Sample records for composite single-lap joints

  1. Review on failure prediction techniques of composite single lap joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ab Ghani, A.F., E-mail: ahmadfuad@utem.edu.my; Rivai, Ahmad, E-mail: ahmadrivai@utem.edu.my

    2016-03-29

    Adhesive bonding is the most appropriate joining method in construction of composite structures. The use of reliable design and prediction technique will produce better performance of bonded joints. Several papers from recent papers and journals have been reviewed and synthesized to understand the current state of the art in this area. It is done by studying the most relevant analytical solutions for composite adherends with start of reviewing the most fundamental ones involving beam/plate theory. It is then extended to review single lap joint non linearity and failure prediction and finally on the failure prediction on composite single lap joint.more » The review also encompasses the finite element modelling part as tool to predict the elastic response of composite single lap joint and failure prediction numerically.« less

  2. Behavior of single lap composite bolted joint under traction loading: Experimental investigation

    NASA Astrophysics Data System (ADS)

    Awadhani, L. V.; Bewoor, Anand

    2018-04-01

    Composite bolted joints are preferred connection in the composite structures to facilitate the dismantling for the replacements/ maintenance work. The joint behavior under tractive forces has been studied in order to understand the safety of the structure designed. The main objective of this paper is to investigate the behavior of single-lap joints in carbon fiber reinforced epoxy composites under traction loading conditions. The experiments were designed to identify the effect of bolt diameter, stacking sequence and loading rate on the properties of the joint. The experimental results show that the parameters influence the joint performance significantly.

  3. Nonlinear Analysis of Bonded Composite Single-LAP Joints

    NASA Technical Reports Server (NTRS)

    Oterkus, E.; Barut, A.; Madenci, E.; Smeltzer, S. S.; Ambur, D. R.

    2004-01-01

    This study presents a semi-analytical solution method to analyze the geometrically nonlinear response of bonded composite single-lap joints with tapered adherend edges under uniaxial tension. The solution method provides the transverse shear and normal stresses in the adhesive and in-plane stress resultants and bending moments in the adherends. The method utilizes the principle of virtual work in conjunction with von Karman s nonlinear plate theory to model the adherends and the shear lag model to represent the kinematics of the thin adhesive layer between the adherends. Furthermore, the method accounts for the bilinear elastic material behavior of the adhesive while maintaining a linear stress-strain relationship in the adherends. In order to account for the stiffness changes due to thickness variation of the adherends along the tapered edges, their in-plane and bending stiffness matrices are varied as a function of thickness along the tapered region. The combination of these complexities results in a system of nonlinear governing equilibrium equations. This approach represents a computationally efficient alternative to finite element method. Comparisons are made with corresponding results obtained from finite-element analysis. The results confirm the validity of the solution method. The numerical results present the effects of taper angle, adherend overlap length, and the bilinear adhesive material on the stress fields in the adherends, as well as the adhesive, of a single-lap joint

  4. Nonlinear Analysis of Bonded Composite Tubular Lap Joints

    NASA Technical Reports Server (NTRS)

    Oterkus, E.; Madenci, E.; Smeltzer, S. S., III; Ambur, D. R.

    2005-01-01

    The present study describes a semi-analytical solution method for predicting the geometrically nonlinear response of a bonded composite tubular single-lap joint subjected to general loading conditions. The transverse shear and normal stresses in the adhesive as well as membrane stress resultants and bending moments in the adherends are determined using this method. The method utilizes the principle of virtual work in conjunction with nonlinear thin-shell theory to model the adherends and a cylindrical shear lag model to represent the kinematics of the thin adhesive layer between the adherends. The kinematic boundary conditions are imposed by employing the Lagrange multiplier method. In the solution procedure, the displacement components for the tubular joint are approximated in terms of non-periodic and periodic B-Spline functions in the longitudinal and circumferential directions, respectively. The approach presented herein represents a rapid-solution alternative to the finite element method. The solution method was validated by comparison against a previously considered tubular single-lap joint. The steep variation of both peeling and shearing stresses near the adhesive edges was successfully captured. The applicability of the present method was also demonstrated by considering tubular bonded lap-joints subjected to pure bending and torsion.

  5. Ultrasonic Welding of Thermoplastic Composite Coupons for Mechanical Characterization of Welded Joints through Single Lap Shear Testing.

    PubMed

    Villegas, Irene F; Palardy, Genevieve

    2016-02-11

    This paper presents a novel straightforward method for ultrasonic welding of thermoplastic-composite coupons in optimum processing conditions. The ultrasonic welding process described in this paper is based on three main pillars. Firstly, flat energy directors are used for preferential heat generation at the joining interface during the welding process. A flat energy director is a neat thermoplastic resin film that is placed between the parts to be joined prior to the welding process and heats up preferentially owing to its lower compressive stiffness relative to the composite substrates. Consequently, flat energy directors provide a simple solution that does not require molding of resin protrusions on the surfaces of the composite substrates, as opposed to ultrasonic welding of unreinforced plastics. Secondly, the process data provided by the ultrasonic welder is used to rapidly define the optimum welding parameters for any thermoplastic composite material combination. Thirdly, displacement control is used in the welding process to ensure consistent quality of the welded joints. According to this method, thermoplastic-composite flat coupons are individually welded in a single lap configuration. Mechanical testing of the welded coupons allows determining the apparent lap shear strength of the joints, which is one of the properties most commonly used to quantify the strength of thermoplastic composite welded joints.

  6. Ultrasonic Welding of Thermoplastic Composite Coupons for Mechanical Characterization of Welded Joints through Single Lap Shear Testing

    PubMed Central

    Villegas, Irene F.; Palardy, Genevieve

    2016-01-01

    This paper presents a novel straightforward method for ultrasonic welding of thermoplastic-composite coupons in optimum processing conditions. The ultrasonic welding process described in this paper is based on three main pillars. Firstly, flat energy directors are used for preferential heat generation at the joining interface during the welding process. A flat energy director is a neat thermoplastic resin film that is placed between the parts to be joined prior to the welding process and heats up preferentially owing to its lower compressive stiffness relative to the composite substrates. Consequently, flat energy directors provide a simple solution that does not require molding of resin protrusions on the surfaces of the composite substrates, as opposed to ultrasonic welding of unreinforced plastics. Secondly, the process data provided by the ultrasonic welder is used to rapidly define the optimum welding parameters for any thermoplastic composite material combination. Thirdly, displacement control is used in the welding process to ensure consistent quality of the welded joints. According to this method, thermoplastic-composite flat coupons are individually welded in a single lap configuration. Mechanical testing of the welded coupons allows determining the apparent lap shear strength of the joints, which is one of the properties most commonly used to quantify the strength of thermoplastic composite welded joints. PMID:26890931

  7. Screening Adhesively Bonded Single-Lap-Joint Testing Results Using Nonlinear Calculation Parameters

    DTIC Science & Technology

    2012-03-01

    versus displacement response for single-lap-joints bonded with damage-tolerant adhe- sives, such the polyurea adhesive plotted in Figure 2, is much...displacement response for a single-lap-joint bonded with a polyurea adhesive. Complex x-y plots are commonly fitted using the Levenberg-Marquardt...expected decrease in maximum strength for the polyurea in compar- ison to the epoxy, which could have been obtained using a traditional analysis approach

  8. Biomimetic-inspired joining of composite with metal structures: A survey of natural joints and application to single lap joints

    NASA Astrophysics Data System (ADS)

    Avgoulas, Evangelos Ioannis; Sutcliffe, Michael P. F.

    2014-03-01

    Joining composites with metal parts leads, inevitably, to high stress concentrations because of the material property mismatch. Since joining composite to metal is required in many high performance structures, there is a need to develop a new multifunctional approach to meet this challenge. This paper uses the biomimetics approach to help develop solutions to this problem. Nature has found many ingenious ways of joining dissimilar materials and making robust attachments, alleviating potential stress concentrations. A literature survey of natural joint systems has been carried out, identifying and analysing different natural joint methods from a mechanical perspective. A taxonomy table was developed based on the different methods/functions that nature successfully uses to attach dissimilar tissues (materials). This table is used to understand common themes or approaches used in nature for different joint configurations and functionalities. One of the key characteristics that nature uses to joint dissimilar materials is a transitional zone of stiffness in the insertion site. Several biomimetic-inspired metal-to-composite (steel-to-CFRP), adhesively bonded, Single Lap Joints (SLJs) were numerically investigated using a finite element analysis. The proposed solutions offer a transitional zone of stiffness of one joint part to reduce the material stiffness mismatch at the joint. An optimisation procedure was used to identify the variation in material stiffness which minimises potential failure of the joint. It was found that the proposed biomimetic SLJs reduce the asymmetry of the stress distribution along the adhesive area.

  9. Bolted Double-Lap Composite Joints Under Mechanical and Thermal Loading

    NASA Technical Reports Server (NTRS)

    Kradinov, V.; Barut, A.; Madenci, E.; Walker, Sandra P. (Technical Monitor)

    2000-01-01

    This study concerns the determination of the contact stresses and contact region around bolt holes and the bolt load distribution in single- and double-lap joints of composite laminates with arbitrarily located bolts under general mechanical loading conditions and uniform temperature change. The unknown contact stress distribution and contact region between the bolt and laminates and the interaction among the bolts require the bolt load distribution, as well as the contact stresses, to be as part of the solution. The present method is based on the complex potential theory and the variational formulation in order to account for bolt stiffness, bolt-hole clearance, and finite geometry of the composite laminates.

  10. Multivariate Analysis of High Through-Put Adhesively Bonded Single Lap Joints: Experimental and Workflow Protocols

    DTIC Science & Technology

    2016-06-01

    unlimited. v List of Tables Table 1 Single-lap-joint experimental parameters ..............................................7 Table 2 Survey ...Joints: Experimental and Workflow Protocols by Robert E Jensen, Daniel C DeSchepper, and David P Flanagan Approved for...TR-7696 ● JUNE 2016 US Army Research Laboratory Multivariate Analysis of High Through-Put Adhesively Bonded Single Lap Joints: Experimental

  11. A critical examination of stresses in an elastic single lap joint

    NASA Technical Reports Server (NTRS)

    Cooper, P. A.; Sawyer, J. W.

    1979-01-01

    The results of an approximate nonlinear finite-element analysis of a single lap joint are presented and compared with the results of a linear finite-element analysis, and the geometric nonlinear effects caused by the load-path eccentricity on the adhesive stress distributions are determined. The results from finite-element, Goland-Reissner, and photoelastic analyses show that for a single lap joint the effect of the geometric nonlinear behavior of the joint has a sizable effect on the stresses in the adhesive. The Goland-Reissner analysis is sufficiently accurate in the prediction of stresses along the midsurface of the adhesive bond to be used for qualitative evaluation of the influence of geometric or material parametric variations. Detailed stress distributions in both the adherend and adhesive obtained from the finite-element analysis are presented to provide a basis for comparison with other solution techniques.

  12. A Single-Lap Joint Adhesive Bonding Optimization Method Using Gradient and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Finckenor, Jeffrey L.

    1999-01-01

    A natural process for any engineer, scientist, educator, etc. is to seek the most efficient method for accomplishing a given task. In the case of structural design, an area that has a significant impact on the structural efficiency is joint design. Unless the structure is machined from a solid block of material, the individual components which compose the overall structure must be joined together. The method for joining a structure varies depending on the applied loads, material, assembly and disassembly requirements, service life, environment, etc. Using both metallic and fiber reinforced plastic materials limits the user to two methods or a combination of these methods for joining the components into one structure. The first is mechanical fastening and the second is adhesive bonding. Mechanical fastening is by far the most popular joining technique; however, in terms of structural efficiency, adhesive bonding provides a superior joint since the load is distributed uniformly across the joint. The purpose of this paper is to develop a method for optimizing single-lap joint adhesive bonded structures using both gradient and genetic algorithms and comparing the solution process for each method. The goal of the single-lap joint optimization is to find the most efficient structure that meets the imposed requirements while still remaining as lightweight, economical, and reliable as possible. For the single-lap joint, an optimum joint is determined by minimizing the weight of the overall joint based on constraints from adhesive strengths as well as empirically derived rules. The analytical solution of the sin-le-lap joint is determined using the classical Goland-Reissner technique for case 2 type adhesive joints. Joint weight minimization is achieved using a commercially available routine, Design Optimization Tool (DOT), for the gradient solution while an author developed method is used for the genetic algorithm solution. Results illustrate the critical design variables

  13. Fatigue Damage Monitoring of a Composite Step Lap Joint Using Distributed Optical Fibre Sensors

    PubMed Central

    Wong, Leslie; Chowdhury, Nabil; Wang, John; Chiu, Wing Kong; Kodikara, Jayantha

    2016-01-01

    Over the past few decades, there has been a considerable interest in the use of distributed optical fibre sensors (DOFS) for structural health monitoring of composite structures. In aerospace-related work, health monitoring of the adhesive joints of composites has become more significant, as they can suffer from cracking and delamination, which can have a significant impact on the integrity of the joint. In this paper, a swept-wavelength interferometry (SWI) based DOFS technique is used to monitor the fatigue in a flush step lap joint composite structure. The presented results will show the potential application of distributed optical fibre sensor for damage detection, as well as monitoring the fatigue crack growth along the bondline of a step lap joint composite structure. The results confirmed that a distributed optical fibre sensor is able to enhance the detection of localised damage in a structure. PMID:28773496

  14. Optimum design of bolted composite lap joints under mechanical and thermal loading

    NASA Astrophysics Data System (ADS)

    Kradinov, Vladimir Yurievich

    A new approach is developed for the analysis and design of mechanically fastened composite lap joints under mechanical and thermal loading. Based on the combined complex potential and variational formulation, the solution method satisfies the equilibrium equations exactly while the boundary conditions are satisfied by minimizing the total potential. This approach is capable of modeling finite laminate planform dimensions, uniform and variable laminate thickness, laminate lay-up, interaction among bolts, bolt torque, bolt flexibility, bolt size, bolt-hole clearance and interference, insert dimensions and insert material properties. Comparing to the finite element analysis, the robustness of the method does not decrease when modeling the interaction of many bolts; also, the method is more suitable for parametric study and design optimization. The Genetic Algorithm (GA), a powerful optimization technique for multiple extrema functions in multiple dimensions search spaces, is applied in conjunction with the complex potential and variational formulation to achieve optimum designs of bolted composite lap joints. The objective of the optimization is to acquire such a design that ensures the highest strength of the joint. The fitness function for the GA optimization is based on the average stress failure criterion predicting net-section, shear-out, and bearing failure modes in bolted lap joints. The criterion accounts for the stress distribution in the thickness direction at the bolt location by applying an approach utilizing a beam on an elastic foundation formulation.

  15. Global-Local Finite Element Analysis of Bonded Single-Lap Joints

    NASA Technical Reports Server (NTRS)

    Kilic, Bahattin; Madenci, Erdogan; Ambur, Damodar R.

    2004-01-01

    Adhesively bonded lap joints involve dissimilar material junctions and sharp changes in geometry, possibly leading to premature failure. Although the finite element method is well suited to model the bonded lap joints, traditional finite elements are incapable of correctly resolving the stress state at junctions of dissimilar materials because of the unbounded nature of the stresses. In order to facilitate the use of bonded lap joints in future structures, this study presents a finite element technique utilizing a global (special) element coupled with traditional elements. The global element includes the singular behavior at the junction of dissimilar materials with or without traction-free surfaces.

  16. Fatigue properties of dissimilar metal laser welded lap joints

    NASA Astrophysics Data System (ADS)

    Dinsley, Christopher Paul

    This work involves laser welding austenitic and duplex stainless steel to zinc-coated mild steel, more specifically 1.2mm V1437, which is a Volvo Truck Coiporation rephosphorised mild steel. The work investigates both tensile and lap shear properties of similar and dissimilar metal laser welded butt and lap joints, with the majority of the investigation concentrating on the fatigue properties of dissimilar metal laser welded lap joints. The problems encountered when laser welding zinc-coated steel are addressed and overcome with regard to dissimilar metal lap joints with stainless steel. The result being the production of a set of guidelines for laser welding stainless steel to zinc-coated mild steel. The stages of laser welded lap joint fatigue life are defined and the factors affecting dissimilar metal laser welded lap joint fatigue properties are analysed and determined; the findings suggesting that dissimilar metal lap joint fatigue properties are primarily controlled by the local stress at the internal lap face and the early crack growth rate of the material at the internal lap face. The lap joint rotation, in turn, is controlled by sheet thickness, weld width and interfacial gap. Laser welded lap joint fatigue properties are found to be independent of base material properties, allowing dissimilar metal lap joints to be produced without fatigue failure occurring preferentially in the weaker parent material, irrespective of large base material property differences. The effects of Marangoni flow on the compositions of the laser weld beads are experimentally characterised. The results providing definite proof of the stirring mechanism within the weld pool through the use of speeds maps for chromium and nickel. Keywords: Laser welding, dissimilar metal, Zinc-coated mild steel, Austenitic stainless steel, Duplex stainless steel, Fatigue, Lap joint rotation, Automotive.

  17. Flaw Tolerance in Lap Shear Brazed Joints. Part 1

    NASA Technical Reports Server (NTRS)

    Flom, Yury; Wang, Li-Qin

    2003-01-01

    Furnace brazing is a joining process used in the aerospace and other industries to produce strong permanent and hermetic structural joints. As in any joining process, brazed joints have various imperfections and defects. At the present time, our understanding of the influence of the internal defects on the strength of the brazed joints is not adequate. The goal of this 3-part investigation is to better understand the properties and failure mechanisms of the brazed joints containing defects. This study focuses on the behavior of the brazed lap shear joints because of their importance in manufacturing aerospace structures. In Part 1, an average shear strength capability and failure modes of the single lap joints are explored. Stainless steel specimens brazed with pure silver are tested in accordance with the AWS C3.2 standard. Comparison of the failure loads and the ultimate shear strength with the Finite Element Analysis (FEA) of the same specimens as a function of the overlap widths shows excellent correlation between the experimental and calculated values for the defect-free lap joints. A damage zone criterion is shown to work quite well in understanding the failure of the braze joints. In Part 2, the findings of the Part 1 will be verified on the larger test specimens. Also, various flaws will be introduced in the test specimens to simulate lack of braze coverage in the lap joints. Mechanical testing and FEA will be performed on these joints to verify that behavior of the flawed ductile lap joints is similar to joints with a reduced braze area. Finally, in Part 3, the results obtained in Parts 1 and 2 will be applied to the actual brazed structure to evaluate the load-carrying capability of a structural lap joint containing discontinuities. In addition, a simplified engineering procedure will be offered for the laboratory testing of the lap shear specimens.

  18. Adhesive-bonded scarf and stepped-lap joints

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1973-01-01

    Continuum mechanics solutions are derived for the static load-carrying capacity of scarf and stepped-lap adhesive-bonded joints. The analyses account for adhesive plasticity and adherend stiffness imbalance and thermal mismatch. The scarf joint solutions include a simple algebraic formula which serves as a close lower bound, within a small fraction of a per cent of the true answer for most practical geometries and materials. Digital computer programs were developed and, for the stepped-lap joints, the critical adherend and adhesive stresses are computed for each step. The scarf joint solutions exhibit grossly different behavior from that for double-lap joints for long overlaps inasmuch as that the potential bond shear strength continues to increase with indefinitely long overlaps on the scarf joints. The stepped-lap joint solutions exhibit some characteristics of both the scarf and double-lap joints. The stepped-lap computer program handles arbitrary (different) step lengths and thickness and the solutions obtained have clarified potentially weak design details and the remedies. The program has been used effectively to optimize the joint proportions.

  19. Support and Development of Workflow Protocols for High Throughput Single-Lap-Joint Testing-Experimental

    DTIC Science & Technology

    2013-04-01

    preparation, and presence of an overflow fillet for a high strength epoxy and ductile methacylate adhesive. A unique feature of this study was the...of expanding adhesive joint test configurations as part of the GEMS program. 15. SUBJECT TERMS single lap joint, adhesion, aluminum, epoxy ... epoxy and ductile methacylate adhesive. A unique feature of this study was the use of untrained GEMS (Gains in the Education of Mathematics and Sci

  20. Modeling the Influence of Stitching on Delamination Growth in Stitched Warp-Knit Composite Lap Joints

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Raju, I. S.; Poe, C. C., Jr.

    1999-01-01

    The effect of stitches on the failure of a single lap joint configuration was determined in a combined experimental and analytical study. The experimental study was conducted to determine debond growth under static monotonic loading. The stitches were shown to delay the initiation of the debond and provide load transfer beyond the load necessary to completely debond the stitched lap joint. The strain energy release rates at the debond front were calculated using a finite element-based technique. Models of the unstitched configuration showed significant values of modes I and II across the width of the joint and showed that mode III is zero at the centerline but increases near the free edge. Models of the stitched configuration showed that the stitches effectively reduced mode I to zero, but had less of an effect on modes II and III.

  1. 49 CFR 230.30 - Lap-joint seam boilers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Lap-joint seam boilers. 230.30 Section 230.30..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal seams...

  2. Monitoring of fatigue damage in composite lap-joints using guided waves and FBG sensors

    NASA Astrophysics Data System (ADS)

    Karpenko, Oleksii; Khomenko, Anton; Koricho, Ermias; Haq, Mahmoodul; Udpa, Lalita

    2016-02-01

    Adhesive bonding is being increasingly employed in many applications as it offers possibility of light-weighting and efficient multi-material joining along with reduction in time and cost of manufacturing. However, failure initiation and progression in critical components like joints, specifically in fatigue loading is not well understood, which necessitates reliable NDE and SHM techniques to ensure structural integrity. In this work, concurrent guided wave (GW) and fiber Bragg grating (FBG) sensor measurements were used to monitor fatigue damage in adhesively bonded composite lap-joints. In the present set-up, one FBG sensor was strategically embedded in the adhesive bond-line of a lap-joint, while two other FBGs were bonded on the surface of the adherends. Full spectral responses of FBG sensors were collected and compared at specific intervals of fatigue loading. In parallel, guided waves were actuated and sensed using PZT wafers mounted on the composite adherends. Experimental results demonstrated that time-of-flight (ToF) of the fundamental modes transmitted through the bond-line and spectral response of FBG sensors were sensitive to fatigue loading and damage. Combination of guided wave and FBG measurements provided the desired redundancy and synergy in the data to evaluate the degradation in bond-line properties. Measurements taken in the presence of continuously applied load replicated the in-situ/service conditions. The approach shows promise in understanding the behavior of bonded joints subjected to complex loading.

  3. Test and analysis of Celion 3000/PMR-15, graphite/polyimide bonded composite joints: Data report

    NASA Technical Reports Server (NTRS)

    Cushman, J. B.; Mccleskey, S. F.; Ward, S. H.

    1982-01-01

    Standard single lap, double lap and symmetric step lap bonded joints of Celion 3000/PMR-15 graphite/polyimide composite were evaluated. Composite to composite and composite to titanium joints were tested at 116 K (-250 F), 294 K (70 F) and 561 K (550 F). Joint parameters evaluated are lap length, adherend thickness, adherend axial stiffness, lamina stacking sequence and adherend tapering. Advanced joint concepts were examined to establish the change in performance of preformed adherends, scalloped adherends and hybrid systems. The material properties of the high temperature adhesive, designated A7F, used for bonding were established. The bonded joint tests resulted in interlaminar shear or peel failures of the composite and there were very few adhesive failures. Average test results agree with expected performance trends for the various test parameters. Results of finite element analyses and of test/analysis correlations are also presented.

  4. Flaw Tolerance In Lap Shear Brazed Joints. Part 2

    NASA Technical Reports Server (NTRS)

    Wang, Len; Flom, Yury

    2003-01-01

    This paper presents results of the second part of an on-going effort to gain better understanding of defect tolerance in braze joints. In the first part of this three-part series, we mechanically tested and modeled the strength of the lap joints as a function of the overlap distance. A failure criterion was established based on the zone damage theory, which predicts the dependence of the lap joint shear strength on the overlap distance, based on the critical size of a finite damage zone or an overloaded region in the joint. In this second part of the study, we experimentally verified the applicability of the damage zone criterion on prediction of the shear strength of the lap joint and introduced controlled flaws into the lap joints. The purpose of the study was to evaluate the lap joint strength as a function of flaw size and its location through mechanical testing and nonlinear finite element analysis (FEA) employing damage zone criterion for definition of failure. The results obtained from the second part of the investigation confirmed that the failure of the ductile lap shear brazed joints occurs when the damage zone reaches approximately 10% of the overlap width. The same failure criterion was applicable to the lap joints containing flaws.

  5. Adhesives: Test Method, Group Assignment, and Categorization Guide for High-Loading-Rate Applications Preparation and Testing of Single Lap Joints (Ver. 2.2, Unlimited)

    DTIC Science & Technology

    2016-04-01

    Gerard Chaney, and Charles Pergantis Weapons and Materials Research Directorate, ARL Coatings, Corrosion, and Engineered Polymers Branch (CCEPB...SUBJECT TERMS single lap joint, adhesive, sample preparation, testing, database, metadata, material pedigree, ISO 16. SECURITY CLASSIFICATION OF: 17...temperature/water immersion conditioning test for lap-joint test specimens using the test tubes and convection oven method

  6. The Effect of Surface Irregularities on Wing Drag. II - Lap Joints. 2; Lap Joints

    NASA Technical Reports Server (NTRS)

    Hood, Manley J.

    1938-01-01

    Tests have been made in the NACA 8-foot high-speed wind tunnel of the drag caused by four types of lap joint. The tests were made on an airfoil of NACA 23012 section and 5-foot chord and covered in a range of speeds from 80 to 500 miles per hour and lift coefficients from 0 to 0.30. The increases in profile drag caused by representative arrangements of laps varied from 4 to 9%. When there were protruding rivet heads on the surface, the addition of laps increased the drag only slightly. Laps on the forward part of a wing increased the drag considerably more than those farther back.

  7. A Semi-Analytical Method for Determining the Energy Release Rate of Cracks in Adhesively-Bonded Single-Lap Composite Joints

    NASA Technical Reports Server (NTRS)

    Yang, Charles; Sun, Wenjun; Tomblin, John S.; Smeltzer, Stanley S., III

    2007-01-01

    A semi-analytical method for determining the strain energy release rate due to a prescribed interface crack in an adhesively-bonded, single-lap composite joint subjected to axial tension is presented. The field equations in terms of displacements within the joint are formulated by using first-order shear deformable, laminated plate theory together with kinematic relations and force equilibrium conditions. The stress distributions for the adherends and adhesive are determined after the appropriate boundary and loading conditions are applied and the equations for the field displacements are solved. Based on the adhesive stress distributions, the forces at the crack tip are obtained and the strain energy release rate of the crack is determined by using the virtual crack closure technique (VCCT). Additionally, the test specimen geometry from both the ASTM D3165 and D1002 test standards are utilized during the derivation of the field equations in order to correlate analytical models with future test results. The system of second-order differential field equations is solved to provide the adherend and adhesive stress response using the symbolic computation tool, Maple 9. Finite element analyses using J-integral as well as VCCT were performed to verify the developed analytical model. The finite element analyses were conducted using the commercial finite element analysis software ABAQUS. The results determined using the analytical method correlated well with the results from the finite element analyses.

  8. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Barclay, D. L.

    1980-01-01

    Results of an experimental program to develop several types of graphite/polyimide (GR/PI) bonded and bolted joints for lightly loaded flight components for advanced space transportation systems and high speed aircraft are presented. Tasks accomplished include: a literature survey; design of static discriminator specimens; design allowables testing; fabrication of test panels and specimens; small specimen testing; and standard joint testing. Detail designs of static discriminator specimens for each of the four major attachment types are presented. Test results are given for the following: (1) transverse tension of Celion 3000/PMR-15 laminate; (2) net tension of a laminate for both a loaded and unloaded bolt hole; (3) comparative testing of bonded and co-cured doublers along with pull-off tests of single and double bonded angles; (4) single lap shear tests, transverse tension and coefficient of thermal expansion tests of A7F (LARC-13 amide-imide modified) adhesive; and (5) tension tests of standard single lap, double lap, and symmetric step lap bonded joints. Also, included are results of a finite element analysis of a single lap bonded composite joint.

  9. The effect of viscoelasticity on the stress distribution of adhesively single-lap joint with an internal break in the composite adherends

    NASA Astrophysics Data System (ADS)

    Reza, Arash; Shishesaz, Mohammad

    2017-09-01

    The aim of this research is to study the effect of a break in the laminated composite adherends on stress distribution in the adhesively single-lap joint with viscoelastic adhesive and matrix. The proposed model involves two adherends with E-glass fibers and poly-methyl-methacrylate matrix that have been adhered to each other by phenolic-epoxy resin. The equilibrium equations that are based on shear-lag theory have been derived in the Laplace domain, and the governing differential equations of the model have been derived analytically in the Laplace domain. A numerical inverse Laplace transform, which is called Gaver-Stehfest method, has been used to extract desired results in the time domain. The results obtained at the initial time completely matched with the results of elastic solution. Also, a comparison between results obtained from the analytical and finite element models show a relatively good match. The results show that viscoelastic behavior decreases the peak of stress near the break. Finally, the effect of size and location of the break, as well as volume fraction of fibers, on the stress distribution in the adhesive layer is fully investigated.

  10. Effects of simulated lightning on composite and metallic joints

    NASA Technical Reports Server (NTRS)

    Howell, W. E.; Plumer, J. A.

    1982-01-01

    The effects of simulated lightning strikes and currents on aircraft bonded joints and access/inspection panels were investigated. Both metallic and composite specimens were tested. Tests on metal fuel feed through elbows in graphite/epoxy structures were evaluated. Sparking threshold and residual strength of single lap bonded joints and sparking threshold of access/inspection panels and metal fuel feed through elbows are reported.

  11. Bolted joints in graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1976-01-01

    All-graphite/epoxy laminates and hybrid graphite-glass/epoxy laminates were tested. The tests encompassed a range of geometries for each laminate pattern to cover the three basic failure modes - net section tension failure through the bolt hole, bearing and shearout. Static tensile and compressive loads were applied. A constant bolt diameter of 6.35 mm (0.25 in.) was used in the tests. The interaction of stress concentrations associated with multi-row bolted joints was investigated by testing single- and double-row bolted joints and open-hole specimens in tension. For tension loading, linear interaction was found to exist between the bearing stress reacted at a given bolt hole and the remaining tension stress running by that hole to be reacted elsewhere. The interaction under compressive loading was found to be non-linear. Comparative tests were run using single-lap bolted joints and double-lap joints with pin connection. Both of these joint types exhibited lower strengths than were demonstrated by the corresponding double-lap joints. The analysis methods developed here for single bolt joints are shown to be capable of predicting the behavior of multi-row joints.

  12. Dual resin bonded joints in polyetheretherketone (PEEK) matrix composites

    NASA Astrophysics Data System (ADS)

    Zelenak, Steve; Radford, Donald W.; Dean, Michael W.

    1993-04-01

    The paper describes applications of the dual resin (miscible polymer) bonding technique (Smiley, 1989) developed as an alternative to traditional bonding approaches to joining thermoplastic matrix composite subassemblies into structures. In the experiments, the performance of joint geometries, such as those that could be used to assemble large truss structures in space, are investigated using truss joint models consisting of woven carbon fiber/PEEK tubes of about 1 mm wall thickness. Specific process conditions and hand-held hardware used to apply heat and pressure were chosen to simulate a field asembly technique. Results are presented on tube/cruciform double lap shear tests, pinned-pinned tube compression tests, and single lap shear bond tests of joints obtained using the dual resin bonding technique.

  13. Experimental Investigation and Finite Element Analysis on Fatigue Behavior of Aluminum Alloy 7050 Single-Lap Joints

    NASA Astrophysics Data System (ADS)

    Zhou, Bing; Cui, Hao; Liu, Haibo; Li, Yang; Liu, Gaofeng; Li, Shujun; Zhang, Shangzhou

    2018-03-01

    The fatigue behavior of single-lap four-riveted aluminum alloy 7050 joints was investigated by using high-frequency fatigue test and scanning electron microscope (SEM). Stress distributions obtained by finite element (FE) analysis help explain the fatigue performance. The fatigue test results showed that the fatigue lives of the joints depend on cold expansion and applied cyclic loads. FE analysis and fractography indicated that the improved fatigue lives can be attributed to the reduction in maximum stress and evolution of fatigue damage at the critical location. The beneficial effects of strengthening techniques result in tearing ridges or lamellar structure on fracture surface, decrease in fatigue striations spacing, delay of fatigue crack initiation, crack deflection in fatigue crack propagation and plasticity-induced crack closure.

  14. Use of two-dimensional transmission photoelastic models to study stresses in double-lap bolted joints: Load transfer and stresses in the inner lap

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.

    1980-01-01

    The determination of the stress distribution in the inner lap of double-lap, double-bolt joints using photoelastic models of the joint is discussed. The principal idea is to fabricate the inner lap of a photoelastic material and to use a photoelastically sensitive material for the two outer laps. With this setup, polarized light transmitted through the stressed model responds principally to the stressed inner lap. The model geometry, the procedures for making and testing the model, and test results are described.

  15. Tensile Shear Properties of the Friction Stir Lap Welded Joints and Material Flow Mechanism Under Pulsatile Revolutions

    NASA Astrophysics Data System (ADS)

    Hu, Yanying; Liu, Huijie; Du, Shuaishuai

    2018-06-01

    The aim of the present article is to offer insight into the effects of pin profiles on interface defects, tensile shear properties, microstructures, and the material flow of friction stir lap welded joints. The results indicate that, compared to the lap joints welded by the single threaded plane pin, the three-plane threaded pin, and the triangle threaded pin, the lap joint obtained by the conventional conical threaded pin is characterized by the minimum interface defect. The alternate threads and planes on the pin provide periodical stress, leading to pulsatile material flow patterns. Under the effect of pulsatile revolutions, an asymmetrical flow field is formed around the tool. The threads on the pin force the surrounding material to flow downward. The planes cannot only promote the horizontal flow of the material by scraping, but also provide extra space for the material vertical flow. A heuristic model is established to describe the material flow mechanism during friction stir lap welding under the effect of pulsatile revolutions.

  16. Use of two-dimensional transmission photoelastic models to study stresses in double-lap bolted joints

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Liu, D. H.

    1981-01-01

    The stress distribution in two hole connectors in a double lap joint configuration was studied. The following steps are described: (1) fabrication of photoelastic models of double lap double hole joints designed to determine the stresses in the inner lap; (2) assessment of the effects of joint geometry on the stresses in the inner lap; and (3) quantification of differences in the stresses near the two holes. The two holes were on the centerline of the joint and the joints were loaded in tension, parallel to the centerline. Acrylic slip fit pins through the holes served as fasteners. Two dimensional transmission photoelastic models were fabricated by using transparent acrylic outer laps and a photoelastic model material for the inner laps. It is concluded that the photoelastic fringe patterns which are visible when the models are loaded are due almost entirely to stresses in the inner lap.

  17. Residual Strength Analyses of Riveted Lap-Splice Joints

    NASA Technical Reports Server (NTRS)

    Seshadri, B. R.; Newman, J. C., Jr.

    2000-01-01

    The objective of this paper was to analyze the crack-linkup behavior in riveted-stiffened lap-splice joint panels with small multiple-site damage (MSD) cracks at several adjacent rivet holes. Analyses are based on the STAGS (STructural Analysis of General Shells) code with the critical crack-tip-opening angle (CTOA) fracture criterion. To account for high constraint around a crack front, the "plane strain core" option in STAGS was used. The importance of modeling rivet flexibility with fastener elements that accurately model load transfer across the joint is discussed. Fastener holes are not modeled but rivet connectivity is accounted for by attaching rivets to the sheet on one side of the cracks that simulated both the rivet diameter and MSD cracks. Residual strength analyses made on 2024-T3 alloy (1.6-mm thick) riveted-lap-splice joints with a lead crack and various size MSD cracks were compared with test data from Boeing Airplane Company. Analyses were conducted for both restrained and unrestrained buckling conditions. Comparison of results from these analyses and results from lap-splice-joint test panels, which were partially restrained against buckling indicate that the test results were bounded by the failure loads predicted by the analyses with restrained and unrestrained conditions.

  18. Shading aboveground L-joint and lap-joint tests : comparison of white pine and sugar maple test assemblies

    Treesearch

    Carol A. Clausen; Daniel L. Lindner

    2011-01-01

    Five-year performance ratings are presented for two types of untreated, uncoated wood joints (L and lap) in aboveground tests under shaded conditions. The effect of shading on moisture entrapment in pine and maple L and lap joints was evaluated in a moderate decay zone (Madison, Wisconsin). Variations were observed between wood species, visual ratings, joint type,...

  19. Strain measurements in composite bolted-joint specimens

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Lightfoot, M. C.; Perry, J. C.

    1979-01-01

    Strain data from a series of bolted joint tests is presented. Double lap, double hole, double lap, single hole, and open hole tensile specimens were tested and the strain gage locations, load strain responses, and load axial displacement responses are presented. The open hole specimens were gaged to determine strain concentration factors. The double lap, double hole specimens were gaged to determine the uniformity of the strain in the joint and the amount of load transferred past the first bolt. The measurements indicated roughly half the load passed the first bolt to be reacted by the second bolt.

  20. Determination of the Corrosive Conditions Present within Aircraft Lap-Splice Joints

    NASA Technical Reports Server (NTRS)

    Lewis, Karen S.; Kelly, Robert G.; Piascik, Robert S.

    1999-01-01

    The complexity of airframe structure lends itself to damage resulting from crevice corrosion. Fuselage lap-splice joints are a particularly important structural detail in this regard because of the difficulty associated with detection and measurement of corrosion in these occluded regions. The objective of this work is to develop a laboratory corrosion test protocol to identify the chemistry to which lap joints are exposed and to develop a model of the corrosion within the joints. A protocol for collecting and identifying the chemistry of airframe crevice corrosion has been developed. Capillary electrophoresis (CE) is used to identify the ionic species contained in corrosion product samples removed from fuselage lap splice joints. CE analysis has been performed on over sixty corrosion product samples removed from both civilian and military aircraft. Over twenty different ions have been detected. Measurements of pH of wetted corroded surfaces indicated an alkaline occluded solution. After determining the species present and their relative concentrations, the resultant solution was reproduced in bulk and electrochemical tests were performed to determine the corrosion rate. Electrochemical analyses of the behavior of AA2024-T3 in these solutions gave corrosion rates of up to 250 microns per year (10 mpy). Additional tests have determined the relative importance of each of the detected ions in model solutions used for future predictive tests. The statistically significant ions have been used to create a second generation solution. Laboratory studies have also included exposure tests involving artificial lap joints exposed to various simulated bulk and crevice environments. The extent and morphology of the attack in artificial lap joints has been compared to studies of corroded samples from actual aircraft. Other effects, such as temperature and potential, as well as the impact of the environment on fatigue crack growth have also been studied.

  1. Microstructure and Mechanical Properties of Friction Stir Welded Aluminum Alloy/Stainless Steel Lap Joints

    NASA Astrophysics Data System (ADS)

    Ogura, Tomo; Nishida, Taichi; Nishida, Hidehito; Yoshikawa, Syuhei; Yoshida, Takumi; Omichi, Noriko; Fujimoto, Mitsuo; Hirose, Akio

    The mechanical properties and interfacial microstructure of an aluminum alloy/stainless steel dissimilar lap joint using friction stir welding (FSW) were characterized. In an FSWed A3003 aluminum alloy-SUS304 steel lap joint, the strength on the advancing side was larger than that at the retreating side. TEM observation indicated that a sound joint can be obtained from the stage of the formation of the amorphous layer owing to the mechanical alloying effects before the formation of intermetallic compounds. This lap joining technique was also successfully applied to A6061-T6 aluminum alloy-grooved SUS304 plates. The maximum tensile strength of the lap joint was approximately the same as that of the base alloy, however, the proof stress of the joint decreased with the dissolution of the β″ phase in the A6061 aluminium alloy, which is caused by the generation of heat during friction stir welding.

  2. Single crystal diamond lapping procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grayson, R.A.

    A facility capable of resharpening quality cutting edges on single crystal diamond cutting tools was needed as the demand in precision machining of special optical surfaces became a common occurrence here at Lawrence Livermore National Laboratory. A specially constructed lapping machine using an air bearing spindle was built to achieve the required edge quality. The basic design for this lap was taken out of a technical report by W.L. Duke and R.T. Lovell of Oak Ridge Y-12 Plant Union Carbide Corp. We have also purchased two commercially built lapping machines recommended to us by Mr. Cory A. Knottenbelt, formerly ofmore » R.C.A. Diamond Lapping Facility, in Indianapolis, Indiana, now doing state-of-the-art polishing and relapping at LLNL facilities.« less

  3. Measurement of longitudinal strain and estimation of peel stress in adhesive-bonded single-lap joint of CFRP adherend using embedded FBG sensor

    NASA Astrophysics Data System (ADS)

    Ning, X.; Murayama, H.; Kageyama, K.; Uzawa, K.; Wada, D.

    2012-04-01

    In this research, longitudinal strain and peel stress in adhesive-bonded single-lap joint of carbon fiber reinforced plastics (CFRP) were measured and estimated by embedded fiber Bragg grating (FBG) sensor. Two unidirectional CFRP substrates were bonded by epoxy to form a single-lap configuration. The distributed strain measurement system is used. It is based on optical frequency domain reflectometry (OFDR), which can provide measurement at an arbitrary position along FBG sensors with the high spatial resolution. The longitudinal strain was measured based on Bragg grating effect and the peel stress was estimated based on birefringence effect. Special manufacturing procedure was developed to ensure the embedded location of FBG sensor. A portion of the FBG sensor was embedded into one of CFRP adherends along fiber direction and another portion was kept free for temperature compensation. Photomicrograph of cross-section of specimen was taken to verify the sensor was embedded into proper location after adherend curing. The residual strain was monitored during specimen curing and adhesive joint bonding process. Tensile tests were carried out and longitudinal strain and peel stress of the bondline are measured and estimated by the embedded FBG sensor. A two-dimensional geometrically nonlinear finite element analysis was performed by ANSYS to evaluate the measurement precision.

  4. Ultrasonic guided wave inspection of Inconel 625 brazed lap joints

    NASA Astrophysics Data System (ADS)

    Comot, Pierre; Bocher, Philippe; Belanger, Pierre

    2016-04-01

    The aerospace industry has been investigating the use of brazing for structural joints, as a mean of reducing cost and weight. There therefore is a need for a rapid, robust, and cost-effective non-destructive testing method for evaluating the structural integrity of the joints. The mechanical strength of brazed joints depends mainly on the amount of brittle phases in their microstructure. Ultrasonic guided waves offer the possibility of detecting brittle phases in joints using spatio-temporal measurements. Moreover, they offer the opportunity to inspect complex shape joints. This study focused on the development of a technique based on ultrasonic guided waves for the inspection of Inconel 625 lap joints brazed with BNi-2 filler metal. A finite element model of a lap joint was used to optimize the inspection parameters and assess the feasibility of detecting the amount of brittle phases in the joint. A finite element parametric study simulating the input signal shape, the center frequency, and the excitation direction was performed. The simulations showed that the ultrasonic guided wave energy transmitted through, and reflected from, the joints was proportional to the amount of brittle phases in the joint.

  5. Adhesive-bonded double-lap joints. [analytical solutions for static load carrying capacity

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1973-01-01

    Explicit analytical solutions are derived for the static load carrying capacity of double-lap adhesive-bonded joints. The analyses extend the elastic solution Volkersen and cover adhesive plasticity, adherend stiffness imbalance and thermal mismatch between the adherends. Both elastic-plastic and bi-elastic adhesive representations lead to the explicit result that the influence of the adhesive on the maximum potential bond strength is defined uniquely by the strain energy in shear per unit area of bond. Failures induced by peel stresses at the ends of the joint are examined. This failure mode is particularly important for composite adherends. The explicit solutions are sufficiently simple to be used for design purposes

  6. Non-destructive testing techniques based on nonlinear methods for assessment of debonding in single lap joints

    NASA Astrophysics Data System (ADS)

    Scarselli, G.; Ciampa, F.; Ginzburg, D.; Meo, M.

    2015-04-01

    Nonlinear ultrasonic non-destructive evaluation (NDE) methods can be used for the identification of defects within adhesive bonds as they rely on the detection of nonlinear elastic features for the evaluation of the bond strength. In this paper the nonlinear content of the structural response of a single lap joint subjected to ultrasonic harmonic excitation is both numerically and experimentally evaluated to identify and characterize the defects within the bonded region. Different metallic samples with the same geometry were experimentally tested in order to characterize the debonding between two plates by using two surface bonded piezoelectric transducers in pitch-catch mode. The dynamic response of the damaged samples acquired by the single receiver sensor showed the presence of higher harmonics (2nd and 3rd) and subharmonics of the fundamental frequencies. These nonlinear elastic phenomena are clearly due to nonlinear effects induced by the poor adhesion between the two plates. A new constitutive model aimed at representing the nonlinear material response generated by the interaction of the ultrasonic waves with the adhesive joint is also presented. Such a model is implemented in an explicit FE software and uses a nonlinear user defined traction-displacement relationship implemented by means of a cohesive material user model interface. The developed model is verified for the different geometrical and material configurations. Good agreement between the experimental and numerical nonlinear response showed that this model can be used as a simple and useful tool for understanding the quality of the adhesive joint.

  7. The Characteristics of Fatigue Damage in the Fuselage Riveted Lap Splice Joint

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Willard, Scott A.

    1997-01-01

    An extensive data base has been developed to form the physical basis for new analytical methodology to predict the onset of widespread fatigue damage in the fuselage lap splice joint. The results of detailed destructive examinations have been cataloged to describe the physical nature of MSD in the lap splice joint. ne catalog includes a detailed description, e.g., crack initiation, growth rates, size, location, and fracture morphology, of fatigue damage in the fuselage lap splice joint structure. Detailed examinations were conducted on a lap splice joint panel removed from a full scale fuselage test article after completing a 60,000 cycle pressure test. The panel contained a four bay region that exhibited visible outer skin cracks and regions of crack link-up along the upper rivet row. Destructive examinations revealed undetected fatigue damage in the outer skin, inner skin, and tear strap regions. Outer skin fatigue cracks were found to initiate by fretting damage along the faying surface. The cracks grew along the faying surface to a length equivalent to two to three skin thicknesses before penetrating the outboard surface of the outer skin. Analysis of fracture surface marker bands produced during full scale testing revealed that all upper rivet row fatigue cracks contained in a dim bay region grow at similar rates; this important result suggests that fracture mechanics based methods can be used to predict the growth of outer skin fatigue cracks in lap splice structure. Results are presented showing the affects of MSD and out-of-plane pressure loads on outer skin crack link-up.

  8. Failure modes of single and multi-bolted joint in the pultruded fiber reinforced polymer composite members

    NASA Astrophysics Data System (ADS)

    Kim, S. Y.; Yoo, J. H.; Kim, H. K.; Shin, K. Y.; Yoon, S. J.

    2018-06-01

    In this paper, we discussed the structural behavior of bolted lap-joint connections in pultruded FRP structural members. Especially, bolted connections in pultruded FRP members are investigated for their failure modes and strength. Specimens with single and multiple bolt-holes are tested in tension under bolt-loading conditions. All of the specimens are instrumented with strain gages and the load-strain responses are monitored. The failed specimens are examined for the cracks and failure patterns. The purpose of this paper is to predict the failure strength by using the ratio of the results obtained by the experiment and the finite element analysis. In the study, several tests are conducted to determine the mechanical properties of pultruded FRP materials before the main experiment. The results are used in the finite element analysis for single and multiple bolted lap-joint specimens. The results obtained by the experiment are compared with the results obtained by the finite element analysis.

  9. Study on Fatigue Performance of Composite Bolted Joints with Bolt-Hole Delamination

    NASA Astrophysics Data System (ADS)

    Liu, M. J.; Yu, S.; Zhao, Q. Y.

    2018-03-01

    Fatigue performance of composite structure with imperfections is a challenging subject at present. Based on cohesive zone method and multi-continuum theory, delamination evolution response and fatigue life prediction of a 3D composite single-lap joint with a bolt-hole have been investigated through computer codes Abaqus and Fe-safe. Results from the comparison of a perfect composite bolted joint with another defect one indicates that a relatively small delamination damage around the bolt hole brings about significant degradation of local material performance. More notably, fatigue life of stress concentration region of composite bolted joints is highly sensitive to external loads, as an increase of 67% cyclic load amplitude leads to an decrease of 99.5% local fatigue life in this study. However, the numerical strategy for solving composite fatigue problems is meaningful to engineering works.

  10. Preload Monitoring of Bolted L-Shaped Lap Joints Using Virtual Time Reversal Method.

    PubMed

    Du, Fei; Xu, Chao; Wu, Guannan; Zhang, Jie

    2018-06-13

    L-shaped bolt lap joints are commonly used in aerospace and civil structures. However, bolt joints are frequently subjected to loosening, and this has a significant effect on the safety and reliability of these structures. Therefore, bolt preload monitoring is very important, especially at the early stage of loosening. In this paper, a virtual time reversal guided wave method is presented to monitor preload of bolted L-shaped lap joints accurately and simply. In this method, a referenced reemitting signal (RRS) is extracted from the bolted structure in fully tightened condition. Then the RRS is utilized as the excitation signal for the bolted structure in loosening states, and the normalized peak amplitude of refocused wave packet is used as the tightness index (TI A ). The proposed method is experimentally validated by L-shaped bolt joints with single and multiple bolts. Moreover, the selections of guided wave frequency and tightness index are also discussed. The results demonstrate that the relationship between TI A and bolt preload is linear. The detection sensitivity is improved significantly compared with time reversal (TR) method, particularly when bolt loosening is at its embryo stage. The results also show that TR method is an effective method for detection of the number of loosening bolts.

  11. The Growth of Multi-Site Fatigue Damage in Fuselage Lap Joints

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Willard, Scott A.

    1999-01-01

    Destructive examinations were performed to document the progression of multi-site damage (MSD) in three lap joint panels that were removed from a full scale fuselage test article that was tested to 60,000 full pressurization cycles. Similar fatigue crack growth characteristics were observed for small cracks (50 microns to 10 mm) emanating from counter bore rivets, straight shank rivets, and 100 deg counter sink rivets. Good correlation of the fatigue crack growth data base obtained in this study and FASTRAN Code predictions show that the growth of MSD in the fuselage lap joint structure can be predicted by fracture mechanics based methods.

  12. Effect of Thread and Rotating Speed on Material Flow Behavior and Mechanical Properties of Friction Stir Lap Welding Joints

    NASA Astrophysics Data System (ADS)

    Ji, Shude; Li, Zhengwei; Zhou, Zhenlu; Wu, Baosheng

    2017-10-01

    This study focused on the effects of thread on hook and cold lap formation, lap shear property and impact toughness of alclad 2024-T4 friction stir lap welding (FSLW) joints. Except the traditional threaded pin tool (TR-tool), three new tools with different thread locations and orientations were designed. Results showed that thread significantly affected hook, cold lap morphologies and lap shear properties. The tool with tip-threaded pin (T-tool) fabricated joint with flat hook and cold lap, which resulted in shear fracture mode. The tools with bottom-threaded pin (B-tool) eliminated the hook. The tool with reverse-threaded pin (R-tool) widened the stir zone width. When using configuration A, the joints fabricated by the three new tools showed higher failure loads than the joint fabricated by the TR-tool. The joint using the T-tool owned the optimum impact toughness. This study demonstrated the significance of thread during FSLW and provided a reference to optimize tool geometry.

  13. Analytical and experimental investigation of fatigue in lap joints

    NASA Astrophysics Data System (ADS)

    Swenson, Daniel V.; Chih-Chien, Chia; Derber, Thomas G.

    A finite element model is presented that can simulate crack growth in layered structures such as lap joints. The layers can be joined either by rivets or adhesives. The crack is represented discretely in the mesh, and automatic remeshing is performed as the crack grows. Because of the connections between the layers, load is transferred to the uncracked layer as the crack grows. This reduces the stress intensity and slows the crack growth rate. The model is used to analyze tests performed on a section of a wing spanwise lap joint. The crack was initiated at a rivet and grown under constant amplitude cyclic loads. Both experimentally observed crack growth rates and the analysis show the retardation that occurs as a result of load transfer between layers. A good correlation is obtained between predicted and observed crack growth rates for the fullly developed through-thickness crack.

  14. Adhesive properties and adhesive joints strength of graphite/epoxy composites

    NASA Astrophysics Data System (ADS)

    Rudawska, Anna; Stančeková, Dana; Cubonova, Nadezda; Vitenko, Tetiana; Müller, Miroslav; Valášek, Petr

    2017-05-01

    The article presents the results of experimental research of the adhesive joints strength of graphite/epoxy composites and the results of the surface free energy of the composite surfaces. Two types of graphite/epoxy composites with different thickness were tested which are used to aircraft structure. The single-lap adhesive joints of epoxy composites were considered. Adhesive properties were described by surface free energy. Owens-Wendt method was used to determine surface free energy. The epoxy two-component adhesive was used to preparing the adhesive joints. Zwick/Roell 100 strength device were used to determination the shear strength of adhesive joints of epoxy composites. The strength test results showed that the highest value was obtained for adhesive joints of graphite-epoxy composite of smaller material thickness (0.48 mm). Statistical analysis of the results obtained, the study showed statistically significant differences between the values of the strength of the confidence level of 0.95. The statistical analysis of the results also showed that there are no statistical significant differences in average values of surface free energy (0.95 confidence level). It was noted that in each of the results the dispersion component of surface free energy was much greater than polar component of surface free energy.

  15. Interfacial and Mechanical Behavior of AA5456 Filling Friction-Stir-Welded Lap Joints Using Similar and Dissimilar Pins

    NASA Astrophysics Data System (ADS)

    Behmand, Saleh Alaei; Mirsalehi, Seyyed Ehsan; Omidvar, Hamid; Safarkhanian, Mohammad Ali

    2016-10-01

    In this article, filling friction stir welding (FFSW) of the remaining exit holes of AA5456 alloy friction-stir-welded lap joints was studied. For this purpose, the influences of different rotating speeds, holding times, and pin materials, AA5456 and AA2024, on the metallurgical structure and joint strength were investigated. The observations showed that defect-free lap joints are successfully obtainable by this method using similar and dissimilar consumable pins. The results indicated that the higher rotating speed and holding time adversely affect the weld performance. The best result was achieved for 30 seconds holding time, 500 rpm rotating speed, and AA2024 consumable pin. In this condition, a lap shear strength of 10 pct higher than that of the nonfilled joint, equivalent to about 94 pct of the original defect-free FSW joint, was obtained, whereas the GTAW filled joint showed only approximately 87 pct of the continuous FSW joint strength.

  16. Debonding of Stitched Composite Joints: Testing and Analysis

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Raju, I. S.; Poe, C. C., Jr.

    1999-01-01

    The effect of stitches on the failure of a single lap joint configuration was determined in a combined experimental and analytical study. The experimental study was conducted to determine debond growth under static monotonic loading. The stitches were shown to delay the initiation ofthe debond and provide load transfer beyond the load necessary to completely debond the stitched lap joint. The strain energy release rates at the debond front were calculated using a finite element-based technique. Models of the unstitched configuration showed significant values of modes I and II across the width of the joint and showed that mode III is zero at the centerline but increases near the free edge. Models of the stitched configuration showed that the stitches effectively reduced mode I to zero, but had less of an effect on modes II and III.

  17. The Analysis of Adhesively Bonded Advanced Composite Joints Using Joint Finite Elements

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott E.; Waas, Anthony M.

    2012-01-01

    joint configurations, including double cantilever beam and single lap joints.

  18. Detecting severity of delamination in a lap joint using S-parameters

    NASA Astrophysics Data System (ADS)

    Islam, M. M.; Huang, H.

    2018-03-01

    The scattering parameters (S-parameters) represent the frequency response of a two-port linear time-invariant network. Treating a lap joint structure instrumented with two piezoelectric wafer active transducers (PWaTs) as such a network, this paper investigates the application of the S-parameters for detecting the severity of delamination in the lap joint. The pulse-echo signal calculated from the reflection coefficients, namely the S 11 and S 22-parameters, can be divided into three signals, i.e. the excitation, resonant, and echo signals, based on their respective time spans. Analyzing the effects of the delamination on the resonant signal enables us to identify the resonance at which the resonant characteristics of the PWaTs are least sensitive to the delamination. Only at this resonance, we found that the reflection coefficients and the amplitude of the first arrival echo signal changed monotonously with the increase of the delamination length. This discovery is further validated by the time-domain pitch-catch signal calculated from the transmission coefficient (i.e. the S 21-parameter). In addition, comparing the pulse-echo signals obtained from both PWaTs enables us to determine the side of the lap joint that the delamination is located at. This work establishes the S-parameters as an effective tool to evaluate the effects of damage on the PWaT resonant characteristics, based on which the PWaT resonance can be selected judiciously for damage severity detection. Correlating the reflection and transmission coefficients also provide addition validations that increase the detection confidence.

  19. Microstructure and mechanical properties of friction stir lap welded Mg/Al joint assisted by stationary shoulder

    NASA Astrophysics Data System (ADS)

    Ji, Shude; Li, Zhengwei

    2017-11-01

    Using magnesium alloy as upper sheet, 3 mm-thick AZ31 magnesium alloy and 6061 aluminum alloy were joined using friction stir lap welding assisted by stationary shoulder. The effects of tool rotating speed on cross-sections, microstructure and mechanical properties of Mg/Al lap joints were mainly discussed. Results showed that stationary shoulder contributed to joint formation, by which stir zones (SZ) were characterized by big onion rings after welding. Because of the big forging force exerted by stationary shoulder, the upper region of hook was well bonded. SZ showed much higher hardness because of intermetallic compounds (IMCs). The bonding conditions at the base material (BM)/SZ interface at advancing side and the hook region played important roles on joint lap shear properties. The X-ray diffraction pattern analysis revealed that the main IMCs were Al3Mg2 and Al12Mg17.

  20. Evaluation of the fuselage lap joint fatigue and terminating action repair

    NASA Technical Reports Server (NTRS)

    Samavedam, Gopal; Thomson, Douglas; Jeong, David Y.

    1994-01-01

    Terminating action is a remedial repair which entails the replacement of shear head countersunk rivets with universal head rivets which have a larger shank diameter. The procedure was developed to eliminate the risk of widespread fatigue damage (WFD) in the upper rivet row of a fuselage lap joint. A test and evaluation program has been conducted by Foster-Miller, Inc. (FMI) to evaluate the terminating action repair of the upper rivet row of a commercial aircraft fuselage lap splice. Two full scale fatigue tests were conducted on fuselage panels using the growth of fatigue cracks in the lap joint. The second test was performed to evaluate the effectiveness of the terminating action repair. In both tests, cyclic pressurization loading was applied to the panels while crack propagation was recorded at all rivet locations at regular intervals to generate detailed data on conditions of fatigue crack initiation, ligament link-up, and fuselage fracture. This program demonstrated that the terminating action repair substantially increases the fatigue life of a fuselage panel structure and effectively eliminates the occurrence of cracking in the upper rivet row of the lap joint. While high cycle crack growth was recorded in the middle rivet row during the second test, failure was not imminent when the test was terminated after cycling to well beyond the service life. The program also demonstrated that the initiation, propagation, and linkup of WFD in full-scale fuselage structures can be simulated and quantitatively studied in the laboratory. This paper presents an overview of the testing program and provides a detailed discussion of the data analysis and results. Crack distribution and propagation rates and directions as well as frequency of cracking are presented for both tests. The progression of damage to linkup of adjacent cracks and to eventual overall panel failure is discussed. In addition, an assessment of the effectiveness of the terminating action repair and the

  1. Early detection and progression of decay in L-joints and lap-joints in a moderate decay hazard zone

    Treesearch

    Carol A. Clausen; Terry L. Highley; Daniel L. Lindner

    2006-01-01

    Accelerated test methods are needed to evaluate the initiation and progression of decay in wood exposed aboveground. The relationship between test conditions and initiation of decay, however, is poorly understood. Southern pine and maple L-joints and lap-joints were exposed aboveground in a configuration that encouraged water entrapment at the Valley View Experimental...

  2. A Practical Engineering Approach to Predicting Fatigue Crack Growth in Riveted Lap Joints

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Piascik, Robert S.; Newman, James C., Jr.

    1999-01-01

    An extensive experimental database has been assembled from very detailed teardown examinations of fatigue cracks found in rivet holes of fuselage structural components. Based on this experimental database, a comprehensive analysis methodology was developed to predict the onset of widespread fatigue damage in lap joints of fuselage structure. Several computer codes were developed with specialized capabilities to conduct the various analyses that make up the comprehensive methodology. Over the past several years, the authors have interrogated various aspects of the analysis methods to determine the degree of computational rigor required to produce numerical predictions with acceptable engineering accuracy. This study led to the formulation of a practical engineering approach to predicting fatigue crack growth in riveted lap joints. This paper describes the practical engineering approach and compares predictions with the results from several experimental studies.

  3. A Practical Engineering Approach to Predicting Fatigue Crack Growth in Riveted Lap Joints

    NASA Technical Reports Server (NTRS)

    Harris, C. E.; Piascik, R. S.; Newman, J. C., Jr.

    2000-01-01

    An extensive experimental database has been assembled from very detailed teardown examinations of fatigue cracks found in rivet holes of fuselage structural components. Based on this experimental database, a comprehensive analysis methodology was developed to predict the onset of widespread fatigue damage in lap joints of fuselage structure. Several computer codes were developed with specialized capabilities to conduct the various analyses that make up the comprehensive methodology. Over the past several years, the authors have interrogated various aspects of the analysis methods to determine the degree of computational rigor required to produce numerical predictions with acceptable engineering accuracy. This study led to the formulation of a practical engineering approach to predicting fatigue crack growth in riveted lap joints. This paper describes the practical engineering approach and compares predictions with the results from several experimental studies.

  4. Real-time monitoring of laser welding of galvanized high strength steel in lap joint configuration

    NASA Astrophysics Data System (ADS)

    Kong, Fanrong; Ma, Junjie; Carlson, Blair; Kovacevic, Radovan

    2012-10-01

    Two different cases regarding the zinc coating at the lap joint faying surface are selected for studying the influence of zinc vapor on the keyhole dynamics of the weld pool and the final welding quality. One case has the zinc coating fully removed at the faying surface; while the other case retains the zinc coating on the faying surface. It is found that removal of the zinc coating at the faying surface produces a significantly better weld quality as exemplified by a lack of spatters whereas intense spatters are present when the zinc coating is present at the faying surface. Spectroscopy is used to detect the optical spectra emitted from a laser generated plasma plume during the laser welding of galvanized high strength DP980 steel in a lap-joint configuration. A correlation between the electron temperature and defects within the weld bead is identified by using the Boltzmann plot method. The laser weld pool keyhole dynamic behavior affected by a high-pressure zinc vapor generated at the faying surface of galvanized steel lap-joint is monitored in real-time by a high speed charge-coupled device (CCD) camera assisted with a green laser as an illumination source.

  5. Measurement of damping of graphite epoxy composite materials and structural joints

    NASA Technical Reports Server (NTRS)

    Crocker, Malcolm J.; Rao, Mohan D.; Raju, P. K.; Yan, Xinche

    1989-01-01

    The damping capacity of graphite epoxy materials and structural joints was evaluated. The damping ratio of different composite specimens and bonded joints were systematically evaluated under normal atmospheric conditions and in a vacuum environment. Free and forced vibration test methods were employed for measuring the damping ratios. The effect of edge support conditions on the damping value of a composite tube specimen was studied by using a series of experiments performed on the specimen with different edge supports. It was found that simulating a free-free boundary conditions by having no constraints at the ends gives the lowest value of the material damping of the composite. The accuracy of the estimation of the damping ratio value was improved by using a curve-fitting technique on the response data obtained through measurement. The effect of outgassing (moisture desorption) on the damping capacity was determined by measuring the damping ratio of the tube specimen in a vacuum environment before and after outgassing had occurred. The effects of high and low temperatures on the damping was also investigated by using a series of experiments on tube and beam specimens. An analytical model to study the vibrations of a bonded lap joint system was formulated. Numerical results were generated for different overlap ratios of the system. These were compared with experimental results. In order to determine the influence of bonded joints on the material damping capacity, experiments were conducted on bonded lap-jointed and double-butt-jointed specimens. These experimental results were compared with simple beam specimens with no joints.

  6. Characterization of lap joints laser beam welding of thin AA 2024 sheets with Yb:YAG disk-laser

    NASA Astrophysics Data System (ADS)

    Caiazzo, Fabrizia; Alfieri, Vittorio; Cardaropoli, Francesco; Sergi, Vincenzo

    2012-06-01

    Lap joints obtained by overlapping two plates are widely diffused in aerospace industry. Nevertheless, because of natural aging, adhesively bonded and riveted aircraft lap joints may be affected by cracks from rivets, voids or corrosion. Friction stir welding has been proposed as a valid alternative, although large heat affected zones are produced both in the top and the bottom plate due to the pin diameter. Interest has therefore been shown in studying laser lap welding as the laser beam has been proved to be competitive since it allows to concentrate the thermal input and increases productivity and quality. Some challenges arise as a consequence of aluminum low absorptance and high thermal conductivity; furthermore, issues are due to metallurgical challenges such as both micro and macro porosity formation and softening in the fused zone. Welding of AA 2024 thin sheets in a lap joint configuration is discussed in this paper: tests are carried out using a recently developed Trumpf TruDisk 2002 Yb:YAG disk-laser with high beam quality which allows to produce beads with low plates distortion and better penetration. The influence of the processing parameters is discussed considering the fused zone extent and the bead shape. The porosity content as well as the morphological features of the beads have been examined.

  7. Numerical solutions for heat flow in adhesive lap joints

    NASA Technical Reports Server (NTRS)

    Howell, P. A.; Winfree, William P.

    1992-01-01

    The present formulation for the modeling of heat transfer in thin, adhesively bonded lap joints precludes difficulties associated with large aspect ratio grids required by standard FEM formulations. This quasi-static formulation also reduces the problem dimensionality (by one), thereby minimizing computational requirements. The solutions obtained are found to be in good agreement with both analytical solutions and solutions from standard FEM programs. The approach is noted to yield a more accurate representation of heat-flux changes between layers due to a disbond.

