Sample records for composition suite wincs

  1. Wireless Instantaneous Neurotransmitter Concentration Sensing System (WINCS) for intraoperative neurochemical monitoring.

    PubMed

    Kimble, Christopher J; Johnson, David M; Winter, Bruce A; Whitlock, Sidney V; Kressin, Kenneth R; Horne, April E; Robinson, Justin C; Bledsoe, Jonathan M; Tye, Susannah J; Chang, Su-Youne; Agnesi, Filippo; Griessenauer, Christoph J; Covey, Daniel; Shon, Young-Min; Bennet, Kevin E; Garris, Paul A; Lee, Kendall H

    2009-01-01

    The Wireless Instantaneous Neurotransmitter Concentration Sensing System (WINCS) measures extracellular neurotransmitter concentration in vivo and displays the data graphically in nearly real time. WINCS implements two electroanalytical methods, fast-scan cyclic voltammetry (FSCV) and fixed-potential amperometry (FPA), to measure neurotransmitter concentrations at an electrochemical sensor, typically a carbon-fiber microelectrode. WINCS comprises a battery-powered patient module and a custom software application (WINCSware) running on a nearby personal computer. The patient module impresses upon the electrochemical sensor either a constant potential (for FPA) or a time-varying waveform (for FSCV). A transimpedance amplifier converts the resulting current to a signal that is digitized and transmitted to the base station via a Bluetooth radio link. WINCSware controls the operational parameters for FPA or FSCV, and records the transmitted data stream. Filtered data is displayed in various formats, including a background-subtracted plot of sequential FSCV scans - a representation that enables users to distinguish the signatures of various analytes with considerable specificity. Dopamine, glutamate, adenosine and serotonin were selected as analytes for test trials. Proof-of-principle tests included in vitro flow-injection measurements and in vivo measurements in rat and pig. Further testing demonstrated basic functionality in a 3-Tesla MRI unit. WINCS was designed in compliance with consensus standards for medical electrical device safety, and it is anticipated that its capability for real-time intraoperative monitoring of neurotransmitter release at an implanted sensor will prove useful for advancing functional neurosurgery.

  2. Wireless Instantaneous Neurotransmitter Concentration Sensing System (WINCS) for Intraoperative Neurochemical Monitoring

    PubMed Central

    Kimble, Christopher J.; Johnson, David M.; Winter, Bruce A.; Whitlock, Sidney V.; Kressin, Kenneth R.; Horne, April E.; Robinson, Justin C.; Bledsoe, Jonathan M.; Tye, Susannah J.; Chang, Su-Youne; Agnesi, Filippo; Griessenauer, Christoph J.; Covey, Daniel; Shon, Young-Min; Bennet, Kevin E.; Garris, Paul A.; Lee, Kendall H.

    2010-01-01

    The Wireless Instantaneous Neurotransmitter Concentration Sensing System (WINCS) measures extracellular neurotransmitter concentration in vivo and displays the data graphically in nearly real time. WINCS implements two electroanalytical methods, fast-scan cyclic voltammetry (FSCV) and fixed-potential amperometry (FPA), to measure neurotransmitter concentrations at an electrochemical sensor, typically a carbon-fiber microelectrode. WINCS comprises a battery-powered patient module and a custom software application (WINCSware) running on a nearby personal computer. The patient module impresses upon the electrochemical sensor either a constant potential (for FPA) or a time-varying waveform (for FSCV). A transimpedance amplifier converts the resulting current to a signal that is digitized and transmitted to the base station via a Bluetooth® radio link. WINCSware controls the operational parameters for FPA or FSCV, and records the transmitted data stream. Filtered data is displayed in various formats, including a background-subtracted plot of sequential FSCV scans—a representation that enables users to distinguish the signatures of various analytes with considerable specificity. Dopamine, glutamate, adenosine and serotonin were selected as analytes for test trials. Proof-of-principle tests included in vitro flow-injection measurements and in vivo measurements in rat and pig. Further testing demonstrated basic functionality in a 3-Tesla MRI unit. WINCS was designed in compliance with consensus standards for medical electrical device safety, and it is anticipated that its capability for real-time intraoperative monitoring of neurotransmitter release at an implanted sensor will prove useful for advancing functional neurosurgery. PMID:19963865

  3. WINCS-BASED WIRELESS ELECTROCHEMICAL MONITORING OF SEROTONIN (5-HT) USING FAST-SCAN CYCLIC VOLTAMMETRY: PROOF OF PRINCIPLE

    PubMed Central

    Griessenauer, Christoph J.; Chang, Su-Youne; Tye, Susannah J.; Kimble, Christopher J.; Bennet, Kevin E.; Garris, Paul A.; Lee, Kendall H.

    2010-01-01

    Object We previously reported the development of a Wireless Instantaneous Neurotransmitter Concentration System (WINCS) for measuring dopamine and suggested that this technology may be useful for evaluating deep brain stimulation (DBS)-related neuromodulatory effects on neurotransmitter systems. WINCS supports fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) for real-time, spatially resolved neurotransmitter measurements. The FSCV parameters used to establish WINCS dopamine measurements are not suitable for serotonin, a neurotransmitter implicated in depression, because they lead to CFM fouling and a loss of sensitivity. Here, we incorporate into WINCS a previously described N-shaped waveform applied at a high scan rate to establish wireless serotonin monitoring. Methods FSCV optimized for the detection of serotonin consisted of an N-shaped waveform scanned linearly from a resting potential of, in V, +0.2 to +1.0, then to −0.1 and back to +0.2 at a rate of 1000 V/s. Proof of principle tests included flow injection analysis and electrically evoked serotonin release in the dorsal raphe nucleus of rat brain slices. Results Flow cell injection analysis demonstrated that the N waveform applied at a scan rate of 1000 V/s significantly reduced serotonin fouling of the CFM, relative to that observed with FSCV parameters for dopamine. In brain slices, WINCS reliably detected sub-second serotonin release in the dorsal raphe nucleus evoked by local high-frequency stimulation. Conclusion WINCS supported high-fidelity wireless serotonin monitoring by FSCV at a CFM. In the future such measurements of serotonin in large animal models and in humans may help to establish the mechanism of DBS for psychiatric disease. PMID:20415521

  4. WINCS Harmoni: Closed-loop dynamic neurochemical control of therapeutic interventions

    NASA Astrophysics Data System (ADS)

    Lee, Kendall H.; Lujan, J. Luis; Trevathan, James K.; Ross, Erika K.; Bartoletta, John J.; Park, Hyung Ook; Paek, Seungleal Brian; Nicolai, Evan N.; Lee, Jannifer H.; Min, Hoon-Ki; Kimble, Christopher J.; Blaha, Charles D.; Bennet, Kevin E.

    2017-04-01

    There has been significant progress in understanding the role of neurotransmitters in normal and pathologic brain function. However, preclinical trials aimed at improving therapeutic interventions do not take advantage of real-time in vivo neurochemical changes in dynamic brain processes such as disease progression and response to pharmacologic, cognitive, behavioral, and neuromodulation therapies. This is due in part to a lack of flexible research tools that allow in vivo measurement of the dynamic changes in brain chemistry. Here, we present a research platform, WINCS Harmoni, which can measure in vivo neurochemical activity simultaneously across multiple anatomical targets to study normal and pathologic brain function. In addition, WINCS Harmoni can provide real-time neurochemical feedback for closed-loop control of neurochemical levels via its synchronized stimulation and neurochemical sensing capabilities. We demonstrate these and other key features of this platform in non-human primate, swine, and rodent models of deep brain stimulation (DBS). Ultimately, systems like the one described here will improve our understanding of the dynamics of brain physiology in the context of neurologic disease and therapeutic interventions, which may lead to the development of precision medicine and personalized therapies for optimal therapeutic efficacy.

  5. Multifunctional System for Observing, Measuring and Analyzing Stimulation-Evoked Neurochemical Signaling

    PubMed Central

    Kimble, Christopher J.; Boesche, Joshua B.; Eaker, Diane R.; Kressin, Kenneth R.; Trevathan, James K.; Paek, Seungleal; Asp, Anders J.; McIntosh, Malcolm B.; Lujan, J. Luis

    2017-01-01

    The ability to measure neurotransmitter activity using implanted electrochemical sensors offers researchers a potent technique for analyzing neural activity across specific neural circuitry. We have developed a wirelessly controlled device, WINCS Harmoni, to observe and measure neurotransmitter dynamics at up to four separate sensors, with high temporal and spatial resolution. WINCS Harmoni also incorporates a versatile neurostimulator that can be synchronized with electrochemical recording. The WINCS Harmoni platform is thus optimally suited for probing the neurochemical effects of neurostimulation, and may in turn enable the development of personalized therapies for multiple brain disorders. PMID:29202131

  6. Exploration Spacecraft and Space Suit Internal Atmosphere Pressure and Composition

    NASA Technical Reports Server (NTRS)

    Lange, Kevin; Duffield, Bruce; Jeng, Frank; Campbell, Paul

    2005-01-01

    The design of habitat atmospheres for future space missions is heavily driven by physiological and safety requirements. Lower EVA prebreathe time and reduced risk of decompression sickness must be balanced against the increased risk of fire and higher cost and mass of materials associated with higher oxygen concentrations. Any proposed increase in space suit pressure must consider impacts on space suit mass and mobility. Future spacecraft designs will likely incorporate more composite and polymeric materials both to reduce structural mass and to optimize crew radiation protection. Narrowed atmosphere design spaces have been identified that can be used as starting points for more detailed design studies and risk assessments.

