Science.gov

Sample records for composition distribution life

  1. Assuring Life in Composite Systems

    NASA Technical Reports Server (NTRS)

    Chamis, Christos c.

    2008-01-01

    A computational simulation method is presented to assure life in composite systems by using dynamic buckling of smart composite shells as an example. The combined use of composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right below the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 9% at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load. The uncertainties in the electric field strength and smart material volume fraction have moderate effects and thereby in the assured life of the shell.

  2. SPECIES COMPOSITION, DISTRIBUTION, LIFE FORMS AND FOLK NOMENCLATURE OF FOREST AND COMMON LAND PLANTS OF WESTERN CHITWAN, NEPAL.

    PubMed

    Dangol, D R

    2005-01-01

    This paper enumerates 349 plant species belonging to 77 families of vascular plants collected in the winter seasons of 1996 and 2000 by the flora teams of the Population and Ecology Research Laboratory, Nepal. Of the total species, 249 species belong to dicotyledons, 87 species to monocotyledons and 13 species to pteridophytes. Among the families, dicotyledons contributed the highest number of families (55 in number) followed by monocotyledons and pteridophytes. In the study areas, species composition varies with the type of habitats in the study plots. Some species are unique in distribution. The highest unique species are contributed by common lands (87 spp.), followed by the Chitwan National Park forest (36 spp.) and Tikauli forest (32 spp.). Ageratum houstonianum Mill., Cynodon dactylon (L.) Pers., Imperata cylindrica (L.) Beauv., Rungia parviflora (Retz.) Nees, Saccharum spontaneum L. and Thelypteris auriculata (J. Sm.) K. Iwats are the most common species across all the research blocks. Of the listed plants, many plants have local names either in Nepalese or other tribal languages. Plants are named in different ways on the basis of habit, habitat, smell, taste, and morphological characters of the plants, which are also the basis of nomenclature in plant taxonomy. PMID:22962539

  3. SPECIES COMPOSITION, DISTRIBUTION, LIFE FORMS AND FOLK NOMENCLATURE OF FOREST AND COMMON LAND PLANTS OF WESTERN CHITWAN, NEPAL

    PubMed Central

    Dangol, D. R.

    2012-01-01

    This paper enumerates 349 plant species belonging to 77 families of vascular plants collected in the winter seasons of 1996 and 2000 by the flora teams of the Population and Ecology Research Laboratory, Nepal. Of the total species, 249 species belong to dicotyledons, 87 species to monocotyledons and 13 species to pteridophytes. Among the families, dicotyledons contributed the highest number of families (55 in number) followed by monocotyledons and pteridophytes. In the study areas, species composition varies with the type of habitats in the study plots. Some species are unique in distribution. The highest unique species are contributed by common lands (87 spp.), followed by the Chitwan National Park forest (36 spp.) and Tikauli forest (32 spp.). Ageratum houstonianum Mill., Cynodon dactylon (L.) Pers., Imperata cylindrica (L.) Beauv., Rungia parviflora (Retz.) Nees, Saccharum spontaneum L. and Thelypteris auriculata (J. Sm.) K. Iwats are the most common species across all the research blocks. Of the listed plants, many plants have local names either in Nepalese or other tribal languages. Plants are named in different ways on the basis of habit, habitat, smell, taste, and morphological characters of the plants, which are also the basis of nomenclature in plant taxonomy. PMID:22962539

  4. Effect of Individual Component Life Distribution on Engine Life Prediction

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.; Hendricks, Robert C.; Soditus, Sherry M.

    2003-01-01

    The effect of individual engine component life distributions on engine life prediction was determined. A Weibull-based life and reliability analysis of the NASA Energy Efficient Engine was conducted. The engine s life at a 95 and 99.9 percent probability of survival was determined based upon the engine manufacturer s original life calculations and assumed values of each of the component s cumulative life distributions as represented by a Weibull slope. The lives of the high-pressure turbine (HPT) disks and blades were also evaluated individually and as a system in a similar manner. Knowing the statistical cumulative distribution of each engine component with reasonable engineering certainty is a condition precedent to predicting the life and reliability of an entire engine. The life of a system at a given reliability will be less than the lowest-lived component in the system at the same reliability (probability of survival). Where Weibull slopes of all the engine components are equal, the Weibull slope had a minimal effect on engine L(sub 0.1) life prediction. However, at a probability of survival of 95 percent (L(sub 5) life), life decreased with increasing Weibull slope.

  5. The compositional distribution of asteroids

    NASA Astrophysics Data System (ADS)

    DeMeo, F.; Carry, B.; Alexander, C.; Walsh, K.; Chapman, C.

    2014-07-01

    Each compositional class of asteroid is a relic of the temperature and composition conditions in which it formed. The current distribution reveals the history of the Solar System, and each body acts as a marker of any mixing that occurred since formation. The remnant of a primordial temperature gradient, seen as transition from the S class to C class dominating in different regions of the asteroid belt has been a paradigm for three decades [1-4]. Today, we are armed with major advancements from the past decade that have revolutionized the field of asteroids in areas such as discovery, physical characterization, and dynamical models. A new and more detailed compositional map [5,6] created with data from the Sloan Digital Sky Survey [7] allows us to re-examine compositional trends in the main asteroid belt and what the physical and dynamical implications might be. This talk is related to recent work from DeMeo & Carry 2013, 2014 [5,6] and an upcoming chapter of the "Asteroids IV" book in 2015.

  6. Multiscale Fatigue Life Prediction for Composite Panels

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Yarrington, Phillip W.; Arnold, Steven M.

    2012-01-01

    Fatigue life prediction capabilities have been incorporated into the HyperSizer Composite Analysis and Structural Sizing Software. The fatigue damage model is introduced at the fiber/matrix constituent scale through HyperSizer s coupling with NASA s MAC/GMC micromechanics software. This enables prediction of the micro scale damage progression throughout stiffened and sandwich panels as a function of cycles leading ultimately to simulated panel failure. The fatigue model implementation uses a cycle jumping technique such that, rather than applying a specified number of additional cycles, a specified local damage increment is specified and the number of additional cycles to reach this damage increment is calculated. In this way, the effect of stress redistribution due to damage-induced stiffness change is captured, but the fatigue simulations remain computationally efficient. The model is compared to experimental fatigue life data for two composite facesheet/foam core sandwich panels, demonstrating very good agreement.

  7. A distributed program composition system

    NASA Technical Reports Server (NTRS)

    Brown, Robert L.

    1989-01-01

    A graphical technique for creating distributed computer programs is investigated and a prototype implementation is described which serves as a testbed for the concepts. The type of programs under examination is restricted to those comprising relatively heavyweight parts that intercommunicate by passing messages of typed objects. Such programs are often presented visually as a directed graph with computer program parts as the nodes and communication channels as the edges. This class of programs, called parts-based programs, is not well supported by existing computer systems; much manual work is required to describe the program to the system, establish the communication paths, accommodate the heterogeneity of data types, and to locate the parts of the program on the various systems involved. The work described solves most of these problems by providing an interface for describing parts-based programs in this class in a way that closely models the way programmers think about them: using sketches of diagraphs. Program parts, the computational modes of the larger program system are categorized in libraries and are accessed with browsers. The process of programming has the programmer draw the program graph interactively. Heterogeneity is automatically accommodated by the insertion of type translators where necessary between the parts. Many decisions are necessary in the creation of a comprehensive tool for interactive creation of programs in this class. Possibilities are explored and the issues behind such decisions are presented. An approach to program composition is described, not a carefully implemented programming environment. However, a prototype implementation is described that can demonstrate the ideas presented.

  8. Composites of porous metal and solid lubricants increase bearing life

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.

    1967-01-01

    Self-lubricating composites of porous nickel and nickel-chromium alloy impregnated with a barium fluoride-calcium fluoride eutectic, and a thin film of solid lubricant increase wear life of load bearing surfaces.

  9. Fatigue Life Methodology for Bonded Composite Skin/Stringer Configurations

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Paris, Isabelle L.; OBrien, T. Kevin; Minguet, Pierre J.

    2001-01-01

    A methodology is presented for determining the fatigue life of composite structures based on fatigue characterization data and geometric nonlinear finite element (FE) analyses. To demonstrate the approach, predicted results were compared to fatigue tests performed on specimens which represented a tapered composite flange bonded onto a composite skin. In a first step, tension tests were performed to evaluate the debonding mechanisms between the flange and the skin. In a second step, a 2D FE model was developed to analyze the tests. To predict matrix cracking onset, the relationship between the tension load and the maximum principal stresses transverse to the fiber direction was determined through FE analysis. Transverse tension fatigue life data were used to -enerate an onset fatigue life P-N curve for matrix cracking. The resulting prediction was in good agreement with data from the fatigue tests. In a third step, a fracture mechanics approach based on FE analysis was used to determine the relationship between the tension load and the critical energy release rate. Mixed mode energy release rate fatigue life data were used to create a fatigue life onset G-N curve for delamination. The resulting prediction was in good agreement with data from the fatigue tests. Further, the prediction curve for cumulative life to failure was generated from the previous onset fatigue life curves. The results showed that the methodology offers a significant potential to Predict cumulative fatigue life of composite structures.

  10. Considerations concerning fatigue life of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, V. M.; Bartolotta, Paul A.

    1993-01-01

    Since metal matrix composites (MMC) are composed from two very distinct materials each having their own physical and mechanical properties, it is feasible that the fatigue resistance depends on the strength of the weaker constituent. Based on this assumption, isothermal fatigue lives of several MMC's were analyzed utilizing a fatigue life diagram approach. For each MMC, the fatigue life diagram was quantified using the mechanical properties of its constituents. The fatigue life regions controlled by fiber fracture and matrix were also quantitatively defined.

  11. Tension fatigue analysis and life prediction for composite laminates

    NASA Technical Reports Server (NTRS)

    O'Brien, T. K.; Rigamonti, M.; Zanotti, C.

    1989-01-01

    A methodology is presented for the tension fatigue analysis and life prediction of composite laminates subjected to tension fatigue loading. The methodology incorporates both the generic fracture mechanics characterization of delamination and the assessment of the infuence of damage on laminate fatigue life. Tension fatigue tests were conducted on quasi-isotropic and orthotropic glass epoxy, graphite epoxy, and glass/graphite epoxy hybrid laminates, demonstrating good agreement between measured and predicted lives.

  12. Generation of Finite Life Distributional Goodman Diagrams for Reliability Prediction

    NASA Technical Reports Server (NTRS)

    Kececioglu, D.; Guerrieri, W. N.

    1971-01-01

    The methodology of developing finite life distributional Goodman diagrams and surfaces is described for presenting allowable combinations of alternating stress and mean stress to the design engineer. The combined stress condition is that of an alternating bending stress and a constant shear stress. The finite life Goodman diagrams and surfaces are created from strength distributions developed at various ratios of alternating to mean stress at particular cycle life values. The conclusions indicate that the Von Mises-Hencky ellipse, for cycle life values above 1000 cycles, is an adequate model of the finite life Goodman diagram. In addition, suggestions are made which reduce the number of experimental data points required in a fatigue data acquisition program.

  13. Fatigue Life Methodology for Bonded Composite Skin/Stringer Configurations

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Paris, Isabelle L.; OBrien, T. Kevin

    2000-01-01

    A methodology is presented for determining the fatigue life of bonded composite skin/stringer structures based on delamination fatigue characterization data and geometric nonlinear finite element analyses. Results were compared to fatigue tests on stringer flange/skin specimens to verify the approach.

  14. Durability/life of fiber composites in hygrothermomechanical environments

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1981-01-01

    Statistical analysis and multiple regression were used to determine and quantify the significant hygrothermomechanical variables which infuence the tensile durability/life (cycle loading, fatigue) of boron-fiber/epoxy-matrix (B/E) and high-modulus-fiber/epoxy-matrix (HMS/E) composites. The use of the multiple regression analysis reduced the variables from fifteen, assumed initially, to six or less with a probability of greater than 0.999. The reduced variables were used to derive predictive models for compression an intralaminar shear durability/life of B/E and HMS/E composites assuming isoparametric fatigue behavior. The predictive models were subsequently generalized to predict the durability/life of graphite-fiber-r generalized model is of simple form, predicts conservative values compared with measured data and should be adequate for use in preliminary designs.

  15. Durability/life of fiber composites in hygrothermomechanical environments

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1982-01-01

    Statistical analysis and multiple regression were used to determine and quantify the significant hygrothermomechanical variables which influence the tensile durability/life (cycle loading, fatigue) of boron-fiber/epoxy-matrix (B/E) and high-modulus-fiber/epoxy-matrix (HMS/E) composites. The use of the multiple regression analysis reduced the variables from fifteen, assumed initially, to six or less with a probability of greater than 0.999. The reduced variables were used to derive predictive models for compression and intralaminar shear durability/life of B/E and HMS/E composites assuming isoparametric fatigue behavior. The predictive models were subsequently generalized to predict the durability/life of graphite/fiber-r generalized model is of simple form, predicts conservative values compared with measured data and should be adequate for use in preliminary designs. Previously announced in STAR as N82-14287

  16. A strength-based wearout model for predicting the life of composite structures

    SciTech Connect

    Schaff, J.R.; Davidson, B.D.

    1997-12-31

    A model to predict the residual strength and life of polymeric composite structures subjected to spectrum fatigue loadings is described. The model is based on the fundamental assumptions that the structure undergoes proportional loading, that the residual strength is a monotonically decreasing function of the number of fatigue cycles, and that both the life distribution due to continuous constant amplitude cycling and the residual strength distribution after an arbitrary load history may be represented by two parameter Weibull functions. The model also incorporates a cycle mix factor to account for the drastic reduction of fatigue life that may be caused by a large number of changes in the stress amplitude of the loading. The model`s predictions are compared to experimentally determined fatigue life distributions for uniaxial loadings of a number of laminates comprised of different materials and layups. Constant-amplitude, two-stress level, and spectrum fatigue loadings, including the FALSTAFF (Fighter Aircraft Loading Standard for Fatigue) spectrum, are considered. The theoretical fatigue life distributions are shown to correlate well with the experimental results. Moreover, excellent correlation of theory and experiment is obtained for an average fatigue life that is based on the 63.2% probability of failure.

  17. Maximum likelihood estimation for life distributions with competing failure modes

    NASA Technical Reports Server (NTRS)

    Sidik, S. M.

    1979-01-01

    Systems which are placed on test at time zero, function for a period and die at some random time were studied. Failure may be due to one of several causes or modes. The parameters of the life distribution may depend upon the levels of various stress variables the item is subject to. Maximum likelihood estimation methods are discussed. Specific methods are reported for the smallest extreme-value distributions of life. Monte-Carlo results indicate the methods to be promising. Under appropriate conditions, the location parameters are nearly unbiased, the scale parameter is slight biased, and the asymptotic covariances are rapidly approached.

  18. Ceramic Matrix Composites (CMC) Life Prediction Development - 2003

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.; Calomino, Anthony M.; Verrilli, Michael J.; Thomas, David J.; Halbig, Michael C.; Opila, Elizabeth J.; Ellis, John R.

    2003-01-01

    Accurate life prediction is critical to successful use of ceramic matrix composites (CMCs). The tools to accomplish this are immature and not oriented toward the behavior of carbon fiber reinforced silicon carbide (C/SiC), the primary system of interest for many reusable and single mission launch vehicle propulsion and airframe applications. This paper describes an approach and progress made to satisfy the need to develop an integrated life prediction system that addresses mechanical durability and environmental degradation of C/SiC.

  19. A life prediction model for laminated composite structural components

    NASA Technical Reports Server (NTRS)

    Allen, David H.

    1990-01-01

    A life prediction methodology for laminated continuous fiber composites subjected to fatigue loading conditions was developed. A summary is presented of research completed. A phenomenological damage evolution law was formulated for matrix cracking which is independent of stacking sequence. Mechanistic and physical support was developed for the phenomenological evolution law proposed above. The damage evolution law proposed above was implemented to a finite element computer program. And preliminary predictions were obtained for a structural component undergoing fatigue loading induced damage.

  20. Dramatic increase in fatigue life in hierarchical graphene composites.

    PubMed

    Yavari, F; Rafiee, M A; Rafiee, J; Yu, Z-Z; Koratkar, N

    2010-10-01

    We report the synthesis and fatigue characterization of fiberglass/epoxy composites with various weight fractions of graphene platelets infiltrated into the epoxy resin as well as directly spray-coated on to the glass microfibers. Remarkably only ∼0.2% (with respect to the epoxy resin weight and ∼0.02% with respect to the entire laminate weight) of graphene additives enhanced the fatigue life of the composite in the flexural bending mode by up to 1200-fold. By contrast, under uniaxial tensile fatigue conditions, the graphene fillers resulted in ∼3-5-fold increase in fatigue life. The fatigue life increase (in the flexural bending mode) with graphene additives was ∼1-2 orders of magnitude superior to those obtained using carbon nanotubes. In situ ultrasound analysis of the nanocomposite during the cyclic fatigue test suggests that the graphene network toughens the fiberglass/epoxy-matrix interface and prevents the delamination/buckling of the glass microfibers under compressive stress. Such fatigue-resistant hierarchical materials show potential to improve the safety, reliability, and cost effectiveness of fiber-reinforced composites that are increasingly the material of choice in the aerospace, automotive, marine, sports, biomedical, and wind energy industries. PMID:20863061

  1. Progressive Failure And Life Prediction of Ceramic and Textile Composites

    NASA Technical Reports Server (NTRS)

    Xue, David Y.; Shi, Yucheng; Katikala, Madhu; Johnston, William M., Jr.; Card, Michael F.

    1998-01-01

    An engineering approach to predict the fatigue life and progressive failure of multilayered composite and textile laminates is presented. Analytical models which account for matrix cracking, statistical fiber failures and nonlinear stress-strain behavior have been developed for both composites and textiles. The analysis method is based on a combined micromechanics, fracture mechanics and failure statistics analysis. Experimentally derived empirical coefficients are used to account for the interface of fiber and matrix, fiber strength, and fiber-matrix stiffness reductions. Similar approaches were applied to textiles using Repeating Unit Cells. In composite fatigue analysis, Walker's equation is applied for matrix fatigue cracking and Heywood's formulation is used for fiber strength fatigue degradation. The analysis has been compared with experiment with good agreement. Comparisons were made with Graphite-Epoxy, C/SiC and Nicalon/CAS composite materials. For textile materials, comparisons were made with triaxial braided and plain weave materials under biaxial or uniaxial tension. Fatigue predictions were compared with test data obtained from plain weave C/SiC materials tested at AS&M. Computer codes were developed to perform the analysis. Composite Progressive Failure Analysis for Laminates is contained in the code CPFail. Micromechanics Analysis for Textile Composites is contained in the code MicroTex. Both codes were adapted to run as subroutines for the finite element code ABAQUS and CPFail-ABAQUS and MicroTex-ABAQUS. Graphic user interface (GUI) was developed to connect CPFail and MicroTex with ABAQUS.

  2. Development of a Composite Delamination Fatigue Life Prediction Methodology

    NASA Technical Reports Server (NTRS)

    OBrien, Thomas K.

    2009-01-01

    Delamination is one of the most significant and unique failure modes in composite structures. Because of a lack of understanding of the consequences of delamination and the inability to predict delamination onset and growth, many composite parts are unnecessarily rejected upon inspection, both immediately after manufacture and while in service. NASA Langley is leading the efforts in the U.S. to develop a fatigue life prediction methodology for composite delamination using fracture mechanics. Research being performed to this end will be reviewed. Emphasis will be placed on the development of test standards for delamination characterization, incorporation of approaches for modeling delamination in commercial finite element codes, and efforts to mature the technology for use in design handbooks and certification documents.

  3. Life Cycle Assessment of Carbon Fiber-Reinforced Polymer Composites

    SciTech Connect

    Das, Sujit

    2011-01-01

    Carbon fiber-reinforced polymer matrix composites is gaining momentum with the pressure to lightweight vehicles, however energy-intensity and cost remain some of the major barriers before this material could be used in large-scale automotive applications. A representative automotive part, i.e., a 30.8 kg steel floor pan having a 17% weight reduction potential with stringent cash performance requirements has been considered for the life cycle energy and emissions analysis based on the latest developments occurring in the precursor type (conventional textile-based PAN vs. renewable-based lignin), part manufacturing (conventional SMC vs. P4) and fiber recycling technologies. Carbon fiber production is estimated to be about 14 times more energy-intensive than conventional steel production, however life cycle primary energy use is estimated to be quite similar to the conventional part, i.e., 18,500 MJ/part, especially when considering the uncertainty in LCI data that exists from using numerous sources in the literature. Lignin P4 technology offers the most life cycle energy and CO2 emissions benefits compared to a conventional stamped steel technology. With a 20% reduction in energy use in the lignin conversion to carbon fiber and free availability of lignin as a by-product of ethanol and wood production, a 30% reduction in life cycle energy use could be obtained. A similar level of life cycle energy savings could also be obtained with a higher part weight reduction potential of 43%.

  4. Substantial Life Extension and the Fair Distribution of Healthspans.

    PubMed

    Wareham, Christopher S

    2016-10-01

    One of the strongest objections to the development and use of substantially life-extending interventions is that they would exacerbate existing unjust disparities of healthy lifespans between rich and poor members of society. In both popular opinion and ethical theory, this consequence is sometimes thought to justify a ban on life-prolonging technologies. However, the practical and ethical drawbacks of banning receive little attention, and the viability of alternative policies is seldom considered. Moreover, where ethicists do propose alternatives, there is scant effort to consider their merits in light of developing world priorities. In response to these shortcomings, I distinguish four policy options and, on the basis of a plausible intuition about fairness, evaluate their implications for a fair distribution of healthy lifespans. I claim that even in developing nations it would be fairest to favor policies that promote equal access to at least one promising category of substantially life-extending intervention: calorie restriction mimetics. PMID:27465775

  5. Life history, diversity and distribution: A study of Japanese pteridophytes

    USGS Publications Warehouse

    Guo, Q.; Kato, Masako; Ricklefs, R.E.

    2003-01-01

    Many studies address the relationships between diversity or distribution and attributes of the physical environment. However, how these relationships are connected to variation in life history is poorly understood. This is particularly true in the case of pteridophytes. Japanese ferns and their allies comprise one of the best-known pteridophyte floras in the world. We analyzed ca 600 species of Japanese pteridophytes for which there is detailed information on distribution, reproduction, and chromosome number. Species richness was greatest in groups with a single reproductive mode (sexual, followed by apogamous), but distribution was greatest in species groups with multiple reproductive modes: sexual plus either sterile (irregular in meiosis) or apogamous. Geographical ranges varied greatly among species with small chromosome numbers but were uniformly small among species having high chromosome numbers. Seasonally green (mostly summer green) species had significantly larger distribution ranges than evergreen species. Endemic species had higher proportions of apogamy and sterility than non-endemic species. Seasonally green species had significantly larger distributional ranges, and a smaller proportion of species with apogamous reproduction, than evergreen species. There was no clear relationship between distribution and spore size, either among endemic species, non-endemic species, or all species combined. There was no relationship between spore size and chromosome number when all species were combined. However, positive relationships were detected within three of the nine largest genera, suggesting potential phylogenetic effects. We concluded that habitat availability, rather than dispersability, may be the limiting factor for the distribution of pteridophytes in Japan.

  6. Integrating biodiversity distribution knowledge: toward a global map of life.

    PubMed

    Jetz, Walter; McPherson, Jana M; Guralnick, Robert P

    2012-03-01

    Global knowledge about the spatial distribution of species is orders of magnitude coarser in resolution than other geographically-structured environmental datasets such as topography or land cover. Yet such knowledge is crucial in deciphering ecological and evolutionary processes and in managing global change. In this review, we propose a conceptual and cyber-infrastructure framework for refining species distributional knowledge that is novel in its ability to mobilize and integrate diverse types of data such that their collective strengths overcome individual weaknesses. The ultimate aim is a public, online, quality-vetted 'Map of Life' that for every species integrates and visualizes available distributional knowledge, while also facilitating user feedback and dynamic biodiversity analyses. First milestones toward such an infrastructure have now been implemented. PMID:22019413

  7. Isothermal life prediction of composite lamina using a damage mechanics approach

    NASA Technical Reports Server (NTRS)

    Abuelfoutouh, Nader Mohamed; Verrilli, M. J.; Halford, G. R.

    1989-01-01

    A method for predicting isothermal plastic fatigue life of a composite lamina is presented in which both fibers and matrix are isotropic materials. In general, the fatigue resistances of the matrix, fibers, and interfacial material must be known in order to predict composite fatigue life. Composite fatigue life is predicted using only the matrix fatigue resistance due to inelasticity micromechanisms. The effect of the fiber orientation on loading direction is accounted for while predicting composite life. The application is currently limited to isothermal cases where the internal thermal stresses that might arise from thermal strain mismatch between fibers and matrix are negligible. The theory is formulated to predict the fatigue life of a composite lamina under either load or strain control. It is applied currently to predict the life of tungsten-copper composite lamina at 260 C under tension-tension load control. The calculated life of the lamina is in good agreement with available composite low cycle fatigue data.

  8. Proposed framework for thermomechanical life modeling of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Lerch, Bradley A.; Saltsman, James F.

    1993-01-01

    The framework of a mechanics of materials model is proposed for thermomechanical fatigue (TMF) life prediction of unidirectional, continuous-fiber metal matrix composites (MMC's). Axially loaded MMC test samples are analyzed as structural components whose fatigue lives are governed by local stress-strain conditions resulting from combined interactions of the matrix, interfacial layer, and fiber constituents. The metallic matrix is identified as the vehicle for tracking fatigue crack initiation and propagation. The proposed framework has three major elements. First, TMF flow and failure characteristics of in situ matrix material are approximated from tests of unreinforced matrix material, and matrix TMF life prediction equations are numerically calibrated. The macrocrack initiation fatigue life of the matrix material is divided into microcrack initiation and microcrack propagation phases. Second, the influencing factors created by the presence of fibers and interfaces are analyzed, characterized, and documented in equation form. Some of the influences act on the microcrack initiation portion of the matrix fatigue life, others on the microcrack propagation life, while some affect both. Influencing factors include coefficient of thermal expansion mismatch strains, residual (mean) stresses, multiaxial stress states, off-axis fibers, internal stress concentrations, multiple initiation sites, nonuniform fiber spacing, fiber debonding, interfacial layers and cracking, fractured fibers, fiber deflections of crack fronts, fiber bridging of matrix cracks, and internal oxidation along internal interfaces. Equations exist for some, but not all, of the currently identified influencing factors. The third element is the inclusion of overriding influences such as maximum tensile strain limits of brittle fibers that could cause local fractures and ensuing catastrophic failure of surrounding matrix material. Some experimental data exist for assessing the plausibility of the proposed

  9. Composite Overwrap Pressure Vessels: Mechanics and Stress Rupture Lifing Philosophy

    NASA Technical Reports Server (NTRS)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, Leigh

    2007-01-01

    The NASA Engineering and Safety Center (NESC) has been conducting an independent technical assessment to address safety concerns related to the known stress rupture failure mode of filament wound pressure vessels in use on Shuttle and the International Space Station. The Shuttle's Kevlar-49 fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar-49 filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of load sharing liners and the complex manufacturing procedures, the state of actual fiber stress in flight hardware and test articles is not clearly known. Indeed non-conservative life predictions have been made where stress rupture data and lifing procedures have ignored the contribution of the liner in favor of applied pressure as the controlling load parameter. With the aid of analytical and finite element results, this paper examines the fundamental mechanical response of composite overwrapped pressure vessels including the influence of elastic-plastic liners and degraded/creeping overwrap properties. Graphical methods are presented describing the non-linear relationship of applied pressure to Kevlar-49 fiber stress/strain during manufacturing, operations and burst loadings. These are applied to experimental measurements made on a variety of vessel systems to demonstrate the correct calibration of fiber stress as a function of pressure. Applying this analysis to the actual qualification burst data for Shuttle flight hardware revealed that the nominal fiber stress at burst was in some cases 23% lower than what had previously been used to predict stress rupture life. These results motivate a detailed discussion of the appropriate stress rupture lifing philosophy for COPVs including the correct transference of stress rupture life data between dissimilar vessels and test articles.

  10. Life cycle assessment of overhead and underground primary power distribution.

    PubMed

    Bumby, Sarah; Druzhinina, Ekaterina; Feraldi, Rebe; Werthmann, Danae; Geyer, Roland; Sahl, Jack

    2010-07-15

    Electrical power can be distributed in overhead or underground systems, both of which generate a variety of environmental impacts at all stages of their life cycles. While there is considerable literature discussing the trade-offs between both systems in terms of aesthetics, safety, cost, and reliability, environmental assessments are relatively rare and limited to power cable production and end-of-life management. This paper assesses environmental impacts from overhead and underground medium voltage power distribution systems as they are currently built and managed by Southern California Edison (SCE). It uses process-based life cycle assessment (LCA) according to ISO 14044 (2006) and SCE-specific primary data to the extent possible. Potential environmental impacts have been calculated using a wide range of midpoint indicators, and robustness of the results has been investigated through sensitivity analysis of the most uncertain and potentially significant parameters. The studied underground system has higher environmental impacts in all indicators and for all parameter values, mostly due to its higher material intensity. For both systems and all indicators the majority of impact occurs during cable production. Promising strategies for impact reduction are thus cable failure rate reduction for overhead and cable lifetime extension for underground systems. PMID:20553042

  11. Distribution of Articles in Written Composition among Malaysian ESL Learners

    ERIC Educational Resources Information Center

    Rahim, Mia Emily Abdul; Rahim, Emma Marini Abdul; Ning, Chia Han

    2013-01-01

    The study aimed to investigate the distribution patterns of the English grammar articles (a, an, and the) as well as the distributions of their colligation patterns in written compositions of English among Malaysian ESL learners. This paper reports the results of a corpus-based study on articles used by these learners. The method used in this…

  12. Landscape structure and diseases profile: associating land use type composition with disease distribution.

    PubMed

    Votsi, Nefta-Eleftheria P; Mazaris, Antonios D; Kallimanis, Athanasios S; Drakou, Evangelia G; Pantis, John D

    2014-04-01

    Human health and well-being presuppose environmental quality. Several studies have documented the indicative role of land use types in environmental quality. However, the exact role of land use composition on disease distribution has remained scientifically vague. We assessed the congruence of diseases' distribution with land use composition, focusing on high environmental quality areas, defined as tranquil areas with view to indicating places offering well-being. Landscape composition is linked to the presence of diseases across 51 prefectures of Greece. Agricultural and natural land use types proved to be the main drivers of disease distribution. Tranquility demonstrated a strong negative correlation with population density, thus could be considered as a quantitative spatial index of life-quality. We concluded that the landscape context affects the dominance of diseases' patterns. Special emphasis should be put on the role of tranquil areas in human health and the relative environmental health policies. PMID:23802561

  13. Distributed Workflow Service Composition Based on CTR Technology

    NASA Astrophysics Data System (ADS)

    Feng, Zhilin; Ye, Yanming

    Recently, WS-BPEL has gradually become the basis of a standard for web service description and composition. However, WS-BPEL cannot efficiently describe distributed workflow services for lacking of special expressive power and formal semantics. This paper presents a novel method for modeling distributed workflow service composition with Concurrent TRansaction logic (CTR). The syntactic structure of WS-BPEL and CTR are analyzed, and new rules of mapping WS-BPEL into CTR are given. A case study is put forward to show that the proposed method is appropriate for modeling workflow business services under distributed environments.

  14. Life Modeling and Design Analysis for Ceramic Matrix Composite Materials

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The primary research efforts focused on characterizing and modeling static failure, environmental durability, and creep-rupture behavior of two classes of ceramic matrix composites (CMC), silicon carbide fibers in a silicon carbide matrix (SiC/SiC) and carbon fibers in a silicon carbide matrix (C/SiC). An engineering life prediction model (Probabilistic Residual Strength model) has been developed specifically for CMCs. The model uses residual strength as the damage metric for evaluating remaining life and is posed probabilistically in order to account for the stochastic nature of the material s response. In support of the modeling effort, extensive testing of C/SiC in partial pressures of oxygen has been performed. This includes creep testing, tensile testing, half life and residual tensile strength testing. C/SiC is proposed for airframe and propulsion applications in advanced reusable launch vehicles. Figures 1 and 2 illustrate the models predictive capabilities as well as the manner in which experimental tests are being selected in such a manner as to ensure sufficient data is available to aid in model validation.

  15. Ceramic Matrix Composites (CMC) Life Prediction Method Development

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.; Calomino, Anthony M.; Ellis, John R.; Halbig, Michael C.; Mital, Subodh K.; Murthy, Pappu L.; Opila, Elizabeth J.; Thomas, David J.; Thomas-Ogbuji, Linus U.; Verrilli, Michael J.

    2000-01-01

    Advanced launch systems (e.g., Reusable Launch Vehicle and other Shuttle Class concepts, Rocket-Based Combine Cycle, etc.), and interplanetary vehicles will very likely incorporate fiber reinforced ceramic matrix composites (CMC) in critical propulsion components. The use of CMC is highly desirable to save weight, to improve reuse capability, and to increase performance. CMC candidate applications are mission and cycle dependent and may include turbopump rotors, housings, combustors, nozzle injectors, exit cones or ramps, and throats. For reusable and single mission uses, accurate prediction of life is critical to mission success. The tools to accomplish life prediction are very immature and not oriented toward the behavior of carbon fiber reinforced silicon carbide (C/SiC), the primary system of interest for a variety of space propulsion applications. This paper describes an approach to satisfy the need to develop an integrated life prediction system for CMC that addresses mechanical durability due to cyclic and steady thermomechanical loads, and takes into account the impact of environmental degradation.

  16. Elucidating the Composition and Distribution of Trace Metals in Corals

    NASA Astrophysics Data System (ADS)

    Farfan, G.; Webb, S. M.; Apprill, A.; Hansel, C. M.

    2014-12-01

    Coral reefs host a plethora of marine life and thereby provide a wealth of aesthetic and economic benefits to coastal countries. Anthropogenic influences, including local coastal water contamination, however threaten the health of these delicate ecosystems. Metal incorporation into carbonate minerals, the backbone of coral reefs, is known to have a large yet variable impact on carbonate structure and solubility. Yet, trace metal influences on the structure, porosity, composition, and solubility of coral skeletons is largely unknown. Here, we coupled synchrotron-based micro-X-ray fluorescence (u-XRF) mapping and X-ray absorption near edge structure (XANES) spectroscopy with micro-X-ray diffraction (XRD) to explore the distribution and speciation of trace metals associated with corals and their impact on the carbonate structure of corals obtained from reefs varying in anthropogenic influence - Florida Keys, FL USA and the Federated States of Micronesia. Iron and copper were the most abundant metals in the biological tissue, while in some areas zinc was observed in the tissue, overlapping with the skeleton. Trace metals were not detectable in the aragonite skeletons; in fact, the distributions of Ca and Fe were anti-correlated. XANES spectra show that the iron is primarily Fe(III), likely as the poorly crystalline iron oxide ferrihydrite structure or trapped within ferretin proteins. The same trace metals were observed in corals of different species and from different environments. This in situ investigation corroborates previous studies that corals tend to incorporate iron into the biological components but not into the aragonite skeleton. Given the dominant partitioning of metals within the biological tissue rather than the coral skeleton, the specific carbon molecules responsible for metal attenuation and their fate under changing geochemical conditions and following coral death require exploration.

