions of these proposed composite materials. Selected composite materials that compared favorably with the leaded-neoprene were fabricated. These fabricated composite materials were tested with attenuation experiments and the results were in excellent agreement with the calculations using the Lambert-Beer law. For the purpose of benchmarking the result of the calculations, Monte Carlo calculations were also made. The success of this research would mean that this new composite material could also replace the lead aprons currently in use, as shields against radiation like x-ray in most hospitals. Based on computational and experimental results, the recommended compositions of the composite materials for the glove are: (i) Erbium III Oxide (Er2O3)---40% and 40 Tungsten Boride (WB) blend with 20% Neoprene formulation, or with the reduced Er2O3, (ii) Erbium III Oxide (Er2O 3)---5% and 75% Tungsten Boride (WB) blend with 20% Neoprene formulation. (iii) Tungsten III Oxide (WO3)---80% blended with 20% Neoprene formulation. Toxicity Characteristic Leaching Procedure (TCLP) results show that, several heavy metals used in these new materials that would leach out were below the US EPA limit or are not on the list of regulated heavy metals. However, on the original gloves Lead leached out at a concentration of 5.2 mL/L, slightly above the regulatory limit.

  12. Investigation of Porous Gas-Heated Leading-Edge Section for Icing Protection of a Delta Wing

    NASA Technical Reports Server (NTRS)

    Bowden, Dean T.

    1955-01-01

    A tip section of a delta wing having an NACA 0004-65 airfoil section and a 600 leading-edge sweepback was equipped with a porous leading-edge section through which hot gas was 'bled for anti-icing. Heating rates for anti-icing were determined for a wide range of icing conditions. The effects of gas flow through the porous leading-edge section on airfoil pressure distribution and drag in dry air were investigated. The drag increase caused by an ice formation on the unheated airfoil was measured for several icing conditions. Experimental porous surface- to free-stream convective heat-transfer coefficients were obtained in dry air and compared with theory. Adequate icing protection was obtained at all icing conditions investigated. Savings in total gas-flow rate up to 42 percent may be obtained with no loss in anti-icing effectiveness by sealing half the upper-surface porous area. Gas flow through the leading-edge section had no appreciable effect on airfoil pressure distribution. The airfoil section drag increased slightly (5-percent average) with gas flow through the porous surface. A heavy glaze-ice formation produced after 10 minutes of icing caused an increase in section drag coefficient of 240 percent. Experimental convective heat-transfer coefficients obtained with hot-gas flow through the porous area in dry air and turbulent flow were 20 to 30 percent lower than the theoretical values for a solid surface under similar conditions. The transition region from laminar to turbulent flow moved forward as the ratio of gas velocity through the porous surface to air-stream velocity was increased.

  13. Icing tunnel tests of a glycol-exuding porous leading edge ice protection system on a general aviation airfoil

    NASA Technical Reports Server (NTRS)

    Kohlman, D. L.; Schweikhard, W. G.; Evanich, P.

    1981-01-01

    Tests were conducted in the Icing Research Tunnel at the NASA Lewis Research Center to determine the characteristics of an ice protection system that distributes a glycol solution onto the leading edge of an airfoil through a porous surface material. Minimum fluid flow rates required to achieve anti-icing (no ice formation) were determined for various flight conditions and angles of attack. The ability of the system to remove ice formed on the airfoil before system activation was also investigated.

  14. Nudel Binds Cdc42GAP to Modulate Cdc42 Activity at the Leading Edge of Migrating Cells

    Microsoft Academic Search

    Yidong Shen; Ning Li; Shuang Wu; Yizhuo Zhou; Yongli Shan; Qiangge Zhang; Chong Ding; Quan Yuan; Fukun Zhao; Rong Zeng; Xueliang Zhu

    2008-01-01

    SUMMARY Cdc42GAP promotes inactivation of Cdc42, a small GTPase whose activation at the leading edge by gua- nine nucleotide exchange factors is critical for cell migration. How Cdc42GAP is regulated to ensure proper levels of active Cdc42 is poorly understood. Here we show that Nudel, a cytoplasmic dynein reg- ulator, competes with Cdc42 for binding Cdc42GAP. Consequently, Nudel can inhibit

  15. Asian anthropogenic lead contamination in the North Pacific Ocean as evidenced by stable lead isotopic compositions

    NASA Astrophysics Data System (ADS)

    Zurbrick, Cheryl M.

    This dissertation work determined the changing scope of lead (Pb) contamination in the North Pacific Ocean since the phase-out of leaded gasoline in most of the world. Chapters 1 and 2 consisted of validating our method for determining Pb concentrations and isotopic compositions in seawater. Chapter 3 established a baseline of Pb isotopic compositions (PbICs) in the western and central North Pacific in 2002. This was an ideal time to establish such a baseline because China had recently (mid-2000) ceased their use of leaded gasoline and simultaneously began consuming increasingly large amounts of coal, known to have relatively high Pb concentrations. We found subsurface waters were contaminated with Asian industrial Pb, predominantly Chinese coal emissions. In contrast, the abyssal waters were a mix of Asian industrial Pb and background (i.e., natural) Pb. Chapter 4 revisited the western and central North Pacific in 2009 -- 2011 to determine what, if any, changes had occurred in this short time period. We found that Pb in subsurface and abyssal waters of the western North Pacific were similar to Chinese aerosols. Such a large change in the PbICs of abyssal water in 9 years was unanticipated and attributed to the relatively large flux of particle-bound Pb from the euphotic zone to the deep ocean, which was in isotopic equilibrium with the reservoir of dissolved Pb. In contrast, the central North Pacific abyssal water PbICs were similar to values previously reported because of the relatively lower particulate export. Based on comparisons to baseline PbIC data, we determined that abyssal waters in the western and central North Pacific would be isotopically indistinguishable from surface waters in the next three decades. Sources of Pb to coastal California waters were reevaluated in Chapter 5. Prior studies had found that surface waters of the California Current System (CCS) were isotopically consistent with both Asian industrial Pb and US leaded gasoline, still in use at that point in time. In 2010 and 2011, we found that surface and subsurface waters of the CCS were isotopically similar to Asian industrial emissions. However, remobilized US gasoline Pb from sediments in the San Francisco Bay, California, were accumulating in the "mud belt" on the continental shelf and changing the isotopic composition of overlying waters. During periods of intense upwelling, this historic Pb was brought to the surface of the water. However, the much larger quantity of Pb from Asian industrial emissions made the isotopic composition of Pb from historic US gasoline unidentifiable in off-shore waters. A secondary research focus of this dissertation was to improve my own teaching abilities. Chapter 6 explored the intersection of system thinking and aquatic toxicology in undergraduate education. Among a wealth of information, I found that group concept mapping was no more useful to student learning than the same activity done individually. This was due to poor implementation of team learning strategies by me and inadequate time for students to adjust to non-traditional instruction methodologies.

  16. Model for adhesion clutch explains biphasic relationship between actin flow and traction at the cell leading edge

    NASA Astrophysics Data System (ADS)

    Craig, Erin M.; Stricker, Jonathan; Gardel, Margaret; Mogilner, Alex

    2015-05-01

    Cell motility relies on the continuous reorganization of a dynamic actin–myosin–adhesion network at the leading edge of the cell, in order to generate protrusion at the leading edge and traction between the cell and its external environment. We analyze experimentally measured spatial distributions of actin flow, traction force, myosin density, and adhesion density in control and pharmacologically perturbed epithelial cells in order to develop a mechanical model of the actin–adhesion–myosin self-organization at the leading edge. A model in which the F-actin network is treated as a viscous gel, and adhesion clutch engagement is strengthened by myosin but weakened by actin flow, can explain the measured molecular distributions and correctly predict the spatial distributions of the actin flow and traction stress. We test the model by comparing its predictions with measurements of the actin flow and traction stress in cells with fast and slow actin polymerization rates. The model predicts how the location of the lamellipodium–lamellum boundary depends on the actin viscosity and adhesion strength. The model further predicts that the location of the lamellipodium–lamellum boundary is not very sensitive to the level of myosin contraction.

  17. Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers.

    PubMed

    Birch, James M; Dickson, William B; Dickinson, Michael H

    2004-03-01

    The elevated aerodynamic performance of insects has been attributed in part to the generation and maintenance of a stable region of vorticity known as the leading edge vortex (LEV). One explanation for the stability of the LEV is that spiraling axial flow within the vortex core drains energy into the tip vortex, forming a leading-edge spiral vortex analogous to the flow structure generated by delta wing aircraft. However, whereas spiral flow is a conspicuous feature of flapping wings at Reynolds numbers (Re) of 5000, similar experiments at Re=100 failed to identify a comparable structure. We used a dynamically scaled robot to investigate both the forces and the flows created by a wing undergoing identical motion at Re of approximately 120 and approximately 1400. In both cases, motion at constant angular velocity and fixed angle of attack generated a stable LEV with no evidence of shedding. At Re=1400, flow visualization indicated an intense narrow region of spanwise flow within the core of the LEV, a feature conspicuously absent at Re=120. The results suggest that the transport of vorticity from the leading edge to the wake that permits prolonged vortex attachment takes different forms at different Re. PMID:14978049

  18. Model for adhesion clutch explains biphasic relationship between actin flow and traction at the cell leading edge.

    PubMed

    Craig, Erin M; Stricker, Jonathan; Gardel, Margaret; Mogilner, Alex

    2015-05-01

    Cell motility relies on the continuous reorganization of a dynamic actin-myosin-adhesion network at the leading edge of the cell, in order to generate protrusion at the leading edge and traction between the cell and its external environment. We analyze experimentally measured spatial distributions of actin flow, traction force, myosin density, and adhesion density in control and pharmacologically perturbed epithelial cells in order to develop a mechanical model of the actin-adhesion-myosin self-organization at the leading edge. A model in which the F-actin network is treated as a viscous gel, and adhesion clutch engagement is strengthened by myosin but weakened by actin flow, can explain the measured molecular distributions and correctly predict the spatial distributions of the actin flow and traction stress. We test the model by comparing its predictions with measurements of the actin flow and traction stress in cells with fast and slow actin polymerization rates. The model predicts how the location of the lamellipodium-lamellum boundary depends on the actin viscosity and adhesion strength. The model further predicts that the location of the lamellipodium-lamellum boundary is not very sensitive to the level of myosin contraction. PMID:25969948

  19. Thelma and Louise Do Religious Education: A Dialogue from the Edge for Leading with Hope

    ERIC Educational Resources Information Center

    Meyers, Patty; Willhauck, Susan

    2003-01-01

    The 1991 movie Thelma and Louise and its protagonists continue to be cultural icons for many women of all ages. With quotations, song lyrics, the metaphor of the edge from the film, and collected wisdom from pedagogy, two religious educators reflect on their vocations and leadership drawing implications for the teaching ministry. The themes…

  20. Leading Edge Cell 129, June 29, 2007 2007 Elsevier Inc. 1251

    E-print Network

    Kirchhausen, Tomas

    that forms most of a clathrin leg (Fotin et al., 2004). In an unexpected twist, a small portion of Sec31 contributes to Sec13 providing the seventh blade of its propeller. Two such edge elements contribute Sec13 and the N terminus of Sec31, itself a seven blade -propeller. Four Sec13/Sec31 complexes

  1. Lift augmentation on a delta wing via leading edge fences and the Gurney flap. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Buchholz, Mark D.

    1992-01-01

    Wind tunnel tests were conducted on two devices for the purpose of lift augmentation on a 60 deg delta wing at low speed. Lift, drag, pitching moment, and surface pressures were measured. Detailed flow visualization was also obtained. Both the leading edge fence and the Gurney flap are shown to increase lift. The fences and flap shift the lift curve as much as 5 deg and 10 deg, respectively. The fences aid in trapping vortices on the upper surface, thereby increasing suction. The Gurney flap improves circulation at the trailing edge. The individual influences of both devices are roughly additive, creating high lift gain. However, the lower lift to drag ratio and the precipitation of vortex burst caused by the fences, and the nose down pitching moment created by the flap are also significant factors.

  2. Glass composition development for stabilization of lead based paints

    Microsoft Academic Search

    Marra

    1996-01-01

    Exposure to lead can lead to adverse health affects including permanent damage to the central nervous system. Common means of exposure to lead are from ingestion of lead paint chips or breathing of dust from deteriorating painted surfaces. The U.S. Army has over 101 million square feet of buildings dating to World War II or earlier. Many of these structures

  3. The adverse aerodynamic impact of very small leading-edge ice (roughness) buildups on wings and tails

    NASA Technical Reports Server (NTRS)

    Lynch, Frank T.; Valarezo, Walter O.; Mcghee, Robert J.

    1991-01-01

    Systematic experimental studies were performed to establish the aerodynamic impact of very small leading-edge simulated ice (roughness) formations on lifting surfaces. The geometries studied include single element configurations (airfoil and 3-D tail) as well as multi-element high-lift airfoil geometries. Emphasis in these studies was placed on obtaining results at high Reynolds numbers to insure the applicability of the findings to full-scale situations. It was found that the well-known Brumby correlation for the adverse lift impact of discrete roughness elements at the leading edge is not appropriate for cases representative of initial ice build up (i.e., distributed roughness). It was also found that allowing initial ice formations of a size required for removal by presently proposed deicing systems could lead to maximum lift losses of approximately 40 percent for single-element airfoils. Losses in angle-of-attack margin to stall are equally substantial - as high as 6 degrees. Percentage losses for multi-element airfoils are not as severe as for single-element configurations, but degradations of the angle-of-attack-to-stall margin are the same for both.

  4. Effects of Mach Number, Leading-Edge Bluntness, and Sweep on Boundary-Layer Transition on a Flat Plate

    NASA Technical Reports Server (NTRS)

    Jillie, Don W.; Hopkins, Edward J.

    1961-01-01

    The effects of leading-edge bluntness and sweep on boundary-layer transition on flat plate models were investigated at Mach numbers of 2.00, 2.50, 3.00, and 4.00. The effect of sweep on transition was also determined on a flat plate model equipped with an elliptical nose at a Mach number of 0.27. Models used for the supersonic investigation had leading-edge radii varying from 0.0005 to 0.040 inch. The free-stream unit Reynolds number was held constant at 15 million per foot for the supersonic tests and the angle of attack was 0 deg. Surface flow conditions were determined by visual observation and recorded photographically. The sublimation technique was used to indicate transition, and the fluorescent-oil technique was used to indicate flow separation. Measured Mach number and sweep effects on transition are compared with those predicted from shock-loss considerations as described in NACA Rep. 1312. For the models with the blunter leading edges, the transition Reynolds number (based on free-stream flow conditions) was approximately doubled by an increase in Mach number from 2.50 to 4.00; and nearly the same result was predicted from shock-loss considerations. At all super- sonic Mach numbers, increases in sweep reduced the transition Reynolds number and the amount of reduction increased with increases in bluntness. The shock-loss method considerably underestimated- the sweep effects, possibly because of the existence of crossflow instability associated with swept wings. At a Mach number of 0.27, no reduction in the transition Reynolds number with sweep was measured (as would be expected with no shock loss) until the sweep angle was attained where crossflow instability appeared.

  5. Effects of Wing Leading Edge Penetration with Venting and Exhaust Flow from Wheel Well at Mach 24 in Flight

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2003-01-01

    A baseline solution for CFD Point 1 (Mach 24) in the STS-107 accident investigation was modified to include effects of: (1) holes through the leading edge into a vented cavity; and (2) a scarfed, conical nozzle directed toward the centerline of the vehicle from the forward, inboard corner of the landing gear door. The simulations were generated relatively quickly and early in the investigation because simplifications were made to the leading edge cavity geometry and an existing utility to merge scarfed nozzle grid domains with structured baseline external domains was implemented. These simplifications in the breach simulations enabled: (1) a very quick grid generation procedure; and (2) high fidelity corroboration of jet physics with internal surface impingements ensuing from a breach through the leading edge, fully coupled to the external shock layer flow at flight conditions. These simulations provided early evidence that the flow through a two-inch diameter (or larger) breach enters the cavity with significant retention of external flow directionality. A normal jet directed into the cavity was not an appropriate model for these conditions at CFD Point 1 (Mach 24). The breach diameters were of the same order or larger than the local, external boundary-layer thickness. High impingement heating and pressures on the downstream lip of the breach were computed. It is likely that hole shape would evolve as a slot cut in the direction of the external streamlines. In the case of the six-inch diameter breach the boundary layer is fully ingested. The intent of externally directed jet simulations in the second scenario was to approximately model aerodynamic effects of a relatively large internal wing pressure, fueled by combusting aluminum, which deforms the corner of the landing gear door and directs a jet across the windside surface. These jet interactions, in and of themselves, were not sufficiently large to explain observed aerodynamic behavior.

  6. How much information can be obtained from tracking the position of the leading edge in a scratch assay?

    PubMed Central

    Johnston, Stuart T.; Simpson, Matthew J.; McElwain, D. L. Sean

    2014-01-01

    Moving cell fronts are an essential feature of wound healing, development and disease. The rate at which a cell front moves is driven, in part, by the cell motility, quantified in terms of the cell diffusivity D, and the cell proliferation rate ?. Scratch assays are a commonly reported procedure used to investigate the motion of cell fronts where an initial cell monolayer is scratched, and the motion of the front is monitored over a short period of time, often less than 24 h. The simplest way of quantifying a scratch assay is to monitor the progression of the leading edge. Use of leading edge data is very convenient because, unlike other methods, it is non-destructive and does not require labelling, tracking or counting individual cells among the population. In this work, we study short-time leading edge data in a scratch assay using a discrete mathematical model and automated image analysis with the aim of investigating whether such data allow us to reliably identify D and ?. Using a naive calibration approach where we simply scan the relevant region of the (D, ?) parameter space, we show that there are many choices of D and ? for which our model produces indistinguishable short-time leading edge data. Therefore, without due care, it is impossible to estimate D and ? from this kind of data. To address this, we present a modified approach accounting for the fact that cell motility occurs over a much shorter time scale than proliferation. Using this information, we divide the duration of the experiment into two periods, and we estimate D using data from the first period, whereas we estimate ? using data from the second period. We confirm the accuracy of our approach using in silico data and a new set of in vitro data, which shows that our method recovers estimates of D and ? that are consistent with previously reported values except that that our approach is fast, inexpensive, non-destructive and avoids the need for cell labelling and cell counting. PMID:24850906

  7. Effect of laminate edge conditions on the formation of microvoids in composite laminates

    NASA Astrophysics Data System (ADS)

    Anderson, J. P.; Altan, M. C.

    2015-05-01

    Manufacturing defects such as microvoids are common in thermoset composite components and are known to negatively affect their strength. The resin pressure developed in and the resin flow out from the laminates during cure have been reported to be the primary factors influencing the final void content of a composite component. In this work, the effect of laminate edge conditions during the cure process on the formation of microvoids was experimentally investigated. This was achieved by fabricating eight-ply laminates from TenCate® BT250/7781 prepreg in a hot-press at a constant cure pressure of 170 kPa while limiting the laminate perimeter available for resin flow by 0%, 25%, 50%, 75%, and 100%. The individual plies of these five laminates were conditioned at 99% relative humidity before curing to maximize the moisture present in the lay-up before fabrication. The presence of moisture in the lay-ups was expected to promote void formation and allow the effect of restricting flow at the edges of a laminate to be better identified. The restriction of resin outflow was found to cause the average characteristic void diameter to decrease by 17% and void content to rise by 33%. This phenomenon was identified to be a result of the outflow restriction increasing the number of voids trapped within the laminate and indicates that for laminates cured at low pressures resin outflow is the dominant mechanism for void reduction.

  8. Edge delamination of composite laminates subject to combined tension and torsional loading

    NASA Technical Reports Server (NTRS)

    Hooper, Steven J.

    1990-01-01

    Delamination is a common failure mode of laminated composite materials. Edge delamination is important since it results in reduced stiffness and strength of the laminate. The tension/torsion load condition is of particular significance to the structural integrity of composite helicopter rotor systems. Material coupons can easily be tested under this type of loading in servo-hydraulic tension/torsion test stands using techniques very similar to those used for the Edge Delamination Tensile Test (EDT) delamination specimen. Edge delamination of specimens loaded in tension was successfully analyzed by several investigators using both classical laminate theory and quasi-three dimensional (Q3D) finite element techniques. The former analysis technique can be used to predict the total strain energy release rate, while the latter technique enables the calculation of the mixed-mode strain energy release rates. The Q3D analysis is very efficient since it produces a three-dimensional solution to a two-dimensional domain. A computer program was developed which generates PATRAN commands to generate the finite element model. PATRAN is a pre- and post-processor which is commonly used with a variety of finite element programs such as MCS/NASTRAN. The program creates a sufficiently dense mesh at the delamination crack tips to support a mixed-mode fracture mechanics analysis. The program creates a coarse mesh in those regions where the gradients in the stress field are low (away from the delamination regions). A transition mesh is defined between these regions. This program is capable of generating a mesh for an arbitrarily oriented matrix crack. This program significantly reduces the modeling time required to generate these finite element meshes, thus providing a realistic tool with which to investigate the tension torsion problem.

  9. Studies Conducted of Sodium Carbonate Contaminant Found on the Wing Leading Edge and the Nose Cap of the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Palou, Jaime J.

    2003-01-01

    In early 2001, three of the space shuttle orbiters were found to have a sodium carbonate contaminant on the wing leading edge and nose cap. These parts are made of a reinforced carbon/carbon material protected by silicon carbide (SiC) and a glass coating. The glass coating is known as Type A and is primarily sodium silicate with particles of SiC. NASA Glenn Research Center's Environmental Durability Branch was asked to determine the chemistry of this deposit formation and assess any possible detrimental effects. At low temperatures, the reverse reaction is favorable. Previous studies of the corrosion of glass show that carbon dioxide in the presence of water does form sodium carbonate on sodium silicate glass (ref. 1). It is quite likely that a similar scenario exists for the orbiter wing leading edge. All three orbiters that formed sodium carbonate were exposed to rain. This formation of sodium carbonate was duplicated in the laboratory. The Type A glass, which coats the wing leading edge and nose cap, was made in a freestanding form and exposed to water in two separate experiments. In one set of experiments, the coating was placed in a petri dish filled with water. As the water evaporated, sodium carbonate formed. In another case, water was slowly dripped on the coating and sodium carbonate formed. The sodium carbonate was detected by chemical analysis and, in some cases, xray diffraction showed a hydrated sodium carbonate. The next step was to examine possible detrimental effects of this sodium carbonate. There are three likely scenarios for the sodium carbonate deposit: (1) it may be removed with a simple rinse, (2) it may remain and flow back into the Type A glass after heating during reentry, or (3) it may remain and flow onto unprotected SiC and/or other parts after heating during reentry. The effect of case 1 is to remove the Na2O constituent from the Type A glass, thus decreasing its effectiveness as a sealant. Even so, overall, it is probably the best approach and was used by the NASA Kennedy Space Center when the deposits were first observed. The effect of case 2 is minimal and would actually restore the the Type A glass to its composition before carbonate formation. However, the problem with allowing the carbonate to remain leads to the third scenario, the deposit flowing onto other parts. A series of tests were conducted on unprotected SiC, and minimal effects were found in the short-term, but other ceramic and metal parts could be damaged by the molten sodium carbonate and would require close monitoring.

  10. Lift and Drag Control on a Lambda Wing Using Leading-Edge Slot Pulsation of Various Wave Forms

    NASA Astrophysics Data System (ADS)

    Bouras, Constantinos; Nagib, Hassan; Durst, Franz; Heim, Ulrich

    2000-11-01

    Direct force measurements of lift and drag for a three-dimensional wing with a lambda-shaped planform are made in the Fejer Wind Tunnel at IIT using high angles of attack with and without various unsteady forcing conditions through a leading-edge slot. In addition to changing the pulsation frequency in the range of 2--200 Hz, the waveform was varied between sinusoidal, triangular and square shapes. This was made possible by a novel device called Luftikus, designed and manufactured by Dragerwerke GmbH, Lubeck, Germany, and originally tested at the Fluid Mechanics Institute (LSTM), Erlangen University, Germany. Substantial enhancements in the lift and the lift-to-drag ratio are achieved over a wide range of forcing frequencies with an optimum improvement at a particular dimensionless frequency scaling with the freestream speed and a representative chord length. However, the variation of the shape of the waveform does not lead to significant changes.

  11. Design and longitudinal dynamic stability analysis of a slender delta kite for high altitudes using leading edge suction analogy

    NASA Astrophysics Data System (ADS)

    Madduri, Bharath

    In this thesis, the longitudinal dynamic stability modes, namely Phugoid and Short-period of delta kite with single tether are examined, for different aspect ratios (A) and flow conditions. The equations of motion, of kite are solved in polar-inertial wind frame and the tether is approximated by straight line elements. The vortex lift and induced drag due to leading edge vortices are calculated using Polhamus leading edge suction analogy. The Polhamus proportionality constants (Kp, Kv) are used to estimate the overall coefficient of lift and drag (C L, CD) and are computed using Multhopp lifting surface theory. The values of total coefficient of lift and drag (CL, CD) are examined for a wide variety of aspect ratio of delta kite and are validated by comparing with the experimental data. Linear stability analysis is performed for the chosen design variables to ensure the nominal design has stable longitudinal dynamics. A plot of the root locus of the system matrix for longitudinal dynamics as a function of geometry and flight conditions, provided an intuitive understanding of the flight modes of the kite, with respect to design parameters of interest.

  12. NONAXISYMMETRIC ENDWALL CONTOURING AND LEADING EDGE MODIFICATIONS ON TURBINE NOZZLE GUIDE VANES

    E-print Network

    Guiltinan, Mark

    aerodynamic improvements can be counted as the axisymmetric/nonaxisymmetric endwall contouring, blade leading be counteracted by nonaxisymmetric endwall contouring. Additionally, the aerodynamic losses related to the endwall surface. These LE fillets improve the aerodynamics of the flow and the heat transfer effectiveness

  13. X-ray absorption near edge structure spectrometry study of nickel and lead speciation in coals and coal combustion products

    SciTech Connect

    Pushan Shah; Vladimir Strezov; Peter F. Nelson [Macquarie University, Sydney, NSW (Australia). CRC for Coal in Sustainable Development

    2009-03-15

    The fate and environmental impacts of trace elements from coal fired power stations are a significant concern because of the large quantities of coal used as an energy source. The ultimate environmental fate and health impact of some of these trace elements is dependent on their various forms and oxidation states. Nickel and lead are two of the trace elements classified as 'priority pollutants' by the National Pollutant Inventory (NPI) in Australia. This study attempts to understand speciation of nickel and lead in coal and coal combustion products from five coal fired power stations in Australia where bituminous rank coals are utilized. Non-destructive X-ray Absorption Near Edge Structure Spectrometry (XANES) was used to determine speciation of these metals. Semiquantitative speciation of nickel and lead was calculated using a linear combination fit of XANES spectra obtained for selected pure reference compounds. In all fly ash samples, 28-80% of nickel was present as nickel in NiSO{sub 4} form, which is a more toxic and more bioavailable form of nickel. Less toxic NiO was detected in fly ash samples in the range of 0-15%. Speciation of lead revealed that 65-70% is present as PbS in the feed coals. In all fly ash samples analyzed, lead comprised different proportions of PbCl{sub 2}, PbO, and PbSO{sub 4}. PbCl{sub 2} and PbSO{sub 4} contents varied between 30-70% and 30-60%, respectively. Chemical reactions resulting in nickel and lead transformation that are likely to have occurred in the post-combustion environment are discussed. 22 refs., 7 figs., 7 tabs.

  14. Equations and charts for the rapid estimation of hinge-moment and effectiveness parameters for trailing-edge controls having leading and trailing edges swept ahead of the Mach lines

    NASA Technical Reports Server (NTRS)

    Goin, Kennith L

    1951-01-01

    Existing conical-flow solutions have been used to calculate the hinge-moments and effectiveness parameters of trailing-edge controls having leading and trailing edges swept ahead of the Mach lines and having streamwise root and tip chords. Equations and detailed charts are presented for the rapid estimation of these parameters. Also included is an approximate method by which these parameters may be corrected for airfoil-section thickness.

  15. Boundary-layer effects in composite laminates. I - Free-edge stress singularities. II - Free-edge stress solutions and basic characteristics

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1982-01-01

    The fundamental nature of the boundary-layer effect in fiber-reinforced composite laminates is formulated in terms of the theory of anisotropic elasticity. The basic structure of the boundary-layer field solution is obtained by using Lekhnitskii's stress potentials (1963). The boundary-layer stress field is found to be singular at composite laminate edges, and the exact order or strength of the boundary layer stress singularity is determined using an eigenfunction expansion method. A complete solution to the boundary-layer problem is then derived, and the convergence and accuracy of the solution are analyzed, comparing results with existing approximate numerical solutions. The solution method is demonstrated for a symmetric graphite-epoxy composite.

  16. Basic science research in pediatric radiology - how to empower the leading edge of our field.

    PubMed

    Daldrup-Link, Heike E

    2014-08-01

    Basic science research aims to explore, understand and predict phenomena in the natural world. It spurs the discovery of fundamentally new principles and leads to new knowledge and new concepts. By comparison, applied research employs basic science knowledge toward practical applications. In the clinical realm, basic science research and applied research should be closely connected. Basic science discoveries can build the foundation for a broad range of practical applications and thereby bring major benefits to human health, education, environment and economy. This article explains how basic science research impacts our field, it describes examples of new research directions in pediatric imaging and it outlines current challenges that we need to overcome in order to enable the next groundbreaking discovery. PMID:25060618

  17. The formation mechanism and impact of streamwise vortices on NACA 0021 airfoil's performance with undulating leading edge modification

    NASA Astrophysics Data System (ADS)

    Rostamzadeh, N.; Hansen, K. L.; Kelso, R. M.; Dally, B. B.

    2014-10-01

    Wings with tubercles have been shown to display advantageous loading behavior at high attack angles compared to their unmodified counterparts. In an earlier study by the authors, it was shown that an undulating leading-edge configuration, including but not limited to a tubercled model, induces a cyclic variation in circulation along the span that gives rise to the formation of counter-rotating streamwise vortices. While the aerodynamic benefits of full-span tubercled wings have been associated with the presence of such vortices, their formation mechanism and influence on wing performance are still in question. In the present work, experimental and numerical tests were conducted to further investigate the effect of tubercles on the flow structure over full-span modified wings based on the NACA 0021 profile, in the transitional flow regime. It is found that a skew-induced mechanism accounts for the formation of streamwise vortices whose development is accompanied by flow separation in delta-shaped regions near the trailing edge. The presence of vortices is detrimental to the performance of full-span wings pre-stall, however renders benefits post-stall as demonstrated by wind tunnel pressure measurement tests. Finally, primary and secondary vortices are identified post-stall that produce an enhanced momentum transfer effect that reduces flow separation, thus increasing the generated amount of lift.

  18. An improved panel method for the solution of three-dimensional leading-edge vortex flows. Volume 1: Theory document

    NASA Technical Reports Server (NTRS)

    Johnson, F. T.; Lu, P.; Tinoco, E. N.