  7. Suited crewmember productivity

    NASA Astrophysics Data System (ADS)

    Barer, A. S.; Filipenkov, S. N.

    Analysis of the extravehicular activity (EVA) sortie experience gained in the former Soviet Union and physiologic hygienic aspect of space suit design and development shows that crewmember productivity is related to the following main factors: —space suit microclimate (gas composition, pressure and temperature); —limitation of motion activity and perception, imposed by the space suit; —good crewmember training in the ground training program; —level of crewmember general physical performance capabilities in connection with mission duration and intervals between sorties; —individual EVA experience (with accumulation) at which workmanship improves, while metabolism, physical and emotional stress decreases; —concrete EVA duration and work rate; —EVA bioengineering, including selection of tools, work station, EVA technology and mechanization.

  8. Suited crewmember productivity.

    PubMed

    Barer, A S; Filipenkov, S N

    1994-01-01

    Analysis of the extravehicular activity (EVA) sortie experience gained in the former Soviet Union and physiologic hygienic aspect of space suit design and development shows that crewmember productivity is related to the following main factors: -space suit microclimate (gas composition, pressure and temperature); -limitation of motion activity and perception, imposed by the space suit; -good crewmember training in the ground training program; -level of crewmember general physical performance capabilities in connection with mission duration and intervals between sorties; -individual EVA experience (with accumulation) at which workmanship improves, while metabolism, physical and emotional stress decreases; -concrete EVA duration and work rate; -EVA bioengineering, including selection of tools, work station, EVA technology and mechanization.

  9. Thermal Performance Of Space Suit Elements With Aerogel Insulation For Moon And Mars Exploration

    NASA Technical Reports Server (NTRS)

    Tang, Henry H.; Orndoff, Evelyne S.; Trevino, Luis A.

    2006-01-01

    Flexible fiber-reinforced aerogel composites were studied for use as insulation materials of a future space suit for Moon and Mars exploration. High flexibility and good thermal insulation properties of fiber-reinforced silica aerogel composites at both high and low vacuum conditions make it a promising insulation candidate for the space suit application. This paper first presents the results of a durability (mechanical cycling) study of these aerogels composites in the context of retaining their thermal performance. The study shows that some of these Aerogels materials retained most of their insulation performance after up to 250,000 cycles of mechanical flex cycling. This paper also examines the problem of integrating these flexible aerogel composites into the current space suit elements. Thermal conductivity evaluations are proposed for different types of aerogels space suit elements to identify the lay-up concept that may have the best overall thermal performance for both Moon and Mars environments. Potential solutions in mitigating the silica dusting issue related to the application of these aerogels materials for the space suit elements are also discussed.

  10. Apollo 15 Mg- and Fe-norites - A redefinition of the Mg-suite differentiation trend

    NASA Technical Reports Server (NTRS)

    Lindstrom, M. M.; Marvin, U. B.; Mittlefehldt, D. W.

    1989-01-01

    The Apollo 15 highland rocks from the Apennine Front include clasts of mafic plutonic rocks from deep in the lunar crust that were brought to the surface by the Imbrium and Serenitatis impacts. The Apollo 15 norites exhibit wide variations in mineral and bulk compositions and include Fe-norites that plot between the three major pristine rock fields on a diagram of Mg' in mafic minerals vs An in paglioclase. Based on assemblages and compositions of minerals, and on ratios of elemental abundances, it is concluded that these Apollo 15 Fe-norites are differentiated members of the Mg-norite suite. The Apollo 15 and 17 norites and troctolites form a closely related suite of rocks, whose variations in mineral compositions represent the main differentiation trend of the Mg-suite. This trend in mineral compositions has a steeper slope than the previous Mg-suite field. The parent magmas for these Mg-suite rocks formed by partial melting deep in the lunar mantle. Differentiation by fractional crystallization may also have included assimilation of crustal components as the magmas rose from the mantle and crystallized plutons in the lower crust.

  11. Development of the Wireless Instantaneous Neurotransmitter Concentration System for intraoperative neurochemical monitoring using fast-scan cyclic voltammetry.

    PubMed

    Bledsoe, Jonathan M; Kimble, Christopher J; Covey, Daniel P; Blaha, Charles D; Agnesi, Filippo; Mohseni, Pedram; Whitlock, Sidney; Johnson, David M; Horne, April; Bennet, Kevin E; Lee, Kendall H; Garris, Paul A

    2009-10-01

    ) Bluetooth transceiver; 3) microprocessor; and 4) direct-current battery. A Windows-XP laptop computer running custom software and equipped with a Universal Serial Bus-connected Bluetooth transceiver served as the base station. Computer software directed wireless data acquisition at 100 kilosamples/second and remote control of FSCV operation and adjustable waveform parameters. The WINCS provided reliable, high-fidelity measurements of dopamine and other neurochemicals such as serotonin, norepinephrine, and ascorbic acid by using FSCV at CFM and by flow injection analysis. In rats, the WINCS detected subsecond striatal dopamine release at the implanted sensor during high-frequency stimulation of ascending dopaminergic fibers. Overall, in vitro and in vivo testing demonstrated comparable signals to a conventional hardwired electrochemical system for FSCV. Importantly, the WINCS reduced susceptibility to electromagnetic noise typically found in an operating room setting. Taken together, these results demonstrate that the WINCS is well suited for intraoperative neurochemical monitoring. It is anticipated that neurotransmitter measurements at an implanted chemical sensor will prove useful for advancing functional neurosurgery.

  12. Development of the Wireless Instantaneous Neurotransmitter Concentration System for intraoperative neurochemical monitoring using fast-scan cyclic voltammetry

    PubMed Central

    Bledsoe, Jonathan M.; Kimble, Christopher J.; Covey, Daniel P.; Blaha, Charles D.; Agnesi, Filippo; Mohseni, Pedram; Whitlock, Sidney; Johnson, David M.; Horne, April; Bennet, Kevin E.; Lee, Kendall H.; Garris, Paul A.

    2009-01-01

    ); 2) Bluetooth transceiver; 3) microprocessor; and 4) direct-current battery. A Windows-XP laptop computer running custom software and equipped with a Universal Serial Bus–connected Bluetooth transceiver served as the base station. Computer software directed wireless data acquisition at 100 kilosamples/second and remote control of FSCV operation and adjustable waveform parameters. The WINCS provided reliable, high-fidelity measurements of dopamine and other neurochemicals such as serotonin, norepinephrine, and ascorbic acid by using FSCV at CFM and by flow injection analysis. In rats, the WINCS detected subsecond striatal dopamine release at the implanted sensor during high-frequency stimulation of ascending dopaminergic fibers. Overall, in vitro and in vivo testing demonstrated comparable signals to a conventional hardwired electrochemical system for FSCV. Importantly, the WINCS reduced susceptibility to electromagnetic noise typically found in an operating room setting. Conclusions Taken together, these results demonstrate that the WINCS is well suited for intraoperative neurochemical monitoring. It is anticipated that neurotransmitter measurements at an implanted chemical sensor will prove useful for advancing functional neurosurgery. PMID:19425890

  13. Ultraviolet Testing of Space Suit Materials for Mars

    NASA Technical Reports Server (NTRS)

    Larson, Kristine; Fries, Marc

    2017-01-01

    Human missions to Mars may require radical changes in the approach to extra-vehicular (EVA) suit design. A major challenge is the balance of building a suit robust enough to complete multiple EVAs under intense ultraviolet (UV) light exposure without losing mechanical strength or compromising the suit's mobility. To study how the materials degrade on Mars in-situ, the Jet Propulsion Laboratory (JPL) invited the Advanced Space Suit team at NASA's Johnson Space Center (JSC) to place space suit materials on the Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals (SHERLOC) instrument's calibration target of the Mars 2020 rover. In order to select materials for the rover and understand the effects from Mars equivalent UV exposure, JSC conducted ground testing on both current and new space suit materials when exposed to 2500 hours of Mars mission equivalent UV. To complete this testing, JSC partnered with NASA's Marshall Space Flight Center to utilize their UV vacuum chambers. Materials tested were Orthofabric, polycarbonate, Teflon, Dacron, Vectran, spectra, bladder, nGimat coated Teflon, and nGimat coated Orthofabric. All samples were measured for mass, tensile strength, and chemical composition before and after radiation. Mass loss was insignificant (less than 0.5%) among the materials. Most materials loss tensile strength after radiation and became more brittle with a loss of elongation. Changes in chemical composition were seen in all radiated materials through Spectral Analysis. Results from this testing helped select the materials that will fly on the Mars 2020 rover. In addition, JSC can use this data to create a correlation to the chemical changes after radiation-which is what the rover will send back while on Mars-to the mechanical changes, such as tensile strength.

