Science.gov

Sample records for composite polymer electrolyte

  1. Solid polymer electrolyte compositions

    DOEpatents

    Garbe, James E.; Atanasoski, Radoslav; Hamrock, Steven J.; Le, Dinh Ba

    2001-01-01

    An electrolyte composition is featured that includes a solid, ionically conductive polymer, organically modified oxide particles that include organic groups covalently bonded to the oxide particles, and an alkali metal salt. The electrolyte composition is free of lithiated zeolite. The invention also features cells that incorporate the electrolyte composition.

  2. Composite solid polymer electrolyte membranes

    SciTech Connect

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2006-05-30

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  3. Composite solid polymer electrolyte membranes

    DOEpatents

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2001-06-19

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  4. Ionic conduction in polymer composite electrolytes

    NASA Astrophysics Data System (ADS)

    Dam, Tapabrata; Tripathy, Satya N.; Paluch, M.; Jena, S.; Pradhan, D. K.

    2016-05-01

    Conductivity and structural relaxation has been explored from modulus and dielectric loss formalisms respectively for a series of polymer composite electrolytes with zirconia as filler. The temperature dependence of conductivity followed Vogel-Tamman-Fulcher (VTF) behavior, which suggested a close correlation between conductivity and the segmental relaxation process in polymer electrolytes. Vogel temperature (T0) plays significant role in ion conduction process in these kind of materials.

  5. Inorganic-organic composite solid polymer electrolytes

    SciTech Connect

    Abraham, K.M.; Koch, V.R.; Blakley, T.J.

    2000-04-01

    Inorganic-organic composite solid polymer electrolytes (CSPEs) have been prepared from the poly(ethylene oxide) (PEO)-like electrolytes of the general formula polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP)-PEO{sub n}-LiX and Li{sup +}-conducting ceramic powders. In the PEO-like electrolytes, PVdF-HFP is the copolymer of PVdF and HFP, PEO{sub n} is a nonvolatile oligomeric polyethylene oxide of {approximately}400 g/mol molecular weight, and LiX is lithium bis(trifluoroethylsulfonyl)imide. Two types of inorganic oxide ceramic powders were used: a highly Li{sup +}-conducting material of the composition 14 mol % Li{sub 2}O-9Al{sub 2}O{sub 3}-38TiO{sub 2}-39P{sub 2}O{sub 5}, and the poorly Li{sup +}-conducting Li-silicates Li{sub 4{minus}x}M{sub x}SiO{sub 4} where M is Ca or Mg and x is 0 or 0.05. The composite electrolytes can be prepared as thin membranes in which the Li{sup +} conductivity and good mechanical strength of the Li{sup +}-conducting inorganic ceramics are complemented by the structural flexibility and high conductivity of organic polymer electrolytes. Excellent electrochemical and thermal stabilities have been demonstrated for the electrolyte films. Li//composite electrolyte//LiCoO{sub 2} rechargeable cells have been fabricated and cycled at room temperature and 50 C.

  6. Advanced composite polymer electrolyte fuel cell membranes

    SciTech Connect

    Wilson, M.S.; Zawodzinski, T.A.; Gottesfeld, S.; Kolde, J.A.; Bahar, B.

    1995-09-01

    A new type of reinforced composite perfluorinated polymer electrolyte membrane, GORE-SELECT{trademark} (W.L. Gore & Assoc.), is characterized and tested for fuel cell applications. Very thin membranes (5-20 {mu}m thick) are available. The combination of reinforcement and thinness provides high membrane, conductances (80 S/cm{sup 2} for a 12 {mu}m thick membrane at 25{degrees}C) and improved water distribution in the operating fuel cell without sacrificing longevity or durability. In contrast to nonreinforced perfluorinated membranes, the x-y dimensions of the GORE-SELECT membranes are relatively unaffected by the hydration state. This feature may be important from the viewpoints of membrane/electrode interface stability and fuel cell manufacturability.

  7. Solid polymer electrolyte composite membrane comprising laser micromachined porous support

    DOEpatents

    Liu, Han; LaConti, Anthony B.; Mittelsteadt, Cortney K.; McCallum, Thomas J.

    2011-01-11

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  8. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    DOEpatents

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  9. Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Hallinan, Daniel T.; Balsara, Nitash P.

    2013-07-01

    This review article covers applications in which polymer electrolytes are used: lithium batteries, fuel cells, and water desalination. The ideas of electrochemical potential, salt activity, and ion transport are presented in the context of these applications. Potential is defined, and we show how a cell potential measurement can be used to ascertain salt activity. The transport parameters needed to fully specify a binary electrolyte (salt + solvent) are presented. We define five fundamentally different types of homogeneous electrolytes: type I (classical liquid electrolytes), type II (gel electrolytes), type III (dry polymer electrolytes), type IV (dry single-ion-conducting polymer electrolytes), and type V (solvated single-ion-conducting polymer electrolytes). Typical values of transport parameters are provided for all types of electrolytes. Comparison among the values provides insight into the transport mechanisms occurring in polymer electrolytes. It is desirable to decouple the mechanical properties of polymer electrolyte membranes from the ionic conductivity. One way to accomplish this is through the development of microphase-separated polymers, wherein one of the microphases conducts ions while the other enhances the mechanical rigidity of the heterogeneous polymer electrolyte. We cover all three types of conducting polymer electrolyte phases (types III, IV, and V). We present a simple framework that relates the transport parameters of heterogeneous electrolytes to homogeneous analogs. We conclude by discussing electrochemical stability of electrolytes and the effects of water contamination because of their relevance to applications such as lithium ion batteries.

  10. Methods of enhancing conductivity of a polymer-ceramic composite electrolyte

    DOEpatents

    Kumar, Binod

    2003-12-02

    Methods for enhancing conductivity of polymer-ceramic composite electrolytes are provided which include forming a polymer-ceramic composite electrolyte film by a melt casting technique and uniaxially stretching the film from about 5 to 15% in length. The polymer-ceramic composite electrolyte is also preferably annealed after stretching such that it has a room temperature conductivity of from 10.sup.-4 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1. The polymer-ceramic composite electrolyte formed by the methods of the present invention may be used in lithium rechargeable batteries.

  11. Methods of enhancing conductivity of a polymer-ceramic composite electrolyte

    NASA Technical Reports Server (NTRS)

    Kumar, Binod (Inventor)

    2003-01-01

    Methods for enhancing conductivity of polymer-ceramic composite electrolytes are provided which include forming a polymer-ceramic composite electrolyte film by a melt casting technique and uniaxially stretching the film from about 5 to 15% in length. The polymer-ceramic composite electrolyte is also preferably annealed after stretching such that it has a room temperature conductivity of from 10.sup.-4 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1. The polymer-ceramic composite electrolyte formed by the methods of the present invention may be used in lithium rechargeable batteries.

  12. Alkaline composite PEO-PVA-glass-fibre-mat polymer electrolyte for Zn-air battery

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Lin, Sheng-Jen

    An alkaline composite PEO-PVA-glass-fibre-mat polymer electrolyte with high ionic conductivity (10 -2 S cm -1) at room temperature has been prepared and applied to solid-state primary Zn-air batteries. The electrolyte shows excellent mechanical strength. The electrochemical characteristics of the batteries were experimentally investigated by means of ac impedance spectroscopy and galvanostatic discharge. The results indicate that the PEO-PVA-glass-fibre-mat composite polymer electrolyte is a promising candidate for application in alkaline primary Zn-air batteries.

  13. Solid polymer electrolyte composite membrane comprising a porous support and a solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide

    SciTech Connect

    Liu, Han; Mittelsteadt, Cortney K; Norman, Timothy J; Griffith, Arthur E; LaConti, Anthony B

    2015-02-24

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.

  14. Characterization studies of plasticized PEO-PMMA nano-composite polymer electrolyte system

    NASA Astrophysics Data System (ADS)

    Sharma, Poonam; Kanchan, D. K.; Gondaliya, Nirali; Pant, Meenakshi; Jayswal, Manish S.; Joge, Prajakta

    2012-06-01

    Present study reports the characterization studies on silver based PEO-PMMA-PEG nano composite polymer electrolyte system, prepared by solution cast technique. The complexation among various constituents of polymer samples was carried by XRD and FTIR analysis. Thermal analysis of the samples was carried out by DSC study.

  15. Frequency-dependent learning achieved using semiconducting polymer/electrolyte composite cells

    NASA Astrophysics Data System (ADS)

    Dong, W. S.; Zeng, F.; Lu, S. H.; Liu, A.; Li, X. J.; Pan, F.

    2015-10-01

    Frequency-dependent learning has been achieved using semiconducting polymer/electrolyte composite cells. The cells composed of polymer/electrolyte double layers realized the conventional spike-rate-dependent plasticity (SRDP) learning model. These cells responded to depression upon low-frequency stimulation and to potentiation upon high-frequency stimulation and presented long-term memory. The transition threshold θm from depression to potentiation varied depending on the previous stimulations. A nanostructure resembling a bio-synapse in its transport passages was demonstrated and a random channel model was proposed to describe the ionic kinetics at the polymer/electrolyte interface during and after stimulations with various frequencies, accounting for the observed SRDP.Frequency-dependent learning has been achieved using semiconducting polymer/electrolyte composite cells. The cells composed of polymer/electrolyte double layers realized the conventional spike-rate-dependent plasticity (SRDP) learning model. These cells responded to depression upon low-frequency stimulation and to potentiation upon high-frequency stimulation and presented long-term memory. The transition threshold θm from depression to potentiation varied depending on the previous stimulations. A nanostructure resembling a bio-synapse in its transport passages was demonstrated and a random channel model was proposed to describe the ionic kinetics at the polymer/electrolyte interface during and after stimulations with various frequencies, accounting for the observed SRDP. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02891d

  16. Epoxidised Natural Rubber Based Composite Polymer Electrolyte Systems For Use In Electrochemical Device Applications

    SciTech Connect

    Idris, Razali; Tasnim, Anis; Mahbor, Kamisah Mohamad; Hakim, Mas Rosemal; Mohd, Dahlan Hj.; Ghazali, Zulkafli

    2009-09-14

    Composite polymer electrolyte (CPE) comprising epoxy-fimctionalized rubber (ENR), HDDA monomer, mixed plasticizer-propylene carbonate/ethylene carbonate, silica filler and lithium bis(trifluoromethanesulfonylimide), Li[(CF{sub 3}SO{sub 2}){sub 2}N]have been prepared using photo-induced polymerization by UV irradiation technique. The irradiated samples of filled and non-filled silica of composites electrolytes have formed dry solid-flexible and transparent films in the self-constructed Teflon mould. Thermal behaviors, FTIR, morphology and ionic conductivity were performed on such ENR based PE polymer composites having varied compositions. The thermal stability has improved slightly in the temperature range 120-200 deg. C with optimized composition. FTIR measurements data revealed that the interaction of lithium with the epoxy groups of the un-bonded electrons within polymer occurred. The results suggest that the variation of conductivity with temperature indicates that the silica filled composite has achieved optimal ionic conductivity 10{sup -4} S cm{sup -1} and retained high percent of plasticizer. The ionic conductivity behavior of the silica-filled ENR based composite polymer electrolyte is consistent at elevated temperature compared to non-filled CPE system. This finding opens a new pathway for further investigation to diffusion of ions in the complex polymer electrolyte systems.

  17. Self-Assembled Silica Nano-Composite Polymer Electrolytes: Synthesis, Rheology & Electrochemistry

    SciTech Connect

    Khan, Saad A.: Fedkiw Peter S.; Baker, Gregory L.

    2007-01-24

    The ultimate objectives of this research are to understand the principles underpinning nano-composite polymer electrolytes (CPEs) and facilitate development of novel CPEs that are low-cost, have high conductivities, large Li+ transference numbers, improved electrolyte-electrode interfacial stability, yield long cycle life, exhibit mechanical stability and are easily processable. Our approach is to use nanoparticulate silica fillers to formulate novel composite electrolytes consisting of surface-modified fumed silica nano-particles in polyethylene oxides (PEO) in the presence of lithium salts. We intend to design single-ion conducting silica nanoparticles which provide CPEs with high Li+ transference numbers. We also will develop low-Mw (molecular weight), high-Mw and crosslinked PEO electrolytes with tunable properties in terms of conductivity, transference number, interfacial stability, processability and mechanical strength

  18. Nanoporous polymer electrolyte

    SciTech Connect

    Elliott, Brian; Nguyen, Vinh

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  19. Anion exchange polymer electrolytes

    SciTech Connect

    Kim, Yu Seung; Kim, Dae Sik

    2015-06-02

    Anion exchange polymer electrolytes that include guanidinium functionalized polymers may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.

  20. Composite polymer electrolyte based on PEO/Pvdf-HFP with MWCNT for lithium battery applications

    NASA Astrophysics Data System (ADS)

    Pradeepa, P.; Edwinraj, S.; Sowmya, G.; Kalaiselvimary, J.; Selvakumar, K.; Prabhu, M. Ramesh

    2016-05-01

    In the present study PEO and PVdF-HFP blend based composite polymer electrolytes (CPEs) has been prepared by using Multi Walled Carbon Nanotube (MWCNT), in order to examine the filler addition effect on the electrochemical properties. The complexed nanocomposite polymer electrolytes were obtained in the form of dimensionally stable and free standing films by using solution casting technique. The electrochemical properties of CPEs were measured by the AC impedance method. From the ionic conductivity results, the CPE containing MWCNT 2wt% showed the highest ionic conductivity with an excellent thermal stability at room temperature. The dielectric loss curve s for the sample 6.25wt% PEO: 18.75 wt% PVdF-HFP: 2wt% MWCNT reveal the low frequency β relaxation peak pronounced at high temperature, and it may caused by side group dipoles.

  1. Composite polymer electrolytes based on MG49 and carboxymethyl cellulose from kenaf

    SciTech Connect

    Jafirin, Serawati; Ahmad, Ishak; Ahmad, Azizan

    2013-11-27

    The development of 49% poly(methyl methacrylate)-grafted natural rubber (MG49) and carboxymethyl cellulose as a composite polymer electrolyte film incorporating LiCF{sub 3}SO{sub 3} were explored. Carboxymethyl cellulose was synthesized from kenaf bast fibres via carboxymethylation process by alkali catalyzed reaction of cellulose with sodium chloroacetate. Reflection fourier transform infrared (ATR-FTIR) spectroscopy showed the presence of carboxyl peak after modification of cellulose with sodium chloroacetate. X-ray diffraction (XRD) analysis revealed that the crystallinity of cellulose was decrease after synthesis. High performance composite polymer electrolytes were prepared with various composition of carboxymethyl cellulose (2–10 wt%) via solution-casting method. The conductivity was increased with carboxymethyl cellulose loading. The highest conductivity value achieved was 3.3 × 10{sup −7} Scm{sup −1} upon addition of 6% wt carboxymethyl cellulose. 6% wt carboxymethyl cellulose composition showed the highest tensile strength value of 7.9 MPa and 273 MPa of modulus value which demonstrated high mechanical performance with accepatable level of ionic conductivity.

  2. Immobilization of imidazole moieties in polymer electrolyte composite membrane for elevated temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Ke; Zhou, Bei; Ye, Gongbo; Pan, Mu; Zhang, Haining

    2015-12-01

    Development of membrane electrolyte with reasonable proton conductivity at elevated temperature without external humidification is essential for practical applications of elevated temperature proton exchange membrane fuel cells. Herein, a novel polymer electrolyte composite membrane using imidazole as anhydrous proton carriers for elevated temperature fuel cells is investigated. The imidazole moieties are immobilized inside the Nafion/poly(tetrafluoroethylene) (PTFE) composite membrane through in situ formation of imidazole functionalized silica nanoparticles in Nafion dispersion. The thus-formed membrane exhibits strong Coulombic interaction between negatively charged sulfonic acid groups of Nafion and protonated imidazole moieties, leading to an anhydrous proton conductivity of 0.018 S cm-1 at 180 °C. With the introduction of PTFE matrix, the mechanical strength of the membrane is greatly improved. The peak power density of a single cell assembled from the hybrid membrane is observed to be 130 mW cm-2 under 350 mA cm-2 at 110 °C without external humidification and it remains stable for 20 h continuous operation. The obtained results demonstrate that the developed composite membranes could be utilized as promising membrane electrolytes for elevated temperature fuel cells.

  3. Polybenzimidazole-multiwall carbon nanotubes composite membranes for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Guerrero Moreno, Nayibe; Gervasio, Dominic; Godínez García, Andrés; Pérez Robles, Juan Francisco

    2015-12-01

    Polymer membranes are prepared as a composite of polybenzimidazole and non-functionalized multiwall carbon nanotubes (PBI-CNT) and polybenzimidazole (PBI) only. Each is doped with H3PO4 (PA) and used as a proton exchange membrane (PEM) as the electrolyte in a fuel cell. The proton conductivities at 180 °C for the doped PBI membrane (PBIPA) and the doped PBI-CNT membrane (PBICNTPA) are 6.3 × 10-2 and 7.4 × 10-2 Scm-1 respectively. A single fuel cell having these membranes as electrolyte has a Pt catalyzed hydrogen gas fed anode and a similar oxygen cathode without humidification of feed gases; the cell with the PBICNTPA membrane has higher open circuit voltage (0.96 V) than that with a PBIPA membrane (0.8 V) at 180 °C. The mechanical stability of the membrane improves with CNTs addition. The tensile strength of the composite PBI-CNT membrane with 1 wt.% CNTs loading is 32% higher and the Young's Modulus is 147% higher than the values for a membrane of PBI alone. The improvement in conductivity and mechanical properties in the composite membrane due to the CNT addition indicates that a PBI-CNT membrane is a good alternative as a membrane electrolyte in a PEMFC.

  4. Thin and flexible solid-state organic ionic plastic crystal-polymer nanofibre composite electrolytes for device applications.

    PubMed

    Howlett, Patrick C; Ponzio, Florian; Fang, Jian; Lin, Tong; Jin, Liyu; Iranipour, Nahid; Efthimiadis, Jim

    2013-09-01

    All solid-state organic ionic plastic crystal-polymer nanofibre composite electrolytes are described for the first time. The new composite materials exhibit enhanced conductivity, excellent thermal, mechanical and electrochemical stability and allow the production of optically transparent, free-standing, flexible, thin film electrolytes (10's μms thick) for application in electrochemical devices. Stable cycling of a lithium cell incorporating the new composite electrolyte is demonstrated, including cycling at lower temperatures than previously possible with the pure material. PMID:23753038

  5. Alkali metal crystalline polymer electrolytes.

    PubMed

    Zhang, Chuhong; Gamble, Stephen; Ainsworth, David; Slawin, Alexandra M Z; Andreev, Yuri G; Bruce, Peter G

    2009-07-01

    Polymer electrolytes have been studied extensively because uniquely they combine ionic conductivity with solid yet flexible mechanical properties, rendering them important for all-solid-state devices including batteries, electrochromic displays and smart windows. For some 30 years, ionic conductivity in polymers was considered to occur only in the amorphous state above Tg. Crystalline polymers were believed to be insulators. This changed with the discovery of Li(+) conductivity in crystalline poly(ethylene oxide)(6):LiAsF(6). However, new crystalline polymer electrolytes have proved elusive, questioning whether the 6:1 complex has particular structural features making it a unique exception to the rule that only amorphous polymers conduct. Here, we demonstrate that ionic conductivity in crystalline polymers is not unique to the 6:1 complex by reporting several new crystalline polymer electrolytes containing different alkali metal salts (Na(+), K(+) and Rb(+)), including the best conductor poly(ethylene oxide)(8):NaAsF(6) discovered so far, with a conductivity 1.5 orders of magnitude higher than poly(ethylene oxide)(6):LiAsF(6). These are the first crystalline polymer electrolytes with a different composition and structures to that of the 6:1 Li(+) complex. PMID:19543313

  6. Composite Electrolytes for Lithium Batteries: Ionic Liquids in APTES Crosslinked Polymers

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Meador, Mary Ann B.; Bennett, William R.

    2007-01-01

    Solvent free polymer electrolytes were made consisting of Li(+) and pyrrolidinium salts of trifluoromethanesulfonimide added to a series of hyperbranched poly(ethylene oxide)s (PEO). The polymers were connected by triazine linkages and crosslinked by a sol-gel process to provide mechanical strength. The connecting PEO groups were varied to help understand the effects of polymer structure on electrolyte conductivity in the presence of ionic liquids. Polymers were also made that contain poly(dimethylsiloxane) groups, which provide increased flexibility without interacting with lithium ions. When large amounts of ionic liquid are added, there is little dependence of conductivity on the polymer structure. However, when smaller amounts of ionic liquid are added, the inherent conductivity of the polymer becomes a factor. These electrolytes are more conductive than those made with high molecular weight PEO imbibed with ionic liquids at ambient temperatures, due to the amorphous nature of the polymer.

  7. Synthesis and characterization of polyvinyl alcohol copolymer/phosphomolybdic acid-based crosslinked composite polymer electrolyte membranes

    NASA Astrophysics Data System (ADS)

    Anis, Arfat; Banthia, A. K.; Bandyopadhyay, S.

    Polymer electrolyte membrane fuel cells (PEMFCs) are very promising as future energy source due to their high-energy conversion efficiency and will help to solve the environmental concerns of energy production. Polymer electrolyte membrane (PEM) is recognised as the key element for an efficient PEMFC. Chemically crosslinked composite membranes consisting of a poly(vinyl alcohol-co-vinyl acetate-co-itaconic acid) (PVACO) and phosphomolybdic acid (PMA) have been prepared by solution casting and evaluated as proton conducting polymer electrolytes. The proton conductivity of the membranes is investigated as a function of PMA composition, crosslinking density and temperature. The membranes have also been characterized by FTIR spectroscopy, TGA, AFM and TEM. The proton conductivity of the composite membranes is of the order of 10 -3 S cm -1 and shows better resistance to methanol permeability than Nafion 117 under similar measurement conditions.

  8. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries.

    PubMed

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G; Lee, Yoon-Sung; Kim, Dong-Won

    2016-01-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures. PMID:27189842

  9. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries

    NASA Astrophysics Data System (ADS)

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G.; Lee, Yoon-Sung; Kim, Dong-Won

    2016-05-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures.

  10. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries

    PubMed Central

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G.; Lee, Yoon-Sung; Kim, Dong-Won

    2016-01-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures. PMID:27189842

  11. Low-Cost Composite Materials for Polymer Electrolyte Fuel Cell Bipolar Plates

    SciTech Connect

    Busick, D.N.; Wilson, M.S.

    1998-11-01

    Polymer electrolyte fuel cells (PEFCS) are under widespread development to produce electrical power for a variety of stationary and transportation applications. To date, the bipolar plate remains the most problematic and costly component of PEFC stacks (1). In addition to meeting cost constraints, bipolar plates must possess a host of other properties, the most important of which are listed in Table 1. The most commonly used material for single cell testing is machined graphite, which is expensive and costly to machine. The brittle nature of graphite also precludes the use of thin components for reducing stack size and weight, which is particularly important for transportation applications. Other stack designs consider the use of metal hardware such as stainless steel (2,3). But a number of disadvantages are associated with stainless steel, including high density, high cost of machining, and possible corrosion in the fuel cell environment. In light of these difficulties, much of the recent work on fuel cell bipolar plate materials has concentrated on graphite/polymer composites (4--8). Composite materials offer the potential advantages of lower cost, lower weight, and greater ease of manufacture than traditional graphite and metal plates. For instance, flow fields can be molded directly into these composites, thereby eliminating the costly and difficult machining step required for graphite or metal hardware.

  12. Effect of TiO2 ceramic filler on PEG-based composite polymer electrolytes for magnesium batteries

    NASA Astrophysics Data System (ADS)

    Polu, Anji Reddy; Kumar, Ranveer; Kumar, K. Vijaya; Jyothi, N. Krishna

    2013-02-01

    Composite polymer electrolytes based on poly(ethylene glycol) (PEG), magnesium acetate [Mg(CH3COO)2] and x wt. % of titanium oxide (TiO2) ceramic fillers (where x = 0, 5, 10, 15 and 20 respectively) have been prepared using solution casting technique. Several experimental techniques, such as composition-dependent conductivity, temperature dependent conductivity in the temperature range of 303-333 K and transport number measurements, have been employed to characterize these composite polymer electrolyte systems. The transference number data indicated the dominance of ion-type charge transport in these specimens. Using this (PEG-Mg(CH3COO)2-TiO2) (85-15-10) electrolyte, solid state electrochemical cell was fabricated and their discharge profiles were studied under a constant load of 100 kω.

  13. Ionic conductivity and electrochemical characterization of novel microporous composite polymer electrolytes

    SciTech Connect

    Xu, W.; Siow, K.S.; Gao, Z.; Lee, S.Y.

    1999-12-01

    Composite polymer electrolytes (CPEs) have been prepared by encapsulating electrolyte solutions of inorganic lithium salts dissolved in a plasticizer or mixture of plasticizers such as ethylene carbonate (EC), propylene carbonate (PC), {gamma}-butyrolactone (BL) and dimethyl carbonate (DMC), into porous polymer membranes. These polymer membranes are obtained from microemulsion polymerization of the microemulsion system of acrylonitrile, 4-vinylbenzenesulfonic acid lithium salt, ethylene glycol dimethacrylate (as cross-linker), {omega}-methoxy poly(ethyleneoxy){sub 40} undecyl-{alpha}-methacrylate (as surfactant), and water. These CPEs exhibit conductivities of 3.1 x 10{sup {minus}4} to 1.2 x 10{sup {minus}3} S cm{sup {minus}1} at room temperature. The lithium ion transference number, measured using a dc polarization method coupled with ac impedance spectroscopy, is found to be ca. 0.45. Cyclic voltammetry of the CPEs on stainless steel electrodes shows electrochemical stability windows extending up to 3.9, 4.0, and 4.4 V vs. Li{sup +}/Li for CPEs with 1 M LiSO{sub 3}CF{sub 3}/EC-PC (1:1 by volume), 1 M LiBF{sub 4}/BL and 1 M LiClO{sub 4}/EC-DMC (1:1 by volume), respectively. The impedance of the Li/CPE interface for the CPE with 1 M LiClO{sub 4}/EC-DMC under open circuit conditions is found to increase over storage time. Preliminary charge-discharge tests of prototype Li/CPE/LiMn{sub 2}O{sub 4} cells show an initial discharge capacity of ca. 118 mAh g{sup {minus}1} of LiMn{sub 2}O{sub 4} at a discharge current rate of 0.10 mA cm{sup {minus}2}, and promising cyclability.

  14. Gel polymer electrolytes for batteries

    DOEpatents

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  15. A composite membrane based on a biocompatible cellulose as a host of gel polymer electrolyte for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Xiao, S. Y.; Yang, Y. Q.; Li, M. X.; Wang, F. X.; Chang, Z.; Wu, Y. P.; Liu, X.

    2014-12-01

    A composite polymer membrane is prepared by coating poly(vinylidene fluoride) (PVDF) on the surface of a membrane based on methyl cellulose (MC) which is environmentally friendly and cheap. Its characteristics are investigated by scanning electron microscopy, FT-IR, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The outer PVDF layers are porous which results in high electrolyte uptake and the lithium ion transference number is much larger than that of the pure MC. Moreover, the cell based on Li//LiFePO4 delivers high discharge capacity and good rate behavior in the range of 4.2-2.5 V when the composite membrane is used as the separator and the host of a gel polymer electrolyte, lithium as the counter and reference electrode, and LiFePO4 as cathode. The obtained results suggest that this unique composite membrane shows great attraction in the lithium ion batteries with high safety and low cost.

  16. Solid polymer electrolytes

    DOEpatents

    Abraham, Kuzhikalail M.; Alamgir, Mohamed; Choe, Hyoun S.

    1995-01-01

    This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

  17. Solid polymer electrolytes

    DOEpatents

    Abraham, K.M.; Alamgir, M.; Choe, H.S.

    1995-12-12

    This invention relates to Li ion (Li{sup +}) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF{sub 3}SO{sub 2}){sub 2}, LiAsF{sub 6}, and LiClO{sub 4}. 2 figs.

  18. New Polymer Electrolyte Cell Systems

    NASA Technical Reports Server (NTRS)

    Smyrl, William H.; Owens, Boone B.; Mann, Kent; Pappenfus, T.; Henderson, W.

    2004-01-01

    PAPERS PUBLISHED: 1. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Complexes of Lithium Imide Salts with Tetraglyme and Their Polyelectrolyte Composite Materials. Journal of the Electrochemical Society (2004), 15 1 (2), A209-A2 15. 2. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Ionic-liquidlpolymer electrolyte composite materials for electrochemical device applications. Polymeric Materials Science and Engineering (2003), 88 302. 3. Pappenfus, Ted R.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; and Smyrl, William H. Ionic Conductivity of a poly(vinylpyridinium)/Silver Iodide Solid Polymer Electrolyte System. Solid State Ionics (in press 2004). 4. Pappenfus Ted M.; Mann, Kent R; Smyrl, William H. Polyelectrolyte Composite Materials with LiPFs and Tetraglyme. Electrochemical and Solid State Letters, (2004), 7(8), A254.

  19. Fractal forming species and hierarchical growth in polymer electrolyte composites: Raman mapping and role of seed particles

    NASA Astrophysics Data System (ADS)

    Dawar, Anit; Chandra, Amita

    2013-04-01

    Diffusion limited aggregation (DLA) is being reported in a polymer electrolyte composites PEO:NH4I + Al2O3 (acidic, basic and neutral). The aggregating specie is found to be I3- by using XRD and Raman spectroscopy. The involvement of NH4+ ion in the fractal pattern formation has also been explained via ion pairing with I3- (i.e., M+ + I3- → M+I3-), by making ammonium tri-iodide specie. Raman mapping has been done to analyze the fractal forming species in detail. A qualitative model has been proposed to explain the observations. The aggregates that get frozen in the host polymer matrix by diffusive growth form different patterns and are found to have fractal dimension that varies from 1.6 to 1.8 which is consistent with diffusion limited aggregation. The steady state of ion diffusion in polymer electrolyte is analyzed in the framework of the Nernst-Planck equation. The ion transport mechanism in the polymer electrolyte composite (with and without fractal growth), has been studied with the help of ac conductivity (σ) and ionic/electronic transference number (ti/te).

  20. Interfacial behavior of polymer electrolytes

    SciTech Connect

    Kerr, John; Kerr, John B.; Han, Yong Bong; Liu, Gao; Reeder, Craig; Xie, Jiangbing; Sun, Xiaoguang

    2003-06-03

    Evidence is presented concerning the effect of surfaces on the segmental motion of PEO-based polymer electrolytes in lithium batteries. For dry systems with no moisture the effect of surfaces of nano-particle fillers is to inhibit the segmental motion and to reduce the lithium ion transport. These effects also occur at the surfaces in composite electrodes that contain considerable quantities of carbon black nano-particles for electronic connection. The problem of reduced polymer mobility is compounded by the generation of salt concentration gradients within the composite electrode. Highly concentrated polymer electrolytes have reduced transport properties due to the increased ionic cross-linking. Combined with the interfacial interactions this leads to the generation of low mobility electrolyte layers within the electrode and to loss of capacity and power capability. It is shown that even with planar lithium metal electrodes the concentration gradients can significantly impact the interfacial impedance. The interfacial impedance of lithium/PEO-LiTFSI cells varies depending upon the time elapsed since current was turned off after polarization. The behavior is consistent with relaxation of the salt concentration gradients and indicates that a portion of the interfacial impedance usually attributed to the SEI layer is due to concentrated salt solutions next to the electrode surfaces that are very resistive. These resistive layers may undergo actual phase changes in a non-uniform manner and the possible role of the reduced mobility polymer layers in dendrite initiation and growth is also explored. It is concluded that PEO and ethylene oxide-based polymers are less than ideal with respect to this interfacial behavior.

  1. Anion exchange polymer electrolytes

    DOEpatents

    Kim, Yu Seung; Kim, Dae Sik; Lee, Kwan-Soo

    2013-07-23

    Solid anion exchange polymer electrolytes and compositions comprising chemical compounds comprising a polymeric core, a spacer A, and a guanidine base, wherein said chemical compound is uniformly dispersed in a suitable solvent and has the structure: ##STR00001## wherein: i) A is a spacer having the structure O, S, SO.sub.2, --NH--, --N(CH.sub.2).sub.n, wherein n=1-10, --(CH.sub.2).sub.n--CH.sub.3--, wherein n=1-10, SO.sub.2-Ph, CO-Ph, ##STR00002## wherein R.sub.5, R.sub.6, R.sub.7 and R.sub.8 each are independently --H, --NH.sub.2, F, Cl, Br, CN, or a C.sub.1-C.sub.6 alkyl group, or any combination of thereof; ii) R.sub.9, R.sub.10, R.sub.11, R.sub.12, or R.sub.13 each independently are --H, --CH.sub.3, --NH.sub.2, --NO, --CH.sub.nCH.sub.3 where n=1-6, HC.dbd.O--, NH.sub.2C.dbd.O--, --CH.sub.nCOOH where n=1-6, --(CH.sub.2).sub.n--C(NH.sub.2)--COOH where n=1-6, --CH--(COOH)--CH.sub.2--COOH, --CH.sub.2--CH(O--CH.sub.2CH.sub.3).sub.2, --(C.dbd.S)--NH.sub.2, --(C.dbd.NH)--N--(CH.sub.2).sub.nCH.sub.3, where n=0-6, --NH--(C.dbd.S)--SH, --CH.sub.2--(C.dbd.O)--O--C(CH.sub.3).sub.3, --O--(CH.sub.2).sub.n--CH--(NH.sub.2)--COOH, where n=1-6, --(CH.sub.2).sub.n--CH.dbd.CH wherein n=1-6, --(CH.sub.2).sub.n--CH--CN wherein n=1-6, an aromatic group such as a phenyl, benzyl, phenoxy, methylbenzyl, nitrogen-substituted benzyl or phenyl groups, a halide, or halide-substituted methyl groups; and iii) wherein the composition is suitable for use in a membrane electrode assembly.

  2. Rechargeable solid polymer electrolyte battery cell

    DOEpatents

    Skotheim, Terji

    1985-01-01

    A rechargeable battery cell comprising first and second electrodes sandwiching a solid polymer electrolyte comprising a layer of a polymer blend of a highly conductive polymer and a solid polymer electrolyte adjacent said polymer blend and a layer of dry solid polymer electrolyte adjacent said layer of polymer blend and said second electrode.

  3. Solid polymer electrolyte lithium batteries

    DOEpatents

    Alamgir, Mohamed; Abraham, Kuzhikalail M.

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  4. Solid polymer electrolyte lithium batteries

    DOEpatents

    Alamgir, M.; Abraham, K.M.

    1993-10-12

    This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

  5. Zirconium dioxide nanofilled poly(vinylidene fluoride-hexafluoropropylene) complexed with lithium trifluoromethanesulfonate as composite polymer electrolyte for electrochromic devices

    SciTech Connect

    Puguan, John Marc C.; Chinnappan, Amutha; Kostjuk, Sergei V.; Kim, Hern

    2015-09-15

    Highlights: • Successful synthesis of electrolyte by blending PVdF-HFP, ZrO{sub 2} and LiCF{sub 3}SO{sub 3}. • ZrO{sub 2} increased electrolyte conductivity by two orders of magnitude. • ZrO{sub 2} doubled bulk mechanical strength of electrolyte in terms of Young’s modulus. • Electrolytes gave a optimum optical transmittance of 52.6%. - Abstract: Poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) polymer electrolyte containing zirconium dioxide nanocrystals (ZrO{sub 2}-NC) and lithium trifluoromethanesulfonate (LiCF{sub 3}SO{sub 3}) has been synthesized using the conventional solution casting method. The addition of ZrO2-NC into the polymeric substrate gave remarkable properties in terms of the electrolyte’s ionic conductivity as well as its bulk mechanical strength. The enhanced amorphicity of the polymeric substrate due to ZrO{sub 2} and the nanofiller’s high dielectric constant make an excellent combination to increase the ionic conductivity (above 10{sup −4} S cm{sup −1}). Increasing the nanofiller content raises the ionic conductivity of the electrolyte by two orders of magnitude of which the optimum is 2.65 × 10{sup −4} S cm{sup −1} at 13.04 wt% ZrO{sub 2}-NC loading. Also, the Young’s modulus, an indicator of electrolyte’s mechanical stability, dramatically increased to 207 MPa upon loading 13.04 wt% ZrO{sub 2}-NC. Using UV–vis spectroscopy, the electrolytes with 13.04% ZrO{sub 2}-NC scanned from 200–800 nm wavelengths exhibited a maximum optical transmittance of 52.6% at 10 μm film thickness. The enhanced conductivity, high mechanical strength and reasonable optical transmittance shown by our composite polymer electrolyte make an excellent electrolyte for future energy saving smart windows such as electrochromic devices.

  6. Solid polymer electrolyte from phosphorylated chitosan

    SciTech Connect

    Fauzi, Iqbal Arcana, I Made

    2014-03-24

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

  7. Electrochemical redox properties of polypyrrole/Nafion composite film in a solid polymer electrolyte battery

    SciTech Connect

    Momma, Toshiyuki; Kakuda, Satoko; Yarimizu, Hideki; Osaka, Tetsuya

    1995-06-01

    Nafion{reg_sign} was introduced into a polypyrrole (PPy) matrix, and the redox performance of the PPy/Nafion electrode was investigated in a polyethylene oxide (PEO)-LiClO{sub 4} electrolyte. A rougher interface between polymer cathode and polymer electrolyte is usually needed for an all-solid battery, however, the PPy/Nafion cathode works well regardless of the flat surface of the PPy/Nafion film. When compared to a PPy film doped with ClO{sub 4}{sup {minus}} anions with a similar morphology, the PPy/Nafion film showed better redox performance. The results of the impedance spectroscopy and potential-step chronoamperometry confirmed that the improvement in the redox reaction of the PPy/Nafion film was due to the enhancement of the ion diffusion rate in the film. Thus, the PPy/Nafion film showed good charging-discharging properties in a rechargeable Li/PEO-LiClO{sub 4}/(PPy/Nafion) battery.

  8. Composite polymer electrolytes using fumed silica fillers: synthesis, rheology and electrochemistry

    SciTech Connect

    Khan, Saad A.; Fedkiw, Peter S.; Baker, Gregory L.

    1999-06-28

    The goal of the synthesis research was to devise routes to PEG/fumed silica/lithium salt composites that can be processed and then photochemically cross-linked to form mechanically stable electrolytes. An essential feature of the system is that the ionic conductivity and the mechanical properties must be de-coupled from each other, i.e., cross-linking of the fumed silica matrix must not cause a significant deterioration of the conductivity of the composite. As shown in Figure 2, we prepared a range of surface-modified fumed silicas and investigated their ability to form mechanically stable composite electrolytes. The groups used to modify the surface properties of the silica ranged from simple linear alkyls that render the silica hydrophobia to polyethers that promote compatibility with the electrolyte. From these materials we developed a cross-linkable system that satisfies the criteria of processibility and high-conductivity. The key material needed for the cross-linking reaction are silicas that bear surface-attached monomers. As shown schematically in Figure 3a, we prepared fumed silicas with a combination of surface groups, for example, an octyl chain with different coverages of tethered methacrylates. The length of the tether was varied, and we found that both C{sub 3} and C{sub 8} tethers gave useful composites. The functionalized silicas were combined with PEG-DM, AIBN or benzophenone (free radical initiators), LiClO{sub 4} or Li imide, and either methyl, butyl, or octyl, methacrylate to form stable clear gels. Upon irradiation with UV light, polymerization of both the tethered methacrylate and the added methacrylate took place, yielding a cross-linked rubbery composite material. Ionic conductivity measurements before and after cross-linking showed only a slight decrease (see Figure 9 later), thereby offering strong experimental evidence that the mechanical properties conferred by the silica matrix are de-coupled from the ionic conductivity of the PEG

  9. High cation transport polymer electrolyte

    DOEpatents

    Gerald, II, Rex E.; Rathke, Jerome W.; Klingler, Robert J.

    2007-06-05

    A solid state ion conducting electrolyte and a battery incorporating same. The electrolyte includes a polymer matrix with an alkali metal salt dissolved therein, the salt having an anion with a long or branched chain having not less than 5 carbon or silicon atoms therein. The polymer is preferably a polyether and the salt anion is preferably an alkyl or silyl moiety of from 5 to about 150 carbon/silicon atoms.

  10. Effects of Silica Nanostructures in Poly(ethylene oxide)-Based Composite Polymer Electrolytes.

    PubMed

    Mohanta, Jagdeep; Anwar, Shahid; Si, Satyabrata

    2016-06-01

    The present work describes the synthesis of some poly(ethylene oxide)-based nanocomposite polymer electrolyte films using various silica nanostructures as the inorganic filler by simple solution mixing technique, in which the nature of the silica nanostructures play a vital role in modulating their electrochemical performances at room temperature. The silica nanostructures are prepared by ammonical hydrolysis of tetraethyl orthosilicate following the modified St6ber method. The resulting films are characterized by X-ray diffraction and differential scanning calorimeter to study their crystallinity. Room temperature AC impedance spectroscopy is utilized to determine the Li+ ion conductivity of the resulting films. The observed conductivity values of various NCPE films depend on the nature of silica filling as well as on their surface characteristics and also on the varying PEO-Li+ ratio, which is observed to be in the order of 10(-7)-10(-6) S cm(-1). PMID:27427686

  11. Polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Gottesfeld, S.

    The recent increase in attention to polymer electrolyte fuel cells (PEFC's) is the result of significant technical advances in this technology and the initiation of some projects for the demonstration of complete PEFC-based power system in a bus or in a passenger car. A PEFC powered vehicle has the potential for zero emission, high energy conversion efficiency and extended range compared to present day battery powered EV's. This paper describes recent achievements in R&D on PEFC's. The major thrust areas have been: (1) demonstration of membrane/electrode assemblies with stable high performance in life tests lasting 4000 hours, employing ultra-low Pt loadings corresponding to only 1/2 oz of Pt for the complete power source of a passenger car; (2) effective remedies for the high sensitivity of the Pt electrocatalyst to impurities in the fuel feed stream; and (3) comprehensive evaluation of the physicochemical properties of membrane and electrodes in the PEFC, clarifying the water management issues and enabling effective codes and diagnostics for this fuel cell.

  12. Study on characteristics of PVDF/nano-clay composite polymer electrolyte using PVP as pore-forming agent

    NASA Astrophysics Data System (ADS)

    Dyartanti, Endah R.; Purwanto, Agus; Widiasa, I. Nyoman; Susanto, Heru

    2016-02-01

    Polyvinylidene fluoride (PVDF) based polymer electrolytes have a high dielectric constant, which can assist in greater ionization of lithium salts. The main advantages of PVDF are its durability in long battery operation and its ability to be a good ion conductor. However, the limitation of this polymer is its crystalline molecular structure. Dispersing nano-particles in the polymer matrix may improve the characteristics of the PVDF polymer. This paper aims to investigate the impact of nano-clay addition on the characteristics of PVDF polymer to be used as a polymer electrolyte membrane. In addition, the effect of poly(vinyl pyrrolidone) (PVP) is also investigated. The membrane was prepared by phase separation method whereas the polymer electrolyte membranes was prepared by immersing into 1 M lithium hexafluorophosphate (LiPF6) in ethylene carbonate/dimethyl carbonate (EC/DMC) electrolytes for 1 h. The membranes were characterized by scanning electron microscope (SEM), porosity and electrolyte uptake and performance in battery cell. The results showed that both nano-clay and PVP have significant impacts on the improvement of PVDF membranes to be used as polymer electrolyte.

  13. Novel electrospun poly(vinylidene fluoride- co-hexafluoropropylene)-in situ SiO 2 composite membrane-based polymer electrolyte for lithium batteries

    NASA Astrophysics Data System (ADS)

    Raghavan, Prasanth; Choi, Jae-Won; Ahn, Jou-Hyeon; Cheruvally, Gouri; Chauhan, Ghanshyam S.; Ahn, Hyo-Jun; Nah, Changwoon

    Composite membranes of poly(vinylidene fluoride- co-hexafluoropropylene) {P(VdF-HFP)} and different composition of silica have been prepared by electrospinning polymer solution containing in situ generated silica. These membranes are made up of fibers of 1-2 μm diameters. These fibers are stacked in layers to produce fully interconnected pores that results in high porosity. Polymer electrolytes were prepared by immobilizing 1 M LiPF 6 in ethylene carbonate (EC)/dimethyl carbonate (DMC) in the membranes. The composite membranes exhibit a high electrolyte uptake of 550-600%. The optimum electrochemical properties have been observed for the polymer electrolyte containing 6% in situ silica to show ionic conductivity of 8.06 mS cm -1 at 20 °C, electrolyte retention ratio of 0.85, anodic stability up to 4.6 V versus Li/Li +, and a good compatibility with lithium metal resulting in low interfacial resistance. A first cycle specific capacity of 170 mAh g -1 was obtained when the polymer electrolyte was evaluated in a Li/lithium iron phosphate (LiFePO 4) cell at 0.1 C-rate at 25 °C, corresponding to 100% utilization of the cathode material. The properties of composite membrane prepared with in situ silica were observed to be comparatively better than the one prepared by direct addition of silica.

  14. High elastic modulus polymer electrolytes

    DOEpatents

    Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2013-10-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics.

  15. Preparation of composite polymer electrolytes by electron beam-induced grafting: Proton- and lithium ion-conducting membranes

    NASA Astrophysics Data System (ADS)

    Nasef, M. M.; Saidi, H.; Dahlan, K. Z. M.

    2007-12-01

    Two classes of composite polymer electrolyte membranes, one conducting lithium ions (Li +) and the other conducting protons (H +) were prepared using simultaneous electron beam-induced grafting. Porous poly(vinylidene fluoride) (PVDF) films were impregnated with styrene and subjected to electron beam (EB) irradiation to obtain polystyrene (PS) filled PVDF precursor films that were subsequently treated with either chlorosulfonic acid/1,1,2,2-tetrachloroethane mixture to obtain H +-conducting composite membranes or LiPH 6/EC/DEC liquid electrolyte to obtain Li +-conducting composite membranes. The properties of the obtained membranes were evaluated using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and AC impedance measurements. The obtained membranes were found to achieve grafting content up to 46% with superior Li +-conductivity of 1.91 × 10 -3 S/cm and H +-conductivity of 5.95 × 10 -2 S/cm. The results of this work show that simultaneous radiation-induced grafting with EB is a promising method to prepare high quality ion-conducting membranes for possible use in fuel cells and lithium batteries.

  16. Polymer electrolyte system based on carrageenan-poly(3,4- ethylenedioxythiophene) (PEDOT) composite for dye sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Ng, C. A.; Camacho, D. H.

    2015-06-01

    Poly(3,4-ethylenedioxythiophene) (PEDOT)-κ-carregeenan polymer electrolyte blend was prepared and incorporated as the electrolyte system in dye-sensitized solar cells (DSSC). Polymer blends prepared with different κ-carrageenan concentrations and molecular weights were investigated. It was found that the conductivity of the polymer blend increases with higher κ-carrageenan concentration, and lowers with degraded κ-carregeenan. The polymer blend was incorporated in a DSSC and yielded a solar cell with efficiency (η) of 0.421%.

  17. Elastomer based composite materials for bipolar plates in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Petrach, Elaine M.

    2011-07-01

    In most investigations, polymer conductive composite bipolar plates have failed to achieve the low resistivity required for PEMFCs. The goal of this dissertation is to investigate whether a composite of conductive fillers and a two-phase polymeric matrix will achieve low resistivity through preferred distribution of the fillers at the interface of the two phases. The use of an elastomer as one component of the blend will impart fracture resistance. Three types of matrices were investigated, a single phase polyvinyl ester plastic matrix, a compatible one-phase blend of polyvinyl ester (VER) and polyurethane (PU) elastomer, and a two-phase system of polyvinyl ester and ethylene propylene diene monomer (EPDM) elastomer. The different phases were determined by the theory of mixing. When solubility parameters are closer together it is likely that the system will be one phase. The one and two-phase systems were analyzed within the composition containing natural Cytec DKD graphite fibers, Asbury synthetic graphite 4012 flakes and ultra high surface area synthetic graphite TC 307. Phase systems affect the mechanical, electrical, and thermal properties. The percolation theory analysis was applied to determine the optimal percentage of conductive fillers and polymer blends. The optimal composition for composite materials consisted of 35vo1% of conductive fillers and 65vo1% of a two-phase blend matrix. The conductive filler included 3vol% of synthetic graphite TC307, 25.5vol% of Cytec DKD graphite fibers and 6.5vol% of Asbury synthetic graphite 4012 flakes. The two-phase blend matrix included 40vol% of EPDM to 60vol% of VER. This resulted in an electrical resistivity of 0.009O-cm and a thermal conductivity of 11.6W/m-K. The two-phase blend matrix added more ductility to the composition with the ability to withstand a stress of 10MPa with over 1% strain applied to the overall composite bipolar plates. The composition also absorbed 60% more mechanical energy than that

  18. Determination of the interaction using FTIR within the composite gel polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Huang, Yun; Ma, Xiaoyan; Wang, Xu; Liang, Xiao

    2013-01-01

    In the previous research, the gel polymer electrolyte (GPE) which consisted of poly(methyl methacrylate) (PMMA) matrix, propylene carbonate (PC), LiClO4 and OREC (Rectorite modified with dodecyl benzyl dimethyl ammonium chloride), achieved satisfactory properties. In the paper, the interaction between components was quantitatively determined. Characterization of interaction of Cdbnd O in PC and PMMA with Li+ and OH group on OREC surface has been thoroughly examined using FTIR, respectively. The quantitative analysis of FTIR shows that the absorptivity coefficient a of PMMA/LiClO4, PC/LiClO4, PC/OREC and PMMA/OREC is 0.902, 0.113, 0.430 and 0.753, respectively, which means that the Li+ or OH bonded Cdbnd O is more sensitive than the free Cdbnd O in FTIR spectra. The limit value of bonded Cdbnd O equivalent fraction of PMMA/LiClO4, PC/LiClO4, PC/OREC and PMMA/OREC is 17%, 94%, 57% and 20%, respectively, which implies that all the interaction within the components is reversible and the intensity of interaction is ordered as PC/LiClO4, PC/OREC, PMMA/OREC and PMMA/LiClO4.

  19. Composite PEOn:NaTFSI polymer electrolyte: Preparation, thermal and electrochemical characterization

    NASA Astrophysics Data System (ADS)

    Serra Moreno, J.; Armand, M.; Berman, M. B.; Greenbaum, S. G.; Scrosati, B.; Panero, S.

    2014-02-01

    Membranes of sodium bis(trifluoromethanesulfonate) imide (NaTFSI) complexed with poly(ethylene oxide) (PEO) salt have been prepared by a solvent-free hot-pressing technique with different EO:Na molar ratio. All membranes show good ionic conductivities in the range of 10-3 S cm-1 above 70 °C. However, the more NaTFSI-concentrated samples are sticky gums due to the plasticizing nature of the anion. The PEO20:NaTFSI sample exhibits the compromise of conductivity, thermal and mechanical properties. The addition of nanometric SiO2 to the PEO20:NaTFSI membranes further enhances their mechanical properties. Moreover, the PEO20:NaTFSI + 5 wt.% SiO2 membranes show similar ionic conductivity and similar anodic electrochemical stability in comparison to the ceramic free PEO20:NaTFSI sample. In a Na(s)/polymer electrolyte/Na(s) symmetrical cell followed up to 30 days, the presence of the ceramic filler slightly increased the interface resistance in comparison to the ceramic-free membrane. Nuclear magnetic resonance determinations of anion diffusion coefficients and Na+ mobility suggest that presence of filler may have a positive affect on the cation transference number that is in accordance with the tNa+ transference number measurement.

  20. A novel lithium/sulfur battery based on sulfur/graphene nanosheet composite cathode and gel polymer electrolyte

    PubMed Central

    2014-01-01

    A novel sulfur/graphene nanosheet (S/GNS) composite was prepared via a simple ball milling of sulfur with commercial multi-layer graphene nanosheet, followed by a heat treatment. High-resolution transmission and scanning electronic microscopy observations showed the formation of irregularly interlaced nanosheet-like structure consisting of graphene with uniform sulfur coating on its surface. The electrochemical properties of the resulting composite cathode were investigated in a lithium cell with a gel polymer electrolyte (GPE) prepared by trapping 1 mol dm−3 solution of lithium bistrifluoromethanesulfonamide in tetraethylene glycol dimethyl ether in a polymer matrix composed of poly(vinylidene fluoride-co-hexafluoropropylene)/poly(methylmethacrylate)/silicon dioxide (PVDF-HFP/PMMA/SiO2). The GPE battery delivered reversible discharge capacities of 809 and 413 mAh g−1 at the 1st and 50th cycles at 0.2C, respectively, along with a high coulombic efficiency over 50 cycles. This performance enhancement of the cell was attributed to the suppression of the polysulfide shuttle effect by a collective effect of S/GNS composite cathode and GPE, providing a higher sulfur utilization. PMID:24655466

  1. A novel lithium/sulfur battery based on sulfur/graphene nanosheet composite cathode and gel polymer electrolyte.

    PubMed

    Zhang, Yongguang; Zhao, Yan; Bakenov, Zhumabay

    2014-01-01

    A novel sulfur/graphene nanosheet (S/GNS) composite was prepared via a simple ball milling of sulfur with commercial multi-layer graphene nanosheet, followed by a heat treatment. High-resolution transmission and scanning electronic microscopy observations showed the formation of irregularly interlaced nanosheet-like structure consisting of graphene with uniform sulfur coating on its surface. The electrochemical properties of the resulting composite cathode were investigated in a lithium cell with a gel polymer electrolyte (GPE) prepared by trapping 1 mol dm-3 solution of lithium bistrifluoromethanesulfonamide in tetraethylene glycol dimethyl ether in a polymer matrix composed of poly(vinylidene fluoride-co-hexafluoropropylene)/poly(methylmethacrylate)/silicon dioxide (PVDF-HFP/PMMA/SiO2). The GPE battery delivered reversible discharge capacities of 809 and 413 mAh g-1 at the 1st and 50th cycles at 0.2C, respectively, along with a high coulombic efficiency over 50 cycles. This performance enhancement of the cell was attributed to the suppression of the polysulfide shuttle effect by a collective effect of S/GNS composite cathode and GPE, providing a higher sulfur utilization. PMID:24655466

  2. A novel lithium/sulfur battery based on sulfur/graphene nanosheet composite cathode and gel polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Zhang, Yongguang; Zhao, Yan; Bakenov, Zhumabay

    2014-03-01

    A novel sulfur/graphene nanosheet (S/GNS) composite was prepared via a simple ball milling of sulfur with commercial multi-layer graphene nanosheet, followed by a heat treatment. High-resolution transmission and scanning electronic microscopy observations showed the formation of irregularly interlaced nanosheet-like structure consisting of graphene with uniform sulfur coating on its surface. The electrochemical properties of the resulting composite cathode were investigated in a lithium cell with a gel polymer electrolyte (GPE) prepared by trapping 1 mol dm-3 solution of lithium bistrifluoromethanesulfonamide in tetraethylene glycol dimethyl ether in a polymer matrix composed of poly(vinylidene fluoride-co-hexafluoropropylene)/poly(methylmethacrylate)/silicon dioxide (PVDF-HFP/PMMA/SiO2). The GPE battery delivered reversible discharge capacities of 809 and 413 mAh g-1 at the 1st and 50th cycles at 0.2C, respectively, along with a high coulombic efficiency over 50 cycles. This performance enhancement of the cell was attributed to the suppression of the polysulfide shuttle effect by a collective effect of S/GNS composite cathode and GPE, providing a higher sulfur utilization. PACS: 82.47.Aa; 82.45.Gj; 62.23.Kn

  3. Mechanical and water sorption properties of nafion and composite nafion/titanium dioxide membranes for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Satterfield, May Barclay

    The mechanical properties of the membranes used in polymer electrolyte membrane fuel cells are important to the performance and longevity of the cell. The speed and extent of membrane water uptake depend on the membrane's viscoelastic mechanical properties, which are themselves dependent on membrane hydration, and increased hydration improves membrane proton conductivity and fuel cell performance. Membrane mechanical properties also affect durability and cell longevity, preventing membrane failure from stresses induced by changing temperature and water content during operational cycling. Further, membrane creep and stress-relaxation can change the extent of membrane/electrode contact, also changing cell behavior. New composite membrane materials have exhibited superior performance in fuel cells, and it is suspected that improved mechanical properties are responsible. Studies of polymer electrolyte membrane (PEM) fuel cell dynamics using Nafion membranes have demonstrated the importance of membrane mechanical properties, swelling and water-absorption behavior to cell performance. Nonlinear and delayed dynamic responses to changing operating parameters were unexpected, but reminiscent of polymer viscoelastic behavior and water sorption dynamics, illustrating the need to better understand membrane properties to design and operate fuel cells. Further, Nafion/TiO2 composite membranes developed by the Princeton Chemistry Department improve fuel cell performance, which may be due to changes in membrane microstructure and enhanced mechanical properties. Mechanical properties, stress-relaxation behavior, water sorption and desorption rates and pressures exerted during hydration by a confined membrane have been measured for Nafion and for Nafion/TiO2 composite membranes. Mechanical properties, including the Young's modulus and limits of elastic deformation are dependent on temperature and membrane water content. The Young's modulus decreases with increasing water content and

  4. Study on ion conductivity and crystallinity of composite polymer electrolytes based on poly(ethylene oxide)/poly(acrylonitrile) containing nano-sized Al2O3 fillers.

    PubMed

    Kim, Mingyeong; Lee, Lyungyu; Jung, Yongju; Kim, Seok

    2013-12-01

    In this paper, composite polymer electrolytes were prepared by a blend of poly(ethylene oxide) (PEO) and poly(acrylonitrile) (PAN) as a polymer matrix, ethylene carbonate as a plasticizer, LiClO4 as a salt, and by containing a different content of nano-sized Al2O3. The composite films were prepared by using the solution casting method. The crystallinity and ionic conductivity of the polymer electrolytes was investigated using X-ray diffraction (XRD) and AC impedance method, respectively. The morphology of composite polymer electrolyte film was analyzed by SEM method. From the experimental results, by increasing the Al2O3 content, the crystallinity of PEO was reduced, and the ionic conductivity was increased. In particular, by a doping of 15 wt.% Al2O3 in PEO/PAN polymer blend, the CPEs showed the superior ionic conductivity. However, when Al2O3 content exceeds 15 wt.%, the ionic conductivity was decreased. From the surface morphology, it was concluded that the ionic conductivity was decreased because the CPEs showed a heterogenous morphology due to immiscibility or aggregation of the ceramic filler within the polymer matrix. PMID:24266154

  5. Polymer Electrolytes for Lithium/Sulfur Batteries

    PubMed Central

    Zhao, Yan; Zhang, Yongguang; Gosselink, Denise; Doan, The Nam Long; Sadhu, Mikhail; Cheang, Ho-Jae; Chen, Pu

    2012-01-01

    This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S) batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes. PMID:24958296

  6. Solid polymer electrolyte photovoltaic cell

    SciTech Connect

    Skotheim, T.; Lundstrom, I.

    1982-04-01

    Solid photoelectrochemical cells are described based on PEO-KI/I/sub 2/ electrolytes, n-Si/Pt/PPy photoanodes, and conductive tin-oxide glass counter electrodes. The performance of the present devices is limited by a high series resistance in the polymer film. 22 refs.

  7. New approaches towards novel composite and multilayer membranes for intermediate temperature-polymer electrolyte fuel cells and direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Branco, Carolina Musse; Sharma, Surbhi; de Camargo Forte, Maria Madalena; Steinberger-Wilckens, Robert

    2016-06-01

    This review analyses the current and existing literature on novel composite and multilayer membranes for Polymer Electrolyte Fuel Cell applications, including intermediate temperature polymer electrolyte fuel cell (IT-PEFC) and direct methanol fuel cell (DMFC) systems. It provides a concise scrutiny of the vast body of literature available on organic and inorganic filler based polymer membranes and links it to the new emerging trend towards novel combinations of multilayered polymer membranes for applications in DMFC and IT-PEFC. The paper carefully explores the advantages and disadvantages of the most common preparation techniques reported for multilayered membranes such as hot-pressing, casting and dip-coating and also summarises various other fresh and unique techniques employed for multilayer membrane preparation.

  8. Preparation and characterization on nano-hybrid composite solid polymer electrolyte of PVdF-HFP /MG49-ZrO{sub 2} for battery application

    SciTech Connect

    Lee, T. K.; Ahmad, A.; Hasyareeda, N.

    2014-09-03

    Initial study on nano composite polymer electrolyte of PVdF-HFP/MG49-ZrO{sub 2} has been done. The zirconium was synthesis via in-situ sol-gel method in a dissolved polymer blends. The effects of different concentrations of zirconium and pH values have been investigated on nano composite polymer (NCP). Analysis impedance show that only at 6 wt. % of zirconium for all pH values show a semi-circle arc which have lowest value of bulk resistance. No ionic conductivity value is obtain due to the absent of ion charge carriers. Analysis of XRD revealed that crystallinity phase of the nano composite polymer was affect by different pH values. However, no significant changes have been observed in IR bands. This could well indicate that different pH medium did not affect the chemical bonding in the structure.

  9. Preparation and characterization on nano-hybrid composite solid polymer electrolyte of PVdF-HFP /MG49-ZrO2 for battery application

    NASA Astrophysics Data System (ADS)

    Lee T., K.; Ahmad, A.; Hasyareeda, N.

    2014-09-01

    Initial study on nano composite polymer electrolyte of PVdF-HFP/MG49-ZrO2 has been done. The zirconium was synthesis via in-situ sol-gel method in a dissolved polymer blends. The effects of different concentrations of zirconium and pH values have been investigated on nano composite polymer (NCP). Analysis impedance show that only at 6 wt. % of zirconium for all pH values show a semi-circle arc which have lowest value of bulk resistance. No ionic conductivity value is obtain due to the absent of ion charge carriers. Analysis of XRD revealed that crystallinity phase of the nano composite polymer was affect by different pH values. However, no significant changes have been observed in IR bands. This could well indicate that different pH medium did not affect the chemical bonding in the structure.

  10. Dielectric relaxations and conduction mechanisms in polyether-clay composite polymer electrolytes under high carbon dioxide pressure.

