Science.gov

Sample records for composite polymer electrolyte

  1. Solid polymer electrolyte compositions

    DOEpatents

    Garbe, James E.; Atanasoski, Radoslav; Hamrock, Steven J.; Le, Dinh Ba

    2001-01-01

    An electrolyte composition is featured that includes a solid, ionically conductive polymer, organically modified oxide particles that include organic groups covalently bonded to the oxide particles, and an alkali metal salt. The electrolyte composition is free of lithiated zeolite. The invention also features cells that incorporate the electrolyte composition.

  2. Composite solid polymer electrolyte membranes

    SciTech Connect

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2006-05-30

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  3. Composite solid polymer electrolyte membranes

    DOEpatents

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2001-06-19

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  4. Ionic conduction in polymer composite electrolytes

    NASA Astrophysics Data System (ADS)

    Dam, Tapabrata; Tripathy, Satya N.; Paluch, M.; Jena, S.; Pradhan, D. K.

    2016-05-01

    Conductivity and structural relaxation has been explored from modulus and dielectric loss formalisms respectively for a series of polymer composite electrolytes with zirconia as filler. The temperature dependence of conductivity followed Vogel-Tamman-Fulcher (VTF) behavior, which suggested a close correlation between conductivity and the segmental relaxation process in polymer electrolytes. Vogel temperature (T0) plays significant role in ion conduction process in these kind of materials.

  5. Inorganic-organic composite solid polymer electrolytes

    SciTech Connect

    Abraham, K.M.; Koch, V.R.; Blakley, T.J.

    2000-04-01

    Inorganic-organic composite solid polymer electrolytes (CSPEs) have been prepared from the poly(ethylene oxide) (PEO)-like electrolytes of the general formula polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP)-PEO{sub n}-LiX and Li{sup +}-conducting ceramic powders. In the PEO-like electrolytes, PVdF-HFP is the copolymer of PVdF and HFP, PEO{sub n} is a nonvolatile oligomeric polyethylene oxide of {approximately}400 g/mol molecular weight, and LiX is lithium bis(trifluoroethylsulfonyl)imide. Two types of inorganic oxide ceramic powders were used: a highly Li{sup +}-conducting material of the composition 14 mol % Li{sub 2}O-9Al{sub 2}O{sub 3}-38TiO{sub 2}-39P{sub 2}O{sub 5}, and the poorly Li{sup +}-conducting Li-silicates Li{sub 4{minus}x}M{sub x}SiO{sub 4} where M is Ca or Mg and x is 0 or 0.05. The composite electrolytes can be prepared as thin membranes in which the Li{sup +} conductivity and good mechanical strength of the Li{sup +}-conducting inorganic ceramics are complemented by the structural flexibility and high conductivity of organic polymer electrolytes. Excellent electrochemical and thermal stabilities have been demonstrated for the electrolyte films. Li//composite electrolyte//LiCoO{sub 2} rechargeable cells have been fabricated and cycled at room temperature and 50 C.

  6. Advanced composite polymer electrolyte fuel cell membranes

    SciTech Connect

    Wilson, M.S.; Zawodzinski, T.A.; Gottesfeld, S.; Kolde, J.A.; Bahar, B.

    1995-09-01

    A new type of reinforced composite perfluorinated polymer electrolyte membrane, GORE-SELECT{trademark} (W.L. Gore & Assoc.), is characterized and tested for fuel cell applications. Very thin membranes (5-20 {mu}m thick) are available. The combination of reinforcement and thinness provides high membrane, conductances (80 S/cm{sup 2} for a 12 {mu}m thick membrane at 25{degrees}C) and improved water distribution in the operating fuel cell without sacrificing longevity or durability. In contrast to nonreinforced perfluorinated membranes, the x-y dimensions of the GORE-SELECT membranes are relatively unaffected by the hydration state. This feature may be important from the viewpoints of membrane/electrode interface stability and fuel cell manufacturability.

  7. Solid polymer electrolyte composite membrane comprising laser micromachined porous support

    DOEpatents

    Liu, Han; LaConti, Anthony B.; Mittelsteadt, Cortney K.; McCallum, Thomas J.

    2011-01-11

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  8. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    DOEpatents

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  9. Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Hallinan, Daniel T.; Balsara, Nitash P.

    2013-07-01

    This review article covers applications in which polymer electrolytes are used: lithium batteries, fuel cells, and water desalination. The ideas of electrochemical potential, salt activity, and ion transport are presented in the context of these applications. Potential is defined, and we show how a cell potential measurement can be used to ascertain salt activity. The transport parameters needed to fully specify a binary electrolyte (salt + solvent) are presented. We define five fundamentally different types of homogeneous electrolytes: type I (classical liquid electrolytes), type II (gel electrolytes), type III (dry polymer electrolytes), type IV (dry single-ion-conducting polymer electrolytes), and type V (solvated single-ion-conducting polymer electrolytes). Typical values of transport parameters are provided for all types of electrolytes. Comparison among the values provides insight into the transport mechanisms occurring in polymer electrolytes. It is desirable to decouple the mechanical properties of polymer electrolyte membranes from the ionic conductivity. One way to accomplish this is through the development of microphase-separated polymers, wherein one of the microphases conducts ions while the other enhances the mechanical rigidity of the heterogeneous polymer electrolyte. We cover all three types of conducting polymer electrolyte phases (types III, IV, and V). We present a simple framework that relates the transport parameters of heterogeneous electrolytes to homogeneous analogs. We conclude by discussing electrochemical stability of electrolytes and the effects of water contamination because of their relevance to applications such as lithium ion batteries.

  10. Methods of enhancing conductivity of a polymer-ceramic composite electrolyte

    NASA Technical Reports Server (NTRS)

    Kumar, Binod (Inventor)

    2003-01-01

    Methods for enhancing conductivity of polymer-ceramic composite electrolytes are provided which include forming a polymer-ceramic composite electrolyte film by a melt casting technique and uniaxially stretching the film from about 5 to 15% in length. The polymer-ceramic composite electrolyte is also preferably annealed after stretching such that it has a room temperature conductivity of from 10.sup.-4 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1. The polymer-ceramic composite electrolyte formed by the methods of the present invention may be used in lithium rechargeable batteries.

  11. Methods of enhancing conductivity of a polymer-ceramic composite electrolyte

    DOEpatents

    Kumar, Binod

    2003-12-02

    Methods for enhancing conductivity of polymer-ceramic composite electrolytes are provided which include forming a polymer-ceramic composite electrolyte film by a melt casting technique and uniaxially stretching the film from about 5 to 15% in length. The polymer-ceramic composite electrolyte is also preferably annealed after stretching such that it has a room temperature conductivity of from 10.sup.-4 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1. The polymer-ceramic composite electrolyte formed by the methods of the present invention may be used in lithium rechargeable batteries.

  12. Alkaline composite PEO-PVA-glass-fibre-mat polymer electrolyte for Zn-air battery

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Lin, Sheng-Jen

    An alkaline composite PEO-PVA-glass-fibre-mat polymer electrolyte with high ionic conductivity (10 -2 S cm -1) at room temperature has been prepared and applied to solid-state primary Zn-air batteries. The electrolyte shows excellent mechanical strength. The electrochemical characteristics of the batteries were experimentally investigated by means of ac impedance spectroscopy and galvanostatic discharge. The results indicate that the PEO-PVA-glass-fibre-mat composite polymer electrolyte is a promising candidate for application in alkaline primary Zn-air batteries.

  13. Solid polymer electrolyte composite membrane comprising a porous support and a solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide

    SciTech Connect

    Liu, Han; Mittelsteadt, Cortney K; Norman, Timothy J; Griffith, Arthur E; LaConti, Anthony B

    2015-02-24

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.

  14. Characterization studies of plasticized PEO-PMMA nano-composite polymer electrolyte system

    NASA Astrophysics Data System (ADS)

    Sharma, Poonam; Kanchan, D. K.; Gondaliya, Nirali; Pant, Meenakshi; Jayswal, Manish S.; Joge, Prajakta

    2012-06-01

    Present study reports the characterization studies on silver based PEO-PMMA-PEG nano composite polymer electrolyte system, prepared by solution cast technique. The complexation among various constituents of polymer samples was carried by XRD and FTIR analysis. Thermal analysis of the samples was carried out by DSC study.

  15. Frequency-dependent learning achieved using semiconducting polymer/electrolyte composite cells

    NASA Astrophysics Data System (ADS)

    Dong, W. S.; Zeng, F.; Lu, S. H.; Liu, A.; Li, X. J.; Pan, F.

    2015-10-01

    Frequency-dependent learning has been achieved using semiconducting polymer/electrolyte composite cells. The cells composed of polymer/electrolyte double layers realized the conventional spike-rate-dependent plasticity (SRDP) learning model. These cells responded to depression upon low-frequency stimulation and to potentiation upon high-frequency stimulation and presented long-term memory. The transition threshold θm from depression to potentiation varied depending on the previous stimulations. A nanostructure resembling a bio-synapse in its transport passages was demonstrated and a random channel model was proposed to describe the ionic kinetics at the polymer/electrolyte interface during and after stimulations with various frequencies, accounting for the observed SRDP.Frequency-dependent learning has been achieved using semiconducting polymer/electrolyte composite cells. The cells composed of polymer/electrolyte double layers realized the conventional spike-rate-dependent plasticity (SRDP) learning model. These cells responded to depression upon low-frequency stimulation and to potentiation upon high-frequency stimulation and presented long-term memory. The transition threshold θm from depression to potentiation varied depending on the previous stimulations. A nanostructure resembling a bio-synapse in its transport passages was demonstrated and a random channel model was proposed to describe the ionic kinetics at the polymer/electrolyte interface during and after stimulations with various frequencies, accounting for the observed SRDP. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02891d

  16. Epoxidised Natural Rubber Based Composite Polymer Electrolyte Systems For Use In Electrochemical Device Applications

    SciTech Connect

    Idris, Razali; Tasnim, Anis; Mahbor, Kamisah Mohamad; Hakim, Mas Rosemal; Mohd, Dahlan Hj.; Ghazali, Zulkafli

    2009-09-14

    Composite polymer electrolyte (CPE) comprising epoxy-fimctionalized rubber (ENR), HDDA monomer, mixed plasticizer-propylene carbonate/ethylene carbonate, silica filler and lithium bis(trifluoromethanesulfonylimide), Li[(CF{sub 3}SO{sub 2}){sub 2}N]have been prepared using photo-induced polymerization by UV irradiation technique. The irradiated samples of filled and non-filled silica of composites electrolytes have formed dry solid-flexible and transparent films in the self-constructed Teflon mould. Thermal behaviors, FTIR, morphology and ionic conductivity were performed on such ENR based PE polymer composites having varied compositions. The thermal stability has improved slightly in the temperature range 120-200 deg. C with optimized composition. FTIR measurements data revealed that the interaction of lithium with the epoxy groups of the un-bonded electrons within polymer occurred. The results suggest that the variation of conductivity with temperature indicates that the silica filled composite has achieved optimal ionic conductivity 10{sup -4} S cm{sup -1} and retained high percent of plasticizer. The ionic conductivity behavior of the silica-filled ENR based composite polymer electrolyte is consistent at elevated temperature compared to non-filled CPE system. This finding opens a new pathway for further investigation to diffusion of ions in the complex polymer electrolyte systems.

  17. Self-Assembled Silica Nano-Composite Polymer Electrolytes: Synthesis, Rheology & Electrochemistry

    SciTech Connect

    Khan, Saad A.: Fedkiw Peter S.; Baker, Gregory L.

    2007-01-24

    The ultimate objectives of this research are to understand the principles underpinning nano-composite polymer electrolytes (CPEs) and facilitate development of novel CPEs that are low-cost, have high conductivities, large Li+ transference numbers, improved electrolyte-electrode interfacial stability, yield long cycle life, exhibit mechanical stability and are easily processable. Our approach is to use nanoparticulate silica fillers to formulate novel composite electrolytes consisting of surface-modified fumed silica nano-particles in polyethylene oxides (PEO) in the presence of lithium salts. We intend to design single-ion conducting silica nanoparticles which provide CPEs with high Li+ transference numbers. We also will develop low-Mw (molecular weight), high-Mw and crosslinked PEO electrolytes with tunable properties in terms of conductivity, transference number, interfacial stability, processability and mechanical strength

  18. Nanoporous polymer electrolyte

    SciTech Connect

    Elliott, Brian; Nguyen, Vinh

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  19. Anion exchange polymer electrolytes

    SciTech Connect

    Kim, Yu Seung; Kim, Dae Sik

    2015-06-02

    Anion exchange polymer electrolytes that include guanidinium functionalized polymers may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.

  20. Composite polymer electrolyte based on PEO/Pvdf-HFP with MWCNT for lithium battery applications

    NASA Astrophysics Data System (ADS)

    Pradeepa, P.; Edwinraj, S.; Sowmya, G.; Kalaiselvimary, J.; Selvakumar, K.; Prabhu, M. Ramesh

    2016-05-01

    In the present study PEO and PVdF-HFP blend based composite polymer electrolytes (CPEs) has been prepared by using Multi Walled Carbon Nanotube (MWCNT), in order to examine the filler addition effect on the electrochemical properties. The complexed nanocomposite polymer electrolytes were obtained in the form of dimensionally stable and free standing films by using solution casting technique. The electrochemical properties of CPEs were measured by the AC impedance method. From the ionic conductivity results, the CPE containing MWCNT 2wt% showed the highest ionic conductivity with an excellent thermal stability at room temperature. The dielectric loss curve s for the sample 6.25wt% PEO: 18.75 wt% PVdF-HFP: 2wt% MWCNT reveal the low frequency β relaxation peak pronounced at high temperature, and it may caused by side group dipoles.

  1. Composite polymer electrolytes based on MG49 and carboxymethyl cellulose from kenaf

    SciTech Connect

    Jafirin, Serawati; Ahmad, Ishak; Ahmad, Azizan

    2013-11-27

    The development of 49% poly(methyl methacrylate)-grafted natural rubber (MG49) and carboxymethyl cellulose as a composite polymer electrolyte film incorporating LiCF{sub 3}SO{sub 3} were explored. Carboxymethyl cellulose was synthesized from kenaf bast fibres via carboxymethylation process by alkali catalyzed reaction of cellulose with sodium chloroacetate. Reflection fourier transform infrared (ATR-FTIR) spectroscopy showed the presence of carboxyl peak after modification of cellulose with sodium chloroacetate. X-ray diffraction (XRD) analysis revealed that the crystallinity of cellulose was decrease after synthesis. High performance composite polymer electrolytes were prepared with various composition of carboxymethyl cellulose (2–10 wt%) via solution-casting method. The conductivity was increased with carboxymethyl cellulose loading. The highest conductivity value achieved was 3.3 × 10{sup −7} Scm{sup −1} upon addition of 6% wt carboxymethyl cellulose. 6% wt carboxymethyl cellulose composition showed the highest tensile strength value of 7.9 MPa and 273 MPa of modulus value which demonstrated high mechanical performance with accepatable level of ionic conductivity.

  2. Polybenzimidazole-multiwall carbon nanotubes composite membranes for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Guerrero Moreno, Nayibe; Gervasio, Dominic; Godínez García, Andrés; Pérez Robles, Juan Francisco

    2015-12-01

    Polymer membranes are prepared as a composite of polybenzimidazole and non-functionalized multiwall carbon nanotubes (PBI-CNT) and polybenzimidazole (PBI) only. Each is doped with H3PO4 (PA) and used as a proton exchange membrane (PEM) as the electrolyte in a fuel cell. The proton conductivities at 180 °C for the doped PBI membrane (PBIPA) and the doped PBI-CNT membrane (PBICNTPA) are 6.3 × 10-2 and 7.4 × 10-2 Scm-1 respectively. A single fuel cell having these membranes as electrolyte has a Pt catalyzed hydrogen gas fed anode and a similar oxygen cathode without humidification of feed gases; the cell with the PBICNTPA membrane has higher open circuit voltage (0.96 V) than that with a PBIPA membrane (0.8 V) at 180 °C. The mechanical stability of the membrane improves with CNTs addition. The tensile strength of the composite PBI-CNT membrane with 1 wt.% CNTs loading is 32% higher and the Young's Modulus is 147% higher than the values for a membrane of PBI alone. The improvement in conductivity and mechanical properties in the composite membrane due to the CNT addition indicates that a PBI-CNT membrane is a good alternative as a membrane electrolyte in a PEMFC.

  3. Immobilization of imidazole moieties in polymer electrolyte composite membrane for elevated temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Ke; Zhou, Bei; Ye, Gongbo; Pan, Mu; Zhang, Haining

    2015-12-01

    Development of membrane electrolyte with reasonable proton conductivity at elevated temperature without external humidification is essential for practical applications of elevated temperature proton exchange membrane fuel cells. Herein, a novel polymer electrolyte composite membrane using imidazole as anhydrous proton carriers for elevated temperature fuel cells is investigated. The imidazole moieties are immobilized inside the Nafion/poly(tetrafluoroethylene) (PTFE) composite membrane through in situ formation of imidazole functionalized silica nanoparticles in Nafion dispersion. The thus-formed membrane exhibits strong Coulombic interaction between negatively charged sulfonic acid groups of Nafion and protonated imidazole moieties, leading to an anhydrous proton conductivity of 0.018 S cm-1 at 180 °C. With the introduction of PTFE matrix, the mechanical strength of the membrane is greatly improved. The peak power density of a single cell assembled from the hybrid membrane is observed to be 130 mW cm-2 under 350 mA cm-2 at 110 °C without external humidification and it remains stable for 20 h continuous operation. The obtained results demonstrate that the developed composite membranes could be utilized as promising membrane electrolytes for elevated temperature fuel cells.

  4. Thin and flexible solid-state organic ionic plastic crystal-polymer nanofibre composite electrolytes for device applications.

    PubMed

    Howlett, Patrick C; Ponzio, Florian; Fang, Jian; Lin, Tong; Jin, Liyu; Iranipour, Nahid; Efthimiadis, Jim

    2013-09-01

    All solid-state organic ionic plastic crystal-polymer nanofibre composite electrolytes are described for the first time. The new composite materials exhibit enhanced conductivity, excellent thermal, mechanical and electrochemical stability and allow the production of optically transparent, free-standing, flexible, thin film electrolytes (10's μms thick) for application in electrochemical devices. Stable cycling of a lithium cell incorporating the new composite electrolyte is demonstrated, including cycling at lower temperatures than previously possible with the pure material. PMID:23753038

  5. Alkali metal crystalline polymer electrolytes.

    PubMed

    Zhang, Chuhong; Gamble, Stephen; Ainsworth, David; Slawin, Alexandra M Z; Andreev, Yuri G; Bruce, Peter G

    2009-07-01

    Polymer electrolytes have been studied extensively because uniquely they combine ionic conductivity with solid yet flexible mechanical properties, rendering them important for all-solid-state devices including batteries, electrochromic displays and smart windows. For some 30 years, ionic conductivity in polymers was considered to occur only in the amorphous state above Tg. Crystalline polymers were believed to be insulators. This changed with the discovery of Li(+) conductivity in crystalline poly(ethylene oxide)(6):LiAsF(6). However, new crystalline polymer electrolytes have proved elusive, questioning whether the 6:1 complex has particular structural features making it a unique exception to the rule that only amorphous polymers conduct. Here, we demonstrate that ionic conductivity in crystalline polymers is not unique to the 6:1 complex by reporting several new crystalline polymer electrolytes containing different alkali metal salts (Na(+), K(+) and Rb(+)), including the best conductor poly(ethylene oxide)(8):NaAsF(6) discovered so far, with a conductivity 1.5 orders of magnitude higher than poly(ethylene oxide)(6):LiAsF(6). These are the first crystalline polymer electrolytes with a different composition and structures to that of the 6:1 Li(+) complex. PMID:19543313

  6. Composite Electrolytes for Lithium Batteries: Ionic Liquids in APTES Crosslinked Polymers

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Meador, Mary Ann B.; Bennett, William R.

    2007-01-01

    Solvent free polymer electrolytes were made consisting of Li(+) and pyrrolidinium salts of trifluoromethanesulfonimide added to a series of hyperbranched poly(ethylene oxide)s (PEO). The polymers were connected by triazine linkages and crosslinked by a sol-gel process to provide mechanical strength. The connecting PEO groups were varied to help understand the effects of polymer structure on electrolyte conductivity in the presence of ionic liquids. Polymers were also made that contain poly(dimethylsiloxane) groups, which provide increased flexibility without interacting with lithium ions. When large amounts of ionic liquid are added, there is little dependence of conductivity on the polymer structure. However, when smaller amounts of ionic liquid are added, the inherent conductivity of the polymer becomes a factor. These electrolytes are more conductive than those made with high molecular weight PEO imbibed with ionic liquids at ambient temperatures, due to the amorphous nature of the polymer.

  7. Synthesis and characterization of polyvinyl alcohol copolymer/phosphomolybdic acid-based crosslinked composite polymer electrolyte membranes

    NASA Astrophysics Data System (ADS)

    Anis, Arfat; Banthia, A. K.; Bandyopadhyay, S.

    Polymer electrolyte membrane fuel cells (PEMFCs) are very promising as future energy source due to their high-energy conversion efficiency and will help to solve the environmental concerns of energy production. Polymer electrolyte membrane (PEM) is recognised as the key element for an efficient PEMFC. Chemically crosslinked composite membranes consisting of a poly(vinyl alcohol-co-vinyl acetate-co-itaconic acid) (PVACO) and phosphomolybdic acid (PMA) have been prepared by solution casting and evaluated as proton conducting polymer electrolytes. The proton conductivity of the membranes is investigated as a function of PMA composition, crosslinking density and temperature. The membranes have also been characterized by FTIR spectroscopy, TGA, AFM and TEM. The proton conductivity of the composite membranes is of the order of 10 -3 S cm -1 and shows better resistance to methanol permeability than Nafion 117 under similar measurement conditions.

  8. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries

    PubMed Central

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G.; Lee, Yoon-Sung; Kim, Dong-Won

    2016-01-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures. PMID:27189842

  9. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries.

    PubMed

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G; Lee, Yoon-Sung; Kim, Dong-Won

    2016-01-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures. PMID:27189842

  10. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries

    NASA Astrophysics Data System (ADS)

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G.; Lee, Yoon-Sung; Kim, Dong-Won

    2016-05-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures.

  11. Low-Cost Composite Materials for Polymer Electrolyte Fuel Cell Bipolar Plates

    SciTech Connect

    Busick, D.N.; Wilson, M.S.

    1998-11-01

    Polymer electrolyte fuel cells (PEFCS) are under widespread development to produce electrical power for a variety of stationary and transportation applications. To date, the bipolar plate remains the most problematic and costly component of PEFC stacks (1). In addition to meeting cost constraints, bipolar plates must possess a host of other properties, the most important of which are listed in Table 1. The most commonly used material for single cell testing is machined graphite, which is expensive and costly to machine. The brittle nature of graphite also precludes the use of thin components for reducing stack size and weight, which is particularly important for transportation applications. Other stack designs consider the use of metal hardware such as stainless steel (2,3). But a number of disadvantages are associated with stainless steel, including high density, high cost of machining, and possible corrosion in the fuel cell environment. In light of these difficulties, much of the recent work on fuel cell bipolar plate materials has concentrated on graphite/polymer composites (4--8). Composite materials offer the potential advantages of lower cost, lower weight, and greater ease of manufacture than traditional graphite and metal plates. For instance, flow fields can be molded directly into these composites, thereby eliminating the costly and difficult machining step required for graphite or metal hardware.

  12. Effect of TiO2 ceramic filler on PEG-based composite polymer electrolytes for magnesium batteries

    NASA Astrophysics Data System (ADS)

    Polu, Anji Reddy; Kumar, Ranveer; Kumar, K. Vijaya; Jyothi, N. Krishna

    2013-02-01

    Composite polymer electrolytes based on poly(ethylene glycol) (PEG), magnesium acetate [Mg(CH3COO)2] and x wt. % of titanium oxide (TiO2) ceramic fillers (where x = 0, 5, 10, 15 and 20 respectively) have been prepared using solution casting technique. Several experimental techniques, such as composition-dependent conductivity, temperature dependent conductivity in the temperature range of 303-333 K and transport number measurements, have been employed to characterize these composite polymer electrolyte systems. The transference number data indicated the dominance of ion-type charge transport in these specimens. Using this (PEG-Mg(CH3COO)2-TiO2) (85-15-10) electrolyte, solid state electrochemical cell was fabricated and their discharge profiles were studied under a constant load of 100 kω.

  13. Ionic conductivity and electrochemical characterization of novel microporous composite polymer electrolytes

    SciTech Connect

    Xu, W.; Siow, K.S.; Gao, Z.; Lee, S.Y.

    1999-12-01

    Composite polymer electrolytes (CPEs) have been prepared by encapsulating electrolyte solutions of inorganic lithium salts dissolved in a plasticizer or mixture of plasticizers such as ethylene carbonate (EC), propylene carbonate (PC), {gamma}-butyrolactone (BL) and dimethyl carbonate (DMC), into porous polymer membranes. These polymer membranes are obtained from microemulsion polymerization of the microemulsion system of acrylonitrile, 4-vinylbenzenesulfonic acid lithium salt, ethylene glycol dimethacrylate (as cross-linker), {omega}-methoxy poly(ethyleneoxy){sub 40} undecyl-{alpha}-methacrylate (as surfactant), and water. These CPEs exhibit conductivities of 3.1 x 10{sup {minus}4} to 1.2 x 10{sup {minus}3} S cm{sup {minus}1} at room temperature. The lithium ion transference number, measured using a dc polarization method coupled with ac impedance spectroscopy, is found to be ca. 0.45. Cyclic voltammetry of the CPEs on stainless steel electrodes shows electrochemical stability windows extending up to 3.9, 4.0, and 4.4 V vs. Li{sup +}/Li for CPEs with 1 M LiSO{sub 3}CF{sub 3}/EC-PC (1:1 by volume), 1 M LiBF{sub 4}/BL and 1 M LiClO{sub 4}/EC-DMC (1:1 by volume), respectively. The impedance of the Li/CPE interface for the CPE with 1 M LiClO{sub 4}/EC-DMC under open circuit conditions is found to increase over storage time. Preliminary charge-discharge tests of prototype Li/CPE/LiMn{sub 2}O{sub 4} cells show an initial discharge capacity of ca. 118 mAh g{sup {minus}1} of LiMn{sub 2}O{sub 4} at a discharge current rate of 0.10 mA cm{sup {minus}2}, and promising cyclability.

  14. Gel polymer electrolytes for batteries

    DOEpatents

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  15. A composite membrane based on a biocompatible cellulose as a host of gel polymer electrolyte for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Xiao, S. Y.; Yang, Y. Q.; Li, M. X.; Wang, F. X.; Chang, Z.; Wu, Y. P.; Liu, X.

    2014-12-01

    A composite polymer membrane is prepared by coating poly(vinylidene fluoride) (PVDF) on the surface of a membrane based on methyl cellulose (MC) which is environmentally friendly and cheap. Its characteristics are investigated by scanning electron microscopy, FT-IR, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The outer PVDF layers are porous which results in high electrolyte uptake and the lithium ion transference number is much larger than that of the pure MC. Moreover, the cell based on Li//LiFePO4 delivers high discharge capacity and good rate behavior in the range of 4.2-2.5 V when the composite membrane is used as the separator and the host of a gel polymer electrolyte, lithium as the counter and reference electrode, and LiFePO4 as cathode. The obtained results suggest that this unique composite membrane shows great attraction in the lithium ion batteries with high safety and low cost.

  16. Solid polymer electrolytes

    DOEpatents

    Abraham, Kuzhikalail M.; Alamgir, Mohamed; Choe, Hyoun S.

    1995-01-01

    This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

  17. Solid polymer electrolytes

    DOEpatents

    Abraham, K.M.; Alamgir, M.; Choe, H.S.

    1995-12-12

    This invention relates to Li ion (Li{sup +}) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF{sub 3}SO{sub 2}){sub 2}, LiAsF{sub 6}, and LiClO{sub 4}. 2 figs.

  18. New Polymer Electrolyte Cell Systems

    NASA Technical Reports Server (NTRS)

    Smyrl, William H.; Owens, Boone B.; Mann, Kent; Pappenfus, T.; Henderson, W.

    2004-01-01

    PAPERS PUBLISHED: 1. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Complexes of Lithium Imide Salts with Tetraglyme and Their Polyelectrolyte Composite Materials. Journal of the Electrochemical Society (2004), 15 1 (2), A209-A2 15. 2. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Ionic-liquidlpolymer electrolyte composite materials for electrochemical device applications. Polymeric Materials Science and Engineering (2003), 88 302. 3. Pappenfus, Ted R.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; and Smyrl, William H. Ionic Conductivity of a poly(vinylpyridinium)/Silver Iodide Solid Polymer Electrolyte System. Solid State Ionics (in press 2004). 4. Pappenfus Ted M.; Mann, Kent R; Smyrl, William H. Polyelectrolyte Composite Materials with LiPFs and Tetraglyme. Electrochemical and Solid State Letters, (2004), 7(8), A254.

  19. Fractal forming species and hierarchical growth in polymer electrolyte composites: Raman mapping and role of seed particles

    NASA Astrophysics Data System (ADS)

    Dawar, Anit; Chandra, Amita

    2013-04-01

    Diffusion limited aggregation (DLA) is being reported in a polymer electrolyte composites PEO:NH4I + Al2O3 (acidic, basic and neutral). The aggregating specie is found to be I3- by using XRD and Raman spectroscopy. The involvement of NH4+ ion in the fractal pattern formation has also been explained via ion pairing with I3- (i.e., M+ + I3- → M+I3-), by making ammonium tri-iodide specie. Raman mapping has been done to analyze the fractal forming species in detail. A qualitative model has been proposed to explain the observations. The aggregates that get frozen in the host polymer matrix by diffusive growth form different patterns and are found to have fractal dimension that varies from 1.6 to 1.8 which is consistent with diffusion limited aggregation. The steady state of ion diffusion in polymer electrolyte is analyzed in the framework of the Nernst-Planck equation. The ion transport mechanism in the polymer electrolyte composite (with and without fractal growth), has been studied with the help of ac conductivity (σ) and ionic/electronic transference number (ti/te).

  20. Interfacial behavior of polymer electrolytes

    SciTech Connect

    Kerr, John; Kerr, John B.; Han, Yong Bong; Liu, Gao; Reeder, Craig; Xie, Jiangbing; Sun, Xiaoguang

    2003-06-03

    Evidence is presented concerning the effect of surfaces on the segmental motion of PEO-based polymer electrolytes in lithium batteries. For dry systems with no moisture the effect of surfaces of nano-particle fillers is to inhibit the segmental motion and to reduce the lithium ion transport. These effects also occur at the surfaces in composite electrodes that contain considerable quantities of carbon black nano-particles for electronic connection. The problem of reduced polymer mobility is compounded by the generation of salt concentration gradients within the composite electrode. Highly concentrated polymer electrolytes have reduced transport properties due to the increased ionic cross-linking. Combined with the interfacial interactions this leads to the generation of low mobility electrolyte layers within the electrode and to loss of capacity and power capability. It is shown that even with planar lithium metal electrodes the concentration gradients can significantly impact the interfacial impedance. The interfacial impedance of lithium/PEO-LiTFSI cells varies depending upon the time elapsed since current was turned off after polarization. The behavior is consistent with relaxation of the salt concentration gradients and indicates that a portion of the interfacial impedance usually attributed to the SEI layer is due to concentrated salt solutions next to the electrode surfaces that are very resistive. These resistive layers may undergo actual phase changes in a non-uniform manner and the possible role of the reduced mobility polymer layers in dendrite initiation and growth is also explored. It is concluded that PEO and ethylene oxide-based polymers are less than ideal with respect to this interfacial behavior.