  14. A hybrid composite dike suite from the northern Arabian Nubian Shield, southwest Jordan: Implications for magma mixing and partial melting of granite by mafic magma

    NASA Astrophysics Data System (ADS)

    Jarrar, Ghaleb H.; Yaseen, Najel; Theye, Thomas

    2013-03-01

    The Arabian Nubian Shield is an exemplary juvenile continental crust of Neoproterozoic age (1000-542 Ma). The post-collisional rift-related stage (~ 610 to 542 Ma) of its formation is characterized among others by the intrusion of several generations of simple and composite dikes. This study documents a suite of hybrid composite dikes and a natural example of partial melting of granite by a mafic magma from the northernmost extremity of Arabian Nubian Shield in southwest Jordan. The petrogenesis of this suite is discussed on the basis of field, petrographic, geochemical, and Rb/Sr isotopic data. These dikes give spectacular examples of the interaction between basaltic magma and the granitic basement. This interaction ranges from brecciation, partial melting of the host alkali feldspar granite to complete assimilation of the granitic material. Field structures range from intrusive breccia (angular partially melted granitic fragments in a mafic groundmass) to the formation of hybrid composite dikes that are up to 14 m in thickness. The rims of these dikes are trachyandesite (latite) with alkali feldspar ovoids (up to 1 cm in diameter); while the central cores are trachydacite to dacite and again with alkali feldspar ovoids and xenoliths from the dike rims. The granitic xenoliths in the intrusive breccia have been subjected to at least 33% partial melting. A seven-point Rb/Sr isochron from one of these composite dikes yields an age of 561 ± 33 Ma and an initial 87Sr/86Sr ratio of 0.70326 ± 0.0003 (2σ) and MSWD of 0.62. Geochemical modeling using major, trace, rare earth elements and isotopes suggests the generation of the hybrid composite dike suite through the assimilation of 30% to 60% granitic crustal material by a basaltic magma, while the latter was undergoing fractional crystallization at different levels in the continental crust.

  15. The Radiation Belt Storm Probes (RBSP) Energetic Particle, Composition, and Thermal plasma (ECT) Suite: Upcoming Opportunties for Testing Radiation Belt Acceleration Mechanisms

    NASA Astrophysics Data System (ADS)

    Spence, Harlan; Reeves, Geoffrey

    2012-07-01

    The Radiation Belt Storm Probes (RBSP) mission will launch in late summer 2012 and begin its exploration of acceleration and dynamics of energetic particles in the inner magnetosphere. In this presentation, we discuss opportunities afforded by the RBSP Energetic Particle, Composition, and Thermal plasma (ECT) instrument suite to advance our understanding of acceleration processes in the radiation belts. The RBSP-ECT instrument suite comprehensively measures the electron and major ion populations of the inner magnetosphere, from the lowest thermal plasmas of the plasmasphere, to the hot plasma of the ring current, to the relativistic populations of the radiation belts. Collectively, the ECT measurements will reveal the complex cross-energy coupling of these colocated particle populations, which along with concurrent RBSP wave measurements, will permit various wave-particle acceleration mechanisms to be tested. We review the measurement capabilities of the RBSP-ECT instrument suite, and demonstrate several examples of how these measurements will be used to explore candidate acceleration mechanisms and dynamics of radiation belt particles.

  16. Isotopic variation in the Tuolumne Intrusive Suite, central Sierra Nevada, California

    USGS Publications Warehouse

    Kistler, R.W.; Chappell, B.W.; Peck, D.L.; Bateman, P.C.

    1986-01-01

    Granitoid rocks of the compositionally zoned Late Cretaceous Toulumne Intrusive Suite in the central Sierra Nevada, California, have initial87Sr/86Sr values (Sri) and143Nd/144Nd values (Ndi) that vary from 0.7057 to 0.7067 and from 0.51239 to 0.51211 respectively. The observed variation of both Sri and Ndi and of chemical composition in rocks of the suite cannot be due to crystal fractionation of magma solely under closed system conditons. The largest variation in chemistry, Ndi, and Sri is present in the outer-most equigranular units of the Tuolumne Intrusive Suite. Sri varies positively with SiO2, Na2O, K2O, and Rb concentrations, and negatively with Ndi, Al2O3, Fe2O3, MgO, FeO, CaO, MnO, P2O5, TiO2, and Sr concentrations. This covariation of Sri, Ndi and chemistry can be modeled by a process of simple mixing of basaltic and granitic magmas having weight percent SiO2 of 48.0 and 73.3 respectively. Isotopic characteristic of the mafic magma are Sri=0.7047, Ndi=0.51269 and ??18O=6.0, and of the felsic magma are Sri=0.7068, Ndi=0.51212 and ??18O=8.9. The rocks sampled contain from 50 to 80% of the felsic component. An aplite in the outer equigranular unit of the Tuolumne Intrusive Suite apparently was derived by fractional crystallization of plagioclase and hornblende from magma with granudiorite composition that was a product of mixing of the magmas described above. Siliceous magmas derived from the lower crust, having a maximum of 15 percent mantle-derived mafic component, are represented by the inner prophyritic units of the Tuolumne Intrusive Suite. ?? 1986 Springer-Verlag.

  17. 20. NBS SUIT LAB. TABLE WITH MISCELLANEOUS SUIT PARTS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. NBS SUIT LAB. TABLE WITH MISCELLANEOUS SUIT PARTS AND TERRY WEST, A SPACE SUIT ASSEMBLY TECHNICIAN LOGGING SUIT PART DATA. PARTS ON THE TABLE ARE A HARD UPPER TORSO (HUT) (REAR LEFT), FULL HELMET (FRONT LEFT), TWO HELMETS WITHOUT PROTECTIVE VISORS, A PAIR OF GLOVES, AND A BACKPACK WITHOUT VOLUMETRIC COVER (REAR RIGHT). THE BACKPACK ATTACHES TO THE HUT TO MAKE-UP THE UPPER TORSO COMPONENTS OF THE SUIT. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  18. Z-2 Suit Support Stand and MKIII Suit Center of Gravity Test

    NASA Technical Reports Server (NTRS)

    Nguyen, Tuan Q.

    2014-01-01

    NASA's next generation spacesuits are the Z-Series suits, made for a range of possible exploration missions in the near future. The prototype Z-1 suit has been developed and assembled to incorporate new technologies that has never been utilized before in the Apollo suits and the Extravehicular Mobility Unit (EMU). NASA engineers tested the Z-1 suit extensively in order to developed design requirements for the new Z-2 suit. At the end of 2014, NASA will be receiving the new Z-2 suit to perform more testing and to further develop the new technologies of the suit. In order to do so, a suit support stand will be designed and fabricated to support the Z-2 suit during maintenance, sizing, and structural leakage testing. The Z-2 Suit Support Stand (Z2SSS) will be utilized for these purposes in the early testing stages of the Z-2 suit.

  19. Orion ECLSS/Suit System - Ambient Pressure Integrated Suit Test

    NASA Technical Reports Server (NTRS)

    Barido, Richard A.

    2012-01-01

    The Ambient Pressure Integrated Suit Test (APIST) phase of the integrated system testing of the Orion Vehicle Atmosphere Revitalization System (ARS) technology was conducted for the Multipurpose Crew Vehicle (MPCV) Program within the National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate. Crew and Thermal Systems Division performed this test in the eleven-foot human-rated vacuum chamber at the NASA Johnson Space Center. This testing is the first phase of suit loop testing to demonstrate the viability of the Environmental Control and Life Support System (ECLSS) being developed for Orion. APIST is the first in a series, which will consist of testing development hardware including the Carbon dioxide and Moisture Removal Amine Swing-bed (CAMRAS) and the air revitalization loop fan with human test subjects in pressure suits at varying suit pressures. Follow-on testing, to be conducted in 2013, will utilize the CAMRAS and a development regulator with human test subjects in pressure suits at varying cabin and suit pressures. This paper will discuss the results and findings of APIST and will also discuss future testing.

  20. Mineralogy, petrology and chemistry of ANT-suite rocks from the lunar highlands

    NASA Technical Reports Server (NTRS)

    Prinz, M.; Keil, K.

    1977-01-01

    Anorthositic-noritic-troctolitic (ANT) rocks are the oldest and most abundant rocks of the lunar surface, and comprise about 90% of the suite of the lunar highlands. Consideration is given to the mineralogy, petrology, bulk chemistry, and origin of ANT-suite rocks. Problems associated in classifying and labeling lunar highland rocks because of textural complexities occurring from impact modifications are discussed. The mineralogy of ANT-suite rocks, dominated by plagioclase, olivine and pyrozene, and containing various minor minerals, is outlined. The petrology of ANT-suite rocks is reviewed along with the major element bulk composition of these rocks, noting that they are extremely depleted in K2O and P2O5. Various models describing the origin of ANT-suite rocks are summarized, and it is suggested that this origin involves a parental liquid of high-alumina basalt with low Fe/Fe+Mg.

  1. A methodology for choosing candidate materials for the fabrication of planetary space suit structures

    NASA Technical Reports Server (NTRS)

    Jacobs, Gilda

    1990-01-01

    A study of space suit structures and materials is under way at NASA Ames Research Center, Moffett Field, CA. The study was initiated by the need for a generation of lightweight space suits to be used in future planetary Exploration Missions. This paper provides a brief description of the Lunar and Mars environments and reviews what has been done in the past in the design and development of fabric, metal, and composite suit components in order to establish criteria for comparison of promising candidate materials and space suit structures. Environmental factors and mission scenarios will present challenging material and structural requirements; thus, a program is planned to outline the methodology used to identify materials and processes for producing candidate space suit structures which meet those requirements.

  2. Music Education Suites.

    ERIC Educational Resources Information Center

    Kemp, Wayne

    This publication describes options for designing and equipping middle and high school music education suites and suggests means of gaining community support for including full service music suites in new and renovated facilities. It covers the basic music suite, practice rooms, small ensemble rehearsal rooms, recording/MIDI (musical instrument…

  3. Music Education Suites

    ERIC Educational Resources Information Center

    Kemp, Wayne

    2009-01-01

    This publication describes options for designing and equipping middle and high school music education suites, and suggests ways of gaining community support for including full service music suites in new and renovated school facilities. In addition to basic music suites, and practice rooms, other options detailed include: (1) small ensemble…

  4. Wireless Instantaneous Neurotransmitter Concentration System–based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring

    PubMed Central

    Agnesi, Filippo; Tye, Susannah J.; Bledsoe, Jonathan M.; Griessenauer, Christoph J.; Kimble, Christopher J.; Sieck, Gary C.; Bennet, Kevin E.; Garris, Paul A.; Blaha, Charles D.; Lee, Kendall H.