  8. Microstructure and Properties of Lap Joint Between Aluminum Alloy and Galvanized Steel by CMT

    NASA Astrophysics Data System (ADS)

    Niu, Song; Chen, Su; Dong, Honggang; Zhao, Dongsheng; Zhang, Xiaosheng; Guo, Xin; Wang, Guoqiang

    2016-05-01

    Lap joining of 1-mm-thick Novelist AC 170 PX aluminum alloy to 1.2-mm-thick ST06 Z galvanized steel sheets for automotive applications was conducted by cold metal transfer advanced welding process with ER4043 and ER4047 filler wires. Under the optimized welding parameters with ER4043 filler wire, the tensile shear strength of joint was 189 MPa, reaching 89% of the aluminum alloy base metal. Microstructure and elemental distribution were characterized by optical metalloscope and electron probe microanalysis. The lap joints with ER4043 filler wire had smaller wetting angle and longer bonded line length with better wettability than with ER4047 filler wire during welding with same parameters. The needle-like Al-Fe-Si intermetallic compounds (IMCs) were spalled into the weld and brought negative effect to the tensile strength of joints. With increasing welding current, the needle-like IMCs grew longer and spread further into the weld, which would deteriorate the tensile shear strength.

  9. Delamination and Stitched Failure in Stitched Composite Joints

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Raju, I. S.; Poe, C. C., Jr.

    1999-01-01

    The effect of stitches on the failure of a single lap joint configuration was determined in a combined experimental and finite element study. The experimental program was conducted to determine debond growth under static monotonic loading. The stitches were shown to delay the initiation of the debond and provide load transfer beyond the load necessary to completely debond the stitched lap joint. The experimentally determined debond length vs. applied load was used as an input parameter in the finite element analysis of both configurations. The strain energy release rates at the debond from were calculated using plate finite elements. Nonlinear fastener elements were used to model the stitches and multipoint constraints were used to model the contact problem. Models of the unstitched configuration showed significant values of modes I and II across the width of the joint and showed that mode III is zero at the centerline but increases near the free edge. Models of the stitched configuration showed that the stitches were effective in reducing mode I to zero, but had less of an effect on modes II and III.

  10. Defect features, texture and mechanical properties of friction stir welded lap joints of 2A97 Al-Li alloy thin sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Haiyan

    1.4 mm 2A97 Al-Li alloy thin sheets were welded by friction stir lap welding using the stirring tools with different pin length at different rotational speeds. The influence of pin length and rotational speed on the defect features and mechanical properties of lap joints were investigated in detail. Microstructure observation shows that the hook defect geometry and size mainly varies with the pin length instead of the rotational speed. The size of hook defects on both the advancing side (AS) and the retreating side (RS) increased with increasing the pin length, leading to the effective sheet thickness decreased accordingly. Electronmore » backscatter diffraction analysis reveals that the weld zones, especially the nugget zone (NZ), have the much lower texture intensity than the base metal. Some new texture components are formed in the thermo-mechanical affected zone (TMAZ) and the NZ of joint. Lap shear test results show that the failure load of joints generally decreases with increasing the pin length and the rotational speed. The joints failed during the lap shear tests at three locations: the lap interface, the RS of the top sheet and the AS of the bottom sheet. The fracture locations are mainly determined by the hook defects. - Highlights: • Hook defect size mainly varies with the pin length of stirring tool. • The proportion of LAGBs and substructured grains increases from NZ to TMAZ. • Weld zones, especially the NZ, have the much lower texture intensity than the BM. • Lap shear failure load and fracture location of joints is relative to the hook defects.« less

  11. Multifrequency Eddy Current Inspection of Corrosion in Clad Aluminum Riveted Lap Joints and Its Effect on Fatigue Life

    NASA Astrophysics Data System (ADS)

    Okafor, A. C.; Natarajan, S.

    2007-03-01

    Aging aircraft are prone to corrosion damage and fatigue cracks in riveted lap joints of fuselage skin panels. This can cause catastrophic failure if not detected and repaired. Hence detection of corrosion damage and monitoring its effect on structural integrity are essential. This paper presents multifrequency eddy current (EC) inspection of corrosion damage and machined material loss defect in clad A1 2024-T3 riveted lap joints and its effect on fatigue life. Results of eddy current inspection, corrosion product removal and fatigue testing are presented.

  12. A multi-feature integration method for fatigue crack detection and crack length estimation in riveted lap joints using Lamb waves

    NASA Astrophysics Data System (ADS)

    He, Jingjing; Guan, Xuefei; Peng, Tishun; Liu, Yongming; Saxena, Abhinav; Celaya, Jose; Goebel, Kai

    2013-10-01

    This paper presents an experimental study of damage detection and quantification in riveted lap joints. Embedded lead zirconate titanate piezoelectric (PZT) ceramic wafer-type sensors are employed to perform in situ non-destructive evaluation (NDE) during fatigue cyclical loading. PZT wafers are used to monitor the wave reflection from the boundaries of the fatigue crack at the edge of bolt joints. The group velocity of the guided wave is calculated to select a proper time window in which the received signal contains the damage information. It is found that the fatigue crack lengths are correlated with three main features of the signal, i.e., correlation coefficient, amplitude change, and phase change. It was also observed that a single feature cannot be used to quantify the damage among different specimens since a considerable variability was observed in the response from different specimens. A multi-feature integration method based on a second-order multivariate regression analysis is proposed for the prediction of fatigue crack lengths using sensor measurements. The model parameters are obtained using training datasets from five specimens. The effectiveness of the proposed methodology is demonstrated using several lap joint specimens from different manufactures and under different loading conditions.

  13. Analytical and experimental study of the vibration of bonded beams with a lap joint

    NASA Technical Reports Server (NTRS)

    Rao, M. D.; Crocker, M. J.

    1990-01-01

    A theoretical model to study the flexural vibration of a bonded lap joint system is described in this paper. First, equations of motion at the joint region are derived using a differential element approach. The transverse displacements of the upper and lower beam are considered to be different. The adhesive is assumed to be linearly viscoelastic and the widely used Kelvin-Voight model is used to represent the viscoelastic behavior of the adhesive. The shear force at the interface between the adhesive and the beam is obtained from the simple bending motion equations of the two beams. The resulting equations of motion are combined with the equations of transverse vibration of the beams in the unjointed regions. These are later solved as a boundary value problem to obtain the eigenvalues and eigenvectors of the system. The model can be used to predict the natural frequencies, modal damping ratios, and mode shapes of the system for free vibration. Good agreement between numerical and experimental results was obtained for a system of graphite epoxy beams lap-jointed by an epoxy adhesive.

  14. Experimental characterization and numerical simulation of riveted lap-shear joints using Rivet Element

    NASA Astrophysics Data System (ADS)

    Vivio, Francesco; Fanelli, Pierluigi; Ferracci, Michele

    2018-03-01

    In aeronautical and automotive industries the use of rivets for applications requiring several joining points is now very common. In spite of a very simple shape, a riveted junction has many contact surfaces and stress concentrations that make the local stiffness very difficult to be calculated. To overcome this difficulty, commonly finite element models with very dense meshes are performed for single joint analysis because the accuracy is crucial for a correct structural analysis. Anyhow, when several riveted joints are present, the simulation becomes computationally too heavy and usually significant restrictions to joint modelling are introduced, sacrificing the accuracy of local stiffness evaluation. In this paper, we tested the accuracy of a rivet finite element presented in previous works by the authors. The structural behaviour of a lap joint specimen with a rivet joining is simulated numerically and compared to experimental measurements. The Rivet Element, based on a closed-form solution of a reference theoretical model of the rivet joint, simulates local and overall stiffness of the junction combining high accuracy with low degrees of freedom contribution. In this paper the Rivet Element performances are compared to that of a FE non-linear model of the rivet, built with solid elements and dense mesh, and to experimental data. The promising results reported allow to consider the Rivet Element able to simulate, with a great accuracy, actual structures with several rivet connections.

  15. Analysis of the stress-strain state in single overlap joints using piezo-ceramic actuators

    NASA Astrophysics Data System (ADS)

    Pǎltânea, Veronica; Pǎltânea, Gheorghe; Popovici, Dorina; Jiga, Gabriel; Papanicolaou, George

    2014-05-01

    In this paper is presented a 2D approach to finite element modeling and an analytical calculus of a single lap bonded joint. As adherent material were selected a sheet of wood, aluminum and titanium. For adhesive part were selected Bison Super Wood D3 in case of the wood single lap joint and an epoxy resin type DGEBA-TETA for gluing together aluminum and titanium parts. In the article is described a combined method, which consists in the placement of the piezoelectric actuator inside of the adhesive part, in order to determine the tensile stress in the overlap joint. A comparison between the analytical and numerical results has been achieved through a multiphysics modeling - electrical and mechanical coupled problem. The technique used to calculate the mechanical parameters (First Principal Stress, displacements) was the three-point bending test, where different forces were applied in the mid-span of the structure, in order to maintain a constant displacement rate. The length of the overlap joint was modified from 20 to 50 mm.

  16. Failure analysis of single-bolted joint for lightweight composite laminates and metal plate

    NASA Astrophysics Data System (ADS)

    Li, Linjie; Qu, Junli; Liu, Xiangdong

    2018-01-01

    A three-dimensional progressive damage model was developed in ANSYS to predict the damage accumulation of single bolted joint in composite laminates under in-plane tensile loading. First, we describe the formulation and algorithm of this model. Second, we calculate the failure loads of the joint in fibre reinforced epoxy laminated composite plates and compare it with the experiment results, which validates that our model can appropriately simulate the ultimate tensile strength of the joints and the whole process of failure of structure. Finally, this model is applied to study the failure process of the light-weight composite material (USN125). The study also has a great potential to provide a strong basis for bolted joints design in composite Laminates as well as a simple tool for comparing different laminate geometries and bolt arrangements.

  17. Influence of Zn Interlayer on Interfacial Microstructure and Mechanical Properties of TIG Lap-Welded Mg/Al Joints

    NASA Astrophysics Data System (ADS)

    Gao, Qiong; Wang, Kehong

    2016-03-01

    This study explored 6061 Al alloy and AZ31B Mg alloy joined by TIG lap welding with Zn foils of varying thicknesses, with the additional Zn element being imported into the fusion zone to alloy the weld seam. The microstructures and chemical composition in the fusion zone near the Mg substrate were examined by SEM and EDS, and tensile shear strength tests were conducted to investigate the mechanical properties of the Al/Mg joints, as well as the fracture surfaces, and phase compositions. The results revealed that the introduction of an appropriate amount of Zn transition layer improves the microstructure of Mg/Al joints and effectively reduces the formation of Mg-Al intermetallic compounds (IMCs). The most common IMCs in the fusion zone near the Mg substrate were Mg-Zn and Mg-Al-Zn IMCs. The type and distribution of IMCs generated in the weld zone differed according to Zn additions; Zn interlayer thickness of 0.4 mm improved the sample's mechanical properties considerably compared to thicknesses of less than 0.4 mm; however, any further increase in Zn interlayer thickness of above 0.4 mm caused mechanical properties to deteriorate.

  18. Preliminary results on the fracture analysis of multi-site cracking of lap joints in aircraft skins

    NASA Astrophysics Data System (ADS)

    Beuth, J. L., Jr.; Hutchinson, John W.

    1992-07-01

    Results of a fracture mechanics analysis relevant to fatigue crack growth at rivets in lap joints of aircraft skins are presented. Multi-site damage (MSD) is receiving increased attention within the context of problems of aging aircraft. Fracture analyses previously carried out include small-scale modeling of rivet/skin interactions, larger-scale two-dimensional models of lap joints similar to that developed here, and full scale three-dimensional models of large portions of the aircraft fuselage. Fatigue testing efforts have included flat coupon specimens, two-dimensional lap joint tests, and full scale tests on specimens designed to closely duplicate aircraft sections. Most of this work is documented in the proceedings of previous symposia on the aging aircraft problem. The effect MSD has on the ability of skin stiffeners to arrest the growth of long skin cracks is a particularly important topic that remains to be addressed. One of the most striking features of MSD observed in joints of some test sections and in the joints of some of the older aircraft fuselages is the relative uniformity of the fatigue cracks from rivet to rivet along an extended row of rivets. This regularity suggests that nucleation of the cracks must not be overly difficult. Moreover, it indicates that there is some mechanism which keeps longer cracks from running away from shorter ones, or, equivalently, a mechanism for shorter cracks to catch-up with longer cracks. This basic mechanism has not been identified, and one of the objectives of the work is to see to what extent the mechanism is revealed by a fracture analysis of the MSD cracks. Another related aim is to present accurate stress intensity factor variations with crack length which can be used to estimate fatigue crack growth lifetimes once cracks have been initiated. Results are presented which illustrate the influence of load shedding from rivets with long cracks to neighboring rivets with shorter cracks. Results are also included

  19. Preliminary results on the fracture analysis of multi-site cracking of lap joints in aircraft skins

    NASA Technical Reports Server (NTRS)

    Beuth, J. L., Jr.; Hutchinson, John W.

    1992-01-01

    Results of a fracture mechanics analysis relevant to fatigue crack growth at rivets in lap joints of aircraft skins are presented. Multi-site damage (MSD) is receiving increased attention within the context of problems of aging aircraft. Fracture analyses previously carried out include small-scale modeling of rivet/skin interactions, larger-scale two-dimensional models of lap joints similar to that developed here, and full scale three-dimensional models of large portions of the aircraft fuselage. Fatigue testing efforts have included flat coupon specimens, two-dimensional lap joint tests, and full scale tests on specimens designed to closely duplicate aircraft sections. Most of this work is documented in the proceedings of previous symposia on the aging aircraft problem. The effect MSD has on the ability of skin stiffeners to arrest the growth of long skin cracks is a particularly important topic that remains to be addressed. One of the most striking features of MSD observed in joints of some test sections and in the joints of some of the older aircraft fuselages is the relative uniformity of the fatigue cracks from rivet to rivet along an extended row of rivets. This regularity suggests that nucleation of the cracks must not be overly difficult. Moreover, it indicates that there is some mechanism which keeps longer cracks from running away from shorter ones, or, equivalently, a mechanism for shorter cracks to catch-up with longer cracks. This basic mechanism has not been identified, and one of the objectives of the work is to see to what extent the mechanism is revealed by a fracture analysis of the MSD cracks. Another related aim is to present accurate stress intensity factor variations with crack length which can be used to estimate fatigue crack growth lifetimes once cracks have been initiated. Results are presented which illustrate the influence of load shedding from rivets with long cracks to neighboring rivets with shorter cracks. Results are also included

  20. Dual beam Nd:YAG laser welding: influence of lubricants to lap joint welding of steel sheets

    NASA Astrophysics Data System (ADS)

    Geiger, M.; Merklein, M.; Otto, A.; Blankl, A.

    2007-05-01

    Laser welding is applied in large-volume production since the late eighties and has revolutionized the possibilities of designing and engineering products. Nevertheless, problems appear during application because the operational conditions in industrial environments fluctuate and can influence the welding process negatively. Contaminations, like lubricants and organic solids, are an example of changing conditions in laser beam welding. If a lap joint is welded, these materials have to be removed from the sheets, otherwise pores and surface failures may appear due to keyhole instabilities induced by uncontrolled outgassing. One possibility for solving this problem is the use of two separate laser beams. For producing these two beams several systems are available for all different kind of lasers. A bifocal optic is such a solution for an Nd:YAG laser. By using this system, the laser beam is divided after collimation with a prism. Afterwards the two beams are focussed with a lens to the surface of the sheet and two single spots are produced. If the distance between the two spots is low, one common, elliptical keyhole is created. With this system two different welding strategies are possible. The spots can be oriented parallel or normal to the feed direction. For stabilizing the laser welding of contaminated steel sheets the parallel arrangement is better, because the amount of contamination is nearly the same as in single spot welding but the total volume of the keyhole is greater and so pressure variations due to uncontrolled evaporation of contaminations are lower. In order to prove this theory and to determine the exact effects some investigations were made at the Chair of Manufacturing Technology of the University of Erlangen-Nuremberg. A 4 kW Nd:YAG laser with a beam parameter product of 25 mm*mrad and a focal distance of 200 mm was used to weld two 1 mm DC04 steel sheets together with a lap joint. Between the sheets a deep drawing lubricant, Castrol FST 6, was

  1. Parametric Study of Single Bolted Composite Bolted Joint Subjected to Static Tensile Loading

    NASA Astrophysics Data System (ADS)

    Awadhani, L. V.; Bewoor, Anand, Dr.

    2017-08-01

    The use of composites is increasing in the engineering applications in order to reduce the weight, building energy efficient systems, designing a suitable material according to the requirements of the application. But at the same time, building a structure is possible only by bonding or bolting or combination of them. There are limitations for the bonding methods and problems with the bolting such as stress concentration near the neighborhood of the bolt hole, tensile or shear failure, delamination etc. Hence the design of a composite bolted structure needs a special attention. This paper focuses on the performance of the composite bolted joint under static tensile loading and the effect of variation in the parameters such as the bolt pitch, plate width, thickness, bolt tightening torque, composite material, coefficient of friction between the bolt and plate etc. A simple spring mass model is used to study the single bolted composite bolted joint. The influencing parameters are identified through the developed model and compared with the results from the literature. The best geometric parameters for the applied load are identified for the composite bolted joints.

  2. Lamb wave-based damage quantification and probability of detection modeling for fatigue life assessment of riveted lap joint

    NASA Astrophysics Data System (ADS)

    He, Jingjing; Wang, Dengjiang; Zhang, Weifang

    2015-03-01

    This study presents an experimental and modeling study for damage detection and quantification in riveted lap joints. Embedded lead zirconate titanate piezoelectric (PZT) ceramic wafer-type sensors are employed to perform in-situ non-destructive testing during fatigue cyclical loading. A multi-feature integration method is developed to quantify the crack size using signal features of correlation coefficient, amplitude change, and phase change. In addition, probability of detection (POD) model is constructed to quantify the reliability of the developed sizing method. Using the developed crack size quantification method and the resulting POD curve, probabilistic fatigue life prediction can be performed to provide comprehensive information for decision-making. The effectiveness of the overall methodology is demonstrated and validated using several aircraft lap joint specimens from different manufactures and under different loading conditions.

  3. Design fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Graphite/polyimide (Gr/PI) bolted and bonded joints were investigated. Possible failure modes and the design loads for the four generic joint types are discussed. Preliminary sizing of a type 1 joint, bonded and bolted configuration is described, including assumptions regarding material properties and sizing methodology. A general purpose finite element computer code is described that was formulated to analyze single and double lap joints, with and without tapered adherends, and with user-controlled variable element size arrangements. An initial order of Celion 6000/PMR-15 prepreg was received and characterized.

  4. Detection of fastener loosening in simple lap joint based on ultrasonic wavefield imaging

    NASA Astrophysics Data System (ADS)

    Gooda Sahib, M. I.; Leong, S. J.; Chia, C. C.; Mustapha, F.

    2017-12-01

    Joints in aero-mechanical structures are critical elements that ensure the structural integrity but they are prone to damages. Inspection of such joints that have no prior baseline data is really challenging but it can be possibly done using the Ultrasonic Propagation Imager (UPI). The feasibility of applying UPI for detection of loosened fastener is investigated in this study. A simple lap joint specimen made by connecting two pieces of 2.5mm thick SAE304 stainless steel plates using five M6 screws and nuts has been used in this study. All fasteners are tightened to 10Nm but one of them is completely loosened to simulate the damage. The wavefield data is processed into ultrasonic wavefield propagation video and a series of spectral amplitude images. The spectral images showed noticeable amplitude difference at the loosened fastener, hence confirmed the feasibility of using UPI for structural joints inspection. A simple contrast maximization method is also introduced to improve the result.

  5. Corrosion Performance of Friction Stir Linear Lap Welded AM60B Joints

    NASA Astrophysics Data System (ADS)

    Kish, J. R.; Birbilis, N.; McNally, E. M.; Glover, C. F.; Zhang, X.; McDermid, J. R.; Williams, G.

    2017-11-01

    A corrosion investigation of friction stir linear lap welded AM60B joints used to fabricate an Mg alloy-intensive automotive front end sub-assembly was performed. The stir zone exhibited a slightly refined grain size and significant break-up and re-distribution of the divorced Mg17Al12 (β-phase) relative to the base material. Exposures in NaCl (aq) environments revealed that the stir zone was more susceptible to localized corrosion than the base material. Scanning vibrating electrode technique measurements revealed differential galvanic activity across the joint. Anodic activity was confined to the stir zone surface and involved initiation and lateral propagation of localized filaments. Cathodic activity was initially confined to the base material surface, but was rapidly modified to include the cathodically-activated corrosion products in the filament wake. Site-specific surface analyses revealed that the corrosion observed across the welded joint was likely linked to variations in Al distribution across the surface film/metal interface.

  6. Sequential lineup laps and eyewitness accuracy.

    PubMed

    Steblay, Nancy K; Dietrich, Hannah L; Ryan, Shannon L; Raczynski, Jeanette L; James, Kali A

    2011-08-01

    Police practice of double-blind sequential lineups prompts a question about the efficacy of repeated viewings (laps) of the sequential lineup. Two laboratory experiments confirmed the presence of a sequential lap effect: an increase in witness lineup picks from first to second lap, when the culprit was a stranger. The second lap produced more errors than correct identifications. In Experiment 2, lineup diagnosticity was significantly higher for sequential lineup procedures that employed a single versus double laps. Witnesses who elected to view a second lap made significantly more errors than witnesses who chose to stop after one lap or those who were required to view two laps. Witnesses with prior exposure to the culprit did not exhibit a sequential lap effect.

  7. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Skoumal, D. E.

    1980-01-01

    Bonded and bolted designs are presented for each of four major attachment types. Prepreg processing problems are discussed and quality control data are given for lots 2W4604, 2W4632 and 2W4643. Preliminary design allowables test results for tension tests and compression tests of laminates are included. The final small specimen test matrix is defined and the configuration of symmetric step-lap joint specimens are shown. Finite element modeling studies of a double lap joint were performed to evaluate the number of elements required through the adhesive thickness to assess effects of various joint parameters on stress distributions. Results of finite element analyses assessing the effect of an adhesive fillet on the stress distribution in a double lap joint are examined.

  8. Design Methodology for Bonded-Bolted Composite Joints. Volume I. Analysis Derivations and Illustrative Solutions

    DTIC Science & Technology

    1982-02-01

    EXPERIMENTAL EVIDENCE ...... ....... ....... ....... ... 27 2.6 LOAD REDISTRIBUTION DUE TO DISBONDS IN ADHESIVE IN STEPPED-LAP JOINTS...SINGLE FASTENER " . ;39 3.4 LOAD SHARING BETWEEN MULTIRUW FASTENERS.."."..-.."." ൴ 3.5 FAILURE CRITERIA AT FASTENER HOLES . . ... 3.6 EXPERIMENTAL ...PLASTIC C. PERFECTLY ELASTIC THROUGHOUT A. ULL PLSTC SEAR TRS•WITHOUT $1IGN REVERSAL WITHOUT S:IG13 REVERSAL IOR FULLY NEGATIVE QUIVALENT ) (OR FULLY

  9. Effects of vertically aligned carbon nanotubes on shear performance of laminated nanocomposite bonded joints.

    PubMed

    Askari, Davood; Ghasemi-Nejhad, Mehrdad N

    2012-08-01

    The main objective is to improve the most commonly addressed weakness of the laminated composites (i.e. delamination due to poor interlaminar strength) using carbon nanotubes (CNTs) as reinforcement between the laminae and in the transverse direction. In this work, a chemical vapor deposition technique has been used to grow dense vertically aligned arrays of CNTs over the surface of chemically treated two-dimensionally woven cloth and fiber tows. The nanoforest-like fabrics can be used to fabricate three-dimensionally reinforced laminated nanocomposites. The presence of CNTs aligned normal to the layers and in-between the layers of laminated composites is expected to considerably enhance the properties of the laminates. To demonstrate the effectiveness of our approach, composite single lap-joint specimens were fabricated for interlaminar shear strength testing. It was observed that the single lap-joints with through-the-thickness CNT reinforcement can carry considerably higher shear stresses and strains. Close examination of the test specimens showed that the failure of samples with CNT nanoforests was completely cohesive, while the samples without CNT reinforcement failed adhesively. This concludes that the adhesion of adjacent carbon fabric layers can be considerably improved owing to the presence of vertically aligned arrays of CNT nanoforests.

  10. Effects of vertically aligned carbon nanotubes on shear performance of laminated nanocomposite bonded joints

    PubMed Central

    Askari, Davood; Ghasemi-Nejhad, Mehrdad N

    2012-01-01

    The main objective is to improve the most commonly addressed weakness of the laminated composites (i.e. delamination due to poor interlaminar strength) using carbon nanotubes (CNTs) as reinforcement between the laminae and in the transverse direction. In this work, a chemical vapor deposition technique has been used to grow dense vertically aligned arrays of CNTs over the surface of chemically treated two-dimensionally woven cloth and fiber tows. The nanoforest-like fabrics can be used to fabricate three-dimensionally reinforced laminated nanocomposites. The presence of CNTs aligned normal to the layers and in-between the layers of laminated composites is expected to considerably enhance the properties of the laminates. To demonstrate the effectiveness of our approach, composite single lap-joint specimens were fabricated for interlaminar shear strength testing. It was observed that the single lap-joints with through-the-thickness CNT reinforcement can carry considerably higher shear stresses and strains. Close examination of the test specimens showed that the failure of samples with CNT nanoforests was completely cohesive, while the samples without CNT reinforcement failed adhesively. This concludes that the adhesion of adjacent carbon fabric layers can be considerably improved owing to the presence of vertically aligned arrays of CNT nanoforests. PMID:27877502

  11. Nondestructive Evaluation of Friction Stir-Welded Aluminum Alloy to Coated Steel Sheet Lap Joint

    NASA Astrophysics Data System (ADS)

    Das, H.; Kumar, A.; Rajkumar, K. V.; Saravanan, T.; Jayakumar, T.; Pal, Tapan Kumar

    2015-11-01

    Dissimilar lap joints of aluminum sheet (AA 6061) of 2 mm thickness and zinc-coated steel sheet of 1 mm thickness were produced by friction stir welding with different combinations of rotational speed and travel speed. Ultrasonic C- and B-scanning, and radiography have been used in a complementary manner for detection of volumetric (cavity and flash) and planar (de bond) defects as the defects are in micron level. Advanced ultrasonic C-scanning did not provide any idea about the defects, whereas B-scanning cross-sectional image showed an exclusive overview of the micron-level defects. A digital x-ray radiography methodology is proposed for quality assessment of the dissimilar welds which provide three-fold increase in signal-to-noise ratio with improved defect detection sensitivity. The present study clearly shows that the weld tool rotational speed and travel speed have a decisive role on the quality of the joints obtained by the friction stir welding process. The suitability of the proposed NDE techniques to evaluate the joint integrity of dissimilar FSW joints is thus established.

  12. Analysis on the Fracture of Al-Cu Dissimilar Materials Friction Stir Welding Lap Joint

    NASA Astrophysics Data System (ADS)

    Sun, Hongyu; Zhou, Qi; Zhu, Jun; Peng, Yong

    2017-12-01

    Friction stir welding (FWS) is regarded as a more plausible alternative to other welding methods for Al-Cu dissimilar joining. However, the structure of an FSW joint is different from others. In this study, lap joints of 6061 aluminum alloy and commercially pure copper were produced by FSW, and the effects of rotation rate on macromorphology, microstructure and mechanical properties were investigated. In addition, a fracture J integral model was used to analyze the effect of microstructure on the mechanical properties. The results revealed that the macrodefect-free joints were obtained at a feed rate of 150 mm/min and 1100 rpm and that the failure load of the joint reached as high as 4.57 kN and only reached 2.91 kN for the 900 rpm, where tunnel defects were identified. Particle-rich zones composed of Cu particles dispersed in an Al matrix, and "Flow tracks" were observed by the EDS. The J integral results showed that the microdefects on the advancing side cause serious stress concentration compared with the microdefects located on the Al-Cu interface, resulting in the fracture of the joints.

  13. Three-dimensional finite element analyses of the local mechanical behavior of riveted lap joints

    NASA Astrophysics Data System (ADS)

    Iyer, Kaushik Arjunan

    Three-dimensional elastic-plastic finite element models of single and double rivet-row lap joints have been developed to evaluate local distortions and the mechanics of airframe-type 7075-T6 aluminum alloy riveted assemblies. Loading induced distortion features such as the excess assembly compliance, rivet tilt, local in- and out-of-plane slips and stress concentration factors are evaluated as functions of rivet countersinking, rivet material and friction coefficient. Computed features are examined to identify alterations in the proportions of in-plane and out-of-plane load transmission across rivet-panel interfaces and isolate global and lower-order effects present in the complex response of these multi-body assemblies. Analytical procedures are validated by comparing calculated and measured values of excess assembly compliance and local panel bending. Direct out-of-plane load transmission between the rivet heads and panels affects global deformation features such as remote panel bending and local features such as the panel stress concentration factor. The increase in stress concentration due to panel bending is self-limiting owing to decreasing in-plane load bearing with increasing rivet tilt, which is a composite reflection of the basic rivet deformation modes of shear and rotation. Calculations have also been performed to define approximate steady-state fretting fatigue conditions that lead to crack initiation at a panel hole surface in single and double rivet-row assemblies for countersunk and non-countersunk rivets. These account for and isolate effects of interference and clamping forces on fatigue performance by comparing computed circumferential variations of bulk residual stresses, cyclic stress range and mean stress. With interference, a non-countersunk assembly is shown to be as prone to crack initiation as a countersunk assembly. Frictional work due to fretting is evaluated and the physical location of fretting fatigue crack initiation is predicted by

  14. The cyclic fatigue behavior of adhesive joints

    NASA Astrophysics Data System (ADS)

    Kinloch, A. J.; Toh, T.

    1995-06-01

    In the last six months we have: (1) Concentrated our efforts on the fatigue failure of carbon-fiber PEEK/AFl63 lap joints, and in particular we have started to predict the life time of single-lap joints under cyclic fatigue loading. The analysis is based on data obtained from double cantilever beam (DCB) fracture mechanics tests; (2) Further, we have been successful in measuring the rate of crack growth in lap joints during fatigue fracture using ultrasonic scanning; (3) Preliminary test data on the static fracture of glass-fiber reinforced poly(phenylene sulphide) (PPS)/AF163 joints have also been studied; and (4) A comparison has been made in computing the critical strain energy release rate G(sub c) for the glass-fiber PPS/AF163 joints based on the compliance method, beam theory and corrected beam theory. The last method accounts for large non-linear deflections and the associated crack root rotations along with the necessary corrections for the increase in stiffness introduced by the presence of end blocks.

  15. Mixed-mode cyclic debonding of adhesively bonded composite joints. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rezaizadeh, M. A.; Mall, S.

    1985-01-01

    A combined experimental-analytical investigation to characterize the cyclic failure mechanism of a simple composite-to-composite bonded joint is conducted. The cracked lap shear (CLS) specimens of graphite/epoxy adherend bonded with EC-3445 adhesive are tested under combined mode 1 and 2 loading. In all specimens tested, fatigue failure occurs in the form of cyclic debonding. The cyclic debond growth rates are measured. The finite element analysis is employed to compute the mode 1, mode 2, and total strain energy release rates (i.e., GI, GII, and GT). A wide range of mixed-mode loading, i.e., GI/GII ranging from 0.03 to 0.38, is obtained. The total strain energy release rate, G sub T, appeared to be the driving parameter for cyclic debonding in the tested composite bonded system.

  16. Effects of different overlap lengths and composite adherend thicknesses on the performance of adhesively-bonded joints under tensile and bending loadings

    NASA Astrophysics Data System (ADS)

    Kadioglu, F.; Avil, E.; Ercan, M. E.; Aydogan, T.

    2018-05-01

    Fiber-reinforced polymer composites are being used in an increasingly wide range of products. They are particularly popular in automotive and aerospace sectors because they offer an attractive combination of stiffness, strength and low mass. Adhesively-bonded joints of such materials are preferred by many designers due to their assembling advantages over other traditional mechanical joining systems, such as bolted and riveted joints. In this study, some experimental works have been carried out on adhesively-bonded adherends manufactured from a woven carbon fiber-reinforced polymer matrix composite (Hexply 8552S/A280-5H, produced by Hexcel), by using a film adhesive (AF163-2K produced by 3 M). The bonded specimens were prepared in the Single Lap Joint (SLJ) configuration, and tested in tensile and also in four-point bending loading. In order to assess the joint performance, three different overlap lengths, 15 mm, 25 mm and 40 mm, and two different thicknesses of the composite adherends, 2 mm and 3 mm, were used. The results shown that the parameters are controlled by the loading modes; while the overlap length increases the joint performance significantly in tensile loading, the opposite was the case for those in bending loading, which was affected mainly by the adherend thicknesses. The results were related to the mechanisms of joint failures; while the joints in the tensile failed in the adhesive layer with some exceptions, those in the bending mainly failed in the plies adjacent to the layer. The current study indicates that one of the important factors affecting the joint strength of the adherends manufactured from the laminated composites is the local failure of the plies. It is thought more focused-studies would be needed to lessen such problems, which would be possible via in-depth numerical analysis.

  17. Experiments and simulation for 6061-T6 aluminum alloy resistance spot welded lap joints

    NASA Astrophysics Data System (ADS)

    Florea, Radu Stefanel

    This comprehensive study is the first to quantify the fatigue performance, failure loads, and microstructure of resistance spot welding (RSW) in 6061-T6 aluminum (Al) alloy according to welding parameters and process sensitivity. The extensive experimental, theoretical and simulated analyses will provide a framework to optimize the welding of lightweight structures for more fuel-efficient automotive and military applications. The research was executed in four primary components. The first section involved using electron back scatter diffraction (EBSD) scanning, tensile testing, laser beam profilometry (LBP) measurements, and optical microscopy(OM) images to experimentally investigate failure loads and deformation of the Al-alloy resistance spot welded joints. Three welding conditions, as well as nugget and microstructure characteristics, were quantified according to predefined process parameters. Quasi-static tensile tests were used to characterize the failure loads in specimens based upon these same process parameters. Profilometer results showed that increasing the applied welding current deepened the weld imprints. The EBSD scans revealed the strong dependency between the grain sizes and orientation function on the process parameters. For the second section, the fatigue behavior of the RSW'ed joints was experimentally investigated. The process optimization included consideration of the forces, currents, and times for both the main weld and post-heating. Load control cyclic tests were conducted on single weld lap-shear joint coupons to characterize the fatigue behavior in spot welded specimens. Results demonstrate that welding parameters do indeed significantly affect the microstructure and fatigue performance for these welds. The third section comprised residual strains of resistance spot welded joints measured in three different directions, denoted as in-plane longitudinal, in-plane transversal, and normal, and captured on the fusion zone, heat affected zone

  18. Experimental data on single-bolt joints in quasi isotropic graphite/polyimide laminates

    NASA Technical Reports Server (NTRS)

    Wichorek, G. R.

    1982-01-01

    Sixteen ply, quasi-isotropic laminates of Celanese Celion 6000/PMR-15 and Celion 6000/LARC-160 with a fiber orientation of (0/45/90/-45) sub 2S were evaluated. Tensile and open hole specimens were tested at room temperature to establish laminate tensile strength and net tensile strength at an unloaded bolt hole. Double lap joint specimens with a single 4.83-mm (0.19 in.) diameter bolt torqued to 1.7 N-m (15 lbf-in.) were tested in tension at temperatures of 116 K (-250F), 297 K (75F), and 589 K (600F). The joint ratios of w/d (specimen width to hole diameter) and e/d (edge distance to hole diameter) were varied from 4 to 6 and from 2 to 4, respectively. The effect of joint geometry and temperature on failure mode and joint stresses are shown. Joint stresses calculated at maximum load for each joint geometry and test temperature are reported. Joint strength in net tension, bearing, and shear out at 116 K (-250F), 297 K (75F), and 589 K (600F) are given for the Celion 6000/PMR-15 and Celion 6000/LARC-160 laminates.

  19. Computerized evaluation of holographic interferograms for fatigue crack detection in riveted lap joints

    NASA Astrophysics Data System (ADS)

    Zhou, Xiang

    Using an innovative portable holographic inspection and testing system (PHITS) developed at the Australian Defence Force Academy, fatigue cracks in riveted lap joints can be detected by visually inspecting the abnormal fringe changes recorded on holographic interferograms. In this thesis, for automatic crack detection, some modern digital image processing techniques are investigated and applied to holographic interferogram evaluation. Fringe analysis algorithms are developed for identification of the crack-induced fringe changes. Theoretical analysis of PHITS and riveted lap joints and two typical experiments demonstrate that the fatigue cracks in lightly-clamped joints induce two characteristic fringe changes: local fringe discontinuities at the cracking sites; and the global crescent fringe distribution near to the edge of the rivet hole. Both of the fringe features are used for crack detection in this thesis. As a basis of the fringe feature extraction, an algorithm for local fringe orientation calculation is proposed. For high orientation accuracy and computational efficiency, Gaussian gradient filtering and neighboring direction averaging are used to minimize the effects of image background variations and random noise. The neighboring direction averaging is also used to approximate the fringe directions in centerlines of bright and dark fringes. Experimental results indicate that for high orientation accuracy the scales of the Gaussian filter and neighboring direction averaging should be chosen according to the local fringe spacings. The orientation histogram technique is applied to detect the local fringe discontinuity due to the fatigue cracks. The Fourier descriptor technique is used to characterize the global fringe distribution change from a circular to a crescent distribution with the fatigue crack growth. Experiments and computer simulations are conducted to analyze the detectability and reliability of crack detection using the two techniques. Results

  20. Initiation and growth of multiple-site damage in the riveted lap joint of a curved stiffened fuselage panel: An experimental and analytical study

    NASA Astrophysics Data System (ADS)

    Ahmed, Abubaker Ali

    As part of the structural integrity research of the National Aging Aircraft Research Program, a comprehensive study on multiple-site damage (MSD) initiation and growth in a pristine lap-joint fuselage panel has been conducted. The curved stiffened fuselage panel was tested at the Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility located at the Federal Aviation Administration William J. Hughes Technical Center. A strain survey test was conducted to verify proper load application. The panel was then subjected to a fatigue test with constant-amplitude cyclic loading. The applied loading spectrum included underload marker cycles so that crack growth history could be reconstructed from post-test fractographic examinations. Crack formation and growth were monitored via nondestructive and high-magnification visual inspections. Strain gage measurements recorded during the strain survey tests indicated that the inner surface of the skin along the upper rivet row of the lap joint experienced high tensile stresses due to local bending. During the fatigue loading, cracks were detected by eddy-current inspections at multiple rivet holes along the upper rivet row. Through-thickness cracks were detected visually after about 80% of the fatigue life. Once MSD cracks from two adjacent rivet holes linked up, there was a quick deterioration in the structural integrity of the lap joint. The linkup resulted in a 2.87" (72.9-mm) lead fatigue crack that rapidly propagated across 12 rivet holes and crossed over into the next skin bay, at which stage the fatigue test was terminated. A post-fatigue residual strength test was then conducted by loading the panel quasi-statically up to final failure. The panel failed catastrophically when the crack extended instantaneously across three additional bays. Post-test fractographic examinations of the fracture surfaces in the lap joint of the fuselage panel were conducted to characterize subsurface crack initiation and

  1. Detection of defects in laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration by a real-time spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Harooni, Masoud; Carlson, Blair; Kovacevic, Radovan

    2014-05-01

    The effect of surface oxide layer existing at the lap-joint faying surface of magnesium sheets is investigated on the keyhole dynamics of the weld pool and weld bead qualities. It is observed that by removing the oxide layer from the faying surface of the lap joint, a high quality weld can be achieved in the laser welding process. However, the presence of an oxide layer deteriorates the quality of the weld by forming pores at the interface of the two overlapped sheets. The purpose of this paper is to identify the correlation between the integrity of the weld and the interaction between the laser and material. A spectroscopy sensor was applied to detect the spectra emitted from a plasma plume during the laser welding of AZ31B magnesium alloy in a zero-gap lap joint configuration. The electron temperature was calculated by applying a Boltzmann plot method based on the detected spectra, and the correlation between the pore formation and the spectral signals was studied. The laser molten pool and the keyhole condition were monitored in real-time by a high speed charge-coupled device (CCD) camera. A green laser was used as an illumination source in order to detect the influence of the oxide layer on the dynamic behavior of the molten pool. Results revealed that the detected spectrum and weld defects had a meaningful correlation for real-time monitoring of the weld quality during laser welding of magnesium alloys.

  2. Lapping slurry

    DOEpatents

    Simandl, R.F.; Upchurch, V.S.; Leitten, M.E.

    1999-01-05

    Improved lapping slurries provide for easier and more thorough cleaning of alumina work pieces, as well as inhibit corrosion of the lapping table and provide for easier cleaning of the lapping equipment. The unthickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, and triethanolamine. The thickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, triethanolamine, a water soluble silicate, and acid. 1 fig.

  3. Lapping slurry

    DOEpatents

    Simandl, Ronald F.; Upchurch, Victor S.; Leitten, Michael E.

    1999-01-01

    Improved lapping slurries provide for easier and more thorough cleaning of alumina workpieces, as well as inhibit corrosion of the lapping table and provide for easier cleaning of the lapping equipment. The unthickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, and triethanolamine. The thickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, triethanolamine, a water soluble silicate, and acid.

  4. Abernathy's Lap

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A lap in this instance is not a midriff but a tool for presision.polishing and grinding. During the Saturn V moonbooster program, Marshall Space Flight Center found a need for a better lap. The need arose from the exquisitely precise tolerances required for parts of the launch vehicle's guidance,and control system. So William J. Abernathy, a former Marshall employee, built a better lap; he invented a method for charging aluminum lap plates with diamond powder, then hard-anodizing them. The resulting lap produces a high polish on materials ranging from the softest aluminum to the hardest ceramics. It operates faster, wears longer and requires less reworking. Abernathy got NASA's permission to obtain a personal patent and he formed the one-man Abernathy Laps Co. in Huntsville, which produces a variety of laps. One of Abernathy's customers is Bell Aerospace Textron, Buffalo, which uses the laps to finish polish delicate instrument parts produced for NASA's Viking and other space programs. Says a Bell official: "Time needed (with the Abernathy lap) is a fraction of that required by conventional methods. The result is extremely accurate flatness and surface finish." Abernathy is providing laps for other manufacturing applications and for preparation of metallurgical specimens. The business is small but steady, and Abernathy plans expansion into other markets.

  5. Time-temperature effect in adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1981-01-01

    The viscoelastic analysis of an adhesively bonded lap joint was reconsidered. The adherends are approximated by essentially Reissner plates and the adhesive is linearly viscoelastic. The hereditary integrals are used to model the adhesive. A linear integral differential equations system for the shear and the tensile stress in the adhesive is applied. The equations have constant coefficients and are solved by using Laplace transforms. It is shown that if the temperature variation in time can be approximated by a piecewise constant function, then the method of Laplace transforms can be used to solve the problem. A numerical example is given for a single lap joint under various loading conditions.

  6. Dual-beam laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration

    NASA Astrophysics Data System (ADS)

    Harooni, Masoud; Carlson, Blair; Kovacevic, Radovan

    2014-03-01

    Porosity within laser welds of magnesium alloys is one of the main roadblocks to achieving high quality joints. One of the causes of pore formation is the presence of pre-existing coatings on the surface of magnesium alloy such as oxide or chromate layers. In this study, single-beam and dual-beam laser heat sources are investigated in relation to mitigation of pores resulting from the presence of the as-received oxide layer on the surface of AZ31B-H24 magnesium alloy during the laser welding process. A fiber laser with a power of up to 4 kW is used to weld samples in a zero-gap lap joint configuration. The effect of dual-beam laser welding with different beam energy ratios is studied on the quality of the weld bead. The purpose of this paper is to identify the beam ratio that best mitigates pore formation in the weld bead. The laser molten pool and the keyhole condition, as well as laser-induced plasma plume are monitored in real-time by use of a high speed charge-coupled device (CCD) camera assisted with a green laser as an illumination source. Tensile and microhardness tests were used to measure the mechanical properties of the laser welded samples. Results showed that a dual-beam laser configuration can effectively mitigate pore formation in the weld bead by a preheating-welding mechanism.

  7. Cyclic debonding of adhesively bonded composites

    NASA Technical Reports Server (NTRS)

    Mall, S.; Johnson, W. S.; Everett, R. A., Jr.

    1982-01-01

    The fatigue behavior of a simple composite to composite bonded joint was analyzed. The cracked lap shear specimen subjected to constant amplitude cyclic loading was studied. Two specimen geometries were tested for each bonded system: (1) a strap adherend of 16 plies bonded to a lap adherend of 8 plies; and (2) a strap adherend of 8 plies bonded to a lap adherend of 16 plies. In all specimens the fatigue failure was in the form of cyclic debonding with some 0 deg fiber pull off from the strap adherend. The debond always grew in the region of adhesive that had the highest mode (peel) loading and that region was close to the adhesive strap interface.

  8. An evaluation of the lap-shear test for Sn-rich solder/Cu couples: Experiments and simulation

    NASA Astrophysics Data System (ADS)

    Chawla, N.; Shen, Y.-L.; Deng, X.; Ege, E. S.

    2004-12-01

    The lap-shear technique is commonly used to evaluate the shear, creep, and thermal fatigue behavior of solder joints. We have conducted a parametric experimental and modeling study, on the effect of testing and geometrical parameters on solder/copper joint response in lap-shear. It was shown that the farfield applied strain is quite different from the actual solder strain (measured optically). Subtraction of the deformation of the Cu substrate provides a reasonable approximation of the solder strain in the elastic regime, but not in the plastic regime. Solder joint thickness has a profound effect on joint response. The solder response moves progressively closer to “true” shear response with increasing joint thickness. Numerical modeling using finite-element analyses were performed to rationalize the experimental findings. The same lap-shear configuration was used in the simulation. The input response for solder was based on the experimental tensile test result on bulk specimens. The calculated shear response, using both the commonly adopted far-field measure and the actual shear strain in solder, was found to be consistent with the trends observed in the lap-shear experiments. The geometric features were further explored to provide physical insight into the problem. Deformation of the substrate was found to greatly influence the shear behavior of the solder.

  9. Autonomous sensing of composites with carbon nanotubes for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Yingtao; Yekani Fard, Masoud; Rajadas, Abhishek; Chattopadhyay, Aditi

    2012-04-01

    The development of structural health monitoring techniques leads to the integration of sensing capability within engineering structures. This study investigates the application of multi walled carbon nanotubes in polymer matrix composites for autonomous damage detection through changes in electrical resistance. The autonomous sensing capabilities of fiber reinforced nanocomposites are studied under multiple loading conditions including tension loads. Single-lap joints with different joint lengths are tested. Acoustic emission sensing is used to validate the matrix crack propagation. A digital image correlation system is used to measure the shear strain field of the joint area. The joints with 1.5 inch length have better autonomous sensing capabilities than those with 0.5 inch length. The autonomous sensing capabilities of nanocomposites are found to be sensitive to crack propagation and can revolutionize the research on composite structural health management in the near future.

  10. Lap Shear Testing of Candidate Radiator Panel Adhesives

    NASA Technical Reports Server (NTRS)

    Ellis, David; Briggs, Maxwell; McGowan, Randy

    2013-01-01

    During testing of a subscale radiator section used to develop manufacturing techniques for a full-scale radiator panel, the adhesive bonds between the titanium heat pipes and the aluminum face sheets failed during installation and operation. Analysis revealed that the thermal expansion mismatch between the two metals resulted in relatively large shear stresses being developed even when operating the radiator at moderate temperatures. Lap shear testing of the adhesive used in the original joints demonstrated that the two-part epoxy adhesive fell far short of the strength required. A literature review resulted in several candidate adhesives being selected for lap shear joint testing at room temperature and 398 K, the nominal radiator operating temperature. The results showed that two-part epoxies cured at room and elevated temperatures generally did not perform well. Epoxy film adhesives cured at elevated temperatures, on the other hand, did very well with most being sufficiently strong to cause yielding in the titanium sheet used for the joints. The use of an epoxy primer generally improved the strength of the joint. Based upon these results, a new adhesive was selected for the second subscale radiator section.

  11. Study on Joint Interface and Mechanical Properties of Cu/Pb-Sn/Cu Lap Joint Produced by Friction Stir Soldering Process

    NASA Astrophysics Data System (ADS)

    Sarkari Khorrami, Mahmoud; Kokabi, Amir Hossein; Movahedi, Mojtaba

    2015-05-01

    In this work, friction stir soldering (FSS) as a new approach for fabrication of copper/copper lap joints was introduced. This process is principally based on the friction stir processing (FSP) that can be performed using FSP tools with and without pin on the top sheet. In the present study, Pb-Sn foil was used as a solder which would be melted and then extruded in the area between the copper sheets during FSS process. This process was carried out using tools with and without pin at various rotation speeds of 1200, 1400, and 1600 rpm and traverse speed of 32 mm/min. Also, the same joint was fabricated using furnace soldering to compare the mechanical properties obtained with FSS and furnace soldering processes. It was observed that FSS possesses some advantages over the conventional furnace soldering process including the formation of more bond area at the interface corresponding to the higher fracture load of FSS joints compared with furnace soldering one. Moreover, it was concluded that the thickness of intermetallic compounds (IMCs) and the formation of voids at the joint interface were the predominant factor determining the mechanical properties of the FSS joints produced by FSS tool with and without pin, respectively. The microstructural examinations revealed that Cu-Sn IMCs of Cu3Sn and Cu6Sn5 were formed at the joint interface. It was observed that the FSS joint produced by tool with pin experienced the more peak temperature in comparison with that produced by pin-free tool. This may lead to the formation of thicker IMCs at the interface. Of course, the thickness of IMCs can be controlled by choosing proper FSS parameters, especially the rotation speed of the tool.

  12. Numerical and Experimental Characterization of a Composite Secondary Bonded Adhesive Lap Joint Using the Ultrasonics method

    NASA Astrophysics Data System (ADS)

    Kumar, M. R.; Ghosh, A.; Karuppannan, D.

    2018-05-01

    The construction of aircraft using advanced composites have become very popular during the past two decades, in which many innovative manufacturing processes, such as cocuring, cobonding, and secondary bonding processes, have been adopted. The secondary bonding process has become less popular than the other two ones because of nonavailability of process database and certification issues. In this article, an attempt is made to classify the quality of bonding using nondestructive ultrasonic inspection methods. Specimens were prepared and tested using the nondestructive ultrasonic Through Transmission (TT), Pulse Echo (PE), and air coupled guided wave techniques. It is concluded that the ultrasonic pulse echo technique is the best one for inspecting composite secondary bonded adhesive joints.

  13. Bond strength evaluation in adhesive joints using NDE and DIC methods

    NASA Astrophysics Data System (ADS)

    Poudel, Anish

    Adhesive bonding of graphite epoxy composite laminates to itself or traditional metal alloys in modern aerospace and aircraft structural applications offers an excellent opportunity to use the most efficient and intelligent combination of materials available thus providing an attractive package for efficient structural designs. However, one of the major issues of adhesive bonding is the occasional formation of interfacial defects such as kissing or weak bonds in the bondline interface. Also, there are shortcomings of existing non-destructive evaluation (NDE) methods to non-destructively detect/characterize these interfacial defects and reliably predicting the bond shear strength. As a result, adhesive bonding technology is still not solely implemented in primary structures of an aircraft. Therefore, there is a greater demand for a novel NDE tool that can meet the existing aerospace requirement for adhesive bondline characterization. This research implemented a novel Acoustography ultrasonic imaging and digital image correlation (DIC) technique to detect and characterize interfacial defects in the bondline and determine bond shear strength in adhesively bonded composite-metal joints. Adhesively bonded Carbon Fiber Reinforced Plastic (CFRP) laminate and 2024-T3 Aluminum single lap shear panels subjected to various implanted kissing/weak bond defects were the primary focus of this study. Kissing/weak bonds were prepared by controlled surface contamination in the composite bonding surface and also by improperly mixing the adhesive constituent. SEM analyses were also conducted to understand the surface morphology of substrates and their interaction with the contaminants. Morphological changes were observed in the microscopic scale and the chemical analysis confirmed the stability of the contaminant at or very close to the interface. In addition, it was also demonstrated that contaminants migrated during the curing of the adhesive from CFRP substrate which caused a

  14. FRICTION STIR LAP WELDING OF ALUMINUM - POLYMER USING SCRIBE TECHNOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Piyush; Hovanski, Yuri; Fifield, Leonard S.

    2015-02-16

    Friction Stir Scribe (FSS) technology is a relatively new variant of Friction Stir Welding (FSW) which enables lap joining of dissimilar material with very different melting points and different high temperature flow behaviors. The cutter scribe attached at the tip of FSW tool pin effectively cuts the high melting point material such that a mechanically interlocking feature is created between the dissimilar materials. The geometric shape of this interlocking feature determines the shear strength attained by the lap joint. This work presents first use of scribe technology in joining polymers to aluminum alloy. Details of the several runs of scribemore » welding performed in lap joining of ~3.175mm thick polymers including HDPE, filled and unfilled Nylon 66 to 2mm thick AA5182 are presented. The effect of scribe geometry and length on weld interlocking features is presented along with lap shear strength evaluations.« less

  15. Combined In-Plane and Through-the-Thickness Analysis for Failure Prediction of Bolted Composite Joints

    NASA Technical Reports Server (NTRS)

    Kradinov, V.; Madenci, E.; Ambur, D. R.

    2004-01-01

    Although two-dimensional methods provide accurate predictions of contact stresses and bolt load distribution in bolted composite joints with multiple bolts, they fail to capture the effect of thickness on the strength prediction. Typically, the plies close to the interface of laminates are expected to be the most highly loaded, due to bolt deformation, and they are usually the first to fail. This study presents an analysis method to account for the variation of stresses in the thickness direction by augmenting a two-dimensional analysis with a one-dimensional through the thickness analysis. The two-dimensional in-plane solution method based on the combined complex potential and variational formulation satisfies the equilibrium equations exactly, and satisfies the boundary conditions and constraints by minimizing the total potential. Under general loading conditions, this method addresses multiple bolt configurations without requiring symmetry conditions while accounting for the contact phenomenon and the interaction among the bolts explicitly. The through-the-thickness analysis is based on the model utilizing a beam on an elastic foundation. The bolt, represented as a short beam while accounting for bending and shear deformations, rests on springs, where the spring coefficients represent the resistance of the composite laminate to bolt deformation. The combined in-plane and through-the-thickness analysis produces the bolt/hole displacement in the thickness direction, as well as the stress state in each ply. The initial ply failure predicted by applying the average stress criterion is followed by a simple progressive failure. Application of the model is demonstrated by considering single- and double-lap joints of metal plates bolted to composite laminates.

  16. Reliability of Step-Lap Bonded Joints

    DTIC Science & Technology

    1975-04-01

    1.5. This P e gives a x f’t equal to .25 and a strength of 5400 (lb/in). Thermal stresses av p were not considered. Experience indicates that for both...a (-~p; ACAro 48 - 2095 -5 49 -2057 0’ 50 -2099 +45,’ j~d P~ FIGURE 35. FULL SCALE STEP-LAP SPECIMEN DRAWING 49 TA?)LE I. PLY OhbW6I40WE~Th a I...11. T464-.- S~w lW- iZ44 ILL A 40 C 4 W AP- I. _Asllll-ýL04-c &FC o W. Ox.-F-fwau". %r IpśX~ -Rt 4 r m 1 - 6-an AV ?t= .C3)-.Zfr.UROA M 0:frca 0 AW

  17. Influence of interface ply orientation on fatigue damage of adhesively bonded composite joints

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Mall, S.

    1985-01-01

    An experimental study of cracked-lap-shear specimens was conducted to determine the influence of adherend stacking sequence on debond initiation and damage growth in a composite-to-composite bonded joint. Specimens consisted of quasi-isotropic graphite/epoxy adherends bonded together with either FM-300 or EC 3445 adhesives. The stacking sequence of the adherends was varied such that 0 deg, 45 deg, or 90 deg plies were present at the adherend-adhesive interfaces. Fatigue damage initiated in the adhesive layer in those specimens with 0 deg nd 45 deg interface plies. Damage initiated in the form of ply cracking in the strap adherend for the specimens with 90 deg interface plies. The fatigue-damage growth was in the form of delamination within the composite adherends for specimens with the 90 deg and 45 deg plies next to the adhesive, while debonding in the adhesive resulted for the specimens with 0 deg plies next to the adhesive. Those joints with the 0 deg and 45 deg plies next to either adhesive has essentially the same fatigue-damage-initiation stress levels. These stress levels were 13 and 71 percent higher, respectively, than those for specimens with 90 deg plies next to the EC 3445 and FM-300 adhesives.

  18. Influence of interface ply orientation on fatigue damage of adhesively bonded composite joints

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Mall, S.

    1986-01-01

    An experimental study of cracked-lap-shear specimens was conducted to determine the influence of adherend stacking sequence on debond initiation and damage growth in a composite-to-composite bonded joint. Specimens consisted of quasi-isotropic graphite/epoxy adherends bonded together with either FM-300 or EC 3445 adhesives. The stacking sequence of the adherends was varied such that 0 deg, 45 deg, or 90 deg plies were present at the adherend-adhesive interfaces. Fatigue damage initiated in the adhesive layer in those specimens with 0 deg and 45 deg interface plies. Damaage initiated in the form of ply cracking in the strap adherend for the specimens with 90 deg interface plies. The fatigue-damage growth was in the form of delamination within the composite adherends for specimens with the 90 deg and 45 deg plies next to the adhesive, while debonding in the adhesive resulted for the specimens with 0 deg plies next to the adhesive. Those joints with the 0 deg and 45 deg plies next to either adhesive has essentially the same fatigue-damage-initiation stress levels. These stress levels were 13 and 71 percent higher, respectively, than those for specimens with 90 deg plies next to the EC 3445 and FM-300 adhesives.

  19. The behavior of bonded doubler splices for composite sandwich panels

    NASA Technical Reports Server (NTRS)

    Zeller, T. A.; Weisahaar, T. A.

    1980-01-01

    The results of an investigation into the behavior of adhesively bonded doubler splices of two composite material sandwich panels are presented. The splices are studied from three approaches: analytical; numerical (finite elements); and experimental. Several parameters that characterize the splice are developed to determine their influence upon joint strength. These parameters are: doubler overlap length; core stiffness; laminate bending stiffness; the size of the gap between the spliced sandwich panels; and room and elevated temperatures. Similarities and contrasts between these splices and the physically similar single and double lap joints are discussed. The results of this investigation suggest several possible approaches to improving the strength of the sandwich splices.

  20. Adhesive-Bonded Composite Joint Analysis with Delaminated Surface Ply Using Strain-Energy Release Rate

    NASA Technical Reports Server (NTRS)

    Chadegani, Alireza; Yang, Chihdar; Smeltzer, Stanley S. III

    2012-01-01

    This paper presents an analytical model to determine the strain energy release rate due to an interlaminar crack of the surface ply in adhesively bonded composite joints subjected to axial tension. Single-lap shear-joint standard test specimen geometry with thick bondline is followed for model development. The field equations are formulated by using the first-order shear-deformation theory in laminated plates together with kinematics relations and force equilibrium conditions. The stress distributions for the adherends and adhesive are determined after the appropriate boundary and loading conditions are applied and the equations for the field displacements are solved. The system of second-order differential equations is solved to using the symbolic computation tool Maple 9.52 to provide displacements fields. The equivalent forces at the tip of the prescribed interlaminar crack are obtained based on interlaminar stress distributions. The strain energy release rate of the crack is then determined by using the crack closure method. Finite element analyses using the J integral as well as the crack closure method are performed to verify the developed analytical model. It has been shown that the results using the analytical method correlate well with the results from the finite element analyses. An attempt is made to predict the failure loads of the joints based on limited test data from the literature. The effectiveness of the inclusion of bondline thickness is justified when compared with the results obtained from the previous model in which a thin bondline and uniform adhesive stresses through the bondline thickness are assumed.

  1. Structural Performance of Inconel 625 Superalloy Brazed Joints

    NASA Astrophysics Data System (ADS)

    Chen, Jianqiang; Demers, Vincent; Cadotte, Eve-Line; Turner, Daniel; Bocher, Philippe

    2017-02-01

    The purpose of this work was to investigate tensile and fatigue behaviors of Inconel 625 superalloy brazed joints after transient liquid-phase bonding process. Brazing was performed in a vacuum furnace using a nickel-based filler metal in a form of paste to join wrought Inconel 625 plates. Mechanical tests were carried out on single-lap joints under various lap distance-to-thickness ratios. The fatigue crack initiation and crack growth modes were examined via metallographic analysis, and the effect of local stress on fatigue life was assessed by finite element simulations. The fatigue results show that fatigue strength and endurance limit increase with overlap distance, leading to a relatively large scatter of results. Fatigue cracks nucleated in the high-stressed region of the weld fillets from brittle eutectic phases or from internal brazing cavities. The present work proposes to rationalize the results by using the local stress at the brazing fillet. When using this local stress, all fatigue-obtained results find themselves on a single S- N curve, providing a design curve for any joint configuration in fatigue solicitation.

  2. Geometrically nonlinear analysis of adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Dattaguru, B.; Everett, R. A., Jr.; Whitcomb, J. D.; Johnson, W. S.

    1982-01-01

    A geometrically nonlinear finite element analysis of cohesive failure in typical joints is presented. Cracked-lap-shear joints were chosen for analysis. Results obtained from linear and nonlinear analysis show that nonlinear effects, due to large rotations, significantly affect the calculated mode 1, crack opening, and mode 2, inplane shear, strain-energy-release rates. The ratio of the mode 1 to mode 2 strain-energy-relase rates (G1/G2) was found to be strongly affected by he adhesive modulus and the adherend thickness. The ratios between 0.2 and 0.8 can be obtained by varying adherend thickness and using either a single or double cracked-lap-shear specimen configuration. Debond growth rate data, together with the analysis, indicate that mode 1 strain-energy-release rate governs debond growth. Results from the present analysis agree well with experimentally measured joint opening displacements.

  3. Double-Lap Shear Test For Honeycomb Core

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Hodge, Andrew J.

    1992-01-01

    Double-lap test measures shear strength of panel made of honeycomb core with 8-ply carbon-fiber/epoxy face sheets. Developed to overcome three principal disadvantages of prior standard single-lap shear test: specimen had to be more than 17 in. long; metal face sheets had to be used; and test introduced torque, with consequent bending and peeling of face sheets and spurious tensile or compressive loading of honeycomb.

  4. A Comprehensive Structural Analysis Process for Failure Assessment in Aircraft Lap-Joint Mimics Using Multi-Modal Fusion of NDE Data (Preprint)

    DTIC Science & Technology

    2012-07-01

    plates with dimensions of 254 mm (10") by 76.2 mm (3") with a nominal thickness of 1.6 mm (0.063’’). Two aluminum plates were stacked and riveted to...create a lap-joint mimic test panel. Thus, ten aluminum plates produced five test panels. Prior to stacking and riveting , the aluminum plates of the... riveted region of the panels. 5 Approved for public release; distribution unlimited. Figure 1

  5. Effects of surface preparation on the long-term durability of adhesively bonded composite joints

    NASA Astrophysics Data System (ADS)

    Bardis, Jason Dante

    The long-term durability of adhesively bonded composite joints is critical to modern aircraft structures, which are increasingly adopting bonding as an alternative option to mechanical fastening. The effects of the surface preparation of the adherends are critical, affecting initial strength, long-term durability, fracture toughness, and failure modes of bonded joints. In this study, several potential factors are evaluated, with focus on the following: (1) Effects of possible chemical contamination from release fabrics, release films, and peel plies during adherend cure. (2) Chemical and mechanical effects of abrasion on the fracture toughness and failure mode. (3) Characterization of paste and film adhesives. There are several standard test methods used to evaluate specimen fracture, but the majority concentrate on bonded metals and interlaminar composite fracture. Testing concentrated on mode I tests; a custom double cantilever beam specimen was devised and utilized, and two forms of a wedge crack test (traveling and static) were also used. Additionally, single lap shear tests were run to contrast the mode I tests. Non-destructive testing included X-ray photography of crack fronts, energy dispersive spectroscopy and X-ray photoelectron spectroscopy surface chemistry analyses, and scanning electron microscope imaging of prepared surfaces. All mode I test methods tended to be in agreement in the ranking of different surface preparation methods. Test results revealed that release agents deposited on adherend surfaces during their cure cycle prevented proper adhesion. While mechanical abrasion did improve their fracture toughness and lower their contamination greatly, the test values did not reach the levels of samples that were not contaminated before bonding, and the interfacial modes of failure did not always change to desirable modes.

  6. Structural Features of the Pseudomonas fluorescens Biofilm Adhesin LapA Required for LapG-Dependent Cleavage, Biofilm Formation, and Cell Surface Localization

    PubMed Central

    Boyd, Chelsea D.; Smith, T. Jarrod; El-Kirat-Chatel, Sofiane; Newell, Peter D.; Dufrêne, Yves F.

    2014-01-01

    The localization of the LapA protein to the cell surface is a key step required by Pseudomonas fluorescens Pf0-1 to irreversibly attach to a surface and form a biofilm. LapA is a member of a diverse family of predicted bacterial adhesins, and although lacking a high degree of sequence similarity, family members do share common predicted domains. Here, using mutational analysis, we determine the significance of each domain feature of LapA in relation to its export and localization to the cell surface and function in biofilm formation. Our previous work showed that the N terminus of LapA is required for cleavage by the periplasmic cysteine protease LapG and release of the adhesin from the cell surface under conditions unfavorable for biofilm formation. We define an additional critical region of the N terminus of LapA required for LapG proteolysis. Furthermore, our results suggest that the domains within the C terminus of LapA are not absolutely required for biofilm formation, export, or localization to the cell surface, with the exception of the type I secretion signal, which is required for LapA export and cell surface localization. In contrast, deletion of the central repetitive region of LapA, consisting of 37 repeats of 100 amino acids, results in an inability to form a biofilm. We also used single-molecule atomic force microscopy to further characterize the role of these domains in biofilm formation on hydrophobic and hydrophilic surfaces. These studies represent the first detailed analysis of the domains of the LapA family of biofilm adhesin proteins. PMID:24837291

  7. Analytical and Numerical Results for an Adhesively Bonded Joint Subjected to Pure Bending

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Lundgren, Eric

    2006-01-01

    A one-dimensional, semi-analytical methodology that was previously developed for evaluating adhesively bonded joints composed of anisotropic adherends and adhesives that exhibit inelastic material behavior is further verified in the present paper. A summary of the first-order differential equations and applied joint loading used to determine the adhesive response from the methodology are also presented. The method was previously verified against a variety of single-lap joint configurations from the literature that subjected the joints to cases of axial tension and pure bending. Using the same joint configuration and applied bending load presented in a study by Yang, the finite element analysis software ABAQUS was used to further verify the semi-analytical method. Linear static ABAQUS results are presented for two models, one with a coarse and one with a fine element meshing, that were used to verify convergence of the finite element analyses. Close agreement between the finite element results and the semi-analytical methodology were determined for both the shear and normal stress responses of the adhesive bondline. Thus, the semi-analytical methodology was successfully verified using the ABAQUS finite element software and a single-lap joint configuration subjected to pure bending.