  1. Anion exchange polymer electrolytes

    DOEpatents

    Kim, Yu Seung; Kim, Dae Sik; Lee, Kwan-Soo

    2013-07-23

    Solid anion exchange polymer electrolytes and compositions comprising chemical compounds comprising a polymeric core, a spacer A, and a guanidine base, wherein said chemical compound is uniformly dispersed in a suitable solvent and has the structure: ##STR00001## wherein: i) A is a spacer having the structure O, S, SO.sub.2, --NH--, --N(CH.sub.2).sub.n, wherein n=1-10, --(CH.sub.2).sub.n--CH.sub.3--, wherein n=1-10, SO.sub.2-Ph, CO-Ph, ##STR00002## wherein R.sub.5, R.sub.6, R.sub.7 and R.sub.8 each are independently --H, --NH.sub.2, F, Cl, Br, CN, or a C.sub.1-C.sub.6 alkyl group, or any combination of thereof; ii) R.sub.9, R.sub.10, R.sub.11, R.sub.12, or R.sub.13 each independently are --H, --CH.sub.3, --NH.sub.2, --NO, --CH.sub.nCH.sub.3 where n=1-6, HC.dbd.O--, NH.sub.2C.dbd.O--, --CH.sub.nCOOH where n=1-6, --(CH.sub.2).sub.n--C(NH.sub.2)--COOH where n=1-6, --CH--(COOH)--CH.sub.2--COOH, --CH.sub.2--CH(O--CH.sub.2CH.sub.3).sub.2, --(C.dbd.S)--NH.sub.2, --(C.dbd.NH)--N--(CH.sub.2).sub.nCH.sub.3, where n=0-6, --NH--(C.dbd.S)--SH, --CH.sub.2--(C.dbd.O)--O--C(CH.sub.3).sub.3, --O--(CH.sub.2).sub.n--CH--(NH.sub.2)--COOH, where n=1-6, --(CH.sub.2).sub.n--CH.dbd.CH wherein n=1-6, --(CH.sub.2).sub.n--CH--CN wherein n=1-6, an aromatic group such as a phenyl, benzyl, phenoxy, methylbenzyl, nitrogen-substituted benzyl or phenyl groups, a halide, or halide-substituted methyl groups; and iii) wherein the composition is suitable for use in a membrane electrode assembly.

  2. Rechargeable solid polymer electrolyte battery cell

    DOEpatents

    Skotheim, Terji

    1985-01-01

    A rechargeable battery cell comprising first and second electrodes sandwiching a solid polymer electrolyte comprising a layer of a polymer blend of a highly conductive polymer and a solid polymer electrolyte adjacent said polymer blend and a layer of dry solid polymer electrolyte adjacent said layer of polymer blend and said second electrode.

  3. Solid polymer electrolyte lithium batteries

    DOEpatents

    Alamgir, Mohamed; Abraham, Kuzhikalail M.

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  4. Solid polymer electrolyte lithium batteries

    DOEpatents

    Alamgir, M.; Abraham, K.M.

    1993-10-12

    This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

  5. Zirconium dioxide nanofilled poly(vinylidene fluoride-hexafluoropropylene) complexed with lithium trifluoromethanesulfonate as composite polymer electrolyte for electrochromic devices

    SciTech Connect

    Puguan, John Marc C.; Chinnappan, Amutha; Kostjuk, Sergei V.; Kim, Hern

    2015-09-15

    Highlights: • Successful synthesis of electrolyte by blending PVdF-HFP, ZrO{sub 2} and LiCF{sub 3}SO{sub 3}. • ZrO{sub 2} increased electrolyte conductivity by two orders of magnitude. • ZrO{sub 2} doubled bulk mechanical strength of electrolyte in terms of Young’s modulus. • Electrolytes gave a optimum optical transmittance of 52.6%. - Abstract: Poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) polymer electrolyte containing zirconium dioxide nanocrystals (ZrO{sub 2}-NC) and lithium trifluoromethanesulfonate (LiCF{sub 3}SO{sub 3}) has been synthesized using the conventional solution casting method. The addition of ZrO2-NC into the polymeric substrate gave remarkable properties in terms of the electrolyte’s ionic conductivity as well as its bulk mechanical strength. The enhanced amorphicity of the polymeric substrate due to ZrO{sub 2} and the nanofiller’s high dielectric constant make an excellent combination to increase the ionic conductivity (above 10{sup −4} S cm{sup −1}). Increasing the nanofiller content raises the ionic conductivity of the electrolyte by two orders of magnitude of which the optimum is 2.65 × 10{sup −4} S cm{sup −1} at 13.04 wt% ZrO{sub 2}-NC loading. Also, the Young’s modulus, an indicator of electrolyte’s mechanical stability, dramatically increased to 207 MPa upon loading 13.04 wt% ZrO{sub 2}-NC. Using UV–vis spectroscopy, the electrolytes with 13.04% ZrO{sub 2}-NC scanned from 200–800 nm wavelengths exhibited a maximum optical transmittance of 52.6% at 10 μm film thickness. The enhanced conductivity, high mechanical strength and reasonable optical transmittance shown by our composite polymer electrolyte make an excellent electrolyte for future energy saving smart windows such as electrochromic devices.

  6. Solid polymer electrolyte from phosphorylated chitosan

    SciTech Connect

    Fauzi, Iqbal Arcana, I Made

    2014-03-24

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

  7. Electrochemical redox properties of polypyrrole/Nafion composite film in a solid polymer electrolyte battery

    SciTech Connect

    Momma, Toshiyuki; Kakuda, Satoko; Yarimizu, Hideki; Osaka, Tetsuya

    1995-06-01

    Nafion{reg_sign} was introduced into a polypyrrole (PPy) matrix, and the redox performance of the PPy/Nafion electrode was investigated in a polyethylene oxide (PEO)-LiClO{sub 4} electrolyte. A rougher interface between polymer cathode and polymer electrolyte is usually needed for an all-solid battery, however, the PPy/Nafion cathode works well regardless of the flat surface of the PPy/Nafion film. When compared to a PPy film doped with ClO{sub 4}{sup {minus}} anions with a similar morphology, the PPy/Nafion film showed better redox performance. The results of the impedance spectroscopy and potential-step chronoamperometry confirmed that the improvement in the redox reaction of the PPy/Nafion film was due to the enhancement of the ion diffusion rate in the film. Thus, the PPy/Nafion film showed good charging-discharging properties in a rechargeable Li/PEO-LiClO{sub 4}/(PPy/Nafion) battery.

  8. Composite polymer electrolytes using fumed silica fillers: synthesis, rheology and electrochemistry

    SciTech Connect

    Khan, Saad A.; Fedkiw, Peter S.; Baker, Gregory L.

    1999-06-28

    The goal of the synthesis research was to devise routes to PEG/fumed silica/lithium salt composites that can be processed and then photochemically cross-linked to form mechanically stable electrolytes. An essential feature of the system is that the ionic conductivity and the mechanical properties must be de-coupled from each other, i.e., cross-linking of the fumed silica matrix must not cause a significant deterioration of the conductivity of the composite. As shown in Figure 2, we prepared a range of surface-modified fumed silicas and investigated their ability to form mechanically stable composite electrolytes. The groups used to modify the surface properties of the silica ranged from simple linear alkyls that render the silica hydrophobia to polyethers that promote compatibility with the electrolyte. From these materials we developed a cross-linkable system that satisfies the criteria of processibility and high-conductivity. The key material needed for the cross-linking reaction are silicas that bear surface-attached monomers. As shown schematically in Figure 3a, we prepared fumed silicas with a combination of surface groups, for example, an octyl chain with different coverages of tethered methacrylates. The length of the tether was varied, and we found that both C{sub 3} and C{sub 8} tethers gave useful composites. The functionalized silicas were combined with PEG-DM, AIBN or benzophenone (free radical initiators), LiClO{sub 4} or Li imide, and either methyl, butyl, or octyl, methacrylate to form stable clear gels. Upon irradiation with UV light, polymerization of both the tethered methacrylate and the added methacrylate took place, yielding a cross-linked rubbery composite material. Ionic conductivity measurements before and after cross-linking showed only a slight decrease (see Figure 9 later), thereby offering strong experimental evidence that the mechanical properties conferred by the silica matrix are de-coupled from the ionic conductivity of the PEG

  9. High cation transport polymer electrolyte

    DOEpatents

    Gerald, II, Rex E.; Rathke, Jerome W.; Klingler, Robert J.

    2007-06-05

    A solid state ion conducting electrolyte and a battery incorporating same. The electrolyte includes a polymer matrix with an alkali metal salt dissolved therein, the salt having an anion with a long or branched chain having not less than 5 carbon or silicon atoms therein. The polymer is preferably a polyether and the salt anion is preferably an alkyl or silyl moiety of from 5 to about 150 carbon/silicon atoms.

  10. Effects of Silica Nanostructures in Poly(ethylene oxide)-Based Composite Polymer Electrolytes.

    PubMed

    Mohanta, Jagdeep; Anwar, Shahid; Si, Satyabrata

    2016-06-01

    The present work describes the synthesis of some poly(ethylene oxide)-based nanocomposite polymer electrolyte films using various silica nanostructures as the inorganic filler by simple solution mixing technique, in which the nature of the silica nanostructures play a vital role in modulating their electrochemical performances at room temperature. The silica nanostructures are prepared by ammonical hydrolysis of tetraethyl orthosilicate following the modified St6ber method. The resulting films are characterized by X-ray diffraction and differential scanning calorimeter to study their crystallinity. Room temperature AC impedance spectroscopy is utilized to determine the Li+ ion conductivity of the resulting films. The observed conductivity values of various NCPE films depend on the nature of silica filling as well as on their surface characteristics and also on the varying PEO-Li+ ratio, which is observed to be in the order of 10(-7)-10(-6) S cm(-1). PMID:27427686

  11. Polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Gottesfeld, S.

    The recent increase in attention to polymer electrolyte fuel cells (PEFC's) is the result of significant technical advances in this technology and the initiation of some projects for the demonstration of complete PEFC-based power system in a bus or in a passenger car. A PEFC powered vehicle has the potential for zero emission, high energy conversion efficiency and extended range compared to present day battery powered EV's. This paper describes recent achievements in R&D on PEFC's. The major thrust areas have been: (1) demonstration of membrane/electrode assemblies with stable high performance in life tests lasting 4000 hours, employing ultra-low Pt loadings corresponding to only 1/2 oz of Pt for the complete power source of a passenger car; (2) effective remedies for the high sensitivity of the Pt electrocatalyst to impurities in the fuel feed stream; and (3) comprehensive evaluation of the physicochemical properties of membrane and electrodes in the PEFC, clarifying the water management issues and enabling effective codes and diagnostics for this fuel cell.

  12. Study on characteristics of PVDF/nano-clay composite polymer electrolyte using PVP as pore-forming agent

    NASA Astrophysics Data System (ADS)

    Dyartanti, Endah R.; Purwanto, Agus; Widiasa, I. Nyoman; Susanto, Heru

    2016-02-01

    Polyvinylidene fluoride (PVDF) based polymer electrolytes have a high dielectric constant, which can assist in greater ionization of lithium salts. The main advantages of PVDF are its durability in long battery operation and its ability to be a good ion conductor. However, the limitation of this polymer is its crystalline molecular structure. Dispersing nano-particles in the polymer matrix may improve the characteristics of the PVDF polymer. This paper aims to investigate the impact of nano-clay addition on the characteristics of PVDF polymer to be used as a polymer electrolyte membrane. In addition, the effect of poly(vinyl pyrrolidone) (PVP) is also investigated. The membrane was prepared by phase separation method whereas the polymer electrolyte membranes was prepared by immersing into 1 M lithium hexafluorophosphate (LiPF6) in ethylene carbonate/dimethyl carbonate (EC/DMC) electrolytes for 1 h. The membranes were characterized by scanning electron microscope (SEM), porosity and electrolyte uptake and performance in battery cell. The results showed that both nano-clay and PVP have significant impacts on the improvement of PVDF membranes to be used as polymer electrolyte.

  13. Novel electrospun poly(vinylidene fluoride- co-hexafluoropropylene)-in situ SiO 2 composite membrane-based polymer electrolyte for lithium batteries

    NASA Astrophysics Data System (ADS)

    Raghavan, Prasanth; Choi, Jae-Won; Ahn, Jou-Hyeon; Cheruvally, Gouri; Chauhan, Ghanshyam S.; Ahn, Hyo-Jun; Nah, Changwoon

    Composite membranes of poly(vinylidene fluoride- co-hexafluoropropylene) {P(VdF-HFP)} and different composition of silica have been prepared by electrospinning polymer solution containing in situ generated silica. These membranes are made up of fibers of 1-2 μm diameters. These fibers are stacked in layers to produce fully interconnected pores that results in high porosity. Polymer electrolytes were prepared by immobilizing 1 M LiPF 6 in ethylene carbonate (EC)/dimethyl carbonate (DMC) in the membranes. The composite membranes exhibit a high electrolyte uptake of 550-600%. The optimum electrochemical properties have been observed for the polymer electrolyte containing 6% in situ silica to show ionic conductivity of 8.06 mS cm -1 at 20 °C, electrolyte retention ratio of 0.85, anodic stability up to 4.6 V versus Li/Li +, and a good compatibility with lithium metal resulting in low interfacial resistance. A first cycle specific capacity of 170 mAh g -1 was obtained when the polymer electrolyte was evaluated in a Li/lithium iron phosphate (LiFePO 4) cell at 0.1 C-rate at 25 °C, corresponding to 100% utilization of the cathode material. The properties of composite membrane prepared with in situ silica were observed to be comparatively better than the one prepared by direct addition of silica.

  14. High elastic modulus polymer electrolytes

    DOEpatents

    Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2013-10-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics.

  15. Preparation of composite polymer electrolytes by electron beam-induced grafting: Proton- and lithium ion-conducting membranes

    NASA Astrophysics Data System (ADS)

    Nasef, M. M.; Saidi, H.; Dahlan, K. Z. M.

    2007-12-01

    Two classes of composite polymer electrolyte membranes, one conducting lithium ions (Li +) and the other conducting protons (H +) were prepared using simultaneous electron beam-induced grafting. Porous poly(vinylidene fluoride) (PVDF) films were impregnated with styrene and subjected to electron beam (EB) irradiation to obtain polystyrene (PS) filled PVDF precursor films that were subsequently treated with either chlorosulfonic acid/1,1,2,2-tetrachloroethane mixture to obtain H +-conducting composite membranes or LiPH 6/EC/DEC liquid electrolyte to obtain Li +-conducting composite membranes. The properties of the obtained membranes were evaluated using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and AC impedance measurements. The obtained membranes were found to achieve grafting content up to 46% with superior Li +-conductivity of 1.91 × 10 -3 S/cm and H +-conductivity of 5.95 × 10 -2 S/cm. The results of this work show that simultaneous radiation-induced grafting with EB is a promising method to prepare high quality ion-conducting membranes for possible use in fuel cells and lithium batteries.

  16. Polymer electrolyte system based on carrageenan-poly(3,4- ethylenedioxythiophene) (PEDOT) composite for dye sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Ng, C. A.; Camacho, D. H.

    2015-06-01

    Poly(3,4-ethylenedioxythiophene) (PEDOT)-κ-carregeenan polymer electrolyte blend was prepared and incorporated as the electrolyte system in dye-sensitized solar cells (DSSC). Polymer blends prepared with different κ-carrageenan concentrations and molecular weights were investigated. It was found that the conductivity of the polymer blend increases with higher κ-carrageenan concentration, and lowers with degraded κ-carregeenan. The polymer blend was incorporated in a DSSC and yielded a solar cell with efficiency (η) of 0.421%.

  17. Elastomer based composite materials for bipolar plates in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Petrach, Elaine M.

    2011-07-01

    In most investigations, polymer conductive composite bipolar plates have failed to achieve the low resistivity required for PEMFCs. The goal of this dissertation is to investigate whether a composite of conductive fillers and a two-phase polymeric matrix will achieve low resistivity through preferred distribution of the fillers at the interface of the two phases. The use of an elastomer as one component of the blend will impart fracture resistance. Three types of matrices were investigated, a single phase polyvinyl ester plastic matrix, a compatible one-phase blend of polyvinyl ester (VER) and polyurethane (PU) elastomer, and a two-phase system of polyvinyl ester and ethylene propylene diene monomer (EPDM) elastomer. The different phases were determined by the theory of mixing. When solubility parameters are closer together it is likely that the system will be one phase. The one and two-phase systems were analyzed within the composition containing natural Cytec DKD graphite fibers, Asbury synthetic graphite 4012 flakes and ultra high surface area synthetic graphite TC 307. Phase systems affect the mechanical, electrical, and thermal properties. The percolation theory analysis was applied to determine the optimal percentage of conductive fillers and polymer blends. The optimal composition for composite materials consisted of 35vo1% of conductive fillers and 65vo1% of a two-phase blend matrix. The conductive filler included 3vol% of synthetic graphite TC307, 25.5vol% of Cytec DKD graphite fibers and 6.5vol% of Asbury synthetic graphite 4012 flakes. The two-phase blend matrix included 40vol% of EPDM to 60vol% of VER. This resulted in an electrical resistivity of 0.009O-cm and a thermal conductivity of 11.6W/m-K. The two-phase blend matrix added more ductility to the composition with the ability to withstand a stress of 10MPa with over 1% strain applied to the overall composite bipolar plates. The composition also absorbed 60% more mechanical energy than that

  18. Determination of the interaction using FTIR within the composite gel polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Huang, Yun; Ma, Xiaoyan; Wang, Xu; Liang, Xiao

    2013-01-01

    In the previous research, the gel polymer electrolyte (GPE) which consisted of poly(methyl methacrylate) (PMMA) matrix, propylene carbonate (PC), LiClO4 and OREC (Rectorite modified with dodecyl benzyl dimethyl ammonium chloride), achieved satisfactory properties. In the paper, the interaction between components was quantitatively determined. Characterization of interaction of Cdbnd O in PC and PMMA with Li+ and OH group on OREC surface has been thoroughly examined using FTIR, respectively. The quantitative analysis of FTIR shows that the absorptivity coefficient a of PMMA/LiClO4, PC/LiClO4, PC/OREC and PMMA/OREC is 0.902, 0.113, 0.430 and 0.753, respectively, which means that the Li+ or OH bonded Cdbnd O is more sensitive than the free Cdbnd O in FTIR spectra. The limit value of bonded Cdbnd O equivalent fraction of PMMA/LiClO4, PC/LiClO4, PC/OREC and PMMA/OREC is 17%, 94%, 57% and 20%, respectively, which implies that all the interaction within the components is reversible and the intensity of interaction is ordered as PC/LiClO4, PC/OREC, PMMA/OREC and PMMA/LiClO4.

  19. Composite PEOn:NaTFSI polymer electrolyte: Preparation, thermal and electrochemical characterization

    NASA Astrophysics Data System (ADS)

    Serra Moreno, J.; Armand, M.; Berman, M. B.; Greenbaum, S. G.; Scrosati, B.; Panero, S.

    2014-02-01

    Membranes of sodium bis(trifluoromethanesulfonate) imide (NaTFSI) complexed with poly(ethylene oxide) (PEO) salt have been prepared by a solvent-free hot-pressing technique with different EO:Na molar ratio. All membranes show good ionic conductivities in the range of 10-3 S cm-1 above 70 °C. However, the more NaTFSI-concentrated samples are sticky gums due to the plasticizing nature of the anion. The PEO20:NaTFSI sample exhibits the compromise of conductivity, thermal and mechanical properties. The addition of nanometric SiO2 to the PEO20:NaTFSI membranes further enhances their mechanical properties. Moreover, the PEO20:NaTFSI + 5 wt.% SiO2 membranes show similar ionic conductivity and similar anodic electrochemical stability in comparison to the ceramic free PEO20:NaTFSI sample. In a Na(s)/polymer electrolyte/Na(s) symmetrical cell followed up to 30 days, the presence of the ceramic filler slightly increased the interface resistance in comparison to the ceramic-free membrane. Nuclear magnetic resonance determinations of anion diffusion coefficients and Na+ mobility suggest that presence of filler may have a positive affect on the cation transference number that is in accordance with the tNa+ transference number measurement.

  20. A novel lithium/sulfur battery based on sulfur/graphene nanosheet composite cathode and gel polymer electrolyte.

    PubMed

    Zhang, Yongguang; Zhao, Yan; Bakenov, Zhumabay

    2014-01-01

    A novel sulfur/graphene nanosheet (S/GNS) composite was prepared via a simple ball milling of sulfur with commercial multi-layer graphene nanosheet, followed by a heat treatment. High-resolution transmission and scanning electronic microscopy observations showed the formation of irregularly interlaced nanosheet-like structure consisting of graphene with uniform sulfur coating on its surface. The electrochemical properties of the resulting composite cathode were investigated in a lithium cell with a gel polymer electrolyte (GPE) prepared by trapping 1 mol dm-3 solution of lithium bistrifluoromethanesulfonamide in tetraethylene glycol dimethyl ether in a polymer matrix composed of poly(vinylidene fluoride-co-hexafluoropropylene)/poly(methylmethacrylate)/silicon dioxide (PVDF-HFP/PMMA/SiO2). The GPE battery delivered reversible discharge capacities of 809 and 413 mAh g-1 at the 1st and 50th cycles at 0.2C, respectively, along with a high coulombic efficiency over 50 cycles. This performance enhancement of the cell was attributed to the suppression of the polysulfide shuttle effect by a collective effect of S/GNS composite cathode and GPE, providing a higher sulfur utilization. PMID:24655466

  1. A novel lithium/sulfur battery based on sulfur/graphene nanosheet composite cathode and gel polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Zhang, Yongguang; Zhao, Yan; Bakenov, Zhumabay

    2014-03-01

    A novel sulfur/graphene nanosheet (S/GNS) composite was prepared via a simple ball milling of sulfur with commercial multi-layer graphene nanosheet, followed by a heat treatment. High-resolution transmission and scanning electronic microscopy observations showed the formation of irregularly interlaced nanosheet-like structure consisting of graphene with uniform sulfur coating on its surface. The electrochemical properties of the resulting composite cathode were investigated in a lithium cell with a gel polymer electrolyte (GPE) prepared by trapping 1 mol dm-3 solution of lithium bistrifluoromethanesulfonamide in tetraethylene glycol dimethyl ether in a polymer matrix composed of poly(vinylidene fluoride-co-hexafluoropropylene)/poly(methylmethacrylate)/silicon dioxide (PVDF-HFP/PMMA/SiO2). The GPE battery delivered reversible discharge capacities of 809 and 413 mAh g-1 at the 1st and 50th cycles at 0.2C, respectively, along with a high coulombic efficiency over 50 cycles. This performance enhancement of the cell was attributed to the suppression of the polysulfide shuttle effect by a collective effect of S/GNS composite cathode and GPE, providing a higher sulfur utilization. PACS: 82.47.Aa; 82.45.Gj; 62.23.Kn

  2. A novel lithium/sulfur battery based on sulfur/graphene nanosheet composite cathode and gel polymer electrolyte

    PubMed Central

    2014-01-01

    A novel sulfur/graphene nanosheet (S/GNS) composite was prepared via a simple ball milling of sulfur with commercial multi-layer graphene nanosheet, followed by a heat treatment. High-resolution transmission and scanning electronic microscopy observations showed the formation of irregularly interlaced nanosheet-like structure consisting of graphene with uniform sulfur coating on its surface. The electrochemical properties of the resulting composite cathode were investigated in a lithium cell with a gel polymer electrolyte (GPE) prepared by trapping 1 mol dm−3 solution of lithium bistrifluoromethanesulfonamide in tetraethylene glycol dimethyl ether in a polymer matrix composed of poly(vinylidene fluoride-co-hexafluoropropylene)/poly(methylmethacrylate)/silicon dioxide (PVDF-HFP/PMMA/SiO2). The GPE battery delivered reversible discharge capacities of 809 and 413 mAh g−1 at the 1st and 50th cycles at 0.2C, respectively, along with a high coulombic efficiency over 50 cycles. This performance enhancement of the cell was attributed to the suppression of the polysulfide shuttle effect by a collective effect of S/GNS composite cathode and GPE, providing a higher sulfur utilization. PMID:24655466

  3. Mechanical and water sorption properties of nafion and composite nafion/titanium dioxide membranes for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Satterfield, May Barclay

    The mechanical properties of the membranes used in polymer electrolyte membrane fuel cells are important to the performance and longevity of the cell. The speed and extent of membrane water uptake depend on the membrane's viscoelastic mechanical properties, which are themselves dependent on membrane hydration, and increased hydration improves membrane proton conductivity and fuel cell performance. Membrane mechanical properties also affect durability and cell longevity, preventing membrane failure from stresses induced by changing temperature and water content during operational cycling. Further, membrane creep and stress-relaxation can change the extent of membrane/electrode contact, also changing cell behavior. New composite membrane materials have exhibited superior performance in fuel cells, and it is suspected that improved mechanical properties are responsible. Studies of polymer electrolyte membrane (PEM) fuel cell dynamics using Nafion membranes have demonstrated the importance of membrane mechanical properties, swelling and water-absorption behavior to cell performance. Nonlinear and delayed dynamic responses to changing operating parameters were unexpected, but reminiscent of polymer viscoelastic behavior and water sorption dynamics, illustrating the need to better understand membrane properties to design and operate fuel cells. Further, Nafion/TiO2 composite membranes developed by the Princeton Chemistry Department improve fuel cell performance, which may be due to changes in membrane microstructure and enhanced mechanical properties. Mechanical properties, stress-relaxation behavior, water sorption and desorption rates and pressures exerted during hydration by a confined membrane have been measured for Nafion and for Nafion/TiO2 composite membranes. Mechanical properties, including the Young's modulus and limits of elastic deformation are dependent on temperature and membrane water content. The Young's modulus decreases with increasing water content and

  4. Study on ion conductivity and crystallinity of composite polymer electrolytes based on poly(ethylene oxide)/poly(acrylonitrile) containing nano-sized Al2O3 fillers.

    PubMed

    Kim, Mingyeong; Lee, Lyungyu; Jung, Yongju; Kim, Seok

    2013-12-01

    In this paper, composite polymer electrolytes were prepared by a blend of poly(ethylene oxide) (PEO) and poly(acrylonitrile) (PAN) as a polymer matrix, ethylene carbonate as a plasticizer, LiClO4 as a salt, and by containing a different content of nano-sized Al2O3. The composite films were prepared by using the solution casting method. The crystallinity and ionic conductivity of the polymer electrolytes was investigated using X-ray diffraction (XRD) and AC impedance method, respectively. The morphology of composite polymer electrolyte film was analyzed by SEM method. From the experimental results, by increasing the Al2O3 content, the crystallinity of PEO was reduced, and the ionic conductivity was increased. In particular, by a doping of 15 wt.% Al2O3 in PEO/PAN polymer blend, the CPEs showed the superior ionic conductivity. However, when Al2O3 content exceeds 15 wt.%, the ionic conductivity was decreased. From the surface morphology, it was concluded that the ionic conductivity was decreased because the CPEs showed a heterogenous morphology due to immiscibility or aggregation of the ceramic filler within the polymer matrix. PMID:24266154

  5. Polymer Electrolytes for Lithium/Sulfur Batteries

    PubMed Central

    Zhao, Yan; Zhang, Yongguang; Gosselink, Denise; Doan, The Nam Long; Sadhu, Mikhail; Cheang, Ho-Jae; Chen, Pu

    2012-01-01

    This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S) batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes. PMID:24958296

  6. Solid polymer electrolyte photovoltaic cell

    SciTech Connect

    Skotheim, T.; Lundstrom, I.

    1982-04-01

    Solid photoelectrochemical cells are described based on PEO-KI/I/sub 2/ electrolytes, n-Si/Pt/PPy photoanodes, and conductive tin-oxide glass counter electrodes. The performance of the present devices is limited by a high series resistance in the polymer film. 22 refs.

  7. New approaches towards novel composite and multilayer membranes for intermediate temperature-polymer electrolyte fuel cells and direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Branco, Carolina Musse; Sharma, Surbhi; de Camargo Forte, Maria Madalena; Steinberger-Wilckens, Robert

    2016-06-01

    This review analyses the current and existing literature on novel composite and multilayer membranes for Polymer Electrolyte Fuel Cell applications, including intermediate temperature polymer electrolyte fuel cell (IT-PEFC) and direct methanol fuel cell (DMFC) systems. It provides a concise scrutiny of the vast body of literature available on organic and inorganic filler based polymer membranes and links it to the new emerging trend towards novel combinations of multilayered polymer membranes for applications in DMFC and IT-PEFC. The paper carefully explores the advantages and disadvantages of the most common preparation techniques reported for multilayered membranes such as hot-pressing, casting and dip-coating and also summarises various other fresh and unique techniques employed for multilayer membrane preparation.

  8. Preparation and characterization on nano-hybrid composite solid polymer electrolyte of PVdF-HFP /MG49-ZrO2 for battery application

    NASA Astrophysics Data System (ADS)

    Lee T., K.; Ahmad, A.; Hasyareeda, N.

    2014-09-01

    Initial study on nano composite polymer electrolyte of PVdF-HFP/MG49-ZrO2 has been done. The zirconium was synthesis via in-situ sol-gel method in a dissolved polymer blends. The effects of different concentrations of zirconium and pH values have been investigated on nano composite polymer (NCP). Analysis impedance show that only at 6 wt. % of zirconium for all pH values show a semi-circle arc which have lowest value of bulk resistance. No ionic conductivity value is obtain due to the absent of ion charge carriers. Analysis of XRD revealed that crystallinity phase of the nano composite polymer was affect by different pH values. However, no significant changes have been observed in IR bands. This could well indicate that different pH medium did not affect the chemical bonding in the structure.

  9. Preparation and characterization on nano-hybrid composite solid polymer electrolyte of PVdF-HFP /MG49-ZrO{sub 2} for battery application

    SciTech Connect

    Lee, T. K.; Ahmad, A.; Hasyareeda, N.

    2014-09-03

    Initial study on nano composite polymer electrolyte of PVdF-HFP/MG49-ZrO{sub 2} has been done. The zirconium was synthesis via in-situ sol-gel method in a dissolved polymer blends. The effects of different concentrations of zirconium and pH values have been investigated on nano composite polymer (NCP). Analysis impedance show that only at 6 wt. % of zirconium for all pH values show a semi-circle arc which have lowest value of bulk resistance. No ionic conductivity value is obtain due to the absent of ion charge carriers. Analysis of XRD revealed that crystallinity phase of the nano composite polymer was affect by different pH values. However, no significant changes have been observed in IR bands. This could well indicate that different pH medium did not affect the chemical bonding in the structure.

  10. Dielectric relaxations and conduction mechanisms in polyether-clay composite polymer electrolytes under high carbon dioxide pressure.