  17. Distributed dynamic load on composite laminates

    NASA Astrophysics Data System (ADS)

    Langella, A.; Lopresto, V.; Caprino, G.

    2016-05-01

    An experimental activity conducted in order to assess the impact behavior at room and low temperature of carbon fibre in vinylester resin laminates used in the shipbuilding industry, was reported. The conditions which reproduce the impact of a hull at low temperature with a solid body suspended in the water was reproduced. A test equipment was designed and realized to reproduce the real material behaviour in water to obtain a load distribution on the entire surface of the specimen. The results were obtained impacting the laminates placed between the cilyndrical steel impactor and a bag containing water. A falling weight machine, equipped with an instrumented steel impactor and a thermal chamber, was adopted for the experimental tests. The impact behaviour in hostile environments was compared to the behaviour at room temperature and the data obtained under distributed load conditions were compared with the results from concentrated loads: a completely different behaviour was observed between the two different loading conditions in terms of load-displacement curve. The effect of the impact on the laminates has been related with the delaminations, evaluated by ultrasonic scanning, and the indentation.

  18. The composition of the gut microbiota throughout life, with an emphasis on early life

    PubMed Central

    Rodríguez, Juan Miguel; Murphy, Kiera; Stanton, Catherine; Ross, R. Paul; Kober, Olivia I.; Juge, Nathalie; Avershina, Ekaterina; Rudi, Knut; Narbad, Arjan; Jenmalm, Maria C.; Marchesi, Julian R.; Collado, Maria Carmen

    2015-01-01

    The intestinal microbiota has become a relevant aspect of human health. Microbial colonization runs in parallel with immune system maturation and plays a role in intestinal physiology and regulation. Increasing evidence on early microbial contact suggest that human intestinal microbiota is seeded before birth. Maternal microbiota forms the first microbial inoculum, and from birth, the microbial diversity increases and converges toward an adult-like microbiota by the end of the first 3–5 years of life. Perinatal factors such as mode of delivery, diet, genetics, and intestinal mucin glycosylation all contribute to influence microbial colonization. Once established, the composition of the gut microbiota is relatively stable throughout adult life, but can be altered as a result of bacterial infections, antibiotic treatment, lifestyle, surgical, and a long-term change in diet. Shifts in this complex microbial system have been reported to increase the risk of disease. Therefore, an adequate establishment of microbiota and its maintenance throughout life would reduce the risk of disease in early and late life. This review discusses recent studies on the early colonization and factors influencing this process which impact on health. PMID:25651996

  19. An overview of computational simulation methods for composite structures failure and life analysis

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1993-01-01

    Three parallel computational simulation methods are being developed at the LeRC Structural Mechanics Branch (SMB) for composite structures failure and life analysis: progressive fracture CODSTRAN; hierarchical methods for high-temperature composites; and probabilistic evaluation. Results to date demonstrate that these methods are effective in simulating composite structures failure/life/reliability.

  20. Fast adaptive composite grid methods on distributed parallel architectures

    NASA Technical Reports Server (NTRS)

    Lemke, Max; Quinlan, Daniel

    1992-01-01

    The fast adaptive composite (FAC) grid method is compared with the adaptive composite method (AFAC) under variety of conditions including vectorization and parallelization. Results are given for distributed memory multiprocessor architectures (SUPRENUM, Intel iPSC/2 and iPSC/860). It is shown that the good performance of AFAC and its superiority over FAC in a parallel environment is a property of the algorithm and not dependent on peculiarities of any machine.

  1. Health monitoring of composite structures throughout the life cycle

    NASA Astrophysics Data System (ADS)

    Chilles, James; Croxford, Anthony; Bond, Ian

    2016-04-01

    This study demonstrates the capability of inductively coupled piezoelectric sensors to monitor the state of health throughout the lifetime of composite structures. A single sensor which generated guided elastic waves was embedded into the stacking sequence of a large glass fiber reinforced plastic plate. The progress of cure was monitored by measuring variations in the amplitude and velocity of the waveforms reflected from the plate's edges. Baseline subtraction techniques were then implemented to detect barely visible impact damage (BVID) created by a 10 Joule impact, at a distance of 350 mm from the sensor embedded in the cured plate. To investigate the influence of mechanical loading on sensor performance, a single sensor was embedded within a glass fiber panel and subjected to tensile load. The panel was loaded up to a maximum strain of 1%, in increments of 0.1% strain. Guided wave measurements were recorded by the embedded sensor before testing, when the panel was under load, and after testing. The ultrasonic measurements showed a strong dependence on the applied load. Upon removal of the mechanical load the guided wave measurements returned to their original values recorded before testing. The results in this work show that embedded piezoelectric sensors can be used to monitor the state of health throughout the life-cycle of composite parts, even when subjected to relatively large strains. However the influence of load on guided wave measurements has implications for online monitoring using embedded piezoelectric transducers.

  2. Free space quantum key distribution: Towards a real life application

    NASA Astrophysics Data System (ADS)

    Weier, H.; Schmitt-Manderbach, T.; Regner, N.; Kurtsiefer, Ch.; Weinfurter, H.

    2006-08-01

    Quantum key distribution (QKD) [1] is the first method of quantum information science that will find its way into our everyday life. It employs fundamental laws of quantum physics to ensure provably secure symmetric key generation between two parties. The key can then be used to encrypt and decrypt sensitive data with unconditional security. Here, we report on a free space QKD implementation using strongly attenuated laser pulses over a distance of 480 m. It is designed to work continuously without human interaction. Until now, it produces quantum keys unattended at night for more than 12 hours with a sifted key rate of more than 50 kbit/s and a quantum bit error rate between 3% and 5%.

  3. Life history traits to predict biogeographic species distributions in bivalves

    NASA Astrophysics Data System (ADS)

    Montalto, V.; Rinaldi, A.; Sarà, G.

    2015-10-01

    Organismal fecundity ( F) and its relationship with body size (BS) are key factors in predicting species distribution under current and future scenarios of global change. A functional trait-based dynamic energy budget (FT-DEB) is proposed as a mechanistic approach to predict the variation of F and BS as function of environmental correlates using two marine bivalves as model species ( Mytilus galloprovincialis and Brachidontes pharaonis). Validation proof of model skill (i.e., degree of correspondence between model predictions and field observations) and stationarity (i.e., ability of a model generated from data collected at one place/time to predict processes at another place/time) was provided to test model performance in predicting the bivalve distribution throughout the 22 sites in the Central Mediterranean Sea under local conditions of food density and body temperature. Model skill and stationarity were tested through the estimate of commission (i.e., proportion of species' absences predicted present) and omission (i.e., proportion of presences predicted absent) errors of predictions by comparing mechanistic predicted vs. observed F and BS values throughout the study area extrapolated by lab experiments and literature search. The resulting relationship was reliable for both species, and body size and fecundity were highly correlated in M. galloprovincialis compared to B. pharaonis; FT-DEB showed correct predictions of presence in more than 75 % of sites, and the regression between BS predicted vs. observed was highly significant in both species. Whilst recognising the importance of biotic interactions in shaping the distribution of species, our FT-DEB approach provided reliable quantitative estimates of where our species had sufficient F to support local populations or suggesting reproductive failure. Mechanistically, estimating F and BS as key traits of species life history can also be addressed within a broader, scale-dependent context that surpasses the

  4. Life history traits to predict biogeographic species distributions in bivalves.

    PubMed

    Montalto, V; Rinaldi, A; Sarà, G

    2015-10-01

    Organismal fecundity (F) and its relationship with body size (BS) are key factors in predicting species distribution under current and future scenarios of global change. A functional trait-based dynamic energy budget (FT-DEB) is proposed as a mechanistic approach to predict the variation of F and BS as function of environmental correlates using two marine bivalves as model species (Mytilus galloprovincialis and Brachidontes pharaonis). Validation proof of model skill (i.e., degree of correspondence between model predictions and field observations) and stationarity (i.e., ability of a model generated from data collected at one place/time to predict processes at another place/time) was provided to test model performance in predicting the bivalve distribution throughout the 22 sites in the Central Mediterranean Sea under local conditions of food density and body temperature. Model skill and stationarity were tested through the estimate of commission (i.e., proportion of species' absences predicted present) and omission (i.e., proportion of presences predicted absent) errors of predictions by comparing mechanistic predicted vs. observed F and BS values throughout the study area extrapolated by lab experiments and literature search. The resulting relationship was reliable for both species, and body size and fecundity were highly correlated in M. galloprovincialis compared to B. pharaonis; FT-DEB showed correct predictions of presence in more than 75 % of sites, and the regression between BS predicted vs. observed was highly significant in both species. Whilst recognising the importance of biotic interactions in shaping the distribution of species, our FT-DEB approach provided reliable quantitative estimates of where our species had sufficient F to support local populations or suggesting reproductive failure. Mechanistically, estimating F and BS as key traits of species life history can also be addressed within a broader, scale-dependent context that surpasses the

  5. The distribution of all French communes: A composite parametric approach

    NASA Astrophysics Data System (ADS)

    Calderín-Ojeda, Enrique

    2016-05-01

    The distribution of the size of all French settlements (communes) from 1962 to 2012 is examined by means of a three-parameter composite Lognormal-Pareto distribution. This model is based on a Lognormal density up to an unknown threshold value and a Pareto density thereafter. Recent findings have shown that the untruncated settlement size data is in excellent agreement with the Lognormal distribution in the lower and central parts of the empirical distribution, but it follows a power law in the upper tail. For that reason, this probabilistic family, that nests both models, seems appropriate to describe urban agglomeration in France. The outcomes of this paper reveal that for the early periods (1962-1975) the upper quartile of the commune size data adheres closely to a power law distribution, whereas for later periods (2006-2012) most of the city size dynamics is explained by a Lognormal model.

  6. Fatigue Life Methodology for Tapered Hybrid Composite Flexbeams

    NASA Technical Reports Server (NTRS)

    urri, Gretchen B.; Schaff, Jeffery R.

    2006-01-01

    Nonlinear-tapered flexbeam specimens from a full-size composite helicopter rotor hub flexbeam were tested under combined constant axial tension and cyclic bending loads. Two different graphite/glass hybrid configurations tested under cyclic loading failed by delamination in the tapered region. A 2-D finite element model was developed which closely approximated the flexbeam geometry, boundary conditions, and loading. The analysis results from two geometrically nonlinear finite element codes, ANSYS and ABAQUS, are presented and compared. Strain energy release rates (G) associated with simulated delamination growth in the flexbeams are presented from both codes. These results compare well with each other and suggest that the initial delamination growth from the tip of the ply-drop toward the thick region of the flexbeam is strongly mode II. The peak calculated G values were used with material characterization data to calculate fatigue life curves for comparison with test data. A curve relating maximum surface strain to number of loading cycles at delamination onset compared well with the test results.

  7. Fatigue Life Analysis of Tapered Hybrid Composite Flexbeams

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.; Schaff, Jeffery R.; Dobyns, Alan L.

    2002-01-01

    Nonlinear-tapered flexbeam laminates from a full-size composite helicopter rotor hub flexbeam were tested under combined constant axial tension and cyclic bending loads. The two different graphite/glass hybrid configurations tested under cyclic loading failed by delamination in the tapered region. A 2-D finite element model was developed which closely approximated the flexbeam geometry, boundary conditions, and loading. The analysis results from two geometrically nonlinear finite element codes, ANSYS and ABAQUS, are presented and compared. Strain energy release rates (G) obtained from the above codes using the virtual crack closure technique (VCCT) at a resin crack location in the flexbeams are presented for both hybrid material types. These results compare well with each other and suggest that the initial delamination growth from the resin crack toward the thick region of the flexbeam is strongly mode II. The peak calculated G values were used with material characterization data to calculate fatigue life curves and compared with test data. A curve relating maximum surface strain to number of loading cycles at delamination onset compared reasonably well with the test results.

  8. Tension fatigue analysis and life prediction for composite laminates

    NASA Technical Reports Server (NTRS)

    Obrien, T. K.; Rigamonti, M.; Zanotti, C.

    1988-01-01

    A tension fatigue life prediction methodology for composite laminates is presented. Tension fatigue tests were conducted on quasi-isotropic and orthotropic glass epoxy, graphite epoxy, and glass/graphite epoxy hybrid laminates. Edge delamination onset data were used to generate plots of strain energy release rate as a function of cycles to delamination onset. These plots were then used along with strain energy release rate analyses of delaminations initiating at matrix cracks to predict local delamination onset. Stiffness loss was measured experimentally to account for the accumulation of matrix cracks and for delamination growth. Fatigue failure was predicted by comparing the increase in global strain resulting from stiffness loss to the decrease in laminate failure strain resulting from delaminations forming at matrix cracks through the laminate thickness. Good agreement between measured and predicted lives indicated that the through-thickness damage accumulation model can accurately describe fatigue failure for laminates where the delamination onset behavior in fatigue is well characterized, and stiffness loss can be monitored in real time to account for damage growth.

  9. 41 CFR 101-27.209 - Utilization and distribution of shelf-life items.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... distribution of shelf-life items. 101-27.209 Section 101-27.209 Public Contracts and Property Management... PROCUREMENT 27-INVENTORY MANAGEMENT 27.2-Management of Shelf-Life Materials § 101-27.209 Utilization and distribution of shelf-life items. Where it is determined that specified quantities of both Type I and Type...

  10. Bounds on the Strength Distribution of Unidirectional Fiber Composites

    SciTech Connect

    Mahesh, S.; Beyerlein, I.J.; Phoenix, S.L.

    1999-06-13

    Failure mechanisms under tensile loading of unidirectional fiber composites comprising of Weibull fibers embedded in a matrix are studied using Monte-Carlo simulations. Two fundamental mechanisms of failure are recognized--stress concentration driven failure and strength driven failure. It is shown that the cumulative distribution function for composite strength predicted by the stressconcentration-driven failure and strength-driven failure form apparent upper and lower bounds respectively and also that failure mechanism switches from one to the other as fiber strength variability changes.

  11. Bounds on the strength distribution of unidirectional fiber composites

    SciTech Connect

    Mahesh, S.; Phoenix, S.L.; Beyerlein, I.J.

    1999-06-01

    Failure mechanisms under tensile loading of unidirectional fiber composites comprising of Weibull fibers embedded in a matrix are studied using Monte-Carlo simulations. Two fundamental mechanisms of failure are recognized--stress concentration driven failure and strength driven failure. It is shown that the cumulative distribution function for composite strength predicted by the stress concentration -driven failure and strength-driven failure form apparent upper and lower bounds respectively and also that failure mechanism switches from one to the other as fiber strength variability changes.

  12. Spatial distribution of volatile compounds in graphite composites

    NASA Technical Reports Server (NTRS)

    Grayson, M. A.; Wolf, C. J.; Kourtides, D. A.

    1980-01-01

    The distribution of water and other volatile compounds such as acetone and phenol was measured as a function of depth in four graphite resin matrix composites. Precision abrasion mass spectrometry was used to qualitatively and quantitatively characterize the indigenous volatile compounds in the as received condition and after drying in an environmentally controlled oven. The total amount of water in the composites varied from 0.12 wt% to 1.1 wt% and the times required to dry the samples ranged from less than 96 h to much greater than 555 h.

  13. Fatigue Life Methodology for Tapered Composite Flexbeam Laminates

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.; OBrien, T. Kevin; Rousseau, Carl Q.

    1997-01-01

    The viability of a method for determining the fatigue life of composite rotor hub flexbeam laminates using delamination fatigue characterization data and a geometric non-linear finite element (FE) analysis was studied. Combined tension and bending loading was applied to non-linear tapered flexbeam laminates with internal ply drops. These laminates, consisting of coupon specimens cut from a full-size S2/E7T1 glass-epoxy flexbeam were tested in a hydraulic load frame under combined axial-tension and transverse cyclic bending. The magnitude of the axial load remained constant and the direction of the load rotated with the specimen as the cyclic bending load was applied. The first delamination damage observed in the specimens occurred at the area around the tip of the outermost ply-drop group. Subsequently, unstable delamination occurred by complete delamination along the length of the specimen. Continued cycling resulted in multiple delaminations. A 2D finite element model of the flexbeam was developed and a geometrically non-linear analysis was performed. The global responses of the model and test specimens agreed very well in terms of the transverse displacement. The FE model was used to calculate strain energy release rates (G) for delaminations initiating at the tip of the outer ply-drop area and growing toward the thick or thin regions of the flexbeam, as was observed in the specimens. The delamination growth toward the thick region was primarily mode 2, whereas delamination growth toward the thin region was almost completely mode 1. Material characterization data from cyclic double-cantilevered beam tests was used with the peak calculated G values to generate a curve predicting fatigue failure by unstable delamination as a function of the number of loading cycles. The calculated fatigue lives compared well with the test data.

  14. Fatigue Life Methodology for Tapered Composite Flexbeam Laminates

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.; O''Brien, T. Kevin; Rousseau, Carl Q.

    1997-01-01

    The viability of a method for determining the fatigue life of composite rotor hub flexbeam laminates using delamination fatigue characterization data and a geometric non-linear finite element (FE) analysis was studied. Combined tension and bending loading was applied to nonlinear tapered flexbeam laminates with internal ply drops. These laminates, consisting of coupon specimens cut from a full-size S2/E7T1 glass-epoxy flexbeam were tested in a hydraulic load frame under combined axial-tension and transverse cyclic bending loads. The magnitude of the axial load remained constant and the direction of the load rotated with the specimen as the cyclic bending load was applied. The first delamination damage observed in the specimens occurred at the area around the tip of the outermost ply-drop group. Subsequently, unstable delamination occurred by complete delamination along the length of the specimen. Continued cycling resulted in multiple delaminations. A 2D finite element model of the flexbeam was developed and a geometrically non-linear analysis was performed. The global responses of the model and test specimens agreed very well in terms of the transverse flexbeam tip-displacement and flapping angle. The FE model was used to calculate strain energy release rates (G) for delaminations initiating at the tip of the outer ply-drop area and growing toward the thick or thin regions of the flexbeam, as was observed in the specimens. The delamination growth toward the thick region was primarily mode 2, whereas delamination growth toward the thin region was almost completely mode 1. Material characterization data from cyclic double-cantilevered beam tests was used with the peak calculated G values to generate a curve predicting fatigue failure by unstable delamination as a function of the number of loading cycles. The calculated fatigue lives compared well with the test data.

  15. Stress Rupture Life Reliability Measures for Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Thesken, John C.; Phoenix, S. Leigh; Grimes-Ledesma, Lorie

    2007-01-01

    Composite Overwrapped Pressure Vessels (COPVs) are often used for storing pressurant gases onboard spacecraft. Kevlar (DuPont), glass, carbon and other more recent fibers have all been used as overwraps. Due to the fact that overwraps are subjected to sustained loads for an extended period during a mission, stress rupture failure is a major concern. It is therefore important to ascertain the reliability of these vessels by analysis, since the testing of each flight design cannot be completed on a practical time scale. The present paper examines specifically a Weibull statistics based stress rupture model and considers the various uncertainties associated with the model parameters. The paper also examines several reliability estimate measures that would be of use for the purpose of recertification and for qualifying flight worthiness of these vessels. Specifically, deterministic values for a point estimate, mean estimate and 90/95 percent confidence estimates of the reliability are all examined for a typical flight quality vessel under constant stress. The mean and the 90/95 percent confidence estimates are computed using Monte-Carlo simulation techniques by assuming distribution statistics of model parameters based also on simulation and on the available data, especially the sample sizes represented in the data. The data for the stress rupture model are obtained from the Lawrence Livermore National Laboratories (LLNL) stress rupture testing program, carried out for the past 35 years. Deterministic as well as probabilistic sensitivities are examined.

  16. Quantum key distribution on composite photons, polarization qutrits

    NASA Astrophysics Data System (ADS)

    Kulik, S. P.; Molotkov, S. N.; Radchenko, I. V.

    2012-11-01

    Polarization states of a photon are the most natural degrees of freedom for encoding classical information bits. The two-dimensional space of states associated with polarization degrees of freedom of the photon is insufficient for many problems of information transfer with quantum states. We propose to use the polarization degrees of freedom of composite states of photons (polarization qutrits) for secret cryptographic key distribution.

  17. Association of Mid-Life Changes in Body Size, Body Composition and Obesity Status with the Menopausal Transition.

    PubMed

    Karvonen-Gutierrez, Carrie; Kim, Catherine

    2016-01-01

    The mid-life period is a critical window for increases in body weight and changes in body composition. In this review, we summarize the clinical experience of the menopausal transition by obesity status, and examine the evidence regarding the menopausal transition and reproductive hormones effects on body weight, body composition, or fat distribution. Mid-life obesity is associated with a different menopausal experience including associations with menstrual cycle length prior to the final menstrual period (FMP), age at the FMP, and higher prevalence of vasomotor symptoms. The menopausal transition is associated with weight gain and increased central body fat distribution; the majority of evidence suggests that changes in weight are due to chronological aging whereas changes in body composition and fat distribution are primarily due to ovarian aging. Continuous and regular physical activity during mid-life may be an efficacious strategy to counteract the age-related and menopause-related changes in resting energy expenditure and to prevent weight gain and abdominal adiposity deposition. PMID:27417630

  18. Optimization of composite structures by estimation of distribution algorithms

    NASA Astrophysics Data System (ADS)

    Grosset, Laurent

    The design of high performance composite laminates, such as those used in aerospace structures, leads to complex combinatorial optimization problems that cannot be addressed by conventional methods. These problems are typically solved by stochastic algorithms, such as evolutionary algorithms. This dissertation proposes a new evolutionary algorithm for composite laminate optimization, named Double-Distribution Optimization Algorithm (DDOA). DDOA belongs to the family of estimation of distributions algorithms (EDA) that build a statistical model of promising regions of the design space based on sets of good points, and use it to guide the search. A generic framework for introducing statistical variable dependencies by making use of the physics of the problem is proposed. The algorithm uses two distributions simultaneously: the marginal distributions of the design variables, complemented by the distribution of auxiliary variables. The combination of the two generates complex distributions at a low computational cost. The dissertation demonstrates the efficiency of DDOA for several laminate optimization problems where the design variables are the fiber angles and the auxiliary variables are the lamination parameters. The results show that its reliability in finding the optima is greater than that of a simple EDA and of a standard genetic algorithm, and that its advantage increases with the problem dimension. A continuous version of the algorithm is presented and applied to a constrained quadratic problem. Finally, a modification of the algorithm incorporating probabilistic and directional search mechanisms is proposed. The algorithm exhibits a faster convergence to the optimum and opens the way for a unified framework for stochastic and directional optimization.

  19. Distribution of early life history stages of fishes in selected pools of the upper Mississippi River

    USGS Publications Warehouse

    Holland, L.E.

    1986-01-01

    Effective management of the fishery resources of the Upper Mississippi River and successful mitigation of the loss of critical habitat depend in part on an understanding of the reproductive and early life history requirements of the affected fishes. However, little is known about the use of nursery areas by fishes in the river. Of the nearly 130 species identified in the adult ichthyofauna, only a few are represented proportionally in the available data on early life stages because study designs have not included consideration of the early stages, collection gears have not adequately sampled the young, and eggs and larvae of some species are difficult to sample by conventional approaches. For the species collected, information is available on seasonal variations in total densities, composition, and catch among different habitat types. However, the data are most accurate for species with buoyant early life stages, such as freshwater drum (Aplodinotus grunniens) and gizzard shad (Dorosoma cepedianum). Eggs and larvae of freshwater drum dominate collections made in the main channel, whereas other larval fishes are usually most abundant in backwater habitats. The species found there usually deposit eggs on the substrate or on vegetation. Habitat preferences (as indicated by relative abundance) often shift as development proceeds and physical and behavioral changes occur in the larvae. Only limited information is available on the distribution of larvae within habitats, but it is clear that variations within habitats are significant.

  20. Particle size distribution dynamics during precipitative softening: declining solution composition.

    PubMed

    Nason, Jeffrey A; Lawler, Desmond F

    2009-02-01

    Particle removal is a critical step in the treatment of surface water for potable use, and the majority of drinking water treatment plants employ precipitative coagulation processes such as alum and iron "sweep-floc" coagulation or lime softening for particle pre-treatment. Unfortunately, little is quantitatively known about how particle size distributions are shaped by simultaneous precipitation and flocculation. In an earlier paper, we demonstrated the effects of the saturation ratio, the mixing intensity and the seed concentration on the rates of homogeneous nucleation, precipitative growth and flocculation during precipitation of calcium carbonate at constant solution composition using electronic particle counting techniques. In this work, we extend those findings to systems more closely emulating the conditions in actual softening processes (i.e., declining solution composition). Key findings include the strong dependence of the rate of flocculation on the initial saturation ratio and demonstration of the benefits of seeding precipitative softening from the perspective of optimizing the effluent particle size distribution. The mixing intensity during precipitation was also shown to strongly influence the final particle size distribution. Implications of the findings with respect to softening practice are discussed. PMID:18976791

  1. A Component-based Programming Model for Composite, Distributed Applications

    NASA Technical Reports Server (NTRS)

    Eidson, Thomas M.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The nature of scientific programming is evolving to larger, composite applications that are composed of smaller element applications. These composite applications are more frequently being targeted for distributed, heterogeneous networks of computers. They are most likely programmed by a group of developers. Software component technology and computational frameworks are being proposed and developed to meet the programming requirements of these new applications. Historically, programming systems have had a hard time being accepted by the scientific programming community. In this paper, a programming model is outlined that attempts to organize the software component concepts and fundamental programming entities into programming abstractions that will be better understood by the application developers. The programming model is designed to support computational frameworks that manage many of the tedious programming details, but also that allow sufficient programmer control to design an accurate, high-performance application.

  2. Influence of Material Distribution on Impact Resistance of Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Abatan, Ayu; Hu, Hurang

    1998-01-01

    Impact events occur in a wide variety of circumstances. A typical example is a bullet impacting a target made of composite material. These impact events produce time-varying loads on a structure that can result in damage. As a first step to understanding the damage resistance issue in composite laminates, an accurate prediction of the transient response during an impact event is necessary. The analysis of dynamic loadings on laminated composite plates has undergone considerable development recently. Rayleigh-Ritz energy method was used to determine the impact response of laminated plates. The impact response of composite plates using shear deformation plate theory was analyzed. In recent work a closed-form solution was obtained for a rectangular plate with four edges simply supported subjected to a center impact load using classical plate theory. The problem was further investigated and the analysis results compared of both classical plate theory and shear deformation theory, and found that classical plate theory predicts very accurate results for the range of small deformations considered. In this study, the influence of cross sectional material distribution on the comparative impact responses of hybrid metal laminates subjected to low and medium velocity impacts is investigated. A simple linear model to evaluate the magnitude of the impact load is proposed first, and it establishes a relation between the impact velocity and the impact force. Then a closed-form solution for impact problem is presented. The results were compared with the finite element analysis results. For an 11 layer-hybrid laminate, the impact response as a function of material distribution in cross-section is presented. With equal areal weight, the effect of the number of laminate layers on the impact resistance is also investigated. Finally, the significance of the presented results is discussed.

  3. Three-Axis Distributed Fiber Optic Strain Measurement in 3D Woven Composite Structures

    NASA Technical Reports Server (NTRS)

    Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

    2013-01-01

    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading. Keywords: fiber optic, distributed strain sensing, Rayleigh scatter, optical frequency domain reflectometry

  4. Composition and analysis of a model waste for a CELSS (Controlled Ecological Life Support System)

    NASA Technical Reports Server (NTRS)

    Wydeven, T. J.

    1983-01-01

    A model waste based on a modest vegetarian diet is given, including composition and elemental analysis. Its use is recommended for evaluation of candidate waste treatment processes for a Controlled Ecological Life Support System (CELSS).

  5. Aging behavior and life prediction of graphite composites

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Raasch, David

    1989-01-01

    This paper presents experimental data from two independent tests, designed to determine the long-term reliability of composite materials. The technique of accelerated aging at elevated temperatures is employed. In the first set, graphite fiber, epoxy composites in five ply layups are manufactured and tested in the standard short-beam shear mode. In the second set, Nomex honeycomb, graphite fiber/epoxy composite face and rear sheet sandwich coupons are tested. After satisfying simple consistency checks, data interpretation is attempted within the framework of an Arrhenius degradation model. The elevated temperature is assumed to influence the degradation according to this temperature-dependent rate law. From these tests on five-ply composites and honeycomb sandwiches, it is concluded that aging is not a serious problem.

  6. Carbon nanofiber polymer composites: evaluation of life cycle energy use.

    PubMed

    Khanna, Vikas; Bakshi, Bhavik R

    2009-03-15

    Holistic evaluation of emerging nanotechnologies using systems analysis is pivotal for guiding their safe and sustainable development. While toxicity studies of engineered nanomaterials are essential, understanding of the potential large scale impacts of nanotechnology is also critical for developing sustainable nanoproducts. This work evaluates the life cycle energetic impact associated with the production and use of carbon nanofiber (CNF) reinforced polymer nanocomposites (PNC). Specifically, both simple CNF and carbon nanofiber-glass fiber (CNF-GF) hybrid PNCs are evaluated and compared with steel for equal stiffness design. Life cycle inventory is developed based on published literature and best available engineering information. A cradle-to-gate comparison suggests that for equal stiffness design, CNF reinforced PNCs are 1.6-12 times more energy intensive than steel. It is anticipated that the product use phase may strongly influence whether any net savings in life cycle energy consumption can be realized. A case study involving the use of CNF and CNF-GF reinforced PNCs in the body panels of automobiles highlights that the use of PNCs with lower CNF loading ratios has the potential for net life cycle energy savings relative to steel owing to improved fuel economy benefits. Other factors such as cost, toxicity impact of CNF, and end-of-life issues specific to CNFs need to be considered to evaluate the final economic and environmental performance of CNF reinforced PNC materials. PMID:19368217

  7. Waste tire derived carbon-polymer composite paper as pseudocapacitive electrode with long cycle life

    DOE PAGESBeta

    Boota, M.; Paranthaman, Mariappan Parans; Naskar, Amit K.; Gogotsi, Yury; Li, Yunchao; Akato, Kokouvi

    2015-09-25

    Recycling hazardous wastes to produce value-added products is becoming essential for the sustainable progress of our society. Herein, highly porous carbon (1625 m2/g–1) is synthesized using waste tires as the precursor and used as supercapacitor electrode. The narrow pore size distribution (PSD) and high surface area led to a good charge storage capacity, especially when used as a three-dimensional nanoscaffold to polymerize polyaniline (PANI/TC). The composite film was highly flexible, conductive and exhibited a capacitance of 480 F/g–1 at 1 mV/s–1 with excellent capacitance retention up to 98% after 10,000 charge/discharge cycles. The high capacitance and long cycle life weremore » ascribed to the short diffusional paths, uniform PANI coating and tight confinement of the PANI in the inner pores of the tire-derived carbon via - interactions, which minimized the degradation of the PANI upon cycling. Here, we anticipate that the same strategy can be applied to deposit other pseudocapacitive materials with low-cost TC to achieve even higher electrochemical performance and longer cycle life, a key challenge for redox active polymers.« less

  8. Waste Tire Derived Carbon-Polymer Composite Paper as Pseudocapacitive Electrode with Long Cycle Life.

    PubMed

    Boota, M; Paranthaman, M Parans; Naskar, Amit K; Li, Yunchao; Akato, Kokouvi; Gogotsi, Y

    2015-11-01

    Recycling hazardous wastes to produce value-added products is becoming essential for the sustainable progress of our society. Herein, highly porous carbon (1625 m(2)  g(-1)) is synthesized using waste tires as the precursor and used as a supercapacitor electrode material. The narrow pore-size distribution and high surface area led to good charge storage capacity, especially when used as a three-dimensional nanoscaffold to polymerize polyaniline (PANI). The composite paper was highly flexible, conductive, and exhibited a capacitance of 480 F g(-1) at 1 mV s(-1) with excellent capacitance retention of up to 98% after 10,000 charge/discharge cycles. The high capacitance and long cycle life were ascribed to the short diffusional paths, uniform PANI coating, and tight confinement of the PANI in the inner pores of the tire-derived carbon through π-π interactions, which minimized the degradation of the PANI upon cycling. We anticipate that the same strategy can be applied to deposit other pseudocapacitive materials to achieve even higher electrochemical performance and longer cycle life-a key challenge for redox active polymers. PMID:26404735

  9. Waste tire derived carbon-polymer composite paper as pseudocapacitive electrode with long cycle life

    SciTech Connect

    Boota, M.; Paranthaman, Mariappan Parans; Naskar, Amit K.; Gogotsi, Yury; Li, Yunchao; Akato, Kokouvi

    2015-09-25

    Recycling hazardous wastes to produce value-added products is becoming essential for the sustainable progress of our society. Herein, highly porous carbon (1625 m2/g–1) is synthesized using waste tires as the precursor and used as supercapacitor electrode. The narrow pore size distribution (PSD) and high surface area led to a good charge storage capacity, especially when used as a three-dimensional nanoscaffold to polymerize polyaniline (PANI/TC). The composite film was highly flexible, conductive and exhibited a capacitance of 480 F/g–1 at 1 mV/s–1 with excellent capacitance retention up to 98% after 10,000 charge/discharge cycles. The high capacitance and long cycle life were ascribed to the short diffusional paths, uniform PANI coating and tight confinement of the PANI in the inner pores of the tire-derived carbon via - interactions, which minimized the degradation of the PANI upon cycling. Here, we anticipate that the same strategy can be applied to deposit other pseudocapacitive materials with low-cost TC to achieve even higher electrochemical performance and longer cycle life, a key challenge for redox active polymers.

  10. Body composition in infancy: impact on health later in life

    Technology Transfer Automated Retrieval System (TEKTRAN)

    From retrospective studies, there is substantial evidence that birthweight and the rate of weight gain during early infancy are associated with increased risk for adverse health outcomes later in life. Birthweight is the marker of the integrative effects of the prenatal environment, while the rate o...

  11. The life times of polymer composites in construction

    NASA Astrophysics Data System (ADS)

    Meier, Urs

    2016-05-01

    This paper discusses examples that prove the long-term reliability of Fiber Reinforced Polymers (FRP) under extreme loading conditions and outdoor weathering. Results of polymer/steel-composite anchorage systems, Glass Fiber Reinforced Polymer (GFRP) plates and shells, GFRP box girders, Carbon Fiber Reinforced Polymer (CFRP) post-tensioning tendons and CFRP stays are going to be presented.