    PubMed

    Kitajima, Shunsuke; Bertasi, Federico; Vezzù, Keti; Negro, Enrico; Tominaga, Yoichi; Di Noto, Vito

    2013-10-21

    The composite material P(EO/EM)-Sa consisting of synthetic saponite (Sa) dispersed in poly[ethylene oxide-co-2-(2-methoxyethoxy)ethyl glycidyl ether] (P(EO/EM)) is studied by "in situ" measurements using broadband electrical spectroscopy (BES) under pressurized CO2 to characterize the dynamic behavior of conductivity and the dielectric relaxations of the ion host polymer matrix. It is revealed that there are three dielectric relaxation processes associated with: (I) the dipolar motions in the short oxyethylene side chains of P(EO/EM) (β); and (II) the segmental motion of the main chains comprising the polyether components (αfast, αslow). αslow is attributed to the slow α-relaxation of P(EO/EM) macromolecules, which is hindered by the strong coordination interactions with the ions. Two conduction processes are observed, σDC and σID, which are attributed, respectively, to the bulk conductivity and the interdomain conductivity. The temperature dependence of conductivity and relaxation processes reveals that αfast and αslow are strongly correlated with σDC and σID. The "in situ" BES measurements under pressurized CO2 indicate a fast decrease in σDC at the initial CO2 treatment time resulting from the decrease in the concentration of polyether-M(n+) complexes, which is driven by the CO2 permeation. The relaxation frequency (fR) of αslow at the initial CO2 treatment time increases and shows a steep rise with time with the same behavior of the αfast mode. It is demonstrated that the interactions between polyether chains of P(EO/EM) and cations in the polymer electrolyte layers embedded in Sa are probably weakened by the low permittivity of CO2 (ε = 1.08). Thus, the formation of ion pairs in the polymer electrolyte domains of P(EO/EM)-Sa occurs, with a corresponding reduction in the concentration of ion carriers. PMID:23963202

  11. A Cross-Linking Succinonitrile-Based Composite Polymer Electrolyte with Uniformly Dispersed Vinyl-Functionalized SiO2 Particles for Li-Ion Batteries.

    PubMed

    Liu, Kai; Ding, Fei; Liu, Jiaquan; Zhang, Qingqing; Liu, Xingjiang; Zhang, Jinli; Xu, Qiang

    2016-09-14

    A cross-linking succinonitrile (SN)-based composite polymer electrolyte (referred to as "CLPC-CPE"), in which vinyl-functionalized SiO2 particles connect with trimethylolpropane propoxylate triacrylate (TPPTA) monomers by covalent bonds, was prepared by an ultraviolet irradiation (UV-curing) process successfully. Vinyl-functionalized SiO2 particles may react with TPPTA monomers to form a cross-linking network within the SN-based composite polymer electrolyte under ultraviolet irradiation. Vinyl-functionalized SiO2 particles as the fillers of polymer electrolyte may improve both the thermal stability of CLPC-CPE and interfacial compatibility between CLPC-CPE and electrodes effectively. There is no weight loss for CLPC-CPE until above 230 °C. The ionic conductivity of CLPC-CPE may reach 7.02 × 10(-4) S cm(-1) at 25 °C. CLPC-CPE has no significant oxidation current until up to 4.6 V (vs Li/Li(+)). The cell of LiFePO4/CLPC-CPE/Li has presented superior cycle performance and rate capability. The cell of LiFePO4/CLPC-CPE/Li may deliver a high discharge capacity of 154.4 mAh g(-1) at a rate of 0.1 C after 100 charge-discharge cycles, which is similar than that of the control cell of LiFePO4/liquid electrolyte/Li. Furthermore, the cell of LiFePO4/CLPC-CPE/Li can display a high discharge capacity of 112.7 mAh g(-1) at a rate of 2 C, which is higher than that of the cells assembled with other plastic crystal polymer electrolyte reported before obviously. PMID:27561892

  12. Self-doped molecular composite battery electrolytes

    DOEpatents

    Harrup, Mason K.; Wertsching, Alan K.; Stewart, Frederick F.

    2003-04-08

    This invention is in solid polymer-based electrolytes for battery applications. It uses molecular composite technology, coupled with unique preparation techniques to render a self-doped, stabilized electrolyte material suitable for inclusion in both primary and secondary batteries. In particular, a salt is incorporated in a nano-composite material formed by the in situ catalyzed condensation of a ceramic precursor in the presence of a solvated polymer material, utilizing a condensation agent comprised of at least one cation amenable to SPE applications. As such, the counterion in the condensation agent used in the formation of the molecular composite is already present as the electrolyte matrix develops. This procedure effectively decouples the cation loading levels required for maximum ionic conductivity from electrolyte physical properties associated with condensation agent loading levels by utilizing the inverse relationship discovered between condensation agent loading and the time domain of the aging step.

  13. Composite Solid Electrolyte Containing Li+- Conducting Fibers

    NASA Technical Reports Server (NTRS)

    Appleby, A. John; Wang, Chunsheng; Zhang, Xiangwu

    2006-01-01

    Improved composite solid polymer electrolytes (CSPEs) are being developed for use in lithium-ion power cells. The matrix components of these composites, like those of some prior CSPEs, are high-molecular-weight dielectric polymers [generally based on polyethylene oxide (PEO)]. The filler components of these composites are continuous, highly-Li(+)-conductive, inorganic fibers. PEO-based polymers alone would be suitable for use as solid electrolytes, were it not for the fact that their room-temperature Li(+)-ion conductivities lie in the range between 10(exp -6) and 10(exp -8) S/cm, too low for practical applications. In a prior approach to formulating a CSPE, one utilizes nonconductive nanoscale inorganic filler particles to increase the interfacial stability of the conductive phase. The filler particles also trap some electrolyte impurities. The achievable increase in conductivity is limited by the nonconductive nature of the filler particles.

  14. Effects of TiO2 addition on ionic conductivity of PVC/PEMA blend based composite polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Subban, R. H. Y.; Sukri, Nursyazwani

    2015-08-01

    PVC/PEMA blend based polymer electrolytes with lithium bistrifluoromethane sulfonimide (LiN(CF3SO2)2) and PVC/PEMA/(LiN(CF3SO2)2-TiO2 films were prepared by solution cast technique. The sample containing 35 wt. % LiN(CF3SO2)2 exhibited the highest conductivity of 1.75 × 10-5 Scm-1. The conductivity of the sample increased to 2.12 × 10-5 Scm-1 and 4.61 × 10-5 Scm-1 when 4 wt. % and 10 wt. % of titanium dioxide (TiO2) was added to the sample at 65 wt. % PVC/PEMA-35 wt. % LiN(CF3SO2)2 composition respectively. The low increase in conductivity is attributed to two competing factors: increase in crystallinity as accounted by X-Ray diffraction (XRD) and decrease in glass transition temperature as accounted by differential scanning calorimetry (DSC).

  15. Effects of TiO{sub 2} addition on ionic conductivity of PVC/PEMA blend based composite polymer electrolyte

    SciTech Connect

    Subban, R. H. Y.; Sukri, Nursyazwani

    2015-08-28

    PVC/PEMA blend based polymer electrolytes with lithium bistrifluoromethane sulfonimide (LiN(CF{sub 3}SO{sub 2}){sub 2}) and PVC/PEMA/(LiN(CF{sub 3}SO{sub 2}){sub 2}-TiO{sub 2} films were prepared by solution cast technique. The sample containing 35 wt. % LiN(CF{sub 3}SO{sub 2}){sub 2} exhibited the highest conductivity of 1.75 × 10{sup −5} Scm{sup −1}. The conductivity of the sample increased to 2.12 × 10{sup −5} Scm{sup −1} and 4.61 × 10{sup −5} Scm{sup −1} when 4 wt. % and 10 wt. % of titanium dioxide (TiO{sub 2}) was added to the sample at 65 wt. % PVC/PEMA-35 wt. % LiN(CF{sub 3}SO{sub 2}){sub 2} composition respectively. The low increase in conductivity is attributed to two competing factors: increase in crystallinity as accounted by X-Ray diffraction (XRD) and decrease in glass transition temperature as accounted by differential scanning calorimetry (DSC)

  16. Electrochromic Device with Polymer Electrolyte

    NASA Astrophysics Data System (ADS)

    Solovyev, Andrey A.; Zakharov, Alexander N.; Rabotkin, Sergey V.; Kovsharov, Nikolay F.

    2016-08-01

    In this study a solid-state electrochromic device (ECD) comprised of a WO3 and Prussian blue (Fe4[Fe(CN)6]3) thin film couple with a Li+-conducting solid polymer electrolyte is discussed. WO3 was deposited on K-Glass substrate by magnetron sputtering method, while Prussian blue layer was formed on the same substrate by electrodeposition method. The parameters of the electrochromic device K-Glass/WO3/Li+-electrolyte/PB/K-Glass, such as change of transmittance, response time and stability were successfully tested using coupled optoelectrochemical methods. The device was colored or bleached by the application of +2 V or -2 V, respectively. Light modulation with transmittance variation of up to 59% and coloration efficiency of 43 cm2/C at a wavelength of 550 nm were obtained. Numerous switching of the ECD over 1200 cycles without the observation of significant degradation has been demonstrated.

  17. Electrochromic Device with Polymer Electrolyte

    NASA Astrophysics Data System (ADS)

    Solovyev, Andrey A.; Zakharov, Alexander N.; Rabotkin, Sergey V.; Kovsharov, Nikolay F.

    2016-05-01

    In this study a solid-state electrochromic device (ECD) comprised of a WO3 and Prussian blue (Fe4[Fe(CN)6]3) thin film couple with a Li+-conducting solid polymer electrolyte is discussed. WO3 was deposited on K-Glass substrate by magnetron sputtering method, while Prussian blue layer was formed on the same substrate by electrodeposition method. The parameters of the electrochromic device K-Glass/WO3/Li+-electrolyte/PB/K-Glass, such as change of transmittance, response time and stability were successfully tested using coupled optoelectrochemical methods. The device was colored or bleached by the application of +2 V or -2 V, respectively. Light modulation with transmittance variation of up to 59% and coloration efficiency of 43 cm2/C at a wavelength of 550 nm were obtained. Numerous switching of the ECD over 1200 cycles without the observation of significant degradation has been demonstrated.

  18. Hydrocarbon-based polymer electrolyte cerium composite membranes for improved proton exchange membrane fuel cell durability

    NASA Astrophysics Data System (ADS)

    Lee, Hyejin; Han, Myungseong; Choi, Young-Woo; Bae, Byungchan

    2015-11-01

    Hydrocarbon-based cerium composite membranes were prepared for proton exchange membrane fuel cell applications to increase oxidative stability. Different amounts of cerium ions were impregnated in sulfonated poly(arylene ether sulfone) (SPES) membranes and their physicochemical properties were investigated according to the cerium content. Field-emission scanning electron microscopy and inductively coupled plasma analyses confirmed the presence of cerium ions in the composite membranes and 1H NMR indicated the successful coordination of sulfonic acid groups with the metal ions. Increasing amounts of cerium ions resulted in decreases in the proton conductivity and water uptake, but enhanced oxidative stability. The oxidative stability of the composite membranes was proven via a hydrogen peroxide exposure experiment which mimicked fuel cell operating conditions. In addition, more than 2200 h was achieved with the composite membrane under in situ accelerated open circuit voltage (OCV) durability testing (DOE protocol), whereas the corresponding pristine SPES membrane attained only 670 h.

  19. Silicone as a binder in composite electrolytes

    NASA Astrophysics Data System (ADS)

    Inada, Taro; Takada, Kazunori; Kajiyama, Akihisa; Sasaki, Hideki; Kondo, Shigeo; Watanabe, Mamoru; Murayama, Masahiro; Kanno, Ryoji

    A liquid silicone was used as a binder to make composite solid electrolytes from lithium-ion conductive inorganic solid electrolytes (ISEs): an oxysulfide glass, 0.01Li 3PO 4-0.63Li 2S-0.36SiS 2 and/or a lithium germanium thio-phosphate, Li 3.25Ge 0.25P 0.75S 4. Ionic conductivities of the composites were of the order of 10 -4 Scm -1, even when the silicone was enriched to 10% (v/v). On the other hand, the composite with styrene-butadiene block co-polymer (SBR) or polypropylene oxide-polyethylene oxide (PO-EO) co-polymer as binder showed much lower conductivity. In the composite electrolyte, the silicone rubber must partly cover the surface of the ISE particles because the composite electrolyte is molded before the vulcanization of the fluid liquid silicone; and thus, it must rarely interfere with the conduction between the ISE particles. Hydrocarbons were found to be suitable in the preparation process of the composite solid electrolyte (CSE).

  20. Nanocomposite polymer electrolyte for rechargeable magnesium batteries

    SciTech Connect

    Shao, Yuyan; Rajput, Nav Nidhi; Hu, Jian Z.; Hu, Mary Y.; Liu, Tianbiao L.; Wei, Zhehao; Gu, Meng; Deng, Xuchu; Xu, Suochang; Han, Kee Sung; Wang, Jiulin; Nie, Zimin; Li, Guosheng; Zavadil, K.; Xiao, Jie; Wang, Chong M.; Henderson, Wesley A.; Zhang, Jiguang; Wang, Yong; Mueller, Karl T.; Persson, Kristin A.; Liu, Jun

    2014-12-28

    Nanocomposite polymer electrolytes present new opportunities for rechargeable magnesium batteries. However, few polymer electrolytes have demonstrated reversible Mg deposition/dissolution and those that have still contain volatile liquids such as tetrahydrofuran (THF). In this work, we report a nanocomposite polymer electrolyte based on poly(ethylene oxide) (PEO), Mg(BH4)2 and MgO nanoparticles for rechargeable Mg batteries. Cells with this electrolyte have a high coulombic efficiency of 98% for Mg plating/stripping and a high cycling stability. Through combined experiment-modeling investigations, a correlation between improved solvation of the salt and solvent chain length, chelation and oxygen denticity is established. Following the same trend, the nanocomposite polymer electrolyte is inferred to enhance the dissociation of the salt Mg(BH4)2 and thus improve the electrochemical performance. The insights and design metrics thus obtained may be used in nanocomposite electrolytes for other multivalent systems.

  1. Bacterial nanocellulose/Nafion composite membranes for low temperature polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Jiang, Gao-peng; Zhang, Jing; Qiao, Jin-li; Jiang, Yong-ming; Zarrin, Hadis; Chen, Zhongwei; Hong, Feng

    2015-01-01

    Novel nanocomposite membranes aimed for both proton-exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) are presented in this work. The membranes are based on blending bacterial nanocellulose pulp and Nafion (abbreviated as BxNy, where x and y indicates the mass ratio of bacterial cellulose to Nafion). The structure and properties of BxNy membranes are characterized by FTIR, SEM, TG, DMA and EIS, along with water uptake, swelling behavior and methanol permeability tests. It is found that the BxNy composite membranes with reinforced concrete-like structure show excellent mechanical and thermal stability regardless of annealing. The water uptake plus area and volume swelling ratios are all decreased compared to Nafion membranes. The proton conductivities of pristine and annealed B1N9 are 0.071 and 0.056 S cm-1, respectively, at 30 °C and 100% humidity. Specifically, annealed B1N1 exhibited the lowest methanol permeability of 7.21 × 10-7 cm2 s-1. Through the selectivity analysis, pristine and annealed B1N7 are selected to assemble the MEAs. The performances of annealed B1N7 in PEMFC and DMFC show the maximum power densities of 106 and 3.2 mW cm-2, respectively, which are much higher than those of pristine B1N7 at 25 °C. The performances of the pristine and annealed B1N7 reach a level as high as 21.1 and 20.4 mW cm-2 at 80 °C in DMFC, respectively.

  2. Cured composite materials for reactive metal battery electrolytes

    DOEpatents

    Harrup, Mason K.; Stewart, Frederick F.; Peterson, Eric S.

    2006-03-07

    A solid molecular composite polymer-based electrolyte is made for batteries, wherein silicate compositing produces a electrolytic polymer with a semi-rigid silicate condensate framework, and then mechanical-stabilization by radiation of the outer surface of the composited material is done to form a durable and non-tacky texture on the electrolyte. The preferred ultraviolet radiation produces this desirable outer surface by creating a thin, shallow skin of crosslinked polymer on the composite material. Preferably, a short-duration of low-medium range ultraviolet radiation is used to crosslink the polymers only a short distance into the polymer, so that the properties of the bulk of the polymer and the bulk of the molecular composite material remain unchanged, but the tough and stable skin formed on the outer surface lends durability and processability to the entire composite material product.

  3. Solid composite electrolytes for lithium batteries

    DOEpatents

    Kumar, Binod; Scanlon, Jr., Lawrence G.

    2001-01-01

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a polymer-ceramic composite electrolyte containing poly(ethylene oxide), lithium tetrafluoroborate and titanium dioxide is provided in the form of an annealed film having a room temperature conductivity of from 10.sup.-5 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1 and an activation energy of about 0.5 eV.

  4. Study of novel lithium salt-based, plasticized polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Silva, Maria Manuela; Barros, Sandra Cerqueira; Smith, Michael J.; MacCallum, James R.

    The results of a preliminary investigation of a series of polymer electrolytes based on a novel polymer host, poly(trimethylene carbonate) (p(TMC)), with lithium triflate or lithium perchlorate and various plasticizing additives, are described in this presentation. Electrolytes with lithium salt compositions of about n=10 (where n represents the molar ratio of (OCOCH 2CH 2CH 2O) units per lithium ion) and additive compositions between 5 and 15 wt.% (with respect to p(TMC)), were prepared by co-dissolution of salt and polymer in anhydrous solvent with a controlled amount of additive. The homogeneous solutions obtained were evaporated within a preparative glovebox and under a dry argon atmosphere to form thin films of electrolyte. The solvent-free electrolyte films produced were characterized by measurements of total ionic conductivity, differential scanning calorimetry and thermogravimetry. In general the triflate-based electrolytes were found to show moderate ionic conductivity and good thermal stability while perchlorate-based electrolytes showed higher levels of conductivity but lower thermal stability. Electrolytes based on this host polymer, with both lithium salts, were obtained as very flexible, transparent, completely amorphous films.

  5. Solid polymer electrolyte water electrolysis

    NASA Astrophysics Data System (ADS)

    Takenaka, H.; Torikai, E.; Kawami, Y.; Wakabayashi, N.

    Electrocatalyst performances and bonding to solid polymer electrolytes used for water electrolysis are investigated. Noble metal and metal alloy catalysts were plated to Nafion perfluorosulfonic acid polymer membranes without a binder by the use of a reducing agent solution held on the opposite side of the membrane from a metal salt solution. It was found that pretreatment of the membrane by hydrothermal treatment or gas plasma surface roughening improves metal adhesivity and thus reduces contact resistance between the membrane and the catalyst. Measurements of the constituents of cell voltage for platinum, rhodium and iridium anodes with platinum cathodes reveals that anodic overvoltage is a major component of voltage loss and depends on the type of electrocatalyst, being greatest for Pd and least for Ir. Ir and Ir-alloy electrodes, which were found to be the best catalysts for oxygen evolution, are found to have Tafel slopes of 0.04-0.06 V/decade. In a cell with a Pt cathode and Ir anode, cell voltage is observed to decrease with increasing temperature, reaching 1.56-1.59 V at a current density of 50 A/sq dm and 90 C, which corresponds to a thermal efficiency of 93-95%.

  6. Electrically conductive LCP-carbon composite with low carbon content for bipolar plate application in polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Wolf, H.; Willert-Porada, M.

    Lightweight polymer-carbon composites with high specific electrical conductivity at a carbon content below 40 vol.% were developed. The electrical and mechanical properties and the hydrogen permeability of carbon fiber and particle reinforced liquid crystalline polymers were examined. Vectra ® A 950, SIGRAFIL ® carbon fibers and Vulcan ® XC 72 R carbon black were employed. The composites are found to have sufficient mechanical properties and a hydrogen permeability low enough to be utilised as bipolar plate material in fuel cell applications. The density of the new composite is 20% lower than the density of commercial bipolar plates made from carbon reinforced polymeric composite materials, due to the lower carbon content. The current density at 0.5 V in an operating fuel cell is only 20% lower compared to commercial materials with more than 80 vol.% carbon content and meets the requirements for bipolar plate application.

  7. Solid-polymer-electrolyte fuel cells

    SciTech Connect

    Fuller, T.F.

    1992-07-01

    A transport model for polymer electrolytes is presented, based on concentrated solution theory and irreversible thermodynamics. Thermodynamic driving forces are developed, transport properties are identified and experiments devised. Transport number of water in Nafion 117 membrane is determined using a concentration cell. It is 1.4 for a membrane equilibrated with saturated water vapor at 25{degrees}C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the water content approaches zero. The relation between transference number, transport number, and electroosmotic drag coefficient is presented, and their relevance to water-management is discussed. A mathematical model of transport in a solid-polymer-electrolyte fuel cell is presented. A two-dimensional membrane-electrode assembly is considered. Water management, thermal management, and utilization of fuel are examined in detail. The membrane separators of these fuel cells require sorbed water to maintain conductivity; therefore it is necessary to manage the water content in membranes to ensure efficient operation. Water and thermal management are interrelated. Rate of heat removal is shown to be a critical parameter in the operation of these fuel cells. Current-voltage curves are presented for operation on air and reformed methanol. Equations for convective diffusion to a rotating disk are solved numerically for a consolute point between the bulk concentration and the surface. A singular-perturbation expansion is presented for the condition where the bulk concentration is nearly equal to the consolute-point composition. Results are compared to Levich's solution and analysis.

  8. Electrolyte composition for electrochemical cell

    DOEpatents

    Vissers, Donald R.; Tomczuk, Zygmunt; Anderson, Karl E.; Roche, Michael F.

    1979-01-01

    A high-temperature, secondary electrochemical cell that employs FeS as the positive electrode reactant and lithium or lithium alloy as the negative electrode reactant includes an improved electrolyte composition. The electrolyte comprises about 60-70 mole percent LiCl and 30-40 percent mole percent KCl which includes LiCl in excess of the eutectic composition. The use of this electrolyte suppresses formation of the J phase and thereby improves the utilization of positive electrode active material during cell cycling.

  9. Synthesis and characterizations of novel polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Chanthad, Chalathorn

    Polymer electrolytes are an important component of many electrochemical devices. The ability to control the structures, properties, and functions of polymer electrolytes remains a key subject for the development of next generation functional polymers. Taking advantage of synthetic strategies is a promising approach to achieve the desired chemical structures, morphologies, thermal, mechanical, and electrochemical properties. Therefore, the major goal of this thesis is to develop synthetic methods for of novel proton exchange membranes and ion conductive membranes. In Chapter 2, new classes of fluorinated polymer- polysilsesquioxane nanocomposites have been designed and synthesized. The synthetic method employed includes radical polymerization using the functional benzoyl peroxide initiator for the telechelic fluorinated polymers with perfluorosulfonic acids in the side chains and a subsequent in-situ sol-gel condensation of the prepared triethoxylsilane-terminated fluorinated polymers with alkoxide precursors. The properties of the composite membranes have been studied as a function of the content and structure of the fillers. The proton conductivity of the prepared membranes increases steadily with the addition of small amounts of the polysilsesquioxane fillers. In particular, the sulfopropylated polysilsesquioxane based nanocomposites display proton conductivities greater than Nafion. This is attributed to the presence of pendant sulfonic acids in the fillers, which increases ion-exchange capacity and offers continuous proton transport channels between the fillers and the polymer matrix. The methanol permeability of the prepared membranes has also been examined. Lower methanol permeability and higher electrochemical selectivity than those of Nafion have been demonstrated in the polysilsesquioxane based nanocomposites. In Chapter 3, the synthesis of a new class of ionic liquid-containing triblock copolymers with fluoropolymer mid-block and imidazolium methacrylate

  10. New interpenetrating network type siloxane polymer electrolyte.

    SciTech Connect

    Oh, B.; Hyung, Y.-E.; Vissers, D. R.; Amine, K.; Chemical Engineering

    2002-11-01

    An interpenetrating network (IPN), comb-type, siloxane-based solid polymer electrolyte solid polymer electrolyte was prepared and its electrochemical properties were evaluated. The cross-linking reaction conditions were established from accelerated rate calorimetry studies. An IPN solid ploymer electrolyte with 60 wt % of the comb-shaped siloxane showed an ionic conductivity of greater than 5x10{sup -4} S/cm at 37 C, with a wide electrochemical stability window of up to 4.5 V vs. lithium. A Li metal/solid polymer electrolyte/LiNi{sub 0.8}Co{sub 0.2}O{sub 2} cell showed promising discharge capacities above 130 mAh/g and good cycling performance.

  11. Fuel cell electrolyte membrane with basic polymer

    DOEpatents

    Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

    2010-11-23

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  12. Fuel cell electrolyte membrane with basic polymer

    DOEpatents

    Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

    2012-12-04

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  13. High-energy-density, all-solid-state microsupercapacitors with three-dimensional interdigital electrodes of carbon/polymer electrolyte composite

    NASA Astrophysics Data System (ADS)

    Pu, Juan; Wang, Xiaohong; Zhang, Tianyi; Li, Siwei; Liu, Jinghe; Komvopoulos, Kyriakos

    2016-01-01

    Novel all-solid-state microsupercapacitors (MSCs) with three-dimensional (3D) electrodes consisting of active materials (i.e., graphene or activated carbon (AC) particles) and polymer electrolyte (PE) designed for high-energy-density storage applications were fabricated and tested in this work. The incorporation of PE in the electrode material enhances the accessibility of electrolyte ions to the surface of active materials and decreases the ion diffusion path during electrochemical charge/discharge. For a scan rate of 5 mV s-1, the MSCs with graphene/PE and AC/PE composite electrodes demonstrate a very high areal capacitance of 95 and 134 mF cm-2, respectively, comparable to that of 3D MSCs with liquid electrolyte. In addition, the graphene/PE MSCs show a ˜70% increase in specific capacitance after 10 000 charge/discharge cycles, attributed to an electro-activation process resulting from ion intercalation between the graphene nanosheets. The AC/PE MSCs also demonstrate excellent stability. The results of this study illustrate the potential of the present 3D MSCs for various high-density solid-state energy storage applications.

  14. Morphology control in solid polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Li, Christopher

    2015-03-01

    Solid polymer electrolytes (SPEs) with high ionic conductivity are important for energy-related applications, such as solid state batteries and fuel cells. In this talk, I will discuss how nanoscale morphology affects the properties of SPEs. In the first part of the talk, I will show quantitatively that the effect of polymer crystallization on ion transport is twofold: structural (tortuosity) and dynamic (tethered chain confinement). We decouple these two effects by designing and fabricating a model polymer single crystal electrolyte system with controlled crystal structure, size, crystallinity, and orientation. Ion conduction is confined within the chain fold region and guided by the crystalline lamellae. We show that, at low ion content, due to the tortuosity effect, the in-plane conductivity is 2000 times greater than through-plane one. Contradictory to the general view, the dynamic effect is negligible at moderate ion contents. Our results suggest that semicrystalline polymer is a valid system for practical polymer electrolytes design. In the second part of the talk, I will discuss how to use holographic photopolymerization (HP) to fabricate long-range, defect-free, ordered SPEs with tunable ion conducting pathways. By incorporating polymer electrolytes into the carefully selected HP system, electrolyte layers/ion channels with length scales of a few tens of nanometers to micrometers can be formed. Confinement effects on ion transport will be reported.

  15. Solid-polymer-electrolyte fuel cells

    SciTech Connect

    Fuller, T.F.

    1992-07-01

    A transport model for polymer electrolytes is presented, based on concentrated solution theory and irreversible thermodynamics. Thermodynamic driving forces are developed, transport properties are identified and experiments devised. Transport number of water in Nafion 117 membrane is determined using a concentration cell. It is 1.4 for a membrane equilibrated with saturated water vapor at 25{degrees}C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the water content approaches zero. The relation between transference number, transport number, and electroosmotic drag coefficient is presented, and their relevance to water-management is discussed. A mathematical model of transport in a solid-polymer-electrolyte fuel cell is presented. A two-dimensional membrane-electrode assembly is considered. Water management, thermal management, and utilization of fuel are examined in detail. The membrane separators of these fuel cells require sorbed water to maintain conductivity; therefore it is necessary to manage the water content in membranes to ensure efficient operation. Water and thermal management are interrelated. Rate of heat removal is shown to be a critical parameter in the operation of these fuel cells. Current-voltage curves are presented for operation on air and reformed methanol. Equations for convective diffusion to a rotating disk are solved numerically for a consolute point between the bulk concentration and the surface. A singular-perturbation expansion is presented for the condition where the bulk concentration is nearly equal to the consolute-point composition. Results are compared to Levich`s solution and analysis.

  16. Glass electrolyte composition

    DOEpatents

    Kucera, Gene H.; Roche, Michael F.

    1985-01-01

    An ionically conductive glass is disclosed for use as electrolyte in a high temperature electrochemical cell, particularly a cell with sodium anode and sulfur cathode. The glass includes the constituents Na.sub.2 O, ZrO.sub.2, Al.sub.2 O.sub.3 and SiO.sub.2 in selected proportions to be a single phase solid solution substantially free of crystalline regions and undissolved constituents. Other advantageous properties are an ionic conductivity in excess of 2.times.10.sup.-3 (ohm-cm).sup.-1 at 300.degree. C. and a glass transition temperature in excess of 500.degree. C.

  17. Glass electrolyte composition

    DOEpatents

    Kucera, G.H.; Roche, M.F.

    1985-01-08

    An ionically conductive glass is disclosed for use as electrolyte in a high temperature electrochemical cell, particularly a cell with sodium anode and sulfur cathode. The glass includes the constituents Na/sub 2/O, ZrO/sub 2/, Al/sub 2/O/sub 3/ and SiO/sub 2/ in selected proportions to be a single phase solid solution substantially free of crystalline regions and undissolved constituents. Other advantageous properties are an ionic conductivity in excess of 2 x 10/sup -3/ (ohm-cm)/sup -1/ at 300/sup 0/C and a glass transition temperature in excess of 500/sup 0/C.

  18. Ionic Conduction Mechanism of Polymer Gel Electrolytes

    NASA Astrophysics Data System (ADS)

    Saito, Yuria; Kataoka, Hiroshi

    2002-12-01

    Carrier migration mechanism of polymer gel electrolyte for lithium secondary batteries was investigated through the dynamic behavior of diffusion coefficient and conductivity. The gel prepared with PEO showed a homogeneous structure with any fraction of the electrolyte solution. The diffusion coefficient of the ionic species decreased with the increase in the polymer fraction in the gel. Cation migration is closely associated with the polymer, showing the reduced activation energy for diffusion with polymer in contrast to the increasing feature of the activation energy of the anion diffusion. The PVDF-gel electrolytes have a solid solubility limit due to the swelling saturation. The excess solution was then trapped in the cavities of the swollen polymer network. As a result, the diffusion showed two components. One is the fast migration of the carriers similar to that in the solution and the other is the relatively slow migration in the swollen region. The latter was influenced by the polymer due to the physical blocking and chemical interactive effects.

  19. Macroscopic Modeling of Polymer-Electrolyte Membranes

    SciTech Connect

    Weber, A.Z.; Newman, J.

    2007-04-01

    In this chapter, the various approaches for the macroscopic modeling of transport phenomena in polymer-electrolyte membranes are discussed. This includes general background and modeling methodologies, as well as exploration of the governing equations and some membrane-related topic of interest.

  20. MnO 2-Pt/C composite electrodes for preventing voltage reversal effects with polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Wei, Z. D.; Ji, M. B.; Hong, Y.; Sun, C. X.; Chan, S. H.; Shen, P. K.

    impedance spectra of MnO 2-Pt/C and Pt/C electrodes were carried out for the two gases in bubbled electrolyte, which further confirmed that MnO 2 in the composite electrode does substitute for oxygen as an electron-acceptor in the case of oxygen starvation. The discharged MnO 2 can then be restored to its initial state, regardless of whether it is in oxygen rich or starved conditions.

  1. Low Crossover Polymer Electrolyte Membranes for Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Prakash, G. K. Surya; Smart, Marshall; Atti, Anthony R.; Olah, George A.; Narayanan, S. R.; Valdez, T.; Surampudi, S.

    1996-01-01

    Direct Methanol Fuel Cells (DMFC's) using polymer electrolyte membranes are promising power sources for portable and vehicular applications. State of the art technology using Nafion(R) 117 membranes (Dupont) are limited by high methanol permeability and cost, resulting in reduced fuel cell efficiencies and impractical commercialization. Therefore, much research in the fuel cell field is focused on the preparation and testing of low crossover and cost efficient polymer electrolyte membranes. The University of Southern California in cooperation with the Jet Propulsion Laboratory is focused on development of such materials. Interpenetrating polymer networks are an effective method used to blend polymer systems without forming chemical links. They provide the ability to modify physical and chemical properties of polymers by optimizing blend compositions. We have developed a novel interpenetrating polymer network based on poly (vinyl - difluoride)/cross-linked polystyrenesulfonic acid polymer composites (PVDF PSSA). Sulfonation of polystyrene accounts for protonic conductivity while the non-polar, PVDF backbone provides structural integrity in addition to methanol rejection. Precursor materials were prepared and analyzed to characterize membrane crystallinity, stability and degree of interpenetration. USC JPL PVDF-PSSA membranes were also characterized to determine methanol permeability, protonic conductivity and sulfur distribution. Membranes were fabricated into membrane electrode assemblies (MEA) and tested for single cell performance. Tests include cell performance over a wide range of temperatures (20 C - 90 C) and cathode conditions (ambient Air/O2). Methanol crossover values are measured in situ using an in-line CO2 analyzer.

  2. Reciprocated suppression of polymer crystallization toward improved solid polymer electrolytes: Higher ion conductivity and tunable mechanical properties

    SciTech Connect

    Bi, Sheng; Sun, Che-Nan; Zawodzinski, Thomas A.; Ren, Fei; Keum, Jong Kahk; Ahn, Suk-Kyun; Li, Dawen; Chen, Jihua

    2015-08-06

    Solid polymer electrolytes based on lithium bis(trifluoromethanesulfonyl) imide and polymer matrix were extensively studied in the past due to their excellent potential in a broad range of energy related applications. Poly(vinylidene fluoride) (PVDF) and polyethylene oxide (PEO) are among the most examined polymer candidates as solid polymer electrolyte matrix. In this paper, we study the effect of reciprocated suppression of polymer crystallization in PVDF/PEO binary matrix on ion transport and mechanical properties of the resultant solid polymer electrolytes. With electron and X-ray diffractions as well as energy filtered transmission electron microscopy, we identify and examine the appropriate blending composition that is responsible for the diminishment of both PVDF and PEO crystallites. Laslty, a three-fold conductivity enhancement is achieved along with a highly tunable elastic modulus ranging from 20 to 200 MPa, which is expected to contribute toward future designs of solid polymer electrolytes with high room-temperature ion conductivities and mechanical flexibility.

  3. Increasing the conductivity of crystalline polymer electrolytes.

    PubMed

    Christie, Alasdair M; Lilley, Scott J; Staunton, Edward; Andreev, Yuri G; Bruce, Peter G

    2005-01-01

    Polymer electrolytes consist of salts dissolved in polymers (for example, polyethylene oxide, PEO), and represent a unique class of solid coordination compounds. They have potential applications in a diverse range of all-solid-state devices, such as rechargeable lithium batteries, flexible electrochromic displays and smart windows. For 30 years, attention was focused on amorphous polymer electrolytes in the belief that crystalline polymer:salt complexes were insulators. This view has been overturned recently by demonstrating ionic conductivity in the crystalline complexes PEO6:LiXF6 (X = P, As, Sb); however, the conductivities were relatively low. Here we demonstrate an increase of 1.5 orders of magnitude in the conductivity of these materials by replacing a small proportion of the XF6- anions in the crystal structure with isovalent N(SO2CF3)2- ions. We suggest that the larger and more irregularly shaped anions disrupt the potential around the Li+ ions, thus enhancing the ionic conductivity in a manner somewhat analogous to the AgBr(1-x)I(x) ionic conductors. The demonstration that doping strategies can enhance the conductivity of crystalline polymer electrolytes represents a significant advance towards the technological exploitation of such materials. PMID:15635406

  4. All-solid-state proton battery using gel polymer electrolyte

    SciTech Connect

    Mishra, Kuldeep; Pundir, S. S.; Rai, D. K.

    2014-04-24

    A proton conducting gel polymer electrolyte system; PMMA+NH{sub 4}SCN+EC/PC, has been prepared. The highest ionic conductivity obtained from the system is 2.5 × 10−4 S cm{sup −1}. The optimized composition of the gel electrolyte has been used to fabricate a proton battery with Zn/ZnSO{sub 4}⋅7H{sub 2}O anode and MnO{sub 2} cathode. The open circuit voltage of the battery is 1.4 V and the highest energy density is 5.7 W h kg−1 for low current drain.

  5. Lithium Polymer Electrolytes and Solid State NMR

    NASA Technical Reports Server (NTRS)

    Berkeley, Emily R.

    2004-01-01

    Research is being done at the Glenn Research Center (GRC) developing new kinds of batteries that do not depend on a solution. Currently, batteries use liquid electrolytes containing lithium. Problems with the liquid electrolyte are (1) solvents used can leak out of the battery, so larger, more restrictive, packages have to be made, inhibiting the diversity of application and decreasing the power density; (2) the liquid is incompatible with the lithium metal anode, so alternative, less efficient, anodes are required. The Materials Department at GRC has been working to synthesize polymer electrolytes that can replace the liquid electrolytes. The advantages are that polymer electrolytes do not have the potential to leak so they can be used for a variety of tasks, small or large, including in the space rover or in space suits. The polymers generated by Dr. Mary Ann Meador's group are in the form of rod -coil structures. The rod aspect gives the polymer structural integrity, while the coil makes it flexible. Lithium ions are used in these polymers because of their high mobility. The coils have repeating units of oxygen which stabilize the positive lithium by donating electron density. This aids in the movement of the lithium within the polymer, which contributes to higher conductivity. In addition to conductivity testing, these polymers are characterized using DSC, TGA, FTIR, and solid state NMR. Solid state NMR is used in classifying materials that are not soluble in solvents, such as polymers. The NMR spins the sample at a magic angle (54.7') allowing the significant peaks to emerge. Although solid state NMR is a helpful technique in determining bonding, the process of preparing the sample and tuning it properly are intricate jobs that require patience; especially since each run takes about six hours. The NMR allows for the advancement of polymer synthesis by showing if the expected results were achieved. Using the NMR, in addition to looking at polymers, allows for

  6. Electrolytic hydrogen fuel production with solid polymer electrolyte technology.

    NASA Technical Reports Server (NTRS)

    Titterington, W. A.; Fickett, A. P.

    1973-01-01

    A water electrolysis technology based on a solid polymer electrolyte (SPE) concept is presented for applicability to large-scale hydrogen production in a future energy system. High cell current density operation is selected for the application, and supporting cell test performance data are presented. Demonstrated cell life data are included to support the adaptability of the SPE system to large-size hydrogen generation utility plants as needed for bulk energy storage or transmission. The inherent system advantages of the acid SPE electrolysis technology are explained. System performance predictions are made through the year 2000, along with plant capital and operating cost projections.

  7. Polymer chain organization in tensile-stretched poly(ethylene oxide)-based polymer electrolytes.

    PubMed

    Burba, Christopher M; Woods, Lauren; Millar, Sarah Y; Pallie, Jonathan

    2011-12-15

    Polymer chain orientation in tensile-stretched poly(ethylene oxide)-lithium trifluoromethanesulfonate polymer electrolytes are investigated with polarized infrared spectroscopy as a function of the degree of strain and salt composition (ether oxygen atom to lithium ion ratios of 20:1, 15:1, and 10:1). The 1359 and 1352 cm(-1) bands are used to probe the crystalline PEO and P(EO)(3)LiCF(3)SO(3) domains, respectively, allowing a direct comparison of chain orientation for the two phases. Two-dimensional correlation FT-IR spectroscopy indicates that the two crystalline domains align at the same rate as the polymer electrolytes are stretched. Quantitative measurements of polymer chain orientation obtained through dichroic infrared spectroscopy show that chain orientation predominantly occurs between strain values of 150% and 250%, regardless of salt composition investigated. There are few changes in chain orientation for either phase when the films are further elongated to a strain of 300%; however, the PEO domains are slightly more oriented at the high strain values. The spectroscopic data are consistent with stretching-induced melt-recrystallization of the unoriented crystalline domains in the solution-cast polymer films. Stretching the films pulls polymer chains from the crystalline domains, which subsequently recrystallize with the polymer helices parallel to the stretch direction. If lithium ion conduction in crystalline polymer electrolytes is viewed as consisting of two major components (facile intra-chain lithium ion conduction and slow helix-to-helix inter-grain hopping), then alignment of the polymer helices will affect the ion conduction pathways for these materials by reducing the number of inter-grain hops required to migrate through the polymer electrolyte. PMID:22184475

  8. Novel polymer electrolytes based on gelatin and ionic liquids

    NASA Astrophysics Data System (ADS)

    Leones, Rita; Sentanin, F.; Rodrigues, Luísa C.; Ferreira, Rute A. S.; Marrucho, Isabel M.; Esperança, José M. S. S.; Pawlicka, Agnieszka; Carlos, Luís D.; Manuela Silva, M.

    2012-12-01

    This study describes the results of the characterization of polymer electrolytes using gelatin matrix doped with europium triflate and/or different ionic liquids. Samples of solvent-free electrolytes were prepared and characterized by ionic conductivity measurements, thermal analysis, electrochemical stability, X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectroscopy. Electrolyte samples are thermally stable up to approximately 220 °C. All the materials synthesized are totally amorphous. The room temperature conductivity maximum of this electrolyte system is based on ionic liquid 1-ethyl-3-methylimidazolium acetate, (C2mim)(OAc) (1.18 × 10-4 S cm-1 at 30 °C). The electrochemical stability domain of all samples is about 2.0 V versus Li/Li+. This new series of materials represents a promising alternative in polymer electrolytes research field. The preliminary studies carried out with electrochromic devices (ECDs) incorporating optimized compositions have confirmed that these materials may perform as satisfactory multifunctional component layers in the field of "smart windows". This new materials, will open a land of promising applications in many areas: optics, energy, medicine for example as membranes and separation devices, ECD-based devices, sensors, etc.

  9. Superacid-Based Lithium Salts For Polymer Electrolytes

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesan; Prakash, Surya; Shen, David H.; Surampudi, Subbarao; Olah, George

    1995-01-01

    Solid polymer electrolytes exhibiting high lithium-ion conductivities made by incorporating salts of superacids into thin films of polyethylene oxide (PEO). These and other solid-polymer electrolytes candidates for use in rechargeable lithium-based electrochemical cells. Increases in room-temperature lithium-ion conductivities of solid electrolytes desirable because they increase achievable power and energy densities.

  10. Novel Stable Gel Polymer Electrolyte: Toward a High Safety and Long Life Li-Air Battery.

    PubMed

    Yi, Jin; Liu, Xizheng; Guo, Shaohua; Zhu, Kai; Xue, Hailong; Zhou, Haoshen

    2015-10-28

    Nonaqueous Li-air battery, as a promising electrochemical energy storage device, has attracted substantial interest, while the safety issues derived from the intrinsic instability of organic liquid electrolytes may become a possible bottleneck for the future application of Li-air battery. Herein, through elaborate design, a novel stable composite gel polymer electrolyte is first proposed and explored for Li-air battery. By use of the composite gel polymer electrolyte, the Li-air polymer batteries composed of a lithium foil anode and Super P cathode are assembled and operated in ambient air and their cycling performance is evaluated. The batteries exhibit enhanced cycling stability and safety, where 100 cycles are achieved in ambient air at room temperature. The feasibility study demonstrates that the gel polymer electrolyte-based polymer Li-air battery is highly advantageous and could be used as a useful alternative strategy for the development of Li-air battery upon further application. PMID:26452054

  11. Interface Properties between Lithium Metal and a Composite Polymer Electrolyte of PEO18Li(CF3SO2)2N-Tetraethylene Glycol Dimethyl Ether

    PubMed Central

    Wang, Hui; Matsui, Masaki; Takeda, Yasuo; Yamamoto, Osamu; Im, Dongmin; Lee, Dongjoon; Imanishi, Nobuyuki

    2013-01-01

    The electrochemical properties of a composite solid polymer electrolyte, consisting of poly(ethylene oxide) (PEO)-lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and tetraethylene glycol dimethyl ether (TEGDME) was examined as a protective layer between lithium metal and a water-stable lithium ion-conducting glass ceramic of Li1+x+y(Ti,Ge)2−xAlxP3−ySiyO12 (LTAP). The lithium ion conductivity and salt diffusion coefficient of PEO18LiTFSI were dramatically enhanced by the addition of TEGDME. The water-stable lithium electrode with PEO18LiTFSI-2TEGDME, as the protective layer, exhibited a low and stable electrode resistance of 85 Ω·cm2 at 60 °C, after 28 days, and low overpotentials of 0.3 V for lithium plating and 0.4 V for lithium stripping at 4.0 mA·cm−2 and 60 °C. A Li/PEO18LiTFSI-2TEGDME/LTAP/saturated LiCl aqueous solution/Pt, air cell showed excellent cyclability up to 100 cycles at 2.0 mAh·cm−2. PMID:24957059

  12. Solid composite electrolytes for lithium batteries

    DOEpatents

    Kumar, Binod; Scanlon, Jr., Lawrence G.

    2000-01-01

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

  13. Polymer composites containing nanotubes

    NASA Technical Reports Server (NTRS)

    Bley, Richard A. (Inventor)

    2008-01-01

    The present invention relates to polymer composite materials containing carbon nanotubes, particularly to those containing singled-walled nanotubes. The invention provides a polymer composite comprising one or more base polymers, one or more functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers and carbon nanotubes. The invention also relates to functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers, particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having side chain functionalization, and more particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having olefin side chains and alkyl epoxy side chains. The invention further relates to methods of making polymer composites comprising carbon nanotubes.

  14. Ionic-Liquid-Based Polymer Electrolytes for Battery Applications.

    PubMed

    Osada, Irene; de Vries, Henrik; Scrosati, Bruno; Passerini, Stefano

    2016-01-11

    The advent of solid-state polymer electrolytes for application in lithium batteries took place more than four decades ago when the ability of polyethylene oxide (PEO) to dissolve suitable lithium salts was demonstrated. Since then, many modifications of this basic system have been proposed and tested, involving the addition of conventional, carbonate-based electrolytes, low molecular weight polymers, ceramic fillers, and others. This Review focuses on ternary polymer electrolytes, that is, ion-conducting systems consisting of a polymer incorporating two salts, one bearing the lithium cation and the other introducing additional anions capable of plasticizing the polymer chains. Assessing the state of the research field of solid-state, ternary polymer electrolytes, while giving background on the whole field of polymer electrolytes, this Review is expected to stimulate new thoughts and ideas on the challenges and opportunities of lithium-metal batteries. PMID:26783056

  15. Facile synthesis of porous metal oxide nanotubes and modified nafion composite membranes for polymer electrolyte fuel cells operated under low relative humidity.

    PubMed

    Ketpang, Kriangsak; Lee, Kibong; Shanmugam, Sangaraju

    2014-10-01

    We describe a facile route to fabricate mesoporous metal oxide (TiO2, CeO2 and ZrO1.95) nanotubes for efficient water retention and migration in a Nafion membrane operated in polymer electrolyte fuel cell under low relative humidity (RH). Porous TiO2 nanotubes (TNT), CeO2 nanotubes (CeNT), and ZrO1.95 (ZrNT) were synthesized by calcining electrospun polyacrylonitrile nanofibers embedded with metal precursors. The nanofibers were prepared using a conventional single spinneret electrospinning technique under an ambient atmosphere. Their porous tubular morphology was observed by SEM and TEM analyses. HR-TEM results revealed a porous metal oxide wall composed of small particles joined together. The mesoporous structure of the samples was analyzed using BET. The tubular morphology and outstanding water absorption ability of the TNT, CeNT, and ZrNT fillers resulted in the effective enhancement of proton conductivity of Nafion composite membranes under both fully humid and dry conditions. Compared to a commercial membrane (Nafion, NRE-212) operated under 100% RH at 80 °C, the Nafion-TNT composite membrane delivered approximately 1.29 times higher current density at 0.6 V. Compared to the Nafion-TiO2 nanoparticles membrane, the Nafion-TNT membrane also generated higher current density at 0.6 V. Additionally, compared to a NRE-212 membrane operated under 50% RH at 80 °C, the Nafion-TNT composite membrane exhibited 3.48 times higher current density at 0.6 V. Under dry conditions (18% RH at 80 °C), the Nafion-TNT, Nafion-CeNT, and Nafion-ZrNT composite membranes exhibited 3.4, 2.4, and 2.9 times higher maximum power density, respectively, than the NRE-212 membrane. The remarkably high performance of the Nafion composite membrane was mainly attributed to the reduction of ohmic resistance by the mesoporous hygroscopic metal oxide nanotubes, which can retain water and effectively enhance water diffusion through the membrane. PMID:25203667

  16. Preliminary Evaluations of Polymer-based Lithium Battery Electrolytes Under Development for the Polymer Electrolyte Rechargeable Systems Program

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Bennett, William R.

    2003-01-01

    A component screening facility has been established at The NASA Glenn Research Center (GRC) to evaluate candidate materials for next generation, lithium-based, polymer electrolyte batteries for aerospace applications. Procedures have been implemented to provide standardized measurements of critical electrolyte properties. These include ionic conductivity, electronic resistivity, electrochemical stability window, cation transference number, salt diffusion coefficient and lithium plating efficiency. Preliminary results for poly(ethy1ene oxide)-based polymer electrolyte and commercial liquid electrolyte are presented.

  17. Composite Gel Polymer Electrolyte Based on Poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) with Modified Aluminum-Doped Lithium Lanthanum Titanate (A-LLTO) for High-Performance Lithium Rechargeable Batteries.

    PubMed

    Le, Hang T T; Ngo, Duc Tung; Kalubarme, Ramchandra S; Cao, Guozhong; Park, Choong-Nyeon; Park, Chan-Jin

    2016-08-17

    A composite gel polymer electrolyte (CGPE) based on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) polymer that includes Al-doped Li0.33La0.56TiO3 (A-LLTO) particles covered with a modified SiO2 (m-SiO2) layer was fabricated through a simple solution-casting method followed by activation in a liquid electrolyte. The obtained CGPE possessed high ionic conductivity, a large electrochemical stability window, and interfacial stability-all superior to that of the pure gel polymer electrolyte (GPE). In addition, under a highly polarized condition, the CGPE effectively suppressed the growth of Li dendrites due to the improved hardness of the GPE by the addition of inorganic A-LLTO/m-SiO2 particles. Accordingly, the Li-ion polymer and Li-O2 cells employing the CGPE exhibited remarkably improved cyclability compared to cells without CGPE. In particular, the CGPE as a protection layer for the Li metal electrode in a Li-O2 cell was effective in blocking the contamination of the Li electrode by oxygen gas or impurities diffused from the cathode side while suppressing the Li dendrites. PMID:27463563

  18. Ionic Transport Across Interfaces of Solid Glass and Polymer Electrolytes

    SciTech Connect

    Tenhaeff, Wyatt E; Yu, Xiang; Hong, Kunlun; Perry, Kelly A; Dudney, Nancy J

    2011-01-01

    A study of lithium cation transport across solid-solid electrolyte interfaces to identify critical resistances in nanostructured solid electrolytes is reported. Bilayers of glass and polymer thin film electrolytes were fabricated and characterized for this study. The glass electrolyte was lithium phosphorous oxynitride (Lipon), and two polymer electrolytes were studied: poly(methyl methacrylate-co-poly(ethylene glycol) methyl ether methacrylate) and poly(styrene-co-poly(ethylene glycol) methyl ether methacrylate). Both copolymers contained LiClO{sub 4} salt. In bilayers where polymer electrolyte layers are fabricated on top of Lipon, the interfacial resistance dominates transport. At 25 C, the interfacial resistance is at least three times greater than the sum of the Lipon and polymer electrolyte resistances. By reversing the structure and fabricating Lipon on top of the polymer electrolytes, the interfacial resistance is eliminated. Experiments to elucidate the origin of the interfacial resistance in the polymer-on-Lipon bilayers reveal that the solvent mixtures used to fabricate the polymer layers do not degrade the Lipon layer. The importance of the polymer electrolytes' mechanical properties is also discussed.

  19. Thermally responsive polymer electrolytes for inherently safe electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Kelly, Jesse C.

    Electrochemical double layer capacitors (EDLCs), supercapacitors and Li-ion batteries have emerged as premier candidates to meet the rising demands in energy storage; however, such systems are limited by thermal hazards, thermal runaway, fires and explosions, all of which become increasingly more dangerous in large-format devices. To prevent such scenarios, thermally-responsive polymer electrolytes (RPEs) that alter properties in electrochemical energy storage devices were designed and tested. These RPEs will be used to limit or halt device operation when temperatures increase beyond a predetermined threshold, therefore limiting further heating. The development of these responsive systems will offer an inherent safety mechanism in electrochemical energy storage devices, while preserving the performance, lifetimes, and versatility that large-format systems require. Initial work focused on the development of a model system that demonstrated the concept of RPEs in an electrochemical device. Aqueous electrolyte solutions of polymers exhibiting properties that change in response to temperature were developed for applications in EDLCs and supercapacitors. These "smart materials" provide a means to control electrochemical systems where polymer phase separation at high temperatures affects electrolyte properties and inhibits device performance. Aqueous RPEs were synthesized using N-isopropylacrylamide, which governs the thermal properties, and fractions of acrylic acid or vinyl sulfonic acids, which provide ions to the solution. The molecular properties of these aqueous RPEs, specifically the ionic composition, were shown to influence the temperature-dependent electrolyte properties and the extent to which these electrolytes control the energy storage characteristics of a supercapacitor device. Materials with high ionic content provided the highest room temperature conductivity and electrochemical activity; however, RPEs with low ionic content provided the highest "on

  20. Impact of electrolyte composition on the reactivity of a redox active polymer studied through surface interrogation and ion-sensitive scanning electrochemical microscopy.

    PubMed

    Burgess, Mark; Hernández-Burgos, Kenneth; Cheng, Kevin J; Moore, Jeffrey S; Rodríguez-López, Joaquín

    2016-06-21

    Elucidating the impact of interactions between the electrolyte and electroactive species in redox active polymers is key to designing better-performing electrodes for electrochemical energy storage and conversion. Here, we present on the improvement of the electrochemical activity of poly(para-nitrostyrene) (PNS) in solution and as a film by exploiting the ionic interactions between reduced PNS and K(+), which showed increased reactivity when compared to tetrabutylammonium (TBA(+))- and Li(+)-containing electrolytes. While cyclic voltammetry enabled the study of the effects of cations on the electrochemical reversibility and the reduction potential of PNS, scanning electrochemical microscopy (SECM) provided new tools to probe the ionic and redox reactivity of this system. Using an ion-sensitive Hg SECM tip allowed to probe the ingress of ions into PNS redox active films, while surface interrogation SECM (SI-SECM) measured the specific kinetics of PNS and a solution phase mediator in the presence of the tested electrolytes. SI-SECM measurements illustrated that the interrogation kinetics of PNS in the presence of K(+) compared to TBA(+) and Li(+) are greatly enhanced under the same surface concentration of adsorbed radical anion, exhibiting up to a 40-fold change in redox kinetics. We foresee using this new application of SECM methods for elucidating optimal interactions that enhance polymer reactivity for applications in redox flow batteries. PMID:27064026

  1. Mathematical modeling of polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Sousa, Ruy; Gonzalez, Ernesto R.

    Fuel cells with a polymer electrolyte membrane have been receiving more and more attention. Modeling plays an important role in the development of fuel cells. In this paper, the state-of-the-art regarding modeling of fuel cells with a polymer electrolyte membrane is reviewed. Modeling has allowed detailed studies concerning the development of these cells, e.g. in discussing the electrocatalysis of the reactions and the design of water-management schemes to cope with membrane dehydration. Two-dimensional models have been used to represent reality, but three-dimensional models can cope with some important additional aspects. Consideration of two-phase transport in the air cathode of a proton exchange membrane fuel cell seems to be very appropriate. Most fuel cells use hydrogen as a fuel. Besides safety concerns, there are problems associated with production, storage and distribution of this fuel. Methanol, as a liquid fuel, can be the solution to these problems and direct methanol fuel cells (DMFCs) are attractive for several applications. Mass transport is a factor that may limit the performance of the cell. Adsorption steps may be coupled to Tafel kinetics to describe methanol oxidation and methanol crossover must also be taken into account. Extending the two-phase approach to the DMFC modeling is a recent, important point.

  2. Polymer stability and function for electrolyte and mixed conductor applications

    NASA Astrophysics Data System (ADS)

    Hammond, Paula; Davis, Nicole; Liu, David; Amanchukwu, Chibueze; Lewis, Nate; Shao-Horn, Yang

    2015-03-01

    Polymers exhibit a number of attractive properties as solid state electrolytes for electrochemical energy devices, including the light weight, flexibility, low cost and adaptive transport properties that polymeric materials can exhibit. For a number of applications, mixed ionic and electronic conducting materials are of interest to achieve transport of electrons and holes or ions within an electrode or at the electrode-electrolyte interface (e.g. aqueous batteries, solar water splitting, lithium battery electrode). Using layer-by-layer assembly, a mode of alternating adsorption of charged or complementary hydrogen bonding group, we can design composite thin films that contain bicontinuous networks of electronically and ionically conducting polymers. We have found that manipulation of salt concentration and the use of divalent ions during assembly can significantly enhance the number of free acid anions available for ion hopping. Unfortunately, for certain electrochemical applications, polymer stability is a true challenge. In separate studies, we have been investigating macromolecular systems that may provide acceptable ion transport properties, but withstand the harsh oxidative environment of lithium air systems. An investigation of different polymeric materials commonly examined for electrochemical applications provides insight into polymer design for these kinds of environments. NSF Center for Chemical Innovation, NDSEG Fellowship and Samsung Corporation.

  3. Method of synthesizing polymers from a solid electrolyte

    DOEpatents

    Skotheim, T.A.

    1984-10-19

    A method of synthesizing electrically conductive polymers from a solvent-free solid polymer electrolyte is disclosed. An assembly of a substrate having an electrode thereon, a thin coating of solid electrolyte including a solution of PEO complexed with an alkali salt, and a thin transparent noble metal electrode are disposed in an evacuated chamber into which a selected monomer vapor is introduced while an electric potential is applied across the solid electrolyte to hold the thin transparent electrode at a positive potential relative to the electrode on the substrate, whereby a highly conductive polymer film is grown on the transparent electrode between it and the solid electrolyte.

  4. Method of synthesizing polymers from a solid electrolyte

    DOEpatents

    Skotheim, Terje A.

    1985-01-01

    A method of synthesizing electrically conductive polymers from a solvent-free solid polymer electrolyte wherein an assembly of a substrate having an electrode thereon, a thin coating of solid electrolyte including a solution of PEO complexed with an alkali salt, and a thin transparent noble metal electrode are disposed in an evacuated chamber into which a selected monomer vapor is introduced while an electric potential is applied across the solid electrolyte to hold the thin transparent electrode at a positive potential relative to the electrode on the substrate, whereby a highly conductive polymer film is grown on the transparent electrode between it and the solid electrolyte.

  5. New Solid Polymer Electrolytes for Improved Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Hehemann, David G.

    2002-01-01

    The objective of this work was to identify, synthesize and incorporate into a working prototype, next-generation solid polymer electrolytes, that allow our pre-existing solid-state lithium battery to function better under extreme conditions. We have synthesized polymer electrolytes in which emphasis was placed on the temperature-dependent performance of these candidate electrolytes. This project was designed to produce and integrate novel polymer electrolytes into a lightweight thin-film battery that could easily be scaled up for mass production and adapted to different applications.

  6. Electrochemical Stability of Model Polymer Electrolyte/Electrode Interfaces

    NASA Astrophysics Data System (ADS)

    Hallinan, Daniel; Yang, Guang

    2015-03-01

    Polymer electrolytes are promising materials for high energy density rechargeable batteries. However, typical polymer electrolytes are not electrochemically stable at the charging voltage of advanced positive electrode materials. Although not yet reported in literature, decomposition is expected to adversely affect the performance and lifetime of polymer-electrolyte-based batteries. In an attempt to better understand polymer electrolyte oxidation and design stable polymer electrolyte/positive electrode interfaces, we are studying electron transfer across model interfaces comprising gold nanoparticles and organic protecting ligands assembled into monolayer films. Gold nanoparticles provide large interfacial surface area yielding a measurable electrochemical signal. They are inert and hence non-reactive with most polymer electrolytes and lithium salts. The surface can be easily modified with ligands of different chemistry and molecular weight. In our study, poly(ethylene oxide) (PEO) will serve as the polymer electrolyte and lithium bis(trifluoromethanesulfonyl) imide salt (LiTFSI) will be the lithium salt. The effect of ligand type and molecular weight on both optical and electrical properties of the gold nanoparticle film will be presented. Finally, the electrochemical stability of the electrode/electrolyte interface and its dependence on interfacial properties will be presented.

  7. Solid polymer electrolytes for rechargeable batteries. Final report

    SciTech Connect

    Narang, S.C.; Ventura, S.C.

    1992-02-01

    SRI International has synthesized and tested new, dimensionally stable polymer electrolytes for high energy density rechargeable lithium batteries. We have prepared semi-interpenetrating networks of sulfur-substituted polyethyleneoxide with tetmethylorthosilicate (TEOS). The in situ hydrolysis of TEOS produces a mechanically stable three-dimensional network that entangles the polymer electrolytes and makes the film dimensionally flexible and stable. With this approach, the best dimensionally stable polymer electrolyte of this type produced so far, has a room temperature lithium ion conductivity of 7.5 {times} 10{sup {minus}4} S cm{sup {minus}1}. Another type of solid polymer electrolytes, polydiacetylene-based single-ion conductors with high room temperature proton conductivity were also developed. The best conductivity of these polymers is two orders of magnitude higher than that of Nafion under comparable experimental conditions. With further appropriate chemical modification, the new polymers could be used in fuel cells.

  8. Solid electrolyte material manufacturable by polymer processing methods

    DOEpatents

    Singh, Mohit; Gur, Ilan; Eitouni, Hany Basam; Balsara, Nitash Pervez

    2012-09-18

    The present invention relates generally to electrolyte materials. According to an embodiment, the present invention provides for a solid polymer electrolyte material that is ionically conductive, mechanically robust, and can be formed into desirable shapes using conventional polymer processing methods. An exemplary polymer electrolyte material has an elastic modulus in excess of 1.times.10.sup.6 Pa at 90 degrees C. and is characterized by an ionic conductivity of at least 1.times.10.sup.-5 Scm-1 at 90 degrees C. An exemplary material can be characterized by a two domain or three domain material system. An exemplary material can include material components made of diblock polymers or triblock polymers. Many uses are contemplated for the solid polymer electrolyte materials. For example, the present invention can be applied to improve Li-based batteries by means of enabling higher energy density, better thermal and environmental stability, lower rates of self-discharge, enhanced safety, lower manufacturing costs, and novel form factors.