    PubMed

    Kitajima, Shunsuke; Bertasi, Federico; Vezzù, Keti; Negro, Enrico; Tominaga, Yoichi; Di Noto, Vito

    2013-10-21

    The composite material P(EO/EM)-Sa consisting of synthetic saponite (Sa) dispersed in poly[ethylene oxide-co-2-(2-methoxyethoxy)ethyl glycidyl ether] (P(EO/EM)) is studied by "in situ" measurements using broadband electrical spectroscopy (BES) under pressurized CO2 to characterize the dynamic behavior of conductivity and the dielectric relaxations of the ion host polymer matrix. It is revealed that there are three dielectric relaxation processes associated with: (I) the dipolar motions in the short oxyethylene side chains of P(EO/EM) (β); and (II) the segmental motion of the main chains comprising the polyether components (αfast, αslow). αslow is attributed to the slow α-relaxation of P(EO/EM) macromolecules, which is hindered by the strong coordination interactions with the ions. Two conduction processes are observed, σDC and σID, which are attributed, respectively, to the bulk conductivity and the interdomain conductivity. The temperature dependence of conductivity and relaxation processes reveals that αfast and αslow are strongly correlated with σDC and σID. The "in situ" BES measurements under pressurized CO2 indicate a fast decrease in σDC at the initial CO2 treatment time resulting from the decrease in the concentration of polyether-M(n+) complexes, which is driven by the CO2 permeation. The relaxation frequency (fR) of αslow at the initial CO2 treatment time increases and shows a steep rise with time with the same behavior of the αfast mode. It is demonstrated that the interactions between polyether chains of P(EO/EM) and cations in the polymer electrolyte layers embedded in Sa are probably weakened by the low permittivity of CO2 (ε = 1.08). Thus, the formation of ion pairs in the polymer electrolyte domains of P(EO/EM)-Sa occurs, with a corresponding reduction in the concentration of ion carriers. PMID:23963202

  11. A Cross-Linking Succinonitrile-Based Composite Polymer Electrolyte with Uniformly Dispersed Vinyl-Functionalized SiO2 Particles for Li-Ion Batteries.

    PubMed

    Liu, Kai; Ding, Fei; Liu, Jiaquan; Zhang, Qingqing; Liu, Xingjiang; Zhang, Jinli; Xu, Qiang

    2016-09-14

    A cross-linking succinonitrile (SN)-based composite polymer electrolyte (referred to as "CLPC-CPE"), in which vinyl-functionalized SiO2 particles connect with trimethylolpropane propoxylate triacrylate (TPPTA) monomers by covalent bonds, was prepared by an ultraviolet irradiation (UV-curing) process successfully. Vinyl-functionalized SiO2 particles may react with TPPTA monomers to form a cross-linking network within the SN-based composite polymer electrolyte under ultraviolet irradiation. Vinyl-functionalized SiO2 particles as the fillers of polymer electrolyte may improve both the thermal stability of CLPC-CPE and interfacial compatibility between CLPC-CPE and electrodes effectively. There is no weight loss for CLPC-CPE until above 230 °C. The ionic conductivity of CLPC-CPE may reach 7.02 × 10(-4) S cm(-1) at 25 °C. CLPC-CPE has no significant oxidation current until up to 4.6 V (vs Li/Li(+)). The cell of LiFePO4/CLPC-CPE/Li has presented superior cycle performance and rate capability. The cell of LiFePO4/CLPC-CPE/Li may deliver a high discharge capacity of 154.4 mAh g(-1) at a rate of 0.1 C after 100 charge-discharge cycles, which is similar than that of the control cell of LiFePO4/liquid electrolyte/Li. Furthermore, the cell of LiFePO4/CLPC-CPE/Li can display a high discharge capacity of 112.7 mAh g(-1) at a rate of 2 C, which is higher than that of the cells assembled with other plastic crystal polymer electrolyte reported before obviously. PMID:27561892

  12. Self-doped molecular composite battery electrolytes

    DOEpatents

    Harrup, Mason K.; Wertsching, Alan K.; Stewart, Frederick F.

    2003-04-08

    This invention is in solid polymer-based electrolytes for battery applications. It uses molecular composite technology, coupled with unique preparation techniques to render a self-doped, stabilized electrolyte material suitable for inclusion in both primary and secondary batteries. In particular, a salt is incorporated in a nano-composite material formed by the in situ catalyzed condensation of a ceramic precursor in the presence of a solvated polymer material, utilizing a condensation agent comprised of at least one cation amenable to SPE applications. As such, the counterion in the condensation agent used in the formation of the molecular composite is already present as the electrolyte matrix develops. This procedure effectively decouples the cation loading levels required for maximum ionic conductivity from electrolyte physical properties associated with condensation agent loading levels by utilizing the inverse relationship discovered between condensation agent loading and the time domain of the aging step.

  13. Composite Solid Electrolyte Containing Li+- Conducting Fibers

    NASA Technical Reports Server (NTRS)

    Appleby, A. John; Wang, Chunsheng; Zhang, Xiangwu

    2006-01-01

    Improved composite solid polymer electrolytes (CSPEs) are being developed for use in lithium-ion power cells. The matrix components of these composites, like those of some prior CSPEs, are high-molecular-weight dielectric polymers [generally based on polyethylene oxide (PEO)]. The filler components of these composites are continuous, highly-Li(+)-conductive, inorganic fibers. PEO-based polymers alone would be suitable for use as solid electrolytes, were it not for the fact that their room-temperature Li(+)-ion conductivities lie in the range between 10(exp -6) and 10(exp -8) S/cm, too low for practical applications. In a prior approach to formulating a CSPE, one utilizes nonconductive nanoscale inorganic filler particles to increase the interfacial stability of the conductive phase. The filler particles also trap some electrolyte impurities. The achievable increase in conductivity is limited by the nonconductive nature of the filler particles.

  14. Effects of TiO2 addition on ionic conductivity of PVC/PEMA blend based composite polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Subban, R. H. Y.; Sukri, Nursyazwani

    2015-08-01

    PVC/PEMA blend based polymer electrolytes with lithium bistrifluoromethane sulfonimide (LiN(CF3SO2)2) and PVC/PEMA/(LiN(CF3SO2)2-TiO2 films were prepared by solution cast technique. The sample containing 35 wt. % LiN(CF3SO2)2 exhibited the highest conductivity of 1.75 × 10-5 Scm-1. The conductivity of the sample increased to 2.12 × 10-5 Scm-1 and 4.61 × 10-5 Scm-1 when 4 wt. % and 10 wt. % of titanium dioxide (TiO2) was added to the sample at 65 wt. % PVC/PEMA-35 wt. % LiN(CF3SO2)2 composition respectively. The low increase in conductivity is attributed to two competing factors: increase in crystallinity as accounted by X-Ray diffraction (XRD) and decrease in glass transition temperature as accounted by differential scanning calorimetry (DSC).

  15. Effects of TiO{sub 2} addition on ionic conductivity of PVC/PEMA blend based composite polymer electrolyte

    SciTech Connect

    Subban, R. H. Y.; Sukri, Nursyazwani

    2015-08-28

    PVC/PEMA blend based polymer electrolytes with lithium bistrifluoromethane sulfonimide (LiN(CF{sub 3}SO{sub 2}){sub 2}) and PVC/PEMA/(LiN(CF{sub 3}SO{sub 2}){sub 2}-TiO{sub 2} films were prepared by solution cast technique. The sample containing 35 wt. % LiN(CF{sub 3}SO{sub 2}){sub 2} exhibited the highest conductivity of 1.75 × 10{sup −5} Scm{sup −1}. The conductivity of the sample increased to 2.12 × 10{sup −5} Scm{sup −1} and 4.61 × 10{sup −5} Scm{sup −1} when 4 wt. % and 10 wt. % of titanium dioxide (TiO{sub 2}) was added to the sample at 65 wt. % PVC/PEMA-35 wt. % LiN(CF{sub 3}SO{sub 2}){sub 2} composition respectively. The low increase in conductivity is attributed to two competing factors: increase in crystallinity as accounted by X-Ray diffraction (XRD) and decrease in glass transition temperature as accounted by differential scanning calorimetry (DSC)

  16. Electrochromic Device with Polymer Electrolyte

    NASA Astrophysics Data System (ADS)

    Solovyev, Andrey A.; Zakharov, Alexander N.; Rabotkin, Sergey V.; Kovsharov, Nikolay F.

    2016-05-01

    In this study a solid-state electrochromic device (ECD) comprised of a WO3 and Prussian blue (Fe4[Fe(CN)6]3) thin film couple with a Li+-conducting solid polymer electrolyte is discussed. WO3 was deposited on K-Glass substrate by magnetron sputtering method, while Prussian blue layer was formed on the same substrate by electrodeposition method. The parameters of the electrochromic device K-Glass/WO3/Li+-electrolyte/PB/K-Glass, such as change of transmittance, response time and stability were successfully tested using coupled optoelectrochemical methods. The device was colored or bleached by the application of +2 V or -2 V, respectively. Light modulation with transmittance variation of up to 59% and coloration efficiency of 43 cm2/C at a wavelength of 550 nm were obtained. Numerous switching of the ECD over 1200 cycles without the observation of significant degradation has been demonstrated.

  17. Electrochromic Device with Polymer Electrolyte

    NASA Astrophysics Data System (ADS)

    Solovyev, Andrey A.; Zakharov, Alexander N.; Rabotkin, Sergey V.; Kovsharov, Nikolay F.

    2016-08-01

    In this study a solid-state electrochromic device (ECD) comprised of a WO3 and Prussian blue (Fe4[Fe(CN)6]3) thin film couple with a Li+-conducting solid polymer electrolyte is discussed. WO3 was deposited on K-Glass substrate by magnetron sputtering method, while Prussian blue layer was formed on the same substrate by electrodeposition method. The parameters of the electrochromic device K-Glass/WO3/Li+-electrolyte/PB/K-Glass, such as change of transmittance, response time and stability were successfully tested using coupled optoelectrochemical methods. The device was colored or bleached by the application of +2 V or -2 V, respectively. Light modulation with transmittance variation of up to 59% and coloration efficiency of 43 cm2/C at a wavelength of 550 nm were obtained. Numerous switching of the ECD over 1200 cycles without the observation of significant degradation has been demonstrated.

  18. Hydrocarbon-based polymer electrolyte cerium composite membranes for improved proton exchange membrane fuel cell durability

    NASA Astrophysics Data System (ADS)

    Lee, Hyejin; Han, Myungseong; Choi, Young-Woo; Bae, Byungchan

    2015-11-01

    Hydrocarbon-based cerium composite membranes were prepared for proton exchange membrane fuel cell applications to increase oxidative stability. Different amounts of cerium ions were impregnated in sulfonated poly(arylene ether sulfone) (SPES) membranes and their physicochemical properties were investigated according to the cerium content. Field-emission scanning electron microscopy and inductively coupled plasma analyses confirmed the presence of cerium ions in the composite membranes and 1H NMR indicated the successful coordination of sulfonic acid groups with the metal ions. Increasing amounts of cerium ions resulted in decreases in the proton conductivity and water uptake, but enhanced oxidative stability. The oxidative stability of the composite membranes was proven via a hydrogen peroxide exposure experiment which mimicked fuel cell operating conditions. In addition, more than 2200 h was achieved with the composite membrane under in situ accelerated open circuit voltage (OCV) durability testing (DOE protocol), whereas the corresponding pristine SPES membrane attained only 670 h.

  19. Silicone as a binder in composite electrolytes

    NASA Astrophysics Data System (ADS)

    Inada, Taro; Takada, Kazunori; Kajiyama, Akihisa; Sasaki, Hideki; Kondo, Shigeo; Watanabe, Mamoru; Murayama, Masahiro; Kanno, Ryoji

    A liquid silicone was used as a binder to make composite solid electrolytes from lithium-ion conductive inorganic solid electrolytes (ISEs): an oxysulfide glass, 0.01Li 3PO 4-0.63Li 2S-0.36SiS 2 and/or a lithium germanium thio-phosphate, Li 3.25Ge 0.25P 0.75S 4. Ionic conductivities of the composites were of the order of 10 -4 Scm -1, even when the silicone was enriched to 10% (v/v). On the other hand, the composite with styrene-butadiene block co-polymer (SBR) or polypropylene oxide-polyethylene oxide (PO-EO) co-polymer as binder showed much lower conductivity. In the composite electrolyte, the silicone rubber must partly cover the surface of the ISE particles because the composite electrolyte is molded before the vulcanization of the fluid liquid silicone; and thus, it must rarely interfere with the conduction between the ISE particles. Hydrocarbons were found to be suitable in the preparation process of the composite solid electrolyte (CSE).

  20. Nanocomposite polymer electrolyte for rechargeable magnesium batteries

    SciTech Connect

    Shao, Yuyan; Rajput, Nav Nidhi; Hu, Jian Z.; Hu, Mary Y.; Liu, Tianbiao L.; Wei, Zhehao; Gu, Meng; Deng, Xuchu; Xu, Suochang; Han, Kee Sung; Wang, Jiulin; Nie, Zimin; Li, Guosheng; Zavadil, K.; Xiao, Jie; Wang, Chong M.; Henderson, Wesley A.; Zhang, Jiguang; Wang, Yong; Mueller, Karl T.; Persson, Kristin A.; Liu, Jun

    2014-12-28

    Nanocomposite polymer electrolytes present new opportunities for rechargeable magnesium batteries. However, few polymer electrolytes have demonstrated reversible Mg deposition/dissolution and those that have still contain volatile liquids such as tetrahydrofuran (THF). In this work, we report a nanocomposite polymer electrolyte based on poly(ethylene oxide) (PEO), Mg(BH4)2 and MgO nanoparticles for rechargeable Mg batteries. Cells with this electrolyte have a high coulombic efficiency of 98% for Mg plating/stripping and a high cycling stability. Through combined experiment-modeling investigations, a correlation between improved solvation of the salt and solvent chain length, chelation and oxygen denticity is established. Following the same trend, the nanocomposite polymer electrolyte is inferred to enhance the dissociation of the salt Mg(BH4)2 and thus improve the electrochemical performance. The insights and design metrics thus obtained may be used in nanocomposite electrolytes for other multivalent systems.

  1. Bacterial nanocellulose/Nafion composite membranes for low temperature polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Jiang, Gao-peng; Zhang, Jing; Qiao, Jin-li; Jiang, Yong-ming; Zarrin, Hadis; Chen, Zhongwei; Hong, Feng

    2015-01-01

    Novel nanocomposite membranes aimed for both proton-exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) are presented in this work. The membranes are based on blending bacterial nanocellulose pulp and Nafion (abbreviated as BxNy, where x and y indicates the mass ratio of bacterial cellulose to Nafion). The structure and properties of BxNy membranes are characterized by FTIR, SEM, TG, DMA and EIS, along with water uptake, swelling behavior and methanol permeability tests. It is found that the BxNy composite membranes with reinforced concrete-like structure show excellent mechanical and thermal stability regardless of annealing. The water uptake plus area and volume swelling ratios are all decreased compared to Nafion membranes. The proton conductivities of pristine and annealed B1N9 are 0.071 and 0.056 S cm-1, respectively, at 30 °C and 100% humidity. Specifically, annealed B1N1 exhibited the lowest methanol permeability of 7.21 × 10-7 cm2 s-1. Through the selectivity analysis, pristine and annealed B1N7 are selected to assemble the MEAs. The performances of annealed B1N7 in PEMFC and DMFC show the maximum power densities of 106 and 3.2 mW cm-2, respectively, which are much higher than those of pristine B1N7 at 25 °C. The performances of the pristine and annealed B1N7 reach a level as high as 21.1 and 20.4 mW cm-2 at 80 °C in DMFC, respectively.

  2. Cured composite materials for reactive metal battery electrolytes

    DOEpatents

    Harrup, Mason K.; Stewart, Frederick F.; Peterson, Eric S.

    2006-03-07

    A solid molecular composite polymer-based electrolyte is made for batteries, wherein silicate compositing produces a electrolytic polymer with a semi-rigid silicate condensate framework, and then mechanical-stabilization by radiation of the outer surface of the composited material is done to form a durable and non-tacky texture on the electrolyte. The preferred ultraviolet radiation produces this desirable outer surface by creating a thin, shallow skin of crosslinked polymer on the composite material. Preferably, a short-duration of low-medium range ultraviolet radiation is used to crosslink the polymers only a short distance into the polymer, so that the properties of the bulk of the polymer and the bulk of the molecular composite material remain unchanged, but the tough and stable skin formed on the outer surface lends durability and processability to the entire composite material product.

  3. Solid composite electrolytes for lithium batteries

    DOEpatents

    Kumar, Binod; Scanlon, Jr., Lawrence G.

    2001-01-01

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a polymer-ceramic composite electrolyte containing poly(ethylene oxide), lithium tetrafluoroborate and titanium dioxide is provided in the form of an annealed film having a room temperature conductivity of from 10.sup.-5 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1 and an activation energy of about 0.5 eV.

  4. Study of novel lithium salt-based, plasticized polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Silva, Maria Manuela; Barros, Sandra Cerqueira; Smith, Michael J.; MacCallum, James R.

    The results of a preliminary investigation of a series of polymer electrolytes based on a novel polymer host, poly(trimethylene carbonate) (p(TMC)), with lithium triflate or lithium perchlorate and various plasticizing additives, are described in this presentation. Electrolytes with lithium salt compositions of about n=10 (where n represents the molar ratio of (OCOCH 2CH 2CH 2O) units per lithium ion) and additive compositions between 5 and 15 wt.% (with respect to p(TMC)), were prepared by co-dissolution of salt and polymer in anhydrous solvent with a controlled amount of additive. The homogeneous solutions obtained were evaporated within a preparative glovebox and under a dry argon atmosphere to form thin films of electrolyte. The solvent-free electrolyte films produced were characterized by measurements of total ionic conductivity, differential scanning calorimetry and thermogravimetry. In general the triflate-based electrolytes were found to show moderate ionic conductivity and good thermal stability while perchlorate-based electrolytes showed higher levels of conductivity but lower thermal stability. Electrolytes based on this host polymer, with both lithium salts, were obtained as very flexible, transparent, completely amorphous films.

  5. Solid polymer electrolyte water electrolysis

    NASA Astrophysics Data System (ADS)

    Takenaka, H.; Torikai, E.; Kawami, Y.; Wakabayashi, N.

    Electrocatalyst performances and bonding to solid polymer electrolytes used for water electrolysis are investigated. Noble metal and metal alloy catalysts were plated to Nafion perfluorosulfonic acid polymer membranes without a binder by the use of a reducing agent solution held on the opposite side of the membrane from a metal salt solution. It was found that pretreatment of the membrane by hydrothermal treatment or gas plasma surface roughening improves metal adhesivity and thus reduces contact resistance between the membrane and the catalyst. Measurements of the constituents of cell voltage for platinum, rhodium and iridium anodes with platinum cathodes reveals that anodic overvoltage is a major component of voltage loss and depends on the type of electrocatalyst, being greatest for Pd and least for Ir. Ir and Ir-alloy electrodes, which were found to be the best catalysts for oxygen evolution, are found to have Tafel slopes of 0.04-0.06 V/decade. In a cell with a Pt cathode and Ir anode, cell voltage is observed to decrease with increasing temperature, reaching 1.56-1.59 V at a current density of 50 A/sq dm and 90 C, which corresponds to a thermal efficiency of 93-95%.

  6. Electrically conductive LCP-carbon composite with low carbon content for bipolar plate application in polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Wolf, H.; Willert-Porada, M.

    Lightweight polymer-carbon composites with high specific electrical conductivity at a carbon content below 40 vol.% were developed. The electrical and mechanical properties and the hydrogen permeability of carbon fiber and particle reinforced liquid crystalline polymers were examined. Vectra ® A 950, SIGRAFIL ® carbon fibers and Vulcan ® XC 72 R carbon black were employed. The composites are found to have sufficient mechanical properties and a hydrogen permeability low enough to be utilised as bipolar plate material in fuel cell applications. The density of the new composite is 20% lower than the density of commercial bipolar plates made from carbon reinforced polymeric composite materials, due to the lower carbon content. The current density at 0.5 V in an operating fuel cell is only 20% lower compared to commercial materials with more than 80 vol.% carbon content and meets the requirements for bipolar plate application.

  7. Solid-polymer-electrolyte fuel cells

    SciTech Connect

    Fuller, T.F.

    1992-07-01

    A transport model for polymer electrolytes is presented, based on concentrated solution theory and irreversible thermodynamics. Thermodynamic driving forces are developed, transport properties are identified and experiments devised. Transport number of water in Nafion 117 membrane is determined using a concentration cell. It is 1.4 for a membrane equilibrated with saturated water vapor at 25{degrees}C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the water content approaches zero. The relation between transference number, transport number, and electroosmotic drag coefficient is presented, and their relevance to water-management is discussed. A mathematical model of transport in a solid-polymer-electrolyte fuel cell is presented. A two-dimensional membrane-electrode assembly is considered. Water management, thermal management, and utilization of fuel are examined in detail. The membrane separators of these fuel cells require sorbed water to maintain conductivity; therefore it is necessary to manage the water content in membranes to ensure efficient operation. Water and thermal management are interrelated. Rate of heat removal is shown to be a critical parameter in the operation of these fuel cells. Current-voltage curves are presented for operation on air and reformed methanol. Equations for convective diffusion to a rotating disk are solved numerically for a consolute point between the bulk concentration and the surface. A singular-perturbation expansion is presented for the condition where the bulk concentration is nearly equal to the consolute-point composition. Results are compared to Levich's solution and analysis.

  8. Electrolyte composition for electrochemical cell

    DOEpatents

    Vissers, Donald R.; Tomczuk, Zygmunt; Anderson, Karl E.; Roche, Michael F.

    1979-01-01

    A high-temperature, secondary electrochemical cell that employs FeS as the positive electrode reactant and lithium or lithium alloy as the negative electrode reactant includes an improved electrolyte composition. The electrolyte comprises about 60-70 mole percent LiCl and 30-40 percent mole percent KCl which includes LiCl in excess of the eutectic composition. The use of this electrolyte suppresses formation of the J phase and thereby improves the utilization of positive electrode active material during cell cycling.

  9. Synthesis and characterizations of novel polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Chanthad, Chalathorn

    Polymer electrolytes are an important component of many electrochemical devices. The ability to control the structures, properties, and functions of polymer electrolytes remains a key subject for the development of next generation functional polymers. Taking advantage of synthetic strategies is a promising approach to achieve the desired chemical structures, morphologies, thermal, mechanical, and electrochemical properties. Therefore, the major goal of this thesis is to develop synthetic methods for of novel proton exchange membranes and ion conductive membranes. In Chapter 2, new classes of fluorinated polymer- polysilsesquioxane nanocomposites have been designed and synthesized. The synthetic method employed includes radical polymerization using the functional benzoyl peroxide initiator for the telechelic fluorinated polymers with perfluorosulfonic acids in the side chains and a subsequent in-situ sol-gel condensation of the prepared triethoxylsilane-terminated fluorinated polymers with alkoxide precursors. The properties of the composite membranes have been studied as a function of the content and structure of the fillers. The proton conductivity of the prepared membranes increases steadily with the addition of small amounts of the polysilsesquioxane fillers. In particular, the sulfopropylated polysilsesquioxane based nanocomposites display proton conductivities greater than Nafion. This is attributed to the presence of pendant sulfonic acids in the fillers, which increases ion-exchange capacity and offers continuous proton transport channels between the fillers and the polymer matrix. The methanol permeability of the prepared membranes has also been examined. Lower methanol permeability and higher electrochemical selectivity than those of Nafion have been demonstrated in the polysilsesquioxane based nanocomposites. In Chapter 3, the synthesis of a new class of ionic liquid-containing triblock copolymers with fluoropolymer mid-block and imidazolium methacrylate

  10. New interpenetrating network type siloxane polymer electrolyte.

    SciTech Connect

    Oh, B.; Hyung, Y.-E.; Vissers, D. R.; Amine, K.; Chemical Engineering

    2002-11-01

    An interpenetrating network (IPN), comb-type, siloxane-based solid polymer electrolyte solid polymer electrolyte was prepared and its electrochemical properties were evaluated. The cross-linking reaction conditions were established from accelerated rate calorimetry studies. An IPN solid ploymer electrolyte with 60 wt % of the comb-shaped siloxane showed an ionic conductivity of greater than 5x10{sup -4} S/cm at 37 C, with a wide electrochemical stability window of up to 4.5 V vs. lithium. A Li metal/solid polymer electrolyte/LiNi{sub 0.8}Co{sub 0.2}O{sub 2} cell showed promising discharge capacities above 130 mAh/g and good cycling performance.

  11. Fuel cell electrolyte membrane with basic polymer

    DOEpatents

    Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

    2010-11-23

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  12. Fuel cell electrolyte membrane with basic polymer

    DOEpatents

    Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

    2012-12-04

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  13. High-energy-density, all-solid-state microsupercapacitors with three-dimensional interdigital electrodes of carbon/polymer electrolyte composite

    NASA Astrophysics Data System (ADS)

    Pu, Juan; Wang, Xiaohong; Zhang, Tianyi; Li, Siwei; Liu, Jinghe; Komvopoulos, Kyriakos

    2016-01-01

    Novel all-solid-state microsupercapacitors (MSCs) with three-dimensional (3D) electrodes consisting of active materials (i.e., graphene or activated carbon (AC) particles) and polymer electrolyte (PE) designed for high-energy-density storage applications were fabricated and tested in this work. The incorporation of PE in the electrode material enhances the accessibility of electrolyte ions to the surface of active materials and decreases the ion diffusion path during electrochemical charge/discharge. For a scan rate of 5 mV s-1, the MSCs with graphene/PE and AC/PE composite electrodes demonstrate a very high areal capacitance of 95 and 134 mF cm-2, respectively, comparable to that of 3D MSCs with liquid electrolyte. In addition, the graphene/PE MSCs show a ˜70% increase in specific capacitance after 10 000 charge/discharge cycles, attributed to an electro-activation process resulting from ion intercalation between the graphene nanosheets. The AC/PE MSCs also demonstrate excellent stability. The results of this study illustrate the potential of the present 3D MSCs for various high-density solid-state energy storage applications.

  14. Morphology control in solid polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Li, Christopher

    2015-03-01

    Solid polymer electrolytes (SPEs) with high ionic conductivity are important for energy-related applications, such as solid state batteries and fuel cells. In this talk, I will discuss how nanoscale morphology affects the properties of SPEs. In the first part of the talk, I will show quantitatively that the effect of polymer crystallization on ion transport is twofold: structural (tortuosity) and dynamic (tethered chain confinement). We decouple these two effects by designing and fabricating a model polymer single crystal electrolyte system with controlled crystal structure, size, crystallinity, and orientation. Ion conduction is confined within the chain fold region and guided by the crystalline lamellae. We show that, at low ion content, due to the tortuosity effect, the in-plane conductivity is 2000 times greater than through-plane one. Contradictory to the general view, the dynamic effect is negligible at moderate ion contents. Our results suggest that semicrystalline polymer is a valid system for practical polymer electrolytes design. In the second part of the talk, I will discuss how to use holographic photopolymerization (HP) to fabricate long-range, defect-free, ordered SPEs with tunable ion conducting pathways. By incorporating polymer electrolytes into the carefully selected HP system, electrolyte layers/ion channels with length scales of a few tens of nanometers to micrometers can be formed. Confinement effects on ion transport will be reported.

  15. Solid-polymer-electrolyte fuel cells

    SciTech Connect

    Fuller, T.F.

    1992-07-01

    A transport model for polymer electrolytes is presented, based on concentrated solution theory and irreversible thermodynamics. Thermodynamic driving forces are developed, transport properties are identified and experiments devised. Transport number of water in Nafion 117 membrane is determined using a concentration cell. It is 1.4 for a membrane equilibrated with saturated water vapor at 25{degrees}C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the water content approaches zero. The relation between transference number, transport number, and electroosmotic drag coefficient is presented, and their relevance to water-management is discussed. A mathematical model of transport in a solid-polymer-electrolyte fuel cell is presented. A two-dimensional membrane-electrode assembly is considered. Water management, thermal management, and utilization of fuel are examined in detail. The membrane separators of these fuel cells require sorbed water to maintain conductivity; therefore it is necessary to manage the water content in membranes to ensure efficient operation. Water and thermal management are interrelated. Rate of heat removal is shown to be a critical parameter in the operation of these fuel cells. Current-voltage curves are presented for operation on air and reformed methanol. Equations for convective diffusion to a rotating disk are solved numerically for a consolute point between the bulk concentration and the surface. A singular-perturbation expansion is presented for the condition where the bulk concentration is nearly equal to the consolute-point composition. Results are compared to Levich`s solution and analysis.

  16. Glass electrolyte composition

    DOEpatents

    Kucera, G.H.; Roche, M.F.

    1985-01-08

    An ionically conductive glass is disclosed for use as electrolyte in a high temperature electrochemical cell, particularly a cell with sodium anode and sulfur cathode. The glass includes the constituents Na/sub 2/O, ZrO/sub 2/, Al/sub 2/O/sub 3/ and SiO/sub 2/ in selected proportions to be a single phase solid solution substantially free of crystalline regions and undissolved constituents. Other advantageous properties are an ionic conductivity in excess of 2 x 10/sup -3/ (ohm-cm)/sup -1/ at 300/sup 0/C and a glass transition temperature in excess of 500/sup 0/C.

  17. Glass electrolyte composition

    DOEpatents

    Kucera, Gene H.; Roche, Michael F.

    1985-01-01

    An ionically conductive glass is disclosed for use as electrolyte in a high temperature electrochemical cell, particularly a cell with sodium anode and sulfur cathode. The glass includes the constituents Na.sub.2 O, ZrO.sub.2, Al.sub.2 O.sub.3 and SiO.sub.2 in selected proportions to be a single phase solid solution substantially free of crystalline regions and undissolved constituents. Other advantageous properties are an ionic conductivity in excess of 2.times.10.sup.-3 (ohm-cm).sup.-1 at 300.degree. C. and a glass transition temperature in excess of 500.degree. C.

  18. Ionic Conduction Mechanism of Polymer Gel Electrolytes

    NASA Astrophysics Data System (ADS)

    Saito, Yuria; Kataoka, Hiroshi

    2002-12-01

    Carrier migration mechanism of polymer gel electrolyte for lithium secondary batteries was investigated through the dynamic behavior of diffusion coefficient and conductivity. The gel prepared with PEO showed a homogeneous structure with any fraction of the electrolyte solution. The diffusion coefficient of the ionic species decreased with the increase in the polymer fraction in the gel. Cation migration is closely associated with the polymer, showing the reduced activation energy for diffusion with polymer in contrast to the increasing feature of the activation energy of the anion diffusion. The PVDF-gel electrolytes have a solid solubility limit due to the swelling saturation. The excess solution was then trapped in the cavities of the swollen polymer network. As a result, the diffusion showed two components. One is the fast migration of the carriers similar to that in the solution and the other is the relatively slow migration in the swollen region. The latter was influenced by the polymer due to the physical blocking and chemical interactive effects.

  19. Macroscopic Modeling of Polymer-Electrolyte Membranes

    SciTech Connect

    Weber, A.Z.; Newman, J.