    2009-01-01

    Object In a companion study, the authors describe the development of a new instrument named the Wireless Instantaneous Neurotransmitter Concentration System (WINCS), which couples digital telemetry with fast-scan cyclic voltammetry (FSCV) to measure extracellular concentrations of dopamine. In the present study, the authors describe the extended capability of the WINCS to use fixed potential amperometry (FPA) to measure extracellular concentrations of dopamine, as well as glutamate and adenosine. Compared with other electrochemical techniques such as FSCV or high-speed chronoamperometry, FPA offers superior temporal resolution and, in combination with enzyme-linked biosensors, the potential to monitor nonelectroactive analytes in real time. Methods The WINCS design incorporated a transimpedance amplifier with associated analog circuitry for FPA; a microprocessor; a Bluetooth transceiver; and a single, battery-powered, multilayer, printed circuit board. The WINCS was tested with 3 distinct recording electrodes: 1) a carbon-fiber microelectrode (CFM) to measure dopamine; 2) a glutamate oxidase enzyme-linked electrode to measure glutamate; and 3) a multiple enzyme-linked electrode (adenosine deaminase, nucleoside phosphorylase, and xanthine oxidase) to measure adenosine. Proof-of-principle analyses included noise assessments and in vitro and in vivo measurements that were compared with similar analyses by using a commercial hardwired electrochemical system (EA161 Picostat, eDAQ; Pty Ltd). In urethane-anesthetized rats, dopamine release was monitored in the striatum following deep brain stimulation (DBS) of ascending dopaminergic fibers in the medial forebrain bundle (MFB). In separate rat experiments, DBS-evoked adenosine release was monitored in the ventrolateral thalamus. To test the WINCS in an operating room setting resembling human neurosurgery, cortical glutamate release in response to motor cortex stimulation (MCS) was monitored using a large-mammal animal

  5. Wireless Instantaneous Neurotransmitter Concentration System-based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring.

    PubMed

    Agnesi, Filippo; Tye, Susannah J; Bledsoe, Jonathan M; Griessenauer, Christoph J; Kimble, Christopher J; Sieck, Gary C; Bennet, Kevin E; Garris, Paul A; Blaha, Charles D; Lee, Kendall H

    2009-10-01

    In a companion study, the authors describe the development of a new instrument named the Wireless Instantaneous Neurotransmitter Concentration System (WINCS), which couples digital telemetry with fast-scan cyclic voltammetry (FSCV) to measure extracellular concentrations of dopamine. In the present study, the authors describe the extended capability of the WINCS to use fixed potential amperometry (FPA) to measure extracellular concentrations of dopamine, as well as glutamate and adenosine. Compared with other electrochemical techniques such as FSCV or high-speed chronoamperometry, FPA offers superior temporal resolution and, in combination with enzyme-linked biosensors, the potential to monitor nonelectroactive analytes in real time. The WINCS design incorporated a transimpedance amplifier with associated analog circuitry for FPA; a microprocessor; a Bluetooth transceiver; and a single, battery-powered, multilayer, printed circuit board. The WINCS was tested with 3 distinct recording electrodes: 1) a carbon-fiber microelectrode (CFM) to measure dopamine; 2) a glutamate oxidase enzyme-linked electrode to measure glutamate; and 3) a multiple enzyme-linked electrode (adenosine deaminase, nucleoside phosphorylase, and xanthine oxidase) to measure adenosine. Proof-of-principle analyses included noise assessments and in vitro and in vivo measurements that were compared with similar analyses by using a commercial hardwired electrochemical system (EA161 Picostat, eDAQ; Pty Ltd). In urethane-anesthetized rats, dopamine release was monitored in the striatum following deep brain stimulation (DBS) of ascending dopaminergic fibers in the medial forebrain bundle (MFB). In separate rat experiments, DBS-evoked adenosine release was monitored in the ventrolateral thalamus. To test the WINCS in an operating room setting resembling human neurosurgery, cortical glutamate release in response to motor cortex stimulation (MCS) was monitored using a large-mammal animal model, the pig. The

  6. The Sample Analysis at Mars Investigation and Instrument Suite

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul; Webster, Chris R.; Cabane, M.; Conrad, Pamela G.; Coll, Patrice; Atreya, Sushil K.; Arvey, Robert; Barciniak, Michael; Benna, Mehdi; Bleacher, L.; hide

    2012-01-01

    The Sample Analysis at Mars (SAM) investigation of the Mars Science Laboratory(MSL) addresses the chemical and isotopic composition of the atmosphere and volatilesextracted from solid samples. The SAM investigation is designed to contribute substantiallyto the mission goal of quantitatively assessing the habitability of Mars as an essentialstep in the search for past or present life on Mars. SAM is a 40 kg instrument suite locatedin the interior of MSLs Curiosity rover. The SAM instruments are a quadrupole massspectrometer, a tunable laser spectrometer, and a 6-column gas chromatograph all coupledthrough solid and gas processing systems to provide complementary information on thesame samples. The SAM suite is able to measure a suite of light isotopes and to analyzevolatiles directly from the atmosphere or thermally released from solid samples. In additionto measurements of simple inorganic compounds and noble gases SAM will conducta sensitive search for organic compounds with either thermal or chemical extraction fromsieved samples delivered by the sample processing system on the Curiosity rovers roboticarm.

  7. EMU Suit Performance Simulation

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew S.; Benson, Elizabeth; Harvill, Lauren; Rajulu, Sudhakar

    2014-01-01

    Introduction: Designing a planetary suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. To verify that new suit designs meet requirements, full prototypes must be built and tested with human subjects. However, numerous design iterations will occur before the hardware meets those requirements. Traditional draw-prototype-test paradigms for research and development are prohibitively expensive with today's shrinking Government budgets. Personnel at NASA are developing modern simulation techniques that focus on a human-centric design paradigm. These new techniques make use of virtual prototype simulations and fully adjustable physical prototypes of suit hardware. This is extremely advantageous and enables comprehensive design down-selections to be made early in the design process. Objectives: The primary objective was to test modern simulation techniques for evaluating the human performance component of two EMU suit concepts, pivoted and planar style hard upper torso (HUT). Methods: This project simulated variations in EVA suit shoulder joint design and subject anthropometry and then measured the differences in shoulder mobility caused by the modifications. These estimations were compared to human-in-the-loop test data gathered during past suited testing using four subjects (two large males, two small females). Results: Results demonstrated that EVA suit modeling and simulation are feasible design tools for evaluating and optimizing suit design based on simulated performance. The suit simulation model was found to be advantageous in its ability to visually represent complex motions and volumetric reach zones in three dimensions, giving designers a faster and deeper comprehension of suit component performance vs. human performance. Suit models were able to discern differing movement capabilities between EMU HUT configurations, generic suit fit concerns, and specific suit fit concerns for crewmembers based

  8. Space Suit Thermal Dynamics

    NASA Technical Reports Server (NTRS)

    Campbell, Anthony B.; Nair, Satish S.; Miles, John B.; Iovine, John V.; Lin, Chin H.

    1998-01-01

    The present NASA space suit (the Shuttle EMU) is a self-contained environmental control system, providing life support, environmental protection, earth-like mobility, and communications. This study considers the thermal dynamics of the space suit as they relate to astronaut thermal comfort control. A detailed dynamic lumped capacitance thermal model of the present space suit is used to analyze the thermal dynamics of the suit with observations verified using experimental and flight data. Prior to using the model to define performance characteristics and limitations for the space suit, the model is first evaluated and improved. This evaluation includes determining the effect of various model parameters on model performance and quantifying various temperature prediction errors in terms of heat transfer and heat storage. The observations from this study are being utilized in two future design efforts, automatic thermal comfort control design for the present space suit and design of future space suit systems for Space Station, Lunar, and Martian missions.

  9. Modified Advanced Crew Escape Suit Intravehicular Activity Suit for Extravehicular Activity Mobility Evaluations

    NASA Technical Reports Server (NTRS)

    Watson, Richard D.