  9. Solid Polymer Electrolyte Fuel Cell Technology Program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Work is reported on phase 5 of the Solid Polymer Electrolyte (SPE) Fuel Cell Technology Development program. The SPE fuel cell life and performance was established at temperatures, pressures, and current densities significantly higher than those previously demonstrated in sub-scale hardware. Operation of single-cell Buildup No. 1 to establish life capabilities of the full-scale hardware was continued. A multi-cell full-scale unit (Buildup No. 2) was designed, fabricated, and test evaluated laying the groundwork for the construction of a reactor stack. A reactor stack was then designed, fabricated, and successfully test-evaluated to demonstrate the readiness of SPE fuel cell technology for future space applications.

  10. Polymer electrolyte membranes with exceptional conductivity anisotropy via holographic polymerization

    NASA Astrophysics Data System (ADS)

    Smith, Derrick M.; Cheng, Shan; Wang, Wenda; Bunning, Timothy J.; Li, Christopher Y.

    2014-12-01

    Polymer electrolyte membranes using an ionic liquid as electrolyte with an ionic conductivity anisotropy of ∼5000 have been fabricated using a holographic polymerization nanomanufacturing technique. The resultant structure is referred to as holographic polymer electrolyte membranes (hPEMs), which are comprised of alternating nanolayers of a room temperature ionic liquid and crosslinked polymer resin, confirmed under TEM imaging. These hPEMs also show no reduction in room temperature conductivity with respect to the loaded ionic liquid when characterized in the plane of ionic liquid nanolayers. At elevated temperatures with the optimal electrolyte volume loading, calculation shows that the free ion concentration is higher than the pure ionic liquid, suggesting that the photopolymer dual-functionalizes as a loadbearing scaffold and an ion-complexing agent, allowing for more ions to participate in charge transfer. These hPEMs provide a promising solution to decoupling mechanical enhancement and ion transport in polymer electrolyte membranes.

  11. Proton Conducting Polymer Electrolyte Based on Pva-Pan

    NASA Astrophysics Data System (ADS)

    Devi, S. Siva; Selvasekarapandian, S.; Rajeswari, N.; Genova, F. Kingslin Mary; Karthikeyan, S.; Raja, C. Sanjeevi

    2013-07-01

    Proton conducting polymer electrolytes based on blend polymer using Poly Vinyl Alcohol (PVA) and Poly Acrylo Nitrile (PAN) doped with ammonium nitrate have been prepared by solution casting method. The highest conductivity at room temperature (305K) has been found to be 1.8×10-3 S cm-1 for 15 mole % NH4NO3 doped PVA-PAN system. X ray Diffraction pattern of the doped and the undoped blend polymer electrolyte confirms the amorphous nature of blend polymer, when salt is added. The complex formation between the blend polymer and the salt has been confirmed by Fourier transform infrared spectroscopy.

  12. Electrospun nanocomposite fibrous polymer electrolyte for secondary lithium battery applications

    NASA Astrophysics Data System (ADS)

    Padmaraj, O.; Rao, B. Nageswara; Jena, Paramananda; Venkateswarlu, M.; Satyanarayana, N.

    2014-04-01

    Hybrid nanocomposite [poly(vinylidene fluoride -co- hexafluoropropylene) (PVdF-co-HFP)/magnesium aluminate (MgAl2O4)] fibrous polymer membranes were prepared by electrospinning method. The prepared pure and nanocomposite fibrous polymer electrolyte membranes were soaked into the liquid electrolyte 1M LiPF6 in EC: DEC (1:1,v/v). XRD and SEM are used to study the structural and morphological studies of nanocomposite electrospun fibrous polymer membranes. The nanocomposite fibrous polymer electrolyte membrane with 5 wt.% of MgAl2O4 exhibits high ionic conductivity of 2.80 × 10-3 S/cm at room temperature. The charge-discharge capacity of Li/LiCoO2 coin cells composed of the newly prepared nanocomposite [(16 wt.%) PVdF-co-HFP+(5 wt.%) MgAl2O4] fibrous polymer electrolyte membrane was also studied and compared with commercial Celgard separator.

  13. Raising the conductivity of crystalline polymer electrolytes by aliovalent doping.

    PubMed

    Zhang, Chuhong; Staunton, Edward; Andreev, Yuri G; Bruce, Peter G

    2005-12-28

    Polymer electrolytes, salts dissolved in solid polymers, hold the key to realizing all solid-state devices such as rechargeable lithium batteries, electrochromic displays, or SMART windows. For 25 years conductivity was believed to be confined to amorphous polymer electrolytes, all crystalline polymer electrolytes were thought to be insulators. However, recent results have demonstrated conductivity in crystalline polymer electrolytes, although the levels at room temperature are too low for application. Here we show, for the first time, that it is possible to raise significantly the level of ionic conductivity by aliovalent doping. The conductivity may be raised by 1.5 orders of magnitude if the SbF6- ion in the crystalline conductor poly(ethylene oxide)6:LiSbF6 is replaced by less than 5 mol % SiF6(2-), thus introducing additional, mobile, Li+ ions into the structure to maintain electroneutrality. PMID:16366585

  14. Lithium Ion Polymer Electrolyte Based on Pva-Pan

    NASA Astrophysics Data System (ADS)

    Genova, F. Kingslin Mary; Selvasekarapandian, S.; Rajeswari, N.; Devi, S. Siva; Karthikeyan, S.; Raja, C. Sanjeevi

    2013-07-01

    The polymer blend electrolytes based on polyvinylalcohol(PVA) and polyacrylonitrile (PAN) doped with lithium per chlorate (LiClO4) have been prepared by solution casting technique using DMF as solvent. The complex formation between blend polymer and the salt has been confirmed by Fourier transform infrared spectroscopy. The amorphous nature of the blend polymer electrolyte has been confirmed by X-ray diffraction analysis. The ionic conductivity of the prepared blend polymer electrolyte has been found by ac impedence spectroscopic analysis. The highest ionic conductivity has been found to be 5.0 X10-4 S cm -1 at room temperature for 92.5 PVA: 7.5PAN: 20 molecular wt. % of LiClO4. The effect of salt concentration on the conductivity of the blend polymer electrolyte has been discussed.

  15. Polymer--Ionic liquid Electrolytes for Electrochemical Capacitors

    NASA Astrophysics Data System (ADS)

    Ketabi, Sanaz

    Polymer electrolyte, comprised of ionic conductors, polymer matrix, and additives, is one of the key components that control the performance of solid flexible electrochemical capacitors (ECs). Ionic liquids (ILs) are highly promising ionic conductors for next generation polymer electrolytes due to their excellent electrochemical and thermal stability. Fluorinated ILs are the most commonly applied in polymer-IL electrolytes. Although possessing high conductivity, these ILs have low environmental favorability. The aim of this work was to develop environmentally benign polymer-ILs for both electrochemical double layer capacitors (EDLCs) and pseudocapacitors, and to provide insights into the influence of constituent materials on the ion conduction mechanism and the structural stability of the polymer-IL electrolytes. Solid polymer electrolytes composed of poly(ethylene oxide) (PEO) and 1-ethyl-3-methylimidazolium hydrogen sulfate (EMIHSO4) were investigated for ECs. The material system was optimized to achieve the two criteria for high performance polymer-ILs: high ionic conductivity and highly amorphous structure. Thermal and structural analyses revealed that EMIHSO4 acted as an ionic conductor and a plasticizer that substantially decreased the crystallinity of PEO. Two types of inorganic nanofillers were incorporated into these polymer electrolytes. The effects of SiO2 and TiO2 nanofillers on ionic conductivity, crystallinity, and dielectric properties of PEO-EMIHSO 4 were studied over a temperature range from -10 °C and 80 °C. Using an electrochemical capacitor model, impedance (complex capacitance) and dielectric analyses were performed to understand the ionic conduction process with and without fillers in both semi crystalline and amorphous states of the polymer electrolytes. Despite their different nanostructures, both SiO2 and TiO2 promoted an amorphous structure in PEO-EMIHSO 4 and increased the ionic conductivity 2-fold. While in the amorphous state, the

  16. Fuel cells with solid polymer electrolyte and their application on vehicles

    SciTech Connect

    Fateev, V.

    1996-04-01

    In Russia, solid polymer electrolyte MF-4-SK has been developed for fuel cells. This electrolyte is based on perfluorinated polymer with functional sulfogroups. Investigations on electrolyte properties and electrocatalysts have been carried out.

  17. Lithium composite electrolyte FeS{sub 2} bipolar battery

    SciTech Connect

    Peled, E.; Golodnitsky, D.; Lang, J.; Lavi, Y.

    1994-12-31

    The goals are to develop and characterize a small laboratory prototype of a new lithium battery for electric vehicles (EV) and load leveling. This rechargeable battery consists of thin foils of: lithium anode, composite solid electrolyte (CSE) or composite polymer electrolyte (CPE) and a composite FeS{sub 2} (pyrite) cathode. Their battery has several advantages over other state of the art polymer electrolyte batteries: (1) The authors use a low cost cathode, pyrite is a natural ore, therefore it is environmentally friendly (2) Small prototype cells exhibited very high specific energy, projected to be 120 Wh/kg at C/5 to C/10 rate (three times larger than that of lead acid battery) and more than forty 100% charge-discharge cycles (3) their battery has an internal electrochemical overcharge protection mechanism (which is essential for EV batteries) (4) It was found that for both CSE and CPE the Li/electrolyte interfacial resistance is low and stable for up to 3,000h (CPE) and 700h CSE at 120 C. The long term projected specific energy for their battery is over 200 Wh/kg, five times larger than that of the lead acid battery and one of the highest among all batteries under development.

  18. Composition analysis of a polymer electrolyte membrane fuel cell microporous layer using scanning transmission X-ray microscopy and near edge X-ray absorption fine structure analysis

    NASA Astrophysics Data System (ADS)

    George, Michael G.; Wang, Jian; Banerjee, Rupak; Bazylak, Aimy

    2016-03-01

    The novel application of scanning transmission X-ray microscopy (STXM) to the microporous layer (MPL) of a polymer electrolyte membrane fuel cell is investigated. A spatially resolved chemical component distribution map is obtained for the MPL of a commercially available SGL 25 BC sample. This is achieved with near edge X-ray absorption fine structure spectroscopic analysis. Prior to analysis the sample is embedded in non-reactive epoxy and ultra-microtomed to a thickness of 100 nm. Polytetrafluoroethylene (PTFE), carbon particle agglomerates, and supporting epoxy resin distributions are identified and reconstructed for a scanning area of 6 μm × 6 μm. It is observed that the spatial distribution of PTFE is strongly correlated to the carbon particle agglomerations. Additionally, agglomerate structures of PTFE are identified, possibly indicating the presence of a unique mesostructure in the MPL. STXM analysis is presented as a useful technique for the investigation of chemical species distributions in the MPL.

  19. Norbornene-Based Polymer Electrolytes for Lithium Cells

    NASA Technical Reports Server (NTRS)

    Cheung, Iris; Smart, Marshall; Prakash, Surya; Miyazawa, Akira; Hu, Jinbo

    2007-01-01

    Norbornene-based polymers have shown promise as solid electrolytes for lithium-based rechargeable electrochemical cells. These polymers are characterized as single-ion conductors. Single-ion-conducting polymers that can be used in lithium cells have long been sought. Single-ion conductors are preferred to multiple-ion conductors as solid electrolytes because concentration gradients associated with multiple-ion conduction lead to concentration polarization. By minimizing concentration polarization, one can enhance charge and discharge rates. Norbornene sulfonic acid esters have been synthesized by a ring-opening metathesis polymerization technique, using ruthenium-based catalysts. The resulting polymer structures (see figure) include sulfonate ionomers attached to the backbones of the polymer molecules. These molecules are single-ion conductors in that they conduct mobile Li+ ions only; the SO3 anions in these polymers, being tethered to the backbones, do not contribute to ionic conduction. This molecular system is especially attractive in that it is highly amenable to modification through functionalization of the backbone or copolymerization with various monomers. Polymers of this type have been blended with poly(ethylene oxide) to lend mechanical integrity to free-standing films, and the films have been fabricated into solid polymer electrolytes. These electrolytes have been demonstrated to exhibit conductivity of 2 10(exp -5)S/cm (which is high, relative to the conductivities of other solid electrolytes) at ambient temperature, plus acceptably high stability. This type of norbornene-based polymeric solid electrolyte is in the early stages of development. Inasmuch as the method of synthesis of these polymers is inherently flexible and techniques for the fabrication of the polymers into solid electrolytes are amenable to optimization, there is reason to anticipate further improvements.

  20. Can Biochemistry Usefully Guide the Search for Better Polymer Electrolytes?

    PubMed Central

    Halley, J. Woods

    2013-01-01

    I review some considerations that suggest that the biochemical products of evolution may provide hints concerning the way forward for the development of better electrolytes for lithium polymer batteries. PMID:24956948

  1. Polymer electrolytes for a rechargeable li-Ion battery

    SciTech Connect

    Argade, S.D.; Saraswat, A.K.; Rao, B.M.L.; Lee, H.S.; Xiang, C.L.; McBreen, J.

    1996-10-01

    Lithium-ion polymer electrolyte battery technology is attractive for many consumer and military applications. A Li{sub x}C/Li{sub y}Mn{sub 2}O{sub 4} battery system incorporating a polymer electrolyte separator base on novel Li-imide salts is being developed under sponsorship of US Army Research Laboratory (Fort Monmouth NJ). This paper reports on work currently in progress on synthesis of Li-imide salts, polymer electrolyte films incorporating these salts, and development of electrodes and cells. A number of Li salts have been synthesized and characterized. These salts appear to have good voltaic stability. PVDF polymer gel electrolytes based on these salts have exhibited conductivities in the range 10{sup -4} to 10{sub -3} S/cm.

  2. Poly(arylene)-based anion exchange polymer electrolytes

    DOEpatents

    Kim, Yu Seung; Bae, Chulsung

    2015-06-09

    Poly(arylene) electrolytes including copolymers lacking ether groups in the polymer may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.

  3. Advanced Proton Conducting Polymer Electrolytes for Electrochemical Capacitors

    NASA Astrophysics Data System (ADS)

    Gao, Han

    Research on solid electrochemical energy storage devices aims to provide high performance, low cost, and safe operation solutions for emerging applications from flexible consumer electronics to microelectronics. Polymer electrolytes, minimizing device sealing and liquid electrolyte leakage, are key enablers for these next-generation technologies. In this thesis, a novel proton-conducing polymer electrolyte system has been developed using heteropolyacids (HPAs) and polyvinyl alcohol for electrochemical capacitors. A thorough understanding of proton conduction mechanisms of HPAs together with the interactions among HPAs, additives, and polymer framework has been developed. Structure and chemical bonding of the electrolytes have been studied extensively to identify and elucidate key attributes affecting the electrolyte properties. Numerical models describing the proton conduction mechanism have been applied to differentiate those attributes. The performance optimization of the polymer electrolytes through additives, polymer structural modifications, and synthesis of alternative HPAs has achieved several important milestones, including: (a) high proton mobility and proton density; (b) good ion accessibility at electrode/electrolyte interface; (c) wide electrochemical stability window; and (d) good environmental stability. Specifically, high proton mobility has been addressed by cross-linking the polymer framework to improve the water storage capability at normal-to-high humidity conditions (e.g. 50-80% RH) as well as by incorporating nano-fillers to enhance the water retention at normal humidity levels (e.g. 30-60% RH). High proton density has been reached by utilizing additional proton donors (i.e. acidic plasticizers) and by developing different HPAs. Good ion accessibility has been achieved through addition of plasticizers. Electrochemical stability window of the electrolyte system has also been investigated and expanded by utilizing HPAs with different heteroatoms

  4. Computer Simulations of Ion Transport in Polymer Electrolyte Membranes.

    PubMed

    Mogurampelly, Santosh; Borodin, Oleg; Ganesan, Venkat

    2016-06-01

    Understanding the mechanisms and optimizing ion transport in polymer membranes have been the subject of active research for more than three decades. We present an overview of the progress and challenges involved with the modeling and simulation aspects of the ion transport properties of polymer membranes. We are concerned mainly with atomistic and coarser level simulation studies and discuss some salient work in the context of pure binary and single ion conducting polymer electrolytes, polymer nanocomposites, block copolymers, and ionic liquid-based hybrid electrolytes. We conclude with an outlook highlighting future directions. PMID:27070764

  5. Ionically conducting polymers: Principles and properties of solid electrolytes

    SciTech Connect

    Skotheim, T.; Okamoto, Y.

    1987-01-01

    The recent success in developing rechargeable lithium batteries incorporating polyether-based electrolytes has led to the anticipation of a wider use of polymer electrolytes in a host of different applications. The polymers with the best combinations of solvation power, conductivity and electrochemical stability are all based on either PEO or polymers incorporating a high density of EO units. PEO-based electrolytes still yield the highest conductivities at elevated temperatures (approx.100/sup 0/C) when it is completely amorphous. What has emerged during the last ten years of research on polymer electrolytes is the central importance of the amorphous state for high conductivity, where the ion mobility is governed by the mobility associated with a low glass transition temperature. The difference between polymer and liquid electrolytes is that in the former the solvating part does not migrate with the ions. There is, however, still some controversy concerning the nature of the ionic species, i.e. whether the salt is present in the form of associated ions. The intensive research of the last few years has led to a far better understanding of these polymer-ion complexes. Several different types of solvating polymers have been developed, in particular single ion conductors, which represent much of the future of ion conducting polymer research. 36 refs.

  6. Reciprocated suppression of polymer crystallization toward improved solid polymer electrolytes: Higher ion conductivity and tunable mechanical properties

    DOE PAGESBeta

    Bi, Sheng; Sun, Che-Nan; Zawodzinski, Thomas A.; Ren, Fei; Keum, Jong Kahk; Ahn, Suk-Kyun; Li, Dawen; Chen, Jihua

    2015-08-06

    Solid polymer electrolytes based on lithium bis(trifluoromethanesulfonyl) imide and polymer matrix were extensively studied in the past due to their excellent potential in a broad range of energy related applications. Poly(vinylidene fluoride) (PVDF) and polyethylene oxide (PEO) are among the most examined polymer candidates as solid polymer electrolyte matrix. In this paper, we study the effect of reciprocated suppression of polymer crystallization in PVDF/PEO binary matrix on ion transport and mechanical properties of the resultant solid polymer electrolytes. With electron and X-ray diffractions as well as energy filtered transmission electron microscopy, we identify and examine the appropriate blending composition thatmore » is responsible for the diminishment of both PVDF and PEO crystallites. Laslty, a three-fold conductivity enhancement is achieved along with a highly tunable elastic modulus ranging from 20 to 200 MPa, which is expected to contribute toward future designs of solid polymer electrolytes with high room-temperature ion conductivities and mechanical flexibility.« less

  7. Stable Lithium Deposition Generated from Ceramic-Cross-Linked Gel Polymer Electrolytes for Lithium Anode.

    PubMed

    Tsao, Chih-Hao; Hsiao, Yang-Hung; Hsu, Chun-Han; Kuo, Ping-Lin

    2016-06-22

    In this work, a composite gel electrolyte comprising ceramic cross-linker and poly(ethylene oxide) (PEO) matrix is shown to have superior resistance to lithium dendrite growth and be applicable to gel polymer lithium batteries. In contrast to pristine gel electrolyte, these nanocomposite gel electrolytes show good compatibility with liquid electrolytes, wider electrochemical window, and a superior rate and cycling performance. These silica cross-linkers allow the PEO to form the lithium ion pathway and reduce anion mobility. Therefore, the gel not only features lower polarization and interfacial resistance, but also suppresses electrolyte decomposition and lithium corrosion. Further, these nanocomposite gel electrolytes increase the lithium transference number to 0.5, and exhibit superior electrochemical stability up to 5.0 V. Moreover, the lithium cells feature long-term stability and a Coulombic efficiency that can reach 97% after 100 cycles. The SEM image of the lithium metal surface after the cycling test shows that the composite gel electrolyte with 20% silica cross-linker forms a uniform passivation layer on the lithium surface. Accordingly, these features allow this gel polymer electrolyte with ceramic cross-linker to function as a high-performance lithium-ionic conductor and reliable separator for lithium metal batteries. PMID:27247991

  8. Characterisation of Proton Conducting Polymer Electrolyte Based on Pan

    NASA Astrophysics Data System (ADS)

    Nithya, S.; Selvasekarapandian, S.; Rajeswari, N.; Sikkanthar, S.; Karthikeyan, S.; Sanjeeviraja, C.

    2013-07-01

    The polymer electrolytes composed of polyacrylonitrile (PAN) with various concentration of ammonium nitrare (NH4NO3) salt have been prepared by solution casting method, using DMF as solvent. The increase in amorphous nature of the polymer electrolytes has been confirmed by Xray diffraction analysis. The complex formation between polymer and dissociated salt has been confirmed by Fourier transform infrared spectroscopy. From the Ac impedance spectroscopic analysis, the ionic conductivity of 20 mol% NH4NO3 doped polymer complex has been found to be 2.742 × 10-6 S cm-1 at room temperature. The conductivity has been increased when the temperature is increased. The activation energy of 20 mol% NH4NO3 doped polymer electrolyte was calculated using Arrhenius plot and it has been found to be 0.58 eV. The dielectric permitivitty (ɛ*) and electric modulus (m*) have been discussed.

  9. Novel inorganic materials for polymer electrolyte and alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Tadanaga, Kiyoharu

    2012-06-01

    Inorganic materials with high ionic conductivity must have big advantages for the thermal and long term stability when the materials are used as the electrolyte of fuel cells. In the present paper, novel ionic conductive inorganic materials for polymer electrolyte fuel cells (PEFCs) and all solid state alkaline fuel cells (AFCs) that have been developed by our group have been reviewed. PEFCs which can operate in temperature range from 100 to 200 °C are intensively studied because of some advantages such as reduction of CO poisoning of Pt catalyst and acceleration of electrode reactions. We showed that the fuel cells using the composite membranes prepared from phosphosilicate gel powder and polyimide precursor can operate in the temperature range from 30 to 180 °C. We also found that the inorganic-organic hybrid membranes with acid-base pairs from 3-aminopropyl triethoxy silane and H2SO4 or H3PO4 show high proton conductivity under dry atmosphere, and the membranes are thermally stable at intermediate temperatures. On the other hand, because the use of noble platinum is the serious problem for the commercialization of PEFCs and because oxidation reactions are usually faster than those of acid-type fuel cells, alkaline type fuel cells, in which a nonplatinum catalyst can be used, are attractive. Recently, we have proposed an alkaline-type direct ethanol fuel cell (DEFC) using a natural clay electrolyte with non-platinum catalysts. So-called hydrotalcite clay, Mg-Al layered double hydroxide intercalated with CO32- (Mg-Al CO32- LDH), has been proved to be a hydroxide ion conductor. An alkalinetype DEFC using Mg-Al CO32- LDH as the electrolyte and aqueous solution of ethanol and potassium hydroxide as a source of fuel exhibited excellent electrochemical performance.

  10. Composite electrode/electrolyte structure

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2004-01-27

    Provided is an electrode fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. Onto this electrode in the green state, a green ionic (e.g., electrolyte) film is deposited and the assembly is co-fired at a temperature suitable to fully densify the film while the substrate retains porosity. Subsequently, a catalytic material is added to the electrode structure by infiltration of a metal salt and subsequent low temperature firing. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems.

  11. Studies on the effect of acid treated TiO{sub 2} on the electrical and tensile properties of hexanoyl chitosan-polystyrene-LiCF{sub 3}SO{sub 3} composite polymer electrolytes

    SciTech Connect

    Hanif, Nur Shazlinda Muhammad; Shahril, Nur Syuhada Mohd; Azmar, Amisha; Winie, Tan

    2015-08-28

    Composite polymer electrolytes (CPEs) comprised of hexanoyl chitosan:polystyrene (90:10) blend, lithium triflouromethanesulfonate (LiCF{sub 3}SO{sub 3}) salt and titanium oxide (TiO{sub 2}) filler were prepared by solution casting technique. The TiO{sub 2} fillers were treated with 2% sulphuric acid (H{sub 2}SO{sub 4}) aqueous solution. The effect of acid treated TiO{sub 2} on the electrical and tensile properties of the electrolytes were investigated. Acid treated TiO{sub 2} decreased the electrolyte conductivity. Both the dielectric constant and dielectric loss decrease with increasing frequency and increases with increasing temperature. Relaxation times for ionic carriers were extracted from the loss tangent maximum peak at various temperatures. A distribution of relaxation time implied the non-Debye response. At all frequencies, ac conductivity increases with increasing temperature. An enhancement in the Young’s modulus was observed with the addition of TiO{sub 2}. The Young’s modulus increases with increasing TiO{sub 2} content. This is discussed using the percolation concept.

  12. Tribology of polymer composites

    SciTech Connect

    Friedrich, K.

    1993-12-31

    Polymer composites are more and more used as structural components which are very often subjected to friction and wear loadings under use. This overview describes the following cases: (1) short fiber/thermoplastic matrix composites and their friction and wear properties as a function of both microstructural composition and external testing conditions. Special attention is focused on the effects of different polymer matrices, fiber reinforcements, and additional internal lubricants on the coefficient of friction and the specific wear rate of these materials when sliding against hard steel counterparts. Further effects on these tribological properties due to changes in testing temperature, sliding speed and contact pressure are outlined; (2) results of sliding wear experiments with continuous glass, carbon or aramid fiber/polymer matrix composites against steel counterparts. They were used to develop a hypothetical model composite with optimum wear resistance. This was achieved for hybrids with carbon fibers parallel and aramid fibers normal to the sliding direction of the counterpart; and (3) the friction and wear performance of thin layer composites strengthened with steel backeners to sustain very high pressure loadings during sliding wear.

  13. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells.

    PubMed

    Mansor, Noramalina; Jorge, A Belen; Corà, Furio; Gibbs, Christopher; Jervis, Rhodri; McMillan, Paul F; Wang, Xiaochen; Brett, Daniel J L

    2014-04-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li(+)Cl(-)), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li(+)Cl(-) catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA. PMID:24748912

  14. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells

    PubMed Central

    2014-01-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li+Cl–), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li+Cl– catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA. PMID:24748912

  15. Structural and ionic conductivity studies of electrospun polymer blend P(VdF-co-HFP)/PMMA electrolyte membrane for lithium battery application

    SciTech Connect

    Padmaraj, O.; Satyanarayana, N.; Venkateswarlu, M.

    2015-06-24

    A novel fibrous polymer blend [(100-x) % P(VdF-co-HFP)/x % PMMA, x = 10, 20, 30, 40, 50] electrolyte membranes were prepared by electrospinning technique. Structural, thermal and surface morphology of all the compositions of electrospun polymer blend membranes were studied by using XRD, DSC & SEM. The newly developed five different compositions of polymer blend fibrous electrolyte membranes were obtained by soaking in an electrolyte solution contains 1M LiPF{sub 6} in EC: DEC (1:1,v/v). The wet-ability and conductivity of all the compositions of polymer blend electrolyte membranes are evaluated through electrolyte uptake and impedance measurements. The polymer blend [90% P(VdF-co-HFP)/10% PMMA] electrolyte membrane showed good wet-ability and high conductivity (1.788 × 10{sup −3} Scm{sup −1}) at room temperature.

  16. Novel solid polymer electrolytes based on poly(trimethylene carbonate) and lithium hexafluoroantimonate

    NASA Astrophysics Data System (ADS)

    Manuela Silva, Maria; Barbosa, Paula; Evans, Alan; Smith, Michael John

    2006-11-01

    The results of the characterization of a polymer electrolyte system based on the poly(trimethylene carbonate) host matrix, with lithium hexafluoroantimonate as guest salt, are described in this study. Electrolytes with lithium salt compositions with values of n between 5 and 100 (where n represents the total number of monomeric cation-coordinating units sbnd (O dbnd COCH 2CH 2CH 2O) sbnd per lithium ion) were prepared by co-dissolution and deposition from acetonitrile. The solvent-casting technique was used to prepare flexible, transparent and self-supporting films of electrolytes which were characterized by measurements of conductivity, cyclic voltammetry, differential scanning calorimetry and thermogravimetry.

  17. A hybrid gel-solid-state polymer electrolyte for long-life lithium oxygen batteries.

    PubMed

    Luo, Wen-Bin; Chou, Shu-Lei; Wang, Jia-Zhao; Kang, Yong-Mook; Zhai, Yu-Chun; Liu, Hua-Kun

    2015-05-14

    A hybrid gel-solid-state polymer electrolyte has been used as the separator and an electrolyte for lithium oxygen batteries. It can not only avoid electrolyte evaporation but also protect the lithium metal anode during reactions over long-term cycling. Due to its high ionic conductivity and low activation energy, excellent cycling performance is demonstrated, in which the terminal voltage is higher than 2.2 V after 140 cycles at 0.4 mA cm(-2), with a capacity of 1000 mA h g(composite)(-1). PMID:25874974

  18. Proton Ion Conducting Polymer Electrolyte Pan: NH4PF6

    NASA Astrophysics Data System (ADS)

    Sikkanthar, S.; Karthikeyan, S.; Rajeswari, N.; Selvasekarapandian, S.; Sanjeeviraja, C.

    2013-07-01

    Polymer electrolytes are an important class of materials and have been used in high energy batteries, fuel cells, gas sensors, display devices etc. PAN based polymer electrolyte films doped with ammonium hexafluorophosphate (NH4PF6) has been prepared by the solution casting method. The prepared films have been investigated by different techniques such as XRD, FTIR and AC Impedance spectroscopy. XRD studies reveal the amorphous nature of the polymer blend-salt complexes. The FTIR analysis confirms the complex formation of the polymer with salt. From the AC Impedance spectroscopy, the maximum proton conductivity at room temperature has been found to be 3.98×10-4 S cm-1 for 20 mol% salt doped electrolyte.

  19. Precursor polymer compositions comprising polybenzimidazole

    SciTech Connect

    Klaehn, John R.; Peterson, Eric S.; Orme, Christopher J.

    2015-07-14

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  20. Enhanced electrical transport in ionic liquid dispersed TMAI-PEO solid polymer electrolyte

    SciTech Connect

    Gupta, Neha; Rathore, Munesh Dalvi, Anshuman; Kumar, Anil

    2014-04-24

    A polymer composite is prepared by dispersing ionic liquid [Bmim][BF{sub 4}] in Polyethylene oxide-tetra methyl ammonium iodide composite and subsequent microwave treatment. X-ray diffraction patterns confirm the composite nature. To explore possibility of proton conductivity in these films, electrical transport is studied by impedance spectroscopy and DC polarization. It is revealed that addition of ionic liquid in host TMAI-PEO solid polymer electrolyte enhances the conductivity by ∼ 2 orders of magnitude. Polarization measurements suggest that composites are essentially ion conducting in nature. The maximum ionic conductivity is found to be ∼2 × 10{sup −5} for 10 wt % ionic liquid.

  1. Electronically conductive polymer composites and microstructures

    SciTech Connect

    Van Dyke, L.S.

    1993-01-01

    Composites of electronically conductive polymers with insulating host materials are investigated. A template synthesis method was developed for the production of electronically conductive polymer microstructures. In template synthesis the pores of a porous host membrane act as templates for the polymerization of a conductive polymer. The template synthetic method can be used to form either solid microfibrils or hollow microtubules. The electrochemical properties of conductive polymers produced via the template synthesis method are superior to those of conventionally synthesized conductive polymers. Electronically conductive polymers are used to impart conductivity to non-conductive materials. Two different approaches are used. First, thin film composites of conductive polymers with fluoropolymers are made by the polymerization of conductive polymers onto fluoropolymer films. Modification of the fluoropolymer surface prior to conductive polymer polymerization is necessary to obtain good adhesion between the two materials. The difference in adhesion of the conductive polymer to the modified and unmodified fluoropolymer surfaces can be used to pattern the conductive polymer coating. Patterning of the conductive polymer coating can alternatively be done via UV laser ablation of the conductive polymer. The second method by which conductive polymers were used to impart conductivity to an insulating polymer was via the formation of a graft copolymer. In this approach, heterocyclic monomers grafted to an insulating polyphosphazene backbone were polymerized to yield semiconductive materials. Finally the measurement of electrolyte concentration in polypyrrole and the effects of hydroxide anion on the electrochemical and electrical properties of polypyrrole are described. It is shown that treatment of polypyrrole with hydroxide anion increases the potential window over which polypyrrole is a good electronic conductor.

  2. Aerogel/polymer composite materials

    NASA Technical Reports Server (NTRS)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

    2010-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  3. Ionic conductivity and transport properties of poly(vinylidene fluoride-co-hexafluoropropylene)-based solid polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Abreha, Merhawi; Subrahmanyam, A. R.; Siva Kumar, J.

    2016-08-01

    Polymer electrolytes containing poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) and various concentrations of lithium triflate were prepared to determine the optimal polymer-salt composition for maximum ionic conductivity. Complex formation was ascertained from X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) studies. The conductivity measurements reveal that the ionic conductivity of the polymer electrolytes containing various salt concentrations increases with temperature and obeys the Arrhenius rule. It is found that the electrolyte containing 25 wt.% of lithium triflate exhibits the highest room temperature conductivity. Moreover, Ionic transference measurements show predominance of ionic motion.

  4. Comparing proton conductivity of polymer electrolytes by percent conducting volume

    SciTech Connect

    Kim, Yu Seung; Pivovar, Bryan

    2009-01-01

    Proton conductivity of sulfonated polymers plays a key role in polymer electrolyte membrane fuel cells. Mass based water uptake and ion exchange capacity of sulfonated polymers have been failed to correlating their proton conductivity. In this paper, we report a length scale parameter, percent conductivity volume, which is rather simply obtained from the chemical structure of polymer to compare proton conductivity of wholly aromatic sulfonated polymer perflurosulfonic acid. Morphology effect on proton conductivity at lower RH conditions is discussed using the percent conductivity volume parameter.

  5. [Polymer-in-salt electrolytes]. Annual report and extension proposal

    SciTech Connect

    Angell, C.A.

    1998-12-31

    The research proposed for the current grant consisted of five components, of which the authors have made substantial progress on three and have performed some exploratory work on a sixth for which they present here an argument for extending. The components on which they have made progress are: (1) development of and improvement on the basic polymer-in-salt idea. This will be separated into parts dealing with improvements in salt constitution, and improvements in polymer type, emphasizing the role of anionic polymers; (2) modifications of the polymer-in-salt electrolyte to include the addition of solid particulates to the salt-polymer matrix; and (3) physical measurements. The new component on which they have made some preliminary measurements over the summer period concerns the use of electrolytes developed under the present and other programs for improving the performance of photovoltaic cells. The rationale is that hole/electron separation in semiconductors under irradiation is aided by trapping the holes on a redox species in an adjacent electrolyte solution. The efficiency is proportional to a number of factors not fully understood, one of which is determined by the character of the electrolyte. Since the authors have new types of electrolytes under development, and since solar energy via photovoltaic is an environmentally important aspect of the energy sciences, they felt it was a desirable aspect of materials science to study in a laboratory in Arizona. Achievements in the past year are summarized.

  6. All-Polymer Electrolytic Tilt Sensor with Conductive Poly(dimethylsiloxane) Electrodes

    NASA Astrophysics Data System (ADS)

    Kyoo Lee, June; Choi, Ju Chan; Kong, Seong Ho

    2013-06-01

    In this study, an all-polymer electrolytic tilt sensor with conductive and corrosion-resistant poly(dimethylsiloxane) (PDMS) electrodes was designed and its performances were characterized. A PDMS cavity in the sensor for holding an electrolyte was fabricated by soft lithography using an ultraviolet-sensitive polymer. A conductive PDMS composite (gPDMS) with graphite powder was used for the electrode to measure the inclination angle of the electrolyte. A gPDMS composite with a graphite concentration above 40 wt % was able to function as a conductive polymer. The fabricated all-polymer tilt sensor exhibited a detectable inclination range of +/-60° and showed a relatively linear output signal compared with those exhibited by conventional micromachined tilt sensors with axis asymmetrical cavities. The maximum hysteresis of the output signal was approximately 0.1 Vrms when the sensor repeatedly tilted and leveled off. In addition to the fundamental characterization of the sensor, various characteristics of the all-polymer tilt sensor, such as time-dependent and electrolyte-volume-dependent variations in the output signal, were investigated in this study. While the performance of the proposed sensor was comparable to that of conventional silicon-micromachined tilt sensors, the sensor could be produced at a fraction of the cost required to fabricate the conventional sensors.

  7. All-Polymer Electrolytic Tilt Sensor with Conductive Poly(dimethylsiloxane) Electrodes

    NASA Astrophysics Data System (ADS)

    Lee, June Kyoo; Choi, Ju Chan; Kong, Seong Ho

    2013-06-01

    In this study, an all-polymer electrolytic tilt sensor with conductive and corrosion-resistant poly(dimethylsiloxane) (PDMS) electrodes was designed and its performances were characterized. A PDMS cavity in the sensor for holding an electrolyte was fabricated by soft lithography using an ultraviolet-sensitive polymer. A conductive PDMS composite (gPDMS) with graphite powder was used for the electrode to measure the inclination angle of the electrolyte. A gPDMS composite with a graphite concentration above 40 wt % was able to function as a conductive polymer. The fabricated all-polymer tilt sensor exhibited a detectable inclination range of ± 60° and showed a relatively linear output signal compared with those exhibited by conventional micromachined tilt sensors with axis asymmetrical cavities. The maximum hysteresis of the output signal was approximately 0.1 V\\text{rms when the sensor repeatedly tilted and leveled off. In addition to the fundamental characterization of the sensor, various characteristics of the all-polymer tilt sensor, such as time-dependent and electrolyte-volume-dependent variations in the output signal, were investigated in this study. While the performance of the proposed sensor was comparable to that of conventional silicon-micromachined tilt sensors, the sensor could be produced at a fraction of the cost required to fabricate the conventional sensors.

  8. Quasi Solid Polymer Electrolytes for Dye Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Dissanayake, M. A. K. Lakshman

    2013-07-01

    Dye-sensitized solar cell (DSSC) has been considered as an alternative to the conventional silicon solar cell because of low cost, easy fabrication and relatively high conversion efficiency. A DSSC consists of a dye-sensitized nanoparticulated TiO2 electrode, an electrolyte containing redox couple and a Pt coated counter electrode. Such solar cells based on an I-/I3- redox couple in an organic solvent usually have conversion efficiencies reaching around 11%. However, a major drawback of these solution based solar cells, originally developed by Gratzel and coworkers is the lack of long-term stability due to liquid leakage, usage of volatile liquids such as acetonitrile, electrode corrosion, and photodecomposition of the dye in the solvent medium. Therefore considerable research efforts have been made in recent years to replace the liquid electrolytes with solid polymer or quasi-solid polymer (gel) electrolytes. Among these approaches, the use of gel polymer electrolytes appears to give rise to successful results in terms of conversion efficiency. Conventional poly (ethylene oxide)(PEO)-based solid polymer electrolytes exhibit poor ionic conductivities at room temperature, which is not sufficient for practical applications. Therefore, most of the recent studies have been directed to the preparation and characterization of gel polymer electrolytes which exhibit higher ionic conductivity at ambient temperature while maintain quai-solid structure. These gel polymer electrolytes prepared by incorporating a liquid electrolyte into a matrix polymer such as polyacrylonitrile(PAN), poly(vinylidene fluoride)(PVdF), poly (methyl methacrylate) (PMMA) and PEO have been employed in quasi-solid-state DSSCs to achieve power conversion efficiencies of more than 5%. Significant improvements have been achieved in recent years by modifications of the electrolytes by optimizing the ionic salt, introducing additives such as inorganic nanofillers, organic molecules and ionic liquids in

  9. Decoupling of Ionic Transport from Segmental Relaxation in Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Wang, Yangyang; Agapov, Alexander; Fan, Fei; Hong, Kunlun; Yu, Xiang; Mays, Jimmy; Sokolov, Alexei

    2012-02-01

    Polymer electrolytes provide elegant solutions to many difficulties in battery technology. However, their relatively low ionic conductivity has become the bottleneck for developing batteries with higher power density, shorter charging time, and better operations at low temperatures. In this work, we present detailed studies of the relationship between ionic conductivity and segmental relaxation in a set of specially-designed polymer electrolytes with systematic variation in chain rigidity. Our analysis shows that the ionic conductivity indeed can be decoupled from segmental dynamics in rigid polymers and the strength of the decoupling correlates with the fragility, but not with the glass transition temperature. These results call for a revision of the current picture of ionic transport in polymer electrolytes. We relate the observed decoupling phenomenon to frustration in packing of rigid polymers, which also affects their fragility. The principles demonstrated in this study may provide an alternative approach to design of highly conductive materials: by incorporating relatively rigid chain structures, it is possible to develop a new class of solid polymer electrolytes with strongly decoupled ionic conductivity.

  10. Hybrid materials and polymer electrolytes for electrochromic device applications.

    PubMed

    Thakur, Vijay Kumar; Ding, Guoqiang; Ma, Jan; Lee, Pooi See; Lu, Xuehong

    2012-08-01

    Electrochromic (EC) materials and polymer electrolytes are the most imperative and active components in an electrochromic device (ECD). EC materials are able to reversibly change their light absorption properties in a certain wavelength range via redox reactions stimulated by low direct current (dc) potentials of the order of a fraction of volts to a few volts. The redox switching may result in a change in color of the EC materials owing to the generation of new or changes in absorption band in visible region, infrared or even microwave region. In ECDs the electrochromic layers need to be incorporated with supportive components such as electrical contacts and ion conducting electrolytes. The electrolytes play an indispensable role as the prime ionic conduction medium between the electrodes of the EC materials. The expected applications of the electrochromism in numerous fields such as reflective-type display and smart windows/mirrors make these materials of prime importance. In this article we have reviewed several examples from our research work as well as from other researchers' work, describing the recent advancements on the materials that exhibit visible electrochromism and polymer electrolytes for electrochromic devices. The first part of the review is centered on nanostructured inorganic and conjugated polymer-based organic-inorganic hybrid EC materials. The emphasis has been to correlate the structures, morphologies and interfacial interactions of the EC materials to their electronic and ionic properties that influence the EC properties with unique advantages. The second part illustrates the perspectives of polymer electrolytes in electrochromic applications with emphasis on poly (ethylene oxide) (PEO), poly (methyl methacrylate) (PMMA) and polyvinylidene difluoride (PVDF) based polymer electrolytes. The requirements and approaches to optimize the formulation of electrolytes for feasible electrochromic devices have been delineated. PMID:22581710

  11. Electrical Studies On Hexanoyl Chitosan-based Nanocomposite Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Muhammad, F. H.; Subban, R. H. Y.; Wime, Tan

    2009-06-01

    Hexanoyl chitosan-based nanocomposite polymer electrolytes were prepared using solution casting technique. The effect of addition of nanosize titanium oxide, TiO2 as the filler on the electrical properties of the prepared electrolyte system was investigated by impedance spectroscopy. The maximum conductivity of 3.06×10-4 S cm-1 was achieved with addition of 6 wt%. TiO2 which is 1 order of magnitude higher than the filler-free electrolyte sample (σ = 1.83×10-5 S cm-1). The Rice and Roth model was proposed to explain the conductivity variation for the prepared electrolyte system. The ac conductivity of hexanoyl chitosan-based nanocomposite electrolytes was also analyzed.

  12. A Synopsis of Interfacial Phenomena in Lithium-Based Polymer Electrolyte Electrochemical Cells

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.; Bennett, William R.

    2007-01-01

    The interfacial regions between electrode materials, electrolytes and other cell components play key roles in the overall performance of lithium-based batteries. For cell chemistries employing lithium metal, lithium alloy or carbonaceous materials (i.e., lithium-ion cells) as anode materials, a "solid electrolyte interphase" (SEI) layer forms at the anode/electrolyte interface, and the properties of this "passivating" layer significantly affect the practical cell/battery quality and performance. A thin, ionically-conducting SEI on the electrode surface can beneficially reduce or eliminate undesirable side reactions between the electrode and the electrolyte, which can result in a degradation in cell performance. The properties and phenomena attributable to the interfacial regions existing at both anode and cathode surfaces can be characterized to a large extent by electrochemical impedance spectroscopy (EIS) and related techniques. The intention of the review herewith is to support the future development of lithium-based polymer electrolytes by providing a synopsis of interfacial phenomena that is associated with cell chemistries employing either lithium metal or carbonaceous "composite" electrode structures which are interfaced with polymer electrolytes (i.e., "solvent-free" as well as "plasticized" polymer-binary salt complexes and single ion-conducting polyelectrolytes). Potential approaches to overcoming poor cell performance attributable to interfacial effects are discussed.

  13. Electrical characterization of proton conducting polymer electrolyte based on bio polymer with acid dopant

    NASA Astrophysics Data System (ADS)

    Kalaiselvimary, J.; Pradeepa, P.; Sowmya, G.; Edwinraj, S.; Prabhu, M. Ramesh

    2016-05-01

    This study describes the biodegradable acid doped films composed of chitosan and Perchloric acid with different ratios (2.5 wt %, 5 wt %, 7.5 wt %, 10 wt %) was prepared by the solution casting technique. The temperature dependence of the proton conductivity of complex electrolytes obeys the Arrhenius relationship. Proton conductivity of the prepared polymer electrolyte of the bio polymer with acid doped was measured to be approximately 5.90 × 10-4 Scm-1. The dielectric data were analyzed using Complex impedance Z*, Dielectric loss ɛ', Tangent loss for prepared polymer electrolyte membrane with the highest conductivity samples at various temperature.

  14. Solid Polymer Electrolyte (SPE) fuel cell technology program

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The overall objectives of the Phase IV Solid Polymer Electrolyte Fuel Cell Technology Program were to: (1) establish fuel cell life and performance at temperatures, pressures and current densities significantly higher than those previously demonstrated; (2) provide the ground work for a space energy storage system based on the solid polymer electrolyte technology (i.e., regenerative H2/O2 fuel cell); (3) design, fabricate and test evaluate a full-scale single cell unit. During this phase, significant progress was made toward the accomplishment of these objectives.

  15. Decoupling Mechanical and Ion Transport Properties in Polymer Electrolyte Membranes

    NASA Astrophysics Data System (ADS)

    McIntosh, Lucas D.

    Polymer electrolytes are mixtures of a polar polymer and salt, in which the polymer replaces small molecule solvents and provides a dielectric medium so that ions can dissociate and migrate under the influence of an external electric field. Beginning in the 1970s, research in polymer electrolytes has been primarily motivated by their promise to advance electrochemical energy storage and conversion devices, such as lithium ion batteries, flexible organic solar cells, and anhydrous fuel cells. In particular, polymer electrolyte membranes (PEMs) can improve both safety and energy density by eliminating small molecule, volatile solvents and enabling an all-solid-state design of electrochemical cells. The outstanding challenge in the field of polymer electrolytes is to maximize ionic conductivity while simultaneously addressing orthogonal mechanical properties, such as modulus, fracture toughness, or high temperature creep resistance. The crux of the challenge is that flexible, polar polymers best-suited for polymer electrolytes (e.g., poly(ethylene oxide)) offer little in the way of mechanical robustness. Similarly, polymers typically associated with superior mechanical performance (e.g., poly(methyl methacrylate)) slow ion transport due to their glassy polymer matrix. The design strategy is therefore to employ structured electrolytes that exhibit distinct conducting and mechanically robust phases on length scales of tens of nanometers. This thesis reports a remarkably simple, yet versatile synthetic strategy---termed polymerization-induced phase separation, or PIPS---to prepare PEMs exhibiting an unprecedented combination of both high conductivity and high modulus. This performance is enabled by co-continuous, isotropic networks of poly(ethylene oxide)/ionic liquid and highly crosslinked polystyrene. A suite of in situ, time-resolved experiments were performed to investigate the mechanism by which this network morphology forms, and it appears to be tied to the

  16. Electrospun nanocomposite fibrous polymer electrolyte for secondary lithium battery applications

    SciTech Connect

    Padmaraj, O.; Rao, B. Nageswara; Jena, Paramananda; Satyanarayana, N.; Venkateswarlu, M.

    2014-04-24

    Hybrid nanocomposite [poly(vinylidene fluoride -co- hexafluoropropylene) (PVdF-co-HFP)/magnesium aluminate (MgAl{sub 2}O{sub 4})] fibrous polymer membranes were prepared by electrospinning method. The prepared pure and nanocomposite fibrous polymer electrolyte membranes were soaked into the liquid electrolyte 1M LiPF{sub 6} in EC: DEC (1:1,v/v). XRD and SEM are used to study the structural and morphological studies of nanocomposite electrospun fibrous polymer membranes. The nanocomposite fibrous polymer electrolyte membrane with 5 wt.% of MgAl{sub 2}O{sub 4} exhibits high ionic conductivity of 2.80 × 10{sup −3} S/cm at room temperature. The charge-discharge capacity of Li/LiCoO{sub 2} coin cells composed of the newly prepared nanocomposite [(16 wt.%) PVdF-co-HFP+(5 wt.%) MgAl{sub 2}O{sub 4}] fibrous polymer electrolyte membrane was also studied and compared with commercial Celgard separator.

  17. Electrochemical characterization of electrospun nanocomposite polymer blend electrolyte fibrous membrane for lithium battery.

    PubMed

    Padmaraj, O; Rao, B Nageswara; Venkateswarlu, M; Satyanarayana, N

    2015-04-23

    Novel hybrid (organic/inorganic) electrospun nanocomposite polymer blend electrolyte fibrous membranes with the composition poly(vinylidene difluoride-co-hexafluoropropylene) [P(VdF-co-HFP)]/poly(methyl methacrylate) [P(MMA)]/magnesium aluminate (MgAl2O4)/LiPF6 were prepared by the electrospinning technique. All of the prepared electrospun P(VdF-co-HFP), PMMA blend [90% P(VdF-co-HFP)/10% PMMA], and nanocomposite polymer blend [90% P(VdF-co-HFP)/10% PMMA/x wt % MgAl2O4 (x = 2, 4, 6, and 8)] fibrous membranes were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy. The fibrous nanocomposite separator-cum-polymer blend electrolyte membranes were obtained by soaking the nanocomposite polymer blend membranes in an electrolyte solution containing 1 M LiPF6 in ethylene carbonate (EC)/diethyl carbonate (DEC) (1:1, v/v). The newly developed fibrous nanocomposite polymer blend electrolyte [90% P(VdF-co-HFP)/10% PMMA/6 wt % MgAl2O4/LiPF6] membrane showed a low crystallinity, low average fiber diameter, high thermal stability, high electrolyte uptake, high conductivity (2.60 × 10(-3) S cm(-1)) at room temperature, and good potential stability above 4.5 V. The best properties of the fibrous nanocomposite polymer blend electrolyte (NCPBE) membrane with a 6 wt % MgAl2O4 filler content was used for the fabrication of a Li/NCPBE/LiCoO2 CR 2032 coin cell. The electrochemical performance of the fabricated CR 2032 cell was evaluated at a current density of 0.1 C-rate. The fabricated CR 2032 cell lithium battery using the newly developed NCPBE membrane delivered an initial discharge capacity of 166 mAh g(-1) and a stable cycle performance. PMID:25867205

  18. Solid polymer battery electrolyte and reactive metal-water battery

    DOEpatents

    Harrup, Mason K.; Peterson, Eric S.; Stewart, Frederick F.

    2000-01-01

    In one implementation, a reactive metal-water battery includes an anode comprising a metal in atomic or alloy form selected from the group consisting of periodic table Group 1A metals, periodic table Group 2A metals and mixtures thereof. The battery includes a cathode comprising water. Such also includes a solid polymer electrolyte comprising a polyphosphazene comprising ligands bonded with a phosphazene polymer backbone. The ligands comprise an aromatic ring containing hydrophobic portion and a metal ion carrier portion. The metal ion carrier portion is bonded at one location with the polymer backbone and at another location with the aromatic ring containing hydrophobic portion. The invention also contemplates such solid polymer electrolytes use in reactive metal/water batteries, and in any other battery.

  19. Novel Elastomeric Membranes Developed for Polymer Electrolytes in Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Meador, Maryann B.; Kinder, James D.; Bennett, William R.

    2005-01-01

    Lithium-based polymer batteries for aerospace applications need to be highly conductive from -70 to 70 C. State-of-the-art polymer electrolytes are based on polyethylene oxide (PEO) because of the ability of its ether linkages to solvate lithium ions. Unfortunately, PEO has a tendency to form crystalline regions below 60 C, dramatically lowering conductivity below this temperature. PEO has acceptable ionic conductivities (10(exp -4) to 10(exp -3) S/cm) above 60 C, but it is not mechanically strong. The room-temperature conductivity of PEO can be increased by adding solvent or plasticizers, but this comes at the expense of thermal and mechanical stability. One of NASA Glenn Research Center s objectives in the Polymer Rechargeable System program (PERS) is to develop novel polymer electrolytes that are highly conductive at and below room temperature without added solvents or plasticizers.

  20. Performance of electric double layer capacitors with polymer gel electrolytes

    SciTech Connect

    Ishikawa, Masashi; Kishino, Takahiro; Katada, Naoji; Morita, Masayuki

    2000-07-01

    Polymer gel electrolytes consisting of poly(vinylidene fluoride) (PVdF), tetraethylammonium tetrafluoroborate (TEABF{sub 4}), and propylene carbonate (PC) as a plasticizer have been investigated for electric double layer capacitors. The PVdF gel electrolytes showed high ionic conductivity (ca. 6 mS/cm at 298 K). To assemble model capacitors with the PVdF gel electrolytes and activated carbon fiber cloth electrodes, a pair of the fixed electrodes was soaked in a precursor solution containing PC, PVdF, and TEABF{sub 4}, followed by evaporation of the PC solvent in a vacuum oven. The resulting gel electrolytes were in good contact with the electrodes. The model capacitors with the PVdF gel electrolytes showed a large value of capacitance and high coulombic efficiency in operation voltage ranges of 1--2 and 1--3 V. It is worth noting that the capacitors with the PVdF electrolytes showed long voltage retention in a self-discharge test. These good characteristics of the gel capacitors were comparable to those of typical double layer capacitors with a liquid organic electrolyte containing PC and TEABF{sub 4}; rather, the voltage retentivity of the PVdF gel capacitors was much superior to that of the capacitors with the organic electrolyte.

  1. Does filler surface chemistry impact filler dispersion, polymer dynamics and conductivity in nanofilled solid polymer electrolytes?

    NASA Astrophysics Data System (ADS)

    Ganapatibhotla, Lalitha; Maranas, Janna

    2012-02-01

    We study the impact of nanofiller surface chemistry on filler dispersion, polymer dynamics and ionic conductivity in acidic α-Al2O3 filled PEO+LiClO4 solid polymer electrolytes (SPEs).SPEs are the key to light-weight and high energy density rechargeable Li ion batteries but suffer from low room temperature ionic conductivity. Addition of ceramic nanofillers improves conductivity of SPEs and their surface chemistry influences extent of conductivity enhancement. The ionic conductivity of acidic α-Al2O3 filled SPE is enhanced for salt concentrations at and below eutectic, while neutral γ-Al2O3 filler enhances conductivity only at eutectic composition. Li ion motion is coupled to segmental mobility of polymer and we study how this is affected by addition of α-Al2O3 using quasi-elastic neutron scattering. Aggregation extent of nanoparticles in SPE matrix, a less explored factor in filled SPEs, can affect segmental mobility of polymer. This can vary with surface chemistry of particles and we quantify this using small angle neutron scattering. All measurements are performed as a function of Li concentration, nanoparticle loading and temperature.

  2. Starch-filled polymer composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report describes the development of degradable polymer composites that can be made at room temperature without special equipments. The developed composites are made from ethyl cyanoacrylate and starch. The polymer composites produced by this procedure contain 60 wt% of starch with compressive s...

  3. Anti-perovskite solid electrolyte compositions

    SciTech Connect

    Zhao, Yusheng; Daemen, Luc Louis

    2015-12-26

    Solid electrolyte antiperovskite compositions for batteries, capacitors, and other electrochemical devices have chemical formula Li.sub.3OA, Li.sub.(3-x)M.sub.x/2OA, Li.sub.(3-x)N.sub.x/3OA, or LiCOX.sub.zY.sub.(1-z), wherein M and N are divalent and trivalent metals respectively and wherein A is a halide or mixture of halides, and X and Y are halides.

  4. Design of Hybrid Solid Polymer Electrolytes: Structure and Properties

    NASA Technical Reports Server (NTRS)

    Bronstein, Lyudmila M.; Karlinsey, Robert L.; Ritter, Kyle; Joo, Chan Gyu; Stein, Barry; Zwanziger, Josef W.

    2003-01-01

    This paper reports synthesis, structure, and properties of novel hybrid solid polymer electrolytes (SPE's) consisting of organically modified aluminosilica (OM-ALSi), formed within a poly(ethylene oxide)-in-salt (Li triflate) phase. To alter the structure and properties we fused functionalized silanes containing poly(ethylene oxide) (PEO) tails or CN groups.

  5. Overcharge protection for rechargeable lithium polymer electrolyte batteries

    SciTech Connect

    Richardson, T.J.; Ross, P.N. Jr.

    1996-12-01

    Overcharge protection for rechargeable lithium polymer electrolyte cells by addition of redox shuttle additives to the polymer electrolyte was examined. Shuttle onset potentials and effective diffusion coefficients were determined for 12 redox shuttle species in polyethylene oxide-based electrolytes at 85 C. The four most promising additives were tested in Li/PEO-LiN(SO{sub 2}CF{sub 3}){sub 2}/Li{sub 2+x}Mn{sub 4}O{sub 9} cells under normal and severe overcharging conditions. In addition to tricyanobenzene and tetracyanoquinodimethane, two anionic redox shuttle additives, salts of 1,2,4-triazole and imidazole, demonstrated effectiveness in extending cycle life and good compatibility with cell components.

  6. Scalable plasticized polymer electrolytes reinforced with surface-modified sepiolite fillers - A feasibility study in lithium metal polymer batteries

    NASA Astrophysics Data System (ADS)

    Mejía, Alberto; Devaraj, Shanmukaraj; Guzmán, Julio; Lopez del Amo, Juan Miguel; García, Nuria; Rojo, Teófilo; Armand, Michel; Tiemblo, Pilar

    2016-02-01

    Electrochemical properties of (polyethylene oxide) (PEO)/lithium trifluoromethanesulfonate (LiTf)/ethylene carbonate (EC)/sepiolite extruded composite electrolytes were studied. Appreciable electrochemical stability of 4.5 V at 70 °C was observed for polymer composite membranes with D-α-tocopherol-polyethylene glycol 1000 succinate-coated sepiolite fillers. Lithium plating/stripping analysis indicated no evidence of dendrite formation with good interfacial properties which were further confirmed by postmortem analysis of the cells. Solid state NMR studies show the presence of two Li+ population in the membranes. The feasibility of these electrolytes has been shown with LiFePO4 cathode materials. Initial discharge capacity of 142 mAh/g was observed remaining at 110 mAh/g after 25 cycles with a coulombic efficiency of 96%. The upscaling of these polymers can be easily achieved by extrusion technique and the capacity can be improved by varying the cathode architecture.

  7. Li conductivity in siloxane-based polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Stacy, Eric; Fan, Fei; Feng, Hongbo; Gainaru, Catalin; Mays, Jimmy; Sokolov, Alexei

    Polymer electrolytes containing lithium ions are ideal candidates for electrochemical devices and energy storage applications. Understanding their ionic transport mechanism is the key for rational designing of highly conductive polymer matrices. Complementing dielectric spectroscopy investigations by results from rheology and differential scanning calorimetry we focused on the interplay between dynamics of lithium ions and the polymer matrix based on polysiloxane backbone. Our results demonstrate that the conductivity and the degree of decoupling between ion dynamics and structural relaxation depend strongly not only on the ions concentration, but also on the polarity and size of the polymeric side-groups. Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.

  8. Electrolyte compositions for lithium ion batteries

    DOEpatents

    Sun, Xiao-Guang; Dai, Sheng; Liao, Chen

    2016-03-29

    The invention is directed in a first aspect to an ionic liquid of the general formula Y.sup.+Z.sup.-, wherein Y.sup.+ is a positively-charged component of the ionic liquid and Z.sup.- is a negatively-charged component of the ionic liquid, wherein Z.sup.- is a boron-containing anion of the following formula: ##STR00001## The invention is also directed to electrolyte compositions in which the boron-containing ionic liquid Y.sup.+Z.sup.- is incorporated into a lithium ion battery electrolyte, with or without admixture with another ionic liquid Y.sup.+X.sup.- and/or non-ionic solvent and/or non-ionic solvent additive.

  9. Flexible solid polymer electrolyte membran formed by photopolymerization

    NASA Astrophysics Data System (ADS)

    Cao, Jinwei; Kyu, Thein

    2014-03-01

    Binary and ternary phase diagrams of poly(ethylene glycol) dimethacrylate (PEGDMA,succinonitrile(SCN), and bis(trifluoromethane)sulfonimide (LiTFSI) blends have been established to provide guidance to fabricationof polymer electrolyte membrane (PEM). The phase diagram of binary PEGDMA/SCN mixture is of a typical eutectic typ, whereas the binary PEGDMA/LiTFSI mixture reveals a eutectic trend exhibiting a wide single phase region at intermediate composition. Likewise, the ternary phase diagram of PEGDMA/SCN/LiTFSI mixture shows a wide isotropic regio. The PEM network, formed by UV-crosslinking of PEGDMA in the isotropic region, is a solid amorphous network, but flexible and stretchable. Ion conductivity of PEMwas measured as a function of temperature at different ratios of PEGDMA/SCN and SCN/LiTFSI. Of particular importance is that these PEM networks possessvery high roo-temperature ion conductivity on the order of 10-3 S cm-1, which reaches the level of 10-2 S cm-1 at elevated temperatures of 60-70 °C. The electrochemical stability of the solid PEM will be evaluated by cyclic voltammetry and its potential applicabilityinflexible lithium ion battery will be discussed.

  10. Conductivity and Stability of Photopolymerized Polymer Electrolyte Network

    NASA Astrophysics Data System (ADS)

    Kyu, Thein; He, Ruixuan; Chen, Yu-Ming; Mao, Jialin; Zhu, Yu; Kyu'S Group, , Dr.; Zhu'S Group Collaboration, , Dr.

    2014-03-01

    A melt-processing window has been identified within the wide isotropic region of the phase diagram of ternary blends consisting of poly (ethylene glycol diacrylate) (PEGDA), tetraethylene glycol dimethyl ether (TEGDME) and lithium bis(trifluoromethane) sulfonamide (LiTFSI). Upon UV-crosslinking of PEGDA in the isotropic window, the polymer electrolyte membrane (PEM) network thus formed is completely transparent and remains in the single phase without undergoing polymerization-induced phase separation or polymerization-induced crystallization. These PEM networks are solid albeit flexible and light-weight with safety and space saving attributes. The ionic conductivity as determined by AC impedance spectroscopy exhibited very high room-temperature ionic conductivity on the order of ~10-3 S/cm in several compositions, viz., 10/45/45, 20/40/40 and 30/35/35 PEGDA/TEGDME/LiTFSI networks. Cyclic voltammetry measurement of these solid-state PEM networks revealed excellent electrochemical stability against lithium reference electrode. The above study has been extended to the anode (graphite) and cathode (LiFePO4) half-cell configurations with lithium as counter electrode. Charge/discharge cycling behavior of these half cells will be discussed. Supported by NSF-DMR 1161070 and University of Akron.