  12. Particle size distribution dynamics during precipitative softening: constant solution composition.

    PubMed

    Nason, Jeffrey A; Lawler, Desmond F

    2008-08-01

    In the treatment of surface water for potable use, precipitative coagulation (e.g., lime softening, alum or iron sweep coagulation) is widely utilized prior to particle removal processes. The particle size distribution (PSD) formed during such processes is a prime determinant of the removal efficiency for suspended and dissolved contaminants, but little is known quantitatively about how PSDs change by simultaneous precipitation and flocculation. Using precipitative softening as an example, detailed measurements of the PSD (using electronic particle counting) were made during precipitation of CaCO(3) under conditions of constant solution composition. Examination of the time-varying PSDs revealed dramatic changes resulting from nucleation, crystal growth, and flocculation. The influence of the saturation ratio, seed concentration, and mixing intensity on those processes was quantified. Implications with respect to the design and operation of water treatment facilities are discussed. PMID:18656223

  13. Spatial distribution and life-history aspects of blackspot seabream Pagellus bogaraveo (Osteichthyes: Sparidae).

    PubMed

    Mytilineou, Ch; Tsagarakis, K; Bekas, P; Anastasopoulou, A; Kavadas, S; Machias, A; Haralabous, J; Smith, C J; Petrakis, G; Dokos, J; Kapandagakis, A

    2013-12-01

    Spatial distribution and life history aspects of Pagellus bogaraveo in the eastern Ionian Sea were investigated using the data from 13 different studies carried out in the area from 1983 to 2010. The spatial patterns of the abundance, biomass and mean size showed that the species inhabits the shallow waters of the shelf (<170 m depth) as juveniles up to a certain size (<180 mm total length, LT ), moving to deeper waters of the slope (mainly 400-500 m depth) as adults. The spatial pattern of abundance indicated a continuous distribution of the species in deep waters, with hot-spot areas of high values, whereas in shallow waters distribution was more discontinuous, with higher concentrations of juveniles in estuaries and brackish waters. The study of biological aspects of the species revealed (1) a difference in the increase in mass between males and females, (2) protandrous hermaphroditism, accompanied by the presence of primary females and males that do not change sex, (3) a sex ratio in favour of females >250 mm LT , (4) the presence of hermaphrodites between 200 and 370 mm, (5) a long reproduction period from June to March, (6) a size at first maturity around 300 mm and (7) a diet composition of adults based mainly on fishes, and also on opportunistic behaviour in the food scarce environment of deep waters. The results suggest that the species' distribution and feeding strategies are the most appropriate for the oligotrophic eastern Ionian waters and that these conditions result in smaller sizes of the species in the east Mediterranean Sea compared to the west basin and the east Atlantic Ocean, with implications for the growth and reproductive biology of the species. PMID:24298951

  14. Trends in the Diversity, Distribution and Life History Strategy of Arctic Hydrozoa (Cnidaria)

    PubMed Central

    Ronowicz, Marta; Kukliński, Piotr; Mapstone, Gillian M.

    2015-01-01

    This is the first attempt to compile a comprehensive and updated species list for Hydrozoa in the Arctic, encompassing both hydroid and medusa stages and including Siphonophorae. We address the hypothesis that the presence of a pelagic stage (holo- or meroplanktonic) was not necessary to successfully recolonize the Arctic by Hydrozoa after the Last Glacial Maximum. Presence-absence data of Hydrozoa in the Arctic were prepared on the basis of historical and present-day literature. The Arctic was divided into ecoregions. Species were grouped into distributional categories according to their worldwide occurrences. Each species was classified according to life history strategy. The similarity of species composition among regions was calculated with the Bray-Curtis index. Average and variation in taxonomic distinctness were used to measure diversity at the taxonomic level. A total of 268 species were recorded. Arctic-boreal species were the most common and dominated each studied region. Nineteen percent of species were restricted to the Arctic. There was a predominance of benthic species over holo- and meroplanktonic species. Arctic, Arctic-Boreal and Boreal species were mostly benthic, while widely distributed species more frequently possessed a pelagic stage. Our results support hypothesis that the presence of a pelagic stage (holo- or meroplanktonic) was not necessary to successfully recolonize the Arctic. The predominance of benthic Hydrozoa suggests that the Arctic could have been colonised after the Last Glacial Maximum by hydroids rafting on floating substrata or recolonising from glacial refugia. PMID:25793294

  15. Morphology, size distribution and elemental composition of several dental debris

    NASA Astrophysics Data System (ADS)

    Abe, Shigeaki; Iwadera, Nobuki; Esaki, Mitsue; Aoyama, Ken-Ichi; Akasaka, Tsukasa; Uo, Motohiro; Morita, Manabu; Yawaka, Yasutaka; Watari, Fumio

    2012-12-01

    We investigated morphologies, size distributions and elemental compositions of dental debris formed by cutting/grinding teeth or dental alloys. The average size of debris formed by cutting/grinding dental alloy was around 100 μm and that of teeth was 20 μm. The debris formed by grinding with diamond or carborundum point had isotropic irregular shape, while the debris formed by cutting with carbide bar had characteristic lathe-cut shape. The elemental analysis indicated that the debris formed by grinding dental alloy with carborundum point consisted of not only the particles of the alloy but also the particles of Si compounds with the size of around 10 μm. The particles of Si compounds would be formed by abrasion of the grinding instrument (carborundum, SiC). Similarly, the debris formed by grinding with diamond point also contained submicro-sized particles consisting of C compounds. The results indicate that the morphology and composition of dental debris are varied depending on the combination between the workpiece and the cutting/grinding materials and that the dental debris consist of both the workpiece and the cutting/grinding materials in some combination. In addition, some of the debris of tooth had the size less than 2 μm, which has a potential to induce inflammation. Though the inflammation can be expected at low level, it is required to investigate the details in future.

  16. Stress distribution in composite flatwise tension test specimens

    NASA Technical Reports Server (NTRS)

    Scott, Curtis A.; Pereira, J. Michael

    1993-01-01

    A finite element analysis was conducted to determine the stress distribution in typical graphite/epoxy composite flat wise tension (FWT) specimens under normal loading conditions. The purpose of the analysis was to determine the relationship between the applied load and the stress in the sample to evaluate the validity of the test as a means of measuring the out-of-plane strength of a composite laminate. Three different test geometries and three different material lay ups were modeled. In all cases, the out-of-plane component of stress in the test section was found to be uniform, with no stress concentrations, and very close to the nominal applied stress. The stress in the sample was found to be three-dimensional, and the magnitude of in-plane normal and shear stresses varied with the anisotropy of the test specimen. However, in the cases considered here, these components of stress were much smaller than the out-of-plane normal stress. The geometry of the test specimen had little influence on the results. It was concluded that the flat wise tension test provides a good measure of the out-of-plane strength for the representative materials that were studied.

  17. Particle size distributions of polyaniline-silica colloidal composites

    SciTech Connect

    Gill, M.; Armes, S.P. ); Fairhurst, D. ); Emmett, S.N. ); Idzorek, G.; Pigott, T. )

    1992-09-01

    We have characterized a new polyaniline-silica composite colloid by various particle sizing techniques. Our transmission electron microscopy studies have confirmed for the first time an unusual raspberry morphology, with the small silica particles held together by the polyaniline [open quotes]binder[close quotes]. These particles have average diameters in the size range 150-500 nm. Charge-velocity analysis experiments indicated a number-average particle diameter of 300 [plus minus] 80 nm, but only poor statistics were obtained (172 particles counted). Photon correlation spectroscopy studies suggested an intensity-average particle diameter of 380 nm. Disk centrifuge photosedimentometry (DCP) turned out to be our preferred sizing technique for the polyaniline-silica colloids, since it was both quick and reliable and, more importantly, produced the true particle size distribution (PSD) curve with excellent statistics. The DCP data indicated a weight-average and number-average particle diameter of 330 [plus minus] 70 nm and 280 [plus minus] 70 nm, respectively, and moreover confirmed the PSD to be both broad and unimodal. Finally, these colloidal composites were sized using the Malvern Aerosizer. Using this instrument in conjunction with a nebulizer attachment (which allowed particle sizing of the [open quotes]wet[close quotes] dispersion) rather than in the conventional [open quotes]dry powder[close quotes] mode, we obtained particle size data which were in reasonable agreement with the DCP results. 31 refs., 5 figs., 1 tab.

  18. Three-axis distributed fiber optic strain measurement in 3D woven composite structures

    NASA Astrophysics Data System (ADS)

    Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

    2013-03-01

    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading.

  19. Ionic Conduction in Lithium Ion Battery Composite Electrode Governs Cross-sectional Reaction Distribution

    NASA Astrophysics Data System (ADS)

    Orikasa, Yuki; Gogyo, Yuma; Yamashige, Hisao; Katayama, Misaki; Chen, Kezheng; Mori, Takuya; Yamamoto, Kentaro; Masese, Titus; Inada, Yasuhiro; Ohta, Toshiaki; Siroma, Zyun; Kato, Shiro; Kinoshita, Hajime; Arai, Hajime; Ogumi, Zempachi; Uchimoto, Yoshiharu

    2016-05-01

    Composite electrodes containing active materials, carbon and binder are widely used in lithium-ion batteries. Since the electrode reaction occurs preferentially in regions with lower resistance, reaction distribution can be happened within composite electrodes. We investigate the relationship between the reaction distribution with depth direction and electronic/ionic conductivity in composite electrodes with changing electrode porosities. Two dimensional X-ray absorption spectroscopy shows that the reaction distribution is happened in lower porosity electrodes. Our developed 6-probe method can measure electronic/ionic conductivity in composite electrodes. The ionic conductivity is decreased for lower porosity electrodes, which governs the reaction distribution of composite electrodes and their performances.

  20. Ionic Conduction in Lithium Ion Battery Composite Electrode Governs Cross-sectional Reaction Distribution

    PubMed Central

    Orikasa, Yuki; Gogyo, Yuma; Yamashige, Hisao; Katayama, Misaki; Chen, Kezheng; Mori, Takuya; Yamamoto, Kentaro; Masese, Titus; Inada, Yasuhiro; Ohta, Toshiaki; Siroma, Zyun; Kato, Shiro; Kinoshita, Hajime; Arai, Hajime; Ogumi, Zempachi; Uchimoto, Yoshiharu

    2016-01-01

    Composite electrodes containing active materials, carbon and binder are widely used in lithium-ion batteries. Since the electrode reaction occurs preferentially in regions with lower resistance, reaction distribution can be happened within composite electrodes. We investigate the relationship between the reaction distribution with depth direction and electronic/ionic conductivity in composite electrodes with changing electrode porosities. Two dimensional X-ray absorption spectroscopy shows that the reaction distribution is happened in lower porosity electrodes. Our developed 6-probe method can measure electronic/ionic conductivity in composite electrodes. The ionic conductivity is decreased for lower porosity electrodes, which governs the reaction distribution of composite electrodes and their performances. PMID:27193448

  1. Ionic Conduction in Lithium Ion Battery Composite Electrode Governs Cross-sectional Reaction Distribution.

    PubMed

    Orikasa, Yuki; Gogyo, Yuma; Yamashige, Hisao; Katayama, Misaki; Chen, Kezheng; Mori, Takuya; Yamamoto, Kentaro; Masese, Titus; Inada, Yasuhiro; Ohta, Toshiaki; Siroma, Zyun; Kato, Shiro; Kinoshita, Hajime; Arai, Hajime; Ogumi, Zempachi; Uchimoto, Yoshiharu

    2016-01-01

    Composite electrodes containing active materials, carbon and binder are widely used in lithium-ion batteries. Since the electrode reaction occurs preferentially in regions with lower resistance, reaction distribution can be happened within composite electrodes. We investigate the relationship between the reaction distribution with depth direction and electronic/ionic conductivity in composite electrodes with changing electrode porosities. Two dimensional X-ray absorption spectroscopy shows that the reaction distribution is happened in lower porosity electrodes. Our developed 6-probe method can measure electronic/ionic conductivity in composite electrodes. The ionic conductivity is decreased for lower porosity electrodes, which governs the reaction distribution of composite electrodes and their performances. PMID:27193448

  2. Asteroid taxonomy and the distribution of the compositional types

    NASA Technical Reports Server (NTRS)

    Zellner, B.

    1979-01-01

    Physical observations of minor planets documented in the TRIAD computer file are used to classify 752 objects into the broad compositional types C, S, M, E, R, and U (unclassifiable) according to the prescriptions adopted by Bowell et al. (1978). Diameters are computed from the photometric magnitude using radiometric and/or polarimetric data where available, or else from albedos characteristic of the indicated type. An analysis of the observational selection effects leads to tabulation of the actual number of asteroids, as a function of type and diameter, in each of 15 orbital element zones. For the whole main belt the population is 75% of type C, 15% of type S, and 10% of other types, with no belt-wide dependence of the mixing ratios on diameter. In some zones the logarithmic diameter-frequency relations are decidedly nonlinear. The relative frequency of S-type objects decreases smoothly outward through the main belt, with exponential scale length 0.5 AU. The rarer types show a more chaotic, but generally flatter, distribution over distance. Characteristic type distributions, contrasting with the background population, are found for the Eos, Koronis, Nysa and Themis families.

  3. Fuel Distribution Estimate via Spin Period to Precession Period Ratio for the Advanced Composition Explorer

    NASA Technical Reports Server (NTRS)

    DeHart, Russell; Smith, Eric; Lakin, John

    2015-01-01

    The spin period to precession period ratio of a non-axisymmetric spin-stabilized spacecraft, the Advanced Composition Explorer (ACE), was used to estimate the remaining mass and distribution of fuel within its propulsion system. This analysis was undertaken once telemetry suggested that two of the four fuel tanks had no propellant remaining, contrary to pre-launch expectations of the propulsion system performance. Numerical integration of possible fuel distributions was used to calculate moments of inertia for the spinning spacecraft. A Fast Fourier Transform (FFT) of output from a dynamics simulation was employed to relate calculated moments of inertia to spin and precession periods. The resulting modeled ratios were compared to the actual spin period to precession period ratio derived from the effect of post-maneuver nutation angle on sun sensor measurements. A Monte Carlo search was performed to tune free parameters using the observed spin period to precession period ratio over the life of the mission. This novel analysis of spin and precession periods indicates that at the time of launch, propellant was distributed unevenly between the two pairs of fuel tanks, with one pair having approximately 20% more propellant than the other pair. Furthermore, it indicates the pair of the tanks with less fuel expelled all of its propellant by 2014 and that approximately 46 kg of propellant remains in the other two tanks, an amount that closely matches the operational fuel accounting estimate. Keywords: Fuel Distribution, Moments of Inertia, Precession, Spin, Nutation

  4. Energy, ecology and the distribution of microbial life

    PubMed Central

    Macalady, Jennifer L.; Hamilton, Trinity L.; Grettenberger, Christen L.; Jones, Daniel S.; Tsao, Leah E.; Burgos, William D.

    2013-01-01

    Mechanisms that govern the coexistence of multiple biological species have been studied intensively by ecologists since the turn of the nineteenth century. Microbial ecologists in the meantime have faced many fundamental challenges, such as the lack of an ecologically coherent species definition, lack of adequate methods for evaluating population sizes and community composition in nature, and enormous taxonomic and functional diversity. The accessibility of powerful, culture-independent molecular microbiology methods offers an opportunity to close the gap between microbial science and the main stream of ecological theory, with the promise of new insights and tools needed to meet the grand challenges humans face as planetary engineers and galactic explorers. We focus specifically on resources related to energy metabolism because of their direct links to elemental cycling in the Earth's history, engineering applications and astrobiology. To what extent does the availability of energy resources structure microbial communities in nature? Our recent work on sulfur- and iron-oxidizing autotrophs suggests that apparently subtle variations in the concentration ratios of external electron donors and acceptors select for different microbial populations. We show that quantitative knowledge of microbial energy niches (population-specific patterns of energy resource use) can be used to predict variations in the abundance of specific taxa in microbial communities. Furthermore, we propose that resource ratio theory applied to micro-organisms will provide a useful framework for identifying how environmental communities are organized in space and time. PMID:23754819

  5. Altered potassium channel distribution and composition in myelinated axons suppresses hyperexcitability following injury

    PubMed Central

    Calvo, Margarita; Richards, Natalie; Schmid, Annina B; Barroso, Alejandro; Zhu, Lan; Ivulic, Dinka; Zhu, Ning; Anwandter, Philipp; Bhat, Manzoor A; Court, Felipe A; McMahon, Stephen B; Bennett, David LH

    2016-01-01

    Neuropathic pain following peripheral nerve injury is associated with hyperexcitability in damaged myelinated sensory axons, which begins to normalise over time. We investigated the composition and distribution of shaker-type-potassium channels (Kv1 channels) within the nodal complex of myelinated axons following injury. At the neuroma that forms after damage, expression of Kv1.1 and 1.2 (normally localised to the juxtaparanode) was markedly decreased. In contrast Kv1.4 and 1.6, which were hardly detectable in the naïve state, showed increased expression within juxtaparanodes and paranodes following injury, both in rats and humans. Within the dorsal root (a site remote from injury) we noted a redistribution of Kv1-channels towards the paranode. Blockade of Kv1 channels with α-DTX after injury reinstated hyperexcitability of A-fibre axons and enhanced mechanosensitivity. Changes in the molecular composition and distribution of axonal Kv1 channels, therefore represents a protective mechanism to suppress the hyperexcitability of myelinated sensory axons that follows nerve injury. DOI: http://dx.doi.org/10.7554/eLife.12661.001 PMID:27033551

  6. Testing and Life Prediction for Composite Rotor Hub Flexbeams

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.

    2004-01-01

    A summary of several studies of delamination in tapered composite laminates with internal ply-drops is presented. Initial studies used 2D FE models to calculate interlaminar stresses at the ply-ending locations in linear tapered laminates under tension loading. Strain energy release rates for delamination in these laminates indicated that delamination would likely start at the juncture of the tapered and thin regions and grow unstably in both directions. Tests of glass/epoxy and graphite/epoxy linear tapered laminates under axial tension delaminated as predicted. Nonlinear tapered specimens were cut from a full-size helicopter rotor hub and were tested under combined constant axial tension and cyclic transverse bending loading to simulate the loading experienced by a rotorhub flexbeam in flight. For all the tested specimens, delamination began at the tip of the outermost dropped ply group and grew first toward the tapered region. A 2D FE model was created that duplicated the test flexbeam layup, geometry, and loading. Surface strains calculated by the model agreed very closely with the measured surface strains in the specimens. The delamination patterns observed in the tests were simulated in the model by releasing pairs of MPCs along those interfaces. Strain energy release rates associated with the delamination growth were calculated for several configurations and using two different FE analysis codes. Calculations from the codes agreed very closely. The strain energy release rate results were used with material characterization data to predict fatigue delamination onset lives for nonlinear tapered flexbeams with two different ply-dropping schemes. The predicted curves agreed well with the test data for each case studied.

  7. Effect of Internal Clearance on Load Distribution and Life of Radially Loaded Ball and Roller Bearings

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Zaretsky, Erwin V.; Poplawski, Joseph V.

    2012-01-01

    The effect of internal clearance on radially loaded deepgroove ball and cylindrical roller bearing load distribution and fatigue life was determined for four clearance groups defined in the bearing standards. The analysis was extended to negative clearance (interference) conditions to produce a curve of life factor versus internal clearance. Rolling-element loads can be optimized and bearing life maximized for a small negative operating clearance. Life declines gradually with positive clearance and rapidly with increasing negative clearance. Relationships were found between bearing life and internal clearance as a function of ball or roller diameter, adjusted for load. Results are presented as life factors for radially loaded bearings independent of bearing size or applied load. In addition, a modified Stribeck Equation is presented that relates the maximum rolling-element load to internal bearing clearance.

  8. Physical Activity, Body Composition, and Perceived Quality of Life of Adults with Visual Impairments

    ERIC Educational Resources Information Center

    Holbrook, Elizabeth A.; Caputo, Jennifer L.; Perry, Tara L.; Fuller, Dana K.; Morgan, Don W.

    2009-01-01

    Relatively little is known about the health and fitness of adults with visual impairments. This article documents the physical activity levels and body-composition profiles of young and middle-aged adults with visual impairments and addresses the concomitant effects of these factors on perceived quality of life. (Contains 2 tables.)

  9. Strength and fatigue life evaluation of composite laminate with embedded sensors

    NASA Astrophysics Data System (ADS)

    Rathod, Vivek T.; Hiremath, S. R.; Roy Mahapatra, D.

    2014-04-01

    Prognosis regarding durability of composite structures using various Structural Health Monitoring (SHM) techniques is an important and challenging topic of research. Ultrasonic SHM systems with embedded transducers have potential application here due to their instant monitoring capability, compact packaging potential toward unobtrusiveness and noninvasiveness as compared to non-contact ultrasonic and eddy current techniques which require disassembly of the structure. However, embedded sensors pose a risk to the structure by acting as a flaw thereby reducing life. The present paper focuses on the determination of strength and fatigue life of the composite laminate with embedded film sensors like CNT nanocomposite, PVDF thin films and piezoceramic films. First, the techniques of embedding these sensors in composite laminates is described followed by the determination of static strength and fatigue life at coupon level testing in Universal Testing Machine (UTM). Failure mechanisms of the composite laminate with embedded sensors are studied for static and dynamic loading cases. The coupons are monitored for loading and failure using the embedded sensors. A comparison of the performance of these three types of embedded sensors is made to study their suitability in various applications. These three types of embedded sensors cover a wide variety of applications, and prove to be viable in embedded sensor based SHM of composite structures.

  10. Strong neutral spatial effects shape tree species distributions across life stages at multiple scales.

    PubMed

    Hu, Yue-Hua; Lan, Guo-Yu; Sha, Li-Qing; Cao, Min; Tang, Yong; Li, Yi-De; Xu, Da-Ping

    2012-01-01

    Traditionally, ecologists use lattice (regional summary) count data to simulate tree species distributions to explore species coexistence. However, no previous study has explicitly compared the difference between using lattice count and basal area data and analyzed species distributions at both individual species and community levels while simultaneously considering the combined scenarios of life stage and scale. In this study, we hypothesized that basal area data are more closely related to environmental variables than are count data because of strong environmental filtering effects. We also address the contribution of niche and the neutral (i.e., solely dependent on distance) factors to species distributions. Specifically, we separately modeled count data and basal area data while considering life stage and scale effects at the two levels with simultaneous autoregressive models and variation partitioning. A principal coordinates of neighbor matrix (PCNM) was used to model neutral spatial effects at the community level. The explained variations of species distribution data did not differ significantly between the two types of data at either the individual species level or the community level, indicating that the two types of data can be used nearly identically to model species distributions. Neutral spatial effects represented by spatial autoregressive parameters and the PCNM eigenfunctions drove species distributions on multiple scales, different life stages and individual species and community levels in this plot. We concluded that strong neutral spatial effects are the principal mechanisms underlying the species distributions and thus shape biodiversity spatial patterns. PMID:22666497

  11. Strong Neutral Spatial Effects Shape Tree Species Distributions across Life Stages at Multiple Scales

    PubMed Central

    Hu, Yue-Hua; Lan, Guo-Yu; Sha, Li-Qing; Cao, Min; Tang, Yong; Li, Yi-De; Xu, Da-Ping

    2012-01-01

    Traditionally, ecologists use lattice (regional summary) count data to simulate tree species distributions to explore species coexistence. However, no previous study has explicitly compared the difference between using lattice count and basal area data and analyzed species distributions at both individual species and community levels while simultaneously considering the combined scenarios of life stage and scale. In this study, we hypothesized that basal area data are more closely related to environmental variables than are count data because of strong environmental filtering effects. We also address the contribution of niche and the neutral (i.e., solely dependent on distance) factors to species distributions. Specifically, we separately modeled count data and basal area data while considering life stage and scale effects at the two levels with simultaneous autoregressive models and variation partitioning. A principal coordinates of neighbor matrix (PCNM) was used to model neutral spatial effects at the community level. The explained variations of species distribution data did not differ significantly between the two types of data at either the individual species level or the community level, indicating that the two types of data can be used nearly identically to model species distributions. Neutral spatial effects represented by spatial autoregressive parameters and the PCNM eigenfunctions drove species distributions on multiple scales, different life stages and individual species and community levels in this plot. We concluded that strong neutral spatial effects are the principal mechanisms underlying the species distributions and thus shape biodiversity spatial patterns. PMID:22666497

  12. Probabilistic Residual Strength Model Developed for Life Prediction of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Thomas, David J.; Verrilli, Michael J.; Calomino, Anthony M.

    2004-01-01

    For the next generation of reusable launch vehicles, NASA is investigating introducing ceramic matrix composites (CMCs) in place of current superalloys for structural propulsion applications (e.g., nozzles, vanes, combustors, and heat exchangers). The higher use temperatures of CMCs will reduce vehicle weight by eliminating and/or reducing cooling system requirements. The increased strength-to-weight ratio of CMCs relative to superalloys further enhances their weight savings potential. However, in order to provide safe designs for components made of these new materials, a comprehensive life prediction methodology for CMC structures needs to be developed. A robust methodology for lifing composite structures has yet to be adopted by the engineering community. Current industry design practice continues to utilize deterministic empirically based models borrowed from metals design for predicting material life capabilities. The deterministic nature of these models inadequately addresses the stochastic character of brittle composites, and their empirical reliance makes predictions beyond the experimental test conditions a risky extrapolation. A team of engineers at the NASA Glenn Research Center has been developing a new life prediction engineering model. The Probabilistic Residual Strength (PRS) model uses the residual strength of the composite as its damage metric. Expected life and material strength are both considered probabilistically to account for the observed stochastic material response. Extensive experimental testing has been carried out on C/SiC (a candidate aerospace CMC material system) in a controlled 1000 ppm O2/argon environment at elevated temperatures of 800 and 1200 C. The test matrix was established to allow observation of the material behavior, characterization of the model, and validation of the model's predictive capabilities. Sample results of the validation study are illustrated in the graphs.

  13. Life cycle strain monitoring of composite airframe structures by FBG sensors

    NASA Astrophysics Data System (ADS)

    Takahashi, I.; Sekine, K.; Kume, M.; Takeya, H.; Minakuchi, S.; Takeda, N.; Enomoto, K.

    2013-04-01

    Life cycle health monitoring technology for composite airframe structures based on strain mapping is proposed. It detects damages and deformation harmful to the structures by strain mapping using fiber Bragg grating (FBG) sensors through their life cycles including the stages of molding, machining, assembling, operation, and maintenance. In this paper, we firstly carried out a strain monitoring test of CFRP mock-up structure through the life cycle including the stage of molding, machining, assembling, and operation. The experimental result confirms that the strain which arises in each life cycle stage can be measured by FBG sensors embedded in molding stage and demonstrates the feasibility of life cycle structural health monitoring by using FBG sensors. Secondly, we conducted the strain monitoring test of CFRP scarf-repaired specimen subject to fatigue load. FBG sensors were embedded in the scarf-repaired part of the specimen and their reflection spectra were measured in uni-axial cyclic load test. Strain changes were compared with the pulse thermographic inspection. As a result, strain measured by FBG sensors changed sensitively with debonded area of repair patch, which demonstrates that the debondings of repair patches in scarf-repaired composites due to fatigue load can be detected by FBG sensors.

  14. Effect of carbide distribution on rolling-element fatigue life of AMS 5749

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Bamberger, E. N.

    1983-01-01

    Endurance tests with ball bearings made of corrosion resistant bearing steel which resulted in fatigue lives much lower than were predicted are discussed. Metallurgical analysis revealed an undesirable carbide distribution in the races. It was shown in accelerated fatigue tests in the RC rig that large, banded carbides can reduce rolling element fatigue life by a factor of approximately four. The early spalling failures on the bearing raceways are attributed to the large carbide size and banded distribution.

  15. Electrical Resistance of Ceramic Matrix Composites for Damage Detection and Life-Prediction

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Morscher, Gregory N.; Xia, Zhenhai

    2008-01-01

    The electric resistance of woven SiC fiber reinforced SiC matrix composites were measured under tensile loading conditions. The results show that the electrical resistance is closely related to damage and that real-time information about the damage state can be obtained through monitoring of the resistance. Such self-sensing capability provides the possibility of on-board/in-situ damage detection or inspection of a component during "down time". The correlation of damage with appropriate failure mechanism can then be applied to accurate life prediction for high-temperature ceramic matrix composites.

  16. [Distribution and species composition of hyporheic macroinvertebrates in a mountain stream].

    PubMed

    Zhang, Yue-wei; Yuan, Xing-zhong; Liu, Hong; Ren, Hai-qing; Deng, Wei; Wang, Xiao-feng

    2015-09-01

    Hyporheic macroinvertebrates are an important component of stream ecosystem. The composition and distribution of the hyporheic macroinvertebrates were investigated using artificial substrates in the upper reaches of Heishuitan River in August, December 2013 and April 2014. The results indicated that a total of 27 microinvertbrate species were identified in all three seasons. In summer, 22 species were identified, accounting for 81.8% of aquatic insects. 16 species were identified both in winter and spring, accounting for 75.0% and 62.5% of aquatic insects, respectively. The density of macroinvertebrate assemblage was significantly lower in summer than in winter and spring, and was the highest in spring. The biomass of macroinvertebrate assemblage was significantly higher in winter than in summer and spring, and was the lowest in summer. Species richness, Shannon index and Pielou index all had no significant difference among the three seasons. The density and richness of macroinvertebrates decreased with bed depth, and the maximum invertebrate density was found within the top 20 cm of the stream bed. Collector-filterer and collector-gatherer were the dominant functional feeding group in all three seasons. The community structure and temporal-spatial distribution of macroinvertebrates were determined by interactions and life history strategy of macroinvertebrates, and physical-chemical factors of hyporheic zone. PMID:26785569

  17. 12 CFR 2.3 - Distribution of credit life insurance income.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... employed by a third party that has contracted with the bank on an arm's-length basis to sell financial... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Distribution of credit life insurance income. 2.3 Section 2.3 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY SALES...

  18. 12 CFR 2.3 - Distribution of credit life insurance income.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... employed by a third party that has contracted with the bank on an arm's-length basis to sell financial... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Distribution of credit life insurance income. 2.3 Section 2.3 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY SALES...

  19. 12 CFR 2.3 - Distribution of credit life insurance income.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... employed by a third party that has contracted with the bank on an arm's-length basis to sell financial... 12 Banks and Banking 1 2013-01-01 2013-01-01 false Distribution of credit life insurance income. 2.3 Section 2.3 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY SALES...

  20. Fatigue life prediction of an intermetallic matrix composite at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Bartolotta, Paul A.

    1991-01-01

    A strain-based fatigue life prediction method is proposed for an intermetallic matrix composite (IMC) under tensile cyclic loadings at elevated temperatures. Styled after the Universal Slopes method, the model utilizes the composite's tensile properties to estimate fatigue life. Factors such as fiber volume ratio, number of plys and temperature dependence are implicitly incorporated into the model through these properties. The model constants are determined by using unidirectional fatigue data at temperatures of 425 and 815 C. Fatigue lives from two independent sources are used to verify the model at temperatures of 650 and 760 C. Cross-ply lives at 760 C are also predicted. It is demonstrated that the correlation between experimental and predicted lives is within a factor of two.

  1. Fatigue life prediction of an intermetallic matrix composite at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Bartolotta, P. A.

    1991-01-01

    A strain-based fatigue life prediction method is proposed for an intermetallic matrix composite (IMC) under tensile cyclic loadings at elevated temperatures. Styled after the 'Universal Slopes' method, the model utilizes the composite's tensile properties to estimate fatigue life. Factors such as fiber volume ratio (Vf), number of plys and temperature dependence are implicitly incorporated into the model through these properties. The model constants are determined by using unidirectional fatigue data at temperatures of 425 and 815 C. Fatigue lives from two independent sources are used to verify the model at temperatures of 650 and 760 C. Cross-ply lives at 760 C are also predicted. It is demonstrated that the correlation between experimental and predicted lives is within a factor of two.

  2. Identification of Heredity Kernels and Their Influence on the Life Time of Glass/Polyester Composites

    NASA Astrophysics Data System (ADS)

    Olodo, E. T.; Adjovi, E. C.; Adanhounme, V.

    2014-11-01

    One of the major problems encountered in prediction of hereditary viscoelastic behavior of polymeric composites is the determination of heredity kernels. This issue comes down to identification of the model characterizing the viscoelastic properties of these materials. The purpose of this work is to propose a model for prediction of viscoelastic nonlinear behavior of laminate composite with polyester matrix, through the study and analysis of heredity kernels and their influence on the life time of this material. Identification of this model required experimental determination at room temperature, of viscoelastic parameters of heredity kernels by macroscopic approach. These data provide predictive tools for establishment of the life time and long term stress limit under static complex loading for this type of material.

  3. Primary igneous rocks on Mars: Composition and distribution

    NASA Technical Reports Server (NTRS)

    Singer, Robert B.; Mcsween, Harry Y., Jr.

    1991-01-01

    The present knowledge of the crustal composition of Mars is synthesized and implications discussed for in-situ resource utilization. Sources of information include remote sensing observations, Viking XRF chemical measurements, and characteristics of the SNC meteorites (which most researchers now believe originated on Mars). There are a number of lines of evidence that abundant ferrous-iron rich igneous crustal rocks (and derivative soils) are available at or very near the current Martian surface at many locations on the planet. Most of these exposures show spectroscopic evidence for abundant pyroxene, consistent with basaltic compositions. The SNC meteorites, which have basaltic compositions, were also studied extensively. Interpretations of Mars crustal chemistry and mineralogy (petrology) based on these various sources are reviewed, and their consistencies and differences are discussed.

  4. Residual Strain Distribution in Bent Composite Boiler Tubes

    SciTech Connect

    Hubbard, Camden R; Gorti, Sarma B; Tang, Fei

    2006-01-01

    Kraft recovery boilers are typically constructed of carbon steel boiler tubes clad with a corrosion resistant layer, and these composite tubes are bent and welded together to form air port panels which enable the combustion air to enter the boiler. In this paper, the through-thickness residual strain in the carbon steel layer of non-heat-treated and heat-treated composite bent tubes were measured by neutron diffraction techniques and modeled by finite element modeling. The results can be used to optimize material selection and manufacturing processes to prevent stress corrosion and corrosion fatigue cracking in the boiler tubes.

  5. Erosion Coatings Developed to Increase the Life and Durability of Composites

    NASA Technical Reports Server (NTRS)

    Sutter, James K.; Naik, Subhash K.; Bowman, Cheryl L.; Siefker, Robert; Miyoshi, Kazuhisa; Perusek, Gail P.

    2004-01-01

    Both the NASA Glenn Research Center and the Allison Advanced Development Company (AADC) have worked to develop and demonstrate erosion-resistant coatings that would increase the life and durability of composite materials used in commercial aircraft engines. These composite materials reduce component weight by 20 to 30 percent and result in less fuel burn and emissions and more fuel savings. Previously, however, their use was limited because of poor erosion resistance, which causes concerns about safety and leads to high maintenance costs. The coatings were tested by the University of Cincinnati, and the composites were manufactured by Texas Composites and coated by Engelhard and NASA Glenn. Rolls-Royce Corporation uses composite materials, which are stronger and less dense than steel or titanium, to make bypass vanes for their AE3007 engines. These engines are widely used in regional jet aircraft (Embraer) and unmanned air vehicles such as the Northrop Grumman Global Hawk. Coatings developed by NASA/Rolls-Royce can reduce erosion from abrasive materials and from impurities in the air that pass over these vanes, allowing Rolls-Royce to take advantage of the benefits of composite materials over titanium without the added costs of increased maintenance and/or engine failure. The Higher Operating Temperature Propulsion Components (HOTPC) Project developed cost-effective, durable coatings as part of NASA's goal to increase aviation system capacity growth. These erosion coatings will reduce the number of special inspections or instances of discontinued service due to erosion, allowing aircraft capacity to be maintained without inconveniencing the traveling public. A specific example of extending component life showed that these coatings increased the life of graphite fiber and polymer composite bypass vanes up to 8 times over that of the uncoated vanes. This increased durability allows components to operate to full design life without the fear of wear or failure

  6. Microstructural Influence on Deformation and Fatigue Life of Composites Using the Generalized Method of Cells

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Murthy, P.; Bednarcyk, B. A.; Pineda, E. J.