  8. Shear fracture of jointed steel plates of bolted joints under impact load

    NASA Astrophysics Data System (ADS)

    Daimaruya, M.; Fujiki, H.; Ambarita, H.; Kobayashi, H.; Shin, H.-S.

    2013-07-01

    The present study is concerned with the development of a fracture criterion for the impact fracture of jointed steel plates of bolted joints used in a car body, which contributes to crash simulations by CAE. We focus our attention on the shear fracture of the jointed steel plates of lap-bolted joints in the suspension of a car under impact load. Members of lap-bolted joints are modelled as a pair of steel plates connected by a bolt. One of the plates is a specimen subjected to plastic deformation and fracture and the other is a jig subjected to elastic deformation only. Three kinds of steel plate specimens are examined, i.e., a common steel plate with a tensile strength of 270 MPa and high tensile strength steel plates of 440 and 590 MPa used for cars. The impact shear test was performed using the split Hopkinson bar technique for tension impact, together with the static test using a universal testing machine INSTRON 5586. The behaviour of the shear stress and deformation up to rupture taking place in the joint was discussed. The obtained results suggest that a stress-based fracture criterion may be developed for the impact fracture of jointed steel plates of a lap-bolted joint.

  9. Even between-lap pacing despite high within-lap variation during mountain biking.

    PubMed

    Martin, Louise; Lambeth-Mansell, Anneliese; Beretta-Azevedo, Liane; Holmes, Lucy A; Wright, Rachel; St Clair Gibson, Alan

    2012-09-01

    Given the paucity of research on pacing strategies during competitive events, this study examined changes in dynamic high-resolution performance parameters to analyze pacing profiles during a multiple-lap mountain-bike race over variable terrain. A global-positioning-system (GPS) unit (Garmin, Edge 305, USA) recorded velocity (m/s), distance (m), elevation (m), and heart rate at 1 Hz from 6 mountain-bike riders (mean±SD age=27.2±5.0 y, stature=176.8±8.1 cm, mass=76.3±11.7 kg, VO2max=55.1±6.0 mL·kg(-1)·min1) competing in a multilap race. Lap-by-lap (interlap) pacing was analyzed using a 1-way ANOVA for mean time and mean velocity. Velocity data were averaged every 100 m and plotted against race distance and elevation to observe the presence of intralap variation. There was no significant difference in lap times (P=.99) or lap velocity (P=.65) across the 5 laps. Within each lap, a high degree of oscillation in velocity was observed, which broadly reflected changes in terrain, but high-resolution data demonstrated additional nonmonotonic variation not related to terrain. Participants adopted an even pace strategy across the 5 laps despite rapid adjustments in velocity during each lap. While topographical and technical variations of the course accounted for some of the variability in velocity, the additional rapid adjustments in velocity may be associated with dynamic regulation of self-paced exercise.

  10. Muscular performance and body composition changes following multi-joint versus combined multi- and single-joint exercises in aging adults.

    PubMed

    Bezerra, Ewertton de Souza; Moro, Antônio Renato Pereira; Orssatto, Lucas Bet da Rosa; da Silva, Mariane Eichendorf; Willardson, Jeffrey Michael; Simão, Roberto

    2018-06-01

    The aim of the present study was to compare muscular performance and body composition changes following low-volume resistance-training programs consisting of multi-joint (MJ) exercises (cable chest press and seated row) versus a combination of multi- and single-joint (MJ+SJ) exercises (cable chest press, seated row, biceps curl, and triceps extension). Thirty untrained healthy aging adults were randomly assigned to 3 groups: MJ (n = 11), MJ+SJ (n = 11), and control (n = 8). Twelve-repetition maximums (12-RMs) for the cable chest press and seated row, localized muscular endurance for the elbow flexors handgrip strength, and body composition were assessed before and after the 8-week training program. All comparisons were analyzed via a mixed-model analysis with repeated measures (group × time) and the Bonferroni post hoc test (p < 0.05). The MJ and MJ+SJ groups increased performance in the 12-RM cable chest press (MJ = 61.5% ± 24.6% and MJ+SJ = 71.1% ± 25.6%), 12-RM seated row (MJ = 46.4% ± 26.3% and MJ+SJ = 51.5% ± 21.0%), localized muscular endurance (MJ = 24.7% ± 16.7% and MJ+SJ = 37.0% ± 11.4%), and handgrip strength (MJ = 9.3% ± 10.4% and MJ+SJ = 16.6% ± 25.3%) after the intervention. Body composition (i.e., trunk and upper limb fat and lean mass) did not change for any groups. No significant differences were observed between the MJ versus the MJ+SJ protocols after the intervention for any variables. In conclusion, for aging adults, either MJ or MJ+SJ low-volume resistance training resulted in similar increases in 12-RM, localized muscular endurance, and handgrip strength, without changes in body composition after 8 weeks of training.

  11. Effect of Pin Length on Hook Size and Joint Properties in Friction Stir Lap Welding of 7B04 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Wang, Min; Zhang, Huijie; Zhang, Jingbao; Zhang, Xiao; Yang, Lei

    2014-05-01

    Friction stir lap welding of 7B04 aluminum alloy was conducted in the present paper, and the effect of pin length on hook size and joint properties was investigated in detail. It is found that for each given set of process parameters, the size of hook defect on the advancing side shows an "M" type evolution trend as the pin length is increased. The affecting characteristics of pin length on joint properties are dependent on the heat input levels. When the heat input is low, the fracture strength is firstly increased to a peak value and then shows a decrease. When the heat input is relatively high, the evolution trend of fracture strength tends to exhibit a "W" type with increasing the pin length.

  12. Application of lap laser welding technology on stainless steel railway vehicles

    NASA Astrophysics Data System (ADS)

    Wang, Hongxiao; Wang, Chunsheng; He, Guangzhong; Li, Wei; Liu, Liguo

    2016-10-01

    Stainless steel railway vehicles with so many advantages, such as lightweight, antirust, low cost of maintenance and simple manufacturing process, so the production of high level stainless steel railway vehicles has become the development strategy of European, American and other developed nations. The current stainless steel railway vehicles body and structure are usually assembled by resistance spot welding process. The weak points of this process are the poor surface quality and bad airtight due to the pressure of electrodes. In this study, the partial penetration lap laser welding process was investigated to resolve the problems, by controlling the laser to stop at the second plate in the appropriate penetration. The lap laser welding joint of stainless steel railway vehicle car body with partial penetration has higher strength and surface quality than those of resistance spot welding joint. The biggest problem of lap laser welding technology is to find the balance of the strength and surface quality with different penetrations. The mechanism of overlap laser welding of stainless steel, mechanical tests, microstructure analysis, the optimization of welding parameters, analysis of fatigue performance, the design of laser welding stainless steel railway vehicles structure and the development of non-destructive testing technology were systematically studied before lap laser welding process to be applied in manufacture of railway vehicles. The results of the experiments and study show that high-quality surface state and higher fatigue strength can be achieved by the partial penetration overlap laser welding of the side panel structure, and the structure strength of the car body can be higher than the requirements of En12663, the standard of structural requirements of railway vehicles bodies. Our company has produced the stainless steel subway and high way railway vehicles by using overlap laser welding technology. The application of lap laser welding will be a big

  13. Effect of Different Connection Modes on Bolt Structural Properties of TC4 Alloy in Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Li, Xiaodan; Huang, Shuangjun; Xu, Liang; Hui, Li; Zhou, Song

    2017-12-01

    The bolt structural properties of selective laser melted (SLM) samples produced from TC4 powder metal has been investigated. Two different connection molds relative to single lap joint and bilateral lap joint as well as two different state of surface quality were considered. Samples and test procedures were designed in accordance with HB 5143 and HB 5287 standard. The results show that there is a strong influence of connection molds on the dynamic behavior of SLM produced TC4. The mechanical properties of bilateral lap joint are better than those of the single lap joint. Meanwhile the fatigue performance of the bilateral lap joint is much stronger than that of the single lap joint which it is a symmetrical structure of the two-shear test on both sides of the force evenly, while the single lap joint is a single shear sample of the uneven force. There are two kinds of fracture form most of which are broken in the first row of screw and a small part in the middle of the connecting plate.

  14. Experimental assessment of the influence of welding process parameters on Lamb wave transmission across ultrasonically welded thermoplastic composite joints

    NASA Astrophysics Data System (ADS)

    Ochôa, Pedro; Fernandez Villegas, Irene; Groves, Roger M.; Benedictus, Rinze

    2018-01-01

    One of the advantages of thermoplastic composites relative to their thermoset counterparts is the possibility of assembling components through welding. Ultrasonic welding in particular is very promising for industrialization. However, uncertainty in the fatigue and fracture behaviour of composites is still an obstacle to the full utilisation of these materials. Health monitoring is then of vital importance, and Lamb wave techniques have been widely recognised as some of the most promising approaches for that end. This paper presents the first experimental study about the influence of welding travel on the transmission of Lamb waves across ultrasonically welded thermoplastic composite joints in single-lap configuration. The main aim of this research is to start to understand how guided waves interact with the internal structure of ultrasonic welds, so that benign, manufacturing-related structural features can be distinguished from damaging ones in signal interpretation. The power transmission coefficient and the correlation coefficient proved to be suitable for analysing the wave propagation phenomena, allowing quantitative identification of small variations of weld-line thickness and intermolecular diffusion at the weld interface. The conclusions are used to develop a tentative damage detection criterion which can later on assist the design of a Lamb wave based structural health monitoring system for thermoplastic composite structures. The Lamb wave test results are backed up by phased-array inspections, which also provide some extra insight on the internal structure of ultrasonic welds.

  15. Shear sensing in bonded composites with cantilever beam microsensors and dual-plane digital image correlation

    NASA Astrophysics Data System (ADS)

    Baur, Jeffery W.; Slinker, Keith; Kondash, Corey

    2017-04-01

    Understanding the shear strain, viscoelastic response, and onset of damage within bonded composites is critical to their design, processing, and reliability. This presentation will discuss the multidisciplinary research conducted which led to the conception, development, and demonstration of two methods for measuring the shear within a bonded joint - dualplane digital image correlation (DIC) and a micro-cantilever shear sensor. The dual plane DIC method was developed to measure the strain field on opposing sides of a transparent single-lap joint in order to spatially quantify the joint shear strain. The sensor consists of a single glass fiber cantilever beam with a radially-grown forest of carbon nanotubes (CNTs) within a capillary pore. When the fiber is deflected, the internal radial CNT array is compressed against an electrode within the pore and the corresponding decrease in electrical resistance is correlated with the external loading. When this small, simple, and low-cost sensor was integrated within a composite bonded joint and cycled in tension, the onset of damage prior to joint failure was observed. In a second sample configuration, both the dual plane DIC and the hair sensor detected viscoplastic changes in the strain of the sample in response to continued loading.

  16. Critical Joints in Large Composite Primary Aircraft Structures. Volume 3: Ancillary Test Results

    NASA Technical Reports Server (NTRS)

    Bunin, Bruce L.; Sagui, R. L.

    1985-01-01

    A program was conducted to develop the technology for critical structural joints for composite wing structure that meets all the design requirements of a 1990 commercial transport aircraft. The results of a comprehensive ancillary test program are summarized, consisting of single-bolt composite joint specimens tested in a variety of configurations. These tests were conducted to characterize the strength and load deflection properties that are required for multirow joint analysis. The composite material was Toray 300 fiber and Ciba-Geigy 914 resin, in the form of 0.005 and 0.01 inch thick unidirectional tape. Tests were conducted in single and double shear for loaded and unloaded hole configurations under both tensile and compressive loading. Two different layup patterns were examined. All tests were conducted at room temperature. In addition, the results of NASA Standard Toughness Test (NASA RP 1092) are reported, which were conducted for several material systems.

  17. A Fiber Optic Doppler Sensor and Its Application in Debonding Detection for Composite Structures

    PubMed Central

    Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Meng, Guang; Ohsawa, Isamu; Shirai, Takehiro

    2010-01-01

    Debonding is one of the most important damage forms in fiber-reinforced composite structures. This work was devoted to the debonding damage detection of lap splice joints in carbon fiber reinforced plastic (CFRP) structures, which is based on guided ultrasonic wave signals captured by using fiber optic Doppler (FOD) sensor with spiral shape. Interferometers based on two types of laser sources, namely the He-Ne laser and the infrared semiconductor laser, are proposed and compared in this study for the purpose of measuring Doppler frequency shift of the FOD sensor. Locations of the FOD sensors are optimized based on mechanical characteristics of lap splice joint. The FOD sensors are subsequently used to detect the guided ultrasonic waves propagating in the CFRP structures. By taking advantage of signal processing approaches, features of the guided wave signals can be revealed. The results demonstrate that debonding in the lap splice joint results in arrival time delay of the first package in the guided wave signals, which can be the characteristic for debonding damage inspection and damage extent estimation. PMID:22219698

  18. A fiber optic Doppler sensor and its application in debonding detection for composite structures.

    PubMed

    Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Meng, Guang; Ohsawa, Isamu; Shirai, Takehiro

    2010-01-01

    Debonding is one of the most important damage forms in fiber-reinforced composite structures. This work was devoted to the debonding damage detection of lap splice joints in carbon fiber reinforced plastic (CFRP) structures, which is based on guided ultrasonic wave signals captured by using fiber optic Doppler (FOD) sensor with spiral shape. Interferometers based on two types of laser sources, namely the He-Ne laser and the infrared semiconductor laser, are proposed and compared in this study for the purpose of measuring Doppler frequency shift of the FOD sensor. Locations of the FOD sensors are optimized based on mechanical characteristics of lap splice joint. The FOD sensors are subsequently used to detect the guided ultrasonic waves propagating in the CFRP structures. By taking advantage of signal processing approaches, features of the guided wave signals can be revealed. The results demonstrate that debonding in the lap splice joint results in arrival time delay of the first package in the guided wave signals, which can be the characteristic for debonding damage inspection and damage extent estimation.

  19. Notebook computer use on a desk, lap and lap support: effects on posture, performance and comfort.

    PubMed

    Asundi, Krishna; Odell, Dan; Luce, Adam; Dennerlein, Jack T

    2010-01-01

    This study quantified postures of users working on a notebook computer situated in their lap and tested the effect of using a device designed to increase the height of the notebook when placed on the lap. A motion analysis system measured head, neck and upper extremity postures of 15 adults as they worked on a notebook computer placed on a desk (DESK), the lap (LAP) and a commercially available lapdesk (LAPDESK). Compared with the DESK, the LAP increased downwards head tilt 6 degrees and wrist extension 8 degrees . Shoulder flexion and ulnar deviation decreased 13 degrees and 9 degrees , respectively. Compared with the LAP, the LAPDESK decreased downwards head tilt 4 degrees , neck flexion 2 degrees , and wrist extension 9 degrees. Users reported less discomfort and difficulty in the DESK configuration. Use of the lapdesk improved postures compared with the lap; however, all configurations resulted in high values of wrist extension, wrist deviation and downwards head tilt. STATEMENT OF RELEVANCE: This study quantifies postures of users working with a notebook computer in typical portable configurations. A better understanding of the postures assumed during notebook computer use can improve usage guidelines to reduce the risk of musculoskeletal injuries.

  20. Development of design and analysis methodology for composite bolted joints

    NASA Astrophysics Data System (ADS)

    Grant, Peter; Sawicki, Adam

    1991-05-01

    This paper summarizes work performed to develop composite joint design methodology for use on rotorcraft primary structure, determine joint characteristics which affect joint bearing and bypass strength, and develop analytical methods for predicting the effects of such characteristics in structural joints. Experimental results have shown that bearing-bypass interaction allowables cannot be defined using a single continuous function due to variance of failure modes for different bearing-bypass ratios. Hole wear effects can be significant at moderate stress levels and should be considered in the development of bearing allowables. A computer program has been developed and has successfully predicted bearing-bypass interaction effects for the (0/+/-45/90) family of laminates using filled hole and unnotched test data.

  1. Additive manufacturing of tools for lapping glass

    NASA Astrophysics Data System (ADS)

    Williams, Wesley B.

    2013-09-01

    Additive manufacturing technologies have the ability to directly produce parts with complex geometries without the need for secondary processes, tooling or fixtures. This ability was used to produce concave lapping tools with a VFlash 3D printer from 3D Systems. The lapping tools were first designed in Creo Parametric with a defined constant radius and radial groove pattern. The models were converted to stereolithography files which the VFlash used in building the parts, layer by layer, from a UV curable resin. The tools were rotated at 60 rpm and used with 120 grit and 220 grit silicon carbide lapping paste to lap 0.750" diameter fused silica workpieces. The samples developed a matte appearance on the lapped surface that started as a ring at the edge of the workpiece and expanded to the center. This indicated that as material was removed, the workpiece radius was beginning to match the tool radius. The workpieces were then cleaned and lapped on a second tool (with equivalent geometry) using a 3000 grit corundum aluminum oxide lapping paste, until a near specular surface was achieved. By using lapping tools that have been additively manufactured, fused silica workpieces can be lapped to approach a specified convex geometry. This approach may enable more rapid lapping of near net shape workpieces that minimize the material removal required by subsequent polishing. This research may also enable development of new lapping tool geometry and groove patterns for improved loose abrasive finishing.

  2. The LapSim virtual reality simulator: promising but not yet proven.

    PubMed

    Fairhurst, Katherine; Strickland, Andrew; Maddern, Guy

    2011-02-01

    The acquisition of technical skills using surgical simulators is an area of active research and rapidly evolving technology. The LapSim is a virtual reality simulator that currently allows practice of basic laparoscopic skills and some procedures. To date, no reviews have been published with reference to a single virtual reality simulator. A PubMed search was performed using the keyword "LapSim," with further papers identified from the citations of original search articles. Use of the LapSim to develop surgical skills has yielded overall results, although inconsistencies exist. Data regarding the transferability of learned skills to the operative environment are encouraging as is the validation work, particularly the use of a combination of measured parameters to produce an overall comparative performance score. Although the LapSim currently does not have any proven significant advantages over video trainers in terms of basic skills instruction and although the results of validation studies are variable, the potential for such technology to have a huge impact on surgical training is apparent. Work to determine standardized learning curves and proficiency criteria for different levels of trainees is incomplete. Moreover, defining which performance parameters measured by the LapSim accurately determine laparoscopic skill is complex. Further technological advances will undoubtedly improve the efficacy of the LapSim, and the results of large multicenter trials are anticipated.

  3. Strength and Performance Enhancement of Bonded Joints by Spatial Tailoring of Adhesive Compliance via 3D Printing.

    PubMed

    Kumar, S; Wardle, Brian L; Arif, Muhamad F

    2017-01-11

    Adhesive bonding continues to emerge as a preferred route for joining materials with broad applications including advanced structures, microelectronics, biomedical systems, and consumer goods. Here, we study the mechanics of deformation and failure of tensile-loaded single-lap joints with a compliance-tailored adhesive. Tailoring of the adhesive compliance redistributes stresses and strains to reduce both shear and peel concentrations at the ends of the adhesive that determine failure of the joint. Utilizing 3D printing, the modulus of the adhesive is spatially varied along the bondlength. Experimental strength testing, including optical strain mapping, reveals that the strain redistribution results in a greater than 100% increase in strength and toughness concomitant with a 50% increase in strain-to-break while maintaining joint stiffness. The tailoring demonstrated here is immediately realizable in a broad array of 3D printing applications, and the level of performance enhancement suggests that compliance tailoring of the adhesive is a generalizable route for achieving superior performance of joints in other applications, such as advanced structural composites.

  4. Analysis of bonded joints. [shear stress and stress-strain diagrams

    NASA Technical Reports Server (NTRS)

    Srinivas, S.

    1975-01-01

    A refined elastic analysis of bonded joints which accounts for transverse shear deformation and transverse normal stress was developed to obtain the stresses and displacements in the adherends and in the bond. The displacements were expanded in terms of polynomials in the thicknesswise coordinate; the coefficients of these polynomials were functions of the axial coordinate. The stress distribution was obtained in terms of these coefficients by using strain-displacement and stress-strain relations. The governing differential equations were obtained by integrating the equations of equilibrium, and were solved. The boundary conditions (interface or support) were satisfied to complete the analysis. Single-lap, flush, and double-lap joints were analyzed, along with the effects of adhesive properties, plate thicknesses, material properties, and plate taper on maximum peel and shear stresses in the bond. The results obtained by using the thin-beam analysis available in the literature were compared with the results obtained by using the refined analysis. In general, thin-beam analysis yielded reasonably accurate results, but in certain cases the errors were high. Numerical investigations showed that the maximum peel and shear stresses in the bond can be reduced by (1) using a combination of flexible and stiff bonds, (2) using stiffer lap plates, and (3) tapering the plates.

  5. Subsurface damage distribution in the lapping process.

    PubMed

    Wang, Zhuo; Wu, Yulie; Dai, Yifan; Li, Shengyi

    2008-04-01

    To systematically investigate the influence of lapping parameters on subsurface damage (SSD) depth and characterize the damage feature comprehensively, maximum depth and distribution of SSD generated in the optical lapping process were measured with the magnetorheological finishing wedge technique. Then, an interaction of adjacent indentations was applied to interpret the generation of maximum depth of SSD. Eventually, the lapping procedure based on the influence of lapping parameters on the material removal rate and SSD depth was proposed to improve the lapping efficiency.

  6. Probabilistic and Possibilistic Analyses of the Strength of a Bonded Joint

    NASA Technical Reports Server (NTRS)

    Stroud, W. Jefferson; Krishnamurthy, T.; Smith, Steven A.

    2001-01-01

    The effects of uncertainties on the strength of a single lap shear joint are explained. Probabilistic and possibilistic methods are used to account for uncertainties. Linear and geometrically nonlinear finite element analyses are used in the studies. To evaluate the strength of the joint, fracture in the adhesive and material strength failure in the strap are considered. The study shows that linear analyses yield conservative predictions for failure loads. The possibilistic approach for treating uncertainties appears to be viable for preliminary design, but with several qualifications.

  7. Design, Static Analysis And Fabrication Of Composite Joints

    NASA Astrophysics Data System (ADS)

    Mathiselvan, G.; Gobinath, R.; Yuvaraja, S.; Raja, T.

    2017-05-01

    The Bonded joints will be having one of the important issues in the composite technology is the repairing of aging in aircraft applications. In these applications and also for joining various composite material parts together, the composite materials fastened together either using adhesives or mechanical fasteners. In this paper, we have carried out design, static analysis of 3-D models and fabrication of the composite joints (bonded, riveted and hybrid). The 3-D model of the composite structure will be fabricated by using the materials such as epoxy resin, glass fibre material and aluminium rivet for preparing the joints. The static analysis was carried out with different joint by using ANSYS software. After fabrication, parametric study was also conducted to compare the performance of the hybrid joint with varying adherent width, adhesive thickness and overlap length. Different joint and its materials tensile test result have compared.

  8. Numerical modeling and experimental validation of thermoplastic composites induction welding

    NASA Astrophysics Data System (ADS)

    Palmieri, Barbara; Nele, Luigi; Galise, Francesco

    2018-05-01

    In this work, a numerical simulation and experimental test of the induction welding of continuous fibre-reinforced thermoplastic composites (CFRTPCs) was provided. The thermoplastic Polyamide 66 (PA66) with carbon fiber fabric was used. Using a dedicated software (JMag Designer), the influence of the fundamental process parameters such as temperature, current and holding time was investigated. In order to validate the results of the simulations, and therefore the numerical model used, experimental tests were carried out, and the temperature values measured during the tests were compared with the aid of an optical pyrometer, with those provided by the numerical simulation. The mechanical properties of the welded joints were evaluated by single lap shear tests.

  9. Micro-Energy Rates for Damage Tolerance and Durability of Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon

    2006-01-01

    In this paper, the adhesive bond strength of lap-jointed graphite/aluminum composites is examined by computational simulation. Computed micro-stress level energy release rates are used to identify the damage mechanisms associated with the corresponding acoustic emission (AE) signals. Computed damage regions are similarly correlated with ultrasonically scanned damage regions. Results show that computational simulation can be used with suitable NDE methods for credible in-service monitoring of composites.

  10. Influences of Friction Stir Welding Parameters on Microstructural and Mechanical Properties of AA5456 (AlMg5) at Different Lap Joint Thicknesses

    NASA Astrophysics Data System (ADS)

    Pishevar, M. R.; Mohandesi, J. Aghazadeh; Omidvar, H.; Safarkhanian, M. A.

    2015-10-01

    Friction stir welding is suitable for joining series 5000 alloys because no fusion welding problems arise for the alloys in this process. The present study examined the effects of double-pass welding and tool rotational and travel speeds for the second-pass welding on the mechanical and microstructural properties of friction stir lap welding of AA5456 (AlMg5)-H321 (5 mm thickness) and AA5456 (AlMg5)-O (2.5 mm thickness). The first pass of all specimens was performed at a rotational speed of 650 rpm and a travel speed of 50 mm/min. The second pass was performed at rotational speeds of 250, 450, and 650 rpm and travel speeds of 25, 50, and 75 mm/min. The results showed that the second pass changed the grain sizes in the center of the nugget zone compared with the first pass. It was observed that the size of the hooking defect of the double-pass-welded specimens was higher than that for the single-pass-welded specimen. The size of the hooking defect was found to be a function of the rotational and travel speeds. The optimal joint tensile shear properties were achieved at a rotational speed of 250 rpm and travel a speed of 75 mm/min.

  11. Static and Fatigue Strength Evaluations for Bolted Composite/Steel Joints for Heavy Vehicle Chassis Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xin; Stephens, Elizabeth V.; Herling, Darrell R.

    2004-09-14

    In May 2003, ORNL and PNNL began collaboration on a four year research effort focused on developing joining techniques to overcome the technical issues associated with joining lightweight materials in heavy vehicles. The initial focus of research is the development and validation of joint designs for a composite structural member attached to a metal member that satisfy the structural requirements both economically and reliably. Huck-bolting is a common joining method currently used in heavy truck chassis structures. The initial round of testing was conducted to establish a performance benchmark by evaluating the static and fatigue behavior of an existing steel/steelmore » chassis joint at the single huck-bolt level. Both tension and shear loading conditions were considered, and the resulting static and fatigue strengths will be used to guide the joint design for a replacement composite/steel joint. A commercially available, pultruded composite material was chosen to study the generic issues related to composite/steel joints. Extren is produced by STRONGWELL, and it is a combination of fiberglass reinforcement and thermosetting polyester or vinyl ester resin systems. Extren sheets of 3.2 mm thick were joined to 1.4 mm SAE1008 steel sheets with a standard grade 5 bolt with 6.35 mm diameter. Both tension and shear loading modes were considered for the single hybrid joint under static and fatigue loading conditions. Since fiberglass reinforced thermoset polymer composites are a non-homogenous material, their strengths and behavior are dependent upon the design of the composite and reinforcement. The Extren sheet stock was cut along the longitudinal direction to achieve maximum net-section strength. The effects of various manufacturing factors and operational conditions on the static and fatigue strength of the hybrid joint were modeled and experimentally verified. It was found that loading mode and washer size have significant influence on the static and fatigue

  12. Dogs lap using acceleration-driven open pumping

    PubMed Central

    Gart, Sean; Socha, John J.; Vlachos, Pavlos P.; Jung, Sunghwan

    2015-01-01

    Dogs lap because they have incomplete cheeks and cannot suck. When lapping, a dog’s tongue pulls a liquid column from the bath, suggesting that the hydrodynamics of column formation are critical to understanding how dogs drink. We measured lapping in 19 dogs and used the results to generate a physical model of the tongue’s interaction with the air–fluid interface. These experiments help to explain how dogs exploit the fluid dynamics of the generated column. The results demonstrate that effects of acceleration govern lapping frequency, which suggests that dogs curl the tongue to create a larger liquid column. Comparing lapping in dogs and cats reveals that, despite similar morphology, these carnivores lap in different physical regimes: an unsteady inertial regime for dogs and steady inertial regime for cats. PMID:26668382

  13. Effect of the Angle Between Sn Grain c-Axis and Electron Flow Direction on Cu-Reinforced Composite Solder Joints Under Current Stressing

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Han, Jing; Wang, Yishu; Ma, Limin; Guo, Fu

    2018-01-01

    With a body-centered tetragonal crystal structure, Sn grains were demonstrated to have highly anisotropic behaviors in various properties. The electromigration behavior of lead-free solder was impacted by the grain orientations. In this paper, the angle between the c-axis and the electron flow direction in composite solder joints (angle θ) was proven to be an important factor during electromigration. The effects of angle θ on the electromigration of composite solder joints were investigated in this paper. Cu particle-reinforced Sn3.5Ag solder joints were stressed under a current density of 104 A/cm2 at room temperature. After 336 h current stressing time, different electromigration phenomena occurred at the two sides of the grain boundary in the composite solder joint which contained two Sn grains with different angle θ. The Sn grains with the larger angle θ had a smaller growth rate of Cu6Sn5. In addition, a composite solder joint with a single Sn grain was set as the contrast and its angle θ was smaller than that of the composite solder joint with two Sn grains. The growth rate of Cu6Sn5 in the composite solder joint with a single grain was faster than that of the composite solder joint with two Sn grains.

  14. Comparison of fatigue crack growth of riveted and bonded aircraft lap joints made of Aluminium alloy 2024-T3 substrates - A numerical study

    NASA Astrophysics Data System (ADS)

    Pitta, S.; Rojas, J. I.; Crespo, D.

    2017-05-01

    Aircraft lap joints play an important role in minimizing the operational cost of airlines. Hence, airlines pay more attention to these technologies to improve efficiency. Namely, a major time consuming and costly process is maintenance of aircraft between the flights, for instance, to detect early formation of cracks, monitoring crack growth, and fixing the corresponding parts with joints, if necessary. This work is focused on the study of repairs of cracked aluminium alloy (AA) 2024-T3 plates to regain their original strength; particularly, cracked AA 2024-T3 substrate plates repaired with doublers of AA 2024-T3 with two configurations (riveted and with adhesive bonding) are analysed. The fatigue life of the substrate plates with cracks of 1, 2, 5, 10 and 12.7mm is computed using Fracture Analysis 3D (FRANC3D) tool. The stress intensity factors for the repaired AA 2024-T3 plates are computed for different crack lengths and compared using commercial FEA tool ABAQUS. The results for the bonded repairs showed significantly lower stress intensity factors compared with the riveted repairs. This improves the overall fatigue life of the bonded joint.

  15. Diamond machine tool face lapping machine

    DOEpatents

    Yetter, H.H.

    1985-05-06

    An apparatus for shaping, sharpening and polishing diamond-tipped single-point machine tools. The isolation of a rotating grinding wheel from its driving apparatus using an air bearing and causing the tool to be shaped, polished or sharpened to be moved across the surface of the grinding wheel so that it does not remain at one radius for more than a single rotation of the grinding wheel has been found to readily result in machine tools of a quality which can only be obtained by the most tedious and costly processing procedures, and previously unattainable by simple lapping techniques.

  16. The Enhancement of Composite Scarf Joint Interface Strength Through Carbon Nanotube Reinforcement

    DTIC Science & Technology

    2007-06-01

    includes single walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes ( MWCNT ) with varying length, purity, and concentration levels along the...OF PAGES 106 14. SUBJECT TERMS Carbon Nanotubes, CNT, SWCNT, MWCNT , Bamboo, Polymer Composite, Joint Strength Enhancement, Reinforcement 16...variables concerning the carbon nanotube application. The testing includes single walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes ( MWCNT

  17. Listeria monocytogenes uses Listeria adhesion protein (LAP) to promote bacterial transepithelial translocation and induces expression of LAP receptor Hsp60.

    PubMed

    Burkholder, Kristin M; Bhunia, Arun K

    2010-12-01

    Listeria monocytogenes interaction with the intestinal epithelium is a key step in the infection process. We demonstrated that Listeria adhesion protein (LAP) promotes adhesion to intestinal epithelial cells and facilitates extraintestinal dissemination in vivo. The LAP receptor is a stress response protein, Hsp60, but the precise role for the LAP-Hsp60 interaction during Listeria infection is unknown. Here we investigated the influence of physiological stressors and Listeria infection on host Hsp60 expression and LAP-mediated bacterial adhesion, invasion, and transepithelial translocation in an enterocyte-like Caco-2 cell model. Stressors such as heat (41°C), tumor necrosis factor alpha (TNF-α) (100 U), and L. monocytogenes infection (10(4) to 10(6) CFU/ml) significantly (P < 0.05) increased plasma membrane and intracellular Hsp60 levels in Caco-2 cells and consequently enhanced LAP-mediated L. monocytogenes adhesion but not invasion of Caco-2 cells. In transepithelial translocation experiments, the wild type (WT) exhibited 2.7-fold more translocation through Caco-2 monolayers than a lap mutant, suggesting that LAP is involved in transepithelial translocation, potentially via a paracellular route. Short hairpin RNA (shRNA) suppression of Hsp60 in Caco-2 cells reduced WT adhesion and translocation 4.5- and 3-fold, respectively, while adhesion remained unchanged for the lap mutant. Conversely, overexpression of Hsp60 in Caco-2 cells enhanced WT adhesion and transepithelial translocation, but not those of the lap mutant. Furthermore, initial infection with a low dosage (10(6) CFU/ml) of L. monocytogenes increased plasma membrane and intracellular expression of Hsp60 significantly, which rendered Caco-2 cells more susceptible to subsequent LAP-mediated adhesion and translocation. These data provide insight into the role of LAP as a virulence factor during intestinal epithelial infection and pose new questions regarding the dynamics between the host stress response

  18. Lap shear strength and healing capability of self-healing adhesive containing epoxy/mercaptan microcapsules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghazali, Habibah; Ye, Lin; Zhang, Ming-Qiu

    The aim of this work is to develop a self-healing polymeric adhesive formulation with epoxy/mercaptan microcapsules. Epoxy/mercaptan microcapsules were dispersed into a commercialize two-part epoxy adhesive for developing self-healing epoxy adhesive. The influence of different content of microcapsules on the shear strength and healing capability of epoxy adhesive were investigated using single-lap-joints with average thickness of adhesive layer of about 180 µm. This self-healing adhesive was used in bonding of 5000 series aluminum alloys adherents after mechanical and alkaline cleaning surface treatment. The adhesion strength was measured and presented as function of microcapsules loading. The results indicated that the virgin lapmore » shear strength was increased by about 26% with addition of 3 wt% of self-healing microcapsules. 12% to 28% recovery of the shear strength is achieved after self-healing depending on the microcapsules content. Scanning electron microscopy was used to study fracture surface of the joints. The self-healing adhesives exhibit recovery of both cohesion and adhesion properties with room temperature healing.« less

  19. Adhesive Bonding Characterization of Composite Joints for Cryogenic Usage

    NASA Technical Reports Server (NTRS)

    Graf, Neil A.; Schieleit, Gregory F.; Biggs, Robert

    2000-01-01

    The development of polymer composite cryogenic tanks is a critical step in creating the next generation of launch vehicles. Future reusable launch vehicles need to minimize the gross liftoff weight (GLOW). This weight reduction is possible due to the large reduction in weight that composite materials can provide over current aluminum technology. In addition to composite technology, adhesively bonded joints potentially have several benefits over mechanically fastened joints, such as weight savings and cryogenic fluid containment. Adhesively bonded joints may be used in several areas of these cryogenic tanks, such as in lobe-to-lobe joints (in a multi-lobe concept), skirt-to-tank joint, strut-to-tank joint, and for attaching stringers and ring frames. The bonds, and the tanks themselves, must be able to withstand liquid cryogenic fuel temperatures that they contain. However, the use of adhesively bonded composite joints at liquid oxygen and hydrogen temperatures is largely unknown and must be characterized. Lockheed Martin Space Systems Company, Michoud Operations performed coupon-level tests to determine effects of material selection, cure process parameters, substrate surface preparation, and other factors on the strength of these composite joints at cryogenic temperatures. This led to the selection of a material and process that would be suitable for a cryogenic tank. KEY WORDS: Composites, Adhesive Bonding, Cryogenics

  20. Torque Limit for Bolted Joint For Composites. Part B; Experimentation

    NASA Technical Reports Server (NTRS)

    Kostreva, Kristian M.

    2003-01-01

    Today, aerospace quality composite parts are generally made from either a unidirectional tape or a fabric prepreg form depending on the application. The matrix material, typically epoxy because of it dimensional stability, is pre-impregnated onto the fibers to ensure uniform distribution. Both of these composite forms are finding themselves used in applications where a joint is required. Two widely used joint methods are the classic mechanically fastened joint, and the contemporary bonded joint; however, the mechanically fastened joint is most commonly used by design engineers. A major portion of the research up-to-date about bolted composite joints has dealt with the inplane static load capacity. This work has helped to spawn standards dealing with filled-hole static joint strength. Other research has clearly shown that the clamp-up load in the mechanical fastener significantly affects the joint strength in a beneficial manner by reducing the bearing strength dependence of the composite laminate. One author reported a maximum increase in joint strength of 28%. This finding has helped to improve the reliability and efficiency of the joint in a composite structure.

  1. Pressure variation of developed lapping tool on surface roughness

    NASA Astrophysics Data System (ADS)

    Hussain, A. K.; Lee, K. Q.; Aung, L. M.; Abu, A.; Tan, L. K.; Kang, H. S.

    2018-01-01

    Improving the surface roughness is always one of the major concerns in the development of lapping process as high precision machining caters a great demand in manufacturing process. This paper aims to investigate the performance of a newly designed lapping tool in term of surface roughness. Polypropylene is used as the lapping tool head. The lapping tool is tested for different pressure to identify the optimum working pressure for lapping process. The theoretical surface roughness is also calculated using Vickers Hardness. The present study shows that polypropylene is able to produce good quality and smooth surface roughness. The optimum lapping pressure in the present study is found to be 45 MPa. By comparing the theoretical and experimental values, the present study shows that the newly designed lapping tool is capable to produce finer surface roughness.

  2. The pressure control technology of the active stressed lap

    NASA Astrophysics Data System (ADS)

    Li, Ying; Wang, Daxing

    2010-10-01

    The active stressed lap polishing technology is a kind of new polishing technology that can actively deform the lap surface to become an off-axis asphere according to different lap position on mirror surface and different angle of lap. The pressure of the lap on the mirror is an important factor affecting the grinding efficiency of the optics mirror. The active stressed lap technology using dynamic pressure control solution in the process of polishing astronomical Aspheric Mirror with faster asphericity will provide the advantage like high polishing speed and natural smooth, etc. This article puts emphases on the pressure control technology of the active stressed lap technology. It requires that the active stressed lap keeps symmetrical vertical compression on the mirrors in the process of grinding mirrors. With a background of an active stressed lap 450mm in diameter, this article gives an outline of the pressure control organization, analyzes the principle of pressure control and proposes the limitations of the present pressure control organization and the relevant solutions, designs a digital pressure controller with C32-bit RISC embedded and gives the relevant experimental test result finally.

  3. "Analysis of Van Allen Probes lapping data using Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE)"

    NASA Astrophysics Data System (ADS)

    Gallton, D. A.; Manweiler, J. W.; Gerrard, A. J.; Cravens, T.; Lanzerotti, L. J.; Patterson, J. D.

    2017-12-01

    The increased frequency of the Van Allen Probes (VAP) lapping events provides a unique opportunity to examine the scaling length and structure of the magnetospheric plasma at microscales. Onboard the probes is the RBSPICE instrument, which is an energetic particle detector capable of observing ions (H+, Hen+, On+) from approximately 7 KeV upwards to values of 1 MeV. Here we provide a correlation analysis of the probes during quiet time lapping events which examines the behavior of the particle populations when the probes are within 1,000 km of separation distance, at a distance greater than 15,000 km from Earth, and where the Kp and AE magnetic indices show minimal geomagnetic activity. The correlation values of the energetic particle distributions are examined and the falloff distances associated with the tail end of the plasma distribution are calculated. We provide an overview of the initial analysis results for H during the quiet time lapping events and a discussion of the causal relationship.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabau, Adrian S; Warren, Charles David; ERDMAN III, DONALD L

    Due to its increased use in the automotive and aerospace industries, joining of Carbon Fiber-reinforced Polymer matrix Composites (CFPC) to metals demands enhanced surface preparation and control of surface morphology prior to joining. In this study, surfaces of both composite and aluminum were prepared for joining using a new laser based technique, in which the laser interference power profile was created by splitting the beam and guiding those beams to the sample surface by overlapping each other with defined angles to each other. Results were presented for the overlap shear testing of single-lap joints made with Al 5182 and CFPCmore » specimens whose surfaces prepared by (a) surface abrasion and solvent cleaning; and (b) laser-interference structured surfaces by rastering with a 4 mm laser beam at approximately 3.5 W power. CFPC specimens of T700S carbon fiber, Prepreg T70 epoxy, 4 or 5 ply thick, 0/90o plaques were used. Adhesive DP810 was used to bond Al and CFPC. The bondline was 0.25mm and the bond length was consistent among all joints produced. First, the effect of the laser speed on the joint performance was evaluated by laser-interference structure Al and CFPC surfaces with a beam angle of 3o and laser beam speeds of 3, 5, and 10 mm/s. For this sensitivity study, 3 joint specimens were used per each joint type. Based on the results for minimum, maximum, and mean values for the shear lap strength and maximum load for all the 9 joint types, two joint types were selected for further evaluations. Six additional joint specimens were prepared for these two joint types in order to obtain better statistics and the shear test data was presented for the range, mean, and standard deviation. The results for the single-lap shear tests obtained for six joint specimens, indicate that the shear lap strength, maximum load, and displacement at maximum load for those joints made with laser-interference structured surfaces were increased by approximately 14.8%, 16%, and

  5. Expression of Surface Protein LapB by a Wide Spectrum of Listeria monocytogenes Serotypes as Demonstrated with Anti-LapB Monoclonal Antibodies

    PubMed Central

    Boivin, Teela; Elmgren, Cathie; Brooks, Brian W.; Huang, Hongsheng; Pagotto, Franco

    2016-01-01

    ABSTRACT Protein antigens expressed on the surface of all strains of Listeria monocytogenes and absent from nonpathogenic Listeria spp. are presumably useful targets for pathogen identification, detection, and isolation using specific antibodies (Abs). To seek such surface proteins expressed in various strains of L. monocytogenes for diagnostic applications, we focused on a set of surface proteins known to be involved or putatively involved in L. monocytogenes virulence and identified Listeria adhesion protein B (LapB) as a candidate based on the bioinformatics analysis of whole-genome sequences showing that the gene coding for LapB was present in L. monocytogenes strains and absent from strains of other Listeria spp. Immunofluorescence microscopy (IFM), performed with rabbit polyclonal antibodies against the recombinant LapB protein (rLapB) of L. monocytogenes serotype 4b strain L10521, confirmed expression of LapB on the surface. A panel of 48 mouse monoclonal antibodies (MAbs) to rLaB was generated, and 7 of them bound strongly to the surface of L. monocytogenes cells as demonstrated using IFM. Further characterization of these 7 anti-LapB MAbs, using an enzyme-linked immunosorbent assay (ELISA), revealed that 6 anti-LapB MAbs (M3484, M3495, M3500, M3509, M3517, and M3519) reacted strongly with 46 (86.8%) of 53 strains representing 10 of the 12 serotypes tested (1/2a, 1/2b, 1/2c, 3a, 3b, 3c, 4ab, 4b, 4d, and 4e). These results indicate that LapB, together with companion anti-LapB MAbs, can be targeted as a biomarker for the detection and isolation of various L. monocytogenes strains from contaminated foods. IMPORTANCE Strains of L. monocytogenes are traditionally grouped into serotypes. Identification of a surface protein expressed in all or the majority of at least 12 serotypes would aid in the development of surface-binding monoclonal antibodies (MAbs) for detection and isolation of L. monocytogenes from foods. Bioinformatics analysis revealed that the gene

  6. Expression of Surface Protein LapB by a Wide Spectrum of Listeria monocytogenes Serotypes as Demonstrated with Anti-LapB Monoclonal Antibodies.

    PubMed

    Boivin, Teela; Elmgren, Cathie; Brooks, Brian W; Huang, Hongsheng; Pagotto, Franco; Lin, Min

    2016-11-15

    Protein antigens expressed on the surface of all strains of Listeria monocytogenes and absent from nonpathogenic Listeria spp. are presumably useful targets for pathogen identification, detection, and isolation using specific antibodies (Abs). To seek such surface proteins expressed in various strains of L. monocytogenes for diagnostic applications, we focused on a set of surface proteins known to be involved or putatively involved in L. monocytogenes virulence and identified Listeria adhesion protein B (LapB) as a candidate based on the bioinformatics analysis of whole-genome sequences showing that the gene coding for LapB was present in L. monocytogenes strains and absent from strains of other Listeria spp. Immunofluorescence microscopy (IFM), performed with rabbit polyclonal antibodies against the recombinant LapB protein (rLapB) of L. monocytogenes serotype 4b strain L10521, confirmed expression of LapB on the surface. A panel of 48 mouse monoclonal antibodies (MAbs) to rLaB was generated, and 7 of them bound strongly to the surface of L. monocytogenes cells as demonstrated using IFM. Further characterization of these 7 anti-LapB MAbs, using an enzyme-linked immunosorbent assay (ELISA), revealed that 6 anti-LapB MAbs (M3484, M3495, M3500, M3509, M3517, and M3519) reacted strongly with 46 (86.8%) of 53 strains representing 10 of the 12 serotypes tested (1/2a, 1/2b, 1/2c, 3a, 3b, 3c, 4ab, 4b, 4d, and 4e). These results indicate that LapB, together with companion anti-LapB MAbs, can be targeted as a biomarker for the detection and isolation of various L. monocytogenes strains from contaminated foods. Strains of L. monocytogenes are traditionally grouped into serotypes. Identification of a surface protein expressed in all or the majority of at least 12 serotypes would aid in the development of surface-binding monoclonal antibodies (MAbs) for detection and isolation of L. monocytogenes from foods. Bioinformatics analysis revealed that the gene coding for Listeria

  7. C/EBPβ-LAP*/LAP Expression Is Mediated by RSK/eIF4B-Dependent Signalling and Boosted by Increased Protein Stability in Models of Monocytic Differentiation

    PubMed Central

    Christmann, Martin; Friesenhagen, Judith; Westphal, Andreas; Pietsch, Daniel; Brand, Korbinian

    2015-01-01

    The transcription factor C/EBPβ plays a key role in monocytic differentiation and inflammation. Its small isoform LIP is associated with proliferation at early premonocytic developmental stages and regulated via mTOR-dependent signalling. During later stages of (pre)monocytic differentiation there is a considerable increase in the large C/EBPβ isoforms LAP*/LAP which inhibit proliferation thus supporting terminal differentiation. Here, we showed in different models of monocytic differentiation that this dramatic increase in the LAP*/LAP protein and LAP/LIP ratio was accompanied by an only modest/retarded mRNA increase suggesting an important role for (post)translational mechanisms. We found that LAP*/LAP formation was induced via MEK/RSK-dependent cascades, whereas mTOR/S6K1 were not involved. Remarkably, LAP*/LAP expression was dependent on phosphorylated eIF4B, an acceleratory protein of RNA helicase eIF4A. PKR inhibition reduced the expression of eIF4B and C/EBPβ in an eIF2α-independent manner. Furthermore, under our conditions a marked stabilisation of LAP*/LAP protein occurred, accompanied by reduced chymotrypsin-like proteasome/calpain activities and increased calpastatin levels. Our study elucidates new signalling pathways inducing LAP*/LAP expression and indicates new alternative PKR functions in monocytes. The switch from mTOR- to RSK-mediated signalling to orchestrate eIF4B-dependent LAP*/LAP translation, accompanied by increased protein stability but only small mRNA changes, may be a prototypical example for the regulation of protein expression during selected processes of differentiation/proliferation. PMID:26646662

  8. Thermally Conductive Metal-Tube/Carbon-Composite Joints

    NASA Technical Reports Server (NTRS)

    Copeland, Robert J.

    2004-01-01

    An improved method of fabricating joints between metal and carbon-fiber-based composite materials in lightweight radiators and heat sinks has been devised. Carbon-fiber-based composite materials have been used in such heat-transfer devices because they offer a combination of high thermal conductivity and low mass density. Metal tubes are typically used to carry heat-transfer fluids to and from such heat-transfer devices. The present fabrication method helps to ensure that the joints between the metal tubes and the composite-material parts in such heat-transfer devices have both (1) the relatively high thermal conductances needed for efficient transfer of heat and (2) the flexibility needed to accommodate differences among thermal expansions of dissimilar materials in operation over wide temperature ranges. Techniques used previously to join metal tubes with carbon-fiber-based composite parts have included press fitting and bonding with epoxy. Both of these prior techniques have been found to yield joints characterized by relatively high thermal resistances. The present method involves the use of a solder (63 percent Sn, 37 percent Pb) to form a highly thermally conductive joint between a metal tube and a carbon-fiber-based composite structure. Ordinarily, the large differences among the coefficients of thermal expansion of the metal tube, solder, and carbon-fiber-based composite would cause the solder to pull away from the composite upon post-fabrication cooldown from the molten state. In the present method, the structure of the solder is modified (see figure) to enable it to deform readily to accommodate the differential thermal expansion.

  9. Experimental Investigation on High-Cycle Fatigue of Inconel 625 Superalloy Brazed Joints

    NASA Astrophysics Data System (ADS)

    Chen, Jianqiang; Demers, Vincent; Turner, Daniel P.; Bocher, Philippe

    2018-04-01

    The high-cycle fatigue performance and crack growth pattern of transient liquid phase-brazed joints in a nickel-based superalloy Inconel 625 were studied. Assemblies with different geometries and types of overlaps were vacuum-brazed using the brazing paste Palnicro-36M in conditions such as to generate eutectic-free joints. This optimal microstructure provides the brazed assemblies with static mechanical strength corresponding to that of the base metal. However, eutectic micro-constituents were observed in the fillet region of the brazed assembly due to an incomplete isothermal solidification within this large volume of filler metal. The fatigue performance increased significantly with the overlap distance for single-lap joints, and the best performance was found for double-lap joints. It was demonstrated that these apparent changes in fatigue properties according to the specimen geometry can be rationalized when looking at the fatigue data as a function of the local stress state at the fillet radii. Fatigue cracks were nucleated from brittle eutectic phases located at the surface of the fillet region. Their propagation occurred through the bimodal microstructure of fillet and the diffusion region to reach the base metal. High levels of crack path tortuosity were observed, suggesting that the ductile phases found in the microstructure may act as a potential crack stopper. The fillet region must be considered as the critical region of a brazed assembly for fatigue applications.

  10. Acoustic emissions (AE) monitoring of large-scale composite bridge components

    NASA Astrophysics Data System (ADS)

    Velazquez, E.; Klein, D. J.; Robinson, M. J.; Kosmatka, J. B.

    2008-03-01

    Acoustic Emissions (AE) has been successfully used with composite structures to both locate and give a measure of damage accumulation. The current experimental study uses AE to monitor large-scale composite modular bridge components. The components consist of a carbon/epoxy beam structure as well as a composite to metallic bonded/bolted joint. The bonded joints consist of double lap aluminum splice plates bonded and bolted to carbon/epoxy laminates representing the tension rail of a beam. The AE system is used to monitor the bridge component during failure loading to assess the failure progression and using time of arrival to give insight into the origins of the failures. Also, a feature in the AE data called Cumulative Acoustic Emission counts (CAE) is used to give an estimate of the severity and rate of damage accumulation. For the bolted/bonded joints, the AE data is used to interpret the source and location of damage that induced failure in the joint. These results are used to investigate the use of bolts in conjunction with the bonded joint. A description of each of the components (beam and joint) is given with AE results. A summary of lessons learned for AE testing of large composite structures as well as insight into failure progression and location is presented.

  11. Shear Pressed Aligned Carbon Nanotubes and their use as Composite and Adhesive Interlayers

    NASA Astrophysics Data System (ADS)

    Stahl, James Joseph, III

    fiber nonwoven. A SPS falls into a short fiber nonwoven and is studied as a non-infused, infused, and infused functionalized interleaf in unidirectional carbon fiber composites for GIC improvement over non-interleaved samples. As with traditional interleaving studies it is possible to decrease delamination fracture toughness as well as increase, and the reasons for either are not always clear. While the SPS interleaves are promising to resist delamination, the scatter of the results make it an unreliable method of improvement. While these studies showed significant variability in effect of the interleaf, given the correct morphology of the SPS and precise measurement during the DCB testing it is possible to improve fracture toughness significantly with all SPS interleaves. A unique fabrication method is used to incorporate the SPS interleaves into lap joint and double strap joint geometries using a prepreg lay-up fabrication similar to forming the DCB specimens. This allowed study of the use of the SPS interleaf as an adhesive layer without the need to develop a SPS adhesive film that would not fail prematurely due to poor adhesion to cured composite panels. Results showed that improvement in GIC is not directly translated into improvement in joint strength. Lap joints showed a higher relationship between GIC than double strap joints likely due to the specimen geometry that results in the adhesive layer of lap joints failing in tension rather than shear.

  12. The Introduction of Crystallographic Concepts Using Lap-Dissolve Slide Techniques.

    ERIC Educational Resources Information Center

    Bodner, George M.; And Others

    1980-01-01

    Describes a method using lap-dissolve slide techniques with two or more slide projectors focused on a single screen for presenting visual effects that show structural features in extended arrays of atoms, or ions involving up to several hundred atoms. Presents an outline of an introduction to the structures of crystalline solids. (CS)

  13. Laparoscopic Skills Are Improved With LapMentor™ Training

    PubMed Central

    Andreatta, Pamela B.; Woodrum, Derek T.; Birkmeyer, John D.; Yellamanchilli, Rajani K.; Doherty, Gerard M.; Gauger, Paul G.; Minter, Rebecca M.

    2006-01-01

    Objective: To determine if prior training on the LapMentor™ laparoscopic simulator leads to improved performance of basic laparoscopic skills in the animate operating room environment. Summary Background Data: Numerous influences have led to the development of computer-aided laparoscopic simulators: a need for greater efficiency in training, the unique and complex nature of laparoscopic surgery, and the increasing demand that surgeons demonstrate competence before proceeding to the operating room. The LapMentor™ simulator is expensive, however, and its use must be validated and justified prior to implementation into surgical training programs. Methods: Nineteen surgical interns were randomized to training on the LapMentor™ laparoscopic simulator (n = 10) or to a control group (no simulator training, n = 9). Subjects randomized to the LapMentor™ trained to expert criterion levels 2 consecutive times on 6 designated basic skills modules. All subjects then completed a series of laparoscopic exercises in a live porcine model, and performance was assessed independently by 2 blinded reviewers. Time, accuracy rates, and global assessments of performance were recorded with an interrater reliability between reviewers of 0.99. Results: LapMentor™ trained interns completed the 30° camera navigation exercise in significantly less time than control interns (166 ± 52 vs. 220 ± 39 seconds, P < 0.05); they also achieved higher accuracy rates in identifying the required objects with the laparoscope (96% ± 8% vs. 82% ± 15%, P < 0.05). Similarly, on the two-handed object transfer exercise, task completion time for LapMentor™ trained versus control interns was 130 ± 23 versus 184 ± 43 seconds (P < 0.01) with an accuracy rate of 98% ± 5% versus 80% ± 13% (P < 0.001). Additionally, LapMentor™ trained interns outperformed control subjects with regard to camera navigation skills, efficiency of motion, optimal instrument handling, perceptual ability, and performance

  14. Literature Review on the Design of Composite Mechanically Fastened Joints (Revue de la Documentation sur la Conception des Joints a Liaison Mecanique en Composites),

    DTIC Science & Technology

    1986-02-01

    mechanics Eisenmann (32) established a bolted joint static strength prediction model based on fracture mechanics for composite materials. The failure...34 Composite Materials, Volume 2, Academic Press, 1974, pp. 353-431. 32. Eisenmann , J.R., "Bolted Joint Static Strength Model for Composite Materials," NASA

  15. Material characterization of structural adhesives in the lap shear mode

    NASA Technical Reports Server (NTRS)

    Sancaktar, E.; Schenck, S. C.

    1983-01-01

    A general method for characterizing structual adhesives in the bonded lap shear mode is proposed. Two approaches in the form of semiempirical and theoretical approaches are used. The semiempirical approach includes Ludwik's and Zhurkov's equations to describe respectively, the failure stresses in the constant strain rate and constant stress loading modes with the inclusion of the temperature effects. The theoretical approach is used to describe adhesive shear stress-strain behavior with the use of viscoelastic or nonlinear elastic constitutive equations. Two different model adhesives are used in the single lap shear mode with titanium adherends. These adhesives (one of which was developed at NASA Langley Research Center) are currently considered by NASA for possible aerospace applications. Use of different model adhesives helps in assessment of the generality of the method.

  16. Modeling Progressive Failure of Bonded Joints Using a Single Joint Finite Element

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott E.; Waas, Anthony M.; Bednarcyk, Brett A.

    2010-01-01

    Enhanced finite elements are elements with an embedded analytical solution which can capture detailed local fields, enabling more efficient, mesh-independent finite element analysis. In the present study, an enhanced finite element is applied to generate a general framework capable of modeling an array of joint types. The joint field equations are derived using the principle of minimum potential energy, and the resulting solutions for the displacement fields are used to generate shape functions and a stiffness matrix for a single joint finite element. This single finite element thus captures the detailed stress and strain fields within the bonded joint, but it can function within a broader structural finite element model. The costs associated with a fine mesh of the joint can thus be avoided while still obtaining a detailed solution for the joint. Additionally, the capability to model non-linear adhesive constitutive behavior has been included within the method, and progressive failure of the adhesive can be modeled by using a strain-based failure criteria and re-sizing the joint as the adhesive fails. Results of the model compare favorably with experimental and finite element results.

  17. Double fillet lap of laser welding of thin sheet AZ31B Mg alloy

    NASA Astrophysics Data System (ADS)

    Ishak, Mahadzir; Salleh, M. N. M.

    2018-05-01

    In this paper, we describe the experimental laser welding of thin sheet AZ31B using double fillet lap joint method. Laser welding is capable of producing high quality weld seams especially for small weld bead on thin sheet product. In this experiment, both edges for upper and lower sheets were subjected to the laser beam from the pulse wave (PW) mode of fiber laser. Welded sample were tested their joint strength by tensile-shear strength method and the fracture loads were studied. Strength for all welded samples were investigated and the effect of laser parameters on the joint strength and appearances were studied. Pulsed energy (EP) from laser process give higher effect on joint strength compared to the welding speed (WS) and angle of irradiation (AOI). Highest joint strength was possessed by sample with high EP with the same value of WS and AOI. The strength was low due to the crack defect at the centre of weld region.

  18. Design, fabrication, installation and flight service evaluation of a composite cargo ramp skin on a model CH-53 helicopter

    NASA Technical Reports Server (NTRS)

    Lowry, D. W.; Rich, M. J.

    1983-01-01

    The installation of a composite skin panel on the cargo ramp of a CH-530 marine helicopter is discussed. The composite material is of Kevlar/Epoxy (K/E) which replaces aluminum outer skins on the aft two bays of the ramp. The cargo ramp aft region was selected as being a helicopter airframe surface subjected to possible significant field damage and would permit an evaluation of the long term durability of the composite skin panel. A structural analysis was performed and the skin shears determined. Single lap joints of K/E riveted to aluminum were statically tested. The joint tests were used to determine bearing allowables and the required K/E skin gage. The K/E skin panels riveted to aluminum edge members were tested in a shear fixture to confirm the allowable shear and bearing strengths. Impact tests were conducted on aluminum skin panels to determine energy level and damage relationship. The K/E skin panels of various ply orientations and laminate thicknesses were then impacted at similar energy levels. The results of the analysis and tests were used to determine the required K/E skin gages in each of the end two bays of the ramp.

  19. Deformation measurement for a rotating deformable lap based on inverse fringe projection

    NASA Astrophysics Data System (ADS)

    Liao, Min; Zhang, Qican

    2015-03-01

    The active deformable lap (also namely stressed lap) is an efficient polishing tool in optical manufacturing. To measure the dynamic deformation caused by outside force on a deformable lap is important and helpful to the opticians to ensure the performance of a deformable lap as expected. In this paper, a manual deformable lap was designed to simulate the dynamic deformation of an active stressed lap, and a measurement system was developed based on inverse projected fringe technique to restore the 3D shape. A redesigned inverse fringe has been projected onto the surface of the measured lap, and the deformations of the tested lap become much obvious and can be easily and quickly evaluated by Fourier fringe analysis. Compared with the conventional projection, this technique is more obvious, and it should be a promising one in the deformation measurement of the active stressed lap in optical manufacturing.

  20. Influence of clamp-up force on the strength of bolted composite joints

    NASA Astrophysics Data System (ADS)

    Horn, Walter J.; Schmitt, Ron R.

    1994-03-01

    Composite materials offer the potential for a reduction in the number of individual parts and joints in a structure because large one-piece components can replace multipart assemblies. Nevertheless, there are many situations where composite parts must be joined and often mechanical fasteners provide the only practical method of joining those parts. The long-term strength of mechanically fastened joints of composite members can be directly affected by the clamp-up force of the fastener and thus perhaps by the relaxation of this force due to the viscoelastic character of the composite materials of the joint. Methods for predicting the effect of bolt clamp-up force relaxation on the strength of mechanically fastened joints of thermoplastic composite materials were investigated during the present study. A test program, using two thermoplastic composite materials, was conducted to determine the influence of clamp-up force on joint strength, to measure the relaxation of the joint clamp-up force with time, and to measure the change of joint strength as a function of time.

  1. 21 CFR 888.3100 - Ankle joint metal/composite semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ankle joint metal/composite semi-constrained... Ankle joint metal/composite semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/composite semi-constrained cemented prosthesis is a device intended to be implanted to replace an...

  2. 21 CFR 888.3100 - Ankle joint metal/composite semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/composite semi-constrained... Ankle joint metal/composite semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/composite semi-constrained cemented prosthesis is a device intended to be implanted to replace an...

  3. A lapping apparatus for hard tissue sections.

    PubMed

    Malcolm, A S

    1975-02-01

    A Lapping Apparatus is described which enables sections both embedded and unembedded to be ground plano parallel within +/- 1 micron. Sections cemented to steel subplates are retained by a magnetic holder which simplifies loading and unloading. Good surface and edge finish can be obtained and only short lapping times are required.

  4. 21 CFR 888.3340 - Hip joint metal/composite semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/composite semi-constrained... Hip joint metal/composite semi-constrained cemented prosthesis. (a) Identification. A hip joint metal/composite semi-constrained cemented prosthesis is a two-part device intended to be implanted to replace a...

  5. Study on the Strength of GFRP/Stainless Steel Adhesive Joints Reinforced with Glass Mat

    NASA Astrophysics Data System (ADS)

    Iwasa, Masaaki

    The adhesive strengths of glass fiber reinforced plastics/metal adhesive joints reinforced with glass mat under tensile shear loads and tensile loads were investigated analytically and experimentally. First, the stress singularity parameters of the bonding edges were analyzed by FEM for various types of adhesive joints reinforced with glass mat. The shear stress and normal stress distributions near the bonding edge can be expressed by two stress singularity parameters. Second, tensile shear tests were performed on taper lap joint and taper lap joint reinforced with glass mat and tensile tests were performed on T-type adhesive joint and T-type adhesive joint reinforced with glass mat. The relationships between the loads and the crosshead displacements were measured. We concluded that reinforcing adhesive joints has a greater effect on strength under tensile load than under tensile shear load. The adhesive joints strength reinforced with glass mat can be evaluated by using stress singularity parameters.

  6. Lap-Dissolve Slides

    ERIC Educational Resources Information Center

    Fine, Leonard W.; And Others

    1977-01-01

    Discusses the use of lap-dissolve projection to give students pre-laboratory instruction on an upcoming experiment. In this technique, two slide projectors are operated alternately so that one visual image fades away while the next appears on the same screen area. (MLH)

  7. A novel hybrid joining methodology for composite to steel joints

    NASA Astrophysics Data System (ADS)

    Sarh, Bastian

    This research has established a novel approach for designing, analyzing, and fabricating load bearing structural connections between resin infused composite materials and components made of steel or other metals or alloys. A design philosophy is proposed wherein overlapping joint sections comprised of fiber reinforced plastics (FRP's) and steel members are connected via a combination of adhesive bonding and integrally placed composite pins. A film adhesive is utilized, placed into the dry stack prior to resin infusion and is cured after infusion through either local heat elements or by placing the structure into an oven. The novel manner in which the composite pins are introduced consists of perforating the steel member with holes and placing pre-formed composite pins through them, also prior to resin infusion of the composite section. In this manner joints are co-molded structures such that secondary processing is eliminated. It is shown that such joints blend the structural benefits of adhesive and mechanically connected joints, and that the fabrication process is feasible for low-cost, large-scale production as applicable to the shipbuilding industry. Analysis procedures used for designing such joints are presented consisting of an adhesive joint design theory and a pin placement theory. These analysis tools are used in the design of specimens, specific designs are fabricated, and these evaluated through structural tests. Structural tests include quasi-static loading and low cycle fatigue evaluation. This research has thereby invented a novel philosophy on joints, created the manufacturing technique for fabricating such joints, established simple to apply analysis procedures used in the design of such joints (consisting of both an adhesive and a pin placement analysis), and has validated the methodology through specimen fabrication and testing.

  8. Study of mechanical joint strength of aluminum alloy 7075-T6 and dual phase steel 980 welded by friction bit joining and weld-bonding under corrosion medium

    DOE PAGES

    Lim, Yong Chae; Squires, Lile; Pan, Tsung-Yu; ...