    2014-01-01

    The use of an intravehicular activity (IVA) suit for a spacewalk or extravehicular activity (EVA) was evaluated for mobility and usability in the Neutral Buoyancy Laboratory (NBL) environment at the Sonny Carter Training Facility near NASA Johnson Space Center in Houston, Texas. The Space Shuttle Advanced Crew Escape Suit was modified to integrate with the Orion spacecraft. The first several missions of the Orion Multi-Purpose Crew Vehicle will not have mass available to carry an EVA-specific suit; therefore, any EVA required will have to be performed by the Modified Advanced Crew Escape Suit (MACES). Since the MACES was not designed with EVA in mind, it was unknown what mobility the suit would be able to provide for an EVA or whether a person could perform useful tasks for an extended time inside the pressurized suit. The suit was evaluated in multiple NBL runs by a variety of subjects, including crewmembers with significant EVA experience. Various functional mobility tasks performed included: translation, body positioning, tool carrying, body stabilization, equipment handling, and tool usage. Hardware configurations included with and without Thermal Micrometeoroid Garment, suit with IVA gloves and suit with EVA gloves. Most tasks were completed on International Space Station mock-ups with existing EVA tools. Some limited tasks were completed with prototype tools on a simulated rocky surface. Major findings include: demonstrating the ability to weigh-out the suit, understanding the need to have subjects perform multiple runs prior to getting feedback, determining critical sizing factors, and need for adjusting suit work envelope. Early testing demonstrated the feasibility of EVA's limited duration and limited scope. Further testing is required with more flight-like tasking and constraints to validate these early results. If the suit is used for EVA, it will require mission-specific modifications for umbilical management or Primary Life Support System integration

  10. The Sample Analysis at Mars Investigation and Instrument Suite

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul; Webster, Christopher R.; Conrad, Pamela G.; Arvey, Robert; Bleacher, Lora; Brinckerhoff, William B.; Eigenbrode, Jennifer L.; Chalmers, Robert A.; Dworkin, Jason P.; Errigo, Therese; hide

    2012-01-01

    The Sample Analysis at Mars (SAM) investigation of the Mars Science Laboratory (MSL) addresses the chemical and isotopic composition of the atmosphere and volatiles extracted from solid samples. The SAM investigation is designed to contribute substantially to the mission goal of quantitatively assessing the habitability of Mars as an essential step in the search for past or present life on Mars. SAM is a 40 kg instrument suite located in the interior of MSL's Curiosity rover. The SAM instruments are a quadrupole mass spectrometer, a tunable laser spectrometer, and a 6-column gas chromatograph all coupled through solid and gas processing systems to provide complementary information on the same samples. The SAM suite is able to measure a suite of light isotopes and to analyze volatiles directly from the atmosphere or thermally released from solid samples. In addition to measurements of simple inorganic compounds and noble gases SAM will conduct a sensitive search for organic compounds with either thermal or chemical extraction from sieved samples delivered by the sample processing system on the Curiosity rover's robotic arm,

  11. Orbit Software Suite

    NASA Technical Reports Server (NTRS)

    Osgood, Cathy; Williams, Kevin; Gentry, Philip; Brownfield, Dana; Hallstrom, John; Stuit, Tim

    2012-01-01

    Orbit Software Suite is used to support a variety of NASA/DM (Dependable Multiprocessor) mission planning and analysis activities on the IPS (Intrusion Prevention System) platform. The suite of Orbit software tools (Orbit Design and Orbit Dynamics) resides on IPS/Linux workstations, and is used to perform mission design and analysis tasks corresponding to trajectory/ launch window, rendezvous, and proximity operations flight segments. A list of tools in Orbit Software Suite represents tool versions established during/after the Equipment Rehost-3 Project.

  12. The 3.66 Ga Nuvvuagittuq Tonalite-Trondhjemite-Granodiorite Suite: A Case of Hadean Anatexis

    NASA Astrophysics Data System (ADS)

    Stevenson, R. K.; Bizzarro, M.

    2011-12-01

    The ca 3.8-4.3 Ga Nuvvuagittuq supracrustal sequence in northern Quebec, Canada, ranks as one of the most exciting early Earth terrain discoveries of the past fifteen years. The supracrustal sequence consists of mafic amphibolite rocks with rare felsic schists along with ultramafic sills and oxide-rich and quartz-rich iron formation. The supracrustal sequence is semi-oval in form and is folded around a core of foliated tonalite-trondhjemite-granodiorite (TTG) suite. A similar TTG suite forms a sheath around the exterior margin of the Nuvvuagittuq supracrustal sequence. Zircons from a felsic volcanic unit within the sequence yielded a minimum age of 3.8 Ga (U-Pb) for volcanic rocks of the sequence (David et al. 2009). A study of the Nd142 isotope systematics of the sequence found evidence for a Nd142 deficit in the sequence and a Nd142-Sm147 isochron yielded an age of 4.28 Ga (O'Neil et al. 2008). Dating of zircons from the tonalite sheath (U-Pb TIMS; David et al., 2009) and from the inner core (U-Pb SHRIMP; this study) yield similar ages (3.66 Ga). Zircons from this sequence undoubtedly contributed to the Hf isotopic composition of Archean sedimentary sequences of the Canadian Shield (Stevenson and Patchett 1990).The zircons from the TTG suite are very homogeneous and only have rare thin metamorphic rims that yield an age of 2.7 Ga (U-Pb Shrimp; this study). Radiogenic isotope studies (Sm-Nd and Lu-Hf) indicate that the TTG suite is an anatectic product of the melting of the Nuvvuagittuq supracrustal suite. The geochemical compositions of the Nuvvuagittuq TTG suite are compared with the compositions of ca 3.6 TTG suites from other localities around the world. David, J. Godin, L., Stevenson, R., O'Neil, J. and Francis, D. 2009. U-Pb ages (3.8-2.7 Ga) and Nd isotope data from the newly- identified Eoarchean Nuvvuagittuq supracrustal sequence, Superior Craton, Canada. GSA Bulletin 121; 150-163. O'Neil, J., Carlson, R.W., Francis, D., and Stevenson, R.K. 2008

  13. The ferroan-anorthositic suite and the extent of primordial lunar melting

    NASA Technical Reports Server (NTRS)

    Warren, Paul H.; Kallemeyn, Gregory W.

    1992-01-01

    The Apollo highlands rock collection includes more than 100 'pristine' fragments that survived the intense meteoritic bombardment of the ancient lunar crust with unmixed, endogenously igneous compositions. The geochemical anomaly manifested by the 'ferroan-anorthositic suite' (FAS) appears to reflect a geochemical, and probably also a genetic, bimodality among the ancient lunar cumulates. Early models that purported to account for this bimodality as a product of a single magma have been discredited. The model of the present paper implies that the Mg-suite rocks formed by a comparatively normal variety of basaltic fractional crystallization (FC) shortly after the era of magma ocean (MO) crystallization and FAS genesis.

  14. Space suit bioenergetics: framework and analysis of unsuited and suited activity.

    PubMed

    Carr, Christopher E; Newman, Dava J

    2007-11-01

    Metabolic costs limit the duration and intensity of extravehicular activity (EVA), an essential component of future human missions to the Moon and Mars. Energetics Framework: We present a framework for comparison of energetics data across and between studies. This framework, applied to locomotion, differentiates between muscle efficiency and energy recovery, two concepts often confused in the literature. The human run-walk transition in Earth gravity occurs at the point for which energy recovery is approximately the same for walking and running, suggesting a possible role for recovery in gait transitions. Muscular Energetics: Muscle physiology limits the overall efficiency by which chemical energy is converted through metabolism to useful work. Unsuited Locomotion: Walking and running use different methods of energy storage and release. These differences contribute to the relative changes in the metabolic cost of walking and running as gravity is varied, with the metabolic cost of locomoting at a given velocity changing in proportion to gravity for running and less than in proportion for walking. Space Suits: Major factors affecting the energetic cost of suited movement include suit pressurization, gravity, velocity, surface slope, and space suit configuration. Apollo lunar surface EVA traverse metabolic rates, while unexpectedly low, were higher than other activity categories. The Lunar Roving Vehicle facilitated even lower metabolic rates, thus longer duration EVAs. Muscles and tendons act like springs during running; similarly, longitudinal pressure forces in gas pressure space suits allow spring-like storage and release of energy when suits are self-supporting.

  15. Astronomical Video Suites

    NASA Astrophysics Data System (ADS)

    Francisco Salgado, Jose

    2010-01-01

    Astronomer and visual artist Jose Francisco Salgado has directed two astronomical video suites to accompany live performances of classical music works. The suites feature awe-inspiring images, historical illustrations, and visualizations produced by NASA, ESA, and the Adler Planetarium. By the end of 2009, his video suites Gustav Holst's The Planets and Astronomical Pictures at an Exhibition will have been presented more than 40 times in over 10 countries. Lately Salgado, an avid photographer, has been experimenting with high dynamic range imaging, time-lapse, infrared, and fisheye photography, as well as with stereoscopic photography and video to enhance his multimedia works.

  16. Impact of the Mk VI SkinSuit on skin microbiota of terrestrial volunteers and an International Space Station-bound astronaut.

    PubMed

    Stabler, Richard A; Rosado, Helena; Doyle, Ronan; Negus, David; Carvil, Philip A; Kristjánsson, Juan G; Green, David A; Franco-Cendejas, Rafael; Davies, Cadi; Mogensen, Andreas; Scott, Jonathan; Taylor, Peter W

    2017-01-01

    Microgravity induces physiological deconditioning due to the absence of gravity loading, resulting in bone mineral density loss, atrophy of lower limb skeletal and postural muscles, and lengthening of the spine. SkinSuit is a lightweight compression suit designed to provide head-to-foot (axial) loading to counteract spinal elongation during spaceflight. As synthetic garments may impact negatively on the skin microbiome, we used 16S ribosomal RNA (rRNA) gene amplicon procedures to define bacterial skin communities at sebaceous and moist body sites of five healthy male volunteers undergoing SkinSuit evaluation. Each volunteer displayed a diverse, distinct bacterial population at each skin site. Short (8 h) periods of dry hyper-buoyancy flotation wearing either gym kit or SkinSuit elicited changes in the composition of the skin microbiota at the genus level but had little or no impact on community structure at the phylum level or the richness and diversity of the bacterial population. We also determined the composition of the skin microbiota of an astronaut during pre-flight training, during an 8-day visit to the International Space Station involving two 6-7 h periods of SkinSuit wear, and for 1 month after return. Changes in composition of bacterial skin communities at five body sites were strongly linked to changes in geographical location. A distinct ISS bacterial microbiota signature was found which reversed to a pre-flight profile on return. No changes in microbiome complexity or diversity were noted, with little evidence for colonisation by potentially pathogenic bacteria; we conclude that short periods of SkinSuit wear induce changes to the composition of the skin microbiota but these are unlikely to compromise the healthy skin microbiome.