    2015-01-01

    A fully coupled deformation and damage approach to modeling the response of composite materials and composite laminates is presented. It is based on the semi-­-analytical generalized method of cells (GMC) micromechanics model as well as its higher fidelity counterpart, HFGMC, both of which provide closed-form constitutive equations for composite materials as well as the micro scale stress and strain fields in the composite phases. The provided constitutive equations allow GMC and HFGMC to function within a higher scale structural analysis (e.g., finite element analysis or lamination theory) to represent a composite material point, while the availability of the micro fields allow the incorporation of lower scale sub­-models to represent local phenomena in the fiber and matrix. Further, GMC's formulation performs averaging when applying certain governing equations such that some degree of microscale field accuracy is surrendered in favor of extreme computational efficiency, rendering the method quite attractive as the centerpiece in a integrated computational material engineering (ICME) structural analysis; whereas HFGMC retains this microscale field accuracy, but at the price of significantly slower computational speed. Herein, the sensitivity of deformation and the fatigue life of graphite/epoxy PMC composites, with both ordered and disordered microstructures, has been investigated using this coupled deformation and damage micromechanics based approach. The local effects of fiber breakage and fatigue damage are included as sub-models that operate on the microscale for the individual composite phases. For analysis of laminates, classical lamination theory is employed as the global or structural scale model, while GMC/HFGMC is embedded to operate on the microscale to simulate the behavior of the composite material within each laminate layer. A key outcome of this study is the statistical influence of microstructure and micromechanics idealization (GMC or HFGMC) on

  7. Elemental composition and size distribution of particulates in Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    King, R. B.; Fordyce, J. S.; Neustadter, H. E.; Leibecki, H. F.

    1975-01-01

    Measurements were made of the elemental particle size distribution at five contrasting urban environments with different source-type distributions in Cleveland, Ohio. Air quality conditions ranged from normal to air pollution alert levels. A parallel network of high-volume cascade impactors (5-state) were used for simultaneous sampling on glass fiber surfaces for mass determinations and on Whatman-41 surfaces for elemental analysis by neutron activation for 25 elements. The elemental data are assessed in terms of distribution functions and interrelationships and are compared between locations as a function of resultant wind direction in an attempt to relate the findings to sources.

  8. Elemental composition and size distribution of particulates in Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; King, R. B.; Fordyce, J. S.; Neustadter, H. E.

    1975-01-01

    Measurements have been made of the elemental particle size distribution at five contrasting urban environments with different source-type distributions in Cleveland, Ohio. Air quality conditions ranged from normal to air pollution alert levels. A parallel network of high-volume cascade impactors (5-stage) were used for simultaneous sampling on glass fiber surfaces for mass determinations and on Whatman-41 surfaces for elemental analysis by neutron activation for 25 elements. The elemental data are assessed in terms of distribution functions and interrelationships and are compared between locations as a function of resultant wind direction in an attempt to relate the findings to sources.

  9. Bayesian Analysis of Step-Stress Accelerated Life Test with Exponential Distribution

    SciTech Connect

    Lee, J.; Pan, R.

    2012-04-01

    In this article, we propose a general Bayesian inference approach to the step-stress accelerated life test with type II censoring. We assume that the failure times at each stress level are exponentially distributed and the test units are tested in an increasing order of stress levels. We formulate the prior distribution of the parameters of life-stress function and integrate the engineering knowledge of product failure rate and acceleration factor into the prior. The posterior distribution and the point estimates for the parameters of interest are provided. Through the Markov chain Monte Carlo technique, we demonstrate a nonconjugate prior case using an industrial example. It is shown that with the Bayesian approach, the statistical precision of parameter estimation is improved and, consequently, the required number of failures could be reduced.

  10. Distributed multifunctional sensor network for composite structural state sensing

    NASA Astrophysics Data System (ADS)

    Qing, Xinlin P.; Wang, Yishou; Gao, Limin; Kumar, Amrita

    2012-04-01

    Advanced fiber reinforced composite materials are becoming the main structural materials of next generation of aircraft because of their high strength and stiffness to weight ratios, and strong designability. In order to take full advantages of composite materials, there is a need to develop an embeddable multifunctional sensing system to allow a structure to "feel" and "think" its structural state. In this paper, the concept of multifunctional sensor network integrated with a structure, similar to the human nervous system, has been developed. Different types of network sensors are permanently integrated within a composite structure to sense structural strain, temperature, moisture, aerodynamic pressure; monitor external impact on the structure; and detect structural damages. Utilizing this revolutionary concept, future composite structures can be designed and manufactured to provide multiple modes of information, so that the structures have the capabilities for intelligent sensing, environmental adaptation and multi-functionality. The challenges for building such a structural state sensing system and some solutions to address the challenges are also discussed in the paper.

  11. Validation of Framework Code Approach to a Life Prediction System for Fiber Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Gravett, Phillip

    1997-01-01

    The grant was conducted by the MMC Life Prediction Cooperative, an industry/government collaborative team, Ohio Aerospace Institute (OAI) acted as the prime contractor on behalf of the Cooperative for this grant effort. See Figure I for the organization and responsibilities of team members. The technical effort was conducted during the period August 7, 1995 to June 30, 1996 in cooperation with Erwin Zaretsky, the LERC Program Monitor. Phil Gravett of Pratt & Whitney was the principal technical investigator. Table I documents all meeting-related coordination memos during this period. The effort under this grant was closely coordinated with an existing USAF sponsored program focused on putting into practice a life prediction system for turbine engine components made of metal matrix composites (MMC). The overall architecture of the NMC life prediction system was defined in the USAF sponsored program (prior to this grant). The efforts of this grant were focussed on implementing and tailoring of the life prediction system, the framework code within it and the damage modules within it to meet the specific requirements of the Cooperative. T'he tailoring of the life prediction system provides the basis for pervasive and continued use of this capability by the industry/government cooperative. The outputs of this grant are: 1. Definition of the framework code to analysis modules interfaces, 2. Definition of the interface between the materials database and the finite element model, and 3. Definition of the integration of the framework code into an FEM design tool.

  12. Surface composition and barium evaporation rate of ``pedigreed'' impregnated tungsten dispenser cathodes during accelerated life testing

    NASA Astrophysics Data System (ADS)

    Tomich, D. H.; Mescher, J. A.; Grant, J. T.

    1987-03-01

    A study has been made of the surface composition and barium evaporation rate of "pedigreed" impregnated tungsten dispenser cathodes. The effect of air exposure on coated cathodes was examined and was found to have no significant effect on barium evaporation rate although in some cases longer reactivation times were required. No changes in surface topography were apparent following air exposure and reactivation. Life testing was done at 100°C above the typical operating temperature for the cathode, where the typical operating temperature was taken to be 950°C for coated cathodes and 1050°C for uncoated cathodes. The cathodes were examined at different stages of life testing, up to 1200 h. Significant decreases in barium evaporation rates were found after as few as 500 h of life testing. After 1000 h the evaporation rate had decreased more than an order of magnitude. Changes in surface composition were also found. The effects of tungsten particle size, used in manufacture of the billet, on barium evaporation rate were also studied but no correlation was found.

  13. Space Station environmental control and life support system distribution and loop closure studies

    NASA Technical Reports Server (NTRS)

    Humphries, William R.; Reuter, James L.; Schunk, Richard G.

    1986-01-01

    The NASA Space Station's environmental control and life support system (ECLSS) encompasses functional elements concerned with temperature and humidity control, atmosphere control and supply, atmosphere revitalization, fire detection and suppression, water recovery and management, waste management, and EVA support. Attention is presently given to functional and physical module distributions of the ECLSS among these elements, with a view to resource requirements and safety implications. A strategy of physical distribution coupled with functional centralization is for the air revitalization and water reclamation systems. Also discussed is the degree of loop closure desirable in the initial operational capability status Space Station's oxygen and water reclamation loops.

  14. Quantifying distributed damage in composites via the thermoelastic effect

    SciTech Connect

    Mahoney, B.J.

    1992-01-01

    A new approach toward quantifying transverse matrix cracking in composite laminates using the thermoelastic effect is developed. The thermoelastic effect refers to the small temperature changes that are generated in components under dynamic loading. Two models are derived, and the theoretical predictions are experimentally verified for three types of laminates. Both models include damage-induced changes in the lamina stress state and lamina coefficients of thermal expansion conduction effects, and epoxy thickness. The first model relates changes in the laminate TSA signal to changes in longitudinal laminate stiffness and Poisson's ratio. This model is based on gross simplifying assumptions and can be used on any composite laminate layup undergoing transverse matrix cracking. The second model relates TSA signal changes to longitudinal laminate stiffness, Poisson's ratio, and microcrack density for (0[sub p]90[sub q])[sub s] and (90[sub q]/0[sub p])[sub s] cross-ply laminates. Both models yield virtually identical results for the cross-ply laminates considered. A sensitivity analysis is performed on both models to quantify the effects of reasonable property variations on the normalized stiffness vs. normalized TSA signal results for the three laminates under consideration. The results for the cross-ply laminates are very insensitive, while the (+/- 45)[sub 5s] are particularly sensitive to epoxy thickness and longitudinal lamina coefficient of thermal expansion. Experiments are conducted on (0[sub 3]/90[sub 3])[sub s] and (90[sub 3]/0[sub 3])[sub s] Gl/Ep laminates and (+/- 45)[sub 5s] Gr/Ep laminates to confirm the theoretical developments of the thesis. There is a very good correlation between the theoretical predictions and experimental results for the Gl/Ep laminates.

  15. Behavioural early-life exposures and body composition at age 15 years

    PubMed Central

    Leary, S D; Lawlor, D A; Davey Smith, G; Brion, M J; Ness, A R

    2015-01-01

    Background/Objectives: Previous studies have demonstrated associations between some early-life exposures and later obesity, but most have used body mass index in childhood or adulthood as the outcome. The objective of this study was to investigate whether early-life exposures were associated with directly measured fat and lean mass in adolescence. Subjects/Methods: This study used data on 4750 mother–offspring pairs, collected as a part of the Avon Longitudinal Study of Parents and Children, Bristol, UK between 1991 and 1992; associations between behavioural exposures occurring from conception up to 5 years of age (maternal and paternal smoking during pregnancy, breastfeeding, age at introduction to solids, dietary patterns and physical inactivity during early childhood) and offspring body composition measured by dual-energy X-ray absorptiometry at ~15 years were assessed. Results: After full adjustment for potential confounders, maternal smoking during pregnancy, having a junk food diet and spending more time watching television in early childhood were all associated with higher fat mass at age 15, whereas maternal smoking, having a healthy diet and playing computer games more frequently in early childhood were all associated with a higher lean mass at age 15. Associations with paternal smoking were generally weaker for both fat and lean mass, but as there was no strong statistical evidence for maternal vs paternal differences, confounding by social factors rather than a direct effect of maternal smoking cannot be ruled out. Early feeding was not associated with fat or lean mass at age 15. Conclusions: This study does not provide compelling evidence for associations between most early-life factors and body composition in adolescence. However, possible associations with dietary patterns and physical inactivity in early childhood require further investigation in other cohorts that have direct measurements of adolescent body composition. PMID:25664839

  16. Cyclopeptide toxins of lethal amanitas: Compositions, distribution and phylogenetic implication.

    PubMed

    Tang, Shanshan; Zhou, Qian; He, Zhengmi; Luo, Tao; Zhang, Ping; Cai, Qing; Yang, Zhuliang; Chen, Jia; Chen, Zuohong

    2016-09-15

    Lethal amanitas (Amanita sect. Phalloideae) are responsible for 90% of all fatal mushroom poisonings. Since 2000, more than ten new lethal Amanita species have been discovered and some of them had caused severe mushroom poisonings in China. However, the contents and distribution of cyclopeptides in these lethal mushrooms remain poorly known. In this study, the diversity of major cyclopeptide toxins in seven Amanita species from Eastern Asia and three species from Europe and North America were systematically analyzed, and a new approach to inferring phylogenetic relationships using cyclopeptide profile was evaluated for the first time. The results showed that there were diversities of the cyclopeptides among lethal Amanita species, and cyclopeptides from Amanita rimosa and Amanita fuligineoides were reported for the first time. The amounts of amatoxins in East Asian Amanita species were significantly higher than those in European and North American species. The analysis of distribution of amatoxins and phallotoxins in various Amanita species demonstrated that the content of phallotoxins was higher than that of amatoxins in Amanita phalloides and Amanita virosa. In contrast, the content of phallotoxins was significantly lower than that of amatoxins in all East Asian lethal Amanita species tested. However, the distribution of amatoxins and phallotoxins in different tissues showed the same tendency. Eight cyclopeptides and three unknown compounds were identified using cyclopeptide standards and high-resolution MS. Based on the cyclopeptide profiles, phylogenetic relationships of lethal amanitas were inferred through a dendrogram generated by UPGMA method. The results showed high similarity to the phylogeny established previously based on the multi-locus DNA sequences. PMID:27476461

  17. Using gamma distribution to determine half-life of rotenone, applied in freshwater.

    PubMed

    Rohan, Maheswaran; Fairweather, Alastair; Grainger, Natasha

    2015-09-15

    Following the use of rotenone to eradicate invasive pest fish, a dynamic first-order kinetic model is usually used to determine the half-life and rate at which rotenone dissipated from the treated waterbody. In this study, we investigate the use of a stochastic gamma model for determining the half-life and rate at which rotenone dissipates from waterbodies. The first-order kinetic and gamma models produced similar values for the half-life (4.45 days and 5.33 days respectively) and days to complete dissipation (51.2 days and 52.48 days respectively). However, the gamma model fitted the data better and was more flexible than the first-order kinetic model, allowing us to use covariates and to predict a possible range for the half-life of rotenone. These benefits are particularly important when examining the influence that different environmental factors have on rotenone dissipation and when trying to predict the rate at which rotenone will dissipate during future operations. We therefore recommend that in future the gamma distribution model is used when calculating the half-life of rotenone in preference to the dynamic first-order kinetics model. PMID:25965037

  18. Composition and Manufacturing Effects on Electrical Conductivity of Li/FeS 2 Thermal Battery Cathodes

    DOE PAGESBeta

    Reinholz, Emilee L.; Roberts, Scott A.; Apblett, Christopher A.; Lechman, Jeremy B.; Schunk, P. Randall

    2016-06-11

    The electrical conductivity is key to the performance of thermal battery cathodes. In this work we present the effects of manufacturing and processing conditions on the electrical conductivity of Li/FeS2 thermal battery cathodes. Finite element simulations were used to compute the conductivity of three-dimensional microcomputed tomography cathode microstructures and compare results to experimental impedance spectroscopy measurements. A regression analysis reveals a predictive relationship between composition, processing conditions, and electrical conductivity; a trend which is largely erased after thermally-induced deformation. Moreover, the trend applies to both experimental and simulation results, although is not as apparent in simulations. This research is amore » step toward a more fundamental understanding of the effects of processing and composition on thermal battery component microstructure, properties, and performance.« less

  19. Composition of Bacterial Communities Associated with Aurelia aurita Changes with Compartment, Life Stage, and Population

    PubMed Central

    Weiland-Bräuer, Nancy; Neulinger, Sven C.; Pinnow, Nicole; Künzel, Sven; Baines, John F.

    2015-01-01

    The scyphozoan Aurelia aurita is recognized as a key player in marine ecosystems and a driver of ecosystem change. It is thus intensely studied to address ecological questions, although its associations with microorganisms remain so far undescribed. In the present study, the microbiota associated with A. aurita was visualized with fluorescence in situ hybridization (FISH) analysis, and community structure was analyzed with respect to different life stages, compartments, and populations of A. aurita by 16S rRNA gene amplicon sequencing. We demonstrate that the composition of the A. aurita microbiota is generally highly distinct from the composition of communities present in ambient water. Comparison of microbial communities from different developmental stages reveals evidence for life stage-specific community patterns. Significant restructuring of the microbiota during strobilation from benthic polyp to planktonic life stages is present, arguing for a restructuring during the course of metamorphosis. Furthermore, the microbiota present in different compartments of the adult medusa (exumbrella mucus and gastric cavity) display significant differences, indicating body part-specific colonization. A novel Mycoplasma strain was identified in both compartment-specific microbiota and is most likely present inside the epithelium as indicated by FISH analysis of polyps, indicating potential endosymbiosis. Finally, comparison of polyps of different populations kept under the same controlled laboratory conditions in the same ambient water showed population-specific community patterns, most likely due the genetic background of the host. In conclusion, the presented data indicate that the associated microbiota of A. aurita may play important functional roles, e.g., during the life cycle. PMID:26116680

  20. Composition of Bacterial Communities Associated with Aurelia aurita Changes with Compartment, Life Stage, and Population.

    PubMed

    Weiland-Bräuer, Nancy; Neulinger, Sven C; Pinnow, Nicole; Künzel, Sven; Baines, John F; Schmitz, Ruth A

    2015-09-01

    The scyphozoan Aurelia aurita is recognized as a key player in marine ecosystems and a driver of ecosystem change. It is thus intensely studied to address ecological questions, although its associations with microorganisms remain so far undescribed. In the present study, the microbiota associated with A. aurita was visualized with fluorescence in situ hybridization (FISH) analysis, and community structure was analyzed with respect to different life stages, compartments, and populations of A. aurita by 16S rRNA gene amplicon sequencing. We demonstrate that the composition of the A. aurita microbiota is generally highly distinct from the composition of communities present in ambient water. Comparison of microbial communities from different developmental stages reveals evidence for life stage-specific community patterns. Significant restructuring of the microbiota during strobilation from benthic polyp to planktonic life stages is present, arguing for a restructuring during the course of metamorphosis. Furthermore, the microbiota present in different compartments of the adult medusa (exumbrella mucus and gastric cavity) display significant differences, indicating body part-specific colonization. A novel Mycoplasma strain was identified in both compartment-specific microbiota and is most likely present inside the epithelium as indicated by FISH analysis of polyps, indicating potential endosymbiosis. Finally, comparison of polyps of different populations kept under the same controlled laboratory conditions in the same ambient water showed population-specific community patterns, most likely due the genetic background of the host. In conclusion, the presented data indicate that the associated microbiota of A. aurita may play important functional roles, e.g., during the life cycle. PMID:26116680

  1. Composite Weibull-Inverse Transformed Gamma distribution and its actuarial application

    NASA Astrophysics Data System (ADS)

    Maghsoudi, Mastoureh; Bakar, Shaiful Anuar Abu; Hamzah, Nor Aishah

    2014-07-01

    This paper introduces a new composite model, namely, composite Weibull-Inverse Transformed Gamma distribution which assumes Weibull distribution for the head up to a specified threshold and inverse transformed gamma distribution beyond it. The closed form of probability density function (pdf) as well as the estimation of parameters by maximum likelihood method is presented. The model is compared with several benchmark distributions and their performances are measured. A well-known data set, Danish fire loss data, is used for this purpose and it's Value at Risk (VaR) using the new model is computed. In comparison to several standard models, the composite Weibull- Inverse Transformed Gamma model proved to be a competitor candidate.

  2. Helicity-dependent generalized parton distributions and composite constituent quarks

    SciTech Connect

    Scopetta, Sergio; Vento, Vicente

    2005-01-01

    An approach, recently proposed to calculate the nucleon generalized parton distributions (GPDs) in a constituent quark model (CQM) scenario, in which the constituent quarks are taken as complex systems, is used to obtain helicity-dependent GPDs. They are obtained from the wave functions of the nonrelativistic CQM of Isgur and Karl, convoluted with the helicity-dependent GPDs of the constituent quarks themselves. The latter are modeled by using the polarized structure functions of the constituent quark, the double distribution representation of GPDs, and a phenomenological constituent quark form factor. The present approach permits us to access a kinematical range corresponding to both the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi and the Efremov-Radyushkin-Brodsky-Lepage regions, for small values of the momentum transfer and of the skewedness parameter. In this kinematical region, the present calculation represents a prerequisite for the evaluation of cross sections relevant to deeply virtual Compton scattering. In particular, we have calculated the leading twist helicity-dependent GPD H-tilde and, from our expressions, its general relations with the nonrelativistic definition of the axial form factor and with the leading twist polarized quark density are consistently recovered.

  3. Long-term mechanical life testing of polymeric post insulators for distribution and a comparison to porcelain

    SciTech Connect

    Cherney, E.A. )

    1988-07-01

    The paper presents the results and analyses of long-term cantilever strength tests on polymeric line post insulators. The time-to-failure data for static cantilever loads are represented by the Weibull distribution. The life distribution, obtained from the maximum likelihood estimates of the accelerated failure times, fits an exponential model. An extrapolation of the life distribution to normal loads provides an estimate of the strength rating and mechanical equivalence to porcelain line post insulators.

  4. Corona Characteristics of Distribution Line in Contact with Conductive Material and Life Estimation of Conductor Insulation

    NASA Astrophysics Data System (ADS)

    Yamashita, Takahiko; Fujishima, Tomoyuki; Kuba, Hiroyuki

    In relation to the accidents due to bird nests in contact with overhead distribution lines, the authors investigated on life estimation of conductor insulation. The accident is often caused by crow or magpie. There is a region in which magpie is being specified to the protected bird in Japan. In that region, the nest in the breeding season can not be removed easily. Recently, metal wires are used for the nest material. When this conductive material is in contact with the distribution line and the arm, corona discharge will occur. The conductor insulation of the distribution line receives deterioration and there is a possibility of causing the accident. In this study, acceleration test was done to examine time from nest building to causing the accident in the distribution line. The acceleration factor based on the charge amount of corona and the influence of the applied voltage on corona characteristics were discussed. Moreover, the life of the conductor insulation was discussed from the V-t characteristics and the acceleration factor.

  5. Distribution patterns of different carbon nanostructures in silicon nitride composites.

    PubMed

    Tapasztó, Orsolya; Markó, Márton; Balázsi, Csaba

    2012-11-01

    The dispersion properties of single- and multi-walled carbon nanotubes as well as mechanically exfoliated few layer graphene flakes within the silicon nitride ceramic matrix have been investigated. Small angle neutron scattering experiments have been employed to gain information on the dispersion of the nano-scale carbon fillers throughout the entire volume of the samples. The neutron scattering data combined with scanning electron microscopy revealed strikingly different distribution patterns for different types of carbon nanostructures. The scattering intensities for single wall carbon nanotubes (SWCNTs) reveal a decay exponent characteristic to surface fractals, which indicate that the predominant part of nanotubes can be found in loose networks wrapping the grains of the polycrystalline matrix. By contrast, multi wall carbon nanotubes (MWCNTs) were found to be present mainly in the form of bulk aggregate structures, while few-layer graphene (FLG) flakes have been individually dispersed within the host matrix, under the very same preparation and processing conditions. PMID:23421284

  6. Perchlorate in The Great Lakes: Distribution, Isotopic Composition and Origin

    NASA Astrophysics Data System (ADS)

    Poghosyan, A.; Sturchio, N. C.; Jackson, W. A.; Guan, Y.; Eiler, J. M.; Hatzinger, P. B.

    2013-12-01

    Concentrations, stable chlorine and oxygen isotopic compositions, and 36Cl abundances of perchlorate were investigated in the five Laurentian Great Lakes. Samples were collected during monitoring cruises in 2007 and 2008 of the U.S. EPA's RV Lake Guardian and in 2010 at the water supply intake of Marquette, MI on the southern shore of Lake Superior. Concentrations of perchlorate were measured by IC/MS/MS at 24 locations, including one or two depth profiles in each lake. Mean concentrations (μg/L) are: Superior, 0.06 × 0.01; Michigan, 0.10 × 0.01; Huron, 0.11 × 0.01; Erie, 0.08 × 0.01, and Ontario, 0.09 × 0.01. Concentration vs. depth is nearly constant in each lake, indicating well-mixed conditions. Perchlorate was extracted from near-surface water by passing 15,000 to 80,000 L of water through 1-L cartridges containing Purolite A530E bifunctional anion-exchange resin. In the laboratory, perchlorate was eluted from the resin, purified, and precipitated as a >99% pure crystalline phase. Milligram amounts were recovered from each lake. Chlorine and oxygen isotopic analyses were performed at Caltech using the Cameca 7f-GEO SIMS instrument, following validation of the SIMS method with analyses of USGS-37 and USGS-38 isotopic reference materials. Results indicate a relatively narrow range in δ37Cl values (+2.9 to +3.9 ‰) and a wider range in δ18O values (-4.0 to +4.1 ‰), with a general geographic trend of increasing δ18O from west to east. Oxygen-17 was measured at UIC using dual-inlet IRMS of O2 produced by decomposition of KClO4. Great Lakes perchlorate has mass-independent oxygen isotopic variations with positive Δ17O values (+1.6 ‰ to +2.7 ‰) divided into two distinct groups: Lake Superior (+2.7 ‰) and the other four lakes (~ +1.7 ‰). The isotopic data indicate that perchlorate is dominantly of natural origin, having stable isotopic compositions resembling those of perchlorate from pre-industrial groundwaters in the western USA. The 36Cl

  7. Characterization of Cyanobacterial Hydrocarbon Composition and Distribution of Biosynthetic Pathways

    PubMed Central

    Coates, R. Cameron; Podell, Sheila; Korobeynikov, Anton; Lapidus, Alla; Pevzner, Pavel; Sherman, David H.; Allen, Eric E.; Gerwick, Lena; Gerwick, William H.

    2014-01-01

    Cyanobacteria possess the unique capacity to naturally produce hydrocarbons from fatty acids. Hydrocarbon compositions of thirty-two strains of cyanobacteria were characterized to reveal novel structural features and insights into hydrocarbon biosynthesis in cyanobacteria. This investigation revealed new double bond (2- and 3-heptadecene) and methyl group positions (3-, 4- and 5-methylheptadecane) for a variety of strains. Additionally, results from this study and literature reports indicate that hydrocarbon production is a universal phenomenon in cyanobacteria. All cyanobacteria possess the capacity to produce hydrocarbons from fatty acids yet not all accomplish this through the same metabolic pathway. One pathway comprises a two-step conversion of fatty acids first to fatty aldehydes and then alkanes that involves a fatty acyl ACP reductase (FAAR) and aldehyde deformylating oxygenase (ADO). The second involves a polyketide synthase (PKS) pathway that first elongates the acyl chain followed by decarboxylation to produce a terminal alkene (olefin synthase, OLS). Sixty-one strains possessing the FAAR/ADO pathway and twelve strains possessing the OLS pathway were newly identified through bioinformatic analyses. Strains possessing the OLS pathway formed a cohesive phylogenetic clade with the exception of three Moorea strains and Leptolyngbya sp. PCC 6406 which may have acquired the OLS pathway via horizontal gene transfer. Hydrocarbon pathways were identified in one-hundred-forty-two strains of cyanobacteria over a broad phylogenetic range and there were no instances where both the FAAR/ADO and the OLS pathways were found together in the same genome, suggesting an unknown selective pressure maintains one or the other pathway, but not both. PMID:24475038

  8. Constituent-Based Life Models Being Developed for SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Yun, Hee Mann

    2000-01-01

    For the successful utilization of ceramic matrix composites (CMC) as hot-section components in advanced aeropropulsion engines, the CMC constituents will need to be tailored and optimized to meet all the critical property demands of each component. Under the High-Speed Research (HSR) and Advanced High-Temperature Engine Materials Technology (HITEMP) Programs, the NASA Glenn Research Center at Lewis Field initiated research to develop mechanistic models for key CMC thermostructural properties. These models would describe the effects of different constituent factors (composition, geometry, and volume fraction) and of potential application conditions (stress, time, temperature, and environment) on these properties. Particular focus was placed on both analytical and numerical modeling of state-of-the-art SiC/SiC composites where the primary load-bearing constituents are stoichiometric SiC fibers in a complex multiphase SiC matrix produced by chemical vapor infiltration and melt infiltration. Recent studies have resulted in computer-based numerical models for the elastic modulus, thermal expansion, and thermal conductivity properties of the SiC/SiC system. Additional studies have generated analytical and empirical models for the time dependence of composite rupture strength at temperatures above 2200 F (1200 C), where CMC's have an important thermostructural advantage over current nickel-based superalloys. These life models utilize thermal activation theory and fiber stress-rupture results measured at Glenn to generate Larson-Miller (L M) plots of fiber rupture strength versus q, a single time- and temperature-dependent parameter. Assuming a worse case in which the SiC matrix is cracked, rupture is then controlled by the time-dependent fracture characteristics of the fiber bundles bridging the matrix cracks. With this as the controlling mechanism, one can then use simple composite theory and the fiber L M plots to predict CMC rupture strength versus the q parameter. The

  9. Spatial distribution of total, ammonia-oxidizing, and denitrifying bacteria in biological wastewater treatment reactors for bioregenerative life support

    NASA Technical Reports Server (NTRS)

    Sakano, Yuko; Pickering, Karen D.; Strom, Peter F.; Kerkhof, Lee J.; Janes, H. W. (Principal Investigator)

    2002-01-01

    Bioregenerative life support systems may be necessary for long-term space missions due to the high cost of lifting supplies and equipment into orbit. In this study, we investigated two biological wastewater treatment reactors designed to recover potable water for a spacefaring crew being tested at Johnson Space Center. The experiment (Lunar-Mars Life Support Test Project-Phase III) consisted of four crew members confined in a test chamber for 91 days. In order to recycle all water during the experiment, an immobilized cell bioreactor (ICB) was employed for organic carbon removal and a trickling filter bioreactor (TFB) was utilized for ammonia removal, followed by physical-chemical treatment. In this study, the spatial distribution of various microorganisms within each bioreactor was analyzed by using biofilm samples taken from four locations in the ICB and three locations in the TFB. Three target genes were used for characterization of bacteria: the 16S rRNA gene for the total bacterial community, the ammonia monooxygenase (amoA) gene for ammonia-oxidizing bacteria, and the nitrous oxide reductase (nosZ) gene for denitrifying bacteria. A combination of terminal restriction fragment length polymorphism (T-RFLP), sequence, and phylogenetic analyses indicated that the microbial community composition in the ICB and the TFB consisted mainly of Proteobacteria, low-G+C gram-positive bacteria, and a Cytophaga-Flexibacter-Bacteroides group. Fifty-seven novel 16S rRNA genes, 8 novel amoA genes, and 12 new nosZ genes were identified in this study. Temporal shifts in the species composition of total bacteria in both the ICB and the TFB and ammonia-oxidizing and denitrifying bacteria in the TFB were also detected when the biofilms were compared with the inocula after 91 days. This result suggests that specific microbial populations were either brought in by the crew or enriched in the reactors during the course of operation.

  10. Complex Households and the Distribution of Multiple Resources in Later Life: Findings from A National Survey

    PubMed Central

    Kim, Juyeon; Link, Arts; Waite, Linda

    2016-01-01

    The availability of social and financial resources has profound implications for health and well-being in later life. Older adults often share resources with others who live with them, sometimes in households including relatives or friends. We examine differences in social support, social connections, money, and the household environment across types of living arrangements, develop hypotheses from two theoretical perspectives, one focusing on obligations toward kin, and one focused on social exchange within households, and test them using data from the National Social Life, Health, and Aging Project. We find that availability of resources is not consistently associated with the presence of grandchildren and other young relatives, but often differs with presence of other adults. These findings suggest that a single type of resource tells us little about the distribution of the resources of older adults, and call on us to examine multiple resources simultaneously. PMID:25904682

  11. Complex Households and the Distribution of Multiple Resources in Later Life: Findings From a National Survey.

    PubMed

    Kim, Juyeon; Waite, Linda J

    2016-02-01

    The availability of social and financial resources has profound implications for health and well-being in later life. Older adults often share resources with others who live with them, sometimes in households including relatives or friends. We examine differences in social support, social connections, money, and the household environment across types of living arrangements, develop hypotheses from two theoretical perspectives, one focusing on obligations toward kin, and one focused on social exchange within households, and test them using data from the National Social Life, Health, and Aging Project. We find that availability of resources is not consistently associated with the presence of grandchildren and other young relatives, but often differs with presence of other adults. These findings suggest that a single type of resource tells us little about the distribution of the resources of older adults, and call on us to examine multiple resources simultaneously. PMID:25904682

  12. Life-history evolution at the molecular level: adaptive amino acid composition of avian vitellogenins

    PubMed Central

    Hughes, Austin L.

    2015-01-01

    Avian genomes typically encode three distinct vitellogenin (VTG) egg yolk proteins (VTG1, VTG2 and VTG3), which arose by gene duplication prior to the most recent common ancestor of birds. Analysis of VTG sequences from 34 avian species in a phylogenetic framework supported the hypothesis that VTG amino acid composition has co-evolved with embryo incubation time. Embryo incubation time was positively correlated with the proportions of dietary essential amino acids (EAAs) in VTG1 and VTG2, and with the proportion of sulfur-containing amino acids in VTG3. These patterns were seen even when only semi-altricial and/or altricial species were considered, suggesting that the duration of embryo incubation is a major selective factor on the amino acid composition of VTGs, rather than developmental mode alone. The results are consistent with the hypothesis that the level of EAAs provided to the egg represents an adaptation to the loss of amino acids through breakdown over the course of incubation and imply that life-history phenotypes and VTG amino acid composition have co-evolved throughout the evolutionary history of birds. PMID:26224713

  13. Development of an eco-friendly method to convert life expired composite propellant into liquid fertilizer.

    PubMed

    Mehilal; Dhabbe, K I; Kumari, Anjali; Manoj, V; Singh, P P; Bhattacharya, B

    2012-02-29

    Large quantity of composite propellants is produced as waste due to life expiry of missiles/rejection of propellant lots during manufacturing. The environmental protection agency does not allow the hazardous materials for open burning/open detonation. Therefore, a systematic study has been carried out to develop a method for the disposal of composite propellant into liquid fertilizer without affecting the environment. In this study, propellant compositions were digested in dilute nitric acid followed by neutralization with 5M KOH solution to get precipitated out aluminium as aluminium hydroxide and finally the obtained liquid was treated with orthophosphoric acid for further neutralization. The liquid fertilizer, thus, obtained was characterized for nitrate and phosphate content using ion chromatography while ICP-AES was used for the estimation of potassium, aluminium and other noxious metallic elements such as Pb, Cd, As, Cr, Cu, Ni and Zn. The analyses data indicate that liquid fertilizer is free from aluminium and noxious metallic elements while ratio of nitrogen, phosphorous and potassium are close to the Indian NPK value. PMID:22265654

  14. Analysis of distribution of critical current of bent-damaged Bi2223 composite tape

    NASA Astrophysics Data System (ADS)

    Ochiai, S.; Okuda, H.; Sugano, M.; Hojo, M.; Osamura, K.; Kuroda, T.; Kumakura, H.; Kitaguchi, H.; Itoh, K.; Wada, H.