  11. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, John D.; Gross, Mark E.

    1997-01-01

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  12. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, J.D.; Gross, M.E.

    1997-10-28

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  13. Recent advances in solid polymer electrolyte fuel cell technology

    SciTech Connect

    Ticianelli, E.A.; Srinivasan, S.; Gonzalez, E.R.

    1988-01-01

    With methods used to advance solid polymer electrolyte fuel cell technology, we are close to obtaining the goal of 1 A/cm/sup 2/ at 0.7. Higher power densities have been reported (2 A/cm/sup 2/ at 0.5 V) but only with high catalyst loading electrodes (2 mg/cm/sup 2/ and 4 mg/cm/sup 2/ at anode and cathode, respectively) and using a Dow membrane with a better conductivity and water retention characteristics. Work is in progress to ascertain performances of cells with Dow membrane impregnated electrodes and Dow membrane electrolytes. 5 refs., 6 figs.

  14. Dye-sensitized solar cell comprising polyethyl methacrylate doped with ammonium iodide solid polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Singh, Vivek Kr.; Bhattacharya, B.; Shukla, S.; Singh, Pramod K.

    2014-09-01

    The aim of the present work was to develop a new solid electrolyte polyethyl methacrylate doped with ammonium iodide polymer electrolyte and its application in dye-sensitized solar cell (DSSC). The electrical, structural and photoelectrochemical properties of polymer electrolytes are presented in detail. DSSCs have been fabricated and characterized. The polymer electrolyte film with maximum ionic conductivity shows maximum efficient DSSC of efficiency 0.43 % at 1 sun condition.

  15. Dye-sensitized solar cell comprising polyethyl methacrylate doped with ammonium iodide solid polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Singh, Vivek Kr.; Bhattacharya, B.; Shukla, S.; Singh, Pramod K.

    2015-03-01

    The aim of the present work was to develop a new solid electrolyte polyethyl methacrylate doped with ammonium iodide polymer electrolyte and its application in dye-sensitized solar cell (DSSC). The electrical, structural and photoelectrochemical properties of polymer electrolytes are presented in detail. DSSCs have been fabricated and characterized. The polymer electrolyte film with maximum ionic conductivity shows maximum efficient DSSC of efficiency 0.43 % at 1 sun condition.

  16. High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Sun, Yubao; Li, Gai; Lai, Yuanchu; Zeng, Danli; Cheng, Hansong

    2016-02-01

    Lithium-sulfur batteries are highly promising for electric energy storage with high energy density, abundant resources and low cost. However, the battery technologies have often suffered from a short cycle life and poor rate stability arising from the well-known “polysulfide shuttle” effect. Here, we report a novel cell design by sandwiching a sp3 boron based single ion conducting polymer electrolyte film between two carbon films to fabricate a composite separator for lithium-sulfur batteries. The dense negative charges uniformly distributed in the electrolyte membrane inherently prohibit transport of polysulfide anions formed in the cathode inside the polymer matrix and effectively blocks polysulfide shuttling. A battery assembled with the composite separator exhibits a remarkably long cycle life at high charge/discharge rates.

  17. High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte.

    PubMed

    Sun, Yubao; Li, Gai; Lai, Yuanchu; Zeng, Danli; Cheng, Hansong

    2016-01-01

    Lithium-sulfur batteries are highly promising for electric energy storage with high energy density, abundant resources and low cost. However, the battery technologies have often suffered from a short cycle life and poor rate stability arising from the well-known "polysulfide shuttle" effect. Here, we report a novel cell design by sandwiching a sp(3) boron based single ion conducting polymer electrolyte film between two carbon films to fabricate a composite separator for lithium-sulfur batteries. The dense negative charges uniformly distributed in the electrolyte membrane inherently prohibit transport of polysulfide anions formed in the cathode inside the polymer matrix and effectively blocks polysulfide shuttling. A battery assembled with the composite separator exhibits a remarkably long cycle life at high charge/discharge rates. PMID:26898772

  18. High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte

    PubMed Central

    Sun, Yubao; Li, Gai; Lai, Yuanchu; Zeng, Danli; Cheng, Hansong

    2016-01-01

    Lithium-sulfur batteries are highly promising for electric energy storage with high energy density, abundant resources and low cost. However, the battery technologies have often suffered from a short cycle life and poor rate stability arising from the well-known “polysulfide shuttle” effect. Here, we report a novel cell design by sandwiching a sp3 boron based single ion conducting polymer electrolyte film between two carbon films to fabricate a composite separator for lithium-sulfur batteries. The dense negative charges uniformly distributed in the electrolyte membrane inherently prohibit transport of polysulfide anions formed in the cathode inside the polymer matrix and effectively blocks polysulfide shuttling. A battery assembled with the composite separator exhibits a remarkably long cycle life at high charge/discharge rates. PMID:26898772

  19. X-ray evaluation of the boundary between polymer electrolyte and platinum and carbon functionalization to conduct protons in polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Oka, Kazuki; Ogura, Yuta; Izumi, Yasuo

    2014-07-01

    In polymer electrolyte fuel cells (PEFCs), it is important to secure proximate diffusion paths of reactants and electrons. One approach is to optimize the boundary between polymer electrolyte and Pt nanoparticle surface. Based on synchrotron X-ray absorption fine structure to monitor directly the status of catalysts in PEFCs, it was found that Pt sites were reduced to Pt0 by alcohols contained in polymer electrolyte dispersion solution during the preparation of cathode of PEFC. As in membrane electrolyte assembly, only the Pt sites not covered by polymer electrolyte re-oxidized to Pt2+/4+. Thus, the interface between Pt and polymer electrolyte was evaluated. The other approach is to functionalize carbon surface with sulfonate/sulfate group to conduct protons. Similar level of proton conductivity was observed in current-voltage dependence compared to using polymer electrolyte, but polymer electrolyte was advantageous to lose less voltage for activation. Based on this comparison, optimum catalyst on cathode is proposed comprising surface sulfonate/sulfate group on carbon mixed with polymer electrolyte. Further optimization of cathode catalyst is proposed to functionalize carbon with sulfonate group linked to fluorocarbon branch.

  20. Polymer electrolyte membrane assembly for fuel cells

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Kindler, Andrew (Inventor); Yavrouian, Andre (Inventor); Halpert, Gerald (Inventor)

    2002-01-01

    An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells.

  1. Polymer electrolyte membrane assembly for fuel cells

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Kindler, Andrew (Inventor); Yavrouian, Andre (Inventor); Halpert, Gerald (Inventor)

    2000-01-01

    An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells.

  2. Multilayer Electroactive Polymer Composite Material

    NASA Technical Reports Server (NTRS)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2011-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  3. Zinc halogen battery electrolyte composition with lead additive

    DOEpatents

    Henriksen, Gary L.

    1981-01-01

    This disclosure relates to a zinc halogen battery electrolyte composition containing an additive providing improved zinc-on-zinc recyclability. The improved electrolyte composition involves the use of a lead additive to inhibit undesirable irregular plating and reduce nodular or dendritic growth on the electrode surface. The lead-containing electrolyte composition of the present invention appears to influence not only the morphology of the base plate zinc, but also the morphology of the zinc-on-zinc replate. In addition, such lead-containing electrolyte compositions appear to reduce hydrogen formation.

  4. Development of structured polymer electrolyte membranes for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Gasa, Jeffrey

    The objective of this research was to explore structure-property relationships to develop the understanding needed for introduction of superior PEM materials. Polymer electrolyte membranes based on sulfonated poly(ether ketone ketone) (SPEKK) were fabricated using N-methyl pyrrolidone as casting solvent. The membranes were characterized in terms of properties that were relevant to fuel cell applications, such as proton conductivity, methanol permeability, and swelling properties, among others. It was found in this study that the proton conductivity of neat SPEKK membranes could reach the conductivity of commercial membranes such as NafionRTM. However, when the conductivity of SPEKK was comparable to NafionRTM, the swelling of SPEKK in water was quite excessive. The swelling problem was remedied by modifying the microstructure of SPEKK using different techniques. One of them involved blending of lightly sulfonated PEKK with highly acidic particles (sulfonated crosslinked polystyrene-SXLPS). Low sulfonation level of SPEKK was used to reduce the swelling of the membrane in water and the role of the highly acidic particles was to enhance the proton conductivity of the membrane. Because of the residual crystallinity in SPEKK with low sulfonation levels (IEC < 1 meq/g), the composite membranes exhibited excellent dimensional stability in water at elevated temperatures (30-90 °C). Also, the resistance to swelling of these composite membranes in methanol-water mixtures was far better than NafionRTM, and so was the methanol permeability. Another technique explored was blending with non-conductive polymers (poly(ether imide) and poly(ether sulfone)) to act as mechanical reinforcement. It was found that miscibility behavior of the blends had a significant impact on the transport and swelling properties of these blends, which could be explained by the blend microstructure. The miscibility behavior was found to be strongly dependent on the sulfonation level of SPEKK. The

  5. Synthesis and characterization of aminated perfluoro polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Page-Belknap, Zachary Stephan Glenn

    Polymer electrolytes have been developed for use in anion exchange membrane fuel cells for years. However, due to the highly corrosive environment within these fuel cells, poor chemical stability of the polymers and low ion conductivity have led to high development costs and thus prevention from widespread commercialization. The work in this study aims to provide a solution to these problems through the synthesis and characterization of a novel polymer electrolyte. The 800 EW 3M PFSA sulfonyl fluoride precursor was aminated with 3-(dimethylamino)-1-propylamine to yield a functional polymer electrolyte following quaternization, referred to in this work as PFSa-PTMa. 1 M solutions of LiPF6, HCL, KOH, NaOH, CsOH, NaHCO3 and Na2CO3 were used to exchange the polymer to alternate counterion forms. Chemical structure analysis was performed using both FT and ATR infrared spectroscopy to confirm sulfonyl fluoride replacement and the absence of sulfonic acid sites. Mechanical testing of the polymer, following counterion exchange with KOH, at saturated conditions and 60 ºC exhibited a tensile strength of 13 +/- 2.0 MPa, a Young's modulus of 87 +/- 16 MPa and a degree of elongation reaching 75% +/- 9.1%, which indicated no mechanical degradation following exposure to a highly basic environment. Conductivities of the polymer in the Cl- and OH- counterion forms at saturated conditions and 90 ºC were observed at 26 +/- 8.0 mS cm-1 and 1.1 +/- 0.1 mS cm-1, respectively. OH- conductivities were slightly above those observed for CO32- and HCO 3- counterions at the same conditions, 0.63 +/- 0.18 and 0.66 +/- 0.21 mS cm-1 respectively. The ion exchange capacity (IEC) of the polymer in the Cl- counterion form was measured via titration at 0.57 meq g-1 which correlated to 11.2 +/- 0.10 water molecules per ion site when at 60ºC and 95% relative humidity. The IEC of the polymer in the OH- counterion form following titration expressed nearly negligible charge density, less than 0.01 meq

  6. Method for forming thin composite solid electrolyte film for lithium batteries

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesan (Inventor); Attia, Alan I. (Inventor)

    1994-01-01

    A composite solid electrolyte film is formed by dissolving a lithium salt such as lithium iodide in a mixture of a first solvent which is a co-solvent for the lithium salt and a binder polymer such as polyethylene oxide and a second solvent which is a solvent for the binder polymer and has poor solubility for the lithium salt. Reinforcing filler such as alumina particles are then added to form a suspension followed by the slow addition of binder polymer. The binder polymer does not agglomerate the alumina particles. The suspension is cast into a uniform film.

  7. Method for forming thin composite solid electrolyte film for lithium batteries

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesan (Inventor); Attia, Alan I. (Inventor)

    1997-01-01

    A composite solid electrolyte film is formed by dissolving a lithium salt such as lithium iodide in a mixture of a first solvent which is a cosolvent for the lithium salt and a binder polymer such as polyethylene oxide and a second solvent which is a solvent for the binder polymer and has poor solubility for the lithium salt. Reinforcing filler such as alumina particles are then added to form a suspension followed by the slow addition of binder polymer. The binder polymer does not agglomerate the alumina particles. The suspension is cast into a uniform film.

  8. Novel Molecular Architectures Developed for Improved Solid Polymer Electrolytes for Lithium Polymer Batteries

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Kinder, James D.; Bennett, William R.

    2002-01-01

    Lithium-based polymer batteries for aerospace applications need the ability to operate in temperatures ranging from -70 to 70 C. Current state-of-the-art solid polymer electrolytes (based on amorphous polyethylene oxide, PEO) have acceptable ionic conductivities (10-4 to 10-3 S/cm) only above 60 C. Higher conductivity can be achieved in the current systems by adding solvent or plasticizers to the solid polymer to improve ion transport. However, this can compromise the dimensional and thermal stability of the electrolyte, as well as compatibility with electrode materials. One of NASA Glenn Research Center's objectives in the PERS program is to develop new electrolytes having unique molecular architectures and/or novel ion transport mechanisms, leading to good ionic conductivity at room temperature and below without solvents or plasticizers.

  9. Enhancement of Li+ ion conductivity in solid polymer electrolytes using surface tailored porous silica nanofillers

    NASA Astrophysics Data System (ADS)

    Mohanta, Jagdeep; Singh, Udai P.; Panda, Subhendu K.; Si, Satyabrata

    2016-09-01

    The current study represents the design and synthesis of polyethylene oxide (PEO)-based solid polymer electrolytes by solvent casting approach using surface tailored porous silica as nanofillers. The surface tailoring of porous silica nanostructure is achieved through silanization chemistry using 3-glycidyloxypropyl trimethoxysilane in which silane part get anchored to the silica surface whereas epoxy group get stellated from the silica surface. Surface tailoring of silica with epoxy group increases the room temperature electrochemical performances of the resulting polymer electrolytes. Ammonical hydrolysis of organosilicate precursor is used for both silica preparation and their surface tailoring. The composite solid polymer electrolyte films are prepared by solution mixing of PEO with lithium salt in presence of silica nanofillers and cast into film by solvent drying, which are then characterized by impedance measurement for conductivity study and wide angle x-ray diffraction for change in polymer crystallinity. Room temperature impedance measurement reveals Li+ ion conductivity in the order of 10‑4 S cm‑1, which is correlated to the decrease in PEO crystallinity. The enhancement of conductivity is further observed to be dependent on the amount of silica as well as on their surface characteristics.

  10. Polypyrrole composite electrodes in an all-polymer battery system

    SciTech Connect

    Killian, J.G.; Coffey, B.M.; Gao, F.; Poehler, T.O.; Searson, P.C.

    1996-03-01

    The authors have fabricated an all-polymer battery utilizing the redox properties of electrically conducting polymers for the anode and cathode in conjunction with an ionic conducting polymer gel electrolyte. The anode and cathode consist of pyrrole electropolymerized onto a graphite fiber substrate resulting in a high-surface-area, composite electrode. A polymer gel electrolyte, based on polyacrylonitrile, was solution cast onto the electrodes to form an all-polymer cell. This system exhibits a specific charge capacity of 22 mAh/g based on the electroactive mass of the cathode and discharging the system to 0.4 V. These cells show no loss of capacity when cycled to 100 cycles.

  11. Spontaneous aggregation of lithium ion coordination polymers in fluorinated electrolytes for high-voltage batteries

    DOE PAGESBeta

    Malliakas, Christos D.; Leung, Kevin; Pupek, Krzysztof Z.; Shkrob, Ilya A.; Abraham, Daniel P.

    2016-03-31

    Fluorinated carbonate solvents are pursued as liquid electrolytes for high-voltage Li-ion batteries. We report aggregation of [Li+(FEC)3]n polymer species from fluoroethylene carbonate containing electrolytes and scrutinized the causes for this behavior.

  12. Computationally Guided Design of Polymer Electrolytes for Battery Applications

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-Gang; Webb, Michael; Savoie, Brett; Miller, Thomas

    We develop an efficient computational framework for guiding the design of polymer electrolytes for Li battery applications. Short-times molecular dynamics (MD) simulations are employed to identify key structural and dynamic features in the solvation and motion of Li ions, such as the structure of the solvation shells, the spatial distribution of solvation sites, and the polymer segmental mobility. Comparative studies on six polyester-based polymers and polyethylene oxide (PEO) yield good agreement with experimental data on the ion conductivities, and reveal significant differences in the ion diffusion mechanism between PEO and the polyesters. The molecular insights from the MD simulations are used to build a chemically specific coarse-grained model in the spirit of the dynamic bond percolation model of Druger, Ratner and Nitzan. We apply this coarse-grained model to characterize Li ion diffusion in several existing and yet-to-be synthesized polyethers that differ by oxygen content and backbone stiffness. Good agreement is obtained between the predictions of the coarse-grained model and long-timescale atomistic MD simulations, thus providing validation of the model. Our study predicts higher Li ion diffusivity in poly(trimethylene oxide-alt-ethylene oxide) than in PEO. These results demonstrate the potential of this computational framework for rapid screening of new polymer electrolytes based on ion diffusivity.

  13. Fabrication of a polymer battery based on polypyrrole electrodes and a polymer gel electrolyte

    SciTech Connect

    Killian, J.G.; Coffey, B.M.; Poehler, T.O.; Searson, P.C.

    1995-12-31

    The electronic conductivity and redox behavior of conjugated polymers make them suitable for charge storage applications. The authors present preliminary results for an all polymer system consisting of a p-doped polypyrrole cathode and pseudo n-doped polypyrrole/polystyrenesulfonate anode. Using a thin film construction technique, electrodes were assembled into cells using a polymer gel electrolyte based on polyacrylonitrile, which has a high room temperature conductivity. Charge capacities of 13 mAh g{sup {minus}1} based on the mass of the electroactive polymer in the cathode have been obtained for over 100 cycles.

  14. Layered plasma polymer composite membranes

    DOEpatents

    Babcock, W.C.

    1994-10-11

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is [>=]2 and is the number of selective layers. 2 figs.

  15. Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte.

    PubMed

    Zhou, Weidong; Wang, Shaofei; Li, Yutao; Xin, Sen; Manthiram, Arumugam; Goodenough, John B

    2016-08-01

    A cross-linked polymer containing pendant molecules attached to the polymer framework is shown to form flexible and low-cost membranes, to be a solid Li(+) electrolyte up to 270 °C, much higher than those based on poly(ethylene oxide), to be wetted by a metallic lithium anode, and to be not decomposed by the metallic anode if the anions of the salt are blocked by a ceramic electrolyte in a polymer/ceramic membrane/polymer sandwich electrolyte (PCPSE). In this sandwich architecture, the double-layer electric field at the Li/polymer interface is reduced due to the blocked salt anion transfer. The polymer layer adheres/wets the lithium metal surface and makes the Li-ion flux at the interface more homogeneous. This structure integrates the advantages of the ceramic and polymer. With the PCPSE, all-solid-state Li/LiFePO4 cells showed a notably high Coulombic efficiency of 99.8-100% over 640 cycles. PMID:27440104

  16. Symposium Report. Battery materials : amorphous carbons and polymer electrolytes.

    SciTech Connect

    Gerald, R. E., II; Chemical Engineering

    2000-01-01

    The motivation for research in battery materials lies in the expanding consumer demand for compact, high-energy density power sources for portable electronic devices, and environmental issues such as global warming and air pollution that have provided the impetus for mass transportation by electric vehicles. The Battery Materials Symposium, chaired by Jacqueline Johnson (ANL), focused on three topics: the structure and electrochemical properties of new and existing electrolytes, devices for fabricating and investigating thin films, and large-scale computer simulations. The symposium opened with a presentation by the author on a recently invented device for in situ investigations of batteries using nuclear magnetic resonance. Joop Schoonman (Delft University) described several methods for preparing and analyzing thin films made of solid electrolytes. These methods included chemical vapor deposition, electrostatic spray deposition and the Solufill process. Aiichiro Nakano discussed large-scale (10 million to 2 billion atoms) computer simulations of polymer and ceramic systems. An overview was given of a DOE Cooperative Research 2000 program, in the initial stages, that was set up to pursue these atomistic simulations. Doug MacFarlane (Monash University) described conductive plastic crystals based on pyrrolidinium imides. Joseph Pluth (U of Chicago) presented his recent crystallographic studies of Pb compounds found in the ubiquitous lead-acid battery. He showed the structures of tribasic lead sulfate and tetrabasic lead sulfate. Austen Angell (Arizona State Univ.) discussed the general problem of electrolyte polarization in Li-ion battery systems with cation transference numbers less than unity. Steven Greenbaum (Hunter College) provided an introduction of NMR interactions that are useful for investigations of lithium-ion battery materials. Analysis by NMR is nuclear specific, probes local environments and dynamics, and is non-destructive. He discussed {sup 7}Li NMR

  17. Mechanisms Underlying Ionic Mobilities in Nanocomposite Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Ganesan, Venkat; Hanson, Benjamin; Pryamitsyn, Victor

    2014-03-01

    Recently, a number of experiments have demonstrated that addition of ceramics with nanoscale dimensions can lead to substantial improvements in the low temperature conductivity of the polymeric materials. However, the origin of such behaviors, and more generally, the manner by which nanoscale fillers impact the ion mobilities remain unresolved. In this communication, we report the results of atomistic molecular dynamics simulations which used multibody polarizable force-fields to study lithium ion diffusivities in an amorphous poly(ethylene-oxide) (PEO) melt containing well-dispersed TiO2 nanoparticles. We observed that the lithium ion diffusivities decrease with increased particle loading. Our analysis suggests that the ion mobilities are correlated to the nanoparticle-induced changes in the polymer segmental dynamics. Interestingly, the changes in polymer segmental dynamics were seen to be related to the nanoparticle's influence on the polymer conformational features. Overall, our results indicate that addition of nanoparticle fillers modify polymer conformations and the polymer segmental dynamics, and thereby influence the ion mobilities of polymer electrolytes.

  18. The Role of Polymer Electrolytes in Drug Delivery

    NASA Astrophysics Data System (ADS)

    Latham, R. J.; Linford, R. G.; Schlindwein, W. S.

    2002-12-01

    30 years ago Michel Armand, who was working on intercalation cathode materials in high energy power sources, identified the need to develop flexible, ionically conducting, electronically insulating electrolyte materials to accommodate the gross dimensional changes that occur on charge and discharge. In 1973, Peter Wright produced the first such materials designed for this purpose. His "polymer electrolytes" consisted of thin films of sodium or potassium salts dissolved in poly (ethylene oxide) PEO. Many polymer electrolytes had been developed in the ensuing years. Those for power source use have focussed on Lithium as the conducting species whereas complementary materials have been utilised for sensor and other applications. It is well known that the flexible matrix, a heteropolymer usually modified by additives such as plasticisers and/or inert fillers, provides a facile conducting pathway for ions. It is a significant disadvantage of many early polymer electrolytes that both the electrochemically active cations and the charge-compensating anions were mobile. Classic methods of drug delivery have embraced a number of routes into the site of pharmacological action, including ingestion into the lung, the digestive tract or the colon; injection into muscle tissue; and intravenous delivery through a catheter (a "drip"). Modern preference, wherever possible, is for a non-invasive route to minimise the chance of cross infection, especially of the AIDS virus. The skin, which is the largest organ in the human body, is a particularly appealing route as, in the absence of wounds and blemishes, it offers a natural, high-integrity, barrier to the outside world. Skin patches containing active drug that is allowed to diffuse across the external skin barrier into the bloodstream now enjoy wide application but a problem is that the rate of egress is often slow. Transport can be enhanced by artificially dilating the skin pores and/or by opening up additional pores by the

  19. Preliminary study of application of Moringa oleifera resin as polymer electrolyte in DSSC solar cells

    NASA Astrophysics Data System (ADS)

    Saehana, Sahrul; Darsikin, Muslimin

    2016-04-01

    This study reports the preliminary study of application of Moringa oleifera resin as polymer electrolyte in dye-sensitized solar cell (DSSC). We found that polymer electrolyte membrane was formed by using solution casting methods. It is observed that polymer electrolyte was in elastic form and it is very potential to application as DSSC component. Performance of DSSC which employing Moringa oleifera resin was also observed and photovoltaic effect was found.

  20. Lithium dendrite growth through solid polymer electrolyte membranes

    NASA Astrophysics Data System (ADS)

    Harry, Katherine; Schauser, Nicole; Balsara, Nitash

    2015-03-01

    Replacing the graphite-based anode in current batteries with a lithium foil will result in a qualitative increase in the energy density of lithium batteries. The primary reason for not adopting lithium-foil anodes is the formation of dendrites during cell charging. In this study, stop-motion X-ray microtomography experiments were used to directly monitor the growth of lithium dendrites during electrochemical cycling of symmetric lithium-lithium cells with a block copolymer electrolyte. In an attempt to understand the relationship between viscoelastic properties of the electrolyte on dendrite formation, a series of complementary experiments including cell cycling, tomography, ac impedance, and rheology, were conducted above and below the glass transition temperature of the non-conducting poly(styrene) block; the conducting phase is a mixture of rubbery poly(ethylene oxide) and a lithium salt. The tomography experiments enable quantification of the evolution of strain in the block copolymer electrolyte. Our work provides fundamental insight into the dynamics of electrochemical deposition of metallic films in contact with high modulus polymer electrolytes. Rational approaches for slowing down and, perhaps, eliminating dendrite growth are proposed.

  1. Polymer electrolyte-gated organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Panzer, Matthew J.

    Contemporary interest in organic semiconductors is driven both by questions regarding the fundamentals of charge transport in these materials and by their potential for flexible, low-cost electronic applications. The key device utilized in these endeavors is the organic field-effect transistor (OFET). Attaining large charge carrier densities in OFETs is desirable for two main reasons. First, because the conductivity in an OFET is proportional to the product of carrier mobility and charge density, increasing charge density levels can boost transistor currents significantly and facilitate low-voltage operation. Additionally, the achievement of carrier densities approaching the twodimensional (2D) molecular density (˜5 x 1014 cm-2) in an organic semiconductor monolayer can enable a variety of fundamental transport experiments. The results summarized in this thesis illustrate that charge densities exceeding 1014 charges/cm2 can be attained in a variety of organic semiconductors by using a solid polymer electrolyte as an OFET dielectric. Polymer electrolytes can provide specific capacitances exceeding 10 muF/cm 2, resulting from the migration of ions within a polymer matrix. By measuring the transient gate displacement current caused by ionic motion in a polymer electrolyte-gated organic field-effect transistor (PEG-FET), large electrostatically-injected charge density values can be calculated; these are typically above 1014 charges/cm2 at gate voltages under 3 V. Negative transconductance at large carrier densities is observed in oligomeric, polymeric, and organic single-crystal semiconductors. This phenomenon is ascribed to charge correlations or a nearly complete filling of the semiconductor transport band with carriers. Polymer semiconductors exhibited the highest performance among PEG-FETs with a top gate architecture. Nearly metallic conductivities (˜1000 S/cm), weak ON current temperature dependences, and large linear mobility values (˜3 cm2/V·s) were

  2. Developments of Novel Polymer Electrolyte Fuel Cell Membranes

    NASA Astrophysics Data System (ADS)

    Irita, Tomomi; Kondo, Masahiro; Aoyama, Hirokazu; Russell, Thomas

    2006-03-01

    Perfluorinated polymer electrolyte membranes (PEM), such as Nafion, are considered to be the most promising candidate for the development of the next generation fuel cell technology. The key technological challenges facing PEMs are their performance, durability and cost. In this research, the polymer electrolyte emulsions (PEE) were obtained by a simple hydrolysis reaction of the precursor polymer emulsion. PEMs are obtained by solvent casting the PEE. The PEE obtained here has a very low viscosity even at high solution concentrations. Using high concentration emulsions greatly reduces the amount of the waste, which makes this technology superior to the conventional ones. Casting conditions were optimized to enhance the mechanical properties, e.g. the tensile strength and viscoelastic properties, of the membrane. The PEMs obtained possessed better ionic conductivity than Nafion while their mechanical properties are comparable. Finally, the cost evaluation for this process was conducted and it was shown that the contribution to the cost reduction becomes bigger. (This research was sponsored by New Energy and Industrial Technology Development Organization, Japan)

  3. Transport and spectroscopic studies of liquid and polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Bopege, Dharshani Nimali

    Liquid and polymer electrolytes are interesting and important materials to study as they are used in Li rechargeable batteries and other electrochemical devices. It is essential to investigate the fundamental properties of electrolytes such as ionic conductivity, diffusion, and ionic association to enhance battery performance in different battery markets. This dissertation mainly focuses on the temperature-dependent charge and mass transport processes and ionic association of different electrolyte systems. Impedance spectroscopy and pulsed field gradient nuclear magnetic resonance spectroscopy were used to measure the ionic conductivity and diffusion coefficients of ketone and acetate based liquid electrolytes. In this study, charge and mass transport in non-aqueous liquid electrolytes have been viewed from an entirely different perspective by introducing the compensated Arrhenius formalism. Here, the conductivity and diffusion coefficient are written as an Arrhenius-like expression with a temperature-dependent static dielectric constant dependence in the exponential prefactor. The compensated Arrhenius formalism reported in this dissertation very accurately describes temperature-dependent conductivity data for acetate and ketone-based electrolytes as well as temperature-dependent diffusion data of pure solvents. We found that calculated average activation energies of ketone-based electrolytes are close to each other for both conductivity and diffusion data (in the range 24-26 kJ/mol). Also, this study shows that average activation energies of acetate-based electrolytes are higher than those for the ketone systems (in the range 33-37 kJ/mol). Further, we observed higher dielectric constants and ionic conductivities for both dilute and concentrated ketone solutions with temperature. Vibrational spectroscopy (Infrared and Raman) was used to probe intermolecular interactions in both polymer and liquid electrolytes, particularly those which contain lithium

  4. Solid-state sodium batteries using polymer electrolytes and sodium intercalation electrode materials

    SciTech Connect

    Ma, Y. |

    1996-08-01

    Solid-state sodium cells using polymer electrolytes (polyethylene oxide mixed with sodium trifluoromethanesulfonate: PEO{sub n}NaCF{sub 3}SO{sub 3}) and sodium cobalt oxide positive electrodes are characterized in terms of discharge and charge characteristics, rate capability, cycle life, and energy and power densities. The P2 phase Na{sub x}CoO{sub 2} can reversibly intercalate sodium in the range of x = 0.3 to 0.9, giving a theoretical specific energy of 440 Wh/kg and energy density of 1,600 Wh/l. Over one hundred cycles to 60% depth of discharge have been obtained at 0.5 mA/cm{sup 2}. Experiments show that the electrolyte/Na interface is stable and is not the limiting factor to cell cycle life. Na{sub 0.7}CoO{sub 2} composite electrodes containing various amounts of carbon black additive are investigated. The transport properties of polymer electrolytes are the critical factors for performance. These properties (the ionic conductivity, salt diffusion coefficient, and ion transference number) are measured for the PEO{sub n}NaCF{sub 3}SO{sub 3} system over a wide range of concentrations at 85 C. All the three transport properties are very salt-concentration dependent. The ionic conductivity exhibits a maximum at about n = 20. The transference number, diffusion coefficient, and thermodynamic factor all vary with salt concentration in a similar fashion, decreasing as the concentration increases, except for a local maximum. These results verify that polymer electrolytes cannot be treated as ideal solutions. The measured transport-property values are used to analyze and optimize the electrolytes by computer simulation and also cell testing. Salt precipitation is believed to be the rate limiting process for cells using highly concentrated solutions, as a result of lower values of these properties, while salt depletion is the limiting factor when a dilute solution is used.

  5. Virtual prototyping in polymer composites

    SciTech Connect

    McDowell, J.K.; Lenz, T.J.; Hawley, M.C.; Sticklen, J.; Scanlon, J.F.; Weigell, G.A.

    1995-12-31

    Efficacious design is critical to the successful application of any device. For polymer composites this design activity is abstracted into three dimensions: material design, process design and assembly design. Rarely is a composite product made entirely of composites; in most cases the product is a mixture of both composite and non-composite segments. The term composite assembly is used to emphasize this hybrid nature. Much of the assembly design activity involves determining whether a given three dimensional description with the relevant material properties will adequately support the various loadings. Rigorous detailed design typically verifies this using finite element analysis studies. The design literature clearly shows that many of the critical cost drivers are determined prior to detailed design. Providing decision support for the earlier conceptual design phase can substantially impact downstream costs of composite assemblies. This conceptual design includes determining which segments of the assembly will be composites as well as determining the overall configuration and relationship(s) between these segments. At the conceptual design phase, beneficial design criticism and advice can aid in the realization of the composite assembly. This paper focuses on the knowledge representation and inference strategies needed in an intelligent decision support system for the conceptual design of polymer composite assemblies. The specific domain application involves redesigning an existing metal assembly using polymer composite materials.

  6. Theoretical analysis of solid oxide fuel cells with two-layer, composite electrolytes - Electrolyte stability

    NASA Astrophysics Data System (ADS)

    Virkar, Anil V.

    1991-05-01

    Theoretical analysis of solid oxide fuel cells (SOFCs) using two-layer, composite electrolytes consisting of a solid electrolyte of a significantly higher conductivity compared to zirconia (such as ceria or bismuth oxide) with a thin layer of zirconia or thoria on the fuel side is presented. Electrochemical transport in the two-layer composite electrolytes is examined by taking both ionic and electronic fluxes into account. Similar to most electrochemical transport phenomena, it is assumed that local equilibrium prevails. An equivalent circuit approach is used to estimate the partial pressure of oxygen at the interface. It is shown that thermodynamic stability of the electrolyte (ceria or bismuth oxide) depends upon the transport characteristics of the composite electrolyte, in particular the electronic conductivity of the air-side part of the electrolyte. The analysis shows that it would be advantageous to use composite electrolytes instead of all-zirconia electrolytes, thus making low-temperature (about 600-800 C) SOFCs feasible. Implications of the analysis from the standpoint of the desired characteristics of SOFC components are discussed.

  7. Conductivity, Mechanical and Thermal Studies on Poly(methyl methacrylate)-Based Polymer Electrolytes Complexed with Lithium Tetraborate and Propylene Carbonate

    NASA Astrophysics Data System (ADS)

    Ramesh, S.; Bing, Khoo Ne

    2012-01-01

    A series of different composition ratio of polymer electrolytes based on poly(methyl methacrylate) (PMMA) as host polymer, lithium tetraborate (Li2B4O7) as salt, and propylene carbonate (PC) as plasticizer is produced by solution casting method. Fourier transform infrared (FTIR) spectroscopy studies are used to confirm the formation of polymer electrolyte complex. PMMA: Li2B4O7: PC (52.5:22.5:25.0 wt.%) is obtained as the highest conducting polymer electrolyte with a conductivity of 5.14 × 10-6 S/cm at room temperature (23 °C). The temperature-dependent conductivity of the polymer films shows Arrhenius-like behavior which reveals that the charge carriers move in a liquid-like environment. The addition of PC decreases the Young's modulus and stress at peak values of the complexes. Thermogravimetric analysis (TGA) is employed to study the thermal stability of the electrolytes.

  8. Cold-start characteristics of polymer electrolyte fuel cells

    SciTech Connect

    Mishler, Jeff; Mukundan, Rangachary; Wang, Yun; Mishler, Jeff; Mukherjee, Partha P

    2010-01-01

    In this paper, we investigate the electrochemical reaction kinetics, species transport, and solid water dynamics in a polymer electrolyte fuel cell (PEFC) during cold start. A simplitied analysis is developed to enable the evaluation of the impact of ice volume fraction on cell performance during coldstart. Supporting neutron imaging data are also provided to reveal the real-time water evolution. Temperature-dependent voltage changes due to the reaction kinetics and ohmic loss are also analyzed based on the ionic conductivity of the membrane at subfreezing temperature. The analysis is valuable for the fundamental study of PEFC cold-start.

  9. Carbon nanotube-polymer composite actuators

    DOEpatents

    Gennett, Thomas; Raffaelle, Ryne P.; Landi, Brian J.; Heben, Michael J.

    2008-04-22

    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  10. Robust solid polymer electrolyte for conducting IPN actuators

    NASA Astrophysics Data System (ADS)

    Festin, Nicolas; Maziz, Ali; Plesse, Cédric; Teyssié, Dominique; Chevrot, Claude; Vidal, Frédéric

    2013-10-01

    Interpenetrating polymer networks (IPNs) based on nitrile butadiene rubber (NBR) as first component and poly(ethylene oxide) (PEO) as second component were synthesized and used as a solid polymer electrolyte film in the design of a mechanically robust conducting IPN actuator. IPN mechanical properties and morphologies were mainly investigated by dynamic mechanical analysis and transmission electron microscopy. For 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)-imide (EMITFSI) swollen IPNs, conductivity values are close to 1 × 10-3 S cm-1 at 25 ° C. Conducting IPN actuators have been synthesized by chemical polymerization of 3,4-ethylenedioxythiophene (EDOT) within the PEO/NBR IPN. A pseudo-trilayer configuration has been obtained with PEO/NBR IPN sandwiched between two interpenetrated PEDOT electrodes. The robust conducting IPN actuators showed a free strain of 2.4% and a blocking force of 30 mN for a low applied potential of ±2 V.

  11. Polymer compositions based on PXE

    SciTech Connect

    Yang, Jin; Eitouni, Hany Basam; Singh, Mohit

    2015-09-15

    New polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about 210.degree. C. These materials can be made with either homopolymers or with block copolymers.

  12. Characterization of CH3SO3H-doped PMMA/PVP blend-based proton-conducting polymer electrolytes and its application in primary battery

    NASA Astrophysics Data System (ADS)

    Ambika, C.; Hirankumar, G.

    2016-02-01

    Various compositions of solid blend polymer electrolytes based on poly(methyl methacrylate) (PMMA)/poly(vinyl pyrrolidone) (PVP) complexed with methanesulfonic acid (MSA) as proton donor were prepared by solution casting technique. The complex nature of polymer blend with MSA was confirmed by Fourier transform infrared spectroscopy. Good thermal stability of PMMA/PVP blend polymer electrolyte was identified by thermogravimetric analysis. The surface morphology of the prepared electrolytes was studied through optical microscopy. Ion transport number was determined in the range of 0.93-0.97 for proton-conducting blend polymer electrolytes. The maximum conductivity value was calculated as 2.51 × 10-5 S/cm at 303 K for 14.04 mol% MSA-doped polymer electrolytes. Dielectric studies were also carried out. The electrochemical stability window of blend polymer electrolyte was found to be 1.82 V. Primary proton battery was fabricated with Zn + ZnSO4·7H2O/solid polymer electrolytes/MnO2. The discharge characteristics were studied at constant current drain of 5, 20 and 50 μA. The energy and power density were calculated as 0.27 W h kg-1 and 269.23 mW kg-1 for 20 μA of discharge, respectively.

  13. Current-Distribution Measurement in Polymer Electrolyte Water Electrolysis Equipment and Polymer Electrolyte Fuel Cell Using NMR Sensor

    NASA Astrophysics Data System (ADS)

    Yokouchi, Yasuo; Ogawa, Kuniyasu; Haishi, Tomoyuki; Ito, Kohei

    In a polymer electrolyte fuel cell (PEFC), the current density through the polymer electrolyte membrane (PEM) is distributed along the electrode on the membrane electrode assembly (MEA). To increase the electric power density of a PEFC, it is necessary to locate local decreases in current density where electric power generation decreases due to a lack of hydrogen, flooding, and so on. Therefore, achieving a higher current density in a PEFC requires monitoring the local current density. We developed a new method to estimate the spatial distribution of current flowing through the MEA in a polymer electrolyte water electrolysis equipment (PEWEE) and a PEFC using Nuclear-Magnetic-Resonance (NMR) sensors. The magnetic field strength induced by current through the MEA in a PEWEE is acquired as the frequency shift of the NMR signal which is measured by the NMR sensor. The spatial distributions of the frequency shifts occurring along the MEA in a PEWEE and a PEFC was measured. In order to verify the method, the magnetic field strength induced by the current through the gas diffusion layer (GDL) in a PEWEE was analyzed theoretically under the assumption that the current through MEA was uniform. The frequency shift was then calculated as a function of the geometry of the GDL, current, and the position of the NMR sensor. From experimental and theoretical results, the frequency shift of the NMR signal is proportional to current density and depends on the position of the sensors. Using the measurement system, we also obtained the current distribution through the GDL in a PEFC generating electric power. In these studies, the experimental and theoretical results agree.

  14. Performance of direct methanol polymer electrolyte fuel cell

    SciTech Connect

    Shin, Dong Ryul; Jung, Doo Hwan; Lee, Chang Hyeong; Chun, Young Gab

    1996-12-31

    Direct methanol fuel cells (DMFC) using polymer electrolyte membrane are promising candidate for application of portable power sources and transportation applications because they do not require any fuel processing equipment and can be operated at low temperature of 60{degrees}C - 130{degrees}C. Elimination of the fuel processor results in simpler design, higher operation reliability, lower weight volume, and lower capital and operating cost. However, methanol as a fuel is relatively electrochemical inert, so that kinetics of the methanol oxidation is too slow. Platinum and Pt-based binary alloy electrodes have been extensively studied for methanol electro-oxidation in acid electrolyte at ambient and elevated temperatures. Particularly, unsupported carbon Pt-Ru catalyst was found to be superior to the anode of DMFC using a proton exchange membrane electrolyte (Nafion). The objective of this study is to develop the high performance DNTC. This paper summarizes the results from half cell and single cell tests, which focus on the electrode manufacturing process, catalyst selection, and operating conditions of single cell such as methanol concentration, temperature and pressure.

  15. Effect of Electrolyte Composition on Characteristics of Plasma Electrolysis Nitrocarburizing

    NASA Astrophysics Data System (ADS)

    Tavakoli, H.; Mousavi Khoie, S. M.; Marashi, S. P. H.; Bolhasani, O.

    2013-08-01

    In this article, the effect of electrolyte composition on the characteristics of generated layer by plasma electrolytic nitrocarburizing process is studied. The characterization of the layer was carried out by means of SEM, x-ray diffraction, and EIS techniques. The relationship between workpiece temperature and the chemical composition of electrolyte was determined during the process. Three distinct regions in the temperature-voltage curves were observed. The effect of electrolyte's composition on the electrical parameters such as critical voltage, voltage of plasma formation, current density, and electrolyte conductivity was investigated. XRD studies showed that in addition to nitride phases, Fe3O4 phase also is generated. Moreover, EIS studies indicated that the corrosion resistance of the samples processed with higher water contents is less than the samples processed with lower water contents.

  16. Ti3C2Tx Filler Effect on the Proton Conduction Property of Polymer Electrolyte Membrane.

    PubMed

    Liu, Yahua; Zhang, Jiakui; Zhang, Xiang; Li, Yifan; Wang, Jingtao

    2016-08-10

    Conductive polymer electrolyte membranes are increasingly attractive for a wide range of applications in hydrogen-relevant devices, for instance hydrogen fuel cells. In this study, two-dimensional Ti3C2Tx, a typical representative of the recently developed MXene family, is synthesized and employed as a universal filler for its features of large specific surface area, high aspect ratio, and sufficient terminated -OH groups. The Ti3C2Tx is incorporated into polymer matrix to explore its function on membrane microstructure and proton conduction property. Both phase-separated (acidic Nafion and sulfonated poly(ether ether ketone)) and non-phase-separated (basic chitosan) polymers are utilized as membrane matrixes. The microstructures, physicochemical properties, and proton conduction properties of the membranes are extensively investigated. It is demonstrated that Ti3C2Tx generates significant promotion effect on proton conduction of the composite membrane by facilitating both vehicle-type and Grotthuss-type proton transfer, yielding several times increased proton conductivity for every polymer-based composite membrane under various conditions, and the composite membrane achieves elevated hydrogen fuel cell performance. The stable Ti3C2Tx also reinforces the thermal and mechanical stabilities of these composite membranes. Since the MXene family includes more than 70 members, this exploration is expected to open up new perspectives for expanding their applications, especially as membrane modifiers and proton conductors. PMID:27430190

  17. Glass transition and relaxation processes of nanocomposite polymer electrolytes.

    PubMed

    Money, Benson K; Hariharan, K; Swenson, Jan

    2012-07-01

    This study focus on the effect of δ-Al(2)O(3) nanofillers on the dc-conductivity, glass transition, and dielectric relaxations in the polymer electrolyte (PEO)(4):LiClO(4). The results show that there are three dielectric relaxation processes, α, β, and γ, in the systems, although the structural α-relaxation is hidden in the strong conductivity contribution and could therefore not be directly observed. However, by comparing an enhanced dc-conductivity, by approximately 2 orders of magnitude with 4 wt % δ-Al(2)O(3) added, with a decrease in calorimetric glass transition temperature, we are able to conclude that the dc-conductivity is directly coupled to the hidden α-relaxation, even in the presence of nanofillers (at least in the case of δ-Al(2)O(3) nanofillers at concentrations up to 4 wt %). This filler induced speeding up of the segmental polymer dynamics, i.e., the α-relaxation, can be explained by the nonattractive nature of the polymer-filler interactions, which enhance the "free volume" and mobility of polymer segments in the vicinity of filler surfaces. PMID:22686254

  18. Tetraarylborate polymer networks as single-ion conducting solid electrolytes

    DOE PAGESBeta

    Van Humbeck, Jeffrey F.; Aubrey, Michael L.; Alsbaiee, Alaaeddin; Ameloot, Rob; Coates, Geoffrey W.; Dichtel, William R.; Long, Jeffrey R.

    2015-06-23

    A new family of solid polymer electrolytes based upon anionic tetrakis(phenyl)borate tetrahedral nodes and linear bis-alkyne linkers is reported. Sonogashira polymerizations using tetrakis(4-iodophenyl)borate, tetrakis(4-iodo-2,3,5,6-tetrafluorophenyl)borate and tetrakis(4-bromo-2,3,5,6-tetrafluorophenyl)borate delivered highly cross-linked polymer networks with both 1,4-diethynylbeznene and a tri(ethylene glycol) substituted derivative. Promising initial conductivity metrics have been observed, including high room temperature conductivities (up to 2.7 × 10-4 S cm-1), moderate activation energies (0.25–0.28 eV), and high lithium ion transport numbers (up to tLi+ = 0.93). Initial investigations into the effects of important materials parameters such as bulk morphology, porosity, fluorination, and other chemical modification, provide starting design parameters for furthermore » development of this new class of solid electrolytes.« less

  19. Tetraarylborate polymer networks as single-ion conducting solid electrolytes

    SciTech Connect

    Van Humbeck, Jeffrey F.; Aubrey, Michael L.; Alsbaiee, Alaaeddin; Ameloot, Rob; Coates, Geoffrey W.; Dichtel, William R.; Long, Jeffrey R.

    2015-06-23

    A new family of solid polymer electrolytes based upon anionic tetrakis(phenyl)borate tetrahedral nodes and linear bis-alkyne linkers is reported. Sonogashira polymerizations using tetrakis(4-iodophenyl)borate, tetrakis(4-iodo-2,3,5,6-tetrafluorophenyl)borate and tetrakis(4-bromo-2,3,5,6-tetrafluorophenyl)borate delivered highly cross-linked polymer networks with both 1,4-diethynylbeznene and a tri(ethylene glycol) substituted derivative. Promising initial conductivity metrics have been observed, including high room temperature conductivities (up to 2.7 × 10-4 S cm-1), moderate activation energies (0.25–0.28 eV), and high lithium ion transport numbers (up to tLi+ = 0.93). Initial investigations into the effects of important materials parameters such as bulk morphology, porosity, fluorination, and other chemical modification, provide starting design parameters for further development of this new class of solid electrolytes.

  20. Development of small polymer electrolyte fuel cell stacks

    SciTech Connect

    Paganin, V.A.; Ticianelli, E.A.; Gonzalez, E.R.

    1996-12-31

    The polymer electrolyte fuel cell (PEFC) has been one of the most studied fuel cell systems, because of several advantages for transportation applications. Research involve fundamental aspects related to the water transport and the fuel cell reactions, the practical aspects related to the optimization of the structure and operational conditions of gas diffusion electrodes, and technological aspects related to water management and the engineering of operational sized fuel cell modules. In many of these works it is observed that very satisfactory results regarding the performance of low catalyst loading electrodes (0.15 to 0.4 mg Pt/cm{sup 2}) have been obtained in single cells. However, the use of such electrodes is not yet being considered for building fuel cell stacks and, although not usually mentioned, fuel cell modules are assembled employing electrodes presenting catalyst loadings in the range of 2 to 4 mgPt cm{sup -2}. In this work the results on the research and development of small polymer electrolyte fuel cell stacks employing low catalyst loading electrodes are described. The systems include the assembly of single cells, 6-cell and 21-cell modules. Testing of the stacks was conducted in a specially designed test station employing non-pressurized H{sub 2}/O{sub 2} reactants and measuring the individual and the overall cell voltage versus current characteristics under several operational conditions for the system.

  1. Polymer composites and blends for battery separators: State of the art, challenges and future trends

    NASA Astrophysics Data System (ADS)

    Nunes-Pereira, J.; Costa, C. M.; Lanceros-Méndez, S.

    2015-05-01

    In lithium ion battery systems, the separator plays a key role with respect to device performance. Polymer composites and polymer blends have been frequently used as battery separators due to their suitable properties. This review presents the main issues, developments and characteristics of these polymer composites and blends for battery separator membrane applications. This review is divided into two sections regarding the composition of the materials: polymer composite materials, subdivided according to filler type, and polymer blend materials. For each category the electrolyte solutions, ionic conductivity and other relevant physical-chemical characteristics are described. This review shows the recent advances and opportunities in this area and identifies future trends and challenges.

  2. Modification of chitosan membranes with nanosilica particles as polymer electrolyte membranes

    NASA Astrophysics Data System (ADS)

    Kusumastuti, Ella; Siniwi, Widasari Trisna; Mahatmanti, F. Widhi; Jumaeri, Atmaja, Lukman; Widiastuti, Nurul

    2016-04-01

    Chitosan has been widely used as polymer matrix for Polymer Electrolyte Membrane (PEM) application replacing Nafion which has shortcomings in terms of high methanol permeability that degrades the performance of fuel cells. Chitosan membranes modification is performed by adding nanosilica to prevent methanol transport through the membrane. Nanosilica is synthesized by sol-gel method and the particle diameter is obtained by analysis using Breunner Emmet Teller (BET) that is 6.59 nm. Nanosilica is mixed with chitosan solution to obtain nanosilica-chitosan as polymer electrolyte membrane. The membranes are synthesized through phase inversion method with nanosilica composition including 0; 0.5; 1; 2; 3; 5; and 10% w/w of chitosan. Characterization of the membranes indicate that the results of water swelling, proton conductivity and methanol permeability of the membrane with 3% nanosilica respectively were 49.23%, 0.231 S/cm, and 5.43 x 10-7 cm2/s. Based on the results of membrane selectivity calculation, the optimum membrane is the composition of 3% nanosilica with value 5.91 x 105 S s cm-3. The results of functional groups analysis with FTIR showed that it was only physical interaction that occurred between chitosan and nanosilica since no significant changes found in peak around the wave number 1000-1250 cm--1.

  3. Polymer precursors for ceramic composites

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1986-01-01

    The fiber composite approach to reinforced ceramics provides the possibility of achieving ceramics with high fracture toughness relative to monolithics. Fabrication of ceramic composites, however, demands low processing temperatures to avoid fiber degradation. Formation of complex shapes further requires small diameter fibers as well as techniques for infiltrating the matrix between fibers. Polymers offer low temperature processability, control of rheology not available with ceramic powders, and should serve as precursors to matrix fibers. In recent years, a number of polysilanes and polysilezanes were investigated as potential presursors. A review of candidate polymers is presented, including recent studies of silsesquioxanes.

  4. High Temperature Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    1985-01-01

    These are the proceedings of the High Temperature Polymer Matrix Composites Conference held at the NASA Lewis Research Center on March 16 to 18, 1983. The purpose of the conference is to provide scientists and engineers working in the field of high temperature polymer matrix composites an opportunity to review, exchange, and assess the latest developments in this rapidly expanding area of materials technology. Technical papers are presented in the following areas: (1) matrix development; (2) adhesive development; (3) characterization; (4) environmental effects; and (5) applications.

  5. Imprintable, bendable, and shape-conformable polymer electrolytes for versatile-shaped lithium-ion batteries.

    PubMed

    Kil, Eun-Hye; Choi, Keun-Ho; Ha, Hyo-Jeong; Xu, Sheng; Rogers, John A; Kim, Mi Ri; Lee, Young-Gi; Kim, Kwang Man; Cho, Kuk Young; Lee, Sang-Young

    2013-03-13

    A class of imprintable, bendable, and shape-conformable polymer electrolyte with excellent electrochemical performance in a lithium battery system is reported. The material consists of a UV-cured polymer matrix, high-boiling point liquid electrolyte, and Al2 O3 nanoparticles, formulated for use in lithium-ion batteries with 3D-structured electrodes or flexible characteristics. The unique structural design and well-tuned rheological characteristics of the UV-curable electrolyte mixture, in combination with direct UV-assisted nanoimprint lithography, allow the successful fabrication of polymer electrolytes in geometries not accessible with conventional materials. PMID:23280571

  6. New Polymer and Liquid Electrolytes for Lithium Batteries

    SciTech Connect

    McBreen, J.; Lee, H. S.; Yang, X. Q.; Sun, X.

    1999-03-29

    All non-aqueous lithium battery electrolytes are Lewis bases that interact with cations. Unlike water, they don't interact with anions. The result is a high degree of ion pairing and the formation of triplets and higher aggregates. This decreases the conductivity and the lithium ion transference and results in polarization losses in batteries. Approaches that have been used to increase ion dissociation in PEO based electrolytes are the use of salts with low lattice energy, the addition of polar plasticizers to the polymer, and the addition of cation completing agents such as crown ethers or cryptands. Complexing of the anions is a more promising approach since it should increase both ion dissociation and the lithium transference. At Brookhaven National Laboratory (BNL) we have synthesized two new families of neutral anion completing agents, each based on Lewis acid centers. One is based on electron deficient nitrogen sites on substituted aza-ethers, wherein the hydrogen on the nitrogen is replaced by electron withdrawing groups such as CF{sub 3}SO{sub 3{sup -}}. The other is based on electron deficient boron sites on borane or borate compounds with various fluorinated aryl or alkyl groups. Some of the borane based anion receptors can promote the dissolution of LiF in several solvents. Several of these compounds, when added in equivalent amounts, produce 1.2M LiF solutions in DME, an increase in volubility of LiF by six orders of magnitude. Some of these LiF electrolytes have conductivities as high as 6 x 10{sup -3} Scm{sup -1}. The LiF electrolytes with borane anion acceptors in PC:EC:DEC solvents have excellent electrochemical stability. This has been demonstrated in small Li/LiMn{sub 2}O{sub 4} cells.

  7. Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes

    SciTech Connect

    Wang, Yangyang; Fan, Fei; Agapov, Alexander L; Saito, Tomonori; Yang, Jun; Yu, Xiang; Hong, Kunlun; Mays, Jimmy; Sokolov, Alexei P

    2014-01-01

    Replacing traditional liquid electrolytes by polymers will significantly improve electrical energy storage technologies. Despite significant advantages for applications in electrochemical devices, the use of solid polymer electrolytes is strongly limited by their poor ionic conductivity. The classical theory predicts that the ionic transport is dictated by the segmental motion of the polymer matrix. As a result, the low mobility of polymer segments is often regarded as the limiting factor for development of polymers with sufficiently high ionic conductivity. Here, we show that the ionic conductivity in many polymers can be strongly decoupled from their segmental dynamics, in terms of both temperature dependence and relative transport rate. Based on this principle, we developed several polymers with superionic conductivity. The observed fast ion transport suggests a fundamental difference between the ionic transport mechanisms in polymers and small molecules and provides a new paradigm for design of highly conductive polymer electrolytes.

  8. Thin lithium cobalt dioxide rechargeable cells using polyacrylonitrile-based polymer electrolytes. Technical report

    SciTech Connect

    Slane, S.

    1994-07-01

    Rechargeable Li/LiCoO2 cells with polymer electrolytes have achieved 100 mAh/g capacity and over 75 charge/discharge cycles with an average discharge potential of 3.7 volts. Solid-state polymer lithium electrolytes based on poly(acrylonitrile) (PAN) have achieved room temperature conductivities of 0,001 siemens per cm, equal to that of some liquid organic electrolytes. Polymer films of ethylene carbonate, propylene carbonate, PAN, and lithium salts have yielded conductivities as high as 4x10-4 siemens per cm at 25 deg C. These high conductivities made the use of polymer electrolytes a viable possibility in advanced lithium batteries. Reported here are the film preparation techniques, conductivities from -70 to 70 deg C, and discharge curves of Li/LiCoO2 cells. Rechargeable battery, Lithium, Polymer electrolyte, Ionic conductivity.

  9. Nanostructure-Driven Ion Transport in PCBM-Based Polymer Electrolytes

    SciTech Connect

    Sun, Che-Nan; Zawodzinski, Thomas A; Ren, Fei; Keum, Jong Kahk; Chen, Jihua

    2014-01-01

    Nanostructure-Driven Ion Transport in PCBM-Based Polymer Electrolytes Che-Nan Sun1, Thomas A. Zawodzinski1,2, Fei Ren3, Jong Kahk Keum1 and Jihua Chen1, (1)Oak Ridge National Laboratory, (2)The University of Tennessee, (3)Temple University Polyethylene oxide or PEO is an extensively-examined candidate for solid polymer electrolyte materials of lithium ion batteries, and its composite electrolytes has promising ion conductivities.[1-3] Oxide nanoparticles with sizes of 5-10 nm are often introduced into these polymer-based composite electrolytes in order to suppress their room-temperature crystallite formation.1-9 The size, geometry and surface functionality of the added particles were known to largely affect the structure and performance of the blended electrolytes.5,10 In this study, we examined a functionalized-fullerene-based composite electrolytes, providing details in their self-assembled nanostructures, modulus, hardness, as well as temperature-dependent ion-conducting behaviors. To the best of our knowledge, no fullerene-based, lithium conducting, composite electrolyte has been reported previously. Herein we used a bench-mark fullerene derivative, phenyl-C61-butyric acid methyl ester (PCBM) as a model fullerene compound and performed impedance spectroscopy, equivalent circuit modeling, nanoscale elemental mapping (in transmission electron microscope), wide-angle X-ray diffraction, as well as nanoindentation to shed light on a 6-fold enhancement in low temperature (less than 50oC) ion conductivity of PEO - lithium bis(trifluoromethanesulfonyl) imide (LiTFSI)-PCBM electrolytes, along with the underlying changes in nanomorphology , mechanical properties, and crystal structures. Based on a previous density functional theory (DFT) calculation, 11 the interaction energies Ei among PEO polymers is estimated to be 2.58 kcal mol-1 per monomer, the Ei between PCBM and PEO is 3.50 kcal mol-1 per monomer (PCBM is taken as 1 repeat unit), and the Ei among PCBMs themselves

  10. Removal of charged micropollutants from water by ion-exchange polymers -- effects of competing electrolytes.

    PubMed

    Bäuerlein, Patrick S; Ter Laak, Thomas L; Hofman-Caris, Roberta C H M; de Voogt, Pim; Droge, Steven T J

    2012-10-15

    A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV/H(2)O(2), activated carbon (AC) or membranes). We studied the sorption affinity of some ionic organic compounds to both AC and different charged polymeric materials. Ion-exchange polymers may be effective as additional extraction phases in water treatment, because sorption of all charged compounds to oppositely charged polymers was stronger than to AC, especially for the double-charged cation metformin. Tested below 1% of the polymer ion-exchange capacity, the sorption affinity of charged micropollutants is nonlinear and depends on the composition of the aqueous medium. Whereas oppositely charged electrolytes do not impact sorption of organic ions, equally charged electrolytes do influence sorption indicating ion-exchange (IE) to be the main sorption mechanism. For the tested polymers, a tenfold increased salt concentration lowered the IE-sorption affinity by a factor two. Different electrolytes affect IE with organic ions in a similar way as inorganic ions on IE-resins, and no clear differences in this trend were observed between the sulphonated and the carboxylated cation-exchanger. Sorption of organic cations is five fold less in Ca(2+) solutions compared to similar concentrations of Na(+), while that of anionic compounds is three fold weaker in SO(4)(2-) solutions compared to equal concentrations of Cl(-). PMID:22818952

  11. Optimizing end-group cross-linking polymer electrolytes for fuel cell applications

    SciTech Connect

    Kim, Yu Seung; Lee, Kwan Soo; Jeong, Myung - Hwan; Lee, Jae - Suk

    2009-01-01

    This paper demonstrates the optimization of proton conductivity and water uptake for cross-linkable polymer electrolytes through synthesis and characterization of end-group cross-linkable sulfonated poly(arylene ether) copolymers (ESF-BPs). The extent of reaction of cross-linking was controlled by reaction time resulting in a series of polymers with two, independent tunable parameters, degree of sulfonation (DS) and degree of cross-linking (DC). For the polymers presented, cross-linking improved proton conductivity while reducing water uptake, an uncommon trend in polymer electrolytes where water is critical for proton conduction. Other trends relating to changes are reported and the results yield insight into the role of DS and DC and how to optimize electrochemical properties and performance of polymer electrolytes through these tunable parameters. Select polymer electrolytes were tested in fuel cells where performance and durability with accelerated relative humidity cycling were compared with Nafion{reg_sign}.

  12. Hybridized polymer matrix composite

    NASA Technical Reports Server (NTRS)

    Stern, B. A.; Visser, T.

    1981-01-01

    Under certain conditions of combined fire and impact, graphite fibers are released to the atmosphere by graphite fiber composites. The retention of graphite fibers in these situations is investigated. Hybrid combinations of graphite tape and cloth, glass cloth, and resin additives are studied with resin systems. Polyimide resins form the most resistant composites and resins based on simple novolac epoxies the least resistant of those tested. Great improvement in the containment of the fibers is obtained in using graphite/glass hybrids, and nearly complete prevention of individual fiber release is made possible by the use of resin additives.

  13. Research Trends in Polymer Electrolyte Membranes for PEMFC

    NASA Astrophysics Data System (ADS)

    Zaidi, S. M. Javaid

    In this chapter research trends followed by various scientific groups for the development of polymeric membranes have been described and reviewed. Most notably, the developments made at Ballard Advanced Materials (BAM) and some of their results are discussed. In general three different approaches have been followed worldwide by various research groups for the development and conception of alternative membranes. These approaches include: (1) modifying perfluorinated ionomer membranes; (2) functionalization of aromatic hydrocarbon polymers/ membranes; and (3) composite membranes based on solid inorganic proton conducting materials and the organic polymer matrix or prepare acid-base blends and their composite to improve their water retention properties. The current trend is for the composite and hybrid membranes, which combines the properties of both the polymeric component and inorganic part. The most widely studied polymer after Nafion is the sulfonated polyether-ether ketone (SPEEK), as it has a high potential for commercialization. A number of research projects are currently undergoing dealing with the SPEEK polymer in various research labs.