    2007-04-01

    In this chapter, the various approaches for the macroscopic modeling of transport phenomena in polymer-electrolyte membranes are discussed. This includes general background and modeling methodologies, as well as exploration of the governing equations and some membrane-related topic of interest.

  20. MnO 2-Pt/C composite electrodes for preventing voltage reversal effects with polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Wei, Z. D.; Ji, M. B.; Hong, Y.; Sun, C. X.; Chan, S. H.; Shen, P. K.

    impedance spectra of MnO 2-Pt/C and Pt/C electrodes were carried out for the two gases in bubbled electrolyte, which further confirmed that MnO 2 in the composite electrode does substitute for oxygen as an electron-acceptor in the case of oxygen starvation. The discharged MnO 2 can then be restored to its initial state, regardless of whether it is in oxygen rich or starved conditions.

  1. Low Crossover Polymer Electrolyte Membranes for Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Prakash, G. K. Surya; Smart, Marshall; Atti, Anthony R.; Olah, George A.; Narayanan, S. R.; Valdez, T.; Surampudi, S.

    1996-01-01

    Direct Methanol Fuel Cells (DMFC's) using polymer electrolyte membranes are promising power sources for portable and vehicular applications. State of the art technology using Nafion(R) 117 membranes (Dupont) are limited by high methanol permeability and cost, resulting in reduced fuel cell efficiencies and impractical commercialization. Therefore, much research in the fuel cell field is focused on the preparation and testing of low crossover and cost efficient polymer electrolyte membranes. The University of Southern California in cooperation with the Jet Propulsion Laboratory is focused on development of such materials. Interpenetrating polymer networks are an effective method used to blend polymer systems without forming chemical links. They provide the ability to modify physical and chemical properties of polymers by optimizing blend compositions. We have developed a novel interpenetrating polymer network based on poly (vinyl - difluoride)/cross-linked polystyrenesulfonic acid polymer composites (PVDF PSSA). Sulfonation of polystyrene accounts for protonic conductivity while the non-polar, PVDF backbone provides structural integrity in addition to methanol rejection. Precursor materials were prepared and analyzed to characterize membrane crystallinity, stability and degree of interpenetration. USC JPL PVDF-PSSA membranes were also characterized to determine methanol permeability, protonic conductivity and sulfur distribution. Membranes were fabricated into membrane electrode assemblies (MEA) and tested for single cell performance. Tests include cell performance over a wide range of temperatures (20 C - 90 C) and cathode conditions (ambient Air/O2). Methanol crossover values are measured in situ using an in-line CO2 analyzer.

  2. Reciprocated suppression of polymer crystallization toward improved solid polymer electrolytes: Higher ion conductivity and tunable mechanical properties

    SciTech Connect

    Bi, Sheng; Sun, Che-Nan; Zawodzinski, Thomas A.; Ren, Fei; Keum, Jong Kahk; Ahn, Suk-Kyun; Li, Dawen; Chen, Jihua

    2015-08-06

    Solid polymer electrolytes based on lithium bis(trifluoromethanesulfonyl) imide and polymer matrix were extensively studied in the past due to their excellent potential in a broad range of energy related applications. Poly(vinylidene fluoride) (PVDF) and polyethylene oxide (PEO) are among the most examined polymer candidates as solid polymer electrolyte matrix. In this paper, we study the effect of reciprocated suppression of polymer crystallization in PVDF/PEO binary matrix on ion transport and mechanical properties of the resultant solid polymer electrolytes. With electron and X-ray diffractions as well as energy filtered transmission electron microscopy, we identify and examine the appropriate blending composition that is responsible for the diminishment of both PVDF and PEO crystallites. Laslty, a three-fold conductivity enhancement is achieved along with a highly tunable elastic modulus ranging from 20 to 200 MPa, which is expected to contribute toward future designs of solid polymer electrolytes with high room-temperature ion conductivities and mechanical flexibility.

  3. Increasing the conductivity of crystalline polymer electrolytes.

    PubMed

    Christie, Alasdair M; Lilley, Scott J; Staunton, Edward; Andreev, Yuri G; Bruce, Peter G

    2005-01-01

    Polymer electrolytes consist of salts dissolved in polymers (for example, polyethylene oxide, PEO), and represent a unique class of solid coordination compounds. They have potential applications in a diverse range of all-solid-state devices, such as rechargeable lithium batteries, flexible electrochromic displays and smart windows. For 30 years, attention was focused on amorphous polymer electrolytes in the belief that crystalline polymer:salt complexes were insulators. This view has been overturned recently by demonstrating ionic conductivity in the crystalline complexes PEO6:LiXF6 (X = P, As, Sb); however, the conductivities were relatively low. Here we demonstrate an increase of 1.5 orders of magnitude in the conductivity of these materials by replacing a small proportion of the XF6- anions in the crystal structure with isovalent N(SO2CF3)2- ions. We suggest that the larger and more irregularly shaped anions disrupt the potential around the Li+ ions, thus enhancing the ionic conductivity in a manner somewhat analogous to the AgBr(1-x)I(x) ionic conductors. The demonstration that doping strategies can enhance the conductivity of crystalline polymer electrolytes represents a significant advance towards the technological exploitation of such materials. PMID:15635406

  4. All-solid-state proton battery using gel polymer electrolyte

    SciTech Connect

    Mishra, Kuldeep; Pundir, S. S.; Rai, D. K.

    2014-04-24

    A proton conducting gel polymer electrolyte system; PMMA+NH{sub 4}SCN+EC/PC, has been prepared. The highest ionic conductivity obtained from the system is 2.5 × 10−4 S cm{sup −1}. The optimized composition of the gel electrolyte has been used to fabricate a proton battery with Zn/ZnSO{sub 4}⋅7H{sub 2}O anode and MnO{sub 2} cathode. The open circuit voltage of the battery is 1.4 V and the highest energy density is 5.7 W h kg−1 for low current drain.

  5. Lithium Polymer Electrolytes and Solid State NMR

    NASA Technical Reports Server (NTRS)

    Berkeley, Emily R.

    2004-01-01

    Research is being done at the Glenn Research Center (GRC) developing new kinds of batteries that do not depend on a solution. Currently, batteries use liquid electrolytes containing lithium. Problems with the liquid electrolyte are (1) solvents used can leak out of the battery, so larger, more restrictive, packages have to be made, inhibiting the diversity of application and decreasing the power density; (2) the liquid is incompatible with the lithium metal anode, so alternative, less efficient, anodes are required. The Materials Department at GRC has been working to synthesize polymer electrolytes that can replace the liquid electrolytes. The advantages are that polymer electrolytes do not have the potential to leak so they can be used for a variety of tasks, small or large, including in the space rover or in space suits. The polymers generated by Dr. Mary Ann Meador's group are in the form of rod -coil structures. The rod aspect gives the polymer structural integrity, while the coil makes it flexible. Lithium ions are used in these polymers because of their high mobility. The coils have repeating units of oxygen which stabilize the positive lithium by donating electron density. This aids in the movement of the lithium within the polymer, which contributes to higher conductivity. In addition to conductivity testing, these polymers are characterized using DSC, TGA, FTIR, and solid state NMR. Solid state NMR is used in classifying materials that are not soluble in solvents, such as polymers. The NMR spins the sample at a magic angle (54.7') allowing the significant peaks to emerge. Although solid state NMR is a helpful technique in determining bonding, the process of preparing the sample and tuning it properly are intricate jobs that require patience; especially since each run takes about six hours. The NMR allows for the advancement of polymer synthesis by showing if the expected results were achieved. Using the NMR, in addition to looking at polymers, allows for

  6. Electrolytic hydrogen fuel production with solid polymer electrolyte technology.

    NASA Technical Reports Server (NTRS)

    Titterington, W. A.; Fickett, A. P.

    1973-01-01

    A water electrolysis technology based on a solid polymer electrolyte (SPE) concept is presented for applicability to large-scale hydrogen production in a future energy system. High cell current density operation is selected for the application, and supporting cell test performance data are presented. Demonstrated cell life data are included to support the adaptability of the SPE system to large-size hydrogen generation utility plants as needed for bulk energy storage or transmission. The inherent system advantages of the acid SPE electrolysis technology are explained. System performance predictions are made through the year 2000, along with plant capital and operating cost projections.

  7. Polymer chain organization in tensile-stretched poly(ethylene oxide)-based polymer electrolytes.

    PubMed

    Burba, Christopher M; Woods, Lauren; Millar, Sarah Y; Pallie, Jonathan

    2011-12-15

    Polymer chain orientation in tensile-stretched poly(ethylene oxide)-lithium trifluoromethanesulfonate polymer electrolytes are investigated with polarized infrared spectroscopy as a function of the degree of strain and salt composition (ether oxygen atom to lithium ion ratios of 20:1, 15:1, and 10:1). The 1359 and 1352 cm(-1) bands are used to probe the crystalline PEO and P(EO)(3)LiCF(3)SO(3) domains, respectively, allowing a direct comparison of chain orientation for the two phases. Two-dimensional correlation FT-IR spectroscopy indicates that the two crystalline domains align at the same rate as the polymer electrolytes are stretched. Quantitative measurements of polymer chain orientation obtained through dichroic infrared spectroscopy show that chain orientation predominantly occurs between strain values of 150% and 250%, regardless of salt composition investigated. There are few changes in chain orientation for either phase when the films are further elongated to a strain of 300%; however, the PEO domains are slightly more oriented at the high strain values. The spectroscopic data are consistent with stretching-induced melt-recrystallization of the unoriented crystalline domains in the solution-cast polymer films. Stretching the films pulls polymer chains from the crystalline domains, which subsequently recrystallize with the polymer helices parallel to the stretch direction. If lithium ion conduction in crystalline polymer electrolytes is viewed as consisting of two major components (facile intra-chain lithium ion conduction and slow helix-to-helix inter-grain hopping), then alignment of the polymer helices will affect the ion conduction pathways for these materials by reducing the number of inter-grain hops required to migrate through the polymer electrolyte. PMID:22184475

  8. Novel polymer electrolytes based on gelatin and ionic liquids

    NASA Astrophysics Data System (ADS)

    Leones, Rita; Sentanin, F.; Rodrigues, Luísa C.; Ferreira, Rute A. S.; Marrucho, Isabel M.; Esperança, José M. S. S.; Pawlicka, Agnieszka; Carlos, Luís D.; Manuela Silva, M.

    2012-12-01

    This study describes the results of the characterization of polymer electrolytes using gelatin matrix doped with europium triflate and/or different ionic liquids. Samples of solvent-free electrolytes were prepared and characterized by ionic conductivity measurements, thermal analysis, electrochemical stability, X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectroscopy. Electrolyte samples are thermally stable up to approximately 220 °C. All the materials synthesized are totally amorphous. The room temperature conductivity maximum of this electrolyte system is based on ionic liquid 1-ethyl-3-methylimidazolium acetate, (C2mim)(OAc) (1.18 × 10-4 S cm-1 at 30 °C). The electrochemical stability domain of all samples is about 2.0 V versus Li/Li+. This new series of materials represents a promising alternative in polymer electrolytes research field. The preliminary studies carried out with electrochromic devices (ECDs) incorporating optimized compositions have confirmed that these materials may perform as satisfactory multifunctional component layers in the field of "smart windows". This new materials, will open a land of promising applications in many areas: optics, energy, medicine for example as membranes and separation devices, ECD-based devices, sensors, etc.

  9. Superacid-Based Lithium Salts For Polymer Electrolytes

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesan; Prakash, Surya; Shen, David H.; Surampudi, Subbarao; Olah, George

    1995-01-01

    Solid polymer electrolytes exhibiting high lithium-ion conductivities made by incorporating salts of superacids into thin films of polyethylene oxide (PEO). These and other solid-polymer electrolytes candidates for use in rechargeable lithium-based electrochemical cells. Increases in room-temperature lithium-ion conductivities of solid electrolytes desirable because they increase achievable power and energy densities.

  10. Novel Stable Gel Polymer Electrolyte: Toward a High Safety and Long Life Li-Air Battery.

    PubMed

    Yi, Jin; Liu, Xizheng; Guo, Shaohua; Zhu, Kai; Xue, Hailong; Zhou, Haoshen

    2015-10-28

    Nonaqueous Li-air battery, as a promising electrochemical energy storage device, has attracted substantial interest, while the safety issues derived from the intrinsic instability of organic liquid electrolytes may become a possible bottleneck for the future application of Li-air battery. Herein, through elaborate design, a novel stable composite gel polymer electrolyte is first proposed and explored for Li-air battery. By use of the composite gel polymer electrolyte, the Li-air polymer batteries composed of a lithium foil anode and Super P cathode are assembled and operated in ambient air and their cycling performance is evaluated. The batteries exhibit enhanced cycling stability and safety, where 100 cycles are achieved in ambient air at room temperature. The feasibility study demonstrates that the gel polymer electrolyte-based polymer Li-air battery is highly advantageous and could be used as a useful alternative strategy for the development of Li-air battery upon further application. PMID:26452054

  11. Interface Properties between Lithium Metal and a Composite Polymer Electrolyte of PEO18Li(CF3SO2)2N-Tetraethylene Glycol Dimethyl Ether

    PubMed Central

    Wang, Hui; Matsui, Masaki; Takeda, Yasuo; Yamamoto, Osamu; Im, Dongmin; Lee, Dongjoon; Imanishi, Nobuyuki

    2013-01-01

    The electrochemical properties of a composite solid polymer electrolyte, consisting of poly(ethylene oxide) (PEO)-lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and tetraethylene glycol dimethyl ether (TEGDME) was examined as a protective layer between lithium metal and a water-stable lithium ion-conducting glass ceramic of Li1+x+y(Ti,Ge)2−xAlxP3−ySiyO12 (LTAP). The lithium ion conductivity and salt diffusion coefficient of PEO18LiTFSI were dramatically enhanced by the addition of TEGDME. The water-stable lithium electrode with PEO18LiTFSI-2TEGDME, as the protective layer, exhibited a low and stable electrode resistance of 85 Ω·cm2 at 60 °C, after 28 days, and low overpotentials of 0.3 V for lithium plating and 0.4 V for lithium stripping at 4.0 mA·cm−2 and 60 °C. A Li/PEO18LiTFSI-2TEGDME/LTAP/saturated LiCl aqueous solution/Pt, air cell showed excellent cyclability up to 100 cycles at 2.0 mAh·cm−2. PMID:24957059

  12. Solid composite electrolytes for lithium batteries

    DOEpatents

    Kumar, Binod; Scanlon, Jr., Lawrence G.

    2000-01-01

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

  13. Polymer composites containing nanotubes

    NASA Technical Reports Server (NTRS)

    Bley, Richard A. (Inventor)

    2008-01-01

    The present invention relates to polymer composite materials containing carbon nanotubes, particularly to those containing singled-walled nanotubes. The invention provides a polymer composite comprising one or more base polymers, one or more functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers and carbon nanotubes. The invention also relates to functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers, particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having side chain functionalization, and more particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having olefin side chains and alkyl epoxy side chains. The invention further relates to methods of making polymer composites comprising carbon nanotubes.

  14. Facile synthesis of porous metal oxide nanotubes and modified nafion composite membranes for polymer electrolyte fuel cells operated under low relative humidity.

    PubMed

    Ketpang, Kriangsak; Lee, Kibong; Shanmugam, Sangaraju

    2014-10-01

    We describe a facile route to fabricate mesoporous metal oxide (TiO2, CeO2 and ZrO1.95) nanotubes for efficient water retention and migration in a Nafion membrane operated in polymer electrolyte fuel cell under low relative humidity (RH). Porous TiO2 nanotubes (TNT), CeO2 nanotubes (CeNT), and ZrO1.95 (ZrNT) were synthesized by calcining electrospun polyacrylonitrile nanofibers embedded with metal precursors. The nanofibers were prepared using a conventional single spinneret electrospinning technique under an ambient atmosphere. Their porous tubular morphology was observed by SEM and TEM analyses. HR-TEM results revealed a porous metal oxide wall composed of small particles joined together. The mesoporous structure of the samples was analyzed using BET. The tubular morphology and outstanding water absorption ability of the TNT, CeNT, and ZrNT fillers resulted in the effective enhancement of proton conductivity of Nafion composite membranes under both fully humid and dry conditions. Compared to a commercial membrane (Nafion, NRE-212) operated under 100% RH at 80 °C, the Nafion-TNT composite membrane delivered approximately 1.29 times higher current density at 0.6 V. Compared to the Nafion-TiO2 nanoparticles membrane, the Nafion-TNT membrane also generated higher current density at 0.6 V. Additionally, compared to a NRE-212 membrane operated under 50% RH at 80 °C, the Nafion-TNT composite membrane exhibited 3.48 times higher current density at 0.6 V. Under dry conditions (18% RH at 80 °C), the Nafion-TNT, Nafion-CeNT, and Nafion-ZrNT composite membranes exhibited 3.4, 2.4, and 2.9 times higher maximum power density, respectively, than the NRE-212 membrane. The remarkably high performance of the Nafion composite membrane was mainly attributed to the reduction of ohmic resistance by the mesoporous hygroscopic metal oxide nanotubes, which can retain water and effectively enhance water diffusion through the membrane. PMID:25203667

  15. Ionic-Liquid-Based Polymer Electrolytes for Battery Applications.

    PubMed

    Osada, Irene; de Vries, Henrik; Scrosati, Bruno; Passerini, Stefano

    2016-01-11

    The advent of solid-state polymer electrolytes for application in lithium batteries took place more than four decades ago when the ability of polyethylene oxide (PEO) to dissolve suitable lithium salts was demonstrated. Since then, many modifications of this basic system have been proposed and tested, involving the addition of conventional, carbonate-based electrolytes, low molecular weight polymers, ceramic fillers, and others. This Review focuses on ternary polymer electrolytes, that is, ion-conducting systems consisting of a polymer incorporating two salts, one bearing the lithium cation and the other introducing additional anions capable of plasticizing the polymer chains. Assessing the state of the research field of solid-state, ternary polymer electrolytes, while giving background on the whole field of polymer electrolytes, this Review is expected to stimulate new thoughts and ideas on the challenges and opportunities of lithium-metal batteries. PMID:26783056

  16. Preliminary Evaluations of Polymer-based Lithium Battery Electrolytes Under Development for the Polymer Electrolyte Rechargeable Systems Program

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Bennett, William R.

    2003-01-01

    A component screening facility has been established at The NASA Glenn Research Center (GRC) to evaluate candidate materials for next generation, lithium-based, polymer electrolyte batteries for aerospace applications. Procedures have been implemented to provide standardized measurements of critical electrolyte properties. These include ionic conductivity, electronic resistivity, electrochemical stability window, cation transference number, salt diffusion coefficient and lithium plating efficiency. Preliminary results for poly(ethy1ene oxide)-based polymer electrolyte and commercial liquid electrolyte are presented.

  17. Composite Gel Polymer Electrolyte Based on Poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) with Modified Aluminum-Doped Lithium Lanthanum Titanate (A-LLTO) for High-Performance Lithium Rechargeable Batteries.

    PubMed

    Le, Hang T T; Ngo, Duc Tung; Kalubarme, Ramchandra S; Cao, Guozhong; Park, Choong-Nyeon; Park, Chan-Jin

    2016-08-17

    A composite gel polymer electrolyte (CGPE) based on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) polymer that includes Al-doped Li0.33La0.56TiO3 (A-LLTO) particles covered with a modified SiO2 (m-SiO2) layer was fabricated through a simple solution-casting method followed by activation in a liquid electrolyte. The obtained CGPE possessed high ionic conductivity, a large electrochemical stability window, and interfacial stability-all superior to that of the pure gel polymer electrolyte (GPE). In addition, under a highly polarized condition, the CGPE effectively suppressed the growth of Li dendrites due to the improved hardness of the GPE by the addition of inorganic A-LLTO/m-SiO2 particles. Accordingly, the Li-ion polymer and Li-O2 cells employing the CGPE exhibited remarkably improved cyclability compared to cells without CGPE. In particular, the CGPE as a protection layer for the Li metal electrode in a Li-O2 cell was effective in blocking the contamination of the Li electrode by oxygen gas or impurities diffused from the cathode side while suppressing the Li dendrites. PMID:27463563

  18. Ionic Transport Across Interfaces of Solid Glass and Polymer Electrolytes

    SciTech Connect

    Tenhaeff, Wyatt E; Yu, Xiang; Hong, Kunlun; Perry, Kelly A; Dudney, Nancy J

    2011-01-01

    A study of lithium cation transport across solid-solid electrolyte interfaces to identify critical resistances in nanostructured solid electrolytes is reported. Bilayers of glass and polymer thin film electrolytes were fabricated and characterized for this study. The glass electrolyte was lithium phosphorous oxynitride (Lipon), and two polymer electrolytes were studied: poly(methyl methacrylate-co-poly(ethylene glycol) methyl ether methacrylate) and poly(styrene-co-poly(ethylene glycol) methyl ether methacrylate). Both copolymers contained LiClO{sub 4} salt. In bilayers where polymer electrolyte layers are fabricated on top of Lipon, the interfacial resistance dominates transport. At 25 C, the interfacial resistance is at least three times greater than the sum of the Lipon and polymer electrolyte resistances. By reversing the structure and fabricating Lipon on top of the polymer electrolytes, the interfacial resistance is eliminated. Experiments to elucidate the origin of the interfacial resistance in the polymer-on-Lipon bilayers reveal that the solvent mixtures used to fabricate the polymer layers do not degrade the Lipon layer. The importance of the polymer electrolytes' mechanical properties is also discussed.

  19. Thermally responsive polymer electrolytes for inherently safe electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Kelly, Jesse C.

    Electrochemical double layer capacitors (EDLCs), supercapacitors and Li-ion batteries have emerged as premier candidates to meet the rising demands in energy storage; however, such systems are limited by thermal hazards, thermal runaway, fires and explosions, all of which become increasingly more dangerous in large-format devices. To prevent such scenarios, thermally-responsive polymer electrolytes (RPEs) that alter properties in electrochemical energy storage devices were designed and tested. These RPEs will be used to limit or halt device operation when temperatures increase beyond a predetermined threshold, therefore limiting further heating. The development of these responsive systems will offer an inherent safety mechanism in electrochemical energy storage devices, while preserving the performance, lifetimes, and versatility that large-format systems require. Initial work focused on the development of a model system that demonstrated the concept of RPEs in an electrochemical device. Aqueous electrolyte solutions of polymers exhibiting properties that change in response to temperature were developed for applications in EDLCs and supercapacitors. These "smart materials" provide a means to control electrochemical systems where polymer phase separation at high temperatures affects electrolyte properties and inhibits device performance. Aqueous RPEs were synthesized using N-isopropylacrylamide, which governs the thermal properties, and fractions of acrylic acid or vinyl sulfonic acids, which provide ions to the solution. The molecular properties of these aqueous RPEs, specifically the ionic composition, were shown to influence the temperature-dependent electrolyte properties and the extent to which these electrolytes control the energy storage characteristics of a supercapacitor device. Materials with high ionic content provided the highest room temperature conductivity and electrochemical activity; however, RPEs with low ionic content provided the highest "on

  20. Impact of electrolyte composition on the reactivity of a redox active polymer studied through surface interrogation and ion-sensitive scanning electrochemical microscopy.

    PubMed

    Burgess, Mark; Hernández-Burgos, Kenneth; Cheng, Kevin J; Moore, Jeffrey S; Rodríguez-López, Joaquín

    2016-06-21

    Elucidating the impact of interactions between the electrolyte and electroactive species in redox active polymers is key to designing better-performing electrodes for electrochemical energy storage and conversion. Here, we present on the improvement of the electrochemical activity of poly(para-nitrostyrene) (PNS) in solution and as a film by exploiting the ionic interactions between reduced PNS and K(+), which showed increased reactivity when compared to tetrabutylammonium (TBA(+))- and Li(+)-containing electrolytes. While cyclic voltammetry enabled the study of the effects of cations on the electrochemical reversibility and the reduction potential of PNS, scanning electrochemical microscopy (SECM) provided new tools to probe the ionic and redox reactivity of this system. Using an ion-sensitive Hg SECM tip allowed to probe the ingress of ions into PNS redox active films, while surface interrogation SECM (SI-SECM) measured the specific kinetics of PNS and a solution phase mediator in the presence of the tested electrolytes. SI-SECM measurements illustrated that the interrogation kinetics of PNS in the presence of K(+) compared to TBA(+) and Li(+) are greatly enhanced under the same surface concentration of adsorbed radical anion, exhibiting up to a 40-fold change in redox kinetics. We foresee using this new application of SECM methods for elucidating optimal interactions that enhance polymer reactivity for applications in redox flow batteries. PMID:27064026

  1. Mathematical modeling of polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Sousa, Ruy; Gonzalez, Ernesto R.

    Fuel cells with a polymer electrolyte membrane have been receiving more and more attention. Modeling plays an important role in the development of fuel cells. In this paper, the state-of-the-art regarding modeling of fuel cells with a polymer electrolyte membrane is reviewed. Modeling has allowed detailed studies concerning the development of these cells, e.g. in discussing the electrocatalysis of the reactions and the design of water-management schemes to cope with membrane dehydration. Two-dimensional models have been used to represent reality, but three-dimensional models can cope with some important additional aspects. Consideration of two-phase transport in the air cathode of a proton exchange membrane fuel cell seems to be very appropriate. Most fuel cells use hydrogen as a fuel. Besides safety concerns, there are problems associated with production, storage and distribution of this fuel. Methanol, as a liquid fuel, can be the solution to these problems and direct methanol fuel cells (DMFCs) are attractive for several applications. Mass transport is a factor that may limit the performance of the cell. Adsorption steps may be coupled to Tafel kinetics to describe methanol oxidation and methanol crossover must also be taken into account. Extending the two-phase approach to the DMFC modeling is a recent, important point.

  2. Polymer stability and function for electrolyte and mixed conductor applications

    NASA Astrophysics Data System (ADS)

    Hammond, Paula; Davis, Nicole; Liu, David; Amanchukwu, Chibueze; Lewis, Nate; Shao-Horn, Yang

    2015-03-01

    Polymers exhibit a number of attractive properties as solid state electrolytes for electrochemical energy devices, including the light weight, flexibility, low cost and adaptive transport properties that polymeric materials can exhibit. For a number of applications, mixed ionic and electronic conducting materials are of interest to achieve transport of electrons and holes or ions within an electrode or at the electrode-electrolyte interface (e.g. aqueous batteries, solar water splitting, lithium battery electrode). Using layer-by-layer assembly, a mode of alternating adsorption of charged or complementary hydrogen bonding group, we can design composite thin films that contain bicontinuous networks of electronically and ionically conducting polymers. We have found that manipulation of salt concentration and the use of divalent ions during assembly can significantly enhance the number of free acid anions available for ion hopping. Unfortunately, for certain electrochemical applications, polymer stability is a true challenge. In separate studies, we have been investigating macromolecular systems that may provide acceptable ion transport properties, but withstand the harsh oxidative environment of lithium air systems. An investigation of different polymeric materials commonly examined for electrochemical applications provides insight into polymer design for these kinds of environments. NSF Center for Chemical Innovation, NDSEG Fellowship and Samsung Corporation.

  3. New Solid Polymer Electrolytes for Improved Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Hehemann, David G.

    2002-01-01

    The objective of this work was to identify, synthesize and incorporate into a working prototype, next-generation solid polymer electrolytes, that allow our pre-existing solid-state lithium battery to function better under extreme conditions. We have synthesized polymer electrolytes in which emphasis was placed on the temperature-dependent performance of these candidate electrolytes. This project was designed to produce and integrate novel polymer electrolytes into a lightweight thin-film battery that could easily be scaled up for mass production and adapted to different applications.

  4. Method of synthesizing polymers from a solid electrolyte

    DOEpatents

    Skotheim, T.A.

    1984-10-19

    A method of synthesizing electrically conductive polymers from a solvent-free solid polymer electrolyte is disclosed. An assembly of a substrate having an electrode thereon, a thin coating of solid electrolyte including a solution of PEO complexed with an alkali salt, and a thin transparent noble metal electrode are disposed in an evacuated chamber into which a selected monomer vapor is introduced while an electric potential is applied across the solid electrolyte to hold the thin transparent electrode at a positive potential relative to the electrode on the substrate, whereby a highly conductive polymer film is grown on the transparent electrode between it and the solid electrolyte.

  5. Method of synthesizing polymers from a solid electrolyte

    DOEpatents

    Skotheim, Terje A.

    1985-01-01

    A method of synthesizing electrically conductive polymers from a solvent-free solid polymer electrolyte wherein an assembly of a substrate having an electrode thereon, a thin coating of solid electrolyte including a solution of PEO complexed with an alkali salt, and a thin transparent noble metal electrode are disposed in an evacuated chamber into which a selected monomer vapor is introduced while an electric potential is applied across the solid electrolyte to hold the thin transparent electrode at a positive potential relative to the electrode on the substrate, whereby a highly conductive polymer film is grown on the transparent electrode between it and the solid electrolyte.

  6. Electrochemical Stability of Model Polymer Electrolyte/Electrode Interfaces

    NASA Astrophysics Data System (ADS)

    Hallinan, Daniel; Yang, Guang

    2015-03-01

    Polymer electrolytes are promising materials for high energy density rechargeable batteries. However, typical polymer electrolytes are not electrochemically stable at the charging voltage of advanced positive electrode materials. Although not yet reported in literature, decomposition is expected to adversely affect the performance and lifetime of polymer-electrolyte-based batteries. In an attempt to better understand polymer electrolyte oxidation and design stable polymer electrolyte/positive electrode interfaces, we are studying electron transfer across model interfaces comprising gold nanoparticles and organic protecting ligands assembled into monolayer films. Gold nanoparticles provide large interfacial surface area yielding a measurable electrochemical signal. They are inert and hence non-reactive with most polymer electrolytes and lithium salts. The surface can be easily modified with ligands of different chemistry and molecular weight. In our study, poly(ethylene oxide) (PEO) will serve as the polymer electrolyte and lithium bis(trifluoromethanesulfonyl) imide salt (LiTFSI) will be the lithium salt. The effect of ligand type and molecular weight on both optical and electrical properties of the gold nanoparticle film will be presented. Finally, the electrochemical stability of the electrode/electrolyte interface and its dependence on interfacial properties will be presented.

  7. Solid polymer electrolytes for rechargeable batteries. Final report

    SciTech Connect

    Narang, S.C.; Ventura, S.C.

    1992-02-01

    SRI International has synthesized and tested new, dimensionally stable polymer electrolytes for high energy density rechargeable lithium batteries. We have prepared semi-interpenetrating networks of sulfur-substituted polyethyleneoxide with tetmethylorthosilicate (TEOS). The in situ hydrolysis of TEOS produces a mechanically stable three-dimensional network that entangles the polymer electrolytes and makes the film dimensionally flexible and stable. With this approach, the best dimensionally stable polymer electrolyte of this type produced so far, has a room temperature lithium ion conductivity of 7.5 {times} 10{sup {minus}4} S cm{sup {minus}1}. Another type of solid polymer electrolytes, polydiacetylene-based single-ion conductors with high room temperature proton conductivity were also developed. The best conductivity of these polymers is two orders of magnitude higher than that of Nafion under comparable experimental conditions. With further appropriate chemical modification, the new polymers could be used in fuel cells.