    2011-10-01

    Distributions of critical current of damaged Bi2223 tape specimens bent by 0.6, 0.8 and 1.0% were investigated analytically with a modelling approach based on the correlation of damage evolution to distribution of critical current. It was revealed that the distribution of critical current is described by three parameter Weibull distribution function through the distribution of the tensile damage strain of Bi2223 filaments that determines the damage front in bent-composite tape. Also it was shown that the measured distribution of critical current values can be reproduced successfully by a Monte Carlo simulation using the distributions of tensile damage strain of filaments and original critical current.

  15. Nonparametric Fine Tuning of Mixtures: Application to Non-Life Insurance Claims Distribution Estimation

    NASA Astrophysics Data System (ADS)

    Sardet, Laure; Patilea, Valentin

    When pricing a specific insurance premium, actuary needs to evaluate the claims cost distribution for the warranty. Traditional actuarial methods use parametric specifications to model claims distribution, like lognormal, Weibull and Pareto laws. Mixtures of such distributions allow to improve the flexibility of the parametric approach and seem to be quite well-adapted to capture the skewness, the long tails as well as the unobserved heterogeneity among the claims. In this paper, instead of looking for a finely tuned mixture with many components, we choose a parsimonious mixture modeling, typically a two or three-component mixture. Next, we use the mixture cumulative distribution function (CDF) to transform data into the unit interval where we apply a beta-kernel smoothing procedure. A bandwidth rule adapted to our methodology is proposed. Finally, the beta-kernel density estimate is back-transformed to recover an estimate of the original claims density. The beta-kernel smoothing provides an automatic fine-tuning of the parsimonious mixture and thus avoids inference in more complex mixture models with many parameters. We investigate the empirical performance of the new method in the estimation of the quantiles with simulated nonnegative data and the quantiles of the individual claims distribution in a non-life insurance application.

  16. Simulations of Fiber Distribution Effects in Fiber-Reinforced Cement Composites

    SciTech Connect

    Bolander, John E.; Lim, Yun Mook

    2008-02-15

    This paper describes a lattice model for coupled moisture transport/stress analyses of fiber-reinforced cement composites (FRCC). Each fiber, and its interface with the matrix material, is explicitly represented within the three-dimensional material volume. This enables the direct study of fiber orientation and distribution effects on composite performance. Realistic, nonuniform fiber distributions can be specified as model input. Basic applications of the model are presented, with emphasis toward simulating the durability mechanics of FRCC exposed to drying environments. The modeling of functionally graded FRCC is an obvious potential extension of this work.

  17. Application of a Fiber Optic Distributed Strain Sensor System to Woven E-Glass Composite

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Lopatin, Craig

    2001-01-01

    A distributed strain sensing system utilizing a series of identically written Bragg gratings along an optical fiber is examined for potential application to Composite Armored Vehicle health monitoring. A vacuum assisted resin transfer molding process was used to fabricate a woven fabric E-glass/composite panel with an embedded fiber optic strain sensor. Test samples machined from the panel were mechanically tested in 4-point bending. Experimental results are presented that show the mechanical strain from foil strain gages comparing well to optical strain from the embedded sensors. Also, it was found that the distributed strain along the sample length was consistent with the loading configuration.

  18. Multi-scale mechanism based life prediction of polymer matrix composites for high temperature airframe applications

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Priyank

    A multi-scale mechanism-based life prediction model is developed for high-temperature polymer matrix composites (HTPMC) for high temperature airframe applications. In the first part of this dissertation the effect of Cloisite 20A (C20A) nano-clay compounding on the thermo-oxidative weight loss and the residual stresses due to thermal oxidation for a thermoset polymer bismaleimide (BMI) are investigated. A three-dimensional (3-D) micro-mechanics based finite element analysis (FEA) was conducted to investigate the residual stresses due to thermal oxidation using an in-house FEA code (NOVA-3D). In the second part of this dissertation, a novel numerical-experimental methodology is outlined to determine cohesive stress and damage evolution parameters for pristine as well as isothermally aged (in air) polymer matrix composites. A rate-dependent viscoelastic cohesive layer model was implemented in an in-house FEA code to simulate the delamination initiation and propagation in unidirectional polymer composites before and after aging. Double cantilever beam (DCB) experiments were conducted (at UT-Dallas) on both pristine and isothermally aged IM-7/BMI composite specimens to determine the model parameters. The J-Integral based approach was adapted to extract cohesive stresses near the crack tip. Once the damage parameters had been characterized, the test-bed FEA code employed a micromechanics based viscoelastic cohesive layer model to numerically simulate the DCB experiment. FEA simulation accurately captures the macro-scale behavior (load-displacement history) simultaneously with the micro-scale behavior (crack-growth history).

  19. Space Station Environmental Control and Life Support System architecture - Centralized versus distributed

    NASA Technical Reports Server (NTRS)

    Boehm, A. M.; Behrend, A. F.

    1984-01-01

    Both Centralized and Distributed approaches are being evaluated for the installation of Environmental Control and Life Support (ECLS) equipment in the Space Station. In the Centralized facility concept, integrated processing equipment is located in two modules with plumbing used to circulate ECLS services throughout the Station. The Distributed approach locates the ECLS subsystems in every module of the Space Station with each subsystem designed to meet its own module needs. This paper defines the two approaches and how the advantages and disadvantages of each are tied to the choice of Space Station architecture. Other considerations and evaluations include: crew movement, Station evolution and the ducting impact needed to circulate ECLS services from centrally located processing equipment.

  20. The particle size distribution function in the composite films and microwave magnetic properties

    NASA Astrophysics Data System (ADS)

    Kotov, L.; Ustyugov, V.; Vlasov, V.; Turkov, V.; Lasek, M.; Kalinin, Yu; Sitnikov, A.; Golubev, E.

    2016-04-01

    Nano- and microstructure of {(Co4-Fe4-Zr0.7)x+(A12O3)1-x} (Al series) and {(Co1-Nb0.2-Ta0.05)x+(SiO2)1-x} (A2 series) films was investigated by atomic force microscopy. The distributions of the metallic granules effective size by various concentrations of the metal phase were obtained. Microwave magnetic characteristics of composite films in respect of obtained distributions were calculated.

  1. The effects of distributed life cycles on the dynamics of viral infections.

    PubMed

    Campos, Daniel; Méndez, Vicenç; Fedotov, Sergei

    2008-09-21

    We explore the role of cellular life cycles for viruses and host cells in an infection process. For this purpose, we derive a generalized version of the basic model of virus dynamics (Nowak, M.A., Bangham, C.R.M., 1996. Population dynamics of immune responses to persistent viruses. Science 272, 74-79) from a mesoscopic description. In its final form the model can be written as a set of Volterra integrodifferential equations. We consider the role of distributed lifespans and a intracellular (eclipse) phase. These processes are implemented by means of probability distribution functions. The basic reproductive ratio R(0) of the infection is properly defined in terms of such distributions by using an analysis of the equilibrium states and their stability. It is concluded that the introduction of distributed delays can strongly modify both the value of R(0) and the predictions for the virus loads, so the effects on the infection dynamics are of major importance. We also show how the model presented here can be applied to some simple situations where direct comparison with experiments is possible. Specifically, phage-bacteria interactions are analyzed. The dynamics of the eclipse phase for phages is characterized analytically, which allows us to compare the performance of three different fittings proposed before for the one-step growth curve. PMID:18573261

  2. Size and composition distribution of fine particulate matter emitted from wood burning, meat charbroiling, and cigarettes

    SciTech Connect

    Kleeman, M.J.; Schauer, J.J.; Cass, G.R.

    1999-10-15

    A dilution source sampling system is augmented to measure the size-distributed chemical composition of fine particle emissions from air pollution sources. Measurements are made using a laser optical particle counter (OPC), a differential mobility analyzer/condensation nucleus counter (DMA/CNC) combination, and a pair of microorifice uniform deposit impactors (MOUDIs). The sources tested with this system include wood smoke (pine, oak, eucalyptus), meat charbroiling, and cigarettes. The particle mass distributions from all wood smoke sources have a single mode that peaks at approximately 0.1--0.2 {micro}m particle diameter. The smoke from meat charbroiling shows a major peak in the particle mass distribution at 0.1--0.2 {micro}m particle diameter, with some material present at larger particle sizes. Particle mass distributions from cigarettes peak between 0.3 and 0.4 {micro}m particle diameter. Chemical composition analysis reveals that particles emitted from the sources tested here are largely composed of organic compounds. Noticeable concentrations of elemental carbon are found in the particles emitted from wood burning. The size distributions of the trace species emissions from these sources also are presented, including data for Na, K, Ti, Fe, Br, Ru, Cl, Al, Zn, Ba, Sr, V, Mn, Sb, La, Ce, as well as sulfate, nitrate, and ammonium ion when present in statistically significant amounts. These data are intended for use with air quality models that seek to predict the size distribution of the chemical composition of atmospheric fine particles.

  3. A model for predicting damage induced fatigue life of laminated composite structural components

    NASA Technical Reports Server (NTRS)

    Allen, David H.; Lo, David C.; Georgiou, Ioannis T.; Harris, Charles E.

    1990-01-01

    This paper presents a model for predicting the life of laminated composite structural components subjected to fatigue induced microstructural damage. The model uses the concept of continuum damage mechanics, wherein the effects of microcracks are incorporated into a damage dependent lamination theory instead of treating each crack as an internal boundary. Internal variables are formulated to account for the effects of both matrix cracks and internal delaminations. Evolution laws for determining the damage variables as functions of ply stresses are proposed, and comparisons of predicted damage evolution are made to experiment. In addition, predicted stiffness losses, as well as ply stresses are shown as functions of damage state for a variety of stacking sequences.

  4. Thermal history, chemical composition and relationship of comets to the origin of life

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Leschine, S. B.; Schloerb, F. P.

    1980-01-01

    The role of thermal processes in determining the chemical composition of comets is considered, and implications of possible cometary constituents for the origin and evolution of life on earth are discussed. It is shown that the inclusion of short-lived Al-26 from a nearby supernova explosion into cometary nuclei could lead to comets with surfaces cool enough to retain H2O and interiors warm enough for thermal processing to occur, with the production of complex organic molecules such as amino acids and nucleic acid bases. It is thus suggested that comets may have played a part in seeding the primitive earth with biological polymers capable of self-replication or of evolving towards that capability, and may even be responsible for the subsequent introduction of organic material capable of infecting already existing cells.

  5. Battery cycle life balancing in a microgrid through flexible distribution of energy and storage resources

    NASA Astrophysics Data System (ADS)

    Khasawneh, Hussam J.; Illindala, Mahesh S.

    2014-09-01

    In this paper, a microgrid consisting of four fuel cell-battery hybrid Distributed Energy Resources (DERs) is devised for an industrial crusher-conveyor load. Each fuel cell was accompanied by a Li-ion battery to provide energy storage support under islanded condition of the microgrid since the fuel cells typically have poor transient response characteristics. After carrying out extensive modeling and analysis in MATLAB®, the battery utilization was found to vary significantly based on the DER's 'electrical' placement within the microgrid. This paper presents, under such conditions, a variety of battery life balancing solutions through the use of the new framework of Flexible Distribution of EneRgy and Storage Resources (FDERS). It is based on an in-situ reconfiguration approach through 'virtual' reactances that help in changing the 'electrical' position of each DER without physically displacing any component in the system. Several possible approaches toward balancing the battery utilization are compared in this paper taking advantage of the flexibility that FDERS offers. It was observed that the estimated battery life is dependent on factors such as cycling sequence, pattern, and occurrence.

  6. Viral distribution and life strategies in the Bach Dang Estuary, Vietnam.

    PubMed

    Bettarel, Yvan; Bouvier, Thierry; Agis, Martin; Bouvier, Corinne; Chu, Thuoc Van; Combe, Marine; Mari, Xavier; Nghiem, Minh Ngoc; Nguyen, Thuy Thanh; Pham, Thu The; Pringault, Olivier; Rochelle-Newall, Emma; Torréton, Jean-Pascal; Tran, Huy Quang

    2011-07-01

    Although the structure and dynamics of planktonic viruses in freshwater and seawater environments are relatively well documented, little is known about the occurrence and activity of these viruses in estuaries, especially in the tropics. Viral abundance, life strategies, and morphotype distribution were examined in the Bach Dang Estuary (Vietnam) during the dry season in 2009. The abundance of both viruses and their prokaryotic hosts decreased significantly from upstream to downstream, probably as the result of nutrient dilution and osmotic stress faced by the freshwater communities. The antibiotic mitomycin-C revealed that the fraction of lysogenic cells was substantially higher in the lower seawater part of the estuary (max 27.1%) than in the upper freshwater area where no inducible lysogens were observed. The question of whether there is a massive, continuous induction of marine lysogens caused by the mixing with freshwater is considered. Conversely, the production of lytic viruses declined as salinity increased, indicating a spatial succession of viral life strategies in this tropical estuary. Icosahedral tailless viruses with capsids smaller than 60 nm dominated the viral assemblage throughout the estuary (63.0% to 72.1% of the total viral counts), and their distribution was positively correlated with that of viral lytic production. Interestingly, the gamma-proteobacteria explained a significant portion of the variance in the <60 nm and 60 to 90 nm tailless viruses (92% and 80%, respectively), and in the Myoviridae (73%). Also, 60% of the variance of the tailless larger viruses (>90 nm) was explained by the beta-proteobacteria. Overall, these results support the view that the environment, through selection mechanisms, probably shapes the structure of the prokaryotic community. This might be in turn a source of selection for the virioplankton community via specific affiliation favoring particular morphotypes and life strategies. PMID:21390531

  7. Bumble bees (Hymenoptera: Apidae: Bombus spp.) of interior Alaska: Species composition, distribution, seasonal biology, and parasites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite the ecological and agricultural significance of bumble bees in Alaska, very little is known and published about this important group at the regional level. The objectives of this study were to provide baseline data on species composition, distribution, seasonal biology, and parasites of the ...

  8. The effects of chemical composition and distribution on the preservation of phytolith morphology

    NASA Astrophysics Data System (ADS)

    Wu, Yan; Yang, Yimin; Wang, Hua; Wang, Changsui

    2014-02-01

    Different types of phytolith even when coming from the same plant react to high temperatures in different ways. To understand the behavior of phytoliths upon heating, we examined composition and distribution of some elements within different phytolith types using SEM-EDS and synchrotron radiation μ-X-ray fluorescence. By analyzing phytoliths from rice husk, rice leaf and Than tree leaf, we find that the compositions and distributions of metal oxides within different phytolith types are quite different. It is well known that metal oxides have been used as fluxing agent to reduce the melting temperature of SiO2 in the production of glass, and different metal oxides can be used to produce a variety of glass with diverse features. Similarly, metal elements including potassium, magnesium and calcium in phytoliths should also act as a fluxing agent under high temperature, and the differential compositions and distributions of these metal elements within the phytoliths resulted in the variable reaction to heating. In sum, there is a negative relationship between the flux elements composition in phytoliths, and the temperatures at which phytoliths deform; furthermore, potassium and calcium in the rice leaf phytolith are almost evenly distributed in all parts, which may cause the phytolith's shape to deform evenly. In comparison, Than tree leaf phytolith is found to have a high percentage of potassium and calcium located exclusively on the outside, which may explain why the deformation of Than tree leaf phytolith occurs firstly at the outside.

  9. Investigating low frequency dielectric properties of a composite using the distribution of relaxation times technique

    SciTech Connect

    Tuncer, Enis

    2006-01-01

    The distribution of relaxation times approach, a less frequently employed dielectric data analysis technique, is utilized to better understand the relaxation characteristics of composites consisting of metal-coated, hollow glass spheres dispersed in a paraffin wax matrix. The dielectric properties of the composite samples are measured by means of impedance spectroscopy in the frequency range 0.1mHz to 10 MHz. The application of a mixture law is not appropriate for the analysis of the frequency-dependent properties of the considered system on this broad frequency range. However, utilization of the distribution of relaxation times procedure to study the dielectric behaviour shows clear trends in the mixtures' relaxation spectra. Relaxation processes of the paraffin wax and those specific to the composites are found from the extracted distribution of relaxation times spectra. The influence of the filler concentration, q, on the dielectric properties is examined; a relaxation with a narrow distribution at intermediate frequencies becomes broad with the addition of the filler. This relaxation, in the form of the low-frequency-dispersions (also known as constant phase angle) phenomenon, dominates the dielectric properties of the composites with high bead concentration, q > 0:15. The variation in dielectric properties of individual samples whose bead concentrations q are nominally the same is discussed in terms of possible microstructural variations.

  10. Investigating low-frequency dielectric properties of a composite using the distribution of relaxation times technique

    SciTech Connect

    Tuncer, Enis; Bowler, Nicola; Youngs, I. J.; Lymer, K. P.

    2006-01-01

    The distribution of relaxation times approach, a less frequently employed dielectric data analysis technique, is utilized to better understand the relaxation characteristics of composites consisting of metal-coated, hollow glass spheres dispersed in a paraffin wax matrix. The dielectric properties of the composite samples are measured by means of impedance spectroscopy in the frequency range 0.1 mHz to 10 MHz. The application of a mixture law is not appropriate for the analysis of the frequency-dependent properties of the considered system on this broad frequency range. However, utilization of the distribution of relaxation times procedure to study the dielectric behaviour shows clear trends in the mixtures' relaxation spectra. Relaxation processes of the paraffin wax and those specific to the composites are found from the extracted distribution of relaxation times spectra. The influence of the filler concentration, q, on the dielectric properties is examined; a relaxation with a narrow distribution at intermediate frequencies becomes broad with the addition of the filler. This relaxation, in the form of the low-frequency-dispersions (also known as constant phase angle) phenomenon, dominates the dielectric properties of the composites with high bead concentration, q>0.15. The variation in dielectric properties of individual samples whose bead concentrations q are nominally the same is discussed in terms of possible microstructural variations.

  11. Relation of strength distribution of Nb 3Al filaments to strength of multifilamentary superconducting composite wire

    NASA Astrophysics Data System (ADS)

    Ochiai, S.; Sawada, T.; Nishino, S.; Hojo, M.; Takahashi, K.; Yamada, Y.

    The distribution of tensile strength of Nb 3Al filaments and its relation to tensile strength of Nb 3Al multifilamentary superconducting composite wire were studied. The main results can be summarized-as follows: (1) The tensile strength of the extracted filaments with an average diameter of 24 μm was estimated based on the two-parameter Weibull distribution function. The shape and scale parameters were 7.0 and 530 MPa (for a standard length of 1 m), respectively. (2) Although the scatter of the strength of the Nb 3Al filaments was large, that of the multifilamentary composite was very small. This means that, when a large number of filaments are embedded in a composite, the stress leading to overall fracture of the composite is not very different from sample to sample, even though the strengths of the embedded filaments are significantly different. This feature was confirmed by means of a computer-aided Monte Carlo simulation. (3) It was shown by experiment and simulation that the strength of the Nb 3Al composite wire has a very slight dependence on length, although the strength of the Nb 3Al filament decreases markedly with increasing length. This result indicates that, even if the length of the composite wire is extended from a short, laboratory scale sample to an industrial scale, the reduction in strength will be very small.

  12. Hydrogen isotopic compositions of n-alkanes from terrestrial plants correlate with their ecological life forms.

    PubMed

    Liu, Weiguo; Yang, Hong; Li, Liwu

    2006-11-01

    Stable hydrogen isotopic compositions (deltaD) of compound-specific biomarkers, such as n-alkanes from plant leaf waxes, can be used as a proxy for paleoclimatic change. However, the relationship between hydrogen isotopes of plant leaf wax and plant ecological life forms is not well understood. Here, we report the deltaD of n-alkanes from 34 modern terrestrial plants, including twenty-one C(3) plants and thirteen C(4) plants from northwestern China, determined using gas chromatography/thermal conversion/isotope ratio mass spectrometry. Our data show that the stable hydrogen isotopes are poorly correlated with the plant photosynthetic pathway (C(3) vs. C(4)) and that they do not give clear regional precipitation signals. Together with a comparative analysis of published deltaD values from plant leaf waxes in other regions, we believe that the stable hydrogen isotope of plant leaf waxes is more closely related to ecological life forms of these terrestrial plants (i.e. tree, shrub, and grass). In general, the grasses have more negative deltaD values than the co-occurring trees and shrubs. Our findings suggest that the deltaD values of sedimentary leaf waxes from higher plants may record changes of a plant ecosystem under the influence of environmental alteration and imply that reconstruction of the paleoclimate using deltaD values from plant n-alkanes should be based upon specific plant taxa, and comparison should be made among plants with similar ecological life forms. PMID:16977462

  13. Changes in chemical composition and antioxidative properties of rye ginger cakes during their shelf-life.

    PubMed

    Zieliński, Henryk; del Castillo, Maria Dolores; Przygodzka, Małgorzata; Ciesarova, Zuzana; Kukurova, Kristina; Zielińska, Danuta

    2012-12-15

    Changes in chemical composition and antioxidative properties of rye ginger cakes during their shelf-life were investigated in this study. In particular, the changes in antioxidants content, antioxidative and reducing capacity, and Maillard reaction development in rye ginger cakes after long-term storage were addressed. Ginger cakes produced according to the traditional and current recipe were stored for 5 years at room temperature in a dark place. The total phenolic compounds (TPC), inositol hexaphosphate (IP6), reduced (GSH) and oxidised glutathione (GSSG) contents, antioxidant and reducing capacity and Maillard reaction products (MRPs) were determined in ginger cakes after storage and then compared to those measured after baking. After long-term storage a decrease in TPC and IP6 contents in cakes was noted. In contrast, an increase in antioxidative and reducing capacity of stored cakes was observed. Long-term storage induced formation of furosine, advanced and final Maillard reaction products and caused changes in both reduced and oxidised forms of glutathione. After long-term storage the modest changes in furosine, FAST index and browning in ginger cake formulated with dark rye flour may suggest that this product is the healthiest among others. Therefore, traditional rye ginger cakes can be considered as an example of a healthy food that is also relatively stable during long term storage as noted by the small chemical changes observed in its composition. PMID:22980898

  14. Fatigue-life behavior and matrix fatigue crack spacing in unnotched SCS-6/Timetal 21S metal matrix composites

    NASA Astrophysics Data System (ADS)

    Ward, G. T.; Herrmann, D. J.; Hillberry, B. M.

    1993-07-01

    Fatigue tests of the SCS-6/Timetal 21S composite system were performed to characterize the fatigue behavior for unnotched conditions. The stress-life behavior of the unnotched (9/90)2s laminates was investigated for stress ratios of R = 0.1 and R = 0.3. The occurrence of matrix cracking was also examined in these specimens. This revealed multiple matrix crack initiation sites throughout the composite, as well as evenly spaced surface cracks along the length of the specimens. No difference in fatigue lives were observed for stress ratios of R = 0.1 and R = 0.3 when compared on a stress range basis. The unnotched SCS-6/Timetal 21S composites had shorter fatigue lives than the SCS-6/Ti-15-3 composites, however the neat Timetal 21S matrix material had a longer fatigue life than the neat Ti-15-3.

  15. Fatigue-life behavior and matrix fatigue crack spacing in unnotched SCS-6/Timetal 21S metal matrix composites

    NASA Technical Reports Server (NTRS)

    Ward, G. T.; Herrmann, D. J.; Hillberry, B. M.

    1993-01-01

    Fatigue tests of the SCS-6/Timetal 21S composite system were performed to characterize the fatigue behavior for unnotched conditions. The stress-life behavior of the unnotched (9/90)2s laminates was investigated for stress ratios of R = 0.1 and R = 0.3. The occurrence of matrix cracking was also examined in these specimens. This revealed multiple matrix crack initiation sites throughout the composite, as well as evenly spaced surface cracks along the length of the specimens. No difference in fatigue lives were observed for stress ratios of R = 0.1 and R = 0.3 when compared on a stress range basis. The unnotched SCS-6/Timetal 21S composites had shorter fatigue lives than the SCS-6/Ti-15-3 composites, however the neat Timetal 21S matrix material had a longer fatigue life than the neat Ti-15-3.

  16. Compositional and monomer sequence distribution analysis of monodisperse brominated-polystyrenes using interaction chromatography

    NASA Astrophysics Data System (ADS)

    Han, Junwon; Semler, James J.

    2005-03-01

    High performance liquid chromatography techniques have been developed for characterizing complex polymers that are often heterogeneous in molecular weight, molecular architecture, and chemical composition. Recently, interaction chromatography (IC) techniques have been developed, which facilitate separation of polymers based on enthalpic ``attraction'' difference among the chemical constituents of the molecule. Here, we use IC for characterizing the composition and monomer sequence distribution in statistical copolymers of poly(styrene-co-4-bromostyrene) (PBrxS). The PBrxS copolymers were synthesized by brominating monodisperse polystyrenes; the degree of bromination (x) and the sequence distribution have been adjusted by varying the bromination time and the solvent quality, respectively. Both normal-phase (bare silica) and reversed-phase (C18-bonded silica) columns are used at different combinations of solvents and non-solvents to monitor the content of the 4-bromostyrene units in the copolymer and their average monomer sequence distribution.

  17. Controls on the distribution and isotopic composition of helium in deep ground-water flows

    USGS Publications Warehouse

    Zhao, X.; Fritzel, T.L.B.; Quinodoz, H.A.M.; Bethke, C.M.; Torgersen, T.

    1998-01-01

    The distribution and isotopic composition of helium in sedimentary basins can be used to interpret the ages of very old ground waters. The piston-flow model commonly used in such interpretation, how ever, does not account for several important factors and as such works well only in very simple flow regimes. In this study of helium transport in a hypothetical sedimentary basin, we develop a numerical model that accounts for the magnitude and distribution of the basal helium flux, hydrodynamic dispersion, and complexities in flow regimes such as subregional flow cells. The modeling shows that these factors exert strong controls on the helium distribution and isotopic composition. The simulations may provide a basis for more accurate interpretations of observed helium concentrations and isotopic ratios in sedimentary basins.

  18. Analysis of stress distributions in metal-matrix composites using computed tomography data

    NASA Astrophysics Data System (ADS)

    Yancey, Robert N.

    1998-03-01

    The control of fiber spacing is a difficult challenge in the manufacturing of composite materials. This paper describes an analytical approach coupled with a nondestructive evaluation method to analyze the effects of fiber spacing on the material properties of a composite material. Results of a finite element analyses are presented to quantify the effects of fiber spacing in unidirectional metal-matrix composites. Computed tomography (CT) data of unidirectional metal-matrix composite samples provide information on fiber locations for the analysis of the fiber distribution within the composite. Image processing methods are developed to extract fiber centers form the CT data. The processed CT data are used to produce a rectangular grid of finite elements which model the composite cross-section and where the stiffness matrix for each element is based on the local fiber volume fraction. The finite element results how that in some cases, stresses in the composite can be as high as 56 percent greater than the average stress and thereby set up stress concentrations which can initiate yielding and/or damage at loads well below those that would be calculated using average stress considerations only.

  19. Frequency Distributions of Geochemical Data, Scaling Laws, and Properties of Compositions

    NASA Astrophysics Data System (ADS)

    Buccianti, Antonella

    2015-07-01

    Many random processes occur in geochemistry. Accurate predictions of the manner in which elements or chemical species interact with each other are needed to construct models able to treat the presence of random components. Although modelling of frequency distributions with some probabilistic models (for example Gaussian, log-normal, Pareto) has been well discussed in several fields of application, little attention has been devoted to the features of compositional data and, in particular, to their multivariate nature. In this contribution an approach coherent with the properties of compositional information is proposed and used to investigate the shape of the frequency distribution of geochemical indices obtained by robust multivariate analysis. The purpose is to understand data-generation processes from the perspective of compositional theory. The approach is based on use of transformations of the log-ratio family, each with peculiar theoretical and practical advantages, depending on the statistical methods adopted. Accordingly, because, in compositional data, all the relevant information about one term ( x i ) of a D-part composition is contained in the ratios to each of the remaining parts x 2,…, x D , analysis of single variables is abandoned. The proposed methodology directs attention to modelling of the frequency distribution of more complex indices, linking all the terms of the composition to better represent the dynamics of geochemical processes. An example of its application is presented and discussed on the basis of consideration of the chemistry of 616 ocean floor basaltic (OFB) glasses from the abyssal volcanic glass data file (AVGDF) of the Smithsonian Institution.

  20. Evaluating distributed fibre optic sensors integrated into thermoplastic composites for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Schilder, Constanze; Schukar, Marcus; Steffen, Milan; Krebber, Katerina

    2014-05-01

    Strain sensors used for structural health monitoring (SHM) must provide reliable measurement data during their entire service lifetime. To achieve this for fibre optic sensors integrated into composites, the integration of the sensor has to be adapted according to the process conditions. This paper describes the fabrication of thermoplastic composite samples with integrated distributed fibre optic sensors (DFOS) based on copper-nickel and polyimide coated silica optical fibres. The performance of these DFOS as SHM sensors is evaluated in terms of reliability by measurements derived from comparative measurements with resistance strain gauges and from fatigue tests with 10 million load cycles.

  1. Visceral Adipocyte Hypertrophy is Associated With Dyslipidemia Independent of Body Composition and Fat Distribution in Women

    PubMed Central

    Veilleux, Alain; Caron-Jobin, Maude; Noël, Suzanne; Laberge, Philippe Y.; Tchernof, André

    2011-01-01

    OBJECTIVE We assessed whether subcutaneous and omental adipocyte hypertrophy are related to metabolic alterations independent of body composition and fat distribution in women. RESEARCH DESIGN AND METHODS Mean adipocyte diameter of paired subcutaneous and omental adipose tissue samples was obtained in lean to obese women. Linear regression models predicting adipocyte size in both adipose tissue depots were computed using body composition and fat distribution measures (n = 150). In a given depot, women with larger adipocytes than predicted by the regression were considered as having adipocyte hypertrophy, whereas women with smaller adipocytes than predicted were considered as having adipocyte hyperplasia. RESULTS Women characterized by omental adipocyte hypertrophy had higher plasma and VLDL triglyceride levels as well as a higher total-to-HDL cholesterol ratio compared with women characterized by omental adipocyte hyperplasia (P < 0.05). Conversely, women characterized by subcutaneous adipocyte hypertrophy or hyperplasia showed a similar lipid profile. In logistic regression analyses, a 10% enlargement of omental adipocytes increased the risk of hypertriglyceridemia (adjusted odds ratio [OR] 4.06, P < 0.001) independent of body composition and fat distribution measures. A 10% increase in visceral adipocyte number also raised the risk of hypertriglyceridemia (adjusted OR 1.55, P < 0.02). Associations between adipocyte size and homeostasis model assessment of insulin resistance were not significant once adjusted for adiposity and body fat distribution. CONCLUSIONS These results suggest that omental, but not subcutaneous, adipocyte hypertrophy is associated with an altered lipid profile independent of body composition and fat distribution in women. PMID:21421806

  2. A creep cavity growth model for creep-fatigue life prediction of a unidirectional W/Cu composite

    NASA Technical Reports Server (NTRS)

    Kim, Young-Suk; Verrilli, Michael J.; Halford, Gary R.

    1992-01-01

    A microstructural model was developed to predict creep-fatigue life in a (0)(sub 4), 9 volume percent tungsten fiber-reinforced copper matrix composite at the temperature of 833 K. The mechanism of failure of the composite is assumed to be governed by the growth of quasi-equilibrium cavities in the copper matrix of the composite, based on the microscopically observed failure mechanisms. The methodology uses a cavity growth model developed for prediction of creep fracture. Instantaneous values of strain rate and stress in the copper matrix during fatigue cycles were calculated and incorporated in the model to predict cyclic life. The stress in the copper matrix was determined by use of a simple two-bar model for the fiber and matrix during cyclic loading. The model successfully predicted the composite creep-fatigue life under tension-tension cyclic loading through the use of this instantaneous matrix stress level. Inclusion of additional mechanisms such as cavity nucleation, grain boundary sliding, and the effect of fibers on matrix-stress level would result in more generalized predictions of creep-fatigue life.

  3. Nutrient composition and respiration characteristics of silkworms in the Bioregenerative Life Support System

    NASA Astrophysics Data System (ADS)

    Tong, Ling; Yu, Xiaohui; Liu, Hong

    As the appropriate space animal candidate, silkworm(Bombyx Mori L.) can supply animal food for taikonauts and consume inedible parts of plants in Bioregenerative Life Support Sys-tem(BLSS). Due to the features of BLSS, the silkworm breeding method in the system differ-ent from the conventional one is feeding the silkworm in the first three developing stages with mulberry leaves and with lettuce leaves in the latter two developing stages. Therefore, it is nec-essary to investigate the biochemical components and respiration characteristics of silkworms raised with this method to supply data bases for the inclusion of silkworms in the system to conduct system experiments. The nutrient compositions of silkworm powder (SP) which are the grinded and freeze-dried silkworm on the 3rd day in the fifth developing stage containing protein, fat, vitamins, minerals and fatty acids were determined with international standard analyzing methods in this study. The results showed that SP was rich in protein and amino acids. There were twelve kinds of essential vitamins, nine kinds of minerals and twelve kinds of fatty acids in SP. In contrast, SP had much better nutrient components than snail, fish, chicken, beef and pork as animal food for crew members. Moreover, 359 kCal can be generated per 100g of SP (dry weight). The respirations of silkworm during its whole growing process under two main physiological statuses which were eating and non-eating leaves were studied. According to the results measured by the animal respiration measuring system, there were much difference among the respirations of silkworms under the two main physiological statuses. The amounts of O2 inhaled and CO2 exhaled by the silkworms when they were eating leaves were more than those under the non-eating status. Even under the same status, the respiration characteristics of silkworms in five different developing stages were also different from one an-other. The respiratory quotients of silkworms under two

  4. Recycling and reuse of waste from electricity distribution networks as reinforcement agents in polymeric composites.

    PubMed

    Zimmermann, Matheus V G; Zattera, Ademir J

    2013-07-01

    Of the waste generated from electricity distribution networks, wooden posts treated with chromated copper arsenate (CCA) and ceramic insulators make up the majority of the materials for which no effective recycling scheme has been developed. This study aims to recycle and reuse this waste as reinforcement elements in polymer composites and hybrid composites, promoting an ecologically and economically viable alternative for the disposal of this waste. The CCA wooden posts were cut, crushed and recycled via acid leaching using 0.2 and 0.4N H2SO4 in triplicate at 70°C and then washed and dried. The ceramic insulators were fragmented in a hydraulic press and separated by particle size using a vibrating sieve. The composites were mixed in a twin-screw extruder and injected into the test specimens, which were subjected to physical, mechanical, thermal and morphological characterization. The results indicate that the acid treatment most effective for removing heavy metals in the wood utilizes 0.4NH2SO4. However, the composites made from wood treated with 0.2NH2SO4 exhibited the highest mechanical properties of the composites, whereas the use of a ceramic insulator produces composites with better thermal stability and impact strength. This study is part of the research and development project of ANEEL (Agência Nacional de Energia Elétrica) and funded by CPFL (Companhia Paulista de Força e Luz). PMID:23663959

  5. Fatigue Life Prediction of Carbon Fiber-Reinforced Ceramic-Matrix Composites at Room and Elevated Temperatures. Part II: Experimental Comparisons

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2015-12-01

    This paper follows on from the earlier study (Part I) which investigated the fatigue behavior of unidirectional, cross-ply and 2.5D C/SiC composites at room and elevated temperatures. In this paper, a micromechanics approach to predict the fatigue life S-N curves of fiber-reinforced CMCs has been developed considering the fatigue damage mechanism of interface wear or interface oxidation. Upon first loading to fatigue peak stress, matrix multicracking and fiber/matrix interface debonding occur. The two-parameter Weibull model is used to describe fibers strength distribution. The stress carried by broken and intact fibres on the matrix crack plane under fatigue loading is determined based on the Global Load Sharing (GLS) criterion. The fibres failure probabilities under fatigue loading considering the degradation of interface shear stress and fibres strength have been obtained. When the broken fibres fraction approaches critical value, the composite would fatigue fail. The fatigue life S-N curves of unidirectional, cross-ply and 2.5D C/SiC composites at room and elevated temperatures have been predicted. The predicted results agreed with experimental data.