  14. High temperature polymer concrete compositions

    DOEpatents

    Fontana, Jack J.; Reams, Walter

    1985-01-01

    This invention is concerned with a polymer concrete composition, which is a two-component composition useful with many bases including metal. Component A, the aggregate composition, is broadly composed of silica, silica flour, portland cement, and acrylamide, whereas Component B, which is primarily vinyl and acrylyl reactive monomers, is a liquid system. A preferred formulation emphasizing the major necessary components is as follows: ______________________________________ Component A: Silica sand 60-77 wt. % Silica flour 5-10 wt. % Portland cement 15-25 wt. % Acrylamide 1-5 wt. % Component B: Styrene 50-60 wt. % Trimethylolpropane 35-40 wt. % trimethacrylate ______________________________________ and necessary initiators, accelerators, and surfactants.

  15. High-temperature polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    1990-01-01

    Polymers research at the NASA Lewis Research Center has produced high-temperature, easily processable resin systems, such as PMR-15. In addition, the Polymers Branch has investigated ways to improve the mechanical properties of polymers and the microcracking resistance of polymer matrix composites in response to industry need for new and improved aeropropulsion materials. Current and future research in the Polymers Branch is aimed at advancing the upper use temperature of polymer matrix composites to 700 F and beyond by developing new resins, by examining the use of fiber reinforcements other than graphite, and by developing coatings for polymer matrix composites to increase their oxidation resistance.

  16. On a Pioneering Polymer Electrolyte Fuel Cell Model

    SciTech Connect

    Weber, Adam Z.; Meyers, Jeremy P.

    2010-07-07

    "Polymer Electrolyte Fuel Cell Model" is a seminal work that continues to form the basis for modern modeling efforts, especially models concerning the membrane and its behavior at the continuum level. The paper is complete with experimental data, modeling equations, model validation, and optimization scenarios. While the treatment of the underlying phenomena is limited to isothermal, single-phase conditions, and one-dimensional flow, it represents the key interactions within the membrane at the center of the PEFC. It focuses on analyzing the water balance within the cell and clearly demonstrates the complex interactions of water diffusion and electro-osmotic flux. Cell-level and system-level water balance are key to the development of efficient PEFCs going forward, particularly as researchers address the need to simplify humidification and recycle configurations while increasing the operating temperature of the stack to minimize radiator requirements.

  17. A review of polymer electrolyte membrane fuel cell stack testing

    NASA Astrophysics Data System (ADS)

    Miller, M.; Bazylak, A.

    This paper presents an overview of polymer electrolyte membrane fuel cell (PEMFC) stack testing. Stack testing is critical for evaluating and demonstrating the viability and durability required for commercial applications. Single cell performance cannot be employed alone to fully derive the expected performance of PEMFC stacks, due to the non-uniformity in potential, temperature, and reactant and product flow distributions observed in stacks. In this paper, we provide a comprehensive review of the state-of-the art in PEMFC testing. We discuss the main topics of investigation, including single cell vs. stack-level performance, cell voltage uniformity, influence of operating conditions, durability and degradation, dynamic operation, and stack demonstrations. We also present opportunities for future work, including the need to verify the impact of stack size and cell voltage uniformity on performance, determine operating conditions for achieving a balance between electrical efficiency and flooding/dry-out, meet lifetime requirements through endurance testing, and develop a stronger understanding of degradation.

  18. Communication: Nanoscale ion fluctuations in Nafion polymer electrolyte

    SciTech Connect

    Rumberger, Brant; Bennett, Mackenzie; Zhang, Jingyun; Israeloff, N. E.; Dura, J. A.

    2014-08-21

    Ion conduction mechanisms and the nanostructure of ion conduction networks remain poorly understood in polymer electrolytes which are used as proton-exchange-membranes (PEM) in fuel cell applications. Here we study nanoscale surface-potential fluctuations produced by Brownian ion dynamics in thin films of low-hydration Nafion™, the prototype PEM. Images and power spectra of the fluctuations are used to derive the local conductivity-relaxation spectrum, in order to compare with bulk behavior and hopping-conductivity models. Conductivity relaxation-times ranged from hours to milliseconds, depending on hydration and temperature, demonstrating that the observed fluctuations are produced by water-facilitated hydrogen-ion hopping within the ion-channel network. Due to the small number of ions probed, non-Gaussian statistics of the fluctuations can be used to constrain ion conduction parameters and mechanisms.

  19. Highly Conductive, Stretchable, and Transparent Solid Polymer Electrolyte Membrane

    NASA Astrophysics Data System (ADS)

    He, Ruixuan; Echeverri, Mauricio; Kyu, Thein

    2014-03-01

    With the guidance of ternary phase diagrams, completely amorphous polymer electrolyte membranes (PEM) were successfully prepared by melt processing for lithium-ion battery. The PEM under consideration consisted of poly (ethylene glycol diacrylate) (PEGDA), succinonitrile (SCN) and Lithium bis(trifluoro-methane)sulfonamide (LiTFSI). After UV-crosslinking, the PEM is transparent and light-weight. Addition of SCN plastic crystal affords not only dissociation of the lithium salt, but also plasticization to the crosslinked PEGDA network. Of particular importance is the achievement of room-temperature ionic conductivity of ~10-3 S/cm, which is comparable to that of commercial liquid electrolyte. Higher ionic conductivities were achieved at elevated temperatures or with use of a moderately higher molecular weight of PEGDA. In terms of electrochemical and chemical stability, the PEM exhibited oxidative stability up to 5 V against lithium reference electrode. Stable interface behavior between the PEM and lithium electrode is also seen with ageing time. In the tensile tests, samples containing low molecular weight PEGDA are stiffer, whereas the high molecular weight PEGDA is stretchable up to 80% elongation. Supported by NSF-DMR 1161070.

  20. A direct 2-propanol polymer electrolyte fuel cell

    NASA Astrophysics Data System (ADS)

    Cao, Dianxue; Bergens, Steven H.

    We report the performance of a polymer electrolyte membrane direct 2-propanol fuel cell (DPFC). The cell consisted of a Pt-Ru (atomic ratio of 1:1) black anode, a Pt black cathode, and a Nafion ®-117 membrane electrolyte. The cell was operated at 90 °C with aqueous 2-propanol as fuel and with oxygen as oxidant. The performance of the cell operating on 2-propanol is substantially higher than when it was operating on methanol at current densities lower than ˜200 mA/cm 2. The electrical efficiency of the direct 2-propanol fuel cell is nearly 1.5 times that of the direct methanol fuel cell at power densities below 128 mW/cm 2. Studies on the effects of electrocatalyst loading, of 2-propanol concentration, and of oxygen pressure on cell performance indicate that the cells operating on 2-propanol require lower anode and cathode loadings than cells operating on methanol. Cathode poisoning by 2-propanol is less severe than by methanol. Hydrogen gas evolution observed at the anode at low current densities indicated that catalytic dehydrogenation of 2-propanol occurred over the anode catalyst. A rapid voltage drop occurred at high current densities and after operating the cell for extended periods of time at constant current. The rapid voltage drop is an anode phenomenon.

  1. Hybridized polymer matrix composites

    NASA Technical Reports Server (NTRS)

    London, A.

    1981-01-01

    Design approaches and materials are described from which are fabricated pyrostatic graphite/epoxy (Gr/Ep) laminates that show improved retention of graphite particulates when subjected to burning. Sixteen hybridized plus two standard Gr/Ep laminates were designed, fabricated, and tested in an effort to eliminate the release of carbon (graphite) fiber particles from burned/burning, mechanically disturbed samples. The term pyrostatic is defined as meaning mechanically intact in the presence of fire. Graphite particulate retentive laminates were constructed whose constituent materials, cost of fabrication, and physical and mechanical properties were not significantly different from existing Gr/Ep composites. All but one laminate (a Celion graphite/bis-maleimide polyimide) were based on an off-the-shelf Gr/Ep, the AS-1/3501-5A system. Of the 16 candidates studied, four thin (10-ply) and four thick (50-ply) hybridized composites are recommended.

  2. Polymer film composite transducer

    DOEpatents

    Owen, Thomas E.

    2005-09-20

    A composite piezoelectric transducer, whose piezoeletric element is a "ribbon wound" film of piezolectric material. As the film is excited, it expands and contracts, which results in expansion and contraction of the diameter of the entire ribbon winding. This is accompanied by expansion and contraction of the thickness of the ribbon winding, such that the sound radiating plate may be placed on the side of the winding.

  3. High elastic modulus polymer electrolytes suitable for preventing thermal runaway in lithium batteries

    DOEpatents

    Mullin, Scott; Panday, Ashoutosh; Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2014-04-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics. In another aspect, the electrolyte exhibits a conductivity drop when the temperature of electrolyte increases over a threshold temperature, thereby providing a shutoff mechanism for preventing thermal runaway in lithium battery cells.

  4. Cheap glass fiber mats as a matrix of gel polymer electrolytes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Yusong; Wang, Faxing; Liu, Lili; Xiao, Shiyin; Yang, Yaqiong; Wu, Yuping

    2013-11-01

    Lithium ion batteries (LIBs) are going to play more important roles in electric vehicles and smart grids. The safety of the current LIBs of large capacity has been remaining a challenge due to the existence of large amounts of organic liquid electrolytes. Gel polymer electrolytes (GPEs) have been tried to replace the organic electrolyte to improve their safety. However, the application of GPEs is handicapped by their poor mechanical strength and high cost. Here, we report an economic gel-type composite membrane with high safety and good mechanical strength based on glass fiber mats, which are separator for lead-acid batteries. The gelled membrane exhibits high ionic conductivity (1.13 mS cm-1), high Li+ ion transference number (0.56) and wide electrochemical window. Its electrochemical performance is evaluated by LiFePO4 cathode with good cycling. The results show this gel-type composite membrane has great attraction to the large-capacity LIBs requiring high safety with low cost.

  5. Cheap glass fiber mats as a matrix of gel polymer electrolytes for lithium ion batteries

    PubMed Central

    Zhu, Yusong; Wang, Faxing; Liu, Lili; Xiao, Shiyin; Yang, Yaqiong; Wu, Yuping

    2013-01-01

    Lithium ion batteries (LIBs) are going to play more important roles in electric vehicles and smart grids. The safety of the current LIBs of large capacity has been remaining a challenge due to the existence of large amounts of organic liquid electrolytes. Gel polymer electrolytes (GPEs) have been tried to replace the organic electrolyte to improve their safety. However, the application of GPEs is handicapped by their poor mechanical strength and high cost. Here, we report an economic gel-type composite membrane with high safety and good mechanical strength based on glass fiber mats, which are separator for lead-acid batteries. The gelled membrane exhibits high ionic conductivity (1.13 mS cm−1), high Li+ ion transference number (0.56) and wide electrochemical window. Its electrochemical performance is evaluated by LiFePO4 cathode with good cycling. The results show this gel-type composite membrane has great attraction to the large-capacity LIBs requiring high safety with low cost. PMID:24216756

  6. Cheap glass fiber mats as a matrix of gel polymer electrolytes for lithium ion batteries.

    PubMed

    Zhu, Yusong; Wang, Faxing; Liu, Lili; Xiao, Shiyin; Yang, Yaqiong; Wu, Yuping

    2013-01-01

    Lithium ion batteries (LIBs) are going to play more important roles in electric vehicles and smart grids. The safety of the current LIBs of large capacity has been remaining a challenge due to the existence of large amounts of organic liquid electrolytes. Gel polymer electrolytes (GPEs) have been tried to replace the organic electrolyte to improve their safety. However, the application of GPEs is handicapped by their poor mechanical strength and high cost. Here, we report an economic gel-type composite membrane with high safety and good mechanical strength based on glass fiber mats, which are separator for lead-acid batteries. The gelled membrane exhibits high ionic conductivity (1.13 mS cm(-1)), high Li(+) ion transference number (0.56) and wide electrochemical window. Its electrochemical performance is evaluated by LiFePO4 cathode with good cycling. The results show this gel-type composite membrane has great attraction to the large-capacity LIBs requiring high safety with low cost. PMID:24216756

  7. Development and manufacture of printable next-generation gel polymer ionic liquid electrolyte for Zn/MnO2 batteries

    NASA Astrophysics Data System (ADS)

    Winslow, R.; Wu, C. H.; Wang, Z.; Kim, B.; Keif, M.; Evans, J.; Wright, P.

    2013-12-01

    While much energy storage research focuses on the performance of individual components, such as the electrolyte or a single electrode, few investigate the electrochemical system as a whole. This research reports on the design, composition, and performance of a Zn/MnO2 battery as affected by the manufacturing method and next-generation gel polymer electrolyte composed of the ionic liquid [BMIM][Otf], ZnOtf salt, and PVDF-HFP polymer binder. Materials and manufacturing tests are discussed with a focus on water concentration, surface features as produced by printing processes, and the effect of including a gel polymer phase. Cells produced for this research generated open circuit voltages from 1.0 to 1.3 V. A dry [BMIM][Otf] electrolyte was found to have 87.3 ppm of H2O, while an electrolyte produced in ambient conditions contained 12400 ppm of H2O. Cells produced in a dry, Ar environment had an average discharge capacity of 0.0137 mAh/cm2, while one produced in an ambient environment exhibited a discharge capacity at 0.05 mAh/cm2. Surface features varied significantly by printing method, where a doctor blade produced the most consistent features. The preliminary results herein suggest that water, surface roughness, and the gel polymer play important roles in affecting the performance of printed energy storage.

  8. Impedance and structural studies on plasticized PCL-LiSO3CF3-SiO2 polymer electrolytes.

    PubMed

    Ng, B C; Wong, H Y; You, A H

    2014-07-01

    Plasticized polymer electrolytes in this study are consist of biodegradable polycaprolactone (PCL) as a host, ethylene carbonate (EC) as a plasticizer, lithium triflate (LiSO3CF3) as salt and nanocomposite silicon dioxide (SiO2) as filler. Solution cast technique is used in the preparation of the plasticized polymer electrolytes. The electrical properties of the plasticized polymer electrolytes with different composition of lithium salt, plasticizer and nano-sized filler are reported in this paper. Conductivity as high as 4.30 x 10(-3) S cm(-1) is obtained in ambient temperature. Ionic conductivity of the plasticized polymer electrolytes are measured using electrochemistry impedance spectroscopy (EIS). The structural and complex formations are studied by X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy. The ionic conductivity result can be further verified and supported by XRD and FTIR reading in which the ionic conductivity is directly proportional to the amorphous phase behaviour of the sample. PMID:24758066

  9. Electrical Conductivity Study of Polymer Electrolyte Magnetic Nanocomposite Based Poly(Vinyl) Alcohol (PVA) Doping Lithium and Nickel Salt

    NASA Astrophysics Data System (ADS)

    Aji, Mahardika Prasetya; Rahmawati, Silvia, Bijaksana, Satria; Khairurrijal, Abdullah, Mikrajuddin

    2010-10-01

    Composite polymer electrolyte magnetic systems composed of poly(vinyl) alcohol (PVA) as the host polymer, lithium and nickel salt as dopant were studied. The effect upon addition of lithium ions in polimer PVA had been enhanced conductivity with the increase of lithium concentration. The conductivity values were 1.19x10-6, 1.25x10-5, 4.89x-5, 1.88x10-4, and 1.33x10-3 Sṡcm-1 for pure PVA and 1%, 3%, 5% and 7% LiOH complexed PVA, respectively. Meanwhile, the addition nickel salt into polymer electrolyte PVA-LiOH does not significantly change of conductivity value, on order 10-3 Sṡcm-1. The ionic transport is dominantly regarded by Li+ ions present in polymer electrolyte magnetic because the atomic mass Li+ is smaller than Ni2+. The absence of external magnetic field in polimer electrolyte magnetic causes the existence Ni2+ ions not significantly affected of conductivity.

  10. Polymer-composite ball lightning.

    PubMed

    Bychkov, V L

    2002-01-15

    Investigations into the state of ball lightning (BL) have been made, and both theory and experiments, related to so-called "polymer-composite" ball lightning, are presented. The properties of such a polymeric BL have been described and are that of a long-lived object capable of storing high energy. Results of experiments, starting with polymeric components in erosive gas discharge experiments, are described and discussed. The model of BL as a highly charged polymer-dielectric structure is described. According to this model BL appears as the result of the aggregation of natural polymers, such as lignin and cellulose, soot, polymeric silica and other natural dust particles. Its ability to glow is explained by the appearance over its perimeter of gas discharges near the highly charged BL surface, and electrical breakdown of some regions on the surface, consisting of polymerized and aggregated threads. PMID:16210170

  11. Hybridized polymer matrix composites

    NASA Technical Reports Server (NTRS)

    House, E. E.; Hoggatt, J. T.; Symonds, W. A.

    1980-01-01

    The extent to which graphite fibers are released from resin matrix composites that are exposed to fire and impact conditions was determined. Laboratory simulations of those conditions that could exist in the event of an aircraft crash and burn situation were evaluated. The effectiveness of various hybridizing concepts in preventing this release of graphite fibers were also evaluated. The baseline (i.e., unhybridized) laminates examined were prepared from commercially available graphite/epoxy, graphite/polyimide, and graphite/phenolic materials. Hybridizing concepts investigated included resin fillers, laminate coatings, resin blending, and mechanical interlocking of the graphite reinforcement. The baseline and hybridized laminates' mechanical properties, before and after isothermal and humidity aging, were also compared. It was found that a small amount of graphite fiber was released from the graphite/epoxy laminates during the burn and impact conditions used in this program. However, the extent to which the fibers were released is not considered a severe enough problem to preclude the use of graphite reinforced composites in civil aircraft structure. It also was found that several hybrid concepts eliminated this fiber release. Isothermal and humidity aging did not appear to alter the fiber release tendencies.

  12. Flat polymer electrolytes promise thin-film power. Technical report, July 1988-June 1989

    SciTech Connect

    Zafar, M.; Munshi, A.; Owens, B.B.

    1989-06-15

    In laboratories all around the world, scientist and engineers are working on a new solid-state battery that could be fabricated much thinner than 100 micrometers. The battery uses a solid polymer electrolyte as the ionically conducting medium, instead of a liquid electrolyte. Flat cells have been available for several years and have been incorporated into devices such as the Polaroid instant-film pack. However, these have been modifications of conventional liquid-electrolyte cell designs. Recent innovations in solid-state batteries that use lithium anodes, solid cathodes, and a solid polymer electrolyte that both separates and provides the ionic pathway between the anode and cathode.

  13. Hybridized polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Henshaw, J.

    1983-01-01

    Methods of improving the fire resistance of graphite epoxy composite laminates were investigated with the objective of reducing the volume of loose graphite fibers disseminated into the airstream as the result of a high intensity aircraft fuel fire. Improvements were sought by modifying the standard graphite epoxy systems without significantly negating their structural effectiveness. The modifications consisted primarily of an addition of a third constituent material such as glass fibers, glass flakes, carbon black in a glassy resin. These additions were designed to encourage coalescense of the graphite fibers and thereby reduce their aerodynamic float characteristics. A total of 38 fire tests were conducted on thin (1.0 mm) and thick (6.0 mm) hybrid panels.

  14. Mass and Charge Transport in the Polymer-Ionic-Liquid System PEO-EMImI: From Ionic-Liquid-in-Polymer to Polymer-in-Ionic-Liquid Electrolytes.

    PubMed

    Kösters, Johannes; Schönhoff, Monika; Stolwijk, Nicolaas A

    2015-04-30

    Conventional polymer electrolytes based on inorganic salts are commonly characterized and utilized over a small salt-poor composition range because of phase transitions accompanied by loss of ion conductivity at high salt concentrations. By contrast, well-chosen polymer-ionic-liquid (IL) systems offer the possibility to vary the IL content from the IL-in-polymer to the polymer-in-IL domain. We have investigated the temperature-dependent ionic conductivity in PEOyEMImI systems consisting of poly(ethylene oxide) complexed with 1-ethyl-3-methylimidazolium iodide for y = EO/IL ratios ranging from 0.6 to 60 and compared diffusivity data with that arising from (1)H pulsed-field-gradient nuclear magnetic resonance for EMIm and (125)I radiotracer diffusion for iodine. Surprisingly, the diffusivity of cations and anions vary at most by 50% at fixed temperatures over the entire composition range. The much larger changes in the charge diffusivity Dσ relate to ion pairing exhibiting a minimum near the intermediate composition y = 10. Altogether, the results are relevant to application in dye-sensitized solar cells and show that a high ion density is crucial to enhance the iodine transport capacity. PMID:25848686

  15. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries.

    PubMed

    Sun, Xiao-Guang; Fang, Youxing; Jiang, Xueguang; Yoshii, Kazuki; Tsuda, Tetsuya; Dai, Sheng

    2016-01-01

    A polymer gel electrolyte using AlCl3 complexed acrylamide as a functional monomer and acidic ionic liquid based on a mixture of 1-ethyl-3-methylimidazolium chloride (EMImCl) and AlCl3 (EMImCl-AlCl3, 1-1.5, in molar ratio) as a plasticizer has been successfully prepared for the first time via free radical polymerization. Aluminum deposition is successfully achieved using a polymer gel electrolyte containing 80 wt% ionic liquid. The polymer gel electrolytes are also good candidates for rechargeable aluminum ion batteries. PMID:26511160

  16. The electrolyte challenge for a direct methanol-air polymer electrolyte fuel cell operating at temperatures up to 200 C

    NASA Technical Reports Server (NTRS)

    Savinell, Robert; Yeager, Ernest; Tryk, Donald; Landau, Uziel; Wainright, Jesse; Gervasio, Dominic; Cahan, Boris; Litt, Morton; Rogers, Charles; Scherson, Daniel

    1993-01-01

    Novel polymer electrolytes are being evaluated for use in a direct methanol-air fuel cell operating at temperatures in excess of 100 C. The evaluation includes tests of thermal stability, ionic conductivity, and vapor transport characteristics. The preliminary results obtained to date indicate that a high temperature polymer electrolyte fuel cell is feasible. For example, Nafion 117 when equilibrated with phosphoric acid has a conductivity of at least 0.4 Omega(exp -1)cm(exp -1) at temperatures up to 200 C in the presence of 400 torr of water vapor and methanol vapor cross over equivalent to 1 mA/cm(exp 2) under a one atmosphere methanol pressure differential at 135 C. Novel polymers are also showing similar encouraging results. The flexibility to modify and optimize the properties by custom synthesis of these novel polymers presents an exciting opportunity to develop an efficient and compact methanol fuel cell.

  17. Determination of optimum electrolyte composition for molten carbonate fuel cells

    SciTech Connect

    Yuh, C.Y.; Pigeaud, A.

    1987-01-01

    The objective of this study is to determine the optimum electrolyte composition for molten carbonate fuel cells. To accomplish this, the contractor will provide: (1) Comprehensive reports of on-going efforts to optimize carbonate composition. (2) A list of characteristics affected by electrolyte composition variations (e.g. ionic conductivity, vapor pressure, melting range, gas solubility, exchange current densities on NiO, corrosion and cathode dissolution effects). (3) Assessment of the overall effects that these characteristics have state-of-the-art cell voltage and lifetime.

  18. A review of radiation-grafted polymer electrolyte membranes for alkaline polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zhou, Tianchi; Shao, Rong; Chen, Song; He, Xuemei; Qiao, Jinli; Zhang, Jiujun

    2015-10-01

    The past two decades have witnessed many efforts to develop radiation-grafted alkaline membranes for alkaline PEM fuel cell applications, as such membranes have certain advantages over other kinds of alkaline membranes, including well-controlled composition, functionality, and other promising properties. To facilitate research and development in this area, the present paper reviews radiation-grafted alkaline membranes. We examine their synthesis/fabrication/characterization, membrane material selection, and theoretical approaches for fundamental understanding. We also present detailed examinations of their application in fuel cell in terms of the working principles of the radiation grafting process, the fabrication of MEAs using radiation-grafted membranes, the membranes' corresponding performance in alkaline PEM fuel cells, as well as performance optimization. The paper also summarizes the challenges and mitigation strategies for radiation-grafted alkaline membranes and their application in PEM fuel cells, presenting an overall picture of the technology as it presently stands.

  19. AC conductivity and electrochemical studies of PVA/PEG based polymer blend electrolyte films

    NASA Astrophysics Data System (ADS)

    Polu, Anji Reddy; Kumar, Ranveer; Dehariya, Harsha

    2012-06-01

    Polymer blend electrolyte films based on Polyvinyl alcohol(PVA)/Poly(ethylene glycol)(PEG) and magnesium nitrate (Mg(NO3)2) were prepared by solution casting technique. Conductivity in the temperature range 303-373 K and transference number measurements have been employed to investigate the charge transport in this polymer blend electrolyte system. The highest conductivity is found to be 9.63 × 10-5 S/cm at 30°C for sample with 30 weight percent of Mg(NO3)2 in PVA/PEG blend matrix. Transport number data shows that the charge transport in this polymer electrolyte system is predominantly due to ions. Using this electrolyte, an electrochemical cell with configuration Mg/(PVA+PEG+Mg(NO3)2)/(I2+C+electrolyte) was fabricated and its discharge characteristics profile has been studied.

  20. Special Polymer/Carbon Composite Films for Detecting SO2

    NASA Technical Reports Server (NTRS)

    Homer, Margie; Ryan, Margaret; Yen, Shiao-Pin; Kisor, Adam; Jewell, April; Shevade, Abhijit; Manatt, Kenneth; Taylor, Charles; Blanco, Mario; Goddard, William

    2008-01-01

    A family of polymer/carbon films has been developed for use as sensory films in electronic noses for detecting SO2 gas at concentrations as low as 1 part per million (ppm). Most previously reported SO2 sensors cannot detect SO2 at concentrations below tens of ppm; only a few can detect SO2 at 1 ppm. Most of the sensory materials used in those sensors (especially inorganic ones that include solid oxide electrolytes, metal oxides, and cadmium sulfide) must be used under relatively harsh conditions that include operation and regeneration at temperatures greater than 100 C. In contrast, the present films can be used to detect 1 ppm of SO2 at typical opening temperatures between 28 and 32 C and can be regenerated at temperatures between 36 and 40 C. The basic concept of making sensing films from polymer/carbon composites is not new. The novelty of the present family of polymer/carbon composites lies in formulating the polymer components of these composites specifically to optimize their properties for detecting SO2. First-principles quantum-mechanical calculations of the energies of binding of SO2 molecules to various polymer functionalities are used as a guide for selecting polymers and understanding the role of polymer functionalities in sensing. The polymer used in the polymer-carbon composite is a copolymer of styrene derivative units with vinyl pyridine or substituted vinyl pyridine derivative units. To make a substituted vinyl pyridine for use in synthesizing such a polymer, poly(2-vinyl pyridine) that has been dissolved in methanol is reacted with 3-chloropropylamine that has been dissolved in a solution of methanol. The methanol is then removed to obtain the copolymer. Later, the copolymer can be dissolved in an appropriate solvent with a suspension of carbon black to obtain a mixture that can be cast and then dried to obtain a sensory film.

  1. Process to produce lithium-polymer batteries

    DOEpatents

    MacFadden, Kenneth Orville

    1998-01-01

    A polymer bonded sheet product suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance.

  2. Process to produce lithium-polymer batteries

    DOEpatents

    MacFadden, K.O.

    1998-06-30

    A polymer bonded sheet product is described suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance. 1 fig.

  3. Superionic solid-state polymer electrolyte membrane for high temperature applications

    NASA Astrophysics Data System (ADS)

    Kyu, Thein; He, Ruixuan; Cao, Jinwei

    2015-03-01

    Completely amorphous, flexible, solid-state polymer electrolyte membranes (ss-PEM) consisted of polyethylene glycol diacrylate /succinonitrile plasticizer (SCN)/lithium trifluorosulfonyl imide were fabricated via UV polymerization. The room temperature ionic conductivity of our ss-PEM is extremely high (i.e., 10-3S/cm), which is already in the superionic conductor range of inorganic and/or liquid electrolyte counterparts. Of particular interest is that our ss-PEM is thermally stable up to 140°C, which is superior to the liquid electrolyte counterpart that degrades above 80°C. The ss-PEM exhibits cyclic stability in both LiFePO4/Li and Li4Ti5O12 /Li half-cells up to 50 cycles tested. The trend of conductivity enhancement with temperature is reproducible in the repeated cycles, showing melting transitions of the SCN plastic crystals. In the compositions close to the solid (SCN plastic crystal)-liquid coexistence line, polymerization-induced crystallization occurs during photo-curing. The effect of solid-liquid segregation on ionic conductivity behavior is discussed. Supported by NSF-DMR 1161070.

  4. Advancing Polymer-Supported Ionogel Electrolytes Formed via Radical Polymerization

    NASA Astrophysics Data System (ADS)

    Visentin, Adam F.

    Applications ranging from consumer electronics to the electric grid have placed demands on current energy storage technologies. There is a drive for devices that store more energy for rapid consumption in the case of electric cars and the power grid, and safer, versatile design options for consumer electronics. Electrochemical double-layer capacitors (EDLCs) are an option that has garnered attention as a means to address these varied energy storage demands. EDLCs utilize charge separation in electrolytes to store energy. This energy storage mechanism allows for greater power density (W kg -1) than batteries and higher energy density (Wh kg-1) than conventional capacitors - along with a robust lifetime in the range of thousands to millions of charge-discharge cycles. Safety and working voltage windows of EDLCs currently on the market are limited by the organic solvents utilized in the electrolyte. A potential solution lies in the replacement of the organic solvents with ionic liquids, or room-temperature molten salts. Ionic liquids possess many superior properties in comparison to conventional solvents: wide electrochemical window, low volatility, nonflammability, and favorable ionic conductivity. It has been an endeavor of this work to exploit these advantages while altering the liquid form factor into a gel. An ionic liquid/solid support scaffold composite electrolyte, or ionogel, adds additional benefits: flexible device design, lower encapsulation weight, and elimination of electrolyte leakage. This work has focused on investigations of a UV-polymerizable monomer, poly(ethylene glycol) diacrylate, as a precursor for forming ionogels in situ. The trade-off between gaining mechanical stability at the cost of ionic conductivity has been investigated for numerous ionogel systems. While gaining a greater understanding of the interactions between the gel scaffold and ionic liquid, an ionogel with the highest known ionic conductivity to date (13.1 mS cm-1) was

  5. Polymer electrolytes containing guanidinium-based polymeric ionic liquids for rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Li, Mingtao; Yang, Li; Fang, Shaohua; Dong, Siming; Hirano, Shin-ichi; Tachibana, Kazuhiro

    2011-10-01

    The electrochemical properties of solvent-free, quaternary polymer electrolytes based on a novel polymeric ionic liquid (PIL) as polymer host and incorporating 1g13TFSI ionic liquid, LiTFSI salt and nano-scale silica are reported. The PIL-LiTFSI-1g13TFSI-SiO2 electrolyte membranes are found to be chemically stable even at 80 °C in contact with lithium anode and thermally stable up to 320 °C. Particularly, the quaternary polymer electrolytes exhibit high lithium ion conductivity at high temperature, wide electrochemical stability window, time-stable interfacial resistance values and good lithium stripping/plating performance. Batteries assembled with the quaternary polymer electrolyte at 80 °C are capable to deliver 140 mAh g-1 at 0.1C rates with very good capacity retention.

  6. Crosslinked polymer gel electrolytes based on polyethylene glycol methacrylate and ionic liquid for lithium battery applications

    SciTech Connect

    Liao, Chen; Sun, Xiao-Guang; Dai, Sheng

    2013-01-01

    Gel polymer electrolytes were synthesized by copolymerization polyethylene glycol methyl ether methacrylate with polyethylene glycol dimethacrylate in the presence of a room temperature ionic liquid, methylpropylpyrrolidinium bis(trifluoromethanesulfonyl)imide (MPPY TFSI). The physical properties of gel polymer electrolytes were characterized by thermal analysis, impedance spectroscopy, and electrochemical tests. The ionic conductivities of the gel polymer electrolytes increased linearly with the amount of MPPY TFSI and were mainly attributed to the increased ion mobility as evidenced by the decreased glass transition temperatures. Li||LiFePO4 cells were assembled using the gel polymer electrolytes containing 80 wt% MPPY TFSI via an in situ polymerization method. A reversible cell capacity of 90 mAh g 1 was maintained under the current density of C/10 at room temperature, which was increased to 130 mAh g 1 by using a thinner membrane and cycling at 50 C.

  7. Novel polymer electrolytes based on cationic polyurethane with different alkyl chain length

    NASA Astrophysics Data System (ADS)

    Liu, Libin; Wu, Xiwen; Li, Tianduo

    2014-03-01

    A series of comb-like cationic polyurethanes (PUs) were synthesized by quaternizing different bromoalkane (C2H5Br, C8H17Br, and C14H29Br) with polyurethane. Solid polymer electrolytes were prepared by complexes cationic PUs with different content of LiClO4. All the solid polymer electrolytes had sufficient thermal stability as confirmed by TGA and exhibited a single-phase behavior evidenced by DSC results. For these electrolytes, FT-IR spectra indicated the formation of polymer-ion complexes. The ac impedance spectra show that the conductivity of the electrolytes follow the Arrhenius behavior, and ionic conductivity is associated with both the charge migration of ions between coordination sites and transmission between aggregates, as confirmed by FT-IR and SEM. Alkyl quaternary ammonium salts in the polymer backbone are recognized as inherent plasticizers, which make the electrolytes exhibit liquid-like behavior. The plasticizing effect of PU-C8 and PU-C14 electrolytes are more effective than that of PU-C2 electrolyte. Maximum ionic conductivity at room temperature for PU-C8 electrolytes containing 50 wt% LiClO4 reached 1.1 × 10-4 S cm-1. This work provides a new research clue that alkyl quaternary ammonium salts could be used as inherent plasticizers and hence make the system behave like a liquid with high ionic conductivity, while preserving the dimensional stability of the solids.

  8. Investigation of solid polymer electrolyte gas sensor with different electrochemical techniques

    NASA Astrophysics Data System (ADS)

    Strzelczyk, A.; Jasinski, G.; Chachulski, B.

    2016-01-01

    In this work solid polymer electrolyte (SPE) amperometric sulphur dioxide sensor is investigated. Nafion was used as a membrane electrode and 1M sulphuric acid as an internal electrolyte. Sensor response to sulphur dioxide was measured. Besides traditional constant voltage amperometry also different electrochemical techniques were used. Results obtained by these methods are compared.

  9. Spontaneous aggregation of lithium ion coordination polymers in fluorinated electrolytes for high-voltage batteries.

    PubMed

    Malliakas, Christos D; Leung, Kevin; Pupek, Krzysztof Z; Shkrob, Ilya A; Abraham, Daniel P

    2016-04-28

    Fluorinated carbonates are pursued as liquid electrolyte solvents for high-voltage Li-ion batteries. Here we report aggregation of [Li(+)(FEC)3]n polymer species in fluoroethylene carbonate containing electrolytes and scrutinize the causes for this behavior. PMID:27040896

  10. Flexible High-Energy Polymer-Electrolyte-Based Rechargeable Zinc-Air Batteries.

    PubMed

    Fu, Jing; Lee, Dong Un; Hassan, Fathy Mohamed; Yang, Lin; Bai, Zhengyu; Park, Moon Gyu; Chen, Zhongwei

    2015-10-01

    A thin-film, flexible, and rechargeable zinc-air battery having high energy density is reported particularly for emerging portable and wearable electronic applications. This freeform battery design is the first demonstrated by sandwiching a porous-gelled polymer electrolyte with a freestanding zinc film and a bifunctional catalytic electrode film. The flexibility of both the electrode films and polymer electrolyte membrane gives great freedom in tailoring the battery geometry and performance. PMID:26305154

  11. Effects of polymer chemistry on polymer-electrolyte dye sensitized solar cell performance: A theoretical and experimental investigation

    NASA Astrophysics Data System (ADS)

    Smolin, Yuriy Y.; Nejati, Siamak; Bavarian, Mona; Lee, Daeyeon; Lau, Kenneth K. S.; Soroush, Masoud

    2015-01-01

    The effects of polymer chemistry on interfacial properties and overall performance in polymer-electrolyte dye sensitized solar cells (DSSCs) are investigated theoretically and experimentally. Specifically, polymer electrolytes based on poly(2-hydroxyethyl methacrylate) (PHEMA), poly(glycidyl methacrylate) (PGMA), and poly(4-vinylpyridine) (P4VP) are considered. These polymers are grown directly within the mesoporous TiO2 photoanode via a single step polymerization and coating using initiated chemical vapor deposition (iCVD) to maximize pore filling. The experimental study coupled with a 1-D first-principles macroscopic DSSC mathematical model provides insight into the cell interfacial processes and overall performance. Parameter estimation using the macroscopic model indicates that the pendant groups on the polymers strongly affect the conduction band position of TiO2, the back electron transfer at the photoanode-electrolyte interface, and the exchange current density at the platinum cathode. The estimated difference between the TiO2 conduction band edge and the redox potential of the electrolyte are 0.87, 0.99 and 1.06 eV for P4VP, PGMA, and PHEMA, respectively. Estimated recombination rate constants for P4VP and PGMA are respectively 54% and 19% lower than that of PHEMA. This study indicates that by varying polymer electrolyte chemistry, DSSC characteristics including open-circuit voltage, short-circuit current density, and fill factor can be tuned.

  12. Polymer electrolyte membrane fuel cells for communication applications

    NASA Astrophysics Data System (ADS)

    Chu, Deryn; Jiang, R.; Gardner, K.; Jacobs, R.; Schmidt, J.; Quakenbush, T.; Stephens, J.

    An advanced portable power source using a 50 Watt (PPS-50) polymer electrolyte membrane cell EMFC) system was developed by Ball Aerospace under the US Army, Defense Advanced Research Project Agency (DARPA) and the Office Special Technology (OST) joint program. The PEMFC system was designed as required for commercial and military applications. The system as evaluated extensively under different environmental temperatures and humidity conditions. The thermal behavior and discharge performances of the PEMFC system at different discharge currents, temperatures and relative humidities were also investigated. The temperature range was from -10 to 50°C and the relative humidity (r.h.) from 10 to 90%. The PPS-50 system can provide a normal power output about 50 W at 12 V, while the peak power output can reach approximately 65 W (11 V, 6 A). The water production efficiency from the cathode was approximately 70%, and the residual 30% diffused to the anode side. The system was also used to power PRC-119 radios for communication applications, and it performed extremely well during the retransmission site test, operating continuously for over 25 h.

  13. Humidification studies on polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Sridhar, P.; Perumal, Ramkumar; Rajalakshmi, N.; Raja, M.; Dhathathreyan, K. S.

    Two methods of humidifying the anode gas, namely, external and membrane humidification, for a polymer electrolyte membrane fuel (PEMFC) cell are explained. It is found that the water of solvation of protons decreases with increase in the current density and the electrode area. This is due to insufficient external humidification. In a membrane-based humidification, an optimum set of parameters, such as gas flow rate, area and type of the membrane, must be chosen to achieve effective humidification. The present study examines the dependence of water pick-up by hydrogen on the temperature, area and thickness of the membrane in membrane humidification. Since the performance of the fuel cell is dependent more on hydrogen humidification than on oxygen humidification, the scope of the work is restricted to the humidification of hydrogen using Nafion ® membrane. An examination is made on the dependence of water pick-up by hydrogen in membrane humidification on the temperature, area and thickness of the membrane. The dependence of fuel cell performance on membrane humidification and external humidification in the anode gas is also considered.

  14. Development of small polymer electrolyte fuel cell stacks

    NASA Astrophysics Data System (ADS)

    Paganin, V. A.; Ticianelli, E. A.; Gonzalez, E. R.

    The results on the research and development of small polymer electrolyte fuel cell stacks, including the assembly of single cell. 6-cell and 21-cell modules, are described. The important characteristics of the systems are: (i) membrane and electrode assemblies were made with Nafion ® 115 and 117 membranes and particularly low catalyst loading electrodes presenting a geometric area of 20 cm 2 and a catalyst loading of 0.4 mg Pt/cm 2: (ii) bipolar plates were fabricated using a nonporous graphite material in which a series/parallel flow field was machined out: (iii) external distribution of gases to the cells was done using parallel manifolding; (iv) cooling systems were tested employing water/air cooling plates distributed every three cells throughout the stack; (v) the reactant gases were externally humidified using temperature controlled humidification bottles. Testing of the stacks was conducted in a specially designed test station employing nonpressurized H 2/O 2 reactants and measuring the individual and the overall cell voltage vs. current under several conditions for the overall system operation.

  15. Transport in Polymer-Electrolyte Membranes I. Physical Model

    SciTech Connect

    Weber, Adam Z.; Newman, John

    2003-06-02

    In this paper, a physical model is developed that is semiphenomenological and takes into account Schroeder's paradox. Using the wealth of knowledge contained in the literature regarding polymer-electrolyte membranes as a basis, a novel approach is taken in tying together all of the data into a single coherent theory. This approach involves describing the structural changes of the membrane due to water content, and casting this in terms of capillary phenomena. By treating the membrane in this fashion, Schroeder's paradox can be elucidated. Along with the structural changes, two different transport mechanisms are presented and discussed. These mechanisms, along with the membrane's structural changes, comprise the complete physical model of the membrane. The model is shown to agree qualitatively with different membranes and different membrane forms, and is applicable to modeling perfluorinated sulfonic acid and similar membranes. It is also the first physically based comprehensive model of transport in a membrane that includes a physical description of Schroeder's paradox, and it bridges the gap between the two types of macroscopic models currently in the literature.

  16. Gradiently crosslinked polymer electrolyte membranes in fuel cells

    NASA Astrophysics Data System (ADS)

    An, De; Wu, Bin; Zhang, Genlei; Zhang, Wen; Wang, Yuxin

    2016-01-01

    Polymer electrolyte membranes in fuel cells should be high in both ionic conductivity and mechanical strength. However, the two are often exclusive to each other. To solve this conundrum, a novel strategy is proposed in this paper, with extensively researched sulfonated poly (ether ether ketone) (SPEEK) membrane as a paradigm. A SPEEK membrane of high sulfonation degree is simply post-treated with NaBH4 and H2SO4 solution at ambient temperature for a certain time to afford the membrane with a gradient crosslinking structure. Measurements via 1H NMR, ATR-FTIR and SEM-EDS are conducted to verify such structural changes. The gradient crosslinks make practically no damage to proton conductance, but effectively restrain the membrane from over swelling and greatly enhance its tensile strength. A H2-O2 fuel cell with the gradiently crosslinked SPEEK membrane shows a maximal power density of 533 mW cm-2 at 80 °C, whereas the fuel cell with the pristine SPEEK membrane cannot be operated beyond 30 °C.

  17. Electrostatics of polymer translocation events in electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Buyukdagli, Sahin; Ala-Nissila, T.

    2016-07-01

    We develop an analytical theory that accounts for the image and surface charge interactions between a charged dielectric membrane and a DNA molecule translocating through the membrane. Translocation events through neutral carbon-based membranes are driven by a competition between the repulsive DNA-image-charge interactions and the attractive coupling between the DNA segments on the trans and the cis sides of the membrane. The latter effect is induced by the reduction of the coupling by the dielectric membrane. In strong salt solutions where the repulsive image-charge effects dominate the attractive trans-cis coupling, the DNA molecule encounters a translocation barrier of ≈10 kBT. In dilute electrolytes, the trans-cis coupling takes over image-charge forces and the membrane becomes a metastable attraction point that can trap translocating polymers over long time intervals. This mechanism can be used in translocation experiments in order to control DNA motion by tuning the salt concentration of the solution.

  18. Membrane electrode assemblies for unitised regenerative polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Wittstadt, U.; Wagner, E.; Jungmann, T.

    Membrane electrode assemblies for regenerative polymer electrolyte fuel cells were made by hot pressing and sputtering. The different MEAs are examined in fuel cell and water electrolysis mode at different pressure and temperature conditions. Polarisation curves and ac impedance spectra are used to investigate the influence of the changes in coating technique. The hydrogen gas permeation through the membrane is determined by analysing the produced oxygen in electrolysis mode. The analysis shows, that better performances in both process directions can be achieved with an additional layer of sputtered platinum on the oxygen electrode. Thus, the electrochemical round-trip efficiency can be improved by more than 4%. Treating the oxygen electrode with PTFE solution shows better performance in fuel cell and less performance in electrolysis mode. The increase of the round-trip efficiency is negligible. A layer sputtered directly on the membrane shows good impermeability, and hence results in high voltages at low current densities. The mass transportation is apparently constricted. The gas diffusion layer on the oxygen electrode, in this case a titanium foam, leads to flooding of the cell in fuel cell mode. Stable operation is achieved after pretreatment of the GDL with a PTFE solution.

  19. Electrostatics of polymer translocation events in electrolyte solutions.

    PubMed

    Buyukdagli, Sahin; Ala-Nissila, T

    2016-07-01

    We develop an analytical theory that accounts for the image and surface charge interactions between a charged dielectric membrane and a DNA molecule translocating through the membrane. Translocation events through neutral carbon-based membranes are driven by a competition between the repulsive DNA-image-charge interactions and the attractive coupling between the DNA segments on the trans and the cis sides of the membrane. The latter effect is induced by the reduction of the coupling by the dielectric membrane. In strong salt solutions where the repulsive image-charge effects dominate the attractive trans-cis coupling, the DNA molecule encounters a translocation barrier of ≈10 kBT. In dilute electrolytes, the trans-cis coupling takes over image-charge forces and the membrane becomes a metastable attraction point that can trap translocating polymers over long time intervals. This mechanism can be used in translocation experiments in order to control DNA motion by tuning the salt concentration of the solution. PMID:27394120

  20. HEAT AND WATER TRANSPORT IN A POLYMER ELECTROLYTE FUEL CELL

    SciTech Connect

    Mukherjee, Partha P

    2010-01-01

    In the present scenario of a global initiative toward a sustainable energy future, the polymer electrolyte fuel cell (PEFC) has emerged as one of the most promising alternative energy conversion devices for various applications. Despite tremendous progress in recent years, a pivotal performance limitation in the PEFC comes from liquid water transport and the resulting flooding phenomena. Liquid water blocks the open pore space in the electrode and the fibrous diffusion layer leading to hindered oxygen transport. The electrode is also the only component in the entire PEFC sandwich which produces waste heat from the electrochemical reaction. The cathode electrode, being the host to several competing transport mechanisms, plays a crucial role in the overall PEFC performance limitation. In this work, an electrode model is presented in order to elucidate the coupled heat and water transport mechanisms. Two scenarios are specifically considered: (1) conventional, Nafion impregnated, three-phase electrode with the hydrated polymeric membrane phase as the conveyer of protons where local electro-neutrality prevails; and (2) ultra-thin, two-phase, nano-structured electrode without the presence of ionomeric phase where charge accumulation due to electro-statics in the vicinity of the membrane-CL interface becomes important. The electrode model includes a physical description of heat and water balance along with electrochemical performance analysis in order to study the influence of electro-statics/electro-migration and phase change on the PEFC electrode performance.

  1. Capillary, wettability and interfacial dynamics in polymer electrolyte fuel cells

    SciTech Connect

    Mukherjee, Partha P

    2009-01-01

    In the present scenario of a global initiative toward a sustainable energy future, the polymer electrolyte fuel cell (PEFC) has emerged as one of the most promising alternative energy conversion devices for different applications. Despite tremendous progress in recent years, a pivotal performance/durability limitation in the PEFC arises from liquid water transport, perceived as the Holy Grail in PEFC operation. The porous catalyst layer (CL), fibrous gas diffusion layer (GDL) and flow channels play a crucial role in the overall PEFC performance due to the transport limitation in the presence of liquid water and flooding phenomena. Although significant research, both theoretical and experimental, has been performed, there is serious paucity of fundamental understanding regarding the underlying structure-transport-performance interplay in the PEFC. The inherent complex morphologies, micro-scale transport physics involving coupled multiphase, multicomponent, electrochemically reactive phenomena and interfacial interactions in the constituent components pose a formidable challenge. In this paper, the impact of capillary transport, wetting characteristics and interfacial dynamics on liquid water transport is presented based on a comprehensive mesoscopic modeling framework with the objective to gain insight into the underlying electrodynamics, two-phase dynamics and the intricate structure-transport-interface interactions in the PEFC.

  2. Thermally stable hyperbranched polyether-based polymer electrolyte for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wu, Feng; Feng, Ting; Wu, Chuan; Bai, Ying; Ye, Lin; Chen, Junzheng

    2010-01-01

    A thermally stable polymer matrix, comprising hyperbranched polyether PHEMO (poly(3-{2-[2-(2-hydroxyethoxy) ethoxy] ethoxy}methyl-3'-methyloxetane)) and PVDF-HFP (poly(vinylidene fluoride-hexafluoropropylene)), has been successfully prepared for applications in lithium-ion batteries. This type of polymer electrolyte has been made by adding different amounts of lithium bis(oxalate)borate (LiBOB) to the polymer matrix. Its thermal and structural properties were measured using differential scanning calorimetry and x-ray diffraction. Experimental results show that the polymer electrolyte system possesses good thermal stability, with a decomposition temperature above 420 °C. The ionic conductivity of the polymer electrolyte system is dependent on the lithium salt content, reaching a maximum of 1.1 × 10-5 S cm-1 at 30 °C and 2.3 × 10-4 S cm-1 at 80 °C when doped with 10 wt% LiBOB.

  3. Characterization of proton conducting blend polymer electrolyte using PVA-PAN doped with NH4SCN

    NASA Astrophysics Data System (ADS)

    Premalatha, M.; Mathavan, T.; Selvasekarapandian, S.; Genova, F. Kingslin Mary; Umamaheswari, R.

    2016-05-01

    Polymer electrolytes with proton conductivity based on blend polymer using polyvinyl alcohol (PVA) and poly acrylo nitrile (PAN) doped with ammonium thiocyanate have been prepared by solution casting method using DMF as solvent. The complex formation between the blend polymer and the salt has been confirmed by FTIR Spectroscopy. The amorphous nature of the blend polymer electrolytes have been confirmed by XRD analysis. The highest conductivity at 303 K has been found to be 3.25 × 10-3 S cm-1 for 20 mol % NH4SCN doped 92.5PVA:7.5PAN system. The increase in conductivity of the doped blend polymer electrolytes with increasing temperature suggests the Arrhenius type thermally activated process. The activation energy is found to be low (0.066 eV) for the highest conductivity sample.

  4. Enhanced electrochemical performance of Lithium-ion batteries by conformal coating of polymer electrolyte

    PubMed Central

    2014-01-01

    This work reports the conformal coating of poly(poly(ethylene glycol) methyl ether methacrylate) (P(MePEGMA)) polymer electrolyte on highly organized titania nanotubes (TiO2nts) fabricated by electrochemical anodization of Ti foil. The conformal coating was achieved by electropolymerization using cyclic voltammetry technique. The characterization of the polymer electrolyte by proton nuclear magnetic resonance (1H NMR) and size-exclusion chromatography (SEC) shows the formation of short polymer chains, mainly trimers. X-ray photoelectron spectroscopy (XPS) results confirm the presence of the polymer and LiTFSI salt. The galvanostatic tests at 1C show that the performance of the half cell against metallic Li foil is improved by 33% when TiO2nts are conformally coated with the polymer electrolyte. PMID:25317101

  5. Porous polymer electrolytes with high ionic conductivity and good mechanical property for rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Liang, Bo; Jiang, Qingbai; Tang, Siqi; Li, Shengliang; Chen, Xu

    2016-03-01

    Porous polymer electrolytes (PPEs) are attractive for developing lithium-ion batteries because of the combined advantages of liquid and solid polymer electrolytes. In the present study, a new porous polymer membrane doped with phytic acid (PA) is prepared, which is used as a crosslinker in polymer electrolyte matrix and can also plasticize porous polymer electrolyte membranes, changing them into soft tough flexible materials. A PEO-PMMA-LiClO4-x wt.% PA (x = weight of PA/weight of polymer, PEO: poly(ethylene oxide); PMMA: poly(methyl methacrylate)) polymer membrane is prepared by a simple evaporation method. The effects of the ratio of PA to PEO-PMMA on the properties of the porous membrane, including morphology, porous structure, and mechanical property, are systematically studied. PA improves the porous structure and mechanical properties of polymer membrane. The maximum tensile strength and elongation of the porous polymer membranes are 20.71 MPa and 45.7% at 15 wt.% PA, respectively. Moreover, the PPEs with 15 wt.% PA has a conductivity of 1.59 × 10-5 S/cm at 20 °C, a good electrochemical window (>5 V), and a low interfacial resistance. The results demonstrate the compatibility of the mechanical properties and conductivity of the PPEs, indicating that PPEs have good application prospects for lithium-ion batteries.

  6. Dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate

    NASA Astrophysics Data System (ADS)

    Pal, P.; Ghosh, A.

    2016-07-01

    In this paper, we have studied the dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate. Structural and thermal properties have been examined using X-ray diffraction and differential scanning calorimetry, respectively. We have analyzed the complex conductivity spectra by using power law model coupled with the contribution of electrode polarization at low frequencies and high temperatures. The temperature dependence of the ionic conductivity and crossover frequency exhibits Vogel-Tammann-Fulcher type behavior indicating a strong coupling between the ionic and the polymer chain segmental motions. The scaling of the ac conductivity indicates that relaxation dynamics of charge carriers follows a common mechanism for all temperatures and ethylene carbonate concentrations. The analysis of the ac conductivity also shows the existence of a nearly constant loss in these polymer electrolytes at low temperatures and high frequencies. The fraction of free anions and ion pairs in polymer electrolyte have been obtained from the analysis of Fourier transform infrared spectra. It is observed that these quantities influence the behavior of the composition dependence of the ionic conductivity.

  7. Asphaltenes-based polymer nano-composites

    DOEpatents

    Bowen, III, Daniel E

    2013-12-17

    Inventive composite materials are provided. The composite is preferably a nano-composite, and comprises an asphaltene, or a mixture of asphaltenes, blended with a polymer. The polymer can be any polymer in need of altered properties, including those selected from the group consisting of epoxies, acrylics, urethanes, silicones, cyanoacrylates, vulcanized rubber, phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, imides, esters, cyanate esters, allyl resins.

  8. Polymeric ionic liquid-plastic crystal composite electrolytes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Xiaowei; Zhang, Zhengxi; Li, Sijian; Yang, Li; Hirano, Shin-ichi

    2016-03-01

    In this work, composite polymer electrolytes (CPEs), that is, 80%[(1-x)PIL-(x)SN]-20%LiTFSI, are successfully prepared by using a pyrrolidinium-based polymeric ionic liquid (P(DADMA)TFSI) as a polymer host, succinonitrile (SN) as a plastic crystal, and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as a lithium salt. XRD and DSC measurements confirm that the as-obtained CPEs have amorphous structures. The 80%[50%PIL-50%SN]-20%LiTFSI (50% SN) electrolyte reveals a high room temperature ionic conductivity of 5.74 × 10-4 S cm-1, a wide electrochemical window of 5.5 V, as well as good mechanical strength with a Young's modulus of 4.9 MPa. Li/LiFePO4 cells assembled with the 50% SN electrolyte at 0.1C rate can deliver a discharge capacity of about 150 mAh g-1 at 25 °C, with excellent capacity retention. Furthermore, such cells are able to achieve stable discharge capacities of 131.8 and 121.2 mAh g-1 at 0.5C and 1.0C rate, respectively. The impressive findings demonstrate that the electrolyte system prepared in this work has great potential for application in lithium ion batteries.

  9. Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety.

    PubMed

    Zhang, Jinqiang; Sun, Bing; Huang, Xiaodan; Chen, Shuangqiang; Wang, Guoxiu

    2014-01-01

    Lithium ion batteries have shown great potential in applications as power sources for electric vehicles and large-scale energy storage. However, the direct uses of flammable organic liquid electrolyte with commercial separator induce serious safety problems including the risk of fire and explosion. Herein, we report the development of poly(vinylidene difluoride-co-hexafluoropropylene) polymer membranes with multi-sized honeycomb-like porous architectures. The as-prepared polymer electrolyte membranes contain porosity as high as 78%, which leads to the high electrolyte uptake of 86.2 wt%. The PVDF-HFP gel polymer electrolyte membranes exhibited a high ionic conductivity of 1.03 mS cm(-1) at room temperature, which is much higher than that of commercial polymer membranes. Moreover, the as-obtained gel polymer membranes are also thermally stable up to 350 °C and non-combustible in fire (fire-proof). When applied in lithium ion batteries with LiFePO4 as cathode materials, the gel polymer electrolyte demonstrated excellent electrochemical performances. This investigation indicates that PVDF-HFP gel polymer membranes could be potentially applicable for high power lithium ion batteries with the features of high safety, low cost and good performance. PMID:25168687

  10. Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety

    NASA Astrophysics Data System (ADS)

    Zhang, Jinqiang; Sun, Bing; Huang, Xiaodan; Chen, Shuangqiang; Wang, Guoxiu

    2014-08-01

    Lithium ion batteries have shown great potential in applications as power sources for electric vehicles and large-scale energy storage. However, the direct uses of flammable organic liquid electrolyte with commercial separator induce serious safety problems including the risk of fire and explosion. Herein, we report the development of poly(vinylidene difluoride-co-hexafluoropropylene) polymer membranes with multi-sized honeycomb-like porous architectures. The as-prepared polymer electrolyte membranes contain porosity as high as 78%, which leads to the high electrolyte uptake of 86.2 wt%. The PVDF-HFP gel polymer electrolyte membranes exhibited a high ionic conductivity of 1.03 mS cm-1 at room temperature, which is much higher than that of commercial polymer membranes. Moreover, the as-obtained gel polymer membranes are also thermally stable up to 350°C and non-combustible in fire (fire-proof). When applied in lithium ion batteries with LiFePO4 as cathode materials, the gel polymer electrolyte demonstrated excellent electrochemical performances. This investigation indicates that PVDF-HFP gel polymer membranes could be potentially applicable for high power lithium ion batteries with the features of high safety, low cost and good performance.

  11. Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety

    PubMed Central

    Zhang, Jinqiang; Sun, Bing; Huang, Xiaodan; Chen, Shuangqiang; Wang, Guoxiu

    2014-01-01

    Lithium ion batteries have shown great potential in applications as power sources for electric vehicles and large-scale energy storage. However, the direct uses of flammable organic liquid electrolyte with commercial separator induce serious safety problems including the risk of fire and explosion. Herein, we report the development of poly(vinylidene difluoride-co-hexafluoropropylene) polymer membranes with multi-sized honeycomb-like porous architectures. The as-prepared polymer electrolyte membranes contain porosity as high as 78%, which leads to the high electrolyte uptake of 86.2 wt%. The PVDF-HFP gel polymer electrolyte membranes exhibited a high ionic conductivity of 1.03 mS cm−1 at room temperature, which is much higher than that of commercial polymer membranes. Moreover, the as-obtained gel polymer membranes are also thermally stable up to 350°C and non-combustible in fire (fire-proof). When applied in lithium ion batteries with LiFePO4 as cathode materials, the gel polymer electrolyte demonstrated excellent electrochemical performances. This investigation indicates that PVDF-HFP gel polymer membranes could be potentially applicable for high power lithium ion batteries with the features of high safety, low cost and good performance. PMID:25168687

  12. Autonomic healing of polymer composites

    NASA Astrophysics Data System (ADS)

    Sottos, N. R.; Geubelle, P. H.; Moore, J. S.; Kessler, M. R.; Sriram, S. R.; Brown, E. N.; Viswanathan, S.

    2001-02-01

    Structural polymers are susceptible to damage in the form of cracks, which form deep within the structure where detection is difficult and repair is almost impossible. Cracking leads to mechanical degradation of fibre-reinforced polymer composites; in microelectronic polymeric components it can also lead to electrical failure. Microcracking induced by thermal and mechanical fatigue is also a long-standing problem in polymer adhesives. Regardless of the application, once cracks have formed within polymeric materials, the integrity of the structure is significantly compromised. Experiments exploring the concept of self-repair have been previously reported, but the only successful crack-healing methods that have been reported so far require some form of manual intervention. Here we report a structural polymeric material with the ability to autonomically heal cracks. The material incorporates a microencapsulated healing agent that is released upon crack intrusion. Polymerization of the healing agent is then triggered by contact with an embedded catalyst, bonding the crack faces. Our fracture experiments yield as much as 75% recovery in toughness, and we expect that our approach will be applicable to other brittle materials systems (including ceramics and glasses).

  13. Dielectric behavior of different nanofillers incorporated in PVC-PMMA based polymer electrolyte membranes

    NASA Astrophysics Data System (ADS)

    Sowmya, G.; Pradeepa, P.; Kalaiselvimary, J.; Edwinraj, S.; Prabhu, M. Ramesh

    2016-05-01

    The Poly (methyl methacrylate) (PMMA)-Poly (vinyl chloride) (PVC) based polymer electrolytes were prepared by solvent casting technique. The prepared polymer electrolytes were subjected to conductivity studies by using electrochemical impedance spectroscopy and the maximum ionic conductivity value was found to be 0.8011 × 10-3 Scm-1 at 303K for PVC (17.5wt%) - PMMA (7.5wt %) - LiClO4 (8wt %) - PC (67wt %) - BaTiO3 (8wt%) electrolyte system. The dielectric behavior of the samples also studied.

  14. High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature

    NASA Astrophysics Data System (ADS)

    Mindemark, Jonas; Sun, Bing; Törmä, Erik; Brandell, Daniel

    2015-12-01

    Incorporation of carbonate repeating units in a poly(ε-caprolactone) (PCL) backbone used as a host material in solid polymer electrolytes is found to not only suppress crystallinity in the polyester material, but also give higher ionic conductivity in a wide temperature range exceeding the melting point of PCL crystallites. Combined with high cation transference numbers, this electrolyte material has sufficient lithium transport properties to be used in battery cells that are operational at temperatures down to below 23 °C, thus clearly demonstrating the potential of using non-polyether electrolytes in high-performance all-solid lithium polymer batteries.

  15. Conductivity study and fourier transform infrared (FTIR) characterization of methyl cellulose solid polymer electrolyte with sodium iodide conducting ion

    SciTech Connect

    Abiddin, Jamal Farghali Bin Zainal; Ahmad, Azizah Hanom

    2015-08-28

    Sodium ion (Na{sup +}) based solid polymer electrolyte (SPE) has been prepared using solution cast technique with distilled water as solvent and Methylcellulose (MC) as a polymer host. Methylcellulose polymer was chosen as the polymer host due to the abundance of lone pair electrons in the carbonyl and C-O-C constituents, which in turn provide multiple hopping sites for the Na{sup +} conducting ions. Variable compositions of sodium iodide (NaI) salt were prepared to investigate the optimum MC-NaI weight ratio. Results from Electrical Impedance Spectroscopy (EIS) technique show that pure methylcellulose has a low conductivity of 3.61 × 10{sup −11} S/cm.The conductivity increases as NaI content increases up to optimum NaIcomposition of 40 wt%, which yields an average conductivity of 2.70 × 10{sup −5} S/cm.