  8. Solid electrolyte material manufacturable by polymer processing methods

    DOEpatents

    Singh, Mohit; Gur, Ilan; Eitouni, Hany Basam; Balsara, Nitash Pervez

    2012-09-18

    The present invention relates generally to electrolyte materials. According to an embodiment, the present invention provides for a solid polymer electrolyte material that is ionically conductive, mechanically robust, and can be formed into desirable shapes using conventional polymer processing methods. An exemplary polymer electrolyte material has an elastic modulus in excess of 1.times.10.sup.6 Pa at 90 degrees C. and is characterized by an ionic conductivity of at least 1.times.10.sup.-5 Scm-1 at 90 degrees C. An exemplary material can be characterized by a two domain or three domain material system. An exemplary material can include material components made of diblock polymers or triblock polymers. Many uses are contemplated for the solid polymer electrolyte materials. For example, the present invention can be applied to improve Li-based batteries by means of enabling higher energy density, better thermal and environmental stability, lower rates of self-discharge, enhanced safety, lower manufacturing costs, and novel form factors.

  9. Solid Polymer Electrolyte Fuel Cell Technology Program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Work is reported on phase 5 of the Solid Polymer Electrolyte (SPE) Fuel Cell Technology Development program. The SPE fuel cell life and performance was established at temperatures, pressures, and current densities significantly higher than those previously demonstrated in sub-scale hardware. Operation of single-cell Buildup No. 1 to establish life capabilities of the full-scale hardware was continued. A multi-cell full-scale unit (Buildup No. 2) was designed, fabricated, and test evaluated laying the groundwork for the construction of a reactor stack. A reactor stack was then designed, fabricated, and successfully test-evaluated to demonstrate the readiness of SPE fuel cell technology for future space applications.

  10. Polymer electrolyte membranes with exceptional conductivity anisotropy via holographic polymerization

    NASA Astrophysics Data System (ADS)

    Smith, Derrick M.; Cheng, Shan; Wang, Wenda; Bunning, Timothy J.; Li, Christopher Y.

    2014-12-01

    Polymer electrolyte membranes using an ionic liquid as electrolyte with an ionic conductivity anisotropy of ∼5000 have been fabricated using a holographic polymerization nanomanufacturing technique. The resultant structure is referred to as holographic polymer electrolyte membranes (hPEMs), which are comprised of alternating nanolayers of a room temperature ionic liquid and crosslinked polymer resin, confirmed under TEM imaging. These hPEMs also show no reduction in room temperature conductivity with respect to the loaded ionic liquid when characterized in the plane of ionic liquid nanolayers. At elevated temperatures with the optimal electrolyte volume loading, calculation shows that the free ion concentration is higher than the pure ionic liquid, suggesting that the photopolymer dual-functionalizes as a loadbearing scaffold and an ion-complexing agent, allowing for more ions to participate in charge transfer. These hPEMs provide a promising solution to decoupling mechanical enhancement and ion transport in polymer electrolyte membranes.

  11. Proton Conducting Polymer Electrolyte Based on Pva-Pan

    NASA Astrophysics Data System (ADS)

    Devi, S. Siva; Selvasekarapandian, S.; Rajeswari, N.; Genova, F. Kingslin Mary; Karthikeyan, S.; Raja, C. Sanjeevi

    2013-07-01

    Proton conducting polymer electrolytes based on blend polymer using Poly Vinyl Alcohol (PVA) and Poly Acrylo Nitrile (PAN) doped with ammonium nitrate have been prepared by solution casting method. The highest conductivity at room temperature (305K) has been found to be 1.8×10-3 S cm-1 for 15 mole % NH4NO3 doped PVA-PAN system. X ray Diffraction pattern of the doped and the undoped blend polymer electrolyte confirms the amorphous nature of blend polymer, when salt is added. The complex formation between the blend polymer and the salt has been confirmed by Fourier transform infrared spectroscopy.

  12. Electrospun nanocomposite fibrous polymer electrolyte for secondary lithium battery applications

    NASA Astrophysics Data System (ADS)

    Padmaraj, O.; Rao, B. Nageswara; Jena, Paramananda; Venkateswarlu, M.; Satyanarayana, N.

    2014-04-01

    Hybrid nanocomposite [poly(vinylidene fluoride -co- hexafluoropropylene) (PVdF-co-HFP)/magnesium aluminate (MgAl2O4)] fibrous polymer membranes were prepared by electrospinning method. The prepared pure and nanocomposite fibrous polymer electrolyte membranes were soaked into the liquid electrolyte 1M LiPF6 in EC: DEC (1:1,v/v). XRD and SEM are used to study the structural and morphological studies of nanocomposite electrospun fibrous polymer membranes. The nanocomposite fibrous polymer electrolyte membrane with 5 wt.% of MgAl2O4 exhibits high ionic conductivity of 2.80 × 10-3 S/cm at room temperature. The charge-discharge capacity of Li/LiCoO2 coin cells composed of the newly prepared nanocomposite [(16 wt.%) PVdF-co-HFP+(5 wt.%) MgAl2O4] fibrous polymer electrolyte membrane was also studied and compared with commercial Celgard separator.

  13. Raising the conductivity of crystalline polymer electrolytes by aliovalent doping.

    PubMed

    Zhang, Chuhong; Staunton, Edward; Andreev, Yuri G; Bruce, Peter G

    2005-12-28

    Polymer electrolytes, salts dissolved in solid polymers, hold the key to realizing all solid-state devices such as rechargeable lithium batteries, electrochromic displays, or SMART windows. For 25 years conductivity was believed to be confined to amorphous polymer electrolytes, all crystalline polymer electrolytes were thought to be insulators. However, recent results have demonstrated conductivity in crystalline polymer electrolytes, although the levels at room temperature are too low for application. Here we show, for the first time, that it is possible to raise significantly the level of ionic conductivity by aliovalent doping. The conductivity may be raised by 1.5 orders of magnitude if the SbF6- ion in the crystalline conductor poly(ethylene oxide)6:LiSbF6 is replaced by less than 5 mol % SiF6(2-), thus introducing additional, mobile, Li+ ions into the structure to maintain electroneutrality. PMID:16366585

  14. Lithium Ion Polymer Electrolyte Based on Pva-Pan

    NASA Astrophysics Data System (ADS)

    Genova, F. Kingslin Mary; Selvasekarapandian, S.; Rajeswari, N.; Devi, S. Siva; Karthikeyan, S.; Raja, C. Sanjeevi

    2013-07-01

    The polymer blend electrolytes based on polyvinylalcohol(PVA) and polyacrylonitrile (PAN) doped with lithium per chlorate (LiClO4) have been prepared by solution casting technique using DMF as solvent. The complex formation between blend polymer and the salt has been confirmed by Fourier transform infrared spectroscopy. The amorphous nature of the blend polymer electrolyte has been confirmed by X-ray diffraction analysis. The ionic conductivity of the prepared blend polymer electrolyte has been found by ac impedence spectroscopic analysis. The highest ionic conductivity has been found to be 5.0 X10-4 S cm -1 at room temperature for 92.5 PVA: 7.5PAN: 20 molecular wt. % of LiClO4. The effect of salt concentration on the conductivity of the blend polymer electrolyte has been discussed.

  15. Polymer--Ionic liquid Electrolytes for Electrochemical Capacitors

    NASA Astrophysics Data System (ADS)

    Ketabi, Sanaz

    Polymer electrolyte, comprised of ionic conductors, polymer matrix, and additives, is one of the key components that control the performance of solid flexible electrochemical capacitors (ECs). Ionic liquids (ILs) are highly promising ionic conductors for next generation polymer electrolytes due to their excellent electrochemical and thermal stability. Fluorinated ILs are the most commonly applied in polymer-IL electrolytes. Although possessing high conductivity, these ILs have low environmental favorability. The aim of this work was to develop environmentally benign polymer-ILs for both electrochemical double layer capacitors (EDLCs) and pseudocapacitors, and to provide insights into the influence of constituent materials on the ion conduction mechanism and the structural stability of the polymer-IL electrolytes. Solid polymer electrolytes composed of poly(ethylene oxide) (PEO) and 1-ethyl-3-methylimidazolium hydrogen sulfate (EMIHSO4) were investigated for ECs. The material system was optimized to achieve the two criteria for high performance polymer-ILs: high ionic conductivity and highly amorphous structure. Thermal and structural analyses revealed that EMIHSO4 acted as an ionic conductor and a plasticizer that substantially decreased the crystallinity of PEO. Two types of inorganic nanofillers were incorporated into these polymer electrolytes. The effects of SiO2 and TiO2 nanofillers on ionic conductivity, crystallinity, and dielectric properties of PEO-EMIHSO 4 were studied over a temperature range from -10 °C and 80 °C. Using an electrochemical capacitor model, impedance (complex capacitance) and dielectric analyses were performed to understand the ionic conduction process with and without fillers in both semi crystalline and amorphous states of the polymer electrolytes. Despite their different nanostructures, both SiO2 and TiO2 promoted an amorphous structure in PEO-EMIHSO 4 and increased the ionic conductivity 2-fold. While in the amorphous state, the

  16. Fuel cells with solid polymer electrolyte and their application on vehicles

    SciTech Connect

    Fateev, V.

    1996-04-01

    In Russia, solid polymer electrolyte MF-4-SK has been developed for fuel cells. This electrolyte is based on perfluorinated polymer with functional sulfogroups. Investigations on electrolyte properties and electrocatalysts have been carried out.

  17. Lithium composite electrolyte FeS{sub 2} bipolar battery

    SciTech Connect

    Peled, E.; Golodnitsky, D.; Lang, J.; Lavi, Y.

    1994-12-31

    The goals are to develop and characterize a small laboratory prototype of a new lithium battery for electric vehicles (EV) and load leveling. This rechargeable battery consists of thin foils of: lithium anode, composite solid electrolyte (CSE) or composite polymer electrolyte (CPE) and a composite FeS{sub 2} (pyrite) cathode. Their battery has several advantages over other state of the art polymer electrolyte batteries: (1) The authors use a low cost cathode, pyrite is a natural ore, therefore it is environmentally friendly (2) Small prototype cells exhibited very high specific energy, projected to be 120 Wh/kg at C/5 to C/10 rate (three times larger than that of lead acid battery) and more than forty 100% charge-discharge cycles (3) their battery has an internal electrochemical overcharge protection mechanism (which is essential for EV batteries) (4) It was found that for both CSE and CPE the Li/electrolyte interfacial resistance is low and stable for up to 3,000h (CPE) and 700h CSE at 120 C. The long term projected specific energy for their battery is over 200 Wh/kg, five times larger than that of the lead acid battery and one of the highest among all batteries under development.

  18. Composition analysis of a polymer electrolyte membrane fuel cell microporous layer using scanning transmission X-ray microscopy and near edge X-ray absorption fine structure analysis

    NASA Astrophysics Data System (ADS)

    George, Michael G.; Wang, Jian; Banerjee, Rupak; Bazylak, Aimy

    2016-03-01

    The novel application of scanning transmission X-ray microscopy (STXM) to the microporous layer (MPL) of a polymer electrolyte membrane fuel cell is investigated. A spatially resolved chemical component distribution map is obtained for the MPL of a commercially available SGL 25 BC sample. This is achieved with near edge X-ray absorption fine structure spectroscopic analysis. Prior to analysis the sample is embedded in non-reactive epoxy and ultra-microtomed to a thickness of 100 nm. Polytetrafluoroethylene (PTFE), carbon particle agglomerates, and supporting epoxy resin distributions are identified and reconstructed for a scanning area of 6 μm × 6 μm. It is observed that the spatial distribution of PTFE is strongly correlated to the carbon particle agglomerations. Additionally, agglomerate structures of PTFE are identified, possibly indicating the presence of a unique mesostructure in the MPL. STXM analysis is presented as a useful technique for the investigation of chemical species distributions in the MPL.

  19. Norbornene-Based Polymer Electrolytes for Lithium Cells

    NASA Technical Reports Server (NTRS)

    Cheung, Iris; Smart, Marshall; Prakash, Surya; Miyazawa, Akira; Hu, Jinbo

    2007-01-01

    Norbornene-based polymers have shown promise as solid electrolytes for lithium-based rechargeable electrochemical cells. These polymers are characterized as single-ion conductors. Single-ion-conducting polymers that can be used in lithium cells have long been sought. Single-ion conductors are preferred to multiple-ion conductors as solid electrolytes because concentration gradients associated with multiple-ion conduction lead to concentration polarization. By minimizing concentration polarization, one can enhance charge and discharge rates. Norbornene sulfonic acid esters have been synthesized by a ring-opening metathesis polymerization technique, using ruthenium-based catalysts. The resulting polymer structures (see figure) include sulfonate ionomers attached to the backbones of the polymer molecules. These molecules are single-ion conductors in that they conduct mobile Li+ ions only; the SO3 anions in these polymers, being tethered to the backbones, do not contribute to ionic conduction. This molecular system is especially attractive in that it is highly amenable to modification through functionalization of the backbone or copolymerization with various monomers. Polymers of this type have been blended with poly(ethylene oxide) to lend mechanical integrity to free-standing films, and the films have been fabricated into solid polymer electrolytes. These electrolytes have been demonstrated to exhibit conductivity of 2 10(exp -5)S/cm (which is high, relative to the conductivities of other solid electrolytes) at ambient temperature, plus acceptably high stability. This type of norbornene-based polymeric solid electrolyte is in the early stages of development. Inasmuch as the method of synthesis of these polymers is inherently flexible and techniques for the fabrication of the polymers into solid electrolytes are amenable to optimization, there is reason to anticipate further improvements.

  20. Polymer electrolytes for a rechargeable li-Ion battery

    SciTech Connect

    Argade, S.D.; Saraswat, A.K.; Rao, B.M.L.; Lee, H.S.; Xiang, C.L.; McBreen, J.

    1996-10-01

    Lithium-ion polymer electrolyte battery technology is attractive for many consumer and military applications. A Li{sub x}C/Li{sub y}Mn{sub 2}O{sub 4} battery system incorporating a polymer electrolyte separator base on novel Li-imide salts is being developed under sponsorship of US Army Research Laboratory (Fort Monmouth NJ). This paper reports on work currently in progress on synthesis of Li-imide salts, polymer electrolyte films incorporating these salts, and development of electrodes and cells. A number of Li salts have been synthesized and characterized. These salts appear to have good voltaic stability. PVDF polymer gel electrolytes based on these salts have exhibited conductivities in the range 10{sup -4} to 10{sub -3} S/cm.

  1. Can Biochemistry Usefully Guide the Search for Better Polymer Electrolytes?

    PubMed Central

    Halley, J. Woods

    2013-01-01

    I review some considerations that suggest that the biochemical products of evolution may provide hints concerning the way forward for the development of better electrolytes for lithium polymer batteries. PMID:24956948

  2. Poly(arylene)-based anion exchange polymer electrolytes

    DOEpatents

    Kim, Yu Seung; Bae, Chulsung

    2015-06-09

    Poly(arylene) electrolytes including copolymers lacking ether groups in the polymer may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.

  3. Advanced Proton Conducting Polymer Electrolytes for Electrochemical Capacitors

    NASA Astrophysics Data System (ADS)

    Gao, Han

    Research on solid electrochemical energy storage devices aims to provide high performance, low cost, and safe operation solutions for emerging applications from flexible consumer electronics to microelectronics. Polymer electrolytes, minimizing device sealing and liquid electrolyte leakage, are key enablers for these next-generation technologies. In this thesis, a novel proton-conducing polymer electrolyte system has been developed using heteropolyacids (HPAs) and polyvinyl alcohol for electrochemical capacitors. A thorough understanding of proton conduction mechanisms of HPAs together with the interactions among HPAs, additives, and polymer framework has been developed. Structure and chemical bonding of the electrolytes have been studied extensively to identify and elucidate key attributes affecting the electrolyte properties. Numerical models describing the proton conduction mechanism have been applied to differentiate those attributes. The performance optimization of the polymer electrolytes through additives, polymer structural modifications, and synthesis of alternative HPAs has achieved several important milestones, including: (a) high proton mobility and proton density; (b) good ion accessibility at electrode/electrolyte interface; (c) wide electrochemical stability window; and (d) good environmental stability. Specifically, high proton mobility has been addressed by cross-linking the polymer framework to improve the water storage capability at normal-to-high humidity conditions (e.g. 50-80% RH) as well as by incorporating nano-fillers to enhance the water retention at normal humidity levels (e.g. 30-60% RH). High proton density has been reached by utilizing additional proton donors (i.e. acidic plasticizers) and by developing different HPAs. Good ion accessibility has been achieved through addition of plasticizers. Electrochemical stability window of the electrolyte system has also been investigated and expanded by utilizing HPAs with different heteroatoms

  4. Computer Simulations of Ion Transport in Polymer Electrolyte Membranes.

    PubMed

    Mogurampelly, Santosh; Borodin, Oleg; Ganesan, Venkat

    2016-06-01

    Understanding the mechanisms and optimizing ion transport in polymer membranes have been the subject of active research for more than three decades. We present an overview of the progress and challenges involved with the modeling and simulation aspects of the ion transport properties of polymer membranes. We are concerned mainly with atomistic and coarser level simulation studies and discuss some salient work in the context of pure binary and single ion conducting polymer electrolytes, polymer nanocomposites, block copolymers, and ionic liquid-based hybrid electrolytes. We conclude with an outlook highlighting future directions. PMID:27070764

  5. Ionically conducting polymers: Principles and properties of solid electrolytes

    SciTech Connect

    Skotheim, T.; Okamoto, Y.

    1987-01-01

    The recent success in developing rechargeable lithium batteries incorporating polyether-based electrolytes has led to the anticipation of a wider use of polymer electrolytes in a host of different applications. The polymers with the best combinations of solvation power, conductivity and electrochemical stability are all based on either PEO or polymers incorporating a high density of EO units. PEO-based electrolytes still yield the highest conductivities at elevated temperatures (approx.100/sup 0/C) when it is completely amorphous. What has emerged during the last ten years of research on polymer electrolytes is the central importance of the amorphous state for high conductivity, where the ion mobility is governed by the mobility associated with a low glass transition temperature. The difference between polymer and liquid electrolytes is that in the former the solvating part does not migrate with the ions. There is, however, still some controversy concerning the nature of the ionic species, i.e. whether the salt is present in the form of associated ions. The intensive research of the last few years has led to a far better understanding of these polymer-ion complexes. Several different types of solvating polymers have been developed, in particular single ion conductors, which represent much of the future of ion conducting polymer research. 36 refs.

  6. Reciprocated suppression of polymer crystallization toward improved solid polymer electrolytes: Higher ion conductivity and tunable mechanical properties

    DOE PAGESBeta

    Bi, Sheng; Sun, Che-Nan; Zawodzinski, Thomas A.; Ren, Fei; Keum, Jong Kahk; Ahn, Suk-Kyun; Li, Dawen; Chen, Jihua

    2015-08-06

    Solid polymer electrolytes based on lithium bis(trifluoromethanesulfonyl) imide and polymer matrix were extensively studied in the past due to their excellent potential in a broad range of energy related applications. Poly(vinylidene fluoride) (PVDF) and polyethylene oxide (PEO) are among the most examined polymer candidates as solid polymer electrolyte matrix. In this paper, we study the effect of reciprocated suppression of polymer crystallization in PVDF/PEO binary matrix on ion transport and mechanical properties of the resultant solid polymer electrolytes. With electron and X-ray diffractions as well as energy filtered transmission electron microscopy, we identify and examine the appropriate blending composition thatmore » is responsible for the diminishment of both PVDF and PEO crystallites. Laslty, a three-fold conductivity enhancement is achieved along with a highly tunable elastic modulus ranging from 20 to 200 MPa, which is expected to contribute toward future designs of solid polymer electrolytes with high room-temperature ion conductivities and mechanical flexibility.« less

  7. Stable Lithium Deposition Generated from Ceramic-Cross-Linked Gel Polymer Electrolytes for Lithium Anode.

    PubMed

    Tsao, Chih-Hao; Hsiao, Yang-Hung; Hsu, Chun-Han; Kuo, Ping-Lin

    2016-06-22

    In this work, a composite gel electrolyte comprising ceramic cross-linker and poly(ethylene oxide) (PEO) matrix is shown to have superior resistance to lithium dendrite growth and be applicable to gel polymer lithium batteries. In contrast to pristine gel electrolyte, these nanocomposite gel electrolytes show good compatibility with liquid electrolytes, wider electrochemical window, and a superior rate and cycling performance. These silica cross-linkers allow the PEO to form the lithium ion pathway and reduce anion mobility. Therefore, the gel not only features lower polarization and interfacial resistance, but also suppresses electrolyte decomposition and lithium corrosion. Further, these nanocomposite gel electrolytes increase the lithium transference number to 0.5, and exhibit superior electrochemical stability up to 5.0 V. Moreover, the lithium cells feature long-term stability and a Coulombic efficiency that can reach 97% after 100 cycles. The SEM image of the lithium metal surface after the cycling test shows that the composite gel electrolyte with 20% silica cross-linker forms a uniform passivation layer on the lithium surface. Accordingly, these features allow this gel polymer electrolyte with ceramic cross-linker to function as a high-performance lithium-ionic conductor and reliable separator for lithium metal batteries. PMID:27247991

  8. Characterisation of Proton Conducting Polymer Electrolyte Based on Pan

    NASA Astrophysics Data System (ADS)

    Nithya, S.; Selvasekarapandian, S.; Rajeswari, N.; Sikkanthar, S.; Karthikeyan, S.; Sanjeeviraja, C.

    2013-07-01

    The polymer electrolytes composed of polyacrylonitrile (PAN) with various concentration of ammonium nitrare (NH4NO3) salt have been prepared by solution casting method, using DMF as solvent. The increase in amorphous nature of the polymer electrolytes has been confirmed by Xray diffraction analysis. The complex formation between polymer and dissociated salt has been confirmed by Fourier transform infrared spectroscopy. From the Ac impedance spectroscopic analysis, the ionic conductivity of 20 mol% NH4NO3 doped polymer complex has been found to be 2.742 × 10-6 S cm-1 at room temperature. The conductivity has been increased when the temperature is increased. The activation energy of 20 mol% NH4NO3 doped polymer electrolyte was calculated using Arrhenius plot and it has been found to be 0.58 eV. The dielectric permitivitty (ɛ*) and electric modulus (m*) have been discussed.

  9. Novel inorganic materials for polymer electrolyte and alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Tadanaga, Kiyoharu

    2012-06-01

    Inorganic materials with high ionic conductivity must have big advantages for the thermal and long term stability when the materials are used as the electrolyte of fuel cells. In the present paper, novel ionic conductive inorganic materials for polymer electrolyte fuel cells (PEFCs) and all solid state alkaline fuel cells (AFCs) that have been developed by our group have been reviewed. PEFCs which can operate in temperature range from 100 to 200 °C are intensively studied because of some advantages such as reduction of CO poisoning of Pt catalyst and acceleration of electrode reactions. We showed that the fuel cells using the composite membranes prepared from phosphosilicate gel powder and polyimide precursor can operate in the temperature range from 30 to 180 °C. We also found that the inorganic-organic hybrid membranes with acid-base pairs from 3-aminopropyl triethoxy silane and H2SO4 or H3PO4 show high proton conductivity under dry atmosphere, and the membranes are thermally stable at intermediate temperatures. On the other hand, because the use of noble platinum is the serious problem for the commercialization of PEFCs and because oxidation reactions are usually faster than those of acid-type fuel cells, alkaline type fuel cells, in which a nonplatinum catalyst can be used, are attractive. Recently, we have proposed an alkaline-type direct ethanol fuel cell (DEFC) using a natural clay electrolyte with non-platinum catalysts. So-called hydrotalcite clay, Mg-Al layered double hydroxide intercalated with CO32- (Mg-Al CO32- LDH), has been proved to be a hydroxide ion conductor. An alkalinetype DEFC using Mg-Al CO32- LDH as the electrolyte and aqueous solution of ethanol and potassium hydroxide as a source of fuel exhibited excellent electrochemical performance.

  10. Composite electrode/electrolyte structure

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2004-01-27

    Provided is an electrode fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. Onto this electrode in the green state, a green ionic (e.g., electrolyte) film is deposited and the assembly is co-fired at a temperature suitable to fully densify the film while the substrate retains porosity. Subsequently, a catalytic material is added to the electrode structure by infiltration of a metal salt and subsequent low temperature firing. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems.

  11. Studies on the effect of acid treated TiO{sub 2} on the electrical and tensile properties of hexanoyl chitosan-polystyrene-LiCF{sub 3}SO{sub 3} composite polymer electrolytes

    SciTech Connect

    Hanif, Nur Shazlinda Muhammad; Shahril, Nur Syuhada Mohd; Azmar, Amisha; Winie, Tan

    2015-08-28

    Composite polymer electrolytes (CPEs) comprised of hexanoyl chitosan:polystyrene (90:10) blend, lithium triflouromethanesulfonate (LiCF{sub 3}SO{sub 3}) salt and titanium oxide (TiO{sub 2}) filler were prepared by solution casting technique. The TiO{sub 2} fillers were treated with 2% sulphuric acid (H{sub 2}SO{sub 4}) aqueous solution. The effect of acid treated TiO{sub 2} on the electrical and tensile properties of the electrolytes were investigated. Acid treated TiO{sub 2} decreased the electrolyte conductivity. Both the dielectric constant and dielectric loss decrease with increasing frequency and increases with increasing temperature. Relaxation times for ionic carriers were extracted from the loss tangent maximum peak at various temperatures. A distribution of relaxation time implied the non-Debye response. At all frequencies, ac conductivity increases with increasing temperature. An enhancement in the Young’s modulus was observed with the addition of TiO{sub 2}. The Young’s modulus increases with increasing TiO{sub 2} content. This is discussed using the percolation concept.

  12. Tribology of polymer composites

    SciTech Connect

    Friedrich, K.

    1993-12-31

    Polymer composites are more and more used as structural components which are very often subjected to friction and wear loadings under use. This overview describes the following cases: (1) short fiber/thermoplastic matrix composites and their friction and wear properties as a function of both microstructural composition and external testing conditions. Special attention is focused on the effects of different polymer matrices, fiber reinforcements, and additional internal lubricants on the coefficient of friction and the specific wear rate of these materials when sliding against hard steel counterparts. Further effects on these tribological properties due to changes in testing temperature, sliding speed and contact pressure are outlined; (2) results of sliding wear experiments with continuous glass, carbon or aramid fiber/polymer matrix composites against steel counterparts. They were used to develop a hypothetical model composite with optimum wear resistance. This was achieved for hybrids with carbon fibers parallel and aramid fibers normal to the sliding direction of the counterpart; and (3) the friction and wear performance of thin layer composites strengthened with steel backeners to sustain very high pressure loadings during sliding wear.

  13. Structural and ionic conductivity studies of electrospun polymer blend P(VdF-co-HFP)/PMMA electrolyte membrane for lithium battery application

    SciTech Connect

    Padmaraj, O.; Satyanarayana, N.; Venkateswarlu, M.

    2015-06-24

    A novel fibrous polymer blend [(100-x) % P(VdF-co-HFP)/x % PMMA, x = 10, 20, 30, 40, 50] electrolyte membranes were prepared by electrospinning technique. Structural, thermal and surface morphology of all the compositions of electrospun polymer blend membranes were studied by using XRD, DSC & SEM. The newly developed five different compositions of polymer blend fibrous electrolyte membranes were obtained by soaking in an electrolyte solution contains 1M LiPF{sub 6} in EC: DEC (1:1,v/v). The wet-ability and conductivity of all the compositions of polymer blend electrolyte membranes are evaluated through electrolyte uptake and impedance measurements. The polymer blend [90% P(VdF-co-HFP)/10% PMMA] electrolyte membrane showed good wet-ability and high conductivity (1.788 × 10{sup −3} Scm{sup −1}) at room temperature.

  14. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells.

    PubMed

    Mansor, Noramalina; Jorge, A Belen; Corà, Furio; Gibbs, Christopher; Jervis, Rhodri; McMillan, Paul F; Wang, Xiaochen; Brett, Daniel J L

    2014-04-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li(+)Cl(-)), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li(+)Cl(-) catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA. PMID:24748912

  15. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells

    PubMed Central

    2014-01-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li+Cl–), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li+Cl– catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA. PMID:24748912

  16. Novel solid polymer electrolytes based on poly(trimethylene carbonate) and lithium hexafluoroantimonate

    NASA Astrophysics Data System (ADS)

    Manuela Silva, Maria; Barbosa, Paula; Evans, Alan; Smith, Michael John

    2006-11-01

    The results of the characterization of a polymer electrolyte system based on the poly(trimethylene carbonate) host matrix, with lithium hexafluoroantimonate as guest salt, are described in this study. Electrolytes with lithium salt compositions with values of n between 5 and 100 (where n represents the total number of monomeric cation-coordinating units sbnd (O dbnd COCH 2CH 2CH 2O) sbnd per lithium ion) were prepared by co-dissolution and deposition from acetonitrile. The solvent-casting technique was used to prepare flexible, transparent and self-supporting films of electrolytes which were characterized by measurements of conductivity, cyclic voltammetry, differential scanning calorimetry and thermogravimetry.

  17. A hybrid gel-solid-state polymer electrolyte for long-life lithium oxygen batteries.

    PubMed

    Luo, Wen-Bin; Chou, Shu-Lei; Wang, Jia-Zhao; Kang, Yong-Mook; Zhai, Yu-Chun; Liu, Hua-Kun

    2015-05-14

    A hybrid gel-solid-state polymer electrolyte has been used as the separator and an electrolyte for lithium oxygen batteries. It can not only avoid electrolyte evaporation but also protect the lithium metal anode during reactions over long-term cycling. Due to its high ionic conductivity and low activation energy, excellent cycling performance is demonstrated, in which the terminal voltage is higher than 2.2 V after 140 cycles at 0.4 mA cm(-2), with a capacity of 1000 mA h g(composite)(-1). PMID:25874974

  18. Precursor polymer compositions comprising polybenzimidazole

    SciTech Connect

    Klaehn, John R.; Peterson, Eric S.; Orme, Christopher J.

    2015-07-14

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  19. Electronically conductive polymer composites and microstructures

    SciTech Connect

    Van Dyke, L.S.

    1993-01-01

    Composites of electronically conductive polymers with insulating host materials are investigated. A template synthesis method was developed for the production of electronically conductive polymer microstructures. In template synthesis the pores of a porous host membrane act as templates for the polymerization of a conductive polymer. The template synthetic method can be used to form either solid microfibrils or hollow microtubules. The electrochemical properties of conductive polymers produced via the template synthesis method are superior to those of conventionally synthesized conductive polymers. Electronically conductive polymers are used to impart conductivity to non-conductive materials. Two different approaches are used. First, thin film composites of conductive polymers with fluoropolymers are made by the polymerization of conductive polymers onto fluoropolymer films. Modification of the fluoropolymer surface prior to conductive polymer polymerization is necessary to obtain good adhesion between the two materials. The difference in adhesion of the conductive polymer to the modified and unmodified fluoropolymer surfaces can be used to pattern the conductive polymer coating. Patterning of the conductive polymer coating can alternatively be done via UV laser ablation of the conductive polymer. The second method by which conductive polymers were used to impart conductivity to an insulating polymer was via the formation of a graft copolymer. In this approach, heterocyclic monomers grafted to an insulating polyphosphazene backbone were polymerized to yield semiconductive materials. Finally the measurement of electrolyte concentration in polypyrrole and the effects of hydroxide anion on the electrochemical and electrical properties of polypyrrole are described. It is shown that treatment of polypyrrole with hydroxide anion increases the potential window over which polypyrrole is a good electronic conductor.