  17. Nutrition systems for pressure suits.

    NASA Technical Reports Server (NTRS)

    Huber, C. S.; Heidelbaugh, N. D.; Rapp, R. M.; Smith, M. C., Jr.

    1973-01-01

    Nutrition systems were successfully developed in the Apollo Program for astronauts wearing pressure suits during emergency decompression situations and during lunar surface explorations. These nutrition systems consisted of unique dispensers, water, flavored beverages, nutrient-fortified beverages, and intermediate moisture food bars. The emergency decompression system dispensed the nutrition from outside the pressure suit by interfacing with a suit helmet penetration port. The lunar exploration system utilized dispensers stowed within the interior layers of the pressure suit. These systems could be adapted for provision of nutrients in other situations requiring the use of pressure suits.

  18. Suited for Space

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.

    2006-01-01

    This viewgraph presentation describes the basic functions of space suits for EVA astronauts. Space suits are also described from the past, present and future space missions. The contents include: 1) Why Do You Need A Space Suit?; 2) Generic EVA System Requirements; 3) Apollo Lunar Surface Cycling Certification; 4) EVA Operating Cycles for Mars Surface Missions; 5) Mars Surface EVA Mission Cycle Requirements; 6) Robustness Durability Requirements Comparison; 7) Carry-Weight Capabilities; 8) EVA System Challenges (Mars); 9) Human Planetary Surface Exploration Experience; 10) NASA Johnson Space Center Planetary Analog Activities; 11) Why Perform Remote Field Tests; and 12) Other Reasons Why We Perform Remote Field Tests.

  19. Chronologic implications for slow cooling of troctolite 76535 and temporal relationships between the Mg-suite and the ferroan anorthosite suite

    NASA Astrophysics Data System (ADS)

    Borg, Lars E.; Connelly, James N.; Cassata, William S.; Gaffney, Amy M.; Bizzarro, Martin

    2017-03-01

    Ages have been obtained using the 87Rb-87Sr, 147Sm-143Nd, and 146Sm-142Nd isotopic systems for one of the most slowly cooled lunar rocks, Apollo 17 Mg-suite troctolite 76535. The 147Sm-143Nd, 146Sm-142Nd, and Rb-Sr ages derived from plagioclase, olivine, and pyroxene mineral isochrons yield concordant ages of 4307 ± 11 Ma, 4299+29/-35 Ma, and 4279 ± 52 Ma, respectively. These ages are slightly younger than the age determined on ferroan anorthosite suite (FAS) rock 60025 and are therefore consistent with the traditional magma ocean model of lunar differentiation in which the Mg-suite is intruded into the anorthositic crust. However, the Sm-Nd ages record when the rock passed below the closing temperature of the Sm-Nd system in this rock at ∼825 °C, whereas the Rb-Sr age likely records the closure temperature of ∼650 °C. A cooling rate of 3.9 °C/Ma is determined using the ages reported here and in the literature and calculated closure temperatures for the Ar-Ar, Pb-Pb, Rb-Sr, and Sm-Nd systems. This cooling rate is in good agreement with cooling rates estimated from petrographic observations. Slow cooling can lower apparent Sm-Nd crystallization ages by up to ∼80 Ma in the slowest cooled rocks like 76535, and likely accounts for some of the variation of ages reported for lunar crustal rocks. Nevertheless, slow cooling cannot account for the overlap in FAS and Mg-suite rock ages. Instead, this overlap appears to reflect the concordance of Mg-suite and FAS magmatism in the lunar crust as indicated by ages calculated for the solidus temperature of 76535 and 60025 of 4384 ± 24 Ma and 4383 ± 17, respectively. Not only are the solidus ages of 76535 and 60025 nearly concordant, but the Sm-Nd isotopic systematics suggest they are derived from reservoirs that were minimally differentiated prior to ∼4.38 Ga. Although the Sr isotopic composition of 60025 indicates its source was minimally differentiated, the Sr isotopic composition of 76535 indicates it underwent

  20. Development of intraoperative electrochemical detection: wireless instantaneous neurochemical concentration sensor for deep brain stimulation feedback

    PubMed Central

    Van Gompel, Jamie J.; Chang, Su-Youne; Goerss, Stephan J.; Kim, In Yong; Kimble, Christopher; Bennet, Kevin E.; Lee, Kendall H.

    2010-01-01

    Deep brain stimulation (DBS) is effective when there appears to be a distortion in the complex neurochemical circuitry of the brain. Currently, the mechanism of DBS is incompletely understood; however, it has been hypothesized that DBS evokes release of neurochemicals. Well-established chemical detection systems such as microdialysis and mass spectrometry are impractical if one is assessing changes that are happening on a second-to-second time scale or for chronically used implanted recordings, as would be required for DBS feedback. Electrochemical detection techniques such as fast-scan cyclic voltammetry (FSCV) and amperometry have until recently remained in the realm of basic science; however, it is enticing to apply these powerful recording technologies to clinical and translational applications. The Wireless Instantaneous Neurochemical Concentration Sensor (WINCS) currently is a research device designed for human use capable of in vivo FSCV and amperometry, sampling at subsecond time resolution. In this paper, the authors review recent advances in this electrochemical application to DBS technologies. The WINCS can detect dopamine, adenosine, and serotonin by FSCV. For example, FSCV is capable of detecting dopamine in the caudate evoked by stimulation of the subthalamic nucleus/substantia nigra in pig and rat models of DBS. It is further capable of detecting dopamine by amperometry and, when used with enzyme linked sensors, both glutamate and adenosine. In conclusion, WINCS is a highly versatile instrument that allows near real-time (millisecond) detection of neurochemicals important to DBS research. In the future, the neurochemical changes detected using WINCS may be important as surrogate markers for proper DBS placement as well as the sensor component for a “smart” DBS system with electrochemical feedback that allows automatic modulation of stimulation parameters. Current work is under way to establish WINCS use in humans. PMID:20672923

  1. Episodic intrusion, internal differentiation, and hydrothermal alteration of the miocene tatoosh intrusive suite south of Mount Rainier, Washington

    USGS Publications Warehouse

    du Bray, E.A.; Bacon, C.R.; John, D.A.; Wooden, J.L.; Mazdab, F.K.

    2011-01-01

    The Miocene Tatoosh intrusive suite south of Mount Rainier is composed of three broadly granodioritic plutons that are manifestations of ancestral Cascades arc magmatism. Tatoosh intrusive suite plutons have individually diagnostic characteristics, including texture, mineralogy, and geochemistry, and apparently lack internal contacts. New ion-microprobe U-Pb zircon ages indicate crystallization of the Stevens pluton ca. 19.2 Ma, Reflection-Pyramid pluton ca. 18.5 Ma, and Nisqually pluton ca. 17.5 Ma. The Stevens pluton includes rare, statistically distinct ca. 20.1 Ma zircon antecrysts. Wide-ranging zircon rare earth element (REE), Hf, U, and Th concentrations suggest late crystallization from variably evolved residual liquids. Zircon Eu/Eu*-Hf covariation is distinct for each of the Reflection-Pyramid, Nisqually, and Stevens plutons. Although most Tatoosh intrusive suite rocks have been affected by weak hydrothermal alteration, and sparse mineralized veins cut some of these rocks, significant base or precious metal mineralization is absent. At the time of shallow emplacement, each of these magma bodies was largely homogeneous in bulk composition and petrographic features, but, prior to final solidification, each of the Tatoosh intrusive suite plutons developed internal compositional variation. Geochemical and petrographic trends within each pluton are most consistent with differential loss of residual melt, possibly represented by late aplite dikes or erupted as rhyolite, from crystal-rich magma. Crystal-rich magma that formed each pluton evidently accumulated in reservoirs below the present level of exposure and then intruded to a shallow depth. Assembled by episodic intrusion, the Tatoosh intrusive suite may be representative of midsized composite plutonic complexes beneath arc volcanoes. ?? 2011 Geological Society of America.

  2. Space suit

    NASA Technical Reports Server (NTRS)

    Shepard, L. F.; Durney, G. P.; Case, M. C.; Kenneway, A. J., III; Wise, R. C.; Rinehart, D.; Bessette, R. J.; Pulling, R. C. (Inventor)

    1973-01-01

    A pressure suit for high altitude flights, particularly space missions is reported. The suit is designed for astronauts in the Apollo space program and may be worn both inside and outside a space vehicle, as well as on the lunar surface. It comprises an integrated assembly of inner comfort liner, intermediate pressure garment, and outer thermal protective garment with removable helmet, and gloves. The pressure garment comprises an inner convoluted sealing bladder and outer fabric restraint to which are attached a plurality of cable restraint assemblies. It provides versitility in combination with improved sealing and increased mobility for internal pressures suitable for life support in the near vacuum of outer space.

  3. Peridotite-suite dominated mineral inclusions in diamonds from Kelsey Lake Mine, Colorado U.S.A.

    NASA Astrophysics Data System (ADS)

    Schulze, D. J.; Coopersmith, H. G.