    1980-01-01

    An improved panel method for the solution of three dimensional flow and wing and wing-body combinations with leading edge vortex separation is presented. The method employs a three dimensional inviscid flow model in which the configuration, the rolled-up vortex sheets, and the wake are represented by quadratic doublet distributions. The strength of the singularity distribution as well as shape and position of the vortex spirals are computed in an iterative fashion starting with an assumed initial sheet geometry. The method calculates forces and moments as well as detail surface pressure distributions. Improvements include the implementation of improved panel numerics for the purpose of elimination the highly nonlinear effects of ring vortices around double panel edges, and the development of a least squares procedure for damping vortex sheet geometry update instabilities. A complete description of the method is included. A variety of cases generated by the computer program implementing the method are presented which verify the mathematical assumptions of the method and which compare computed results with experimental data to verify the underlying physical assumptions made by the method.

  19. Air forces and moments on triangular and related wings with subsonic leading edges oscillating in supersonic potential flow

    NASA Technical Reports Server (NTRS)

    Watkins, Charles E; Berman, Julian N

    1952-01-01

    This analysis treats the air forces and moments in supersonic potential flow on oscillating triangular wings and a series of sweptback and arrow wings with subsonic leading edges and supersonic trailing edges. For the wings undergoing sinusoidal torsional oscillations simultaneously with vertical translations, the linearized velocity potential is derived in the form of a power series in terms of a frequency parameter. This method can be useful for treatment of similar problems for other plan forms and for wings undergoing other sinusoidal motions. For triangular wings, as many terms of such a series expansion as may be derived can be determined; however, the terms after the first few become very cumbersome. Closed expressions that include the reduced frequency to the fifth power, an order which is sufficient for a large class of practical application, are given for the velocity potential and for the components of chordwise section force and moment coefficients. These wings are found to exhibit the possibility of undamped torsional oscillations for certain ranges of Mach number and locations of the axis of rotation. The ranges of these parameters are delineated for triangular wings.

  20. Glass composition development for stabilization of lead based paints

    SciTech Connect

    Marra, J.C.

    1996-10-01

    Exposure to lead can lead to adverse health affects including permanent damage to the central nervous system. Common means of exposure to lead are from ingestion of lead paint chips or breathing of dust from deteriorating painted surfaces. The U.S. Army has over 101 million square feet of buildings dating to World War II or earlier. Many of these structures were built before the 1978 ban on lead based paints. The U.S. Army Corps of Engineers CERL is developing technologies to remove and stabilize lead containing organic coatings. Promising results have been achieved using a patented flame spray process that utilizes a glass frit to stabilize the hazardous constituents. When the glass frit is sprayed onto the paint containing substrate, differences in thermal expansion coefficients between the frit and the paint results in spalling of the paint from the substrate surface. The removed fragments are then collected and remelted to stabilize the hazardous constituents and allow for disposal as non-hazardous waste. Similar successful results using a patented process involving microwave technology for paint removal have also been achieved. In this process, the painted surface is coated with a microwave coupling compound that when exposed to microwave energy results in the spalling of the hazardous paint from the surface. The fragments can again be accumulated and remelted for stabilization and disposal.

  1. Experimental methods of the study of vortex structures excited by point injection at the leading edge of the oblique wing

    NASA Astrophysics Data System (ADS)

    Tolkachev, S. N.; Gorev, V. N.; Zharkova, G. M.; Kovrizhina, V. N.

    2015-06-01

    The paper presents the results of application of thermoanemometry on a curved surface and the liquid crystal thermography (LCT) to study the stability of the flow at the leading edge of an oblique wing. Quantitative results of the distribution of the velocity perturbation in the boundary layer near the attachment line were obtained with the help of thermoanemometry. A decrease of boundary-layer stability because of modification of its structure by stationary vortex is found. The method of LCT allowed to expand the study area to 70° on both sides of the attachment line, to get pictures of disturbed flow visualization for multiple modes of injection, and to show the influence of the injection velocity on the size and trajectory of stationary disturbances induced by air jet. Visualization results are consistent with the thermoanemometry.

  2. Icing tunnel tests of a glycol-exuding porous leading edge ice protection system on a general aviation airfoil

    NASA Technical Reports Server (NTRS)

    Kohlman, D. L.; Schweikhard, W. G.; Albright, A. E.; Evanich, P.

    1981-01-01

    A glycol-exuding porous leading edge ice protection system was tested. Results show that the system is very effective in preventing ice accretion (anti-ice mode) or removing ice from an airfoil. Minimum glycol flow rates required for anti-icing are a function of velocity, liquid water content in the air, ambient temperature, and droplet size. Large ice caps were removed in only a few minutes using anti-ice flow rates. It was found that the shed time is a function of the type of ice, size of the ice cap, angle of attack, and glycol flow rate. Wake survey measurements show that there is no significant drag penalty for the installation or operation of the system tested.

  3. Comparison of Theoretical and Experimental Unsteady Aerodynamics of Linear Oscillating Cascade With Supersonic Leading-Edge Locus

    NASA Technical Reports Server (NTRS)

    Ramsey, John K.; Erwin, Dan

    2004-01-01

    An experimental influence coefficient technique was used to obtain unsteady aerodynamic influence coefficients and, consequently, unsteady pressures for a cascade of symmetric airfoils oscillating in pitch about mid-chord. Stagger angles of 0 deg and 10 deg were investigated for a cascade with a gap-to-chord ratio of 0.417 operating at an axial Mach number of 1.9, resulting in a supersonic leading-edge locus. Reduced frequencies ranged from 0.056 to 0.2. The influence coefficients obtained determine the unsteady pressures for any interblade phase angle. The unsteady pressures were compared with those predicted by several algorithms for interblade phase angles of 0 deg and 180 deg.

  4. On the laminar separation, transition, and turbulent reattachment of low Reynolds number flows near the leading edge of airfoils

    NASA Technical Reports Server (NTRS)

    Arena, A. V.; Mueller, T. J.

    1979-01-01

    The laminar separation, transition, and turbulent reattachment near the leading edge of a cylindrical nose-constant thickness airfoil model were investigated using a low turbulence, low speed smoke wind tunnel. The locations of separation, transition, and reattachment were obtained from smoke flow photographs and surface oil flow techniques for chord Reynolds numbers from about 150,000 to 470,000. These visual data combined with static pressure distributions and lift and drag measurements delineate the effects of angle of attack, flap deflection angle, and chord Reynolds number on the separation bubble characteristics. The data concerning the length of the laminar and turbulent portions of the bubble agree with the empirical prediction methods for short bubbles.

  5. Turbine vane gas film cooling with injection in the leading edge region from a single row of spanwise angled holes

    NASA Technical Reports Server (NTRS)

    Lecuyer, M. R.; Hanus, G. J.

    1976-01-01

    An experimental study of gas film cooling was conducted on a 3X size model turbine vane. Injection in the leading edge region was from a single row of holes angled in a spanwise direction. Measurements of the local heat flux downstream from the row of coolant holes, both with and without film coolant flow, were used to determine the film cooling performance presented in terms of the Stanton number ratio. Results for a range of coolant blowing ratio, M = 0 to 2.0, indicate a reduction in heat flux of up to 15 to 30 percent at a point 10 to 11 hole diameters downstream from injection. An optimum coolant blowing ratio corresponds to a coolant-to-freestream velocity ratio in the range of 0.5. The shallow injection angle resulted in superior cooling performance for injection closest to stagnation, while the effect of injection angle was insignificant for injection further from stagnation.

  6. Sensitivity of F-106B Leading-Edge-Vortex Images to Flight and Vapor-Screen Parameters

    NASA Technical Reports Server (NTRS)

    Lamar, John E.; Johnson, Thomas D., Jr.

    1988-01-01

    A flight test was undertaken at NASA Langley Research Center with vapor-screen and image-enhancement techniques to obtain qualitative and quantitative information about near-field vortex flows above the wings of fighter aircraft. In particular, the effects of Reynolds and Mach numbers on the vortex system over an angle-of-attack range were sought. The relevance of these flows stems from their present and future use at many points in the flight envelope, especially during transonic maneuvers. The aircraft used in this flight program was the F-106B because it was available and had sufficient wing sweep (60 deg) to generate a significant leading-edge vortex system. The sensitivity of the visual results to vapor screen hardware and to onset flow changes is discussed.

  7. Test-Analysis Correlation for Space Shuttle External Tank Foam Impacting RCC Wing Leading Edge Component Panels

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.

    2008-01-01

    The Space Shuttle Columbia Accident Investigation Board recommended that NASA develop, validate, and maintain a modeling tool capable of predicting the damage threshold for debris impacts on the Space Shuttle Reinforced Carbon-Carbon (RCC) wing leading edge and nosecap assembly. The results presented in this paper are one part of a multi-level approach that supported the development of the predictive tool used to recertify the shuttle for flight following the Columbia Accident. The assessment of predictive capability was largely based on test analysis comparisons for simpler component structures. This paper provides comparisons of finite element simulations with test data for external tank foam debris impacts onto 6-in. square RCC flat panels. Both quantitative displacement and qualitative damage assessment correlations are provided. The comparisons show good agreement and provided the Space Shuttle Program with confidence in the predictive tool.

  8. Ranging, activity budget, and diet composition of red titi monkeys (Callicebus cupreus) in primary forest and forest edge.

    PubMed

    Kulp, Jenna; Heymann, Eckhard W

    2015-07-01

    Deforestation and fragmentation of tropical rainforests are increasingly creating forest edges and corresponding edge effects. Furthermore, primary forest is increasingly being replaced by secondary forest. The presence of high population densities of titi monkeys in fragmented and secondary forests suggests that they are capable of adapting to such habitat alterations. The aim of our study was to examine the ability of the red titi monkey (Callicebus cupreus) to adapt to forest edges and secondary forest. We compared home-range use, activity budgets, and diet composition in two groups of monkeys: one in primary forest and the other in primary forest with a long edge bordering secondary forest. The latter group avoided the secondary forest and used the edge in proportion to its availability. Groups did not differ in activity budgets but did show slight differences in diet composition. Taken together, our results suggest that there are no major effects of forest edges and secondary forest on red titi monkeys; however, given the relatively short study period, generalizations should be avoided until more comparative data become available. Furthermore, the age or successional stage of the secondary forest must be taken into consideration when drawing conclusions about its suitability as a primate habitat. PMID:25993983

  9. An experimental analysis of critical factors involved in the breakdown process of leading edge vortex flows. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Visser, Kenneth D.

    1991-01-01

    Experimental crosswire measurements of the flowfield above a 70 and 75 degree flat plate delta wing were performed at a Reynolds number of 250,000. Survey grids were taken normal to the platform at a series of chordwise locations for angles of attack of 20 and 30 degrees. Axial and azimuthal vorticity distributions were derived from the velocity fields. The dependence of circulation on distance from the vortex core as well as on chordwise location was examined. The effects of nondimensionalization in comparison with other experimental data was made. The circulation distribution scales with the local semispan and grows approximately linearly in the chordwise direction. For regions of the flow outside of the vortex subcore, the circulation at any chordwise station was observed to vary logarithmically with distance from the vortex axis. The circulation was also found to increase linearly with angle of incidence at a given chordwise station. A reduction in the local circulation about the vortex axis occurred at breakdown. The spanwise distribution of axial vorticity was severely altered through the breakdown region and the spanwise distribution of axial vorticity present appeared to reach a maximum immediately preceding breakdown. The local concentration of axial vorticity about the vortex axis was reduced while the magnitude of the azimuthal vorticity decreased throughout the breakdown zone. The axial vorticity components with a negative sense, found in the secondary vortex, remained unaffected by changes in wing sweep or angle of attack, in direct contrast to the positive components. The inclusion of the local wing geometry into a previously derived correlation parameter indicated that the circulation of growing leading edge vortex flows were similar at corresponding radii from the vortex axis. It was concluded that the flow over a delta wing, upstream of the breakdown regions and away from the apex and trailing edge regions, is conical. In addition, the dominating factors leading to the onset of breakdown are felt to be the local circulation of the vortex and the accompanying pressure field.

  10. Predictive steady-state chromatography. 1. Algorithms for leading and trailing edges of resolved and unresolved peaks in liquid chromatography.

    PubMed

    Li, J; Pardue, H L

    1994-11-01

    This paper describes mathematical models and curve-fitting procedures that permit steady-state saturation signals to be computed accurately from data along leading and trailing edges of liquid chromatograms. This new approach to quantitative chromatography is called predictive steady-state chromatography (PSSC). It is shown that the computed saturation signals are virtually the same when determined from data along leading and trailing edges and they vary linearly with analyte concentration. Most importantly, the computed saturation signals for a given analyte concentration are virtually independent of experimental variables such as sample volume and flow rate. For example, for sample volumes between 25 and 45 microL, the average computed saturation signal for a 0.025 mM solution of theophylline was 0.11 V with a standard deviation of 0.00097 V (RSD = 0.8%); similar results were found for other concentrations and for changes in flow rate. Dependencies of the PSSC method on sample volume and flow rate were compared with dependencies for peak-height and peak-area methods by using relative error coefficients. Dependencies on sample volume were 0.04%/microL for the PSSC method and 3 and 4%/microL for peak-height and peak-area methods, respectively. Dependencies on flow rate were 2%/mL/min for the PSSC method and 17 and 120%/mL/min for the peak-height and peak-area methods, respectively. Thus, the predictive steady-state method is 10-100-fold more rugged than peak-height and peak-area methods. PMID:7802259

  11. A poling study of lead zirconate titanate/polyurethane 0-3 composites

    NASA Astrophysics Data System (ADS)

    Lau, S. T.; Kwok, K. W.; Shin, F. G.; Kopf, S.

    2007-08-01

    0-3 composites of lead zirconate titanate particles dispersed in a thermoplastic elastomer polyurethane matrix were fabricated. The dielectric permittivity and loss of the composite film were measured and compared to the theoretical values. The composites were polarized by the ac fields at different frequencies. With the application of the Sawyer-Tower circuit, the D-E hysteresis loops of the composites can be measured during the poling process. By decreasing the poling frequency, the composite sample shows a larger "remanent" polarization at the same poling field. To evaluate the poling effectiveness, the pyroelectric coefficients of the poled composite samples were measured by a dynamic method.

  12. Properties of morphotropic phase boundary lead barium niobate (PBN) compositions

    Microsoft Academic Search

    R. Guo; A. S. Bhalla; C. A. Randall; Z. P. Chang; L. E. Cross

    1989-01-01

    Investigations of the polarization mechanisms in tungsten bronze ferroelectric, Pb1?xBaxNb2O6, in particular of the morphotropic phase boundary compositions, have been carried out for both ceramics and bulk crystals by means of electrical, optical, and electron microscopic methods. It is demonstrated by optical conoscopic interference figure that electric field can switch the crystal from one ferroelectric phase to the other for

  13. General Method for Determination of the Surface Composition in Bimetallic Nanoparticle Catalysts from the L Edge X-ray Absorption Near-Edge Spectra

    SciTech Connect

    Wu, Tiapin; Childers, David; Gomez, Carolina; Karim, Ayman M.; Schweitzer, Neil; Kropf, Arthur; Wang, Hui; Bolin, Trudy B.; Hu, Yongfeng; Kovarik, Libor; Meyer, Randall; Miller, Jeffrey T.

    2012-10-31

    Bimetallic PtPd on silica nano-particle catalysts have been synthesized and their average structure determined by Pt L3 and Pd K-edge extended X-ray absorption finestructure (EXAFS) spectroscopy. The bimetallic structure is confirmed from elemental line scans by STEM for the individual 1-2 nm sized particles. A general method is described to determine the surface composition in bimetallic nanoparticles even when both metals adsorb, for example, CO. By measuring the change in the L3 X-ray absorption near-edge structure (XANES) spectra with and without CO in bimetallic particles and comparing these changes to those in monometallic particles of known size the fraction of surface atoms can be determined. The turnover rates (TOR) and neopentane hydrogenolysis and isomerization selectivities based on the surface composition suggest that the catalytic and spectroscopic properties are different from those in monometallic nano-particle catalysts. At the same neo-pentane conversion, the isomerization selectivity is higher for the PtPd catalyst while the TOR is lower than that of both Pt and Pd. As with the catalytic performance, the infrared spectra of adsorbed CO are not a linear combination of the spectra on monometallic catalysts. Density functional theory calculations indicate that the Pt-CO adsorption enthalpy increases while the Pd-CO bond energy decreases. The ability to determine the surface composition allows for a better understanding of the spectroscopic and catalytic properties of bimetallic nanoparticle catalysts.

  14. Particle Image Velocimetry Near the Leading Edge of a Sikorsky SSC-A09 Wing During Dynamic Stall 

    E-print Network

    Vannelli, Rachel Renee

    2012-02-14

    edge region and the first indications of separation are observed at 18 degree angle of attack. The edge of the boundary layer has been characterized for alpha = 18 degrees. The roles of the Reynolds stresses and vorticity are examined....

  15. Subsonic Investigation of Leading-Edge Flaps Designed for Vortex- and Attached-Flow on a High-Speed Civil Transport Configuration

    NASA Technical Reports Server (NTRS)

    Campbell, Bryan A.; Kemmerly, Guy T.; Kjerstad, Kevin J.; Lessard, Victor R.

    1999-01-01

    A wind tunnel investigation of two separate leading-edge flaps, designed for vortex and attached-flow, respectively, were conducted on a High Speed Civil Transport (HSCT) configuration in the Langley 14- by 22-Foot Subsonic Tunnel. Data were obtained over a Mach number range of 0.12 to 0.27, with corresponding chord Reynolds numbers of 2.50 x 10 (sup 6) to 5.50 x 10 (sup 6). Variations of the leading-edge flap deflection angle were tested with outboard leading-edge flaps deflected 0 deg. and 26.4 deg. Trailing-edge flaps were deflected 0 deg., 10 deg., 12.9 deg., and 20 deg. The longitudinal and lateral aerodynamic data are presented without analysis. A complete tabulated data listing is also presented herein. The data associated with each deflected leading-edge flap indicate L/D improvements over the undeflected configuration. These improvements may be instrumental in providing the necessary lift augmentation required by an actual HSCT during the climb-out and landing phases of the flight envelope. However, further tests will have to be done to assess their full potential.

  16. Measurements of heat transfer coefficients and friction factors in rib-roughened channels simulating leading-edge cavities of a modern turbine blade

    SciTech Connect

    Taslim, M.E.; Li, T. [Northeastern Univ., Boston, MA (United States). Dept. of Mechanical Engineering; Spring, S.D. [GE Aircraft Engines, Lynn, MA (United States)

    1997-07-01

    Leading edge cooling cavities in modern gas turbine blades play an important role in maintaining the leading edge temperature at levels consistent with air foil design life. These cavities often have a complex cross-sectional shape to be compatible with the external contour of the blade at the leading edge. A survey of many existing geometries shows that, for analytical as well as experimental analyses, such cavities can be simplified in shape by a four-sided polygon with one curved side similar to the leading edge curvature, a rectangle with one semicircular side (often the smaller side) or a trapezoid, the smaller base of which is replaced by a semicircle. Furthermore, to enhance the heat transfer coefficient in these cavities, they are mostly roughened on three sides with ribs of different geometries. Experimental data on friction factors and heat transfer coefficients in such cavities are rare if not nonexistent. A liquid crystal technique was used in this experimental investigation to measure heat transfer coefficients in six test sections representing the leading-edge cooling cavities. Both straight and tapered ribs were configured on the two opposite sidewalls in a staggered arrangement with angles of attack to the mainstream flow, {alpha}, of 60 and 90 deg. The ribs on the curved surface were of constant cross section with an angle of attack 90 deg to the flow. Heat transfer measurements were performed on the straight sidewalls, as well as on the round surface adjacent to the blade leading edge. Effects such as rib angle of attack to the mainstream flow and constant versus tapered rib cross-sectional areas were also investigated. Nusselt numbers, friction factors, and thermal performances are reported for nine rib geometries in six test sections.

  17. Numerical Analysis of Free-Edge Effect on Size-Influenced Mechanical Properties of Single-Layer Triaxially Braided Composites

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Binienda, Wieslaw K.

    2014-12-01

    The mechanical properties of triaxially braided composites under transverse loads are found to be size-dependent, due to the presence of free-edge effect. Numerical studies of the mechanical behaviors of straight-sided coupon specimens and an infinitely large plate under both axial and transverse tension loads were conducted using a meso-scale finite element model. The numerical model correlates well with experimental results, successfully capturing the free-edge warping phenomena under transverse tension. Free-edge effect is observed as out-of-plane warping, and it can be correlated to the premature damage initiation in the affected area. The numerical results characterize the impact of free-edge effects on the global stress-strain response and local failure mechanisms. By conducting dimensional analysis, the relationships of effective stiffness and strength against specimen width are quantified using Weibull equations. The results of this study indicate that the free-edge effect is an inherent behavior of braided architecture. The free-edge effect produces significantly reduced transverse tension modulus and strength measurements.

  18. Leading Edge Book Review

    E-print Network

    Monteiro, Antónia

    in humans, to wing patterns in butterflies, to sex determination in turtles. Yet, despite the broad scope. In turn, altered development results in different organismal form, sex, or behavior. Hormones, whose

  19. Wear performance of copper–graphite composite and a leaded copper alloy

    Microsoft Academic Search

    M Kestursatya; J. K Kim; P. K Rohatgi

    2003-01-01

    The wear behavior of new lead free metal matrix composite (MMC), centrifugally cast copper alloy graphite (C90300–10%graphite) composite (CG) is studied in comparison to a commonly used leaded copper (LC) alloy (18–22% Pb). Tribological tests were conducted with pins made from these materials and tested against a SAE 1045 steel counterface. The CG material showed higher wear resistance than the

  20. Effects of wing leading-edge deflection on the low-speed aerodynamic characteristics of a low-aspect-ratio highly swept arrow-wing configuration

    NASA Technical Reports Server (NTRS)

    Coe, P. L., Jr.; Weston, R. P.

    1978-01-01

    Wing leading-edge deflection effects on the low-speed aerodynamic characteristics of a low-aspect-ratio highly swept arrow-wing configuration were determined. Static force tests were conducted in a V/STOL tunnel at a Reynolds number of about 2.5 x 1 million for an angle-of-attack range from -10 deg to 17 deg and an angle-of-sideslip range from -5 deg to 5 deg. Limited flow visualization studies were also conducted in order to provide a qualitative assessment of leading-edge upwash characteristics.

  1. Determination of trace amounts of lead and cadmium using a bismuth\\/glassy carbon composite electrode

    Microsoft Academic Search

    Gil-Ho Hwang; Won-Kyu Han; Seok-Jun Hong; Joon-Shik Park; Sung-Goon Kang

    2009-01-01

    We examined the use of a bismuth–glassy carbon (Bi\\/C) composite electrode for the determination of trace amounts of lead and cadmium. Incorporated bismuth powder in the composite electrode was electrochemically dissolved in 0.1M acetate buffer (pH 4.5) where nanosized bismuth particles were deposited on the glassy carbon at the reduction potential. The anodic stripping voltammetry on the Bi\\/C composite electrode

  2. Lead

    MedlinePLUS

    ... Children can be exposed from eating lead-based paint chips or playing in contaminated soil. Lead can ... X-rays. Because of health concerns, lead from paints and ceramic products, caulking, and pipe solder has ...

  3. Lead

    MedlinePLUS

    ... your home was built before 1978, old lead paint on your walls, doors, windows, and sills may ... Abatement Program for permanent elimination of lead-based paint hazards Less Lead in Drinking Water = Better Health ...

  4. Cdc42-dependent formation of the ZO-1/MRCK? complex at the leading edge controls cell migration

    PubMed Central

    Huo, Lin; Wen, Wenyu; Wang, Rui; Kam, Chuen; Xia, Jun; Feng, Wei; Zhang, Mingjie

    2011-01-01

    Zonula occludens (ZO)-1 is a multi-domain scaffold protein known to have critical roles in the establishment of cell–cell adhesions and the maintenance of stable tissue structures through the targeting, anchoring, and clustering of transmembrane adhesion molecules and cytoskeletal proteins. Here, we report that ZO-1 directly binds to MRCK?, a Cdc42 effector kinase that modulates cell protrusion and migration, at the leading edge of migrating cells. Structural studies reveal that the binding of a ? hairpin from GRINL1A converts ZO-1 ZU5 into a complete ZU5-fold. A similar interaction mode is likely to occur between ZO-1 ZU5 and MRCK?. The interaction between ZO-1 and MRCK? requires the kinase to be primed by Cdc42 due to the closed conformation of the kinase. Formation of the ZO-1/MRCK? complex enriches the kinase at the lamellae of migrating cells. Disruption of the ZO-1/MRCK? complex inhibits MRCK?-mediated cell migration. These results demonstrate that ZO-1, a classical scaffold protein with accepted roles in maintaining cell–cell adhesions in stable tissues, also has an active role in cell migration during processes such as tissue development and remodelling. PMID:21240187

  5. Prediction of leading-edge transition and relaminarization phenomena on a subsonic multi-element high-lift system

    NASA Technical Reports Server (NTRS)

    Vandam, C. P.

    1993-01-01

    Boundary-layer transition and relaminarization may have a critical effect on the flow development about multi-element high-lift systems of subsonic transport jets with swept wings. The purpose of the research is to study these transition phenomena in the leading-edge region of the various elements of a high-lift system. The flow phenomena studied include transition to the attachment-line flow, relaminarization, and crossflow instability, and transition. The calculations are based on pressure distributions measured in flight on the NASA Transport Systems Research Vehicle (Boeing 737-100) at a wing station where the flow approximated infinite swept wing conditions. The results indicate that significant regions of laminar flow can exist on all flap elements in flight. In future flight experiments (planned for January-February, 1994) the extent of these regions, the transition mechanisms and the effect of laminar flow on the high-lift characteristics of the multi-element system will be further explored.

  6. Goertler vortices in growing boundary layers: The leading edge receptivity problem, linear growth and the nonlinear breakdown stage

    NASA Technical Reports Server (NTRS)

    Hall, Philip

    1989-01-01

    Goertler vortices are thought to be the cause of transition in many fluid flows of practical importance. A review of the different stages of vortex growth is given. In the linear regime, nonparallel effects completely govern this growth, and parallel flow theories do not capture the essential features of the development of the vortices. A detailed comparison between the parallel and nonparallel theories is given and it is shown that at small vortex wavelengths, the parallel flow theories have some validity; otherwise nonparallel effects are dominant. New results for the receptivity problem for Goertler vortices are given; in particular vortices induced by free stream perturbations impinging on the leading edge of the walls are considered. It is found that the most dangerous mode of this type can be isolated and it's neutral curve is determined. This curve agrees very closely with the available experimental data. A discussion of the different regimes of growth of nonlinear vortices is also given. Again it is shown that, unless the vortex wavelength is small, nonparallel effects are dominant. Some new results for nonlinear vortices of 0(1) wavelengths are given and compared to experimental observations.

  7. CESA-1 project capabilities for high temperature material testing: Application to the HERMES wing leading edge tests

    SciTech Connect

    Rosa, F.; Valverde, A.; Aranda, J.M.; Aranda, J.; Rodriguez, J. (Plataforma Solar de Almeria (Spain))

    1991-01-01

    This is a report on the activities carried out at the CESA-1 Facility of the Platforma Solar de Almeria within the framework of the HERMES Wing Leading Edge (W.L.E.) tests. It includes a description of the solar furnace, test procedure, instrumentation and test results, proving the capabilities of this facility in the field of high temperature material testing. It is not intended to compare the thermomechanical behavior of the materials tested. These tests to determine the thermomechanical behavior of two W.L.E.s (C-C and C-SiC) under simulated thermomechanical reentry conditions of the space vehicle HERMES, can be summarized as the performance of 1,550{degree} and 1,730{degree}C thermal cycles maintaining stationary conditions during 20 minutes. During this time a certain vertical temperature profile had to be reached on the W.L.E. and a set of mechanical tests (tension and compression) were carried out. Results demonstrate the flexibility of CESA-1 heliostat field control in tests of the nature. All heating and cooling rates, stationary conditions and temperature profile constraints imposed by the European Space Agency (E.S.A.) were satisfied successfully. The safety of the material was guaranteed and, finally, taking into account that the authors were using 55% of the total power of the heliostat field, material testing at even higher temperatures would seem to be possible.

  8. Partners in Science: A Model Cooperative Program Introducing High School Teachers and Students to Leading-Edge Pharmaceutical Science

    NASA Astrophysics Data System (ADS)

    Woska, Joseph R., Jr.; Collins, Danielle M.; Canney, Brian J.; Arcario, Erin L.; Reilly, Patricia L.

    2005-12-01

    Partners in Science is a cooperative program between Boehringer Ingelheim Pharmaceuticals, Inc. and area high schools in the community surrounding our Connecticut campus. It is a two-phase program that introduces high school students and teachers to the world of drug discovery and leading-edge pharmaceutical research. Phase 1 involves a series of lectures, tours, and demonstrations given by scientists within our research and development division (R&D). Phase 2 involves the selection of a small group of participants to intern for the summer in a research laboratory, working side by side with a scientist within R&D. In this manuscript, the specific aims, goals, and development of the Partners in Science program are described, as well as the syllabus/agenda, the logistics surrounding the operation of the program, and our shared personal experiences with students and teachers who have participated. Some of the pitfalls/problems associated with the program will be presented, and finally, the future direction of the program including areas of improvement and expansion are described.

  9. Feature detection and Proper Orthogonal Decomposition of time resolved velocity data for flow separation over an elliptical leading edge.

    NASA Astrophysics Data System (ADS)

    Morse, Daniel; Liburdy, James

    2007-11-01

    In this study the flow characteristics over a fixed surface, flat, low aspect ratio thin wing are investigated. Of interest is the dynamic separation process for a range of angle of attacks, and chord Reynolds numbers, particularly the time dependent nature of the vortex development, convection and interactions. Angle of attack is varied from 14 to 20 . The Reynolds number based on chord length ranges from 14,700 to 66,700; this corresponds to a velocity range between 1.75 and 5.0 m/s. Time Resolved Particle Image Velocimetry (TRPIV) is used to obtained time resolved velocity information near the leading edge. Using discrete vortex detection schemes coupled with a high pass filtering and Proper Orthogonal Decompostion (POD) analysis, the time dependent characteristics of this flow is elucidated. Methods of vortex detection include the ?2 method proposed by Jeong and Hussain [1995] and Large Eddy Simulation (LES) filtering. The POD reveals a low number of high energy, dominant modes of velocity variation for most cases.

  10. Transition over C4 leading edge and measurement of intermittency factor using PDF of hot-wire signal

    SciTech Connect

    Hazarika, B.K.; Hirsch, C. [Vrije Univ. Brussel, Brussels (Belgium). Dept. of Fluid Mechanics

    1997-07-01

    The variation of intermittency factors in the transition region of a C4 leading edge flat plate is measured at three incidence angles in a low-turbulence free stream. During the determination of intermittency factor, the threshold value of the detector function and the validity of conditional averaging are verified by a method based on the direct application of PDF of the hot-wire output. As the angle of incidence is increased, the transition progressively moves through all the three modes on the suction surface: at zero incidence the bypass transition, at 2 deg incidence the natural transition, and at 4 deg incidence the separated-flow transition occur, respectively. All three modes of transition exhibited the chordwise intermittency factor variation in accordance with Narasinha`s universal intermittency distribution; thus, the method based on spot production rate is applicable to all the three modes of transition. In the transition zone of the attached boundary layers, the conditionally averaged interturbulent profiles are fuller than the Blasius profile, while the conditionally averaged turbulent profiles follow a logarithmic profile with a variable additive parameter.