  20. Proton Ion Conducting Polymer Electrolyte Pan: NH4PF6

    NASA Astrophysics Data System (ADS)

    Sikkanthar, S.; Karthikeyan, S.; Rajeswari, N.; Selvasekarapandian, S.; Sanjeeviraja, C.

    2013-07-01

    Polymer electrolytes are an important class of materials and have been used in high energy batteries, fuel cells, gas sensors, display devices etc. PAN based polymer electrolyte films doped with ammonium hexafluorophosphate (NH4PF6) has been prepared by the solution casting method. The prepared films have been investigated by different techniques such as XRD, FTIR and AC Impedance spectroscopy. XRD studies reveal the amorphous nature of the polymer blend-salt complexes. The FTIR analysis confirms the complex formation of the polymer with salt. From the AC Impedance spectroscopy, the maximum proton conductivity at room temperature has been found to be 3.98×10-4 S cm-1 for 20 mol% salt doped electrolyte.

  1. Enhanced electrical transport in ionic liquid dispersed TMAI-PEO solid polymer electrolyte

    SciTech Connect

    Gupta, Neha; Rathore, Munesh Dalvi, Anshuman; Kumar, Anil

    2014-04-24

    A polymer composite is prepared by dispersing ionic liquid [Bmim][BF{sub 4}] in Polyethylene oxide-tetra methyl ammonium iodide composite and subsequent microwave treatment. X-ray diffraction patterns confirm the composite nature. To explore possibility of proton conductivity in these films, electrical transport is studied by impedance spectroscopy and DC polarization. It is revealed that addition of ionic liquid in host TMAI-PEO solid polymer electrolyte enhances the conductivity by ∼ 2 orders of magnitude. Polarization measurements suggest that composites are essentially ion conducting in nature. The maximum ionic conductivity is found to be ∼2 × 10{sup −5} for 10 wt % ionic liquid.

  2. Aerogel/polymer composite materials

    NASA Technical Reports Server (NTRS)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

    2010-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  3. Ionic conductivity and transport properties of poly(vinylidene fluoride-co-hexafluoropropylene)-based solid polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Abreha, Merhawi; Subrahmanyam, A. R.; Siva Kumar, J.

    2016-08-01

    Polymer electrolytes containing poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) and various concentrations of lithium triflate were prepared to determine the optimal polymer-salt composition for maximum ionic conductivity. Complex formation was ascertained from X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) studies. The conductivity measurements reveal that the ionic conductivity of the polymer electrolytes containing various salt concentrations increases with temperature and obeys the Arrhenius rule. It is found that the electrolyte containing 25 wt.% of lithium triflate exhibits the highest room temperature conductivity. Moreover, Ionic transference measurements show predominance of ionic motion.

  4. Comparing proton conductivity of polymer electrolytes by percent conducting volume

    SciTech Connect

    Kim, Yu Seung; Pivovar, Bryan

    2009-01-01

    Proton conductivity of sulfonated polymers plays a key role in polymer electrolyte membrane fuel cells. Mass based water uptake and ion exchange capacity of sulfonated polymers have been failed to correlating their proton conductivity. In this paper, we report a length scale parameter, percent conductivity volume, which is rather simply obtained from the chemical structure of polymer to compare proton conductivity of wholly aromatic sulfonated polymer perflurosulfonic acid. Morphology effect on proton conductivity at lower RH conditions is discussed using the percent conductivity volume parameter.

  5. [Polymer-in-salt electrolytes]. Annual report and extension proposal

    SciTech Connect

    Angell, C.A.

    1998-12-31

    The research proposed for the current grant consisted of five components, of which the authors have made substantial progress on three and have performed some exploratory work on a sixth for which they present here an argument for extending. The components on which they have made progress are: (1) development of and improvement on the basic polymer-in-salt idea. This will be separated into parts dealing with improvements in salt constitution, and improvements in polymer type, emphasizing the role of anionic polymers; (2) modifications of the polymer-in-salt electrolyte to include the addition of solid particulates to the salt-polymer matrix; and (3) physical measurements. The new component on which they have made some preliminary measurements over the summer period concerns the use of electrolytes developed under the present and other programs for improving the performance of photovoltaic cells. The rationale is that hole/electron separation in semiconductors under irradiation is aided by trapping the holes on a redox species in an adjacent electrolyte solution. The efficiency is proportional to a number of factors not fully understood, one of which is determined by the character of the electrolyte. Since the authors have new types of electrolytes under development, and since solar energy via photovoltaic is an environmentally important aspect of the energy sciences, they felt it was a desirable aspect of materials science to study in a laboratory in Arizona. Achievements in the past year are summarized.

  6. All-Polymer Electrolytic Tilt Sensor with Conductive Poly(dimethylsiloxane) Electrodes

    NASA Astrophysics Data System (ADS)

    Kyoo Lee, June; Choi, Ju Chan; Kong, Seong Ho

    2013-06-01

    In this study, an all-polymer electrolytic tilt sensor with conductive and corrosion-resistant poly(dimethylsiloxane) (PDMS) electrodes was designed and its performances were characterized. A PDMS cavity in the sensor for holding an electrolyte was fabricated by soft lithography using an ultraviolet-sensitive polymer. A conductive PDMS composite (gPDMS) with graphite powder was used for the electrode to measure the inclination angle of the electrolyte. A gPDMS composite with a graphite concentration above 40 wt % was able to function as a conductive polymer. The fabricated all-polymer tilt sensor exhibited a detectable inclination range of +/-60° and showed a relatively linear output signal compared with those exhibited by conventional micromachined tilt sensors with axis asymmetrical cavities. The maximum hysteresis of the output signal was approximately 0.1 Vrms when the sensor repeatedly tilted and leveled off. In addition to the fundamental characterization of the sensor, various characteristics of the all-polymer tilt sensor, such as time-dependent and electrolyte-volume-dependent variations in the output signal, were investigated in this study. While the performance of the proposed sensor was comparable to that of conventional silicon-micromachined tilt sensors, the sensor could be produced at a fraction of the cost required to fabricate the conventional sensors.

  7. All-Polymer Electrolytic Tilt Sensor with Conductive Poly(dimethylsiloxane) Electrodes

    NASA Astrophysics Data System (ADS)

    Lee, June Kyoo; Choi, Ju Chan; Kong, Seong Ho

    2013-06-01

    In this study, an all-polymer electrolytic tilt sensor with conductive and corrosion-resistant poly(dimethylsiloxane) (PDMS) electrodes was designed and its performances were characterized. A PDMS cavity in the sensor for holding an electrolyte was fabricated by soft lithography using an ultraviolet-sensitive polymer. A conductive PDMS composite (gPDMS) with graphite powder was used for the electrode to measure the inclination angle of the electrolyte. A gPDMS composite with a graphite concentration above 40 wt % was able to function as a conductive polymer. The fabricated all-polymer tilt sensor exhibited a detectable inclination range of ± 60° and showed a relatively linear output signal compared with those exhibited by conventional micromachined tilt sensors with axis asymmetrical cavities. The maximum hysteresis of the output signal was approximately 0.1 V\\text{rms when the sensor repeatedly tilted and leveled off. In addition to the fundamental characterization of the sensor, various characteristics of the all-polymer tilt sensor, such as time-dependent and electrolyte-volume-dependent variations in the output signal, were investigated in this study. While the performance of the proposed sensor was comparable to that of conventional silicon-micromachined tilt sensors, the sensor could be produced at a fraction of the cost required to fabricate the conventional sensors.

  8. Quasi Solid Polymer Electrolytes for Dye Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Dissanayake, M. A. K. Lakshman

    2013-07-01

    Dye-sensitized solar cell (DSSC) has been considered as an alternative to the conventional silicon solar cell because of low cost, easy fabrication and relatively high conversion efficiency. A DSSC consists of a dye-sensitized nanoparticulated TiO2 electrode, an electrolyte containing redox couple and a Pt coated counter electrode. Such solar cells based on an I-/I3- redox couple in an organic solvent usually have conversion efficiencies reaching around 11%. However, a major drawback of these solution based solar cells, originally developed by Gratzel and coworkers is the lack of long-term stability due to liquid leakage, usage of volatile liquids such as acetonitrile, electrode corrosion, and photodecomposition of the dye in the solvent medium. Therefore considerable research efforts have been made in recent years to replace the liquid electrolytes with solid polymer or quasi-solid polymer (gel) electrolytes. Among these approaches, the use of gel polymer electrolytes appears to give rise to successful results in terms of conversion efficiency. Conventional poly (ethylene oxide)(PEO)-based solid polymer electrolytes exhibit poor ionic conductivities at room temperature, which is not sufficient for practical applications. Therefore, most of the recent studies have been directed to the preparation and characterization of gel polymer electrolytes which exhibit higher ionic conductivity at ambient temperature while maintain quai-solid structure. These gel polymer electrolytes prepared by incorporating a liquid electrolyte into a matrix polymer such as polyacrylonitrile(PAN), poly(vinylidene fluoride)(PVdF), poly (methyl methacrylate) (PMMA) and PEO have been employed in quasi-solid-state DSSCs to achieve power conversion efficiencies of more than 5%. Significant improvements have been achieved in recent years by modifications of the electrolytes by optimizing the ionic salt, introducing additives such as inorganic nanofillers, organic molecules and ionic liquids in

  9. Decoupling of Ionic Transport from Segmental Relaxation in Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Wang, Yangyang; Agapov, Alexander; Fan, Fei; Hong, Kunlun; Yu, Xiang; Mays, Jimmy; Sokolov, Alexei

    2012-02-01

    Polymer electrolytes provide elegant solutions to many difficulties in battery technology. However, their relatively low ionic conductivity has become the bottleneck for developing batteries with higher power density, shorter charging time, and better operations at low temperatures. In this work, we present detailed studies of the relationship between ionic conductivity and segmental relaxation in a set of specially-designed polymer electrolytes with systematic variation in chain rigidity. Our analysis shows that the ionic conductivity indeed can be decoupled from segmental dynamics in rigid polymers and the strength of the decoupling correlates with the fragility, but not with the glass transition temperature. These results call for a revision of the current picture of ionic transport in polymer electrolytes. We relate the observed decoupling phenomenon to frustration in packing of rigid polymers, which also affects their fragility. The principles demonstrated in this study may provide an alternative approach to design of highly conductive materials: by incorporating relatively rigid chain structures, it is possible to develop a new class of solid polymer electrolytes with strongly decoupled ionic conductivity.

  10. Hybrid materials and polymer electrolytes for electrochromic device applications.

    PubMed

    Thakur, Vijay Kumar; Ding, Guoqiang; Ma, Jan; Lee, Pooi See; Lu, Xuehong

    2012-08-01

    Electrochromic (EC) materials and polymer electrolytes are the most imperative and active components in an electrochromic device (ECD). EC materials are able to reversibly change their light absorption properties in a certain wavelength range via redox reactions stimulated by low direct current (dc) potentials of the order of a fraction of volts to a few volts. The redox switching may result in a change in color of the EC materials owing to the generation of new or changes in absorption band in visible region, infrared or even microwave region. In ECDs the electrochromic layers need to be incorporated with supportive components such as electrical contacts and ion conducting electrolytes. The electrolytes play an indispensable role as the prime ionic conduction medium between the electrodes of the EC materials. The expected applications of the electrochromism in numerous fields such as reflective-type display and smart windows/mirrors make these materials of prime importance. In this article we have reviewed several examples from our research work as well as from other researchers' work, describing the recent advancements on the materials that exhibit visible electrochromism and polymer electrolytes for electrochromic devices. The first part of the review is centered on nanostructured inorganic and conjugated polymer-based organic-inorganic hybrid EC materials. The emphasis has been to correlate the structures, morphologies and interfacial interactions of the EC materials to their electronic and ionic properties that influence the EC properties with unique advantages. The second part illustrates the perspectives of polymer electrolytes in electrochromic applications with emphasis on poly (ethylene oxide) (PEO), poly (methyl methacrylate) (PMMA) and polyvinylidene difluoride (PVDF) based polymer electrolytes. The requirements and approaches to optimize the formulation of electrolytes for feasible electrochromic devices have been delineated. PMID:22581710

  11. A Synopsis of Interfacial Phenomena in Lithium-Based Polymer Electrolyte Electrochemical Cells

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.; Bennett, William R.

    2007-01-01

    The interfacial regions between electrode materials, electrolytes and other cell components play key roles in the overall performance of lithium-based batteries. For cell chemistries employing lithium metal, lithium alloy or carbonaceous materials (i.e., lithium-ion cells) as anode materials, a "solid electrolyte interphase" (SEI) layer forms at the anode/electrolyte interface, and the properties of this "passivating" layer significantly affect the practical cell/battery quality and performance. A thin, ionically-conducting SEI on the electrode surface can beneficially reduce or eliminate undesirable side reactions between the electrode and the electrolyte, which can result in a degradation in cell performance. The properties and phenomena attributable to the interfacial regions existing at both anode and cathode surfaces can be characterized to a large extent by electrochemical impedance spectroscopy (EIS) and related techniques. The intention of the review herewith is to support the future development of lithium-based polymer electrolytes by providing a synopsis of interfacial phenomena that is associated with cell chemistries employing either lithium metal or carbonaceous "composite" electrode structures which are interfaced with polymer electrolytes (i.e., "solvent-free" as well as "plasticized" polymer-binary salt complexes and single ion-conducting polyelectrolytes). Potential approaches to overcoming poor cell performance attributable to interfacial effects are discussed.

  12. Electrical Studies On Hexanoyl Chitosan-based Nanocomposite Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Muhammad, F. H.; Subban, R. H. Y.; Wime, Tan

    2009-06-01

    Hexanoyl chitosan-based nanocomposite polymer electrolytes were prepared using solution casting technique. The effect of addition of nanosize titanium oxide, TiO2 as the filler on the electrical properties of the prepared electrolyte system was investigated by impedance spectroscopy. The maximum conductivity of 3.06×10-4 S cm-1 was achieved with addition of 6 wt%. TiO2 which is 1 order of magnitude higher than the filler-free electrolyte sample (σ = 1.83×10-5 S cm-1). The Rice and Roth model was proposed to explain the conductivity variation for the prepared electrolyte system. The ac conductivity of hexanoyl chitosan-based nanocomposite electrolytes was also analyzed.

  13. Electrical characterization of proton conducting polymer electrolyte based on bio polymer with acid dopant

    NASA Astrophysics Data System (ADS)

    Kalaiselvimary, J.; Pradeepa, P.; Sowmya, G.; Edwinraj, S.; Prabhu, M. Ramesh

    2016-05-01

    This study describes the biodegradable acid doped films composed of chitosan and Perchloric acid with different ratios (2.5 wt %, 5 wt %, 7.5 wt %, 10 wt %) was prepared by the solution casting technique. The temperature dependence of the proton conductivity of complex electrolytes obeys the Arrhenius relationship. Proton conductivity of the prepared polymer electrolyte of the bio polymer with acid doped was measured to be approximately 5.90 × 10-4 Scm-1. The dielectric data were analyzed using Complex impedance Z*, Dielectric loss ɛ', Tangent loss for prepared polymer electrolyte membrane with the highest conductivity samples at various temperature.

  14. Solid Polymer Electrolyte (SPE) fuel cell technology program

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The overall objectives of the Phase IV Solid Polymer Electrolyte Fuel Cell Technology Program were to: (1) establish fuel cell life and performance at temperatures, pressures and current densities significantly higher than those previously demonstrated; (2) provide the ground work for a space energy storage system based on the solid polymer electrolyte technology (i.e., regenerative H2/O2 fuel cell); (3) design, fabricate and test evaluate a full-scale single cell unit. During this phase, significant progress was made toward the accomplishment of these objectives.

  15. Decoupling Mechanical and Ion Transport Properties in Polymer Electrolyte Membranes

    NASA Astrophysics Data System (ADS)

    McIntosh, Lucas D.

    Polymer electrolytes are mixtures of a polar polymer and salt, in which the polymer replaces small molecule solvents and provides a dielectric medium so that ions can dissociate and migrate under the influence of an external electric field. Beginning in the 1970s, research in polymer electrolytes has been primarily motivated by their promise to advance electrochemical energy storage and conversion devices, such as lithium ion batteries, flexible organic solar cells, and anhydrous fuel cells. In particular, polymer electrolyte membranes (PEMs) can improve both safety and energy density by eliminating small molecule, volatile solvents and enabling an all-solid-state design of electrochemical cells. The outstanding challenge in the field of polymer electrolytes is to maximize ionic conductivity while simultaneously addressing orthogonal mechanical properties, such as modulus, fracture toughness, or high temperature creep resistance. The crux of the challenge is that flexible, polar polymers best-suited for polymer electrolytes (e.g., poly(ethylene oxide)) offer little in the way of mechanical robustness. Similarly, polymers typically associated with superior mechanical performance (e.g., poly(methyl methacrylate)) slow ion transport due to their glassy polymer matrix. The design strategy is therefore to employ structured electrolytes that exhibit distinct conducting and mechanically robust phases on length scales of tens of nanometers. This thesis reports a remarkably simple, yet versatile synthetic strategy---termed polymerization-induced phase separation, or PIPS---to prepare PEMs exhibiting an unprecedented combination of both high conductivity and high modulus. This performance is enabled by co-continuous, isotropic networks of poly(ethylene oxide)/ionic liquid and highly crosslinked polystyrene. A suite of in situ, time-resolved experiments were performed to investigate the mechanism by which this network morphology forms, and it appears to be tied to the

  16. Electrospun nanocomposite fibrous polymer electrolyte for secondary lithium battery applications

    SciTech Connect

    Padmaraj, O.; Rao, B. Nageswara; Jena, Paramananda; Satyanarayana, N.; Venkateswarlu, M.

    2014-04-24

    Hybrid nanocomposite [poly(vinylidene fluoride -co- hexafluoropropylene) (PVdF-co-HFP)/magnesium aluminate (MgAl{sub 2}O{sub 4})] fibrous polymer membranes were prepared by electrospinning method. The prepared pure and nanocomposite fibrous polymer electrolyte membranes were soaked into the liquid electrolyte 1M LiPF{sub 6} in EC: DEC (1:1,v/v). XRD and SEM are used to study the structural and morphological studies of nanocomposite electrospun fibrous polymer membranes. The nanocomposite fibrous polymer electrolyte membrane with 5 wt.% of MgAl{sub 2}O{sub 4} exhibits high ionic conductivity of 2.80 × 10{sup −3} S/cm at room temperature. The charge-discharge capacity of Li/LiCoO{sub 2} coin cells composed of the newly prepared nanocomposite [(16 wt.%) PVdF-co-HFP+(5 wt.%) MgAl{sub 2}O{sub 4}] fibrous polymer electrolyte membrane was also studied and compared with commercial Celgard separator.

  17. Electrochemical characterization of electrospun nanocomposite polymer blend electrolyte fibrous membrane for lithium battery.

    PubMed

    Padmaraj, O; Rao, B Nageswara; Venkateswarlu, M; Satyanarayana, N

    2015-04-23

    Novel hybrid (organic/inorganic) electrospun nanocomposite polymer blend electrolyte fibrous membranes with the composition poly(vinylidene difluoride-co-hexafluoropropylene) [P(VdF-co-HFP)]/poly(methyl methacrylate) [P(MMA)]/magnesium aluminate (MgAl2O4)/LiPF6 were prepared by the electrospinning technique. All of the prepared electrospun P(VdF-co-HFP), PMMA blend [90% P(VdF-co-HFP)/10% PMMA], and nanocomposite polymer blend [90% P(VdF-co-HFP)/10% PMMA/x wt % MgAl2O4 (x = 2, 4, 6, and 8)] fibrous membranes were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy. The fibrous nanocomposite separator-cum-polymer blend electrolyte membranes were obtained by soaking the nanocomposite polymer blend membranes in an electrolyte solution containing 1 M LiPF6 in ethylene carbonate (EC)/diethyl carbonate (DEC) (1:1, v/v). The newly developed fibrous nanocomposite polymer blend electrolyte [90% P(VdF-co-HFP)/10% PMMA/6 wt % MgAl2O4/LiPF6] membrane showed a low crystallinity, low average fiber diameter, high thermal stability, high electrolyte uptake, high conductivity (2.60 × 10(-3) S cm(-1)) at room temperature, and good potential stability above 4.5 V. The best properties of the fibrous nanocomposite polymer blend electrolyte (NCPBE) membrane with a 6 wt % MgAl2O4 filler content was used for the fabrication of a Li/NCPBE/LiCoO2 CR 2032 coin cell. The electrochemical performance of the fabricated CR 2032 cell was evaluated at a current density of 0.1 C-rate. The fabricated CR 2032 cell lithium battery using the newly developed NCPBE membrane delivered an initial discharge capacity of 166 mAh g(-1) and a stable cycle performance. PMID:25867205

  18. Solid polymer battery electrolyte and reactive metal-water battery

    DOEpatents

    Harrup, Mason K.; Peterson, Eric S.; Stewart, Frederick F.

    2000-01-01

    In one implementation, a reactive metal-water battery includes an anode comprising a metal in atomic or alloy form selected from the group consisting of periodic table Group 1A metals, periodic table Group 2A metals and mixtures thereof. The battery includes a cathode comprising water. Such also includes a solid polymer electrolyte comprising a polyphosphazene comprising ligands bonded with a phosphazene polymer backbone. The ligands comprise an aromatic ring containing hydrophobic portion and a metal ion carrier portion. The metal ion carrier portion is bonded at one location with the polymer backbone and at another location with the aromatic ring containing hydrophobic portion. The invention also contemplates such solid polymer electrolytes use in reactive metal/water batteries, and in any other battery.

  19. Novel Elastomeric Membranes Developed for Polymer Electrolytes in Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Meador, Maryann B.; Kinder, James D.; Bennett, William R.

    2005-01-01

    Lithium-based polymer batteries for aerospace applications need to be highly conductive from -70 to 70 C. State-of-the-art polymer electrolytes are based on polyethylene oxide (PEO) because of the ability of its ether linkages to solvate lithium ions. Unfortunately, PEO has a tendency to form crystalline regions below 60 C, dramatically lowering conductivity below this temperature. PEO has acceptable ionic conductivities (10(exp -4) to 10(exp -3) S/cm) above 60 C, but it is not mechanically strong. The room-temperature conductivity of PEO can be increased by adding solvent or plasticizers, but this comes at the expense of thermal and mechanical stability. One of NASA Glenn Research Center s objectives in the Polymer Rechargeable System program (PERS) is to develop novel polymer electrolytes that are highly conductive at and below room temperature without added solvents or plasticizers.

  20. Performance of electric double layer capacitors with polymer gel electrolytes

    SciTech Connect

    Ishikawa, Masashi; Kishino, Takahiro; Katada, Naoji; Morita, Masayuki

    2000-07-01

    Polymer gel electrolytes consisting of poly(vinylidene fluoride) (PVdF), tetraethylammonium tetrafluoroborate (TEABF{sub 4}), and propylene carbonate (PC) as a plasticizer have been investigated for electric double layer capacitors. The PVdF gel electrolytes showed high ionic conductivity (ca. 6 mS/cm at 298 K). To assemble model capacitors with the PVdF gel electrolytes and activated carbon fiber cloth electrodes, a pair of the fixed electrodes was soaked in a precursor solution containing PC, PVdF, and TEABF{sub 4}, followed by evaporation of the PC solvent in a vacuum oven. The resulting gel electrolytes were in good contact with the electrodes. The model capacitors with the PVdF gel electrolytes showed a large value of capacitance and high coulombic efficiency in operation voltage ranges of 1--2 and 1--3 V. It is worth noting that the capacitors with the PVdF electrolytes showed long voltage retention in a self-discharge test. These good characteristics of the gel capacitors were comparable to those of typical double layer capacitors with a liquid organic electrolyte containing PC and TEABF{sub 4}; rather, the voltage retentivity of the PVdF gel capacitors was much superior to that of the capacitors with the organic electrolyte.

  1. Starch-filled polymer composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report describes the development of degradable polymer composites that can be made at room temperature without special equipments. The developed composites are made from ethyl cyanoacrylate and starch. The polymer composites produced by this procedure contain 60 wt% of starch with compressive s...

  2. Does filler surface chemistry impact filler dispersion, polymer dynamics and conductivity in nanofilled solid polymer electrolytes?

    NASA Astrophysics Data System (ADS)

    Ganapatibhotla, Lalitha; Maranas, Janna

    2012-02-01

    We study the impact of nanofiller surface chemistry on filler dispersion, polymer dynamics and ionic conductivity in acidic α-Al2O3 filled PEO+LiClO4 solid polymer electrolytes (SPEs).SPEs are the key to light-weight and high energy density rechargeable Li ion batteries but suffer from low room temperature ionic conductivity. Addition of ceramic nanofillers improves conductivity of SPEs and their surface chemistry influences extent of conductivity enhancement. The ionic conductivity of acidic α-Al2O3 filled SPE is enhanced for salt concentrations at and below eutectic, while neutral γ-Al2O3 filler enhances conductivity only at eutectic composition. Li ion motion is coupled to segmental mobility of polymer and we study how this is affected by addition of α-Al2O3 using quasi-elastic neutron scattering. Aggregation extent of nanoparticles in SPE matrix, a less explored factor in filled SPEs, can affect segmental mobility of polymer. This can vary with surface chemistry of particles and we quantify this using small angle neutron scattering. All measurements are performed as a function of Li concentration, nanoparticle loading and temperature.

  3. Anti-perovskite solid electrolyte compositions

    SciTech Connect

    Zhao, Yusheng; Daemen, Luc Louis

    2015-12-26

    Solid electrolyte antiperovskite compositions for batteries, capacitors, and other electrochemical devices have chemical formula Li.sub.3OA, Li.sub.(3-x)M.sub.x/2OA, Li.sub.(3-x)N.sub.x/3OA, or LiCOX.sub.zY.sub.(1-z), wherein M and N are divalent and trivalent metals respectively and wherein A is a halide or mixture of halides, and X and Y are halides.

  4. Design of Hybrid Solid Polymer Electrolytes: Structure and Properties

    NASA Technical Reports Server (NTRS)

    Bronstein, Lyudmila M.; Karlinsey, Robert L.; Ritter, Kyle; Joo, Chan Gyu; Stein, Barry; Zwanziger, Josef W.

    2003-01-01

    This paper reports synthesis, structure, and properties of novel hybrid solid polymer electrolytes (SPE's) consisting of organically modified aluminosilica (OM-ALSi), formed within a poly(ethylene oxide)-in-salt (Li triflate) phase. To alter the structure and properties we fused functionalized silanes containing poly(ethylene oxide) (PEO) tails or CN groups.

  5. Overcharge protection for rechargeable lithium polymer electrolyte batteries

    SciTech Connect

    Richardson, T.J.; Ross, P.N. Jr.

    1996-12-01

    Overcharge protection for rechargeable lithium polymer electrolyte cells by addition of redox shuttle additives to the polymer electrolyte was examined. Shuttle onset potentials and effective diffusion coefficients were determined for 12 redox shuttle species in polyethylene oxide-based electrolytes at 85 C. The four most promising additives were tested in Li/PEO-LiN(SO{sub 2}CF{sub 3}){sub 2}/Li{sub 2+x}Mn{sub 4}O{sub 9} cells under normal and severe overcharging conditions. In addition to tricyanobenzene and tetracyanoquinodimethane, two anionic redox shuttle additives, salts of 1,2,4-triazole and imidazole, demonstrated effectiveness in extending cycle life and good compatibility with cell components.

  6. Scalable plasticized polymer electrolytes reinforced with surface-modified sepiolite fillers - A feasibility study in lithium metal polymer batteries

    NASA Astrophysics Data System (ADS)

    Mejía, Alberto; Devaraj, Shanmukaraj; Guzmán, Julio; Lopez del Amo, Juan Miguel; García, Nuria; Rojo, Teófilo; Armand, Michel; Tiemblo, Pilar

    2016-02-01

    Electrochemical properties of (polyethylene oxide) (PEO)/lithium trifluoromethanesulfonate (LiTf)/ethylene carbonate (EC)/sepiolite extruded composite electrolytes were studied. Appreciable electrochemical stability of 4.5 V at 70 °C was observed for polymer composite membranes with D-α-tocopherol-polyethylene glycol 1000 succinate-coated sepiolite fillers. Lithium plating/stripping analysis indicated no evidence of dendrite formation with good interfacial properties which were further confirmed by postmortem analysis of the cells. Solid state NMR studies show the presence of two Li+ population in the membranes. The feasibility of these electrolytes has been shown with LiFePO4 cathode materials. Initial discharge capacity of 142 mAh/g was observed remaining at 110 mAh/g after 25 cycles with a coulombic efficiency of 96%. The upscaling of these polymers can be easily achieved by extrusion technique and the capacity can be improved by varying the cathode architecture.

  7. Li conductivity in siloxane-based polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Stacy, Eric; Fan, Fei; Feng, Hongbo; Gainaru, Catalin; Mays, Jimmy; Sokolov, Alexei

    Polymer electrolytes containing lithium ions are ideal candidates for electrochemical devices and energy storage applications. Understanding their ionic transport mechanism is the key for rational designing of highly conductive polymer matrices. Complementing dielectric spectroscopy investigations by results from rheology and differential scanning calorimetry we focused on the interplay between dynamics of lithium ions and the polymer matrix based on polysiloxane backbone. Our results demonstrate that the conductivity and the degree of decoupling between ion dynamics and structural relaxation depend strongly not only on the ions concentration, but also on the polarity and size of the polymeric side-groups. Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.

  8. Electrolyte compositions for lithium ion batteries

    DOEpatents

    Sun, Xiao-Guang; Dai, Sheng; Liao, Chen

    2016-03-29

    The invention is directed in a first aspect to an ionic liquid of the general formula Y.sup.+Z.sup.-, wherein Y.sup.+ is a positively-charged component of the ionic liquid and Z.sup.- is a negatively-charged component of the ionic liquid, wherein Z.sup.- is a boron-containing anion of the following formula: ##STR00001## The invention is also directed to electrolyte compositions in which the boron-containing ionic liquid Y.sup.+Z.sup.- is incorporated into a lithium ion battery electrolyte, with or without admixture with another ionic liquid Y.sup.+X.sup.- and/or non-ionic solvent and/or non-ionic solvent additive.

  9. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, John D.; Gross, Mark E.

    1997-01-01

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  10. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, J.D.; Gross, M.E.