    2014-12-30

    We have employed a unique solid-sate joining process, called friction bit joining (FBJ), to spot weld aluminum alloy (AA) 7075-T6 and dual phase (DP) 980 steel. Static joint strength was studied in the lap shear tension configuration. In addition, weld-bonding (adhesive + FBJ) joints were studied in order to evaluate the ability of adhesive to mitigate the impact of corrosion on joint properties. Accelerated laboratory cyclic corrosion tests were carried out for both FBJ only and weld-bonding joints. Furthermore, the FBJ only joints that emerged from corrosion testing had lap shear failure loads that were significantly lower than freshly preparedmore » joints. However, weld-bonding specimens retained more than 80% of the lap shear failure load of the freshly prepared weld-bonding specimens. Moreover, examination of joint cross sections confirmed that the presence of adhesive in the weld-bonding joints mitigated the effect of the corrosion environment, compared to FBJ only joints.« less

  9. Auto Mechanics I. Learning Activity Packets (LAPs). Section D--Suspension.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains six learning activity packets (LAPs) that outline the study activities for the "suspension" instructional area for an Auto Mechanics I course. The six LAPs cover the following topics: wheel bearings, tires and wheels, wheel balancing, suspension system, steering system, and wheel alignment. Each LAP contains a…

  10. Mutation in TOR1AIP1 encoding LAP1B in a form of muscular dystrophy: a novel gene related to nuclear envelopathies.

    PubMed

    Kayman-Kurekci, Gulsum; Talim, Beril; Korkusuz, Petek; Sayar, Nilufer; Sarioglu, Turkan; Oncel, Ibrahim; Sharafi, Parisa; Gundesli, Hulya; Balci-Hayta, Burcu; Purali, Nuhan; Serdaroglu-Oflazer, Piraye; Topaloglu, Haluk; Dincer, Pervin

    2014-07-01

    We performed genome-wide homozygosity mapping and mapped a novel myopathic phenotype to chromosomal region 1q25 in a consanguineous family with three affected individuals manifesting proximal and distal weakness and atrophy, rigid spine and contractures of the proximal and distal interphalangeal hand joints. Additionally, cardiomyopathy and respiratory involvement were noted. DNA sequencing of torsinA-interacting protein 1 (TOR1AIP1) gene encoding lamina-associated polypeptide 1B (LAP1B), showed a homozygous c.186delG mutation that causes a frameshift resulting in a premature stop codon (p.E62fsTer25). We observed that expression of LAP1B was absent in the patient skeletal muscle fibres. Ultrastructural examination showed intact sarcomeric organization but alterations of the nuclear envelope including nuclear fragmentation, chromatin bleb formation and naked chromatin. LAP1B is a type-2 integral membrane protein localized in the inner nuclear membrane that binds to both A- and B-type lamins, and is involved in the regulation of torsinA ATPase. Interestingly, luminal domain-like LAP1 (LULL1)-an endoplasmic reticulum-localized partner of torsinA-was overexpressed in the patient's muscle in the absence of LAP1B. Therefore, the findings suggest that LAP1 and LULL1 might have a compensatory effect on each other. This study expands the spectrum of genes associated with nuclear envelopathies and highlights the critical function for LAP1B in striated muscle. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Auto Mechanics I. Learning Activity Packets (LAPs). Section C--Engine.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains five learning activity packets (LAPs) that outline the study activities for the "engine" instructional area for an Auto Mechanics I course. The five LAPs cover the following topics: basic engine principles, cooling system, engine lubrication system, exhaust system, and fuel system. Each LAP contains a cover sheet…

  12. Critical joints in large composite aircraft structure

    NASA Technical Reports Server (NTRS)

    Nelson, W. D.; Bunin, B. L.; Hart-Smith, L. J.

    1983-01-01

    A program was conducted at Douglas Aircraft Company to develop the technology for critical structural joints of composite wing structure that meets design requirements for a 1990 commercial transport aircraft. The prime objective of the program was to demonstrate the ability to reliably predict the strength of large bolted composite joints. Ancillary testing of 180 specimens generated data on strength and load-deflection characteristics which provided input to the joint analysis. Load-sharing between fasteners in multirow bolted joints was computed by the nonlinear analysis program A4EJ. This program was used to predict strengths of 20 additional large subcomponents representing strips from a wing root chordwise splice. In most cases, the predictions were accurate to within a few percent of the test results. In some cases, the observed mode of failure was different than anticipated. The highlight of the subcomponent testing was the consistent ability to achieve gross-section failure strains close to 0.005. That represents a considerable improvement over the state of the art.

  13. New design deforming controlling system of the active stressed lap

    NASA Astrophysics Data System (ADS)

    Ying, Li; Wang, Daxing

    2008-07-01

    A 450mm diameter active stressed lap has been developed in NIAOT by 2003. We design a new lap in 2007. This paper puts on emphases on introducing the new deforming control system of the lap. Aiming at the control characteristic of the lap, a new kind of digital deforming controller is designed. The controller consists of 3 parts: computer signal disposing, motor driving and force sensor signal disposing. Intelligent numeral PID method is applied in the controller instead of traditional PID. In the end, the result of new deformation are given.

  14. Time- and temperature-dependent failures of a bonded joint

    NASA Astrophysics Data System (ADS)

    Sihn, Sangwook

    This dissertation summarizes my study of time- and temperature-dependent behavior of a tubular lap bonded joint to provide a design methodology for windmill blade structures. The bonded joint is between a cast-iron rod and a GFRP composite pipe. The adhesive material is an epoxy containing chopped glass fibers. We proposed a new fabrication method to make concentric and void-less specimens of the tubular joint with a thick adhesive bondline to stimulate the root bond of a blade. The thick bondline facilitates the joint assembly of actual blades. For a better understanding of the behavior of the bonded joint, we studied viscoelastic behavior of the adhesive materials by measuring creep compliance at several temperatures during loading period. We observed that the creep compliance depends highly on the period of loading and the temperature. We applied time-temperature equivalence to the creep compliance of the adhesive material to obtain time-temperature shift factors. We also performed constant-rate of monotonically increased uniaxial tensile tests to measure static strength of the tubular lap joint at several temperatures and different strain-rates. We observed two failure modes from load-deflection curves and failed specimens. One is the brittle mode, which was caused by weakness of the interfacial strength occurring at low temperature and short period of loading. The other is the ductile mode, which was caused by weakness of the adhesive material at high temperature and long period of loading. Transition from the brittle to the ductile mode appeared as the temperature or the loading period increased. We also performed tests under uniaxial tensile-tensile cyclic loadings to measure fatigue strength of the bonded joint at several temperatures, frequencies and stress ratios. The fatigue data are analyzed statistically by applying the residual strength degradation model to calculate statistical distribution of the fatigue life. Combining the time

  15. Modeling of fracture and durability of paste-bonded composite joints subjected to hygro-thermal-mechanical loading

    NASA Astrophysics Data System (ADS)

    Harris, David Lee

    The objective of the research is to characterize the behavior of composite/composite joints with paste adhesive using both experimental testing and analytical modeling. In comparison with the conventional tape adhesive, joining composites using paste adhesive provides several advantages. The carbon fiber laminate material systems employed in this study included IM7 carbon fibers and 977-3 epoxy matrix assembled in prepreg tape, and AS4 carbon fibers and 977-3 epoxy matrix as a five-harness satin weave. The adhesive employed was EA 9394 epoxy. All laminates and test specimens were fabricated and inspected by Boeing using their standard propriety procedures. Three types of test specimens were used in the program. They were bonded double-lap shear (DLS), bonded double cantilever beam (DCB) and bonded interlaminar tension (ILT) specimens. A group of specimens were conditioned at elevated temperature and humidity in an environmental chamber at Boeing's facility and their moisture absorption recorded with time. Specimens were tested at room temperature dry and elevated temperatures. DCB and DLS specimens were tested in fatigue as well as static conditions. Two-dimensional finite element models of the three configurations were developed for determining stresses and strains using the ABAQUS finite element package code. Due to symmetry, only the one-half of the specimen needed to be considered thus reducing computational time. The effect of the test fixture is not taken into account instead equivalent distributed stresses are applied directly on the composite laminates. For each of the specimen, the distribution of Mises stress and the first strain invariant J1 are obtained to identify potential failure locations within a specimen.

  16. 21 CFR 888.3490 - Knee joint femorotibial metal/composite non-constrained cemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Knee joint femorotibial metal/composite non... § 888.3490 Knee joint femorotibial metal/composite non-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/composite non-constrained cemented prosthesis is a device...

  17. 21 CFR 888.3490 - Knee joint femorotibial metal/composite non-constrained cemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/composite non... § 888.3490 Knee joint femorotibial metal/composite non-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/composite non-constrained cemented prosthesis is a device...

  18. [Sample German LAPS.

    ERIC Educational Resources Information Center

    Rosenthal, Bianca

    Four learning activity packages (LAPS) for use in secondary school German programs contain instructional materials which enable students to improve their basic linguistic skills. The units include: (1) "Grusse," (2) "Ich Heisse...Namen," (3) "Tune into Your Career: Business Correspondence 'Auf Deutch'," and (4) "Understanding German Culture."…

  19. 21 CFR 888.3500 - Knee joint femorotibial metal/composite semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Knee joint femorotibial metal/composite semi... § 888.3500 Knee joint femorotibial metal/composite semi-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/composite semi-constrained cemented prosthesis is a two-part...

  20. 21 CFR 888.3500 - Knee joint femorotibial metal/composite semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/composite semi... § 888.3500 Knee joint femorotibial metal/composite semi-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/composite semi-constrained cemented prosthesis is a two-part...

  1. Assembly of Lipopolysaccharide in Escherichia coli Requires the Essential LapB Heat Shock Protein*

    PubMed Central

    Klein, Gracjana; Kobylak, Natalia; Lindner, Buko; Stupak, Anna; Raina, Satish

    2014-01-01

    Here, we describe two new heat shock proteins involved in the assembly of LPS in Escherichia coli, LapA and LapB (lipopolysaccharide assembly protein A and B). lapB mutants were identified based on an increased envelope stress response. Envelope stress-responsive pathways control key steps in LPS biogenesis and respond to defects in the LPS assembly. Accordingly, the LPS content in ΔlapB or Δ(lapA lapB) mutants was elevated, with an enrichment of LPS derivatives with truncations in the core region, some of which were pentaacylated and exhibited carbon chain polymorphism. Further, the levels of LpxC, the enzyme that catalyzes the first committed step of lipid A synthesis, were highly elevated in the Δ(lapA lapB) mutant. Δ(lapA lapB) mutant accumulated extragenic suppressors that mapped either to lpxC, waaC, and gmhA, or to the waaQ operon (LPS biosynthesis) and lpp (Braun's lipoprotein). Increased synthesis of either FabZ (3-R-hydroxymyristoyl acyl carrier protein dehydratase), slrA (novel RpoE-regulated non-coding sRNA), lipoprotein YceK, toxin HicA, or MurA (UDP-N-acetylglucosamine 1-carboxyvinyltransferase) suppressed some of the Δ(lapA lapB) defects. LapB contains six tetratricopeptide repeats and, at the C-terminal end, a rubredoxin-like domain that was found to be essential for its activity. In pull-down experiments, LapA and LapB co-purified with LPS, Lpt proteins, FtsH (protease), DnaK, and DnaJ (chaperones). A specific interaction was also observed between WaaC and LapB. Our data suggest that LapB coordinates assembly of proteins involved in LPS synthesis at the plasma membrane and regulates turnover of LpxC, thereby ensuring balanced biosynthesis of LPS and phospholipids consistent with its essentiality. PMID:24722986

  2. Multi-field coupled sensing network for health monitoring of composite bolted joint

    NASA Astrophysics Data System (ADS)

    Wang, Yishou; Qing, Xinlin; Dong, Liang; Banerjee, Sourav

    2016-04-01

    Advanced fiber reinforced composite materials are becoming the main structural materials of next generation of aircraft because of their high strength and stiffness to weight ratios, and excellent designability. As key components of large composite structures, joints play important roles to ensure the integrity of the composite structures. However, it is very difficult to analyze the strength and failure modes of composite joints due to their complex nonlinear coupling factors. Therefore, there is a need to monitor, diagnose, evaluate and predict the structure state of composite joints. This paper proposes a multi-field coupled sensing network for health monitoring of composite bolted joints. Major work of this paper includes: 1) The concept of multifunctional sensor layer integrated with eddy current sensors, Rogowski coil and arrayed piezoelectric sensors; 2) Development of the process for integrating the eddy current sensor foil, Rogowski coil and piezoelectric sensor array in multifunctional sensor layer; 3) A new concept of smart composite joint with multifunctional sensing capability. The challenges for building such a structural state sensing system and some solutions to address the challenges are also discussed in the study.

  3. 21 CFR 888.3340 - Hip joint metal/composite semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hip joint metal/composite semi-constrained cemented prosthesis. 888.3340 Section 888.3340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Hip joint metal/composite semi-constrained cemented prosthesis. (a) Identification. A hip joint metal...

  4. 21 CFR 26.47 - Role and composition of the Joint Sectoral Committee.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Role and composition of the Joint Sectoral... EUROPEAN COMMUNITY Specific Sector Provisions for Medical Devices § 26.47 Role and composition of the Joint... joint assessment of the equivalence of conformity assessment bodies (CAB's); (2) Developing and...

  5. Tensile strength of simulated and welded butt joints in W-Cu composite sheet

    NASA Technical Reports Server (NTRS)

    Moore, Thomas J.; Watson, Gordon K.

    1994-01-01

    The weldability of W-Cu composite sheet was investigated using simulated and welded joints. The welded joints were produced in a vacuum hot press. Tensile test results showed that simulated joints can provide strength and failure mode data which can be used in joint design for actual weldments. Although all of the welded joints had flaws, a number of these joints were as strong as the W-Cu composite base material.

  6. Behaviour and Analysis of Mechanically Fastened Joints in Composite Structures

    DTIC Science & Technology

    1988-03-01

    Safety Factors for Use When Designing bolted Joints In GRP," Composites , April 1979, pp. M376. 93. Dastln, S., "Joining and Machining Techniques... MACHINE SPACER LOCKmm STEEL PLATE FASTENER 203 mm OR DOWEL FiN EXTENSOMETER EXTENSOMETER TGAUGE LENGTH ATTACHMENT COMPOSITE - PLATE 31 mm p NOTE: NOT TO...No.427 Behaviour and Analysis of Mechanically Fastened Joints in Composite Structures DTIC CXVTflUTION STATEME~r £ELECTE Approved fm Vubhc sIlam l JUL

  7. Dynamic deformation measurement and analysis of active stressed lap using optical method

    NASA Astrophysics Data System (ADS)

    Zhang, Qican; Su, Xianyu; Liu, Yuankun; Xiang, Liqun

    2007-12-01

    The active stressed lap is the heart of polishing process. A novel non-contact optical method of dynamic deformation measurement and analysis of an active stressed lap is put forward. This method, based on structured illumination, is able to record full-field information of the bending and rotating stressed lap dynamically and continuously, while its profile is changed under computer control, and restore the whole process of lap deformation varied with time at different position and rotating angle. It has been verified by experiments that this proposed method will be helpful to the opticians to ensure the stressed lap as expected.

  8. iLAP: a workflow-driven software for experimental protocol development, data acquisition and analysis

    PubMed Central

    2009-01-01

    Background In recent years, the genome biology community has expended considerable effort to confront the challenges of managing heterogeneous data in a structured and organized way and developed laboratory information management systems (LIMS) for both raw and processed data. On the other hand, electronic notebooks were developed to record and manage scientific data, and facilitate data-sharing. Software which enables both, management of large datasets and digital recording of laboratory procedures would serve a real need in laboratories using medium and high-throughput techniques. Results We have developed iLAP (Laboratory data management, Analysis, and Protocol development), a workflow-driven information management system specifically designed to create and manage experimental protocols, and to analyze and share laboratory data. The system combines experimental protocol development, wizard-based data acquisition, and high-throughput data analysis into a single, integrated system. We demonstrate the power and the flexibility of the platform using a microscopy case study based on a combinatorial multiple fluorescence in situ hybridization (m-FISH) protocol and 3D-image reconstruction. iLAP is freely available under the open source license AGPL from http://genome.tugraz.at/iLAP/. Conclusion iLAP is a flexible and versatile information management system, which has the potential to close the gap between electronic notebooks and LIMS and can therefore be of great value for a broad scientific community. PMID:19941647

  9. Ultrasonic guided wave monitoring of composite wing skin-to-spar bonded joints in aerospace structures

    NASA Astrophysics Data System (ADS)

    Matt, Howard; Bartoli, Ivan; Lanza di Scalea, Francesco

    2005-10-01

    The monitoring of adhesively bonded joints by ultrasonic guided waves is the general topic of this paper. Specifically, composite-to-composite joints representative of the wing skin-to-spar bonds of unmanned aerial vehicles (UAVs) are examined. This research is the first step towards the development of an on-board structural health monitoring system for UAV wings based on integrated ultrasonic sensors. The study investigates two different lay-ups for the wing skin and two different types of bond defects, namely poorly cured adhesive and disbonded interfaces. The assessment of bond state is based on monitoring the strength of transmission through the joints of selected guided modes. The wave propagation problem is studied numerically by a semi-analytical finite element method that accounts for viscoelastic damping, and experimentally by ultrasonic testing that uses small PZT disks preferably exciting and detecting the single-plate s0 mode. Both the models and the experiments confirm that the ultrasonic energy transmission through the joint is highly dependent on the bond conditions, with defected bonds resulting in increased transmission strength. Large sensitivity to the bond conditions is found at mode coupling points, as a result of the large interlayer energy transfer.

  10. Creation of an Aeronautical Capstone Design Project Program at Ohio State University

    DTIC Science & Technology

    2014-12-08

    Equation 12 below. As Figure 35 shows, a single adhesively bonded lap joint is considered. The epoxy only sees a load in the axial direction. In...lap joint [1] = = ( ) 12 =stress distribution factor = applied load in the axial direction ...Figure 11. The joints are designed to handle the bending loads of horizontal, vertical and angled deployment and are designed to directly load the carbon

  11. Multi-Scale Computational Modeling of Ni-Base Superalloy Brazed Joints for Gas Turbine Applications

    NASA Astrophysics Data System (ADS)

    Riggs, Bryan

    , ductile a-Ni phase that formed at the joint interface and a hard, brittle multi-phase centerline eutectic. CrB and Ni3B type borides were identified in the eutectic region via electron probe micro-analysis, and a boron diffusion gradient was observed in the BM adjacent to the joint. The volume fraction of centerline eutectic was found to be highly dependent on the extent of the boron diffusion that occurred during brazing and therefore a function of the primary process parameters; hold time, temperature, FM/BM composition, and joint gap. Thermo-Calc(TM) and DICTRA(TM) simulations were used to model the BM dissolution, isothermal solidification and phase transformations that occurred during brazing to predict the final joint microstructure based on these process parameters. Good agreement was found between experimental and simulated joint microstructures at various joint gaps demonstrating the application of these simulations for brazed joints. However, thermodynamic/kinetic databases available for brazing FMs were limited. A variety of mechanical testing was performed to determine the mechanical properties of CMSX-4/BNi-2 and IN718/BNi-2 brazed joints including small-scale tensile tests, standard-size butt joints and lap shear tests. Small-scale tensile testing provided a novel method for studying microstructure-property relationships in brazed joints and indicated that both joint strength and ductility decrease significantly with an increase in the volume fraction of centerline eutectic. In-situ observations during small-scale testing also showed strain localization and crack initiation occurs around the hard, eutectic phases in the joint microstructure during loading. The average tensile strength for standard-size IN718/BNi-2 butt joints containing a low volume fraction of centerline eutectic was found to be 152.8 ksi approximately 90% of the BM yield strength (˜170 ksi). The average lap shear FM stress was found to decrease from 70 to 20 ksi for IN718/BNi-2 joints and

  12. Design, Fabrication and Characterization of High Temperature Joints in Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.

    1999-01-01

    Ceramic joining has been recognized as one of the enabling technologies for the successful utilization of ceramic components in a number of demanding, high temperature applications. Various joint design philosophies and design issues have been discussed along with an affordable, robust ceramic joining technology (ARCJoinT). A wide variety of silicon carbide-based composite materials, in different shapes and sizes, have been joined using this technology. This technique is capable of producing joints with tailorable thickness and composition. The room and high temperature mechanical properties and fractography of ceramic joints have been reported. These joints maintain their mechanical strength up to 1200 C in air. This technology is suitable for the joining of large and complex shaped ceramic composite components and with certain modifications, can be applied to repair of ceramic components damaged in service.

  13. Design, Fabrication, and Characterization of High Temperature Joints in Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.

    1999-01-01

    Ceramic joining has been recognized as one of the enabling technologies for the successful utilization of ceramic components in a number of demanding, high temperature applications. Various joint design philosophies and design issues have been discussed along with an affordable, robust ceramic joining technology (ARCJoinT). A wide variety of silicon carbide-based composite materials, in different shapes and sizes, have been joined using this technology. This technique is capable of producing joints with tailorable thickness and composition. The room and high temperature mechanical properties and fractography of ceramic joints have been reported. These joints maintain their mechanical strength up to 1200C in air. This technology is suitable for the joining of large and complex shaped ceramic composite components and with certain modifications, can be applied to repair of ceramic components damaged in service.

  14. Induction of polyploidy by nuclear fusion mechanism upon decreased expression of the nuclear envelope protein LAP2β in the human osteosarcoma cell line U2OS.

    PubMed

    Ben-Shoshan, Shirley Oren; Simon, Amos J; Jacob-Hirsch, Jasmine; Shaklai, Sigal; Paz-Yaacov, Nurit; Amariglio, Ninette; Rechavi, Gideon; Trakhtenbrot, Luba

    2014-01-28

    Polyploidy has been recognized for many years as an important hallmark of cancer cells. Polyploid cells can arise through cell fusion, endoreplication and abortive cell cycle. The inner nuclear membrane protein LAP2β plays key roles in nuclear envelope breakdown and reassembly during mitosis, initiation of replication and transcriptional repression. Here we studied the function of LAP2β in the maintenance of cell ploidy state, a role which has not yet been assigned to this protein. By knocking down the expression of LAP2β, using both viral and non-viral RNAi approaches in osteosarcoma derived U2OS cells, we detected enlarged nuclear size, nearly doubling of DNA content and chromosomal duplications, as analyzed by fluorescent in situ hybridization and spectral karyotyping methodologies. Spectral karyotyping analyses revealed that near-hexaploid karyotypes of LAP2β knocked down cells consisted of not only seven duplicated chromosomal markers, as could be anticipated by genome duplication mechanism, but also of four single chromosomal markers. Furthermore, spectral karyotyping analysis revealed that both of two near-triploid U2OS sub-clones contained the seven markers that were duplicated in LAP2β knocked down cells, whereas the four single chromosomal markers were detected only in one of them. Gene expression profiling of LAP2β knocked down cells revealed that up to a third of the genes exhibiting significant changes in their expression are involved in cancer progression. Our results suggest that nuclear fusion mechanism underlies the polyploidization induction upon LAP2β reduced expression. Our study implies on a novel role of LAP2β in the maintenance of cell ploidy status. LAP2β depleted U2OS cells can serve as a model to investigate polyploidy and aneuploidy formation by nuclear fusion mechanism and its involvement in cancerogenesis.

  15. A Method of Strengthening Composite/Metal Joints

    NASA Technical Reports Server (NTRS)

    Polis, Daniel L.

    2011-01-01

    The term tape setback method denotes a method of designing and fabricating bonded joints between (1) box beams or other structural members made of laminated composite (matrix/ fiber) materials and (2) metal end fittings used to fasten these structural members to other structural members. The basic idea of the tape setback method is to mask the bonded interface between the metallic end fitting and composite member such that the bond does not extend out to the free edges of the composite member. The purpose served by the tape setback method is to strengthen the joints by decoupling stress concentrations from edge defects, which can cause premature failures. A related prior method that serves a similar purpose, involving the use of tapered adherends at the joints, can be too difficult and costly to be acceptable in some applications. The tape setback method offers an easier, less costly alternative. The structural members to which the method was originally applied were box beams in the form of composite tubes having flat faces with rounded corners. The end fittings were plugs made of a low-thermal- expansion nickel/iron alloy (see figure). In computational-simulation studies of tensile and compressive loading of members without tape setback, stresses were found to be concentrated at the free end edges of the composite tubes, and inspection of members that had been subjected to real tension and compression tests showed that cracks started at the free end edges. As applied to these members, the tape setback method makes them less vulnerable to initiation of failure at edge defects produced during fabrication. In real tension tests of comparable members without and with tape setback, the average mean tensile strength of the members with tape setback was found to be 1.9 times that of the members without tape setback.

  16. Resistance Training with Single vs. Multi-joint Exercises at Equal Total Load Volume: Effects on Body Composition, Cardiorespiratory Fitness, and Muscle Strength.

    PubMed

    Paoli, Antonio; Gentil, Paulo; Moro, Tatiana; Marcolin, Giuseppe; Bianco, Antonino

    2017-01-01

    The present study aimed to compare the effects of equal-volume resistance training performed with single-joint (SJ) or multi-joint exercises (MJ) on VO 2 max, muscle strength and body composition in physically active males. Thirty-six participants were divided in two groups: SJ group ( n = 18, 182.1 ± 5.2, 80.03 ± 2.78 kg, 23.5 ± 2.7 years) exercised with only SJ exercises (e.g., dumbbell fly, knee extension, etc.) and MJ group ( n = 18, 185.3 ± 3.6 cm, 80.69 ± 2.98 kg, 25.5 ± 3.8 years) with only MJ exercises (e.g., bench press, squat, etc.). The total work volume (repetitions × sets × load) was equated between groups. Training was performed three times a week for 8 weeks. Before and after the training period, participants were tested for VO 2 max, body composition, 1 RM on the bench press, knee extension and squat. Analysis of covariance (ANCOVA) was used to compare post training values between groups, using baseline values as covariates. According to the results, both groups decreased body fat and increased fat free mass with no difference between them. Whilst both groups significantly increased cardiorespiratory fitness and maximal strength, the improvements in MJ group were higher than for SJ in VO 2 max (5.1 and 12.5% for SJ and MJ), bench press 1 RM (8.1 and 10.9% for SJ and MJ), knee extension 1 RM (12.4 and 18.9% for SJ and MJ) and squat 1 RM (8.3 and 13.8% for SJ and MJ). In conclusion, when total work volume was equated, RT programs involving MJ exercises appear to be more efficient for improving muscle strength and maximal oxygen consumption than programs involving SJ exercises, but no differences were found for body composition.

  17. Friction stir lap joining of automotive aluminium alloy and carbon-fiber-reinforced plastic

    NASA Astrophysics Data System (ADS)

    Bang, H. S.; Das, A.; Lee, S.; Bang, H. S.

    2018-05-01

    Multi-material combination such as aluminium alloys and carbon-fiber-reinforced plastics (CFRP) are increasingly used in the aircraft and automobile industries to enhance strength-to-weight ratio of the respective parts and components. Various processes such as adhesive bonding, mechanical fasteners and laser beam joining were employed to join metal alloy and CFRP sheets. However, long processing time of adhesive bonding, extra weight induced by mechanical fasteners and high operating cost of the laser is major limitations of these processes. Therefore, friction stir welding is an alternative choice to overcome those limitations in joining of CFRP and aluminium alloys. In the present work, an attempt is undertaken to join AA5052 alloy and polyamide 66 CFRP sheets by friction stir lap joining technique using pinned and pin-less tools. The joint qualities are investigated extensively at different joining conditions using two different types of tools and surface ground aluminium sheets. The results show that pin-less tool and surface ground aluminium alloy can provide the suitable joint with maximum joint strength around 8 MPa.

  18. Deformations and strains in adhesive joints by moire interferometry

    NASA Technical Reports Server (NTRS)

    Post, D.; Czarnek, R.; Wood, J.; John, D.; Lubowinski, S.

    1984-01-01

    Displacement fields in a thick adherend lap joint and a cracked lap shear specimen were measured by high sensitivity moire interferometry. Contour maps of in-plane U and V displacements were obtained across adhesive and adherent surfaces. Loading sequences ranged from modest loads to near-failure loads. Quantitative results are given for displacements and certain strains in the adhesive and along the adhesive/adherend boundary lines. The results show nonlinear displacements and strains as a function of loads or stresses and they show viscoelastic or time-dependent response. Moire interferometry is an excellent method for experimental studies of adhesive joint performance. Subwavelength displacement resolution of a few micro-inches, and spatial resolution corresponding to 1600 fringes/inch (64 fringes/mm), were obtained in these studies. The whole-field contour maps offer insights not available from local measurements made by high sensitivity gages.

  19. Progressive Damage Analysis of Bonded Composite Joints

    NASA Technical Reports Server (NTRS)

    Leone, Frank A., Jr.; Girolamo, Donato; Davila, Carlos G.

    2012-01-01

    The present work is related to the development and application of progressive damage modeling techniques to bonded joint technology. The joint designs studied in this work include a conventional composite splice joint and a NASA-patented durable redundant joint. Both designs involve honeycomb sandwich structures with carbon/epoxy facesheets joined using adhesively bonded doublers.Progressive damage modeling allows for the prediction of the initiation and evolution of damage within a structure. For structures that include multiple material systems, such as the joint designs under consideration, the number of potential failure mechanisms that must be accounted for drastically increases the complexity of the analyses. Potential failure mechanisms include fiber fracture, intraply matrix cracking, delamination, core crushing, adhesive failure, and their interactions. The bonded joints were modeled using highly parametric, explicitly solved finite element models, with damage modeling implemented via custom user-written subroutines. Each ply was discretely meshed using three-dimensional solid elements. Layers of cohesive elements were included between each ply to account for the possibility of delaminations and were used to model the adhesive layers forming the joint. Good correlation with experimental results was achieved both in terms of load-displacement history and the predicted failure mechanism(s).

  20. Mechanical Behavior of Dowel-Type Joints Made of Wood Scrimber Composite

    PubMed Central

    He, Minjuan; Tao, Duo; Li, Zheng; Li, Maolin

    2016-01-01

    As a renewable building material with low embodied energy characteristics, wood has gained more and more attention in the green and sustainable building industry. In terms of material resource and physical properties, scrimber composite not only makes full use of fast-growing wood species, but also has better mechanical performance and less inherent variability than natural wood material. In this study, the mechanical behavior of bolted beam-to-column joints built with a kind of scrimber composite was investigated both experimentally and numerically. Two groups of specimens were tested under monotonic and low frequency cyclic loading protocols. The experimental results showed that the bolted joints built with scrimber composite performed well in initial stiffness, ductility, and energy dissipation. A three-dimensional (3D) non-linear finite element model (FEM) for the bolted beam-to-column joints was then developed and validated by experimental results. The validated model was further used to investigate the failure mechanism of the bolted joints through stress analysis. This study can contribute to the application of the proposed scrimber composite in structural engineering, and the developed FEM can serve as a useful tool to evaluate the mechanical behavior of such bolted beam-to-column joints with different configurations in future research. PMID:28773703

  1. Mechanical Behavior of Dowel-Type Joints Made of Wood Scrimber Composite.

    PubMed

    He, Minjuan; Tao, Duo; Li, Zheng; Li, Maolin

    2016-07-15

    As a renewable building material with low embodied energy characteristics, wood has gained more and more attention in the green and sustainable building industry. In terms of material resource and physical properties, scrimber composite not only makes full use of fast-growing wood species, but also has better mechanical performance and less inherent variability than natural wood material. In this study, the mechanical behavior of bolted beam-to-column joints built with a kind of scrimber composite was investigated both experimentally and numerically. Two groups of specimens were tested under monotonic and low frequency cyclic loading protocols. The experimental results showed that the bolted joints built with scrimber composite performed well in initial stiffness, ductility, and energy dissipation. A three-dimensional (3D) non-linear finite element model (FEM) for the bolted beam-to-column joints was then developed and validated by experimental results. The validated model was further used to investigate the failure mechanism of the bolted joints through stress analysis. This study can contribute to the application of the proposed scrimber composite in structural engineering, and the developed FEM can serve as a useful tool to evaluate the mechanical behavior of such bolted beam-to-column joints with different configurations in future research.

  2. Joint Development of a Fourth Generation Single Crystal Superalloy

    NASA Technical Reports Server (NTRS)

    Walston, S.; Cetel, A.; MacKay, R.; OHara, K.; Duhl, D.; Dreshfield, R.

    2004-01-01

    A new, fourth generation, single crystal superalloy has been jointly developed by GE Aircraft Engines, Pratt & Whitney, and NASA. The focus of the effort was to develop a turbine airfoil alloy with long-term durability for use in the High Speed Civil Transport. In order to achieve adequate long-time strength improvements at moderate temperatures and retain good microstructural stability, it was necessary to make significant composition changes from 2nd and 3rd generation single crystal superalloys. These included lower chromium levels, higher cobalt and rhenium levels and the inclusion of a new alloying element, ruthenium. It was found that higher Co levels were beneficial to reducing both TCP precipitation and SRZ formation. Ruthenium caused the refractory elements to partition more strongly to the ' phase, which resulted in better overall alloy stability. The final alloy, EPM 102, had significant creep rupture and fatigue improvements over the baseline production alloys and had acceptable microstructural stability. The alloy is currently being engine tested and evaluated for advanced engine applications.

  3. Active Metal Brazing and Characterization of Brazed Joints in Titanium to Carbon-Carbon Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, T. P.; Morscher, G. N.; Asthana, R.

    2006-01-01

    The Ti-metal/C-C composite joints were formed by reactive brazing with three commercial brazes, namely, Cu-ABA, TiCuNi, and TiCuSiI. The joint microstructures were examined using optical microscopy and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). The results of the microstructure analysis indicate solute redistribution across the joint and possible metallurgical bond formation via interdiffusion, which led to good wetting and spreading. A tube-on-plate tensile test was used to evaluate joint strength of Ti-tube/ C-C composite joints. The load-carrying ability was greatest for the Cu-ABA braze joint structures. This system appeared to have the best braze spreading which resulted in a larger braze/C-C composite bonded area compared to the other two braze materials. Also, joint loadcarrying ability was found to be higher for joint structures where the fiber tows in the outer ply of the C-C composite were aligned perpendicular to the tube axis when compared to the case where fiber tows were aligned parallel to the tube axis.

  4. Role of LAP+CD4+ T cells in the tumor microenvironment of colorectal cancer.

    PubMed

    Zhong, Wu; Jiang, Zhi-Yuan; Zhang, Lei; Huang, Jia-Hao; Wang, Shi-Jun; Liao, Cun; Cai, Bin; Chen, Li-Sheng; Zhang, Sen; Guo, Yun; Cao, Yun-Fei; Gao, Feng

    2017-01-21

    To investigate the abundance and potential functions of LAP + CD4 + T cells in colorectal cancer (CRC). Proportions of LAP + CD4 + T cells were examined in peripheral blood and tumor/paratumor tissues of CRC patients and healthy controls using flow cytometry. Expression of phenotypic markers such as forkhead box (Fox)p3, cytotoxic T-lymphocyte-associated protein (CTLA)-4, chemokine CC receptor (CCR)4 and CCR5 was measured using flow cytometry. LAP - CD4 + and LAP + CD4 + T cells were isolated using a magnetic cell-sorting system and cell purity was analyzed by flow cytometry. Real-time quantitative polymerase chain reaction was used to measure expression of cytokines interleukin (IL)-10 and transforming growth factor (TGF)-β. The proportion of LAP + CD4 + T cells was significantly higher in peripheral blood from patients (9.44% ± 3.18%) than healthy controls (1.49% ± 1.00%, P < 0.001). Among patients, the proportion of LAP + CD4 + T cells was significantly higher in tumor tissues (11.76% ± 3.74%) compared with paratumor tissues (3.87% ± 1.64%, P < 0.001). We also observed positive correlations between the proportion of LAP + CD4 + T cells and TNM stage ( P < 0.001), distant metastasis ( P < 0.001) and serum level of carcinoembryonic antigen ( P < 0.05). Magnetic-activated cell sorting gave an overall enrichment of LAP + CD4 + T cells (95.02% ± 2.87%), which was similar for LAP - CD4 + T cells (94.75% ± 2.76%). In contrast to LAP - CD4 + T cells, LAP + CD4 + T cells showed lower Foxp3 expression but significantly higher levels of CTLA-4, CCR4 and CCR5 ( P < 0.01). LAP + CD4 + T cells expressed significantly larger amounts of IL-10 and TGF-β but lower levels of IL-2, IL-4, IL-17 and interferon-γ, compared with LAP - CD4 + T cells. LAP + CD4 + T cells accumulated in the tumor microenvironment of CRC patients and were involved in immune evasion mediated by IL-10 and TGF-β.

  5. Characterization of Brazed Joints of C-C Composite to Cu-clad-Molybdenum

    NASA Technical Reports Server (NTRS)

    Singh, M.; Asthana, R.

    2008-01-01

    Carbon-carbon composites with either pitch+CVI matrix or resin-derived matrix were joined to copper-clad molybdenum using two active braze alloys, Cusil-ABA (1.75% Ti) and Ticusil (4.5% Ti). The brazed joints revealed good interfacial bonding, preferential precipitation of Ti at the composite/braze interface, and a tendency toward de-lamination in resin-derived C-C composite due to its low inter-laminar shear strength. Extensive braze penetration of the inter-fiber channels in the pitch+CVI C-C composites was observed. The relatively low brazing temperatures (<950 C) precluded melting of the clad layer and restricted the redistribution of alloying elements but led to metallurgically sound composite joints. The Knoop microhardness (HK) distribution across the joint interfaces revealed sharp gradients at the Cu-clad-Mo/braze interface and higher hardness in Ticusil (approx.85-250 HK) than in Cusil-ABA (approx.50-150 HK). These C-C/Cu-clad-Mo joints with relatively low thermal resistance may be promising for thermal management applications.

  6. Research on assessment of bolted joint state using elastic wave propagation

    NASA Astrophysics Data System (ADS)

    Kędra, R.; Rucka, M.

    2015-07-01

    The work contains results of experimental investigation of elastic wave propagation in a bolted single-lap joint. Tests were carried out for the excitation perpendicular to the connection plane. In experimental studies, PZT transducers were used for both excitation and registration of ultrasonic waves. The analyses took into account varying contact conditions between the elements of the connection depending on the value of the prestressing force. The influence of loosening/tightening of bolts on the energy dissipation was analysed. The experimental results proved the influence of bolt torque on quantitative characteristics of the signals. To improve the diagnostic possibilities only the initial parts of signals were analysed.

  7. Strength of laser welded joints of polypropylene composites

    NASA Astrophysics Data System (ADS)

    Votrubec, V.; Hisem, P.; Vinšová, L.; Lukášová, V.

    2017-11-01

    This paper deals with experimental tests of laser welded polypropylene composites. Polymers, such as polypropylene, are often filled with fibres in order to increase their mechanical properties. The welding procedure can also influence material properties nearby weld joints. Therefore the strength of weld joints is lower than strength of primary materials. This effect is proved by realized shear tests. Polymer specimens were filled with 20 % and 40 % of glass fibres and all possible combinations of specimens were welded for experiments. There is also discussed influence of volume fraction of glass fibres in polypropylene on the strength of weld joint.

  8. Development of Guidelines for In-Situ Repair of SLS-Class Composite Flight Hardware

    NASA Technical Reports Server (NTRS)

    Weber, Thomas P., Jr.; Cox, Sarah B.

    2018-01-01

    The purpose of composite repair development at KSC (John F. Kennedy Space Center) is to provide support to the CTE (Composite Technology for Exploration) project. This is a multi-space center effort with the goal of developing bonded joint technology for SLS (Space Launch System) -scale composite hardware. At KSC, effective and efficient repair processes need to be developed to allow for any potential damage to composite components during transport or launch preparation. The focus of the composite repair development internship during the spring of 2018 was on the documentation of repair processes and requirements for process controls based on techniques developed through hands-on work with composite test panels. Three composite test panels were fabricated for the purpose of repair and surface preparation testing. The first panel included a bonded doubler and was fabricated to be damaged and repaired. The second and third panels were both fabricated to be cut into lap-shear samples to test the strength of bond of different surface preparation techniques. Additionally, jointed composite test panels were impacted at MSFC (Marshall Space Flight Center) and analyzed for damage patterns. The observations after the impact tests guided the repair procedure at KSC to focus on three repair methods. With a finalized repair plan in place, future work will include the strength testing of different surface preparation techniques, demonstration of repair methods, and repair of jointed composite test panels being impacted at MSFC.

  9. Large-scale Advanced Prop-fan (LAP) technology assessment report

    NASA Technical Reports Server (NTRS)

    Degeorge, C. L.

    1988-01-01

    The technologically significant findings and accomplishments of the Large Scale Advanced Prop-Fan (LAP) program in the areas of aerodynamics, aeroelasticity, acoustics and materials and fabrication are described. The extent to which the program goals related to these disciplines were achieved is discussed, and recommendations for additional research are presented. The LAP program consisted of the design, manufacture and testing of a near full-scale Prop-Fan or advanced turboprop capable of operating efficiently at speeds to Mach .8. An aeroelastically scaled model of the LAP was also designed and fabricated. The goal of the program was to acquire data on Prop-Fan performance that would indicate the technology readiness of Prop-Fans for practical applications in commercial and military aviation.

  10. Experimental Study of the Compression Response of Fluted-Core Composite Panels with Joints

    NASA Technical Reports Server (NTRS)

    Schultz, Marc R.; Rose, Cheryl A.; Guzman, J. Carlos; McCarville, Douglas; Hilburger, Mark W.

    2012-01-01

    Fluted-core sandwich composites consist of integral angled web members spaced between laminate face sheets, and may have the potential to provide benefits over traditional sandwich composites for certain aerospace applications. However, fabrication of large autoclave-cured fluted-core cylindrical shells with existing autoclaves will require that the shells be fabricated in segments, and joined longitudinally to form a complete barrel. Two different longitudinal fluted-core joint designs were considered experimentally in this study. In particular, jointed fluted-core-composite panels were tested in longitudinal compression because longitudinal compression is the primary loading condition in dry launch-vehicle barrel sections. One of the joint designs performed well in comparison with unjointed test articles, and the other joint design failed at loads approximately 14% lower than unjointed test articles. The compression-after-impact (CAI) performance of jointed fluted-core composites was also investigated by testing test articles that had been subjected to 6 ft-lb impacts. It was found that such impacts reduced the load-carrying capability by 9% to 40%. This reduction is dependent on the joint concept, component flute size, and facesheet thickness.

  11. Composite pipe to metal joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leslie, James C.; Leslie, II, James C.; Heard, James

    A method for making a metal to composite tube joint including selecting an elongated interior fitting constructed with an exterior barrel, reduced in exterior diameter to form a distally facing annular shoulder and then projecting still further distally to form an interior sleeve having a radially outwardly facing bonding surface. Selecting an elongated metal outer sleeve formed proximally with a collar constructed for receipt over the barrel and increased in interior diameter and projecting distally to form an exterior sleeve having a radially inwardly facing bonding surface cooperating with the first bonding surface to form an annulus receiving an extremitymore » of a composite tube and a bond bonding the extremity of the tube to the bonding surfaces.« less

  12. A Novel Multiscale Design of Interfaces for Polymeric Composites and Bonded Joints using Additive Manufacturing

    DTIC Science & Technology

    2016-09-13

    AFRL-AFOSR-VA-TR-2016-0317 A Novel Multiscale Design of Interfaces for Polymeric Composites and Bonded Joints using Additive Manufacturing Pavana...Composites and Bonded Joints using Additive Manufacturing AWARD NO.: FA9550-15-1-0216 AGENCY NAME: The Air Force Office of Scientific Research (AFOSR), Ar...20 3 Additive Manufacturing for Bonded Composite Joints 21 3.1 Introduction

  13. Relative ratios of collagen composition of periarticular tissue of joints of the upper limb.

    PubMed

    Cheah, A; Harris, A; Le, W; Huang, Y; Yao, J

    2017-07-01

    We investigated the relative ratios of collagen composition of periarticular tissue of the elbow, wrist, metacarpophalangeal, proximal and distal interphalangeal joints. Periarticulat tissue, which we defined as the ligaments, palmar plate and capsule, was harvested from ten fresh-frozen cadaveric upper limbs, yielding 50 samples. The mean paired differences (95% confidence interval) of the relative ratios of collagen between the five different joints were estimated using mRNA expression of collagen in the periarticular tissue. We found that the relative collagen composition of the elbow was not significantly different to that of the proximal interphalangeal joint, nor between the proximal interphalangeal joint and distal interphalangeal joint, whereas the differences in collagen composition between all the other paired comparisons of the joints had confidence intervals that did not include zero.

  14. TGF-β induces surface LAP expression on murine CD4 T cells independent of Foxp3 induction.

    PubMed

    Oida, Takatoku; Weiner, Howard L

    2010-11-24

    It has been reported that human FOXP3(+) CD4 Tregs express GARP-anchored surface latency-associated peptide (LAP) after activation, based on the use of an anti-human LAP mAb. Murine CD4 Foxp3(+) Tregs have also been reported to express surface LAP, but these studies have been hampered by the lack of suitable anti-mouse LAP mAbs. We generated anti-mouse LAP mAbs by immunizing TGF-β(-/-) animals with a mouse Tgfb1-transduced P3U1 cell line. Using these antibodies, we demonstrated that murine Foxp3(+) CD4 Tregs express LAP on their surface. In addition, retroviral transduction of Foxp3 into mouse CD4(+)CD25(-) T cells induced surface LAP expression. We then examined surface LAP expression after treating CD4(+)CD25(-) T cells with TGF-β and found that TGF-β induced surface LAP not only on T cells that became Foxp3(+) but also on T cells that remained Foxp3(-) after TGF-β treatment. GARP expression correlated with the surface LAP expression, suggesting that surface LAP is GARP-anchored also in murine T cells. Unlike human CD4 T cells, surface LAP expression on mouse CD4 T cells is controlled by Foxp3 and TGF-β. Our newly described anti-mouse LAP mAbs will provide a useful tool for the investigation and functional analysis of T cells that express LAP on their surface.

  15. LAP degradation product reflects plasma kallikrein-dependent TGF-β activation in patients with hepatic fibrosis.

    PubMed

    Hara, Mitsuko; Kirita, Akiko; Kondo, Wakako; Matsuura, Tomokazu; Nagatsuma, Keisuke; Dohmae, Naoshi; Ogawa, Shinji; Imajoh-Ohmi, Shinobu; Friedman, Scott L; Rifkin, Daniel B; Kojima, Soichi

    2014-01-01

    Byproducts of cytokine activation are sometimes useful as surrogate biomarkers for monitoring cytokine generation in patients. Transforming growth factor (TGF)-β plays a pivotal role in pathogenesis of hepatic fibrosis. TGF-β is produced as part of an inactive latent complex, in which the cytokine is trapped by its propeptide, the latency-associated protein (LAP). Therefore, to exert its biological activity, TGF-β must be released from the latent complex. Several proteases activate latent TGF-β by cutting LAP. We previously reported that Camostat Mesilate, a broad spectrum protease inhibitor, which is especially potent at inhibiting plasma kallikrein (PLK), prevented liver fibrosis in the porcine serum-induced liver fibrosis model in rats. We suggested that PLK may work as an activator of latent TGF-β during the pathogenesis of liver diseases in the animal models. However, it remained to be elucidated whether this activation mechanism also functions in fibrotic liver in patients. Here, we report that PLK cleaves LAP between R(58) and L(59) residues. We have produced monoclonal antibodies against two degradation products of LAP (LAP-DP) by PLK, and we have used these specific antibodies to immunostain LAP-DP in liver tissues from both fibrotic animals and patients. The N-terminal side LAP-DP ending at R(58) (R(58) LAP-DP) was detected in liver tissues, while the C-terminal side LAP-DP beginning at L(59) (L(59) LAP-DP) was not detectable. The R(58) LAP-DP was seen mostly in α-smooth muscle actin-positive activated stellate cells. These data suggest for the first time that the occurrence of a PLK-dependent TGF-β activation reaction in patients and indicates that the LAP-DP may be useful as a surrogate marker reflecting PLK-dependent TGF-β activation in fibrotic liver both in animal models and in patients.

  16. Experimental and numerical studies on the issues in laser welding of light-weight alloys in a zero-gap lap joint configuration

    NASA Astrophysics Data System (ADS)

    Harooni, Masoud

    current study a non-destructive evaluation method based on spectroscopy is proposed to detect the presence of pores in the lap joint of laser welded AZ31B magnesium alloy. The electron temperature that is calculated by the Boltzmann plot method is correlated to the presence of pores in the weld bead. A separate series of experiments was performed to evaluate the effect of an oxide coating layer on the dynamic behavior of the molten pool in the laser welding of an AZ31B magnesium alloy in a zero-gap lap joint configuration. A high speed CCD camera assisted with a green laser as an illumination source was selected to record the weld pool dynamics. Another technique used in this study was two-pass laser welding process to join AZ31B magnesium sheet in a zero-gap, lap-shear configuration. Two groups of samples including one pass laser welding (OPLW) and two pass laser welding (TPLW) were studied. In the two pass laser welding procedure, the first pass is performed by a defocused laser beam on the top of the two overlapped sheets in order to preheat the faying surface prior to laser welding, while the second pass is applied to melt and eventually weld the samples. Tensile and microhardness tests were used to measure the mechanical properties of the laser welded samples. A spectrometer was also used in real-time to correlate pore formation with calculated electron temperature using the Boltzmann plot method. The results of calculated electron temperature confirmed the previous results in earlier chapter. Magnesium and aluminum are two alloys which are used in different industries mainly due to their light weight. The main use of these two alloys is in automotive industry. Since different parts of the automobiles can be manufactured with each of these two alloys, it is essential to evaluate the joining feasibility of dissimilar metals such as aluminum to magnesium. A 4 kW fiber laser is used to join AZ31B magnesium alloy to AA 6014 using an overlap joint configuration. Two

  17. Machine imparting complex rotary motion for lapping a spherical inner diameter

    DOEpatents

    Carroll, Thomas A.; Yetter, Harold H.

    1986-01-01

    An apparatus for imparting complex rotary motion is used to lap an inner spherical diameter surface of a workpiece. A lapping tool consists of a dome and rod mounted along the dome's vertical axis. The workpiece containing the lapping tool is held in a gimbal which uses power derived from a secondary takeoff means to impart rotary motion about a horizontal axis. The gimbal is rotated about a vertical axis by a take means while mounted at a radially outward position on a rotating arm.

  18. Machine imparting complex rotary motion for lapping a spherical inner diameter

    DOEpatents

    Carroll, T.A.; Yetter, H.H.

    1985-01-30

    An apparatus for imparting complex rotary motion is used to lap an inner spherical diameter surface of a workpiece. A lapping tool consists of a dome and rod mounted along the dome's vertical axis. The workpiece containing the lapping tool is held in a gimbal which uses power derived from a secondary takeoff means to impart rotary motion about a horizontal axis. The gimbal is rotated about a vertical axis by a take means while mounted at a radially outward position on a rotating arm.

  19. Effect of Composite Substrates on the Mechanical Behavior of Brazed Joints in Metal-Composite System

    NASA Technical Reports Server (NTRS)

    Singh, M.; Morscher, Gregory N.; Shpargel, Tarah; Asthana, Rajiv

    2006-01-01

    Advanced composite components are being considered for a wide variety of demanding applications in aerospace, space exploration, and ground based systems. A number of these applications require robust integration technologies to join dissimilar materials (metalcomposites) into complex structural components. In this study, three types of composites (C-C, C-SiC, and SiC-SiC) were vacuum brazed to commercially pure Ti using the active metal braze alloy Cusil-ABA (63Ag-35.3Cu-1.75Ti). Composite substrates with as fabricated and polished surfaces were used for brazing. The microstructure and composition of the joint, examined using scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS), showed sound metallurgical bonding in all systems. The butt strap tensile (BST) test was performed on bonded specimens at room and elevated temperatures. Effect of substrate composition, interlaminar properties, and surface roughness on the mechanical properties and failure behavior of joints will be discussed.

  20. Composite SAR imaging using sequential joint sparsity

    NASA Astrophysics Data System (ADS)

    Sanders, Toby; Gelb, Anne; Platte, Rodrigo B.

    2017-06-01

    This paper investigates accurate and efficient ℓ1 regularization methods for generating synthetic aperture radar (SAR) images. Although ℓ1 regularization algorithms are already employed in SAR imaging, practical and efficient implementation in terms of real time imaging remain a challenge. Here we demonstrate that fast numerical operators can be used to robustly implement ℓ1 regularization methods that are as or more efficient than traditional approaches such as back projection, while providing superior image quality. In particular, we develop a sequential joint sparsity model for composite SAR imaging which naturally combines the joint sparsity methodology with composite SAR. Our technique, which can be implemented using standard, fractional, or higher order total variation regularization, is able to reduce the effects of speckle and other noisy artifacts with little additional computational cost. Finally we show that generalizing total variation regularization to non-integer and higher orders provides improved flexibility and robustness for SAR imaging.

  1. Stresses in adhesively bonded joints - A closed-form solution

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.; Aydinoglu, M. N.

    1981-01-01

    The general plane strain problem of adhesively bonded structures consisting of two different, orthotropic adherends is considered, under the assumption that adherend thicknesses are constant and small in relation to the lateral dimensions of the bonded region, so that they may be treated as plates. The problem is reduced to a system of differential equations for the adhesive stresses which is solved in closed form, with a single lap joint and a stiffened plate under various loading conditions being considered as examples. It is found that the plate theory used in the analysis not only predicts the correct trend for adhesive stresses but gives surprisingly accurate results, the solution being obtained by assuming linear stress-strain relations for the adhesive.

  2. 15 CFR 285.4 - Establishment of laboratory accreditation programs (LAPs) within NVLAP.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... legislative actions or to requests from private sector entities and government agencies. For legislatively mandated LAPs, NVLAP shall establish the LAP. For requests from private sector entities and government...

  3. Design Optimization and Analysis of a Composite Honeycomb Intertank

    NASA Technical Reports Server (NTRS)

    Finckenor, Jeffrey; Spurrier, Mike

    1998-01-01

    Intertanks, the structure between tanks of launch vehicles, are prime candidates for weight reduction of rockets. This paper discusses the optimization and detailed analysis of a 96 in (2.44 m) diameter, 77 in (1.85 m) tall intertank. The structure has composite face sheets and an aluminum honeycomb core. The ends taper to a thick built up laminate for a double lap bolted shear joint. It is made in 8 full length panels joined with bonded double lap joints. The nominal load is 4000 lb/in (7 x 10(exp 5) N/m). Optimization is by Genetic Algorithm and minimizes weight by varying C, core thickness, number and orientation of acreage and buildup plies, and the size, number and spacing of bolts. A variety of cases were run with populations up to 2000 and chromosomes as long as 150 bits. Constraints were buckling, face stresses (normal, shear, wrinkling and dimpling, bolt stress, and bolt hole stresses (bearing, net tension, wedge splitting, shear out and tension/shear out). Analysis is by a combination of theoretical solutions and empirical data. After optimization, a series of coupon tests were performed in conjunction with a rigorous analysis involving a variety of finite element models. The analysis and test resulted in several small changes to the optimized design. The intertank has undergone a 250,000 lb (1.1 x 10(exp 6) N) limit load test and been mated with a composite liquid hydrogen tank. The tank/intertank unit is being installed in a test stand where it will see 200 thermal/load cycles. Afterwards the intertank will be demated and loaded in compression to failure.

  4. Investigations on Laser Beam Welding of Different Dissimilar Joints of Steel and Aluminum Alloys for Automotive Lightweight Construction

    NASA Astrophysics Data System (ADS)

    Seffer, Oliver; Pfeifer, Ronny; Springer, André; Kaierle, Stefan

    Due to the enormous potential of weight saving, and the consequential reduction of pollutant emissions, the use of hybrid components made of steel and aluminum alloys is increasing steadily, especially concerning automotive lightweight construction. However, thermal joining of steel and aluminum is still being researched, due to a limited solubility of the binary system of iron and aluminum causing the formation of hard and brittle intermetallic phases, which decrease the strength and the formability of the dissimilar seam. The presented results show the investigation of laser beam welding for joining different dissimilar hybrid components of the steel materials HX220LAD+Z100, 22MnB5+AS150 and 1.4301, as well as the aluminum alloy AA6016-T4 as a lap joint. Among other things, the influences of the energy per unit length, the material grade, the sheet thickness t, the weld type (lap weld, fillet weld) and the arrangement of the base materials in a lap joint (aluminum-sided irradiation, steel-sided irradiation) on the achievable strengths are analyzed. The characterization of the dissimilar joints includes tensile shear tests and metallographic analyses, depending on the energy per unit length.

  5. Design/Analysis of Metal/Composite Bonded Joints for Survivability at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Bartoszyk, Andrew E.

    2004-01-01

    A major design and analysis challenge for the JWST ISM structure is the metal/composite bonded joints that will be required to survive down to an operational ultra-low temperature of 30K (-405 F). The initial and current baseline design for the plug-type joint consists of a titanium thin walled fitting (1-3mm thick) bonded to the interior surface of an M555/954-6 composite truss square tube with an axially stiff biased lay-up. Metallic fittings are required at various nodes of the truss structure to accommodate instrument and lift-point bolted interfaces. Analytical experience and design work done on metal/composite bonded joints at temperatures below liquid nitrogen are limited and important analysis tools, material properties, and failure criteria for composites at cryogenic temperatures are virtually nonexistent. Increasing the challenge is the difficulty in testing for these required tools and parameters at 30K. A preliminary finite element analysis shows that failure due to CTE mismatch between the biased composite and titanium or aluminum is likely. Failure is less likely with Invar, however an initial mass estimate of Invar fittings demonstrates that Invar is not an automatic alternative. In order to gain confidence in analyzing and designing the ISM joints, a comprehensive joint development testing program has been planned and is currently running. The test program is designed for the correlation of the analysis methodology, including tuning finite element model parameters, and developing a composite failure criterion for the effect of multi-axial composite stresses on the strength of a bonded joint at 30K. The testing program will also consider stress mitigation using compliant composite layers and potential strength degradation due to multiple thermal cycles. Not only will the finite element analysis be correlated to the test data, but the FEA will be used to guide the design of the test. The first phase of the test program has been completed and the

  6. In vitro modulation of the interaction between HA95 and LAP2beta by cAMP signaling.

    PubMed

    Martins, Sandra B; Marstad, Anne; Collas, Philippe

    2003-09-09

    The nuclear envelope mediates key functions by interacting with chromatin. We recently reported an interaction between the chromatin- and nuclear matrix-associated protein HA95 and the inner nuclear membrane integral protein LAP2beta, implicated in initiation of DNA replication (Martins et al. (2003) J. Cell Biol. 160, 177-188). Here, we show that in vitro, interaction between HA95 and LAP2beta is modulated by cAMP signaling via PKA. Exposure of an anti-HA95 immune precipitate from interphase HeLa cells to a mitotic extract promotes ATP-dependent release of LAP2beta from the HA95 complex. This coincides with Ser and Thr phosphorylation of HA95 and LAP2beta. Inhibition of PKA with PKI abolishes phosphorylation of HA95 and dissociation of LAP2beta from HA95, although LAPbeta remains phosphorylated. Antagonizing cAMP signaling in mitotic extract also abolishes the release of LAP2beta from HA95; however, disrupting PKA anchoring to A-kinase anchoring proteins has no effect. Inhibition of CDK activity in the extract greatly reduces LAP2beta phosphorylation but does not prevent LAP2beta release from HA95. Inhibition of PKC, MAP kinase, or CaM kinase II does not affect mitotic extract-induced dissociation of LAP2beta from HA95. PKA phosphorylates HA95 but not LAP2beta in vitro and elicits a release of LAP2beta from HA95. CDK1 or PKC phosphorylates LAP2beta within the HA95 complex, but neither kinase induces LAP2beta release. Our results indicate that in vitro, the interaction between HA95 and LAP2beta is influenced by a PKA-mediated phosphorylation of HA95 rather than by CDK1- or PKC-mediated phosphorylation of LAP2beta. This suggests an additional level of regulation of a chromatin-nuclear envelope interaction in dividing cells.

  7. Device for measuring hole elongation in a bolted joint

    NASA Technical Reports Server (NTRS)

    Wichorek, Gregory R. (Inventor)

    1987-01-01

    A device to determine the operable failure mode of mechanically fastened lightweight composite joints by measuring the hole elongation of a bolted joint is disclosed. The double-lap joint test apparatus comprises a stud, a test specimen having a hole, two load transfer plates, and linear displacement measuring instruments. The test specimen is sandwiched between the two load transfer plates and clamped together with the stud. Spacer washers are placed between the test specimen and each load transfer plate to provide a known, controllable area for the determination of clamping forces around the hole of the specimen attributable to bolt torque. The spacer washers also provide a gap for the mounting of reference angles on each side of the test specimen. Under tensile loading, elongation of the hole of the test specimen causes the stud to move away from the reference angles. This displacement is measured by the voltage output of two linear displacement measuring instruments that are attached to the stud and remain in contact with the reference angles throughout the tensile loading. The present invention obviates previous problems in obtaining specimen deformation measurements by monitoring the reference angles to the test specimen and the linear displacement measuring instruments to the stud.

  8. Three-Dimensional Geometric Nonlinear Contact Stress Analysis of Riveted Joints

    NASA Technical Reports Server (NTRS)

    Shivakumar, Kunigal N.; Ramanujapuram, Vivek

    1998-01-01

    The problems associated with fatigue were brought into the forefront of research by the explosive decompression and structural failure of the Aloha Airlines Flight 243 in 1988. The structural failure of this airplane has been attributed to debonding and multiple cracking along the longitudinal lap splice riveted joint in the fuselage. This crash created what may be termed as a minor "Structural Integrity Revolution" in the commercial transport industry. Major steps have been taken by the manufacturers, operators and authorities to improve the structural airworthiness of the aging fleet of airplanes. Notwithstanding, this considerable effort there are still outstanding issues and concerns related to the formulation of Widespread Fatigue Damage which is believed to have been a contributing factor in the probable cause of the Aloha accident. The lesson from this accident was that Multiple-Site Damage (MSD) in "aging" aircraft can lead to extensive aircraft damage. A strong candidate in which MSD is highly probable to occur is the riveted lap joint.

  9. Fatigue Strength and Related Characteristics of Aircraft Joints I : Comparison of Spot-Weld and Rivet Patterns in 24s-t Alclad and 75s-t Alclad

    NASA Technical Reports Server (NTRS)

    Russell, H W; Jackson, L R; Grover, H J; Beaver, W W

    1944-01-01

    Report contains detailed results of a number of fatigue tests on spot-welded joints in aluminum alloys. The tests described include: (1) fatigue tests on spot-welded lap joints in sheets of unequal thickness of alclad 24s-t. These tests indicate that the fatigue strength of a spot-welded joint in sheets of two different gages is slightly higher than that of a similar joint in two sheets of the thinner gage but definitely lower than that of a similar joint in two sheets of the thicker gage. (2) Fatigue tests on spot-welded alclad 75s-t spot-welded lap-joint specimens of alclad 75s-t were not any stronger in fatigue than similar specimens of alclad 24s-t. (3) Fatigue tests on lap-joint specimens spot -welded after various surface preparations--these included ac welding wire-brushed surfaces, dc welding wire-brushed surfaces, and dc welding chemically cleaned surfaces. While the ac welds were strongest statically, the dc welds on wire-brushed surfaces were strongest in fatigue. Specimens prepared in this way were very nearly as strong as the best riveted specimens tested for comparison. (4) Fatigue tests on specimens spot-welded with varying voltage so as to include a wide range of static spot-weld strengths. The fatigue strengths were in the same order as the static strengths but showed less range. (author)

  10. Lamb wave propagation in Z-pin reinforced co-cured composite pi-joints

    NASA Astrophysics Data System (ADS)

    Swenson, Eric D.; Soni, Som R.; Kapoor, Hitesh

    2010-04-01

    This paper presents an initial study on Lamb wave propagation characteristics in z-pin reinforced, co-cured composite pi-joints for the purposes of structural health monitoring (SHM). Pi-joint test articles were designed and created to replicate a co-cured, all composite skin-spar joint found within a typical aircraft wing structure. Because pi-joints exhibit various complex damage modes, formal studies are required if SHM systems are to be developed to monitor these types of joints for potential damage. Experiments were conducted on a undamaged (healthy) and damaged test articles where Lamb waves were excited using one lead zirconate titanate (PZT) transducer. A three-dimensional (3D) scanning laser Doppler vibrometer (LDV) was used to collect high-density scans of both the in-plane and out-of-plane velocity measurements. In the damaged test article, where delamination, matrix cracking, and fiber breakage can clearly be seen, changes in both the fundamental antisymmetric A0 and symmetric S0 Lamb wave modes are apparent. In both test articles, the effects of narrow geometry, discontinuity due to the attachment of the web, and thickness has detectable effects on Lamb wave propagation. From the comparisons between Lamb waves propagating through the undamaged and damaged test articles, it is clear that damage can be detected using Lamb waves in z-pin reinforced, co-cured composite pi-joints for this case of extensive damage.

  11. Non-destructive Evaluation of Bonds Between Fiberglass Composite and Metal

    NASA Technical Reports Server (NTRS)

    Zhao, Selina; Sonta, Kestutis; Perey, Daniel F.; Cramer, K. E.; Berger, Libby

    2015-01-01

    To assess the integrity and reliability of an adhesive joint in an automotive composite component, several non-destructive evaluation (NDE) methodologies are correlated to lap shear bond strengths. A glass-fabric-reinforced composite structure was bonded to a metallic structure with a two-part epoxy adhesive. Samples were subsequently cut and tested in shear, and flaws were found in some areas. This study aims to develop a reliable and portable NDE system for service-level adhesive inspection in the automotive industry. The results of the experimental investigation using several NDE methods are presented and discussed. Fiberglass-to-metal bonding is the ideal configuration for NDE via thermography using excitation with induction heating, due to the conductive metal and non-conductive glass-fiber-reinforced composites. Excitation can be either by a research-grade induction heater of highly defined frequency and intensity, or by a service-level heater, such as would be used for sealing windshields in a body shop. The thermographs thus produced can be captured via a high-resolution infrared camera, with principal component analysis and 2D spatial Laplacian processing. Alternatively, the thermographs can be captured by low resolution thermochromic microencapsulated liquid crystal film imaging, which needs no post-processing and can be very inexpensive. These samples were also examined with phased-array ultrasound. The NDE methods are compared to the lap shear values and to each other for approximate cost, accuracy, and time and level of expertise needed.

  12. Microstructure and fatigue resistance of high strength dual phase steel welded with gas metal arc welding and plasma arc welding processes

    NASA Astrophysics Data System (ADS)

    Ahiale, Godwin Kwame; Oh, Yong-Jun; Choi, Won-Doo; Lee, Kwang-Bok; Jung, Jae-Gyu; Nam, Soo Woo

    2013-09-01

    This study presents the microstructure and high cycle fatigue performance of lap shear joints of dual phase steel (DP590) welded using gas metal arc welding (GMAW) and plasma arc welding (PAW) processes. High cycle fatigue tests were conducted on single and double lap joints under a load ratio of 0.1 and a frequency of 20 Hz. In order to establish a basis for comparison, both weldments were fabricated to have the same weld depth in the plate thickness. The PAW specimens exhibited a higher fatigue life, a gentle S-N slope, and a higher fatigue limit than the GMAW specimens. The improvement in the fatigue life of the PAW specimens was primarily attributed to the geometry effect that exhibited lower and wider beads resulting in a lower stress concentration at the weld toe where cracks initiate and propagate. Furthermore, the microstructural constituents in the heat-affected zone (HAZ) of the PAW specimens contributed to the improvement. The higher volume fraction of acicular ferrite in the HAZ beneath the weld toe enhanced the PAW specimen's resistance to fatigue crack growth. The double lap joints displayed a higher fatigue life than the single lap joints without changing the S-N slope.