  11. Reproducing the bipolar magnetic signature at the jet leading edge by three-dimensional reconnection with nonzero guide field

    NASA Astrophysics Data System (ADS)

    Shirataka, N.; Fujimoto, M.; Hasegawa, H.; Tandokoro, R.

    2006-07-01

    A bipolar (southward-then-northward) signature of the Bz component at the leading edge of earthward jets in the magnetotail has often been reported. Here we try to reproduce this magnetic field feature by a three-dimensional reconnection (finite extent in the dawn-dusk direction) in the presence of a nonzero guide field (dawn-dusk magnetic component). Setting the guide field intensity by referring to earlier reports (Slavin et al., 2003) and setting the dawn-dusk extent of the reconnection region to an often quoted value (Angelopoulos et al., 1997), we managed to reproduce the bipolar signatures in three-dimensional (Hall) MHD simulation runs. Redirecting the argument, with the typical guide field intensity of By = 4 nT in the magnetotail, the southward peak value of Bz = -3 nT in the bipolar signature may be taken as the evidence that the dawn-dusk width of the reconnection region is ˜4 RE (RE: Earth radii).

  12. Synthesis and Thermoelectric Properties of Compositional-Modulated Lead Telluride-Bismuth Telluride Nanowire

    E-print Network

    Ruan, Xiulin

    figure of merit (ZT) of 1.2 at 620 K. KEYWORDS: Thermoelectric, nanowire, heterostructure, lead telluride and an enhanced ZT of 1.2 has been achieved at 620 K. We focus our research on telluride-based thermoelectricSynthesis and Thermoelectric Properties of Compositional- Modulated Lead Telluride

  13. Compatibility of SiC and SiC Composites with Molten Lead

    SciTech Connect

    H Tunison

    2006-03-07

    The choice of structural material candidates to contain Lead at 1000 C are limited in number. Silicon carbide composites comprise one choice of possible containment materials. Short term screening studies (120 hours) were undertaken to study the behavior of Silicon Carbide, Silicon Nitride, elemental Silicon and various Silicon Carbide fiber composites focusing mainly on melt infiltrated composites. Isothermal experiments at 1000 C utilized graphite fixtures to contain the Lead and material specimens under a low oxygen partial pressure environment. The corrosion weight loss values (grams/cm{sup 2} Hr) obtained for each of the pure materials showed SiC (monolithic CVD or Hexoloy) to have the best materials compatibility with Lead at this temperature. Increased weight loss values were observed for pure Silicon Nitride and elemental Silicon. For the SiC fiber composite samples those prepared using a SiC matrix material performed better than Si{sub 3}N{sub 4} as a matrix material. Composites prepared using a silicon melt infiltration process showed larger corrosion weight loss values due to the solubility of silicon in lead at these temperatures. When excess silicon was removed from these composite samples the corrosion performance for these material improved. These screening studies were used to guide future long term exposure (both isothermal and non-isothermal) experiments and Silicon Carbide composite fabrication work.

  14. Isotope composition of Medieval lead glasses reflecting early silver production in Central Europe

    Microsoft Academic Search

    K. H. Wedepohl; A. Baumann

    1997-01-01

    The lead isotope composition of 32 lead glasses excavated from strata of the twelfth to early fifteenth century in six countries\\u000a of NW Europe made the predominance of the Harz Mountains in this period of the Medieval European lead and silver production\\u000a highly probable. Post-Variscan vein type galena, Devonian syngenetic hydrothermal ore (Rammelsberg) and blended ore from both\\u000a deposits in

  15. Pulsed volume discharge in a nonuniform electric field at a high pressure and the short leading edge of a voltage pulse

    Microsoft Academic Search

    S B Alekseev; V P Gubanov; I D Kostyrya; Viktor M Orlovskii; V S Skakun; Viktor F Tarasenko

    2004-01-01

    It is shown that a volume discharge is formed in a nonuniform electric field for the short leading edge of a voltage pulse and nanosecond pulse duration without any additional preionisation source in various gases at pressures higher than atmospheric (6 atm in helium and 3 atm in nitrogen). Lasing at atomic transitions in Xe is obtained in an Ar—Xe

  16. The influence of a special fillet between the endwall and airfoil at the leading edge on the performance of the turbine nozzle diaphragm

    NASA Astrophysics Data System (ADS)

    Mamaev, B. I.; Saha, R.; Fridh, J.

    2013-03-01

    It is shown from the results of experimental investigations carried out on a nozzle diaphragm's sector that an enlarged fillet at the vane leading edge does not have an essential effect on the flow and energy losses in the nozzle diaphragm.

  17. Temporal variations in lead concentrations and isotopic composition in the Southern California Bight

    NASA Astrophysics Data System (ADS)

    Sañudo-Wilhelmy, Sergio A.; Flegal, A. Russell

    1994-08-01

    Lead concentrations in surface waters of the Southern California Bight appear to have decreased threefold (from > 170 to <60 pM) since they were initially measured by Clair Patterson and his associates in the 1970s. The decrease parallels a threefold decline in anthropogenic inputs of industrial lead to the bight over the past two decades. Moreover, mass balance calculations indicate that the primary source of lead to the bight now is upwelling. This is evidenced by the isotopic compositions of surface waters in the bight, which are most characteristic of Asian industrial lead aerosols ( 0.4793 ? 206Pb /208Pb ? 0.4833 ) deposited in oceanic waters of the North Pacific. While the decrease in surface water lead concentrations in the bight reflects the reduction in industrial lead emissions from the United States, the isotopic compositions of surface waters in the southern reach of the bight reflect a concurrent increase in industrial lead emissions from Mexico ( 0.4852 ? 206Pb /208Pb ? 0.4877 ). The isotopic composition ( 208Pb /207Pb ? 2.427 ) of elevated lead concentrations of surface waters in San Diego Bay indicate that lead is being remobilized from contaminated sediments within that bay.

  18. Polyaniline-lead titanate composites for humidity sensing and EMI shielding applications

    NASA Astrophysics Data System (ADS)

    Manocha, Aarushi; Thomas, Jocelyn T.; Fathima, Hana; V, Suveetha; Faisal, Muhammad

    2015-06-01

    The present paper reports the humidity sensing and electromagnetic interference (EMI) shielding properties of synthesized polyaniline-lead titanate (PANi/PbTiO3) composites. The humidity sensing of the PAni/PbTiO3 composites was discussed in terms of change in direct current (DC) resistance with respect to percentage relative humidity (% RH) ranging from 20% to 90%. The EMI shielding properties of the composites were measured in the frequency range of 8-12 GHz (X-band), relevant for practical applications. The composites showed shielding effectiveness (SE) in the range -29 dB to -34 dB and the variations in the shielding effectiveness with the frequency was minimal at a fixed composition. The observed effective humidity sensing and EMI shielding properties highlights the prospects of multifunctional applications of these composites.

  19. Aerodynamic Characteristics of a Large-Scale Unswept Wing-Body-Tail Configuration with Blowing Applied Over the Flap and Wind Leading Edge

    NASA Technical Reports Server (NTRS)

    McLemore, H. Clyde; Peterson, John B., Jr.

    1960-01-01

    An investigation has been conducted in the Langley full-scale tunnel to determine the effects of a blowing boundary-layer-control lift-augmentation system on the aerodynamic characteristics of a large-scale model of a fighter-type airplane. The wing was unswept at the 70-percent- chord station, had an aspect ratio of 2.86, a taper ratio of 0.40, and 4-percent-thick biconvex airfoil sections parallel to the plane of symmetry. The tests were conducted over a range of angles of attack from approximately -4 deg to 23 deg for a Reynolds number of approximately 5.2 x 10(exp 6) which corresponds to a Mach number of 0.08. Blowing rates were normally restricted to values just sufficient to control air-flow separation. The results of this investigation showed that wing leading-edge blowing in combination with large values of wing leading-edge-flap deflection was a very effective leading-edge flow-control device for wings having highly loaded trailing-edge flaps. With leading-edge blowing there was no hysteresis of the lift, drag, and pitching-moment characteristics upon recovery from stall. End plates were found to improve the lift and drag characteristics of the test configuration in the moderate angle-of-attack range, and blockage to one-quarter of the blowing-slot area was not detrimental to the aerodynamic characteristics. Blowing boundary-layer control resulted in a considerably reduced landing speed and reduced landing and take-off distances. The ailerons were very effective lateral-control devices when used with blowing flaps.

  20. Dielectric Properties of Lead Monoxide Filled Unsaturated Polyester Based Polymer Composites

    NASA Astrophysics Data System (ADS)

    Harish, V.; Kumar, H. G. Harish; Nagaiah, N.

    2011-07-01

    Lead monoxide filled isophthalate resin particulate polymer composites were prepared with different filler concentrations and investigated for physical, thermal, mechanical and gamma radiation shielding characteristics. This paper discusses about the dielectric properties of the composites. The present study showed that the dielectric constant (?'), dielectric loss (??) and ac conductivity (?ac) of isopthalate based unsaturated polyester resin increases with the increase in wt% PbO filler in polymer matrix.

  1. Determination of trace amounts of lead and cadmium using a bismuth/glassy carbon composite electrode.

    PubMed

    Hwang, Gil-Ho; Han, Won-Kyu; Hong, Seok-Jun; Park, Joon-Shik; Kang, Sung-Goon

    2009-02-15

    We examined the use of a bismuth-glassy carbon (Bi/C) composite electrode for the determination of trace amounts of lead and cadmium. Incorporated bismuth powder in the composite electrode was electrochemically dissolved in 0.1M acetate buffer (pH 4.5) where nanosized bismuth particles were deposited on the glassy carbon at the reduction potential. The anodic stripping voltammetry on the Bi/C composite electrode exhibited well-defined, sharp and undistorted peaks with a favorable resolution for lead and cadmium. Comparing a non-oxidized Bi/C composite electrode with an in-situ plated bismuth film electrode, the Bi/C composite electrode exhibited superior performance due to its much larger surface area. The limit of detection was 0.41 microg/L for lead and 0.49 microg/L for cadmium. Based on this study, we are able to conclude that various types of composite electrodes for electroanalytical applications can be developed with a prudent combination of electrode materials. PMID:19084661

  2. KNN\\/BNT composite lead-free films for high-frequency ultrasonic transducer applications

    Microsoft Academic Search

    Sien Lau; Hong Ji; Xiang Li; Wei Ren; Qifa Zhou; K. Shung

    2011-01-01

    Lead-free K0.5Na0.5NbO3\\/Bi0.5Na0.5TiO3 (KNN\\/ BNT) films have been fabricated by a composite sol-gel tech- nique. Crystalline KNN fine powder was dispersed in the BNT precursor solution to form a composite slurry which was then spin-coated onto a platinum-buffered Si substrate. Repeated layering and vacuum infiltration were applied to produce 5-µm-thick dense composite film. By optimizing the sinter- ing temperature, the films

  3. Effect of dielectrophoretic structuring on piezoelectric and pyroelectric properties of lead titanate-epoxy composites

    NASA Astrophysics Data System (ADS)

    Khanbareh, H.; van der Zwaag, S.; Groen, W. A.

    2014-10-01

    Functional granular composites of lead titanate particles in an epoxy matrix prepared by dielectrophoresis show enhanced dielectric, piezoelectric and pyroelectric properties compared to 0–3 composites for different ceramic volume content from 10% to 50%. Two structuring parameters, the interparticle distance and the percentage of 1–3 connectivity are used based on the Bowen model and the mixed connectivity model respectively. The degree of structuring calculated according to both models correlate well with the increase in piezoelectric and pyroelectric sensitivities of the composites. Higher sensitivity of the electroactive properties are observed at higher ceramic volume fractions. The effect of electrical conductivity of the matrix on the pyroelectric responsivity of the composites has been demonstrated to be a key parameter in governing the pyroelectric properties of the composites.

  4. Suppression of Chemotaxis by SSeCKS via Scaffolding of Phosphoinositol Phosphates and the Recruitment of the Cdc42 GEF, Frabin, to the Leading Edge

    PubMed Central

    Ko, Hyun-Kyung; Guo, Li-wu; Su, Bing; Gao, Lingqiu; Gelman, Irwin H.

    2014-01-01

    Chemotaxis is controlled by interactions between receptors, Rho-family GTPases, phosphatidylinositol 3-kinases, and cytoskeleton remodeling proteins. We investigated how the metastasis suppressor, SSeCKS, attenuates chemotaxis. Chemotaxis activity inversely correlated with SSeCKS levels in mouse embryo fibroblasts (MEF), DU145 and MDA-MB-231 cancer cells. SSeCKS loss induced chemotactic velocity and linear directionality, correlating with replacement of leading edge lamellipodia with fascin-enriched filopodia-like extensions, the formation of thickened longitudinal F-actin stress fibers reaching to filopodial tips, relative enrichments at the leading edge of phosphatidylinositol (3,4,5)P3 (PIP3), Akt, PKC-?, Cdc42-GTP and active Src (SrcpoY416), and a loss of Rac1. Leading edge lamellipodia and chemotaxis inhibition in SSeCKS-null MEF could be restored by full-length SSeCKS or SSeCKS deleted of its Src-binding domain (?Src), but not by SSeCKS deleted of its three MARCKS (myristylated alanine-rich C kinase substrate) polybasic domains (?PBD), which bind PIP2 and PIP3. The enrichment of activated Cdc42 in SSeCKS-null leading edge filopodia correlated with recruitment of the Cdc42-specific guanine nucleotide exchange factor, Frabin, likely recruited via multiple PIP2/3-binding domains. Frabin knockdown in SSeCKS-null MEF restores leading edge lamellipodia and chemotaxis inhibition. However, SSeCKS failed to co-immunoprecipitate with Rac1, Cdc42 or Frabin. Consistent with the notion that chemotaxis is controlled by SSeCKS-PIP (vs. -Src) scaffolding activity, constitutively-active phosphatidylinositol 3-kinase could override the ability of the Src inhibitor, SKI-606, to suppress chemotaxis and filopodial enrichment of Frabin in SSeCKS-null MEF. Our data suggest a role for SSeCKS in controlling Rac1 vs. Cdc42-induced cellular dynamics at the leading chemotactic edge through the scaffolding of phospholipids and signal mediators, and through the reorganization of the actin cytoskeleton controlling directional movement. PMID:25356636

  5. Spectral method of determining the isotopic composition of lead. Part I

    Microsoft Academic Search

    A. N. Zajdel; A. G. ZttIGLINSKI; J. ?ajko

    1958-01-01

    An apparatus was developed for analyzing the isotopic composition of ; lead separated from geological samples. The light source was a water-cooled or ; liquid-air-cooled hollow cathode discharge tube. The high-resolution apparatus ; was a Fabry-Perot dielectric multilayer interferometer which was located in a ; pressure chamber and the scanning of isotope structure of the lead line PbI ; 4057.8

  6. Influence of blade leading edge geometry and upstream blowing on the heat/mass transfer in a turbine cascade

    NASA Astrophysics Data System (ADS)

    Papa, Marco

    The effect of secondary flows on mass transfer from a simulated gas turbine blade and hubwall is investigated. Measurements performed using naphthalene sublimation provide non-dimensional mass transfer coefficients, in the form of Sherwood numbers, that can be converted to heat transfer coefficients through the use of an analogy. Tests are conducted in a linear cascade composed of five blades having the profile of a first stage rotor blade of a high-pressure turbine aircraft engine. Detailed mass transfer maps on the airfoil and endwall surfaces allow the identification of significant flow features that are in good agreement with existing secondary flow models. These results are well-suited for validation of numerical codes, as they are obtained with an accurate technique that does not suffer from conduction or radiation errors and allows the imposition of precise boundary conditions. The performance of a RANS (Reynolds Averaged Navier-Stokes) numerical code that simulates the flow and heat/mass transfer in the cascade using the SST (Shear Stress Transport) k-o model is evaluated through a comparison with the experimental results. Tests performed with a modified blade leading edge show that the introduction of a fillet at the junction with the endwall reduces the effects of the horseshoe vortex in the first part of the passage, while no measurable changes in mass transfer are observed further downstream. Air injected through a slot located upstream of the cascade simulates the engine wheelspace coolant injection between the stator and the rotor. Local mass transfer data obtained injecting naphthalene-free and naphthalene-saturated air are reduced to derive maps of cooling effectiveness on the blade and endwall. Oil dot tests show the surface flow on the endwall. The surface downstream of the gap is coplanar to the upstream surface in the baseline configuration and is shifted to form a forward and backward facing step to investigate the effects of component misalignments. Sufficiently high injection rates alter the structure of the secondary flows and significantly improve the cooling performance.

  7. Formulas for the Supersonic Loading, Lift, and Drag of Flat Swept-Back Wings with Leading Edges Behind the Mach Line

    NASA Technical Reports Server (NTRS)

    Cohen, Doris

    1951-01-01

    The method of superposition of linearized conical flows has been applied to the calculation of the aerodynamic properties, in supersonic flight, of thin flat, swept-back wings at an angle of attack. The wings are assumed to have rectilinear plan forms, with tips parallel to the stream, and to taper in the conventional sense. The investigation covers the moderately supersonic speed range where the Mach lines from the leading-edge apex lie ahead of the wing. The trailing edge may lie ahead of or behind the Mach lines from its apex. The case in which the Mach cone from one tip intersects the other tip is not treated. Formulas are obtained for the load distribution, the total lift, and the drag due to lift. For the cases in which the trailing edge is outside the Mach cone from its apex the formulas are complete. For wings with both leading and trailing edges behind their respective Mach lines, a degree of approximation is necessary. Charts of some of the functions derived are included to facilitate computing, and several examples are worked out in outline.

  8. Assessment of the Radiation Attenuation Properties of Several Lead Free Composites by Monte Carlo Simulation

    PubMed Central

    Kazempour, M.; Saeedimoghadam, M.; Shekoohi Shooli, F.; Shokrpour, N.

    2015-01-01

    Background: In diagnostic radiology lead apron, are usually used to protect patients and radiology staff against ionizing radiation. Lead apron is a desirable shield due to high absorption and effective attenuation of x-ray photons in the diagnostic radiology range. Objective: Although lead aprons have good radiation protection properties, in recent years, researchers have been looking for alternative materials to be used instead of lead apron because of some problems derived from lead-content of aprons. Because of its lead-content, these radiation protection garments are so heavy and uncomfortable for the staff to wear, particularly in long-time uses. In addition, lead is a toxic element and its disposal is associated with environmental and human-health hazards. Method: In this study, several new combinations of lead free materials ((W-Si), (W-Sn-Ba-EPVC ), (W-Sn-Cd-EPVC)) have been investigated in the energy range of diagnostic radiology in two geometries: narrow and broad beam. Geometries of the radiation attenuation characteristics of these materials was assessed in 40, 60, 90 and 120 kVp and the results compared with those of some lead-containing materials ((Pb-Si), (Pb-EPVC)). Results: Lead shields still provide better protection in low energies (below 40 kVp). Combination of W-Sn-Cd-EPVC has shown the best radiation attenuation features in 60 and 90 kVp and the composition of (W-Sn-Ba-EPVC) represents the best attenuation in 120 kVp, even better than previously mentioned lead- containing composites. Conclusion: Lead free shields are completely effective for protection against X-ray energies in the range of 60 to 120 kVp.

  9. A flow visualization study of the leading edge separation bubble on a NACA 0012 airfoil with simulated glaze ice. Final Report M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Khodadoust, Abdollah

    1988-01-01

    As a part of the ongoing research in aircraft icing, the leading edge separation bubble on the NACA 0012 model with a 5-min simulated glaze ice was investigated. The flow visualization methods used oil, tuft, splitter plate, smoke, and liquid crystals to get reattachment line data for the leading edge separation bubble on both surfaces of the airfoil. On the upper surface, the bubble was found to grow larger with increasing negative angles of attack and reduce in size with increasing angles of attack. The separated flow fails to reattach beyond 6 deg for the upper surface and -5 deg for the lower surface. The results of this study compared well with those of other experiments and computational results.

  10. Effects of discontinuous drooped wing leading-edge modifications on the spinning characteristics of a low-wing general aviation airplane

    NASA Technical Reports Server (NTRS)

    Dicarlo, D. J.; Stough, H. P., III; Patton, J. M., Jr.

    1980-01-01

    Wind tunnel and flight tests were conducted to determine the effects of several discontinuous drooped wing leading-edge configurations on the spinning characteristics of a light, single-engine, low-wing research airplane. Particular emphasis was placed on the identification of modifications which would improve the spinning characteristics. The spanwise length of a discontinuous outboard droop was varied and several additional inboard segments were added to determine the influence of such leading-edge configurations on the spin behavior. Results of the study indicated that the use of only the discontinuous outboard droop, over a specific spanwise area, was most effective towards improving spin and spin recovery characteristics, whereas the segmented configurations having both inboard and outboard droop exhibited a tendency to enter a flat spin.

  11. Static force tests of a sharp leading edge delta-wing model at ambient and cryogenic temperatures with a description of the apparatus employed

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.; Davenport, E. E.

    1976-01-01

    A sharp leading edge delta-wing model was tested through an angle-of-attack range at Mach numbers of 0.75, 0.80, and 0.85 at both ambient and cryogenic temperatures in the Langley 1/3-meter transonic cryogenic tunnel. Total pressure was varied with total temperature in order to hold test Reynolds number constant at a given Mach number. Agreement between the aerodynamic data obtained at ambient and cryogenic temperatures indicates that flows with leading-edge vortex effects are duplicated properly at cryogenic temperatures. The test results demonstrate that accurate aerodynamic data can be obtained by using conventional force-testing techniques if suitable measures are taken to minimize temperature gradients across the balance and to keep the balance at ambient (warm) temperatures during cryogenic operation of the tunnel.

  12. Lead isotopic compositions in the EPICA Dome C ice core and Southern Hemisphere Potential Source Areasq

    E-print Network

    Howat, Ian M.

    Lead isotopic compositions in the EPICA Dome C ice core and Southern Hemisphere Potential Source contri- butions from local Antarctic sources. The isotopic signature of Pb in Antarctic ice is altered-30123 Venice, Italy b Department of Imaging and Applied Physics, Curtin University of Technology, GPO

  13. Results of an experimental and numerical study of the aerodynamic heating of the undersurface of delta wings with sharp leading edges at mach numbers M ? =6.1 and 8

    Microsoft Academic Search

    N. A. Kovaleva; N. P. Kolina; A. P. Kosykh; A. Ya. Yushin

    1991-01-01

    The heat transfer between a supersonic flow and the undersurface of delta wings with leading-edge sweep angles x=65 and 70° is investigated in a shock tunnel at angles of attacka = 15°. The supersonic inviscid flow over these wings in regimes in which the bow shock is attached to the sharp leading edges is calculated numerically. The compressible boundary layer

  14. Heat-requirements for Ice Protection of a Cyclically Gas-heated, 36 Degree Swept Airfoil with Partial-span Leading-edge Slat

    NASA Technical Reports Server (NTRS)

    Gray, Vernon H; vonGlahn, Uwe H

    1956-01-01

    Heating requirements for satisfactory cyclic de-icing over a wide range of icing and operating conditions have been determined for a gas-heated, 36deg swept airfoil of 6.9-foot chord with a partial-span leading-edge slat. Comparisons of heating requirements and effectiveness were made between the slatted and unslatted portions of the airfoil. Studies were also made comparing cyclic de-icing with continuous anti-icing, and cycll.cde-icing systems with and without leading-edge ice-free parting strips. De-icing heat requirements were approximately the same with either heated or unheated parting strips because of the aerodynamic effects of the 36deg sweep angle and the spanwise saw-tooth profile of leading-edge glaze-ice deposits. Cyclic de-icing heat-source requirements were found to be one-fourth or less of the heat requirements for complete anti-icing. The primary factors that affected the performance of the cyclic de-icing heating system were ambient air temperature, heat distribution, and thermal lag.

  15. Effects of a modified leading edge on noise and boundary-layer transition in a rod-wall sound shield at Mach 5

    NASA Technical Reports Server (NTRS)

    Creel, T. R., Jr.; Holley, B. B.; Beckwith, I. E.

    1981-01-01

    A version of a rod wall sound shield was tested in the Mach 5 pilot quiet tunnel over a range of unit Reynolds numbers from 10 to 35 million per meter. The model was modified by inclining the leading edge plates to produce an initial 2 deg expansion to ascertain the sensitivity of boundary layer transition to leading edge disturbances. Rod surface pitot pressures, mean free stream pitot pressures, and static pressures on the rods and plenum walls were measured. Hot-wire measurements were also made in the model and nozzle free stream at a unit Reynolds number of 15 million per meter. The surface pitot pressures indicated that transition was much farther forward than for the previous tests due to the leading edge modification and minor fabrication flaws in the model. Early boundary layer transition on the rods was confirmed by hot-wire measurements which showed much higher noise levels in the free stream shield flow when compared with results from previous tests. Mean pitot pressure surveys within the shielded region inside the model indicated that there was an overexpansion and recompression that would limit the streamwise length of undisturbed flow to about 13 cm along the centerline.

  16. The isotopic composition of silver and lead in two iron meteorites - Cape York and Grant

    NASA Technical Reports Server (NTRS)

    Chen, J. H.; Wasserburg, G. J.

    1983-01-01

    Anomalies in silver isotope composition in the metal phases of the Cape York (IIIA) and Grant (IIIB) iron meteorites are studied together with the lead isotopic composition of both the metal and sulfide phases of Cape York. Following extensive surface cleaning, the Ag-107/Ag-109 ratio in the metal phases of the meteorites is found to be in excess of the terrestrial ratio, and of that found in the sulfide phases. A definite correlation between the Ag-107/Ag-109 and Pd-108/Ag-109 ratios is observed for these meteorites, indicating the in situ decay of Pd-107 and supporting the widespread presence of Pd in the early universe. Lead, determined after cleaning and with chemical separations using low blank levels, is found to exist in variable proportions in the metal and sulfide phases. The sulfides appear to be dominated by radiogenic modern lead, which may be explained by terrestrial contamination or by late metamorphism in the meteorite parent body.

  17. The isotopic composition of silver and lead in two iron meteorites - Cape York and Grant

    NASA Astrophysics Data System (ADS)

    Chen, J. H.; Wasserburg, G. J.

    1983-10-01

    Anomalies in silver isotope composition in the metal phases of the Cape York (IIIA) and Grant (IIIB) iron meteorites are studied together with the lead isotopic composition of both the metal and sulfide phases of Cape York. Following extensive surface cleaning, the Ag-107/Ag-109 ratio in the metal phases of the meteorites is found to be in excess of the terrestrial ratio, and of that found in the sulfide phases. A definite correlation between the Ag-107/Ag-109 and Pd-108/Ag-109 ratios is observed for these meteorites, indicating the in situ decay of Pd-107 and supporting the widespread presence of Pd in the early universe. Lead, determined after cleaning and with chemical separations using low blank levels, is found to exist in variable proportions in the metal and sulfide phases. The sulfides appear to be dominated by radiogenic modern lead, which may be explained by terrestrial contamination or by late metamorphism in the meteorite parent body.

  18. KNN/BNT composite lead-free films for high-frequency ultrasonic transducer applications.

    PubMed

    Lau, Sien Ting; Ji, Hong Fen; Li, Xiang; Ren, Wei; Zhou, Qifa; Shung, K Kirk

    2011-01-01

    Lead-free K(0.5)Na(0.5)NbO(3)/Bi(0.5)Na(0.5)TiO(3) (KNN/ BNT) films have been fabricated by a composite sol-gel technique. Crystalline KNN fine powder was dispersed in the BNT precursor solution to form a composite slurry which was then spin-coated onto a platinum-buffered Si substrate. Repeated layering and vacuum infiltration were applied to produce 5-?m-thick dense composite film. By optimizing the sintering temperature, the films exhibited good dielectric and ferroelectric properties comparable to PZT films. A 193-MHz high-frequency ultrasonic transducer fabricated from this composite film showed a -6-dB bandwidth of approximately 34%. A tungsten wire phantom was imaged to demonstrate the capability of the transducer. PMID:21244994

  19. The International Polar Year (IPY) Circumpolar Flaw Lead (CFL) system study: a focus on fast ice edge systems

    Microsoft Academic Search

    D. G. Barber; C. J. Mundy; T. N. Papakyriakou; R. W. MacDonald; Y. Gratton; L. Fortier; M. Gosselin; J. Hanesiak; J. Tremblay; S. Ferguson; G. Stern; S. Meakin; J. W. Deming; D. Leitch

    2009-01-01

    The Circumpolar Flaw Lead (CFL) system study supported a large multidisciplinary overwintering in the Banks Island (NT) flaw lead over the period September 2007 to August 2008 as part of the International Polar Year (IPY). The CFL system is formed when the central pack ice (which is mobile) moves away from coastal fast ice, opening a flaw lead. The CFL

  20. Unsteady modes in the flowfield about an airfoil with a leading-edge horn-ice shape

    NASA Astrophysics Data System (ADS)

    Ansell, Phillip J.

    An analysis of unsteady modes present in the flowfield of an airfoil with a leading-edge horn-ice shape was performed in the current study. An NACA 0012 airfoil was tested in a subsonic wind tunnel at Re = 1.8 x 106. In addition to the clean configuration, the airfoil model was also tested with a set of boundary-layer trips, a two-dimensional extrusion of a horn-ice shape casting, and an array of simulated icing configurations created using simple geometries. Time-averaged and unsteady static pressure measurements were acquired about the airfoil surface, along with unsteady wake velocity and surface hot-film array measurements. Additionally, surface and off-body flow visualization techniques were used to visualize the airfoil flowfield. A technique was also developed to determine the unsteady shear-layer reattachment location of the ice-induced laminar separation bubble downstream of the horn-ice shape using the surface hot-film array measurements. The maximum amount of unsteadiness in the iced-airfoil flowfield was observed to increase with increasing angle of attack. For a fixed angle of attack prior to stall, a change in the feature height of the simulated ice shape led to a change in the distribution of flowfield unsteadiness, but did not change the maximum levels of unsteadiness present in the flowfield. The iced-airfoil flowfield unsteadiness was primarily associated with three different frequencies. The first was represented by an increase in spectral energy across a broad-band frequency range, and was observed just upstream of shear-layer reattachment as well as downstream of shear-layer reattachment. This increase in spectral energy was caused by the regular mode of unsteadiness due to vortical motion in the separated shear layer and vortex shedding from the separation bubble. The average Strouhal number of this regular mode corresponded to StL = 0.60, and the average vortex convection velocity was observed to be 0.45Uinfinity. These values were highly consistent with those reported elsewhere in the literature. The other two frequencies were much lower and were observed as narrow-band peaks in the spectral content of the acquired measurements that were primarily present in the region covered by the ice-induced separation bubble. The first was attributed to the shear-layer flapping phenomenon and was particularly dominant in the upstream portion of the separation bubble. The Strouhal number associated with this shear-layer flapping mode corresponded to St h = 0.0185, which was consistent with those reported in studies of separation bubbles about canonical geometries. The second frequency was lower than that of shear-layer flapping and was associated with a low-frequency mode of unsteadiness that can occur prior to static stall for airfoils of thin-airfoil stall type. This low-frequency mode was characterized by a low-frequency oscillation of the airfoil circulation, and it was clearly identified in the spectral content of the iced-airfoil lift coefficient. The resulting values of Strouhal number exhibited a dependence on the airfoil angle of attack and corresponded to a range that was consistent with the Strouhal number values reported in prior studies of the low-frequency mode in the literature. Using the method for determining the unsteady shear-layer reattachment location, the average time-dependent relationship between the reattachment location and the lift coefficient was calculated. It was discovered that at the low-frequency mode, the lift coefficient leads the shear-layer reattachment location by a phase of pi/2. This phase relationship occurred due to a feedback between the airfoil circulation and the separation bubble length. This improved understanding of the low-frequency mode in the iced-airfoil flowfield was utilized in a practical example to improve the predictive qualities of a hinge-moment-based stall prediction system. This improvement in the predictive qualities was performed by identifying the intermittent signature of the low-frequency mode in the wavelet transform of the hinge moment coeffic

  1. A Method for Computing the Core Flow in Three-Dimensional Leading-Edge Vortices. Ph.D. Thesis - North Carolina State Univ.