  6. Determing Lamprey Species Composition, Larval Distribution, and Adult Abundance in the Deschutes River, Oregon, Subbasin; 2005-2006 Annual Report.

    SciTech Connect

    Graham, Jennifer C.; Brun, Christopher V.

    2006-05-01

    Information about lamprey species composition, distribution, life history, abundance, habitat requirements, and exploitation in the lower Deschutes River Subbasin is extremely limited. During 2002, we began a multi-year study to assess the status of lamprey in the Deschutes River subbasin. The objectives of this project are to determine ammocoete (larval lamprey) distribution and associated habitats; Lampretra species composition; numbers of emigrants; adult escapement and harvest rates at Sherars Falls. This report describes the preliminary results of data collected during 2005. We continued documenting ammocoete (larval) habitat selection by surveying four perennial eastside tributaries to the Deschutes River (Warm Springs River, Badger, Beaver and Shitike creeks) within the known ammocoete distribution. The results of 2003-2005 sampling indicate that positive relationships exist between: presence of wood (P = < 0.001), depositional area (P = < 0.001), flow (P = < 0.001), and fine substrate (P = < 0.001). Out-migrants numbers were not estimated during 2005 due to our inability to recapture marked larvae. In Shitike Creek, ammocoete and microphthalmia out-migration peaked during November 2005. In the Warm Spring River, out-migration peaked for ammocoetes in April 2006 and December 2005 for microphthalmia. Samples of ammocoetes from each stream were retained in a permanent collection of future analysis. An escapement estimate was generated for adult Pacific lamprey in the lower Deschutes River using a two event mark-recapture experiment during run year 2005. A modified Peterson model was used to estimate the adult population of Pacific lamprey at 3,895 with an estimated escapement of 2,881 during 2005 (95% CI= 2,847; M = 143; C = 1,027 R = 37). A tribal creel was also conducted from mid-June through August. We estimated tribal harvest to be approximately 1,015 adult lamprey during 2005 (95% CI= +/- 74).

  7. Distribution and compositional change of organic materials with the evolution or a protoplanetary disk

    NASA Astrophysics Data System (ADS)

    Nagahara, Hiroko

    2015-08-01

    A protoplanetary disk evolves dynamically, which changes the physical and chemical conditions temporally and spatially. Evolution of organic materials derived from the previous molecular cloud has been extensively studied by chemical network calculation assuming chemical reaction on the surface of grains. Such surface reaction would have played important roles at the very early stage of disk evolution or low temperature outer region; however, thermal processes should have been the dominant reaction at later or high temperature (~above the melting point of water ice) regions. Those organics should have been incorporated into planetesimals that would be a precursor material of life.We have developed a protoplanetary disk evolution model by combining fluid dynamics and chemical change of organics with the molecular cloud origin. On the basis of calculation, we discuss the temporal and spatial change of organics within the inner region of the disk. The organics initially has a composition of cometary organics, which is assume not to change up to T~250K, becomes rich in C up to T~400K, and changed into almost pure C at T>500K. At the early stage of disk evolution (t<105 years), a significant fraction of refractory organics (enriched in C and depleted in H, O, and N) is present in the asteroid belt, and the primitive (max T< 250K) organics are distributed beyond several AU, whereas, the primitive organics reached at the inner edge of the asteroid belt. Primitive organics are not present at ~1AU through the disk evolution.The results strongly suggests that the Earth does not contain primitive organics if all the embryos that formed the Earth were derived within ~2AU. On the other hand, some fraction of organics in the asteroid belt would be primitive that retain primitive nature originated in the molecular cloud with heavy isotope enrichments. If the disk was heavy and the high temperature region extended to outer regions, organics supplied to the steroidal belt should be

  8. Distribution and composition of suspended matter at meridional section in the western Atlantic

    NASA Astrophysics Data System (ADS)

    Politova, N. V.; Artem'ev, V. A.; Zernova, V. V.

    2015-11-01

    The results of the study of suspended particulate matter of the surface waters in the Western Atlantic from the moderate latitudes of the northern hemisphere to the subtropics of the southern hemisphere, its distribution of quantity, and its composition are considered. The dominant influence of climatic zonality, where maximum contents and a biogenic component of suspended matter are confined to the eutrophic and mesotrophic segments of the ocean, as well as the influence of circumcontinental zonality, especially manifest in the distribution of the lithogenic fraction of suspended matter, are recorded.

  9. Inference of stratospheric aerosol composition and size distribution from SAGE II satellite measurements

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Mccormick, M. P.; Fuller, W. H.; Yue, G. K.; Swissler, T. J.; Osborn, M. T.

    1989-01-01

    A method for inferring stratospheric aerosol composition and size distribution from the water vapor concentration and aerosol extinction measurements obtained in the Stratospheric Aerosol and Gas Experiment (SAGE) II and the associated temperature from the NMC. The aerosols are assumed to be sulfuric acid-water droplets. A modified Levenberg-Marquardt algorithm is used to determine model size distribution parameters based on the SAGE II multiwavelength aerosol extinctions. It is found that the best aerosol size information is contained in the aerosol radius range between about 0.25 and 0.80 micron.

  10. X7R Lead-Complex Perovskite Dielectrics with Inhomogeneous Compositional Distribution

    NASA Astrophysics Data System (ADS)

    Uchikoba, Fumio; Ito, Takashi; Nakajima, Shigeyuki

    1995-05-01

    Excess- WO3 Pb(Mg1/2W1/2)O3-PbTiO3-Pb(Ni2/3Nb2/3)O3 polycrystalline dielectric material was investigated. This material met EIA X7R specifications (the change of the capacitance is less than 15% over the temperature range from -55° C to +125° C). The material showed inhomogeneous compositional distributions within grains that consisted of three main parts, each possessing a different temperature dependence of the dielectric constant. It was found that the flat-temperature dependence of the dielectric constant in this system could be attributed to this inhomogeneous compositional distribution. Using this material, multilayer ceramic capacitors were fabricated.

  11. Effect of hydrodynamic interaction on the free volume distribution of SGFR-PBT composites

    NASA Astrophysics Data System (ADS)

    Munirathnamma, L. M.; Ningaraju, S.; Kumar, K. V. Aneesh; Ravikumar, H. B.

    2016-05-01

    In order to explore the effect of short glass fiber (SGF) reinforcement on the mechanical properties of Polybutylene terephthalate (PBT), short glass fibers of different proportion (10 - 40 wt %) are reinforced into PBT matrix. The free volume distribution of SGFR-PBT composites derived from CONTIN-PALS2 program exhibits the narrow full width at half maximum (FWHM). This is attributed to the improved adhesion resulted by the hydrodynamic interaction between the polymeric chains of PBT matrix and SGF. The hydrodynamic interaction parameter (h) decreases as a function of SGF wt% and becomes more negative for 40 wt% SGFR-PBT composites suggest the generation of excess friction at the interface. This improves the adhesion between the polymeric chains of PBT matrix and SGF and hence the mechanical strength of the SGFR-PBT composites.

  12. Distribution, chemistry, isotopic composition and origin of diagenetic carbonates: Magnus Sandstone, North Sea

    SciTech Connect

    Macaulay, C.I.; Haszeldine, R.S. ); Fallick, A.E. )

    1993-01-01

    Diagenetic ferroan carbonates grew in the Upper Jurassic reservoir sandstones of the Magnus oilfield in porewaters which differed in composition across the field. These porewaters remained compositionally different and stratified for at least 35 M.y. Variations in carbonate chemistry across the field are attributable to these porewater variations, which resulted from displacement of marine depositional water from the crest of the field by meteoric water during late Cimmerian subaerial exposure. Original depositional facies and detrital mineralogy strongly influenced diagenetic carbonate distribution. The objective of this paper is twofold: (1) to describe the occurrence of burial diagenetic magnesian siderite and ankerite from the Magnus Sandstone, and (2) to show that variations in the elemental and isotopic geochemistry of siderite and ankerite relate to long-lived variations in the composition of the porewaters in the sandstone during diagenesis.

  13. Deep ultraviolet distributed Bragg reflectors based on graded composition AlGaN alloys

    SciTech Connect

    Brummer, Gordie; Nothern, Denis; Nikiforov, A. Yu.; Moustakas, T. D.

    2015-06-01

    Distributed Bragg reflectors (DBRs) with peak reflectivity at approximately 280 nm, based on compositionally graded Al{sub x}Ga{sub 1−x}N alloys, were grown on 6H-SiC substrates by plasma-assisted molecular beam epitaxy. DBRs with square, sinusoidal, triangular, and sawtooth composition profiles were designed with the transfer matrix method. The crystal structure of these DBRs was studied with high-resolution x-ray diffraction of the (1{sup ¯}015) reciprocal lattice point. The periodicity of the DBR profiles was confirmed with cross-sectional Z-contrast scanning transmission electron microscopy. The peak reflectance of these DBRs with 15.5 periods varies from 77% to 56% with corresponding full width at half maximum of 17–14 nm. Coupled mode analysis was used to explain the dependence of the reflectivity characteristics on the profile of the graded composition.

  14. [Species composition and distribution of foraminifers in the Deryugin Basin (Sea of Okhotsk)].

    PubMed

    Khusid, T A; Domanov, M M; Svinininnikov, A M

    2006-01-01

    Analysis of the composition and quantitative distribution of foraminifers in bathyal sediments collected at 14 stations in the Deryugin Basin and at 11 stations in other regions of the Sea of Okhotsk, Sea of Japan, and North Pacific demonstrated specific foraminifer complex in the basin at depths from 1650 to 1800 m associated with cold barite/methane seeps. Oligomixed biocenosis with prevailing agglutinated foraminifers and Saccorhiza ramosa as the dominant was shown to develop in these zones. PMID:16634440

  15. Loading Analysis of Composite Wind Turbine Blade for Fatigue Life Prediction of Adhesively Bonded Root Joint

    NASA Astrophysics Data System (ADS)

    Salimi-Majd, Davood; Azimzadeh, Vahid; Mohammadi, Bijan

    2015-06-01

    Nowadays wind energy is widely used as a non-polluting cost-effective renewable energy resource. During the lifetime of a composite wind turbine which is about 20 years, the rotor blades are subjected to different cyclic loads such as aerodynamics, centrifugal and gravitational forces. These loading conditions, cause to fatigue failure of the blade at the adhesively bonded root joint, where the highest bending moments will occur and consequently, is the most critical zone of the blade. So it is important to estimate the fatigue life of the root joint. The cohesive zone model is one of the best methods for prediction of initiation and propagation of debonding at the root joint. The advantage of this method is the possibility of modeling the debonding without any requirement to the remeshing. However in order to use this approach, it is necessary to analyze the cyclic loading condition at the root joint. For this purpose after implementing a cohesive interface element in the Ansys finite element software, one blade of a horizontal axis wind turbine with 46 m rotor diameter was modelled in full scale. Then after applying loads on the blade under different condition of the blade in a full rotation, the critical condition of the blade is obtained based on the delamination index and also the load ratio on the root joint in fatigue cycles is calculated. These data are the inputs for fatigue damage growth analysis of the root joint by using CZM approach that will be investigated in future work.

  16. A Comparison of Various Stress Rupture Life Models for Orbiter Composite Pressure Vessels and Confidence Intervals

    NASA Technical Reports Server (NTRS)

    Grimes-Ledesma, Lorie; Murthy, Pappu L. N.; Phoenix, S. Leigh; Glaser, Ronald

    2007-01-01

    In conjunction with a recent NASA Engineering and Safety Center (NESC) investigation of flight worthiness of Kevlar Overwrapped Composite Pressure Vessels (COPVs) on board the Orbiter, two stress rupture life prediction models were proposed independently by Phoenix and by Glaser. In this paper, the use of these models to determine the system reliability of 24 COPVs currently in service on board the Orbiter is discussed. The models are briefly described, compared to each other, and model parameters and parameter uncertainties are also reviewed to understand confidence in reliability estimation as well as the sensitivities of these parameters in influencing overall predicted reliability levels. Differences and similarities in the various models will be compared via stress rupture reliability curves (stress ratio vs. lifetime plots). Also outlined will be the differences in the underlying model premises, and predictive outcomes. Sources of error and sensitivities in the models will be examined and discussed based on sensitivity analysis and confidence interval determination. Confidence interval results and their implications will be discussed for the models by Phoenix and Glaser.

  17. A Comparison of Various Stress Rupture Life Models for Orbiter Composite Pressure Vessels and Confidence Intervals

    NASA Technical Reports Server (NTRS)

    Grimes-Ledesma, Lorie; Murthy, Pappu, L. N.; Phoenix, S. Leigh; Glaser, Ronald

    2006-01-01

    In conjunction with a recent NASA Engineering and Safety Center (NESC) investigation of flight worthiness of Kevlar Ovenvrapped Composite Pressure Vessels (COPVs) on board the Orbiter, two stress rupture life prediction models were proposed independently by Phoenix and by Glaser. In this paper, the use of these models to determine the system reliability of 24 COPVs currently in service on board the Orbiter is discussed. The models are briefly described, compared to each other, and model parameters and parameter error are also reviewed to understand confidence in reliability estimation as well as the sensitivities of these parameters in influencing overall predicted reliability levels. Differences and similarities in the various models will be compared via stress rupture reliability curves (stress ratio vs. lifetime plots). Also outlined will be the differences in the underlying model premises, and predictive outcomes. Sources of error and sensitivities in the models will be examined and discussed based on sensitivity analysis and confidence interval determination. Confidence interval results and their implications will be discussed for the models by Phoenix and Glaser.

  18. Effect of Tissue Composition on Dose Distribution in Electron Beam Radiotherapy

    PubMed Central

    Ghorbani, M.; Tabatabaei, Z. S.; Vejdani Noghreiyan, A.; Vosoughi, H.; Knaup, C.

    2015-01-01

    Objective The aim of this study is to evaluate the effect of tissue composition on dose distribution in electron beam radiotherapy. Methods A Siemens Primus linear accelerator and a phantom were simulated using MCNPX Monte Carlo code. In a homogeneous cylindrical phantom, six types of soft tissue and three types of tissue-equivalent materials were investigated. The tissues included muscle (skeletal), adipose tissue, blood (whole), breast tissue, soft tissue (9-components) and soft tissue (4-component). The tissue-equivalent materials were water, A-150 tissue-equivalent plastic and perspex. Electron dose relative to dose in 9-component soft tissue at various depths on the beam’s central axis was determined for 8, 12, and 14 MeV electron energies. Results The results of relative electron dose in various materials relative to dose in 9-component soft tissue were reported for 8, 12 and 14 MeV electron beams as tabulated data. While differences were observed between dose distributions in various soft tissues and tissue-equivalent materials, which vary with the composition of material, electron energy and depth in phantom, they can be ignored due to the incorporated uncertainties in Monte Carlo calculations. Conclusion Based on the calculations performed, differences in dose distributions in various soft tissues and tissue-equivalent materials are not significant. However, due to the difference in composition of various materials, further research in this field with lower uncertainties is recommended. PMID:25973407

  19. Life Limiting Behavior in Interlaminar Shear of Continuous Fiber-Reinforced Ceramic Matrix Composites at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Calomino, Anthony M.; Bansal, Narottam P.; Verrilli, Michael J.

    2006-01-01

    Interlaminar shear strength of four different fiber-reinforced ceramic matrix composites was determined with doublenotch shear test specimens as a function of test rate at elevated temperatures ranging from 1100 to 1316 C in air. Life limiting behavior, represented as interlaminar shear strength degradation with decreasing test rate, was significant for 2-D crossplied SiC/MAS-5 and 2-D plain-woven C/SiC composites, but insignificant for 2-D plain-woven SiC/SiC and 2-D woven Sylramic (Dow Corning, Midland, Michigan) SiC/SiC composites. A phenomenological, power-law delayed failure model was proposed to account for and to quantify the rate dependency of interlaminar shear strength of the composites. Additional stress rupture testing in interlaminar shear was conducted at elevated temperatures to validate the proposed model. The model was in good agreement with SiC/MAS-5 and C/SiC composites, but in poor to reasonable agreement with Sylramic SiC/SiC. Constant shear stress-rate testing was proposed as a possible means of life prediction testing methodology for ceramic matrix composites subjected to interlaminar shear at elevated temperatures when short lifetimes are expected.

  20. Composites

    SciTech Connect

    Chou, T.; McCullough, R.L.; Pipes, R.B.

    1986-10-01

    The degree of control over material properties that is typified by hybrid composites is transforming engineering design. In part because homogeneous materials such as metals and alloys do not offer comparable control, specifying a material and designing a component have traditionally taken place separately. As composites begin to replace traditional materials in fields and such as aerospace, component design and the specification of a material are merging and becoming aspects of a single process. The controllable microstructure of a composite allows it to be tailored to match the distribution of stresses to which it will be subject. At the same time components must come to reflect the distinctive nature of composites: their directional properties and the intricate forms they can be given through processes such as injection molding, filament winding and three-dimensional weaving. The complexity inherent in conceiving components and their materials at the same time suggests engineering design will grow increasingly dependent on computers and multidisciplinary teams. Such an approach will harness the full potential of composites for the technologies of the future. 10 figures.

  1. Modelling of ceramic matrix composite microstructure using a two-dimensional fractal spatial particle distribution

    NASA Astrophysics Data System (ADS)

    Cottet, Arnaud J.

    Particulate composite reinforcements are good candidates for the fracture toughness of ceramics. In order to predict mechanical response of ceramic matrix composites, an efficient method capable of modelling their complex microstructure is needed. The purpose of this research is the development of such a model using fractal spatial particle distribution. A review of different toughness mechanisms for particulate composites and associated models for deriving their constitutive relationships is presented in chapter 2. These different toughening mechanisms as well constitutive properties depend on particle shape, size and spatial distribution, which lend themselves to a self-similar fractal based modelling approach. A self-similar distribution of particles linked to the fractal geometry is proposed. Fractal geometry provides an ideal tool for describing the randomness and disorder of the system. Its foundations are reviewed in chapter three with emphasis on iterated function systems that are subsequently used to obtain the particle configurations in the proposed model. For the sake of completeness, a review of fractal structure in science is given to illustrate possible applications. Derivation of the volume fraction associated with self similar distributions is provided in chapter 4. This is followed by a description of the numerical model and the boundary conditions. A Finite Element simulation is performed for different volume fractions, generators and number of particles for different displacements (two uniaxial and biaxial cases) and 2-D stress state cases. From these simulations the inverse distribution of the maximum principal stress is computed. Then the self similar models are compared with the model obtained by the Yang Teriari Gokhale (Y.T.G.) method and model obtained by only one iteration. Fractal dimension for real microstructure are computed and microstructure based on the fractal dimension and number of particle is simulated. It can be derived that the

  2. What is the difference? Evidence on the distribution of wealth, health, life expectancy, and health insurance coverage.

    PubMed

    Kennickell, Arthur B

    2008-09-10

    There is a literature of long standing that considers the relationship between income and differentials in mortality and morbidity, but information on differentials over the distribution of accumulated wealth have been far more scarce and subject to measurement problems. This paper provides evidence from the Survey of Consumer Finances, which is designed as a survey of wealth, on the distribution of wealth and income and how those distributions have shifted in recent years. Particular attention is paid to the distribution of wealth across minority groups and across age groups. The paper also examines the relationship between wealth and health status, life expectancy, and health insurance coverage. PMID:18680166

  3. Determing Lamprey Species Composition, Larval Distribution, and Adult Abundance in the Deschutes River, Oregon, Subbasin; 2001-2002 Annual Report.

    SciTech Connect

    Graham, Jennifer C.; Brun, Christopher V.

    2003-05-01

    Information about lamprey species composition, distribution, life history, abundance, habitat requirements and exploitation in lower Deschutes River tributaries is extremely limited. To assess the status of lampreys in the Deschutes River subbasin, baseline information is needed. We operated to rotary screw traps in the Warm Springs River and Shitike Creek to gain an understanding of species composition, migration time and production. We identified Pacific lampreys in two life stages, ammocoete and macropthalmia. It appears that Pacific lamprey macropthalmia out-migrate during winter in the Warm Springs River. We saw peak movements by ammocoetes in the spring in Shitike Creek and winter in the Warm Springs River. We found no relationship between stream discharge and the number of lamprey collected. Very few macropthalmia were collected in Shitike Creek. Ammocoete size in the Warm Springs River and Shitike Creek were different. The ammocoetes in the Shitike Creek trap were close in size to the macropthalmia collected in the Warm Springs River trap. We also completed planning and preparation for larval and associated habitat data collection. This preparation included purchasing necessary field equipment, selecting and marking sampling areas and attending training with US Fish and Wildlife Service (USFWS) and the Confederated Tribes of Umatilla Indian Reservation (CTUIR). Because lamprey identification is difficult we met with US Geological Survey (USGS) to assist us with larval lamprey identification techniques. We have also been working in coordination with the Oregon Department of Fish and Wildlife (ODFW) to prepare and implement creel surveys and a mark-recapture study at Sherar's Falls to estimate adult lamprey escapement.

  4. Analysis of stress distributions in metal-matrix composites with variations in fiber spacing

    NASA Astrophysics Data System (ADS)

    Yancey, Robert Neil

    1997-09-01

    Results of micromechanical and finite element analyses are presented to quantify the effects of fiber spacing in unidirectional metal-matrix composites (MMC's). Computed tomography (CT) data of unidirectional metal-matrix composite samples provide information on fiber locations for the analysis of the fiber distribution within the composite. Image processing methods are developed to extract fiber centers from the CT data. A micromechanical model, based on the Generalized Method of Cells (GMC), is developed to include interface and crack elements and model the stress variations in a representative unit cell containing two half fibers. The minimum, average, and maximum distance between fibers, as measured from the CT data, is used as input to the model. The model results show that the stress between fibers increases as they get closer together. The CT data are also processed to produce a rectangular grid of finite elements which model the composite cross-section and where the stiffness matrix for each element is based on the local fiber volume fraction. The finite element results show that in some cases, stresses in the composite can be as high as 56% greater than the average stress and thereby set up stress concentrations which can initiate yielding and/or damage at loads well below those that would be calculated using average stress considerations only.

  5. Magnitude and distribution of stresses in composite resin and sound dentine interface with mechanical retentions

    PubMed Central

    Borie, Eduardo; Orsi, Iara-Augusta; Del Sol, Mariano

    2015-01-01

    Background Adhesive systems are constantly subjected to mechanical and chemical stresses that negatively impact the integrity and durability of the dentine-adhesive interface. Despite the lack of evidence to support or reject the clinical indication for mechanical retention, the potential further contribution of these preparations to the behavior of the composite resin-sound dentine bond has been rarely addressed. The authors evaluated by finite element analysis the effect of mechanical retention on the magnitude and distribution of stresses in a composite resin-sound dentin bonding interface when subjected to tensile and shear forces. Material and Methods A three-dimensional model was created based on three cylindrical volumes representing the sound dentin, adhesive system, and composite resin. From this main model, two models were designed to simulate dentine bonding: 1) a model with no mechanical retention, which considered flat adhesion; and 2) a model with retention, which considered four hemispherical holes on the dentine surface. Both groups were subjected to linear static analysis under tensile and shear loading of 200N. Results At the model with retentions’ bonding interface under tensile and shear loading, a concentration of Von Mises equivalent stress was observed within the retentions, with a reduction of those stresses on the bonding boundary surface. Conclusions Additional mechanical retention increases the tensile strength of the sound dentin-composite resin bonding interface, promoting a decrease in the magnitude of the stresses and their redistribution under tensile and shear loading. Key words:Adhesion, composite resins, dentine, finite element analysis. PMID:26155338

  6. Habitat and distribution of post-recruit life stages of the squid Loligo forbesii

    NASA Astrophysics Data System (ADS)

    Smith, Jennifer M.; Macleod, Colin D.; Valavanis, Vasilis; Hastie, Lee; Valinassab, Tooraj; Bailey, Nick; Santos, M. Begoña; Pierce, Graham J.

    2013-10-01

    This study models habitat preferences of the squid Loligo forbesii through its post-recruitment life cycle in waters around Scotland (UK). Trawl survey and market sample data from 1985 to 2004 are used to model seasonal habitats of immature, maturing and mature squid (maturity being inferred from size and season). Squid presence-absence and catch rate in areas of presence were analysed using generalised additive models, relating spatiotemporal patterns of distribution and abundance to ecogeographic variables. For all maturity classes, higher abundance in winter and spring (i.e., quarters 1 and 2) was associated with deeper water while higher abundance in summer and autumn (quarters 3 and 4) was associated with shallower water, consistent with seasonal onshore-offshore migrations but suggesting that most spawning may take place in deeper waters. The preferred SST range was generally 8-8.75 °C while preferred salinity values were below 35‰ in winter and summer and above 35‰ in spring and autumn. Squid were positively associated with gravel substrate and negatively associated with mud. Seasonal changes in habitat use were more clearly evident than changes related to inferred maturity, although the two effects cannot be fully separated due to the annual life cycle. Habitat selection for this species can be satisfactorily modelled on a seasonal basis; predictions based on such models could be useful for fishers to target the species more effectively, and could assist managers wishing to protect spawning grounds. The extent to which this approach may be useful for other cephalopods is discussed.

  7. Software for analysis of chemical mixtures--composition, occurrence, distribution, and possible toxicity

    USGS Publications Warehouse

    Scott, Jonathon C.; Skach, Kenneth A.; Toccalino, Patricia L.

    2013-01-01

    The composition, occurrence, distribution, and possible toxicity of chemical mixtures in the environment are research concerns of the U.S. Geological Survey and others. The presence of specific chemical mixtures may serve as indicators of natural phenomena or human-caused events. Chemical mixtures may also have ecological, industrial, geochemical, or toxicological effects. Chemical-mixture occurrences vary by analyte composition and concentration. Four related computer programs have been developed by the National Water-Quality Assessment Program of the U.S. Geological Survey for research of chemical-mixture compositions, occurrences, distributions, and possible toxicities. The compositions and occurrences are identified for the user-supplied data, and therefore the resultant counts are constrained by the user’s choices for the selection of chemicals, reporting limits for the analytical methods, spatial coverage, and time span for the data supplied. The distribution of chemical mixtures may be spatial, temporal, and (or) related to some other variable, such as chemical usage. Possible toxicities optionally are estimated from user-supplied benchmark data. The software for the analysis of chemical mixtures described in this report is designed to work with chemical-analysis data files retrieved from the U.S. Geological Survey National Water Information System but can also be used with appropriately formatted data from other sources. Installation and usage of the mixture software are documented. This mixture software was designed to function with minimal changes on a variety of computer-operating systems. To obtain the software described herein and other U.S. Geological Survey software, visit http://water.usgs.gov/software/.

  8. Relationship between Defect Size and Fatigue Life Distributions in Al-7 Pct Si-Mg Alloy Castings

    NASA Astrophysics Data System (ADS)

    Tiryakioğlu, Murat

    2009-07-01

    A new method for predicting the variability in fatigue life of castings was developed by combining the size distribution for the fatigue-initiating defects and a fatigue life model based on the Paris-Erdoğan law for crack propagation. Two datasets for the fatigue-initiating defects in Al-7 pct Si-Mg alloy castings, reported previously in the literature, were used to demonstrate that (1) the size of fatigue-initiating defects follow the Gumbel distribution; (2) the crack propagation model developed previously provides respectable fits to experimental data; and (3) the method developed in the present study expresses the variability in both datasets, almost as well as the lognormal distribution and better than the Weibull distribution.

  9. Perinatal bisphenol A exposure promotes hyperactivity, lean body composition, and hormonal responses across the murine life course.

    PubMed

    Anderson, Olivia S; Peterson, Karen E; Sanchez, Brisa N; Zhang, Zhenzhen; Mancuso, Peter; Dolinoy, Dana C

    2013-04-01

    The development of adult-onset diseases is influenced by perinatal exposure to altered environmental conditions. One such exposure, bisphenol A (BPA), has been associated with obesity and diabetes, and consequently labeled an obesogen. Using an isogenic murine model, we examined the effects of perinatal exposure through maternal diet to 50 ng (n=20), 50 μg (n=21), or 50 mg (n=18) BPA/kg diet, as well as controls (n=20) on offspring energy expenditure, spontaneous activity, and body composition at 3, 6, and 9 mo of age, and hormone levels at 9 and 10 mo of age. Overall, exposed females and males exhibited increased energy expenditure (P<0.001 and 0.001, respectively) throughout the life course. In females, horizontal and vertical activity increased (P=0.07 and 0.06, respectively) throughout the life course. Generally, body composition measures were not different throughout the life course in exposed females or males (all P>0.44), although body fat and weight decreased in exposed females at particular ages (all P<0.08). Milligram-exposed females had improved glucose, insulin, adiponectin, and leptin profiles (all P<0.10). Thus, life-course analysis illustrates that BPA is associated with hyperactive and lean phenotypes. Variability across studies may be attributable to differential exposure duration and timing, dietary fat and phytoestrogen content, or lack of sophisticated phenotyping across the life course. PMID:23345456

  10. Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network

    NASA Astrophysics Data System (ADS)

    Ben Ali, Jaouher; Chebel-Morello, Brigitte; Saidi, Lotfi; Malinowski, Simon; Fnaiech, Farhat

    2015-05-01

    Accurate remaining useful life (RUL) prediction of critical assets is an important challenge in condition based maintenance to improve reliability and decrease machine's breakdown and maintenance's cost. Bearing is one of the most important components in industries which need to be monitored and the user should predict its RUL. The challenge of this study is to propose an original feature able to evaluate the health state of bearings and to estimate their RUL by Prognostics and Health Management (PHM) techniques. In this paper, the proposed method is based on the data-driven prognostic approach. The combination of Simplified Fuzzy Adaptive Resonance Theory Map (SFAM) neural network and Weibull distribution (WD) is explored. WD is used just in the training phase to fit measurement and to avoid areas of fluctuation in the time domain. SFAM training process is based on fitted measurements at present and previous inspection time points as input. However, the SFAM testing process is based on real measurements at present and previous inspections. Thanks to the fuzzy learning process, SFAM has an important ability and a good performance to learn nonlinear time series. As output, seven classes are defined; healthy bearing and six states for bearing degradation. In order to find the optimal RUL prediction, a smoothing phase is proposed in this paper. Experimental results show that the proposed method can reliably predict the RUL of rolling element bearings (REBs) based on vibration signals. The proposed prediction approach can be applied to prognostic other various mechanical assets.

  11. Life cycle strain mapping of composite airframe structures by using FBG sensors

    NASA Astrophysics Data System (ADS)

    Sekine, K.; Takahashi, I.; Kume, M.; Takeya, H.; Iwahori, Y.; Minakuchi, S.; Takeda, N.; Koshioka, Y.

    2011-04-01

    The objective of this work is to develop a system for monitoring the structural integrity of composite airframe structures by strain mapping over the entire lifecycle of the structure. Specifically, we use fiber Bragg grating sensors to measure strain in a pressure bulkhead made of carbon fiber reinforced plastics (CFRPs) through a sequence of lifecycle stages (molding, machining, assembly, operation and maintenance) and detect the damage, defects, and deformation that occurs at each stage from the obtained strain distributions. In previous work, we have evaluated strain monitoring at each step in the FRP molding and machining stages of the lifecycle. In the work reported here, we evaluate the monitoring of the changes in strain that occur at the time of bolt fastening during assembly. The results show that the FBG sensors can detect the changes in strain that occur when a load is applied to the structure during correction of thermal deformation or when there is an offset in the hole position when structures are bolted together. We also conducted experiments to evaluate the detection of damage and deformation modes that occur in the pressure bulkhead during operation. Those results show that the FBG sensors detect the characteristic changes in strain for each mode.

  12. Rock size distributions on lava flow surfaces: New results from a range of compositions

    NASA Astrophysics Data System (ADS)

    Burke, M. P.; Anderson, S. W.; Bulmer, M. H.

    2005-12-01

    We measured block sizes along 15-25m orthogonal transects on 12 lava flows of compositions ranging from basalt to rhyolite. At each site, we stretched a line across the flow surface then measured the length of each block cut by this line that were greater than 3-12cm (depending on composition). The measurements from each site were reduced to cumulative size frequency distribution plots, with block size (D) plotted against the fraction of the line f(D) composed of blocks greater than or equal to that size, and fitted with an exponential curve of the form f(D) = k exp(-qD) where k is the intercept and q is the decay parameter. Average block size and geometric mean were also determined for each site. Our data show no clear trends linking average or mean block size to composition, although there does seem to be relationship between block size and the decay parameter. Block size corresponds with the decay parameter at each site except for the basaltic andesite flow at Paint Pot Crater (CA). Many sites at this flow were covered with secondary spatter deposits. Largest blocks and smallest decay parameters were found for the andesite flows at Sabancaya (Peru), while the basalt flows at Cima (CA) exhibited the smallest blocks and largest decay parameters. The second largest block sizes occurred at the four Inyo domes composed of both crystal-rich and glassy rhyolite, and these domes also showed the second smallest decay parameters. All four of the Inyo domes were emplaced along the same feeder dike trend, and the average and mean sizes and decay parameters at these domes are nearly identical, suggesting that composition, extrusion rate, or eruption history controls the block size distributions. However, values for the two andesitic flows, Mt. Shasta (CA) and Sabancaya, were very different, suggesting that extrusion rate and/or eruption history exert a stronger control over the block size distributions than does composition. LIDAR data sets are capable of detecting sub

  13. Acoustic characterization of void distributions across carbon-fiber composite layers

    NASA Astrophysics Data System (ADS)

    Tayong, Rostand B.; Smith, Robert A.; Pinfield, Valerie J.