  13. Melanin targets LC3-associated phagocytosis (LAP): A novel pathogenetic mechanism in fungal disease.

    PubMed

    Chamilos, Georgios; Akoumianaki, Tonia; Kyrmizi, Irene; Brakhage, Axel; Beauvais, Anne; Latge, Jean-Paul

    2016-05-03

    Intracellular swelling of conidia of the major human airborne fungal pathogen Aspergillus fumigatus results in surface exposure of immunostimulatory pathogen-associated molecular patterns (PAMPs) and triggers activation of a specialized autophagy pathway called LC3-associated phagocytosis (LAP) to promote fungal killing. We have recently discovered that, apart from PAMPs exposure, cell wall melanin removal during germination of A. fumigatus is a prerequisite for activation of LAP. Importantly, melanin promotes fungal pathogenicity via targeting LAP, as a melanin-deficient A. fumigatus mutant restores its virulence upon conditional inactivation of Atg5 in hematopoietic cells of mice. Mechanistically, fungal cell wall melanin selectively excludes the CYBA/p22phox subunit of NADPH oxidase from the phagosome to inhibit LAP, without interfering with signaling regulating cytokine responses. Notably, inhibition of LAP is a general property of melanin pigments, a finding with broad physiological implications.

  14. Statistical Investigation of the Effect of Process Parameters on the Shear Strength of Metal Adhesive Joints

    NASA Astrophysics Data System (ADS)

    Rajkumar, Goribidanur Rangappa; Krishna, Munishamaih; Narasimhamurthy, Hebbale Narayanrao; Keshavamurthy, Yalanabhalli Channegowda

    2017-06-01

    The objective of the work was to optimize sheet metal joining parameters such as adhesive material, adhesive thickness, adhesive overlap length and surface roughness for single lap joint of aluminium sheet shear strength using robust design. An orthogonal array, main effect plot, signal-to-noise ratio and analysis of variance were employed to investigate the shear strength of the joints. The statistical result shows vinyl ester is best candidate among other two polymers viz. epoxy and polyester due to its low viscosity value compared to other two polymers. The experiment results shows that the adhesive thickness 0.6 mm, overlap length 50 mm and surface roughness 2.12 µm for obtained maximum shear strength of Al sheet joints. The ANOVA result shows one of the most significant factors is overlap length which affect joint strength in addition to adhesive thickness, adhesive material, and surface roughness. A confirmation test was carried out as the optimal combination of parameters will not match with the any of the experiments in the orthogonal array.

  15. An EMAT-based shear horizontal (SH) wave technique for adhesive bond inspection

    NASA Astrophysics Data System (ADS)

    Arun, K.; Dhayalan, R.; Balasubramaniam, Krishnan; Maxfield, Bruce; Peres, Patrick; Barnoncel, David

    2012-05-01

    The evaluation of adhesively bonded structures has been a challenge over the several decades that these structures have been used. Applications within the aerospace industry often call for particularly high performance adhesive bonds. Several techniques have been proposed for the detection of disbonds and cohesive weakness but a reliable NDE method for detecting interfacial weakness (also sometimes called a kissing bond) has been elusive. Different techniques, including ultrasonic, thermal imaging and shearographic methods, have been proposed; all have had some degree of success. In particular, ultrasonic methods, including those based upon shear and guided waves, have been explored for the assessment of interfacial bond quality. Since 3-D guided shear horizontal (SH) waves in plates have predominantly shear displacement at the plate surfaces, we conjectured that SH guided waves should be influenced by interfacial conditions when they propagate between adhesively bonded plates of comparable thickness. This paper describes a new technique based on SH guided waves that propagate within and through a lap joint. Through mechanisms we have yet to fully understand, the propagation of an SH wave through a lap joint gives rise to a reverberation signal that is due to one or more reflections of an SH guided wave mode within that lap joint. Based upon a combination of numerical simulations and measurements, this method shows promise for detecting and classifying interfacial bonds. It is also apparent from our measurements that the SH wave modes can discriminate between adhesive and cohesive bond weakness in both Aluminum-Epoxy-Aluminum and Composite-Epoxy-Composite lap joints. All measurements reported here used periodic permanent magnet (PPM) Electro-Magnetic Acoustic Transducers (EMATs) to generate either or both of the two lowest order SH modes in the plates that comprise the lap joint. This exact configuration has been simulated using finite element (FE) models to

  16. Room Temperature and Elevated Temperature Composite Sandwich Joint Testing

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.

    1998-01-01

    Testing of composite sandwich joint elements has been completed to verify the strength capacity of joints designed to carry specified running loads representative of a high speed civil transport wing. Static tension testing at both room and an elevated temperature of 350 F and fatigue testing at room temperature were conducted to determine strength capacity, fatigue life, and failure modes. Static tension test results yielded failure loads above the design loads for the room temperature tests, confirming the ability of the joint concepts tested to carry their design loads. However, strength reductions as large as 30% were observed at the elevated test temperature, where all failure loads were below the room temperature design loads for the specific joint designs tested. Fatigue testing resulted in lower than predicted fatigue lives.

  17. Joining of polypropylene/polypropylene and glass fiber reinforced polypropylene composites

    NASA Astrophysics Data System (ADS)

    Zhang, Jianguang

    Joining behavior of polypropylene (PP) to PP and long glass fiber reinforced polypropylene (LFT) to LFT were investigated. Adhesive bonding was used to join PP/PP. Both adhesive bonding and ultrasonic welding were used to join LFT/LFT. Single-lap shear testing and low velocity impact (LVI) testing were used to evaluate the performance of bonded structures. The two-part acrylic adhesive DP8005 was determined to be the best among the three adhesive candidates, which was attributed to its low surface energy. The impact resistance of LFT/LFT joints, normalized with respect to thickness, was higher than that of PP/PP joints because of higher stiffness of LFT/LFT joints. The stress states in the adhesive layer of adhesively bonded structures were analyzed using ANSYS and LS-DYNA to simulate the single-lap shear testing and LVI testing, respectively. The shear and peel stresses peaked at the edges of the adhesive layer. Compared to LFT/LFT joints, higher peel stress occurred in the adhesive layer in the PP/PP joints in tension. Impact response of adhesively bonded structures as evaluated by LS-DYNA showed good agreement with the experimental results. The effect of weld time and weld pressure on the shear strength of ultrasonically welded LFT/LFT was evaluated. With higher weld pressure, less time was required to obtain a complete weld. At longer weld times, lower weld pressure was required. From the 15 weld conditions studied, a weld map was obtained that provides conditions to achieve a complete weld. Nanoindentation was used to evaluate the effect of ultrasonic weld on the modulus and hardness of the PP matrix. Modulus and hardness of the PP matrix were slightly decreased by ultrasonic welding possibly due to the decrease in the molecular weight. The temperature profile in LFT/LFT in the transverse direction during ultrasonic welding was analyzed by two ANSYS-based thermal models: (a) one in which heat generated by interfacial friction was treated as a heat flux and (b

  18. Design Optimization and Analysis of a Composite Honeycomb Intertank

    NASA Technical Reports Server (NTRS)

    Finckenor, Jeff; Spurrier, Mile

    1999-01-01

    Intertanks, the structure between tanks of launch vehicles, are prime candidates for weight reduction of rockets. This paper discusses the optimization and detailed follow up analysis and testing of a 96 in. diameter, 77 in. tall intertank. The structure has composite face sheets with an aluminum honeycomb core. The ends taper to a thick built up laminate for a double lap bolted splice joint interface. It is made in 8 full length panels joined with bonded double lap joints. The nominal load is 4000 lb/in. Optimization is by Genetic Algorithm and minimizes weight by varying core thickness, number and orientation of acreage and buildup plies, and the size, number and spacing of bolts. A variety of design cases were run with populations up to 2000 and chromosomes as long as 150 bits. Constraints were buckling; face stresses (normal, shear, wrinkling and dimpling); bolt stress; and bolt hole stresses (bearing, net tension, wedge splitting, shear out and tension/shear out). Analysis is by a combination of elasticity solutions and empirical data. After optimization, a series of coupon tests were performed in conjunction with a rigorous analysis involving a variety of finite element models. This analysis and testing resulted in several small changes to the optimized design. The equation used for hole bearing strength was found to be inadequate, resulting in thicker ends. The core thickness increased 0.05", and potting compound was added in the taper to strengthen the facesheet bond. The intertank has undergone a 250,000 lb limit load test and been mated with a composite liquid hydrogen tank. The tank/intertank unit is being installed in a test stand where it will see 200 thermal/load cycles. Afterwards the intertank will be demated and loaded in compression to failure.

  19. An Investigation of the Tensile Strength of a Composite-To-Metal Adhesive Joint

    NASA Astrophysics Data System (ADS)

    Tsouvalis, Nicholas G.; Karatzas, Vassilios A.

    2011-04-01

    The present study examines the feasibility of a simple concept composite-to-metal butt joint through the performance of both numerical and experimental studies. The composite part is made of glass/epoxy unidirectional layers made with the vacuum bag method. The geometry of the joint is typical for marine applications and corresponds to a low stiffness ratio. Two major parameters are investigated, namely the overlap length and the surface preparation of the steel adherent. Manufacturing of specimens and the procedure of the tensile tests are described in detail, giving hints for obtaining a better quality joint. Axial elongation and strains at various places of the joint were monitored and also numerically calculated. The tests revealed that the joint is quite effective, irrespectively of the steel surface preparation method. The failure loads are comparable and in some cases superior to other corresponding values found in the literature. The numerical models proved to adequately predict the structural response of the joint up to the loading where debonding starts.

  20. Challenges and Opportunities in Design, Fabrication, and Testing of High Temperature Joints in Ceramics and Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.; Levine, S. R. (Technical Monitor)

    2001-01-01

    Ceramic joining has been recognized as an enabling technology for successful utilization of advanced ceramics and composite materials. A number of joint design and testing issues have been discussed for ceramic joints in silicon carbide-based ceramics and fiber-reinforced composites. These joints have been fabricated using an affordable, robust ceramic joining technology (ARCJoinT). The microstructure and good high temperature mechanical capability (compressive and flexural strengths) of ceramic joints in silicon carbide-based ceramics and composite materials are reported.

  1. CT114 Lap Belt Arming Key Mod - User Trial

    DTIC Science & Technology

    2010-05-01

    31 (97%) 30 (94%) 1. Ease of use to perform visual 30 (94%) 2. Ease of use to perform free play (push past) check 31 (97%) ’Note I - If a...positive lock of the lap belt. 10. Perform Free Play (Push Past) Check - Press mating ends of lap belt fittings together to demo ability to push beyond...the following items. I 2 3 4 5 6 7 37. Ease-of·use in performing visual check? 0 0 0 0 0 0 0 38. Ease-of·use in performing free play (push past

  2. Auto Mechanics I. Learning Activity Packets (LAPs). Section A--Orientation and Safety.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains seven learning activity packets (LAPs) that outline the study activities for the orientation and safety instructional area for an Auto Mechanics I course. The seven LAPs cover the following topics: orientation, safety, hand tools, arc welding, oxyacetylene cutting, oxyacetylene fusion welding, and oxyacetylene braze welding.…

  3. Mechanical properties of dissimilar metal joints composed of DP 980 steel and AA 7075-T6

    DOE PAGES

    Squires, Lile; Lim, Yong Chae; Miles, Michael; ...

    2015-03-18

    In this study, a solid state joining process, called friction bit joining, was used to spot weld aluminium alloy 7075-T6 to dual phase 980 steel. Lap shear failure loads for specimens without adhesive averaged ~10kN, while cross-tension specimens averaged 2·8 kN. Addition of adhesive with a thickness up to 500 μm provided a gain of ~50% to lap shear failure loads, while a much thinner layer of adhesive increased cross-tension failure loads by 20%. Microstructures of the welds were martensitic, but the hardness of the joining bit portion was greater than that of the DP 980, owing to its highermore » alloy content. Softening in the heat affected zone of a welded joint appeared to be relatively small, though it was enough to cause nugget pullout failures in some lap shear tension specimens. Finally, other failures in lap shear tension were interfacial, while all of the failures in cross-tension were interfacial.« less

  4. High Temperature Joining and Characterization of Joint Properties in Silicon Carbide-Based Composite Materials

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    Advanced silicon carbide-based ceramics and composites are being developed for a wide variety of high temperature extreme environment applications. Robust high temperature joining and integration technologies are enabling for the fabrication and manufacturing of large and complex shaped components. The development of a new joining approach called SET (Single-step Elevated Temperature) joining will be described along with the overview of previously developed joining approaches including high temperature brazing, ARCJoinT (Affordable, Robust Ceramic Joining Technology), diffusion bonding, and REABOND (Refractory Eutectic Assisted Bonding). Unlike other approaches, SET joining does not have any lower temperature phases and will therefore have a use temperature above 1315C. Optimization of the composition for full conversion to silicon carbide will be discussed. The goal is to find a composition with no remaining carbon or free silicon. Green tape interlayers were developed for joining. Microstructural analysis and preliminary mechanical tests of the joints will be presented.

  5. Lamb wave propagation in a restricted geometry composite pi-joint specimen

    NASA Astrophysics Data System (ADS)

    Blackshire, James L.; Soni, Som

    2012-05-01

    The propagation of elastic waves in a material can involve a number of complex physical phenomena, resulting in both subtle and dramatic effects on detected signal content. In recent years, the use of advanced methods for characterizing and imaging elastic wave propagation and scattering processes has increased, where for example the use of scanning laser vibrometry and advanced computational models have been used very effectively to identify propagating modes, scattering phenomena, and damage feature interactions. In the present effort, the propagation of Lamb waves within a narrow, constrained geometry composite pi-joint structure are studied using 3D finite element models and scanning laser vibrometry measurements, where the effects of varying sample thickness, complex joint curvatures, and restricted structure geometries are highlighted, and a direct comparison of computational and experimental results are provided for simulated and realistic geometry composite pi-joint samples.

  6. Knee Joint Loading during Single-Leg Forward Hopping.

    PubMed

    Krupenevich, Rebecca L; Pruziner, Alison L; Miller, Ross H

    2017-02-01

    Increased or abnormal loading on the intact limb is thought to contribute to the relatively high risk of knee osteoarthritis in this limb for individuals with unilateral lower limb loss. This theory has been assessed previously by studying walking, but knee joint loading during walking is often similar between individuals with and without limb loss, prompting assessment of other movements that may place unusual loads on the knee. One such movement, hopping, is a form of locomotion that individuals with unilateral lower limb loss may situationally use instead of walking, but the mechanical effects of hopping on the intact limb are unknown. Compare knee joint kinetics of healthy adults during single-leg forward hopping compared to walking, a more traditional form of locomotion. Twenty-four healthy adults walked and hopped at self-selected speeds of 1.5 and 2.3 m·s, respectively. Joint moments were calculated using inverse dynamics. A paired Student's t-test was utilized to compare peak, impulse, and loading rate (LR) of knee adduction moment (KAM), and peak knee flexion moment (KFM) between walking and hopping. Peak KFM and KAM LR were greater during hopping compared to walking (peak KFM: 20.73% vs 5.51% body weight (BW) × height (Ht), P < 0.001; KAM LR: 0.47 vs. 0.33 BW·Ht·s, P = 0.01). Kinetic measures affecting knee joint loading are greater in hopping compared to walking. It may be advisable to limit single-leg forward hopping in the limb loss population until it is known if these loads increase knee osteoarthritis risk.

  7. Creep Deformation and Rupture Behavior of Single- and Dual-Pass 316LN Stainless-Steel-Activated TIG Weld Joints

    NASA Astrophysics Data System (ADS)

    Vijayanand, V. D.; Vasudevan, M.; Ganesan, V.; Parameswaran, P.; Laha, K.; Bhaduri, A. K.

    2016-06-01

    Creep deformation and rupture behavior of single-pass and dual-pass 316LN stainless steel (SS) weld joints fabricated by an autogenous activated tungsten inert gas welding process have been assessed by performing metallography, hardness, and conventional and impression creep tests. The fusion zone of the single-pass joint consisted of columnar zones adjacent to base metals with a central equiaxed zone, which have been modified extensively by the thermal cycle of the second pass in the dual-pass joint. The equiaxed zone in the single-pass joint, as well as in the second pass of the dual-pass joint, displayed the lowest hardness in the joints. In the dual-pass joint, the equiaxed zone of the first pass had hardness comparable to the columnar zone. The hardness variations in the joints influenced the creep deformation. The equiaxed and columnar zone in the first pass of the dual-pass joint was more creep resistant than that of the second pass. Both joints possessed lower creep rupture life than the base metal. However, the creep rupture life of the dual-pass joint was about twofolds more than that of the single-pass joint. Creep failure in the single-pass joint occurred in the central equiaxed fusion zone, whereas creep cavitation that originated in the second pass was blocked at the weld pass interface. The additional interface and strength variation between two passes in the dual-pass joint provides more restraint to creep deformation and crack propagation in the fusion zone, resulting in an increase in the creep rupture life of the dual-pass joint over the single-pass joint. Furthermore, the differences in content, morphology, and distribution of delta ferrite in the fusion zone of the joints favors more creep cavitation resistance in the dual-pass joint over the single-pass joint with the enhancement of creep rupture life.

  8. Large-scale Advanced Prop-fan (LAP) high speed wind tunnel test report

    NASA Technical Reports Server (NTRS)

    Campbell, William A.; Wainauski, Harold S.; Arseneaux, Peter J.

    1988-01-01

    High Speed Wind Tunnel testing of the SR-7L Large Scale Advanced Prop-Fan (LAP) is reported. The LAP is a 2.74 meter (9.0 ft) diameter, 8-bladed tractor type rated for 4475 KW (6000 SHP) at 1698 rpm. It was designated and built by Hamilton Standard under contract to the NASA Lewis Research Center. The LAP employs thin swept blades to provide efficient propulsion at flight speeds up to Mach .85. Testing was conducted in the ONERA S1-MA Atmospheric Wind Tunnel in Modane, France. The test objectives were to confirm that the LAP is free from high speed classical flutter, determine the structural and aerodynamic response to angular inflow, measure blade surface pressures (static and dynamic) and evaluate the aerodynamic performance at various blade angles, rotational speeds and Mach numbers. The measured structural and aerodynamic performance of the LAP correlated well with analytical predictions thereby providing confidence in the computer prediction codes used for the design. There were no signs of classical flutter throughout all phases of the test up to and including the 0.84 maximum Mach number achieved. Steady and unsteady blade surface pressures were successfully measured for a wide range of Mach numbers, inflow angles, rotational speeds and blade angles. No barriers were discovered that would prevent proceeding with the PTA (Prop-Fan Test Assessment) Flight Test Program scheduled for early 1987.

  9. Analysis and optimization of surface profile correcting mechanism of the pitch lap in large-aperture annular polishing

    NASA Astrophysics Data System (ADS)

    Zhang, Huifang; Yang, Minghong; Xu, Xueke; Wu, Lunzhe; Yang, Weiguang; Shao, Jianda

    2017-10-01

    The surface figure control of the conventional annular polishing system is realized ordinarily by the interaction between the conditioner and the lap. The surface profile of the pitch lap corrected by the marble conditioner has been measured and analyzed as a function of kinematics, loading conditions, and polishing time. The surface profile measuring equipment of the large lap based on laser alignment was developed with the accuracy of about 1μm. The conditioning mechanism of the conditioner is simply determined by the kinematics and fully fitting principle, but the unexpected surface profile deviation of the lap emerged frequently due to numerous influencing factors including the geometrical relationship, the pressure distribution at the conditioner/lap interface. Both factors are quantitatively evaluated and described, and have been combined to develop a spatial and temporal model to simulate the surface profile evolution of pitch lap. The simulations are consistent with the experiments. This study is an important step toward deterministic full-aperture annular polishing, providing a beneficial guidance for the surface profile correction of the pitch lap.

  10. Electromigration and Thermomechanical Fatigue Behavior of Sn0.3Ag0.7Cu Solder Joints

    NASA Astrophysics Data System (ADS)

    Zuo, Yong; Bieler, Thomas R.; Zhou, Quan; Ma, Limin; Guo, Fu

    2017-12-01

    The anisotropy of Sn crystal structures greatly affects the electromigration (EM) and thermomechanical fatigue (TMF) of solder joints. The size of solder joint shrinkage in electronic systems further makes EM and TMF an inseparably coupled issue. To obtain a better understanding of failure under combined moderately high (2000 A/cm2) current density and 10-150°C/1 h thermal cycling, analysis of separate, sequential, and concurrent EM and thermal cycling (TC) was imposed on single shear lap joints, and the microstructure and crystal orientations were incrementally characterized using electron backscatter diffraction (EBSD) mapping. First, it was determined that EM did not significantly change the crystal orientation, but the formation of Cu6Sn5 depended on the crystal orientation, and this degraded subsequent TMF behavior. Secondly, TC causes changes in crystal orientation. Concurrent EM and TC led to significant changes in crystal orientation by discontinuous recrystallization, which is facilitated by Cu6Sn5 particle formation. The newly formed Cu6Sn5 often showed its c-axis close to the direction of electron flow.

  11. Electromigration and Thermomechanical Fatigue Behavior of Sn0.3Ag0.7Cu Solder Joints

    NASA Astrophysics Data System (ADS)

    Zuo, Yong; Bieler, Thomas R.; Zhou, Quan; Ma, Limin; Guo, Fu

    2018-03-01

    The anisotropy of Sn crystal structures greatly affects the electromigration (EM) and thermomechanical fatigue (TMF) of solder joints. The size of solder joint shrinkage in electronic systems further makes EM and TMF an inseparably coupled issue. To obtain a better understanding of failure under combined moderately high (2000 A/cm2) current density and 10-150°C/1 h thermal cycling, analysis of separate, sequential, and concurrent EM and thermal cycling (TC) was imposed on single shear lap joints, and the microstructure and crystal orientations were incrementally characterized using electron backscatter diffraction (EBSD) mapping. First, it was determined that EM did not significantly change the crystal orientation, but the formation of Cu6Sn5 depended on the crystal orientation, and this degraded subsequent TMF behavior. Secondly, TC causes changes in crystal orientation. Concurrent EM and TC led to significant changes in crystal orientation by discontinuous recrystallization, which is facilitated by Cu6Sn5 particle formation. The newly formed Cu6Sn5 often showed its c-axis close to the direction of electron flow.

  12. The dissimilar brazing of Kovar alloy to SiCp/Al composites using silver-based filler metal foil

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Xu, Dongxia; Zhai, Yahong; Niu, Jitai

    2017-09-01

    Aluminum metal matrix composites with high SiC content (60 vol.% SiCp/Al MMCs) were surface metallized with a Ni-P alloy coating, and vacuum brazing between the composites and Kovar alloy were performed using rapidly cooled Ag-22.0Cu-15.9In-10.86Sn-1.84Ti (wt%) foil. The effects of Ni-P alloy coating and brazing parameters on the joint microstructures and properties were researched by SEM, EDS, and single lap shear test, respectively. Results show that Ag-Al intermetallic strips were formed in the 6063Al matrix and filler metal layer because of diffusion, and they were arranged regularly and accumulated gradually as the brazing temperature was increased ( T/°C = 550-600) or the soaking time was prolonged ( t/min = 10-50). However, excessive strips would destroy the uniformity of seams and lead to a reduced bonding strength (at most 70 MPa). Using a Ni-P alloy coating, void free joints without those strips were obtained at 560 °C after 20 min soaking time, and a higher shear strength of 90 MPa was achieved. The appropriate interface reaction ( 2 μm transition layer) that occurred along the Ni-P alloy coating/filler metal/Kovar alloy interfaces resulted in better metallurgical bonding. In this research, the developed Ag-based filler metal was suitable for brazing the dissimilar materials of Ni-P alloy-coated SiCp/Al MMCs and Kovar alloy, and capable welding parameters were also broadened.

  13. Joint Center Estimation Using Single-Frame Optimization: Part 1: Numerical Simulation.

    PubMed

    Frick, Eric; Rahmatalla, Salam

    2018-04-04

    The biomechanical models used to refine and stabilize motion capture processes are almost invariably driven by joint center estimates, and any errors in joint center calculation carry over and can be compounded when calculating joint kinematics. Unfortunately, accurate determination of joint centers is a complex task, primarily due to measurements being contaminated by soft-tissue artifact (STA). This paper proposes a novel approach to joint center estimation implemented via sequential application of single-frame optimization (SFO). First, the method minimizes the variance of individual time frames’ joint center estimations via the developed variance minimization method to obtain accurate overall initial conditions. These initial conditions are used to stabilize an optimization-based linearization of human motion that determines a time-varying joint center estimation. In this manner, the complex and nonlinear behavior of human motion contaminated by STA can be captured as a continuous series of unique rigid-body realizations without requiring a complex analytical model to describe the behavior of STA. This article intends to offer proof of concept, and the presented method must be further developed before it can be reasonably applied to human motion. Numerical simulations were introduced to verify and substantiate the efficacy of the proposed methodology. When directly compared with a state-of-the-art inertial method, SFO reduced the error due to soft-tissue artifact in all cases by more than 45%. Instead of producing a single vector value to describe the joint center location during a motion capture trial as existing methods often do, the proposed method produced time-varying solutions that were highly correlated ( r > 0.82) with the true, time-varying joint center solution.

  14. 21 CFR 26.17 - Role and composition of the Joint Sectoral Committee.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Role and composition of the Joint Sectoral Committee. 26.17 Section 26.17 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... informed of the agenda and conclusions of meetings of the Joint Sectoral Committee. ...

  15. 21 CFR 26.17 - Role and composition of the Joint Sectoral Committee.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Role and composition of the Joint Sectoral Committee. 26.17 Section 26.17 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... informed of the agenda and conclusions of meetings of the Joint Sectoral Committee. ...

  16. 21 CFR 26.17 - Role and composition of the Joint Sectoral Committee.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Role and composition of the Joint Sectoral Committee. 26.17 Section 26.17 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... informed of the agenda and conclusions of meetings of the Joint Sectoral Committee. ...

  17. 21 CFR 26.17 - Role and composition of the Joint Sectoral Committee.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Role and composition of the Joint Sectoral Committee. 26.17 Section 26.17 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... informed of the agenda and conclusions of meetings of the Joint Sectoral Committee. ...

  18. 21 CFR 26.17 - Role and composition of the Joint Sectoral Committee.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Role and composition of the Joint Sectoral Committee. 26.17 Section 26.17 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... informed of the agenda and conclusions of meetings of the Joint Sectoral Committee. ...

  19. Large-Scale Advanced Prop-Fan (LAP)

    NASA Technical Reports Server (NTRS)

    Degeorge, C. L.

    1988-01-01

    In recent years, considerable attention has been directed toward improving aircraft fuel efficiency. Analytical studies and research with wind tunnel models have demonstrated that the high inherent efficiency of low speed turboprop propulsion systems may now be extended to the Mach .8 flight regime of today's commercial airliners. This can be accomplished with a propeller, employing a large number of thin highly swept blades. The term Prop-Fan has been coined to describe such a propulsion system. In 1983 the NASA-Lewis Research Center contracted with Hamilton Standard to design, build and test a near full scale Prop-Fan, designated the Large Scale Advanced Prop-Fan (LAP). This report provides a detailed description of the LAP program. The assumptions and analytical procedures used in the design of Prop-Fan system components are discussed in detail. The manufacturing techniques used in the fabrication of the Prop-Fan are presented. Each of the tests run during the course of the program are also discussed and the major conclusions derived from them stated.

  20. Large-Scale Advanced Prop-Fan (LAP) pitch change actuator and control design report

    NASA Technical Reports Server (NTRS)

    Schwartz, R. A.; Carvalho, P.; Cutler, M. J.

    1986-01-01

    In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that the high inherent efficiency previously demonstrated by low speed turboprop propulsion systems may now be extended to today's higher speed aircraft if advanced high-speed propeller blades having thin airfoils and aerodynamic sweep are utilized. Hamilton Standard has designed a 9-foot diameter single-rotation Large-Scale Advanced Prop-Fan (LAP) which will be tested on a static test stand, in a high speed wind tunnel and on a research aircraft. The major objective of this testing is to establish the structural integrity of large-scale Prop-Fans of advanced construction in addition to the evaluation of aerodynamic performance and aeroacoustic design. This report describes the operation, design features and actual hardware of the (LAP) Prop-Fan pitch control system. The pitch control system which controls blade angle and propeller speed consists of two separate assemblies. The first is the control unit which provides the hydraulic supply, speed governing and feather function for the system. The second unit is the hydro-mechanical pitch change actuator which directly changes blade angle (pitch) as scheduled by the control.

  1. Transfer of skills on LapSim virtual reality laparoscopic simulator into the operating room in urology.

    PubMed

    Alwaal, Amjad; Al-Qaoud, Talal M; Haddad, Richard L; Alzahrani, Tarek M; Delisle, Josee; Anidjar, Maurice

    2015-01-01

    Assessing the predictive validity of the LapSim simulator within a urology residency program. Twelve urology residents at McGill University were enrolled in the study between June 2008 and December 2011. The residents had weekly training on the LapSim that consisted of 3 tasks (cutting, clip-applying, and lifting and grasping). They underwent monthly assessment of their LapSim performance using total time, tissue damage and path length among other parameters as surrogates for their economy of movement and respect for tissue. The last residents' LapSim performance was compared with their first performance of radical nephrectomy on anesthetized porcine models in their 4(th) year of training. Two independent urologic surgeons rated the resident performance on the porcine models, and kappa test with standardized weight function was used to assess for inter-observer bias. Nonparametric spearman correlation test was used to compare each rater's cumulative score with the cumulative score obtained on the porcine models in order to test the predictive validity of the LapSim simulator. The kappa results demonstrated acceptable agreement between the two observers among all domains of the rating scale of performance except for confidence of movement and efficiency. In addition, poor predictive validity of the LapSim simulator was demonstrated. Predictive validity was not demonstrated for the LapSim simulator in the context of a urology residency training program.

  2. Single-joint outcome measures: preliminary validation of patient-reported outcomes and physical examination.

    PubMed

    Heald, Alison E; Fudman, Edward J; Anklesaria, Pervin; Mease, Philip J

    2010-05-01

    To assess the validity, responsiveness, and reliability of single-joint outcome measures for determining target joint (TJ) response in patients with inflammatory arthritis. Patient-reported outcomes (PRO), consisting of responses to single questions about TJ global status on a 100-mm visual analog scale (VAS; TJ global score), function on a 100-mm VAS (TJ function score), and pain on a 5-point Likert scale (TJ pain score) were piloted in 66 inflammatory arthritis subjects in a phase 1/2 clinical study of an intraarticular gene transfer agent and compared to physical examination measures (TJ swelling, TJ tenderness) and validated function questionnaires (Disabilities of the Arm, Shoulder and Hand scale, Rheumatoid Arthritis Outcome Score, and the Health Assessment Questionnaire). Construct validity was assessed by evaluating the correlation between the single-joint outcome measures and validated function questionnaires using Spearman's rank correlation. Responsiveness or sensitivity to change was assessed through calculating effect size and standardized response means (SRM). Reliability of physical examination measures was assessed by determining interobserver agreement. The single-joint PRO were highly correlated with each other and correlated well with validated functional measures. The TJ global score exhibited modest effect size and modest SRM that correlated well with the patient's assessment of response on a 100-mm VAS. Physical examination measures exhibited high interrater reliability, but correlated less well with validated functional measures and the patient's assessment of response. Single-joint PRO, particularly the TJ global score, are simple to administer and demonstrate construct validity and responsiveness in patients with inflammatory arthritis. (ClinicalTrials.gov identifier NCT00126724).

  3. Critical joints in large composite primary aircraft structures. Volume 2: Technology demonstration test report

    NASA Technical Reports Server (NTRS)

    Bunin, Bruce L.

    1985-01-01

    A program was conducted to develop the technology for critical structural joints in composite wing structure that meets all the design requirements of a 1990 commercial transport aircraft. The results of four large composite multirow bolted joint tests are presented. The tests were conducted to demonstrate the technology for critical joints in highly loaded composite structure and to verify the analytical methods that were developed throughout the program. The test consisted of a wing skin-stringer transition specimen representing a stringer runout and skin splice on the wing lower surface at the side of the fuselage attachment. All tests were static tension tests. The composite material was Toray T-300 fiber with Ciba-Geigy 914 resin in 10 mil tape form. The splice members were metallic, using combinations of aluminum and titanium. Discussions are given of the test article, instrumentation, test setup, test procedures, and test results for each of the four specimens. Some of the analytical predictions are also included.

  4. Mechanical performance and parameter sensitivity analysis of 3D braided composites joints.

    PubMed

    Wu, Yue; Nan, Bo; Chen, Liang

    2014-01-01

    3D braided composite joints are the important components in CFRP truss, which have significant influence on the reliability and lightweight of structures. To investigate the mechanical performance of 3D braided composite joints, a numerical method based on the microscopic mechanics is put forward, the modeling technologies, including the material constants selection, element type, grid size, and the boundary conditions, are discussed in detail. Secondly, a method for determination of ultimate bearing capacity is established, which can consider the strength failure. Finally, the effect of load parameters, geometric parameters, and process parameters on the ultimate bearing capacity of joints is analyzed by the global sensitivity analysis method. The results show that the main pipe diameter thickness ratio γ, the main pipe diameter D, and the braided angle α are sensitive to the ultimate bearing capacity N.

  5. Analysis of Bonded Joints Between the Facesheet and Flange of Corrugated Composite Panels

    NASA Technical Reports Server (NTRS)

    Yarrington, Phillip W.; Collier, Craig S.; Bednarcyk, Brett A.

    2008-01-01

    This paper outlines a method for the stress analysis of bonded composite corrugated panel facesheet to flange joints. The method relies on the existing HyperSizer Joints software, which analyzes the bonded joint, along with a beam analogy model that provides the necessary boundary loading conditions to the joint analysis. The method is capable of predicting the full multiaxial stress and strain fields within the flange to facesheet joint and thus can determine ply-level margins and evaluate delamination. Results comparing the method to NASTRAN finite element model stress fields are provided illustrating the accuracy of the method.

  6. The Use of Residual Collagenase for Single Digits With Multiple-Joint Dupuytren Contractures.

    PubMed

    Grandizio, Louis C; Akoon, Anil; Heimbach, Janice; Graham, Jove; Klena, Joel C

    2017-06-01

    Standard 0.58 mg (0.25 mL) collagenase Clostridium histolyticum (CCH) preparations result in unused CCH that is often discarded. Our purpose was to assess the results on Dupuytren contractures affecting both the metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints in the same digit utilizing an injection containing the maximum CCH volume that can be withdrawn from a single vial. A consecutive series of patients with MCP and PIP cords in the same digit received a single treatment with 2 injections totaling 0.30 mL distributed between the MCP and the PIP cords and underwent manipulation approximately 24 hours later. Reduction in contracture, clinical success, and complications were assessed 30 days after manipulation. Thirty-one patients (34 digits) had a mean preinjection flexion contracture of 50° at the MCP joint and 53° at the PIP joint. Clinical success (reduction in joint contracture to 0°-5° of full extension 30-days postmanipulation) was noted in 65% of MCP cords and 38% of PIP joint cords. We had a 24% incidence of skin tears, which correlated with the degree of preinjection contracture. For Dupuytren contractures involving the MCP and PIP joints in the same digit, distributing the maximum amount of CCH that can be withdrawn from a single vial provides efficacy at both joints that is similar to that reported in previously published series, with a comparable complication rate. Utilizing excess CCH typically discarded may provide cost savings. Therapeutic IV. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  7. Prediction of Imagined Single-Joint Movements in a Person with High Level Tetraplegia

    PubMed Central

    Simeral, John D.; Donoghue, John P.; Hochberg, Leigh R.; Kirsch, Robert F.

    2013-01-01

    Cortical neuroprostheses for movement restoration require developing models for relating neural activity to desired movement. Previous studies have focused on correlating single-unit activities (SUA) in primary motor cortex to volitional arm movements in able-bodied primates. The extent of the cortical information relevant to arm movements remaining in severely paralyzed individuals is largely unknown. We record intracortical signals using a microelectrode array chronically implanted in the precentral gyrus of a person with tetraplegia, and estimate positions of imagined single-joint arm movements. Using visually guided motor imagery, the participant imagined performing eight distinct single-joint arm movements while SUA, multi-spike trains (MSP), multi-unit activity (MUA), and local field potential time (LFPrms) and frequency signals (LFPstft) were recorded. Using linear system identification, imagined joint trajectories were estimated with 20 – 60% variance explained, with wrist flexion/extension predicted the best and pronation/supination the poorest. Statistically, decoding of MSP and LFPstft yielded estimates that equaled those of SUA. Including multiple signal types in a decoder increased prediction accuracy in all cases. We conclude that signals recorded from a single restricted region of the precentral gyrus in this person with tetraplegia contained useful information regarding the intended movements of upper extremity joints. PMID:22851229

  8. Intermetallic layers in temperature controlled Friction Stir Welding of dissimilar Al-Cu-joints

    NASA Astrophysics Data System (ADS)

    Marstatt, R.; Krutzlinger, M.; Luderschmid, J.; Constanzi, G.; Mueller, J. F. J.; Haider, F.; Zaeh, M. F.

    2018-06-01

    Friction Stir Welding (FSW) can be performed to join dissimilar metal combinations like aluminium and copper, which is of high interest in modern production of electrical applications. The amount of intermetallic phases in the weld seam is significantly reduced compared to traditional fusion welding technologies. Because the solidus temperature is typically not reached during FSW, the growth of intermetallic phases is impeded and the intermetallic layer thicknesses typically remains on the scale of a few hundred nanometres. These layers provide a substance-to-substance bond, which is the main joining mechanism. Latest research confirms that the layer formation is most likely driven by the heat input during processing. Hence, the welding temperature is the key to achieve high quality joints. In this study, aluminium and copper sheets were welded in lap joint configuration using temperature-controlled FSW. An advanced in-tool measurement set-up was used to determine precise temperature data. Scanning electron microscopy (SEM) was used to analyse metallurgical aspects (e.g. structure and composition of the intermetallic phases) of the joints. The results show a correlation between the welding temperature and the thickness of the intermetallic layer and its structure. The temperature control significantly improved the correlation compared to previous studies. This leads to an enhanced understanding of the dominating joining mechanisms.

  9. Thermal-mechanical fatigue test apparatus for metal matrix composites and joint attachments

    NASA Technical Reports Server (NTRS)

    Westfall, L. J.; Petrasek, D. W.

    1985-01-01

    Two thermal-mechanical fatigue (TMF) test facilities were designed and developed, one to test tungsten fiber reinforced metal matrix composite specimens at temperature up to 1430C (2600F) and another to test composite/metal attachment bond joints at temperatures up to 760C (1400 F). The TMF facility designed for testing tungsten fiber reinforced metal matrix composites permits test specimen temperature excursions from room temperature to 1430C (2600F) with controlled heating and loading rates. A strain-measuring device measures the strain in the test section of the specimen during each heating and cooling cycle with superimposed loads. Data is collected and recorded by a computer. The second facility is designed to test composite/metal attachment bond joints and to permit heating to a maximum temperature of 760C (1400F) within 10 min and cooling to 150C (300F) within 3 min. A computer controls specimen temperature and load cycling.

  10. Thermal-mechanical fatigue test apparatus for metal matrix composites and joint attachments

    NASA Technical Reports Server (NTRS)

    Westfall, Leonard J.; Petrasek, Donald W.

    1988-01-01

    Two thermal-mechanical fatigue (TMF) test facilities were designed and developed, one to test tungsten fiber reinforced metal matrix composite specimens at temperature up to 1430C (2600F) and another to test composite/metal attachment bond joints at temperatures up to 760F (1400F). The TMF facility designed for testing tungsten fiber reinforced metal matrix composites permits test specimen temperature excursions from room temperature to 1430C (2600F) with controlled heating and loading rates. A strain-measuring device measures the strain in the test section of the specimen during each heating and cooling cycle with superimposed loads. Data is collected and recorded by a computer. The second facility is designed to test composite/metal attachment bond joints and to permit heating to a maximum temperature of 760C (1400F) within 10 min and cooling to 150C (300F) within 3 min. A computer controls specimen temperature and load cycling.

  11. Physical interpretation and development of ultrasonic nondestructive evaluation techniques applied to the quantitative characterization of textile composite materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1993-01-01

    In this Progress Report, we describe our current research activities concerning the development and implementation of advanced ultrasonic nondestructive evaluation methods applied to the characterization of stitched composite materials and bonded aluminum plate specimens. One purpose of this investigation is to identify and characterize specific features of polar backscatter interrogation which enhance the ability of ultrasound to detect flaws in a stitched composite laminate. Another focus is to explore the feasibility of implementing medical linear array imaging technology as a viable ultrasonic-based nondestructive evaluation method to inspect and characterize bonded aluminum lap joints. As an approach to implementing quantitative ultrasonic inspection methods to both of these materials, we focus on the physics that underlies the detection of flaws in such materials.

  12. Fracture surface analysis in composite and titanium bonding: Part 1: Titanium bonding

    NASA Technical Reports Server (NTRS)

    Sanderson, K. A.; Wightman, J. P.

    1985-01-01

    Fractured lap shear Ti 6-4 adherends bonded with polyphenyquinoxaline (PPQ) and polysulfone were analyzed. The effects of adherend pretreatment, stress level, thermal aging, anodizing voltage, and modified adhesive of Ti 6-4 adherend bonded with PPQ on lap shear strength were studied. The effect of adherend pretreatment on lap shear strength was investigated for PS samples. Results of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) used to study the surface topography and surface composition are also discussed.

  13. Extracting joint weak values with local, single-particle measurements.

    PubMed

    Resch, K J; Steinberg, A M

    2004-04-02

    Weak measurement is a new technique which allows one to describe the evolution of postselected quantum systems. It appears to be useful for resolving a variety of thorny quantum paradoxes, particularly when used to study properties of pairs of particles. Unfortunately, such nonlocal or joint observables often prove difficult to measure directly in practice (for instance, in optics-a common testing ground for this technique-strong photon-photon interactions would be needed to implement an appropriate von Neumann interaction). Here we derive a general, experimentally feasible, method for extracting these joint weak values from correlations between single-particle observables.

  14. Numerical Investigation of T-joints with 3D Four Directional Braided Composite Fillers Under Tensile Loading

    NASA Astrophysics Data System (ADS)

    Li, Xiao-kang; Liu, Zhen-guo; Hu, Long; Wang, Yi-bo; Lei, Bing; Huang, Xiang

    2017-02-01

    Numerical studied on T-joints with three-dimensional four directional (3D4D) braided composite fillers was presented in this article. Compared with conventional unidirectional prepreg fillers, the 3D braided composite fillers have excellent ability to prevent crack from penetrating trigone fillers, which constantly occurred in the conventional fillers. Meanwhile, the 3D braided composite fillers had higher fiber volume fraction and eliminated the fiber folding problem in unidirectional prepreg fillers. The braiding technology and mechanical performance of 3D4D braided fillers were studied. The numerical model of carbon fiber T-joints with 3D4D braided composite fillers was built by finite element analysis software. The damage formation, extension and failing process of T-joints with 3D4D braided fillers under tensile load were investigated. Further investigation was extended to the effect of 3D4D braided fillers with different braiding angles on mechanical behavior of the T-joints. The study results revealed that the filling area was the weakest part of the T-joints where the damage first appeared and the crack then rapidly spread to the glue film around the filling area and the interface between over-laminate and soleplate. The 3D4D braided fillers were undamaged and the braiding angle change induced a little effect on the bearing capacity of T-joints.

  15. Buckling of a Longitudinally Jointed Curved Composite Panel Arc Segment for Next Generation of Composite Heavy Lift Launch Vehicles: Verification Testing Analysis

    NASA Technical Reports Server (NTRS)

    Farrokh, Babak; Segal, Kenneth N.; Akkerman, Michael; Glenn, Ronald L.; Rodini, Benjamin T.; Fan, Wei-Ming; Kellas, Sortiris; Pineda, Evan J.

    2014-01-01

    In this work, an all-bonded out-of-autoclave (OoA) curved longitudinal composite joint concept, intended for use in the next generation of composite heavy lift launch vehicles, was evaluated and verified through finite element (FE) analysis, fabrication, testing, and post-test inspection. The joint was used to connect two curved, segmented, honeycomb sandwich panels representative of a Space Launch System (SLS) fairing design. The overall size of the resultant panel was 1.37 m by 0.74 m (54 in by 29 in), of which the joint comprised a 10.2 cm (4 in) wide longitudinal strip at the center. NASTRAN and ABAQUS were used to perform linear and non-linear analyses of the buckling and strength performance of the jointed panel. Geometric non-uniformities (i.e., surface contour imperfections) were measured and incorporated into the FE model and analysis. In addition, a sensitivity study of the specimens end condition showed that bonding face-sheet doublers to the panel's end, coupled with some stress relief features at corner-edges, can significantly reduce the stress concentrations near the load application points. Ultimately, the jointed panel was subjected to a compressive load. Load application was interrupted at the onset of buckling (at 356 kN 80 kips). A post-test non-destructive evaluation (NDE) showed that, as designed, buckling occurred without introducing any damage into the panel or the joint. The jointed panel was further capable of tolerating an impact damage to the same buckling load with no evidence of damage propagation. The OoA cured all-composite joint shows promise as a low mass factory joint for segmented barrels.

  16. The induction of tomato leucine aminopeptidase genes (LapA) after Pseudomonas syringae pv. tomato infection is primarily a wound response triggered by coronatine.

    PubMed

    Pautot, V; Holzer, F M; Chaufaux, J; Walling, L L

    2001-02-01

    Tomato plants constitutively express a neutral leucine aminopeptidase (LAP-N) and an acidic LAP (LAP-A) during floral development and in leaves in response to insect infestation, wounding, and Pseudomonas syringae pv. tomato infection. To assess the physiological roles of LAP-A, a LapA-antisense construct (35S:asLapA1) was introduced into tomato. The 35S:asLapA1 plants had greatly reduced or showed undetectable levels of LAP-A and LAP-N proteins in healthy and wounded leaves and during floral development. Despite the loss of these aminopeptidases, no global changes in protein profiles were noted. The 35S:asLapA1 plants also exhibited no significant alteration in floral development and did not impact the growth and development of Manduca sexta and P. syringae pv. tomato growth rates during compatible or incompatible infections. To investigate the mechanism underlying the strong induction of LapA upon P. syringae pv. tomato infection, LapA expression was monitored after infection with coronatine-producing and -deficient P. syringae pv. tomato strains. LapA RNA and activity were detected only with the coronatine-producing P. syringae pv. tomato strain. Coronatine treatment of excised shoots caused increases in RNAs for jasmonic acid (JA)-regulated wound-response genes (LapA and pin2) but did not influence expression of a JA-regulated pathogenesis-related protein gene (PR-1). These results indicated that coronatine mimicked the wound response but was insufficient to activate JA-regulated PR genes.

  17. Biocompatibility of single-walled carbon nanotube composites for bone regeneration.

    PubMed

    Gupta, A; Liberati, T A; Verhulst, S J; Main, B J; Roberts, M H; Potty, A G R; Pylawka, T K; El-Amin Iii, S F

    2015-05-01

    The purpose of this study was to evaluate in vivo biocompatibility of novel single-walled carbon nanotubes (SWCNT)/poly(lactic-co-glycolic acid) (PLAGA) composites for applications in bone and tissue regeneration. A total of 60 Sprague-Dawley rats (125 g to 149 g) were implanted subcutaneously with SWCNT/PLAGA composites (10 mg SWCNT and 1gm PLAGA 12 mm diameter two-dimensional disks), and at two, four, eight and 12 weeks post-implantation were compared with control (Sham) and PLAGA (five rats per group/point in time). Rats were observed for signs of morbidity, overt toxicity, weight gain and food consumption, while haematology, urinalysis and histopathology were completed when the animals were killed. No mortality and clinical signs were observed. All groups showed consistent weight gain, and the rate of gain for each group was similar. All groups exhibited a similar pattern for food consumption. No difference in urinalysis, haematology, and absolute and relative organ weight was observed. A mild to moderate increase in the summary toxicity (sumtox) score was observed for PLAGA and SWCNT/PLAGA implanted animals, whereas the control animals did not show any response. Both PLAGA and SWCNT/PLAGA showed a significantly higher sumtox score compared with the control group at all time intervals. However, there was no significant difference between PLAGA and SWCNT/PLAGA groups. Our results demonstrate that SWCNT/PLAGA composites exhibited in vivo biocompatibility similar to the Food and Drug Administration approved biocompatible polymer, PLAGA, over a period of 12 weeks. These results showed potential of SWCNT/PLAGA composites for bone regeneration as the low percentage of SWCNT did not elicit a localised or general overt toxicity. Following the 12-week exposure, the material was considered to have an acceptable biocompatibility to warrant further long-term and more invasive in vivo studies. Cite this article: Bone Joint Res 2015;4:70-7. ©2015 The British Editorial

  18. Stress analysis of the cracked-lap-shear specimen - An ASTM round-robin

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1987-01-01

    This ASTM Round Robin was conducted to evaluate the state of the art in stress analysis of adhesively bonded joint specimens. Specifically, the participants were asked to calculate the strain-energy-release rate for two different geometry cracked lap shear (CLS) specimens at four different debond lengths. The various analytical techniques consisted of 2- and 3-dimensional finite element analysis, beam theory, plate theory, and a combination of beam theory and finite element analysis. The results were examined in terms of the total strain-energy-release rate and the mode I to mode II ratio as a function of debond length for each specimen geometry. These results basically clustered into two groups: geometric linear or geometric nonlinear analysis. The geometric nonlinear analysis is required to properly analyze the CLS specimens. The 3-D finite element analysis gave indications of edge closure plus some mode III loading. Each participant described his analytical technique and results. Nine laboratories participated.

  19. Stress analysis of the cracked lap shear specimens: An ASTM round robin

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1986-01-01

    This ASTM Round Robin was conducted to evaluate the state of the art in stress analysis of adhesively bonded joint specimens. Specifically, the participants were asked to calculate the strain-energy-release rate for two different geometry cracked lap shear (CLS) specimens at four different debond lengths. The various analytical techniques consisted of 2- and 3-dimensional finite element analysis, beam theory, plate theory, and a combination of beam theory and finite element analysis. The results were examined in terms of the total strain-energy-release rate and the mode I to mode II ratio as a function of debond length for each specimen geometry. These results basically clustered into two groups: geometric linear or geometric nonlinear analysis. The geometric nonlinear analysis is required to properly analyze the CLS specimens. The 3-D finite element analysis gave indications of edge closure plus some mode III loading. Each participant described his analytical technique and results. Nine laboratories participated.

  20. Wear properties of alumina/zirconia composite ceramics for joint prostheses measured with an end-face apparatus.

    PubMed

    Morita, Yusuke; Nakata, Kenichi; Kim, Yoon-Ho; Sekino, Tohru; Niihara, Koichi; Ikeuchi, Ken

    2004-01-01

    While only alumina is applied to all-ceramic joint prostheses at present, a stronger ceramic is required to prevent fracture and chipping due to impingement and stress concentration. Zirconia could be a potential substitute for alumina because it has high strength and fracture toughness. However, the wear of zirconia/zirconia combination is too high for clinical use. Although some investigations on composite ceramics revealed that mixing of different ceramics was able to improve the mechanical properties of ceramics, there are few reports about wear properties of composite ceramics for joint prosthesis. Since acetabular cup and femoral head of artificial hip joint are finished precisely, they indicate high geometric conformity. Therefore, wear test under flat contact was carried out with an end-face wear testing apparatus for four kinds of ceramics: alumina monolith, zirconia monolith, alumina-based composite ceramic, and zirconia based composite ceramic. Mean contact pressure was 10 MPa and sliding velocity was 40 mm/s. The wear test continued for 72 hours and total sliding distance was 10 km. After the test, the wear factor was calculated. Worn surfaces were observed with a scanning electron micrograph (SEM). The results of this wear test show that the wear factors of the both composite ceramics are similarly low and their mechanical properties are much better than those of the alumina monolith and the zirconia monolith. According to these results, it is predicted that joint prostheses of the composite ceramics are safer against break down and have longer lifetime compared with alumina/alumina joint prostheses.

  1. SEM/XPS analysis of fractured adhesively bonded graphite fibre surface resin-rich/graphite fibre composites

    NASA Technical Reports Server (NTRS)

    Devilbiss, T. A.; Wightman, J. P.; Progar, D. J.

    1988-01-01

    Samples of graphite fiber-reinforced polyimide were fabricated allowing the resin to accumulate at the composite surface. These surface resin-rich composites were then bonded together and tested for lap shear strength both before and after thermal aging. Lap shear strength did not appear to show a significant improvement over that previously recorded for resin-poor samples and was shown to decrease with increasing aging time and temperature.

  2. The Fundamental Reasons Why Laptop Computers should not be Used on Your Lap.

    PubMed

    Mortazavi, S A R; Taeb, S; Mortazavi, S M J; Zarei, S; Haghani, M; Habibzadeh, P; Shojaei-Fard, M B

    2016-12-01

    As a tendency to use new technologies, gadgets such as laptop computers are becoming more popular among students, teachers, businessmen and office workers. Today laptops are a great tool for education and learning, work and personal multimedia. Millions of men, especially those in the reproductive age, are frequently using their laptop computers on the lap (thigh). Over the past several years, our lab has focused on the health effects of exposure to different sources of electromagnetic fields such as cellular phones, mobile base stations, mobile phone jammers, laptop computers, radars, dentistry cavitrons and Magnetic Resonance Imaging (MRI). Our own studies as well as the studies performed by other researchers indicate that using laptop computers on the lap adversely affects the male reproductive health. When it is placed on the lap, not only the heat from a laptop computer can warm men's scrotums, the electromagnetic fields generated by laptop's internal electronic circuits as well as the Wi-Fi Radiofrequency radiation hazards (in a Wi-Fi connected laptop) may decrease sperm quality. Furthermore, due to poor working posture, laptops should not be used on the lap for long hours.

  3. The Fundamental Reasons Why Laptop Computers should not be Used on Your Lap

    PubMed Central

    Mortazavi, S.A.R.; Taeb, S.; Mortazavi, S.M.J.; Zarei, S.; Haghani, M.; Habibzadeh, P.; Shojaei-fard, M.B.

    2016-01-01

    As a tendency to use new technologies, gadgets such as laptop computers are becoming more popular among students, teachers, businessmen and office workers. Today laptops are a great tool for education and learning, work and personal multimedia. Millions of men, especially those in the reproductive age, are frequently using their laptop computers on the lap (thigh). Over the past several years, our lab has focused on the health effects of exposure to different sources of electromagnetic fields such as cellular phones, mobile base stations, mobile phone jammers, laptop computers, radars, dentistry cavitrons and Magnetic Resonance Imaging (MRI). Our own studies as well as the studies performed by other researchers indicate that using laptop computers on the lap adversely affects the male reproductive health. When it is placed on the lap, not only the heat from a laptop computer can warm men’s scrotums, the electromagnetic fields generated by laptop’s internal electronic circuits as well as the Wi-Fi Radiofrequency radiation hazards (in a Wi-Fi connected laptop) may decrease sperm quality. Furthermore, due to poor working posture, laptops should not be used on the lap for long hours. PMID:28144597

  4. Finite Element Modeling of Viscoelastic Behavior and Interface Damage in Adhesively Bonded Joints

    DTIC Science & Technology

    2012-01-01

    eccentricity of the axis of a lap joint gives rise to transverse or peel stresses at the Report Documentation Page Form ApprovedOMB No. 0704-0188...Computers and Structures 29, 1011 (1988). 21 S. Roy and J. N. Reddy, Tire Sci. Technol. 16, 146 (1988). 22 S. Roy and J. N. Reddy, Intl. J. Numer

  5. Adhesive Characterization and Progressive Damage Analysis of Bonded Composite Joints

    NASA Technical Reports Server (NTRS)

    Girolamo, Donato; Davila, Carlos G.; Leone, Frank A.; Lin, Shih-Yung

    2014-01-01

    The results of an experimental/numerical campaign aimed to develop progressive damage analysis (PDA) tools for predicting the strength of a composite bonded joint under tensile loads are presented. The PDA is based on continuum damage mechanics (CDM) to account for intralaminar damage, and cohesive laws to account for interlaminar and adhesive damage. The adhesive response is characterized using standard fracture specimens and digital image correlation (DIC). The displacement fields measured by DIC are used to calculate the J-integrals, from which the associated cohesive laws of the structural adhesive can be derived. A finite element model of a sandwich conventional splice joint (CSJ) under tensile loads was developed. The simulations indicate that the model is capable of predicting the interactions of damage modes that lead to the failure of the joint.

  6. Lamb Wave-Based Structural Health Monitoring on Composite Bolted Joints under Tensile Load

    PubMed Central

    Yang, Bin; Xuan, Fu-Zhen; Xiang, Yanxun; Li, Dan; Zhu, Wujun; Tang, Xiaojun; Xu, Jichao; Yang, Kang; Luo, Chengqiang

    2017-01-01

    Online and offline monitoring of composite bolted joints under tensile load were investigated using piezoelectric transducers. The relationships between Lamb wave signals, pre-tightening force, the applied tensile load, as well as the failure modes were investigated. Results indicated that S0/A0 wave amplitudes decrease with the increasing of load. Relationships between damage features and S0/A0 mode were built based on the finite element (FE) simulation and experimental results. The possibility of application of Lamb wave-based structure health monitoring in bolted joint-like composite structures was thus achieved. PMID:28773014

  7. 77 FR 21395 - Airworthiness Directives; Fokker Services B.V. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... would require performing a low frequency eddy current inspection for cracks of the lap joint of the rear...-frequency eddy current inspection of the lap joint for cracks and, depending on findings, repair of the lap... AD: Do a low frequency eddy current (LFEC) inspection for cracks of the lap joint of the rear...

  8. Small molecules targeting LapB protein prevent Listeria attachment to catfish muscle

    PubMed Central

    Das, Bhaskar; Lawrence, Mark

    2017-01-01

    Listeria monocytogenes is a Gram-positive foodborne pathogen and the causative agent of listeriosis. L. monocytogenes lapB gene encodes a cell wall surface anchor protein, and mutation of this gene causes Listeria attenuation in mice. In this work, the potential role of Listeria LapB protein in catfish fillet attachment was investigated. To achieve this, boron-based small molecules designed to interfere with the active site of the L. monocytogenes LapB protein were developed, and their ability to prevent L. monocytogenes attachment to fish fillet was tested. Results indicated that seven out of nine different small molecules were effective in reducing the Listeria attachment to catfish fillets. Of these, three small molecules (SM3, SM5, and SM7) were highly effective in blocking Listeria attachment to catfish fillets. This study suggests an alternative strategy for reduction of L. monocytogenes contamination in fresh and frozen fish products. PMID:29253892

  9. Virtual trajectories of single-joint movements performed under two basic strategies.

    PubMed

    Latash, M L; Gottlieb, G L

    1992-01-01

    The framework of the equilibrium point hypothesis has been used to analyse motor control processes for single-joint movements. Virtual trajectories and joint stiffness were reconstructed for different movement speeds and distances when subjects were instructed either to move "as fast as possible" or to intentionally vary movement speed. These instructions are assumed to be associated with similar or different rates of change of hypothetical central control variables (corresponding to the speed-sensitive and speed-insensitive strategies). The subjects were trained to perform relatively slow, moderately fast and very fast (nominal movement times 800, 400 and 250 ms) single-joint elbow flexion movements against a constant extending torque bias. They were instructed to reproduce the motor command for a series of movements while ignoring possible changes in the external torque which could slowly and unpredictably increase, decrease, or remain constant. The total muscle torque was calculated as a sum of external and inertial components. Fast movements over different distances were made with the speed-insensitive strategy. They were characterized by an increase in joint stiffness near the midpoint of the movements which was relatively independent of movement amplitude. Their virtual trajectories had a non-monotonic N-shape. All three arms of the N-shape scaled with movement amplitude. Movements over one distance at different speeds were made with a speed-sensitive strategy. They demonstrated different patterns of virtual trajectories and joint stiffness that depended on movement speed. The N-shape became less apparent for moderately fast movements and virtually disappeared for the slow movements. Slow movements showed no visible increase in joint stiffness.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Dynamic expression of the LAP family of genes during early development of Xenopus tropicalis.

    PubMed

    Yang, Qiutan; Lv, Xiaoyan; Kong, Qinghua; Li, Chaocui; Zhou, Qin; Mao, Bingyu

    2011-10-01

    The leucine-rich repeats and PDZ (LAP) family of genes are crucial for the maintenance of cell polarity as well as for epithelial homeostasis and tumor suppression in both vertebrates and invertebrates. Four members of this gene family are known: densin, erbin, scribble and lano. Here, we identified the four members of the LAP gene family in Xenopus tropicalis and studied their expression patterns during embryonic development. The Xenopus LAP proteins show a conserved domain structure that is similar to their homologs in other vertebrates. In Xenopus embryos, these genes were detected in animal cap cells at the early gastrula stage. At later stages of development, they were widely expressed in epithelial tissues that are highly polar in nature, including the neural epithelia, optic and otic vesicles, and in the pronephros. These data suggest that the roles of the Xenopus LAP genes in the control of cell polarity and morphogenesis are conserved during early development. Erbin and lano show similar expression patterns in the developing head, suggesting potential functional interactions between the two molecules in vivo.

  11. Design, Fabrication, and Testing of Ceramic Joints for High Temperature SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Lara-Curzio, Edgar

    2000-01-01

    Various issues associated with the design and mechanical evaluation of joints of ceramic matrix composites are discussed. The specific case of an affordable, robust ceramic joining technology (ARCJoinT) to join silicon carbide (CG-Nicalon(sup TM)) fiber-reinforced-chemically vapor infiltrated (CVI) silicon carbide matrix composites is addressed. Experimental results are presented for the time and temperature dependence of the shear strength of these joints in air up to 1200 C. From compression testing of double-notched joint specimens with a notch separation of 4 mm, it was found that the apparent shear strength of the joints decreased from 92 MPa at room temperature to 71 MPa at 1200 C. From shear stress-rupture testing in air at 1200 C it was found that the shear strength of the joints decreased rapidly with time from an initial shear strength of 71 to 17.5 MPa after 14.3 hr. The implications of these results in relation to the expected long-term service life of these joints in applications at elevated temperatures are discussed.

  12. Age of Lunar Meteorite LAP02205 and Implications for Impact-Sampling of Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C.-Y.; Reese, Y.; Bogard, D. D.

    2005-01-01

    We have measured the age of lunar meteorite LAP02205 by the Rb-Sr and Ar-Ar methods. Sm-Nd analyses are in progress. The Rb-Sr and Ar-Ar ages indicate a crystallization age of approx. 3 Ga. Comparing the ages of LAP02205 and other lunar mare basaltic meteorites to mare surface ages based on the density of impact craters shows no significant bias in impact- sampling of lunar mare surfaces. Comparing the isotopic and geochemical data for LAP02205 to those for other lunar mare basalts suggests that it is a younger variant of the type of volcanism that produced the Apollo 12 basalts. Representative impact-sampling of the lunar surface

  13. Contribution of facet joints, axial compression, and composition to human lumbar disc torsion mechanics.

    PubMed

    Bezci, Semih E; Eleswarapu, Ananth; Klineberg, Eric O; O'Connell, Grace D

    2018-02-12

    Stresses applied to the spinal column are distributed between the intervertebral disc and facet joints. Structural and compositional changes alter stress distributions within the disc and between the disc and facet joints. These changes influence the mechanical properties of the disc joint, including its stiffness, range of motion, and energy absorption under quasi-static and dynamic loads. There have been few studies evaluating the role of facet joints in torsion. Furthermore, the relationship between biochemical composition and torsion mechanics is not well understood. Therefore, the first objective of this study was to investigate the role of facet joints in torsion mechanics of healthy and degenerated human lumbar discs under a wide range of compressive preloads. To achieve this, each disc was tested under four different compressive preloads (300-1200 N) with and without facet joints. The second objective was to develop a quantitative structure-function relationship between tissue composition and torsion mechanics. Facet joints have a significant contribution to disc torsional stiffness (∼60%) and viscoelasticity, regardless of the magnitude of axial compression. The findings from this study demonstrate that annulus fibrosus GAG content plays an important role in disc torsion mechanics. A decrease in GAG content with degeneration reduced torsion mechanics by more than an order of magnitude, while collagen content did not significantly influence disc torsion mechanics. The biochemical-mechanical and compression-torsion relationships reported in this study allow for better comparison between studies that use discs of varying levels of degeneration or testing protocols and provide important design criteria for biological repair strategies. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. On the water lapping of felines and the water running of lizards

    PubMed Central

    Aristoff, Jeffrey M; Stocker, Roman; Reis, Pedro M

    2011-01-01

    We consider two biological phenomena taking place at the air-water interface: the water lapping of felines and the water running of lizards. Although seemingly disparate motions, we show that they are intimately linked by their underlying hydrodynamics and belong to a broader class of processes called Froude mechanisms. We describe how both felines and lizards exploit inertia to defeat gravity, and discuss water lapping and water running in the broader context of water exit and water entry, respectively. PMID:21655444

  15. Low frequency ultrasonic nondestructive inspection of aluminum/adhesive fuselage lap splices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, Thadd

    1994-01-04

    This thesis is a collection of research efforts in ultrasonics, conducted at the Center for Aviation Systems Reliability located at Iowa State University, as part of the Federal Aviation Administration`s ``Aging Aircraft Program.`` The research was directed toward the development of an ultrasonic prototype to inspect the aluminum/adhesive fuselage lap splices found on 1970`s vintage Boeing passenger aircraft. The ultrasonic prototype consists of a normal incidence, low frequency inspection technique, and a scanning adapter that allows focused immersion transducers to be operated in a direct contact manner in any inspection orientation, including upside-down. The inspection technique uses a computer-controlled datamore » acquisition system to produce a C-scan image of a radio frequency (RF) waveform created by a low frequency, broadband, focused beam transducer, driven with a spike voltage pulser. C-scans produced by this technique are color representations of the received signal`s peak-to-peak amplitude (voltage) taken over an (x, y) grid. Low frequency, in this context, refers to a wavelength that is greater than the lap splice`s layer thicknesses. With the low frequency technique, interface echoes of the lap splice are not resolved and gating of the signal is unnecessary; this in itself makes the technique simple to implement and saves considerable time in data acquisition. Along with the advantages in data acquisition, the low frequency technique is relatively insensitive to minor surface curvature and to ultrasonic interference effects caused by adhesive bondline thickness variations in the lap splice.« less

  16. Ganglion cyst arising from the composite occipito-atlanto-axial joint cavity in a cat.

    PubMed

    Aikawa, T; Sadahiro, S; Nishimura, M; Miyazaki, Y; Shibata, M

    2014-01-01

    A four-year-old, female spayed Domestic Longhaired cat was referred for evaluation with a two month history of initial inability to jump progressing to ambulatory tetraparesis. Magnetic resonance imaging studies demonstrated a cystic lesion arising from the composite occipito-atlanto-axial joint cavity and extending to the region of the occipital bone and the axis. The lesion surrounded the spinal canal, causing moderate dorsal spinal cord compression at the atlanto-occipital joint. A dynamic myelographic study demonstrated attenuation of the dorsal contrast column at the atlanto-occipital joint when the cervical spine was positioned in extension. Partial excision of the cyst capsule by a ventral approach resulted in long-term (64 months) resolution of clinical signs. Histological evaluation was consistent with a ganglion cyst. An intra-spinal ganglion cyst arising from the composite occipito-atlanto-axial joint cavity may be considered as an uncommon differential diagnosis for cats with cervical myelopathy.