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    1985-01-01

    A theory is presented for calculating the flow in the core of a separation-induced leading-edge vortex. The method is based on matching inner and outer representations of the vortex. The inner model of the vortex is based on the quasicylindrical Navier-Stokes equations; the flow is assumed to be steady, axially symmetric, and incompressible and in addition, gradients in the radial direction are assumed to be much larger then gradients in the axial direction. The outer model is based on the three-dimensional free-vortex-sheet theory, a higher-order panel method which solves the Prandtl-Glauert equation including nonlinear boundary conditions pertinent to the concentrated vorticity representation of the leading edge vortex. The resultant flow is evaluated a posteriori for evidence of incipient vortex breakdown and the critical helix angle concept, in conjunction with an adverse longitudinal pressure gradient, is found to correlate well with the occurrence of vortex breakdown at the trailing edge of delta, arrow, and diamond wings.

  2. Edge diffraction of electromagnetic waves by a composite wedge of conductor and dielectric

    Microsoft Academic Search

    Huen-Tae Ha; Jung-Woong Ra

    1997-01-01

    A rigorous formulation is suggested in solving the scattering of plane waves by a composite wedge of conductor and dielectric. This employs the Kirchhoff's integral in the physical regions and the extinction theorem in their mathematical complementary regions to make the correction of the primary approximated solutions. Calculated total field patterns scattered by the composite wedge give close results to

  3. Diversity, composition and structure of Late Eocene shelf-edge coral associations (Nago Limestone, Northern Italy)

    Microsoft Academic Search

    Francesca R. Bosellini

    1998-01-01

    Summary  During the Late Eocene, shelf-edge patch reefs developed on the western margin of the Lessini Shelf. The coral fauna, studied\\u000a in the Nago Limestone type locality, is described and interpreted for the first time, and provides further data for better\\u000a understanding of the generally poorly known Eocene reef communities.\\u000a \\u000a Facies analysis was carried out across the shallowing upward succession that

  4. Low speed aerodynamic characteristics of a large scale model with a thin, highly swept, 2.67 aspect ratio wing having a cranked leading edge

    NASA Technical Reports Server (NTRS)

    Giulianetti, D. J.; Maki, R. L.

    1972-01-01

    The low speed aerodynamic characteristics of a large-scale model intended to represent advanced fixed-wing fighters have been investigated in the Ames 40 by 80 foot wind tunnel. The model possessed positive static longitudinal stability to nearly 28 deg angle of attack, the maximum tested, both with and without leading-edge flaps deflected. Lateral control with differentially deflected ailerons and a right wing spoiler simultaneously deployed as combined controls was only slightly greater than that with the differentially deflected ailerons deployed as a separate control without the spoiler. Measured lift and drag were in close agreement with that predicted by theory to about 14 deg angle of attack, including the prediction of lift due to 30 deg of trailing edge flap deflection. Estimated takeoff performance of an aircraft 4/3 the scale of the test model showed takeoff distances of less than 2000 ft.

  5. Effect of compositional inhomogeneity on the structure and properties of lead zirconate titanate ferroelectric ceramics

    SciTech Connect

    Bogosova, Y.B.; Konstantinov, G.M. [Rostov State Univ. (Russian Federation)

    1995-04-01

    Lead zirconate titanate (PZT) ferroelectric ceramics are most generally produced from oxides by the solid-state-reaction method. The synthesis stage, as a rule, does not yield highly homogeneous solid solutions. Because of incomplete mixing of the starting reagents, the forming solid-solution material contains fairly large regions that differ in composition and, hence, in lattice parameters and physical properties. Homogenization of the solid solution is achieved at the sintering stage. Solid solutions whose compositions fall within morphotropic-transition regions (MTRs) are particularly sensitive to the preparation conditions used in producing ferroelectric ceramics because, for these solid solutions, even minor local changes in the concentration of components may have a considerable effect on phase composition, lattice parameters, and, hence, physical properties. The objective of this work was to study the effect of the homogeneity changes caused by sintering on the structure and properties of PZT ferroelectric ceramics.

  6. High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film

    Microsoft Academic Search

    Jing Li; Shaojun Guo; Yueming Zhai; Erkang Wang

    2009-01-01

    Graphene nanosheets, dispersed in Nafion (Nafion-G) solution, were used in combination with in situ plated bismuth film electrode for fabricating the enhanced electrochemical sensing platform to determine the lead (Pb2+) and cadmium (Cd2+) by differential pulse anodic stripping voltammetry (DPASV). The electrochemical properties of the composite film modified glassy carbon electrode were investigated. It is found that the prepared Nafion-G

  7. Flexible pyroelectric nanogenerators using a composite structure of lead-free KNbO(3) nanowires.

    PubMed

    Yang, Ya; Jung, Jong Hoon; Yun, Byung Kil; Zhang, Fang; Pradel, Ken C; Guo, Wenxi; Wang, Zhong Lin

    2012-10-01

    Pyroelectric nanogenerators fabricated using a lead-free KNbO(3) nanowire-PDMS polymer composite are reported for the first time. The voltage/current output of the nanogenerators can be controlled by electric fields and enhanced by increasing the rate of change in temperature. The fabricated nanogenerators can be used to harvest energy from sunlight illumination and have potential applications in self-powered nanodevices and nanosystems. PMID:22837044

  8. Layering, interface and edge effects in multi-layered composite medium

    NASA Technical Reports Server (NTRS)

    Datta, S. K.; Shah, A. H.; Karunesena, W.

    1990-01-01

    Guided waves in a cross-ply laminated plate are studied. Because of the complexity of the exact dispersion equation that governs the wave propagation in a multi-layered fiber-reinforced plate, a stiffness method that can be applied to any number of layers is presented. It is shown that, for a sufficiently large number of layers, the plate can be modeled as a homogeneous anisotropic plate. Also studied is the reflection of guided waves from the edge of a multilayered plate. These results are quite different than in the case of a single homogeneous plate.

  9. Surface-Pressure and Flow-Visualization Data at Mach Number of 1.60 for Three 65 deg Delta Wings Varying in Leading-Edge Radius and Camber

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi; Bryd, James E.; Parmar, Devendra S.; Bezos-OConnor, Gaudy M.; Forrest, Dana K.; Bowen, Susan

    1996-01-01

    An experimental investigation of the effect of leading-edge radius, camber, Reynolds number, and boundary-layer state on the incipient separation of a delta wing at supersonic speeds was conducted at the Langley Unitary Plan Wind Tunnel at Mach number of 1.60 over a free-stream Reynolds number range of 1 x 106 to 5 x 106 ft-1. The three delta wing models examined had a 65 deg swept leading edge and varied in cross-sectional shape: a sharp wedge, a 20:1 ellipse, and a 20:1 ellipse with a -9.750 circular camber imposed across the span. The wings were tested with and without transition grit applied. Surface-pressure coefficient data and flow-visualization data indicated that by rounding the wing leading edge or cambering the wing in the spanwise direction, the onset of leading-edge separation on a delta wing can be raised to a higher angle of attack than that observed on a sharp-edged delta wing. The data also showed that the onset of leading-edge separation can be raised to a higher angle of attack by forcing boundary-layer transition to occur closer to the wing leading edge by the application of grit or the increase in free-stream Reynolds number.

  10. Composite materials with metal oxide attached to lead chalcogenide nanocrystal quantum dots with linkers

    DOEpatents

    Fuke, Nobuhiro; Koposov, Alexey Y; Sykora, Milan; Hoch, Laura

    2014-12-16

    Composite materials useful for devices such as photoelectrochemical solar cells include a substrate, a metal oxide film on the substrate, nanocrystalline quantum dots (NQDs) of lead sulfide, lead selenide, and lead telluride, and linkers that attach the NQDs to the metal oxide film. Suitable linkers preserve the 1s absorption peak of the NQDs. A suitable linker has a general structure A-B-C where A is a chemical group adapted for binding to a MO.sub.x and C is a chemical group adapted for binding to a NQD and B is a divalent, rigid, or semi-rigid organic spacer moiety. Other linkers that preserve the 1s absorption peak may also be used.

  11. Theoretical Calculations of the Pressures, Forces, and Moments Due to Various Lateral Motions Acting on Tapered Sweptback Vertical Tails with Supersonic Leading and Trailing Edges

    NASA Technical Reports Server (NTRS)

    Margolis, Kenneth; Elliott, Miriam H.

    1960-01-01

    Based on expressions for the linearized velocity potentials and pressure distributions given in NACA Technical Report 1268, formulas for the span load distribution, forces, and moments are derived for families of thin isolated vertical tails with arbitrary aspect ratio, taper ratio, and sweepback performing the motions constant sideslip, steady rolling, steady yawing, and constant lateral acceleration. The range of Mach number considered corresponds, in general, to the condition that the tail leading and trailing edges are supersonic. To supplement the analytical results, design-type charts are presented which enable rapid estimation of the forces and moments (expressed as stability derivatives) for given combinations of geometry parameters and Mach number.

  12. The use of composite dust wipe samples as a means of assessing lead exposure.

    PubMed

    Friederich, N J; Bauer, K M; Schultz, B D; Holderman, T S

    1999-01-01

    This study investigated two methods for analyzing composite dust wipes for lead. The term composite means two or more wipes collected from common components in a dwelling that are combined in the field and analyzed as a single sample. Two methods--a modified Environmental Protection Agency (EPA) Method 3050A and a Wisconsin Occupational Health Laboratory (WOHL) method--were selected based on their anticipated ability to handle the added mass of materials and dust expected in a composite. The study used off-the-shelf wipes to prepare single-, two-, and four-wipe samples. Wipes were spiked with a standard reference material at either a low dust loading level or a high level, and three laboratories analyzed the samples using both methods and both flame atomic absorption spectrometry and inductively coupled plasma-atomic emission spectrometry techniques (ICP). Good agreement with known spiked levels was possible using either method; the modified EPA 3050A showed particular promise. When up to four wipes were combined, all three laboratories found that modified EPA Method 3050A resulted in recoveries between 89 and 101% of the known standard. Although it was possible to achieve good agreement with spiked levels using the WOHL method, some difficulties were encountered, particularly when followed by ICP analysis and when using four wipes. The increased time required to digest the multiwipe composites was not proportional to the number of wipes in a composite: the two- and four-wipe composites did not take two to four times as long as a single-wipe sample. Laboratory analysis of a four-wipe sample cost an average of 65% less than analysis of four single-wipe samples for each method. PMID:10386353

  13. Evaluation of the Edge Crack Torsion (ECT) Test for Mode 3 Interlaminar Fracture Toughness of Laminated Composites

    NASA Technical Reports Server (NTRS)

    Li, Jian; Lee, Edward W.; OBrien, T. Kevin; Lee, Shaw Ming

    1996-01-01

    An analytical and experimental investigation was carried out on G40-800/R6376 graphite epoxy laminates to evaluate the Edge Crack Torsion (ECT) test as a candidate for a standard Mode 3 interlaminar fracture toughness test for laminated composites. The ECT test consists of a (90/(+/- 45)(sub 3)/(+/- 45)(sub 3)/90))(sub s) laminate with a delamination introduced by a non-adhesive film at the mid-plane along one edge and loaded in a special fixture to create torsion along the length of the laminate. Dye penetrate enhanced X-radiograph of failed specimens revealed that the delamination initiated at the middle of the specimen length and propagated in a self similar manner along the laminate mid-plane. A three-dimensional finite element analysis was performed that indicated that a pure Mode 3 delamination exists at the middle of specimen length away from both ends. At the ends near the loading point a small Mode 2 component exists. However, the magnitude of this Mode 2 strain energy release rate at the loading point is small compared to the magnitude of Mode 3 component in the mid-section of the specimen. Hence, the ECT test yielded the desired Mode 3 delamination. The Mode 3 fracture toughness was obtained from a compliance calibration method and was in good agreement with the finite element results. Mode 2 End-Notched Flexure (ENF) tests and Mode 1 Double Cantilever Beam (DCB) tests were also performed for the same composite material. The Mode 1 fracture toughness was much smaller than both the Mode 2 and Mode 3 fracture toughness. The Mode 2 fracture toughness was found to be 75% of the Mode 3 fracture toughness.

  14. Study of samarium modified lead zirconate titanate and nickel zinc ferrite composite system

    NASA Astrophysics Data System (ADS)

    Rani, Rekha; Juneja, J. K.; Singh, Sangeeta; Raina, K. K.; Prakash, Chandra

    2015-03-01

    In the present work, composites of samarium substituted lead zirconate titanate and nickel zinc ferrite with compositional formula 0.95Pb1-3x/2 SmxZr0.65Ti0.35O3-0.05Ni0.8Zn0.2Fe2O4 (x=0, 0.01, 0.02 and 0.03) were prepared by the conventional solid state route. X-ray diffraction analysis was carried out to confirm the coexistence of individual phases. Microstructural study was done by using scanning electron microscope. Dielectric constant and loss were studied as a function of temperature and frequency. To study ferroelectric and magnetic properties of the composite samples, corresponding P-E and M-H hysteresis loops were recorded. Change in magnetic properties of electrically poled composite sample (x=0.02) was studied to confirm the magnetoelectric (ME) coupling. ME coefficient (dE/dH) of the samples (x=0 and 0.02) was measured as a function of DC magnetic field.

  15. Effect of surface modification of lead zirconate titanate particles on the properties of piezoelectric composite sensors

    NASA Astrophysics Data System (ADS)

    Saber, Nasser; Ma, Jun; Hsu, Hung-Yao; Lee, Sang-Heon; Marney, Donavan

    2013-08-01

    Piezoelectric composite sensors which consist of a ferroelectric ceramic phase and a polymer binder have been the center of interest for offering a distributed sensing mechanism in many industrial applications. This study investigates the effect of PZT surface modification on the mechanical and piezoelectric properties of PZT/epoxy composite sensors. Lead zirconate titanate ceramic powder (PZT-5H) was surface modified to prepare a high PZT content (0-3) piezoelectric composite sensor. Functional groups of the modifiers grafted onto the PZT particle surface served as a bridge into the epoxy matrix, thus creating strong bonds between the matrix and PZT particles. This noticeably improved the dispersion of the PZT phase, allowing the use of large fractions of piezoactive component in the composite. It is demonstrated that the produced piezo-film shows an enhanced poling behavior in that it can be poled with lower voltages under reduced poling times. This is caused by greater levels of microstructural homogeneity in the modified films as well as alteration of interfacial charge characteristics using modifiers' functional groups.

  16. Mn and Sm doped lead titanate ceramic fibers and fiber/epoxy 13 composites

    NASA Astrophysics Data System (ADS)

    Li, Kun; Pang, Geoffrey; Wa Chan, Helen Lai; Choy, Chung Loong; Li, Jin-hua

    2004-05-01

    Manganese and samarium doped lead titanate [Pb0.85Sm0.10(Ti0.98Mn0.02)O3, PSmT] fibers were prepared by sol-gel method. The micrographs obtained using scanning electron microscope show that PSmT ceramic fibers are round and dense. The diameter of the fibers was in the range of 30-35 ?m. The crystalline grains size is ˜2.5 ?m. The micrographs obtained using transmission electron microscope also unveiled the layer-by-layer 90° domains in the grains. X-ray diffraction patterns of the fibers show that PSmT ceramics have a pure perovskite structure. The c/a ratio of the unit cell was 1.04. The PSmT fiber/epoxy 1-3 composites were fabricated by filling the ceramic fiber bundle with epoxy. The dielectric permittivity ?, electromechanical coefficient kt, and the piezoelectric constant d33 of PSmT fiber/epoxy 1-3 composites with 68% fiber loading were 118, 0.51, and 48 pC/N, respectively. The hysteresis loop of the composites was measured by the Sawyer-Tower method. It was also found that the composites could withstand an electric field of 15 kV/mm at room temperature.

  17. Development of porous clay-based composites for the sorption of lead from water.

    PubMed

    Ake, C L; Mayura, K; Huebner, H; Bratton, G R; Phillips, T D

    2001-07-20

    Lead contamination of water is a major health hazard, as illustrated by the fact that exposure to this metal has been associated with death and disease in humans, birds, and animals. The present research was aimed at the development of a porous, solid-phase sorbent that can be used in the remediation of lead-contaminated water. A suitable sorbent was identified by screening various clays and other materials for their ability to effectively bind lead. The clay was adhered to a solid support using an aqueous solution of carboxymethyl cellulose. The binary composite was then tested for its ability to bind lead from solution, while providing void volume, increased surface area, and considerably enhanced hydraulic conductivity. The results suggested that a combination of sodium montmorillonite clay and carbon exhibited enhanced sorption of lead compared to carbon alone, and also supported the potential application of various combinations of sorbent materials. This value-added combination of clay, solid support, and adhesive will allow for the construction of column filtration systems that are multifunctional and capable of purifying large volumes of contaminated water. PMID:11482800

  18. Numerical analysis and PIV measurements of tip vortex in an axial rotor with Skewed-Swept blade at its leading edge

    NASA Astrophysics Data System (ADS)

    Wu, Guanghui; Zheng, Lijie; Wu, Keqi

    2004-02-01

    Based on the characteristics of axial fans of outdoor units of centralized air-conditioners, using the finite-volume method, applying three-dimensional steady Reynolds-averaged Navier-Stokes equations coupled with Spalart-Allmaras turbulence model equation, and adopting SIMPLE algorithm, numerical analysis is made and applied to analyze the internal flow field of axial rotors with skewed-swept blade at its leading edge. This numerical simulation mainly investigates the formation and development of the tip vortex. Based on the tip vortex characteristics that have been captured, the internal flow numerical results are compared with those obtained by the PIV experiments. This comparison indicates a good agreement between numerical results and PIV results, thus proving the validity of the numerical simulation. In addition, based on the internal flow analyses of the axial rotor with skewed-swept blade at its leading edge, different flow phenomena features are presented. These flow features can be used for further improvements of the present rotor performance characteristics.

  19. Heat transfer in leading and trailing edge cooling channels of the gas turbine blade under high rotation numbers 

    E-print Network

    Liu, Yao-Hsien

    2009-05-15

    discharges through the slot to the mainstream flow. Tapered ribs are put on the leading and trailing surfaces with an angle of attack of 45°. The ribs are parallel with staggered arrangement on opposite walls. The inlet Reynolds number of the coolant varies...

  20. Magnetic and magnetoelectric properties of nickel ferrite–lead iron niobate relaxor composites

    Microsoft Academic Search

    P. Guzdek; M. Sikora; ?. Góra; Cz. Kapusta

    Magnetoelectric effect in bulk ceramic and multilayer (laminated) structures consisting of 6 nickel ferrite and 7 lead iron niobate relaxor (PFN) layers was investigated. This paper describes the synthesis and tape-casting process for ferrimagnetic Ni0.3Zn0.62Cu0.08Fe2O4 ferrite and multiferroic relaxor Pb(Fe0.5Nb0.5)O3. X-ray analysis and studies of the electrical and magnetic properties were performed for bulk and layered composites. Complex impedance and

  1. Composite lead for conducting an electrical current between 75-80K and 4.5K temperatures

    DOEpatents

    Negm, Yehia (Braintree, MA); Zimmerman, George O. (South Hamilton, MA); Powers, Jr., Robert E. (East Boston, MA); McConeghy, Randy J. (Waxahachie, TX); Kaplan, Alvaro (Brookline, MA)

    1994-12-27

    A composite lead is provided which electrically links and conducts a current between about 75-80K. and liquid helium temperature of about 4.5K. The composite lead may be employed singly or in multiples concurrently to provide conduction of electrical current from normal conductors and semi-conductors at room temperature to superconductors operating at 4.5K. In addition, a variety of organizationl arrangements and assemblies are provided by which the mechanical strength and electrical reliability of the composite lead is maintained.

  2. Composite lead for conducting an electrical current between 75--80K and 4. 5K temperatures

    DOEpatents

    Negm, Y.; Zimmerman, G.O.; Powers, R.E. Jr.; McConeghy, R.J.; Kaplan, A.

    1994-12-27

    A composite lead is provided which electrically links and conducts a current between about 75-80K and liquid helium temperature of about 4.5K. The composite lead may be employed singly or in multiples concurrently to provide conduction of electrical current from normal conductors and semi-conductors at room temperature to superconductors operating at 4.5K. In addition, a variety of organizational arrangements and assemblies are provided by which the mechanical strength and electrical reliability of the composite lead is maintained. 12 figures.

  3. Investigation of the Effects of Leading-edge Chord-extensions and Fences in Combination with Leading-edge Flaps on the Aerodynamic Characteristics at Mach Numbers from 0.40 to 0.93 of a 45 Degree Sweptback Wing of Aspect Ratio 4

    NASA Technical Reports Server (NTRS)

    Spreeman, Kenneth P; Alford, William J , Jr

    1954-01-01

    This investigation was made to determine the effects of 6 degree full-spoan and 3 degree partial-span leading-edge flaps in combination with chord-extensions or fences on the aerodynamic characteristics of a wing-fuselage configuration with a 45 degree sweptback wing of aspect ratio 4, taper ratio 0.3, and NACA 65A006 airfoil sections. The investigation was made in the Langley high-speed 7- by 10-foot tunnel over a Mach number range of 0.40 to 0.93 and an angle-of-attack range of about -2 degrees to 24 degrees. Lift, drag, and pitching-moment data were obtained for all configurations. From overall considerations of stability and performance it appears that with the model of this investigation the 6 degree full-span leading-edge flaps in combination with the chord-extension over the outboard 35 percent of the span, with or without leading-edge camber, would be the most desirable configuration.

  4. Composite uranium carbide targets at TRIUMF: Development and characterization with SEM, XRD, XRF and L-edge densitometry

    NASA Astrophysics Data System (ADS)

    Kunz, Peter; Bricault, Pierre; Dombsky, Marik; Erdmann, Nicole; Hanemaayer, Vicky; Wong, John; Lützenkirchen, Klaus

    2013-09-01

    The production of radioactive ion beams (RIB) from spallation targets by irradiation with a continuous 500 MeV proton beam, has been routine at TRIUMF for several years. Based on the experience with composite refractory carbide targets a procedure for the fabrication of UC2/C targets was developed. It includes the preparation of UC2 by carbothermal reduction of UO2, the slip-casting of fine-grained UC2/C slurry on graphite foil under inert gas atmosphere and the cutting of composite target discs which are stacked up to a lamellar structure. The thermal properties of such an arrangement are adequate to withstand the high power deposition of an intense, continuous proton beam and also beneficial for the fast release of short-lived radioactive isotopes. Molecular structure, particle size and the impact of sintering of the target discs were investigated via XRD and SEM. Thickness and mass distribution were measured with position-sensitive LIII-edge densitometry. The results confirm that the properties of the UC2/C target material are well suited for RIB production at TRIUMF while there is still room for improvement with regard to uniformity of mass distribution in target disc thickness.

  5. Lead isotope studies of the Guerrero composite terrane, west-central Mexico: implications for ore genesis

    NASA Astrophysics Data System (ADS)

    Potra, Adriana; Macfarlane, Andrew W.

    2014-01-01

    New thermal ionization mass spectrometry and multi-collector inductively coupled plasma mass spectrometry Pb isotope analyses of three Cenozoic ores from the La Verde porphyry copper deposit located in the Zihuatanejo-Huetamo subterrane of the Guerrero composite terrane are presented and the metal sources are evaluated. Lead isotope ratios of 3 Cenozoic ores from the El Malacate and La Esmeralda porphyry copper deposits located in the Zihuatanejo-Huetamo subterrane and of 14 ores from the Zimapan and La Negra skarn deposits from the adjoining Sierra Madre terrane are also presented to look for systematic differences in the lead isotope trends and ore metal sources among the proposed exotic tectonostratigraphic terranes of southern Mexico. Comparison among the isotopic signatures of ores from the Sierra Madre terrane and distinct subterranes of the Guerrero terrane supports the idea that there is no direct correlation between the distinct suspect terranes of Mexico and the isotopic signatures of the associated Cenozoic ores. Rather, these Pb isotope patterns are interpreted to reflect increasing crustal contribution to mantle-derived magmas as the arc advanced eastward onto a progressively thicker continental crust. The lead isotope trend observed in Cenozoic ores is not recognized in the ores from Mesozoic volcanogenic massive sulfide and sedimentary exhalative deposits. The Mesozoic ores formed prior to the amalgamation of the Guerrero composite terrane to the continental margin, which took place during the Late Cretaceous, in intraoceanic island arc and intracontinental marginal basin settings, while the Tertiary deposits formed after this event in a continental arc setting. Lead isotope ratios of the Mesozoic and Cenozoic ores appear to reflect these differences in tectonic setting of ore formation. Most Pb isotope values of ores from the La Verde deposit (206Pb/204Pb = 18.674-18.719) are less radiogenic than those of the host igneous rocks, but plot within the field defined by the Huetamo Sequence, suggesting that these ores may also contain metals from the sedimentary rocks. The Pb isotope ratios of ore samples from the Zimapan deposit (206Pb/204Pb = 18.771-18.848) are substantially higher than the whole-rock Pb isotope compositions of the basement rocks. The similarity of ore Pb to igneous rock Pb in the Zimapan district (206Pb/204Pb = 18.800-18.968) may indicate that the proximal source of ore metals in the hydrothermal system was the igneous activity.

  6. Analysis of a Circular Composite Disk Subjected to Edge Rotations and Hydrostatic Pressure

    NASA Technical Reports Server (NTRS)

    Oliver, Stanley T.

    2004-01-01

    The structural analysis results for a graphite/epoxy quasi-isotropic circular plate subjected to a forced rotation at the boundary and pressure is presented. The analysis is to support a specialized material characterization test for composite cryogenic tanks. Finite element models were used to ensure panel integrity and determine the pressure necessary to achieve a predetermined equal biaxial strain value. The displacement results due to the forced rotation at the boundary led to a detailed study of the bending stiffness matrix [D]. The variation of the bending stiffness terms as a function of angular position is presented graphically, as well as, an illustrative technique of considering the laminate as an I-beam.

  7. Characterization of the Edge Crack Torsion (ECT) Test for Mode III Fracture Toughness Measurement of Laminated Composites

    NASA Technical Reports Server (NTRS)

    Ratcliffe, James G.

    2004-01-01

    The edge crack torsion (ECT) test is designed to initiate mode III delamination growth in composite laminates. An ECT specimen is a rectangular laminate, containing an edge delamination at the laminate mid-plane. Torsion load is applied to the specimens, resulting in relative transverse shear sliding of the delaminated faces. The test data reduction schemes are intended to yield initiation values of critical mode III strain energy release rate, G(sub IIIc), that are constant with delamination length. The test has undergone several design changes during its development. The objective of this paper was to determine the suitability of the current ECT test design as a mode III fracture test. To this end, ECT tests were conducted on specimens manufactured from IM7/8552 and specimens made from S2/8552 tape laminates. Several specimens, each with different delamination lengths are tested. Detailed, three-dimensional finite element analyses of the specimens were performed. The analysis results were used to calculate the distribution of mode I, mode II, and mode III strain energy release rate along the delamination front. The results indicated that mode III-dominated delamination growth would be initiated from the specimen center. However, in specimens of both material types, the measured values of G(sub IIIc) exhibited significant dependence on delamination length. Furthermore, there was a large amount of scatter in the data. Load-displacement response of the specimens exhibited significant deviation from linearity before specimen failure. X-radiographs of a sample of specimens revealed that damage was initiated in the specimens prior to failure. Further inspection of the failure surfaces is required to identify the damage and determine that mode III delamination is initiated in the specimens.

  8. Lead concentration and isotopic composition in five peridotite inclusions of probable mantle origin

    USGS Publications Warehouse

    Zartman, R.E.; Tera, F.

    1973-01-01

    The lead content of five whole-rock peridotite inclusions (four lherzolites and one harzburgite) in alkali basalt ranges from 82 to 570 ppb (parts per billion). Approximately 30-60 ppb of this amount can be accounted for by analyzed major silicate minerals (olivine ??? 10 ppb; enstatite 5-28 ppb; chrome diopside ???400 ppb). Through a series of acid leaching experiments, the remainder of the lead is shown to be quite labile and to reside in either glassy or microcrystalline veinlets or accessory mineral phases, such as apatite and mica. The lead isotopic composition of the peridotites (206Pb/204Pb = 18.01-18.90; 207Pb/204Pb = 15.52-15.61; 208Pb/204Pb = 37.80-38.86) lies within the range of values defined by many modern volcanic rocks and, in particular, is essentially coextensive with the abyssal tholeiite field. In all but one instance, isotopic differences were found between the peridotite and its host alkali basalt. Two of the peridotites clearly demonstrated internal isotopic heterogeneity between leachable and residual fractions that could not simply be due to contamination by the host basalt. However, there is no evidence that these ultramafic rocks form some layer in the mantle with isotopic characteristics fundamentally different from those of the magma sources of volcanic rocks. ?? 1973.

  9. Coronal Shock Waves, EUV waves, and Their Relation to CMEs. I. Reconciliation of "EIT waves", Type II Radio Bursts, and Leading Edges of CMEs

    E-print Network

    Grechnev, V V; Chertok, I M; Kuzmenko, I V; Afanasyev, A N; Meshalkina, N S; Kalashnikov, S S; Kubo, Y

    2011-01-01

    We show examples of excitation of coronal waves by flare-related abrupt eruptions of magnetic rope structures. The waves presumably rapidly steepened into shocks and freely propagated afterwards like decelerating blast waves that showed up as Moreton waves and EUV waves. We propose a simple quantitative description for such shock waves to reconcile their observed propagation with drift rates of metric type II bursts and kinematics of leading edges of coronal mass ejections (CMEs). Taking account of different plasma density falloffs for propagation of a wave up and along the solar surface, we demonstrate a close correspondence between drift rates of type II bursts and speeds of EUV waves, Moreton waves, and CMEs observed in a few known events.

  10. Reproducing the bi-polar magnetic signature at the jet leading edge by 3-D reconnection with non-zero guide field

    NASA Astrophysics Data System (ADS)

    Shirataka, N.; Tandokoro, R.; Fujimoto, M.