  16. Solvent sensitive polymer composite structures

    NASA Astrophysics Data System (ADS)

    Chiappini, A.; Armellini, C.; Carpentiero, A.; Minati, L.; Righini, G. C.; Ferrari, M.

    2013-11-01

    In this paper we describe a composite system based on polystyrene colloidal nanoparticles assembled and embedded in an elastomeric matrix (polymer colloidal crystal, PCC), in the specific we have designed a PCC structure which displays an iridescent green color that can be attributed to the photonic crystal effect. This effect has been exploited to create a chemical sensor, in fact optical measurements have evidenced that the composite structure presents a different optical response as a function of the solvent applied on the surface. In particular we have demonstrated that the PCC possess, for specific solvents: (i) high sensitivity, (ii) fast response (less than 1s), and (iii) reversibility of the signal change. Finally preliminary results on the PCC have shown that this system can be also used as optical writing substrate using a specific solvent as ink, moreover an erasing procedure is also reported and discussed.

  17. Electro-osmotic drag coefficient of water and methanol in polymer electrolytes at elevated temperatures

    SciTech Connect

    Weng, D.; Wainright, J.S.; Landau, U.; Savinell, R.F.

    1996-04-01

    The electro-osmotic drag coefficient of water in two polymer electrolytes was experimentally determined as a function of water activity and current density for temperatures up to 200 C. The results show that the electro-osmotic drag coefficient varies from 0.2 to 0.6 in Nafion{reg_sign}/H{sub 3}PO{sub 4} membrane electrolyte, but is essentially zero in phosphoric acid-doped PBI (polybenzimidazole) membrane electrolyte over the range of water activity considered. The near-zero electro-osmotic drag coefficient found in PBI indicates that this electrolyte should lessen the problems associated with water redistribution in proton exchange membrane fuel cells.

  18. Correlations Between Electrolyte Concentration and Solid Electrolyte Interphase Composition in Electrodeposited Lithium.

    PubMed

    Jeong, Soon-Ki; Kim, Jin Hee; Jeong, Yoon-Taek; Kim, Yang Soo

    2016-03-01

    This study examined the electrochemical deposition and dissolution of lithium on nickel electrodes in propylene carbonate (PC) electrolytes containing different concentrations of lithium salts, including LiN(SO2C2F5)2 or LiPF6. The electrode reactions were significantly affected by the electrolyte concentration. The cyclability of the electrodes was considerably improved by increasing the electrolyte concentration. X-ray photoelectron spectroscopy (XPS) showed that the composition of the solid electrolyte interphase (SEI) was also affected by the electrolyte concentration. The SEI formed in the 1st cycle consisted mainly of LiF in 1 and 2.15 M LiN(SO2C2F5)2/PC solutions. After the 30th cycle in the former solution, there was a large decrease in the amount of LiF and a large increase in the amount of LiOH. On the other hand, in the latter solution there was a smaller decrease and a smaller increase in the amount of LiF and LiOH, respectively, as compared to the former solution after the 30th cycle. PMID:27455758

  19. Polymer composites technology in Japan

    SciTech Connect

    Karbhari, V.M.; Kukich, D.S. . Center for Composite Materials)

    1993-08-01

    In 1992, the National Science Foundation, Department of Energy, Army Research Office, and Air Force Office of Scientific Research convened a panel to assess advanced manufacturing technology for polymer composite structures in Japan. The panel was charged with comparing the levels of the technology and the industry in both the United States and Japan. The Panel on Advanced Polymer Composites Manufacturing Technology of the Japanese Technology Evaluation Center visited approximately twenty Japanese organizations over a ten-day period in December 1992. Their findings cover seven areas: aerospace, sporting goods, automotive, civil engineering, materials, manufacturing science, and product and process development methods. This report reflects the views of the authors, not necessarily those of the entire panel. The panel observed five emerging techno-paradigm shifts in Japan, previously identified by Kodama: Manufacturing companies; Business dynamics; R and D activities; Technology development; and Technology diffusion. Thus, what the panel observed in the specific area of advanced materials really reflects the overall Japanese approach to technology development. Their primary focus is on finding innovative new applications for existing materials, processes, and technologies, and on using these market opportunities to drive new development.

  20. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts

    PubMed Central

    Lu, Shanfu; Pan, Jing; Huang, Aibin; Zhuang, Lin; Lu, Juntao

    2008-01-01

    In recent decades, fuel cell technology has been undergoing revolutionary developments, with fundamental progress being the replacement of electrolyte solutions with polymer electrolytes, making the device more compact in size and higher in power density. Nowadays, acidic polymer electrolytes, typically Nafion, are widely used. Despite great success, fuel cells based on acidic polyelectrolyte still depend heavily on noble metal catalysts, predominantly platinum (Pt), thus increasing the cost and hampering the widespread application of fuel cells. Here, we report a type of polymer electrolyte fuel cells (PEFC) employing a hydroxide ion-conductive polymer, quaternary ammonium polysulphone, as alkaline electrolyte and nonprecious metals, chromium-decorated nickel and silver, as the catalyst for the negative and positive electrodes, respectively. In addition to the development of a high-performance alkaline polymer electrolyte particularly suitable for fuel cells, key progress has been achieved in catalyst tailoring: The surface electronic structure of nickel has been tuned to suppress selectively the surface oxidative passivation with retained activity toward hydrogen oxidation. This report of a H2–O2 PEFC completely free from noble metal catalysts in both the positive and negative electrodes represents an important advancement in the research and development of fuel cells.

  1. Influence of the Ionic Liquid Type on the Gel Polymer Electrolytes Properties.

    PubMed

    Tafur, Juan P; Santos, Florencio; Romero, Antonio J Fernández

    2015-01-01

    Gel Polymer Electrolytes (GPEs) composed by ZnTf₂ salt, poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP), and different ionic liquids are synthesized using n-methyl-2-pyrrolidone (NMP) as solvent. Three different imidazolium-based ionic liquids containing diverse cations and anions have been explored. Structural and electrical properties of the GPEs varying the ZnTf₂ concentration are analyzed by ATR-FTIR, DSC, TG, and cyclic voltammetry. Free salt IL-GPEs present distinct behavior because they are influenced by the different IL cations and anions composition. However, inclusion of ZnTf₂ salt inside the polymers provide GPEs with very similar characteristics, pointing out that ionic transport properties are principally caused by Zn(2+) and triflate movement. Whatever the IL used, the presence of NMP solvent inside the polymer's matrix turns out to be a key factor for improving the Zn(2+) transport inside the GPE due to the interaction between Zn(2+) cations and carbonyl groups of the NMP. High values of ionic conductivity, low activation energy values, and good voltammetric reversibility obtained regardless of the ionic liquid used enable these GPEs to be applied in Zn batteries. Capacities of 110-120 mAh·g(-1) have been obtained for Zn/IL-GPE/MnO₂ batteries discharged at -1 mA·cm(-2). PMID:26610580

  2. Organic dopant added polyvinylidene fluoride based solid polymer electrolytes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Senthil, R. A.; Theerthagiri, J.; Madhavan, J.

    2016-02-01

    The effect of phenothiazine (PTZ) as dopant on PVDF/KI/I2 electrolyte was studied for the fabrication of efficient dye-sensitized solar cell (DSSC). The different weight percentage (wt%) ratios (0, 20, 30, 40 and 50%) of PTZ doped PVDF/KI/I2 electrolyte films were prepared by solution casting method using DMF as a solvent. The following techniques such as Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC), X-ray diffractometer (XRD) and AC-impedance analysis have been employed to characterize the prepared polymer electrolyte films. The FT-IR studies revealed the complex formation between PVDF/KI/I2 and PTZ. The crystalline and amorphous nature of polymer electrolytes were confirmed by DSC and XRD analysis respectively. The ionic conductivities of polymer electrolyte films were calculated from the AC-impedance analysis. The undoped PVDF/KI/I2 electrolyte exhibited the ionic conductivity of 4.68×10-6 S cm-1 and this value was increased to 7.43×10-5 S cm-1 when PTZ was added to PVDF/KI/I2 electrolyte. On comparison with different wt% ratios, the maximum ionic conductivity was observed for 20% PTZ-PVDF/KI/I2 electrolyte. A DSSC assembled with the optimized wt % of PTZ doped PVDF/KI/I2 electrolyte exhibited a power conversion efficiency of 2.92%, than the undoped PVDF/KI/I2 electrolyte (1.41%) at similar conditions. Hence, the 20% PTZ-PVDF/KI/I2 electrolyte was found to be optimal for DSSC applications.

  3. Efficient Pt catalysts for polymer electrolyte fuel cells

    SciTech Connect

    Fournier, J.; Gaubert, G.; Tilquin, J.Y.

    1996-12-31

    Commercialization of polymer electrolyte fuel cells (PEFCs) requires an important decrease in their production cost. Cost reduction for the electrodes principally concerns the decrease in the amount of Pt catalyst necessary for the functioning of the PEFC without affecting cell performance. The first PEFCs used in the Gemini Space Program had a loading of 4-10 mg pt/cm{sup 2}. The cost of the electrodes was drastically reduced when pure colloidal Pt was replaced by Pt supported on carbon (Pt/C) with a Pt content of 0.4 Mg/cm{sup 2}. Since the occurrence of that breakthrough, many studies have been aimed at further lowering the Pt loading. Today, the lowest loadings reported for oxygen reduction are of the order of 0.05 mg pt/cm{sup 2}. The carbon support of commercial catalysts is Vulcan XC-72 from Cabot, a carbon black with a specific area of 254 m{sup 2}/g. Graphites with specific areas ranging from 20 to 305 m{sup 2}/g are now available from Lonza. The first aim of the present study was to determine the catalytic properties for 02 reduction of Pt supported on these high specific area graphites. The second aim was to use Pt inclusion synthesis on these high area graphites, and to measure the catalytic performances of these materials. Lastly, this same Pt-inclusion synthesis was extended even for use with Vulcan and Black Pearls as substrates (two carbon blacks from Cabot). All these catalysts have been labelled Pt-included materials to distinguish them from the Pt-supported ones. It will be shown that the reduced Pt content Pt-included materials obtained with high specific area substrates a are excellent catalysts for oxygen reduction, especially at high currents. Therefore, Pt inclusion synthesis appears to be a new method to decrease the cathodic Pt loading.

  4. Influence of nanoparticle-ion and nanoparticle-polymer interactions on ion transport and viscoelastic properties of polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Mogurampelly, Santosh; Sethuraman, Vaidyanathan; Pryamitsyn, Victor; Ganesan, Venkat

    2016-04-01

    We use atomistic simulations to probe the ion conductivities and mechanical properties of polyethylene oxide electrolytes containing Al2O3 nanoparticles. We specifically study the influence of repulsive polymer-nanoparticle and ion-nanoparticle interactions and compare the results with those reported for electrolytes containing the polymorph β-Al2O3 nanoparticles. We observe that incorporating repulsive nanoparticle interactions generally results in increased ionic mobilities and decreased elastic moduli for the electrolyte. Our results indicate that both ion transport and mechanical properties are influenced by the polymer segmental dynamics in the interfacial zones of the nanoparticle in the ion-doped systems. Such effects were seen to be determined by an interplay between the nanoparticle-polymer, nanoparticle-ion, and ion-polymer interactions. In addition, such interactions were also observed to influence the number of dissociated ions and the resulting conductivities. Within the perspective of the influence of nanoparticles on the polymer relaxation times in ion-doped systems, our results in the context of viscoelastic properties were consistent with the ionic mobilities. Overall, our results serve to highlight some issues that confront the efforts to use nanoparticle dispersions to simultaneously enhance the conductivity and the mechanical strength of polymer electrolyte.

  5. Impedance studies of a green blend polymer electrolyte based on PVA and Aloe-vera

    NASA Astrophysics Data System (ADS)

    Selvalakshmi, S.; Mathavan, T.; Vijaya, N.; Selvasekarapandian, Premalatha, M.; Monisha, S.

    2016-05-01

    The development of polymer electrolyte materials for energy generating and energy storage devices is a challenge today. A new type of blended green electrolyte based on Poly-vinyl alcohol (PVA) and Aloe-vera has been prepared by solution casting technique. The blending of polymers may lead to the increase in stability due to one polymer portraying itself as a mechanical stiffener and the other as a gelled matrix supported by the other. The prepared blend electrolytes were subjected to Ac impedance studies. It has been found out that the polymer film in which 1 gm of PVA was dissolved in 40 ml of Aloe-vera extract exhibits highest conductivity and its value is 3.08 × 10-4 S cm-1.

  6. Ambient Temperature Hybrid Polymer Electrolyte Based on Pvk + Pvdf-Hfp for Lithium Batteries

    NASA Astrophysics Data System (ADS)

    Michael, M. S.; Prabaharan, S. R. S.

    2002-12-01

    Proposed herein is a new ambient temperature Li+ conducting PVDF-HFP-co-polymer based hybrid polymer electrolyte with polyvinyl carbozole (PVK) as additive. The addition of the latter provides high ambient temperature electrolytic conductivity (σi) 0.7 × 10-3S/cm with an ionic transference number of 0.6, besides providing the thermoplastic flexibility to the whole matrix. The membrane is found to exhibit a wide electrochemical potential window, >4.5V against Li/Li+. When prepared properly, the membrane is dry and free standing, yet totally suitable for lithium polymer rechargeable batteries. This paper presents the preparation, microstructure and electrochemical characteristics of this new hybrid polymeric membrane. Finally, the dry polymeric electrolyte membrane has been employed in a lithium polymer cell against LT-LiCo0.8Ni0.2O2 as positive electrode and its interfacial behavior and electrochemical cycling results are presented.

  7. Nanopore gating with an anchored polymer in a switching electrolyte bias

    NASA Astrophysics Data System (ADS)

    Wells, Craig C.; Jou, Ining A.; Melnikov, Dmitriy V.; Gracheva, Maria E.

    2016-03-01

    In this work, we theoretically study the interaction between a solid state membrane equipped with a nanopore and a tethered, negatively charged polymer chain subjected to a time-dependent applied electrolyte bias. In order to describe the movement of the chain in the biomolecule-membrane system immersed in an electrolyte solution, Brownian dynamics is used. We show that we can control the polymer's equilibrium position with various applied electrolyte biases: for a sufficiently positive bias, the chain extends inside the pore, and the removal of the bias causes the polymer to leave the pore. Corresponding to a driven process, we find that the time it takes for a biomolecular chain to enter and extend into a nanopore in a positive bias almost increases linearly with chain length while the amount of time it takes for a polymer chain to escape the nanopore is mainly governed by diffusion.

  8. Nanopore gating with an anchored polymer in a switching electrolyte bias

    NASA Astrophysics Data System (ADS)

    Wells, Craig; Jou, Ining; Melnikov, Dmitriy; Gracheva, Maria

    We theoretically study the interaction between a tethered, negatively charged polymer chain of varying lengths and a solid state membrane with a nanopore when subject to a time-dependent applied electrolyte bias. Brownian dynamics is used to describe the movement of a biomolecule interacting with a membrane immersed in an electrolyte solution. With the help of an applied electrolyte bias, we can control polymer's equilibrium position, extending it inside the pore for a sufficiently positive bias. We find that the amount of time a polymer takes to enter and extend inside a nanopore in a positive bias increases nearly linearly with the chain length, corresponding to an electrically driven process. The time it takes for the chain to exit the pore, however, increases nearly quadratically with chain length, corresponding to a diffusion process. Understanding the dynamical behavior of the tethered polymer chain will facilitate further advances in this area of nanotechnology. NSF DMR and CBET Grant No. 1352218.

  9. Nanopore gating with an anchored polymer in a switching electrolyte bias.

    PubMed

    Wells, Craig C; Jou, Ining A; Melnikov, Dmitriy V; Gracheva, Maria E

    2016-03-14

    In this work, we theoretically study the interaction between a solid state membrane equipped with a nanopore and a tethered, negatively charged polymer chain subjected to a time-dependent applied electrolyte bias. In order to describe the movement of the chain in the biomolecule-membrane system immersed in an electrolyte solution, Brownian dynamics is used. We show that we can control the polymer's equilibrium position with various applied electrolyte biases: for a sufficiently positive bias, the chain extends inside the pore, and the removal of the bias causes the polymer to leave the pore. Corresponding to a driven process, we find that the time it takes for a biomolecular chain to enter and extend into a nanopore in a positive bias almost increases linearly with chain length while the amount of time it takes for a polymer chain to escape the nanopore is mainly governed by diffusion. PMID:26979703

  10. Development and characterization of poly(1-vinylpyrrolidone-co-vinyl acetate) copolymer based polymer electrolytes.

    PubMed

    Sa'adun, Nurul Nadiah; Subramaniam, Ramesh; Kasi, Ramesh

    2014-01-01

    Gel polymer electrolytes (GPEs) are developed using poly(1-vinylpyrrolidone-co-vinyl acetate) [P(VP-co-VAc)] as the host polymer, lithium bis(trifluoromethane) sulfonimide [LiTFSI] as the lithium salt and ionic liquid, and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [EMImTFSI] by using solution casting technique. The effect of ionic liquid on ionic conductivity is studied and the optimum ionic conductivity at room temperature is found to be 2.14 × 10(-6) S cm(-1) for sample containing 25 wt% of EMImTFSI. The temperature dependence of ionic conductivity from 303 K to 353 K exhibits Arrhenius plot behaviour. The thermal stability of the polymer electrolyte system is studied by using thermogravimetric analysis (TGA) while the structural and morphological properties of the polymer electrolyte is studied by using Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction analysis (XRD), respectively. PMID:25431781

  11. Polymer composites containing photochromic dye solution

    NASA Astrophysics Data System (ADS)

    Saito, Mitsunori; Sakiyama, Kohei; Mochizuki, Ryosuke; Ohashi, Kenji

    2010-05-01

    Photochromic polymer composites were fabricated by encapsulating dye solution in a polycarbonate membrane. The membrane contained through holes of 50 nm diameter. These nanoholes provided a sufficient free volume for the dye molecules to change their structure in the photochromic isomerization process. A polymer composite containing a toluene solution of diarylethene exhibited red color when it was irradiated with violet laser, and returned to the transparent state by green laser irradiation. Another polymer composite containing spiropyran turned to blue by ultraviolet lamp irradiation and returned to the transparent state by green laser irradiation. A nonlinear input-output characteristic and a rewritable-grating function were demonstrated by using these photochromic polymers.

  12. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries

    SciTech Connect

    Sun, Xiao -Guang; Fang, Youxing; Jiang, Xueguang; Yoshii, Kazuki; Tsuda, Tetsuya; Dai, Sheng

    2015-10-22

    Polymer gel electrolyte using AlCl3 complexed acrylamide as functional monomer and ionic liquids based on acidic mixture of 1-ethyl-3-methylimidazolium chloride (EMImCl) and AlCl3 as plasticizer has been successfully prepared for the first time by free radical polymerization. Aluminum deposition is successfully obtained with a polymer gel membrane contianing 80 wt% ionic liquid. As a result, the polymer gel membranes are also good candidates for rechargeable aluminum ion batteries.

  13. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries

    DOE PAGESBeta

    Sun, Xiao -Guang; Fang, Youxing; Jiang, Xueguang; Yoshii, Kazuki; Tsuda, Tetsuya; Dai, Sheng

    2015-10-22

    Polymer gel electrolyte using AlCl3 complexed acrylamide as functional monomer and ionic liquids based on acidic mixture of 1-ethyl-3-methylimidazolium chloride (EMImCl) and AlCl3 as plasticizer has been successfully prepared for the first time by free radical polymerization. Aluminum deposition is successfully obtained with a polymer gel membrane contianing 80 wt% ionic liquid. As a result, the polymer gel membranes are also good candidates for rechargeable aluminum ion batteries.

  14. Polymer/mesoporous metal oxide composites

    NASA Astrophysics Data System (ADS)

    Ver Meer, Melissa Ann

    Understanding the nature of the interfacial region between an organic polymer matrix and an inorganic filler component is essential in determining how this region impacts the overall bulk properties of the organic/inorganic hybrid composite material. In this work, polystyrene was used as the model polymer matrix coupled with silica-based filler materials to investigate the nature of structure-property relationships in polymer composites. Initial work was conducted on synthesis and characterization of colloidal and mesoporous silica particles melt blended into the polystyrene matrix. Modification of the interface was accomplished by chemically bonding the silica particles with the polystyrene chains through polymerization from the particle surface via atom transfer radical polymerization. High molecular weight polystyrene chains were formed and bulk test samples were evaluated with increased thermal stability of the grafted polymer composite system versus equivalent melt blended polymer composites. Polymer grafting was also conducted from the internal pores of mesoporous silica, further improving the thermal stability of the composite system without degrading dynamic mechanical properties. Characterization of the polymer composites was conducted with gel permeation chromatography, transmission electron microscopy, thermogravimetric analysis and dynamic mechanical analysis. It was also discovered during the polystyrene-silica composite studies that amorphous polystyrene can possess a less mobile phase, evident in a second peak of the loss tangent (tan delta). The long annealing times necessitated by the mesoporous silica composites were replicated in as received polystyrene. This new, less mobile phase is of particular interest in determining the mobility of polymer chains in the interfacial region.

  15. Biomimetic bonelike polymer cementitious composite

    NASA Astrophysics Data System (ADS)

    Dry, Carolyn M.; Warner, Carrie

    1997-02-01

    This paper outlines the progress in the development of a biomimetic, prefabricated synthetic building material that is to have the superior properties of bone. The goal was to make polymer/ceramic composite which mimics bone in both process of fabrication and resultant properties and bond between phases, because bones and shells have been found to have greater toughness and strength than conventional ceramics alone due to the presence of organic bonding materials. The intimate connection between material phases is due to careful growth sequences, i.e. the fibers are made first and the matrix grown around them as opposed to conventional ceramics in which any fibers are added to the matrix. We followed the rules under which bone material naturally forms albeit at a macroscale, as spelled out by researchers in biological materials.

  16. Conducting polymer actuator based on chemically deposited polypyrrole and polyurethane-based solid polymer electrolyte working in air

    NASA Astrophysics Data System (ADS)

    Choi, Hwa-Jeong; Song, Young-Min; Chung, Ildoo; Ryu, Kwang-Sun; Jo, Nam-Ju

    2009-02-01

    Conducting polymers (CPs), such as polypyrrole, polythiophene, and polyaniline, are unique in that they have switchable properties due to their two or more mechanically stable oxidation states. Thus, their films or coatings can be easily switched by the application of a small voltage and current to change their volume during electrochemical redox processes. In particular, polypyrrole (PPy) has been studied most extensively because of its high electrical conductivity and good environmental stability under ambient conditions. In this work, we have studied a new CP actuator, fully polymeric, assembled with two PPy film electrodes and a solid polymer electrolyte (SPE), polyurethane/Mg(ClO4)2. Polyurethanes (PUs) were synthesized from 4,4'-diphenylmethane diisocyanate (MDI), 1,4-butanediol (1,4-BD) and three types of polyol: poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG), and PPG-block-PEG-block-PPG (PPG-co-PEG). The chemical polymerization of PPy by immersion in Py monomer aqueous solution and oxidant aqueous solution is an adequate method to prepare PU/PPy composite film as an actuator. To find the proper thickness of the PPy coating layer for actuation, we measured the displacements of the actuators according to the thickness of the PPy coating layer. The displacement of all actuators is discussed in connection with the properties of the SPE and PPy. All the results obtained in this work show the feasibility of electrochemomechanical devices based on PPy and SPE film being able to work in air.

  17. Poly(vinylidene fluoride-hexafluoropropylene) polymer electrolyte for paper-based and flexible battery applications

    NASA Astrophysics Data System (ADS)

    Aliahmad, Nojan; Shrestha, Sudhir; Varahramyan, Kody; Agarwal, Mangilal

    2016-06-01

    Paper-based batteries represent a new frontier in battery technology. However, low-flexibility and poor ionic conductivity of solid electrolytes have been major impediments in achieving practical mechanically flexible batteries. This work discuss new highly ionic conductive polymer gel electrolytes for paper-based battery applications. In this paper, we present a poly(vinylidene fluoride-hexafluoropropylene) (PVDH-HFP) porous membrane electrolyte enhanced with lithium bis(trifluoromethane sulphone)imide (LiTFSI) and lithium aluminum titanium phosphate (LATP), with an ionic conductivity of 2.1 × 10-3 S cm-1. Combining ceramic (LATP) with the gel structure of PVDF-HFP and LiTFSI ionic liquid harnesses benefits of ceramic and gel electrolytes in providing flexible electrolytes with a high ionic conductivity. In a flexibility test experiment, bending the polymer electrolyte at 90° for 20 times resulted in 14% decrease in ionic conductivity. Efforts to further improving the flexibility of the presented electrolyte are ongoing. Using this electrolyte, full-cell batteries with lithium titanium oxide (LTO) and lithium cobalt oxide (LCO) electrodes and (i) standard metallic current collectors and (ii) paper-based current collectors were fabricated and tested. The achieved specific capacities were (i) 123 mAh g-1 for standard metallic current collectors and (ii) 99.5 mAh g-1 for paper-based current collectors. Thus, the presented electrolyte has potential to become a viable candidate in paper-based and flexible battery applications. Fabrication methods, experimental procedures, and test results for the polymer gel electrolyte and batteries are presented and discussed.

  18. Ionic conductivity and dielectric permittivity of PEO-LiClO{sub 4} solid polymer electrolyte plasticized with propylene carbonate

    SciTech Connect

    Das, S.; Ghosh, A.

    2015-02-15

    We have studied ionic conductivity and dielectric permittivity of PEO-LiClO{sub 4} solid polymer electrolyte plasticized with propylene carbonate. Differential scanning calorimetry and X-ray diffraction studies confirm minimum volume fraction of crystalline phase for the polymer electrolyte with 40 wt. % propylene carbonate. The ionic conductivity exhibits a maximum for the same composition. The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. Ion-ion interactions in the polymer electrolytes have been studied using Raman spectra and the concentrations of free ions, ion-pairs and ion-aggregates have been determined. The ionic conductivity increases due to the increase of free ions with the increase of propylene carbonate content. But for higher content of propylene carbonate, the ionic conductivity decreases due to the increase of concentrations of ion-pairs and ion-aggregates. To get further insights into the ion dynamics, the experimental data for the complex dielectric permittivity have been studied using Havriliak–Negami function. The variation of relaxation time with temperature obtained from this formalism follows Vogel-Tamman-Fulcher equation similar to the ionic conductivity.

  19. Fabrication of stable photovoltachromic cells using a solvent-free hybrid polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Yang, Ming-Che; Cho, Hsun-Wei; Wu, Jih-Jen

    2014-07-01

    In this work, photovoltachromic cells (PVCCs) are fabricated using a solvent-free polyethylene glycol (PEG)-titanium hybrid polymer electrolyte. With appropriate addition of 1,2-dimethyl-3-propylimidazolium iodide in the electrolyte, the range of tunable colored-state transmittance of the PVCC is enlarged due to an improved fill factor. A transmittance modulation larger than 40% can be maintained for at least 3 months, demonstrating the good long-term stability of PVCCs fabricated using the solvent-free PEG-Ti hybrid electrolyte.In this work, photovoltachromic cells (PVCCs) are fabricated using a solvent-free polyethylene glycol (PEG)-titanium hybrid polymer electrolyte. With appropriate addition of 1,2-dimethyl-3-propylimidazolium iodide in the electrolyte, the range of tunable colored-state transmittance of the PVCC is enlarged due to an improved fill factor. A transmittance modulation larger than 40% can be maintained for at least 3 months, demonstrating the good long-term stability of PVCCs fabricated using the solvent-free PEG-Ti hybrid electrolyte. Electronic supplementary information (ESI) available: Details of the fabrication of PVCCs with a liquid electrolyte and solvent-free PEG-Ti hybrid electrolytes as well as the photovoltaic properties of PVCCs. See DOI: 10.1039/c4nr01695e

  20. Electrochemical formation of a composite polymer-aluminum oxide film

    NASA Astrophysics Data System (ADS)

    Runge-Marchese, Jude Mary

    1997-10-01

    The formation of polymer films through electrochemical techniques utilizing electrolytes which include conductive polymer is of great interest to the coatings and electronics industries as a means for creating electrically conductive and corrosion resistant finishes. One of these polymers, polyamino-benzene (polyaniline), has been studied for this purpose for over ten years. This material undergoes an insulator-to-metal transition upon doping with protonic acids in an acid/base type reaction. Review of prior studies dealing with polyaniline and working knowledge of aluminum anodization has led to the development of a unique process whereby composite polymer-aluminum oxide films are formed. The basis for the process is a modification of the anodizing electrolyte which results in the codeposition of polyaniline during aluminum anodization. A second process, which incorporates electrochemical sealing of the anodic layer with polyaniline was also developed. The formation of these composite films is documented through experimental processing, and characterized by way of scientific analysis and engineering tests. Analysis results revealed the formation of unique dual phase anodic films with fine microstructures which exhibited full intrusion of the columnar aluminum oxide structure with polyaniline, indicating the polymer was deposited as the metal oxidation proceeded. An aromatic amine derivative of polyaniline with aluminum sulfate was determined to be the reaction product within the aluminum oxide phase of the codeposited films. Scientific characterization determined the codeposition process yields completely chemically and metallurgically bound composite films. Engineering studies determined the films, obtained through a single step, exhibited superior wear and corrosion resistance to conventionally anodized and sealed films processed through two steps, demonstrating the increased manufacturing process efficiency that can be realized with the modification of the

  1. Transport properties of the solid polymer electrolyte system P(EO){sub n}LiTFSI

    SciTech Connect

    Edman, L.; Doeff, M.M.; Ferry, A.; Kerr, J.; De Jonghe, L.C.

    2000-04-20

    Values for the lithium ion transference number ({tau}{sub +}{sup 0}) are reported for the solid polymer electrolyte system poly(ethylene oxide) (PEO) complexed with Li(CF{sub 3}SO{sub 2}){sub 2}N (LiTFSI). {tau}{sub +}{sup 0} ranges from 0.17 {+-} 0.17 to 0.60 {+-} 0.03 in the salt concentration (c) region of 742 to 2,982 mol/m{sup 3} at 85 C. The concentration dependence of {tau}{sub +}{sup 0} and the molar ionic conductivity ({Lambda}) are shown to be in good agreement with a free volume approach over the salt-rich composition range investigated. The present {tau}{sub +}{sup 0} results were obtained using an electrochemical technique based on concentrated solution theory. This experimentally straightforward method is herein demonstrated to give accurate results for a highly concentrated SPE system, without relying on any dubious simplifications regarding the state of the electrolyte.

  2. High Modulus, High Conductivity Nanostructured Polymer Electrolyte Membranes via Polymerization-Induced Phase Separation

    NASA Astrophysics Data System (ADS)

    McIntosh, Lucas; Schulze, Morgan; Hillmyer, Marc; Lodge, Timothy

    2014-03-01

    Solvent-free, solid-state polymer electrolyte membranes (PEMs) will play a vital role in next-generation electrochemical devices such as Li-metal batteries and high- T fuel cells. The primary challenge is that these applications require PEMs with substantial mechanical robustness, as well as high ionic conductivity. The key to optimizing orthogonal macroscopic properties is to use a heterogeneous composite with well-defined nanoscopic morphology--specifically, long-range co-continuity of high modulus and ion transport domains, which has proven difficult to achieve in commonly-studied diblock copolymer-based electrolytes. We report a simple synthetic strategy to generate PEMs via polymerization-induced phase separation, where the delicate balance between controlled addition of styrene onto a poly(ethylene oxide) macro-chain transfer agent and simultaneous chemical crosslinking by divinylbenzene results in a disordered structure with domain size of order 10 nm. Crucially, both domains exhibit long-range continuity, which results in PEMs that are glassy solids (modulus ~ 1 GPa) owing to the isotropic network of stiff, crosslinked polystyrene, and are highly conductive (> 1 mS/cm at 70 °C) because ions migrate in channels of low Tg poly(ethylene oxide).

  3. Crystallization analysis for fiber/polymer composites

    NASA Astrophysics Data System (ADS)

    Raimo, Maria

    2016-05-01

    The peculiar nucleation behavior of low thermal conductivity polymer matrixes and the particular morphologies around fibers found in several composites, invalidate some assumptions invoked in the general description of the solidification kinetics of polycrystalline substances. The model of solidification universally adopted for polycrystalline substances, originally developed for metals, needs to be adapted also to account for large differences between polymers and fibers in thermoplastic composites. The extension of the classical phase transitions theory to fiber/polymer composites, in view of their specific thermal properties, allows to achieve reliable information on crystallization behavior and microstructure inside composites.

  4. Experimental Studies on (PVC+LiCIO4+DMP) Polymer Electrolyte Systems for Lithium Battery

    NASA Astrophysics Data System (ADS)

    Subba Reddy, Ch. V.; Qi, Y. Y.; Zhu, Q. Y.; Liu, H. X.; Zhao, X. J.; Chen, W.

    2006-06-01

    Poly (vinyl chloride)(PVC)-based solid polymer electrolyte films with LiClO4+plasticizer (dimethyl phthalate) have been prepared by the solution -cast technique. Various experimental techniques have been used, such as X-ray diffraction (XRD) and infrared spectroscopy (IR), a.c. impedance spectroscopy and transport number measurements, to characterize these polymer electrolyte films. The complexation has been confirmed from XRD and IR studies. A maximum room temperature conductivity (1.1 × 10-4S/cm) has been observed for (PVC+LiClO4+DMP)(20:5:75) complex. The temperature dependent conductivity plots show Arrhenius behaviour. The activation energy is estimated and the results are discussed. The transference number data indicated that the conducting species in these electrolytes are the anions. Using this electrolyte, electrochemical cells are fabricated and their discharge profiles are studied under constant load.

  5. Effect of polymer electrolyte on the performance of natural dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Adel, R.; Abdallah, T.; Moustafa, Y. M.; Al-sabagh, A. M.; Talaat, H.

    2015-10-01

    Polymer electrolyte based on polyacrylonitrile (PAN), Ethylene Carbonate (EC) and Acetonitrile (ACN) mixed with Potassium Iodide and Iodine in liquid and thin film forms were employed in natural dye sensitized solar cells (NDSSCs). Three natural dyes; black berry, hibiscus and rose are used as the sensitizing dye. The NDSSCs used, follow the configuration: FTO/TiO2/Natural Dye/Electrolyte/ Carbon/FTO. The liquid form polymer electrolyte with black berry natural dye gives an increase of 111% in short circuit photocurrent density (Jsc), 17.5% to open circuit voltage (Voc), fill factor of 0.57 ± 0.05 and three times increase in the conversion efficiency of 0.242 ± 0.012% compared to the iodine electrolyte.

  6. Li Ion Conducting Polymer Gel Electrolytes Based on Ionic Liquid/PVDF-HFP Blends

    PubMed Central

    Ye, Hui; Huang, Jian; Xu, Jun John; Khalfan, Amish; Greenbaum, Steve G.

    2009-01-01

    Ionic liquids thermodynamically compatible with Li metal are very promising for applications to rechargeable lithium batteries. 1-methyl-3-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P13TFSI) is screened out as a particularly promising ionic liquid in this study. Dimensionally stable, elastic, flexible, nonvolatile polymer gel electrolytes (PGEs) with high electrochemical stabilities, high ionic conductivities and other desirable properties have been synthesized by dissolving Li imide salt (LiTFSI) in P13TFSI ionic liquid and then mixing the electrolyte solution with poly(vinylidene-co-hexafluoropropylene) (PVDF-HFP) copolymer. Adding small amounts of ethylene carbonate to the polymer gel electrolytes dramatically improves the ionic conductivity, net Li ion transport concentration, and Li ion transport kinetics of these electrolytes. They are thus favorable and offer good prospects in the application to rechargeable Li batteries including open systems like Li/air batteries, as well as more “conventional” rechargeable lithium and lithium ion batteries. PMID:20354587

  7. Multiphase transport in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Gauthier, Eric D.

    Polymer electrolyte membrane fuel cells (PEMFCs) enable efficient conversion of fuels to electricity. They have enormous potential due to the high energy density of the fuels they utilize (hydrogen or alcohols). Power density is a major limitation to wide-scale introduction of PEMFCs. Power density in hydrogen fuel cells is limited by accumulation of water in what is termed fuel cell `flooding.' Flooding may occur in either the gas diffusion layer (GDL) or within the flow channels of the bipolar plate. These components comprise the electrodes of the fuel cell and balance transport of reactants/products with electrical conductivity. This thesis explores the role of electrode materials in the fuel cell and examines the fundamental connection between material properties and multiphase transport processes. Water is generated at the cathode catalyst layer. As liquid water accumulates it will utilize the largest pores in the GDL to go from the catalyst layer to the flow channels. Water collects to large pores via lateral transport at the interface between the GDL and catalyst layer. We have shown that water may be collected in these large pores from several centimeters away, suggesting that we could engineer the GDL to control flooding with careful placement and distribution of large flow-directing pores. Once liquid water is in the flow channels it forms slugs that block gas flow. The slugs are pushed along the channel by a pressure gradient that is dependent on the material wettability. The permeable nature of the GDL also plays a major role in slug growth and allowing bypass of gas between adjacent channels. Direct methanol fuel cells (DMFCs) have analogous multiphase flow issues where carbon dioxide bubbles accumulate, `blinding' regions of the fuel cell. This problem is fundamentally similar to water management in hydrogen fuel cells but with a gas/liquid phase inversion. Gas bubbles move laterally through the porous GDL and emerge to form large bubbles within the

  8. Modeling Cold Start in a Polymer-Electrolyte Fuel Cell

    NASA Astrophysics Data System (ADS)

    Balliet, Ryan James

    Polymer-electrolyte fuel cells (PEFCs) are electrochemical devices that create electricity by consuming hydrogen and oxygen, forming water and heat as byproducts. PEFCs have been proposed for use in applications that may require start-up in environments with temperatures below 0 degrees C. Doing so requires that the cell heat up, and when its own waste heat is used to do so, the process is referred to here as "cold start.'' However, at low temperatures the cell's product water freezes, and if the temperature does not rise fast enough, the accumulation of ice in the cathode catalyst layer (cCL) can reduce cell performance significantly, extending the time required to heat up. In addition to reducing performance during cold start, under some conditions the accumulation of ice can lead to irreversible structural degradation of the cCL. The objective of this dissertation is to construct and verify a cold-start model for a single PEFC, use it to improve understanding of cold-start behavior, and to demonstrate how this understanding can lead to better start protocols and material properties. The macrohomogeneous model that has been developed to meet the objective is two-dimensional, transient, and nonisothermal. A key differentiating feature is the inclusion of water in all four of the possible phases: ice, liquid, gas, and membrane. In order to predict water content in the ice, liquid, and gas phases that are present in the porous media, the thermodynamics of phase equilibrium are revisited, and a method for relating phase pressures to water content in each of these phases is developed. Verification of the model is performed by comparing model predictions for cell behavior during parametric studies to measured values taken from various sources. In most cases, good agreement is observed between the model and the experiments. Results from the simulations are used to explain the trends that are observed. The verified cold-start model is deployed to determine a cold

  9. Understanding the transport processes in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Cheah, May Jean

    Polymer electrolyte membrane (PEM) fuel cells are energy conversion devices suitable for automotive, stationary and portable applications. An engineering challenge that is hindering the widespread use of PEM fuel cells is the water management issue, where either a lack of water (resulting in membrane dehydration) or an excess accumulation of liquid water (resulting in fuel cell flooding) critically reduces the PEM fuel cell performance. The water management issue is addressed by this dissertation through the study of three transport processes occurring in PEM fuel cells. Water transport within the membrane is a combination of water diffusion down the water activity gradient and the dragging of water molecules by protons when there is a proton current, in a phenomenon termed electro-osmotic drag, EOD. The impact of water diffusion and EOD on the water flux across the membrane is reduced due to water transport resistance at the vapor/membrane interface. The redistribution of water inside the membrane by EOD causes an overall increase in the membrane resistance that regulates the current and thus EOD, thereby preventing membrane dehydration. Liquid water transport in the PEM fuel cell flow channel was examined at different gas flow regimes. At low gas Reynolds numbers, drops transitioned into slugs that are subsequently pushed out of the flow channel by the gas flow. The slug volume is dependent on the geometric shape, the surface wettability and the orientation (with respect to gravity) of the flow channel. The differential pressure required for slug motion primarily depends on the interfacial forces acting along the contact lines at the front and the back of the slug. At high gas Reynolds number, water is removed as a film or as drops depending on the flow channel surface wettability. The shape of growing drops at low and high Reynolds number can be described by a simple interfacial energy minimization model. Under flooding conditions, the fuel cell local current

  10. Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries

    NASA Astrophysics Data System (ADS)

    Porcarelli, Luca; Gerbaldi, Claudio; Bella, Federico; Nair, Jijeesh Ravi

    2016-01-01

    Here we demonstrate that by regulating the mobility of classic -EO- based backbones, an innovative polymer electrolyte system can be architectured. This polymer electrolyte allows the construction of all solid lithium-based polymer cells having outstanding cycling behaviour in terms of rate capability and stability over a wide range of operating temperatures. Polymer electrolytes are obtained by UV-induced (co)polymerization, which promotes an effective interlinking between the polyethylene oxide (PEO) chains plasticized by tetraglyme at various lithium salt concentrations. The polymer networks exhibit sterling mechanical robustness, high flexibility, homogeneous and highly amorphous characteristics. Ambient temperature ionic conductivity values exceeding 0.1 mS cm-1 are obtained, along with a wide electrochemical stability window (>5 V vs. Li/Li+), excellent lithium ion transference number (>0.6) as well as interfacial stability. Moreover, the efficacious resistance to lithium dendrite nucleation and growth postulates the implementation of these polymer electrolytes in next generation of all-solid Li-metal batteries working at ambient conditions.

  11. Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries

    PubMed Central

    Porcarelli, Luca; Gerbaldi, Claudio; Bella, Federico; Nair, Jijeesh Ravi

    2016-01-01

    Here we demonstrate that by regulating the mobility of classic −EO− based backbones, an innovative polymer electrolyte system can be architectured. This polymer electrolyte allows the construction of all solid lithium-based polymer cells having outstanding cycling behaviour in terms of rate capability and stability over a wide range of operating temperatures. Polymer electrolytes are obtained by UV-induced (co)polymerization, which promotes an effective interlinking between the polyethylene oxide (PEO) chains plasticized by tetraglyme at various lithium salt concentrations. The polymer networks exhibit sterling mechanical robustness, high flexibility, homogeneous and highly amorphous characteristics. Ambient temperature ionic conductivity values exceeding 0.1 mS cm−1 are obtained, along with a wide electrochemical stability window (>5 V vs. Li/Li+), excellent lithium ion transference number (>0.6) as well as interfacial stability. Moreover, the efficacious resistance to lithium dendrite nucleation and growth postulates the implementation of these polymer electrolytes in next generation of all-solid Li-metal batteries working at ambient conditions. PMID:26791572

  12. Efficiency enhancement in dye sensitized solar cells using gel polymer electrolytes based on a tetrahexylammonium iodide and MgI2 binary iodide system.

    PubMed

    Bandara, T M W J; Dissanayake, M A K L; Jayasundara, W J M J S R; Albinsson, I; Mellander, B-E

    2012-06-28

    Quasi-solid-state dye-sensitized solar cells have drawn the attention of scientists and technologists as a potential candidate to supplement future energy needs. The conduction of iodide ions in quasi-solid-state polymer electrolytes and the performance of dye sensitized solar cells containing such electrolytes can be enhanced by incorporating iodides having appropriate cations. Gel-type electrolytes, based on PAN host polymers and mixture of salts tetrahexylammonium iodide (Hex4N(+)I(-)) and MgI2, were prepared by incorporating ethylene carbonate and propylene carbonate as plasticizers. The salt composition in the binary mixture was varied in order to optimize the performance of solar cells. The electrolyte containing 120% Hex4N(+)I(-) with respect to weight of PAN and without MgI2 showed the highest conductivity out of the compositions studied, 2.5 × 10(-3) S cm(-1) at 25 °C, and a glass transition at -102.4 °C. However, the electrolyte containing 100% Hex4N(+)I(-) and 20% MgI2 showed the best solar cell performance highlighting the influence of the cation on the performance of the cell. The predominantly ionic behaviour of the electrolytes was established from the dc polarization data and all the electrolytes exhibit iodide ion transport. Seven different solar cells were fabricated employing different electrolyte compositions. The best cell using the electrolyte with 100% Hex4N(+)I(-) and 20% MgI2 with respect to PAN weight showed 3.5% energy conversion efficiency and 8.6 mA cm(-2) short circuit current density. PMID:22618351

  13. Long-lasting solid-polymer electrolytic hygrometer

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.

    1978-01-01

    Device consists of hollow tube node of oxidation-resistant sulfonated fluorocarbon polymer. Tube absorbs moisture from air passing across inner and outer surfaces, causing change in polymer conductance. Change is related to change in water content in gas sample.

  14. Synthesis, physical and electrical characterization of polymer electrolytes and polymer complexes containing polyhalides

    SciTech Connect

    Tipton, A.L.

    1992-01-01

    The conductivity and dielectric response was determined for poly (propylene oxide) (PPO), the polymeric solid electrolytes (PPO)[sub 8]NH[sub 4]SO[sub 3]CF[sub 3], (PPO)[sub 16]NaI, (PPO)[sub 10]NaI and (PPO)[sub 8]NaI and the sodium polyiodide complex, (PPO)[sub 8]NaI[sub 9], in the frequency range from dc to 6 GHz and the temperature range from 173-323 K at 3 GHz. These data were used to make the first comparisons between an amorphous host polymer and its salt complexes. The addition of salt to PPO results in a considerable change in dielectric properties. The dielectric loss spectrum of PPO displays a broad [beta]-relaxation attributed to the micro-Brownian motion of the polymer while no appreciable relaxation peak is observed for (PPO)[sub 8]NH[sub 4]SO[sub 3]CF[sub 3]. The conductivity of the previously characterized (PEO)[sub 8]NH[sub 4]SO[sub 3]CF[sub 3] is higher than (PPO)[sub 8]NH[sub 4]SO[sub 3]CF[sub 3] over the entire frequency range covered. The methyl group on PPO apparently sterically restricts the local motions of the polymer necessary for ion conduction. The dielectric loss spectrum of (PPO)[sub 8]NaI displays a narrow relaxation peak around 10 MHz, possibly associated with the motions of NaI aggregates. (PPO)[sub 8]NaI[sub 9] displays a much higher conductivity than simple polymer-salt complexes. The lack of frequency dependence of the (PPO)[sub 8]NaI[sub 9] conductivity compared to that of the simple polymer-salt complexes suggests that long range charge transport in (PPO)[sub 8]NaI[sub 9] is dominated by a process that is much faster than the diffusion of ions in the polymer solvent. Resonance Raman spectra reveal the presence of a rich variety of polyhalide species in the products resulting from the addition of Br[sub 2], IBr or I[sub 2] to PPO-LiBr or PPO-LiI salt complexes. Impedance measurements demonstrate high bulk conductivities. There appears to be little correlation between conductivity and iodine or bromine content.

  15. Ultraviolet and thermally stable polymer compositions

    NASA Technical Reports Server (NTRS)

    Reinisch, R. F.; Gloria, H. R.; Goldsberry, R. E.; Adamson, M. J. (Inventor)

    1974-01-01

    A class of polymers is provided, namely, poly(diarylsiloxy) arylazines. These polymers have a basic chemical composition which has the property of stabilizing the optical and physical properties of the polymer against the degradative effect of ultraviolet light and high temperatures. This stabilization occurs at wavelengths including those shorter than found on the surface of the earth and in the absence or presence of oxygen, making the polymers of the present invention useful for high performance coating applications in extraterrestrial space as well as similar applications in terrestrial service. The invention also provides aromatic azines which are useful in the preparation of polymers such as those of the present invention.

  16. Ultraviolet and thermally stable polymer compositions

    NASA Technical Reports Server (NTRS)

    Reinisch, R. F.; Gloria, H. R.; Goldsberry, R. E.; Adamson, M. J. (Inventor)

    1976-01-01

    A new class of polymers is provided, namely, poly (diarylsiloxy) arylazines. These novel polymers have a basic chemical composition which has the property of stabilizing the optical and physical properties of the polymer against the degradative effect of ultraviolet light and high temperatures. This stabilization occurs at wavelengths including those shorter than found on the surface of the earth and in the absence or presence of oxygen, making the polymers useful for high performance coating applications in extraterrestrial space as well as similar applications in terrestrial service. The invention also provides novel aromatic azines which are useful in the preparation of polymers such as those described.

  17. [Some aspects of water electrolysis with the use of a solid polymer electrolyte].

    PubMed

    Zorina, N G

    2006-01-01

    Electrochemical process in cells with a solid polymer electrolyte is dependent on catalyst durability in harsh environments and catalyst sputtering technology to ensure efficient power consumption. Active polymer electrolytes will permit to reduce substantially non-productive layouts and design a cost-effective, compact and safe system generator of high-purity oxygen and hydrogen. The existing designs of combined oxide systems integrating rear-earth and earth metals with a structure of Ln3+x Me2+1-x CoO3 containing perofskites were shown to be active catalysts in cells with a solid polymer electrolyte, and the sputtering technology was proven to reduce non-productive layouts in 2 or 2.5 times. PMID:17405280

  18. Conductivity and properties of polysiloxane-polyether cluster-LiTFSI networks as hybrid polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Boaretto, Nicola; Joost, Christine; Seyfried, Mona; Vezzù, Keti; Di Noto, Vito

    2016-09-01

    This report describes the synthesis and the properties of a series of polymer electrolytes, composed of a hybrid inorganic-organic matrix doped with LiTFSI. The matrix is based on ring-like oligo-siloxane clusters, bearing pendant, partially cross-linked, polyether chains. The dependency of the thermo-mechanic and of the transport properties on several structural parameters, such as polyether chains' length, cross-linkers' concentration, and salt concentration is studied. Altogether, the materials show good thermo-mechanical and electrochemical stabilities, with conductivities reaching, at best, 8·10-5 S cm-1 at 30 °C. In conclusion, the cell performances of one representative sample are shown. The scope of this report is to analyze the correlations between structure and properties in networked and hybrid polymer electrolytes. This could help the design of optimized polymer electrolytes for application in lithium metal batteries.

  19. Recent advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes

    NASA Technical Reports Server (NTRS)

    Srinivasan, Supramaniam; Manko, David J.; Koch, Hermann; Enayetullah, Mohammad A.; Appleby, A. John

    1989-01-01

    Of all the fuel cell systems only alkaline and solid polymer electrolyte fuel cells are capable of achieving high power densities (greater than 1 W/sq cm) required for terrestrial and extraterrestrial applications. Electrode kinetic criteria for attaining such high power densities are discussed. Attainment of high power densities in solid polymer electrolyte fuel cells has been demonstrated earlier by different groups using high platinum loading electrodes (4 mg/sq cm). Recent works at Los Alamos National Laboratory and at Texas A and M University (TAMU) demonstrated similar performance for solid polymer electrolyte fuel cells with ten times lower platinum loading (0.45 mg/sq cm) in the electrodes. Some of the results obtained are discussed in terms of the effects of type and thickness of membrane and of the methods platinum localization in the electrodes on the performance of a single cell.

  20. Ion transport in a polymer-plastic solid soft matter electrolyte in the light of solvent dynamics and ion association.

    PubMed

    Patel, Monalisa; Menezes, Pramod V; Bhattacharyya, Aninda J

    2010-04-29

    Ion transport in a recently demonstrated promising soft matter solid plastic-polymer electrolyte is discussed here in the context of solvent dynamics and ion association. The plastic-polymer composite electrolytes display liquid-like ionic conductivity in the solid state, compliable mechanical strength (approximately 1 MPa), and wide electrochemical voltage stability (> or = 5 V). Polyacrylonitrile (PAN) dispersed in lithium perchlorate (LiClO(4))-succinonitrile (SN) was chosen as the model system for the study (abbreviated LiClO(4)-SN:PAN). Systematic observation of various mid-infrared isomer and ion association bands as a function of temperature and polymer concentration shows an effective increase in trans conformer concentration along with free Li(+) ion concentration. This strongly supports the view that enhancement in LiClO(4)-SN:PAN ionic conductivity over the neat plastic electrolyte (LiClO(4)-SN) is due to both increase in charge mobility and concentration. The ionic conductivity and infrared spectroscopy studies are supported by Brillouin light scattering. For the LiClO(4)-SN:PAN composites, a peak at 17 GHz was observed in addition to the normal trans-gauche isomerism (as in neat SN) at 12 GHz. The fast process is attributed to increased dynamics of those SN molecules whose energy barrier of transition from gauche to trans has reduced under influences induced by the changes in temperature and polymer concentration. The observations from ionic conductivity, spectroscopy, and light scattering studies were further supplemented by temperature dependent nuclear magnetic resonance (1)H and (7)Li line width measurements. PMID:20373767

  1. Cellulose nanocrystal-based composite electrolyte with superior dimensional stability for alkaline fuel cell membranes

    SciTech Connect

    Lu, Yuan; Artmentrout, Aaron A.; Li, Juchuan; Tekinalp, Halil L.; Nanda, Jagjit; Ozcan, Soydan

    2015-05-13

    Cellulose nanocrystal (CNC)-based composite films were prepared as a solid electrolyte for alkaline fuel cells. Poly (vinyl alcohol) (PVA) and silica gel hybrid was used to bind the CNCs to form a robust composite film. The mass ratio (i.e., 1 : 1, 1 : 2) of PVA and silica gel was tuned to control the hydrophobicity of the resulting films. Composite films with a range of CNC content (i.e., 20 to 60%) were prepared to demonstrate the impact of CNC on the performance of these materials as a solid electrolyte for alkaline fuel cells. Different from previously reported cross-linked polymer films, CNC-based composite films with 40% hydrophobic binder (i.e., PVA : silica gel=1 : 2) exhibited simultaneous low water swelling (e.g., ~5%) and high water uptake (e.g., ~80%) due to the hydrophilicity and extraordinary dimensional stability of CNC. It also showed a conductivity of 0.044 and 0.065 S/cm at 20 and 60 oC, respectively. To the best of our knowledge, the film with 60% CNC and 40% binder is characterized by the lowest hydroxide conductivity-normalized swelling ratio. Decreased CNC content (i.e., 40 and 20%) resulted in comparable hydroxide conductivity but a greater swelling ratio. These results demonstrate the advantage of CNC as a key component for a solid electrolyte for alkaline fuel cells over conventional polymers, suggesting the great potential of CNCs in improving the dimensional stability while maintaining the conductivity of existing anion exchange membranes.

  2. Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries

    PubMed Central

    Villaluenga, Irune; Wujcik, Kevin H.; Tong, Wei; Devaux, Didier; Wong, Dominica H. C.; DeSimone, Joseph M.; Balsara, Nitash P.

    2016-01-01

    Despite high ionic conductivities, current inorganic solid electrolytes cannot be used in lithium batteries because of a lack of compliance and adhesion to active particles in battery electrodes as they are discharged and charged. We have successfully developed a compliant, nonflammable, hybrid single ion-conducting electrolyte comprising inorganic sulfide glass particles covalently bonded to a perfluoropolyether polymer. The hybrid with 23 wt% perfluoropolyether exhibits low shear modulus relative to neat glass electrolytes, ionic conductivity of 10−4 S/cm at room temperature, a cation transference number close to unity, and an electrochemical stability window up to 5 V relative to Li+/Li. X-ray absorption spectroscopy indicates that the hybrid electrolyte limits lithium polysulfide dissolution and is, thus, ideally suited for Li-S cells. Our work opens a previously unidentified route for developing compliant solid electrolytes that will address the challenges of lithium batteries. PMID:26699512

  3. Method of making molecularly doped composite polymer material

    DOEpatents

    Affinito, John D [Tucson, AZ; Martin, Peter M [Kennewick, WA; Graff, Gordon L [West Richland, WA; Burrows, Paul E [Kennewick, WA; Gross, Mark E. , Sapochak, Linda S.

    2005-06-21

    A method of making a composite polymer of a molecularly doped polymer. The method includes mixing a liquid polymer precursor with molecular dopant forming a molecularly doped polymer precursor mixture. The molecularly doped polymer precursor mixture is flash evaporated forming a composite vapor. The composite vapor is cryocondensed on a cool substrate forming a composite molecularly doped polymer precursor layer, and the cryocondensed composite molecularly doped polymer precursor layer is cross linked thereby forming a layer of the composite polymer layer of the molecularly doped polymer.

  4. Quaternary Polymer Electrolytes Containing an Ionic Liquid and a Ceramic Filler.

    PubMed

    Sharova, Varvara; Kim, Guk-Tae; Giffin, Guinevere A; Lex-Balducci, Alexandra; Passerini, Stefano

    2016-07-01

    In this work, the individual and combined effects of an ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and ceramic filler silicon dioxide on the thermal and electrochemical properties of poly(ethylene oxide) electrolytes have been investigated. The electrolyte containing both components has the lowest glass transition (-60 °C) and melting temperatures (27 °C), the highest conductivity at any investigated temperature, and the highest limiting current density (at 40 °C). This solid polymer electrolyte also exhibits the best long-term cycling performance in Li/LiFePO4 cells. PMID:27000626

  5. Preparation and characterization of lithium ion conducting polymer electrolytes based on a blend of poly(vinylidene fluoride-co-hexafluoropropylene) and poly(methyl methacrylate).

    PubMed

    Gebreyesus, Merhawi Abreha; Purushotham, Y; Kumar, J Siva

    2016-07-01

    Ion conducting polymer electrolytes composed of poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP), poly(methyl methacrylate) (PMMA) and lithium triflate (LiTf) were prepared using the solution casting method. Structural change and complex formation in the blend electrolyte systems were confirmed from the X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) studies. Thermal properties of the samples were investigated by the differential scanning calorimetry (DSC) technique. The ionic conductivity of these polymer electrolytes was studied by impedance spectroscopy at various temperatures ranging from 303-393 K. The results reveal that the ionic conductivity of the polymer blend electrolytes depends on the PVdF-HFP:PMMA composition as well as the temperature. Maximum room temperature conductivity of [Formula: see text] S cm(-1) was achieved with 22.5 wt.% PMMA. The blending of PVdF-HFP with PMMA improved the thermal stability and ionic conductivity of the polymer electrolyte. Estimated transference numbers suggest the charge transport is predominantly ionic. PMID:27512728

  6. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Putri, Zufira; Arcana, I. Made

    2014-03-01

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO2 are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO2 compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO2 blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM).

  7. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    SciTech Connect

    Putri, Zufira E-mail: arcana@chem.itb.ac.id; Arcana, I Made E-mail: arcana@chem.itb.ac.id

    2014-03-24

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO{sub 2} are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO{sub 2} compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO{sub 2} blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM)

  8. Influence of the Ionic Liquid Type on the Gel Polymer Electrolytes Properties

    PubMed Central

    Tafur, Juan P.; Santos, Florencio; Fernández Romero, Antonio J.

    2015-01-01

    Gel Polymer Electrolytes (GPEs) composed by ZnTf2 salt, poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP), and different ionic liquids are synthesized using n-methyl-2-pyrrolidone (NMP) as solvent. Three different imidazolium-based ionic liquids containing diverse cations and anions have been explored. Structural and electrical properties of the GPEs varying the ZnTf2 concentration are analyzed by ATR-FTIR, DSC, TG, and cyclic voltammetry. Free salt IL-GPEs present distinct behavior because they are influenced by the different IL cations and anions composition. However, inclusion of ZnTf2 salt inside the polymers provide GPEs with very similar characteristics, pointing out that ionic transport properties are principally caused by Zn2+ and triflate movement. Whatever the IL used, the presence of NMP solvent inside the polymer’s matrix turns out to be a key factor for improving the Zn2+ transport inside the GPE due to the interaction between Zn2+ cations and carbonyl groups of the NMP. High values of ionic conductivity, low activation energy values, and good voltammetric reversibility obtained regardless of the ionic liquid used enable these GPEs to be applied in Zn batteries. Capacities of 110–120 mAh·g−1 have been obtained for Zn/IL-GPE/MnO2 batteries discharged at −1 mA·cm−2. PMID:26610580

  9. Polymer Composites for Intelligent Food Packaging

    NASA Astrophysics Data System (ADS)

    He, Jiating; Yap, Ray Chin Chong; Wong, Siew Yee; Li, Xu

    2015-09-01

    Over the last 50 years, remarkable improvements in mechanical and barrier properties of polymer composites have been realized. Their improved properties have been widely studied and employed for food packaging to keep food fresh, clean and suitable for consumption over sufficiently long storage period. In this paper, the current progress of science and technology development of polymer composites for intelligent food packaging will be highlighted. Future directions and perspectives for exploring polymer composites for intelligent food packaging to reveal freshness and quality of food packaged will also be put forward.

  10. Complex Multifunctional Polymer/Carbon-Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Patel, Pritesh; Balasubramaniyam, Gobinath; Chen, Jian

    2009-01-01

    A methodology for developing complex multifunctional materials that consist of or contain polymer/carbon-nanotube composites has been conceived. As used here, "multifunctional" signifies having additional and/or enhanced physical properties that polymers or polymer-matrix composites would not ordinarily be expected to have. Such properties include useful amounts of electrical conductivity, increased thermal conductivity, and/or increased strength. In the present methodology, these properties are imparted to a given composite through the choice and processing of its polymeric and CNT constituents.

  11. Synthesis and characterization of alkaline polyvinyl alcohol and poly(epichlorohydrin) blend polymer electrolytes and performance in electrochemical cells

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Lin, Sheng-Jen; Hsu, Sung-Ting

    Alkaline SPE was obtained from a blend of polyvinyl alcohol (PVA) and poly(epichlorohydrin) (PECH), PVA-PECH, by a solution-cast technique. The PVA host polymer is blended with PECH polymer to provide a polymer electrolyte with improved chemical and mechanical properties. The ionic conductivity of the PVA-PECH polymer electrolytes is between 10 -2 and 10 -3 S cm -1 at room temperature when the blend ratio is varied from 1:0.2 to 1:1. The PVA-PECH polymer was characterized by means of scanning electron microscopy, X-ray diffraction, stress-strain test, cyclic voltammetry, and a.c. impedance spectroscopy. It is found that the polymer electrolytes exhibit good mechanical strength and excellent chemical stability. The electrochemical performance of solid-state Zn-air batteries with various types of the blended polymer electrolyte films is examined by a galvanostatic discharge method.