    2016-02-01

    Carbon Fiber Reinforced Polymer (CFRP) composites are often used as aircraft structural components, mostly due to their superior mechanical properties. In order to improve the efficiency of these structures, it is important to detect and characterize any defects occurring during the manufacturing process, removing the need to mitigate the risk of defects through increased thicknesses of structure. Such defects include porosity, which is well-known to reduce the mechanical performance of composite structures, particularly the inter-laminar shear strength. Previous work by the authors has considered the determination of porosity distributions in a fiber-metal laminate structure [1]. This paper investigates the use of wave-propagation modeling to invert the ultrasonic response and characterize the void distribution within the plies of a CFRP structure. Finite Element (FE) simulations are used to simulate the ultrasonic response of a porous composite laminate to a typical transducer signal. This simulated response is then applied as input data to an inversion method to calculate the distribution of porosity across the layers. The inversion method is a multi-dimensional optimization utilizing an analytical model based on a normal-incidence plane-wave recursive method and appropriate mixture rules to estimate the acoustical properties of the structure, including the effects of plies and porosity. The effect of porosity is defined through an effective wave-number obtained from a scattering model description. Although a single-scattering approach is applied in this initial study, the limitations of the method in terms of the considered porous layer, percentage porosity and void radius are discussed in relation to single- and multiple-scattering methods. A comparison between the properties of the modeled structure and the void distribution obtained from the inversion is discussed. This work supports the general study of the use of ultrasound methods with inversion to

  14. Astrobiology: The Study of the Origin, Evolution, and Distribution of Life in the Universe

    ERIC Educational Resources Information Center

    Scalice, Daniella; Wilmoth, Krisstina

    2004-01-01

    Life as people know it here on Earth exchanges energy and materials with the environment. Life forms grow, develop, produce waste products, and reproduce, storing genetic information in DNA and RNA and passing it from one generation to the next. Life evolves, adapting to changes in the environment and changing the environment in return. The basic…

  15. Astrobiology: The Study of the Origin, Evolution, and Distribution of the Life in the Universe

    ERIC Educational Resources Information Center

    Scalice, Daniella; Wilmoth, Krisstina

    2004-01-01

    Life as known here on Earth exchanges energy and materials with the environment. Life forms grow, develop, produce waste products, and reproduce, storing genetic information in DNA and RNA and passing it from one generation to the next. Life evolves, adapting to changes in the environment and changing the environment in return. The basic unit of…

  16. Phylogenetic diversity, composition and distribution of bacterioplankton community in the Dongjiang River, China.

    PubMed

    Liu, Zhenghui; Huang, Shaobin; Sun, Guoping; Xu, Zhencheng; Xu, Meiying

    2012-04-01

    Bacterioplankton community compositions in the Dongjiang River were characterized using denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone library construction. Water samples in nine different sites were taken along the mainstem and three tributaries. In total, 24 bands from DGGE gels and 406 clones from the libraries were selected and sequenced, subsequently analyzed for the bacterial diversity and composition of those microbial communities. Bacterial 16S rRNA gene sequences from freshwater bacteria exhibited board phylogenetic diversity, including sequences representing the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Actinobacteria, Bacteriodetes, Verrucomicrobia, and candidate division TM7. Members of Betaproteobacteria group were the most dominant in all sampling sites, followed by Gammaproteobacteria, Alphaproteobacteria, and Actinobacteria. DGGE profiles and the ∫-LIBSHUFF analysis revealed similar patterns of bacterial diversity among most sampling sites, while spatial distribution variances existed in all sites along the river basin. Statistical analysis showed that bacterial species distribution strongly correlated with environmental variables, such as nitrate and ammonia, suggesting that nitrogen nutrients may shape the microbial community structure and composition in the Dongjiang River. This study had important implications for the comparison with other rivers elsewhere and contributed to the growing data set on the factors that structure bacterial communities in freshwater ecosystems. PMID:22133045

  17. Evaluation of flawed composite structural components under static and cyclic loading. [fatigue life of graphite-epoxy composite materials

    NASA Technical Reports Server (NTRS)

    Porter, T. R.

    1979-01-01

    The effects of initial defects on the fatigue and fracture response of graphite-epoxy composite laminates are presented. The structural laminates investigated were a typical angle ply laminate, a polar/hoop wound pressure vessel laminate, and a typical engine fan blade laminate. Defects investigated were full and half penetration circular holes, full and half penetration slits, and countersink holes. The effects of the defect size and type on the static fracture strength, fatigue performance, and residual static strength are shown as well as the results of loadings on damage propagation in composite laminates. The data obtained were used to define proof test levels as a qualification procedure in composite structure subjected to cyclic loading.

  18. Detangling the Effects of Environmental Filtering and Dispersal Limitation on Aggregated Distributions of Tree and Shrub Species: Life Stage Matters

    PubMed Central

    Liu, He-Ming; Wang, Zhang-Hua; Ma, Zun-Ping; Fang, Xiao-Feng; Zhang, Jian; Wang, Xi-Hua

    2016-01-01

    The pervasive pattern of aggregated tree distributions in natural communities is commonly explained by the joint effect of two clustering processes: environmental filtering and dispersal limitation, yet little consensus remains on the relative importance of the two clustering processes on tree aggregations. Different life stages of examined species were thought to be one possible explanation of this disagreement, because the effect of environmental filtering and dispersal limitation are expected to increase and decrease with tree life stages, respectively. However, few studies have explicitly tested these expectations. In this study, we evaluated these expectations by three different methods (species-habitat association test based on Poisson Clustering model and spatial point pattern analyses based on Heterogeneous Poisson model and the jointly modeling approach) using 36 species in a 20-ha subtropical forest plot. Our results showed that the percentage of species with significant habitat association increased with life stages, and there were fewer species affected by dispersal limitation in later life stages compared with those in earlier stages. Percentage of variance explained by the environmental filtering and dispersal limitation also increases and decreases with life stages. These results provided a promising alternative explanation on the existing mixed results about the relative importance of the two clustering processes. These findings also highlighted the importance of plant life stages for fully understanding species distributions and species coexistence. PMID:27227538

  19. Detangling the Effects of Environmental Filtering and Dispersal Limitation on Aggregated Distributions of Tree and Shrub Species: Life Stage Matters.

    PubMed

    Yang, Qing-Song; Shen, Guo-Chun; Liu, He-Ming; Wang, Zhang-Hua; Ma, Zun-Ping; Fang, Xiao-Feng; Zhang, Jian; Wang, Xi-Hua

    2016-01-01

    The pervasive pattern of aggregated tree distributions in natural communities is commonly explained by the joint effect of two clustering processes: environmental filtering and dispersal limitation, yet little consensus remains on the relative importance of the two clustering processes on tree aggregations. Different life stages of examined species were thought to be one possible explanation of this disagreement, because the effect of environmental filtering and dispersal limitation are expected to increase and decrease with tree life stages, respectively. However, few studies have explicitly tested these expectations. In this study, we evaluated these expectations by three different methods (species-habitat association test based on Poisson Clustering model and spatial point pattern analyses based on Heterogeneous Poisson model and the jointly modeling approach) using 36 species in a 20-ha subtropical forest plot. Our results showed that the percentage of species with significant habitat association increased with life stages, and there were fewer species affected by dispersal limitation in later life stages compared with those in earlier stages. Percentage of variance explained by the environmental filtering and dispersal limitation also increases and decreases with life stages. These results provided a promising alternative explanation on the existing mixed results about the relative importance of the two clustering processes. These findings also highlighted the importance of plant life stages for fully understanding species distributions and species coexistence. PMID:27227538

  20. Local Abundance Patterns of Noctuid Moths in Olive Orchards: Life-History Traits, Distribution Type and Habitat Interactions

    PubMed Central

    Pérez-Guerrero, Sergio; Redondo, Alberto José; Yela, José Luis

    2011-01-01

    Local species abundance is related to range size, habitat characteristics, distribution type, body size, and life-history variables. In general, habitat generalists and polyphagous species are more abundant in broad geographical areas. Underlying this, local abundance may be explained from the interactions between life-history traits, chorological pattern, and the local habitat characteristics. The relationship within taxa between life-history traits, distribution area, habitat characteristics, and local abundance of the noctuid moth (Lepidoptera: Noctuidae) assemblage in an olive orchard, one of the most important agro-ecosystems in the Mediterranean basin, was analyzed. A total of 66 species were detected over three years of year-round weekly samplings using the light-trap method. The life-history traits examined and the distribution type were found to be related to the habitat-species association, but none of the biological strategies defined from the association to the different habitats were linked with abundance. In contrast to general patterns, dispersal ability and number of generations per year explained differences in abundance. The relationships were positive, with opportunistic taxa that have high mobility and several generations being locally more abundant. In addition, when the effect of migrant species was removed, the distribution type explained abundance differences, with Mediterranean taxa (whose baricenter is closer to the studied area) being more abundant. PMID:21529251

  1. The effect of mesostructure heterogeneity on cracks initiation and the displacement distribution in NCF composites

    NASA Astrophysics Data System (ADS)

    Zrida, H.; Giannadis, K.; Varna, J.; Ayadi, Z.

    2012-02-01

    Non Crimp Fabrics (NCF) are promising new generation composite materials. They are now being used in some sections of composite industry, for example in wind turbine blades and boat hulls. The aerospace industry also shows an increasing interest in this material, thanks to the low cost of its manufacturing process. NCFs are special types of textile composites, made of layers of parallel fiber bundles oriented in different directions and separated by resin. Due to the manufacturing process the fiber bundles are not perfectly straight. They show a certain degree of waviness which decreases the stiffness and the strength of the material. The heterogeneous mesostructure affects the mechanical properties of the material and the failure mechanisms. This was studied using both numerical and experimental methods. In our experimental approach, a carbon fiber/epoxy resin laminate with uniform fiber distribution was manufactured by voluntarily introducing waviness to simulate the NCF composites. The displacement map was studied against the thickness of a sample loaded in tension, using ESPI (Electronic Speckle Pattern Interferometry). This can give us a primary idea of the micro damage initiation and the cracks' shapes.

  2. Distributed Brillouin fiber optic strain monitoring applications in advanced composite materials

    NASA Astrophysics Data System (ADS)

    Bastianini, Filippo; Cargnelutti, Mario; Di Tommaso, Angelo; Toffanin, Massimo

    2003-08-01

    Composite materials based on glass, carbon and aramid fibers have many advantages such as fast application, lightweight and corrosion resistance, and are widely diffused for manufacturing of tanks, pipings and for restoration, upgrade and seismic retrofit of structures and historical heritage. As several questions regarding long term durability of composite strengthenings remains still unsolved, monitoring of strain and temperature is strongly recommended, respectively to assess proper load transfer and no glass phase transition of the polymeric matrix. In this research work strain and temperature distributed sensing trough Brillouin scattering in single-mode optical fibers was used in different tests in order to understand the influence of different fiber coatings and embedding techniques. Pressure tests were performed on a GFRP piping with inhomogeneous strengthening layout and Brillouin strain data were compared with conventional strain gages. A smart CFRP material has been also developed and evaluated in a seismic retrofit application on an historical building dated 1500 that was seriously damaged in the earthquake of 1997. The developed embedding technique has been demonstrated successful to obtain fiber-optic smart composites with low optical losses, and the data comparison between Brillouin and resistive strain gauges confirms Brillouin technique is very effective for composite monitoring.

  3. Compositional Distribution of Near-Earth Asteroids: New Results for 80 Objects

    NASA Astrophysics Data System (ADS)

    Binzel, R. P.; Bus, S. J.; Burbine, T. H.

    1997-07-01

    We report new spectroscopic observations for about 80 near-Earth asteroids. These observations allow the compositional distribution of near-Earth asteroids to be compared with the distributions measured for main-belt asteroids and meteorites. For all objects in our sample, we obtained visible wavelength spectra, typically covering 0.45- to 0.95-microns, by utilizing the 2.4m Hiltner telescope at Kitt Peak, AZ. For nearly 20 objects, we extended our spectral coverage to about 1.7-microns utilizing the new "Asteroid Grism" system and NSFCAM detector developed by one of us (RPB) for use at the IRTF at Mauna Kea. Our observations demonstrate the limiting magnitudes for our infrared and visible spectroscopy capabilities to be near V magnitudes 17.5 and 18.5, respectively. Near-Earth asteroids display a spectral diversity as great, or greater, than main-belt asteroids. More importantly, we have identified at least six near-Earth asteroids (in addition to new observations of 1862 Apollo) which have spectra matching ordinary chondrite meteorites (Binzel et al. 1996, Science 273, 946). Overall the compositional distribution of near-Earth asteroids provides a much closer match to meteorites and appears to fill in the gap in spectral properties previously existing between main-belt asteroids and meteorites. This research is supported by NASA Grant NAGW-1450, NSF Grant AST-9530282, and The Planetary Society.

  4. Characterization of reinforcement distribution in cast Al-alloy/SiC{sub p} composites

    SciTech Connect

    Karnezis, P.A.; Durrant, G.; Cantor, B.

    1998-02-01

    The distribution of reinforcement in 10% SiC and 20% SiC{sub p} reinforced A356 alloy processed by gravity casting, squeeze casting, and roll casting is studied by using the mean free path, nearest neighbor distance, radial distribution function, and quadrat methods. The study is performed by using computer image analysis methods in an automated procedure to prevent operator errors, improve sample size, and minimize analysis time. From the methods used to characterize the SiC{sub p} distributions, the quadrat method and radial distribution function are found to be more effective in detecting pronounced changes in the metal-matrix composite (MMC) microstructure through appropriate parameters, whereas the mean free path is characteristic of the particular MMC system rather than process specific. Furthermore, the nearest neighbor distance is of little use in studying cast MMCs, because it is affected by local clusters of a few SiC particles commonly found in cast MMCs, thus failing to characterize the macroscopic arrangement of reinforcement. Quantitative methods present themselves as a useful tool for quality control in MMC fabrication and can be used to correlate particle distribution and properties of MMC systems.

  5. Reliability and life prediction of ceramic composite structures at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.; Gyekenyesi, John P.

    1994-01-01

    Methods are highlighted that ascertain the structural reliability of components fabricated of composites with ceramic matrices reinforced with ceramic fibers or whiskers and subject to quasi-static load conditions at elevated temperatures. Each method focuses on a particular composite microstructure: whisker-toughened ceramics, laminated ceramic matrix composites, and fabric reinforced ceramic matrix composites. In addition, since elevated service temperatures usually involve time-dependent effects, a section dealing with reliability degradation as a function of load history has been included. A recurring theme throughout this chapter is that even though component failure is controlled by a sequence of many microfailure events, failure of ceramic composites will be modeled using macrovariables.

  6. Characterization of macromolecular complexes in red wine: Composition, molecular mass distribution and particle size.

    PubMed

    Bindon, Keren A; Carew, Anna L; Mierczynska-Vasilev, Agnieszka; Kassara, Stella; Kerslake, Fiona; Smith, Paul A

    2016-05-15

    Precipitates were prepared from two compositionally different Pinot noir wines with addition of excess ethanol, and contained primarily polysaccharide, tannin and protein. The ethanol-soluble material was further fractionated into polymeric (tannin) and monomeric phenolics. Tannin associated with precipitates was of a higher molecular mass than that remaining in ethanolic solution. Wine fractions were reconstituted at the ratios of the original wine and analyzed using nanoparticle tracking analysis. The average particle size of the tannin fraction was 75-89 nm, and increased when combined with the precipitate (≅ 200 nm). Addition of the monomeric fraction to the tannin-precipitate complex increased both the incidence and concentration of smaller particles, reducing the average particle size. The formation of aggregates occurred in all fractions and only minor differences in particle size distribution were found between wines. Differences in particle concentration between wines appear to be due to differences in the total concentration of macromolecules rather than compositional differences. PMID:26776042

  7. Free-standing carbon nanotube composite sensing skin for distributed strain sensing in structures

    NASA Astrophysics Data System (ADS)

    Burton, Andrew R.; Minegishi, Kaede; Kurata, Masahiro; Lynch, Jerome P.

    2014-04-01

    The technical challenges of managing the health of critical infrastructure systems necessitate greater structural sensing capabilities. Among these needs is the ability for quantitative, spatial damage detection on critical structural components. Advances in material science have now opened the door for novel and cost-effective spatial sensing solutions specially tailored for damage detection in structures. However, challenges remain before spatial damage detection can be realized. Some of the technical challenges include sensor installations and extensive signal processing requirements. This work addresses these challenges by developing a patterned carbon nanotube composite thin film sensor whose pattern has been optimized for measuring the spatial distribution of strain. The carbon nanotube-polymer nanocomposite sensing material is fabricated on a flexible polyimide substrate using a layer-by-layer deposition process. The thin film sensors are then patterned into sensing elements using optical lithography processes common to microelectromechanical systems (MEMS) technologies. The sensor array is designed as a series of sensing elements with varying width to provide insight on the limitations of such patterning and implications of pattern geometry on sensing signals. Once fabrication is complete, the substrate and attached sensor are epoxy bonded to a poly vinyl composite (PVC) bar that is then tested with a uniaxial, cyclic load pattern and mechanical response is characterized. The fabrication processes are then utilized on a larger-scale to develop and instrument a component-specific sensing skin in order to observe the strain distribution on the web of a steel beam. The instrumented beam is part of a larger steel beam-column connection with a concrete slab in composite action. The beam-column subassembly is laterally loaded and strain trends in the web are observed using the carbon nanotube composite sensing skin. The results are discussed in the context of

  8. General models for resource use or other compositional count data using the Dirichlet-multinomial distribution.

    PubMed

    De Valpine, Perry; Harmon-Threatt, Alexandra N

    2013-12-01

    Many ecological studies investigate how organisms use resources, such as habitats or foods, in relation to availability or other variables. Related statistical problems include analysis of proportions of species or genotypes in a community or population. These require statistical modeling of compositional count data: data on relative proportions of each category collected as counts. Common methods for analyzing compositional count data lack one or more important considerations. Some methods lack explicit accommodation of count data, dealing instead with proportions. Others do not handle between-sample heterogeneity for overdispersed data. Yet others do not allow general types of relationships between explanatory variables and resource use. All three components have been combined in a Bayesian framework, but for frequentist hypothesis tests and AIC model selection, maximum-likelihood estimation is needed. Here we propose the Dirichlet-multinomial distribution to accommodate overdispersed compositional count data. This approach can be used flexibly in combination with explanatory models, but the only correlations among compositional proportions that it can accommodate are the negative correlations due to the fact that proportions must sum to 1. Many existing models can be generalized to use the Dirichlet-multinomial distribution for residual variation, and the flexibility of the approach allows new hypotheses that have often not been considered in resource preference analysis, including that availability has no relation to use. We also highlight a new design for resource use studies, with multiple individual-use data sets from each of multiple sites, with different explanatory data for each site. We illustrate the approach with three examples. For two previously published habitat use data sets, we support the original conclusions and show that use is not unrelated to availability. For a data set of pollen collected by multiple bees from each of two sites, pollen use

  9. On the Relationship Between Site Geology and the Distribution of Surface Regolith Compositions at the Apollo Sites

    NASA Technical Reports Server (NTRS)

    Korotev, Randy L.

    2000-01-01

    Some considerations are discussed on how information on site geology can be obtained from the distribution of data points on 2-element plots of composition of lunar regolith samples collected along a traverse.

  10. Direct Determination of 3D Distribution of Elemental Composition in Single Semiconductor Nanoislands by Scanning Auger Microscopy.

    PubMed

    Ponomaryov, Semyon S; Yukhymchuk, Volodymyr O; Lytvyn, Peter M; Valakh, Mykhailo Ya

    2016-12-01

    An application of scanning Auger microscopy with ion etching technique and effective compensation of thermal drift of the surface analyzed area is proposed for direct local study of composition distribution in the bulk of single nanoislands. For GexSi1 - x-nanoislands obtained by MBE of Ge on Si-substrate gigantic interdiffusion mixing takes place both in the open and capped nanostructures. Lateral distributions of the elemental composition as well as concentration-depth profiles were recorded. 3D distribution of the elemental composition in the d-cluster bulk was obtained using the interpolation approach by lateral composition distributions in its several cross sections and concentration-depth profile. It was shown that there is a germanium core in the nanoislands of both nanostructure types, which even penetrates the substrate. In studied nanostructures maximal Ge content in the nanoislands may reach about 40 at.%. PMID:26909783

  11. Direct Determination of 3D Distribution of Elemental Composition in Single Semiconductor Nanoislands by Scanning Auger Microscopy

    NASA Astrophysics Data System (ADS)

    Ponomaryov, Semyon S.; Yukhymchuk, Volodymyr O.; Lytvyn, Peter M.; Valakh, Mykhailo Ya

    2016-02-01

    An application of scanning Auger microscopy with ion etching technique and effective compensation of thermal drift of the surface analyzed area is proposed for direct local study of composition distribution in the bulk of single nanoislands. For GexSi1 - x-nanoislands obtained by MBE of Ge on Si-substrate gigantic interdiffusion mixing takes place both in the open and capped nanostructures. Lateral distributions of the elemental composition as well as concentration-depth profiles were recorded. 3D distribution of the elemental composition in the d-cluster bulk was obtained using the interpolation approach by lateral composition distributions in its several cross sections and concentration-depth profile. It was shown that there is a germanium core in the nanoislands of both nanostructure types, which even penetrates the substrate. In studied nanostructures maximal Ge content in the nanoislands may reach about 40 at.%.

  12. A Model to Predict Shelf-Life Loss Ofhorticultural Produce During Distribution Withfluctuated Temperature and Vehicle Vibration

    NASA Astrophysics Data System (ADS)

    Gong, Weiwei; Li, Daoliang; Liu, Xue; Yue, Jun; Fu, Zetian

    Fresh fruits and vegetables has become a public concern from the food security aspect. And the prediction of shelf-life loss under the fluctuated temperature becomes one of the key problems in food supply chain operation. So this paper identifies the impact aspects of produce decaying during distribution. For the key temperature factor, the process is divided into three phases: sorting, traveling and door-opening. Based on time-temperature function, a model of shelf-life loss of horticultural produce during distribution is developed by evaluating respiration rate of vegetables and fruits considering both the environment fluctuated temperature and vehicle vibration during traveling. Taking eggplant as an example, the numerical experiment result demonstrates that the average cost for ambient distribution is 2.8 times of the insulation way.

  13. Elemental Sulfur and Molybdenum Disulfide Composites for Li-S Batteries with Long Cycle Life and High-Rate Capability.

    PubMed

    Dirlam, Philip T; Park, Jungjin; Simmonds, Adam G; Domanik, Kenneth; Arrington, Clay B; Schaefer, Jennifer L; Oleshko, Vladimir P; Kleine, Tristan S; Char, Kookheon; Glass, Richard S; Soles, Christopher L; Kim, Chunjoong; Pinna, Nicola; Sung, Yung-Eun; Pyun, Jeffrey

    2016-06-01

    The practical implementation of Li-S technology has been hindered by short cycle life and poor rate capability owing to deleterious effects resulting from the varied solubilities of different Li polysulfide redox products. Here, we report the preparation and utilization of composites with a sulfur-rich matrix and molybdenum disulfide (MoS2) particulate inclusions as Li-S cathode materials with the capability to mitigate the dissolution of the Li polysulfide redox products via the MoS2 inclusions acting as "polysulfide anchors". In situ composite formation was completed via a facile, one-pot method with commercially available starting materials. The composites were afforded by first dispersing MoS2 directly in liquid elemental sulfur (S8) with sequential polymerization of the sulfur phase via thermal ring opening polymerization or copolymerization via inverse vulcanization. For the practical utility of this system to be highlighted, it was demonstrated that the composite formation methodology was amenable to larger scale processes with composites easily prepared in 100 g batches. Cathodes fabricated with the high sulfur content composites as the active material afforded Li-S cells that exhibited extended cycle lifetimes of up to 1000 cycles with low capacity decay (0.07% per cycle) and demonstrated exceptional rate capability with the delivery of reversible capacity up to 500 mAh/g at 5 C. PMID:27171646

  14. Opisthorchis viverrini: life cycle, intermediate hosts, transmission to man and geographical distribution in Thailand.

    PubMed

    Harinasuta, C; Harinasuta, T

    1984-01-01

    Opisthorchis viverrini has been found to be the only species of liver fluke in Thailand. The morphology is similar to that of O. felineus, but it has more deeply lobated testes, situated near the ovary. The appearance and distribution of the vitellaria with few granular clumps and the shorter and wider egg closely resemble that of C. sinensis. The adult worms live in the biliary system. Eggs pass out in faeces. On reaching water the eggs are eaten by snails, the first intermediate host. In the snail the miracidia hatch and develop further through the stages of sporocysts, rediae and cercariae in six to eight weeks. The cercariae then leave the snail, penetrate into susceptible fresh water fish, encyst in the muscle and develop into metacercariae, and infective stage, in six weeks. When ingested by man or animal the metacercariae excyst in the duodenum or jejunum and then migrate to the bile duct. They become mature within four weeks and begin to produce eggs. The life span of the fluke is over 10 years. The snail intermediate hosts are Bithynia goniomphalus, B. funiculata and B. siamensis. Many species of cyprinoid fish serve as second intermediate host; Cyclocheilichthys siaja is the most important. Cats, dogs and many fish eating mammals are definitive hosts. Man and animals acquire infection by eating raw fish containing metacercariae cysts. In Northeast Thailand "Koi-Pla" is the most popular raw fish dish. In 1980-1981 the prevalence in the north, northeast, centre and south of Thailand was 5.59, 34.60, 6.34, and 0.01%, respectively, with an overall prevalence of 14% or 7 million people. PMID:6542383

  15. Distributed sensing of Composite Over-wrapped Pressure Vessels using Fiber-Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Grant, Joseph

    2005-01-01

    The increasing use of advanced composite materials in the wide range of applications including Space Structures is a great impetus to the development of smart materials. These materials offer a wide range of possibilities within the space program. But before they can be reliably incorporated into space flight applications, additional understanding is required in the area of damage tolerance of these materials. Efforts to enhance our understanding of failure modes, mechanical properties, long and short term environmental effects, cyclic damage accumulation and residual strength are needed. Thus we have employed the use of fiber optical sensors which offers an excellent opportunity exploit these materials through monitoring and characterizing their mechanical properties and thus the integrity of structures made from such materials during their life cycle. Use of these optical innovations provides an insight into structures that have not been available in the past, as well as the technology available to provide real time health monitoring throughout its life cycle. The embedded fiber optical sensor shows a clearly detectable sensitivity to changes in the near strain and stress fields of the host structure promoted by mechanical or thermal loading or, in certain conditions, structural damage. The last ten years have seen a large increase in the use of FBG based monitoring systems in a broad range of applications. Fiber Bragg gratings are use to monitor the structural properties of composite pressure vessels. These gratings optically inscribed into the core of a single mode fiber are used as a tool to monitor the stress strain relation in composite structures. The fiber Bragg sensors are both embedded within the composite laminates and bonded to the surface of the vessel with varying orientations with respect to the carbon fiber in the epoxy matrix. The response of these fiber-optic sensors is investigated by pressurizing the cylinder up to its burst pressure of around

  16. Astrobiology: exploring the origins, evolution, and distribution of life in the Universe

    NASA Technical Reports Server (NTRS)

    Des Marais, D. J.; Walter, M. R.

    1999-01-01

    The search for the origins of life and its presence beyond Earth is strengthened by new technology and by evidence that life tolerates extreme conditions and that planets are widespread. Astrobiologists learn how planets develop and maintain habitable conditions. They combine biological and information sciences to decipher the origins of life. They examine how biota, particularly microorganisms, evolve, at scales from the molecular to the biosphere level, including interactions with long-term planetary changes. Astrobiologists learn how to recognize the morphological, chemical, and spectroscopic signatures of life in order to explore both extraterrestrial samples and electromagnetic spectra reflected from extrasolar planets.

  17. Somatic Maintenance Resources in the Honeybee Worker Fat Body Are Distributed to Withstand the Most Life-Threatening Challenges at Each Life Stage

    PubMed Central

    Seehuus, Siri-Christine; Taylor, Simon; Petersen, Kjell; Aamodt, Randi M.

    2013-01-01

    In a global transcriptome analysis of three natural and three manipulated honeybee worker phenotypes at different ages, we have investigated the distribution of investment in somatic maintenance of the fat body. Gene expression is modulated so that the bees are able to resist the most life-threatening challenges at the actual life stage. Different modes of maintenance and repair are regulated, apparently to meet the environmental challenges most detrimental to survival and reproductive potential for the hive. We observed a broad down-regulation of genomic and cellular maintenance in the short-lived foragers and nurse bees compared to the long-lived winter bees. Our results show that survival and reproduction of the entire hive is given priority over the individual bees, hence supporting the idea of the honeybee society as a superorganism. Our results also fit the disposable soma theory of aging. PMID:23940531

  18. Application of reliability and fiber probabilistic strength distribution concepts to composite vessel burst strength design

    NASA Astrophysics Data System (ADS)

    Cohen, David

    1992-01-01

    A composite pressure vessel design approach that is based on reliability and probabilistic fiber strength distribution concepts is discussed. The method is based on the fiber strain-strength interference reliability theory. The way in which fiber strength distribution parameters generated by two tensile tests of impregnated carbon fiber strands can be used in pressure vessel strength design is examined. It is shown that the bimodal Weibull distribution functions fits the impregnated fiber strand strength distribution data much better than the single mode Weibull function. The A-basis fiber strength allowable calculated from the strand data was slightly lower (3 percent) than those calculated from the full-scale pressure vessel strength data, whereas the B-basis allowables calculated from the strand and the full-scale pressure vessel strength data were the same. Because A-basis and/or B-basis allowables require many data points from many material lots, the use of fiber lot qualification data is advantageous because it meets these requirements.

  19. On the limit theorem for life time distribution connected with some reliability systems and their validation by means of the Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Gheorghe, Munteanu Bogdan; Alexei, Leahu; Sergiu, Cataranciuc

    2013-09-01

    We prove the limit theorem for life time distribution connected with reliability systems when their life time is a Pascal Convolution of independent and identically distributed random variables. We show that, in some conditions, such distributions may be approximated by means of Erlang distributions. As a consequnce, survival functions for such systems may be, respectively, approximated by Erlang survival functions. By using Monte Carlo method we experimantally confirm the theoretical results of our theorem.

  20. Altered potassium channel distribution and composition in myelinated axons suppresses hyperexcitability following injury.

    PubMed

    Calvo, Margarita; Richards, Natalie; Schmid, Annina B; Barroso, Alejandro; Zhu, Lan; Ivulic, Dinka; Zhu, Ning; Anwandter, Philipp; Bhat, Manzoor A; Court, Felipe A; McMahon, Stephen B; Bennett, David L H

    2016-01-01

    Neuropathic pain following peripheral nerve injury is associated with hyperexcitability in damaged myelinated sensory axons, which begins to normalise over time. We investigated the composition and distribution of shaker-type-potassium channels (Kv1 channels) within the nodal complex of myelinated axons following injury. At the neuroma that forms after damage, expression of Kv1.1 and 1.2 (normally localised to the juxtaparanode) was markedly decreased. In contrast Kv1.4 and 1.6, which were hardly detectable in the naïve state, showed increased expression within juxtaparanodes and paranodes following injury, both in rats and humans. Within the dorsal root (a site remote from injury) we noted a redistribution of Kv1-channels towards the paranode. Blockade of Kv1 channels with α-DTX after injury reinstated hyperexcitability of A-fibre axons and enhanced mechanosensitivity. Changes in the molecular composition and distribution of axonal Kv1 channels, therefore represents a protective mechanism to suppress the hyperexcitability of myelinated sensory axons that follows nerve injury. PMID:27033551

  1. Composition, diversity and distribution of microbenthos across the intertidal zones of Ryazhkov Island (the White Sea).

    PubMed

    Azovsky, Andrey; Saburova, Maria; Tikhonenkov, Denis; Khazanova, Ksenya; Esaulov, Anton; Mazei, Yuri

    2013-11-01

    The composition and distribution of the main unicellular eukaryotic groups (diatom algae, ciliates, dinoflagellates (DF), other phototrophic (PF) and heterotrophic flagellates (HF)) were investigated in sandy sediments at five stations allocated across the tidal sheltered beach of the White Sea. Overall, 75 diatoms, 98 ciliates, 16 DF, 3 PF and 34 HF species were identified; some are new records for the White Sea. Common species for each group are illustrated. Diatoms and ciliates showed high alpha-diversity (species richness per sample), whereas flagellates were characterized by high beta-diversity (species turnover across the intertidal flat). Each group demonstrated its own spatial pattern that was best matched with its own subset of abiotic variables, reflecting group-specific responses to environmental gradients. Species richness increased from the upper intertidal zone seaward for ciliates but decreased for HF, whereas autotrophs showed a relatively uniform pattern with a slight peak at the mid-intertidal zone. Across the littoral zone, all groups showed distinct compositional changes; however, the position of the boundary between "upper" and "lower" intertidal communities varied among groups. Most of the species found at Ryazhkov Island are known from many other regions worldwide, indicating a wide geographic distribution of microbial eukaryotic species. PMID:23871644

  2. The distribution of compositional classes in the asteroid belt: A cosmochemical fingerprint?

    NASA Technical Reports Server (NTRS)

    Gradie, J.

    1985-01-01

    Studies of the physical properties of the asteroids show a nonrandom distribution of types across the belt for asteroid classes E, S, M, F, C, P, and D. The general trend is for asteroids in the inner belt to have higher albedos and stronger mafic silicate absorption features than those asteroids located further out in the belt. One interpretation of this trend is that the asteroids, which occupy the region between the silicate rich terrestrial planets and the volatile rich outer planets, have preserved in their heliocentric compositional distribution a cosmochemical fingerprint of the thermodynamic conditions present in the solar nebula at the time of their formation. This hypothesis predicts that the differences in the spectral properties among the low albedo classes (C, P, F, P, and D) are due to temperature controlled processes which formed carbonaceous opaques. If this is true then the exact composition of the opaque components could, in principle, be used to determine the thermodynamic conditions between the orbits of Mars and Jupiter during the formation of the asteroids.

  3. Electric field distribution around the chain of composite nanoparticles in ferrofluids

    NASA Astrophysics Data System (ADS)

    Fan, Chun-Zhen; Wang, Jun-Qiao; Cheng, Yong-Guang; Ding, Pei; Liang, Er-Jun; Huang, Ji-Ping

    2013-08-01

    Composite nanoparticles (NPs) have the ability of combining materials with different properties together, thus receiving extensive attention in many fields. Here we theoretically investigate the electric field distribution around core/shell NPs (a type of composite NPs) in ferrofluids under the influence of an external magnetic field. The NPs are made of cobalt (ferromagnetic) coated with gold (metallic). Under the influence of the external magnetic field, these NPs will align along the direction of this field, thus forming a chain of NPs. According to Laplace's equations, we obtain electric fields inside and outside the NPs as a function of the incident wavelength by taking into account the mutual interaction between the polarized NPs. Our calculation results show that the electric field distribution is closely related to the resonant incident wavelength, the metallic shell thickness, and the inter-particle distance. These analytical calculations agree well with our numerical simulation results. This kind of field-induced anisotropic soft-matter systems offers the possibility of obtaining an enhanced Raman scattering substrate due to enhanced electric fields.