    2004-12-01

    A bi-polar (southward-then-northward) signature of Bz component at the leading edge of earthward jets in the magnetotail has been reported [Slavin et al. 2003]. Here we try to reproduce this magnetic field feature by three-dimensional reconnection (finite extent in the dawn-dusk direction) in the presence of non-zero guide field (dawn-dusk magnetic component). Setting the guide field intensity by referring to Slavin et al. and setting the dawn-dusk extent of the reconnection region to an often quoted value [Angelopoulos et al., 1997], we managed to reproduce the bi-polar signatures by a 3-D (Hall) MHD simulation with anomalous resistivity. Redirecting the argument, the bi-polar signature may be taken as the evidence that the dawn-dusk width of the reconnection region is less than several Earth radii.

  11. Mechanical properties of metal-particulate lead-silicate glass matrix composites obtained by means of powder technology

    Microsoft Academic Search

    E Bernardo; G Scarinci; S Hreglich

    2003-01-01

    The great quantity of waste glasses leads to the need for new applications. The realization of matrices for innovative and cost-effective materials is one possible use. In the present work, lead silicate glasses, recovered from cathode ray tubes (CRTs) are investigated. A low cost powder processing route is proposed for the manufacture of particulate aluminium reinforced glass matrix composites. These

  12. Ferromagnetism in lead graphite-pencils and magnetic composite with CoFe2O4 particles

    Microsoft Academic Search

    R. N. Bhowmik

    2011-01-01

    This work has been initiated with a curiosity to investigate the elemental composition and magnetic response of different grades of lead pencils (6B, 2B, HB, 2H, 5H) that people use in daily life. Interestingly, experimental results landed with a great achievement of observing soft magnetism in lead pencils, indicating a wide scope of magnetic tuning for room temperature applications. A

  13. Ferromagnetism in lead graphite-pencils and magnetic composite with CoFe 2O 4 particles

    Microsoft Academic Search

    R. N. Bhowmik

    This work has been initiated with a curiosity to investigate the elemental composition and magnetic response of different grades of lead pencils (6B, 2B, HB, 2H, 5H) that people use in daily life. Interestingly, experimental results landed with a great achievement of observing soft magnetism in lead pencils, indicating a wide scope of magnetic tuning for room temperature applications. A

  14. Edge geometry of turbomachine blades

    NASA Technical Reports Server (NTRS)

    Schumann, L. F.

    1978-01-01

    Computer program calculates leading- and trailing-edge circle radii, tangency angles on leading- and trailing-edge circles, and stagger angle of turbomachinery blade sections, using only spline points defining blade surfaces.

  15. Characterization of the Edge Crack Torsion (ECT) Test for Mode III Fracture Toughness Measurement of Laminated Composites

    NASA Technical Reports Server (NTRS)

    Ratcliffe, James G.

    2004-01-01

    The edge crack torsion (ECT) test is designed to initiate mode III delamination growth in composite laminates. The test has undergone several design changes during its development. The objective of this paper was to determine the suitability of the current ECT test design a mode III fracture test. To this end, ECT tests were conducted on specimens manufactured from IM7/8552 and S2/8552 tape laminates. Three-dimensional finite element analyses were performed. The analysis results were used to calculate the distribution of mode I, mode II, and mode III strain energy release rate along the delamination front. The results indicated that mode IIIdominated delamination growth would be initiated from the specimen center. However, in specimens of both material types, the measured values of GIIIc exhibited significant dependence on delamination length. Load-displacement response of the specimens exhibited significant deviation from linearity before specimen failure. X-radiographs of a sample of specimens revealed that damage was initiated in the specimens prior to failure. Further inspection of the failure surfaces is required to identify the damage and determine that mode III delamination is initiated in the specimens.

  16. Microstructure Characterization Of Lead-Free Solders Depending On Alloy Composition

    NASA Astrophysics Data System (ADS)

    Panchenko, Iuliana; Mueller, Maik; Wolter, Klaus-Juergen

    2010-11-01

    Fatigue and crack nucleation in solder joints is basically associated with changes in the microstructure. Therefore the microstructure evolution of SnAgCu solder joints during solidification and subsequent application is an important subject for reliability investigations and physics of failure analysis. The scope of this study is a systematic overview of the as-cast microstructures in small sized lead-free SnAgCu solder spheres after solidification. A total of 32 alloy compositions have been investigated with varying Ag content from 0 to 5 wt.% and varying Cu content from 0 to 1.2 wt.%. The solder spheres had a diameter of approx. 270 ?m and were all manufactured under the similar conditions. Subsequent cross-sectioning was carried out in order to analyze the microstructure by optical and electron microscopy as well as Electron Backscatter Diffraction and Energy Dispersive X-ray Spectroscopy. The results allow a comprehensive overview of the dependence of the as-cast microstructure on the solder composition. It is shown that strong changes in microstructure can be caused by small changes in solder composition. In addition, a solidification phenomenon known as cyclic twinning has been found in the samples. Three different microstructures related to that phenomenon will be presented and detailed characterizations of these structures are given in this study. These microstructures differ in their appearance by solidification morphology, phase distribution as well as grain structure and can be described as follows: 1. large dentritic areas of different grain orientations which are characterized by approx. 60° twin boundaries; 2. areas of small ?-Sn cells with approx. 60° twin relation and larger intermetallic precipitates; 3. large grains consisting of a ?-Sn matrix with very fine intermetallic precipitates and high angle grain boundaries between adjacent grains.

  17. Study of BNKLBT-1.5 lead-free ceramic/epoxy 1-3 composites

    NASA Astrophysics Data System (ADS)

    Choy, S. H.; Li, W. K.; Li, H. K.; Lam, K. H.; Chan, H. L. W.

    2007-12-01

    Bismuth sodium titanate based lead-free ceramic fiber with the chemical formula of 0.885(Bi0.5Na0.5)TiO3-0.05(Bi0.5K0.5)TiO3-0.015(Bi0.5Li0.5)TiO3-0.05BaTiO3, BNKLBT-1.5, has been fabricated by a powder-based extrusion method. The ceramic fibers with 400?m diameter were well crystallized after being calcined at 800°C and sintered at 1170°C. The piezoelectric and ferroelectric properties of the single fiber were found to be 155pC/N and ˜34.5?C/cm2, respectively, which is comparable with that in bulk sample. 1-3 ceramic/polymer composites were fabricated by two routes, including dice and filled method and fiber pick-and-place method. Theoretical models were used to calculate the piezoelectric properties of the composites and compared with experimental results.

  18. High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film.

    PubMed

    Li, Jing; Guo, Shaojun; Zhai, Yueming; Wang, Erkang

    2009-09-01

    Graphene nanosheets, dispersed in Nafion (Nafion-G) solution, were used in combination with in situ plated bismuth film electrode for fabricating the enhanced electrochemical sensing platform to determine the lead (Pb2+) and cadmium (Cd2+) by differential pulse anodic stripping voltammetry (DPASV). The electrochemical properties of the composite film modified glassy carbon electrode were investigated. It is found that the prepared Nafion-G composite film not only exhibited improved sensitivity for the metal ion detections, but also alleviated the interferences due to the synergistic effect of graphene nanosheets and Nafion. The linear calibration curves ranged from 0.5 microg L(-1) to 50 microg L(-1) for Pb2+ and 1.5 microg L(-1) to 30 microg L(-1) for Cd2+, respectively. The detection limits (S/N=3) were estimated to be around 0.02 microg L(-1) for Pb2+ and Cd2+. The practical application of the proposed method was verified in the water sample determination. PMID:19699394

  19. Nonlinear absorption of laser radiation by zinc and lead phthalocyanines and zinc porphyrin in a nanoporous-glass/polymer composite

    NASA Astrophysics Data System (ADS)

    Dolotov, S. M.; Koldunov, L. M.; Koldunov, M. F.; Petukhov, A. V.; Sizyukhin, A. V.

    2012-01-01

    We have studied the nonlinear absorption of nanosecond 532-nm laser pulses by zinc phthalocyanine (PcZn), lead phthalocyanine (PcPb) and zinc porphyrin (PrZn) incorporated into a nanoporous-glass/polymer composite and determined the basic nonlinear absorption characteristics of these compounds in the composite host. The composite is shown to be suitable for designing nonlinear optical elements activated with organic compounds. The correlation between the characteristics of the three compounds in the composite host and liquid solvents is analysed.

  20. Nonlinear absorption of laser radiation by zinc and lead phthalocyanines and zinc porphyrin in a nanoporous-glass/polymer composite

    SciTech Connect

    Dolotov, S M; Koldunov, L M; Koldunov, M F; Petukhov, A V; Sizyukhin, A V

    2012-01-31

    We have studied the nonlinear absorption of nanosecond 532-nm laser pulses by zinc phthalocyanine (PcZn), lead phthalocyanine (PcPb) and zinc porphyrin (PrZn) incorporated into a nanoporous-glass/polymer composite and determined the basic nonlinear absorption characteristics of these compounds in the composite host. The composite is shown to be suitable for designing nonlinear optical elements activated with organic compounds. The correlation between the characteristics of the three compounds in the composite host and liquid solvents is analysed.

  1. The Use of Pristine and Intercalated Graphite Fiber Composites as Buss Bars in Lead-Acid Batteries

    NASA Technical Reports Server (NTRS)

    Opaluch, Amanda M.

    2004-01-01

    This study was conducted as a part of the Firefly Energy Space Act Agreement project to investigate the possible use of composite materials in lead acid batteries. Specifically, it examined the use of intercalated graphite composites as buss bars. Currently, buss bars of these batteries are made of lead, a material that is problematic for several reasons. Over time, the lead is subject to both corrosion at the positive plate and sulfation at the negative plate, resulting in decreased battery life. In addition, the weight and size of the lead buss bars make for a heavy and cumbersome battery that is undesirable. Functionality and practicality of lead buss bars is adequate at best; consequently, investigation of more efficient composite materials would be advantageous. Practically speaking, graphite composites have a low density that is nearly one fourth that of its lead counterpart. A battery made of less dense materials would be more attractive to the consumer and the producer because it would be light and convenient. More importantly, low weight would be especially beneficial because it would result in greater overall power density of the battery. In addition to power density, use of graphite composite materials can also increase the life of the battery. From a functional standpoint, corrosion and sulfation at the positive and negative plates are major obstacles when considering how to extend battery life. Neither of these reactions are a factor when graphite composites replace lead parts because graphite is chemically non-reactive with the electrolyte within the battery. Without the problem of corrosion or sulfation, battery life expectancy can be almost doubled. The replacement of lead battery parts with composite materials is also more environmentally favorable because of easy disposal of organic materials. For this study, both pristine and bromine intercalated single-ply graphite fiber composites were created. The composites were fabricated in such a way as to facilitate their use in a 3" x 1/2" buss bar test cell. The prime objective of this investigation was to examine the effectiveness of a variety of graphite composite materials to act as buss bars and carry the current to and from the positive and negative battery plates. This energy transfer can be maximized by use of materials with high conductivity to minimize the buss resistance. Electrical conductivity of composites was measured using both a contactless eddy current probe and a four point measurement. In addition, the stability of these materials at battery-use conditions was characterized.

  2. Lack of Association between Membrane-Type 1 Matrix Metalloproteinase Expression and Clinically Relevant Molecular or Morphologic Tumor Characteristics at the Leading Edge of Invasive Colorectal Carcinoma

    PubMed Central

    Arndt, Annette; Kraft, Klaus; Wardelmann, Eva; Steinestel, Konrad

    2015-01-01

    Colorectal cancer (CRC) is one of the leading causes of death from cancer in the western world, but tumor biology and clinical course show great interindividual variation. Molecular and morphologic tumor characteristics, such as KRAS/BRAF mutation status, mismatch repair (MMR) protein expression, tumor growth pattern, and tumor cell budding, have been shown to be of key therapeutic and/or prognostic relevance in CRC. Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a membrane-anchored zinc-binding endopeptidase that is expressed at the leading edge of various invasive carcinomas and promotes tumor cell invasion through degradation of the extracellular matrix. The aim of this study was to investigate possible associations between MT1-MMP expression and molecular tumor characteristics as well as morphologic features of tumor aggressiveness in a consecutive series of 79 CRC tissue samples. However, although MT1-MMP was expressed in 41/79 samples (52%), there was no significant association between MT1-MMP expression and KRAS/BRAF mutation status, MMR protein expression, presence of lymphovascular invasion, tumor growth pattern, tumor-infiltrating lymphocytes, or tumor cell budding in our sample cohort (P > 0.05). Thus, we conclude that although MT1-MMP may play a role in CRC invasion, it is not of key relevance to the current models of CRC invasion and aggressiveness.

  3. Experimental Surface Pressure Data Obtained on 65 deg Delta Wing Across Reynolds Number and Mach Number Ranges. Volume 1; Sharp Leading Edge; [conducted in the Langley National Transonic Facility (NTF)

    NASA Technical Reports Server (NTRS)

    Chu, Julio; Luckring, James M.

    1996-01-01

    An experimental wind tunnel test of a 65 deg delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 36 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at a Reynolds number of 6 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.

  4. Leading Edge Synthetic Biology Looks

    E-print Network

    Collins, James J.

    -defined gene circuits in filter paper by freeze-drying. Doing so renders the operation of gene circuits less- free systems must follow strict protocols such as proper freeze-thaw, temperature regulation

  5. Leading Edge Certification for Educators

    ERIC Educational Resources Information Center

    Baker, Rowland

    2012-01-01

    For leaders of schools in the 21st century, it seems there is a never-ending demand on what they need to be doing. Just when they thought they had a handle on traditional testing and ways to improve student achievement, along comes the Common Core Standards, which change the game in many ways. The Common Core will require students to have an…

  6. Leading Edge In This Issue

    E-print Network

    Rohs, Remo

    and safety of aPlGF suggest that aPlGF may provide a new approach for cancer treatment. Surface Proteins Go attack from the immune system. To protect themselves from complement-mediated lysis, trypanosomes sort antibodies bound to cell-surface glycoproteins to the posterior cell pole, where they are internalized

  7. Leading Edge Chemoaffinity Revisited: Dscams,

    E-print Network

    Zipursky, Lawrebce

    of experiments, Roger Sperry (Sperry, 1943, 1944, 1963) cut the optic nerves of amphibia (newts, toads, and frogs is then pro- cessed and transmitted through the optic nerve to form topo- graphic maps in central nuclei.'' Sperry (1944) hypothe- sized that ``the ingrowing optic fibers must possess specific propert

  8. Leading Edge Sending Mixed Messages

    E-print Network

    Lim, Wendell

    a population to either a state of low density or to a stably maintained state of high density that is lower population growth, the authors establish in vitro cultures of CD4+ T cells with a wide range of starting extinction (LOW-state). If the initial density is above a certain threshold, how- ever, the population

  9. The isotopic composition of uranium and lead in Allende inclusions and meteoritic phosphates

    NASA Technical Reports Server (NTRS)

    Chen, J. H.; Wasserburg, G. J.

    1981-01-01

    The isotopic compositions of uranium and lead in Ca-Al-rich inclusions from the Allende chondrite and in whitlockite from the St. Severin chondrite and the Angra dos Reis achondrite are reported. Isoptopic analysis of acid soluble fractions of the Allende inclusions and the meteoritic whitlockite, which show isotopic anomalies in other elements, reveals U-235/U-238 ratios from 1/137.6 to 1/138.3, within 20 per mil of normal terrestrial U abundances. The Pb isotopic compositions of five coarse-grained Allende inclusions give a mean Pb-207/Pb-206 model age of 4.559 + or - 0.015 AE, in agreement with the U results. Pb isotope ratios of two fine-grained inclusions and a coarse-grained inclusion with strong mass fractionation and some nonlinear isotopic anomalies indicate that the U-Pb systems of these inclusions have evolved differently from the rest of Allende. Th/U abundance ratios in the Allende inclusions and meteoritic phosphate are found to range from 3.8 to 96, presumably indicating an optimal case for Cm/U fractionation, although the normal U concentrations do not support claims of abundant live Cm-247 or Cm-247/U-238 fractionation at the time of meteorite formation, in contrast to previous results. A limiting Cm-247/U-235 ratio of 0.004 at the time of meteorite formation is calculated which implies that the last major r process contribution at the protosolar nebula was approximately 100 million years prior to Al-26 formation and injection.

  10. Thermo-Active Behavior of Ethylene-Vinyl Acetate | Multiwall Carbon Nanotube Composites Examined by in Situ near-Edge X-ray Absorption Fine-Structure Spectroscopy

    PubMed Central

    2015-01-01

    NEXAFS spectroscopy was used to investigate the temperature dependence of thermally active ethylene-vinyl acetate | multiwall carbon nanotube (EVA|MWCNT) films. The data shows systematic variations of intensities with increasing temperature. Molecular orbital assignment of interplaying intensities identified the 1s ? ?*C=C and 1s ? ?*C=O transitions as the main actors during temperature variation. Furthermore, enhanced near-edge interplay was observed in prestrained composites. Because macroscopic observations confirmed enhanced thermal-mechanical actuation in prestrained composites, our findings suggest that the interplay of C=C and C=O ? orbitals may be instrumental to actuation. PMID:24803975

  11. Effect of composition and temperature on field-induced properties in the lead strontium zirconate titanate system

    NASA Astrophysics Data System (ADS)

    Yu, Yongjian; Singh, Raj N.

    2000-12-01

    The electric field-induced antiferroelectric (AFE) to ferroelectric (FE) phase transition in lead strontium zirconate titanate (PSZT) ceramics was studied by means of dielectric, polarization, and strain hysteresis measurements. PSZT compositions with varying strontium and Zr/Ti ratio, located in the ferroelectric, antiferroelectric phase regions, and near the AFE/FE phase boundary were prepared. Dielectric properties were measured as a function of temperature for different compositions. The electric field required for AFE-FE phase transition and hysteresis were affected by the temperature and composition. The entropy change during phase transition and the field-induced strain were also measured and discussed.

  12. Pulsed volume discharge in a nonuniform electric field at a high pressure and the short leading edge of a voltage pulse

    SciTech Connect

    Alekseev, S B; Gubanov, V P; Kostyrya, I D; Orlovskii, Viktor M; Skakun, V S; Tarasenko, Viktor F [Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk (Russian Federation)

    2004-11-30

    It is shown that a volume discharge is formed in a nonuniform electric field for the short leading edge of a voltage pulse and nanosecond pulse duration without any additional preionisation source in various gases at pressures higher than atmospheric (6 atm in helium and 3 atm in nitrogen). Lasing at atomic transitions in Xe is obtained in an Ar-Xe mixture under a pressure of 1.2 atm for an active length of 1.5 cm. A record-high specific power input (more than 0.8 GW cm{sup -3} under a pressure 1 atm in air) is realised in the volume discharge stage. The volume discharge is formed due to preionisation of the discharge gap by fast electrons accelerated due to amplification of the electric field in the cathode region and in the gap. In a nonuniform electric field, volume discharge is realised under a quasistationary voltage from 10 to 180 kV across the gap, at a pulse repetition rate of up to 160 Hz and for various discharge gap geometries. (active media)

  13. An axisymmetric analog two-layer convective heating procedure with application to the evaluation of Space Shuttle Orbiter wing leading edge and windward surface heating

    NASA Technical Reports Server (NTRS)

    Wang, K. C.

    1994-01-01

    A numerical procedure for predicting the convective heating rate of hypersonic reentry vehicles is described. The procedure, which is based on the axisymmetric analog, consists of obtaining the three-dimensional inviscid flowfield solution; then the surface streamlines and metrics are calculated using the inviscid velocity components on the surface; finally, an axisymmetric boundary layer code or approximate convective heating equations are used to evaluate heating rates. This approach yields heating predictions to general three-dimensional body shapes. The procedure has been applied to the prediction of the wing leading edge heating to the Space Shuttle Orbiter. The numerical results are compared with the results of heat transfer testing (OH66) of an 0.025 scale model of the Space Shuttle Orbiter configuration in the Calspan Hypersonic Shock Tunnel (HST) at Mach 10 and angles of attack of 30 and 40 degrees. Comparisons with STS-5 flight data at Mach 9.15 and angle of attack of 37.4 degrees and STS-2 flight data at Mach 12.86 and angle of attack of 39.7 degrees are also given.

  14. Can differences in soil community composition after peat meadow restoration lead to different decomposition and mineralization rates?

    Microsoft Academic Search

    Jerry van Dijk; Wim A. M. Didden; Frans Kuenen; Peter M. van Bodegom; Herman A. Verhoef; Rien Aerts

    2009-01-01

    Reducing decomposition and mineralization of organic matter by increasing groundwater levels is a common approach to reduce plant nutrient availability in many peat meadow restoration projects. The soil community is the main driver of these processes, but how community composition is affected by peat meadow restoration is largely unknown. Furthermore, it is unclear whether restoration induced changes could lead to

  15. Detection of Subsurface Material Separation in Shuttle Orbiter Slip-Side Joggle Region of the Wing Leading Edge using Infrared Imaging Data from Arc Jet Tests

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Walker, Sandra P.

    2009-01-01

    The objective of the present study was to determine whether infrared imaging (IR) surface temperature data obtained during arc-jet tests of Space Shuttle Orbiter s reinforced carbon-carbon (RCC) wing leading edge panel slip-side joggle region could be used to detect presence of subsurface material separation, and if so, to determine when separation occurs during the simulated entry profile. Recent thermostructural studies have indicated thermally induced interlaminar normal stress concentrations at the substrate/coating interface in the curved joggle region can result in local subsurface material separation, with the separation predicted to occur during approach to peak heating during reentry. The present study was an attempt to determine experimentally when subsurface material separations occur. A simplified thermal model of a flat RCC panel with subsurface material separation was developed and used to infer general surface temperature trends due to the presence of subsurface material separation. IR data from previously conducted arc-jet tests on three test specimens were analyzed: one without subsurface material separation either pre or post test, one with pre test separation, and one with separation developing during test. The simplified thermal model trend predictions along with comparison of experimental IR data of the three test specimens were used to successfully infer material separation from the arc-jet test data. Furthermore, for the test specimen that had developed subsurface material separation during the arc-jet tests, the initiation of separation appeared to occur during the ramp up to the peak heating condition, where test specimen temperature went from 2500 to 2800 F.

  16. Modelling soft body impact on composite structures

    Microsoft Academic Search

    Alastair F. Johnson; Martin Holzapfel

    2003-01-01

    The paper describes recent progress on materials modelling and numerical simulation of soft body impact damage in fibre reinforced composite structures. The work is based on the application of finite element (FE) analysis codes to simulate composite shell structures under impact loads arising, for example, from bird strike on a wing leading edge. A composites ply damage mechanics model and

  17. Lead Isotopic Variations of the Pacific and Implications for Paleogene Water Mass Composition 

    E-print Network

    Subt, Cristina

    2013-11-13

    oxyhydroxide coatings of bulk sediment samples reflect the composition of Pb dissolved in contemporaneous seawater at the seafloor [Abouchami et al., 1997; Basak et al., 2011; O'Nions et al., 1978]. The composition of dissolved Pb in seawater is #28;#19;Ý... TIMS Thermal Ionization Mass Spectrometer viii TABLE OF CONTENTS Page ABSTRACT…………………………………………………………………….……. ii DEDICATION……………………………………………………………………...... iv ACKNOWLEDGEMENTS………………………………………………………….. v NOMENCLATURE………………………………………………………………….. vi...

  18. Isotopic composition of lead in oceanic basalt and its implication to mantle evolution

    Microsoft Academic Search

    Mitsunobu Tatsumoto

    1978-01-01

    New data are given in this report for (1) Pb isotopic compositions and U, Th, and Pb concentrations of basalts from the island of Hawaii; (2) redetermined Pb isotopic compositions of some abyssal tholeiites; and (3) U, Th, and Pb concentrations of altered and fresh abyssal basalts, and basalt genesis and mantle evolution are discussed. The Th\\/U ratios of abyssal

  19. IMPACT OF PH AND LEAD COMPOSITION ON METAL LEACHED FROM BRASS COUPONS

    EPA Science Inventory

    Water sampling and monitoring requirements under the Lead and Copper Rule specify one liter samples taken at the consumers tap following at least 6 hours of stagnation. robable direct sources of lead in the one liter water volume are lead/tin solder and brass fixtures. rass range...

  20. Corrosion and dealloying of cast lead-free copper alloy–graphite composites

    Microsoft Academic Search

    P. K Rohatgi; D Nath; J. K Kim; A. N Agrawal

    2000-01-01

    Plumbing components fabricated from copper base alloys containing lead, pose health and environmental problems, and there is a need to find suitable alternatives to lead which can impart comparable machinability to cast copper alloys. Bismuth and selenium are two potential substitutes for lead, but their cost is high and their toxicity is in question. In the present work, graphite particles

  1. NOVEL LEAD ZIRCONATE TITANATE COMPOSITE VIA FREEZING TECHNOLOGY FOR HIGH FREQUENCY TRANSDUCER APPLICATIONS

    PubMed Central

    ZHU, B. P.; ZHOU, Q. F.; HU, C. H.; SHUNG, K. K.; GORZKOWSKI, E. P.; PAN, M. J.

    2011-01-01

    Novel PZT-5A ceramic-polymer composite was prepared via freezing technology. This composite exhibited good dielectric and ferroelectric behaviors. At 1 kHz, the dielectric constant and the dielectric loss were 546 and 0.046, respectively, while the remnant polarization was 13.0 ?C/cm2 at room temperature. The electromechanical coupling coefficient (kt) of PZT-5A composite was measured to be 0.54, which is similar to that of PZT piezoelectric ceramic. The piezoelectric coefficient (d33) of PZT-5A composite was determined to be ~250 pC/N. Using this composite, a 58MHz single element transducer with the bandwidth of 70% at ?6dB was built, and the insertion loss was tested to be ?29dB around the central frequency. PMID:21785672

  2. High-strain actuation of lead-free perovskites : compositional effects, phenomenology and mechanism

    E-print Network

    Soukhojak, Andrey N. (Andrey Nestorovich), 1972-

    2002-01-01

    An experimental study was carried out to map the compositional dependence of electromechanical behavior and ferroelectric phase stability in the barium, zirconium-codoped sodium bismuth titanate (BNBZT) system for barium ...

  3. Tailoring of unipolar strain in lead-free piezoelectrics using the ceramic/ceramic composite approach

    SciTech Connect

    Khansur, Neamul H.; Daniels, John E. [School of Materials Science and Engineering, University of New South Wales, NSW 2052 (Australia); Groh, Claudia; Jo, Wook; Webber, Kyle G. [Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany); Reinhard, Christina [Diamond Light Source, Beamline I12 JEEP, Didcot, Oxfordshire OX11 0DE (United Kingdom); Kimpton, Justin A. [The Australian Synchrotron, Clayton, Victoria 3168 (Australia)

    2014-03-28

    The electric-field-induced strain response mechanism in a polycrystalline ceramic/ceramic composite of relaxor and ferroelectric materials has been studied using in situ high-energy x-ray diffraction. The addition of ferroelectric phase material in the relaxor matrix has produced a system where a small volume fraction behaves independently of the bulk under an applied electric field. Inter- and intra-grain models of the strain mechanism in the composite material consistent with the diffraction data have been proposed. The results show that such ceramic/ceramic composite microstructure has the potential for tailoring properties of future piezoelectric materials over a wider range than is possible in uniform compositions.

  4. Removal of lead ions in aqueous solution by hydroxyapatite\\/polyurethane composite foams

    Microsoft Academic Search

    Suk Hyun Jang; Byung Gil Min; Young Gyu Jeong; Won Seok Lyoo; Sang Cheol Lee

    2008-01-01

    We have prepared hydroxyapatite\\/polyurehthane (HAp\\/PU) composite foams with two different HAp contents of 20 and 50wt.% and investigated their removal capability of Pb2+ ions from aqueous solutions with various initial Pb2+ ion concentrations and pH values of 2–6. HAp\\/PU composite foams synthesized exhibited well-developed open pore structures which provide paths for the aqueous solution and adsorption sites for Pb2+ ions.

  5. Determination of the age of the earth from the isotopic composition of meteoritic lead

    Microsoft Academic Search

    F. G. Houtermans

    1953-01-01

    Summary  Under the assumption thata) the isotopic constitution of lead at the time of the formation of the lithosphére is represented by the figures found for\\u000a lead from the troilite phase of the Cafion-Diablo meteorite [Pat 53] andb) the majority of tertiary lead ores analysed for isotopic constitution has been formed according to the simple model of primary\\u000a origin (equ. 3),

  6. Mechanical and dielectric characterization of lead zirconate titanate(PZT)/polyurethane(PU) thin film composite for energy harvesting

    NASA Astrophysics Data System (ADS)

    Aboubakr, S.; Rguiti, M.; Hajjaji, A.; Eddiai, A.; Courtois, C.; d'Astorg, S.

    2014-04-01

    The Lead Zirconate titanate (PZT) ceramic is known by its piezoelectric feature, but also by its stiffness, the use of a composite based on a polyurethane (PU) matrix charged by a piezoelectric material, enable to generate a large deformation of the material, therefore harvesting more energy. This new material will provide a competitive alternative and low cost manufacturing technology of autonomous systems (smart clothes, car seat, boat sail, flag ...). A thin film of the PZT/PU composite was prepared using up to 80 vol. % of ceramic. Due to the dielectric nature of the PZT, inclusions of this one in a PU matrix raises the permittivity of the composite, on other hand this latter seems to decline at high frequencies.

  7. Magnetoelectric composite materials based on lead zirconate titanate and nickel ferrite

    SciTech Connect

    Lupeiko, T.G.; Lopatin, S.S.; Lisnevskaya, I.V.; Zvyagintsev, B.I. [Rostov State Univ., Rostov-na-Donu (Russian Federation)

    1994-11-01

    Composite materials that consist of a piezoelectric phase and a magnetostrictive ferrite exhibit a magnetoelectric effect. In composites, this effect is a consequence of the collective mechanical interaction of phases, and it manifests itself via electrical polarization or magnetization in magnetic or electric fields. At present, magnetoelectric composites are more promising materials than single-phase magnetoelectrics; most of the latter exhibit magnetoelectric properties at temperatures of liquid helium or nitrogen. For the best single-phase ferromagnet Cr{sub 2}O{sub 3}, the magnetoelectric conversion factor if {Delta}E/{Delta}H = 25 x 10{sup {minus}3} V/A; the largest {Delta}E/{Delta}H ratios that were achieved for magnetoelectric ceramic materials prepared from powders of BaTiO{sub 3} and Ni{sub 0.97}Co{sub 0.03}Mn{sub 0.1}Fe{sub 1.9}O{sub 4} ferrite and for composites of the BaO-TiO{sub 2}-CoO-Fe{sub 2}O{sub 3} system prepared by unidirectional solidification of eutectic melts are 100 x 10{sup {minus}3} and 163 x 10{sup {minus}3} V/A, respectively. In addition to high {Delta}E/{Delta}H values, composites offer material designers the possibility of adjusting their piezoelectric and magnetostrictive components and of varying the ratios of these components over a wide range. This enables the design of magnetoelectric materials with controlled properties. In this paper, the authors report on the electrophysical and magnetoelectric properties of composites based on LZT and modified nickel ferrite and doped with bismuth, lanthanum, and niobium oxides.