  17. Validation of a novel basic virtual reality simulator, the LAP-X, for training basic laparoscopic skills.

    PubMed

    Kawaguchi, Koji; Egi, Hiroyuki; Hattori, Minoru; Sawada, Hiroyuki; Suzuki, Takahisa; Ohdan, Hideki

    2014-10-01

    Virtual reality surgical simulators are becoming popular as a means of providing trainees with an opportunity to practice laparoscopic skills. The Lap-X (Epona Medical, Rotterdam, the Netherlands) is a novel VR simulator for training basic skills in laparoscopic surgery. The objective of this study was to validate the LAP-X laparoscopic virtual reality simulator by assessing the face and construct validity in order to determine whether the simulator is adequate for basic skills training. The face and content validity were evaluated using a structured questionnaire. To assess the construct validity, the participants, nine expert surgeons (median age: 40 (32-45)) (>100 laparoscopic procedures) and 11 novices performed three basic laparoscopic tasks using the Lap-X. The participants reported a high level of content validity. No significant differences were found between the expert surgeons and the novices (Ps > 0.246). The performance of the expert surgeons on the three tasks was significantly better than that of the novices in all parameters (Ps < 0.05). This study demonstrated the face, content and construct validity of the Lap-X. The Lap-X holds real potential as a home and hospital training device.

  18. Electromyographic analyses of muscle pre-activation induced by single joint exercise.

    PubMed

    Júnior, Valdinar A R; Bottaro, Martim; Pereira, Maria C C; Andrade, Marcelino M; P Júnior, Paulo R W; Carmo, Jake C

    2010-01-01

    To investigate whether performing a low-intensity, single-joint exercises for knee extensors was an efficient strategy for increasing the number of motor units recruited in the vastus lateralis muscle during a subsequent multi-joint exercises. Nine healthy male participants (23.33+/-3.46 yrs) underwent bouts of exercise in which knee extension and 45 degrees , and leg press exercises were performed in sequence. In the low-intensity bout (R30), 15 unilateral knee extensions were performed, followed by 15 repetitions of the leg presses at 30% and 60% of one maximum repetition load (1-MR), respectively. In the high-intensity bout (R60), the same sequence was performed, but the applied load was 60% of 1-MR for both exercises. A single set of 15 repetitions of the leg press at 60% of 1-MR was performed as a control exercise (CR). The surface electromyographic signals of the vastus lateralis muscle were recorded by means of a linear electrode array. The root mean square (RMS) values were determined for each repetition of the leg press, and linear regressions were calculated from these results. The slopes of the straight lines obtained were then normalized using the linear coefficients of the regression equations and compared using one-way ANOVAs for repeated measures. The slopes observed in the CR were significantly lower than those in the R30 and R60 (p<0.05). The results indicated that the recruitment of motor units was more effective when a single-joint exercise preceded the multi-joint exercise. Article registered in the Australian New Zealand Clinical Trials Registry (ANZCTR) under the number ACTRN12609000413224.

  19. Evaluation of High Temperature Properties and Microstructural Characterization of Resistance Spot Welded Steel Lap Shear Joints

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Anil Kumar, V.; Panicker, Paul G.

    2016-02-01

    Joining of thin sheets (0.5 mm) of stainless steel 304 and 17-4PH through resistance spot welding is highly challenging especially when joint is used for high temperature applications. Various combinations of stainless steel sheets of thickness 0.5 mm are spot welded and tested at room temperature as well as at high temperatures (800 K, 1,000 K, 1,200 K). Parent metal as well as spot welded joints are tested and characterized. It is observed that joint strength of 17-4PH steel is highest and then dissimilar steel joint of 17-4PH with SS-304 is moderate and of SS-304 is lowest at all the temperatures. Joint strength of 17-4PH steel is found to be >80% of parent metal properties up to 1,000 K then drastic reduction in strength is noted at 1,200 K. Gradual reduction in strength of SS-304 joint with increase in temperature from 800 to 1,200 K is noted. At 1,200 K, joint strength of all combinations of joints is found to be nearly same. Microstructural evaluation of weld nugget after testing at different temperatures shows presence of tempered martensite in 17-4PH containing welds and homogenized structure in stainless steel 304 weld.

  20. A Model for a Single Unmanned Aircraft Systems (UAS) Program Office Managing Joint ISR Capabilities

    DTIC Science & Technology

    2017-10-01

    reduction in manning from the multiple program office structure to the new single program management model. Additional information regarding this...OFFICE MANAGING JOINT ISR CAPABILITIES by Angela E. Burris A Research Report Submitted to the Faculty In Partial Fulfillment of...research paper is to answer how a single management office could provide greater agility for unmanned aircraft systems (UAS); supporting Joint concepts

  1. Design of a composite wing extension for a general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Adney, P. S.; Horn, W. J.

    1984-01-01

    A composite wing extension was designed for a typical general aviation aircraft to improve lift curve slope, dihedral effect, and lift to drag ratio. Advanced composite materials were used in the design to evaluate their use as primary structural components in general aviation aircraft. Extensive wind tunnel tests were used to evaluate six extension shapes. The extension shape chosen as the best choice was 28 inches long with a total area of 17 square feet. Subsequent flight tests showed the wing extension's predicted aerodynamic improvements to be correct. The structural design of the wing extension consisted of a hybrid laminate carbon core with outer layers of Kevlar - layed up over a foam interior which acted as an internal support. The laminate skin of the wing extension was designed from strength requirements, and the foam core was included to prevent buckling. A joint lap was recommended to attach the wing extension to the main wing structure.

  2. Comparative Study of 3-Dimensional Woven Joint Architectures for Composite Spacecraft Structures

    NASA Technical Reports Server (NTRS)

    Jones, Justin S.; Polis, Daniel L.; Segal, Kenneth N.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate initiated an Advanced Composite Technology (ACT) Project through the Exploration Technology Development Program in order to support the polymer composite needs for future heavy lift launch architectures. As an example, the large composite structural applications on Ares V inspired the evaluation of advanced joining technologies, specifically 3D woven composite joints, which could be applied to traditionally manufactured barrel segments. Implementation of these 3D woven joint technologies may offer enhancements in damage tolerance without sacrificing weight. However, baseline mechanical performance data is needed to properly analyze the joint stresses and subsequently design/down-select a preform architecture. Six different configurations were designed and prepared for this study; each consisting of a different combination of warp/fill fiber volume ratio and preform interlocking method (z-fiber, fully interlocked, or hybrid). Tensile testing was performed for this study with the enhancement of a dual camera Digital Image Correlation (DIC) system which provides the capability to measure full-field strains and three dimensional displacements of objects under load. As expected, the ratio of warp/fill fiber has a direct influence on strength and modulus, with higher values measured in the direction of higher fiber volume bias. When comparing the z-fiber weave to a fully interlocked weave with comparable fiber bias, the z-fiber weave demonstrated the best performance in two different comparisons. We report the measured tensile strengths and moduli for test coupons from the 6 different weave configurations under study.

  3. Comparative Study of 3-Dimensional Woven Joint Architectures for Composite Spacecraft Structures

    NASA Technical Reports Server (NTRS)

    Jones, Justin S.; Polis, Daniel L.; Rowles, Russell R.; Segal, Kenneth N.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate initiated an Advanced Composite Technology (ACT) Project through the Exploration Technology Development Program in order to support the polymer composite needs for future heavy lift launch architectures. As an example, the large composite structural applications on Ares V inspired the evaluation of advanced joining technologies, specifically 3D woven composite joints, which could be applied to segmented barrel structures needed for autoclave cured barrel segments due to autoclave size constraints. Implementation of these 3D woven joint technologies may offer enhancements in damage tolerance without sacrificing weight. However, baseline mechanical performance data is needed to properly analyze the joint stresses and subsequently design/down-select a preform architecture. Six different configurations were designed and prepared for this study; each consisting of a different combination of warp/fill fiber volume ratio and preform interlocking method (Z-fiber, fully interlocked, or hybrid). Tensile testing was performed for this study with the enhancement of a dual camera Digital Image Correlation (DIC) system which provides the capability to measure full-field strains and three dimensional displacements of objects under load. As expected, the ratio of warp/fill fiber has a direct influence on strength and modulus, with higher values measured in the direction of higher fiber volume bias. When comparing the Z-fiber weave to a fully interlocked weave with comparable fiber bias, the Z-fiber weave demonstrated the best performance in two different comparisons. We report the measured tensile strengths and moduli for test coupons from the 6 different weave configurations under study.

  4. Leucine aminopeptidase, HlLAP, from the ixodid tick Haemaphysalis longicornis, plays vital roles in the development of oocytes.

    PubMed

    Hatta, Takeshi; Tsuji, Naotoshi; Miyoshi, Takeharu; Islam, M Khyrul; Alim, M Abdul; Yamaji, Kayoko; Anisuzzaman; Fujisaki, Kozo

    2010-06-01

    Female ixodid ticks are amazing invertebrate animals which efficiently convert a large amount of nutrients derived from their ingested blood meals into eggs. Although oocyte development (vitellogenesis) in ticks is triggered by a blood meal and is assumed to be supported by nutrition derived from ovarian cells connecting oocytes, little is known about the ovarian molecules processing nutrient materials for the vitellogenesis. In this study, we have suggested a putative function of leucine aminopeptidase (HlLAP) in the ovary of parthenogenetic adult ixodid tick Haemaphysalis longicornis regarding a negative output of reproduction following disruption of HlLAP gene by RNA interference. Endogenous HlLAP was shown to be localized in the ovarian cells, including ovarian epithelial and pedicel cells which were assumed to provide nutrients for the developing oocytes. Histological studies demonstrated that a majority of immature oocytes in HlLAP gene knockdown ticks were transformed into abnormal morpho-histological oocytes with vacuolated cytoplasm and/or condensed nucleus. Taken together, a reduction of the numbers of laid eggs in the HlLAP gene knockdown ticks may be due to the degeneration of immature oocytes following deprivation of nutrients such as amino acids supplied not only by midgut HlLAP but also by the ovarian HlLAP. Regulation of the tick molecules involved in nutrient metabolism for the reproduction, including blood digestion and vitellogenesis, would help in controlling the tick population and tick-borne pathogens.

  5. Study on active lap tool influence function in grinding 1.8 m primary mirror.

    PubMed

    Haitao, Liu; Zhige, Zeng; Fan, Wu; Bin, Fan; Yongjian, Wan

    2013-11-01

    We present a theoretical modeling method to predict the ring tool influence function (TIF) based on the computer-controlled active lap process. The gap on the lap-grinding layer is considered, and its influence on the ring TIF is analyzed too. The relationship between the shape of the ring TIF and the lap-workpiece rotation speed ratio is discussed in this paper. The recipe for calculating dwell time for axisymmetric fabrication is discussed. The grinding process of a 1.8 m primary mirror is improved based on these results. The grinding process is accomplished after 30 circles of grinding, and the surface shape error is from PV 82 μm RMS 16.4 μm reduced to PV 13.5 μm RMS 2.5 μm.

  6. Adhesively-Bonded Structural Composite Joint Utilizing Shoulder-Centered Sleeves

    NASA Technical Reports Server (NTRS)

    Lukowski, Florian P., Jr. (Inventor)

    2015-01-01

    A composite joint includes a first member having a groove therein, a second member adjacent to the first member, and a connector member disposed between the second member and the first member. The connector member is received in the groove so as to bias a load path between the first member and the second member from a peripheral portion to a central portion of the connector member.

  7. Demonstrating damage tolerance of composite airframes

    NASA Technical Reports Server (NTRS)

    Poe, Clarence C., Jr.

    1993-01-01

    Commercial transport aircraft operating in the United States are certified by the Federal Aviation Authority to be damage tolerant. On 28 April 1988, Aloha Airlines Flight 243, a Boeing 727-200 airplane, suffered an explosive decompression of the fuselage but landed safely. This event provides very strong justification for the damage tolerant design criteria. The likely cause of the explosive decompression was the linkup of numerous small fatigue cracks that initiated at adjacent fastener holes in the lap splice joint at the side of the body. Actually, the design should have limited the damage size to less than two frame spacings (about 40 inches), but this type of 'multi-site damage' was not originally taken into account. This cracking pattern developed only in the high-time airplanes (many flights). After discovery in the fleet, a stringent inspection program using eddy current techniques was inaugurated to discover these cracks before they linked up. Because of concerns about safety and the maintenance burden, the lap-splice joints of these high-time airplanes are being modified to remove cracks and prevent new cracking; newer designs account for 'multi-site damage'.

  8. Shear Strength and Interfacial Toughness Characterization of Sapphire-Epoxy Interfaces for Nacre-Inspired Composites.

    PubMed

    Behr, Sebastian; Jungblut, Laura; Swain, Michael V; Schneider, Gerold A

    2016-10-12

    The common tensile lap-shear test for adhesive joints is inappropriate for brittle substrates such as glasses or ceramics where stress intensifications due to clamping and additional bending moments invalidate results. Nevertheless, bonding of glasses and ceramics is still important in display applications for electronics, in safety glass and ballistic armor, for dental braces and restoratives, or in recently developed bioinspired composites. To mechanically characterize adhesive bondings in these fields nonetheless, a novel approach based on the so-called Schwickerath test for dental sintered joints is used. This new method not only matches data from conventional analysis but also uniquely combines the accurate determination of interfacial shear strength and toughness in one simple test. The approach is verified for sapphire-epoxy joints that are of interest for bioinspired composites. For these, the procedure not only provides quantitative interfacial properties for the first time, it also exemplarily suggests annealing of sapphire at 1000 °C for 10 h for mechanically and economically effective improvements of the interfacial bond strength and toughness. With increases of strength and toughness from approximately 8 to 29 MPa and from 2.6 to 35 J/m 2 , respectively, this thermal modification drastically enhances the properties of unmodified sapphire-epoxy interfaces. At the same time, it is much more convenient than wet-chemical approaches such as silanization. Hence, besides the introduction of a new testing procedure for adhesive joints of brittle or expensive substrates, a new and facile annealing process for improvements of the adhesive properties of sapphire is suggested and quantitative data for the mechanical properties of sapphire-epoxy interfaces that are common in synthetic nacre-inspired composites are provided for the first time.

  9. Bonded joint and method. [for reducing peak shear stress in adhesive bonds

    NASA Technical Reports Server (NTRS)

    Sainsbury-Carter, J. B. (Inventor)

    1974-01-01

    An improved joint is described for reducing the peak shear stress in adhesive bonds when adhesives are used to bond two materials which are in a lapped relationship and which differ in value of modulus of elasticity. An insert placed between the adhesive and one of the two materials acts to cushion the discontinuity of material stiffness thereby reducing the peak shear stress in the adhesive bond.

  10. Fast downscaled inverses for images compressed with M-channel lapped transforms.

    PubMed

    de Queiroz, R L; Eschbach, R

    1997-01-01

    Compressed images may be decompressed and displayed or printed using different devices at different resolutions. Full decompression and rescaling in space domain is a very expensive method. We studied downscaled inverses where the image is decompressed partially, and a reduced inverse transform is used to recover the image. In this fashion, fewer transform coefficients are used and the synthesis process is simplified. We studied the design of fast inverses, for a given forward transform. General solutions are presented for M-channel finite impulse response (FIR) filterbanks, of which block and lapped transforms are a subset. Designs of faster inverses are presented for popular block and lapped transforms.

  11. Virtual trajectories, joint stiffness, and changes in the limb natural frequency during single-joint oscillatory movements.

    PubMed

    Latash, M L

    1992-07-01

    In the framework of the equilibrium-point hypothesis, virtual trajectories and patterns of joint stiffness were reconstructed during voluntary single-joint oscillatory movements in the elbow joint at a variety of frequencies and against two inertial loads. At low frequencies, virtual trajectories were in-phase with the actual joint trajectories. Joint stiffness changed at a doubled frequency. An increase in movement frequency and/or inertial load led to an increase in the difference between the peaks of the actual and virtual trajectories and in both peak and averaged values of joint stiffness. At a certain, critical frequency, virtual trajectory was nearly flat. Further increase in movement frequency led to a 180 degree phase shift between the actual and virtual trajectories. The assessed values of the natural frequency of the system "limb + manipulandum" were close to the critical frequencies for both low and high inertial loads. Peak levels and integrals of the electromyograms of two flexor and two extensor muscles changed monotonically with movement frequency without any special behavior at the critical frequencies. Nearly flat virtual trajectories at the natural frequency make physical sense as hypothetical control signals, unlike the electromyographic recordings, since a system at its natural frequency requires minimal central interference. Modulation of joint stiffness is assumed to be an important adaptive mechanism attenuating difference between the system's natural frequency and desired movement frequency. Virtual trajectory is considered a behavioral observable. Phase transitions between the virtual and actual trajectories are illustrations of behavioral discontinuities introduced by slow changes in a higher level control parameter, movement frequency. Relative phase shift between these two trajectories may be considered an order parameter.

  12. Test and Analysis Correlation for a Y-Joint Specimen for a Composite Cryotank

    NASA Technical Reports Server (NTRS)

    Mason, Brian H.; Sleight, David W.; Grenoble, Ray

    2015-01-01

    The Composite Cryotank Technology Demonstration (CCTD) project under NASA's Game Changing Development Program (GCDP) developed space technologies using advanced composite materials. Under CCTD, NASA funded the Boeing Company to design and test a number of element-level joint specimens as a precursor to a 2.4-m diameter composite cryotank. Preliminary analyses indicated that the y-joint in the cryotank had low margins of safety; hence the y-joint was considered to be a critical design region. The y-joint design includes a softening strip wedge to reduce localized shear stresses at the skirt/dome interface. In this paper, NASA-developed analytical models will be correlated with the experimental results of a series of positive-peel y-joint specimens from Boeing tests. Initial analytical models over-predicted the experimental strain gage readings in the far-field region by approximately 10%. The over-prediction was attributed to uncertainty in the elastic properties of the laminate and a mismatch between the thermal expansion of the strain gages and the laminate. The elastic properties of the analytical model were adjusted to account for the strain gage differences. The experimental strain gages also indicated a large non-linear effect in the softening strip region that was not predicted by the analytical model. This non-linear effect was attributed to delamination initiating in the softening strip region at below 20% of the failure load for the specimen. Because the specimen was contained in a thermally insulated box during cryogenic testing to failure, delamination initiation and progression was not visualized during the test. Several possible failure initiation locations were investigated, and a most likely failure scenario was determined that correlated well with the experimental data. The most likely failure scenario corresponded to damage initiating in the softening strip and delamination extending to the grips at final failure.

  13. Influence of laser beam incidence angle on laser lap welding quality of galvanized steels

    NASA Astrophysics Data System (ADS)

    Mei, Lifang; Yan, Dongbing; Chen, Genyu; Wang, Zhenhui; Chen, Shuixuan

    2017-11-01

    Based on the characteristics of laser welded structural parts of auto bodies, the influence of variation in laser beam incidence angle on the lap welding performance of galvanized auto-body sheets was studied. Lap welding tests were carried out on the galvanized sheets for auto-body application at different laser beam incidence angles by using the optimal welding parameters obtained through orthogonal experiment. The effects of incidence angle variation on seam appearance, cross-sectional shape, joint mechanical properties and microstructure of weldments were analyzed. In addition, the main factors influencing the value of incidence angle were investigated. According to the results, the weld seams had a good appearance as well as a fine, and uniform microstructure when the laser beam incidence angle was smaller than the critical incidence angle, and thus they could withstand great tensile and shear loads. Moreover, all tensile-shear specimens were fractured in the base material zone. When the laser beam incidence angle was larger than the critical incidence angle, defects like shrinkage and collapse tended to emerge, thereby resulting in the deteriorated weldability of specimens. Meanwhile, factors like the type and thickness of sheet, weld width as well as inter-sheet gap all had a certain effect on the value of laser beam incidence angle. When the sheet thickness was small and the weld width was narrow, the laser beam incidence angle could be increased appropriately. At the same time, small changes in the inter-sheet gap could greatly impact the value of incidence angle. When the inter-sheet gap was small, the laser beam incidence angle should not be too large.

  14. Conductive films of silver nanoparticles as novel susceptors for induction welding of thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Dermanaki Farahani, Rouhollah; Janier, Mathieu; Dubé, Martine

    2018-03-01

    In the present work, a conductive film of silver nanoparticles (nAg) as a novel heating element type, called susceptor, was developed and tested for induction welding of carbon fiber/polyphenylene sulfide (CF/PPS) thermoplastic composites, i.e., unidirectional pre-impregnated 16 plies of CF/PPS compression-molded in a quasi-isotropic stacking sequence. The nAg were synthesized, dispersed in deionized (DI) water and casted onto a pure PPS film, resulting in a conductive film upon the evaporation of DI water and thermal post-annealing. The thermal annealing at 250 °C significantly (by 7 orders) decreased the film’s electrical resistivity from 9.4 × 103 down to 3.1 × 10-4 Ω cm. The new susceptors led to fast heating rates in induction welding when compared to the standard stainless steel mesh susceptors under similar welding conditions. Lap shear mechanical testing revealed that the apparent lap shear strength (LSS) is sensitive to the susceptors’ resistivity and the input current. A relatively high LSS value was achieved for the specimens welded using the new susceptors which exceeded the value of those welded using stainless steel mesh susceptors (28.3 MPa compared to 20 MPa). The weld interface and specimens’ cross-section observation revealed that the nAg were dispersed and embedded into the resin upon welding. This study contains preliminary results that show high potential of nanoparticles as effective susceptors to further improve the mechanical performance of the joints in welding of thermoplastic composites.

  15. Application of Pi Preform Composite Joints in Fabrication of NASA Composite Crew Module Demonstration Structure

    NASA Technical Reports Server (NTRS)

    Higgins, John E.; Pelham, Larry

    2008-01-01

    This paper will describe unique and extensive use of pre-woven and impregnated pi cross-sections in fabrication of a carbon composite demonstration structure for the Composite Crew Module (CCM) Program. The program is managed by the NASA Safety and Engineering Center with participants from ten NASA Centers and AFRL. Multiple aerospace contractors are participating in the design development, tooling and fabrication effort as well. The goal of the program is to develop an agency wide design team for composite habitable spacecraft. The specific goals for this development project are: a) To gain hands on experience in design, building and testing a composite crew module. b) To validate key assumptions by resolving composite spacecraft design details through fabrication and testing of hardware. This paper will focus on the design and fabrication issues supporting selection of the Lockheed Martin patented Pi pre-form to provide sound composite joints a numerous locations in the structure. This abstract is based on Preliminary Design data. The final design will continue to evolve through the fall of 2007 with fabrication mostly completed by conference date.

  16. A Biomimetic Structural Health Monitoring Approach Using Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Liu, Yingtao; Rajadas, Abhishek; Chattopadhyay, Aditi

    2012-07-01

    A self-sensing nanocomposite material has been developed to track the presence of damage in complex composite structures. Multiwalled carbon nanotubes are integrated with polymer matrix to develop a novel bonding material with sensing capabilities. The changes of the piezoresistance in the presence of damage are used to monitor the condition of bonded joints, where the usual bonding material is replaced by the self-sensing nanocomposite. The feasibility of this concept is investigated through experiments conducted on single-lap joints subject to monotonic tensile loading conditions. The results show that the self-sensing nanocomposite is sensitive to crack propagation within the matrix material. An acoustic emission-based sensing technique has been used to validate these results and shows good correlation with damage growth. A digital image correlation system is used to measure the shear strain field in the joint area.

  17. EEG and ERP profiles in the high alcohol preferring (HAP) and low alcohol preferring (LAP) mice: relationship to ethanol preference.

    PubMed

    Slawecki, Craig J; Grahame, Nicholas J; Roth, Jennifer; Katner, Simon N; Ehlers, C L

    2003-01-31

    Neurophysiological measures, such as decreased P300 amplitude and altered EEG alpha activity, have been associated with increased alcoholism risk. The purpose of the present study was to extend the assessment of the neurophysiological indices associated with alcohol consumption to a recently developed mouse model of high ethanol consumption, the first replicate line of high alcohol preferring (HAP-1) and low alcohol preferring (LAP-1) mice. Male HAP-1, LAP-1, and HS mice from the Institute for Behavioral Genetics at the University of Colorado Health Science Center (i.e., HS/Ibg mice) were implanted with cortical electrodes. EEG activity, and event related potentials (ERPs) were then examined. Following electrophysiological assessment, ethanol preference was assessed to examine the relationship between neurophysiological indices and ethanol consumption. EEG analyses revealed that HAPs and HS/Ibgs had greater peak frequency in the 2-4-Hz band and lower peak frequency in the 6-8- and 1-50-Hz bands of the cortical EEG compared to LAPs. Compared to HAPs, LAPs and HS/Ibgs had decreased peak EEG frequency in the 8-16-Hz band. Decreased parietal cortical power from 8 to 50 Hz was associated with high initial ethanol preference in HAP mice. In regards to ERPs, P1 amplitude was greater in HAPs compared to both LAPs and HS/Ibgs and the P3 latency in LAPs was decreased compared to both HAPs and HS/Ibgs. As expected, HAPs consumed more ethanol and had higher ethanol preference than LAPs and HS/Ibgs. There were no significant differences in ethanol intake or preference between HS/Ibgs and LAPs. These data indicate that selective breeding of the HAP and LAP lines has resulted in the divergence of EEG and ERP phenotypes. The differences observed suggest that increased cortical P1 amplitude and altered cortical EEG activity in the 8-50-Hz frequency range may be neurophysiological 'risk factors' associated with high ethanol consumption in mice. Decreased P3 latency in LAPs compared

  18. Characteristics of solder joints under fatigue loads using piezomechanical actuation

    NASA Astrophysics Data System (ADS)

    Shim, Dong-Jin; Spearing, S. Mark

    2003-07-01

    Crack initiation and growth characteristics of solder joints under fatigue loads are investigated using piezomechanical actuation. Cracks in solder joints, which can cause failure in microelectronics components, are induced via piezoelectricity in piezo-ceramic bonded joints. Lead-zirconate-titanate ceramic plates and eutectic Sn-Pb solder bonded in a double-lap shear configuration are used in the investigation. Electric field across each piezo-ceramic plate is applied such that shear stresses/strains are induced in the solder joints. The experiments show that cracks initiate in the solder joints around defects such as voids and grow in length until they coalesce with other cracks from adjacent voids. These observations are compared with the similar thermal cycling tests from the literature to show feasibility and validity of the current method in investigating the fatigue characteristics of solder joints. In some specimens, cracks in the piezo-ceramic plates are observed, and failure in the specimens generally occurred due to piezo-ceramic plate fracture. The issues encountered in implementing this methodology such as low actuation and high processing temperatures are further discussed.

  19. Static Strength Characteristics of Mechanically Fastened Composite Joints

    NASA Technical Reports Server (NTRS)

    Fox, D. E.; Swaim, K. W.

    1999-01-01

    The analysis of mechanically fastened composite joints presents a great challenge to structural analysts because of the large number of parameters that influence strength. These parameters include edge distance, width, bolt diameter, laminate thickness, ply orientation, and bolt torque. The research presented in this report investigates the influence of some of these parameters through testing and analysis. A methodology is presented for estimating the strength of the bolt-hole based on classical lamination theory using the Tsai-Hill failure criteria and typical bolthole bearing analytical methods.

  20. Probabilistic Simulation of Progressive Fracture in Bolted-Joint Composite Laminates

    NASA Technical Reports Server (NTRS)

    Minnetyan, L.; Singhal, S. N.; Chamis, C. C.

    1996-01-01

    This report describes computational methods to probabilistically simulate fracture in bolted composite structures. An innovative approach that is independent of stress intensity factors and fracture toughness was used to simulate progressive fracture. The effect of design variable uncertainties on structural damage was also quantified. A fast probability integrator assessed the scatter in the composite structure response before and after damage. Then the sensitivity of the response to design variables was computed. General-purpose methods, which are applicable to bolted joints in all types of structures and in all fracture processes-from damage initiation to unstable propagation and global structure collapse-were used. These methods were demonstrated for a bolted joint of a polymer matrix composite panel under edge loads. The effects of the fabrication process were included in the simulation of damage in the bolted panel. Results showed that the most effective way to reduce end displacement at fracture is to control both the load and the ply thickness. The cumulative probability for longitudinal stress in all plies was most sensitive to the load; in the 0 deg. plies it was very sensitive to ply thickness. The cumulative probability for transverse stress was most sensitive to the matrix coefficient of thermal expansion. In addition, fiber volume ratio and fiber transverse modulus both contributed significantly to the cumulative probability for the transverse stresses in all the plies.

  1. Effects of Grain Orientation on Cu6Sn5 Growth Behavior in Cu6Sn5-Reinforced Composite Solder Joints During Electromigration

    NASA Astrophysics Data System (ADS)

    Han, Jing; Wang, Yan; Tan, Shihai; Guo, Fu

    2018-02-01

    Electromigration is a major reliability problem in composite solder joints. Due to the anisotropy of the β-Sn crystal structure, the Sn grain orientations present in the solder matrix dominate the principal failure mechanism in solder joints under electric current stressing. In this work, the Cu6Sn5 growth behavior in Cu6Sn5-reinforced composite solder joints with three different Sn grain orientations was investigated at current density of 104 A/cm2 at room temperature. Micron-sized Cu particles were added to Sn-3.5Ag solder at 2% volume fraction using an in situ method. After current stressing for 528 h, the polarity effect in the composite solder joint was greatest for an angle ( θ) between the c-axis and electron flow direction of 30°, resulting in higher growth rate of Cu6Sn5 in the solder matrix compared with composite solder joints with θ of 60° or 90°. There were no noticeable changes in the composite solder joint with θ of 90°. The growth behavior of Cu6Sn5, Cu atomic motion, and Cu diffusivity in the composite solder joints with different Sn grain orientations were analyzed in detail.

  2. Viscoelastic analysis of adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1980-01-01

    An adhesively bonded lap joint is analyzed by assuming that the adherends are elastic and the adhesive is linearly viscoelastic. After formulating the general problem a specific example for two identical adherends bonded through a three parameter viscoelastic solid adhesive is considered. The standard Laplace transform technique is used to solve the problem. The stress distribution in the adhesive layer is calculated for three different external loads, namely, membrane loading, bending, and transverse shear loading. The results indicate that the peak value of the normal stress in the adhesive is not only consistently higher than the corresponding shear stress but also decays slower.

  3. New generation fiber reinforced polymer composites incorporating carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Soliman, Eslam

    The last five decades observed an increasing use of fiber reinforced polymer (FRP) composites as alternative construction materials for aerospace and infrastructure. The high specific strength of FRP attracted its use as non-corrosive reinforcement. However, FRP materials were characterized with a relatively low ductility and low shear strength compared with steel reinforcement. On the other hand, carbon nanotubes (CNTs) have been introduced in the last decade as a material with minimal defect that is capable of increasing the mechanical properties of polymer matrices. This dissertation reports experimental investigations on the use of multi-walled carbon nanotubes (MWCNTs) to produce a new generation of FRP composites. The experiments showed significant improvements in the flexure properties of the nanocomposite when functionalized MWCNTs were used. In addition, MWCNTs were used to produce FRP composites in order to examine static, dynamic, and creep behavior. The MWCNTs improved the off-axis tension, off-axis flexure, FRP lap shear joint responses. In addition, they reduced the creep of FRP-concrete interface, enhanced the fracture toughness, and altered the impact resistance significantly. In general, the MWCNTs are found to affect the behaviour of the FRP composites when matrix failure dominates the behaviour. The improvement in the mechanical response with the addition of low contents of MWCNTs would benefit many industrial and military applications such as strengthening structures using FRP composites, composite pipelines, aircrafts, and armoured vehicles.

  4. Microstructure and mechanical properties of diffusion bonded W/steel joint using V/Ni composite interlayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W.S.; Cai, Q.S., E-mail: cai2009pm@163.com; Ma, Y.Z.

    2013-12-15

    Diffusion bonding between W and steel using V/Ni composite interlayer was carried out in vacuum at 1050 °C and 10 MPa for 1 h. The microstructural examination and mechanical property evaluation of the joints show that the bonding of W to steel was successful. No intermetallic compound was observed at the steel/Ni and V/W interfaces for the joints bonded. The electron probe microanalysis and X-ray diffraction analysis revealed that Ni{sub 3}V, Ni{sub 2}V, Ni{sub 2}V{sub 3} and NiV{sub 3} were formed at the Ni/V interface. The tensile strength of about 362 MPa was obtained for as-bonded W/steel joint and themore » failure occurred at W near the V/W interface. The nano-indentation test across the joining interfaces demonstrated the effect of solid solution strengthening and intermetallic compound formation in the diffusion zone. - Highlights: • Diffusion bonding of W to steel was realized using V/Ni composite interlayer. • The interfacial microstructure of the joint was clarified. • Several V–Ni intermetallic compounds were formed in the interface region. • The application of V/Ni composite interlayer improved the joining quality.« less

  5. Enhanced treatment selection for reflective joint cracking in composite pavements : final report.

    DOT National Transportation Integrated Search

    2015-09-01

    This research developed a decisionmaking process that can be used by INDOT to enhance identification of the condition of the : underlying concrete joints or cracks by looking at the surface distresses of the asphalt overlay in composite pavements....

  6. The Staphylococcus aureus leucine aminopeptidase LAP is localized to the bacterial cytosol and demonstrates a broad substrate range that extends beyond leucine

    PubMed Central

    Carroll, Ronan K.; Veillard, Florian; Gagne, Danielle T.; Lindenmuth, Jarrod M.; Poreba, Marcin; Drag, Marcin; Potempa, Jan; Shaw, Lindsey N.

    2013-01-01

    Staphylococcus aureus is a potent pathogen of humans exhibiting a broad disease range, in part, due to an extensive repertoire of secreted virulence factors, including proteases. Recently, we identified the first example of an intracellular protease (leucine aminopeptidase - LAP) that is required for virulence in S. aureus. Disruption of pepZ, the gene encoding LAP, had no affect on the growth rate of bacteria, however, in systemic and localized infection models the pepZ mutant was significantly attenuated in virulence. Recently, a contradictory report has been published, suggesting that LAP is an extracellular enzyme and it is required for growth in S. aureus. Here, we investigate these results and confirm our previous findings that LAP is localized to the bacterial cytosol and is not required for growth. In addition we conduct a biochemical investigation of purified recombinant LAP identifying optimal conditions for enzymatic activity and substrate preference for hydrolysis. Our results show that LAP has a broad substrate range, including activity against the dipeptide cysteine-glycine and that leucine is not the primary target of LAP. PMID:23241672

  7. Toughening of Epoxy Adhesives by Combined Interaction of Carbon Nanotubes and Silsesquioxanes

    PubMed Central

    Barra, Giuseppina; Vertuccio, Luigi; Vietri, Umberto; Naddeo, Carlo; Guadagno, Liberata

    2017-01-01

    The extensive use of adhesives in many structural applications in the transport industry and particularly in the aeronautic field is due to numerous advantages of bonded joints. However, still many researchers are working to enhance the mechanical properties and rheological performance of adhesives by using nanoadditives. In this study the effect of the addition of Multi-Wall Carbon Nanotubes (MWCNTs) with Polyhedral Oligomeric Silsesquioxane (POSS) compounds, either Glycidyl Oligomeric Silsesquioxanes (GPOSS) or DodecaPhenyl Oligomeric Silsesquioxanes (DPHPOSS) to Tetraglycidyl Methylene Dianiline (TGMDA) epoxy formulation, was investigated. The formulations contain neither a tougher matrix such as elastomers nor other additives typically used to provide a closer match in the coefficient of thermal expansion in order to discriminate only the effect of the addition of the above-mentioned components. Bonded aluminium single lap joints were made using both untreated and Chromic Acid Anodisation (CAA)-treated aluminium alloy T2024 adherends. The effects of the different chemical functionalities of POSS compounds, as well as the synergistic effect between the MWCNT and POSS combination on adhesion strength, were evaluated by viscosity measurement, tensile tests, Dynamic Mechanical Analysis (DMA), single lap joint shear strength tests, and morphological investigation. The best performance in the Lap Shear Strength (LSS) of the manufactured joints has been found for treated adherends bonded with epoxy adhesive containing MWCNTs and GPOSS. Carbon nanotubes have been found to play a very effective bridging function across the fracture surface of the bonded joints. PMID:28946691

  8. Evaluation of a thermoplastic polyimide (422) for bonding GR/PI composite

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.

    1988-01-01

    A hot-melt processable copolyimide previously studied and characterized as an adhesive for bonding Ti-6Al-4V was used to bond Celion 6000/LARC-160 composite. Comparisons are made for the two adherend systems. A bonding cycle was determined for the composite bonding and lap shear specimens were prepared which were thermally exposed in a forced-air oven for up to 5000 h at 204 C. The lap shear strengths (LSSs) were determined at RT, 177, and 204 C. After thermal exposure at RT, 177, and 204 C the LSS decreased significantly; however, a slight increase was noted for the 204 C tests. Initially the LSS values are higher for the bonded Ti-6Al-4V than for the bonded composite, however, the LSS decreases dramatically between 5000 and 10,000 h of 204 C thermal exposure. Longer periods of thermal exposure up to 20,000 h results in further decreases in the LSSs. Although the bonded composite retained useful strengths for exposures up to 5000 h, based on the poor results of the bonded Ti-6Al-4V beyond 5000 h, the 422 adhesive bonded composites would most likely also produce poor strengths beyond 5000 h exposure. Adhesive bonded composite lap shear specimens exposed to boiling water for 72 h exhibited greatly reduced strengths at all test temperatures. The percent retained after water boil for each test temperature was essentially the same for both systems.

  9. Evaluation of a thermoplastic polyimide (422) for bonding GR/PI composite

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.

    1988-01-01

    A hot-melt processable copolyimide previously studied and characterized as an adhesive for bonding Ti-6Al-4V was used to bond Celion 6000/LARC-160 composite. Comparisons are made for the two adherend systems. A bonding cycle was determined for the composite bonding and lap shear specimens were prepared which were thermally exposed in a forced-air oven for up to 5000 h at 204 C. The lap shear strengths (LSSs) were determined at RT, 177, and 204 C. After thermal exposure at RT, 177, and 204 C the LSS decreased significantly; however, a slight increase was noted for the 204 C tests. Initially the LSS values are higher for the bonded Ti-6Al-4V than for the bonded composite, however, the LSS decreases dramatically between 5000 and 10,000 h of 204 C thermal exposure. Longer periods of thermal exposure up to 20,000 h results in further decreases in the LSSs. Although the bonded composite retained useful strengths for exposures up to 5000 h, based on the por results of the bonded Ti-6Al-4V beyond 5000 h, the 422 adhesive bonded composites would most likely also produce poor strengths beyond 5000 h exposure. Adhesive bonded composite lap shear specimens exposed to boiling water for 72 h exhibited greatly reduced strengths at all test temperatures. The percent retained after water boil for each test temperature was essentially the same for both systems.

  10. Assessment of vitamin D status and serum CrossLaps levels in adults with primary lactose malabsorption.

    PubMed

    Enko, D; Kriegshäuser, G; Stolba, R; Mangge, H; Brandstetter, D; Mayr, N; Forstner, T; Halwachs-Baumann, G

    2016-09-01

    Primary adult-type lactose malabsorption (PALM) is a widespread inherited autosomal recessive condition, which is considered to be associated with osteoporosis. This prospective study aimed at assessing the 25-hydroxy-vitamin D (25(OH)D) status and serum CrossLaps levels in individuals with PALM and normal controls. All participants (n=210) underwent genotyping for the LCT C/T-13910 polymorphism, 25(OH)D and CrossLaps measurements and clinical examinations. In addition, the anthropometric data (that is, height, weight and body mass index) were determined. Fifty-five individuals with PALM (that is, LCT C/C-13910 homozygotes) showed lower 25(OH)D (mean: 24.95±10.04 vs 28.59±9.56 ng/ml, P=0.018) and higher CrossLaps serum levels (mean: 0.46±0.31 vs 0.43±0.49 ng/ml, P=0.251) compared with 155 normal controls (that is, LCT C/T-13910 hetero- or T/T-13910 homozygotes). Anthropometric data were similar between PALM probands and controls. Individuals with PALM were found to have lower 25(OH)D and higher CrossLaps serum levels compared with normal controls. In order to preserve life-long bone health, routine 25(OH)D and CrossLaps serum measurements should be performed in individuals with PALM.

  11. Single-Lap-Joint Screening of Hysol EA 9309NA Epoxy Adhesive

    DTIC Science & Technology

    2017-05-01

    1 Fig. 2 Load vs. displacement for RT (no conditioning) samples .................... 6 Fig. 3...Load vs. displacement for RT (hot/wet conditioning) samples ............ 7 Fig. 5 Failure surface for RT (hot/wet conditioning) samples. MSAT ID...20140469, mode of failure = adhesive. ................................................. 8 Fig. 6 Load vs. displacement for ET samples (66 °C postcure

  12. Stresses in adhesively bonded joints: A closed form solution. [plate theory

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.; Aydinoglu, M. N.

    1980-01-01

    The plane strain of adhesively bonded structures which consist of two different orthotropic adherents is considered. Assuming that the thicknesses of the adherends are constant and are small in relation to the lateral dimensions of the bonded region, the adherends are treated as plates. The transverse shear effects in the adherends and the in-plane normal strain in the adhesive are taken into account. The problem is reduced to a system of differential equations for the adhesive stresses which is solved in closed form. A single lap joint and a stiffened plate under various loading conditions are considered as examples. To verify the basic trend of the solutions obtained from the plate theory a sample problem is solved by using the finite element method and by treating the adherends and the adhesive as elastic continua. The plate theory not only predicts the correct trend for the adhesive stresses but also gives rather surprisingly accurate results.

  13. Method of making a composite tube to metal joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leslie, James C.; Leslie, II, James C.; Heard, James

    A method for making a metal to composite tube joint including selecting an elongated interior fitting constructed with an exterior barrel, reduced in exterior diameter to form a distally facing annular shoulder and then projecting still further distally to form an interior sleeve having a radially outwardly facing bonding surface. Selecting an elongated metal outer sleeve formed proximally with a collar constructed for receipt over the barrel and increased in interior diameter and projecting distally to form an exterior sleeve having a radially inwardly facing bonding surface cooperating with the first bonding surface to form an annulus receiving an extremitymore » of a composite tube and a bond bonding the extremity of the tube to the bonding surfaces.« less

  14. Investigation on the Effect of Pulsed Energy on Strength of Fillet Lap Laser Welded AZ31B Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Salleh, M. N. M.; Ishak, M.; Aiman, M. H.; Idris, S. R. A.; Romlay, F. R. M.

    2017-09-01

    AZ31B magnesium alloy have been hugely applied in the aerospace, automotive, and electronic industries. However, welding thin sheet AZ31B was challenging due to its properties which is easily to evaporated especially using conventional fusion welding method such as metal inert gas (MIG). Laser could be applied to weld this metal since it produces lower heat input. The application of fiber laser welding has been widely since this type of laser could produce better welding product especially in the automotive sectors. Low power fiber laser was used to weld this non-ferrous metal where pulse wave (PW) mode was used. Double fillet lap joint was applied to weld as thin as 0.6 mm thick of AZ31B and the effect of pulsed energy on the strength was studied. Bond width, throat length, and penetration depth also was studied related to the pulsed energy which effecting the joint. Higher pulsed energy contributes to the higher fracture load with angle of irradiation lower than 3 °

  15. INTERIOR OF WEST SPAN LOOKING WEST (SHADOW OF VERTICAL LAPS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF WEST SPAN LOOKING WEST (SHADOW OF VERTICAL LAPS PLACED ON ZONE III; ASPHALT ZONE IX) - Honey Run Bridge, Spanning Butte Creek, bypassed section of Honey Run Road (originally Carr Hill Road), Paradise, Butte County, CA

  16. Application of High-Impact Polystyrene (HIPS) as a Graphene Nanoparticle Reinforced Composite Thermoplastic Adhesive

    NASA Astrophysics Data System (ADS)

    Stitt, Erik

    Adhesive bonding is a more efficient joining method for composites than traditional mechanical fasteners and provides advantages in weight reduction, simplicity, and cost. In addition, the utilization of mechanical fasteners introduces stress concentrations and damage to the fiber-matrix interface. Adhesive bonding with thermoset polymers distributes mechanical loads but also makes disassembly for repair and recycling difficult. The ability to utilize thermoplastic polymers as adhesives offers an approach to address these limitations and can even produce a reversible adhesive joining technology through combining conductive nanoparticles with a thermoplastic polymer. The incorporation of the conductive nanoparticles allows for selective heating of the adhesive via exposure to electromagnetic (EM) radiation and simultaneously can augment the mechanical properties of the adhesive and the adhesive joint. This approach provides a versatile mechanism for efficiently creating and reversing structural adhesive joints across a wide range of materials. In this work, a high-impact polystyrene (HIPS) co-polymer containing butadiene as a toughness modifier is compounded with graphene nano-platelets (GnP) for investigation as a thermoplastic adhesive. The properties of the bulk composite adhesive are tailored by altering the morphology, dispersion, and concentration of GnP. The thermal response of the material to EM radiation in the microwave frequency spectrum was investigated and optimized. Surface treatments of the adhesive films were explored to enhance the viability of this nanoparticle thermoplastic polymer to function as a reversible adhesive. As a result, it has been shown that lap-shear strengths of multi-material joints produced from aforementioned thermoplastic adhesives were comparable to similar thermoset bonded joints.

  17. 75 FR 35356 - Airworthiness Directives; The Boeing Company Model 747-100, 747-200B, and 747-200F Series Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-22

    ...-related skin cracks and corrosion of the skin panel lap joints in the fuselage upper lobe, and repair if... inspections of the fuselage skin at the upper lobe skin lap joints for cracks and evidence of corrosion, and... correct fatigue cracking and corrosion in the fuselage upper lobe skin lap joints, which could lead to...

  18. Numerical modelling in friction lap joining of aluminium alloy and carbon-fiber-reinforced-plastic sheets

    NASA Astrophysics Data System (ADS)

    Das, A.; Bang, H. S.; Bang, H. S.

    2018-05-01

    Multi-material combinations of aluminium alloy and carbon-fiber-reinforced-plastics (CFRP) have gained attention in automotive and aerospace industries to enhance fuel efficiency and strength-to-weight ratio of components. Various limitations of laser beam welding, adhesive bonding and mechanical fasteners make these processes inefficient to join metal and CFRP sheets. Friction lap joining is an alternative choice for the same. Comprehensive studies in friction lap joining of aluminium to CFRP sheets are essential and scare in the literature. The present work reports a combined theoretical and experimental study in joining of AA5052 and CFRP sheets using friction lap joining process. A three-dimensional finite element based heat transfer model is developed to compute the temperature fields and thermal cycles. The computed results are validated extensively with the corresponding experimentally measured results.

  19. Joint Strength Control at the Fiber/Matrix Interface during the Production of Polymer Composite Materials Reinforced with High Performance Fibers

    NASA Astrophysics Data System (ADS)

    Kudinov, Vladimir V.; Korneeva, Natalia V.

    2010-06-01

    The paper presents the results obtained in the study of the joint strength between polymer matrix and high performance polyethylene fiber. The fiber/matrix joints simulate the unit cell of the fiber-reinforced composite materials. Effect of heat treatment on the composite properties at the interface was estimated by a multifilament wet-pull-out method. It was found that the joint strength may be increased with the help of extra heart treatment. Both the energy to peak load and the energy to failure for CM joints at various stages of loading were determined.

  20. An all-joint-control master device for single-port laparoscopic surgery robots.

    PubMed

    Shim, Seongbo; Kang, Taehun; Ji, Daekeun; Choi, Hyunseok; Joung, Sanghyun; Hong, Jaesung

    2016-08-01

    Robots for single-port laparoscopic surgery (SPLS) typically have all of their joints located inside abdomen during surgery, whereas with the da Vinci system, only the tip part of the robot arm is inserted and manipulated. A typical master device that controls only the tip with six degrees of freedom (DOFs) is not suitable for use with SPLS robots because of safety concerns. We designed an ergonomic six-DOF master device that can control all of the joints of an SPLS robot. We matched each joint of the master, the slave, and the human arm to decouple all-joint motions of the slave robot. Counterbalance masses were used to reduce operator fatigue. Mapping factors were determined based on kinematic analysis and were used to achieve all-joint control with minimal error at the tip of the slave robot. The proposed master device has two noteworthy features: efficient joint matching to the human arm to decouple each joint motion of the slave robot and accurate mapping factors, which can minimize the trajectory error of the tips between the master and the slave. We confirmed that the operator can manipulate the slave robot intuitively with the master device and that both tips have similar trajectories with minimal error.

  1. Learning Activity Package, Algebra 93-94, LAPs 12-22.

    ERIC Educational Resources Information Center

    Evans, Diane

    A set of 11 teacher-prepared Learning Activity Packages (LAPs) in beginning algebra, these units cover sets, properties of operations, operations over real numbers, open expressions, solution sets of equations and inequalities, equations and inequalities with two variables, solution sets of equations with two variables, exponents, factoring and…

  2. Learning Activity Package, Physical Science 92, LAPs 1-9.

    ERIC Educational Resources Information Center

    Williams, G. J.

    This set of nine teacher-prepared Learning Activity Packages (LAPs) for individualized instruction in physical science covers the topics of scientific equipment and procedures; measure of time, length, area, and volume; water; oxygen and oxidation; atmospheric pressure; motion; machines; carbon; and light and sound. Each unit contains a rationale…

  3. Determination of L-AP4-bound human mGlu8 receptor amino terminal domain structure and the molecular basis for L-AP4’s group III mGlu receptor functional potency and selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schkeryantz, Jeffery M.; Chen, Qi; Ho, Joseph D.

    Here, L-2-Amino-4-phosphonobutyric acid (L-AP4) is a known potent and selective agonist for the Group III mGlu receptors. However, it does not show any selectivity among the individual group III mGlu subtypes. In order to understand the molecular basis for this group selectivity, we solved the first human mGlu8 amino terminal domain (ATD) crystal structures in complex with L-glu and L-AP4. In comparison with other published L-glu-bound mGlu ATD structures, we have observed L-glu binds in a significantly different manner in mGlu1. Furthermore, these new structures provided evidence that both the electronic and steric nature of the distal phosphate of L-AP4more » contribute to its exquisite Group III functional agonist potency and selectivity.« less

  4. L-Cysteine and L-AP4 microinjections in the rat caudal ventrolateral medulla decrease arterial blood pressure.

    PubMed

    Takemoto, Yumi

    2014-12-01

    The thiol amino acid L-cysteine increases arterial blood pressure (ABP) when injected into the cerebrospinal fluid space in conscious rats, indicating a pressor response to centrally acting L-cysteine. A prior synaptic membrane binding assay suggests that L-cysteine has a strong affinity for the L-2-amino-4-phosphonobutyric acid (L-AP4) binding site. The central action of L-cysteine may be vial-AP4 sensitive receptors. The present study investigated cardiovascular responses to L-cysteine and L-ap4 microinjected into the autonomic area of the caudal ventrolateral medulla (CVLM) where inhibitory neurons regulate ABP via pre-sympathetic vasomotor neurons. Both the injection of L-cysteine and L-AP4 in the CVLM sites identified with L-glutamate produced the same depressor and bradycardic responses in urethane-anesthetized rats. Neither a prior antagonist microinjection of MK801 for the N-methyl-D-aspartate (NMDA) receptor nor CNQX for the non-NMDA receptor attenuated the responses to L-cysteine, but the combination of the two receptor blocking with an additional prior injection abolished the response. In contrast, either receptor blockade alone abolished the response to L-AP4, indicating distinct mechanisms between responses to L-cysteine and L-AP4 in the CVLM. The results indicate that the CVLM is a central active site for L-cysteine's cardiovascular response. Central L-cysteine's action could be independent of the L-AP4 sensitive receptors. Cardiovascular regulation may involve endogenous L-cysteine in the CVLM. Further multidisciplinary examinations are required to elaborate on L-cysteine's functional roles in the CVLM. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Active Metal Brazing and Characterization of Brazed Joints in C-C and C-SiC Composites to Copper-Clad-Molybdenum System

    NASA Technical Reports Server (NTRS)

    Singh, M.; Asthana, R.

    2008-01-01

    Carbon/carbon composites with CVI and resin-derived matrices, and C/SiC composites reinforced with T-300 carbon fibers in a CVI SiC matrix were joined to Cu-clad Mo using two Ag-Cu braze alloys, Cusil-ABA (1.75% Ti) and Ticusil (4.5% Ti). The brazed joints revealed good interfacial bonding, preferential precipitation of Ti at the composite/braze interface, and a tendency toward delamination in resin-derived C/C composite. Extensive braze penetration of the inter-fiber channels in the CVI C/C composites was observed. The Knoop microhardness (HK) distribution across the C/C joints indicated sharp gradients at the interface, and a higher hardness in Ticusil than in Cusil-ABA. For the C/SiC composite to Cu-clad-Mo joints, the effect of composite surface preparation revealed that ground samples did not crack whereas unground samples cracked. Calculated strain energy in brazed joints in both systems is comparable to the strain energy in a number of other ceramic/metal systems. Theoretical predictions of the effective thermal resistance suggest that such joined systems may be promising for thermal management applications.

  6. Abrasion and deformed layer formation of manganese-zinc ferrite in sliding contact with lapping tapes

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Tanaka, K.

    1986-01-01

    Wear experiments were conducted using replication electron microscopy and reflection electron diffraction to study abrasion and the deformed layers produced in single-crystal Mn-Zn ferrite simulated heads during contact with lapping tapes. The crystaline state of the head is changed drastically during the abrasion process. Crystalline states ranging from nearly amorphous to highly textured polycrystalline can be produced on the wear surface of a single-crystal Mn-Zn ferrite head. The total thickness of the deformed layer was approximately 0.8 microns. This thickness increased as the load and abrasive grit size increased. The anisotropic wear of the ferrite was found to be inversely proportional to the hardness of the wear surface. The wear was lower in the order 211 111 10 0110. The wear of the ferrite increased markedly with an increase in sliding velocity and abrasive grit size.

  7. Viscoelastic analysis of adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1981-01-01

    In this paper an adhesively bonded lap joint is analyzed by assuming that the adherends are elastic and the adhesive is linearly viscoelastic. After formulating the general problem a specific example for two identical adherends bonded through a three parameter viscoelastic solid adhesive is considered. The standard Laplace transform technique is used to solve the problem. The stress distribution in the adhesive layer is calculated for three different external loads namely, membrane loading, bending, and transverse shear loading. The results indicate that the peak value of the normal stress in the adhesive is not only consistently higher than the corresponding shear stress but also decays slower.

  8. Expert system for adhesive selection of composite material joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, R.B.; Vanderveldt, H.H.

    The development of composite joining is still in its infancy and much is yet to be learned. Consequently, this field is developing rapidly and new advances occur with great regularity. The need for up-to-date information and expertise in engineering and planning of composite materials, especially in critical applications, is acute. The American Joining Institute`s (AJI) development of JOINEXCELL (an off-line intelligent planner for joining composite materials) is an intelligent engineering/planning software system that incorporates the knowledge of several experts which can be expanded as these developments occur. Phase I effort of JOINEXCELL produced an expert system for adhesive selection, JOINADSELECT,more » for composite material joints. The expert system successfully selects from over 26 different adhesive families for 44 separate material types and hundreds of application situations. Through a series of design questions the expert system selects the proper adhesive for each particular design. Performing this {open_quotes}off-line{close_quotes} engineering planning by computer allows the decision to be made with full knowledge of the latest information about materials and joining procedures. JOINADSELECT can greatly expedite the joining design process, thus yielding cost savings.« less

  9. Early evolution of comet 67P studied with the RPC-LAP onboard Rosetta

    NASA Astrophysics Data System (ADS)

    Miloch, Wojciech; Edberg, Niklas J. T.; Eriksson, Anders I.; Yang, Lei; Paulsson, Joakim J. P.; Wedlund, Cyril Simon; Odelstad, Elias

    2016-07-01

    The Rosetta mission provides the in-situ measurements of a comet that are closest to a comet's aphelion ever made. The Rosetta Plasma Consortium (RPC) is a set of five instruments on board the spacecraft that specialise in the measurements of the plasma environment of comet 67P. One of the instruments is RPC-LAP, which consists of two Langmuir Probes and can measure the density, temperature, and flow speed of the plasma in the vicinity of the comet. At the early stage of the Rosetta mission, when the spacecraft is far from the nucleus of comet 67P, the ion part of the current-voltage characteristics of RPC-LAP1 is dominated by the photoemission current which surpasses the currents from the dilute solar wind plasma. As Rosetta starts orbiting around the nucleus in September 2014, LAP1 picks up signatures of local plasma density enhancements corresponding to variations of water-group ions observed in the vicinity of the comet. With the help of current-voltage characteristics and the spacecraft potential, we identify and characterise in space and time the entering of this coma-dominated plasma. In particular we determine the transition for entering the ion dominated region characterised by the 6-hour variations in the local plasma density due to the comet rotation. This transition manifests as a steep gradient in the density with respect to the distance to the comet nucleus. We discuss these RPC-LAP results together with the corresponding measurements by other instruments to provide a comprehensive picture of the transition.

  10. Titanium dioxide, single-walled carbon nanotube composites

    DOEpatents

    Yao, Yuan; Li, Gonghu; Gray, Kimberly; Lueptow, Richard M.

    2015-07-14

    The present invention provides titanium dioxide/single-walled carbon nanotube composites (TiO.sub.2/SWCNTs), articles of manufacture, and methods of making and using such composites. In certain embodiments, the present invention provides membrane filters and ceramic articles that are coated with TiO.sub.2/SWCNT composite material. In other embodiments, the present invention provides methods of using TiO.sub.2/SWCNT composite material to purify a sample, such as a water or air sample.

  11. Chronic Mammalian Toxicological Effects of LAP Wastewater.

    DTIC Science & Technology

    1983-06-01

    humped back, cyanosis, hyperactivity, ataxia, nasal exudate, chromodacryorrhea, and opisthotonos. All rats receiving LAP had red urine approximately 1...treatment, this animal had a humped appearance and was emaciated; a bloody nasal exudate was also noted. Necropsy revealed marked emphysema and moderate...16 17 9 Pigmentation, focal 0 0 1 0 0 2 Fibrosarcoma , metastatic 1 0 0 2 0 0 Neurilemoma 0 1 0 0 2 0 Duodenum Mineralization, focal 0 0 1 0 0 2

  12. Impaired circulating CD4+ LAP+ regulatory T cells in patients with acute coronary syndrome and its mechanistic study.

    PubMed

    Zhu, Zheng-Feng; Meng, Kai; Zhong, Yu-Cheng; Qi, Liang; Mao, Xiao-Bo; Yu, Kun-Wu; Zhang, Wei; Zhu, Peng-Fei; Ren, Ze-Peng; Wu, Bang-Wei; Ji, Qin-Wei; Wang, Xiang; Zeng, Qiu-Tang

    2014-01-01

    CD4(+) latency-associated peptide (LAP)(+) regulatory T cells (Tregs) are a newly discovered T cell subset in humans and the role of these cells in patients with acute coronary syndrome (ACS) has not been explored. We designed to investigate whether circulating frequency and function of CD4(+)LAP(+) Tregs are defective in ACS. One hundred eleven ACS patients (acute myocardial infarction and unstable angina) and 117 control patients were enrolled in the study. The control patients consisted of chronic stable angina (CSA) and chest pain syndrome (CPS). The frequencies of circulating CD4(+)LAP(+) Tregs and the expression of the transmembrane protein glycoprotein-A repetitions predominant (GARP) on CD4(+) T cells were determined by flow cytometry. The function of CD4(+)LAP(+) Tregs was detected using thymidine uptake. Serum interleukin-10 (IL-10) and transforming growth factor-β protein (TGF-β) levels were detected using ELISA and expression of GARP mRNA in peripheral blood mononuclear cells (PBMCs) was measured by real time-polymerase chain reaction. We found ACS patients had a significantly lower frequency of circulating CD4(+)LAP(+) Tregs, and the function of these cells was reduced compared to controls. The expression of GARP in CD4(+) T cells and the serum levels of TGF-β in ACS patients were lower than those of control patients. The serum levels of IL-10 were similar between the two cohorts. A novel regulatory T cell subset, defined as CD4(+)LAP(+) T cells is defective in ACS patients.

  13. Coupling motion between rearfoot and hip and knee joints during walking and single-leg landing.

    PubMed

    Koshino, Yuta; Yamanaka, Masanori; Ezawa, Yuya; Okunuki, Takumi; Ishida, Tomoya; Samukawa, Mina; Tohyama, Harukazu

    2017-12-01

    The objective of the current study was to investigate the kinematic relationships between the rearfoot and hip/knee joint during walking and single-leg landing. Kinematics of the rearfoot relative to the shank, knee and hip joints during walking and single-leg landing were analyzed in 22 healthy university students. Kinematic relationships between two types of angular data were assessed by zero-lag cross-correlation coefficients and coupling angles, and were compared between joints and between tasks. During walking, rearfoot eversion/inversion and external/internal rotation were strongly correlated with hip adduction/abduction (R=0.69 and R=0.84), whereas correlations with knee kinematics were not strong (R≤0.51) and varied between subjects. The correlations with hip adduction/abduction were stronger than those with knee kinematics (P<0.001). Most coefficients during single-leg landing were strong (R≥0.70), and greater than those during walking (P<0.001). Coupling angles indicated that hip motion relative to rearfoot motion was greater than knee motion relative to rearfoot motion during both tasks (P<0.001). Interventions to control rearfoot kinematics may affect hip kinematics during dynamic tasks. The coupling motion between the rearfoot and hip/knee joints, especially in the knee, should be considered individually. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Lap Shear and Impact Testing of Ochre and Beeswax in Experimental Middle Stone Age Compound Adhesives.

    PubMed

    Kozowyk, P R B; Langejans, G H J; Poulis, J A

    2016-01-01

    The production of compound adhesives using disparate ingredients is seen as some of the best evidence of advanced cognition outside of the use of symbolism. Previous field and laboratory testing of adhesives has shown the complexities involved in creating an effective Middle Stone Age glue using Acacia gum. However, it is currently unclear how efficient different adhesive recipes are, how much specific ingredients influence their performance, and how difficult it may have been for those ingredients to be combined to maximum effect. We conducted a series of laboratory-based lap shear and impact tests, following modern adhesion testing standards, to determine the efficacy of compound adhesives, with particular regard to the ingredient ratios. We tested rosin (colophony) and gum adhesives, containing additives of beeswax and ochre in varying ratios. During both lap shear and impact tests compound rosin adhesives performed better than single component rosin adhesives, and pure acacia gum was the strongest. The large difference in performance between each base adhesive and the significant changes in performance that occur due to relatively small changes in ingredient ratios lend further support to the notion that high levels of skill and knowledge were required to consistently produce the most effective adhesives.

  15. Lap Shear and Impact Testing of Ochre and Beeswax in Experimental Middle Stone Age Compound Adhesives

    PubMed Central

    2016-01-01

    The production of compound adhesives using disparate ingredients is seen as some of the best evidence of advanced cognition outside of the use of symbolism. Previous field and laboratory testing of adhesives has shown the complexities involved in creating an effective Middle Stone Age glue using Acacia gum. However, it is currently unclear how efficient different adhesive recipes are, how much specific ingredients influence their performance, and how difficult it may have been for those ingredients to be combined to maximum effect. We conducted a series of laboratory-based lap shear and impact tests, following modern adhesion testing standards, to determine the efficacy of compound adhesives, with particular regard to the ingredient ratios. We tested rosin (colophony) and gum adhesives, containing additives of beeswax and ochre in varying ratios. During both lap shear and impact tests compound rosin adhesives performed better than single component rosin adhesives, and pure acacia gum was the strongest. The large difference in performance between each base adhesive and the significant changes in performance that occur due to relatively small changes in ingredient ratios lend further support to the notion that high levels of skill and knowledge were required to consistently produce the most effective adhesives. PMID:26983080

  16. Conductive films of silver nanoparticles as novel susceptors for induction welding of thermoplastic composites.

    PubMed

    Farahani, Rouhollah Dermanaki; Janier, Mathieu; Dubé, Martine

    2018-03-23

    In the present work, a conductive film of silver nanoparticles (nAg) as a novel heating element type, called susceptor, was developed and tested for induction welding of carbon fiber/polyphenylene sulfide (CF/PPS) thermoplastic composites, i.e., unidirectional pre-impregnated 16 plies of CF/PPS compression-molded in a quasi-isotropic stacking sequence. The nAg were synthesized, dispersed in deionized (DI) water and casted onto a pure PPS film, resulting in a conductive film upon the evaporation of DI water and thermal post-annealing. The thermal annealing at 250 °C significantly (by 7 orders) decreased the film's electrical resistivity from 9.4 × 10 3 down to 3.1 × 10 -4 Ω cm. The new susceptors led to fast heating rates in induction welding when compared to the standard stainless steel mesh susceptors under similar welding conditions. Lap shear mechanical testing revealed that the apparent lap shear strength (LSS) is sensitive to the susceptors' resistivity and the input current. A relatively high LSS value was achieved for the specimens welded using the new susceptors which exceeded the value of those welded using stainless steel mesh susceptors (28.3 MPa compared to 20 MPa). The weld interface and specimens' cross-section observation revealed that the nAg were dispersed and embedded into the resin upon welding. This study contains preliminary results that show high potential of nanoparticles as effective susceptors to further improve the mechanical performance of the joints in welding of thermoplastic composites.

  17. Optimal joint measurements of complementary observables by a single trapped ion

    NASA Astrophysics Data System (ADS)

    Xiong, T. P.; Yan, L. L.; Ma, Z. H.; Zhou, F.; Chen, L.; Yang, W. L.; Feng, M.; Busch, P.