  4. Changes in lung composition and regional perfusion and tissue distribution in patients with ARDS

    PubMed Central

    Dakin, Jonathan; Jones, Andrew T; Hansell, David M; Hoffman, Eric A; Evans, Timothy W

    2011-01-01

    Background & objective ARDS is characterised by bilateral pulmonary infiltrates and refractory hypoxemia attributed to V/Q mismatch. We used dynamic CT to characterise changes in lung composition, regional perfusion and tissue distribution in patients with ARDS in comparison to healthy subjects. Methods The Fick principle was applied to serial attenuation measurements constructed from sequential CT images acquired during the passage of a bolus of iodinated contrast medium in healthy subjects (n=3) and patients with ARDS (n=11). Perfusion was calculated by the Mullani-Gould method and mapped throughout both lungs. Gradients of perfusion and tissue density against vertical height were constructed. Results In comparison to normal individuals, the tissue component of lungs from patients with ARDS was significantly increased (p<0.05). Blood fraction was unchanged. There was a discernable gradient in tissue density from non dependent to dependent regions in the patients with ARDS that was significantly different from controls. The proportion of perfusion applied to consolidated areas (ie shunt) correlated significantly (p<0.05) with the severity of hypoxaemia. Conclusions In patients with ARDS there are changes in both lung composition and the distribution of tissue and perfusion that may account in part for the physiological changes that define the syndrome. PMID:21883676

  5. Real-Time Impact Visualization Inspection of Aerospace Composite Structures with Distributed Sensors

    PubMed Central

    Si, Liang; Baier, Horst

    2015-01-01

    For the future design of smart aerospace structures, the development and application of a reliable, real-time and automatic monitoring and diagnostic technique is essential. Thus, with distributed sensor networks, a real-time automatic structural health monitoring (SHM) technique is designed and investigated to monitor and predict the locations and force magnitudes of unforeseen foreign impacts on composite structures and to estimate in real time mode the structural state when impacts occur. The proposed smart impact visualization inspection (IVI) technique mainly consists of five functional modules, which are the signal data preprocessing (SDP), the forward model generator (FMG), the impact positioning calculator (IPC), the inverse model operator (IMO) and structural state estimator (SSE). With regard to the verification of the practicality of the proposed IVI technique, various structure configurations are considered, which are a normal CFRP panel and another CFRP panel with “orange peel” surfaces and a cutout hole. Additionally, since robustness against several background disturbances is also an essential criterion for practical engineering demands, investigations and experimental tests are carried out under random vibration interfering noise (RVIN) conditions. The accuracy of the predictions for unknown impact events on composite structures using the IVI technique is validated under various structure configurations and under changing environmental conditions. The evaluated errors all fall well within a satisfactory limit range. Furthermore, it is concluded that the IVI technique is applicable for impact monitoring, diagnosis and assessment of aerospace composite structures in complex practical engineering environments. PMID:26184196

  6. Central Appalachian basin natural gas database: distribution, composition, and origin of natural gases

    USGS Publications Warehouse

    Román Colón, Yomayra A.; Ruppert, Leslie F.

    2015-01-01

    The U.S. Geological Survey (USGS) has compiled a database consisting of three worksheets of central Appalachian basin natural gas analyses and isotopic compositions from published and unpublished sources of 1,282 gas samples from Kentucky, Maryland, New York, Ohio, Pennsylvania, Tennessee, Virginia, and West Virginia. The database includes field and reservoir names, well and State identification number, selected geologic reservoir properties, and the composition of natural gases (methane; ethane; propane; butane, iso-butane [i-butane]; normal butane [n-butane]; iso-pentane [i-pentane]; normal pentane [n-pentane]; cyclohexane, and hexanes). In the first worksheet, location and American Petroleum Institute (API) numbers from public or published sources are provided for 1,231 of the 1,282 gas samples. A second worksheet of 186 gas samples was compiled from published sources and augmented with public location information and contains carbon, hydrogen, and nitrogen isotopic measurements of natural gas. The third worksheet is a key for all abbreviations in the database. The database can be used to better constrain the stratigraphic distribution, composition, and origin of natural gas in the central Appalachian basin.

  7. Real-Time Impact Visualization Inspection of Aerospace Composite Structures with Distributed Sensors.

    PubMed

    Si, Liang; Baier, Horst

    2015-01-01

    For the future design of smart aerospace structures, the development and application of a reliable, real-time and automatic monitoring and diagnostic technique is essential. Thus, with distributed sensor networks, a real-time automatic structural health monitoring (SHM) technique is designed and investigated to monitor and predict the locations and force magnitudes of unforeseen foreign impacts on composite structures and to estimate in real time mode the structural state when impacts occur. The proposed smart impact visualization inspection (IVI) technique mainly consists of five functional modules, which are the signal data preprocessing (SDP), the forward model generator (FMG), the impact positioning calculator (IPC), the inverse model operator (IMO) and structural state estimator (SSE). With regard to the verification of the practicality of the proposed IVI technique, various structure configurations are considered, which are a normal CFRP panel and another CFRP panel with "orange peel" surfaces and a cutout hole. Additionally, since robustness against several background disturbances is also an essential criterion for practical engineering demands, investigations and experimental tests are carried out under random vibration interfering noise (RVIN) conditions. The accuracy of the predictions for unknown impact events on composite structures using the IVI technique is validated under various structure configurations and under changing environmental conditions. The evaluated errors all fall well within a satisfactory limit range. Furthermore, it is concluded that the IVI technique is applicable for impact monitoring, diagnosis and assessment of aerospace composite structures in complex practical engineering environments. PMID:26184196

  8. Effect of resistance training with elements of stretching on body composition and quality of life in postmenopausal women

    PubMed Central

    Frączak, Paulina; Jonak, Wiesława; Sobiech, Krzysztof A.

    2016-01-01

    Introduction Physical activity in elderly persons contributes to prevention and treatment of chronic disease and, through its influence on the musculoskeletal system, increases physical capability and improves mental function. Aim of the study Aim of the study was to assess the effect of resistance training with elements of stretching on body composition and quality of life in women of postmenopausal age. Material and methods Thirty-eight postmenopausal women aged 62.5 ±5.8 years were randomly divided into two groups. One group participated in an 8-week training program (60 minutes, twice weekly; 4 MET [metabolic equivalent] 2 hours/week). The second group performed no training. A comparison was made of body composition and quality of life (SF-36 Health Survey) prior to and after 8 weeks of training. Results In the training group, after 8 weeks there was a significant reduction in body fat (in%; p = 0.028), and an increase in fat-free mass (in%; p = 0.025) and total body water (in%; p = 0.021), which indicates increased muscle mass. Furthermore, there were statistically significant differences in the assessment of quality of life in physical (role-physical [RP], bodily pain [BP], general health [GH] scales; p < 0.005) and mental health (vitality [VT] scale; p = 0.05). In the non-exercising group no changes were observed in features examined in the initial and final test. Conclusions Resistance training with elements of stretching in postmenopausal women improved body composition to achieve a reduction in risk factors associated with excess fatty tissue and muscle mass deficiency. It raises the quality of life in terms of both physical and mental function. PMID:27095955

  9. Temporal variations in the abundance and composition of biofilm communities colonizing drinking water distribution pipes.

    PubMed

    Kelly, John J; Minalt, Nicole; Culotti, Alessandro; Pryor, Marsha; Packman, Aaron

    2014-01-01

    Pipes that transport drinking water through municipal drinking water distribution systems (DWDS) are challenging habitats for microorganisms. Distribution networks are dark, oligotrophic and contain disinfectants; yet microbes frequently form biofilms attached to interior surfaces of DWDS pipes. Relatively little is known about the species composition and ecology of these biofilms due to challenges associated with sample acquisition from actual DWDS. We report the analysis of biofilms from five pipe samples collected from the same region of a DWDS in Florida, USA, over an 18 month period between February 2011 and August 2012. The bacterial abundance and composition of biofilm communities within the pipes were analyzed by heterotrophic plate counts and tag pyrosequencing of 16S rRNA genes, respectively. Bacterial numbers varied significantly based on sampling date and were positively correlated with water temperature and the concentration of nitrate. However, there was no significant relationship between the concentration of disinfectant in the drinking water (monochloramine) and the abundance of bacteria within the biofilms. Pyrosequencing analysis identified a total of 677 operational taxonomic units (OTUs) (3% distance) within the biofilms but indicated that community diversity was low and varied between sampling dates. Biofilms were dominated by a few taxa, specifically Methylomonas, Acinetobacter, Mycobacterium, and Xanthomonadaceae, and the dominant taxa within the biofilms varied dramatically between sampling times. The drinking water characteristics most strongly correlated with bacterial community composition were concentrations of nitrate, ammonium, total chlorine and monochloramine, as well as alkalinity and hardness. Biofilms from the sampling date with the highest nitrate concentration were the most abundant and diverse and were dominated by Acinetobacter. PMID:24858562

  10. Temporal Variations in the Abundance and Composition of Biofilm Communities Colonizing Drinking Water Distribution Pipes

    PubMed Central

    Kelly, John J.; Minalt, Nicole; Culotti, Alessandro; Pryor, Marsha; Packman, Aaron

    2014-01-01

    Pipes that transport drinking water through municipal drinking water distribution systems (DWDS) are challenging habitats for microorganisms. Distribution networks are dark, oligotrophic and contain disinfectants; yet microbes frequently form biofilms attached to interior surfaces of DWDS pipes. Relatively little is known about the species composition and ecology of these biofilms due to challenges associated with sample acquisition from actual DWDS. We report the analysis of biofilms from five pipe samples collected from the same region of a DWDS in Florida, USA, over an 18 month period between February 2011 and August 2012. The bacterial abundance and composition of biofilm communities within the pipes were analyzed by heterotrophic plate counts and tag pyrosequencing of 16S rRNA genes, respectively. Bacterial numbers varied significantly based on sampling date and were positively correlated with water temperature and the concentration of nitrate. However, there was no significant relationship between the concentration of disinfectant in the drinking water (monochloramine) and the abundance of bacteria within the biofilms. Pyrosequencing analysis identified a total of 677 operational taxonomic units (OTUs) (3% distance) within the biofilms but indicated that community diversity was low and varied between sampling dates. Biofilms were dominated by a few taxa, specifically Methylomonas, Acinetobacter, Mycobacterium, and Xanthomonadaceae, and the dominant taxa within the biofilms varied dramatically between sampling times. The drinking water characteristics most strongly correlated with bacterial community composition were concentrations of nitrate, ammonium, total chlorine and monochloramine, as well as alkalinity and hardness. Biofilms from the sampling date with the highest nitrate concentration were the most abundant and diverse and were dominated by Acinetobacter. PMID:24858562

  11. Electrical Resistance of SiC/SiC Ceramic Matrix Composites for Damage Detection and Life-Prediction

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Morscher, Gregory; Xia, Zhenhai

    2009-01-01

    Ceramic matrix composites (CMC) are suitable for high temperature structural applications such as turbine airfoils and hypersonic thermal protection systems due to their low density high thermal conductivity. The employment of these materials in such applications is limited by the ability to accurately monitor and predict damage evolution. Current nondestructive methods such as ultrasound, x-ray, and thermal imaging are limited in their ability to quantify small scale, transverse, in-plane, matrix cracks developed over long-time creep and fatigue conditions. CMC is a multifunctional material in which the damage is coupled with the material s electrical resistance, providing the possibility of real-time information about the damage state through monitoring of resistance. Here, resistance measurement of SiC/SiC composites under mechanical load at both room temperature monotonic and high temperature creep conditions, coupled with a modal acoustic emission technique, can relate the effects of temperature, strain, matrix cracks, fiber breaks, and oxidation to the change in electrical resistance. A multiscale model can in turn be developed for life prediction of in-service composites, based on electrical resistance methods. Results of tensile mechanical testing of SiC/SiC composites at room and high temperatures will be discussed. Data relating electrical resistivity to composite constituent content, fiber architecture, temperature, matrix crack formation, and oxidation will be explained, along with progress in modeling such properties.

  12. Impact of filler size and distribution on roughness and wear of composite resin after simulated toothbrushing

    PubMed Central

    de OLIVEIRA, Gabriela Ulian; MONDELLI, Rafael Francisco Lia; CHARANTOLA RODRIGUES, Marcela; FRANCO, Eduardo Batista; ISHIKIRIAMA, Sérgio Kiyoshi; WANG, Linda

    2012-01-01

    Objectives Nanofilled composite resins are claimed to provide superior mechanical properties compared with microhybrid resins. Thus, the aim of this study was to compare nanofilled with microhybrid composite resins. The null hypothesis was that the size and the distribution of fillers do not influence the mechanical properties of surface roughness and wear after simulated toothbrushing test. Material and methods Ten rectangular specimens (15 mm x 5 mm x 4 mm) of Filtek Z250 (FZ2), Admira (A), TPH3 (T),Esthet-X (EX), Estelite Sigma (ES), Concept Advanced (C), Grandio (G) and Filtek Z350 (F) were prepared according to manufacturer's instructions. Half of each top surface was protected with nail polish as control surface (not brushed) while the other half was assessed with five random readings using a roughness tester (Ra). Following, the specimens were abraded by simulated toothbrushing with soft toothbrushes and slurry comprised of 2:1 water and dentifrice (w/w). 100,000 strokes were performed and the brushed surfaces were re-analyzed. Nail polish layers were removed from the specimens so that the roughness (Ra) and the wear could be assessed with three random readings (µm). Data were analyzed by ANOVA and Tukey's multiple-comparison test (α=0.05). Results Overall outcomes indicated that composite resins showed a significant increase in roughness after simulated toothbrushing, except for Grandio, which presented a smoother surface. Generally, wear of nanofilled resins was significantly lower compared with microhybrid resins. Conclusions As restorative materials suffer alterations under mechanical challenges, such as toothbrushing, the use of nanofilled materials seem to be more resistant than microhybrid composite resins, being less prone to be rougher and worn. PMID:23138735

  13. Culicoides species composition and environmental factors influencing African horse sickness distribution at three sites in Namibia.

    PubMed

    Liebenberg, Danica; Piketh, Stuart; Labuschagne, Karien; Venter, Gert; Greyling, Telane; Mienie, Charlotte; de Waal, Tania; van Hamburg, Huib

    2016-11-01

    African horse sickness (AHS) is one of the most lethal infectious, non-contagious, vector-borne disease of equids. The causative agent, African horse sickness virus (AHSV) is transmitted via Culicoides midges (Diptera: Ceratopogonidae). AHS is endemic to Namibia but detailed studies of Culicoides communities and influencing environmental parameters are limited. This study aims to determine the Culicoides species composition at three different sites and to assess environmental parameters influencing the geographical distribution of AHS in Namibia. Weekly collections of Culicoides were made during the AHS peak season from January to May for 2013 and 2014 using the Onderstepoort 220V UV-light trap. Out of 397 collections made, 124 collections (3287 Culicoides) were analysed for AHSV presence with RT-qPCR. A total of 295 collections were analysed for total Culicoides (all collected Culicoides individuals) and in 75% of these collections the Culicoides were identified to species level. C. imicola was the dominant species with proportional representation of 29.9%. C. subschultzei, C. exspectator and C. ravus each contribute more than 10% to the species composition. The lowest number of Culicoides was collected at Aus 9980, a total of 21819 at Windhoek and the highest number at Okahandja 47343. AHSV was present at all three sites during 2013 but only in Windhoek and Okahandja during 2014. Multivariate analyses of data from the two year survey indicate the environmental parameters in order of importance for the distribution of AHS in Namibia as precipitation>temperature>clay>relative humidity>NDVI. The implication of these findings is that any precipitation event increases Culicoides numbers significantly. Together with these results the high number of species found of which little is known regarding their vector competence, add to the complexity of the distribution of AHS in Namibia. PMID:27491343

  14. Realistic modeling of environmental tracer migration and composite age distributions in a pine beetle impacted watershed

    NASA Astrophysics Data System (ADS)

    Engdahl, N. B.; Maxwell, R. M.

    2013-12-01

    Descriptions of age in hydrologic systems are often limited to the residence time in the surface water system or the subsurface with little consideration of the interaction between the two, or the different ways geochemical tracers are altered in each domain. Understanding the way tracer concentrations change in each domain is essential to accurate estimation of age, but few models have explicitly modeled the fully coupled system or considered distributions of age. This work presents a numerical laboratory that is specifically designed to investigate composite age distributions (CADs) and their connections to tracer concentrations. The CAD is defined here as the combination of the residence time distributions for surface flows, vadose zone, and groundwater systems, providing an accounting for the total time a discrete fluid parcel has spent within the integrated hydrologic system. CADs are generated by particle tracking through a fully integrated flow model and it is straight forward to realistically simulate the transport of environmental tracers such as 85-Krypton and 39-Argon that can be used for estimating water ages. This framework allows explicit modeling of the different processes in each domain that affect tracer concentrations including the mixing of different source waters, partial equilibrium with the atmosphere through the vadose zone, evaporative enrichment in surface flows, and diffusive fractionation in the subsurface. Transient forcings, such as seasonal or daily variations in precipitation, can also be simulated and the effects of this transience on concentrations and age distributions can easily be investigated. The model domain used to demonstrate these tools is based on a well-defined watershed within Rocky Mountain National Park. The mountain pine beetle has devastated the park's forests and the massive tree-kill has begun to affect the quality and distribution of the water resources. Accurate modeling of the CADs in the park is a crucial step

  15. Life Prediction Issues in Thermal/Environmental Barrier Coatings in Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Brewer, David N.; Murthy, Pappu L. N.

    2001-01-01

    Issues and design requirements for the environmental barrier coating (EBC)/thermal barrier coating (TBC) life that are general and those specific to the NASA Ultra-Efficient Engine Technology (UEET) development program have been described. The current state and trend of the research, methods in vogue related to the failure analysis, and long-term behavior and life prediction of EBCITBC systems are reported. Also, the perceived failure mechanisms, variables, and related uncertainties governing the EBCITBC system life are summarized. A combined heat transfer and structural analysis approach based on the oxidation kinetics using the Arrhenius theory is proposed to develop a life prediction model for the EBC/TBC systems. Stochastic process-based reliability approach that includes the physical variables such as gas pressure, temperature, velocity, moisture content, crack density, oxygen content, etc., is suggested. Benefits of the reliability-based approach are also discussed in the report.

  16. Effects of Temperature, Oxidation and Fiber Preforms on Fatigue Life of Carbon Fiber-Reinforced Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2016-08-01

    In this paper, the effects of temperature, oxidation and fiber preforms on the fatigue life of carbon fiber-reinforced silicon carbide ceramic-matrix composites (C/SiC CMCs) have been investigated. An effective coefficient of the fiber volume fraction along the loading direction (ECFL) was introduced to describe the fiber architecture of preforms. Under cyclic fatigue loading, the fibers broken fraction was determined by combining the interface wear model and fibers statistical failure model at room temperature, and interface/fibers oxidation model, interface wear model and fibers statistical failure model at elevated temperatures in the oxidative environments. When the broken fibers fraction approaches to the critical value, the composites fatigue fracture. The fatigue life S-N curves and fatigue limits of unidirectional, cross-ply, 2D, 2.5D and 3D C/SiC composites at room temperature, 800 °C in air, 1100, 1300 and 1500 °C in vacuum conditions have been predicted.

  17. Effects of Temperature, Oxidation and Fiber Preforms on Fatigue Life of Carbon Fiber-Reinforced Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2016-04-01

    In this paper, the effects of temperature, oxidation and fiber preforms on the fatigue life of carbon fiber-reinforced silicon carbide ceramic-matrix composites (C/SiC CMCs) have been investigated. An effective coefficient of the fiber volume fraction along the loading direction (ECFL) was introduced to describe the fiber architecture of preforms. Under cyclic fatigue loading, the fibers broken fraction was determined by combining the interface wear model and fibers statistical failure model at room temperature, and interface/fibers oxidation model, interface wear model and fibers statistical failure model at elevated temperatures in the oxidative environments. When the broken fibers fraction approaches to the critical value, the composites fatigue fracture. The fatigue life S-N curves and fatigue limits of unidirectional, cross-ply, 2D, 2.5D and 3D C/SiC composites at room temperature, 800 °C in air, 1100, 1300 and 1500 °C in vacuum conditions have been predicted.

  18. [Floristic composition and distribution of the Andean subtropical riparian forests of Lules River, Tucuman, Argentina].

    PubMed

    Sirombra, Martín G; Mesa, Leticia M

    2010-03-01

    We studied the floristic composition and distribution of the riparian forest of two hydrographical systems in a subtropical Andean region. Using uni and multivariate techniques, we tested the hypotheses that a differentiable riparian forest exists, composed by native vegetation typical of the Yungas phytogeographical province, and that the distribution of vegetation varied significantly with geomorphologic characteristics. Parallel transects along the water courses were used to collect presence-absence data of vegetation in eleven sites. Detrended Correspondence Analysis defined a group of common riparian species for the studied area (Solanum riparium, Phenax laevigatus, Tipuana tipu, Cestrum parqui, Carica quercifolia, Acacia macracantha, Celtis iguanaea, Juglans australis, Pisoniella arborescens, Baccharis salicifolia, Cinnamomum porphyrium and Eugenia uniflora) and identified two reference sites. The distribution of the riparian vegetation varied significantly with the geomorphic characteristics along the studied sites. Riparian habitats were composed by native and exotic species. A distinct riparian flora, different in structure and function from adjacent terrestrial vegetation, could not be identified. Riparian species were similar to the adjacent terrestrial strata. These species would not be limited by the proximity to the river. Anthropogenic impacts were important factors regulating the introduction and increase of exotic vegetation. The lack of regulation of some activities in the zone could cause serious problems in the integrity of this ecosystem. PMID:20411737

  19. Effect of geographical distributions on the nutrient composition, phytochemical profile and antioxidant activity of Morus nigra.

    PubMed

    Khattak, Khanzadi Fatima; Rahman, Tajur Rahman

    2015-09-01

    Recent worldwide inclination for the consumption of natural compounds has extremely augmented the significance of persistent quality of plant materials. Consequently, there is an escalating scientific concern in the impact of geographical distributions of the plants on their chemical constituents, physical characteristics and biological activities. The current study was carried out to see the effect of geographical locations on the nutrient composition, mineral contents, phytochemical profile and free radical scavenging activity of Morus nigra fruit. The samples were collected from five different locations of Khyber Pakhtunkhwa, which included districts of D. I. Khan, Karak, Peshawar, Swabi and Swat. The results revealed the considerable impact of geographical locations on the levels of proximate nutrient and selected minerals. Likewise, the concentrations of phenolic, flavonoid, anthocyanin and alkaloidal contents varied significantly (p<0.05) with respect to their geographical distributions. The physicochemical characteristic, extraction yields and DPPH scavenging activity of the samples also showed strong link with the sites of their cultivation. The data suggest that geographical distributions affect the levels of phytochemicals and conversely their biological activities. These variations must be taken into consideration while utilizing raw plant materials for industrial applications and traditional therapies. PMID:26408872

  20. Molecular Structures of Polymer/Sulfur Composites for Lithium-Sulfur Batteries with Long Cycle Life

    SciTech Connect

    Xiao, Lifen; Cao, Yuliang; Xiao, Jie; Schwenzer, Birgit; Engelhard, Mark H.; Saraf, Laxmikant V.; Nie, Zimin; Exarhos, Gregory J.; Liu, Jun

    2013-04-26

    Vulcanizedpolyaniline/sulfur (SPANI/S) nanostructures were investigated for Li-S battery applications, but the detailed molecular structures of such composites have not been fully illustrated. In this paper, we synthesize SPANI/S composites with different S content in a nanorod configuration. FTIR, Raman, XPS, XRD, SEM and elemental analysis methods are used to characterize the molecular structure of the materials. We provide clear evidence that a portion of S was grafted on PANI during heating and connected the PANI chains with disulfide bonds to form a crosslinked network and the rest of S was encapsulated within it.. Polysulfides and elementary sulfur nanoparticles are physically trapped inside the polymer network and are not chemically bound to the polymer. The performance of the composites is further improved by reducing the particle size. Even after 500 cycles a capacity retention rate of 68.8% is observed in the SPANI/S composite with 55% S content.

  1. Investigation of chloride induced corrosion of bridge pier and life-cycle repair cost analysis using fiber reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Dhakal, Dinesh

    Bridges are the long term investment of the highway agencies. To maintain the required service level throughout the life of a bridge, a series of maintenance, repair, and rehabilitation (MRℝ) works can be performed. To investigate the corrosion deterioration and maintenance and repair practices in the bridge pier columns constructed in chloride-laden environment, a questionnaire survey was conducted within the 50 state Departments of Transportation (DOTs). Based on the survey data, two corrosion deterioration phases were identified. They were corrosion crack initiation phase and corrosion propagation phase. The data showed that the mean corrosion crack initiation phase for bridge pier column having cover of 50 mm, 75 mm, and 100 mm was 18.9 years, 20.3 years, and 22.5 years, respectively. The corrosion propagation phase starts after the corrosion crack initiation. The corrosion propagation is defined in a single term, corrosion damage rate, measured as percentage of area damaged due to corrosion cracking, spalling, and delamination. From the survey, the corrosion damage rate was found 2.23% and 2.10% in the bridge pier columns exposed to deicing salt water and exposed to tidal splash/spray, respectively. For this study, two different corrosion damage rates were proposed before and after the repair criteria for minor damage repair as practiced by DOTs. This study also presents the collected data regarding the corrosion effectiveness of using sealers and coatings, cathodic protection, corrosion inhibitors, carbon fiber/epoxy composites, and glass fiber/epoxy composites as maintenance and repair technique. In this study, the cost-effectiveness of wrapping carbon fiber/epoxy composites and glass fiber/epoxy composites in bridge pier columns constructed in a chloride-laden environment was investigated by conducting life-cycle cost analysis. As a repair work, externally bonded two layer of carbon fiber/epoxy and glass fiber/epoxy composites were installed by wet

  2. Base composition and gene distribution: critical patterns in mammalian genome organization.

    PubMed

    Gardiner, K

    1996-12-01

    Recent success in developing transcriptional maps of large genomic regions provide excellent opportunities for the investigation of mammalian genome organization. Detailed definition of organizational features will, in the short term, aid in prioritizing genomic sequencing efforts and in interpreting sequencing results and, in the long term, will surely provide insights into the structural, functional and evolutionary basis for the mammalian chromosome and chromosomal banding patterns. For such efforts, human chromosome 21 provides an excellent model system because the physical and clone maps are detailed, and several transcriptional mapping projects have provided large numbers of novel genes. It is, therefore, valuable at this point to examine these transcriptional mapping data and to compare them with the isochore model of the mammalian genome, which describes patterns in base composition and predicts gene distributions. Not only do compelling organizational patterns appear, but new questions about additional possible patterns in gene size, structure, conservation and transcription can be asked. PMID:9257535

  3. Interfacial shear stress distribution in model composites. I - A Kevlar 49 fibre in an epoxy matrix

    SciTech Connect

    Jahankhani, H.; Galiotis, C. )

    1991-05-01

    The technique of Laser Raman Spectroscopy has been applied in the study of aramid fibers, such as Kevlar 49, and aramid/epoxy interfaces. A linear relationship has been found between Raman frequencies and strain upon loading a single Kevlar 49 filament in air. Model composites of single Kevlar 49 fibers embedded in epoxy resins have been fabricated and subjected to various degrees of mechanical deformation. The transfer lengths for reinforcement have been measured at various levels of applied tensile load and the dependence of transfer length upon applied matrix strain has been established. Finally, by balancing the tensile and the shear forces acting along the interface, the interfacial shear stress (ISS) distribution along the embedded fiber was obtained. 52 refs.

  4. Investigation on stress distribution of multilayered composite structure (MCS) using infrared thermographic technique

    NASA Astrophysics Data System (ADS)

    Liu, Junyan; Gong, Jinlong; Liu, Liqiang; Qin, Lei; Wang, Yang

    2013-11-01

    In this paper, the thermoelastic stress analysis (TSA) on a multilayered composite structure (MCS) was investigated by means of lock-in thermographic image technique (LITI). The application of thermoelastic stress analysis on MCS becomes particularly complicated due to consisting of different material components, which determines the different thermoelastic coupling response depended on material thermal-physical property. The thermoelastic coupling constants (TCC) of GFRP, medium-carbon steel and foam were obtained through thermomechanical calibration experiments, respectively. An artificial neural network was proposed to determine the component of MCS. Comparisons between finite element analysis (FEA) and LITI measurement are reported. It is found that the stress distribution of MCS can be evaluated with good accuracies using LITI measurement.

  5. Development of a fatigue-life methodology for composite structures subjected to out-of-plane load components

    NASA Technical Reports Server (NTRS)

    Sumich, Mark; Kedward, Keith T.

    1991-01-01

    The efforts to identify and implement a fatigue life methodology applicable to demonstrate delamination failures for use in certifying composite rotor blades are presented. The RSRA/X-Wing vehicle was a proof-of-concept stopped rotor aircraft configuration which used rotor blades primarily constructed of laminated carbon fiber. Delamination of the main spar during ground testing demonstrated that significant interlaminar stresses were produced. Analysis confirmed the presence of out-of-plane load components. The wear out (residual strength) methodology and the requirements for its implementation are discussed.

  6. A study of stiffness, residual strength and fatigue life relationships for composite laminates

    NASA Technical Reports Server (NTRS)

    Ryder, J. T.; Crossman, F. W.

    1983-01-01

    Qualitative and quantitative exploration of the relationship between stiffness, strength, fatigue life, residual strength, and damage of unnotched, graphite/epoxy laminates subjected to tension loading. Clarification of the mechanics of the tension loading is intended to explain previous contradictory observations and hypotheses; to develop a simple procedure to anticipate strength, fatigue life, and stiffness changes; and to provide reasons for the study of more complex cases of compression, notches, and spectrum fatigue loading. Mathematical models are developed based upon analysis of the damage states. Mathematical models were based on laminate analysis, free body type modeling or a strain energy release rate. Enough understanding of the tension loaded case is developed to allow development of a proposed, simple procedure for calculating strain to failure, stiffness, strength, data scatter, and shape of the stress-life curve for unnotched laminates subjected to tension load.

  7. Spatial distribution and species composition of small pelagic fishes in the Gulf of California.

    PubMed

    Lanz, Edgar; Nevárez-Martínez, Manuel O; López-Martínez, Juana; Dworak, Juan A

    2008-06-01

    Traditional regionalization methods in fisheries based on provinces or major fishing areas, includes large and arbitrary grids in which basic statistics or inferences on distribution or abundance are made. We describe a method for regionalization and analysis of fishing activities for small pelagic fisheries in the Gulf of California based on spatial patterns of landing and catch data in a Geographic Information System (GIS) environment. A fisheries database from logbooks with spatial attributes from October 2002 to June 2007 was analyzed. Landings and catching data were transformed to a Weighted Region Index (WRI) by using fuzzy logic operators. The WRI revealed fishing action centers characterized by areas with the highest WRI values, and a hierarchy for the relative importance of the regions was established. Guaymas, Desemboque de Caborca, Isla Patos, and Bahia San Rafael they were the most prominent ones. An analysis of the relative frequency of species composition showed that the Pacific sardine had an over 80 % abundance in the midriff islands, and remained as the most important in the upper gulf regions, while in the central part of the gulf, relative abundances of Pacific sardine and Northern anchovy were more balanced. Relative abundance of mackerel was significantly larger around Isla Patos than in any other place. Guaymas had the largest relative composition of Northern anchovy and the lowest values for Pacific sardine. Desemboque de Caborca showed the largest homogeneity in species relative composition. It is important to highlight that this results come from in situ data, while the results previously reported come from landing statistics by port. Therefore, the present method acknowledges the spatial differences of species by regions, additional to the traditional time series analysis. PMID:19256429

  8. Effect of hydrocolloids and emulsifiers on the shelf-life of composite cassava-maize-wheat bread after storage.

    PubMed

    Eduardo, Maria; Svanberg, Ulf; Ahrné, Lilia

    2016-07-01

    The objective of this study was to evaluate the effect of hydrocolloids and/or emulsifiers on the shelf-life of composite cassava-maize-wheat (ratio 40:10:50) reference bread during storage. Added hydrocolloids were carboxymethylcellulose (CMC) and high methoxyl pectin (HM pectin) at a 3% level (w/w) and/or the emulsifiers diacetyl tartaric acid esters of monoglycerides (DATEM), lecithin (LC), and monoglycerides (MG) at a 0.3% level (w/w). After 4 days of storage, composite breads with MG had comparatively lower crumb moisture while crumb density was similar in all breads. The reference bread crumb firmness was 33.4 N, which was reduced with an addition of DATEM (23.0 N), MG (29.8 N), CMC (24.6 N) or HM pectin (22.4 N). However, the CMC/DATEM, CMC/LC, and HM pectin/DATEM combinations further reduced crumb firmness to <20.0 N. The melting peak temperature was increased from 52 C to between 53.0 C and 57.0 C with added hydrocolloids and/or emulsifiers. The melting enthalpy of the retrograded amylopectin was lower in composite bread with hydrocolloids and emulsifiers, 6.7-11.0 J/g compared to 20.0 J/g for the reference bread. These results show that emulsifiers in combination with hydrocolloids can improve the quality and extend the shelf-life of composite cassava-maize-wheat breads. PMID:27386112

  9. Where did the Trojan asteroids form? Constraints from composition and size distributions

    NASA Astrophysics Data System (ADS)

    Emery, Joshua; Bell, Jim; Trilling, David; Patience, Jennifer; Brown, Mike

    2014-08-01

    We propose to make near-infrared (0.8 - 2.5 μm) spectral observations of 15 small to medium sized (<100 km) Jovian Trojan asteroids. These objects are part of a substantial population of primitive bodies trapped in Jupiter's stable Lagrange regions. Because they may have become trapped in these orbits at the end of the initial phase of planetary formation and subsequent migration, the physical properties of Trojans provide unique perspectives on chemical and dynamical processes that shaped the Solar System. Indeed, in recognition of their importance, the Trojans are one of only five allowable target destinations for NASA's next New Frontiers mission. Previous observations have identified two spectral classes, suggesting that the Trojans are comprised of two distinct compositional groups, perhaps representing distinct outer Solar System reservoirs for their formation. These new proposed observations will: (a) Enable a search for minor absorptions due to ices, organics, and/or silicates in the smallest Trojans yet observed, near and below the size regime thought to represent the largest collisional fragments from impacts within the Trojan clouds; and (b) Test whether the two spectral groups previously identified have different cumulative size distributions, which would suggest different internal strengths and support the hypothesis of distinct compositions and origins.

  10. Processing and Characterization of a Novel Distributed Strain Sensor Using Carbon Nanotube-Based Nonwoven Composites.

    PubMed

    Dai, Hongbo; Thostenson, Erik T; Schumacher, Thomas

    2015-01-01

    This paper describes the development of an innovative carbon nanotube-based non-woven composite sensor that can be tailored for strain sensing properties and potentially offers a reliable and cost-effective sensing option for structural health monitoring (SHM). This novel strain sensor is fabricated using a readily scalable process of coating Carbon nanotubes (CNT) onto a nonwoven carrier fabric to form an electrically-isotropic conductive network. Epoxy is then infused into the CNT-modified fabric to form a free-standing nanocomposite strain sensor. By measuring the changes in the electrical properties of the sensing composite the deformation can be measured in real-time. The sensors are repeatable and linear up to 0.4% strain. Highest elastic strain gage factors of 1.9 and 4.0 have been achieved in the longitudinal and transverse direction, respectively. Although the longitudinal gage factor of the newly formed nanocomposite sensor is close to some metallic foil strain gages, the proposed sensing methodology offers spatial coverage, manufacturing customizability, distributed sensing capability as well as transverse sensitivity. PMID:26197323