  8. Wind-tunnel investigation of effects of wing-leading-edge modifications on the high angle-of-attack characteristics of a T-tail low-wing general-aviation aircraft

    NASA Technical Reports Server (NTRS)

    White, E. R.

    1982-01-01

    Exploratory tests have been conducted in the NASA-Langley Research Center's 12-Foot Low-Speed wind Tunnel to evaluate the application of wing-leading-edge devices on the stall-departure and spin resistance characteristics of a 1/6-scale model of a T-tail general-aviation aircraft. The model was force tested with an internal strain-gauge balance to obtain aerodynamic data on the complete configuration and with a separate wing balance to obtain aerodynamic data on the outer portion of the wing. The addition of the outboard leading-edge droop eliminated the abrupt stall of the windtip and maintained or increased the resultant-force coefficient up to about alpha = 32 degrees. This change in slope of the resultant-force coefficient curve with angle of attack has been shown to be important for eliminating autorotation and for providing spin resistance.

  9. Investigation of the Stability and Control Characteristics of a 1/20-Scale Model of the Consolidated Vultee XB-53 Airplane with a Full-Span Leading-Edge Slat in the Langley Free-Flight Tunnel

    NASA Technical Reports Server (NTRS)

    Bennett, Charles V.

    1947-01-01

    An investigation of the low-speed; power-off stability and control characteristics of a 1/20-scale model of the Consolidated Vultee XB-53 airplane equipped with full-span leading-edge slats has been conducted in the Langley free-flight tunnel. In this investigation it was found that the-full-span leading-edge slat gave about the same maximum lift coefficient as was obtained with the outboard single slotted flap and inboard slat. The stability and control characteristics were greatly improved except near the stall where the characteristics with the full-span slat were considered unsatisfactory because of a loss of directional stability and a slight nosing-up tendency.

  10. Remediation of cadmium- and lead-contaminated agricultural soil by composite washing with chlorides and citric acid.

    PubMed

    Li, Yu-jiao; Hu, Peng-jie; Zhao, Jie; Dong, Chang-xun

    2015-04-01

    Composite washing of cadmium (Cd)- and lead (Pb)-contaminated agricultural soil from Hunan province in China using mixtures of chlorides (FeCl3, CaCl2) and citric acid (CA) was investigated. The concentrations of composite washing agents for metal removal were optimized. Sequential extraction was conducted to study the changes in metal fractions after soil washing. The removal of two metals at optimum concentration was reached. Using FeCl3 mixed with CA, 44% of Cd and 23% of Pb were removed, and 49 and 32% by CaCl2 mixed with CA, respectively. The mechanism of composite washing was postulated. A mixture of chlorides and CA enhanced metal extraction from soil through the formation of metal-chloride and metal-citrate complexes. CA in extract solutions promoted the formation of metal-chloride complexes and reduced the solution pH. Composite washing reduced Cd and Pb in Fe-Mn oxide forms significantly. Chlorides and CA exerted a synergistic effect on metal extraction during composite washing. PMID:25342453

  11. Protist community composition during spring in an Arctic flaw lead polynya

    Microsoft Academic Search

    Ramon Terrado; Emmanuelle Medrinal; Cindy Dasilva; Mary Thaler; Warwick F. Vincent; Connie Lovejoy

    The overwintering deployment of an icebreaker during the Canadian Flaw Lead study provided an opportunity to evaluate how\\u000a protist communities (phytoplankton and other single-celled eukaryotes) respond to changing spring irradiance conditions in\\u000a flaw lead polynyas, where open water persists between the central pack ice and land fast ice. We combined microscopic analysis\\u000a of the protist communities (all cell sizes) with

  12. Isotopic composition of lead in oceanic basalt and its implication to mantle evolution

    USGS Publications Warehouse

    Tatsumoto, M.

    1978-01-01

    New data are given in this report for (1) Pb isotopic compositions and U, Th, and Pb concentrations of basalts from the island of Hawaii; (2) redetermined Pb isotopic compositions of some abyssal tholeiites; and (3) U, Th, and Pb concentrations of altered and fresh abyssal basalts, and basalt genesis and mantle evolution are discussed. The Th U ratios of abyssal and Japanese tholeiites are distinctly lower than those of tholeiites and alkali basalts from other areas. It is thought that these low values reflect a part of the mantle depleted in large ionic lithophile elements. Thus a mantle evolution model is presented, in which Th U ratios of the depleted zone in the mantle have decreased to ???2, and U Pb ratios have increased, showing an apparent ???1.5-b.y. isochron trend in the 207Pb/204Pb vs. 206Pb/204Pb plot. The Pb isotopic compositions of basalts from the island of Hawaii are distinct for each of the five volcanoes, and within each volcano, Pb's of tholeiites and alkali basalts are similar. An interaction between partially melted material (hot plume?) of the asthenosphere and the lithosphere is suggested to explain the trend in the Pb isotopic compositions of Hawaiian basalts. ?? 1978.

  13. Temporal changes in the lead isotopic composition of red clays: comparison with ferromanganese crust records

    Microsoft Academic Search

    L. V Godfrey

    2002-01-01

    A record of changes in Pb and Sr isotopic composition of two cores (DSDP 86 576A and LL44 GPC3) from the red clay region of the central North Pacific has been determined for the past 60–65 million years. The isotope records of the eolian silicate fraction of the red clays reflect the change in source area as the core sites

  14. Giant magnetoelectric effects in multilayered composites of cobalt ferrite and lead magnesium niobate titanate

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaohong; Yang, Hui; Xiao, Dingquan; Zhu, Jianguo

    2011-01-01

    The magnetoelectric (ME) coupling responses of [CoFe2O4/(1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3]n, represented as (CFO/PMNT)n, multilayered composites were theoretically investigated by using an average method. It is found that a stronger interface coupling could be obtained in multilayers than in bilayers if the number of layers (n) is reasonably increased. Using an empirical dependence of the interface coupling parameter on the number of layers n, it is theoretically estimated that the ME coupling effect is first enhanced and then deteriorated with the gradual increase in n. The best ME response is estimated to occur at n=15, where the transverse ME voltage coefficient ?E,31 reaches as high as 658 mV·cm-1·Oe-1. Moreover, it is theoretically found that the ME coupling effect in (CFO/PMNT)n multilayered composites is strongly dependent on the volume fraction of the piezoelectric (or magnetostrictive) phase, and the ME voltage coefficient for transverse field orientation (?E,31) is estimated to be roughly 90% higher than that for the longitudinal case (?E,33), revealing a large anisotropy in the ME coupling effect of (CFO/PMNT)n multilayered composites. These findings pave the way for experimental achievement of strong ME coupling responses, and provide important implications for the design and performance optimization of related devices comprising this kind of multiferroic magnetoelectric materials.

  15. Snail ( Helix aspersa ) exposure history and possible adaptation to lead as reflected in shell composition

    Microsoft Academic Search

    M. C. Newman; M. Mulvey; A. Beeby; R. W. Hurst; L. Richmond

    1994-01-01

    Lead sequestration in shell was examined for English and Welsh populations of the common garden snail (Helix aspersa) with different Pb exposure histories. Isotopic Pb ratios provided signatures for Pb source and a means of implying duration of population exposure from decades to millennia. Total Pb concentrations were used to quantify the intensity of exposure experienced by the populations. Snails

  16. Effect of lead accumulation on growth and mineral composition of eggplant seedlings (Solarium melongena)

    Microsoft Academic Search

    Kadir Yilmaz; ?rfan Ersin Akinci; Sermin Akinci

    2009-01-01

    To examine lead (Pb) accumulation and distribution, and its effects on growth and nutrient content, Solanum melongena seedlings were grown in pot culture conditions in a glasshouse. The experiment was arranged in a randomised block design with 75, 150, and 300 mg litre Pb applications, and replicated 3 times. The highest Pb applications represent severely contaminated land, the lowest representing

  17. Giant magnetoelectric effects in multilayered composites of cobalt ferrite and lead magnesium niobate titanate

    Microsoft Academic Search

    Xiaohong Zhu; Hui Yang; Dingquan Xiao; Jianguo Zhu

    2011-01-01

    The magnetoelectric (ME) coupling responses of [CoFe2O4\\/(1-x)Pb(Mg1\\/3Nb2\\/3)O3-xPbTiO3]n, represented as (CFO\\/PMNT)n, multilayered composites were theoretically investigated by using an average method. It is found that a stronger interface coupling could be obtained in multilayers than in bilayers if the number of layers (n) is reasonably increased. Using an empirical dependence of the interface coupling parameter on the number of layers n,

  18. Flight Investigation of the Low-Speed Characteristics of a 45 deg Swept-Wing Fighter-Type Airplane with Blowing Boundary-Layer Control Applied to the Leading- and Trailing-Edge Flaps

    NASA Technical Reports Server (NTRS)

    Quigley, Hervey C.; Anderson, Seth B.; Innis, Robert C.

    1960-01-01

    A flight investigation has been conducted to study how pilots use the high lift available with blowing-type boundary-layer control applied to the leading- and trailing-edge flaps of a 45 deg. swept-wing airplane. The study includes documentation of the low-speed handling qualities as well as the pilots' evaluations of the landing-approach characteristics. All the pilots who flew the airplane considered it more comfortable to fly at low speeds than any other F-100 configuration they had flown. The major improvements noted were the reduced stall speed, the improved longitudinal stability at high lift, and the reduction in low-speed buffet. The study has shown the minimum comfortable landing-approach speeds are between 120.5 and 126.5 knots compared to 134 for the airplane with a slatted leading edge and the same trailing-edge flap. The limiting factors in the pilots' choices of landing-approach speeds were the limits of ability to control flight-path angle, lack of visibility, trim change with thrust, low static directional stability, and sluggish longitudinal control. Several of these factors were found to be associated with the high angles of attack, between 13 deg. and 15 deg., required for the low approach speeds. The angle of attack for maximum lift coefficient was 28 deg.

  19. Dynamic magnetoelectric effects in bulk and layered composites of cobalt zinc ferrite and lead zirconate titanate

    Microsoft Academic Search

    G. Srinivasan; R. Hayes; C. P. DeVreugd; V. M. Laletsin; N. Paddubnaya

    2005-01-01

    Low-frequency magnetoelectric (ME) coupling is investigated in bulk samples and multilayers of cobalt zinc ferrite, Co 1-xZn xFe 2O 4 (x=0–0.6), and lead zirconate titanate. In bulk samples, the transverse and longitudinal couplings are weak and of equal magnitude. A substantial strengthening of ME interactions is evident in layered structures, with the ME voltage coefficient a factor of 10–30 higher

  20. Near-edge X-ray absorption fine structure studies of electrospun poly(dimethylsiloxane)/poly(methyl methacrylate)/multiwall carbon nanotube composites.

    PubMed

    Winter, A Douglas; Larios, Eduardo; Alamgir, Faisal M; Jaye, Cherno; Fischer, Daniel; Campo, Eva M

    2013-12-23

    This work describes the near conduction band edge structure of electrospun mats of multiwalled carbon nanotube (MWCNT)-polydimethylsiloxane-poly(methyl methacrylate) by near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Effects of adding nanofillers of different sizes were addressed. Despite observed morphological variations and inhomogeneous carbon nanotube distribution, spun mats appeared homogeneous under NEXAFS analysis. Spectra revealed differences in emissions from glancing and normal spectra, which may evidence phase separation within the bulk of the micrometer-size fibers. Further, dichroic ratios show polymer chains did not align, even in the presence of nanofillers. Addition of nanofillers affected emissions in the C-H, C?O, and C-C regimes, suggesting their involvement in interfacial matrix-carbon nanotube bonding. Spectral differences at glancing angles between pristine and composite mats suggest that geometric conformational configurations are taking place between polymeric chains and carbon nanotubes. These differences appear to be carbon nanotube-dimension dependent and are promoted upon room temperature mixing and shear flow during electrospinning. CH-? bonding between polymer chains and graphitic walls, as well as H-bonds between impurities in the as-grown MWCNTs and polymer pendant groups are proposed bonding mechanisms promoting matrix conformation. PMID:24308286

  1. Isotopic compositions of bismuth, lead, thallium, and mercury from mini r-processing

    NASA Technical Reports Server (NTRS)

    Heymann, D.; Liffman, K.

    1986-01-01

    The yields of stable isotopes of Bi, Pb, Tl and Hg as well as yields of Pb-205 are calculated with a parametrized model for 'mini r-processing' in the Ne, O, C-rich zones of explosive burning in massive stars. The Pb isotopic compositions stand out by their comparatively low Pb-207 yields and by the fact that this r-process variant yields Pb-204 quite abundantly. The average Pb-205/Pb-204 yield ratio of 6.1 is the same order of magnitude as yield ratios deduced for s-processing. The Hg from this mini r-process looks like normal solar-system mercury, but with Hg-196 missing and the light s-isotopes A = 198, 199, 200 and 201 depleted (especially the odd-A species).

  2. Nature of Pb in superconducting cuprates containing lead: A Pb /ital L//sub 3/ x-ray absorption near-edge spectroscopy study

    SciTech Connect

    Kulkarni, G. U.; Sankar, G.; Rao, C. N. R.

    1989-07-24

    X-ray absorption near-edge spectroscopy studies show that Pb in superconducting Tl/sub 0.5/Pb/sub 0.5/CaSr/sub 2/Cu/sub 2/O/sub 7+/delta// is essentially in the 4+ state while it is in the 2+ state in Pb/sub 2/Sr/sub 2/Ca/sub 1/minus//ital x/Ln//sub /ital x//Cu/sub 3/O/sub 8+/delta//.

  3. Room temperature nonlinear magnetoelectric effect in lead-free and Nb-doped AlFeO3 compositions

    NASA Astrophysics Data System (ADS)

    Cótica, Luiz F.; Santos, Guilherme M.; Freitas, Valdirlei F.; Coelho, Adelino A.; Pal, Madhuparna; Santos, Ivair A.; Garcia, Ducinei; Eiras, José A.; Guo, Ruyan; Bhalla, Amar S.

    2015-02-01

    It is still a challenging problem to obtain technologically useful materials displaying strong magnetoelectric coupling at room temperature. In the search for new effects and materials to achieve this kind of coupling, a nonlinear magnetoelectric effect was proposed in the magnetically disordered relaxor ferroelectric materials. In this context, the aluminum iron oxide (AlFeO3), a room temperature ferroelectric relaxor and magnetic spin glass compound, emerges as an attractive lead-free magnetoelectric material along with nonlinear magnetoelectric effects. In this work, static, dynamic, and temperature dependent ferroic and magnetoelectric properties in lead-free AlFeO3 and 2 at. % Nb-doped AlFeO3 multiferroic magnetoelectric compositions are studied. Pyroelectric and magnetic measurements show changes in ferroelectric and magnetic states close to each other (˜200 K). The magnetoelectric coefficient behavior as a function of Hbias suggests a room temperature nonlinear magnetoelectric coupling in both single-phase and Nb-doped AlFeO3-based ceramic compositions.

  4. Ballistic parameters of .177 (4.5 mm) caliber plastic-sleeved composite projectiles compared to conventional lead pellets.

    PubMed

    Frank, Matthias; Schönekeß, Holger; Jäger, Frank; Herbst, Jörg; Ekkernkamp, Axel; Nguyen, Thanh Tien; Bockholdt, Britta

    2013-11-01

    The capability of conventional air gun lead pellets (diabolo pellets) to cause severe injuries or fatalities even at low kinetic energy levels is well documented in medical literature. Modern composite hunting pellets, usually a metal core (made of steel, lead, zinc, or a zinc and aluminum alloy) encased in a plastic sleeve, are of special forensic and traumatological interest. These projectiles are advertised by the manufacturers to discharge at higher velocities than conventional air gun pellets, thus generating very high tissue-penetrating capabilities. Lack of experimental data on these uncommon air gun projectiles induced this work. Ballistic parameters of 12 different caliber .177 (4.5 mm) composite pellets, discharged from two spring-piston air guns (Weihrauch HW 35, Webley CUB) and three pneumatic air guns (Walther LGR, Walther LG400, Walther LP300), were investigated using a ballistic speed measurement system and compared to a conventional diabolo pellet (RWS Meisterkugel) as reference projectile. Although overall results were inconsistent, for some projectile-weapon combinations (particularly spring-piston air guns), a significant change of the kinetic energy (-53 up to +48 %) to the reference projectile was observed. The data provided in this work may serve as a basis for forensic investigation as well as traumatological diagnosis and treatment of injuries caused by these uncommon projectiles. PMID:23989221

  5. Stable lead isotope compositions in selected coals from around the world and implications for present day aerosol source tracing

    SciTech Connect

    M. Diaz-Somoano; M.E. Kylander; M.A. Lopez-Anton; I. Suarez-Ruiz; M.R. Martinez-Tarazona; M. Ferrat; B. Kober; D.J. Weiss [Instituto Nacional del Carbon (INCAR-CSIC), Oviedo (Spain)

    2009-02-15

    The phasing out of leaded gasoline in many countries around the world at the end of the last millennium has resulted in a complex mixture of lead sources in the atmosphere. Recent studies suggest that coal combustion has become an important source of Pb in aerosols in urban and remote areas. Lead concentration and isotopic composition is reported for 59 coal samples representing major coal deposits worldwide in an attempt to characterize this potential source. The average concentration in these coals is 35 {mu}g Pb g{sup -1}, with the highest values in coals from Spain and Peru and the lowest in coals from Australia and North America. The {sup 206}Pb/{sup 207}Pb isotope ratios range between 1.15 and 1.24, with less radiogenic Pb in coals from Europe and Asia compared to South and North America. Comparing the Pb isotopic signatures of coals from this and previous studies with those published for Northern and Southern Hemisphere aerosols, we hypothesize that coal combustion might now be an important Pb source in China, the eastern U.S., and to some extent, in Europe but not as yet in other regions including South Africa, South America, and western U.S. This supports the notion that 'old Pb pollution' from leaded gasoline reemitted into the atmosphere or long-range transport (i.e., from China to the western U.S.) is important. Comparing the isotope ratios of the coals, the age of the deposits, and Pb isotope evolution models for the major geochemical reservoirs suggests that the lead isotope ratios (PbIC) in coals is strongly influenced by the depositional coal forming environment. 47 refs., 3 figs., 1 tab.

  6. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 degrees to 35 degrees, 3. Effect of wing leading-edge modifications, model A

    NASA Technical Reports Server (NTRS)

    Bihrle, W., Jr.; Mulcay, W.

    1979-01-01

    Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance located in the Langley spin tunnel are presented in plotted form for a 1/5 scale, single-engine, low-wing, general aviation airplane model. The configurations tested included the basic airplane, sixteen wing leading-edge modifications and lateral-directional control settings. Data are presented for all configurations without analysis for an angle of attack range of 8 deg to 35 deg and clockwise and counter-clockwise rotations covering an Omega b/2v range from 0 to 0.85. Also, data are presented above 35 deg of attack for some configurations.

  7. Stable lead isotope compositions in selected coals from around the world and implications for present day aerosol source tracing.

    PubMed

    Díaz-Somoano, M; Kylander, M E; López-Antón, M A; Suárez-Ruiz, I; Martínez-Tarazona, M R; Ferrat, M; Kober, B; Weiss, D J

    2009-02-15

    The phasing out of leaded gasoline in many countries around the world at the end of the last millennium has resulted in a complex mixture of lead sources in the atmosphere. Recent studies suggest that coal combustion has become an important source of Pb in aerosols in urban and remote areas. Here, we report lead concentration and isotopic composition for 59 coal samples representing major coal deposits worldwide in an attempt to characterize this potential source. The average concentration in these coals is 35 microg Pb g(-1), with the highest values in coals from Spain and Peru and the lowest in coals from Australia and North America. The 206Pb/207Pb isotope ratios range between 1.15 and 1.24, with less radiogenic Pb in coals from Europe and Asia compared to South and North America. Comparing the Pb isotopic signatures of coals from this and previous studies with those published for Northern and Southern Hemisphere aerosols, we hypothesize that coal combustion might now be an important Pb source in China, the eastern U.S., and to some extent, in Europe but not as yet in other regions including South Africa, South America, and western U.S. This supports the notion that "old Pb pollution" from leaded gasoline reemitted into the atmosphere or long-range transport (i.e., from China to the western U.S.) is important. Comparing the isotope ratios of the coals, the age of the deposits, and Pb isotope evolution models for the major geochemical reservoirs suggests that the PbIC in coals is strongly influenced by the depositional coal forming environment. PMID:19320161

  8. An experimental investigation of lead zirconate titanate--epoxy-multi-walled carbon nanotube bulk and flexible thick film composites

    NASA Astrophysics Data System (ADS)

    Banerjee, Sankha

    Piezoelectric sensors and actuators are needed for a wide range of applications from physiological measurement to industrial monitoring systems. Sensors that can be easily integrated with the host, while maintaining high sensitivity and reliability over a wide range of frequencies are not readily feasible and economical with homogenous piezoelectric materials. It is well known that two-phase piezoelectric-epoxy composites offer several benefits over their single phase counterparts, as the properties of the constituent phases combine to improve the range of applicability. However, the piezoelectric properties of these materials suffer from the electrically insulating properties of the epoxy matrix. The electrical properties of the matrix may be enhanced by including electrically conducting inclusions however, less is known about the mechanisms that drive the changes in these properties. Hence, this experimental investigation of sensor materials builds on the previous work in two-phase piezoelectric composites, where the aims are to understand the roles that specific fabrication parameters and inclusion composition play in determining the piezoelectric and dielectric performance the aforementioned composites. The materials under investigation will be comprised of Lead Zirconate Titanate, Epofix Cold-Setting Embedding Resin and multi-walled carbon nanotubes, i.e. the piezoelectric, epoxy and electrical inclusions respectively. Our work suggests that inclusion of MWCNTs enhances the piezoelectric and dielectric properties with increasing volume fraction below the percolation threshold. This work seeks to understand how the processing parameters: poling temperature, poling type and particle distribution influence the contact resistance, space charge double layer at the piezoelectric and conductor interfaces and electric field intensity at the piezoelectric boundary, which all ultimately dictate the piezoelectric and dielectric performance of the composite materials. Conventional solid oxide mixing, spin coating and deposition techniques will be used to fabricate the bulk and thick films. The piezoelectric and dielectric performance will be determined from the measurement of the piezoelectric strain coefficients, d33 and d31, dielectric constant, impedance and dielectric spectrum, dielectric loss tangent, and capacitance. These measurements will be correlated with inclusion size, shape, distribution, and surface morphology observations obtained from the scanning electron microscope (SEM) and transmission electron microscope (TEM).

  9. Phosphorus K-edge XANES Spectroscopy of Mineral Standards

    SciTech Connect

    E Ingall; J Brandes; J Diaz; M de Jonge; D Paterson; I McNulty; C Elliott; P Northrup

    2011-12-31

    Phosphorus K-edge X-ray absorption near-edge structure (XANES) spectroscopy was performed on phosphate mineral specimens including (a) twelve specimens from the apatite group covering a range of compositional variation and crystallinity; (b) six non-apatite calcium-rich phosphate minerals; (c) 15 aluminium-rich phosphate minerals; (d) ten phosphate minerals rich in either reduced iron or manganese; (e) four phosphate minerals rich in either oxidized iron or manganese; (f) eight phosphate minerals rich in either magnesium, copper, lead, zinc or rare-earth elements; and (g) four uranium phosphate minerals. The identity of all minerals examined in this study was independently confirmed using X-ray powder diffraction. Minerals were distinguished using XANES spectra with a combination of pre-edge features, edge position, peak shapes and post-edge features. Shared spectral features were observed in minerals with compositions dominated by the same specific cation. Analyses of apatite-group minerals indicate that XANES spectral patterns are not strongly affected by variations in composition and crystallinity typical of natural mineral specimens.

  10. Effect of an iodine-containing additive on the composition, structure, and morphology of chemically deposited lead selenide films

    NASA Astrophysics Data System (ADS)

    Smirnova, Z. I.; Bakanov, V. M.; Maskaeva, L. N.; Markov, V. F.; Voronin, V. I.

    2014-12-01

    The effect of an ammonium iodide additive on the elemental and phase compositions, structural parameters, and surface morphology of lead selenide films synthesized by chemical deposition from aqueous solutions has been studied using X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray analysis. It has been established that the obtained PbSe films have a multiphase structure. The iodine content of the films is directly proportional to the NH4I concentration in the reaction mixture and increases linearly with an increase in this concentration to 0.25 mol/L. No individual iodine-containing phases have been detected in the film structure. However, the introduction of iodine leads to an increase in the PbSe phase lattice parameter from ˜6.11 to ˜6.16 Å and to a decrease in the crystal grain size to ˜ 20 nm. It has been found that there is a correlation between the grain size, lattice parameter, and ammonium iodide concentration in the reaction mixture, which can be explained by changes in the film growth mechanism at the initial growth steps.

  11. Individual responses of mother sows to a probiotic Enterococcus faecium strain lead to different microbiota composition in their offspring.

    PubMed

    Starke, I C; Pieper, R; Neumann, K; Zentek, J; Vahjen, W

    2013-12-01

    Pregnant gilts were fed the probiotic Enterococcus faecium NCIMB10415 (SF68) one month before birth of piglets. DNA extracts of sow faeces taken in weekly intervals as well as extracts from the intestine of their offspring during the suckling period at 12 and 26 days of life were analysed by denaturing gradient gel electrophoresis (DGGE) and quantitative PCR. DGGE profiles of faecal bacterial communities from three out of six probiotic-fed sows were distinctly different from the control and other probiotic-fed sows at all time points after probiotic supplementation. The probiotic-fed sows and their offspring were therefore divided into non-responder (n=3) and responder (n=3) groups. The probiotic strain significantly increased faecal lactobacilli cell numbers in mother sows, which could be assigned to a significant increase of Lactobacillus amylovorus and Lactobacillus acidophilus. Responding sows showed a more pronounced increase than non-responding sows. Similarly, suckling piglets from non-responding and responding sows showed numeric and significant differences for different bacterial groups and species. DGGE profiles of suckling piglets from responding sows also grouped more closely than profiles from control animals. Non-metric multiscaling of suckling piglets showed the same tendency for suckling piglets, but not for post-weaning piglets. This study showed that the probiotic E. faecium strain modified the faecal microbiota of sows. This modification is carried over to their offspring, but leads to changes that do not mirror the quantitative composition in the mother sow. Individual variations in the bacterial composition of mother sows before probiotic feed intake may influence the impact of a probiotic in sows and their offspring. PMID:24311318

  12. Large converse magnetoelectric effect in Na0.5Bi0.5TiO3-CoFe2O4 lead-free multiferroic composites

    NASA Astrophysics Data System (ADS)

    Narendra Babu, S.; Malkinski, Leszek

    2012-04-01

    Lead-free multiferroic composites of ferroelectric, Na0.5Bi0.5TiO3 (NBT) and ferrimagnetic, CoFe2O4 (CFO) were synthesized by the solid-state sintering method and a systematic study of structural, magnetic, and magnetoelectric properties was undertaken. X-ray diffraction and field emission scanning electron microscopy displayed the formation of single phase for parent phases and the presence of both phases in the composites. Magnetic properties were investigated using a vibrating sample magnetometer (VSM) and ferromagnetic resonance (FMR) measurements at room temperature. Strong magnetoelectric (ME) coupling was demonstrated by an electric field tunable FMR field shift. A large value of converse ME coefficient 109 Oe-cm kV-1 was observed for NBT/CFO 70/30 composite. Furthermore, these lead-free multiferroic composites exhibiting a large converse magnetoelectric effect at room temperature provide great opportunities for electrostatically tunable devices at microwave frequencies.

  13. Stochastic Theory of Edge Diffraction

    Microsoft Academic Search

    Giorgio Franceschetti; Antonio Iodice; Antonio Natale; Daniele Riccio

    2008-01-01

    We introduce an original formulation for the electromagnetic field diffraction by a knife edge with random roughness: the formulation, based on the asymptotic physical optics approach, leads to closed form evaluations of the statistics of the diffracted field. The edge roughness is described by a stationary zero-mean Gaussian stochastic process with standard deviation sigma and correlation length L. The physical

  14. Lead isotopic composition of trinitite melt glass: evidence for the presence of Canadian industrial lead in the first atomic weapon test.

    PubMed

    Bellucci, Jeremy J; Simonetti, Antonio; Wallace, Christine; Koeman, Elizabeth C; Burns, Peter C

    2013-08-01

    The Pb isotopic compositions for 51 spots of melt glass in 11 samples of trinitite have been determined by laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). Trinitite glass yields a large range of Pb isotopic compositions (i.e., (206)Pb/(204)Pb = 17.08-19.04), which reflect mixing between industrial Pb from materials used in the Trinity test and natural geologic components. Areas within trinitite melt glass containing high concentrations of both Cu and Pb, which are derived from the bomb and blast site-related components, were used for delineating the Pb isotopic composition corresponding to the anthropogenic Pb component. Comparison between the isotopic composition estimated here for the industrial Pb used in the Trinity test and those from known Pb deposits worldwide indicates close agreement with ore from the Buchans mine (Newfoundland, Canada). The Buchans mine was active during the time of the Trinity test and was operated by the American Smelting and Refining Company, which could have provided the Pb used in the test. The industrial Pb used in the Trinity test materials is not documented in the literature (or declassified) but could have been present in bricks, solder, pigs, or some other anthropogenic component related to the experiment. PMID:23829180

  15. Flight investigation of the effects of an outboard wing-leading-edge modification on stall/spin characteristics of a low-wing, single-engine, T-tail light airplane

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III; Dicarlo, Daniel J.; Patton, James M., Jr.

    1987-01-01

    Flight tests were performed to investigate the change in stall/spin characteristics due to the addition of an outboard wing-leading-edge modification to a four-place, low-wing, single-engine, T-tail, general aviation research airplane. Stalls and attempted spins were performed for various weights, center of gravity positions, power settings, flap deflections, and landing-gear positions. Both stall behavior and wind resistance were improved compared with the baseline airplane. The latter would readily spin for all combinations of power settings, flap deflections, and aileron inputs, but the modified airplane did not spin at idle power or with flaps extended. With maximum power and flaps retracted, the modified airplane did enter spins with abused loadings or for certain combinations of maneuver and control input. The modified airplane tended to spin at a higher angle of attack than the baseline airplane.

  16. A highly selective and sensitive disposable carbon composite PVC-based membrane for determination of lead ion in environmental samples.