    2017-06-01

    The uncertainty relations, pioneered by Werner Heisenberg nearly 90 years ago, set a fundamental limitation on the joint measurability of complementary observables. This limitation has long been a subject of debate, which has been reignited recently due to new proposed forms of measurement uncertainty relations. The present work is associated with a new error trade-off relation for compatible observables approximating two incompatible observables, in keeping with the spirit of Heisenberg’s original ideas of 1927. We report the first direct test and confirmation of the tight bounds prescribed by such an error trade-off relation, based on an experimental realisation of optimal joint measurements of complementary observables using a single ultracold {}40{{{Ca}}}+ ion trapped in a harmonic potential. Our work provides a prototypical determination of ultimate joint measurement error bounds with potential applications in quantum information science for high-precision measurement and information security.

  18. Finite Element Analysis of Composite Joint Configurations with Gaps and Overlaps

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2014-01-01

    The goal of the current study is to identify scenarios for which thermal and moisture effects become significant in the loading of a composite structure. In the current work, a simple configuration was defined, and material properties were selected. A Fortran routine was created to automate the mesh generation process. The routine was used to create the models for the initial mesh refinement study. A combination of element length and width suitable for further studies was identified. Also, the effect of the overlap length and gap length on computed shear and through-thickness stresses along the bondline of the joints was studied for the mechanical load case. Further, the influence of neighboring gaps and overlaps on these joint stresses was studied and was found to be negligible. The results suggest that for an initial study it is sufficient to focus on one configuration with fixed overlap and gap lengths to study the effects of mechanical, thermal and moisture loading and combinations thereof on computed joint stresses

  19. 21 CFR 888.3340 - Hip joint metal/composite semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hip joint metal/composite semi-constrained cemented prosthesis. 888.3340 Section 888.3340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3340...

  20. 21 CFR 888.3100 - Ankle joint metal/composite semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ankle joint metal/composite semi-constrained cemented prosthesis. 888.3100 Section 888.3100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3100...

  1. 21 CFR 888.3340 - Hip joint metal/composite semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hip joint metal/composite semi-constrained cemented prosthesis. 888.3340 Section 888.3340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3340...

  2. 21 CFR 888.3340 - Hip joint metal/composite semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hip joint metal/composite semi-constrained cemented prosthesis. 888.3340 Section 888.3340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3340...

  3. 21 CFR 888.3100 - Ankle joint metal/composite semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ankle joint metal/composite semi-constrained cemented prosthesis. 888.3100 Section 888.3100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3100...

  4. 21 CFR 888.3100 - Ankle joint metal/composite semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ankle joint metal/composite semi-constrained cemented prosthesis. 888.3100 Section 888.3100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3100...

  5. Radiosteriometric analysis of movement in the sacroiliac joint during a single-leg stance in patients with long-lasting pelvic girdle pain.

    PubMed

    Kibsgård, Thomas J; Røise, Olav; Sturesson, Bengt; Röhrl, Stephan M; Stuge, Britt

    2014-04-01

    Chamberlain's projections (anterior-posterior X-ray of the pubic symphysis) have been used to diagnose sacroiliac joint mobility during the single-leg stance test. This study examined the movement in the sacroiliac joint during the single-leg stance test with precise radiostereometric analysis. Under general anesthesia, tantalum markers were inserted into the dorsal sacrum and the ilium of 11 patients with long-lasting and severe pelvic girdle pain. After two to three weeks, a radiostereometric analysis was conducted while the subjects performed a single-leg stance. Small movements were detected in the sacroiliac joint during the single-leg stance. In both the standing- and hanging-leg sacroiliac join, a total of 0.5 degree rotation was observed; however, no translations were detected. There were no differences in total movement between the standing- and hanging-leg sacroiliac joint. The movement in the sacroiliac joint during the single-leg stance is small and almost undetectable by the precise radiostereometric analysis. A complex movement pattern was seen during the test, with a combination of movements in the two joints. The interpretation of the results of this study is that, the Chamberlain examination likely is inadequate in the examination of sacroiliac joint movement in patients with pelvic girdle pain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Debonding characteristics of adhesively bonded woven Kevlar composites

    NASA Technical Reports Server (NTRS)

    Mall, S.; Johnson, W. S.

    1988-01-01

    The fatigue damage mechanism of an adhesively bonded joint between fabric reinforced composite adherends was investigated with cracked-lap-shear specimens. Two bonded systems were studied: fabric Kevlar 49/5208 epoxy adherends bonded together with either EC 3445 or FM-300 adhesive. For each bonded system, two specimen geometries were tested. In all specimens tested, fatigue damage occurred in the form of cyclic debonding; however, the woven Kevlar specimens gave significantly slower debond growth rates and higher fracture toughness than previously found in the nonwoven adherend specimens. The surfaces for the woven adherends were not smooth; rather, they had regular crests (high spots) and troughs (low spots) due to the weave pattern. Radiographs of the specimens and examination of their failure surfaces revealed that fiber bridging occurred between the crests of the two adherends in the debonded region. The observed improvements in debond growth resistance and static fracture toughness are attributed to this bridging.

  7. Ligand-Assisted Protein Structure (LAPS): An Experimental Paradigm for Characterizing Cannabinoid-Receptor Ligand-Binding Domains.

    PubMed

    Janero, David R; Korde, Anisha; Makriyannis, Alexandros

    2017-01-01

    Detailed characterization of the ligand-binding motifs and structure-function correlates of the principal GPCRs of the endocannabinoid-signaling system, the cannabinoid 1 (CB1R) and cannabinoid 2 (CB2R) receptors, is essential to inform the rational design of drugs that modulate CB1R- and CB2R-dependent biosignaling for therapeutic gain. We discuss herein an experimental paradigm termed "ligand-assisted protein structure" (LAPS) that affords a means of characterizing, at the amino acid level, CB1R and CB2R structural features key to ligand engagement and receptor-dependent information transmission. For this purpose, LAPS integrates three key disciplines and methodologies: (a) medicinal chemistry: design and synthesis of high-affinity, pharmacologically active probes as reporters capable of reacting irreversibly with particular amino acids at (or in the immediate vicinity of) the ligand-binding domain of the functionally active receptor; (b) molecular and cellular biology: introduction of discrete, conservative point mutations into the target GPCR and determination of their effect on probe binding and pharmacological activity; (c) analytical chemistry: identification of the site(s) of probe-GPCR interaction through focused, bottom-up, amino acid-level proteomic identification of the probe-receptor complex using liquid chromatography tandem mass spectrometry. Subsequent in silico methods including ligand docking and computational modeling provide supplementary data on the probe-receptor interaction as defined by LAPS. Examples of LAPS as applied to human CB2R orthosteric binding site characterization for a biarylpyrazole antagonist/inverse agonist and a classical cannabinoid agonist belonging to distinct chemical classes of cannabinergic compounds are given as paradigms for further application of this methodology to other therapeutic protein targets. LAPS is well positioned to complement other experimental and in silico methods in contemporary structural biology such

  8. Combining FoxP3 and Helios with GARP/LAP markers can identify expanded Treg subsets in cancer patients.

    PubMed

    Abd Al Samid, May; Chaudhary, Belal; Khaled, Yazan S; Ammori, Basil J; Elkord, Eyad

    2016-03-22

    Regulatory T cells (Tregs) comprise numerous heterogeneous subsets with distinct phenotypic and functional features. Identifying Treg markers is critical to investigate the role and clinical impact of various Treg subsets in pathological settings, and also for developing more effective immunotherapies. We have recently shown that non-activated FoxP3-Helios+ and activated FoxP3+/-Helios+ CD4+ T cells express GARP/LAP immunosuppressive markers in healthy donors. In this study we report similar observations in the peripheral blood of patients with pancreatic cancer (PC) and liver metastases from colorectal cancer (LICRC). Comparing levels of different Treg subpopulations in cancer patients and controls, we report that in PC patients, and unlike LICRC patients, there was no increase in Treg levels as defined by FoxP3 and Helios. However, defining Tregs based on GARP/LAP expression showed that FoxP3-LAP+ Tregs in non-activated and activated settings, and FoxP3+Helios+GARP+LAP+ activated Tregs were significantly increased in both groups of patients, compared with controls. This work implies that a combination of Treg-specific markers could be used to more accurately determine expanded Treg subsets and to understand their contribution in cancer settings. Additionally, GARP-/+LAP+ CD4+ T cells made IL-10, and not IFN-γ, and levels of IL-10-secreting CD4+ T cells were elevated in LICRC patients, especially with higher tumor staging. Taken together, our results indicate that investigations of Treg levels in different cancers should consider diverse Treg-related markers such as GARP, LAP, Helios, and others and not only FoxP3 as a sole Treg-specific marker.

  9. Microstructure and Mechanical Properties of C/C Composite/TC17 Joints with Ag-Cu-Ti Brazing Alloy

    NASA Astrophysics Data System (ADS)

    Cao, Xiujie; Zhu, Ying; Guo, Wei; Peng, Peng; Ma, Kaituo

    2017-12-01

    Carbon/Carbon composite(C/C) was vacuum brazed to titanium alloy (TC17) using Ag-Cu-Ti brazing alloy. The effects of brazing temperature on the interfacial microstructure and joint properties were investigated by energy dispersive spectrometer (EDS), a scanning electron microscope (SEM), X-ray diffraction (XRD) and Gleeble1500D testing machine. Results show that C/C composite and TC17 were successfully brazed using AgCuTi brazing alloy. Various phases including TiC, Ag(s, s), Cu(s, s), Ti3Cu4, TiCu, and Ti2Cu were formed in the brazed joint. The maximum shear strength of the brazed joints with AgCuTi brazing alloy was 24±1 MPa when brazed at 860°C for 15 min.

  10. An ATP sensitive light addressable biosensor for extracellular monitoring of single taste receptor cell.

    PubMed

    Wu, Chunsheng; Du, Liping; Zou, Ling; Zhao, Luhang; Wang, Ping

    2012-12-01

    Adenosine triphosphate (ATP) is considered as the key neurotransmitter in taste buds for taste signal transmission and processing. Measurements of ATP secreted from single taste receptor cell (TRC) with high sensitivity and specificity are essential for investigating mechanisms underlying taste cell-to-cell communications. In this study, we presented an aptamer-based biosensor for the detection of ATP locally secreted from single TRC. ATP sensitive DNA aptamer was used as recognition element and its DNA competitor was served as signal transduction element that was covalently immobilized on the surface of light addressable potentiometric sensor (LAPS). Due to the light addressable capability of LAPS, local ATP secretion from single TRC can be detected by monitoring the working potential shifts of LAPS. The results show this biosensor can detect ATP with high sensitivity and specificity. It is demonstrated this biosensor can effectively detect the local ATP secretion from single TRC responding to tastant mixture. This biosensor could provide a promising new tool for the research of taste cell-to-cell communications as well as for the detection of local ATP secretion from other types of ATP secreting individual cells.

  11. Design, fabrication and test of graphite/polymide composite joints and attachments: Summary

    NASA Technical Reports Server (NTRS)

    Cushman, J. B.; Mccleskey, S. F.; Ward, S. H.

    1983-01-01

    The design, analysis and testing performed to develop four types of graphite/polyimide (Gr/PI) bonded and bolted composite joints for lightly loaded control surfaces on advanced space transportation systems that operate at temperatures up to 561K (550 F) are summarized. Material properties and 'small specimen' tests were conducted to establish design data and to evaluate specific design details. 'Static discriminator' tests were conducted on preliminary designs to verify structural adequacy. Scaled up specimens of the final joint designs, representative of production size requirements, were subjected to a series of static and fatigue tests to evaluate joint strength. Effects of environmental conditioning were determined by testing aged (125 hours 589K (600 F)) and thermal cycled (116K to 589K (-250 F to 600 F), 125 times) specimens. It is concluded Gr/PI joints can be designed and fabricated to carry the specified loads. Test results also indicate a possible resin loss or degradation of laminates after exposure to 589K (600 F) for 125 hours.

  12. SEM/XPS analysis of fractured adhesively bonded graphite fibre-reinforced polyimide composites

    NASA Technical Reports Server (NTRS)

    Devilbiss, T. A.; Messick, D. L.; Wightman, J. P.; Progar, D. J.

    1985-01-01

    The surfaces of the graphite fiber-reinforced polyimide composites presently pretreated prior to bonding with polyimide adhesive contained variable amounts of a fluoropolymer, as determined by X-ray photoelectron spectroscopy. Lap shear strengths were determined for unaged samples and for those aged over 500- and 1000-hour periods at 177 and 232 C. Unaged sample lap strengths, which were the highest obtained, exhibited no variation with surface pretreatment, but a significant decrease is noted with increasing aging temperature. These thermally aged samples, however, had increased surface fluorine concentration, while a minimal concentration was found in unaged samples. SEM demonstrated a progressive shift from cohesive to adhesive failure for elevated temperature-aged composites.

  13. Texture Development in a Friction Stir Lap-Welded AZ31B Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Naik, B. S.; Chen, D. L.; Cao, X.; Wanjara, P.

    2014-09-01

    The present study was aimed at characterizing the microstructure, texture, hardness, and tensile properties of an AZ31B-H24 Mg alloy that was friction stir lap welded (FSLWed) at varying tool rotational rates and welding speeds. Friction stir lap welding (FSLW) resulted in the presence of recrystallized grains and an associated hardness drop in the stir zone (SZ). Microstructural investigation showed that both the AZ31B-H24 Mg base metal (BM) and SZ contained β-Mg17Al12 and Al8Mn5 second phase particles. The AZ31B-H24 BM contained a type of basal texture (0001)<110> with the (0001) plane nearly parallel to the rolled sheet surface and <110> directions aligned in the rolling direction. FSLW resulted in the formation of another type of basal texture (0001)<100> in the SZ, where the basal planes (0001) became slightly tilted toward the transverse direction, and the prismatic planes (100) and pyramidal planes (101) exhibited a 30 deg + ( n - 1) × 60 deg rotation ( n = 1, 2, 3, …) with respect to the rolled sheet normal direction, due to the shear plastic flow near the pin surface that occurred from the intense local stirring. With increasing tool rotational rate and decreasing welding speed, the maximum intensity of the basal poles (0001) in the SZ decreased due to a higher degree of dynamic recrystallization that led to a weaker or more random texture. The tool rotational rate and welding speed had a strong effect on the failure load of FSLWed joints. A combination of relatively high welding speed (20 mm/s) and low tool rotational rate (1000 rpm) was observed to be capable of achieving a high failure load. This was attributed to the relatively small recrystallized grains and high intensity of the basal poles in the SZ arising from the low heat input as well as the presence of a small hooking defect.

  14. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The development of several types of graphite/polyimide (GR/PI) bonded and bolted joints is reported. The program consists of two concurrent tasks: (1) design and test of specific built up attachments; and (2) evaluation of standard advanced bonded joint concepts. A data base for the design and analysis of advanced composite joints for use at elevated temperatures (561K (550 deg F)) to design concepts for specific joining applications, and the fundamental parameters controlling the static strength characteristics of such joints are evaluated. Data for design and build GR/PI of lightly loaded flight components for advanced space transportation systems and high speed aircraft are presented. Results for compression and interlaminar shear strengths of Celion 6000/PMR-15 laminates are given. Static discriminator test results for type 3 and type 4 bonded and bolted joints and final joint designs for TASK 1.4 scale up fabrication and testing are presented.

  15. A Multi-Objective Advanced Design Methodology of Composite Beam-to-Column Joints Subjected to Seismic and Fire Loads

    NASA Astrophysics Data System (ADS)

    Pucinotti, Raffaele; Ferrario, Fabio; Bursi, Oreste S.

    2008-07-01

    A multi-objective advanced design methodology dealing with seismic actions followed by fire on steel-concrete composite full strength joints with concrete filled tubes is proposed in this paper. The specimens were designed in detail in order to exhibit a suitable fire behaviour after a severe earthquake. The major aspects of the cyclic behaviour of composite joints are presented and commented upon. The data obtained from monotonic and cyclic experimental tests have been used to calibrate a model of the joint in order to perform seismic simulations on several moment resisting frames. A hysteretic law was used to take into account the seismic degradation of the joints. Finally, fire tests were conducted with the objective to evaluate fire resistance of the connection already damaged by an earthquake. The experimental activity together with FE simulation demonstrated the adequacy of the advanced design methodology.

  16. Can a quantum state over time resemble a quantum state at a single time?

    NASA Astrophysics Data System (ADS)

    Horsman, Dominic; Heunen, Chris; Pusey, Matthew F.; Barrett, Jonathan; Spekkens, Robert W.

    2017-09-01

    The standard formalism of quantum theory treats space and time in fundamentally different ways. In particular, a composite system at a given time is represented by a joint state, but the formalism does not prescribe a joint state for a composite of systems at different times. If there were a way of defining such a joint state, this would potentially permit a more even-handed treatment of space and time, and would strengthen the existing analogy between quantum states and classical probability distributions. Under the assumption that the joint state over time is an operator on the tensor product of single-time Hilbert spaces, we analyse various proposals for such a joint state, including one due to Leifer and Spekkens, one due to Fitzsimons, Jones and Vedral, and another based on discrete Wigner functions. Finding various problems with each, we identify five criteria for a quantum joint state over time to satisfy if it is to play a role similar to the standard joint state for a composite system: that it is a Hermitian operator on the tensor product of the single-time Hilbert spaces; that it represents probabilistic mixing appropriately; that it has the appropriate classical limit; that it has the appropriate single-time marginals; that composing over multiple time steps is associative. We show that no construction satisfies all these requirements. If Hermiticity is dropped, then there is an essentially unique construction that satisfies the remaining four criteria.

  17. Reliability aspects of a composite bolted scarf joint. [in wing skin splice

    NASA Technical Reports Server (NTRS)

    Reed, D. L.; Eisenmann, J. R.

    1975-01-01

    The design, fabrication, static test, and fatigue test of both tension and compression graphite-epoxy candidates for a wing splice representative of a next-generation transport aircraft was the objective of the reported research program. A single-scarf bolted joint was selected as the design concept. Test specimens were designed and fabricated to represent an upper-surface and a lower-surface panel containing the splice. The load spectrum was a flight-by-flight random-load history including ground-air-ground loads. The results of the fatigue testing indicate that, for this type of joint, the inherent fatigue resistance of the laminate is reflected in the joint behavior and, consequently, the rate of damage accumulation is very slow under realistic fatigue loadings.

  18. Endovascular management of lap belt-related abdominal aortic injury in a 9-year-old child.

    PubMed

    Papazoglou, Konstantinos O; Karkos, Christos D; Kalogirou, Thomas E; Giagtzidis, Ioakeim T

    2015-02-01

    Blunt abdominal aortic trauma is a rare occurrence in children with only a few patients having been reported in the literature. Most such cases have been described in the context of lap belt injuries. We report a 9-year-old boy who suffered lap belt trauma to the abdomen during a high-speed road traffic accident resulting to the well-recognized pattern of blunt abdominal injury, that is, the triad of intestinal perforation, fractures of the lumbar spine, and abdominal aortic injury. The latter presented with lower limb ischemia due to dissection of the infrarenal aorta and right common iliac artery. Revascularization was achieved by endovascular means using 2 self-expanding stents in the infrarenal aorta and the right common iliac artery. This case is one of the few reports of lap belt-related acute traumatic abdominal aortic dissection in a young child and highlights the feasibility of endovascular management in the pediatric population. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. A laboratory study of multiple site damage in fuselage lap splices

    DOT National Transportation Integrated Search

    1993-12-01

    This report details an experimental study that was conducted to explore the causes of : fuselage lap splice multiple site damage (MSD), which has been observed in several : aging aircraft. MSD was partially responsible for the 1988 Aloha Airlines acc...

  20. Ball-joint versus single monolateral external fixators for definitive treatment of tibial shaft fractures.

    PubMed

    Beltsios, Michail; Mavrogenis, Andreas F; Savvidou, Olga D; Karamanis, Eirineos; Kokkalis, Zinon T; Papagelopoulos, Panayiotis J

    2014-07-01

    To compare modular monolateral external fixators with single monolateral external fixators for the treatment of open and complex tibial shaft fractures, to determine the optimal construct for fracture union. A total of 223 tibial shaft fractures in 212 patients were treated with a monolateral external fixator from 2005 to 2011; 112 fractures were treated with a modular external fixator with ball-joints (group A), and 111 fractures were treated with a single external fixator without ball-joints (group B). The mean follow-up was 2.9 years. We retrospectively evaluated the operative time for fracture reduction with the external fixator, pain and range of motion of the knee and ankle joints, time to union, rate of malunion, reoperations and revisions of the external fixators, and complications. The time for fracture reduction was statistically higher in group B; the rate of union was statistically higher in group B; the rate of nonunion was statistically higher in group A; the mean time to union was statistically higher in group A; the rate of reoperations was statistically higher in group A; and the rate of revision of the external fixator was statistically higher in group A. Pain, range of motion of the knee and ankle joints, rates of delayed union, malunion and complications were similar. Although modular external fixators are associated with faster intraoperative fracture reduction with the external fixator, single external fixators are associated with significantly better rates of union and reoperations; the rates of delayed union, malunion and complications are similar.

  1. An N-terminal Retention Module Anchors the Giant Adhesin LapA of Pseudomonas fluorescens at the Cell Surface: A Novel Sub-family of Type I Secretion Systems.

    PubMed

    Smith, T Jarrod; Font, Maria E; Kelly, Carolyn M; Sondermann, Holger; O'Toole, George A

    2018-02-05

    LapA of Pseudomonas fluorescens Pf0-1 belongs to a diverse family of cell surface associated bacterial adhesins that are secreted via the type-1 secretion system (T1SS). We previously reported that the periplasmic protease LapG cleaves the N-terminus of LapA at a canonical dialanine motif to release the adhesin from the cell surface under conditions unfavorable to biofilm formation, thus decreasing biofilm formation. Here, we characterize LapA as the first type 1 secreted substrate that does not follow the "one-step" rule of T1SS. Rather, a novel N-terminal element, called the retention module (RM), localizes LapA at the cell surface as a secretion intermediate. Our genetic, biochemical, and molecular modeling analysis support a model wherein LapA is tethered to the cell surface through its T1SS outer membrane TolC-like pore, LapE, until LapG cleaves LapA in the periplasm. We further demonstrate this unusual retention strategy is likely conserved among LapA-like proteins, and reveals a new subclass of T1SS ABC transporters involved in transporting this group of surface-associated, LapA-like adhesins. These studies demonstrate a novel cell surface retention strategy used throughout the Proteobacteria and highlight a previously unappreciated flexibility of function for T1SS. Importance. Bacteria have evolved multiple secretion strategies to interact with their environment. For many bacteria, the secretion of cell surface associated adhesins is key for initiating contact with a preferred substratum to facilitate biofilm formation. Our work demonstrates that P. fluorescens uses a previously unrecognized secretion strategy to retain the giant adhesin LapA at its cell surface. Further, we identify likely LapA-like adhesins in various pathogenic and commensal Proteobacteria and provide phylogenetic evidence that these adhesins are secreted by a new subclass of T1SS ABC transporters. Copyright © 2018 American Society for Microbiology.

  2. Rene 95 brazed joint metallurgical program

    NASA Technical Reports Server (NTRS)

    Gay, C.; Givens, J.; Mastrorroco, S.; Sterman, A.

    1972-01-01

    This metallurgical program was specifically conducted for the establishment of material properties required for the design of the LF460 fan. The LF460 lift fan is an advanced 18:1 high thrust to weight single stage design. It has a turbine attached to the outer flowpath of the fan blade tip which minimizes the axial depth of the fan. Advanced lightweight attachment designs are employed in this concept to achieve minimum mass polar moments of inertia which are required for good aircraft flight response control. The design features which are unique to this advanced LF460 lift fan are the 0.010 inch thin Udimet 700 alloy integral tip turbine design, minimum weight braze attachment of the turbine to the fan blade, and the high strength and elevated temperature capability of the Rene'95 alloy for the fan blade. The data presented in this report show that the LF460 fan rotor design is feasible and that the design stresses and margins of safety were more than adequate. Prior to any production application, however, additional stress rupture/shear lap joints should be run in order to establish a firm 1200 F stress rupture curve for the CM50 braze metal.

  3. Xenopus LAP2β protein knockdown affects location of lamin B and nucleoporins and has effect on assembly of cell nucleus and cell viability.

    PubMed

    Dubińska-Magiera, Magda; Chmielewska, Magdalena; Kozioł, Katarzyna; Machowska, Magdalena; Hutchison, Christopher J; Goldberg, Martin W; Rzepecki, Ryszard

    2016-05-01

    Xenopus LAP2β protein is the single isoform expressed in XTC cells. The protein localizes on heterochromatin clusters both at the nuclear envelope and inside a cell nucleus. The majority of XLAP2β fraction neither colocalizes with TPX2 protein during interphase nor can be immunoprecipitated with XLAP2β antibody. Knockdown of the XLAP2β protein expression in XTC cells by synthetic siRNA and plasmid encoded siRNA resulted in nuclear abnormalities including changes in shape of nuclei, abnormal chromatin structure, loss of nuclear envelope, mislocalization of integral membrane proteins of INM such as lamin B2, mislocalization of nucleoporins, and cell death. Based on timing of cell death, we suggest mechanism associated with nucleus reassembly or with entry into mitosis. This confirms that Xenopus LAP2 protein is essential for the maintenance of cell nucleus integrity and the process of its reassembly after mitosis.

  4. Temporomandibular joint arthroscopy technique using a single working cannula.

    PubMed

    Srouji, S; Oren, D; Zoabi, A; Ronen, O; Zraik, H

    2016-11-01

    The traditional arthroscopy technique includes the creation of three ports in order to enable visualization, operation, and arthrocentesis. The aim of this study was to assess an advanced temporomandibular joint (TMJ) arthroscopy technique that requires only a single cannula, through which a one-piece instrument containing a visualization canal, irrigation canal, and a working canal is inserted, as an alternative to the traditional double-puncture technique. This retrospective study assessed eight patients (13 TMJs) with pain and/or limited range of movement that was refractory to conservative therapy, who were treated between June 2015 and December 2015. The temporomandibular joint disorder (TMD) was diagnosed by physical examination and mouth opening measurements. The duration of surgery was recorded and compared to that documented for traditional arthroscopies performed by the same surgeon. Operative single-cannula arthroscopy (OSCA) was performed using a holmium YAG (Ho:YAG) 230μm fibre laser for ablation. The OSCA technique proved effective in improving mouth opening in all patients (mean increase 9.12±1.96mm) and in reducing pain (mean visual analogue scale decrease of 3.25±1.28). The operation time was approximately half that of the traditional technique. The OSCA technique is as efficient as the traditional technique, is simple to learn, and is simpler to execute. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  5. Design and Demonstration of Automated Data Analysis Algorithms for Ultrasonic Inspection of Complex Composite Panels with Bonds

    DTIC Science & Technology

    2016-02-01

    certification process. INTRODUCTION The ultrasonic inspection of aerospace composites has been demonstrated to be one of the most effective methods to...normal part conditions. Anomalous indications studied in this program include inserted materials, porosity, ply ‘laps and gaps’, and wrinkles . Inserted...partially scanned inserts at the radii. Wrinkles , laps and gaps have also been included in the truth table, but detection rates for these flaws are

  6. 21 CFR 888.3490 - Knee joint femorotibial metal/composite non-constrained cemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Knee joint femorotibial metal/composite non-constrained cemented prosthesis. 888.3490 Section 888.3490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices...

  7. 21 CFR 888.3500 - Knee joint femorotibial metal/composite semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Knee joint femorotibial metal/composite semi-constrained cemented prosthesis. 888.3500 Section 888.3500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices...

  8. 21 CFR 888.3500 - Knee joint femorotibial metal/composite semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Knee joint femorotibial metal/composite semi-constrained cemented prosthesis. 888.3500 Section 888.3500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices...

  9. 21 CFR 888.3490 - Knee joint femorotibial metal/composite non-constrained cemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Knee joint femorotibial metal/composite non-constrained cemented prosthesis. 888.3490 Section 888.3490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices...

  10. 21 CFR 888.3490 - Knee joint femorotibial metal/composite non-constrained cemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Knee joint femorotibial metal/composite non-constrained cemented prosthesis. 888.3490 Section 888.3490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices...

  11. 21 CFR 888.3500 - Knee joint femorotibial metal/composite semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Knee joint femorotibial metal/composite semi-constrained cemented prosthesis. 888.3500 Section 888.3500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices...

  12. Early Evolution of Comet 67P Studied with the RPC-LAP onboard Rosetta

    NASA Astrophysics Data System (ADS)

    Miloch, W. J.; Yang, L.; Paulsson, J. J.; Wedlund, C. S.; Odelstad, E.; Edberg, N. J. T.; Koenders, C.; Eriksson, A.

    2016-12-01

    In-situ measurements within the Rosetta mission allow for studies of the cometary environment at different stages of cometary evolution. The Rosetta Plasma Consortium (RPC) is a set of five instruments on board the spacecraft that specialise in the measurements of plasma environment of comet 67P. One of the instruments is RPC-LAP, which consists of two Langmuir Probes and can measure the density, temperature, and flow speed of the plasma in the vicinity of the comet. At the early stage of the Rosetta mission, when the spacecraft is far from the nucleus of comet 67P, the ion part of the current-voltage characteristics of RPC-LAP1 is dominated by the photoemission current, which surpasses the currents from the dilute solar wind plasma. As Rosetta starts orbiting around the nucleus in September 2014, LAP1 picks up signatures of local plasma density enhancements corresponding to variations of water-group ions observed in the vicinity of the comet. With the help of current-voltage characteristics and the spacecraft potential, we identify and characterise in space and time the entering of this coma-dominated, high-density plasma region. This high-density region is observed at the northern hemisphere of the comet during early activity. The transition manifests as a steep gradient in the density with respect to the distance to the comet nucleus. We discuss these RPC-LAP results together with the corresponding measurements by other instruments to provide a comprehensive picture of the transition. We show that the early cometary plasma can be seen as composed of two distinct regions: an outer region characterised by solar wind plasma and small quantities of pickup ions, and an inner region with enhanced plasma densities.

  13. Single stage treatment of ankylosis of the temporomandibular joint using patient-specific total joint replacement and virtual surgical planning.

    PubMed

    Haq, Jahrad; Patel, Nishma; Weimer, Katherine; Matthews, N Shaun

    2014-04-01

    Ankylosis of the temporomandibular joint (TMJ) is a debilitating condition that can result in pain, trismus, and a poor quality of life. It can be caused by injury, infection, and rheumatoid disease. Current management includes gap arthroplasty, interpositional arthroplasty, and reconstruction. Traditionally, joints are reconstructed using stock implants, or the procedure is done in two stages with an additional computed tomography (CT) scan between the resective and reconstructive procedures and use of stereolithographic models to aid the design of the definitive prostheses. We describe a technique for the resection of ankylosis and reconstruction of the joint in a single operation using virtually designed custom-made implants. Five patients with ankylosis of the TMJ had a single stage operation with reconstruction between 2010 and 2012. All had preoperative high-resolution CT with contrast angiography. During an international web-based teleconference between the surgeon and the engineer a virtual resection of the ankylosis was done using the reconstructed CT images. The bespoke cutting guides and implants were designed virtually at the same time and were then manufactured precisely using computer-aided design and manufacture (CAD-CAM) over 6 weeks. After release of the ankylosis and reconstruction, the patients underwent an exercise regimen to improve mouth opening. Follow-up was for a minimum of 6 months. Four patients had one operation, and one patient had two. Median/Mean maximum incisal opening increased from 0.6mm before operation to 25 mm afterwards (range 23-27), and there was minimal surgical morbidity. This new method effectively treats ankylosis of the TMJ in a single stage procedure. Fewer operations and hospital stays, and the maintenance of overall clinical outcome are obvious advantages. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  14. Associação entre lipid accumulation product (LAP) e hirsutismo na síndrome do ovário policístico.

    PubMed

    de Oliveira, Flávia Ribeiro; Rezende, Mariana Bicalho; Faria, Nícolas Figueiredo; Dias, Tomás Ribeiro Gonçalves; de Oliveira, Walter Carlos Santos; Rocha, Ana Luiza Lunardi; Cândido, Ana Lúcia

    2016-02-01

    Polycystic ovary syndrome (PCOS) is the most common endocrine metabolic disorder in women between menarche and menopause. Clinical hyperandrogenism is the most important diagnostic criterion of the syndrome, which manifests as hirsutism in 70% of cases. Hirsute carriers of PCOS have high cardiovascular risk. Lipid accumulation product (LAP) is an index for the evaluation of lipid accumulation in adults and the prediction of cardiovascular risk. The aim of this study was to evaluate the association between LAP and hirsutism in women with PCOS. This was a cross-sectional observational study of a secondary database, which included 263 patients who had visited the Hyperandrogenism Outpatient Clinic from November 2009 to July 2014. The exclusion criteria were patients without Ferriman-Gallwey index (FGI) and/or LAP data. We used the Rotterdam criteria for the diagnosis of PCOS. All patients underwent medical assessment followed by measurement and recording of anthropometric data and the laboratory tests for measurement of the following: thyroid-stimulating hormone, follicle-stimulating hormone, prolactin, total testosterone, sex hormone binding globulin, 17-α-hydroxyprogesterone (follicular phase), glycohemoglobin A1c, and basal insulin. In addition, the subjects underwent lipid profiling and oral glucose tolerance tests. Other laboratory measurements were determined according to clinical criteria. LAP and the homeostatic model assessment index (HOMA-IR) were calculated using the data obtained. We divided patients into two groups: the PCOS group with normal LAP (< 34.5) and the PCOS group with altered LAP (> 34.5) to compare the occurrence of hirsutism. For statistical analysis, we used SPSS Statistics for Windows® and Microsoft Excel programs, with descriptive (frequencies, percentages, means, and standard deviations) and comparative analyses (Student's t-test and Chi-square test). We considered relations significant when the p-value was ≤ 0.05. LAP was high in

  15. Friction stir welding joint of dissimilar materials between AZ31B magnesium and 6061 aluminum alloys: Microstructure studies and mechanical characterizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammadi, J.; Behnamian, Y.; Mostafaei, A., E-mail: amir.mostafaei@gmail.com

    2015-03-15

    Friction stir welding is an efficient manufacturing method for joining dissimilar alloys, which can dramatically reduce grain sizes and offer high mechanical joint efficiency. Lap FSW joints between dissimilar AZ31B and Al 6061 alloy sheets were made at various tool rotation and travel speeds. Rotation and travel speeds varied between 560–1400 r/min and 16–40 mm/min respectively, where the ratio between these parameters was such that nearly constant pitch distances were applied during welding. X-ray diffraction pattern (XRD), optical microscopy images (OM), electron probe microanalysis (EPMA) and scanning electron microscopy equipped with an energy-dispersive X-ray spectroscopy (SEM-EDS) were used to investigatemore » the microstructures of the joints welded. Intermetallic phases including Al{sub 12}Mg{sub 17} (γ) and Al{sub 3}Mg{sub 2} (β) were detected in the weld zone (WZ). For different tool rotation speeds, the morphology of the microstructure in the stir zone changed significantly with travel speed. Lap shear tensile test results indicated that by simultaneously increasing the tool rotation and travel speeds to 1400 r/min and 40 mm/min, the joint tensile strength and ductility reached a maximum. Microhardness measurements and tensile stress–strain curves indicated that mechanical properties were affected by FSW parameters and mainly depended on the formation of intermetallic compounds in the weld zone. In addition, a debonding failure mode in the Al/Mg dissimilar weld nugget was investigated by SEM and surface fracture studies indicated that the presence of intermetallic compounds in the weld zone controlled the failure mode. XRD analysis of the fracture surface indicated the presence of brittle intermetallic compounds including Al{sub 12}Mg{sub 17} (γ) and Al{sub 3}Mg{sub 2} (β). - Highlights: • Dissimilar Al/Mg joint was obtained by lap friction stir welding technique. • Effect of rotation and travel speeds on the formation of intermetallic

  16. Microstructure and Fatigue Properties of Ultrasonic Spot Welded Joints of Aluminum 5754 Alloy

    NASA Astrophysics Data System (ADS)

    Mirza, F. A.; Macwan, A.; Bhole, S. D.; Chen, D. L.

    2016-05-01

    The purpose of this investigation was to evaluate the microstructural change, lap shear tensile load, and fatigue resistance of ultrasonic spot welded joints of aluminum 5754 alloy for automotive applications. A unique "necklace"-type structure with very fine equiaxed grains was observed to form along the weld line due to the mechanical interlocking coupled with the occurrence of dynamic recrystallization. The maximum lap shear tensile strength of 85 MPa and the fatigue limit of about 0.5 kN (at 1 × 107 cycles) were achieved. The tensile fracture occurred at the Al/Al interface in the case of lower energy inputs, and at the edge of nugget zone in the case of higher energy inputs. The maximum cyclic stress for the transition of fatigue fracture mode from the transverse through-thickness crack growth to the interfacial failure increased with increasing energy input. Fatigue crack propagation was mainly characterized by the formation of fatigue striations, which usually appeared perpendicular to the fatigue crack propagation.

  17. Development of W-composites/EUROFER brazed joints for the first wall component of future fusion reactors

    NASA Astrophysics Data System (ADS)

    de Prado, J.; Sánchez, M.; Antusch, S.; Ureña, A.

    2017-12-01

    The present work describes a joining procedure between two different tungsten composite materials (W-2Y2O3 and W-1TiC) with reduced activation ferritic-martensitic steel (Eurofer). The results indicated the achievement, in both cases, of high quality W-composites/Eurofer joints using 80Cu-20Ti as filler material. The braze is constituted by several ternary Cu-Ti-Fe phases distributed along a Cu-matrix, which acts as ductile phase capable of relieving the residual stresses, which could be produced during the service life of the component. Some cracks growing from W-braze interface into the base material have been detected. They are originated by the stresses produced during the cooling stage of the brazing cycle. Regarding the strength of the joints, similar shear strengths of both joints were obtained (˜105 MPa). These values were slightly lower than the ones obtained when pure tungsten was used as the base metal.

  18. Construct validity of the LapVR virtual-reality surgical simulator.

    PubMed

    Iwata, Naoki; Fujiwara, Michitaka; Kodera, Yasuhiro; Tanaka, Chie; Ohashi, Norifumi; Nakayama, Goro; Koike, Masahiko; Nakao, Akimasa

    2011-02-01

    Laparoscopic surgery requires fundamental skills peculiar to endoscopic procedures such as eye-hand coordination. Acquisition of such skills prior to performing actual surgery is highly desirable for favorable outcome. Virtual-reality simulators have been developed for both surgical training and assessment of performance. The aim of the current study is to show construct validity of a novel simulator, LapVR (Immersion Medical, San Jose, CA, USA), for Japanese surgeons and surgical residents. Forty-four subjects were divided into the following three groups according to their experience in laparoscopic surgery: 14 residents (RE) with no experience in laparoscopic surgery, 14 junior surgeons (JR) with little experience, and 16 experienced surgeons (EX). All subjects executed "essential task 1" programmed in the LapVR, which consists of six tasks, resulting in automatic measurement of 100 parameters indicating various aspects of laparoscopic skills. Time required for each task tended to be inversely correlated with experience in laparoscopic surgery. For the peg transfer skill, statistically significant differences were observed between EX and RE in three parameters, including total time and average time taken to complete the procedure and path length for the nondominant hand. For the cutting skill, similar differences were observed between EX and RE in total time, number of unsuccessful cutting attempts, and path length for the nondominant hand. According to the programmed comprehensive evaluation, performance in terms of successful completion of the task and actual experience of the participants in laparoscopic surgery correlated significantly for the peg transfer (P=0.007) and cutting skills (P=0.026). The peg transfer and cutting skills could best distinguish between EX and RE. This study is the first to provide evidence that LapVR has construct validity to discriminate between novice and experienced laparoscopic surgeons.

  19. An automatic 2D–3D image matching method for reproducing spatial knee joint positions using single or dual fluoroscopic images

    PubMed Central

    Zhu, Zhonglin; Li, Guoan

    2013-01-01

    Fluoroscopic image technique, using either a single image or dual images, has been widely applied to measure in vivo human knee joint kinematics. However, few studies have compared the advantages of using single and dual fluoroscopic images. Furthermore, due to the size limitation of the image intensifiers, it is possible that only a portion of the knee joint could be captured by the fluoroscopy during dynamic knee joint motion. In this paper, we presented a systematic evaluation of an automatic 2D–3D image matching method in reproducing spatial knee joint positions using either single or dual fluoroscopic image techniques. The data indicated that for the femur and tibia, their spatial positions could be determined with an accuracy and precision less than 0.2 mm in translation and less than 0.4° in orientation when dual fluoroscopic images were used. Using single fluoroscopic images, the method could produce satisfactory accuracy in joint positions in the imaging plane (average up to 0.5 mm in translation and 1.3° in rotation), but large variations along the out-plane direction (in average up to 4.0 mm in translation and 2.28 in rotation). The precision of using single fluoroscopic images to determine the actual knee positions was worse than its accuracy obtained. The data also indicated that when using dual fluoroscopic image technique, if the knee joint outlines in one image were incomplete by 80%, the algorithm could still reproduce the joint positions with high precisions. PMID:21806411

  20. Conventional box model training improves laparoscopic skills during salpingectomy on LapSim: a randomized trial.

    PubMed

    Akdemir, Ali; Ergenoğlu, Ahmet Mete; Yeniel, Ahmet Özgür; Sendağ, Fatih

    2013-01-01

    Box model trainers have been used for many years to facilitate the improvement of laparoscopic skills. However, there are limited data available on box trainers and their impact on skill acquisition, assessed by virtual reality systems. Twenty-two Postgraduate Year 1 gynecology residents with no laparoscopic experience were randomly divided into one group that received structured box model training and a control group. All residents performed a salpingectomy on LapSim before and after the training. Performances before and after the training were assessed using LapSim and were recorded using objective parameters, registered by a computer system (time, damage, and economy of motion scores). There were initially no differences between the two groups. The box trainer group showed significantly greater improvement in time (p=0.01) and economy of motion scores (p=0.001) compared with the control group post-training. The present study confirmed the positive effect of low cost box model training on laparoscopic skill acquisition as assessed using LapSim. Novice surgeons should obtain practice on box trainers and teaching centers should make efforts to establish training laboratories.

  1. Effect of Viscosity on Fuel Leakage Between Lapped Plungers and Sleeves and on the Discharge from a Pump-Injection System

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Marsh, E T

    1935-01-01

    Test data and analysis show that the rate of fuel leakage between a lapped plunger and sleeve varies directly with the density of the fuel, the diameter of the plunger, the pressure producing the leakage, and the cube of the mean clearance between the plunger and sleeve. The rate varies inversely as the length of the lapped fit and the viscosity of the fuel. With a mean clearance between the plunger and sleeve of 0.0001 inch the leakage amounts to approximately 0.2 percent of the fuel injected with gasoline and as low as 0.01 percent with diesel fuel oils. With this mean clearance an effective seal is obtained when the length of the lap is three times the diameter of the lap. The deformation of the sleeve and plunger under pressure is sufficient to change the rate of leakage appreciably from that which would be obtained if the clearance was constant under pressure.

  2. Joint remote control of an arbitrary single-qubit state by using a multiparticle entangled state as the quantum channel

    NASA Astrophysics Data System (ADS)

    Lv, Shu-Xin; Zhao, Zheng-Wei; Zhou, Ping

    2018-01-01

    We present a scheme for joint remote implementation of an arbitrary single-qubit operation following some ideas in one-way quantum computation. All the senders share the information of implemented quantum operation and perform corresponding single-qubit measurements according to their information of implemented operation. An arbitrary single-qubit operation can be implemented upon the remote receiver's quantum system if the receiver cooperates with all the senders. Moreover, we study the protocol of multiparty joint remote implementation of an arbitrary single-qubit operation with many senders by using a multiparticle entangled state as the quantum channel.

  3. Coordinated Analysis of Two Graphite Grains from the CO3.0 LAP 031117 Meteorite: First Identification of a CO Nova Graphite and a Presolar Iron Sulfide Subgrain

    NASA Astrophysics Data System (ADS)

    Haenecour, Pierre; Floss, Christine; José, Jordi; Amari, Sachiko; Lodders, Katharina; Jadhav, Manavi; Wang, Alian; Gyngard, Frank

    2016-07-01

    Presolar grains constitute the remnants of stars that existed before the formation of the solar system. In addition to providing direct information on the materials from which the solar system formed, these grains provide ground-truth information for models of stellar evolution and nucleosynthesis. Here we report the in situ identification of two unique presolar graphite grains from the primitive meteorite LaPaz Icefield 031117. Based on these two graphite grains, we estimate a bulk presolar graphite abundance of {5}-3+7 ppm in this meteorite. One of the grains (LAP-141) is characterized by an enrichment in 12C and depletions in 33,34S, and contains a small iron sulfide subgrain, representing the first unambiguous identification of presolar iron sulfide. The other grain (LAP-149) is extremely 13C-rich and 15N-poor, with one of the lowest 12C/13C ratios observed among presolar grains. Comparison of its isotopic compositions with new stellar nucleosynthesis and dust condensation models indicates an origin in the ejecta of a low-mass CO nova. Grain LAP-149 is the first putative nova grain that quantitatively best matches nova model predictions, providing the first strong evidence for graphite condensation in nova ejecta. Our discovery confirms that CO nova graphite and presolar iron sulfide contributed to the original building blocks of the solar system.

  4. 76 FR 41287 - Incidental Take Permits and Joint Environmental Assessment for Four Single Family Residences in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... and occupation of four single-family residences (Projects). We invite public comments on these...] Incidental Take Permits and Joint Environmental Assessment for Four Single Family Residences in Escambia... September 12, 2011. ADDRESSES: Documents are available for public inspection by appointment during normal...

  5. Evaluation of Margins of Safety in Brazed Joints

    NASA Technical Reports Server (NTRS)

    Flom, Yury; Wang, Len; Powell, Mollie M.; Soffa, Matthew A.; Rommel, Monica L.

    2009-01-01

    One of the essential steps in assuring reliable performance of high cost critical brazed structures is the assessment of the Margin of Safety (MS) of the brazed joints. In many cases the experimental determination of the failure loads by destructive testing of the brazed assembly is not practical and cost prohibitive. In such cases the evaluation of the MS is performed analytically by comparing the maximum design loads with the allowable ones and incorporating various safety or knock down factors imposed by the customer. Unfortunately, an industry standard methodology for the design and analysis of brazed joints has not been developed. This paper provides an example of an approach that was used to analyze an AlBeMet 162 (38%Be-62%Al) structure brazed with the AWS BAlSi-4 (Al-12%Si) filler metal. A practical and conservative interaction equation combining shear and tensile allowables was developed and validated to evaluate an acceptable (safe) combination of tensile and shear stresses acting in the brazed joint. These allowables are obtained from testing of standard tensile and lap shear brazed specimens. The proposed equation enables the assessment of the load carrying capability of complex brazed joints subjected to multi-axial loading.

  6. Highly Flexible and Planar Supercapacitors Using Graphite Flakes/Polypyrrole in Polymer Lapping Film.

    PubMed

    Raj, C Justin; Kim, Byung Chul; Cho, Won-Je; Lee, Won-gil; Jung, Sang-Don; Kim, Yong Hee; Park, Sang Yeop; Yu, Kook Hyun

    2015-06-24

    Flexible supercapacitor electrodes have been fabricated by simple fabrication technique using graphite nanoflakes on polymer lapping films as flexible substrate. An additional thin layer of conducting polymer polypyrrole over the electrode improved the surface conductivity and exhibited excellent electrochemical performances. Such capacitor films showed better energy density and power density with a maximum capacitance value of 37 mF cm(-2) in a half cell configuration using 1 M H2SO4 electrolyte, 23 mF cm(-2) in full cell, and 6 mF cm(-2) as planar cell configuration using poly(vinyl alcohol) (PVA)/phosphoric acid (H3PO4) solid state electrolyte. Moreover, the graphite nanoflakes/polypyrrole over polymer lapping film demonstrated good flexibility and cyclic stability.

  7. Fabrication of Titanium Bonded Joint Specimens for High Temperature Testing

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Kovach, Michael P.; Hudson, Wanda

    2005-01-01

    Four sets of adhesively bonded, titanium lap-shear coupon specimens were fabricated for ultimate strength testing according to the ASTM D1002 and D3165 standards. Important features of the fabrication methods, processing details, and lap-shear test results are presented for specimens fabricated using a modified bismaleimide adhesive, EA 9673, on titanium. Surface treatment of the titanium was performed using surface abrasion followed by one of two separate chemical etching processes. Although cure cycle requirements are different among most adhesives, a single surface preparation method was sought as the preferred method for conditioning the titanium specimens prior to bonding and curing. A fabrication process using a combination of low-pressure grit-blasting of the titanium surface followed by anodization with a sodium hydroxide solution applied to the D1002 specimen geometry provided the highest lapshear strengths in the study. Additionally, difficulties documented during the fabrication process of the D3165 specimens along with features of the D3165 geometry were identified as factors that contributed to lower lap-shear strength results for the D3165 specimens as compared to the results for the D1002 specimens.

  8. Gait Analysis in Rats with Single Joint Inflammation: Influence of Experimental Factors

    PubMed Central

    Ängeby Möller, Kristina; Kinert, Susanne; Størkson, Rolf; Berge, Odd-Geir

    2012-01-01

    Disability and movement-related pain are major symptoms of joint disease, motivating the development of methods to quantify motor behaviour in rodent joint pain models. We used observational scoring and automated methods to compare weight bearing during locomotion and during standing after single joint inflammation induced by Freund's complete adjuvant (0.12–8.0 mg/mL) or carrageenan (0.47–30 mg/mL). Automated gait analysis was based on video capture of prints generated by light projected into the long edge of the floor of a walkway, producing an illuminated image of the contact area of each paw with light intensity reflecting the contact pressure. Weight bearing was calculated as an area-integrated paw pressure, that is, the light intensity of all pixels activated during the contact phase of a paw placement. Automated static weight bearing was measured with the Incapacitance tester. Pharmacological sensitivity of weight-bearing during locomotion was tested in carrageenan-induced monoarthritis by administration of the commonly used analgesics diclofenac, ibuprofen, and naproxen, as well as oxycodone and paracetamol. Observational scoring and automated quantification yielded similar results. We found that the window between control rats and monoarthritic rats was greater during locomotion. The response was more pronounced for inflammation in the ankle as compared to the knee, suggesting a methodological advantage of using this injection site. The effects of both Freund's complete adjuvant and carrageenan were concentration related, but Freund's incomplete adjuvant was found to be as effective as lower, commonly used concentrations of the complete adjuvant. The results show that gait analysis can be an effective method to quantify behavioural effects of single joint inflammation in the rat, sensitive to analgesic treatment. PMID:23071540

  9. Nuclear lamina genetic variants, including a truncated LAP2, in twins and siblings with nonalcoholic fatty liver disease.

    PubMed

    Brady, Graham F; Kwan, Raymond; Ulintz, Peter J; Nguyen, Phirum; Bassirian, Shirin; Basrur, Venkatesha; Nesvizhskii, Alexey I; Loomba, Rohit; Omary, M Bishr

    2018-05-01

    Nonalcoholic fatty liver disease (NAFLD) is becoming the major chronic liver disease in many countries. Its pathogenesis is multifactorial, but twin and familial studies indicate significant heritability, which is not fully explained by currently known genetic susceptibility loci. Notably, mutations in genes encoding nuclear lamina proteins, including lamins, cause lipodystrophy syndromes that include NAFLD. We hypothesized that variants in lamina-associated proteins predispose to NAFLD and used a candidate gene-sequencing approach to test for variants in 10 nuclear lamina-related genes in a cohort of 37 twin and sibling pairs: 21 individuals with and 53 without NAFLD. Twelve heterozygous sequence variants were identified in four lamina-related genes (ZMPSTE24, TMPO, SREBF1, SREBF2). The majority of NAFLD patients (>90%) had at least one variant compared to <40% of controls (P < 0.0001). When only insertions/deletions and changes in conserved residues were considered, the difference between the groups was similarly striking (>80% versus <25%; P < 0.0001). Presence of a lamina variant segregated with NAFLD independently of the PNPLA3 I148M polymorphism. Several variants were found in TMPO, which encodes the lamina-associated polypeptide-2 (LAP2) that has not been associated with liver disease. One of these, a frameshift insertion that generates truncated LAP2, abrogated lamin-LAP2 binding, caused LAP2 mislocalization, altered endogenous lamin distribution, increased lipid droplet accumulation after oleic acid treatment in transfected cells, and led to cytoplasmic association with the ubiquitin-binding protein p62/SQSTM1. Several variants in nuclear lamina-related genes were identified in a cohort of twins and siblings with NAFLD; one such variant, which results in a truncated LAP2 protein and a dramatic phenotype in cell culture, represents an association of TMPO/LAP2 variants with NAFLD and underscores the potential importance of the nuclear lamina in NAFLD

  10. A retrospective comparative study of arthroscopic fixation in acute Rockwood type IV acromioclavicular joint dislocation: single versus double paired Endobutton technique.

    PubMed

    Xu, Jian; Liu, Haifeng; Lu, Wei; Li, Dingfu; Zhu, Weimin; Ouyang, Kan; Wu, Bing; Peng, Liangquan; Wang, Daping

    2018-05-24

    Rockwood type IV acromioclavicular joint (ACJ) dislocation is a trauma usually needs surgical treatment. Paired EndoButton technique (PET) is used in treating such condition. However, the effect of using different types of PET (single versus double PET) for fixation remains controversial. This study aims to evaluate and compare the efficacy of single and double PET and to provide a suitable option for the surgeons. We retrospectively reviewed the charts of patients with acute Rockwood type IV ACJ dislocation who had undergone arthroscopic fixation using single or double PET fixation between March 2009 and March 2015. Seventy-eight consecutive patients identified from chart review were picked and were divided into the single and double PET group with 39 cases in each group. The indexes of visual analog scale score (VAS) for pain, the radiographs of the affected shoulder at different time points of the follow-up, the time of return to activities and sports, the constant functional score, and the Karlsson acromioclavicular joint (ACJ) score, were assessed in a minimum of 2 years postoperation. The average coracoclavicular (CC) and acromioclavicular (AC) distances of the affected joints in the double PET group were significantly smaller than those of the single PET group 2 years postoperation (P < 0.05). The average AC and CC distances in the healthy shoulder joints were significantly smaller than those of the affected joints in the single PET group (P < 0.05); however, these values were not significantly different from those of the affected joints in the double PET group (P > 0.05). The mean VAS pain score was not significantly different, while significant difference was found for the number and times of cases return to activities and sports, constant functional score, and Karlsson ACJ score (P < 0.05) between the two groups. Therefore, the double PET group has better outcome than the single PET group. Complications including redislocation, button

  11. Composite measures of multi-joint symptoms, but not of radiographic osteoarthritis, are associated with functional outcomes: The Johnston County Osteoarthritis Project

    PubMed Central

    Nelson, Amanda E.; Elstad, Emily; DeVellis, Robert F.; Schwartz, Todd A.; Golightly, Yvonne M.; Renner, Jordan B.; Conaghan, Philip G.; Kraus, Virginia B.; Jordan, Joanne M.

    2013-01-01

    Purpose To determine associations between multiple joint symptoms and radiographic osteoarthritis (rOA) and functional outcomes. Methods Complete cross-sectional data for multi-joint symptoms and radiographs, Health Assessment Questionnaire (HAQ) scores, and gait speed were available for 1307 Johnston County Osteoarthritis Project participants (34% men, 32% African American, mean age 66 years). Factor analysis of symptom scores and radiographic grades for the lumbosacral spine, bilateral hands, knees, and hips provided composite scores. Regression models were used to determine associations between composite scores, HAQ, and gait speed, adjusting for age, body mass index, gender, and race. Results Five rOA factors were identified: 1) IP/CMC factor (carpometacarpal [CMC] and all interphalangeal [IP] joints); 2) MCP factor (metacarpophalangeal joints 2–5); 3) Knee factor (tibiofemoral and patellofemoral joints); 4) Spine factor (L1/2 to L5/S1); and 5) Symptom factor. After adjustment, only the Symptom composite was significantly associated with HAQ and gait speed; a 1-standard deviation increase in Symptom score was associated with 9 times higher odds of having poorer function on the HAQ (odds ratio 9.32, 95% confidence interval [CI] 6.80, 12.77), and a clinically significant decline in gait speed (0.06 m/s, 95%CI −0.07, −0.05). Conclusions A novel Symptom composite score was associated with poorer functional outcomes. PMID:23639066

  12. Impact injury to the pregnant female and fetus in lap belt restraint.

    DOT National Transportation Integrated Search

    1968-12-01

    Although it has been well established that the lap (seat) belt offers considerable protection against injury or death in crash environments, there has long been controversy over the injury potential to the pregnant female. This question is of importa...

  13. Learning Activity Package, Physical Science. LAP Numbers 5, 6, and 7.

    ERIC Educational Resources Information Center

    Williams, G. J.

    These three units of the Learning Activity Packages (LAPs) for individualized instruction in physical science cover the physical and chemical properties of water, dehydration of crystals, solutions, acidity, strong and weak bases, neutral properties of salts, amorphous forms of carbon, hydrocarbons, and petroleum products. Each unit contains a…

  14. Damage prognosis of adhesively-bonded joints in laminated composite structural components of unmanned aerial vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, Charles R; Gobbato, Maurizio; Conte, Joel

    2009-01-01

    The extensive use of lightweight advanced composite materials in unmanned aerial vehicles (UAVs) drastically increases the sensitivity to both fatigue- and impact-induced damage of their critical structural components (e.g., wings and tail stabilizers) during service life. The spar-to-skin adhesive joints are considered one of the most fatigue sensitive subcomponents of a lightweight UAV composite wing with damage progressively evolving from the wing root. This paper presents a comprehensive probabilistic methodology for predicting the remaining service life of adhesively-bonded joints in laminated composite structural components of UAVs. Non-destructive evaluation techniques and Bayesian inference are used to (i) assess the current statemore » of damage of the system and, (ii) update the probability distribution of the damage extent at various locations. A probabilistic model for future loads and a mechanics-based damage model are then used to stochastically propagate damage through the joint. Combined local (e.g., exceedance of a critical damage size) and global (e.g.. flutter instability) failure criteria are finally used to compute the probability of component failure at future times. The applicability and the partial validation of the proposed methodology are then briefly discussed by analyzing the debonding propagation, along a pre-defined adhesive interface, in a simply supported laminated composite beam with solid rectangular cross section, subjected to a concentrated load applied at mid-span. A specially developed Eliler-Bernoulli beam finite element with interlaminar slip along the damageable interface is used in combination with a cohesive zone model to study the fatigue-induced degradation in the adhesive material. The preliminary numerical results presented are promising for the future validation of the methodology.« less

  15. Effect of formation and state of interface on joint strength in friction stir spot welding for advanced high strength steel sheets

    NASA Astrophysics Data System (ADS)

    Taniguchi, Koichi; Matsushita, Muneo; Ikeda, Rinsei; Oi, Kenji

    2014-08-01

    The tensile shear strength and cross tension strength of friction stir spot welded joints were evaluated in the cases of lap joints of 270 N/mm2 grade and 980 N/mm2 grade cold rolled steel sheets with respect to the stir zone area, hardness distribution, and interface condition between the sheets. The results suggested that both the tensile shear strength and cross tension strength were based on the stir zone area and its hardness in both grades of steel. The "hook" shape of the interface also affected the joint strength. However, the joining that occurred across the interfaces had a significant influence on the value of the joint strength in the case of the 270 N/mm2 grade steel.

  16. Effect of processing parameters on the formation of C{sub f}/LAS composites/Ag−Cu−Ti/TC4 brazed joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Duo; Niu, Hongwei

    C{sub f}/LAS composites were successfully jointed to TC4 alloy with Ag−Cu−Ti filler by vacuum brazing. The interfacial microstructure of TC4/C{sub f}/LAS composites joints was characterized by employing scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-diffraction (XRD) and transmission electron microscopy (TEM). The determination of the thin interfacial reaction layer (TiSi{sub 2} + TiC layer) was realized by TEM. The effect of holding time on the interfacial microstructure and shear strength were investigated. With the increasing holding time, the thickness of diffusion layer, Ti{sub 3}Cu{sub 4} layer, and TiSi{sub 2} + TiC layer increased obviously, on the contrary, that ofmore » Ti−Cu intermetallic compound layers decreased gradually. Besides, blocky Ti{sub 3}Cu{sub 4} phase was coarsened when the joint was brazed at 890 °C for 20 min, which deteriorated the mechanical properties of the joint dramatically. The interfacial evolution of TC4/C{sub f}/LAS composites joint and the formation of TiSi{sub 2}, TiC, Ti{sub 3}Cu{sub 4}, TiCu and Ti{sub 2}Cu phases were expounded. The maximum shear strength of 26.4 MPa was obtained when brazed at 890 °C for 10 min. - Highlights: •The thin interface reaction layer was determined to be TiSi{sub 2} + TiC layer by TEM. •Holding time had influence on the interfacial microstructure and joint properties. •Microstructural evolution mechanism and reactions of brazed joints were expounded.« less

  17. The Shear Strength and Fracture Behavior of Sn-Ag- xSb Solder Joints with Au/Ni-P/Cu UBM

    NASA Astrophysics Data System (ADS)

    Lee, Hwa-Teng; Hu, Shuen-Yuan; Hong, Ting-Fu; Chen, Yin-Fa

    2008-06-01

    This study investigates the effects of Sb addition on the shear strength and fracture behavior of Sn-Ag-based solders with Au/Ni-P/Cu underbump metallization (UBM) substrates. Sn-3Ag- xSb ternary alloy solder joints were prepared by adding 0 wt.% to 10 wt.% Sb to a Sn-3.5Ag alloy and joining them with Au/Ni-P/Cu UBM substrates. The solder joints were isothermally stored at 150°C for up to 625 h to study their microstructure and interfacial reaction with the UBM. Single-lap shear tests were conducted to evaluate the mechanical properties, thermal resistance, and failure behavior. The results show that UBM effectively suppressed intermetallic compound (IMC) formation and growth during isothermal storage. The Sb addition helped to refine the Ag3Sn compounds, further improving the shear strength and thermal resistance of the solders. The fracture behavior evolved from solder mode toward the mixed mode and finally to the IMC mode with increasing added Sb and isothermal storage time. However, SnSb compounds were found in the solder with 10 wt.% Sb; they may cause mechanical degradation of the solder after long-term isothermal storage.

  18. Ground based experiments on the growth and characterization of L-Arginine Phosphate (LAP) crystals

    NASA Technical Reports Server (NTRS)

    Rao, S. M.; Cao, C.; Batra, A. K.; Lal, R. B.; Mookherji, T. K.

    1991-01-01

    L-Arginine Phosphate (LAP) is a new nonlinear optical material with higher efficiency for harmonic generation compared to KDP. Crystals of LAP were grown in the laboratory from supersaturated solutions by temperature lowering technique. Investigations revealed the presence of large dislocation densities inside the crystals which are observed to produce refractive index changes causing damage at high laser powers. This is a result of the convection during crystal growth from supersaturated solutions. It is proposed to grow these crystals in a diffusion controlled growth condition under microgravity environment and compare the crystals grown in space with those grown on ground. Physical properties of the solutions needed for modelling of crystal growth are also presented.

  19. Analysis of delamination related fracture processes in composites

    NASA Technical Reports Server (NTRS)

    Armanios, Erian A.

    1992-01-01

    This is a final report that summarizes the results achieved under this grant. The first major accomplishment is the development of the sublaminate modeling approach and shear deformation theory. The sublaminate approach allows the flexibility of considering one ply or groups of plies as a single laminated unit with effective properties. This approach is valid when the characteristic length of the response is small compared to the sublaminate thickness. The sublaminate approach was validated comparing its predictions with a finite element solution. A shear deformation theory represents an optimum compromise between accuracy and computational effort in delamination analysis of laminated composites. This conclusion was reached by applying several theories with increasing level of complexity to the prediction of interlaminar stresses and strain energy release rate in a double cracked-lap-shear configuration.

  20. Microstructural Characterization of Friction Stir Welded Aluminum-Steel Joints

    NASA Astrophysics Data System (ADS)

    Patterson, Erin E.; Hovanski, Yuri; Field, David P.

    2016-06-01

    This work focuses on the microstructural characterization of aluminum to steel friction stir welded joints. Lap weld configuration coupled with scribe technology used for the weld tool have produced joints of adequate quality, despite the significant differences in hardness and melting temperatures of the alloys. Common to friction stir processes, especially those of dissimilar alloys, are microstructural gradients including grain size, crystallographic texture, and precipitation of intermetallic compounds. Because of the significant influence that intermetallic compound formation has on mechanical and ballistic behavior, the characterization of the specific intermetallic phases and the degree to which they are formed in the weld microstructure is critical to predicting weld performance. This study used electron backscatter diffraction, energy dispersive spectroscopy, scanning electron microscopy, and Vickers micro-hardness indentation to explore and characterize the microstructures of lap friction stir welds between an applique 6061-T6 aluminum armor plate alloy and a RHA homogeneous armor plate steel alloy. Macroscopic defects such as micro-cracks were observed in the cross-sectional samples, and binary intermetallic compound layers were found to exist at the aluminum-steel interfaces of the steel particles stirred into the aluminum weld matrix and across the interfaces of the weld joints. Energy dispersive spectroscopy chemical analysis identified the intermetallic layer as monoclinic Al3Fe. Dramatic decreases in grain size in the thermo-mechanically affected zones and weld zones that evidenced grain refinement through plastic deformation and recrystallization. Crystallographic grain orientation and texture were examined using electron backscatter diffraction. Striated regions in the orientations of the aluminum alloy were determined to be the result of the severe deformation induced by the complex weld tool geometry. Many of the textures observed in the weld

  1. Functionally Graded Adhesives for Composite Joints

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott E.; Waas, Anthony M.; Arnold, Steven M.

    2012-01-01

    Adhesives with functionally graded material properties are being considered for use in adhesively bonded joints to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. An enhanced joint finite element, which uses an analytical formulation to obtain exact shape functions, is used to model the joint. Furthermore, proof of concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint.