  12. Ionic conduction properties of PVDF-HFP type gel polymer electrolytes with lithium imide salts

    SciTech Connect

    Saito, Yuria; Kataoka, Hiroshi; Capiglia, C.; Yamamoto, Hitoshi

    2000-03-09

    Conduction properties of gel polymer electrolytes composed of lithium imide salts, LiN(CF{sub 3}SO{sub 2}){sub 2}, LiN(C{sub 2}F{sub 5}SO{sub 2}){sub 2}, and PVDF-HFP copolymer were investigated using the pulsed-field gradient NMR and complex impedance techniques. The diffusion coefficients of the gel decreased with an increase in the polymer fraction in the gel. Carrier concentration exhibited 3 orders of magnitude variation in the fraction change in polymer from 80% to 20%. These results suggest that the polymer interacts with the electrolyte to affect the carrier concentration and mobility of the gel electrolytes. The interactive effect of polymer would be detected in the measurements of spin-lattice relaxation time (T{sub 1}). The deviation of the symmetric curve of the temperature dependence of T{sub 1} could be divided into two components, one was consistent with the component of solution and independent of the polymer fraction and the other depended on the polymer fraction in the gel.

  13. Mechanics of biological polymer composites

    NASA Astrophysics Data System (ADS)

    Lomakin, Joseph

    2009-12-01

    Cartilage and cuticle are two natural materials capable of remarkable mechanical performance, especially considering the limitations on composition and processing conditions under which they are constructed. Their impressive properties are postulated to be a consequence of their complex multi-scale organization which has commonly been characterized by biochemical and microscopic methods. The objective of this dissertation is to overcome the limitations of such methods with mechanical analysis techniques generally reserved for the study of synthetic polymers. Methods for transient and dynamic mechanical analysis (DMA) of porcine TMJ disc sections and Tribolium castaneum and Tenebrio molitor elytral (modified forewing) cuticle were developed to characterize the mechanical performance of these biomaterials. The TMJ disc dynamic elastic modulus (E') was determined to be a strong function of disc orientation and pretension ranging from 700+/-240 kPa at (1g pretension) in the mediolateral direction to 73+/-8.5 MPa (150g preload) in the anteroposterior direction. Analogous mechanical testing was used to understand the relationship between composition and mechanical properties of beetle elytral cuticle at variable stages of maturation (tanning). Untanned elytra of both beetle species were ductile with a Young's modulus (E) of 44+/-8 MPa, but became brittle with an E of 2400+/-1100 MPa when fully tanned. Significantly, the E' of the TMJ disc and elytral cuticle exhibited a weak power law increase as a function of oscillation frequency. The exponent of the power law fit ( n) was determined to be a sensitive measure of molecular structure within these biomaterials. With increasing cuticular tanning, more so than with drying, the frequency dependence of cuticle E' diminished, suggesting cuticular cross-linking was an important component of tanning, as postulated by the quinone tanning hypothesis. The natural Black phenotype as well as TcADC iRNA suppressed Tribolium cuticle

  14. Effect of Applied Potential on the Electrochemical Deposition of Styrene-Butadiene Co-Polymer Based Conducting Polymer Composite

    NASA Astrophysics Data System (ADS)

    Mathew, Anisha Mary; Neena, P.

    2011-10-01

    Homogeneous conducting polymer composite films with improved electrical properties are synthesized via electrochemical polymerization of polyaniline on Styrene butadiene rubber coated steel electrode. The electrochemical polymerization is carried out by potentiostatic method using an aqueous solution of 0.2 M aniline and 1.5 M sulphuric acid as electrolyte in a single compartment electrochemical cell. The optical studies show successful incorporation of polyaniline into the matrix polymer film. The effect of applied potential on the electrodeposition of composite is studied by cyclic voltammetry and by impedance spectroscopic measurements.

  15. Preparation and properties of carbon nanotube-reinforced vinyl ester/nanocomposite bipolar plates for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Liao, Shu-Hang; Hung, Chih-Hung; Ma, Chen-Chi M.; Yen, Chuan-Yu; Lin, Yu-Feng; Weng, Cheng-Chih

    Novel multiwalled carbon nanotubes (MWNTs) were prepared using poly(oxypropylene)-backboned diamines of molecular weights M w 400 and 2000 to disperse acid-treated MWNTs, improving the performance of composite bipolar plates in polymer electrolyte membrane fuel cells. A lightweight polymer composite bipolar plate that contained vinyl ester resin, graphite powder and MWNTs was fabricated using a bulk molding compound (BMC) process. Results demonstrate that the qualitative dispersion of MWNTs crucially determined the resultant bulk electrical conductivity, the mechanical properties and the physical properties of bipolar plates. The flexural strength of the composite bipolar plate with 1 phr of MWNTs was approximately 48% higher than that of the original composite bipolar plate. The coefficient of thermal expansion of the composite bipolar plate was reduced from 37.00 to 20.40 μm m -1 °C -1 by adding 1 phr of MWNTs, suggesting that the composite bipolar plate has excellent thermal stability. The porosity of the composite bipolar plate was also evaluated. Additionally, the bulk electrical conductivity of the composite bipolar plate with different MWNTs types and contents exceeds 100 S cm -1. The results of the polarization curves confirm that the addition of MWNTs leads to a significant improvement on the single cell performance.

  16. Anion-conducting polymer, composition, and membrane

    DOEpatents

    Pivovar, Bryan S.; Thorn, David L.

    2011-11-22

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  17. Anion-conducting polymer, composition, and membrane

    DOEpatents

    Pivovar, Bryan S.; Thorn, David L.

    2010-12-07

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  18. Anion-conducting polymer, composition, and membrane

    DOEpatents

    Pivovar, Bryan S.; Thorn, David L.

    2009-09-01

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  19. Anion-Conducting Polymer, Composition, and Membrane

    SciTech Connect

    Pivovar, Bryan S.; Thorn, David L.

    2008-10-21

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  20. Obtention and evaluation of polyethylene-based solid polymer electrolyte membranes fro hydrogen production

    NASA Astrophysics Data System (ADS)

    Masson, J. P.; Molina, R.; Roth, E.; Gaussens, G.; Lemaire, F.

    The fabrication and testing of a polyethylene-based solid polymer electrolyte for use in hydrogen production by water electrolysis are discussed. The fabrication process involves the radiation grafting of styrene groups onto a polyethylene matrix, followed by the chemical sulphonation of the resulting polymer. The membrane produced has exhibited resistivities as low as 60 ohm cm for a 1-mm thickness, and other properties of the same order of magnitude as those of the commercially available but more expensive Nafion 014 membrane. Life tests carried out at a current density of 2 kA/sq m in single-cell modules with 10-sq cm active surface have revealed no noticeable degradation in membrane mechanical or electrical properties after 3000 hours for membranes reinforced by an organic polymer fabric. The development of an electrolyzer specifically designed for operation with a solid polymer electrolyte is currently under way.

  1. Ionic arrest of segmental motion and emergence of spatio-temporal heterogeneity: A fluorescence investigation of (polyethylene glycol + electrolyte) composites

    NASA Astrophysics Data System (ADS)

    Guchhait, Biswajit; Biswas, Ranjit

    2013-03-01

    Temperature dependent steady state and time resolved fluorescence measurements have been performed to explore the interaction and dynamics in polymer-electrolyte composite of the following general formula: [0.85 PEG + 0.15{f KNO3+ (1-f) LiNO3}], with f denoting fraction of potassium ion in the 0.15 mol electrolyte present in the medium. Poly(ethylene glycol) with number-averaged molecular weight of 300 (PEG300) has been employed as polymer and C153 as the fluorescent probe. Substantial excitation wavelength dependence of probe fluorescence emission in presence of electrolyte suggests presence of spatial heterogeneity which vanishes either upon raising temperature or removing the electrolyte. This has been interpreted as arising from the cation-induced arrest of polymer segmental motion. Temporal heterogeneity in these composites is manifested via fractional viscosity dependence of average solvation and rotation rates of the dissolved probe. Viscosity decoupling of these rates in composites is found to depend on cation identity and is also reflected via the corresponding activation energies. The degree of decoupling differs between solvation and rotation, inducing an analogy to the observations made in deeply supercooled liquids. In addition, conformity to hydrodynamic predictions is recovered by measuring f dependent solute rotation at higher temperatures. Several complimentary but different experiments are suggested to re-examine the mechanism proposed here, based on the fluorescence results, for the emergence of spatio-temporal heterogeneity in these composites and its disappearance either in the absence of any electrolyte or at higher temperatures.

  2. Ionic relaxation in PEO/PVDF-HFP-LiClO4 blend polymer electrolytes: dependence on salt concentration

    NASA Astrophysics Data System (ADS)

    Das, S.; Ghosh, A.

    2016-06-01

    In this paper, we have studied the effect of LiClO4 salt concentration on the ionic conduction and relaxation in poly ethylene oxide (PEO) and poly (vinylidene fluoride hexafluoropropylene) (PVDF-HFP) blend polymer electrolytes, in which the molar ratio of ethylene oxide segments to lithium ions (R  =  EO: Li) has been varied between 3 and 35. We have observed two phases in the samples containing low salt concentrations (R  >  9) and single phase in the samples containing high salt concentrations (R  ⩽  9). The scanning electron microscopic images indicate that there exists no phase separation in the blend polymer electrolytes. The temperature dependence of the ionic conductivity shows two slopes corresponding to high and low temperatures and follows Arrhenius relation for the samples containing low salt concentrations (R  >  9). The conductivity relaxation as well as the structural relaxation has been clearly observed at around 104 Hz and 106 Hz for these concentrations of the blended electrolytes. However, a single conductivity relaxation peak has been observed for the compositions with R  ⩽  9. The scaling of the conductivity spectra shows that the relaxation mechanism is independent of temperature, but depends on salt concentration.

  3. Natural macromolecule based carboxymethyl cellulose as a gel polymer electrolyte with adjustable porosity for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Y. S.; Xiao, S. Y.; Li, M. X.; Chang, Z.; Wang, F. X.; Gao, J.; Wu, Y. P.

    2015-08-01

    A porous membrane of carboxymethyl cellulose (CMC) from natural macromolecule as a host of a gel polymer electrolyte for lithium ion batteries is reported. It is prepared, for the first time, by a simple non-solvent evaporation method and its porous structure is fine-adjusted by varying the composition ratio of the solvent and non-solvent mixture. The electrolyte uptake of the porous membrane based on CMC is 75.9%. The ionic conductivity of the as-prepared gel membrane saturated with 1 mol L-1 LiPF6 electrolyte at room temperature can be up to 0.48 mS cm-1. Moreover, the lithium ion transference in the gel membrane at room temperature is as high as 0.46, much higher than 0.27 for the commercial separator Celgard 2730. When evaluated by using LiFePO4 cathode, the prepared gel membrane exhibits very good electrochemical performance including higher reversible capacity, better rate capability and good cycling behaviour. The obtained results suggest that this porous polymer membrane shows great attraction to the lithium ion batteries requiring high safety, low cost and environmental friendliness.

  4. Polymer Matrix Composite Material Oxygen Compatibility

    NASA Technical Reports Server (NTRS)

    Owens, Tom

    2001-01-01

    Carbon fiber/polymer matrix composite materials look promising as a material to construct liquid oxygen (LOX) tanks. Based on mechanical impact tests the risk will be greater than aluminum, however, the risk can probably be managed to an acceptable level. Proper tank design and operation can minimize risk. A risk assessment (hazard analysis) will be used to determine the overall acceptability for using polymer matrix composite materials.

  5. Continuous process to produce lithium-polymer batteries

    DOEpatents

    Chern, T.S.H.; Keller, D.G.; MacFadden, K.O.

    1998-05-12

    Solid polymer electrolytes are extruded with active electrode material in a continuous, one-step process to form composite electrolyte-electrodes ready for assembly into battery cells. The composite electrolyte electrode sheets are extruded onto current collectors to form electrodes. The composite electrodes, as extruded, are electronically and ionically conductive. The composite electrodes can be over coated with a solid polymer electrolyte, which acts as a separator upon battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte separator has low resistance. 1 fig.

  6. Continuous process to produce lithium-polymer batteries

    DOEpatents

    Chern, Terry Song-Hsing; Keller, David Gerard; MacFadden, Kenneth Orville

    1998-01-01

    Solid polymer electrolytes are extruded with active electrode material in a continuous, one-step process to form composite electrolyte-electrodes ready for assembly into battery cells. The composite electrolyte-electrode sheets are extruded onto current collectors to form electrodes. The composite electrodes, as extruded, are electronically and ionically conductive. The composite electrodes can be overcoated with a solid polymer electrolyte, which acts as a separator upon battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte separator has low resistance.

  7. Polymer electrolytes based on sulfonated polysulfone for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Lufrano, F.; Baglio, V.; Staiti, P.; Arico', A. S.; Antonucci, V.

    This paper reports the development and characterization of sulfonated polysulfone (SPSf) polymer electrolytes for direct methanol fuel cells. The synthesis of sulfonated polysulfone was performed by a post sulfonation method using trimethyl silyl chlorosulfonate as a mild sulfonating agent. Bare polysulfone membranes were prepared with two different sulfonation levels (60%, SPSf-60 and 70%, SPSf-70), whereas, a composite membrane of SPSf-60 was prepared with 5 wt% silica filler. These membranes were investigated in direct methanol fuel cells (DMFCs) operating at low (30-40 °C) and high temperatures (100-120 °C). DMFC power densities were about 140 mW cm -2 at 100 °C with the bare SPSf-60 membrane and 180 mW cm -2 at 120 °C with the SPSf-60-SiO2 composite membrane. The best performance achieved at ambient temperature using a membrane with high degree of sulfonation (70%, SPSf-70) was 20 mW cm -2 at atmospheric pressure. This makes the polysulfone-based DMFC suitable for application in portable devices.

  8. Development of catalytically active and highly stable catalyst supports for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Taekeun; Xie, Tianyuan; Jung, Wonsuk; Gadala-Maria, Francis; Ganesan, Prabhu; Popov, Branko N.

    2015-01-01

    Novel procedures are developed for the synthesis of highly stable carbon composite catalyst supports (CCCS-800 °C and CCCS-1100 °C) and an activated carbon composite catalyst support (A-CCCS). These supports are synthesized through: (i) surface modification with acids and inclusion of oxygen groups, (ii) metal-catalyzed pyrolysis, and (iii) chemical leaching to remove excess metal used to dope the support. The procedure results in increasing carbon graphitization and inclusion of non-metallic active sites on the support surface. Catalytic activity of CCCS indicates an onset potential of 0.86 V for the oxygen reduction reaction (ORR) with well-defined kinetic and mass-transfer regions and ∼2.5% H2O2 production in rotating ring disk electrode (RRDE) studies. Support stability studies at 1.2 V constant potential holding for 400 h indicate high stability for the 30% Pt/A-CCCS catalyst with a cell potential loss of 27 mV at 800 mA cm-2 under H2-air, 32% mass activity loss, and 30% ECSA loss. Performance evaluation in polymer electrolyte membrane (PEM) fuel cell shows power densities (rated) of 0.18 and 0.23 gPt kW-1 for the 30% Pt/A-CCCS and 30% Pt/CCCS-800 °C catalysts, respectively. The stabilities of various supports developed in this study are compared with those of a commercial Pt/C catalyst.

  9. Conductor-polymer composite electrode materials

    DOEpatents

    Ginley, D.S.; Kurtz, S.R.; Smyrl, W.H.; Zeigler, J.M.

    1984-06-13

    A conductive composite material useful as an electrode, comprises a conductor and an organic polymer which is reversibly electrochemically dopable to change its electrical conductivity. Said polymer continuously surrounds the conductor in intimate electrical contact therewith and is prepared by electrochemical growth on said conductor or by reaction of its corresponding monomer(s) on said conductor which has been pre-impregnated or pre-coated with an activator for said polymerization. Amount of the conductor is sufficient to render the resultant composite electrically conductive even when the polymer is in an undoped insulating state.

  10. Electrical Properties of Gamma Irradiated PVdF Based Polymer Electrolytes

    SciTech Connect

    Ayoub, N.; Amin, Y. M.; Arof, A. K.

    2010-07-07

    The effect of different doses of {gamma}-irradiation on the conductivity of PVdF-LiPF{sub 6} solid polymer electrolyte (SPE) was investigated at room temperature. The dielectric constant and loss are seen to increase with increasing radiation doses.

  11. Status of the development of solid polymer electrolyte water electrolysis for large scale hydrogen generation

    NASA Astrophysics Data System (ADS)

    Russell, J. H.

    1982-02-01

    Solid polymer electrolyte water electrolysis for large scale hydrogen generation is reported. The program was aimed at performance improvement. Reductions in cell impedance were demonstrated which improve cell performance by over 100 mV. A prototype 500 SCFH system for field evaluation was developed.

  12. An update of solid polymer electrolyte water electolysis programs at General Electric

    NASA Astrophysics Data System (ADS)

    Russell, J. H.

    At the previous two world hydrogen energy conferences in 1976 and 1978 the status of General Electric solid polymer electrolyte water electrolysis development program for large scale hydrogen generator was presented (Nuttall 1976, 1978). This paper updates the progress of this ongoing development program and also describes several new associated programs aimed at gaining early field experience on prototype systems.

  13. Highly conductive polymer electrolyte membranes modified with polyethylene glycol-bis-carbamate

    NASA Astrophysics Data System (ADS)

    Fu, Guopeng; Dempsey, Janel; Kyu, Thein

    By virtue of its non-flammability and chemical stability, polyethylene glycol (PEG) networks have shown potential application in all solid-state polymer electrolyte membranes (PEM). However, room temperature ionic conductivity of these PEG based PEMs is inherently low. Plasticization of these PEMs is needed to improve the ionic conductivity. It was demonstrated by this group that small-molecule plasticizers such as succinonitrile, ethylene carbonate, or urea-carbamate can boost ionic conductivity of solid-state polymer electrolyte membranes. Polyethylene glycol bis-carbamate (PEGBC) was synthesized via condensation reaction of polyethylene glycol diamine and ethylene carbonate. The PEGBC modified PEM has shown higher ionic conductivity relative to the unmodified PEM. Moreover, PEGBC modified PEM has a better thermal stability relative to ethylene carbonate based liquid electrolyte with enhanced ionic conductivity. Supported by NSF-DMR 1161070, 1502543 and REU 1359321.

  14. The change in dielectric constant, AC conductivity and optical band gaps of polymer electrolyte film: Gamma irradiation

    SciTech Connect

    Raghu, S. Subramanya, K. Sharanappa, C. Mini, V. Archana, K. Sanjeev, Ganesh Devendrappa, H.

    2014-04-24

    The effects of gamma (γ) irradiation on dielectric and optical properties of polymer electrolyte film were investigated. The dielectric constant and ac conductivity increases with γ dose. Also optical band gap decreased from 4.23 to 3.78ev after irradiation. A large dependence of the polymer properties on the irradiation dose was noticed. This suggests that there is a possibility of improving polymer electrolyte properties on gamma irradiation.

  15. Optimized performance of quasi-solid-state DSSC with PEO-bismaleimide polymer blend electrolytes filled with a novel procedure.

    PubMed

    Lee, Dong Ha; Sun, Kyung Chul; Qadir, Muhammad Bilal; Jeong, Sung Hoon

    2014-12-01

    Dye-sensitized solar cell (DSSC) is an attractive renewable energy technology currently under intense investigation. Electrolyte plays an important role in the photovoltaic performance of the DSSCs and many efforts have been contributed to study different kinds of electrolytes with various characteristics such as liquid electrolytes, polymer electrolytes and so on. In this study, DSSC is developed by using quasi-solid electrolyte and a novel procedure is adopted for filling this electrolyte. The quasi-solid-state electrolyte was prepared by mixing Poly ethylene oxide (PEO) and bismaleimide together and constitution was taken as PEO (15 wt%) at various bismaleimide concentrations (1, 3, 5 wt%). The novel procedure of filling electrolyte consists of three major steps (first step: filling liquid electrolyte, second step: vaporization of liquid electrolyte, third step: refilling quasi-solid-state electrolyte). The electrochemical and photovoltaic performances of DSSCs with these electrolytes were also investigated. The electrochemical impedance spectroscopy (EIS) indicated that TiO2/Dye/electrolyte impedance is reduced and electron lifetime is increased, and consequently efficiency of cell has been improved after using this novel procedure. The photovoltaic power conversion efficiency of 6.39% has been achieved under AM 1.5 simulated sunlight (100 W/cm2) through this novel procedure and by using specified blend of polymers. PMID:25971069

  16. Electrical analysis of amorphous corn starch-based polymer electrolyte membranes doped with LiI

    NASA Astrophysics Data System (ADS)

    Shukur, M. F.; Ibrahim, F. M.; Majid, N. A.; Ithnin, R.; Kadir, M. F. Z.

    2013-08-01

    In this work, polymer electrolytes have been prepared by doping starch with lithium iodide (LiI). The incorporation of 30 wt% LiI optimizes the room temperature conductivity of the electrolyte at (1.83 ± 0.47) × 10-4 S cm-1. Further conductivity enhancement to (9.56 ± 1.19) × 10-4 S cm-1 is obtained with the addition of 30 wt% glycerol. X-ray diffraction analysis indicates that the conductivity enhancement is due to the increase in amorphous content. The activation energy, Ea, of 70 wt% starch-30 wt% LiI electrolyte is 0.26 eV, while 49 wt% starch-21 wt% LiI-30 wt% glycerol electrolyte exhibits an Ea of 0.16 eV. Dielectric studies show that all the electrolytes obey non-Debye behavior. The power law exponent s is obtained from the variation of dielectric loss, ɛi, with frequency at different temperatures. The conduction mechanism of 70 wt% starch-30 wt% LiI electrolyte can be explained by the correlated barrier hopping model, while the conduction mechanism for 49 wt% starch-21 wt% LiI-30 wt% glycerol electrolyte can be represented by the quantum mechanical tunneling model.

  17. Structural and transport properties of PVC blend PEG doped with Mg(ClO4)2 solid polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Ramesh, C. H.; Reddy, M. Jaipal; Kumar, J. Siva; Reddy, K. Narasimha

    2014-04-01

    An attempt was made to investigate the effect of Mg(ClO4)2 concentration in PVC-PEG blend polymer electrolyte system. Solid polymer electrolyte films of PVC-PEG-Mg(ClO4)2 have been prepared by using solution - casting process. Structural and transport properties have been studied by employing experimental tools like XRD, FT-IR and DC electrical conductivity. The XRD, FTIR studies were confirmed the formation of a polymer-salt complex. The conductivity results indicated that the incorporation of Mg(ClO4)2 salt into PVC-PEG polymer; at low concentrations the increase in the conductivity is large, but at higher concentrations the increase in conductivity is modest. Using this electrolyte, an electrochemical cells have been fabricated with the configuration Mg/ (PVC-PEG-Mg(ClO4)2) electrolyte / (I2 + C + electrolyte) and its discharge characteristics were determined.

  18. Ferroelectric Polymer Composite with Enhanced Breakdown Strength

    NASA Astrophysics Data System (ADS)

    Han, Kuo; Gadinski, Matthew; Wang, Qing

    2013-03-01

    Numerous efforts have been made in the past decades to improve the energy storage capability of dielectric capacitors by incorporating ceramic addictives into polymers. Ferroelectric polymers have been particularly interesting as matrix for dielectric composites because of their highest dielectric permittivity and energy density. However, most polymer composites suffer from significantly reduced breakdown strength, which compromises the potential gain in energy density. In this work, various metallic alkoxide were introduced into the functionalized ferroelectric poly(vinylidene fluoride-co- chlorotrifluoroethylene), P(VDF-CTFE), via covalent bonding. The composite with the optimized composition exhibited the Weibull statistical breakdown strength of 504.8 MV/m, 67.6 % higher than the pristine polymer. The enhanced breakdown strength was mainly ascribed to the cross-linking and the formation of deep traps, which effectively reduced the conduction and further lowered the energy loss. Additionally, the homogeneous dispersion of the inorganic phase and the small contrast in permittivity between the polymer and amorphous oxides also contribute to the improved dielectric strength. The dielectric spectra of the composites have been recorded at varied temperatures and frequencies, which revealed the presence of the interfacial polarization layer in the composites.

  19. Nanomaterials for Polymer Electrolyte Membrane Fuel Cells; Materials Challenges Facing Electrical Energy Storate

    SciTech Connect

    Gopal Rao, MRS Web-Editor; Yury Gogotsi, Drexel University; Karen Swider-Lyons, Naval Research Laboratory

    2010-08-05

    Symposium T: Nanomaterials for Polymer Electrolyte Membrane Fuel Cells Polymer electrolyte membrane (PEM) fuel cells are under intense investigation worldwide for applications ranging from transportation to portable power. The purpose of this seminar is to focus on the nanomaterials and nanostructures inherent to polymer fuel cells. Symposium topics will range from high-activity cathode and anode catalysts, to theory and new analytical methods. Symposium U: Materials Challenges Facing Electrical Energy Storage Electricity, which can be generated in a variety of ways, offers a great potential for meeting future energy demands as a clean and efficient energy source. However, the use of electricity generated from renewable sources, such as wind or sunlight, requires efficient electrical energy storage. This symposium will cover the latest material developments for batteries, advanced capacitors, and related technologies, with a focus on new or emerging materials science challenges.

  20. Use of polymer/ionic liquid plasticizers as gel electrolytes in electrochromic devices

    NASA Astrophysics Data System (ADS)

    Bircan, H.; Seshadri, V.; Padilla, J.; Invernale, M.; Otero, T. F.; Sotzing, G. A.

    2008-08-01

    The dual polymer configuration is commonly used when constructing electrochromic devices (ECDs) due to the expected electrochemical stability and enhanced optical properties. In this configuration, two different polymers are used which are optically complementary. Herein we report the construction and characterization of dual-type ECDs using poly(3, 4-ethylenedioxythiophene) (PEDOT) and poly[3, 6-bis(2-(3, 4-ethylenedioxy)thienyl)-N-methylcarbazole] (PBEDOT-NMCz) as the two complementary electrochromic polymers for the device. A variety of gel electrolyte solutions were prepared and evaluated for these devices. The use of ionic liquids within these gels imparted interesting properties, including long lifetimes, and thermal stability of devices. Switching speeds for the various devices, as well as optical contrasts, were also obtained for the gel electrolytes containing different amounts of ionic liquid as plasticizer.

  1. Fracture toughness testing of polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    1992-01-01

    The experimental techniques and associated data analysis methods used to measure the resistance to interlaminar fracture, or 'fracture toughness', of polymer matrix composite materials are described. A review in the use of energy techniques to characterize fracture behavior in elastic solids is given. An overview is presented of the types of approaches employed in the design of delamination-resistant composite materials.

  2. Aqueous vinylidene fluoride polymer coating composition

    NASA Technical Reports Server (NTRS)

    Bartoszek, Edward J. (Inventor); Christofas, Alkis (Inventor)

    1978-01-01

    A water-based coating composition which may be air dried to form durable, fire resistant coatings includes dispersed vinylidene fluoride polymer particles, emulsified liquid epoxy resin and a dissolved emulsifying agent for said epoxy resin which agent is also capable of rapidly curing the epoxy resin upon removal of the water from the composition.

  3. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    DOEpatents

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2015-07-21

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  4. Cellulose nanocrystal-based composite electrolyte with superior dimensional stability for alkaline fuel cell membranes

    DOE PAGESBeta

    Lu, Yuan; Artmentrout, Aaron A.; Li, Juchuan; Tekinalp, Halil L.; Nanda, Jagjit; Ozcan, Soydan

    2015-05-13

    Cellulose nanocrystal (CNC)-based composite films were prepared as a solid electrolyte for alkaline fuel cells. Poly (vinyl alcohol) (PVA) and silica gel hybrid was used to bind the CNCs to form a robust composite film. The mass ratio (i.e., 1 : 1, 1 : 2) of PVA and silica gel was tuned to control the hydrophobicity of the resulting films. Composite films with a range of CNC content (i.e., 20 to 60%) were prepared to demonstrate the impact of CNC on the performance of these materials as a solid electrolyte for alkaline fuel cells. Different from previously reported cross-linked polymermore » films, CNC-based composite films with 40% hydrophobic binder (i.e., PVA : silica gel=1 : 2) exhibited simultaneous low water swelling (e.g., ~5%) and high water uptake (e.g., ~80%) due to the hydrophilicity and extraordinary dimensional stability of CNC. It also showed a conductivity of 0.044 and 0.065 S/cm at 20 and 60 oC, respectively. To the best of our knowledge, the film with 60% CNC and 40% binder is characterized by the lowest hydroxide conductivity-normalized swelling ratio. Decreased CNC content (i.e., 40 and 20%) resulted in comparable hydroxide conductivity but a greater swelling ratio. These results demonstrate the advantage of CNC as a key component for a solid electrolyte for alkaline fuel cells over conventional polymers, suggesting the great potential of CNCs in improving the dimensional stability while maintaining the conductivity of existing anion exchange membranes.« less

  5. Ionic Liquid-Based Polymer Electrolytes via Surfactant-Assisted Polymerization at the Plasma-Liquid Interface.

    PubMed

    Tran, Quoc Chinh; Bui, Van-Tien; Dao, Van-Duong; Lee, Joong-Kee; Choi, Ho-Suk

    2016-06-29

    We first report an innovative method, which we refer to as interfacial liquid plasma polymerization, to chemically cross-link ionic liquids (ILs). By this method, a series of all-solid state, free-standing polymer electrolytes is successfully fabricated where ILs are used as building blocks and ethylene oxide-based surfactants are employed as an assisted-cross-linking agent. The thickness of the films is controlled by the plasma exposure time or the ratio of surfactant to ILs. The chemical structure and properties of the polymer electrolyte are characterized by scanning electron microscopy (SEM), Fourier transformation infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), and electrochemical impedance spectroscopy (EIS). Importantly, the underlying polymerization mechanism of the cross-linked IL-based polymer electrolyte is studied to show that fluoroborate or halide anions of ILs together with the aid of a small amount of surfactants having ethylene oxide groups are necessary to form cross-linked network structures of the polymer electrolyte. The ionic conductivity of the obtained polymer electrolyte is 2.28 × 10(-3) S·cm(-1), which is a relatively high value for solid polymer electrolytes synthesized at room temperature. This study can serve as a cornerstone for developing all-solid state polymer electrolytes with promising properties for next-generation electrochemical devices. PMID:27281115

  6. Polymer Composites Corrosive Degradation: A Computational Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon

    2007-01-01

    A computational simulation of polymer composites corrosive durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured pH factor and is represented by voids, temperature and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.

  7. Solid polymer electrolytes for lithium ion batteries: Preparation and electrochemical evaluation

    NASA Astrophysics Data System (ADS)

    Zhang, Hanjun

    Three types of composite solid polymer electrolytes based on polyethylene oxide (PEO) have been developed to enhance lithium ion conductivities at ambient temperatures: (i) composites of PEO(600K) and a ceramic filler, silanated silica; and (ii) blends of either PEO(600K) or methylcellulose, and POSS-PEO(n=4) 8. Plain fumed silica was found to be an inert filler in PEO matrix, and did not improve the conductivity at any temperature. Silanated silica, surface modified fumed silica with an oligomeric PEO-silane, was found to be more compatible with the PEO matrix, decreased crystallinity of the matrix, and therefore moderately enhanced the conductivity at ambient temperature. The temperature dependent conductivities of POSS-PEO(n)8, as a function of salt concentration for LiClO4 and LiN(CF 3CF2SO2)2, and the calorimetric properties of the electrolytes have been investigated. Glass transition temperatures, Tg, increased with increasing salt concentration and PEO chain length (n). The effect of anion on conductivity was also evaluated. At high temperatures, the less associative salts had greater conductivities. At low temperatures, the salts with lower Tg had higher conductivities. Solid polymer electrolytes prepared with LiClO4 and blends of POSS-PEO(n=4) 8 and PEO(600K) microphase separated into two amorphous phases (O/Li = 8/1 and 12/1), or a crystalline phase and two amorphous phases (O/Li = 16/1), and showed improved low temperature conductivities compared with PEO(600K). For O/Li = 12/1 and 16/1, improvements in conductivity were due to suppression of crystallization. However, the tendency of PEO(600K) to crystallize limited the amount of POSS-PEO(n=4)8 that could be incorporated into the blends. For O/Li = 8/1, only if the POSS-rich phase was the continuous phase, was there appreciable conductivity improvement. The highest RT conductivity, 8 x 10-6 S/cm, was obtained for a 60% POSS-PEO(n=4)8/40%PEO(600K)/LiClO4 (O/Li = 12/1) blend. POSS-PEO(n=4)8 and methyl

  8. In situ Poly(methyl methacrylate)/Graphene Composite Gel Electrolytes for Highly Stable Dye-Sensitized Solar Cells.

    PubMed

    Kang, Yu-il; Moon, Jun Hyuk

    2015-11-01

    Dye-sensitized solar cells (DSCs) with long-term stability are produced using polymer-gel electrolytes (PGEs). In this study, we introduce the formation of PGEs using in situ gelation with poly(methyl methacrylate) (PMMA) particles and graphene fillers that are pre-deposited on the counter electrodes. We obtain a high concentration PMMA-based PGEs (i.e., over 10 wt%). A DSC composed of a PMMA/graphene composite PGEs exhibits an 8.49% photon-to-electric conversion efficiency, which is comparable to conventional liquid electrolyte DSCs. This finding is attributed to increased ion diffusivity and conductivity of the PMMA-based PGEs resulting from the incorporation of graphene nanofillers. The PMMA-based PGE DSCs exhibit highly stable long-term efficiencies, maintaining up to 90% of their initial efficiency during thermal soaking, whereas the efficiencies of liquid electrolyte cells decrease significantly, by up to 60%. PMID:26471468

  9. Glass/polymer composites and methods of making

    DOEpatents

    Samuels, W. D.; Exarhos, Gregory J.

    1995-01-01

    The present invention relates to new glass/polymer composites and methods for making them. More specifically, the invention is glass/polymer composites having phases that are at the molecular level and thereby practicably indistinguishable. The invention further discloses making molecular phase glass/polymer composites by mixing a glass and a polymer in a compatible solvent.

  10. Glass/polymer composites and methods of making

    DOEpatents

    Samuels, W.D.; Exarhos, G.J.

    1995-06-06

    The present invention relates to new glass/polymer composites and methods for making them. More specifically, the invention is glass/polymer composites having phases that are at the molecular level and thereby practicably indistinguishable. The invention further discloses making molecular phase glass/polymer composites by mixing a glass and a polymer in a compatible solvent.

  11. High voltage electric double layer capacitor using a novel solid-state polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Sato, Takaya; Marukane, Shoko; Morinaga, Takashi; Kamijo, Toshio; Arafune, Hiroyuki; Tsujii, Yoshinobu

    2015-11-01

    We designed and fabricated a bipolar-type electric double layer capacitor (EDLC) with a maximum 7.5 V operating voltage using a new concept in solid electrolytes. A cell having a high operating voltage, that is free from liquid leakage and is non-flammable is achieved by a bipolar design utilizing a solid polymer electrolyte made up of particles in a three-dimensional array, such as crystals composed of 75 wt% of hybrid particles decorated with a concentrated ionic liquid polymer brush (PSiP) and 25wt% of an ionic liquid (IL). The resulting solid film had sufficient physical strength and a high enough ionic conductivity to function as an electrolyte. Solidification as well as ionic conduction is due to the regular array of PSiPs, thereby producing a high ion-conductivity from a networked path between cores containing an appropriate amount of IL as a plasticizer. The demonstration cell shows a relatively good cycle durability and rate properties up to a 10C discharge process. It also has a very small leakage current in continuous charging and better self-discharge properties, even at 60 °C, compared with conventional cells. This paper demonstrates the first successful fabrication of a bipolar EDLC in a simple structure using this novel polymer solid electrolyte.

  12. Relevance of Solvent Characteristics on Ion-Binding and the Structure Formation of Neutral Polymers in Electrolyte Solutions

    NASA Astrophysics Data System (ADS)

    Faiza Hakem, Ilhem; Lal, Jyotsana; Bockstaller, Michael

    2006-03-01

    Polymers carrying functional groups constituted of heteroatoms are omnipresent in biology and polymer technology, for example in the development of solid state polymer electrolytes. When dissolved in polar solvents, these polymers can coordinate ions that result in an effective transformation of the neutral polymer into a weakly charged polyelectrolyte as indicated by the characteristic changes in the polymers solution characteristics. In our contribution we discuss the implications of solvent characteristics -- i.e. dielectric constant and hydrogen bonding capacity -- and the ion-strength of the added electrolyte on the polymer-ion coordination as well as polymer solution characteristics. A mean-field model to predict the amount of ion-coordination is presented and validated for the particular case of poly(oxy ethylene)/salt solutions. The Random Phase Approximation (RPA) is applied to extract quantitative information about the coordination of ions to the polymer in solution from small-angle neutron scattering (SANS) data.

  13. Cross-linking of Ordered Pluronic/Ionic Liquid Blends for Solid Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Miranda, Daniel; Versek, Craig; Tuominen, Mark; Watkins, James; Russell, Thomas

    2012-02-01

    Ion gels were fabricated by cross-linking PPO-PEO-PPO triblock copolymers swollen in a room temperature ionic liquid (IL). The copolymers are modified by esterification to replace the terminal hydroxyl endgroups with methacrylate endgroups. This allows the copolymer/IL blends to be cross-linked by a UV cure, forming a gel. The strong interaction of the IL with the PEO block suppresses PEO crystallization which is necessary for good ion conduction. In addition, the interaction between the IL and PEO is strongly selective for PEO, strengthening microphase separation. Despite this, the low molecular weight copolymers remain disordered in the melt even when blended with the IL. However, high molecular weight copolymers are capable of microphase separating into highly ordered block copolymer morphologies. This difference allows the effect of microphase separation on ion transport to be studied. The effect of block copolymer composition is also studied, by varying the PEO fraction of the copolymer. The resultant gels show high ionic conductivity and solid-like behavior, indicating that these materials may be effective as solid polymer electrolytes.

  14. Characterization of conducting cellulose acetate based polymer electrolytes doped with "green" ionic mixture.

    PubMed

    Ramesh, S; Shanti, R; Morris, Ezra

    2013-01-01

    Polymer electrolytes were developed by solution casting technique utilizing the materials of cellulose acetate (CA), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and deep eutectic solvent (DES). The DES is synthesized from the mixture of choline chloride and urea of 1:2 ratios. The increasing DES content well plasticizes the CA:LiTFSI:DES matrix and gradually improves the ionic conductivity and chemical integrity. The highest conducting sample was identified for the composition of CA:LiTFSI:DES (28 wt.%:12 wt.%:60 wt.%), which has the greatest ability to retain the room temperature ionic conductivity over the entire 30 days of storage time. The changes in FTIR cage peaks upon varying the DES content in CA:LiTFSI:DES prove the complexation. This complexation results in the collapse of CA matrix crystallinity, observed from the reduced intensity of XRD diffraction peaks. The DES-plasticized sample is found to be more heat-stable compared to pure CA. Nevertheless, the addition of DES diminishes the CA:LiTFSI matrix's heat-resistivity but at the minimum addition the thermal stability is enhanced. PMID:23044100

  15. Enhanced stability of multilayer graphene-supported catalysts for polymer electrolyte membrane fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Marinkas, A.; Hempelmann, R.; Heinzel, A.; Peinecke, V.; Radev, I.; Natter, H.

    2015-11-01

    One of the biggest challenges in the field of polymer electrolyte membrane fuel cells (PEMFC) is to enhance the lifetime and the long-term stability of PEMFC electrodes, especially of cathodes, furthermore, to reduce their platinum loading, which could lead to a cost reduction for efficient PEMFCs. These demands could be achieved with a new catalyst support architecture consisting of a composite of carbon structures with significant different morphologies. A highly porous cathode catalyst support layer is prepared by addition of various carbon types (carbon black particles, multi-walled carbon nanotubes (MWCNT)) to multilayer graphene (MLG). The reported optimized cathodes shows extremely high durability and similar performance to commercial standard cathodes but with 89% lower Pt loading. The accelerated aging protocol (AAP) on the membrane electrode assemblies (MEA) shows that the presence of MLG increases drastically the durability and the Pt-extended electrochemical surface area (ECSA). In fact, after the AAP slightly enhanced performance can be observed for the MLG-containing cathodes instead of a performance loss, which is typical for the commercial carbon-based cathodes. Furthermore, the presence of MLG drastically decreases the ECSA loss rate. The MLG-containing cathodes show up to 6.8 times higher mass-normalized Pt-extended ECSA compared to the commercial standard systems.

  16. Nano mineral fiber enhanced catalyst coated membranes for improving polymer electrolyte membrane fuel cell durability

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Xu, Ran; Mu, Shichun

    In order to protect the perfluorosulfonic acid (PFSA) ionomer from an attack of contaminant metal ions as well as to enhance the mechanical stability of catalyst layers, palygorskite (PGS) is introduced into the catalyst layer of polymer electrolyte membrane fuel cells. PGS is a widely used natural nano-sized silicate mineral fiber with unique nano-sized channel structure, has a strong absorption capacity for heavy metal ions. We identify a negative influence of Fe 2+ on PFSA membranes to make a comparative study. Subsequently catalyst coated membranes (CCMs) prepared with a PGS-Pt/C composite catalyst show a great effect in reducing Fe 2+ ion crossover. Results display that PGS absorbs Fe 2+ in nano-structure channels, and effectively protect PFSA ionomer in both the catalyst layer and membrane from hydroxyl radicals (OH rad) attack. Thus, the chemical stability of PFSA ionomer in both the catalyst layer and membrane is greatly improved. Furthermore, the enhancement of the mechanical performance of catalyst layers is discussed.

  17. Small angle neutron scattering data of polymer electrolyte membranes partially swollen in water

    PubMed Central

    Zhao, Yue; Yoshida, Miru; Oshima, Tatsuya; Koizumi, Satoshi; Rikukawa, Masahiro; Szekely, Noemi; Radulescu, Aurel; Richter, Dieter

    2016-01-01

    In this article, we show the small-angle neutron scattering (SANS) data obtained from the polymer electrolyte membranes (PEMs) equilibrated at a given relative humidity. We apply Hard-Sphere (HS) structure model with Percus–Yervick interference interactions to analyze the dataset. The molecular structure of these PEMs and the morphologies of the fully water-swollen membranes have been elucidated by Zhao et al. “Elucidation of the morphology of the hydrocarbon multi-block copolymer electrolyte membranes for proton exchange fuel cells” [1]. PMID:27054164

  18. Temperature dependence of conductivity enhancement induced by nanoceramic fillers in polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Gao, S.; Yan, X. L.; Zhong, J.; Xue, G. B.; Wang, B.

    2013-04-01

    The microstructure and ionic conductivity of polymer nanocomposite electrolytes doped with ZnO have been systematically studied. Compared with the undoped one, a less crystalline phase, a restrained main chain movement, a reduced symmetry in the configuration of ethylene oxide/lithium ion, and an at least five-fold increase in conductivity were observed for the filler incorporated electrolyte. Lewis acid-base interactions are determining in causing these changes. The temperature dependence of conductivity is explained by the Vogel-Tammann-Fulcher equation based on the free volume theory. The mechanism of temperature dependent conductivity enhancement is interpreted by a modeling function proposed.

  19. Small angle neutron scattering data of polymer electrolyte membranes partially swollen in water.

    PubMed

    Zhao, Yue; Yoshida, Miru; Oshima, Tatsuya; Koizumi, Satoshi; Rikukawa, Masahiro; Szekely, Noemi; Radulescu, Aurel; Richter, Dieter

    2016-06-01

    In this article, we show the small-angle neutron scattering (SANS) data obtained from the polymer electrolyte membranes (PEMs) equilibrated at a given relative humidity. We apply Hard-Sphere (HS) structure model with Percus-Yervick interference interactions to analyze the dataset. The molecular structure of these PEMs and the morphologies of the fully water-swollen membranes have been elucidated by Zhao et al. "Elucidation of the morphology of the hydrocarbon multi-block copolymer electrolyte membranes for proton exchange fuel cells" [1]. PMID:27054164

  20. [Synthesis and Characterization of a Sugar Based Electrolyte for Thin-film Polymer Batteries

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The work performed during the current renewal period, March 1,1998 focused primarily on the synthesis and characterization of a sugar based electrolyte for thin-film polymer batteries. The initial phase of the project involved developing a suitable sugar to use as the monomer in the polymeric electrolyte synthesis. The monomer has been synthesized and characterized completely. Overall the yield of this material is high and it can be produced in relatively large quantity easily and in high purity. The scheme used for the preparation of the monomer is outlined along with pertinent yields.

  1. Development status of the General Electric solid polymer electrolyte water electrolysis technology

    NASA Astrophysics Data System (ADS)

    Nuttall, L. J.

    The solid polymer electrolyte used by the considered technology is a thin sheet (5 to 10 mil thickness) of a sulfonated fluoropolymer. It is a high strength plastic material which serves as the sole electrolyte, and also forms a rugged barrier between the hydrogen and oxygen chambers. The electrodes consist of a thin catalyst layer bonded to the surfaces of the plastic sheet. A description is presented of a 60-cell module, operating at the normal design point of 1000 amps per square foot. The module generates more than 2000 standard cubic feet per hour of hydrogen at a pressure of approximately 100 psig. Performance and cost projections are discussed.

  2. Preparation and characterization of nanocomposite polymer electrolytes poly(vinylidone fluoride)/nanoclay

    NASA Astrophysics Data System (ADS)

    Rahmawati, Suci A.; Sulistyaningsih, Putro, Alviansyah Z. A.; Widyanto, Nugroho F.; Jumari, Arif; Purwanto, Agus; Dyartanti, Endah R.

    2016-02-01

    Polymer electrolytes are defined as semi solid electrolytes used as separator in lithium ion battery. Separator used as medium for transfer ions and to prevent electrical short circuits in battery cells. To obtain the optimal battery performance, separator with high porosity and electrolyte uptake is required. This can reduce the resistance in the transfer of ions between cathode and anode. The main objective of this work is to investigate the impact of different solvent (Dimethyl acetamide (DMAc), N-methyl-2-pyrrolidone (NMP) and dimethyl formamide (DMF)), pore forming agent poly(vinylpyrolidone) (PVP) and nanoclay as filler in addition of membrane using phase inversion method on the morphology, porosity, electrolyte uptake and degree of crystallinity. The membrane was prepared by the phase inversion method by adding PVP and Nanoclay using different solvents. The phase inversion method was prepared by dissolving Nanoclay and PVP in solvent for 1-2 hours, and then add the PVDF with stirring for 4 hours at 60°C. The membranes were characterized by porosity test, electrolyte uptake test, scanning electron microscope (SEM), and X-ray diffraction (XRD). The results showed that DMAc as solvent gives the highest value of porosity and electrolyte uptake. The addition of nanoclay and PVP enlarge the size of the pores and reduce the degree of crystallinity. So, the usage of DMAc as solvent is better than NMP or DMF.

  3. 'All-solid-state' electrochemistry of a protein-confined polymer electrolyte film

    SciTech Connect

    Parthasarathy, Meera; Pillai, Vijayamohanan K. Mulla, Imtiaz S.; Shabab, Mohammed; Khan, M.I.

    2007-12-07

    Interfacial redox behavior of a heme protein (hemoglobin) confined in a solid polymer electrolyte membrane, Nafion (a perfluoro sulfonic acid ionomer) is investigated using a unique 'all-solid-state' electrochemical methodology. The supple phase-separated structure of the polymer electrolyte membrane, with hydrophilic pools containing solvated protons and water molecules, is found to preserve the incorporated protein in its active form even in the solid-state, using UV-visible, Fluorescence (of Tryptophan and Tyrosine residues) and DRIFT (diffuse reflectance infrared Fourier transform) spectroscopy. More specifically, solid-state cyclic voltammetry and electrochemical impedance of the protein-incorporated polymer films reveal that the Fe{sup 2+}-form of the entrapped protein is found to bind molecular oxygen more strongly than the native protein. In the 'all-solid-state' methodology, as there is no need to dip the protein-modified electrode in a liquid electrolyte (like the conventional electrochemical methods), it offers an easier means to study a number of proteins in a variety of polymer matrices (even biomimetic assemblies). In addition, the results of the present investigation could find interesting application in a variety of research disciplines, in addition to its fundamental scientific interest, including protein biotechnology, pharmaceutical and biomimetic chemistry.

  4. Development and Characterization of Poly(1-vinylpyrrolidone-co-vinyl acetate) Copolymer Based Polymer Electrolytes

    PubMed Central

    Sa'adun, Nurul Nadiah; Subramaniam, Ramesh; Kasi, Ramesh

    2014-01-01

    Gel polymer electrolytes (GPEs) are developed using poly(1-vinylpyrrolidone-co-vinyl acetate) [P(VP-co-VAc)] as the host polymer, lithium bis(trifluoromethane) sulfonimide [LiTFSI] as the lithium salt and ionic liquid, and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [EMImTFSI] by using solution casting technique. The effect of ionic liquid on ionic conductivity is studied and the optimum ionic conductivity at room temperature is found to be 2.14 × 10−6 S cm−1 for sample containing 25 wt% of EMImTFSI. The temperature dependence of ionic conductivity from 303 K to 353 K exhibits Arrhenius plot behaviour. The thermal stability of the polymer electrolyte system is studied by using thermogravimetric analysis (TGA) while the structural and morphological properties of the polymer electrolyte is studied by using Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction analysis (XRD), respectively. PMID:25431781

  5. Synthesis and characterization of polymer electrolyte membranes with controlled ion transport properties

    NASA Astrophysics Data System (ADS)

    Xu, Kui

    2011-12-01

    Ion-containing block copolymers hold promise as next-generation polymer electrolyte membrane (PEM) materials due to their capability to self-assemble into ordered nanostructures facilitating proton transport over a wide range of conditions. Ion-containing block copolymers, sulfonated poly(styrene- b-vinylidene fluoride-b-styrene), with varied degrees of sulfonation were synthesized. The synthetic strategy involved a new approach to chain-end functionalized poly(vinylidene fluoride) as a macro-initiator followed by atom transfer polymerization of styrene and sulfonation. Characterization of the polymers were extensively carried out by 1H and 19F nuclear magnetic resonance and Fouriertransform infrared spectroscopy, differential scanning calorimetry, and thermogravimetry analysis. Tapping mode atomic force microscopy and transmission electron microscopy were applied to study the phase separation and self-assembled morphology. Strong dependence of ion exchange capacity, water absorption, morphology and proton conductivity on the degree of sulfonation has been found. It has been observed that the conductivities of the block copolymers are considerably higher than the random copolymers of polystyrene and sulfonated polystyrene possessing similar ion exchange capacities. Copolymers of vinylidene fluoride and perfluoro(4-methyl-3,6-dioxane-7-ene) sulfonyl fluoride containing amino end-groups were synthesized for the first time. The prepared aminoterminated polymers underwent cross-linking reactions with 1,3,5-benzene triisocyanate to form proton conductive networks. The chain-end crosslinked fluoropolymer membranes exhibited excellent thermal, hydrolytic and oxidative stabilities. The ion exchange capacity, water uptake, the state of absorbed water, and transport properties of the membranes were found to be highly dependent upon the chemical composition of the copolymers. The cross-linked membranes showed extremely low methanol permeability, while maintaining high proton

  6. Dual phase polymer gel electrolyte based on non-woven poly(vinylidenefluoride-co-hexafluoropropylene)–layered clay nanocomposite fibrous membranes for lithium ion batteries

    SciTech Connect

    Shubha, Nageswaran; Prasanth, Raghavan; Hoon, Hng Huey; Srinivasan, Madhavi

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► P(VdF-co-HFP)–clay nanocomposite based electrospun membranes are prepared. ► The membranes are used as polymer gel electrolyte (PGE) in lithium ion batteries. ► The composite PGE shows ionic conductivity of 5.5 mS cm{sup −1} at room temperature. ► Li/PGE/LiFePO{sub 4} cell delivers initial discharge capacity of 160 mAh g{sup −1}. ► The use of prepared electrolyte significantly improved the cell performance. -- Abstract: A new approach for fabricating polymer gel electrolytes (PGEs) based on electrospun poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) incorporated with layered nanoclay has been employed to enhance the ionic conductivity and electrochemical properties of P(VdF-co-HFP) without compromising its mechanical strength. The effect of layered nanoclay on properties of membranes has been evaluated by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Surface morphology of the membranes has been studied using field-emission scanning electron microscopy (FE-SEM). Polymer gel electrolytes are prepared by soaking the fibrous membrane into 1 M LiPF{sub 6} in EC/DEC. The electrochemical studies show that incorporation of layered nanoclay into the polymer matrix greatly enhanced the ionic conductivity and compatibility with lithium electrodes. The charge–discharge properties and cycling performance of Li/LiFePO{sub 4} cells comprising nanocomposite polymer gel electrolytes have been evaluated at room temperature.

  7. Fast low-voltage electroactive actuators using nanostructured polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Kim, Onnuri; Shin, Tae Joo; Park, Moon Jeong

    2013-07-01

    Electroactive actuators have received enormous interest for a variety of biomimetic technologies ranging from robotics and microsensors to artificial muscles. Major challenges towards practically viable actuators are the achievement of large electromechanical deformation, fast switching response, low operating voltage and durable operation. Here we report a new electroactive actuator composed of self-assembled sulphonated block copolymers and ionic liquids. The new actuator demonstrated improvements in actuation properties over other polymer actuators reported earlier, large generated strain (up to 4%) without any signs of back relaxation. In particular, the millimetre-scale displacements obtained for the actuators, with rapid response (<1 s) at sub-1-V conditions over 13,500 cycles in air, have not been previously reported in the literature. The key to success stems from the evolution of the unique hexagonal structure of the polymer layer with domain size gradients beneath the cathode during actuation, which promotes the bending motion of the actuators.

  8. Polymer electrolyte-based Li ion batteries for space power

    NASA Astrophysics Data System (ADS)

    Abraham, K. M.; Choe, H. S.; Pasquariello, D. M.

    1997-01-01

    Polyacrylonitrile-based electrolytes have been identified to be appropriate for the fabrication of solid-state Li ion batteries. Prototype battery cells have been fabricated with spinel LiMn2O4 cathode and either a graphite or a petroleum coke anode. Lower capacity fade and longer cycle life were observed in the petroleum coke-based cells. A specific energy of >120 Wh/kg and a cycle life of >500 cycles at the C/3 rate have been demonstrated in these cells. The capacity fade rate in coke/LiMn2O4 cells has been found to be between 0.04 and 0.05% per cycle, about half of that in cells with the graphite anode.

  9. Anhydrous state proton and lithium ion conducting solid polymer electrolytes based on sulfonated bisphenol-A-poly(arylene ethers)

    NASA Astrophysics Data System (ADS)

    Guha Thakurta, Soma

    Sulfonated polymer based solid polymer electrolytes (SPEs) have received considerable interest in recent years because of their wide variety of applications particularly in fuel cells, batteries, supercapacitors, and electrochromic devices. The present research was focused on three interrelated subtopics. First, two different bisphenol-A-poly(arylene ethers), polyetherimide (PEI) and polysulfone (PSU) were sulfonated by a post sulfonation method to various degrees of sulfonation, and their thermal and mechanical properties were examined. The effects of poly(arylene ether) chemical structure, reaction time, concentration, and types of sulfonating agents on sulfonation reaction were investigated. It was found that deactivation of bisphenol A unit caused by the electron withdrawing imide, retarded the sulfonation of PEI compared to PSU. Sulfonation conducted with a high concentration of sulfonating agent and/or prolonged reaction time exhibited evidence of degradation at the isopropylidene unit. The degradation occurred through the same mechanistic pathway with the two different sulfonating agents, chlorosulfonic acid (CSA) and trimethylsilyl chlorosulfonate (TMSCS). The degradation was faster with CSA than its silyl ester, TMSCS, and was evident even at low acid concentration. Second, novel anhydrous proton conducting solid polymer electrolytes (SPEs) were prepared by the incorporation of 1H-1,2,4-triazole (Taz) as a proton solvent in sulfonated polyetherimide (SPEI) matrix. The size, shape, and state of dispersion (crystal morphology) of triazole crystals in SPEI were examined as a function of degree of sulfonation and triazole concentration. Increasing sulfonic acid content caused reduction of triazole crystallite size, hence the depression of melting temperature and their uniform distribution throughout the sulfonated polymer matrix. The increased rate of structure diffusion within the smaller size crystals due to the improved molecular mobility contributed

  10. Simultaneous improvement in ionic conductivity and flexibility of solid polymer electrolytes for thin film lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Ji, Jianying

    Solid polymer electrolytes (SPEs) provide advantages over liquid electrolytes in terms of safety, reliability, less temperature sensitive, and simplicity of design. With the use of a SPE in lithium batteries, high specific energy and specific power, safe operation, flexibility in packaging, and low cost of fabrication can be expected. However, after 30 years, SPEs have rarely found commercial success due to the low ionic conductivity and/or insufficient mechanical properties, both of which are related to the movement of the polymer chains. Many physical/chemical methods have been exploited to simultaneously create enhancement in ionic conductivity and mechanical properties, and some suggested ways have shown promise. However, the complex strategies have always introduced other challenge issues and incurred extra costs for manufacturing. In such a context, the development of dry solid state electrolytes is the central challenge to be faced worldwide. This thesis deals with the approaches to improving ionic conductivity and mechanical properties simultaneously. The method is to apply two kinds of controllable organic fillers: copolymer and protein. Our work revealed that the commercial available copolymer, poly (ethylene oxide)- block-polyethylene (PEO-b-PE), possesses a capability for enhancing the multiple performances of poly(ethylene oxide)(PEO)-based polymer electrolyte. And the effects of composition and molecular weight of the copolymers on performance of the resulting SPEs were examined. It was found that increasing the PE block percentage in the copolymer resulted in a significant increase in both ionic conductivity and mechanical properties, while increasing the molecular weight of the copolymer resulted in better mechanical properties, and an identical ionic conductivity. A rubber-like, soy protein-based SPE (s-SPE)was obtained by employing soy protein isolate (SPI), a soy product usually used as rigid fillers for enhancing mechanical properties of

  11. Metal oxide-polymer composites

    NASA Technical Reports Server (NTRS)

    Wellinghoff, Stephen T. (Inventor)

    1994-01-01

    A method of making metal oxide clusters in a single stage by reacting a metal oxide with a substoichiometric amount of an acid in the presence of an oxide particle growth terminator and solubilizer. A method of making a ceramer is also disclosed in which the metal oxide clusters are reacted with a functionalized polymer. The resultant metal oxide clusters and ceramers are also disclosed.

  12. Metal oxide-polymer composites

    NASA Technical Reports Server (NTRS)

    Wellinghoff, Stephen T. (Inventor)

    1997-01-01

    A method of making metal oxide clusters in a single stage by reacting a metal oxide with a substoichiometric amount of an acid in the presence of an oxide particle growth terminator and solubilizer. A method of making a ceramer is also disclosed in which the metal oxide clusters are reacted with a functionalized polymer. The resultant metal oxide clusters and ceramers are also disclosed.

  13. Electrolytes

    MedlinePlus

    ... part of blood that doesn't contain cells. Sodium, potassium, and chloride levels can also be measured as part of ... in urine. It test the levels of calcium, chloride, potassium, sodium, and other electrolytes.

  14. Electrolytes

    MedlinePlus

    ... part of blood that doesn't contain cells. Sodium, potassium, and chloride levels can also be measured as part of ... in urine. It test the levels of calcium, chloride, potassium, sodium, and other electrolytes. References Chernecky CC, Berger BJ. ...

  15. The influence of dispersed state on the structure and capability of the polymer electrolytes based on PVDF/PMMA

    NASA Astrophysics Data System (ADS)

    Yang, S. T.; Chen, H. J.; Jia, J. H.

    2002-12-01

    The polymer electrolyte which is firstly made by micro-wave inter-connect method and based on blended PVDF/PMMA and its conductivity is exceeding 10-3S · cm at room temperature. The result of polymer electrolytes that is dispersed by sub-micron SiO2 indicate that the mechanic intension is improved and the conductivity also improved. There is a new state with the test of the SEM and XRD and the non-crystal state of the polymer electrolytes have been improved after system adulteration which are favorable for the migration of Li+ and this is the expiation of the improvement of the conductivity of the polymer electrolytes.

  16. The NASA "PERS" Program: Solid Polymer Electrolyte Development for Advanced Lithium-Based Batteries

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.; Bennett, William R.

    2007-01-01

    In fiscal year 2000, The National Aeronautics and Space Administration (NASA) and the Air Force Research Laboratory (AFRL) established a collaborative effort to support the development of polymer-based, lithium-based cell chemistries and battery technologies to address the next generation of aerospace applications and mission needs. The ultimate objective of this development program, which was referred to as the Polymer Energy Rechargeable System (PERS), was to establish a world-class technology capability and U.S. leadership in polymer-based battery technology for aerospace applications. Programmatically, the PERS initiative exploited both interagency collaborations to address common technology and engineering issues and the active participation of academia and private industry. The initial program phases focused on R&D activities to address the critical technical issues and challenges at the cell level. Out of a total of 38 proposals received in response to a NASA Research Announcement (NRA) solicitation, 18 proposals (13 contracts and 5 grants) were selected for initial award to address these technical challenges. Brief summaries of technical approaches, results and accomplishments of the PERS Program development efforts are presented. With Agency support provided through FY 2004, the PERS Program efforts were concluded in 2005, as internal reorganizations and funding cuts resulted in shifting programmatic priorities within NASA. Technically, the PERS Program participants explored, to various degrees over the lifetime of the formal program, a variety of conceptual approaches for developing and demonstrating performance of a viable advanced solid polymer electrolyte possessing the desired attributes, as well as several participants addressing all components of an integrated cell configuration. Programmatically, the NASA PERS Program was very successful, even though the very challenging technical goals for achieving a viable solid polymer electrolyte material or

  17. Nb doped TiO2 as a Cathode Catalyst Support Material for Polymer Electrolyte Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    O'Toole, Alexander W.

    In order to reduce the emissions of greenhouse gases and reduce dependence on the use of fossil fuels, it is necessary to pursue alternative sources of energy. Transportation is a major contributor to the emission of greenhouse gases due to the use of fossil fuels in the internal combustion engine. To reduce emission of these pollutants into the atmosphere, research is needed to produce alternative solutions for vehicle transportation. Low temperature polymer electrolyte membrane fuel cells are energy conversion devices that provide an alternative to the internal combustion engine, however, they still have obstacles to overcome to achieve large scale implementation. T he following work presents original research with regards to the development of Nb doped TiO2 as a cathode catalyst support material for low temperature polymer electrolyte membrane fuel cells. The development of a new process to synthesize nanoparticles of Nb doped TiO2 with controlled compositions is presented as well as methods to scale up the process and optimize the synthesis for the aforementioned application. In addition to this, comparison of both electrochemical activity and durability with current state of the art Pt on high surface area carbon black (Vulcan XC-72) is investigated. Effects of the strong metal-support interaction on the electrochemical behavior of these materials is also observed and discussed.

  18. The Double-edged Impact of Platinum Nano-Deposits on the Durability of Polymer Electrolyte Membranes -- A Theoretical Study

    NASA Astrophysics Data System (ADS)

    Eslamibidgoli, Mohammad Javad; Melchy, Pierre-Éric Alix; Roudgar, Ata; Eikerling, Michael H.