    PubMed

    Abbaspour, A; Mirahmadi, E; Khalafi-Nejad, A; Babamohammadi, S

    2010-02-15

    A Pt wire coated with phenyl hydrazone derivative-carbon composite in a poly(vinyl chloride) membrane was used for detection of lead. The sensor had a Nernstian slope of 29.46+/-0.41 mV/decade over a wide linear concentration range of 7.7 x 10(-7) to 1.0 x 10(-1) mol L(-1) for Pb(NO(3))(2). The detection limit was 3.2 x 10(-7) mol L(-1) and the electrode was applicable in the pH range of 3.7-6.3. It had a short response time of approximately 6s and was used at least for 70 days. The electrode has exhibited good selectivity for Pb(II) relative to 19 other metal ions. The functionality of the proposed sensor was also investigated in binary water-alcohol mixture and it concluded that 23% water-methanol and 20% water-ethanol content could not bring out any changes in its potential. The practical analytical utility of the electrode was demonstrated by measurement of Pb(II) in mineral rock and potentiometric titration of sulfate anion. PMID:19828247

  17. Containing arsenic-enriched groundwater tracing lead isotopic compositions of common arsenical pesticides in a coastal maine watershed containing arsenic-enriched ground water

    USGS Publications Warehouse

    Ayuso, R.A.; Foley, Nick K.; Robinson, G.R., Jr.; Colvin, A.S.; Lipfert, G.; Reeve, A.S.

    2006-01-01

    Arsenical pesticides and herbicides were extensively used on apple, blueberry, and potato crops in New England during the first half of the twentieth century. Lead arsenate was the most heavily used arsenical pesticide until it was officially banned. Lead arsenate, calcium arsenate, and sodium arsenate have similar Pb isotope compositions: 208Pb207Pb = 2.3839-2.4722, and 206Pb207Pb = 1.1035-1.2010. Other arsenical pesticides such as copper acetoarsenite (Paris green), methyl arsonic acid and methane arsonic acid, as well as arsanilic acid are widely variable in isotope composition. Although a complete understanding of the effects of historical use of arsenical pesticides is not available, initial studies indicate that arsenic and lead concentrations in stream sediments in New England are higher in agricultural areas that intensely used arsenical pesticides than in other areas. The Pb isotope compositions of pesticides partially overlap values of stream sediments from areas with the most extensive agricultural use. The lingering effects of arsenical pesticide use were tested in a detailed geochemical and isotopic study of soil profiles from a watershed containing arsenic-enriched ground water in coastal Maine. Acid-leach compositions of the soils represent lead adsorbed to mineral surfaces or held in soluble minerals (Fe- and Mn-hydroxides, carbonate, and some micaceous minerals), whereas residue compositions likely reflect bedrock compositions. The soil profiles contain labile Pb (acid-leach) showing a moderate range in206Pb 207Pb (1.1870-1.2069), and208Pb207Pb (2.4519-2.4876). Isotope values vary as a function of depth: the lowest Pb isotope ratios (e.g.,208Pb206Pb) representing labile lead are in the uppermost soil horizons. Lead contents decrease with depth in the soil profiles. Arsenic contents show no clear trend with depth. A multi-component mixing scheme that included lead from the local parent rock (Penobscot Formation), lead derived from combustion of fossil fuels, and possibly lead from other anthropogenic sources (e.g., pesticides), could account for Pb isotope variations in the soil profiles. In agricultural regions, our preliminary data show that the extensive use of arsenical pesticides and herbicides can be a significant anthropogenic source of arsenic and lead to stream sediments and soils.

  18. Transonic Free-Flight Investigation of the Longitudinal Aerodynamic Characteristics of a 1/10-Scale Steel-Wing Model of the Northrop MX-775A Missile with Leading-Edge Extensions, Inboard Trailing-Edge Flaps, and a Speed Brake on the Vertical Tail

    NASA Technical Reports Server (NTRS)

    Arbic, R. G.

    1955-01-01

    Results are presented of a free-flight investigation between Mach numbers of 0.7 to 1.3 and Reynolds numbers of 3.1 x 10(exp 6) to 7.0 x 10(exp 6) to determine the longitudinal aerodynamic characteristics of the Northrop MX-775A missile. This missile has a weng, body, and vertical tail, but has no horizontal tail. The basic wing plan form has an aspect ratio of 5.5, 45 deg of sweepback of the 0.406 streamwise chord line, and a taper ratio of 0.4. A 1/10-scale steel-wing model of the missile was flown with modifications to the basic wing plan form consisting of leading-edge chord-extensions deflected 7 deg downward together with the forward 15 percent of the wing chord, and inboard trailing-edge flaps deflected 5 deg downward. In addition, the model had a static-pressure tube mounted at the tip of the vertical tail for position-error measurements and had a speed brake also mounted on the vertical tail to trim the model to positive lift coefficients and to permit determination of the trim and drag effectiveness of the brake. The data are uncorrected for the effects of wing elasticity, but experimental wing influence coefficients are presented.

  19. Lead isotopic compositions of soil and near-surface till profiles from a watershed containing arsenic-enriched groundwater in coastal Maine

    USGS Publications Warehouse

    Ayuso, Robert; Foley, Nora; Wandless, Gregory; Dillingham, Jeremy; Colvin, Anna

    2005-01-01

    Lead isotope compositions of soils and near-surface tills from an area of coastal Maine known to have groundwater with anomalously high arsenic contents were measured in order to determine the source of the lead and, by inference, possible sources of arsenic. Five soil and till sites were selected for detailed chemical and isotopic analysis. To construct profiles of the soil and till horizons, five samples were collected at 10-cm intervals from the surface to the base of each horizon. Total lead and arsenic concentrations and lead isotopic compositions were measured for 48 leaches and bulk residues. The soils and tills are underlain by sulfidic schists of the Penobscot Formation. Several generations of minerals containing arsenic and lead exist in the regional bedrock, including rock-forming silicates (feldspar and micas), sulfide minerals formed during diagenesis (for example, arsenic-rich pyrite), and sulfide and oxide minerals that formed as a result of Silurian metamorphic and igneous events (for example, arsenopyrite, galena, iron-oxides, and arsenic-sulfides). A young group of secondary minerals (for example, iron-hydroxides, arsenic-hydroxides, lead-sulfate, and arsenic-jarosite) formed from recent weathering and pedogenic processes.

  20. CELL BIOLOGY: Smurfing at the Leading Edge

    NSDL National Science Digital Library

    Aron B. Jaffe (University College London; MRC Laboratory for Molecular Cell Biology and Cell Biology Unit)

    2003-12-05

    Access to the article is free, however registration and sign-in are required. Cell biologists are only now beginning to unravel how cells maintain their polarity and how this polarity contributes to cell migration. In their Perspective, Jaffe and Hall discuss new research (Wang et al.) describing how ubiquitination and degradation of Rho GTPase (which is an important regulator of the actin cytoskeleton) results in spatial restriction of Rho at the rear of the cell, an essential step in cellular migration.

  1. The Leading Edge: Enduring a Campus Crisis

    ERIC Educational Resources Information Center

    Moeser, James

    2003-01-01

    On June 2003, the University of North Carolina at Chapel Hill (UNC) faced a frightening crisis when an employee was diagnosed with Severe Acute Respiratory Syndrome (SARS). In this article, the author looks back and identifies four factors that enabled the university to navigate this crisis. These factors were: (1) leadership at every level; (2)…

  2. Leading Edge Metabolism and the Other Fat

    E-print Network

    Jenny, Andreas

    and vertebrates (Figure 1; Sharma and McNeill, 2013). Ft also regulates growth through the conserved Salvador-Warts-Hippo (SWH) pathway oftumor suppressorsbyinhibiting the transcription factor Yorki (the homolog of mammalian

  3. Leading Edge Regulatory RNAs in Bacteria

    E-print Network

    Storz, Gisela

    expression in cis, small RNAs that bind to proteins or base pair with target RNAs, and CRISPR RNAs, a recently discovered group of RNA regulators, known as the CRISPR (clustered regularly interspaced short palindromic repeats) RNAs, contains short regions of homology to bacteriophage and plasmid sequences. CRISPR

  4. Beyond Recipe: Leading Edges for Teaching Spelling.

    ERIC Educational Resources Information Center

    Garmston, Robert; Zimmerman, Diane

    A good spelling teacher teaches by "taste" rather than by "recipe": instead of strictly adhering to procedural outlines, good teachers alter their lessons according to students' needs. In addition, good teachers: (1) recognize the importance of visualization for spelling; (2) understand the two kinds of visualization--for memory, and for…

  5. The Leading Edge in is Management

    Microsoft Academic Search

    Paul Gray

    2000-01-01

    Jean Lipman-Blumen and Harold J. Leavitt, Hot Groups: Seeding Them, Feeding Them, and Using Them to Ignite Your Organization, New York: Oxford University Press (1999) 296 pp.Thomas H. Davenport, Mission Critical: Realizing the Promise of Enterprise Systems, Boston: Harvard Business School Press (2000) 336 pp.W.H. Inmon, Ken. Rudin, Christopher K. Buss, and Ryan Sousa, Data Warehouse Performance, New York: Wiley

  6. Leading Edge of Cybernics: Robot Suit HAL

    Microsoft Academic Search

    Yoshiyuki Sankai

    2006-01-01

    Robot Suit HAL (Hybrid Assistive Limb) is one of the realization\\/accomplishments of the Cybernoid Project. Cybernoids are the enhanced human-machine-information hybrid systems based on Cybernics technologies. Cybernics is a new academic research field which fused Information Technology (IT), cranial nerve science, behavioral science, robotics, system integration technology, physiology, psychology, MEMS-Technology, neuroscience, bio-system theory and so on, focusing on Cybernetics, Mechatronics,

  7. Leading Edge Innate Immunity Gone Awry

    E-print Network

    Nizet, Victor

    . When coupled with a failure of normal control mechanisms that limit leukocyte activation, a cascade framework and briefly review how alteration of innate immune response genes in murine models can provide, the most effec- tive defense response needs to be sufficiently lethal to rapidly kill invading pathogens

  8. Retrograde Flow and Myosin II Activity within the Leading Cell Edge Deliver F-Actin to the Lamella to Seed the Formation of Graded Polarity Actomyosin II Filament Bundles in Migrating Fibroblasts

    PubMed Central

    Anderson, Tom W.; Vaughan, Andrew N.

    2008-01-01

    In migrating fibroblasts actomyosin II bundles are graded polarity (GP) bundles, a distinct organization to stress fibers. GP bundles are important for powering cell migration, yet have an unknown mechanism of formation. Electron microscopy and the fate of photobleached marks show actin filaments undergoing retrograde flow in filopodia, and the lamellipodium are structurally and dynamically linked with stationary GP bundles within the lamella. An individual filopodium initially protrudes, but then becomes separated from the tip of the lamellipodium and seeds the formation of a new GP bundle within the lamella. In individual live cells expressing both GFP-myosin II and RFP-actin, myosin II puncta localize to the base of an individual filopodium an average 28 s before the filopodium seeds the formation of a new GP bundle. Associated myosin II is stationary with respect to the substratum in new GP bundles. Inhibition of myosin II motor activity in live cells blocks appearance of new GP bundles in the lamella, without inhibition of cell protrusion in the same timescale. We conclude retrograde F-actin flow and myosin II activity within the leading cell edge delivers F-actin to the lamella to seed the formation of new GP bundles. PMID:18799629

  9. Application of Polypyrrole Multi-Walled Carbon Nanotube Composite Layer for Detection of Mercury, Lead and Iron Ions Using Surface Plasmon Resonance Technique

    PubMed Central

    Sadrolhosseini, Amir Reza; Noor, A. S. M.; Bahrami, Afarin; Lim, H. N.; Talib, Zainal Abidin; Mahdi, Mohd. Adzir

    2014-01-01

    Polypyrrole multi-walled carbon nanotube composite layers were used to modify the gold layer to measure heavy metal ions using the surface plasmon resonance technique. The new sensor was fabricated to detect trace amounts of mercury (Hg), lead (Pb), and iron (Fe) ions. In the present research, the sensitivity of a polypyrrole multi-walled carbon nanotube composite layer and a polypyrrole layer were compared. The application of polypyrrole multi-walled carbon nanotubes enhanced the sensitivity and accuracy of the sensor for detecting ions in an aqueous solution due to the binding of mercury, lead, and iron ions to the sensing layer. The Hg ion bonded to the sensing layer more strongly than did the Pb and Fe ions. The limitation of the sensor was calculated to be about 0.1 ppm, which produced an angle shift in the region of 0.3° to 0.6°. PMID:24733263

  10. Lead isotope compositions of Late Cretaceous and early Tertiary igneous rocks and sulfide minerals in Arizona: Implications for the sources of plutons and metals in porphyry copper deposits

    USGS Publications Warehouse

    Bouse, R.M.; Ruiz, J.; Titley, S.R.; Tosdal, R.M.; Wooden, J.L.

    1999-01-01

    Porphyry copper deposits in Arizona are genetically associated with Late Cretaceous and early Tertiary igneous complexes that consist of older intermediate volcanic rocks and younger intermediate to felsic intrusions. The igneous complexes and their associated porphyry copper deposits were emplaced into an Early Proterozoic basement characterized by different rocks, geologic histories, and isotopic compositions. Lead isotope compositions of the Proterozoic basement rocks define, from northwest to southeast, the Mojave, central Arizona, and southeastern Arizona provinces. Porphyry copper deposits are present in each Pb isotope province. Lead isotope compositions of Late Cretaceous and early Tertiary plutons, together with those of sulfide minerals in porphyry copper deposits and of Proterozoic country rocks, place important constraints on genesis of the magmatic suites and the porphyry copper deposits themselves. The range of age-corrected Pb isotope compositions of plutons in 12 Late Cretaceous and early Tertiary igneous complexes is 206Pb/204Pb = 17.34 to 22.66, 207Pb/204Pb = 15.43 to 15.96, and 208Pb/204Pb = 37.19 to 40.33. These Pb isotope compositions and calculated model Th/U are similar to those of the Proterozoic rocks in which the plutons were emplaced, thereby indicating that Pb in the younger rocks and ore deposits was inherited from the basement rocks and their sources. No Pb isotope differences distinguish Late Cretaceous and early Tertiary igneous complexes that contain large economic porphyry copper deposits from less rich or smaller deposits that have not been considered economic for mining. Lead isotope compositions of Late Cretaceous and early Tertiary plutons and sulfide minerals from 30 metallic mineral districts, furthermore, require that the southeastern Arizona Pb province be divided into two subprovinces. The northern subprovince has generally lower 206Pb/204Pb and higher model Th/U, and the southern subprovince has higher 206Pb/204Pb and lower model Th/U. These Pb isotope differences are inferred to result from differences in their respective post-1.7 Ga magmatic histories. Throughout Arizona, Pb isotope compositions of Late Cretaceous and early Tertiary plutons and associated sulfide minerals are distinct from those of Jurassic plutons and also middle Tertiary igneous rocks and sulfide minerals. These differences most likely reflect changes in tectonic setting and magmatic sources. Within Late Cretaceous and early Tertiary igneous complexes that host economic porphyry copper deposits, there is commonly a decrease in Pb isotope composition from older to younger plutons. This decrease in Pb isotope values with time suggests an increasing involvement of crust with lower U/Pb than average crust in the source(s) of Late Cretaceous and early Tertiary magmas. Lead isotope compositions of the youngest porphyries in the igneous complexes are similar to those in most sulfide minerals within the associated porphyry copper deposit. This Pb isotope similarity argues for a genetic link between them. However, not all Pb in the sulfide minerals in porphyry copper deposits is magmatically derived. Some sulfide minerals, particularly those that are late stage, or distal to the main orebody, or in Proterozoic or Paleozoic rocks, have elevated Pb isotope compositions displaced toward the gross average Pb isotope composition of the local country rocks. The more radiogenic isotopic compositions argue for a contribution of Pb from those rocks at the site of ore deposition. Combining the Pb isotope data with available geochemical, isotopic, and petrologic data suggests derivation of the young porphyry copper-related plutons, most of their Pb, and other metals from a hybridized lower continental crustal source. Because of the likely involvement of subduction-related mantle-derived basaltic magma in the hybridized lower crustal source, an indiscernible mantle contribution is probable in the porphyry magmas. Clearly, in addition

  11. Superhybrid composite blade impact studies

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sinclair, J. H.

    1980-01-01

    The feasibility of superhybrid composite blades for meeting the mechanical design and impact resistance requirements of large fan blades for aircraft turbine engine applications was investigated. Two design concepts were evaluated: leading edge spar (TiCom) and center spar (TiCore), both with superhybrid composite shells. The investigation was both analytical and experimental. The results obtained show promise that superhybrid composites can be used to make light weight, high quality, large fan blades with good structural integrity. The blades tested successfully demonstrated their ability to meet steady state operating conditions, overspeed, and small bird impact requirements.

  12. A rare earth L 3-edge EXAFS and L 1-edge XANES study of Ce, Nd and Eu phosphate glasses and crystals in the composition range from metaphosphate to ultraphosphate

    Microsoft Academic Search

    G. Mountjoy; J. M. Cole; T. Brennan; R. J. Newport; G. A. Saunders; G. W. Wallidge

    2001-01-01

    Rare earth (R) phosphate glasses, (R2O3)x(P2O5)1?x, can be prepared with compositions in the range from ultraphosphate, x=0.17 (RP5O14), to metaphosphate, x=0.25 (RP3O9), and it is important to know whether the R–O coordination changes significantly with composition. In rare earth phosphate crystals, the number of nearest neighbour oxygens changes from eight for ultraphosphate to six for metaphosphate. These R–O correlations are

  13. Different short-term mild exercise modalities lead to differential effects on body composition in healthy prepubertal male rats.

    PubMed

    Sontam, D M; Vickers, M H; O'Sullivan, J M; Watson, M; Firth, E C

    2015-01-01

    Physical activity has a vital role in regulating and improving bone strength. Responsiveness of bone mass to exercise is age dependent with the prepubertal period suggested to be the most effective stage for interventions. There is a paucity of data on the effects of exercise on bone architecture and body composition when studied within the prepubertal period. We examined the effect of two forms of low-impact exercise on prepubertal changes in body composition and bone architecture. Weanling male rats were assigned to control (CON), bipedal stance (BPS), or wheel exercise (WEX) groups for 15 days until the onset of puberty. Distance travelled via WEX was recorded, food intake measured, and body composition quantified. Trabecular and cortical microarchitecture of the femur were determined by microcomputed tomography. WEX led to a higher lean mass and reduced fat mass compared to CON. WEX animals had greater femoral cortical cross-sectional thickness and closed porosity compared to CON. The different exercise modalities had no effect on body weight or food intake, but WEX significantly altered body composition and femoral microarchitecture. These data suggest that short-term mild voluntary exercise in normal prepubertal rats can alter body composition dependent upon the exercise modality. PMID:25695074

  14. Isotopic composition of common leads and continuous differentiation of the crust of the earth from the mantle

    Microsoft Academic Search

    Royal R. Marshall

    1957-01-01

    U 233 \\/Pb 204 and Th 232 \\/U 238 ratios have been calculated from nonanomalous common leads. These values that would be present today in the reservoirs which produced the ores vary systematically with the \\

  15. Discovery's Edge

    NSDL National Science Digital Library

    The Mayo Clinic is one of the most well-respected medical facilities in the world, so it makes sense for them to have a great online publication to celebrate their work. Designed as a general interest publication, Discovery's Edge offers "insight into the process and progress of medical science in support of the world's largest group medical practice." Visitors can explore the user-friendly site by clicking through recent stories such as, "Putting the hurt on tobacco addiction" and "Genomics: The dawn of a new medical era.� In the Features Archive users can browse through some recent triumphs, including reports on asthma triggers and the future of biomechanics. Visitors can also browse the complete online archive or sign up to receive each new edition via email or RSS feed.

  16. Propagating edge-flame response to multiple stoichiometry gradients

    SciTech Connect

    Kostka, Stanislav Jr.; Carnell, William F. Jr.; Renfro, Michael W. [Department of Mechanical Engineering, 191 Auditorium Rd, U-3139, University of Connecticut, Storrs, CT 06269 (United States)

    2008-07-15

    A five-slot contoured nozzle burner was used to create multiple lifted partially premixed flames in close proximity. The burner permits the stoichiometry gradient below each edge flame and the separation distance between stabilization points of the flames to be separately controlled. In previous work, we showed that edge-flame interactions lead to a bifurcation in the flame stabilization, where the liftoff height of neighboring edge flames differs even in symmetric flow fields. As the composition gradient below each flame is decreased, the edge flames broaden. Flow around the edge flames leads to an aerodynamic interaction, where upstream conditions below one flame are modified by the neighboring flame. These interactions cause a liftoff height difference between the two flames. Further reduction of stoichiometry gradient causes the neighboring flames to merge and approach the structure of a single premixed flame. In this work, the equivalence ratio gradient and separation distance between stoichiometric points were varied by controlling the burner slot equivalence ratios, so that these interactions could be studied in greater detail. Rayleigh scattering was used to measure flame curvature and calculate local stoichiometry gradients below each flame stabilization point. Planar laser-induced fluorescence signals of hydroxyl and formaldehyde were measured to provide qualitative comparisons of relative reaction rates between flames. Neighboring edge flames were found to behave based solely on local conditions below each flame. Only aerodynamic interactions were observed and no chemical or thermal interactions, caused by heat or radical transport between flames, were observed. The bifurcated flame response can be described simply from the effects that flow around the flame structure has on local velocities and scalar dissipation rates. (author)

  17. Lead isotope compositions as guides to early gold mineralization: the North Amethyst vein system, Creede district, Colorado

    USGS Publications Warehouse

    Foley, Nick K.; Ayuso, R.A.

    1994-01-01

    The North Amethyst vein system, which is hosted by ~27 Ma Carpenter Ridge Tuff and ~26 Ma Nelson Mountain Tuff, has two mineral associations separated by brecciation and sedimentation in the veins. The early association consists of quartz, rhodonite, hematite, magnetite, electrum, Mn carbonate, Au-Ag sulfide, Ag sulfosalt, and base metal sulfide minerals. The later mineral association cuts the Mn- and Au-bearing assemblages and consists of quartz, calcite, sericite, chlorite, hematite, adularia, fluorite, base metal sulfides, and Ag-bearing tetrahedrite. Detailed studies of the Pb isotope compositions of minerals of the vein system are described. Paragenetically early sulfide-rich vein assemblages have the least radiogenic galenas and generally also have the highest Au contents. Thus, identification of paragenetically early vein assemblages with relatively unradiogenic Pb isotope compositions similar to those of the North Amethyst area provides an additional exploration tool for Au in the central San Juan Mountains area. -from Authors

  18. Bi0.5Na0.5TiO3:ZnO lead-free piezoelectric composites with deferred thermal depolarization

    NASA Astrophysics Data System (ADS)

    Zhang, Ji; Pan, Zhao; Nie, Peng-Xiao; Cui, Yu-Shuang; Yang, Bin; Chen, Jun; Zhang, Shan-Tao

    2015-06-01

    Bi0.5Na0.5TiO3 (BNT) is among the most promising lead-free piezoelectric candidates. However, depolarization of BNT is a longstanding obstacle for practical applications. Here, we report that piezoelectric composites of Bi0.5Na0.5TiO3:xZnO (BNT:xZnO, where x is the mole ratio of ZnO to BNT) have deferred thermal depolarization. With increasing x from 0 to 0.4, the observed depolarization temperature (Td) tends to be deferred near x = 0.3, as confirmed by temperature dependent dielectric, ferroelectric, and piezoelectric measurements. As the result, the piezoelectric properties of the composites can be well maintained even after the poled composites are annealed at 125 °C. It is proposed that the charges stemming from ZnO can be orderly distributed to form a local field, which can keep the poling state of BNT, thus suppress the depolarization, even after the external poling filed is removed. These results may pave the way for applications of BNT-based piezoceramics and significantly improve our understanding of the depolarization mechanism by optimizing the performance of lead-free piezoelectrics.

  19. Microstructure and mechanical properties of Lead-free Sn–Cu solder composites prepared by rapid directional solidification

    Microsoft Academic Search

    Jun Shen; Yongchang Liu; Yajing Han; Houxiu Gao

    2007-01-01

    In wave soldering Sn-Cu alloy was recommended as a promising substitute of traditional Sn–Pb alloy. Here a rapid directional\\u000a solidification process was firstly adopted to prepare directionally-solidified hypereutectic Sn–Cu composites. The corresponding\\u000a microstructure exhibits regular lamellar structures with alterative Sn-rich phase and intermetallic compounds. The large kinetic\\u000a undercooling arising from the rapid solidification condition is the inherent mechanism to obtain

  20. Fractional and group composition of zinc and lead compounds as an indicator of the environmental status of soils

    NASA Astrophysics Data System (ADS)

    Mandzhieva, S. S.; Minkina, T. M.; Motuzova, G. V.; Golovatyi, S. E.; Miroshnichenko, N. N.; Lukashenko, N. K.; Fateev, A. I.

    2014-05-01

    An ordinary chernozem artificially contaminated with Zn and Pb salts and reclaimed by the addition of chalk and glauconite under pot experimental conditions has been analyzed. The fractional and group composition of the metal compounds in the soil extracts have been determined according to an original combined fractionation procedure. Coefficients characterizing the changes in the environmental status of the metals under the reclamation conditions have been proposed for describing the formation tendencies of the metal composition in the soils. These are the mobility coefficients (MCs) of the heavy metals (HMs) in the soils and the stability coefficients (SCs) of the soils for the HMs. They are calculated from the analysis of the fractional and group composition of the metal compounds. The MC characterizes the environmental vulnerability of soils to the impact of HMs; the SC characterizes the environmental sustainability of soils concerning the contamination with HMs. The obtained experimental data characterize the behavior features of Zn and Pb in the studied soils. An increase in the environmental hazard has been revealed at the contamination of soils with HMs, as well as its decrease at the application of the tested ameliorants. The participation of both strongly and loosely fixed HM fractions in the development of the HM mobility in the soils and the sustainability of the soils to their impact has been shown.

  1. Lead in Three Peat Bog Profiles, Jura Mountains, Switzerland: Enrichment Factors, Isotopic Composition, and Chronology of Atmospheric Deposition

    Microsoft Academic Search

    W. Shotyk; A. K. Cheburkin; P. G. Appleby; A. Fankhauser; J. D. Kramers

    1997-01-01

    One metre cores were taken from three peat bogs in the Jura Mountains of Switzerland: Etang de la Gruère (EGr), La Tourbière des Genevez (TGe), and Praz Rodet (PRd). Dried peat samples were analyzed for lead (Pb) using the EMMA XRF and scandium (Sc) using INAA. Enrichment factors (EF) were calculated by normalizing to the background Pb\\/Sc ratio at EGr.

  2. Pervasive impact of large-scale edge effects on a beetle community

    PubMed Central

    Ewers, Robert M.; Didham, Raphael K.

    2008-01-01

    Habitat edges are a ubiquitous feature of modern fragmented landscapes, but a tendency for researchers to restrict sampling designs to relatively small spatial scales means that edge effects are known to influence faunal communities over small spatial scales of only 20–250 m. However, we found striking changes in the abundance and community composition of 769 New Zealand beetle species (?26,000 individuals) across very long edge gradients. We show that almost 90% of species respond significantly to habitat edges and that the abundances of 20% of common species were affected by edges at scales >250 m. Moreover, as many as one in eight common species had edge effects that appeared to penetrate as far as 1 km into habitat patches. Even 1 km inside forest, beetle communities differed in species richness, ?-diversity (spatial turnover), and composition from the deep forest interior. Spatially explicit models of fragmented landscapes have shown that such large-scale edge effects can lead to an 80% reduction in the population size of interior forest species in even very large fragments. Moreover, such large-scale edge effects can drive species that inhabit central habitat core—which are among the most threatened species in fragmented landscapes—to local extinction from habitat fragments and protected areas. In a global analysis of protected areas, we show that kilometer-scale edge effects may compromise the ability of more than three-quarters of the world's forested reserves to conserve the community biostructures that are unique to forest interiors. PMID:18375751

  3. Composition.

    ERIC Educational Resources Information Center

    Nemanich, Donald, Ed.

    1974-01-01

    The articles in this special issue of the "Illinois English Bulletin" concern the state of composition instruction at the secondary and college levels. The titles and authors are "Monologues or Dialogues? A Plea for Literacy" by Dr. Alfred J. Lindsey, "Teaching Composition: Curiouser and Curiouser" by Denny Brandon, and "Teaching Writing to High…

  4. Enhanced Photovoltaic Response in Lead Lanthanum Zirconate-Titanate Ceramics with A-Site Deficient Composition for Photostrictor Application

    Microsoft Academic Search

    Kazuhiro Nonaka; Morito Akiyama; Chao-Nan Xu; Tsuyoshi Hagio; Masahiro Komatsu; Akira Takase

    2000-01-01

    Samples of (Pb0.97, La0.03)(Zr0.52, Ti0.48)1-0.03\\/4O3 (PLZT) ceramics with and without an A-site deficient composition of 1 mol% in ABO3 perovskite structures have been prepared by sintering at 1200°C for 2 h to investigate the photovoltaic response upon UV illumination, as well as the ferroelectric and piezoelectric parameters such as the polarization-electric field (P-E) hysteresis curve, strain constant, and dielectric constant.

  5. The isotopic composition of evaporating waters - review of the historical evolution leading up to the Craig-Gordon model.

    PubMed

    Gat, Joel R

    2008-03-01

    Attempts to explain the variations in the abundance of heavy isotopic species of water throughout the hydrologic cycle solely by means of the classical equilibrium-fractionation processes could not be reconciled with measured abundances of the isotopic species in residues of "evaporation systems". Focusing on the evaporation of surface waters, the paper follows the evolution of the concepts during the 1950-ties and early 1960-ties leading up to the formulation of the Craig-Gordan Evaporation Model in 1965. PMID:18320424

  6. Surface analyses of composites exposed to the space environment on LDEF

    NASA Technical Reports Server (NTRS)

    Mallon, Joseph J.; Uht, Joseph C.; Hemminger, Carol S.

    1993-01-01

    A series of surface analyses on carbon fiber/poly(arylacetylene) (PAA) matrix composites that were exposed to the space environment on the Long Duration Exposure Facility (LDEF) satellite were conducted. These composite panels were arranged in pairs on both the leading edge and trailing edge of LDEF. None of the composites were catastrophically damaged by nearly six years of exposure to the space environment. Composites on the leading edge exhibited from 25 to 125 microns of surface erosion, but trailing edge panels exhibited no physical appearance changes due to exposure. Scanning electron microscopy (SEM) was used to show that the erosion morphology on the leading edge samples was dominated by crevasses parallel to the fibers with triangular cross sections 10 to 100 microns in depth. The edges of the crevasses were well defined and penetrated through both matrix and fiber. The data suggest that the carbon fibers are playing an important role in crevasse initiation and/or enlargement, and in the overall erosion rate of the composite. X-ray photoelectron spectroscopy (XPS) and energy dispersive x-ray spectroscopy (EDS) results showed contamination from in-flight sources of silicone.