    1997-10-28

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  11. Flexible solid polymer electrolyte membran formed by photopolymerization

    NASA Astrophysics Data System (ADS)

    Cao, Jinwei; Kyu, Thein

    2014-03-01

    Binary and ternary phase diagrams of poly(ethylene glycol) dimethacrylate (PEGDMA,succinonitrile(SCN), and bis(trifluoromethane)sulfonimide (LiTFSI) blends have been established to provide guidance to fabricationof polymer electrolyte membrane (PEM). The phase diagram of binary PEGDMA/SCN mixture is of a typical eutectic typ, whereas the binary PEGDMA/LiTFSI mixture reveals a eutectic trend exhibiting a wide single phase region at intermediate composition. Likewise, the ternary phase diagram of PEGDMA/SCN/LiTFSI mixture shows a wide isotropic regio. The PEM network, formed by UV-crosslinking of PEGDMA in the isotropic region, is a solid amorphous network, but flexible and stretchable. Ion conductivity of PEMwas measured as a function of temperature at different ratios of PEGDMA/SCN and SCN/LiTFSI. Of particular importance is that these PEM networks possessvery high roo-temperature ion conductivity on the order of 10-3 S cm-1, which reaches the level of 10-2 S cm-1 at elevated temperatures of 60-70 °C. The electrochemical stability of the solid PEM will be evaluated by cyclic voltammetry and its potential applicabilityinflexible lithium ion battery will be discussed.

  12. Conductivity and Stability of Photopolymerized Polymer Electrolyte Network

    NASA Astrophysics Data System (ADS)

    Kyu, Thein; He, Ruixuan; Chen, Yu-Ming; Mao, Jialin; Zhu, Yu; Kyu'S Group, , Dr.; Zhu'S Group Collaboration, , Dr.

    2014-03-01

    A melt-processing window has been identified within the wide isotropic region of the phase diagram of ternary blends consisting of poly (ethylene glycol diacrylate) (PEGDA), tetraethylene glycol dimethyl ether (TEGDME) and lithium bis(trifluoromethane) sulfonamide (LiTFSI). Upon UV-crosslinking of PEGDA in the isotropic window, the polymer electrolyte membrane (PEM) network thus formed is completely transparent and remains in the single phase without undergoing polymerization-induced phase separation or polymerization-induced crystallization. These PEM networks are solid albeit flexible and light-weight with safety and space saving attributes. The ionic conductivity as determined by AC impedance spectroscopy exhibited very high room-temperature ionic conductivity on the order of ~10-3 S/cm in several compositions, viz., 10/45/45, 20/40/40 and 30/35/35 PEGDA/TEGDME/LiTFSI networks. Cyclic voltammetry measurement of these solid-state PEM networks revealed excellent electrochemical stability against lithium reference electrode. The above study has been extended to the anode (graphite) and cathode (LiFePO4) half-cell configurations with lithium as counter electrode. Charge/discharge cycling behavior of these half cells will be discussed. Supported by NSF-DMR 1161070 and University of Akron.

  13. Recent advances in solid polymer electrolyte fuel cell technology

    SciTech Connect

    Ticianelli, E.A.; Srinivasan, S.; Gonzalez, E.R.

    1988-01-01

    With methods used to advance solid polymer electrolyte fuel cell technology, we are close to obtaining the goal of 1 A/cm/sup 2/ at 0.7. Higher power densities have been reported (2 A/cm/sup 2/ at 0.5 V) but only with high catalyst loading electrodes (2 mg/cm/sup 2/ and 4 mg/cm/sup 2/ at anode and cathode, respectively) and using a Dow membrane with a better conductivity and water retention characteristics. Work is in progress to ascertain performances of cells with Dow membrane impregnated electrodes and Dow membrane electrolytes. 5 refs., 6 figs.

  14. High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte.

    PubMed

    Sun, Yubao; Li, Gai; Lai, Yuanchu; Zeng, Danli; Cheng, Hansong

    2016-01-01

    Lithium-sulfur batteries are highly promising for electric energy storage with high energy density, abundant resources and low cost. However, the battery technologies have often suffered from a short cycle life and poor rate stability arising from the well-known "polysulfide shuttle" effect. Here, we report a novel cell design by sandwiching a sp(3) boron based single ion conducting polymer electrolyte film between two carbon films to fabricate a composite separator for lithium-sulfur batteries. The dense negative charges uniformly distributed in the electrolyte membrane inherently prohibit transport of polysulfide anions formed in the cathode inside the polymer matrix and effectively blocks polysulfide shuttling. A battery assembled with the composite separator exhibits a remarkably long cycle life at high charge/discharge rates. PMID:26898772

  15. High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Sun, Yubao; Li, Gai; Lai, Yuanchu; Zeng, Danli; Cheng, Hansong

    2016-02-01

    Lithium-sulfur batteries are highly promising for electric energy storage with high energy density, abundant resources and low cost. However, the battery technologies have often suffered from a short cycle life and poor rate stability arising from the well-known “polysulfide shuttle” effect. Here, we report a novel cell design by sandwiching a sp3 boron based single ion conducting polymer electrolyte film between two carbon films to fabricate a composite separator for lithium-sulfur batteries. The dense negative charges uniformly distributed in the electrolyte membrane inherently prohibit transport of polysulfide anions formed in the cathode inside the polymer matrix and effectively blocks polysulfide shuttling. A battery assembled with the composite separator exhibits a remarkably long cycle life at high charge/discharge rates.

  16. High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte

    PubMed Central

    Sun, Yubao; Li, Gai; Lai, Yuanchu; Zeng, Danli; Cheng, Hansong

    2016-01-01

    Lithium-sulfur batteries are highly promising for electric energy storage with high energy density, abundant resources and low cost. However, the battery technologies have often suffered from a short cycle life and poor rate stability arising from the well-known “polysulfide shuttle” effect. Here, we report a novel cell design by sandwiching a sp3 boron based single ion conducting polymer electrolyte film between two carbon films to fabricate a composite separator for lithium-sulfur batteries. The dense negative charges uniformly distributed in the electrolyte membrane inherently prohibit transport of polysulfide anions formed in the cathode inside the polymer matrix and effectively blocks polysulfide shuttling. A battery assembled with the composite separator exhibits a remarkably long cycle life at high charge/discharge rates. PMID:26898772

  17. Dye-sensitized solar cell comprising polyethyl methacrylate doped with ammonium iodide solid polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Singh, Vivek Kr.; Bhattacharya, B.; Shukla, S.; Singh, Pramod K.

    2014-09-01

    The aim of the present work was to develop a new solid electrolyte polyethyl methacrylate doped with ammonium iodide polymer electrolyte and its application in dye-sensitized solar cell (DSSC). The electrical, structural and photoelectrochemical properties of polymer electrolytes are presented in detail. DSSCs have been fabricated and characterized. The polymer electrolyte film with maximum ionic conductivity shows maximum efficient DSSC of efficiency 0.43 % at 1 sun condition.

  18. Dye-sensitized solar cell comprising polyethyl methacrylate doped with ammonium iodide solid polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Singh, Vivek Kr.; Bhattacharya, B.; Shukla, S.; Singh, Pramod K.

    2015-03-01

    The aim of the present work was to develop a new solid electrolyte polyethyl methacrylate doped with ammonium iodide polymer electrolyte and its application in dye-sensitized solar cell (DSSC). The electrical, structural and photoelectrochemical properties of polymer electrolytes are presented in detail. DSSCs have been fabricated and characterized. The polymer electrolyte film with maximum ionic conductivity shows maximum efficient DSSC of efficiency 0.43 % at 1 sun condition.

  19. X-ray evaluation of the boundary between polymer electrolyte and platinum and carbon functionalization to conduct protons in polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Oka, Kazuki; Ogura, Yuta; Izumi, Yasuo

    2014-07-01

    In polymer electrolyte fuel cells (PEFCs), it is important to secure proximate diffusion paths of reactants and electrons. One approach is to optimize the boundary between polymer electrolyte and Pt nanoparticle surface. Based on synchrotron X-ray absorption fine structure to monitor directly the status of catalysts in PEFCs, it was found that Pt sites were reduced to Pt0 by alcohols contained in polymer electrolyte dispersion solution during the preparation of cathode of PEFC. As in membrane electrolyte assembly, only the Pt sites not covered by polymer electrolyte re-oxidized to Pt2+/4+. Thus, the interface between Pt and polymer electrolyte was evaluated. The other approach is to functionalize carbon surface with sulfonate/sulfate group to conduct protons. Similar level of proton conductivity was observed in current-voltage dependence compared to using polymer electrolyte, but polymer electrolyte was advantageous to lose less voltage for activation. Based on this comparison, optimum catalyst on cathode is proposed comprising surface sulfonate/sulfate group on carbon mixed with polymer electrolyte. Further optimization of cathode catalyst is proposed to functionalize carbon with sulfonate group linked to fluorocarbon branch.

  20. Multilayer Electroactive Polymer Composite Material

    NASA Technical Reports Server (NTRS)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2011-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  1. Polymer electrolyte membrane assembly for fuel cells

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Kindler, Andrew (Inventor); Yavrouian, Andre (Inventor); Halpert, Gerald (Inventor)

    2002-01-01

    An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells.

  2. Polymer electrolyte membrane assembly for fuel cells

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Kindler, Andrew (Inventor); Yavrouian, Andre (Inventor); Halpert, Gerald (Inventor)

    2000-01-01

    An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells.

  3. Zinc halogen battery electrolyte composition with lead additive

    DOEpatents

    Henriksen, Gary L.

    1981-01-01

    This disclosure relates to a zinc halogen battery electrolyte composition containing an additive providing improved zinc-on-zinc recyclability. The improved electrolyte composition involves the use of a lead additive to inhibit undesirable irregular plating and reduce nodular or dendritic growth on the electrode surface. The lead-containing electrolyte composition of the present invention appears to influence not only the morphology of the base plate zinc, but also the morphology of the zinc-on-zinc replate. In addition, such lead-containing electrolyte compositions appear to reduce hydrogen formation.

  4. Development of structured polymer electrolyte membranes for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Gasa, Jeffrey

    The objective of this research was to explore structure-property relationships to develop the understanding needed for introduction of superior PEM materials. Polymer electrolyte membranes based on sulfonated poly(ether ketone ketone) (SPEKK) were fabricated using N-methyl pyrrolidone as casting solvent. The membranes were characterized in terms of properties that were relevant to fuel cell applications, such as proton conductivity, methanol permeability, and swelling properties, among others. It was found in this study that the proton conductivity of neat SPEKK membranes could reach the conductivity of commercial membranes such as NafionRTM. However, when the conductivity of SPEKK was comparable to NafionRTM, the swelling of SPEKK in water was quite excessive. The swelling problem was remedied by modifying the microstructure of SPEKK using different techniques. One of them involved blending of lightly sulfonated PEKK with highly acidic particles (sulfonated crosslinked polystyrene-SXLPS). Low sulfonation level of SPEKK was used to reduce the swelling of the membrane in water and the role of the highly acidic particles was to enhance the proton conductivity of the membrane. Because of the residual crystallinity in SPEKK with low sulfonation levels (IEC < 1 meq/g), the composite membranes exhibited excellent dimensional stability in water at elevated temperatures (30-90 °C). Also, the resistance to swelling of these composite membranes in methanol-water mixtures was far better than NafionRTM, and so was the methanol permeability. Another technique explored was blending with non-conductive polymers (poly(ether imide) and poly(ether sulfone)) to act as mechanical reinforcement. It was found that miscibility behavior of the blends had a significant impact on the transport and swelling properties of these blends, which could be explained by the blend microstructure. The miscibility behavior was found to be strongly dependent on the sulfonation level of SPEKK. The

  5. Method for forming thin composite solid electrolyte film for lithium batteries

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesan (Inventor); Attia, Alan I. (Inventor)

    1994-01-01

    A composite solid electrolyte film is formed by dissolving a lithium salt such as lithium iodide in a mixture of a first solvent which is a co-solvent for the lithium salt and a binder polymer such as polyethylene oxide and a second solvent which is a solvent for the binder polymer and has poor solubility for the lithium salt. Reinforcing filler such as alumina particles are then added to form a suspension followed by the slow addition of binder polymer. The binder polymer does not agglomerate the alumina particles. The suspension is cast into a uniform film.

  6. Method for forming thin composite solid electrolyte film for lithium batteries

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesan (Inventor); Attia, Alan I. (Inventor)

    1997-01-01

    A composite solid electrolyte film is formed by dissolving a lithium salt such as lithium iodide in a mixture of a first solvent which is a cosolvent for the lithium salt and a binder polymer such as polyethylene oxide and a second solvent which is a solvent for the binder polymer and has poor solubility for the lithium salt. Reinforcing filler such as alumina particles are then added to form a suspension followed by the slow addition of binder polymer. The binder polymer does not agglomerate the alumina particles. The suspension is cast into a uniform film.

  7. Synthesis and characterization of aminated perfluoro polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Page-Belknap, Zachary Stephan Glenn

    Polymer electrolytes have been developed for use in anion exchange membrane fuel cells for years. However, due to the highly corrosive environment within these fuel cells, poor chemical stability of the polymers and low ion conductivity have led to high development costs and thus prevention from widespread commercialization. The work in this study aims to provide a solution to these problems through the synthesis and characterization of a novel polymer electrolyte. The 800 EW 3M PFSA sulfonyl fluoride precursor was aminated with 3-(dimethylamino)-1-propylamine to yield a functional polymer electrolyte following quaternization, referred to in this work as PFSa-PTMa. 1 M solutions of LiPF6, HCL, KOH, NaOH, CsOH, NaHCO3 and Na2CO3 were used to exchange the polymer to alternate counterion forms. Chemical structure analysis was performed using both FT and ATR infrared spectroscopy to confirm sulfonyl fluoride replacement and the absence of sulfonic acid sites. Mechanical testing of the polymer, following counterion exchange with KOH, at saturated conditions and 60 ºC exhibited a tensile strength of 13 +/- 2.0 MPa, a Young's modulus of 87 +/- 16 MPa and a degree of elongation reaching 75% +/- 9.1%, which indicated no mechanical degradation following exposure to a highly basic environment. Conductivities of the polymer in the Cl- and OH- counterion forms at saturated conditions and 90 ºC were observed at 26 +/- 8.0 mS cm-1 and 1.1 +/- 0.1 mS cm-1, respectively. OH- conductivities were slightly above those observed for CO32- and HCO 3- counterions at the same conditions, 0.63 +/- 0.18 and 0.66 +/- 0.21 mS cm-1 respectively. The ion exchange capacity (IEC) of the polymer in the Cl- counterion form was measured via titration at 0.57 meq g-1 which correlated to 11.2 +/- 0.10 water molecules per ion site when at 60ºC and 95% relative humidity. The IEC of the polymer in the OH- counterion form following titration expressed nearly negligible charge density, less than 0.01 meq

  8. Novel Molecular Architectures Developed for Improved Solid Polymer Electrolytes for Lithium Polymer Batteries

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Kinder, James D.; Bennett, William R.

    2002-01-01

    Lithium-based polymer batteries for aerospace applications need the ability to operate in temperatures ranging from -70 to 70 C. Current state-of-the-art solid polymer electrolytes (based on amorphous polyethylene oxide, PEO) have acceptable ionic conductivities (10-4 to 10-3 S/cm) only above 60 C. Higher conductivity can be achieved in the current systems by adding solvent or plasticizers to the solid polymer to improve ion transport. However, this can compromise the dimensional and thermal stability of the electrolyte, as well as compatibility with electrode materials. One of NASA Glenn Research Center's objectives in the PERS program is to develop new electrolytes having unique molecular architectures and/or novel ion transport mechanisms, leading to good ionic conductivity at room temperature and below without solvents or plasticizers.

  9. Enhancement of Li+ ion conductivity in solid polymer electrolytes using surface tailored porous silica nanofillers

    NASA Astrophysics Data System (ADS)

    Mohanta, Jagdeep; Singh, Udai P.; Panda, Subhendu K.; Si, Satyabrata

    2016-09-01

    The current study represents the design and synthesis of polyethylene oxide (PEO)-based solid polymer electrolytes by solvent casting approach using surface tailored porous silica as nanofillers. The surface tailoring of porous silica nanostructure is achieved through silanization chemistry using 3-glycidyloxypropyl trimethoxysilane in which silane part get anchored to the silica surface whereas epoxy group get stellated from the silica surface. Surface tailoring of silica with epoxy group increases the room temperature electrochemical performances of the resulting polymer electrolytes. Ammonical hydrolysis of organosilicate precursor is used for both silica preparation and their surface tailoring. The composite solid polymer electrolyte films are prepared by solution mixing of PEO with lithium salt in presence of silica nanofillers and cast into film by solvent drying, which are then characterized by impedance measurement for conductivity study and wide angle x-ray diffraction for change in polymer crystallinity. Room temperature impedance measurement reveals Li+ ion conductivity in the order of 10‑4 S cm‑1, which is correlated to the decrease in PEO crystallinity. The enhancement of conductivity is further observed to be dependent on the amount of silica as well as on their surface characteristics.

  10. Polypyrrole composite electrodes in an all-polymer battery system

    SciTech Connect

    Killian, J.G.; Coffey, B.M.; Gao, F.; Poehler, T.O.; Searson, P.C.

    1996-03-01

    The authors have fabricated an all-polymer battery utilizing the redox properties of electrically conducting polymers for the anode and cathode in conjunction with an ionic conducting polymer gel electrolyte. The anode and cathode consist of pyrrole electropolymerized onto a graphite fiber substrate resulting in a high-surface-area, composite electrode. A polymer gel electrolyte, based on polyacrylonitrile, was solution cast onto the electrodes to form an all-polymer cell. This system exhibits a specific charge capacity of 22 mAh/g based on the electroactive mass of the cathode and discharging the system to 0.4 V. These cells show no loss of capacity when cycled to 100 cycles.

  11. Spontaneous aggregation of lithium ion coordination polymers in fluorinated electrolytes for high-voltage batteries

    DOE PAGESBeta

    Malliakas, Christos D.; Leung, Kevin; Pupek, Krzysztof Z.; Shkrob, Ilya A.; Abraham, Daniel P.

    2016-03-31

    Fluorinated carbonate solvents are pursued as liquid electrolytes for high-voltage Li-ion batteries. We report aggregation of [Li+(FEC)3]n polymer species from fluoroethylene carbonate containing electrolytes and scrutinized the causes for this behavior.

  12. Computationally Guided Design of Polymer Electrolytes for Battery Applications

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-Gang; Webb, Michael; Savoie, Brett; Miller, Thomas

    We develop an efficient computational framework for guiding the design of polymer electrolytes for Li battery applications. Short-times molecular dynamics (MD) simulations are employed to identify key structural and dynamic features in the solvation and motion of Li ions, such as the structure of the solvation shells, the spatial distribution of solvation sites, and the polymer segmental mobility. Comparative studies on six polyester-based polymers and polyethylene oxide (PEO) yield good agreement with experimental data on the ion conductivities, and reveal significant differences in the ion diffusion mechanism between PEO and the polyesters. The molecular insights from the MD simulations are used to build a chemically specific coarse-grained model in the spirit of the dynamic bond percolation model of Druger, Ratner and Nitzan. We apply this coarse-grained model to characterize Li ion diffusion in several existing and yet-to-be synthesized polyethers that differ by oxygen content and backbone stiffness. Good agreement is obtained between the predictions of the coarse-grained model and long-timescale atomistic MD simulations, thus providing validation of the model. Our study predicts higher Li ion diffusivity in poly(trimethylene oxide-alt-ethylene oxide) than in PEO. These results demonstrate the potential of this computational framework for rapid screening of new polymer electrolytes based on ion diffusivity.

  13. Fabrication of a polymer battery based on polypyrrole electrodes and a polymer gel electrolyte

    SciTech Connect

    Killian, J.G.; Coffey, B.M.; Poehler, T.O.; Searson, P.C.

    1995-12-31

    The electronic conductivity and redox behavior of conjugated polymers make them suitable for charge storage applications. The authors present preliminary results for an all polymer system consisting of a p-doped polypyrrole cathode and pseudo n-doped polypyrrole/polystyrenesulfonate anode. Using a thin film construction technique, electrodes were assembled into cells using a polymer gel electrolyte based on polyacrylonitrile, which has a high room temperature conductivity. Charge capacities of 13 mAh g{sup {minus}1} based on the mass of the electroactive polymer in the cathode have been obtained for over 100 cycles.

  14. Layered plasma polymer composite membranes

    DOEpatents

    Babcock, W.C.

    1994-10-11

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is [>=]2 and is the number of selective layers. 2 figs.

  15. Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte.

    PubMed

    Zhou, Weidong; Wang, Shaofei; Li, Yutao; Xin, Sen; Manthiram, Arumugam; Goodenough, John B

    2016-08-01

    A cross-linked polymer containing pendant molecules attached to the polymer framework is shown to form flexible and low-cost membranes, to be a solid Li(+) electrolyte up to 270 °C, much higher than those based on poly(ethylene oxide), to be wetted by a metallic lithium anode, and to be not decomposed by the metallic anode if the anions of the salt are blocked by a ceramic electrolyte in a polymer/ceramic membrane/polymer sandwich electrolyte (PCPSE). In this sandwich architecture, the double-layer electric field at the Li/polymer interface is reduced due to the blocked salt anion transfer. The polymer layer adheres/wets the lithium metal surface and makes the Li-ion flux at the interface more homogeneous. This structure integrates the advantages of the ceramic and polymer. With the PCPSE, all-solid-state Li/LiFePO4 cells showed a notably high Coulombic efficiency of 99.8-100% over 640 cycles. PMID:27440104

  16. Symposium Report. Battery materials : amorphous carbons and polymer electrolytes.

    SciTech Connect

    Gerald, R. E., II; Chemical Engineering

    2000-01-01

    The motivation for research in battery materials lies in the expanding consumer demand for compact, high-energy density power sources for portable electronic devices, and environmental issues such as global warming and air pollution that have provided the impetus for mass transportation by electric vehicles. The Battery Materials Symposium, chaired by Jacqueline Johnson (ANL), focused on three topics: the structure and electrochemical properties of new and existing electrolytes, devices for fabricating and investigating thin films, and large-scale computer simulations. The symposium opened with a presentation by the author on a recently invented device for in situ investigations of batteries using nuclear magnetic resonance. Joop Schoonman (Delft University) described several methods for preparing and analyzing thin films made of solid electrolytes. These methods included chemical vapor deposition, electrostatic spray deposition and the Solufill process. Aiichiro Nakano discussed large-scale (10 million to 2 billion atoms) computer simulations of polymer and ceramic systems. An overview was given of a DOE Cooperative Research 2000 program, in the initial stages, that was set up to pursue these atomistic simulations. Doug MacFarlane (Monash University) described conductive plastic crystals based on pyrrolidinium imides. Joseph Pluth (U of Chicago) presented his recent crystallographic studies of Pb compounds found in the ubiquitous lead-acid battery. He showed the structures of tribasic lead sulfate and tetrabasic lead sulfate. Austen Angell (Arizona State Univ.) discussed the general problem of electrolyte polarization in Li-ion battery systems with cation transference numbers less than unity. Steven Greenbaum (Hunter College) provided an introduction of NMR interactions that are useful for investigations of lithium-ion battery materials. Analysis by NMR is nuclear specific, probes local environments and dynamics, and is non-destructive. He discussed {sup 7}Li NMR

  17. Mechanisms Underlying Ionic Mobilities in Nanocomposite Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Ganesan, Venkat; Hanson, Benjamin; Pryamitsyn, Victor

    2014-03-01

    Recently, a number of experiments have demonstrated that addition of ceramics with nanoscale dimensions can lead to substantial improvements in the low temperature conductivity of the polymeric materials. However, the origin of such behaviors, and more generally, the manner by which nanoscale fillers impact the ion mobilities remain unresolved. In this communication, we report the results of atomistic molecular dynamics simulations which used multibody polarizable force-fields to study lithium ion diffusivities in an amorphous poly(ethylene-oxide) (PEO) melt containing well-dispersed TiO2 nanoparticles. We observed that the lithium ion diffusivities decrease with increased particle loading. Our analysis suggests that the ion mobilities are correlated to the nanoparticle-induced changes in the polymer segmental dynamics. Interestingly, the changes in polymer segmental dynamics were seen to be related to the nanoparticle's influence on the polymer conformational features. Overall, our results indicate that addition of nanoparticle fillers modify polymer conformations and the polymer segmental dynamics, and thereby influence the ion mobilities of polymer electrolytes.

  18. The Role of Polymer Electrolytes in Drug Delivery

    NASA Astrophysics Data System (ADS)

    Latham, R. J.; Linford, R. G.; Schlindwein, W. S.

    2002-12-01

    30 years ago Michel Armand, who was working on intercalation cathode materials in high energy power sources, identified the need to develop flexible, ionically conducting, electronically insulating electrolyte materials to accommodate the gross dimensional changes that occur on charge and discharge. In 1973, Peter Wright produced the first such materials designed for this purpose. His "polymer electrolytes" consisted of thin films of sodium or potassium salts dissolved in poly (ethylene oxide) PEO. Many polymer electrolytes had been developed in the ensuing years. Those for power source use have focussed on Lithium as the conducting species whereas complementary materials have been utilised for sensor and other applications. It is well known that the flexible matrix, a heteropolymer usually modified by additives such as plasticisers and/or inert fillers, provides a facile conducting pathway for ions. It is a significant disadvantage of many early polymer electrolytes that both the electrochemically active cations and the charge-compensating anions were mobile. Classic methods of drug delivery have embraced a number of routes into the site of pharmacological action, including ingestion into the lung, the digestive tract or the colon; injection into muscle tissue; and intravenous delivery through a catheter (a "drip"). Modern preference, wherever possible, is for a non-invasive route to minimise the chance of cross infection, especially of the AIDS virus. The skin, which is the largest organ in the human body, is a particularly appealing route as, in the absence of wounds and blemishes, it offers a natural, high-integrity, barrier to the outside world. Skin patches containing active drug that is allowed to diffuse across the external skin barrier into the bloodstream now enjoy wide application but a problem is that the rate of egress is often slow. Transport can be enhanced by artificially dilating the skin pores and/or by opening up additional pores by the

  19. Preliminary study of application of Moringa oleifera resin as polymer electrolyte in DSSC solar cells

    NASA Astrophysics Data System (ADS)

    Saehana, Sahrul; Darsikin, Muslimin

    2016-04-01

    This study reports the preliminary study of application of Moringa oleifera resin as polymer electrolyte in dye-sensitized solar cell (DSSC). We found that polymer electrolyte membrane was formed by using solution casting methods. It is observed that polymer electrolyte was in elastic form and it is very potential to application as DSSC component. Performance of DSSC which employing Moringa oleifera resin was also observed and photovoltaic effect was found.

  20. Lithium dendrite growth through solid polymer electrolyte membranes

    NASA Astrophysics Data System (ADS)

    Harry, Katherine; Schauser, Nicole; Balsara, Nitash

    2015-03-01

    Replacing the graphite-based anode in current batteries with a lithium foil will result in a qualitative increase in the energy density of lithium batteries. The primary reason for not adopting lithium-foil anodes is the formation of dendrites during cell charging. In this study, stop-motion X-ray microtomography experiments were used to directly monitor the growth of lithium dendrites during electrochemical cycling of symmetric lithium-lithium cells with a block copolymer electrolyte. In an attempt to understand the relationship between viscoelastic properties of the electrolyte on dendrite formation, a series of complementary experiments including cell cycling, tomography, ac impedance, and rheology, were conducted above and below the glass transition temperature of the non-conducting poly(styrene) block; the conducting phase is a mixture of rubbery poly(ethylene oxide) and a lithium salt. The tomography experiments enable quantification of the evolution of strain in the block copolymer electrolyte. Our work provides fundamental insight into the dynamics of electrochemical deposition of metallic films in contact with high modulus polymer electrolytes. Rational approaches for slowing down and, perhaps, eliminating dendrite growth are proposed.

  1. Polymer electrolyte-gated organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Panzer, Matthew J.

    Contemporary interest in organic semiconductors is driven both by questions regarding the fundamentals of charge transport in these materials and by their potential for flexible, low-cost electronic applications. The key device utilized in these endeavors is the organic field-effect transistor (OFET). Attaining large charge carrier densities in OFETs is desirable for two main reasons. First, because the conductivity in an OFET is proportional to the product of carrier mobility and charge density, increasing charge density levels can boost transistor currents significantly and facilitate low-voltage operation. Additionally, the achievement of carrier densities approaching the twodimensional (2D) molecular density (˜5 x 1014 cm-2) in an organic semiconductor monolayer can enable a variety of fundamental transport experiments. The results summarized in this thesis illustrate that charge densities exceeding 1014 charges/cm2 can be attained in a variety of organic semiconductors by using a solid polymer electrolyte as an OFET dielectric. Polymer electrolytes can provide specific capacitances exceeding 10 muF/cm 2, resulting from the migration of ions within a polymer matrix. By measuring the transient gate displacement current caused by ionic motion in a polymer electrolyte-gated organic field-effect transistor (PEG-FET), large electrostatically-injected charge density values can be calculated; these are typically above 1014 charges/cm2 at gate voltages under 3 V. Negative transconductance at large carrier densities is observed in oligomeric, polymeric, and organic single-crystal semiconductors. This phenomenon is ascribed to charge correlations or a nearly complete filling of the semiconductor transport band with carriers. Polymer semiconductors exhibited the highest performance among PEG-FETs with a top gate architecture. Nearly metallic conductivities (˜1000 S/cm), weak ON current temperature dependences, and large linear mobility values (˜3 cm2/V·s) were

  2. Developments of Novel Polymer Electrolyte Fuel Cell Membranes

    NASA Astrophysics Data System (ADS)

    Irita, Tomomi; Kondo, Masahiro; Aoyama, Hirokazu; Russell, Thomas

    2006-03-01

    Perfluorinated polymer electrolyte membranes (PEM), such as Nafion, are considered to be the most promising candidate for the development of the next generation fuel cell technology. The key technological challenges facing PEMs are their performance, durability and cost. In this research, the polymer electrolyte emulsions (PEE) were obtained by a simple hydrolysis reaction of the precursor polymer emulsion. PEMs are obtained by solvent casting the PEE. The PEE obtained here has a very low viscosity even at high solution concentrations. Using high concentration emulsions greatly reduces the amount of the waste, which makes this technology superior to the conventional ones. Casting conditions were optimized to enhance the mechanical properties, e.g. the tensile strength and viscoelastic properties, of the membrane. The PEMs obtained possessed better ionic conductivity than Nafion while their mechanical properties are comparable. Finally, the cost evaluation for this process was conducted and it was shown that the contribution to the cost reduction becomes bigger. (This research was sponsored by New Energy and Industrial Technology Development Organization, Japan)

  3. Transport and spectroscopic studies of liquid and polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Bopege, Dharshani Nimali

    Liquid and polymer electrolytes are interesting and important materials to study as they are used in Li rechargeable batteries and other electrochemical devices. It is essential to investigate the fundamental properties of electrolytes such as ionic conductivity, diffusion, and ionic association to enhance battery performance in different battery markets. This dissertation mainly focuses on the temperature-dependent charge and mass transport processes and ionic association of different electrolyte systems. Impedance spectroscopy and pulsed field gradient nuclear magnetic resonance spectroscopy were used to measure the ionic conductivity and diffusion coefficients of ketone and acetate based liquid electrolytes. In this study, charge and mass transport in non-aqueous liquid electrolytes have been viewed from an entirely different perspective by introducing the compensated Arrhenius formalism. Here, the conductivity and diffusion coefficient are written as an Arrhenius-like expression with a temperature-dependent static dielectric constant dependence in the exponential prefactor. The compensated Arrhenius formalism reported in this dissertation very accurately describes temperature-dependent conductivity data for acetate and ketone-based electrolytes as well as temperature-dependent diffusion data of pure solvents. We found that calculated average activation energies of ketone-based electrolytes are close to each other for both conductivity and diffusion data (in the range 24-26 kJ/mol). Also, this study shows that average activation energies of acetate-based electrolytes are higher than those for the ketone systems (in the range 33-37 kJ/mol). Further, we observed higher dielectric constants and ionic conductivities for both dilute and concentrated ketone solutions with temperature. Vibrational spectroscopy (Infrared and Raman) was used to probe intermolecular interactions in both polymer and liquid electrolytes, particularly those which contain lithium

  4. Solid-state sodium batteries using polymer electrolytes and sodium intercalation electrode materials

    SciTech Connect

    Ma, Y. |

    1996-08-01

    Solid-state sodium cells using polymer electrolytes (polyethylene oxide mixed with sodium trifluoromethanesulfonate: PEO{sub n}NaCF{sub 3}SO{sub 3}) and sodium cobalt oxide positive electrodes are characterized in terms of discharge and charge characteristics, rate capability, cycle life, and energy and power densities. The P2 phase Na{sub x}CoO{sub 2} can reversibly intercalate sodium in the range of x = 0.3 to 0.9, giving a theoretical specific energy of 440 Wh/kg and energy density of 1,600 Wh/l. Over one hundred cycles to 60% depth of discharge have been obtained at 0.5 mA/cm{sup 2}. Experiments show that the electrolyte/Na interface is stable and is not the limiting factor to cell cycle life. Na{sub 0.7}CoO{sub 2} composite electrodes containing various amounts of carbon black additive are investigated. The transport properties of polymer electrolytes are the critical factors for performance. These properties (the ionic conductivity, salt diffusion coefficient, and ion transference number) are measured for the PEO{sub n}NaCF{sub 3}SO{sub 3} system over a wide range of concentrations at 85 C. All the three transport properties are very salt-concentration dependent. The ionic conductivity exhibits a maximum at about n = 20. The transference number, diffusion coefficient, and thermodynamic factor all vary with salt concentration in a similar fashion, decreasing as the concentration increases, except for a local maximum. These results verify that polymer electrolytes cannot be treated as ideal solutions. The measured transport-property values are used to analyze and optimize the electrolytes by computer simulation and also cell testing. Salt precipitation is believed to be the rate limiting process for cells using highly concentrated solutions, as a result of lower values of these properties, while salt depletion is the limiting factor when a dilute solution is used.