    2014-03-01

    The attack of oxygen radicals is one of the main sources of chemical degradation in the polymer electrolyte membranes (PEM) of polymer electrolyte fuel cells. In this context, Pt in the membrane (PITM) that originates from Pt degradation in the cathode catalyst layer plays a double-edged role: surface reactions at PITM could facilitate the formation or quenching of radicals. The balance of these processes depends on the local electrochemical conditions, determined by thermodynamic parameters and local composition of the PEM. The objective of this work is to explore the equilibrium and kinetics of radical reactions at PITM as a function of local PEM conditions. We first determine the potential distribution of PITM based on a continuum model of crossover of reactant gases coupled with their local electrochemical reactions at Pt. Secondly, we determine the surface state of Pt for the given local potential using relevant experimental data and kinetic models of surface reactions at Pt. Lastly, we use this information as input for ab initio calculations at the DFT level of specific processes involved in the radical balance at the Pt | water interface. Ballard Power Systems, Automotive Partnership Canada.

  19. Temperature dependent dielectric properties and ion transportation in solid polymer electrolyte for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Sengwa, R. J.; Dhatarwal, Priyanka; Choudhary, Shobhna

    2016-05-01

    Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF4) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governed by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10-6 S cm-1 which suggests the suitability of the SPE film for rechargeable lithium batteries.

  20. Studies of plastic crystal gel polymer electrolytes based on poly(vinylidene chloride-co-acrylonitrile)

    NASA Astrophysics Data System (ADS)

    Hambali, D.; Zainuddin, Z.; Supa'at, I.; Osman, Z.

    2016-02-01

    In this work, we have prepared systems of poly(vinylidene chloride-co-acrylonitrile) (PVdC-co-AN) based gel polymer electrolytes (GPEs) which are single plasticized-GPEs and double plasticized-GPEs. Both systems comprised plastic crystal succinonitrile SN to form plastic crystal gel polymer electrolyte (PGPE) films. The ionic conductivity of the PGPE films were analysed by means of a.c. impedance spectroscopy at room temperature as well as at the temperature range of 303 K to 353 K. The temperature dependence ionic conductivity was found to obey the VTF rule. To study the interactions among the constituents in the PGPEs, Fourier Transform Infrared Spectroscopy (FTIR) was carried out and hence, the complexation between them has also been confirmed.

  1. An overview of polymer electrolyte membrane electrolyzer for hydrogen production: Modeling and mass transport

    NASA Astrophysics Data System (ADS)

    Abdol Rahim, A. H.; Tijani, Alhassan Salami; Kamarudin, S. K.; Hanapi, S.

    2016-03-01

    Polymer electrolyte membrane electrolyzer (PEME) is a candidate for advanced engineering technology. There are many polymer electrolyte membrane fuel cell (PEMFC) models that have been reported, but none regarding PEME. This paper presents state of the art mass transport models applied to PEME, a detailed literature review of these models and associate methods have been conducted. PEME models are typically developed using analytical, semi empirical and mechanistic techniques that are based on their state and spatial dimensions. Methods for developing the PEME models are introduced and briefly explained. Furthermore the model cell voltage of PEME, which consists of Nernst voltage, ohmic over potential, activation over potential, and diffusion over potential is discussed with focus on mass transport modeling. This paper also presents current issues encountered with PEME model.

  2. From polymer chemistry to membrane elaboration. A global approach of fuel cell polymeric electrolytes

    NASA Astrophysics Data System (ADS)

    Iojoiu, C.; Chabert, F.; Maréchal, M.; Kissi, N. El.; Guindet, J.; Sanchez, J.-Y.

    The paper tries to make a critical inventory of Ionomers, free of fluorine or fluorine less, which can be used as alternatives to Nafion ® in polymer electrolytes fuel cells, as Ionomer is indisputably one of the main bolts of these technologies. All the Ionomer families are discussed, with their main advantages and drawbacks, in particular in terms of their possible industrial scale-up. Special attention has been paid to the discussions about the choice of the ionic functions and that of polymeric backbones of the Ionomers, with regard to the required electrochemical properties and also to their thermomechanical behaviour. It has been emphasized that a global approach of the polymer electrolytes is essential to progress. This must involve (i) a control of the syntheses up to the pilot scale, (ii) thorough characterizations, (iii) attention to the membrane and the MEA assembly and (iv) durability investigations, including post-mortem characterizations.

  3. Characterization of ι-carrageenan and its derivative based green polymer electrolytes

    SciTech Connect

    Jumaah, Fatihah Najirah; Mobaraka, Nadhratun Naiim; Ahmad, Azizan; Ramli, Nazaruddin

    2013-11-27

    The new types of green polymer electrolytes based on ι-carrageenan derivative have been prepared. ι-carrageenan act as precursor was reacted with monochloroacetic acid to produce carboxymethyl ι-carrageenan. The powders were characterized by Attenuated Total Reflection Fourier Transform infrared (ATR-FTIR) spectroscopy and {sup 1}H nuclear magnetic resonance (NMR) to confirm the substitution of targeted functional group in ι-carrageenan. The green polymer electrolyte based on ι-carrageenan and carboxymethyl ι-carrageenan was prepared by solution-casting technique. The films were characterized by electrochemical impedance spectroscopy to determine the ionic conductivity. The ionic conductivity ι-carrageenan film were higher than carboxymethyl ι-carrageenan which 4.87 ×10{sup −6} S cm{sup −1} and 2.19 ×10{sup −8} S cm{sup −1}, respectively.

  4. A physical interpretation of impedance at conducting polymer/electrolyte junctions

    SciTech Connect

    Stavrinidou, Eleni; Sessolo, Michele; Sanaur, Sébastien; Malliaras, George G.; Winther-Jensen, Bjorn

    2014-01-15

    We monitor the process of dedoping in a planar junction between an electrolyte and a conducting polymer using electrochemical impedance spectroscopy performed during moving front measurements. The impedance spectra are consistent with an equivalent circuit of a time varying resistor in parallel with a capacitor. We show that the resistor corresponds to ion transport in the dedoped region of the film, and can be quantitatively described using ion density and drift mobility obtained from the moving front measurements. The capacitor, on the other hand, does not depend on time and is associated with charge separation at the moving front. This work offers a physical description of the impedance of conducting polymer/electrolyte interfaces based on materials parameters.

  5. Characterization of ɽ -carrageenan and its derivative based green polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Jumaah, Fatihah Najirah; Mobaraka, Nadhratun Naiim; Ahmad, Azizan; Ramli, Nazaruddin

    2013-11-01

    The new types of green polymer electrolytes based on ɽ -carrageenan derivative have been prepared. ɽ -carrageenan act as precursor was reacted with monochloroacetic acid to produce carboxymethyl ɽ -carrageenan. The powders were characterized by Attenuated Total Reflection Fourier Transform infrared (ATR-FTIR) spectroscopy and 1H nuclear magnetic resonance (NMR) to confirm the substitution of targeted functional group in ɽ -carrageenan. The green polymer electrolyte based on ɽ -carrageenan and carboxymethyl ɽ -carrageenan was prepared by solution-casting technique. The films were characterized by electrochemical impedance spectroscopy to determine the ionic conductivity. The ionic conductivity ɽ -carrageenan film were higher than carboxymethyl ɽ -carrageenan which 4.87 ×10-6 S cm-1 and 2.19 ×10-8 S cm-1, respectively.

  6. Conductivity through Polymer Electrolytes and Its Implications in Lithium-Ion Batteries: Real-World Application of Periodic Trends

    ERIC Educational Resources Information Center

    Compton, Owen C.; Egan, Martin; Kanakaraj, Rupa; Higgins, Thomas B.; Nguyen, SonBinh T.

    2012-01-01

    Periodic conductivity trends are placed in the scope of lithium-ion batteries, where increases in the ionic radii of salt components affect the conductivity of a poly(ethyleneoxide)-based polymer electrolyte. Numerous electrolytes containing varying concentrations and types of metal salts are prepared and evaluated in either one or two laboratory…

  7. Solid polymer electrolytes derived from polyphenols. Final report, 28 April--27 October 1998

    SciTech Connect

    Filler, R.

    1998-11-09

    In the Phase-1 study, Tech Drive synthesized several phenol monomers. Two of these monomers, one of which is new, were converted to phenolic polymers by enzymatic means, using horseradish peroxidase and hydrogen peroxide. The monomers and polymers were fully characterize using thin layer chromatography, FT-IR and NMR spectroscopy, gel permeation chromatography and light scattering analyses. Solid polymeric electrolytes (SPEs) were formulated using the processable polyphenols. Ionic conductivity measurements of one of the SPEs based on a substituted polyphenol showed promising levels of ionic conductivity. Addition of a plasticizer dramatically improved the room temperature conductivity of the SPE film. Laboratory cells, fabricated using the SPEs, gave very promising results.

  8. Flexible thin-film battery based on solid-like ionic liquid-polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Li, Qin; Ardebili, Haleh

    2016-01-01

    The development of high-performance flexible batteries is imperative for several contemporary applications including flexible electronics, wearable sensors and implantable medical devices. However, traditional organic liquid-based electrolytes are not ideal for flexible batteries due to their inherent safety and stability issues. In this study, a non-volatile, non-flammable and safe ionic liquid (IL)-based polymer electrolyte film with solid-like feature is fabricated and incorporated in a flexible lithium ion battery. The ionic liquid is 1-Ethyl-3-methylimidazolium dicyanamide (EMIMDCA) and the polymer is composed of poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP). The electrolyte exhibits good thermal stability (i.e. no weight loss up to 300 °C) and relatively high ionic conductivity (6 × 10-4 S cm-1). The flexible thin-film lithium ion battery based on solid-like electrolyte film is encapsulated using a thermal-lamination process and demonstrates excellent electrochemical performance, in both flat and bent configurations.

  9. Multiwalled Carbon nanotube - Strength to polymer composite

    NASA Astrophysics Data System (ADS)

    Pravin, Jagdale; Khan, Aamer. A.; Massimo, Rovere; Carlo, Rosso; Alberto, Tagliaferro

    2016-02-01

    Carbon nanotubes (CNTs), a rather fascinating material, are among the pillars of nanotechnology. CNTs exhibit unique electrical, mechanical, adsorption, and thermal properties with high aspect ratio, exceptional stiffness, excellent strength, and low density, which can be exploited in the manufacturing of revolutionary smart nano composite materials. The demand for lighter and stronger polymer composite material in various applications is increasing every day. Among all the possibilities to research and exploit the exceptional properties of CNTs in polymer composites we focused on the reinforcement of epoxy resin with different types of multiwalled carbon nano tubes (MWCNTs). We studied mechanical properties such as stress, strain, ultimate tensile strength, yield point, modulus and fracture toughness, and Young's modulus by plotting and calculating by means of the off-set method. The mechanical strength of epoxy composite is increased intensely with 1 and 3 wt.% of filler.

  10. Solid polymer electrolyte (SPE) fuel cell technology program, phase 2/2A. [testing and evaluations

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Test evaluations were performed on a fabricated single solid polymer electrolyte cell unit. The cell operated at increased current density and at higher performance levels. This improved performance was obtained through a combination of increased temperature, increased reactant pressures, improved activation techniques and improved thermal control over the baseline cell configuration. The cell demonstrated a higher acid content membrane which resulted in increased performance. Reduced catalyst loading and low cost membrane development showed encouraging results.

  11. Estimation of localized current anomalies in polymer electrolyte fuel cells from magnetic flux density measurements

    NASA Astrophysics Data System (ADS)

    Nara, Takaaki; Koike, Masanori; Ando, Shigeru; Gotoh, Yuji; Izumi, Masaaki

    2016-05-01

    In this paper, we propose novel inversion methods to estimate defects or localized current anomalies in membrane electrode assemblies (MEAs) in polymer electrolyte fuel cells (PEFCs). One method is an imaging approach with L1-norm regularization that is suitable for estimation of focal anomalies compared to Tikhonov regularization. The second is a complex analysis based method in which multiple pointwise current anomalies can be identified directly and algebraically from the measured magnetic flux density.

  12. Synthesis and Characterization of Thin Film Lithium-Ion Batteries Using Polymer Electrolytes

    NASA Technical Reports Server (NTRS)

    Maranchi, Jeffrey P.; Kumta, Prashant N.; Hepp, Aloysius F.; Raffaelle, Ryne P.

    2002-01-01

    The present paper describes the integration of thin film electrodes with polymer electrolytes to form a complete thin film lithium-ion battery. Thin film batteries of the type, LiCoO2 [PAN, EC, PC, LiN(CF3SO2)2] SnO2 have been fabricated. The results of the synthesis and characterization studies will be presented and discussed.

  13. High resolution neutron imaging of water in the polymer electrolyte fuel cell membrane

    SciTech Connect

    Mukherjee, Partha P; Makundan, Rangachary; Spendelow, Jacob S; Borup, Rodney L; Hussey, D S; Jacobson, D L; Arif, M

    2009-01-01

    Water transport in the ionomeric membrane, typically Nafion{reg_sign}, has profound influence on the performance of the polymer electrolyte fuel cell, in terms of internal resistance and overall water balance. In this work, high resolution neutron imaging of the Nafion{reg_sign} membrane is presented in order to measure water content and through-plane gradients in situ under disparate temperature and humidification conditions.

  14. Solid polymer electrolyte (SPE) fuel cell technology program, phase 1/1A. [design and fabrication

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A solid polymer electrolyte fuel cell was studied for the purpose of improving the characteristics of the technology. Several facets were evaluated, namely: (1) reduced fuel cell costs; (2) reduced fuel cell weight; (3) improved fuel cell efficiency; and (4) increased systems compatibility. Demonstrated advances were incorporated into a full scale hardware design. A single cell unit was fabricated. A substantial degree of success was demonstrated.

  15. Recent achievements in polymer electrolyte fuel cell (PEFC) research at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Wilson, M. S.; Springer, T. E.; Zawodzinski, T. A.; Gottesfeld, S.

    Recent research work on the polymer electrolyte fuel cell is described. The main topics are: (1) a new approach to the fabrication of Pt/C catalyst layers of high performance employing loadings as low as 0.1 mgPt/sq cm; (2) measurements and modelling of membrane water transport and water management in the PEFC; and (3) carbon monoxide poisoning of anode electrocatalysts in the PEFC -- the problem and possible solutions.

  16. Performance enhancement of low temperature polymer electrolyte membrane fuel cells by catalyst and support layer modifications

    NASA Astrophysics Data System (ADS)

    Hall, Timothy David

    Possible enhancement of low temperature polymer electrolyte membrane fuel cells (PEMFC) or direct methanol fuel cells (DMFC) was investigated by modifying catalyst and support layers. Platinum (Pt) and platinum cobalt (Pt xCo1-x) alloys were prepared by pulsed electrodeposition onto Toray carbon paper. Composite supports composed of either commercial multi-walled nanofiber (MWNF) mats or MWNF layers on a commercial backing were also investigated. X-ray diffraction (XRD), scanning electron microscopy (SEM), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and energy dispersive x-ray (EDX) were used to characterize the surface structure, composition, and catalyst loading. Various electrochemical techniques with a wet electrochemical cell, a Nuvant multi-array system, and a Scribner fuel cell system were used to study and rank the effectiveness of the catalysts and supports toward both the methanol oxidation reaction and the oxygen reduction reaction. The activity toward methanol oxidation of the electrodeposited Pt catalyst was found to be dependent on the deposited mass. Further comparisons between commercial electrodes in the Nuvant system showed these deposits can yield activities comparable to those of commercially available electrodes. The structure of the Pt electrodeposits was highly non-uniform due to the H2 evolution during the deposition process blocking the cathodes surface. The activities of the planar structured PtxCo1-x deposits were insignificant for both oxygen reduction and methanol oxidation. The composition of the deposits ranged from 5 to 15 at% Pt. It was found by both the Nuvant and Scribner systems that the addition of a thin hydrophilic MWNF layer to a hydrophobic electrode would enhance the performance of a DMFC anode. In the Nuvant system, the addition of a thin hydrophilic MWNF layer to a hydrophobic electrode also enhanced the PEM cathode activity. This however was not corroborated by Scribner analysis, showing a

  17. Acoustic emission monitoring of polymer composite materials

    NASA Technical Reports Server (NTRS)

    Bardenheier, R.

    1981-01-01

    The techniques of acoustic emission monitoring of polymer composite materials is described. It is highly sensitive, quasi-nondestructive testing method that indicates the origin and behavior of flaws in such materials when submitted to different load exposures. With the use of sophisticated signal analysis methods it is possible the distinguish between different types of failure mechanisms, such as fiber fracture delamination or fiber pull-out. Imperfections can be detected while monitoring complex composite structures by acoustic emission measurements.

  18. Space environmental effects on polymers and composites

    NASA Technical Reports Server (NTRS)

    Jang, Bor Z.

    1992-01-01

    The response of polymers and polymer-based composites to the space environment is being investigated. A wide range of materials are covered in this study, including elastometer seals for Space Station Freedom, polymer films for thermal control, and composites for space structural elements. Space environmental agents of concern include atomic oxygen, thermal cycling, space debris impacts, UV, charged particles and other forms of high-energy radiation. This ambitious project is potentially a multi-year research effort and the success of such a project could be expected to have a profound impact on the design of future space-based structures. The research goal of this first Summer is to identify the priority areas of research and to carry out the initial phase task so that a collaborative research can proceed smoothly and fruitfully in the near future.

  19. Aging Effects in Polymer Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Chistos C.; McManus, Hugh L.

    1999-01-01

    Simulation of composites degradation due to aging are described. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. Aging effects at the laminate, ply, and micro levels are evaluated, to determine failure of any kind. The results obtained show substantial ply stress built up as a result of aging accompanied by comparable laminate strength degradation in matrix dominated composite strengths.

  20. Single Lithium-Ion Conducting Polymer Electrolytes Based on a Super-Delocalized Polyanion.

    PubMed

    Ma, Qiang; Zhang, Heng; Zhou, Chongwang; Zheng, Liping; Cheng, Pengfei; Nie, Jin; Feng, Wenfang; Hu, Yong-Sheng; Li, Hong; Huang, Xuejie; Chen, Liquan; Armand, Michel; Zhou, Zhibin

    2016-02-12

    A novel single lithium-ion (Li-ion) conducting polymer electrolyte is presented that is composed of the lithium salt of a polyanion, poly[(4-styrenesulfonyl)(trifluoromethyl(S-trifluoromethylsulfonylimino)sulfonyl)imide] (PSsTFSI(-)), and high-molecular-weight poly(ethylene oxide) (PEO). The neat LiPSsTFSI ionomer displays a low glass-transition temperature (44.3 °C; that is, strongly plasticizing effect). The complex of LiPSsTFSI/PEO exhibits a high Li-ion transference number (tLi (+) =0.91) and is thermally stable up to 300 °C. Meanwhile, it exhibits a Li-ion conductivity as high as 1.35×10(-4)  S cm(-1) at 90 °C, which is comparable to that for the classic ambipolar LiTFSI/PEO SPEs at the same temperature. These outstanding properties of the LiPSsTFSI/PEO blended polymer electrolyte would make it promising as solid polymer electrolytes for Li batteries. PMID:26840215

  1. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells.

    PubMed

    Proietti, Eric; Jaouen, Frédéric; Lefèvre, Michel; Larouche, Nicholas; Tian, Juan; Herranz, Juan; Dodelet, Jean-Pol

    2011-01-01

    H(2)-air polymer-electrolyte-membrane fuel cells are electrochemical power generators with potential vehicle propulsion applications. To help reduce their cost and encourage widespread use, research has focused on replacing the expensive Pt-based electrocatalysts in polymer-electrolyte-membrane fuel cells with a lower-cost alternative. Fe-based cathode catalysts are promising contenders, but their power density has been low compared with Pt-based cathodes, largely due to poor mass-transport properties. Here we report an iron-acetate/phenanthroline/zeolitic-imidazolate-framework-derived electrocatalyst with increased volumetric activity and enhanced mass-transport properties. The zeolitic-imidazolate-framework serves as a microporous host for phenanthroline and ferrous acetate to form a catalyst precursor that is subsequently heat treated. A cathode made with the best electrocatalyst from this work, tested in H(2)-O(2,) has a power density of 0.75 W cm(-2) at 0.6 V, a meaningful voltage for polymer-electrolyte-membrane fuel cells operation, comparable with that of a commercial Pt-based cathode tested under identical conditions. PMID:21811245

  2. Method of making metal-polymer composite catalysts

    DOEpatents

    Zelena, Piotr; Bashyam, Rajesh

    2009-06-23

    A metal-polymer-carbon composite catalyst for use as a cathode electrocatalyst in fuel cells. The catalyst includes a heteroatomic polymer; a transition metal linked to the heteroatomic polymer by one of nitrogen, sulfur, and phosphorus, and a recast ionomer dispersed throughout the heteroatomic polymer-carbon composite. The method includes forming a heteroatomic polymer-carbon composite and loading the transition metal onto the composite. The invention also provides a method of making a membrane electrode assembly for a fuel cell that includes the metal-polymer-carbon composite catalyst.

  3. Polymer electrolyte based on crosslinked poly(glycidyl methacrylate) and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide

    NASA Astrophysics Data System (ADS)

    Fei, Beatrice Wong Chui; Hanifah, Sharina Abu; Ahmad, Azizan; Hassan, Nur Hasyareeda

    2015-09-01

    Polymer electrolytes based on crosslinked poly(glycidyl methacrylate) as polymer host and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimTFSI) as incorporated salt were prepared by in-situ photopolymerization technique. The complexes with different mass ratio of glycidyl methacrylate (GMA) monomer to BmimTFSI were investigated. The ionic conductivity of the polymer electrolyte was increased and reach the highest value of 7.50 × 10-4 S cm-1 at the ratio of 3:7 (GMA: BmimTFSI). The interaction between the polymer host and ionic liquid was proved by Attenuated Total Reflectance-Fourier Transformation Infra-Red Spectroscopy (ATR-FTIR). Meanwhile, the X-ray diffraction analysis shows the amorphousity of the polymer electrolyte film increase with the ionic liquid ratio.

  4. Polymer electrolyte based on crosslinked poly(glycidyl methacrylate) and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide

    SciTech Connect

    Fei, Beatrice Wong Chui; Hanifah, Sharina Abu; Ahmad, Azizan; Hassan, Nur Hasyareeda

    2015-09-25

    Polymer electrolytes based on crosslinked poly(glycidyl methacrylate) as polymer host and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimTFSI) as incorporated salt were prepared by in-situ photopolymerization technique. The complexes with different mass ratio of glycidyl methacrylate (GMA) monomer to BmimTFSI were investigated. The ionic conductivity of the polymer electrolyte was increased and reach the highest value of 7.50 × 10{sup −4} S cm{sup −1} at the ratio of 3:7 (GMA: BmimTFSI). The interaction between the polymer host and ionic liquid was proved by Attenuated Total Reflectance-Fourier Transformation Infra-Red Spectroscopy (ATR-FTIR). Meanwhile, the X-ray diffraction analysis shows the amorphousity of the polymer electrolyte film increase with the ionic liquid ratio.

  5. Joining of polymer composite materials

    SciTech Connect

    Magness, F.H.

    1990-11-01

    Under ideal conditions load bearing structures would be designed without joints, thus eliminating a source of added weight, complexity and weakness. In reality the need for accessibility, repair, and inspectability, added to the size limitations imposed by the manufacturing process and transportation/assembly requirements mean that some minimum number of joints will be required in most structures. The designer generally has two methods for joining fiber composite materials, adhesive bonding and mechanical fastening. As the use of thermoplastic materials increases, a third joining technique -- welding -- will become more common. It is the purpose of this document to provide a review of the available sources pertinent to the design of joints in fiber composites. The primary emphasis is given to adhesive bonding and mechanical fastening with information coming from documentary sources as old as 1961 and as recent as 1989. A third, shorter section on composite welding is included in order to provide a relatively comprehensive treatment of the subject.

  6. Piezoelectric Nanoparticle-Polymer Composite Materials

    NASA Astrophysics Data System (ADS)

    McCall, William Ray

    Herein we demonstrate that efficient piezoelectric nanoparticle-polymer composite materials can be synthesized and fabricated into complex microstructures using sugar-templating methods or optical printing techniques. Stretchable foams with excellent tunable piezoelectric properties are created by incorporating sugar grains directly into polydimethylsiloxane (PDMS) mixtures containing barium titanate (BaTiO3 -- BTO) nanoparticles and carbon nanotubes (CNTs), followed by removal of the sugar after polymer curing. Porosities and elasticity are tuned by simply adjusting the sugar/polymer mass ratio and the electrical performance of the foams showed a direct relationship between porosity and the piezoelectric outputs. User defined 2D and 3D optically printed piezoelectric microstructures are also fabricated by incorporating BTO nanoparticles into photoliable polymer solutions such as polyethylene glycol diacrylate (PEGDA) and exposing to digital optical masks that can be dynamically altered. Mechanical-to-electrical conversion efficiency of the optically printed composite is enhanced by chemically altering the surface of the BTO nanoparticles with acrylate groups which form direct covalent linkages with the polymer matrix under light exposure. Both of these novel materials should find exciting uses in a variety of applications including energy scavenging platforms, nano- and microelectromechanical systems (NEMS/MEMS), sensors, and acoustic actuators.

  7. XRD and XPS analysis of the degradation of the polymer electrolyte in H 2-O 2 fuel cell

    NASA Astrophysics Data System (ADS)

    Huang, Chengde; Seng Tan, Kim; Lin, Jianyi; Lee Tan, Kuang

    2003-03-01

    Nafion ® is frequently used as electrolyte membrane in polymer electrolyte fuel cells (PEFC). In this Letter the degradation of the Nafion ® polymer electrolyte was investigated using X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). XRD showed that the electrode potential and low gas humidification temperature could decrease the crystallinity of Nafion ®. XPS analysis indicated that the Nafion ® was decomposed in the hydrogen potential region of the fuel cell, through the interaction of the hydrophobic (CF 2) n groups of the membrane with H or/and C atoms.

  8. Self-lubricating polymer composites and polymer transfer film lubrication for space applications

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1990-01-01

    The use of self-lubricating polymers and polymer composites in space is somewhat limited today. In general, they are only used when other methods are inadequate. There is potential, however, for these materials to make a significant impact on future space missions if properly utilized. Some of the different polymers and fillers used to make self-lubricating composites are surveyed. The mechanisms of composite lubrication and wear, the theory behind transfer film lubricating mechanisms, and some factors which affect polymer composite wear and transfer are examined. In addition, some of the current space tribology application areas for self-lubricating polymer composites and polymer transfer are mentioned.

  9. Thermomechanical fatigue of polymer matrix composites

    SciTech Connect

    Strait, L.H.; Koudela, K.L.; Karasek, M.L.; Amateau, M.F.; Runt, J.P.

    1996-12-31

    The present research was undertaken to evaluate the effects of mechanical constraint on the response of polymer matrix composites during thermal cycling. Analytical and experimental techniques were used to characterize the response of carbon-fiber-reinforced cyanate ester and bismaleimide composites. Cross-ply laminates were subjected to thermal cycles from 24 to 177 C in the unconstrained, fully constrained, and overconstrained conditions. Laminate response, damage mechanisms, and residual compressive properties were characterized for each material and degree of constraint. The results of this research indicate that the level of constraint can have a significant effect on the response of polymer matrix composites during thermal cycling. However, longer-term testing is required to determine if the observed changes in response will ultimately affect the final failure mode and fatigue endurance of the materials.

  10. Chemical microsensors based on polymer fiber composites

    NASA Astrophysics Data System (ADS)

    Kessick, Royal F.; Levit, Natalia; Tepper, Gary C.

    2005-05-01

    There is an urgent need for new chemical sensors for defense and security applications. In particular, sensors are required that can provide higher sensitivity and faster response in the field than existing baseline technologies. We have been developing a new solid-state chemical sensor technology based on microscale polymer composite fiber arrays. The fibers consist of an insulating polymer doped with conducting particles and are electrospun directly onto the surface of an interdigitated microelectrode. The concentration of the conducting particles within the fiber is controlled and is near the percolation threshold. Thus, the electrical resistance of the polymer fiber composite is very sensitive to volumetric changes produced in the polymer by vapor absorption. Preliminary results are presented on the fabrication and testing of the new microsensor. The objective is to take advantage of the very high surface to volume ratio, low thermal mass and linear geometry of the composite fibers to produce sensors exhibiting an extremely high vapor sensitivity and rapid response. The simplicity and low cost of a resistance-based chemical microsensor makes this sensing approach an attractive alternative to devices requiring RF electronics or time-of-flight analysis. Potential applications of this technology include battlespace awareness, homeland security, environmental surveillance, medical diagnostics and food process monitoring.

  11. Nanotube reinforced thermoplastic polymer matrix composites

    NASA Astrophysics Data System (ADS)

    Shofner, Meisha Lei

    The inherent high strength, thermal conductivity, and electrical conductivity make nanotubes attractive reinforcements for polymer matrix composites. However, the structure that makes them desirable also causes highly anisotropic properties and limited reactivity with other materials. This thesis isolates these problems in two separate studies aimed at improving mechanical properties with single wall nanotube (SWNT) reinforced thermoplastic polymer composites. The two studies demonstrate the effect of solid freeform fabrication (SFF) and chemical functionalization on anisotropy and limited reactivity, respectively. Both studies showed mechanical property improvements. The alignment study demonstrates a maximum increase of 93% in tensile modulus with single wall nanotubes (SWNTs). The chemical functionalization study shows a larger increase in storage modulus for functionalized SWNTs as compared to purified SVWNTs with respective increases of 9% and 44% in storage modulus. Improved interfacial properties are also observed as a decrease in mechanical damping. Maximum property increases in composites are obtained when nanotubes are aligned, requiring additional processing consideration to the anisotropic structure. Melt spinning and extrusion processing effectively align nanotubes, but the end product of these techniques, composite fibers, requires further processing to be incorporated into finished parts. Extrusion-based SFF is a novel technique for processing nanotube reinforced composites because it allows for the direct fabrication of finished parts containing aligned nanotubes. SFF processing produces parts containing preferentially oriented nanotubes with improved mechanical properties when compared to isotropic composites. Functionalization of the nanotube surface disrupts the rope structure to obtain smaller ropes and promote further interfacial bonding. The chemically inert nature of nanotubes resulting from a structure containing few defects and the

  12. Characterizing SWCNT Dispersion in Polymer Composites

    NASA Technical Reports Server (NTRS)

    Lillehei, Peter T.; Kim, Jae-Woo; Gibbons, Luke; Park, Cheol

    2007-01-01

    The new wave of single wall carbon nanotube (SWCNT) infused composites will yield structurally sound multifunctional nanomaterials. The SWCNT network requires thorough dispersion within the polymer matrix in order to maximize the benefits of the nanomaterial. However, before any nanomaterials can be used in aerospace applications a means of quality assurance and quality control must be certified. Quality control certification requires a means of quantification, however, the measurement protocol mandates a method of seeing the dispersion first. We describe here the new tools that we have developed and implemented to first be able to see carbon nanotubes in polymers and second to measure or quantify the dispersion of the nanotubes.

  13. Nano polypeptide particles reinforced polymer composite fibers.

    PubMed

    Li, Jiashen; Li, Yi; Zhang, Jing; Li, Gang; Liu, Xuan; Li, Zhi; Liu, Xuqing; Han, Yanxia; Zhao, Zheng

    2015-02-25

    Because of the intensified competition of land resources for growing food and natural textile fibers, there is an urgent need to reuse and recycle the consumed/wasted natural fibers as regenerated green materials. Although polypeptide was extracted from wool by alkaline hydrolysis, the size of the polypeptide fragments could be reduced to nanoscale. The wool polypeptide particles were fragile and could be crushed down to nano size again and dispersed evenly among polymer matrix under melt extrusion condition. The nano polypeptide particles could reinforce antiultraviolet capability, moisture regain, and mechanical properties of the polymer-polypeptide composite fibers. PMID:25647481

  14. Influence of Al2O3 on the ionic conductivity of plasticized PVC-PEG blend polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Ravindran, D.; Vickraman, P.

    2016-05-01

    Polymer electrolytes with PVC-PEG blend as host matrix and LiClO4 as dopant salt was prepared through conventional solution casting method. To enhance the conductivity propylene carbonate (PC) was used as plasticizer. The influence of ceramic filler Al2O3 on the conductivity of the electrolyte films were studied by varying the (PVC: Al2O3) ratio. The films were subjected to XRD, complex impedance analysis and SEM analysis. The XRD studies reveal a marginal increase in the amorphous phase of the electrolyte films due to the incorporation of filler. The AC impedance analysis shows the dependency of ionic conductivity on the content (wt %) of filler and exhibit a maximum at 4 wt% filler. The SEM analysis depicts the occurrence of phase separation in electrolyte which is attributed to the poor solubility of polymer PVC in the liquid electrolyte.

  15. Preparation and electrochemical performance of polyphosphazene based salt-in-polymer electrolyte membranes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Jankowsky, S.; Hiller, M. M.; Wiemhöfer, H.-D.

    2014-05-01

    This work presents a detailed study of the electrochemical performance of polyphosphazene based electrolyte membranes consisting of a linear polymer with -(Ndbnd PR2)- units, grafted with ethylene oxide side chains of the type R = -(OCH2CH2)3OCH3 and containing LiTFSI and LiBOB as dissolved lithium salts. The average molecular weight was 105 g mol-1. Mechanical stability was achieved by UV induced in-situ cross-linking of the thin polymer electrolyte films. Favorable properties of this type of polymer electrolytes are the good thermal and electrochemical stability of the electrolyte membranes, the broad electrochemical stability window ranging between 0 V and 4.7 V versus the Li/Li+ reference and a very good interface stability at lithium metal electrodes where a stable SEI was formed during initial contact. Total ionic conductivities up to 10-4 S cm-1 were measured at 30 °C. The transference numbers of lithium ions at 50 °C ranged between 0.06 and 0.07 and hence are lower by a factor of about three as compared to other typical polymer electrolytes. Nevertheless, the partial lithium ion conductivity estimated from the product of total conductivity and lithium ion transference number is as high or slightly higher compared to PEO based polymer electrolytes.

  16. Detection of distributed static and dynamic loads with electrolyte-enabled distributed transducers in a polymer-based microfluidic device

    NASA Astrophysics Data System (ADS)

    Gu, Wenting; Cheng, Peng; Ghosh, Arindam; Liao, Yuxi; Liao, Boxiong; Beskok, Ali; Hao, Zhili

    2013-03-01

    This paper reports on the use of electrolyte-enabled distributed transducers in a polymer-based microfluidic device for the detection of distributed static and dynamic loads. The core of the device is a polymer rectangular microstructure integrated with electrolyte-enabled distributed transducers. Distributed loads acting on the polymer microstructure are converted to different deflections along the microstructure length, which are further translated to electrical resistance changes by electrolyte-enabled distributed transducers. Owing to the great simplicity of the device configuration, a standard polymer-based fabrication process is employed to fabricate this device. With custom-built electronic circuits and custom LabVIEW programs, fabricated devices filled with two different electrolytes, 0.1 M NaCl electrolyte and 1-ethyl-3-methylimidazolium dicyanamide electrolyte, are characterized, demonstrating the capability of detecting distributed static and dynamic loads with a single device. As a result, the polymer-based microfluidic device presented in this paper is promising for offering the capability of detecting distributed static and dynamic loads in biomedical/surgical, manufacturing and robotics applications.

  17. Gel polymer electrolytes based on polyacrylonitrile and a novel quaternary ammonium salt for dye-sensitized solar cells

    SciTech Connect

    Wang Guiqiang . E-mail: wgqiang@iccas.ac.cn; Zhou Xiaowen; Li Mingyu; Zhang Jinbo; Kang Junjia; Lin Yuan . E-mail: a1703@iccas.ac.cn; Fang Shibi; Xiao Xurui

    2004-11-02

    Gel polymer electrolytes were prepared by incorporating polyacrylonitrile (PAN) in a mixture of polysiloxane with quaternary ammonium side groups (PSQAS), ethylene carbonate (EC), propylene carbonate (PC) and iodine. The influence of PAN content on the ionic conductivity of gel polymer electrolytes and the charge-transfer kinetic performance in counterelectrode-electrolyte interface was investigated. The dye-sensitized solar cell with the gel polymer electrolyte containing 5 wt.% PAN showed the best photovoltaic performance; a maximum incident photon conversion efficiency of 63% at 520 nm was obtained, the short-circuit photocurrent density (J{sub sc}), the open-circuit voltage (V{sub oc}) and the fill factor (FF) were 7 mA cm{sup -2}, 0.565 V and 0.65, respectively. The corresponding overall conversion efficiency ({eta}) is 4.3%.

  18. Synthesis and characterization of ionomers as polymer electrolytes for energy conversion devices

    NASA Astrophysics Data System (ADS)

    Oh, Hyukkeun

    Single-ion conducting electrolytes present a unique alternative to traditional binary salt conductors used in lithium-ion batteries. Secondary lithium batteries are considered as one of the leading candidates to replace the combustible engines in automotive technology, however several roadblocks are present which prevent their widespread commercialization. Power density, energy density and safety properties must be improved in order to enable the current secondary lithium battery technology to compete with existing energy technologies. It has been shown theoretically that single-ion electrolytes can eliminate the salt concentration gradient and polarization loss in the cell that develops in a binary salt system, resulting in substantial improvements in materials utilization for high power and energy densities. While attempts to utilize single-ion conducting electrolytes in lithium-ion battery systems have been made, the low ionic conductivities prevented the successful operation of the battery cells in ambient conditions. This work focuses on designing single-ion conducting electrolytes with high ionic conductivities and electrochemical and mechanical stability which enables the stable charge-discharge performance of battery cells. Perfluorosulfonate ionomers are known to possess exceptionally high ionic conductivities due to the electron-withdrawing effect caused by the C-F bonds which stabilizes the negative charge of the anion, leading to a large number of free mobile cations. The effect of perfluorinated sulfonic acid side chains on transport properties of proton exchange membrane polymers was examinated via a comparison of three ionomers, having different side chain structures and a similar polymer backbone. The three different side chain structures were aryl-, pefluoro alkyl-, and alkyl-sulfonic acid groups, respectively. All ionomers were synthesized and characterized by 1H and 19F NMR. A novel ionomer synthesized with a pendant perfluorinated sulfonic acid

  19. Polymer compositions, polymer films and methods and precursors for forming same

    DOEpatents

    Klaehn, John R; Peterson, Eric S; Orme, Christopher J

    2013-09-24

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  20. Sulfonated polyphenylene polymers

    DOEpatents

    Cornelius, Christopher J.; Fujimoto, Cy H.; Hickner, Michael A.

    2007-11-27

    Improved sulfonated polyphenylene compositions, improved polymer electrolyte membranes and nanocomposites formed there from for use in fuel cells are described herein. The improved compositions, membranes and nanocomposites formed there from overcome limitations of Nafion.RTM. membranes.

  1. Efficient polymer solar cells employing a non-conjugated small-molecule electrolyte

    NASA Astrophysics Data System (ADS)

    Ouyang, Xinhua; Peng, Ruixiang; Ai, Ling; Zhang, Xingye; Ge, Ziyi

    2015-08-01

    Polymer solar cells have drawn a great deal of attention due to the attractiveness of their use in renewable energy sources that are potentially lightweight and low in cost. Recently, numerous significant research efforts have resulted in polymer solar cells with power conversion efficiencies in excess of 9% (ref. 1). Nevertheless, further improvements in performance are sought for commercial applications. Here, we report polymer solar cells with a power conversion efficiency of 10.02% that employ a non-conjugated small-molecule electrolyte as an interlayer. The material offers good contact for photogenerated charge carrier collection and allows optimum photon harvesting in the device. Furthermore, the enhanced performance is attributed to improved electron mobility, enhanced active-layer absorption and properly active-layer microstructures with optimal horizontal phase separation and vertical phase gradation. Our discovery opens a new avenue for single-junction devices by fully exploiting the potential of various material systems with efficiency over 10%.

  2. Polyethylene-supported polyvinylidene fluoride-cellulose acetate butyrate blended polymer electrolyte for lithium ion battery

    NASA Astrophysics Data System (ADS)

    Liu, Jiansheng; Li, Weishan; Zuo, Xiaoxi; Liu, Shengqi; Li, Zhao

    2013-03-01

    The polyethylene (PE)-supported polymer membranes based on the blended polyvinylidene fluoride (PVDF) and cellulose acetate butyrate (CAB) are prepared for gel polymer electrolyte (GPE) of lithium ion battery. The performances of the prepared membranes and the resulting GPEs are investigated by scanning electron microscopy, electrochemical impedance spectroscopy, linear potential sweep, and charge-discharge test. The effect of the ratio of PVDF to CAB on the performance of the prepared membranes is considered. It is found that the GPE based on the blended polymer with PVDF:CAB = 2:1 (in weight) has the largest ionic conductivity (2.48 × 10-3 S cm-1) and shows good compatibility with anode and cathode of lithium ion battery. The LiCoO2/graphite battery using this GPE exhibits superior cyclic stability at room temperature, storage performance at elevated temperature, and rate performance.

  3. Green polymer electrolytes based on chitosan and 1-butyl-3-methylimidazolium acetate

    SciTech Connect

    Shamsudin, Intan Juliana; Ahmad, Azizan; Hassan, Nur Hasyareeda

    2014-09-03

    Green polymer electrolytes based on chitosan as the polymer matrix and ionic liquid 1-butyl-3-methylimidazolium acetate [Bmim][OAc] as charge carriers were prepared by solution casting technique. Complexes with various amount of ionic liquid loading were investigated as possible ionic conducting polymers. The ionic conductivity was found to increase with increasing weight percent of ionic liquid. The highest ionic conductivity of the charged chitosan-[Bmim][OAc] was 2.44 × 10{sup −3} S cm{sup −1} at 90 wt.% of [Bmim][OAc] content at ambient temperature. Attenuated Total Reflection Fourier Transform infrared (ATR-FTIR) spectroscopy has proven the interaction between chitosan and [Bmim][OAc]. X-ray Diffraction (XRD) has shown that the amorphosity of the complexes increase as the amount of [Bmim][OAc] increase.

  4. Mechanical Properties of Polymer Nano-composites

    NASA Astrophysics Data System (ADS)

    Srivastava, Iti

    Thermoset polymer composites are increasingly important in high-performance engineering industries due to their light-weight and high specific strength, finding cutting-edge applications such as aircraft fuselage material and automobile parts. Epoxy is the most widely employed thermoset polymer, but is brittle due to extensive cross-linking and notch sensitivity, necessitating mechanical property studies especially fracture toughness and fatigue resistance, to ameliorate the low crack resistance. Towards this end, various nano and micro fillers have been used with epoxy to form composite materials. Particularly for nano-fillers, the 1-100 nm scale dimensions lead to fascinating mechanical properties, oftentimes proving superior to the epoxy matrix. The chemical nature, topology, mechanical properties and geometry of the nano-fillers have a profound influence on nano-composite behavior and hence are studied in the context of enhancing properties and understanding reinforcement mechanisms in polymer matrix nano-composites. Using carbon nanotubes (CNTs) as polymer filler, uniquely results in both increased stiffness as well as toughness, leading to extensive research on their applications. Though CNTs-polymer nano-composites offer better mechanical properties, at high stress amplitude their fatigue resistance is lost. In this work covalent functionalization of CNTs has been found to have a profound impact on mechanical properties of the CNT-epoxy nano-composite. Amine treated CNTs were found to give rise to effective fatigue resistance throughout the whole range of stress intensity factor, in addition to significantly enhancing fracture toughness, ductility, Young's modulus and average hardness of the nano-composite by factors of 57%, 60%, 30% and 45% respectively over the matrix as a result of diminished localized cross-linking. Graphene, a one-atom-thick sheet of atoms is a carbon allotrope, which has garnered significant attention of the scientific community and is

  5. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO4 for lithium ion battery application

    NASA Astrophysics Data System (ADS)

    Nurhadini, Arcana, I. Made

    2015-09-01

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO4 membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10-4 S/cm was observed in SA/PEO/LiClO4 membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application.

  6. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO{sub 4} for lithium ion battery application

    SciTech Connect

    Nurhadini, Arcana, I Made

    2015-09-30

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO{sub 4} membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10{sup −4} S/cm was observed in SA/PEO/LiClO{sub 4} membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application.

  7. Improvements of electrical properties containing carbon nanotube in epoxy/graphite bipolar plate for polymer electrolyte membrane fuel cells.

    PubMed

    Lee, HongKi; Rim, HyungRyul; Lee, JaeYoung; Lee, Jongmin; Yoon, JeongMo; Bae, WooJung; Yang, SeungWeon

    2008-10-01

    The epoxy based graphite bipolar plate containing carbon nanotube (CNT) for polymer electrolyte membrane fuel cells (PEMFC) has been prepared and the electrical properties were compared. The density of graphite composite bipolar plate showed from 1.85 to 0.94 as expanded graphite content is increased from 10 to 50 w/o. The improvement of electrical properties was accomplished by addition of CNT. Rapid increase of conductivity was found due to the compensation between increases of the electrical pathway by addition of CNT and sufficient electrical contact among isolated large graphite particle. The polarisation curves of bipolar plate were measured at 1 M H2SO4 solution with 1 mV/sec of scan rate and the value of 1.903 uA/cm2 of corrosion rate was obtained. PMID:19198477

  8. Piezoelectric nanoparticle-polymer composite foams.

    PubMed

    McCall, William R; Kim, Kanguk; Heath, Cory; La Pierre, Gina; Sirbuly, Donald J

    2014-11-26

    Piezoelectric polymer composite foams are synthesized using different sugar-templating strategies. By incorporating sugar grains directly into polydimethylsiloxane mixtures containing barium titanate nanoparticles and carbon nanotubes, followed by removal of the sugar after polymer curing, highly compliant materials with excellent piezoelectric properties can be fabricated. Porosities and elasticity are tuned by simply adjusting the sugar/polymer mass ratio which gave an upper bound on the porosity of 73% and a lower bound on the elastic coefficient of 32 kPa. The electrical performance of the foams showed a direct relationship between porosity and the piezoelectric outputs, giving piezoelectric coefficient values of ∼112 pC/N and a power output of ∼18 mW/cm3 under a load of 10 N for the highest porosity samples. These novel materials should find exciting use in a variety of applications including energy scavenging platforms, biosensors, and acoustic actuators. PMID:25353687

  9. Conducting polymer composite materials for smart microwave windows

    NASA Astrophysics Data System (ADS)

    Barnes, Alan; Lees, K.; Wright, Peter V.; Chambers, Barry

    1999-07-01

    Samples of poly(aniline)-silver-polymer electrolyte particulate composites have been characterized at microwave frequencies when small d.c. electric fields are applied across them in both coaxial line and waveguide measurement test sets. The experimental data shows that the initial conductivity of the materials is dependent on the concentration of sliver metal and suggest that changes in resistance due to chemical switching take place, at least in part, in the manufacture of the composites. When silver is used as the electrodes, the experimental data show that changes in the slope of the cyclic voltammograms coincide with large changes in microwave reflectivity or transmission consistent with increasing conductivity of the composites when fields are applied. The reverse change occurs when the fields are removed. Measurements have shown that the composites are able to switch between the two impedance stats in times of less than one second for well over a million cycles with no apparent depreciation in material properties. Large area films have also been prepared and studied using the 'free space' technique.

  10. Ion transport in polycarbonate based solid polymer electrolytes: experimental and computational investigations.

    PubMed

    Sun, Bing; Mindemark, Jonas; V Morozov, Evgeny; Costa, Luciano T; Bergman, Martin; Johansson, Patrik; Fang, Yuan; Furó, István; Brandell, Daniel

    2016-03-30

    Among the alternative host materials for solid polymer electrolytes (SPEs), polycarbonates have recently shown promising functionality in all-solid-state lithium batteries from ambient to elevated temperatures. While the computational and experimental investigations of ion conduction in conventional polyethers have been extensive, the ion transport in polycarbonates has been much less studied. The present work investigates the ionic transport behavior in SPEs based on poly(trimethylene carbonate) (PTMC) and its co-polymer with ε-caprolactone (CL) via both experimental and computational approaches. FTIR spectra indicated a preferential local coordination between Li(+) and ester carbonyl oxygen atoms in the P(TMC20CL80) co-polymer SPE. Diffusion NMR revealed that the co-polymer SPE also displays higher ion mobilities than PTMC. For both systems, locally oriented polymer domains, a few hundred nanometers in size and with limited connections between them, were inferred from the NMR spin relaxation and diffusion data. Potentiostatic polarization experiments revealed notably higher cationic transference numbers in the polycarbonate based SPEs as compared to conventional polyether based SPEs. In addition, MD simulations provided atomic-scale insight into the structure-dynamics properties, including confirmation of a preferential Li(+)-carbonyl oxygen atom coordination, with a preference in coordination to the ester based monomers. A coupling of the Li-ion dynamics to the polymer chain dynamics was indicated by both simulations and experiments. PMID:26984668

  11. Improved electrical properties of Fe nanofiller impregnated PEO + PVP:Li+ blended polymer electrolytes for lithium battery applications

    NASA Astrophysics Data System (ADS)

    Naveen Kumar, K.; Saijyothi, K.; Kang, Misook; Ratnakaram, Y. C.; Hari Krishna, K.; Jin, Dahee; Lee, Yong Min

    2016-07-01

    Solid polymer-blended electrolyte films of polyethylene oxide (PEO) + polyvinyl pyrrolidone (PVP)/lithium perchlorate embedded with iron (Fe) nanofiller in different concentrations have been synthesized by a solution casting method. The semicrystalline nature of these polymer electrolyte films has been confirmed from their XRD profiles. Polymer complex formation and ion-polymer interactions are systematically studied by FTIR and laser Raman spectral analysis. Surface morphological studies are carried out from SEM analysis. Dispersed Fe nanofiller size evaluation study has been carried out using transmission electron microscopy (TEM). In order to evaluate the thermal stability, decomposition temperature, and thermogravimetric dynamics, we carried out the TG/DTA measurement. Upon addition of Fe nanofiller to the PEO + PVP/Li+ electrolyte system, it was found to result in the enhancement of ionic conductivity. The maximum ionic conductivity has been set up to be 1.14 × 10-4 Scm-1 at the optimized concentration of 4 wt% Fe nanofiller-embedded PEO + PVP/Li+ polymer electrolyte nanocomposite at an ambient temperature. PEO + PVP/Li+ + Fe nanofiller (4 wt%) cell exhibited better performance in terms of cell parameters. Based on the cell parameters, the 4 wt% Fe nanofiller-dispersed PEO + PVP/Li+ polymer electrolyte system could be suggested as a perspective candidate for solid-state battery applications.

  12. 7Li NMR spectroscopy and ion conduction mechanism in mesoporous silica (SBA-15) composite poly(ethylene oxide) electrolyte

    NASA Astrophysics Data System (ADS)

    Reddy, M. Jaipal; Chu, Peter P.

    A composite of mesoporous silica (SBA-15) with a polyethylene oxide (PEO) polymer electrolyte is examined for use in various electrochemical devices. Incorporation of SBA-15 in a PEO:LiClO 4 polymer electrolyte facilitates salt dissociation, enhances ion conductivity, and improves miscibility between organic and inorganic moieties. Optimized conductivity is found at 10 wt.% SBA-15 composition, above this concentration the conductivity is reduced due to aggregation of a SBA-15:Li rich phase. Heating above melt temperature of PEO allows more of the polymer segments to interact with SBA-15. This results in a greater degree of disorder upon cooling, and the ion conductivity is enhanced. A 7Li MAS NMR study reveals three types of lithium-ion coordination. Two major types of conduction mechanism can be identified: one through conventional amorphous PEO; a second via hopping in a sequential manner by replacing the nearby vacancies ('holes') on the surface (both interior and exterior) of the SBA-15 channels.

  13. Gel polymer electrolyte lithium-ion cells with improved low temperature performance

    NASA Astrophysics Data System (ADS)

    Smart, M. C.; Ratnakumar, B. V.; Behar, A.; Whitcanack, L. D.; Yu, J.-S.; Alamgir, M.

    For a number of NASA's future planetary and terrestrial applications, high energy density rechargeable lithium batteries that can operate at very low temperature are desired. In the pursuit of developing Li-ion batteries with improved low temperature performance, we have also focused on assessing the viability of using gel polymer systems, due to their desirable form factor and enhanced safety characteristics. In the present study we have evaluated three classes of promising liquid low-temperature electrolytes that have been impregnated into gel polymer electrolyte carbon-LiMn 2O 4-based Li-ion cells (manufactured by LG Chem. Inc.), consisting of: (a) binary EC + EMC mixtures with very low EC-content (10%), (b) quaternary carbonate mixtures with low EC-content (16-20%), and (c) ternary electrolytes with very low EC-content (10%) and high proportions of ester co-solvents (i.e., 80%). These electrolytes have been compared with a baseline formulation (i.e., 1.0 M LiPF 6 in EC + DEC + DMC (1:1:1%, v/v/v), where EC, ethylene carbonate, DEC, diethyl carbonate, and DMC, dimethyl carbonate). We have performed a number of characterization tests on these cells, including: determining the rate capacity as a function of temperature (with preceding charge at room temperature and also at low temperature), the cycle life performance (both 100% DOD and 30% DOD low earth orbit cycling), the pulse capability, and the impedance characteristics at different temperatures. We have obtained excellent performance at low temperatures with ester-based electrolytes, including the demonstration of >80% of the room temperature capacity at -60 °C using a C/20 discharge rate with cells containing 1.0 M LiPF 6 in EC + EMC + MB (1:1:8%, v/v/v) (MB, methyl butyrate) and 1.0 M LiPF 6 in EC + EMC + EB (1:1:8%, v/v/v) (EB, ethyl butyrate) electrolytes. In addition, cells containing the ester-based electrolytes were observed to support 5 C pulses at -40 °C, while still maintaining a voltage >2.5 V at

  14. The effect of porosity on performance of phosphoric acid doped polybenzimidazole polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Celik, Muhammet; Genc, Gamze; Elden, Gulsah; Yapici, Huseyin

    2016-03-01

    A polybenzimidazole (PBI) based polymer electrolyte fuel cells, which called high temperature polymer electrolyte fuel cells (HT-PEMS), operate at higher temperatures (120-200°C) than conventional PEM fuel cells. Although it is known that HT-PEMS have some of the significant advantages as non-humidification requirements for membrane and the lack of liquid water at high temperature in the fuel cell, the generated water as a result of oxygen reduction reaction causes in the degradation of these systems. The generated water absorbed into membrane side interacts with the hydrophilic PBI matrix and it can cause swelling of membrane, so water transport mechanism in a membrane electrode assembly (MEA) needs to be well understood and water balance must be calculated in MEA. Therefore, the water diffusion transport across the electrolyte should be determined. In this study, various porosity values of gas diffusion layers are considered in order to investigate the effects of porosity on the water management for two phase flow in fuel cell. Two-dimensional fuel cell with interdigitated flow-field is modelled using COMSOL Multiphysics 4.2a software. The operating temperature and doping level is selected as 160°C and 6.75mol H3PO4/PBI, respectively.

  15. Tungsten oxide-Prussian blue electrochromic system based on a proton-conducting polymer electrolyte

    SciTech Connect

    Ho, K.C.; Rukavina, T.G.; Greenberg, C.B. . Glass Technology Center)

    1994-08-01

    A new solid-state electrochromic system is presented. It is transparent and is comprised of a tungsten oxide and Prussian blue (PB) thin film couple in combination with a proton-conducting, solid polymer electrolyte. This electrochromic system exhibits rapid and deep optical switching; characteristics of a complementary configuration, both electrochromic films color and bleach in phase. Complementary electrochromic cells with the tungsten oxide-PB couple have previously been based on Li[sup +] or K[sup +]-conducting electrolytes. A repetitively cycling cell has not previously been reported with a proton-conducting solid polymer electrolyte. The devices were operated at low applied voltages, +1.2 V to darken and [minus]0.6 V to bleach. Repeated reduction and oxidation of the current system over 20,000 cycles has been demonstrated, indicating a large number of switchings without great degradation or irreversible side reactions. The sustained, high overall coloration efficiency of the devices suggests the insertion/extraction of protons into and out of both WO[sub 3] and PB films. The effects of cell size and operating temperature on the switching response are discussed.

  16. Polymer light harvesting composites for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Sun, Sam-Shajing; Wang, Dan

    2015-09-01

    Polymer based optoelectronic composites and thin film devices exhibit great potential in space applications due to their lightweight, flexible shape, high photon absorption coefficients, and robust radiation tolerance in space environment. Polymer/dye composites appear promising for optoelectronics applications due to potential enhancements in both light harvesting and charge separation. In this study, the optoelectronic properties of a series of molecular dyes paired with a conjugated polymer Poly(3-hexylthiophene-2,5-diyl) (P3HT) were investigated. Specifically, the solution PL quenching coefficients (Ksv) of dye/polymer follows a descending order from dyes of Chloro(protoporphyrinato)iron(III) (Hemin), Protoporphyrin, to meso-Tetra(4-carboxyphenyl)porphine (TCPP). In optoelectronic devices made of the P3HT/dye/PCBM composites, the short circuit current densities Jsc as well as the overall power conversion efficiencies (PCE) also follow a descending order from Hemin, Protoporphyrin, to TCPP, despite Hemin exhibits the intermediate polymer/dye LUMO (lowest unoccupied molecular orbital) offset and lowest absorption coefficient as compared to the other two dyes, i.e., the cell optoelectronic efficiency did not follow the LUMO offsets which are the key driving forces for the photo induced charge separations. This study reveals that too large LUMO offset or electron transfer driving force may result in smaller PL quenching and optoelectronic conversion efficiency, this could be another experimental evidence for the Marcus electron transfer model, particularly for the Marcus `inverted region'. It appears an optimum electron transfer driving force or strong PL quenching appears more critical than absorption coefficient for optoelectronic conversion devices.

  17. Ion conduction and relaxation in PEO-LiTFSI-Al{sub 2}O{sub 3} polymer nanocomposite electrolytes

    SciTech Connect

    Das, S.; Ghosh, A.

    2015-05-07

    Ion conduction and relaxation in PEO-LiTFSI-Al{sub 2}O{sub 3} polymer nanocomposite electrolytes have been studied for different concentrations of Al{sub 2}O{sub 3} nanoparticles. X-ray diffraction and differential scanning calorimetric studies show that the maximum amorphous phase of PEO is observed for PEO-LiTFSI embedded with 5 wt. % Al{sub 2}O{sub 3}. The maximum ionic conductivity ∼3.3 × 10{sup −4} S cm{sup −1} has been obtained for this composition. The transmission electron microscopic image shows a distribution of Al{sub 2}O{sub 3} nanoparticles in all compositions with size of <50 nm. The temperature dependence of the ionic conductivity follows Vogel-Tamman-Fulcher nature, indicating a strong coupling between ionic and polymer chain segmental motions. The scaling of the ac conductivity implies that relaxation dynamics follows a common mechanism for different temperatures and Al{sub 2}O{sub 3} concentrations. The imaginary modulus spectra are asymmetric and skewed toward the high frequency sides of the maxima and analyzed using Havriliak-Negami formalism. The temperature dependence of the relaxation time obtained from modulus spectra also exhibits Vogel-Tamman-Fulcher nature. The values of the stretched exponent obtained from Kohlrausch-Williams-Watts fit to the modulus data are fairly low, suggesting highly non-exponential relaxation for all concentrations of Al{sub 2}O{sub 3} in these electrolytes.

  18. Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes

    SciTech Connect

    Webb, Michael A.; Jung, Yukyung; Pesko, Danielle M.; Savoie, Brett M.; Yamamoto, Umi; Coates, Geoffrey W.; Balsara, Nitash P.; Wang, Zhen -Gang; Miller, III, Thomas F.

    2015-07-10

    Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds via a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.

  19. Gel polymer electrolytes based on nanofibrous polyacrylonitrile–acrylate for lithium batteries

    SciTech Connect

    Kim, Dul-Sun; Woo, Jang Chang; Youk, Ji Ho; Manuel, James; Ahn, Jou-Hyeon

    2014-10-15

    Graphical abstract: - Highlights: • Nanofibrous polyacrylonitrile–acrylate membranes were prepared by electrospinning. • Trimethylolpropane triacrylate was used as a crosslinking agent of fibers. • The GPE based on PAN–acrylate (1/0.5) showed good electrochemical properties. - Abstract: Nanofibrous membranes for gel polymer electrolytes (GPEs) were prepared by electrospinning a mixture of polyacrylonitrile (PAN) and trimethylolpropane triacrylate (TMPTA) at weight ratios of 1/0.5 and 1/1. TMPTA is used to achieve crosslinking of fibers thereby improving mechanical strength. The average fiber diameters increased with increasing TMPTA concentration and the mechanical strength was also improved due to the enhanced crosslinking of fibers. GPEs based on electrospun membranes were prepared by soaking them in a liquid electrolyte of 1 M LiPF{sub 6} in ethylene carbonate (EC)/dimethyl carbonate (DMC) (1:1, v/v). The electrolyte uptake and ionic conductivity of GPEs based on PAN and PAN–acrylate (weight ratio; 1/1 and 1/0.5) were investigated. Ionic conductivity of GPEs based on PAN–acrylate was the highest for PAN/acrylate (1/0.5) due to the proper swelling of fibers and good affinity with liquid electrolyte. Both GPEs based on PAN and PAN–acrylate membranes show good oxidation stability, >5.0 V vs. Li/Li{sup +}. Cells with GPEs based on PAN–acrylate (1/0.5) showed remarkable cycle performance with high initial discharge capacity and low capacity fading.

  20. Membrane resistance and current distribution measurements under various operating conditions in a polymer electrolyte fuel cell

    NASA Astrophysics Data System (ADS)

    Brett, D. J. L.; Atkins, S.; Brandon, N. P.; Vasileiadis, N.; Vesovic, V.; Kucernak, A. R.

    The ability to make spatially resolved measurements in a fuel cell provides one of the most useful ways in which to monitor and optimise their performance. Localised membrane resistance and current density measurements for a single channel polymer electrolyte fuel cell are presented for a range of operating conditions. The current density distribution results are compared with an analytical model that exhibited generally good agreement across a broad range of operating conditions. However, under conditions of high air flow rate, an increase in current is observed along the channel which is not predicted by the model. Under such circumstances, localised electrochemical impedance measurements show a decrease in membrane resistance along the channel. This phenomenon is attributed to drying of the electrolyte at the start of the channel and is more pronounced with increasing operating temperature. Under conditions of reactant depletion, an increase in electrolyte resistance with decreasing current is observed. This is due to the hydrating effect of product water and electro-osmotic drag through the membrane when ionic current is flowing. Localised conduction is shown to be an effective means of conditioning previously unused membrane electrode assemblies by forcing passage of ionic current through the electrolyte.