  7. Changes in the lead isotopic composition of blood, diet and air in Australia over a decade: Globalization and implications for future isotopic studies

    SciTech Connect

    Gulson, Brian [Graduate School of Environment, Macquarie University, Sydney, NSW 2109 (Australia) and CSIRO Exploration and Mining, North Ryde, Sydney, NSW 1609 (Australia)]. E-mail: bgulson@gse.mq.edu.au; Mizon, Karen [Graduate School of Environment, Macquarie University, Sydney, NSW 2109 (Australia); Korsch, Michael [CSIRO Exploration and Mining, North Ryde, Sydney, NSW 1609 (Australia); Taylor, Alan [Department of Psychology, Macquarie University, Sydney, NSW 2109 (Australia)

    2006-01-15

    Source apportionment in biological or environmental samples using the lead isotope method, where there are diverse sources of lead, relies on a significant difference between the isotopic composition in the target media and the sources. Because of the unique isotopic composition of Australian lead, source apportionment has been relatively successful in the past. Over the period of a decade, the {sup 206}Pb/{sup 204}Pb ratio for Australian (mainly female) adults has shown an increase from a geometric mean of 16.8-17.3. Associated with this increase, there has been a decrease in mean blood lead concentration from 4.7 to 2.3 {mu}g/dL, or about 5% per year, similar to that observed in other countries. Lead in air, which up until 2000 was derived largely from the continued use of leaded gasoline, showed an overall increase in the {sup 206}Pb/{sup 204}Pb ratio during 1993-2000 from 16.5 to 17.2. Since 1998 the levels of lead in air were less than 0.2 {mu}g/m{sup 3} and would contribute negligibly to blood lead. Over the 10-year period, the {sup 206}Pb/{sup 204}Pb ratio in diet, based mainly on quarterly 6-day duplicate diets, increased from 16.9 to 18.3. The lead concentration in diet showed a small decrease from 8.7 to 6.4 {mu}g Pb/kg although the daily intake increased markedly from 7.4 to 13.9 {mu}g Pb/day during the latter part of the decade probably reflecting differences in demographics. The changes in blood lead from sources such as lead in bone or soil or dust is not dominant because of the low {sup 206}Pb/{sup 204}Pb ratios in these media. Unless there are other sources not identified and analysed for these adults, it would appear that in spite of our earlier conclusions to the contrary, diet does make an overall contribution to blood lead, and this is certainly the case for specific individuals. Certain population groups from south Asia, south-east Asia, the Middle East and Europe (e.g. UK) are unsuitable for some studies as their isotopic ratios in blood are converging towards the increasing Australian values. The increases in blood {sup 206}Pb/{sup 204}Pb ratio combined with globalization, which has resulted in the increases in {sup 206}Pb/{sup 204}Pb ratio for diet, means that isotopic studies undertaken with a high degree of certainty of outcomes over a decade ago, are now considerably more difficult, not only in Australia but also in other countries where the isotopic differences are even less than in Australia.

  8. Sensor Lead Wires Positioned on SiC-based Monolithic Ceramic and Fiber- reinforced Ceramic Matrix Composite Subcomponents with Flat and Curved Surfaces

    NASA Technical Reports Server (NTRS)

    Kiser, James D.; Singh, Mrityunjay; Lei, Jih-Fen; Martin, Lisa C.

    1999-01-01

    There is strong interest in the development of silicon carbide-based monolithic ceramic and composite materials and components for demanding, high-temperature applications. Thorough characterization of material properties, including high-temperature testing under simulated or actual operating conditions, is a high priority for programs involved in developing these silicon carbide- (SiC) based materials and components. Members of the Sensors and Electronics Technology Branch at the NASA Lewis Research Center are developing minimally intrusive methods of measuring the properties (such as the surface temperature, strain, and heat flux characteristics) of components and subelements that are being tested or operated in hostile, high-temperature environments. Their primary goal is to instrument the test article or operating component with durable sensors that have a minimal effect on test conditions such as the gas flow across the surface of the item and the material response (including the through-thickness conduction of heat). Therefore, the main thrust of their work has been the development of thin-film sensors (e.g., thermocouples or strain gauges) for use on various advanced material test articles, including SiC/SiC composite components. There was a need for a better method of securing sensor lead wires on SiC-based components and subelements that would be tested at temperatures to 1000 C (or higher), to enhance the durability of the overall minimally intrusive sensor system. To address this need, Lewis researchers devised an alternative approach for positioning the sensor lead wires (which are connected to the thin-film sensors) on SiC or SiC/SiC components. A reaction-forming method of joining was used to strongly bond hoop-shaped monolithic SiC and SiC/SiC composite attachments of various sizes to both flat and curved surfaces of SiC/SiC composite subelements (see the photos). This approach is based on an affordable, robust ceramic joining technology, named ARCJoinT, which was developed at Lewis for the joining of SiC-based ceramics and fiber-reinforced composites.

  9. Teaching and Learning at the Leading Edge: Leading Edge Practitioners in Community Pharmacy.

    ERIC Educational Resources Information Center

    Tann, Jennifer; Blenkinsopp, Alison; Platts, Adrian

    2001-01-01

    Focuses on pharmacists in Great Britain who have been identified as demonstrating more effective practices than others. Provides empirical evidence for the levels of organized teaching identified by French and Bazalgette. (Contains 25 references.) (DDR)

  10. Lead Isotope Compositions of Acid Residues from Olivine-Phyric Shergottite Tissint: Implications for Heterogeneous Shergottite Source Reservoirs

    NASA Technical Reports Server (NTRS)

    Moriwaki, R.; Usui, T.; Yokoyama, T.; Simon, J. I.; Jones, J. H.

    2015-01-01

    Geochemical studies of shergottites suggest that their parental magmas reflect mixtures between at least two distinct geochemical source reservoirs, producing correlations between radiogenic isotope compositions and trace element abundances. These correlations have been interpreted as indicating the presence of a reduced, incompatible element- depleted reservoir and an oxidized, incompatible- element-enriched reservoir. The former is clearly a depleted mantle source, but there is ongoing debate regarding the origin of the enriched reservoir. Two contrasting models have been proposed regarding the location and mixing process of the two geochemical source reservoirs: (1) assimilation of oxidized crust by mantle derived, reduced magmas, or (2) mixing of two distinct mantle reservoirs during melting. The former requires the ancient Martian crust to be the enriched source (crustal assimilation), whereas the latter requires isolation of a long-lived enriched mantle domain that probably originated from residual melts formed during solidification of a magma ocean (heterogeneous mantle model). This study conducts Pb isotope and trace element concentration analyses of sequential acid-leaching fractions (leachates and the final residues) from the geochemically depleted olivine-phyric shergottite Tissint. The results suggest that the Tissint magma is not isotopically uniform and sampled at least two geochemical source reservoirs, implying that either crustal assimilation or magma mixing would have played a role in the Tissint petrogenesis.

  11. Semiconductor/relaxor 0-3 type composites without thermal depolarization in Bi?.?Na?.?TiO?-based lead-free piezoceramics.

    PubMed

    Zhang, Ji; Pan, Zhao; Guo, Fei-Fei; Liu, Wen-Chao; Ning, Huanpo; Chen, Y B; Lu, Ming-Hui; Yang, Bin; Chen, Jun; Zhang, Shan-Tao; Xing, Xianran; Rödel, Jürgen; Cao, Wenwu; Chen, Yan-Feng

    2015-01-01

    Commercial lead-based piezoelectric materials raised worldwide environmental concerns in the past decade. Bi?.?Na?.?TiO?-based solid solution is among the most promising lead-free piezoelectric candidates; however, depolarization of these solid solutions is a longstanding obstacle for their practical applications. Here we use a strategy to defer the thermal depolarization, even render depolarization-free Bi?.?Na?.?TiO?-based 0-3-type composites. This is achieved by introducing semiconducting ZnO particles into the relaxor ferroelectric 0.94Bi?.?Na?.?TiO?-0.06BaTiO? matrix. The depolarization temperature increases with increasing ZnO concentration until depolarization disappears at 30 mol% ZnO. The semiconducting nature of ZnO provides charges to partially compensate the ferroelectric depolarization field. These results not only pave the way for applications of Bi?.?Na?.?TiO?-based piezoceramics, but also have great impact on the understanding of the mechanism of depolarization so as to provide a new design to optimize the performance of lead-free piezoelectrics. PMID:25790446

  12. A study on the thermal and moisture influences on the free-edge delamination of laminated composites. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Mahler, Mary A.

    1988-01-01

    A simple delamination analysis method is presented here. It is based on a shear-type deformation theory and includes hygrothermal effects. These environmental conditions are applied to the strain energy release rate and interlaminar shear stresses. The method is applied to mixed mode edge delamination specimens made of T300/5208 graphite/epoxy material. Residual thermal and moisture stresses significantly influenced the strain energy release rate and interlaminar stresses. Both experienced large increases when thermal conditions were added to the mechanical strains. These effects were alleviated when moisture stresses were included. Thermal effects on the interlaminar shear stress and total energy release rate were totally alleviated for the same specific moisture content. Moreover, the value of the moisture content was not significantly affected by the stacking sequence for the laminates considered.

  13. Environmental effects on FOD resistance of composite fan blade

    NASA Technical Reports Server (NTRS)

    Murphy, G. C.; Selemme, C. T.

    1981-01-01

    The sensitivity of the impact characteristics of typical polymeric composite fan blade materials to potential limiting combinations of moisture, temperature level and temperature transients was established. The following four technical tasks are reported: (1) evaluation and characterization of constituent blade materials; (2) ballistic impact tests; (3) leading edge impact protection systems; and (4) simulated blade spin impact tests.

  14. Results from analysis of Boeing composite specimens flown on LDEF experiment M0003

    NASA Technical Reports Server (NTRS)

    Hill, Sylvester G.; George, Pete; Crutcher, E. Russ; Dursch, Harry; Pippin, H. Gary

    1991-01-01

    Specimens of three selected organic/graphite fiber composite materials were flown on both the leading and trailing edges of LDEF. Additional sets of compression, tension, flexure, and lap shear specimens were flown on the trailing edge. A large T300/934 panel was flown on the leading edge. One quarter of this specimen was directly exposed to a near ram environment; each of the other three quarters were covered with a different thermal control paint. Results of mechanical, optical, and chemical analysis of the specimens are presented. Recession rates of the fiber and resin under atomic oxygen exposure were estimated and are reported.

  15. Edge effects and delamination failures

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.

    1989-01-01

    The fundamental relationship between the morphology of a composite laminate and the resulting free edge effects is explored and related to delamination failures. Cross-ply, angle-ply, and quasi-isotropic laminates are discussed in detail. It is shown that the local mismatch in elastic properties of adjacent layers and the global stacking sequence of a laminate both have a significant influence on the interlaminar stresses and delamination failures.

  16. Steamflood production mechanism in an edge pattern Duri field, Indonesia

    E-print Network

    Yuwono, Ipung Punto

    1999-01-01

    Steamflood Simulation Grid Orientation Horizontal Well in Steamflood EOR Water Coning 2 4 5 5 8 14 15 MODEL BUILDING 17 Pattern Selection Model Layering and Gridding Compositional or Non-compositional? Rock and Fluid Properties History... between edge and fifth row producers 4. Steam oil ratio comparison between edge and non-edge pattern 5. Flow in diagonal and parallel grid system in five-spot pattern 6. Graphical representation of the five-point and nine-point finite difference...

  17. Coulomb edge effects in graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Jaskolski, W.; Ayuela, A.

    2014-10-01

    Coulomb effects in graphene nanoribbons with arbitrary edges are investigated with the use of a mean-field Hubbard model. It was recently shown that chiral ribbons with minimal edges, characterized by the translation vector (n,m), have a similar structure of bands localized around the Fermi energy as pure zigzag ribbons (n-m,0). Here we show that these flat bands in both ribbon cases differ in detail due to the perturbation induced by armchair edge nodes. For chiral ribbons the edge bands split at the zone boundary, where the corresponding bands of (n-m,0) zigzag ribbons are degenerate. Coulomb interactions enhance strongly this splitting and at the same time they bring spin into play. We modify each edge keeping global sublattice balance to find that spin degeneracy can be partially lifted. The breaking of spin-degeneracy depends on the asymmetry between the edges and in some cases leads to spin-polarized currents.

  18. NbN edge junction fabrication

    SciTech Connect

    Meng, X.F.; Amos, R.S.; Lichtenbenger, A.W.; Mattauch, R.J.; Feldman, M.J.

    1989-03-01

    In order to fabricate NbN edge junctions with low parasitic capacitance, an insulator with low dielectric constant, such as SiO/sub 2/, must isolate the base and counterelectrode except on the edge. The authors use reactive ion etching to cut an edge in SiO/sub 2//NbN bilayer films. For this process it is necessary that SiO/sub 2/ be etched more rapidly than NbN to form a suitably sloped edge profile. They have investigated the influence of etching gas composition and other parameters on etching rates and edge profiles, using: (1) CF/sub 4/, (2) CF/sub 4//O/sub 2/, (3) CF/sub 4//CH/sub 4/, (4) CF/sub 4//CHF/sub 3/, and (5) CHF/sub 3/. It was found that CF/sub 4/ and CF/sub 4//O/sub 2/ plasma etching generally yields poor, undercut edge profiles. However, they succeeded in obtaining satisfactory edge profiles using the other three gas combinations. The edge angle can be controlled by changing the proportions of the gasses. Using the process, they have successfully fabricated NbN/oxide/PbBi edge junctions with < 1 ..mu..m/sup 2/ area by standard optical photolithography.

  19. Results from analysis of Boeing composite specimens flown on LDEF experiment M0003

    NASA Technical Reports Server (NTRS)

    George, Pete E.; Hill, Sylvester G.

    1992-01-01

    Specimens of three organic matrix/graphite fiber reinforced composites were flown at both the leading and trailing edge locations on the Long Duration Exposure Facility (LDEF). Selected specimens flown at the trailing edge position were held under tension, compression, and flexure loads for the duration of the flight. Also, two epoxy adhesives with composite and metallic adherends were flown at the trailing edge position. These specimens experienced 5.8 years of exposure to the low earth orbit (LEO) environment where they were subjected to atomic oxygen (AO), thermal cycling, ultraviolet (UV) light, and particulate radiation. Post flight mechanical, chemical, optical, and physical tests were performed and the results were compared to preflight and published values. AO erosion of the leading edge specimens resulted in a significant reduction of mechanical properties and a change in optical properties. Chemical changes occurred only on the surface.

  20. Composites

    NASA Astrophysics Data System (ADS)

    Chmielewski, M.; Nosewicz, S.; Pietrzak, K.; Rojek, J.; Strojny-N?dza, A.; Mackiewicz, S.; Dutkiewicz, J.

    2014-11-01

    It is commonly known that the properties of sintered materials are strongly related to technological conditions of the densification process. This paper shows the sintering behavior of a NiAl-Al2O3 composite, and its individual components sintered separately. Each kind of material was processed via the powder metallurgy route (hot pressing). The progress of sintering at different stages of the process was tested. Changes in the microstructure were examined using scanning and transmission electron microscopy. Metal-ceramics interface was clean and no additional phases were detected. Correlation between the microstructure, density, and mechanical properties of the sintered materials was analyzed. The values of elastic constants of NiAl/Al2O3 were close to intermetallic ones due to the volume content of the NiAl phase particularly at low densities, where small alumina particles had no impact on the composite's stiffness. The influence of the external pressure of 30 MPa seemed crucial for obtaining satisfactory stiffness for three kinds of the studied materials which were characterized by a high dense microstructure with a low number of isolated spherical pores.

  1. A low cost composite blade for a 300 foot diameter wind turbine

    Microsoft Academic Search

    M. L. White; W. D. Weigel

    1979-01-01

    A prototype composite blade for a 300 foot diameter horizontal axis wind turbine has been designed, fabricated and successfully subjected to structural and natural frequency tests. The blade consists of a filament wound E-glass\\/epoxy leading edge spar, an E-glass\\/polyester trailing edge spline fabricated from pultrusions, sandwich panels constructed of phenolic resin impregnated kraft paper honeycomb faced with glass cloth\\/epoxy, and

  2. LEADING WITH LEADING INDICATORS

    Microsoft Academic Search

    2005-01-01

    This paper documents Fluor Hanford's use of Leading Indicators, management leadership, and statistical methodology in order to improve safe performance of work. By applying these methods, Fluor Hanford achieved a significant reduction in injury rates in 2003 and 2004, and the improvement continues today. The integration of data, leadership, and teamwork pays off with improved safety performance and credibility with

  3. Where Will LEAD Lead?

    ERIC Educational Resources Information Center

    Wildman, Louis

    After setting forth eight assumptions concerning the education of educational administrators, findings about the Leadership in Educational Administration Development (LEAD) program are discussed. The analysis is based on the first-year applications, telephone conversations with staff at a majority of the project sites, and additional material…

  4. Lead isotopic compositions of the Western Dharwar craton, southern India: Evidence for distinct Middle Archean terranes in a Late Archean craton

    NASA Astrophysics Data System (ADS)

    Meen, James K.; Rogers, John J. W.; Fullagar, Paul D.

    1992-06-01

    Lead and Sr isotopic compositions of whole rocks and feldspar separates from several fielddefined suites of rocks from the Western Dharwar craton of southern India elucidate a complex history of the area. The evolution of the craton earlier than ?3.0 Ga is difficult to determine because of thermal and metasomatic overprinting at ?3.0 Ga. Many whole rocks were completely reset then, but feldspar separates preserve some of the earlier history. Apparently, a series of terranes evolved from the mantle over the period > 3.4 to ?3.0 Ga to form the Western Dharwar craton. In each case, metamorphism and anatexis of older terranes accompanied extraction of juvenile material from the mantle. The oldest gneisses (?3.4 Ga) had radiogenic Pb and Sr isotopic compositions when they formed and were derived from older crustal protoliths that were plausibly accreted to the crust at, or even before, 3.8 Ga. The old gneisses were greatly depleted in Rb, probably at ?3.4 Ga when the protoliths of younger magmatic rocks may have separated from the mantle. Younger gneisses apparently formed from these mafic-intermediate protoliths in the age range of ?3.2 to ?3.0Ga. The ?3.0 Ga event in the central part of the craton was accompanied by intrusion of small diapiric trondhjemites, formed by melting of older crust, and penecontemporaneous metasomatism of country rocks by hydrous fluids carrying U and other lithophilic elements. The resultant deep crust was greatly depleted in heat-producing elements, and the craton has been inactive since ?3.0 Ga except for production of minor granites from depleted source regions at 2.5-2.6 Ga. The lack of activity at ?2.5 Ga contrasts strongly with extensive magmatism and metamorphism in surrounding areas that had not undergone depletion at ?3.0 Ga. Lower-crustal depletion also has caused present-day reduced heat flow to be very low.

  5. LEADING WITH LEADING INDICATORS

    SciTech Connect

    PREVETTE, S.S.

    2005-01-27

    This paper documents Fluor Hanford's use of Leading Indicators, management leadership, and statistical methodology in order to improve safe performance of work. By applying these methods, Fluor Hanford achieved a significant reduction in injury rates in 2003 and 2004, and the improvement continues today. The integration of data, leadership, and teamwork pays off with improved safety performance and credibility with the customer. The use of Statistical Process Control, Pareto Charts, and Systems Thinking and their effect on management decisions and employee involvement are discussed. Included are practical examples of choosing leading indicators. A statistically based color coded dashboard presentation system methodology is provided. These tools, management theories and methods, coupled with involved leadership and employee efforts, directly led to significant improvements in worker safety and health, and environmental protection and restoration at one of the nation's largest nuclear cleanup sites.

  6. Edge detection algorithm for SST images

    NASA Technical Reports Server (NTRS)

    Cayula, Jean-Francois; Cornillon, Peter

    1992-01-01

    An algorithm to detect fronts in satellite-derived sea surface temperature fields is presented. Although edge detection is the main focus, the problem of cloud detection is also addressed since unidentified clouds can lead to erroneous edge detection. The algorithm relies on a combination of methods and it operates at the picture, the window, and the local level. The resulting edge detection is not based on the absolute strength of the front, but on the relative strength depending on the context, thus, making the edge detection temperature-scale invariant. The performance of this algorithm is shown to be superior to that of simpler algorithms commonly used to locate edges in satellite-derived SST images. This evaluation was performed through a careful comparison between the location of the fronts obtained by applying the various methods to the SST images and the in situ measures of the Gulf Stream position.

  7. Effects of metals and sediment particle size on the species composition of the epifauna of Pinna bicolor near a lead smelter, Spencer Gulf, South Australia

    NASA Astrophysics Data System (ADS)

    Ward, Trevor J.; Young, Peter C.

    1984-01-01

    Pinna bicolor (Mollusca: Pelecypoda) were transplanted between four sites near a lead smelter. The species composition of their epifauna (sessile and mobile) was examined in relation to characteristics of both sediments and seston at the sites. Seventy-two taxa were distinguished in the epifaunal community. Substantial differences were found in the short-term sensitivity of some of the species to concentrations of Cd, Pb and Zn in sediments and to sediment particle size. The short-term sensitivity of many species to metals or sediment particle size explained their long-term distribution pattern. Twenty-three taxa were identified as significantly characterizing the faunal differences. Of these, eleven (four molluscs, four bryozoans, two barnacles and one ascidian) were affected by both sediment metal concentration and particle size, and eight (four molluscs, one bryozoan, one polychaete, one hydroid and one barnacle) were affected by metal contamination but not particle size. Of all fauna examined, the Bryozoa were the most metal-sensitive. Four species, Smittina raigii (Bryozoa), Galeolaria sp. 1 (Polychaeta), Epopella simplex (Cirripedia) and Monia ione (Pelecypoda) were identified by their short- and long-term sensitivity to metal contamination, and absence of sensitivity to sediment particle size, as suitable species for monitoring the effects of metal contamination on the epifauna. The implications of the results for toxicity-testing are discussed.

  8. Smoothed Two-Dimensional Edges for Laminar Flow

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Liu, C. H.; Martin, G. L.; Domack, C. S.; Obara, C. J.; Hassan, A.; Gunzburger, M. D.; Nicolaides, R. A.

    1986-01-01

    New concept allows passive method for installing flaps, slats, iceprotection equipment, and other leading-edge devices on natural-laminar-flow (NLF) wings without causing loss of laminar flow. Two-dimensional roughness elements in laminar boundary layers strategically shaped to increase critical (allowable) height of roughness. Facilitates installation of leading-edge devices by practical manufacturing methods.

  9. Two New Edge Detectors

    Microsoft Academic Search

    Charles J. Jacobus; Robert T. Chien

    1981-01-01

    This paper introduces two new edge detection algorithms. One uses multiple difference-based edge detectors. This scheme selects peak center by absolute maximum or center of mass techniques. The other algorithm is motivated by the observation that second-order enhancement improves human contour extraction, but generally confuses difference-based edge detectors. This algorithm translates intensity images into three state images (plus one, zero,

  10. Observation of magnetoelectric coupling and local piezoresponse in modified (Na0.5Bi0.5)TiO3-BaTiO3-CoFe2O4 lead-free composites.

    PubMed

    Ramana, E Venkata; Figueiras, F; Graça, M P F; Valente, M A

    2014-07-14

    Lead-free particulate multiferroic composites of [0.94(Na0.5Bi0.5)TiO3-0.06 BaTiO3]:(Co0.6Zn0.4)(Fe1.7Mn0.3)O4 were synthesized and magnetoelectric (ME) properties were studied. X-ray diffraction and microstructural studies indicated the formation of a two-phase composite system without any impurities. The shift of Raman modes corresponding to ferroelectric and ferrite phases was assigned to the induced strain amid the formation of a two-phase system, in relation to the fraction of each phase in the samples. A strong local piezoresponse and hysteresis loops observed for composites established the ferroelectric properties at a nanoscale. Magnetostriction measurements revealed values of ?11 = -10.4 and ?12 = 5.3 ppm and piezomagnetic coefficient d?11/dH = -0.0087 ppm Oe(-1) at 0.45 kOe for a composite with a ferrite concentration of 35 mol%. A maximum change of 18.5% in magnetization after electrical poling indicates a strong magnetoelectric response of the present composites followed by a direct ME coefficient of 8.2 mV cm(-1) Oe(-1). Our studies point to the fact that the present multiferroic composites having strong ME coupling are useful for lead-free electronic applications. PMID:24849499

  11. An improved perception-based no-reference objective image sharpness metric using iterative edge refinement

    Microsoft Academic Search

    Srenivas Varadarajan; Lina J. Karam

    2008-01-01

    The computation of existing sharpness\\/blurriness objective metrics involves measuring the spread of edge pixels in blurred images. However, in blurred images, many edges might go undetected causing the metrics to become inaccurate. In these scenarios, proper recovery of edge pixels can lead to a better correlation between the perceived sharpness and the sharpness metric. This paper presents an iterative edge

  12. Muzzle-loading weapons discharging spherical lead bullets: two case studies and experimental simulation using a skin-soap composite model.

    PubMed

    Große Perdekamp, Markus; Braunwarth, Roland; Kromeier, Jan; Nadjem, Hadi; Pollak, Stefan; Thierauf, Annette

    2013-07-01

    In current forensic practice, fatal injuries from black powder guns are rare events. In contact and close-range shots, the intensity of GSR deposition (soot, powder particles) is much greater than that in shots with smokeless powder ammunition. The same applies to any burning effects from the combustion gases. Besides, a wad of felt interposed between the propellant and the lead bullet may enter the wound channel. Apart from these findings seen in close-range shots, another characteristic feature results from the mostly spherical shape of the missiles causing maximum tissue damage at the entrance site. Two fatal injuries inflicted with muzzle-loading weapons are reported. In the first case, suicide was committed with a cal. 11.6 mm miniature cannon by firing a contact shot to the back of the neck. In test shots using black powder (1 and 2 g) as propellant, the mean bullet velocity measured 1 m away from the weapon was 87.11 and 146.85 m/s, respectively, corresponding to a kinetic energy of 32.49 and 92.95 J, respectively. Contact test shots to composite models consisting of ballistic soap covered by pig skin at the entrance site were evaluated by CT and revealed cone-like cavitations along the bullet path as known from spherical missiles and penetration depths up to 25 cm. The second case presented deals with a homicidal close-range shot discharged from a muzzle-loading percussion pistol cal. .44. The skin around the entrance site (root of the nose) was densely covered with blackish soot and powder particles, whereas the eyebrows and eyelashes showed singeing of the hairs. The flattened bullet and the wad had got stuck under the scalp of the occipital region. In both cases, there was a disproportionally large zone of tissue destruction in the initial parts of the wound tracks. PMID:23250385

  13. Lead poisoning

    MedlinePLUS

    ... lead is still a health problem. Lead is everywhere, including dirt, dust, new toys, and old house ... and faucets. Lead can be found in drinking water in homes containing pipes that were connected with ...

  14. Lead Poisoning

    MedlinePLUS

    ... contact with it! Sources of Lead Poisoning HOUSE PAINTS: Before1950, lead-based paint was used on the inside and outside of ... surface. In 1977, federal regulations banned lead from paint for general use. But homes built before 1977 ...

  15. Edge energies and shapes of nanoprecipitates.

    SciTech Connect

    Hamilton, John C.

    2006-01-01

    In this report we present a model to explain the size-dependent shapes of lead nano-precipitates in aluminum. Size-dependent shape transitions, frequently observed at nanolength scales, are commonly attributed to edge energy effects. This report resolves an ambiguity in the definition and calculation of edge energies and presents an atomistic calculation of edge energies for free clusters. We also present a theory for size-dependent shapes of Pb nanoprecipitates in Al, introducing the concept of ''magic-shapes'' defined as precipitate shapes having near zero elastic strains when inserted into similarly shaped voids in the Al matrix. An algorithm for constructing a complete set of magic-shapes is presented. The experimental observations are explained by elastic strain energies and interfacial energies; edge energies play a negligible role. We replicate the experimental observations by selecting precipitates having magic-shapes and interfacial energies less than a cutoff value.

  16. Lead Titanate and Lead Metaniobate Porous Ferroelectric Ceramics

    Microsoft Academic Search

    A. N. RYBJANETS; O. N. RAZUMOVSKAJA; L. A. REZNITCHENKO; V. D. KOMAROV; A. V. TURIK

    2004-01-01

    A manufacturing technology of porous ferroelectric ceramics on the base of pure and modified lead titanate and lead metaniobate compositions were developed. Special attention was given to the microstructure studying of porous ceramics with different porosity types. The porosity dependencies of elastic, dielectric and piezoelectric properties of the specified compositions were measured in 0–40% relative porosity range. It was shown

  17. Edge detection: a tutorial review

    SciTech Connect

    Kunt, M.

    1982-01-01

    Major edge detection methods are reviewed from the signal processing and artificial intelligence point of views. In the first class, images are processed first to enhance edges. Then a decision is made to label each picture point as edge or not edge. In the second class edges are viewed as the border-lines of regions whose points share a common property. 21 references.

  18. Stable hydrogenated graphene edge types: Normal and reconstructed Klein edges

    NASA Astrophysics Data System (ADS)

    Wagner, Philipp; Ivanovskaya, Viktoria V.; Melle-Franco, Manuel; Humbert, Bernard; Adjizian, Jean-Joseph; Briddon, Patrick R.; Ewels, Christopher P.

    2013-09-01

    Hydrogenated graphene edges are assumed to be either armchair, zigzag, or a combination of the two. We show that the zigzag is not the most stable fully hydrogenated edge structure along the <21¯1¯0> direction. Instead hydrogenated Klein and reconstructed Klein based edges are found to be energetically more favorable, with stabilities approaching that of armchair edges. These new structures “unify” graphene edge topology, the most stable flat hydrogenated graphene edges always consisting of pairwise bonded C2H4 edge groups, irrespective of the edge orientation. When edge rippling is included, CH3 edge groups are most stable. These new fundamental hydrogen-terminated edges have important implications for graphene edge imaging and spectroscopy, as well as mechanisms for graphene growth, nanotube cutting, and nanoribbon formation and behavior.

  19. Strain-induced edge magnetism at the zigzag edge of a graphene quantum dot

    NASA Astrophysics Data System (ADS)

    Cheng, Shuai; Yu, Jinming; Ma, Tianxing; Peres, N. M. R.

    2015-02-01

    We study the temperature dependent magnetic susceptibility of a strained graphene quantum dot using the determinant quantum Monte Carlo method. Within the Hubbard model on a honeycomb lattice, our unbiased numerical results show that a relative small interaction U may lead to an edge ferromagneticlike behavior in the strained graphene quantum dot. Around half-filling, the ferromagnetic fluctuations at the zigzag edge are strengthened both by the on-site Coulomb interaction and the strain, especially in the low temperature region.

  20. Visualization of a ferromagnetic metallic edge state in manganite strips.

    PubMed

    Du, Kai; Zhang, Kai; Dong, Shuai; Wei, Wengang; Shao, Jian; Niu, Jiebin; Chen, Jinjie; Zhu, Yinyan; Lin, Hanxuan; Yin, Xiaolu; Liou, Sy-Hwang; Yin, Lifeng; Shen, Jian

    2015-01-01

    Recently, broken symmetry effect induced edge states in two-dimensional electronic systems have attracted great attention. However, whether edge states may exist in strongly correlated oxides is not yet known. In this work, using perovskite manganites as prototype systems, we demonstrate that edge states do exist in strongly correlated oxides. Distinct appearance of ferromagnetic metallic phase is observed along the edge of manganite strips by magnetic force microscopy. The edge states have strong influence on the transport properties of the strips, leading to higher metal-insulator transition temperatures and lower resistivity in narrower strips. Model calculations show that the edge states are associated with the broken symmetry effect of the antiferromagnetic charge-ordered states in manganites. Besides providing a new understanding of the broken symmetry effect in complex oxides, our discoveries indicate that novel edge state physics may exist in strongly correlated oxides beyond the current two-dimensional electronic systems. PMID:25649750