    2005-12-01

    Thirty silicate and oxide inclusions large enough for in situ WDS electron microprobe analysis were exposed by grinding/polishing of 16 diamonds from the Kelsey Lake Mine in the Colorado-Wyoming State Line kimberlite district. Three garnets in two stones belong to the eclogite (E) suite, and 18 olivines, three Mg-chromites and six Cr-pyropes in the other 14 stones belong to the peridotite (P) suite. The peridotite-dominated population is in stark contrast to the other suites studied in the State Line district. The reported inclusion population from George Creek is completely eclogitic and that of the Sloan pipe is overwhelmingly eclogitic, with only a minor, relatively Fe-rich peridotite component. Multiple inclusions are common in single stones, with 12 olivines (of uniform composition) exposed in one example. Kelsey Lake olivine inclusions are magnesian (17 of 18 grains in 9 stones are in the range Fo 92.7-93.1), typical of P-suite stones worldwide, but unlike the more Fe-rich Sloan olivine suite (13 of 14 in the range Fo 91.3-92.2). Mg-chromites (wt percent MgO = 12.8-13.8, wt percent Cr2O3 = 61.4-66.6) are in the lower MgO range of diamond inclusion chromites worldwide. Six Cr-pyropes in four stones have moderately low calcium contents (wt percent CaO = 3.5-4.5) but are very Cr-rich (wt percent Cr2O3 = 10.5-16.7). An olivine-garnet pair in one stone yields a Mg-Fe exchange temperature of 895 degrees C, possibly indicating disequilibrium, whereas an olivine-chromite pair yields an Mg-Fe exchange temperature of 1035 degrees C, cool but reasonable for equilibration within the diamond stability field. Comparison with diamond inclusion minerals worldwide reveals that the Kesley Lake suite is most similar to those from the Slave Craton in Canada, especially in terms of Cr-pyrope compositions. Both suites are somewhat less depleted than suites from southern Africa or Siberian kimberlites. By analogy with the Slave P-suite diamonds of Archean age and a Proterozoic

  4. Durable Suit Bladder with Improved Water Permeability for Pressure and Environment Suits

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Kuznetz, Larry; Orndoff, Evelyne; Tang, Henry; Aitchison, Lindsay; Ross, Amy

    2009-01-01

    Water vapor permeability is shown to be useful in rejecting heat and managing moisture accumulation in launch-and-entry pressure suits. Currently this is accomplished through a porous Gortex layer in the Advanced Crew and Escape Suit (ACES) and in the baseline design of the Constellation Suit System Element (CSSE) Suit 1. Non-porous dense monolithic membranes (DMM) that are available offer potential improvements for water vapor permeability with reduced gas leak. Accordingly, three different pressure bladder materials were investigated for water vapor permeability and oxygen leak: ElasthaneTM 80A (thermoplastic polyether urethane) provided from stock polymer material and two custom thermoplastic polyether urethanes. Water vapor, carbon dioxide and oxygen permeability of the DMM's was measured in a 0.13 mm thick stand-alone layer, a 0.08 mm and 0.05 mm thick layer each bonded to two different nylon and polyester woven reinforcing materials. Additional water vapor permeability and mechanical compression measurements were made with the reinforced 0.05 mm thick layers, further bonded with a polyester wicking and overlaid with moistened polyester fleece thermal underwear .This simulated the pressure from a supine crew person. The 0.05 mm thick nylon reinforced sample with polyester wicking layer was further mechanically tested for wear and abrasion. Concepts for incorporating these materials in launch/entry and Extravehicular Activity pressure suits are presented.

  5. Audit method suited for DSS in clinical environment.

    PubMed

    Vicente, Javier

    2015-01-01

    This chapter presents a novel online method to audit predictive models using a Bayesian perspective. The auditing model has been specifically designed for Decision Support Systems (DSSs) suited for clinical or research environments. Taking as starting point the working diagnosis supplied by the clinician, this method compares and evaluates the predictive skills of those models able to answer to that diagnosis. The approach consists in calculating the posterior odds of a model through the composition of a prior odds, a static odds, and a dynamic odds. To do so, this method estimates the posterior odds from the cases that the comparing models had in common during the design stage and from the cases already viewed by the DSS after deployment in the clinical site. In addition, if an ontology of the classes is available, this method can audit models answering related questions, which offers a reinforcement to the decisions the user already took and gives orientation on further diagnostic steps.The main technical novelty of this approach lies in the design of an audit model adapted to suit the decision workflow of a clinical environment. The audit model allows deciding what is the classifier that best suits each particular case under evaluation and allows the detection of possible misbehaviours due to population differences or data shifts in the clinical site. We show the efficacy of our method for the problem of brain tumor diagnosis with Magnetic Resonance Spectroscopy (MRS).

  6. Evaluating Suit Fit Using Performance Degradation

    NASA Technical Reports Server (NTRS)

    Margerum, Sarah E.; Cowley, Matthew; Harvill, Lauren; Benson, Elizabeth; Rajulu, Sudhakar

    2012-01-01

    The Mark III planetary technology demonstrator space suit can be tailored to an individual by swapping the modular components of the suit, such as the arms, legs, and gloves, as well as adding or removing sizing inserts in key areas. A method was sought to identify the transition from an ideal suit fit to a bad fit and how to quantify this breakdown using a metric of mobility-based human performance data. To this end, the degradation of the range of motion of the elbow and wrist of the suit as a function of suit sizing modifications was investigated to attempt to improve suit fit. The sizing range tested spanned optimal and poor fit and was adjusted incrementally in order to compare each joint angle across five different sizing configurations. Suited range of motion data were collected using a motion capture system for nine isolated and functional tasks utilizing the elbow and wrist joints. A total of four subjects were tested with motions involving both arms simultaneously as well as the right arm by itself. Findings indicated that no single joint drives the performance of the arm as a function of suit size; instead it is based on the interaction of multiple joints along a limb. To determine a size adjustment range where an individual can operate the suit at an acceptable level, a performance detriment limit was set. This user-selected limit reveals the task-dependent tolerance of the suit fit around optimal size. For example, the isolated joint motion indicated that the suit can deviate from optimal by as little as -0.6 in to -2.6 in before experiencing a 10% performance drop in the wrist or elbow joint. The study identified a preliminary method to quantify the impact of size on performance and developed a new way to gauge tolerances around optimal size.

  7. EVA Suits Arrival

    NASA Image and Video Library

    2002-01-01

    Extravehicular Activity (EVA) suits packed inside containers arrive at the Space Station Processing Facility from Johnson Space Center in Texas. The suits will be used by STS-117 crew members to perform several spacewalks during the mission. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the International Space Station.

  8. Heat exchanges in wet suits.

    PubMed

    Wolff, A H; Coleshaw, S R; Newstead, C G; Keatinge, W R

    1985-03-01

    Flow of water under foam neoprene wet suits could halve insulation that the suits provided, even at rest in cold water. On the trunk conductance of this flow was approximately 6.6 at rest and 11.4 W . m-2 . C-1 exercising; on the limbs, it was only 3.4 at rest and 5.8 W . m-2 . degrees C-1 exercising; but during vasoconstriction in the cold, skin temperatures on distal parts of limbs were lower than were those of the trunk, allowing adequate metabolic responses. In warm water, minor postural changes and movement made flow under suits much higher, approximately 60 on trunk and 30 W . m-2 . degrees C-1 on limbs, both at rest and at work. These changes in flow allowed for a wide range of water temperatures at which people could stabilize body temperature in any given suit, neither overheating when exercising nor cooling below 35 degrees C when still. Even thin people with 4- or 7- mm suits covering the whole body could stabilize their body temperatures in water near 10 degrees C in spite of cold vasodilatation. Equations to predict limits of water temperature for stability with various suits and fat thicknesses are given.

  9. Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Valish, Dana J.

    2011-01-01

    In 2009 and early 2010, a test was performed to quantify the torque required to manipulate joints in several existing operational and prototype space suits in an effort to develop joint torque requirements appropriate for a new Constellation Program space suit system. The same test method was levied on the Constellation space suit contractors to verify that their suit design meets the requirements. However, because the original test was set up and conducted by a single test operator there was some question as to whether this method was repeatable enough to be considered a standard verification method for Constellation or other future space suits. In order to validate the method itself, a representative subset of the previous test was repeated, using the same information that would be available to space suit contractors, but set up and conducted by someone not familiar with the previous test. The resultant data was compared using graphical and statistical analysis and a variance in torque values for some of the tested joints was apparent. Potential variables that could have affected the data were identified and re-testing was conducted in an attempt to eliminate these variables. The results of the retest will be used to determine if further testing and modification is necessary before the method can be validated.

  10. Evaluating Suit Fit Using Performance Degradation

    NASA Technical Reports Server (NTRS)

    Margerum, Sarah E.; Cowley, Matthew; Harvill, Lauren; Benson, Elizabeth; Rajulu, Sudhakar

    2011-01-01

    The Mark III suit has multiple sizes of suit components (arm, leg, and gloves) as well as sizing inserts to tailor the fit of the suit to an individual. This study sought to determine a way to identify the point an ideal suit fit transforms into a bad fit and how to quantify this breakdown using mobility-based physical performance data. This study examined the changes in human physical performance via degradation of the elbow and wrist range of motion of the planetary suit prototype (Mark III) with respect to changes in sizing and as well as how to apply that knowledge to suit sizing options and improvements in suit fit. The methods implemented in this study focused on changes in elbow and wrist mobility due to incremental suit sizing modifications. This incremental sizing was within a range that included both optimum and poor fit. Suited range of motion data was collected using a motion analysis system for nine isolated and functional tasks encompassing the elbow and wrist joints. A total of four subjects were tested with motions involving both arms simultaneously as well as the right arm only. The results were then compared across sizing configurations. The results of this study indicate that range of motion may be used as a viable parameter to quantify at what stage suit sizing causes a detriment in performance; however the human performance decrement appeared to be based on the interaction of multiple joints along a limb, not a single joint angle. The study was able to identify a preliminary method to quantify the impact of size on performance and to develop a means to gauge tolerances around optimal size. More work is needed to improve the assessment of optimal fit and to compensate for multiple joint interactions.