  5. Virtual prototyping in polymer composites

    SciTech Connect

    McDowell, J.K.; Lenz, T.J.; Hawley, M.C.; Sticklen, J.; Scanlon, J.F.; Weigell, G.A.

    1995-12-31

    Efficacious design is critical to the successful application of any device. For polymer composites this design activity is abstracted into three dimensions: material design, process design and assembly design. Rarely is a composite product made entirely of composites; in most cases the product is a mixture of both composite and non-composite segments. The term composite assembly is used to emphasize this hybrid nature. Much of the assembly design activity involves determining whether a given three dimensional description with the relevant material properties will adequately support the various loadings. Rigorous detailed design typically verifies this using finite element analysis studies. The design literature clearly shows that many of the critical cost drivers are determined prior to detailed design. Providing decision support for the earlier conceptual design phase can substantially impact downstream costs of composite assemblies. This conceptual design includes determining which segments of the assembly will be composites as well as determining the overall configuration and relationship(s) between these segments. At the conceptual design phase, beneficial design criticism and advice can aid in the realization of the composite assembly. This paper focuses on the knowledge representation and inference strategies needed in an intelligent decision support system for the conceptual design of polymer composite assemblies. The specific domain application involves redesigning an existing metal assembly using polymer composite materials.

  6. Theoretical analysis of solid oxide fuel cells with two-layer, composite electrolytes - Electrolyte stability

    NASA Astrophysics Data System (ADS)

    Virkar, Anil V.

    1991-05-01

    Theoretical analysis of solid oxide fuel cells (SOFCs) using two-layer, composite electrolytes consisting of a solid electrolyte of a significantly higher conductivity compared to zirconia (such as ceria or bismuth oxide) with a thin layer of zirconia or thoria on the fuel side is presented. Electrochemical transport in the two-layer composite electrolytes is examined by taking both ionic and electronic fluxes into account. Similar to most electrochemical transport phenomena, it is assumed that local equilibrium prevails. An equivalent circuit approach is used to estimate the partial pressure of oxygen at the interface. It is shown that thermodynamic stability of the electrolyte (ceria or bismuth oxide) depends upon the transport characteristics of the composite electrolyte, in particular the electronic conductivity of the air-side part of the electrolyte. The analysis shows that it would be advantageous to use composite electrolytes instead of all-zirconia electrolytes, thus making low-temperature (about 600-800 C) SOFCs feasible. Implications of the analysis from the standpoint of the desired characteristics of SOFC components are discussed.

  7. Conductivity, Mechanical and Thermal Studies on Poly(methyl methacrylate)-Based Polymer Electrolytes Complexed with Lithium Tetraborate and Propylene Carbonate

    NASA Astrophysics Data System (ADS)

    Ramesh, S.; Bing, Khoo Ne

    2012-01-01

    A series of different composition ratio of polymer electrolytes based on poly(methyl methacrylate) (PMMA) as host polymer, lithium tetraborate (Li2B4O7) as salt, and propylene carbonate (PC) as plasticizer is produced by solution casting method. Fourier transform infrared (FTIR) spectroscopy studies are used to confirm the formation of polymer electrolyte complex. PMMA: Li2B4O7: PC (52.5:22.5:25.0 wt.%) is obtained as the highest conducting polymer electrolyte with a conductivity of 5.14 × 10-6 S/cm at room temperature (23 °C). The temperature-dependent conductivity of the polymer films shows Arrhenius-like behavior which reveals that the charge carriers move in a liquid-like environment. The addition of PC decreases the Young's modulus and stress at peak values of the complexes. Thermogravimetric analysis (TGA) is employed to study the thermal stability of the electrolytes.

  8. Cold-start characteristics of polymer electrolyte fuel cells

    SciTech Connect

    Mishler, Jeff; Mukundan, Rangachary; Wang, Yun; Mishler, Jeff; Mukherjee, Partha P

    2010-01-01

    In this paper, we investigate the electrochemical reaction kinetics, species transport, and solid water dynamics in a polymer electrolyte fuel cell (PEFC) during cold start. A simplitied analysis is developed to enable the evaluation of the impact of ice volume fraction on cell performance during coldstart. Supporting neutron imaging data are also provided to reveal the real-time water evolution. Temperature-dependent voltage changes due to the reaction kinetics and ohmic loss are also analyzed based on the ionic conductivity of the membrane at subfreezing temperature. The analysis is valuable for the fundamental study of PEFC cold-start.

  9. Carbon nanotube-polymer composite actuators

    DOEpatents

    Gennett, Thomas; Raffaelle, Ryne P.; Landi, Brian J.; Heben, Michael J.

    2008-04-22

    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  10. Robust solid polymer electrolyte for conducting IPN actuators

    NASA Astrophysics Data System (ADS)

    Festin, Nicolas; Maziz, Ali; Plesse, Cédric; Teyssié, Dominique; Chevrot, Claude; Vidal, Frédéric

    2013-10-01

    Interpenetrating polymer networks (IPNs) based on nitrile butadiene rubber (NBR) as first component and poly(ethylene oxide) (PEO) as second component were synthesized and used as a solid polymer electrolyte film in the design of a mechanically robust conducting IPN actuator. IPN mechanical properties and morphologies were mainly investigated by dynamic mechanical analysis and transmission electron microscopy. For 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)-imide (EMITFSI) swollen IPNs, conductivity values are close to 1 × 10-3 S cm-1 at 25 ° C. Conducting IPN actuators have been synthesized by chemical polymerization of 3,4-ethylenedioxythiophene (EDOT) within the PEO/NBR IPN. A pseudo-trilayer configuration has been obtained with PEO/NBR IPN sandwiched between two interpenetrated PEDOT electrodes. The robust conducting IPN actuators showed a free strain of 2.4% and a blocking force of 30 mN for a low applied potential of ±2 V.

  11. Polymer compositions based on PXE

    SciTech Connect

    Yang, Jin; Eitouni, Hany Basam; Singh, Mohit

    2015-09-15

    New polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about 210.degree. C. These materials can be made with either homopolymers or with block copolymers.

  12. Characterization of CH3SO3H-doped PMMA/PVP blend-based proton-conducting polymer electrolytes and its application in primary battery

    NASA Astrophysics Data System (ADS)

    Ambika, C.; Hirankumar, G.

    2016-02-01

    Various compositions of solid blend polymer electrolytes based on poly(methyl methacrylate) (PMMA)/poly(vinyl pyrrolidone) (PVP) complexed with methanesulfonic acid (MSA) as proton donor were prepared by solution casting technique. The complex nature of polymer blend with MSA was confirmed by Fourier transform infrared spectroscopy. Good thermal stability of PMMA/PVP blend polymer electrolyte was identified by thermogravimetric analysis. The surface morphology of the prepared electrolytes was studied through optical microscopy. Ion transport number was determined in the range of 0.93-0.97 for proton-conducting blend polymer electrolytes. The maximum conductivity value was calculated as 2.51 × 10-5 S/cm at 303 K for 14.04 mol% MSA-doped polymer electrolytes. Dielectric studies were also carried out. The electrochemical stability window of blend polymer electrolyte was found to be 1.82 V. Primary proton battery was fabricated with Zn + ZnSO4·7H2O/solid polymer electrolytes/MnO2. The discharge characteristics were studied at constant current drain of 5, 20 and 50 μA. The energy and power density were calculated as 0.27 W h kg-1 and 269.23 mW kg-1 for 20 μA of discharge, respectively.

  13. Current-Distribution Measurement in Polymer Electrolyte Water Electrolysis Equipment and Polymer Electrolyte Fuel Cell Using NMR Sensor

    NASA Astrophysics Data System (ADS)

    Yokouchi, Yasuo; Ogawa, Kuniyasu; Haishi, Tomoyuki; Ito, Kohei

    In a polymer electrolyte fuel cell (PEFC), the current density through the polymer electrolyte membrane (PEM) is distributed along the electrode on the membrane electrode assembly (MEA). To increase the electric power density of a PEFC, it is necessary to locate local decreases in current density where electric power generation decreases due to a lack of hydrogen, flooding, and so on. Therefore, achieving a higher current density in a PEFC requires monitoring the local current density. We developed a new method to estimate the spatial distribution of current flowing through the MEA in a polymer electrolyte water electrolysis equipment (PEWEE) and a PEFC using Nuclear-Magnetic-Resonance (NMR) sensors. The magnetic field strength induced by current through the MEA in a PEWEE is acquired as the frequency shift of the NMR signal which is measured by the NMR sensor. The spatial distributions of the frequency shifts occurring along the MEA in a PEWEE and a PEFC was measured. In order to verify the method, the magnetic field strength induced by the current through the gas diffusion layer (GDL) in a PEWEE was analyzed theoretically under the assumption that the current through MEA was uniform. The frequency shift was then calculated as a function of the geometry of the GDL, current, and the position of the NMR sensor. From experimental and theoretical results, the frequency shift of the NMR signal is proportional to current density and depends on the position of the sensors. Using the measurement system, we also obtained the current distribution through the GDL in a PEFC generating electric power. In these studies, the experimental and theoretical results agree.

  14. Performance of direct methanol polymer electrolyte fuel cell

    SciTech Connect

    Shin, Dong Ryul; Jung, Doo Hwan; Lee, Chang Hyeong; Chun, Young Gab

    1996-12-31

    Direct methanol fuel cells (DMFC) using polymer electrolyte membrane are promising candidate for application of portable power sources and transportation applications because they do not require any fuel processing equipment and can be operated at low temperature of 60{degrees}C - 130{degrees}C. Elimination of the fuel processor results in simpler design, higher operation reliability, lower weight volume, and lower capital and operating cost. However, methanol as a fuel is relatively electrochemical inert, so that kinetics of the methanol oxidation is too slow. Platinum and Pt-based binary alloy electrodes have been extensively studied for methanol electro-oxidation in acid electrolyte at ambient and elevated temperatures. Particularly, unsupported carbon Pt-Ru catalyst was found to be superior to the anode of DMFC using a proton exchange membrane electrolyte (Nafion). The objective of this study is to develop the high performance DNTC. This paper summarizes the results from half cell and single cell tests, which focus on the electrode manufacturing process, catalyst selection, and operating conditions of single cell such as methanol concentration, temperature and pressure.

  15. Effect of Electrolyte Composition on Characteristics of Plasma Electrolysis Nitrocarburizing

    NASA Astrophysics Data System (ADS)

    Tavakoli, H.; Mousavi Khoie, S. M.; Marashi, S. P. H.; Bolhasani, O.

    2013-08-01

    In this article, the effect of electrolyte composition on the characteristics of generated layer by plasma electrolytic nitrocarburizing process is studied. The characterization of the layer was carried out by means of SEM, x-ray diffraction, and EIS techniques. The relationship between workpiece temperature and the chemical composition of electrolyte was determined during the process. Three distinct regions in the temperature-voltage curves were observed. The effect of electrolyte's composition on the electrical parameters such as critical voltage, voltage of plasma formation, current density, and electrolyte conductivity was investigated. XRD studies showed that in addition to nitride phases, Fe3O4 phase also is generated. Moreover, EIS studies indicated that the corrosion resistance of the samples processed with higher water contents is less than the samples processed with lower water contents.

  16. Polymer composites and blends for battery separators: State of the art, challenges and future trends

    NASA Astrophysics Data System (ADS)

    Nunes-Pereira, J.; Costa, C. M.; Lanceros-Méndez, S.

    2015-05-01

    In lithium ion battery systems, the separator plays a key role with respect to device performance. Polymer composites and polymer blends have been frequently used as battery separators due to their suitable properties. This review presents the main issues, developments and characteristics of these polymer composites and blends for battery separator membrane applications. This review is divided into two sections regarding the composition of the materials: polymer composite materials, subdivided according to filler type, and polymer blend materials. For each category the electrolyte solutions, ionic conductivity and other relevant physical-chemical characteristics are described. This review shows the recent advances and opportunities in this area and identifies future trends and challenges.

  17. Ti3C2Tx Filler Effect on the Proton Conduction Property of Polymer Electrolyte Membrane.

    PubMed

    Liu, Yahua; Zhang, Jiakui; Zhang, Xiang; Li, Yifan; Wang, Jingtao

    2016-08-10

    Conductive polymer electrolyte membranes are increasingly attractive for a wide range of applications in hydrogen-relevant devices, for instance hydrogen fuel cells. In this study, two-dimensional Ti3C2Tx, a typical representative of the recently developed MXene family, is synthesized and employed as a universal filler for its features of large specific surface area, high aspect ratio, and sufficient terminated -OH groups. The Ti3C2Tx is incorporated into polymer matrix to explore its function on membrane microstructure and proton conduction property. Both phase-separated (acidic Nafion and sulfonated poly(ether ether ketone)) and non-phase-separated (basic chitosan) polymers are utilized as membrane matrixes. The microstructures, physicochemical properties, and proton conduction properties of the membranes are extensively investigated. It is demonstrated that Ti3C2Tx generates significant promotion effect on proton conduction of the composite membrane by facilitating both vehicle-type and Grotthuss-type proton transfer, yielding several times increased proton conductivity for every polymer-based composite membrane under various conditions, and the composite membrane achieves elevated hydrogen fuel cell performance. The stable Ti3C2Tx also reinforces the thermal and mechanical stabilities of these composite membranes. Since the MXene family includes more than 70 members, this exploration is expected to open up new perspectives for expanding their applications, especially as membrane modifiers and proton conductors. PMID:27430190

  18. Glass transition and relaxation processes of nanocomposite polymer electrolytes.

    PubMed

    Money, Benson K; Hariharan, K; Swenson, Jan

    2012-07-01

    This study focus on the effect of δ-Al(2)O(3) nanofillers on the dc-conductivity, glass transition, and dielectric relaxations in the polymer electrolyte (PEO)(4):LiClO(4). The results show that there are three dielectric relaxation processes, α, β, and γ, in the systems, although the structural α-relaxation is hidden in the strong conductivity contribution and could therefore not be directly observed. However, by comparing an enhanced dc-conductivity, by approximately 2 orders of magnitude with 4 wt % δ-Al(2)O(3) added, with a decrease in calorimetric glass transition temperature, we are able to conclude that the dc-conductivity is directly coupled to the hidden α-relaxation, even in the presence of nanofillers (at least in the case of δ-Al(2)O(3) nanofillers at concentrations up to 4 wt %). This filler induced speeding up of the segmental polymer dynamics, i.e., the α-relaxation, can be explained by the nonattractive nature of the polymer-filler interactions, which enhance the "free volume" and mobility of polymer segments in the vicinity of filler surfaces. PMID:22686254

  19. Tetraarylborate polymer networks as single-ion conducting solid electrolytes

    SciTech Connect

    Van Humbeck, Jeffrey F.; Aubrey, Michael L.; Alsbaiee, Alaaeddin; Ameloot, Rob; Coates, Geoffrey W.; Dichtel, William R.; Long, Jeffrey R.

    2015-06-23

    A new family of solid polymer electrolytes based upon anionic tetrakis(phenyl)borate tetrahedral nodes and linear bis-alkyne linkers is reported. Sonogashira polymerizations using tetrakis(4-iodophenyl)borate, tetrakis(4-iodo-2,3,5,6-tetrafluorophenyl)borate and tetrakis(4-bromo-2,3,5,6-tetrafluorophenyl)borate delivered highly cross-linked polymer networks with both 1,4-diethynylbeznene and a tri(ethylene glycol) substituted derivative. Promising initial conductivity metrics have been observed, including high room temperature conductivities (up to 2.7 × 10-4 S cm-1), moderate activation energies (0.25–0.28 eV), and high lithium ion transport numbers (up to tLi+ = 0.93). Initial investigations into the effects of important materials parameters such as bulk morphology, porosity, fluorination, and other chemical modification, provide starting design parameters for further development of this new class of solid electrolytes.

  20. Tetraarylborate polymer networks as single-ion conducting solid electrolytes

    DOE PAGESBeta

    Van Humbeck, Jeffrey F.; Aubrey, Michael L.; Alsbaiee, Alaaeddin; Ameloot, Rob; Coates, Geoffrey W.; Dichtel, William R.; Long, Jeffrey R.

    2015-06-23

    A new family of solid polymer electrolytes based upon anionic tetrakis(phenyl)borate tetrahedral nodes and linear bis-alkyne linkers is reported. Sonogashira polymerizations using tetrakis(4-iodophenyl)borate, tetrakis(4-iodo-2,3,5,6-tetrafluorophenyl)borate and tetrakis(4-bromo-2,3,5,6-tetrafluorophenyl)borate delivered highly cross-linked polymer networks with both 1,4-diethynylbeznene and a tri(ethylene glycol) substituted derivative. Promising initial conductivity metrics have been observed, including high room temperature conductivities (up to 2.7 × 10-4 S cm-1), moderate activation energies (0.25–0.28 eV), and high lithium ion transport numbers (up to tLi+ = 0.93). Initial investigations into the effects of important materials parameters such as bulk morphology, porosity, fluorination, and other chemical modification, provide starting design parameters for furthermore » development of this new class of solid electrolytes.« less

  1. Development of small polymer electrolyte fuel cell stacks

    SciTech Connect

    Paganin, V.A.; Ticianelli, E.A.; Gonzalez, E.R.

    1996-12-31

    The polymer electrolyte fuel cell (PEFC) has been one of the most studied fuel cell systems, because of several advantages for transportation applications. Research involve fundamental aspects related to the water transport and the fuel cell reactions, the practical aspects related to the optimization of the structure and operational conditions of gas diffusion electrodes, and technological aspects related to water management and the engineering of operational sized fuel cell modules. In many of these works it is observed that very satisfactory results regarding the performance of low catalyst loading electrodes (0.15 to 0.4 mg Pt/cm{sup 2}) have been obtained in single cells. However, the use of such electrodes is not yet being considered for building fuel cell stacks and, although not usually mentioned, fuel cell modules are assembled employing electrodes presenting catalyst loadings in the range of 2 to 4 mgPt cm{sup -2}. In this work the results on the research and development of small polymer electrolyte fuel cell stacks employing low catalyst loading electrodes are described. The systems include the assembly of single cells, 6-cell and 21-cell modules. Testing of the stacks was conducted in a specially designed test station employing non-pressurized H{sub 2}/O{sub 2} reactants and measuring the individual and the overall cell voltage versus current characteristics under several operational conditions for the system.

  2. High Temperature Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    1985-01-01

    These are the proceedings of the High Temperature Polymer Matrix Composites Conference held at the NASA Lewis Research Center on March 16 to 18, 1983. The purpose of the conference is to provide scientists and engineers working in the field of high temperature polymer matrix composites an opportunity to review, exchange, and assess the latest developments in this rapidly expanding area of materials technology. Technical papers are presented in the following areas: (1) matrix development; (2) adhesive development; (3) characterization; (4) environmental effects; and (5) applications.

  3. Polymer precursors for ceramic composites

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1986-01-01

    The fiber composite approach to reinforced ceramics provides the possibility of achieving ceramics with high fracture toughness relative to monolithics. Fabrication of ceramic composites, however, demands low processing temperatures to avoid fiber degradation. Formation of complex shapes further requires small diameter fibers as well as techniques for infiltrating the matrix between fibers. Polymers offer low temperature processability, control of rheology not available with ceramic powders, and should serve as precursors to matrix fibers. In recent years, a number of polysilanes and polysilezanes were investigated as potential presursors. A review of candidate polymers is presented, including recent studies of silsesquioxanes.

  4. Modification of chitosan membranes with nanosilica particles as polymer electrolyte membranes

    NASA Astrophysics Data System (ADS)

    Kusumastuti, Ella; Siniwi, Widasari Trisna; Mahatmanti, F. Widhi; Jumaeri, Atmaja, Lukman; Widiastuti, Nurul

    2016-04-01

    Chitosan has been widely used as polymer matrix for Polymer Electrolyte Membrane (PEM) application replacing Nafion which has shortcomings in terms of high methanol permeability that degrades the performance of fuel cells. Chitosan membranes modification is performed by adding nanosilica to prevent methanol transport through the membrane. Nanosilica is synthesized by sol-gel method and the particle diameter is obtained by analysis using Breunner Emmet Teller (BET) that is 6.59 nm. Nanosilica is mixed with chitosan solution to obtain nanosilica-chitosan as polymer electrolyte membrane. The membranes are synthesized through phase inversion method with nanosilica composition including 0; 0.5; 1; 2; 3; 5; and 10% w/w of chitosan. Characterization of the membranes indicate that the results of water swelling, proton conductivity and methanol permeability of the membrane with 3% nanosilica respectively were 49.23%, 0.231 S/cm, and 5.43 x 10-7 cm2/s. Based on the results of membrane selectivity calculation, the optimum membrane is the composition of 3% nanosilica with value 5.91 x 105 S s cm-3. The results of functional groups analysis with FTIR showed that it was only physical interaction that occurred between chitosan and nanosilica since no significant changes found in peak around the wave number 1000-1250 cm--1.

  5. Imprintable, bendable, and shape-conformable polymer electrolytes for versatile-shaped lithium-ion batteries.

    PubMed

    Kil, Eun-Hye; Choi, Keun-Ho; Ha, Hyo-Jeong; Xu, Sheng; Rogers, John A; Kim, Mi Ri; Lee, Young-Gi; Kim, Kwang Man; Cho, Kuk Young; Lee, Sang-Young

    2013-03-13

    A class of imprintable, bendable, and shape-conformable polymer electrolyte with excellent electrochemical performance in a lithium battery system is reported. The material consists of a UV-cured polymer matrix, high-boiling point liquid electrolyte, and Al2 O3 nanoparticles, formulated for use in lithium-ion batteries with 3D-structured electrodes or flexible characteristics. The unique structural design and well-tuned rheological characteristics of the UV-curable electrolyte mixture, in combination with direct UV-assisted nanoimprint lithography, allow the successful fabrication of polymer electrolytes in geometries not accessible with conventional materials. PMID:23280571

  6. New Polymer and Liquid Electrolytes for Lithium Batteries

    SciTech Connect

    McBreen, J.; Lee, H. S.; Yang, X. Q.; Sun, X.

    1999-03-29

    All non-aqueous lithium battery electrolytes are Lewis bases that interact with cations. Unlike water, they don't interact with anions. The result is a high degree of ion pairing and the formation of triplets and higher aggregates. This decreases the conductivity and the lithium ion transference and results in polarization losses in batteries. Approaches that have been used to increase ion dissociation in PEO based electrolytes are the use of salts with low lattice energy, the addition of polar plasticizers to the polymer, and the addition of cation completing agents such as crown ethers or cryptands. Complexing of the anions is a more promising approach since it should increase both ion dissociation and the lithium transference. At Brookhaven National Laboratory (BNL) we have synthesized two new families of neutral anion completing agents, each based on Lewis acid centers. One is based on electron deficient nitrogen sites on substituted aza-ethers, wherein the hydrogen on the nitrogen is replaced by electron withdrawing groups such as CF{sub 3}SO{sub 3{sup -}}. The other is based on electron deficient boron sites on borane or borate compounds with various fluorinated aryl or alkyl groups. Some of the borane based anion receptors can promote the dissolution of LiF in several solvents. Several of these compounds, when added in equivalent amounts, produce 1.2M LiF solutions in DME, an increase in volubility of LiF by six orders of magnitude. Some of these LiF electrolytes have conductivities as high as 6 x 10{sup -3} Scm{sup -1}. The LiF electrolytes with borane anion acceptors in PC:EC:DEC solvents have excellent electrochemical stability. This has been demonstrated in small Li/LiMn{sub 2}O{sub 4} cells.

  7. Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes

    SciTech Connect

    Wang, Yangyang; Fan, Fei; Agapov, Alexander L; Saito, Tomonori; Yang, Jun; Yu, Xiang; Hong, Kunlun; Mays, Jimmy; Sokolov, Alexei P

    2014-01-01

    Replacing traditional liquid electrolytes by polymers will significantly improve electrical energy storage technologies. Despite significant advantages for applications in electrochemical devices, the use of solid polymer electrolytes is strongly limited by their poor ionic conductivity. The classical theory predicts that the ionic transport is dictated by the segmental motion of the polymer matrix. As a result, the low mobility of polymer segments is often regarded as the limiting factor for development of polymers with sufficiently high ionic conductivity. Here, we show that the ionic conductivity in many polymers can be strongly decoupled from their segmental dynamics, in terms of both temperature dependence and relative transport rate. Based on this principle, we developed several polymers with superionic conductivity. The observed fast ion transport suggests a fundamental difference between the ionic transport mechanisms in polymers and small molecules and provides a new paradigm for design of highly conductive polymer electrolytes.

  8. Thin lithium cobalt dioxide rechargeable cells using polyacrylonitrile-based polymer electrolytes. Technical report

    SciTech Connect

    Slane, S.

    1994-07-01

    Rechargeable Li/LiCoO2 cells with polymer electrolytes have achieved 100 mAh/g capacity and over 75 charge/discharge cycles with an average discharge potential of 3.7 volts. Solid-state polymer lithium electrolytes based on poly(acrylonitrile) (PAN) have achieved room temperature conductivities of 0,001 siemens per cm, equal to that of some liquid organic electrolytes. Polymer films of ethylene carbonate, propylene carbonate, PAN, and lithium salts have yielded conductivities as high as 4x10-4 siemens per cm at 25 deg C. These high conductivities made the use of polymer electrolytes a viable possibility in advanced lithium batteries. Reported here are the film preparation techniques, conductivities from -70 to 70 deg C, and discharge curves of Li/LiCoO2 cells. Rechargeable battery, Lithium, Polymer electrolyte, Ionic conductivity.

  9. Nanostructure-Driven Ion Transport in PCBM-Based Polymer Electrolytes

    SciTech Connect

    Sun, Che-Nan; Zawodzinski, Thomas A; Ren, Fei; Keum, Jong Kahk; Chen, Jihua

    2014-01-01

    Nanostructure-Driven Ion Transport in PCBM-Based Polymer Electrolytes Che-Nan Sun1, Thomas A. Zawodzinski1,2, Fei Ren3, Jong Kahk Keum1 and Jihua Chen1, (1)Oak Ridge National Laboratory, (2)The University of Tennessee, (3)Temple University Polyethylene oxide or PEO is an extensively-examined candidate for solid polymer electrolyte materials of lithium ion batteries, and its composite electrolytes has promising ion conductivities.[1-3] Oxide nanoparticles with sizes of 5-10 nm are often introduced into these polymer-based composite electrolytes in order to suppress their room-temperature crystallite formation.1-9 The size, geometry and surface functionality of the added particles were known to largely affect the structure and performance of the blended electrolytes.5,10 In this study, we examined a functionalized-fullerene-based composite electrolytes, providing details in their self-assembled nanostructures, modulus, hardness, as well as temperature-dependent ion-conducting behaviors. To the best of our knowledge, no fullerene-based, lithium conducting, composite electrolyte has been reported previously. Herein we used a bench-mark fullerene derivative, phenyl-C61-butyric acid methyl ester (PCBM) as a model fullerene compound and performed impedance spectroscopy, equivalent circuit modeling, nanoscale elemental mapping (in transmission electron microscope), wide-angle X-ray diffraction, as well as nanoindentation to shed light on a 6-fold enhancement in low temperature (less than 50oC) ion conductivity of PEO - lithium bis(trifluoromethanesulfonyl) imide (LiTFSI)-PCBM electrolytes, along with the underlying changes in nanomorphology , mechanical properties, and crystal structures. Based on a previous density functional theory (DFT) calculation, 11 the interaction energies Ei among PEO polymers is estimated to be 2.58 kcal mol-1 per monomer, the Ei between PCBM and PEO is 3.50 kcal mol-1 per monomer (PCBM is taken as 1 repeat unit), and the Ei among PCBMs themselves

  10. Removal of charged micropollutants from water by ion-exchange polymers -- effects of competing electrolytes.

    PubMed

    Bäuerlein, Patrick S; Ter Laak, Thomas L; Hofman-Caris, Roberta C H M; de Voogt, Pim; Droge, Steven T J

    2012-10-15

    A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV/H(2)O(2), activated carbon (AC) or membranes). We studied the sorption affinity of some ionic organic compounds to both AC and different charged polymeric materials. Ion-exchange polymers may be effective as additional extraction phases in water treatment, because sorption of all charged compounds to oppositely charged polymers was stronger than to AC, especially for the double-charged cation metformin. Tested below 1% of the polymer ion-exchange capacity, the sorption affinity of charged micropollutants is nonlinear and depends on the composition of the aqueous medium. Whereas oppositely charged electrolytes do not impact sorption of organic ions, equally charged electrolytes do influence sorption indicating ion-exchange (IE) to be the main sorption mechanism. For the tested polymers, a tenfold increased salt concentration lowered the IE-sorption affinity by a factor two. Different electrolytes affect IE with organic ions in a similar way as inorganic ions on IE-resins, and no clear differences in this trend were observed between the sulphonated and the carboxylated cation-exchanger. Sorption of organic cations is five fold less in Ca(2+) solutions compared to similar concentrations of Na(+), while that of anionic compounds is three fold weaker in SO(4)(2-) solutions compared to equal concentrations of Cl(-). PMID:22818952