  2. The role of haptic feedback in laparoscopic training using the LapMentor II.

    PubMed

    Salkini, Mohamad W; Doarn, Charles R; Kiehl, Nicholai; Broderick, Timothy J; Donovan, James F; Gaitonde, Krishnanath

    2010-01-01

    Laparoscopic surgery has become the standard of care for many surgical diseases. Haptic (tactile) feedback (HFB) is considered an important component of laparoscopic surgery. Virtual reality simulation (VRS) is an alternative method to teach surgical skills to surgeons in training. Newer VRS trainers such as the Simbionix Lap Mentor II provide significantly improved tactile feedback. However, VRSs are expensive and adding HFB software adds an estimated cost of $30,000 to the commercial price. The HFB provided by the Lap Mentor II has not been validated by an independent party. We used the Simbionix Lap Mentor II in this study to demonstrate the effect of adding an HFB mechanism in the VRS trainer. The study was approved by the University of Cincinnati Institutional Review Board. Twenty laparoscopically novice medical students were enrolled. Each student was asked to perform three different tasks on the Lap Mentor II and repeat each one five times. The chosen tasks demanded significant amount of traction and counter traction. The first task was to pull leaking tubes enough and clip them. The second task was stretching a jelly plate enough to see its attachments to the floor and cut these attachments. In the third task, the trainee had to separate the gallbladder from its bed on the liver. The students were randomized into two groups to perform the tasks with and without HFB. We used accuracy, speed, and economy of movement as scales to compare the performance between the two groups. The participants also completed a simple questionnaire that highlighted age, sex, and experiences in videogame usage. The two groups were comparable in age, sex, and videogame playing. No differences in the accuracy, the economy, and the speed of hand movement were noticed. In fact, adding HFB to the Lap Mentor II simulator did not contribute to any improvement in the performance of the trainees. Interestingly, we found that videogame expert players tend to have faster and more economic

  3. Functional impacts of exoskeleton-based rehabilitation in chronic stroke: multi-joint versus single-joint robotic training

    PubMed Central

    2013-01-01

    Stroke is a major cause of disability in the world. The activities of upper limb segments are often compromised following a stroke, impairing most daily tasks. Robotic training is now considered amongst the rehabilitation methods applied to promote functional recovery. However, the implementation of robotic devices remains a major challenge for the bioengineering and clinical community. Latest exoskeletons with multiple degrees of freedom (DOF) may become particularly attractive, because of their low apparent inertia, the multiple actuators generating large torques, and the fact that patients can move the arm in the normal wide workspace. A recent study published in JNER by Milot and colleagues underlines that training with a 6-DOF exoskeleton impacts positively on motor function in patients being in stable phase of recovery after a stroke. Also, multi-joint robotic training was not found to be superior to single-joint robotic training. Although it is often considered that rehabilitation should start from simple movements to complex functional movements as the recovery evolves, this study challenges this widespread notion whose scientific basis has remained uncertain. PMID:24354518

  4. Helios, and not FoxP3, is the marker of activated Tregs expressing GARP/LAP.

    PubMed

    Elkord, Eyad; Abd Al Samid, May; Chaudhary, Belal

    2015-08-21

    Regulatory T cells (Tregs) are key players of immune regulation/dysregulation both in physiological and pathophysiological settings. Despite significant advances in understanding Treg function, there is still a pressing need to define reliable and specific markers that can distinguish different Treg subpopulations. Herein we show for the first time that markers of activated Tregs [latency associated peptide (LAP) and glycoprotein A repetitions predominant (GARP, or LRRC32)] are expressed on CD4+FoxP3- T cells expressing Helios (FoxP3-Helios+) in the steady state. Following TCR activation, GARP/LAP are up-regulated on CD4+Helios+ T cells regardless of FoxP3 expression (FoxP3+/-Helios+). We show that CD4+GARP+/-LAP+ Tregs make IL-10 immunosuppressive cytokine but not IFN-γ effector cytokine. Further characterization of FoxP3/Helios subpopulations showed that FoxP3+Helios+ Tregs proliferate in vitro significantly less than FoxP3+Helios- Tregs upon TCR stimulation. Unlike FoxP3+Helios- Tregs, FoxP3+Helios+ Tregs secrete IL-10 but not IFN-γ or IL-2, confirming they are bona fide Tregs with immunosuppressive characteristics. Taken together, Helios, and not FoxP3, is the marker of activated Tregs expressing GARP/LAP, and FoxP3+Helios+ Tregs have more suppressive characteristics, compared with FoxP3+Helios- Tregs. Our work implies that therapeutic modalities for treating autoimmune and inflammatory diseases, allergies and graft rejection should be designed to induce and/or expand FoxP3+Helios+ Tregs, while therapies against cancers or infectious diseases should avoid such expansion/induction.

  5. Helios, and not FoxP3, is the marker of activated Tregs expressing GARP/LAP

    PubMed Central

    Elkord, Eyad; Abd Al Samid, May; Chaudhary, Belal

    2015-01-01

    Regulatory T cells (Tregs) are key players of immune regulation/dysregulation both in physiological and pathophysiological settings. Despite significant advances in understanding Treg function, there is still a pressing need to define reliable and specific markers that can distinguish different Treg subpopulations. Herein we show for the first time that markers of activated Tregs [latency associated peptide (LAP) and glycoprotein A repetitions predominant (GARP, or LRRC32)] are expressed on CD4+FoxP3− T cells expressing Helios (FoxP3−Helios+) in the steady state. Following TCR activation, GARP/LAP are up-regulated on CD4+Helios+ T cells regardless of FoxP3 expression (FoxP3+/−Helios+). We show that CD4+GARP+/−LAP+ Tregs make IL-10 immunosuppressive cytokine but not IFN-γ effector cytokine. Further characterization of FoxP3/Helios subpopulations showed that FoxP3+Helios+ Tregs proliferate in vitro significantly less than FoxP3+Helios− Tregs upon TCR stimulation. Unlike FoxP3+Helios− Tregs, FoxP3+Helios+ Tregs secrete IL-10 but not IFN-γ or IL-2, confirming they are bona fide Tregs with immunosuppressive characteristics. Taken together, Helios, and not FoxP3, is the marker of activated Tregs expressing GARP/LAP, and FoxP3+Helios+ Tregs have more suppressive characteristics, compared with FoxP3+Helios− Tregs. Our work implies that therapeutic modalities for treating autoimmune and inflammatory diseases, allergies and graft rejection should be designed to induce and/or expand FoxP3+Helios+ Tregs, while therapies against cancers or infectious diseases should avoid such expansion/induction. PMID:26343373

  6. Biocompatibility of single-walled carbon nanotube composites for bone regeneration

    PubMed Central

    Gupta, A.; Liberati, T. A.; Verhulst, S. J.; Main, B. J.; Roberts, M. H.; Potty, A. G. R.; Pylawka, T. K.; El-Amin III, S. F.

    2015-01-01

    Objectives The purpose of this study was to evaluate in vivo biocompatibility of novel single-walled carbon nanotubes (SWCNT)/poly(lactic-co-glycolic acid) (PLAGA) composites for applications in bone and tissue regeneration. Methods A total of 60 Sprague-Dawley rats (125 g to 149 g) were implanted subcutaneously with SWCNT/PLAGA composites (10 mg SWCNT and 1gm PLAGA 12 mm diameter two-dimensional disks), and at two, four, eight and 12 weeks post-implantation were compared with control (Sham) and PLAGA (five rats per group/point in time). Rats were observed for signs of morbidity, overt toxicity, weight gain and food consumption, while haematology, urinalysis and histopathology were completed when the animals were killed. Results No mortality and clinical signs were observed. All groups showed consistent weight gain, and the rate of gain for each group was similar. All groups exhibited a similar pattern for food consumption. No difference in urinalysis, haematology, and absolute and relative organ weight was observed. A mild to moderate increase in the summary toxicity (sumtox) score was observed for PLAGA and SWCNT/PLAGA implanted animals, whereas the control animals did not show any response. Both PLAGA and SWCNT/PLAGA showed a significantly higher sumtox score compared with the control group at all time intervals. However, there was no significant difference between PLAGA and SWCNT/PLAGA groups. Conclusions Our results demonstrate that SWCNT/PLAGA composites exhibited in vivo biocompatibility similar to the Food and Drug Administration approved biocompatible polymer, PLAGA, over a period of 12 weeks. These results showed potential of SWCNT/PLAGA composites for bone regeneration as the low percentage of SWCNT did not elicit a localised or general overt toxicity. Following the 12-week exposure, the material was considered to have an acceptable biocompatibility to warrant further long-term and more invasive in vivo studies. Cite this article: Bone Joint Res 2015

  7. Learning Activity Package, Physical Science. LAP Numbers 8, 9, 10, and 11.

    ERIC Educational Resources Information Center

    Williams, G. J.

    These four units of the Learning Activity Packages (LAPs) for individualized instruction in physical science cover nuclear reactions, alpha and beta particles, atomic radiation, medical use of nuclear energy, fission, fusion, simple machines, Newton's laws of motion, electricity, currents, electromagnetism, Oersted's experiment, sound, light,…

  8. Learning Activity Package, Physical Science. LAP Numbers 1, 2, 3, and 4.

    ERIC Educational Resources Information Center

    Williams, G. J.

    These four units of the Learning Activity Packages (LAPs) for individualized instruction in physical science cover measuring techniques, operations of instruments, metric system heat, matter, energy, elements, atomic numbers, isotopes, molecules, mixtures, compounds, physical and chemical properties, liquids, solids, and gases. Each unit contains…

  9. Static Strength of Adhesively-bonded Woven Fabric Kenaf Composite Plates

    NASA Astrophysics Data System (ADS)

    Hilton, Ahmad; Lee, Sim Yee; Supar, Khairi

    2017-06-01

    Natural fibers are potentially used as reinforcing materials and combined with epoxy resin as matrix system to form a superior specific strength (or stiffness) materials known as composite materials. The advantages of implementing natural fibers such as kenaf fibers are renewable, less hazardous during fabrication and handling process; and relatively cheap compared to synthetic fibers. The aim of current work is to conduct a parametric study on static strength of adhesively bonded woven fabric kenaf composite plates. Fabrication of composite panels were conducted using hand lay-up techniques, with variation of stacking sequence, over-lap length, joint types and lay-up types as identified in testing series. Quasi-static testing was carried out using mechanical testing following code of practice. Load-displacement profiles were analyzed to study its structural response prior to ultimate failures. It was found that cross-ply lay-up demonstrates better static strength compared to quasi-isotropic lay-up counterparts due to larger volume of 0° plies exhibited in cross-ply lay-up. Consequently, larger overlap length gives better joining strength, as expected, however this promotes to weight penalty in the joining structure. Most samples showed failures within adhesive region known as cohesive failure modes, however, few sample demonstrated interface failure. Good correlations of parametric study were found and discussed in the respective section.

  10. Fretting Fatigue of Single Crystal/Polycrystalline Nickel Subjected to Blade/Disk Contact Loading

    NASA Astrophysics Data System (ADS)

    Matlik, J. F.; Murthy, H.; Farris, T. N.

    2002-01-01

    Fretting fatigue describes the formation and growth of cracks at the edge-of-contact of nominally clamped components subjected to cyclic loading. Components that are known to be subject to fretting fatigue include riveted lap joints and blade/disk contacts in launch vehicle turbomachinery. Recent efforts have shown that conventional mechanics tools, both fatigue and fracture based, can be used to model fretting fatigue experiments leading to successful life predictions. In particular, experiments involving contact load configurations similar to those that occur in the blade/disk connection of gas turbine engines have been performed extensively. Predictions of fretting fatigue life have been compared favorably to experimental observations [1]. Recent efforts are aimed at performing experiments at higher temperatures as shown in the photograph below along with a sample fracture surface. The talk will describe the status of these experiments as will as model developments relevant to the single crystal material properties.

  11. Fabrication and Testing of Durable Redundant and Fluted-Core Joints for Composite Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Lin, Shih-Yung; Splinter, Scott C.; Tarkenton, Chris; Paddock, David A.; Smeltzer, Stanley S.; Ghose, Sayata; Guzman, Juan C.; Stukus, Donald J.; McCarville, Douglas A.

    2013-01-01

    The development of durable bonded joint technology for assembling composite structures is an essential component of future space technologies. While NASA is working toward providing an entirely new capability for human space exploration beyond low Earth orbit, the objective of this project is to design, fabricate, analyze, and test a NASA patented durable redundant joint (DRJ) and a NASA/Boeing co-designed fluted-core joint (FCJ). The potential applications include a wide range of sandwich structures for NASA's future launch vehicles. Three types of joints were studied -- splice joint (SJ, as baseline), DRJ, and FCJ. Tests included tension, after-impact tension, and compression. Teflon strips were used at the joint area to increase failure strength by shifting stress concentration to a less sensitive area. Test results were compared to those of pristine coupons fabricated utilizing the same methods. Tensile test results indicated that the DRJ design was stiffer, stronger, and more impact resistant than other designs. The drawbacks of the DRJ design were extra mass and complex fabrication processes. The FCJ was lighter than the DRJ but less impact resistant. With barely visible but detectable impact damages, all three joints showed no sign of tensile strength reduction. No compression test was conducted on any impact-damaged sample due to limited scope and resource. Failure modes and damage propagation were also studied to support progressive damage modeling of the SJ and the DRJ.

  12. [Hypothesis on the equilibrium point and variability of amplitude, speed and time of single-joint movement].

    PubMed

    Latash, M; Gottleib, G

    1990-01-01

    Problems of single-joint movement variability are analysed in the framework of the equilibrium-point hypothesis (the lambda-model). Control of the movements is described with three parameters related to movement amplitude speed, and time. Three strategies emerge from this description. Only one of them is likely to lead to a Fitts' type speed-accuracy trade-off. Experiments were performed to test one of the predictions of the model. Subjects performed identical sets of single-joint fast movements with open or closed eyes and some-what different instructions. Movements performed with closed eyes were characterized with higher peak speeds and unchanged variability in seeming violation of the Fitt's law and in a good correspondence to the model.

  13. Design, fabrication and test of graphite/polyimide composite joints and attachments. [spacecraft control surfaces

    NASA Technical Reports Server (NTRS)

    Cushman, J. B.; Mccleskey, S. F.; Ward, S. H.

    1982-01-01

    The design, analysis, and testing performed to develop four types of graphite/polyimide (Gr/PI) bonded and bolted composite joints for lightly loaded control surfaces on advanced space transportation systems that operate at temperatures up to 561 K (550 F) are summarized. Material properties and small specimen tests were conducted to establish design data and to evaluate specific design details. Static discriminator tests were conducted on preliminary designs to verify structural adequacy. Scaled up specimens of the final joint designs, representative of production size requirements, were subjected to a series of static and fatigue tests to evaluate joint strength. Effects of environmental conditioning were determined by testing aged (125 hours at 589 K (600 F)) and thermal cycled (116 K to 589 K (-250 F to 600 F), 125 times) specimens. It is concluded Gr/PI joints can be designed and fabricated to carry the specified loads. Test results also indicate a possible resin loss or degradation of laminates after exposure to 589 K (600 F) for 125 hours.

  14. Effect of Stitching on Debonding in Composite Structural Elements

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Glaessgen, E. H.

    2001-01-01

    Stitched multiaxial warp knit materials have been suggested as viable alternatives to laminated prepreg materials for large aircraft structures such as wing skins. Analyses have been developed to quantify the effectiveness of stitching for reducing strain energy release rates in skin-stiffener debond, lap joint and sandwich debond configurations. Strain energy release rates were computed using the virtual crack closure technique. In all configurations, the stitches were shown to significantly reduce the strain energy release rate.

  15. Impact of mechanical heterogeneity on joint density in a welded ignimbrite

    NASA Astrophysics Data System (ADS)

    Soden, A. M.; Lunn, R. J.; Shipton, Z. K.

    2016-08-01

    Joints are conduits for groundwater, hydrocarbons and hydrothermal fluids. Robust fluid flow models rely on accurate characterisation of joint networks, in particular joint density. It is generally assumed that the predominant factor controlling joint density in layered stratigraphy is the thickness of the mechanical layer where the joints occur. Mechanical heterogeneity within the layer is considered a lesser influence on joint formation. We analysed the frequency and distribution of joints within a single 12-m thick ignimbrite layer to identify the controls on joint geometry and distribution. The observed joint distribution is not related to the thickness of the ignimbrite layer. Rather, joint initiation, propagation and termination are controlled by the shape, spatial distribution and mechanical properties of fiamme, which are present within the ignimbrite. The observations and analysis presented here demonstrate that models of joint distribution, particularly in thicker layers, that do not fully account for mechanical heterogeneity are likely to underestimate joint density, the spatial variability of joint distribution and the complex joint geometries that result. Consequently, we recommend that characterisation of a layer's compositional and material properties improves predictions of subsurface joint density in rock layers that are mechanically heterogeneous.

  16. The Effects of Temperature, Humidity and Aircraft Fluid Exposure on T800H/3900-2 Composites Bonded with AF-555M Adhesive

    NASA Technical Reports Server (NTRS)

    Miner, Gilda A.; Hou, Tan-Hung; Lowther, Sharon E.; Thibeault, Sheila A.; Connell, John W.; Blasini, Sheila Roman

    2010-01-01

    Fiber reinforced resin matrix composites and structural adhesives have found increased usage on commercial and military aircraft in recent years. Due to the lack of service history of these relatively new material systems, their long-term aging performance has not been well established. In this study, single lap shear specimens (SLS) were fabricated by secondary bonding of Scotch-Weld(TradeMark) AF-555M between pre-cured adherends comprised of T800H/3900-2 uni-directional laminates. The adherends were co-cured with wet peel-ply for surface preparation. Each bond-line of the SLS specimen was measured to determine thickness and inspected visually using an optical microscope for voids. A three-year environmental aging plan for the SLS specimens at 82 C (180 F) and 85% relative humidity was initiated. SLS strengths were measured for both controls and aged specimens at room temperature and 82 C. The effect of this exposure on lap shear strength and failure modes to date is reported. In addition, the effects of water, saline water, deicing fluid, JP-5 jet fuel and hydraulic fluid on both the composite material and the adhesive bonds were investigated. The up to date results on the effects of these exposures will be discussed.

  17. Environmental Aging of Scotch-Weld(TradeMark) AF-555M Structural Adhesive in Composite to Composite Bonds

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung; Miner, Gilda A.; Lowther, Sharon E.; Connell, John W.; Baughman, James M.

    2010-01-01

    Fiber reinforced resin matrix composites have found increased usage in recent years. Due to the lack of service history of these relatively new material systems, their long-term aging performance is not well established. In this study, adhesive bonds were prepared by the secondary bonding of Scotch-Weld(TradeMark) AF-555M between pre-cured adherends comprised of T800H/3900-2 uni-directional laminate. The adherends were co-cured with wet peel-ply for surface preparation. Each bond-line of single-lap-shear (SLS) specimen was measured to determine thickness and inspected visually for voids. A three-year environmental aging plan for the SLS specimens at 82 C and 85% relative humidity was initiated. SLS strengths were measured for both controls and aged specimens at room temperature and 82 C. The aging results of strength retention and failure modes to date are reported.

  18. Test results for composite specimens and elements containing joints and cutouts

    NASA Technical Reports Server (NTRS)

    Sumida, P. T.; Madan, R. C.; Hawley, A. V.

    1988-01-01

    A program was conducted to develop the technology for joints and cutouts in a composite fuselage that meets all design requirements of a large transport aircraft for the 1990s. An advanced trijet derivative of the DC-10 was selected as the baseline aircraft. Design and analysis of a 30-foot-long composite fuselage barrel provided a realistic basis for the test effort. The primary composite material was Hexcel F584 resin on 12 K IM6 fiber, in tape and broadgoods form. Fiberglass broadgoods were used in E-glass and S-glass fiber form in the cutout region of some panels. Additionally, injection-molded chopped graphite fiber/PEEK was used for longeron-to-frame shear clips. The test effort included four groups of test specimens, beginning with coupon specimens of mono-layer and cross-piled laminates, progressing through increasingly larger and more complex specimens, and ending with two 4- by 5-foot curved fuselage side panels. One of the side panels incorporated a transverse skin splice, while the second included two cabin window cutouts.

  19. Repair of articular osteochondral defects of the knee joint using a composite lamellar scaffold.

    PubMed

    Lv, Y M; Yu, Q S

    2015-04-01

    The major problem with repair of an articular cartilage injury is the extensive difference in the structure and function of regenerated, compared with normal cartilage. Our work investigates the feasibility of repairing articular osteochondral defects in the canine knee joint using a composite lamellar scaffold of nano-ß-tricalcium phosphate (ß-TCP)/collagen (col) I and II with bone marrow stromal stem cells (BMSCs) and assesses its biological compatibility. The bone-cartilage scaffold was prepared as a laminated composite, using hydroxyapatite nanoparticles (nano-HAP)/collagen I/copolymer of polylactic acid-hydroxyacetic acid as the bony scaffold, and sodium hyaluronate/poly(lactic-co-glycolic acid) as the cartilaginous scaffold. Ten-to 12-month-old hybrid canines were randomly divided into an experimental group and a control group. BMSCs were obtained from the iliac crest of each animal, and only those of the third generation were used in experiments. An articular osteochondral defect was created in the right knee of dogs in both groups. Those in the experimental group were treated by implanting the composites consisting of the lamellar scaffold of ß-TCP/col I/col II/BMSCs. Those in the control group were left untreated. After 12 weeks of implantation, defects in the experimental group were filled with white semi-translucent tissue, protruding slightly over the peripheral cartilage surface. After 24 weeks, the defect space in the experimental group was filled with new cartilage tissues, finely integrated into surrounding normal cartilage. The lamellar scaffold of ß-TCP/col I/col II was gradually degraded and absorbed, while new cartilage tissue formed. In the control group, the defects were not repaired. This method can be used as a suitable scaffold material for the tissue-engineered repair of articular cartilage defects. Cite this article: Bone Joint Res 2015;4:56-64. ©2015 The British Editorial Society of Bone & Joint Surgery.

  20. Mechanical testing and development of the helical field coil joint for the Advanced Toroidal Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, B.E.; Bryan, W.E.; Goranson, P.L.

    1985-01-01

    The helical field (HF) coil set for the Advanced Toroidal Facility (ATF) is an M = 12, l = 2, constant-ratio torsatron winding consisting of 2 coils, each with 14 turns of heavy copper conductor. The coils are divided into 24 identical segments to facilitate fabrication and minimize the assembly schedule. The segments are connected across through-bolted lap joints that must carry up to 124,000 A per turn for 5 s or 62,500 A steady-state. In addition, the joints must carry the high magnetic and thermal loads induced in the conductor and still fit within the basic 140- by 30-mmmore » copper envelope. Extensive testing and development were undertaken to verify and refine the basic joint design. Tests included assembly force and clamping force for various types of misalignment; joint resistance as a function of clamping force; clamp bolt relaxation due to thermal cycling; fatigue testing of full-size, multiturn joint prototypes; and low-cycle fatigue and tensile tests of annealed CDA102 copper. The required performance parameters and actual test results, as well as the final joint configuration, are presented. 2 refs., 9 figs., 4 tabs.« less

  1. Feasibility, safety, and preliminary efficacy of Low Amplitude Seizure Therapy (LAP-ST): A proof of concept clinical trial in man.

    PubMed

    Youssef, Nagy A; Sidhom, Emad

    2017-11-01

    Current pulse amplitude used in clinical ECT may be higher than needed. Reducing pulse amplitude may improve focality of the electric field and thus cognitive adverse effects. Here we examine the feasibility, safety, and whether Low Pulse Amplitude Seizure Therapy (LAP-ST, 0.5-0.6A) minimizes cognitive adverse effects while retaining efficacy. Patients with treatment-resistant primary mood (depressive episodes) or psychotic disorders who were clinically indicated to undergo ECT were offered to be enrolled in an open-label study. The study consisted of a full acute course of LAP-ST under standard anesthesia and muscle relaxation. The primary outcome was feasibility of seizure induction. Clinical outcome measures were: time to reorientation (TRO), Mini Mental State Examination, Montgomery Aberg Depression Scale, and Brief Psychiatric Rating Scale, and Clinical Global Impression Scale. Twenty-two patients consented for enrollment in the study. LAP-ST was feasible, and all patients had seizures in the first session. Participants had a quick orientation with median TRO of 4.5min. Treatment was efficacious for both depressive and psychotic symptoms. Relatively small sample size, non-blinded, and no randomization was performed in this initial proof of concept study. This first human preliminary data of a full course of focal LAP-ST demonstrates that seizure induction is feasible. These results, although preliminary, suggest that the LAP-ST compared to the standard ECT techniques may result in less cognitive side effects, but comparable efficacy. Larger studies are needed to replicate these findings. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. On the Process-Related Rivet Microstructural Evolution, Material Flow and Mechanical Properties of Ti-6Al-4V/GFRP Friction-Riveted Joints.

    PubMed

    Borba, Natascha Z; Afonso, Conrado R M; Blaga, Lucian; Dos Santos, Jorge F; Canto, Leonardo B; Amancio-Filho, Sergio T

    2017-02-15

    In the current work, process-related thermo-mechanical changes in the rivet microstructure, joint local and global mechanical properties, and their correlation with the rivet plastic deformation regime were investigated for Ti-6Al-4V (rivet) and glass-fiber-reinforced polyester (GF-P) friction-riveted joints of a single polymeric base plate. Joints displaying similar quasi-static mechanical performance to conventional bolted joints were selected for detailed characterization. The mechanical performance was assessed on lap shear specimens, whereby the friction-riveted joints were connected with AA2198 gussets. Two levels of energy input were used, resulting in process temperatures varying from 460 ± 130 °C to 758 ± 56 °C and fast cooling rates (178 ± 15 °C/s, 59 ± 15 °C/s). A complex final microstructure was identified in the rivet. Whereas equiaxial α-grains with β-phase precipitated in their grain boundaries were identified in the rivet heat-affected zone, refined α' martensite, Widmanstätten structures and β-fleck domains were present in the plastically deformed rivet volume. The transition from equiaxed to acicular structures resulted in an increase of up to 24% in microhardness in comparison to the base material. A study on the rivet material flow through microtexture of the α-Ti phase and β-fleck orientation revealed a strong effect of shear stress and forging which induced simple shear deformation. By combining advanced microstructural analysis techniques with local mechanical testing and temperature measurement, the nature of the complex rivet plastic deformational regime could be determined.

  3. On the Process-Related Rivet Microstructural Evolution, Material Flow and Mechanical Properties of Ti-6Al-4V/GFRP Friction-Riveted Joints

    PubMed Central

    Borba, Natascha Z.; Afonso, Conrado R. M.; Blaga, Lucian; dos Santos, Jorge F.; Canto, Leonardo B.; Amancio-Filho, Sergio T.

    2017-01-01

    In the current work, process-related thermo-mechanical changes in the rivet microstructure, joint local and global mechanical properties, and their correlation with the rivet plastic deformation regime were investigated for Ti-6Al-4V (rivet) and glass-fiber-reinforced polyester (GF-P) friction-riveted joints of a single polymeric base plate. Joints displaying similar quasi-static mechanical performance to conventional bolted joints were selected for detailed characterization. The mechanical performance was assessed on lap shear specimens, whereby the friction-riveted joints were connected with AA2198 gussets. Two levels of energy input were used, resulting in process temperatures varying from 460 ± 130 °C to 758 ± 56 °C and fast cooling rates (178 ± 15 °C/s, 59 ± 15 °C/s). A complex final microstructure was identified in the rivet. Whereas equiaxial α-grains with β-phase precipitated in their grain boundaries were identified in the rivet heat-affected zone, refined α′ martensite, Widmanstätten structures and β-fleck domains were present in the plastically deformed rivet volume. The transition from equiaxed to acicular structures resulted in an increase of up to 24% in microhardness in comparison to the base material. A study on the rivet material flow through microtexture of the α-Ti phase and β-fleck orientation revealed a strong effect of shear stress and forging which induced simple shear deformation. By combining advanced microstructural analysis techniques with local mechanical testing and temperature measurement, the nature of the complex rivet plastic deformational regime could be determined. PMID:28772545

  4. Composition of single-step media used for human embryo culture.

    PubMed

    Morbeck, Dean E; Baumann, Nikola A; Oglesbee, Devin

    2017-04-01

    To determine compositions of commercial single-step culture media and test with a murine model whether differences in composition are biologically relevant. Experimental laboratory study. University-based laboratory. Inbred female mice were superovulated and mated with outbred male mice. Amino acid, organic acid, and ions content were determined for single-step culture media: CSC, Global, G-TL, and 1-Step. To determine whether differences in composition of these media are biologically relevant, mouse one-cell embryos were cultured for 96 hours in each culture media at 5% and 20% oxygen in a time-lapse incubator. Compositions of four culture media were analyzed for concentrations of 30 amino acids, organic acids, and ions. Blastocysts at 96 hours of culture and cell cycle timings were calculated, and experiments were repeated in triplicate. Of the more than 30 analytes, concentrations of glucose, lactate, pyruvate, amino acids, phosphate, calcium, and magnesium varied in concentrations. Mouse embryos were differentially affected by oxygen in G-TL and 1-Step. Four single-step culture media have compositions that vary notably in pyruvate, lactate, and amino acids. Blastocyst development was affected by culture media and its interaction with oxygen concentration. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  5. Torque Limit for Bolted Joint for Composites. Part A; TTTC Properties of Laminated Composites

    NASA Technical Reports Server (NTRS)

    Zhao, Yi

    2003-01-01

    The existing design code for torque limit of bolted joints for composites at Marshall Space Flight Center is MSFC-STD-486B, which was originally developed in 1960s for metallic materials. The theoretical basis for this code was a simplified mechanics analysis, which takes into account only the bolt, nut and washers, but not the structural members to be connected. The assumption was that metallic materials would not fail due to the bearing stress at the contact area between washer and the mechanical member. This is true for metallic materials; but for composite materials the results could be completely different. Unlike most metallic materials, laminated composite materials have superior mechanical properties (such as modulus and strength) in the in-plane direction, but not in the out-of-plane, or through-the-thickness (TTT) direction. During the torquing, TTT properties (particularly compressive modulus and compressive strength) play a dominant role in composite failure. Because of this concern, structural design engineers at Marshall are currently using a compromised empirical approach: using 50% of the torque value for composite members. Companies like Boeing is using a similar approach. An initial study was conducted last summer on this topic to develop theoretical model(s) that takes into consideration of composite members. Two simplified models were developed based on stress failure criterion and strain failure criterion, respective. However, these models could not be used to predict the torque limit because of the unavailability of material data, specifically, through-the-thickness compression (TTTC) modulus and strength. Therefore, the task for this summer is to experimentally determine the TTTC properties. Due to the time limitation, only one material has been tested: IM7/8552 with [0 degrees,plus or minus 45 degrees, 90 degree ] configuration. This report focuses the test results and their significance, while the experimentation will be described in a

  6. In-service moisture content of hardboard lap siding in southern Florida

    Treesearch

    C. Carll; A. Tenwolde; V. Malinauskas; M. Knaebe; P. G. Sotos

    1999-01-01

    To evaluate the effect of backpriming on in-service performance,hardboard lap siding from one manufacturing plant was exposed on two test buildings in southern Florida for 29 months. The two buildings were identical, except that one had 0.3 m (12-inch) roof overhangs without gutters and the other had gutters but no roof overhangs. Siding installation was the same on...

  7. Design Considerations of Polishing Lap for Computer-Controlled Cylindrical Polishing Process

    NASA Technical Reports Server (NTRS)

    Khan, Gufran S.; Gubarev, Mikhail; Arnold, William; Ramsey, Brian D.

    2009-01-01

    This paper establishes a relationship between the polishing process parameters and the generation of mid spatial-frequency error. The consideration of the polishing lap design to optimize the process in order to keep residual errors to a minimum and optimization of the process (speeds, stroke, etc.) and to keep the residual mid spatial-frequency error to a minimum, is also presented.

  8. Effects of Neoprene Wrist/Hand Splints on Handwriting for Students with Joint Hypermobility Syndrome: A Single System Design Study

    ERIC Educational Resources Information Center

    Frohlich, Lauren; Wesley, Alison; Wallen, Margaret; Bundy, Anita

    2012-01-01

    Purpose: Pain associated with hypermobility of wrist and hand joints can contribute to decreased handwriting output. This study examined the effectiveness of a neoprene wrist/hand splint in reducing pain and increasing handwriting speed and endurance for students with joint hypermobility syndrome. Methods: Multiple baseline, single system design…

  9. The validation of a human force model to predict dynamic forces resulting from multi-joint motions

    NASA Technical Reports Server (NTRS)

    Pandya, Abhilash K.; Maida, James C.; Aldridge, Ann M.; Hasson, Scott M.; Woolford, Barbara J.

    1992-01-01

    The development and validation is examined of a dynamic strength model for humans. This model is based on empirical data. The shoulder, elbow, and wrist joints were characterized in terms of maximum isolated torque, or position and velocity, in all rotational planes. This data was reduced by a least squares regression technique into a table of single variable second degree polynomial equations determining torque as a function of position and velocity. The isolated joint torque equations were then used to compute forces resulting from a composite motion, in this case, a ratchet wrench push and pull operation. A comparison of the predicted results of the model with the actual measured values for the composite motion indicates that forces derived from a composite motion of joints (ratcheting) can be predicted from isolated joint measures. Calculated T values comparing model versus measured values for 14 subjects were well within the statistically acceptable limits and regression analysis revealed coefficient of variation between actual and measured to be within 0.72 and 0.80.

  10. Prediction of fracture toughness and durability of adhesively bonded composite joints with undesirable bonding conditions

    NASA Astrophysics Data System (ADS)

    Musaramthota, Vishal

    Advanced composite materials have enabled the conventional aircraft structures to reduce weight, improve fuel efficiency and offer superior mechanical properties. In the past, materials such as aluminum, steel or titanium have been used to manufacture aircraft structures for support of heavy loads. Within the last decade or so, demand for advanced composite materials have been emerging that offer significant advantages over the traditional metallic materials. Of particular interest in the recent years, there has been an upsurge in scientific significance in the usage of adhesively bonded composite joints (ABCJ's). ABCJ's negate the introduction of stress risers that are associated with riveting or other classical techniques. In today's aircraft transportation market, there is a push to increase structural efficiency by promoting adhesive bonding to primary joining of aircraft structures. This research is focused on the issues associated with the durability and related failures in bonded composite joints that continue to be a critical hindrance to the universal acceptance of ABCJ's. Of particular interest are the short term strength, contamination and long term durability of ABCJ's. One of the factors that influence bond performance is contamination and in this study the influence of contamination on composite-adhesive bond quality was investigated through the development of a repeatable and scalable surface contamination procedure. Results showed an increase in the contaminant coverage area decreases the overall bond strength significantly. A direct correlation between the contaminant coverage area and the fracture toughness of the bonded joint was established. Another factor that influences bond performance during an aircraft's service life is its long term strength upon exposure to harsh environmental conditions or when subjected to severe mechanical loading. A test procedure was successfully developed in order to evaluate durability of ABCJ's comprising severe

  11. Cohesive Laws and Progressive Damage Analysis of Composite Bonded Joints, a Combined Numerical/Experimental Approach

    NASA Technical Reports Server (NTRS)

    Girolamo, Donato; Davila, Carlos G.; Leone, Frank A.; Lin, Shih-Yung

    2015-01-01

    The results of an experimental/numerical campaign aimed to develop progressive damage analysis (PDA) tools for predicting the strength of a composite bonded joint under tensile loads are presented. The PDA is based on continuum damage mechanics (CDM) to account for intralaminar damage, and cohesive laws to account for interlaminar and adhesive damage. The adhesive response is characterized using standard fracture specimens and digital image correlation (DIC). The displacement fields measured by DIC are used to calculate the J-integrals, from which the associated cohesive laws of the structural adhesive can be derived. A finite element model of a sandwich conventional splice joint (CSJ) under tensile loads was developed. The simulations, in agreement with experimental tests, indicate that the model is capable of predicting the interactions of damage modes that lead to the failure of the joint.

  12. High-power Laser Welding of Thick Steel-aluminum Dissimilar Joints

    NASA Astrophysics Data System (ADS)

    Lahdo, Rabi; Springer, André; Pfeifer, Ronny; Kaierle, Stefan; Overmeyer, Ludger

    According to the Intergovernmental Panel on Climate Change (IPCC), a worldwide reduction of CO2-emissions is indispensable to avoid global warming. Besides the automotive sector, lightweight construction is also of high interest for the maritime industry in order to minimize CO2-emissions. Using aluminum, the weight of ships can be reduced, ensuring lower fuel consumption. Therefore, hybrid joints of steel and aluminum are of great interest to the maritime industry. In order to provide an efficient lap joining process, high-power laser welding of thick steel plates (S355, t = 5 mm) and aluminum plates (EN AW-6082, t = 8 mm) is investigated. As the weld seam quality greatly depends on the amount of intermetallic phases within the joint, optimized process parameters and control are crucial. Using high-power laser welding, a tensile strength of 10 kN was achieved. Based on metallographic analysis, hardness tests, and tensile tests the potential of this joining method is presented.

  13. Delamination failure of multilaminated adhesively bonded joints at low temperatures

    NASA Astrophysics Data System (ADS)

    Lee, Chi-Seung; Chun, Min-Sung; Kim, Myung-Hyun; Lee, Jae-Myung

    2011-08-01

    A series of experimental investigations of multilaminated joints adhesively bonded by epoxy/polyurethane (PU) glue were conducted in order to examine the delamination failure characteristics under in-plane shear loading at low temperatures. In order to observe these phenomena, a series of lap-shear tests were carried out at various low temperatures (20 °C, -110 °C and -163 °C) and various adhesion areas (15 mm × 50 mm, 30 mm × 50 mm, 50 mm × 50 mm, 75 mm × 50 mm and 100 mm × 50 mm). The test results were used to investigate the delamination and material characteristics, as well as the material properties, e.g., ultimate shear stress and shear elongation. Furthermore, the dependencies of the characteristics of multilaminated adhesively bonded joints (MABJs) on temperature and adhesion area was analyzed using the stress-strain relationship, and closed form formulas that are functions of the dependent parameters are proposed.

  14. Laparoscopic ovariectomy in dogs: comparison between laparoendoscopic single-site and three-portal access

    PubMed Central

    Díaz-Güemes Martin-Portugués, Idoia; Fresno Bermejo, Laura; Sánchez-Margallo, Francisco Miguel

    2015-01-01

    This study was conducted to evaluate the feasibility and therapeutic safety of laparoendoscopic single-site ovariectomy (LESS-OVE) and 3-portal laparoscopic ovariectomy (Lap-OVE) in dogs. Ten female mixed breed dogs were included in the study. Dogs were divided into group 1 (LESS-OVE; n = 5) and group 2 (Lap-OVE; n = 5). All procedures were performed by laparoscopic-skilled surgeons, and the anesthetic protocol was the same for all patients. In both groups, the ovarian vascular pedicle and ligaments were transected using a bipolar vessel sealer/divider device. The mean total surgical time was slightly longer in LESS-OVE (36.6 ± 3.5 min) than Lap-OVE (32.0 ± 3.0 min); however, the differences were not significant. Perioperative complications were not reported in any group. Both laparoscopic techniques were shown to be equally feasible and safe for patients. However, surgeons found LESS-OVE to require more skill than Lap-OVE. Therefore, additional studies should be conducted to evaluate this novel approach in clinical veterinary practice, and a proper laparoscopic training program for veterinary surgeons should be developed. PMID:26119164

  15. Investigation of defect rate of lap laser welding of stainless steel railway vehicles car body

    NASA Astrophysics Data System (ADS)

    Wang, Hongxiao

    2015-02-01

    In order to resolve the disadvantages such as poor appearance quality, poor tightness, low efficiency of resistance spot welding of stainless steel rail vehicles, partial penetration lap laser welding process was investigated widely. But due to the limitation of processing technology, there will be local incomplete fusion in the lap laser welding seam. Defect rate is the ratio of the local incomplete fusion length to the weld seam length. The tensile shear strength under different defect rate and its effect on the car body static strength are not clear. It is necessary to find the biggest defect rate by numerical analysis of effects of different defect rates on the laser welding stainless steel rail vehicle body structure strength ,and tests of laser welding shear tensile strength.

  16. Tensile and Fatigue Properties of Single and Multiple Dissimilar Welded Joints of DP980 and HSLA

    NASA Astrophysics Data System (ADS)

    Cui, Q. L.; Parkes, D.; Westerbaan, D.; Nayak, S. S.; Zhou, Y.; Saha, D. C.; Liu, D.; Goodwin, F.; Bhole, S.; Chen, D. L.

    2017-02-01

    The present study focused on single and multiple dissimilar joints between DP980 and high-strength low-alloy (HSLA) galvanized steels. The tensile properties of the dissimilar joint between the strong DP980 and the relatively soft HSLA reflected only the properties of HSLA with plastic deformation, and final fracture took place entirely in HSLA. The fatigue properties of the dissimilar joints were more intriguing, with the strong DP980 outperforming at high stress amplitude and the ductile HSLA outperforming at low stress amplitude. For different load amplitudes, fatigue failure occurred in different materials and at different locations. The fatigue strength of DP980 was more negatively impaired by weld defects than that of HSLA.

  17. Single strip lesions radiofrequency denervation for treatment of sacroiliac joint pain: two years' results.

    PubMed

    Bellini, Martina; Barbieri, Massimo

    2016-01-01

    Sacroiliac joint pain can be managed by intra-articular injections or radiofrequency of its innervation. Single strip lesions radiofrequency denervation is a new system. The objective of this study was to present one of the first utilizations of this innovative technique. 60 patients who met the diagnostic criteria for sacroiliac joint syndrome were enrolled in the study. In total, 102 single strip lesions radiofrequency denervations were performed. Pain intensity was measured with the Oswestry low back pain disability questionnaire and the Oswestry Disability Index whose scores were assessed at 1, 3, 6 and 12 months after the procedure. 91.8 % of the 102 radiofrequency treatments resulted in a reduction of more than 50% pain intensity relief at 1 month, 81.6% at 3 months and 59.16% at 6 months. In 35.7% of cases, the relief was continuative up to 1 year. No relief was observed in 12.24% of cases. The ODI scores improved significantly 1 month after the procedure, compared with the baseline scores. The ODI scores after 6 months improved very clearly compared with the baseline scores and with the 3-month scores. Single strip lesions radiofrequency denervation using the Simplicity III probe is a potential modality for intermediate term relief for patients with sacroiliac pain.

  18. Effect of ankle braces on lower extremity joint energetics in single-leg landings.

    PubMed

    Gardner, Jacob K; McCaw, Steven T; Laudner, Kevin G; Smith, Peter J; Stafford, Lindsay N

    2012-06-01

    Ankle sprains are one of the most common injuries in competitive and recreational athletics. Studies have shown that the use of prophylactic ankle braces effectively reduces the frequency of ankle sprains in athletes. However, although it is generally accepted that the ankle braces are effective at reducing frontal plane motion, some researchers report that the design of the brace may also reduce ankle sagittal plane motion. The purpose of this study was to quantify lower extremity joint contributions to energy absorption during single-legged drop landings in three ankle brace conditions (no brace, boot brace, and hinged brace). Eleven physically active females experienced in landing and free of lower extremity injury (age = 22.3 ± 1.7 yr, height = 1.66 ± 0.04 m, mass = 58.43 ± 5.83 kg) performed 10 single-leg drop landings in three conditions (one unbraced, two braced) from a 0.33-m height. Measurements taken were hip, knee, and ankle joint impulse; hip, knee, ankle, and total work; and hip, knee, and ankle joint relative work. Total energy absorption remained consistent across the braced conditions (P = 0.057). Wearing the boot brace reduced relative ankle work (P = 0.04, Cohen d = 0.43) but did not change relative knee (P = 0.08, Cohen d = 0.32) or hip (P = 0.14, Cohen d = 0.20) work compared with the no-brace condition. In an ankle-braced condition, ankle, knee, and hip energetics may be altered depending on the design of the brace.

  19. An influence of a Glass Braze Composition on the Properties of Li-Ti Ferrite Joints

    NASA Astrophysics Data System (ADS)

    Lin, Panpan; Lin, Tiesong; He, Peng; Sekulic, Dusan P.; Zhao, Mengyuan; Wang, Shulei

    2017-04-01

    The influence of the chemical composition of Bi2O3-B2O3-SiO2-ZnO glass brazes on (i) the microstructure, (ii) the mechanical and (iii) the dielectric properties of Li-Ti ferrite joints was systematically investigated. The Bi5(Ti3Fe)O15 whisker and a white block phase consisting of Bi12SiO2 and Bi24B2O39 were observed in the joints of Li-Ti ferrite/Bi25-Ba and Li-Ti ferrite/glass brazes, respectively, containing a higher content of Bi2O3. No crystalline phase was detected in the Li-Ti ferrite/Bi25 and Li-Ti ferrite/Bi20 joints. The joint strength reached the maximum of 48 MPa in the Li-Ti ferrite/Bi25-Ba couples. It is assumed that this is mainly due to the strengthening effect of Bi5(Ti3Fe)O15 whiskers. The bonding temperature (700°C) had little effect on the dielectric properties of Li-Ti ferrite. Moreover, compared to the Bi25-Ba glass brazes, the Bi25 and Bi20 glass brazes had a less pronounced influence on the dielectric properties of joints. Different glass brazes can be tailored to different requirements depending on specific application and joint property requirements.

  20. (40)Ar/(39)Ar Age of Hornblende-Bearing R Chondrite LAP 04840

    NASA Technical Reports Server (NTRS)

    Righter, K.; Cosca, M.

    2015-01-01

    Chondrites have a complex chronology due to several variables affecting and operating on chondritic parent bodies such as radiogenic heating, pressure and temperature variation with depth, aqueous alteration, and shock or impact heating. Unbrecciated chondrites can record ages from 4.56 to 4.4 Ga that represent cooling in small parent bodies. Some brecciated chondrites exhibit younger ages (much less than 4 to 4.4 Ga) that may reflect the age of brecciation, disturbance, or shock and impact events (much less than 4 Ga). A unique R chondrite was recently found in the LaPaz Icefield of Antarctica - LAP 04840. This chondrite contains approximately 15% hornblende and trace amounts of biotite, making it the first of its kind. Studies have revealed an equigranular texture, mineral equilibria yielding equilibration near 650-700 C and 250-500 bars, hornblende that is dominantly OH-bearing (very little Cl or F), and high D/H ratios. To help gain a better understanding of the origin of this unique sample, we have measured the (40)Ar/(39)Ar age (LAP 04840 split 39).

  1. Composite Testing

    DTIC Science & Technology

    2007-01-01

    characterising the behaviour and ultimate load capacity of adhesively bonded joints for both composite-to-composite and composite-to-metal hybrid systems...novel hybrid joint details one of which involved perforations in the steel. The second detail employed bonding and bolting. The detail performed well...will be fabricated by four teams (3TEX, Space Micro, Tech Partnership, and Beltran) as part of the STTR Hybrid Joints Test Articles Program. Each

  2. Influence of friction stir welding parameters on titanium-aluminum heterogeneous lap joining configuration

    NASA Astrophysics Data System (ADS)

    Picot, Florent; Gueydan, Antoine; Hug, Éric

    2017-10-01

    Lap joining configuration for Friction Stir Welding process is a methodology mostly dedicated to heterogeneous bonding. This welding technology was applied to join pure titanium with pure aluminum by varying the rotation speed and the movement speed of the tool. Regardless of the process parameters, it was found that the maximum strength of the junction remains almost constant. Microstructural observations by means of Scanning Electron Microscopy and Energy Dispersive Spectrometry analysis enable to describe the interfacial join and reveal asymmetric Cold Lap Defects on the sides of the junction. Chemical analysis shows the presence of one exclusive intermetallic compound through the interface identified as TiAl3. This compound is responsible of the crack spreading of the junction during the mechanical loading. The original version of this article supplied to AIP Publishing contained an accidental inversion of the authors, names. An updated version of this article, with the authors names formatted correctly was published on 20 October 2017.

  3. A new and specific non-NMDA receptor antagonist, FG 9065, blocks L-AP4-evoked depolarization in rat cerebral cortex.

    PubMed

    Sheardown, M J

    1988-04-13

    L(+)-AP4 (2-amino-4-phosphonobutyrate) depolarized slices of rat cerebral cortex, when applied following a 2 min priming application of quisqualate. This response diminishes with time and is not seen after NMDA application. A new selective non-N-methyl-D-aspartate (NMDA) antagonist, 6-cyano-7-nitro-2,3-dihydroxyquinoxaline (FG 9065), inhibits the L(+)-AP4 depolarization. It is argued that the response is mediated indirectly by postsynaptic quisqualate receptors.

  4. Positive correlation between motion analysis data on the LapMentor virtual reality laparoscopic surgical simulator and the results from videotape assessment of real laparoscopic surgeries.

    PubMed

    Matsuda, Tadashi; McDougall, Elspeth M; Ono, Yoshinari; Hattori, Ryohei; Baba, Shiro; Iwamura, Masatsugu; Terachi, Toshiro; Naito, Seiji; Clayman, Ralph V

    2012-11-01

    We studied the construct validity of the LapMentor, a virtual reality laparoscopic surgical simulator, and the correlation between the data collected on the LapMentor and the results of video assessment of real laparoscopic surgeries. Ninety-two urologists were tested on basic skill tasks No. 3 (SK3) to No. 8 (SK8) on the LapMentor. They were divided into three groups: Group A (n=25) had no experience with laparoscopic surgeries as a chief surgeon; group B (n=33) had <35 experiences; and group C (n=34) had ≥35 experiences. Group scores on the accuracy, efficacy, and time of the tasks were compared. Forty physicians with ≥20 experiences supplied unedited videotapes showing a laparoscopic nephrectomy or an adrenalectomy in its entirety, and the videos were assessed in a blinded fashion by expert referees. Correlations between the videotape score (VS) and the performances on the LapMentor were analyzed. Group C showed significantly better outcomes than group A in the accuracy (SK5) (P=0.013), efficacy (SK8) (P=0.014), or speed (SKs 3 and 8) (P=0.009 and P=0.002, respectively) of the performances of LapMentor. Group B showed significantly better outcomes than group A in the speed and efficacy of the performances in SK8 (P=0.011 and P=0.029, respectively). Analyses of motion analysis data of LapMentor demonstrated that smooth and ideal movement of instruments is more important than speed of the movement of instruments to achieve accurate performances in each task. Multiple linear regression analysis indicated that the average score of the accuracy in SK4, 5, and 8 had significant positive correlation with VS (P=0.01). This study demonstrated the construct and predictive validity of the LapMentor basic skill tasks, supporting their possible usefulness for the preclinical evaluation of laparoscopic skills.

  5. Effect of composition on the tensile properties and fracture toughness of A7N01S-T5 aluminum alloys welded joints

    NASA Astrophysics Data System (ADS)

    Liu, Yali; Gou, Guoqing; Chen, Jia; Chen, Hui; Wang, Wanjng; Li, Xiaodong; Che, Xiaoli; Wang, Yirong

    2017-07-01

    In this paper, welded joints of four types of A7N01S-T5 aluminum alloy with different chemical compositions were investigated. The welding process was under 70% environmental humidity conditions at 10∘C with single-pulse GMAW welding technology. The strength and fracture toughness of the four types of samples were tested, and the microstructures were investigated by micro-X-ray fluorescence (SR-LXRF) technology and backscattered electron diffraction (EBSD) technology. The results showed that the #2 alloy that is composed of Zn: 4.59 wt.%, Mg: 1.56 wt.% Mn: 0.22 wt.%, Cr: 0.14 wt.%, Zr: 0.01 wt.% and Ti: 0.027 wt.% had the best combination of tensile strength and elongation, with the values of 302.35 MPa and 3.74%, respectively. The better result for the combination of the strength and elongation was mainly determined by the volume fraction and size. The fine grain size and compositions played important roles to obtain high fracture toughness.

  6. Lipid Accumulation Product (LAP) and Visceral Adiposity Index (VAI) as Markers of Insulin Resistance and Metabolic Associated Disturbances in Young Argentine Women with Polycystic Ovary Syndrome.

    PubMed

    Abruzzese, Giselle A; Cerrrone, Gloria E; Gamez, Juan M; Graffigna, Mabel N; Belli, Susana; Lioy, Gustavo; Mormandi, Eduardo; Otero, Patricia; Levalle, Oscar A; Motta, Alicia B

    2017-01-01

    Polycystic ovary syndrome (PCOS) is an endocrine disorder. PCOS women are at high risk of developing insulin resistance (IR) and cardiovascular disorders since young age. We aimed to study the reliability of lipid accumulation product (LAP) and visceral adiposity index (VAI) as markers of metabolic disturbances (MD) associated with IR in young reproductive aged PCOS patients. We also evaluated the association between LAP and VAI and the presence of hyperandrogenism. In a cross-sectional study, 110 PCOS patients and 88 control women (18-35 years old) were recruited. PCOS patients were divided into 2 groups, as hyperandrogenic and non-hyperandrogenic considering the signs of hyperandrogenism (clinical or biochemical). Anthropometric measurements were taken and blood samples collected. Metabolic and anthropometric characteristics and their association with IR and associated MD were evaluated and LAP and VAI were calculated. LAP and VAI were compared with TC/HDL-c and TG/HDL-c to define the best markers of MD in this population. Independently of the phenotype, young PCOS patients showed high IR and dyslipidemia. Both LAP and VAI showed to be more effective markers to assess MD and IR in these young women than TG/HDL-c or TC/HDL-c [cut-off values: LAP: 18.24 (sensitivity: 81.43% specificity: 73.49%), positive predictive value (PPV): 75.0%, negative predictive value (NPV): 77.27%, VAI: 2.19 (sensitivity: 81.16% specificity: 72.15% PPV: 74.65% NPV: 72.22%)]. LAP and VAI are representative markers to assess MD associated with IR in young PCOS patients. All PCOS patients, independently of their androgenic condition, showed high metabolic risk. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Influence of micro-oxidation on joints of C/C composites and GH3044 for large-size aerospace parts

    NASA Astrophysics Data System (ADS)

    Shi, Xiaohong; Jin, Xiuxiu; Yan, Ningning; Yang, Li

    2017-11-01

    To improve the bonding strength of carbon/carbon (C/C) composites and GH3044 nickel-based superalloy, the bonding interlayer with Ti/Ni/Cu/Ni multiple foils were prepared by a two-step technique involving micro-oxidation and partial transient liquid phase (PTLP) process. Interface characteristics and mechanical behavior of joints were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), laser scanning confocal microscope (LSCM) and energy X-ray dispersive spectrometer (EDS). Results show that a porous layer on C/C composites is formed by micro-oxidation for more than 2 min at 1073 K in air, which provides a diffusion path for liquid phase to infiltrate into C/C substrate and generate a wedge interlocking interface. After micro-oxidation for 4 min, the shear strength of joints reaches 32.09 ± 1.98 MPa what is 36.73% higher than that of joints without micro-oxidation (23.47 ± 1.15 MPa). The increase of shear strength remarkably depends on physical interlocking and chemical bonding at porous interface.

  8. Growth habit and surface morphology of L-arginine phosphate monohydrate single crystals

    NASA Astrophysics Data System (ADS)

    Sangwal, K.; Veintemillas-Verdaguer, S.; Torrent-Burgués, J.

    1995-10-01

    The results of a study of the growth habit and the surface topography of L-arginine phosphate monohydrate (LAP) single crystals as a function of supersaturation are described and discussed. Apart from a change in the growth habit with supersaturation, it was observed that most of the as-grown faces of LAP exhibit isolated growth hillocks and macrohillocks and parallel bunched layers and that the formation of bunched layers is pronounced on faces showing macrohillocks. Observations of bunching of growth layers emitted by macrohillocks on the {100} faces revealed that, for the onset of bunching close to a macrospiral, there is a characteristic threshold distance whose value depends on the interstep distance and supersaturation, but is independent of step height. The theoretical habit of LAP deduced from PBC analysis showed that all faces exhibiting growth hillocks and macrohillocks are F faces. Analysis of the results on bunch formation revealed that growth of LAP takes place by the direct integration of growth entities at the growth steps, that the bunching is facilitated by an increasing value of the activation energy for their integration, and that the observed dependencies of threshold distance on interstep distance, supersaturation and step height are qualitatively in agreement with van der Eerden and Müller-Krumbhaar's theory of bunch formation.

  9. 75 FR 81427 - Airworthiness Directives; The Boeing Company Model 747-200C, -200F, -400, -400D, and -400F Series...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    .... This AD results from a structural review of affected skin lap joints for widespread fatigue damage. We are issuing this AD to prevent fatigue cracking in certain lap joints, which could result in rapid... operation beyond 15,000 total flight cycles after doing the proposed modification. Boeing stated that...

  10. 75 FR 61977 - Airworthiness Directives; The Boeing Company Model 747-100, 747-200B, and 747-200F Series Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... fatigue-related skin cracks and corrosion of the skin panel lap joints in the fuselage upper lobe, and... of corrosion, and related investigative and corrective actions. This AD reduces the maximum interval... and correct fatigue cracking and corrosion in the fuselage upper lobe skin lap joints, which could...

  11. Lap time simulation and design optimisation of a brushed DC electric motorcycle for the Isle of Man TT Zero Challenge

    NASA Astrophysics Data System (ADS)

    Dal Bianco, N.; Lot, R.; Matthys, K.

    2018-01-01

    This works regards the design of an electric motorcycle for the annual Isle of Man TT Zero Challenge. Optimal control theory was used to perform lap time simulation and design optimisation. A bespoked model was developed, featuring 3D road topology, vehicle dynamics and electric power train, composed of a lithium battery pack, brushed DC motors and motor controller. The model runs simulations over the entire ? or ? of the Snaefell Mountain Course. The work is validated using experimental data from the BX chassis of the Brunel Racing team, which ran during the 2009 to 2015 TT Zero races. Optimal control is used to improve drive train and power train configurations. Findings demonstrate computational efficiency, good lap time prediction and design optimisation potential, achieving a 2 minutes reduction of the reference lap time through changes in final drive gear ratio, battery pack size and motor configuration.

  12. Microstructure of arc brazed and diffusion bonded joints of stainless steel and SiC reinforced aluminum matrix composite

    NASA Astrophysics Data System (ADS)

    Elßner, M.; Weis, S.; Grund, T.; Wagner, G.; Habisch, S.; Mayr, P.

    2016-03-01

    Joint interfaces of aluminum and stainless steel often exhibit intermetallics of Al-Fe, which limit the joint strength. In order to reduce these brittle phases in joints of aluminum matrix composites (AMC) and stainless steel, diffusion bonding and arc brazing are used. Due to the absence of a liquid phase, diffusion welding can reduce the formation of these critical in- termetallics. For this joining technique, the influence of surface treatments and adjusted time- temperature-surface-pressure-regimes is investigated. On the other hand, arc brazing offers the advantage to combine a localized heat input with the application of a low melting filler and was conducted using the system Al-Ag-Cu. Results of the joining tests using both approaches are described and discussed with regard to the microstructure of the joints and the interfaces.

  13. Performance of lap splices in large-scale column specimens affected by ASR and/or DEF.

    DOT National Transportation Integrated Search

    2012-06-01

    This research program conducted a large experimental program, which consisted of the design, construction, : curing, deterioration, and structural load testing of 16 large-scale column specimens with a critical lap splice : region, and then compared ...

  14. Composite engines for application to a single-stage-to-orbit vehicle

    NASA Technical Reports Server (NTRS)

    Bendot, J. G.; Brown, P. N.; Piercy, T. G.

    1975-01-01

    Seven composite engines were designed for application to a reusable single-stage-to-orbit vehicle. The engine designs were variations of the supercharged ejector ramjet engine. The resulting performance, weight, and drawings of each engine form a data base for establishing a potential of this class of composite engine to various missions, including the single-stage-to-orbit application. The impact of advanced technology in the design of the critical fan turbine was established.

  15. Composite skid landing gear design investigation

    NASA Astrophysics Data System (ADS)

    Shrotri, Kshitij

    A Composite Skid Landing Gear Design investigation has been conducted. Limit Drop Test as per Federal Aviation Regulations (FAR) Part 27.725 and Crash test as per MIL STD 1290A (AV) were simulated using ABAQUS to evaluate performance of multiple composite fiber-matrix systems. Load factor developed during multiple landing scenarios and energy dissipated during crash were computed. Strength and stiffness based constraints were imposed. Tsai-Wu and LaRC04 physics based failure criteria were used for limit loads. Hashin's damage initiation criteria with Davila-Camanho's energy based damage evolution damage evolution law were used for crash. Initial results indicate that all single-composite skid landing gear may no be feasible due to strength concerns in the cross member bends. Hybridization of multiple composites with elasto-plastic aluminum 7075 showed proof of strength under limit loads. Laminate tailoring for load factor optimization under limit loads was done by parameterization of a single variable fiber orientation angle for multiple laminate families. Tsai-Wu failure criterion was used to impose strength contraints. A quasi-isotropic N = 4 (pi/4) 48 ply IM7/8552 laminate was shown to be the optimal solution with a load failure will be initiated as matrix cracking under compression and fiber kinking under in-plane shear and longitudinal compression. All failures under limit loads being reported in the metal-composite hybrid joint region, the joint was simulated by adhesive bonding and filament winding, separately. Simply adhesive bonding the metal and composite regions does not meet strength requirements. A filament wound metal-composite joint shows proof of strength. Filament wound bolted metal-composite joint shows proof of strength. Filament wound composite bolted to metal cross member radii is the final joining methodology. Finally, crash analysis was conducted as per requirements from MIL STD 1290A (AV). Crash at 42 ft/sec with 1 design gross weight (DGW

  16. Objective assessment of gynecologic laparoscopic skills using the LapSimGyn virtual reality simulator.

    PubMed

    Larsen, C R; Grantcharov, T; Aggarwal, R; Tully, A; Sørensen, J L; Dalsgaard, T; Ottesen, B

    2006-09-01

    Safe realistic training and unbiased quantitative assessment of technical skills are required for laparoscopy. Virtual reality (VR) simulators may be useful tools for training and assessing basic and advanced surgical skills and procedures. This study aimed to investigate the construct validity of the LapSimGyn VR simulator, and to determine the learning curves of gynecologists with different levels of experience. For this study, 32 gynecologic trainees and consultants (juniors or seniors) were allocated into three groups: novices (0 advanced laparoscopic procedures), intermediate level (>20 and <60 procedures), and experts (>100 procedures). All performed 10 sets of simulations consisting of three basic skill tasks and an ectopic pregnancy program. The simulations were carried out on 3 days within a maximum period of 2 weeks. Assessment of skills was based on time, economy of movement, and error parameters measured by the simulator. The data showed that expert gynecologists performed significantly and consistently better than intermediate and novice gynecologists. The learning curves differed significantly between the groups, showing that experts start at a higher level and more rapidly reach the plateau of their learning curve than do intermediate and novice groups of surgeons. The LapSimGyn VR simulator package demonstrates construct validity on both the basic skills module and the procedural gynecologic module for ectopic pregnancy. Learning curves can be obtained, but to reach the maximum performance for the more complex tasks, 10 repetitions do not seem sufficient at the given task level and settings. LapSimGyn also seems to be flexible and widely accepted by the users.

  17. One hundred cases of laparoscopic subtotal hysterectomy using the PK and Lap Loop systems.

    PubMed

    Erian, John; El-Toukhy, Tarek; Chandakas, Stefanos; Theodoridis, Theo; Hill, Nicholas

    2005-01-01

    To evaluate the safety and short-term outcomes of laparoscopic subtotal hysterectomy using the PK and Lap Loop systems. Prospective observational study (Canadian Task Force classification II-2). Princess Royal University and Chelsfield Park Hospitals, Kent, UK. One hundred women who underwent laparoscopic subtotal hysterectomy for menorrhagia from February 2003 through July 2004. The procedure was performed using the Plasma Kinetic (PK) system to seal the vascular pedicles and the Lap Loop system to separate the uterus at the level of the internal os. The uterus was removed from the abdominal cavity mainly by morcellation or posterior colpotomy. Of 100 patients, 59 were operated on as outpatients. Mean patient age was 44.6 years, median parity was 2, mean body mass index was 26.8, and mean duration of symptoms was 4 years. Clinically, the uterus was enlarged in 70 patients, and preoperative ultrasound scanning suggested the presence of uterine myomas in 42 patients. In addition to hysterectomy, 47 patients had concomitant pelvic surgery. The mean total operating time was 45.5 minutes, and mean estimated blood loss was 114 mL. The overall major complication rate was 2%; two patients required blood transfusion after surgery. There were no bowel or urinary tract injuries, unintended laparotomy, return to operating room, or anesthetic complications. At follow-up, all patients were satisfied with surgery. Laparoscopic subtotal hysterectomy using the PK and Lap Loop systems for treatment of therapy-resistant menorrhagia is safe, can be performed as an outpatient procedure, and is associated with reduced operating time and high patient satisfaction.

  18. Structural analysis of Aircraft fuselage splice joint

    NASA Astrophysics Data System (ADS)

    Udaya Prakash, R.; Kumar, G. Raj; Vijayanandh, R.; Senthil Kumar, M.; Ramganesh, T.

    2016-09-01

    In Aviation sector, composite materials and its application to each component are one of the prime factors of consideration due to the high strength to weight ratio, design flexibility and non-corrosive so that the composite materials are widely used in the low weight constructions and also it can be treated as a suitable alternative to metals. The objective of this paper is to estimate and compare the suitability of a composite skin joint in an aircraft fuselage with different joints by simulating the displacement, normal stress, vonmises stress and shear stress with the help of numerical solution methods. The reference Z-stringer component of this paper is modeled by CATIA and numerical simulation is carried out by ANSYS has been used for splice joint presents in the aircraft fuselage with three combinations of joints such as riveted joint, bonded joint and hybrid joint. Nowadays the stringers are using to avoid buckling of fuselage skin, it has joined together by rivets and they are connected end to end by splice joint. Design and static analysis of three-dimensional models of joints such as bonded, riveted and hybrid are carried out and results are compared.

  19. Improving Critical Thinking Skills Using Learning Model Logan Avenue Problem Solving (LAPS)-Heuristic

    ERIC Educational Resources Information Center

    Anggrianto, Desi; Churiyah, Madziatul; Arief, Mohammad

    2016-01-01

    This research was conducted in order to know the effect of Logan Avenue Problem Solving (LAPS)-Heuristic learning model towards critical thinking skills of students of class X Office Administration (APK) in SMK Negeri 1 Ngawi, East Java, Indonesia on material curve and equilibrium of demand and supply, subject Introduction to Economics and…

  20. Threshold and Jet Radius Joint Resummation for Single-Inclusive Jet Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaohui; Moch, Sven -Olaf; Ringer, Felix

    Here, we present the first threshold and jet radius jointly resummed cross section for single-inclusive hadronic jet production. We work at next-to-leading logarithmic accuracy and our framework allows for a systematic extension beyond the currently achieved precision. Long-standing numerical issues are overcome by performing the resummation directly in momentum space within soft collinear effective theory. We present the first numerical results for the LHC and observe an improved description of the available data. Our results are of immediate relevance for LHC precision phenomenology including the extraction of parton distribution functions and the QCD strong coupling constant.