  11. Evaporation-Cooled Protective Suits for Firefighters

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard Murray

    2007-01-01

    Suits cooled by evaporation of water have been proposed as improved means of temporary protection against high temperatures near fires. When air temperature exceeds 600 F (316 C) or in the presence of radiative heating from nearby sources at temperatures of 1,200 F (649 C) or more, outer suits now used by firefighters afford protection for only a few seconds. The proposed suits would exploit the high latent heat of vaporization of water to satisfy a need to protect against higher air temperatures and against radiant heating for significantly longer times. These suits would be fabricated and operated in conjunction with breathing and cooling systems like those with which firefighting suits are now equipped

  12. Extravehicular activity space suit interoperability.

    PubMed

    Skoog, A I; McBarron JW 2nd; Severin, G I

    1995-10-01

    The European Agency (ESA) and the Russian Space Agency (RKA) are jointly developing a new space suit system for improved extravehicular activity (EVA) capabilities in support of the MIR Space Station Programme, the EVA Suit 2000. Recent national policy agreements between the U.S. and Russia on planned cooperations in manned space also include joint extravehicular activity (EVA). With an increased number of space suit systems and a higher operational frequency towards the end of this century an improved interoperability for both routine and emergency operations is of eminent importance. It is thus timely to report the current status of ongoing work on international EVA interoperability being conducted by the Committee on EVA Protocols and Operations of the International Academy of Astronauts initiated in 1991. This paper summarises the current EVA interoperability issues to be harmonised and presents quantified vehicle interface requirements for the current U.S. Shuttle EMU and Russian MIR Orlan DMA and the new European/Russian EVA Suit 2000 extravehicular systems. Major critical/incompatible interfaces for suits/mother-craft of different combinations are discussed, and recommendations for standardisations given.

  13. Constellation Space Suit System Development Status

    NASA Technical Reports Server (NTRS)

    Ross, Amy; Aitchison, Lindsay; Daniel, Brian

    2007-01-01

    The Constellation Program has initiated the first new flight suit development project since the Extravehicular Mobility Unit (EMU) was developed for the Space Shuttle Program in the 1970s. The Constellation suit system represents a significant challenge to designers in that the system is required to address all space suit functions needed through all missions and mission phases. This is in marked contrast to the EMU, which was designed specifically for micro-gravity space walks. The Constellation suit system must serve in all of the following scenarios: launch, entry and abort crew survival; micro-gravity extravehicular activity (EVA); and lunar (1/6th-gravity) surface EVA. This paper discusses technical efforts performed from May 2006 through February 2007 for the Constellation space suit system pressure garment.

  14. Advanced Computational Models for Fabric-Reinforced Composites

    DTIC Science & Technology

    2001-10-01

    composites. Trans-Science Corporation 3655 Nobel Drive Suite 440 San Diego, CA 92122-1005 Tel (858) 459-1240 http://www.compositesolutionsinc.com...also based in XP! Material Suppliers San Diego, recently developed the only Newsletters comprehensive design software for the seismic NDT, NDE , NDI...composite bus. Trans-Science Corporation 3655 Nobel Drive Suite 440 San Diego, CA 92122-1005 Tel (858) 459-1240 Fax (858) 459-0210 •’(S-HOME SERVICES

  15. Carbon Nanofiber Electrode Array for Neurochemical Monitoring

    NASA Technical Reports Server (NTRS)

    Koehne, Jessica E.

    2017-01-01

    A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report using vertically aligned CNF as neurotransmitter recording electrodes for application in a smart deep brain stimulation (DBS) device. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable smart therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization.

  16. Comparison of air exhausts for surgical body suits (space suits) and the potential for periprosthetic joint infection.

    PubMed

    Ling, F; Halabi, S; Jones, C

    2018-07-01

    Periprosthetic joint infection is a major complication of total joint replacement surgery and is associated with significant morbidity, mortality and financial burden. Surgical body suits (space suits), originally designed to reduce the incidence of infection, have paradoxically been implicated in increased periprosthetic joint infection rates recently. Air exhausted from space suits may contribute to this increased rate of periprosthetic joint infection. To investigate the flow of air exhausted from space suits commonly used in modern operating theatres. The exhaust airflow patterns of four commercially available space suit systems were compared using a fog machine and serial still photographs. The space suit systems tested all air exhausted into the operating room. The single fan systems with a standard surgical gown exhausted air laterally from the posterior gown fold at approximately the level of the surgical field. The single fan system with a dedicated zippered suit exhausted air at a level below the surgical field. The dual fan system exhausted air out of the top of the helmet at a level above the surgical field. Space suit systems currently in use in joint replacement surgery differ significantly from traditional body exhaust systems; rather than removing contaminated air from the operating environment, modern systems exhaust this air into the operating room, in some cases potentially towards the sterile instrument tray and the surgical field. Copyright © 2018 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  17. Hybrid Enhanced Epidermal SpaceSuit Design Approaches

    NASA Astrophysics Data System (ADS)

    Jessup, Joseph M.

    A Space suit that does not rely on gas pressurization is a multi-faceted problem that requires major stability controls to be incorporated during design and construction. The concept of Hybrid Epidermal Enhancement space suit integrates evolved human anthropomorphic and physiological adaptations into its functionality, using commercially available bio-medical technologies to address shortcomings of conventional gas pressure suits, and the impracticalities of MCP suits. The prototype HEE Space Suit explored integumentary homeostasis, thermal control and mobility using advanced bio-medical materials technology and construction concepts. The goal was a space suit that functions as an enhanced, multi-functional bio-mimic of the human epidermal layer that works in attunement with the wearer rather than as a separate system. In addressing human physiological requirements for design and construction of the HEE suit, testing regimes were devised and integrated into the prototype which was then subject to a series of detailed tests using both anatomical reproduction methods and human subject.

  18. Z-1 Prototype Space Suit Testing Summary

    NASA Technical Reports Server (NTRS)

    Ross, Amy

    2013-01-01

    The Advanced Space Suit team of the NASA-Johnson Space Center performed a series of test with the Z-1 prototype space suit in 2012. This paper discusses, at a summary level, the tests performed and results from those tests. The purpose of the tests were two-fold: 1) characterize the suit performance so that the data could be used in the downselection of components for the Z-2 Space Suit and 2) develop interfaces with the suitport and exploration vehicles through pressurized suit evaluations. Tests performed included isolated and functional range of motion data capture, Z-1 waist and hip testing, joint torque testing, CO2 washout testing, fit checks and subject familiarizations, an exploration vehicle aft deck and suitport controls interface evaluation, delta pressure suitport tests including pressurized suit don and doff, and gross mobility and suitport ingress and egress demonstrations in reduced gravity. Lessons learned specific to the Z-1 prototype and to suit testing techniques will be presented.

  19. Z-1 Prototype Space Suit Testing Summary

    NASA Technical Reports Server (NTRS)

    Ross, Amy J.

    2012-01-01

    The Advanced Space Suit team of the NASA-Johnson Space Center performed a series of test with the Z-1 prototype space suit in 2012. This paper discusses, at a summary level, the tests performed and results from those tests. The purpose of the tests were two -fold: 1) characterize the suit performance so that the data could be used in the downselection of components for the Z -2 Space Suit and 2) develop interfaces with the suitport and exploration vehicles through pressurized suit evaluations. Tests performed included isolated and functional range of motion data capture, Z-1 waist and hip testing, joint torque testing, CO2 washout testing, fit checks and subject familiarizations, an exploration vehicle aft deck and suitport controls interface evaluation, delta pressure suitport tests including pressurized suit don and doff, and gross mobility and suitport ingress and egress demonstrations in reduced gravity. Lessons learned specific to the Z -1 prototype and to suit testing techniques will be presented.

  20. Anthropometric Accommodation in Space Suit Design

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Thaxton, Sherry

    2007-01-01

    Design requirements for next generation hardware are in process at NASA. Anthropometry requirements are given in terms of minimum and maximum sizes for critical dimensions that hardware must accommodate. These dimensions drive vehicle design and suit design, and implicitly have an effect on crew selection and participation. At this stage in the process, stakeholders such as cockpit and suit designers were asked to provide lists of dimensions that will be critical for their design. In addition, they were asked to provide technically feasible minimum and maximum ranges for these dimensions. Using an adjusted 1988 Anthropometric Survey of U.S. Army (ANSUR) database to represent a future astronaut population, the accommodation ranges provided by the suit critical dimensions were calculated. This project involved participation from the Anthropometry and Biomechanics facility (ABF) as well as suit designers, with suit designers providing expertise about feasible hardware dimensions and the ABF providing accommodation analysis. The initial analysis provided the suit design team with the accommodation levels associated with the critical dimensions provided early in the study. Additional outcomes will include a comparison of principal components analysis as an alternate method for anthropometric analysis.

  1. Species Composition (SC)

    Treesearch

    John F. Caratti

    2006-01-01

    The FIREMON Species Composition (SC) method is used to provide ocular estimates of cover and height measurements for plant species on a macroplot. The SC method provides plant species composition and coverage estimates to describe a stand or plant community and can be used to document changes over time. It is suited for a wide variety of vegetation types and is...

  2. Geochronology and petrogenesis of the western highlands alkali suite: Radiogenic isotopic evidence from Apollo 14

    NASA Astrophysics Data System (ADS)

    Snyder, Gregory A.; Taylor, Lawrence A.; Halliday, Alex N.

    1993-03-01

    Several rocks of alkalic affinity, from the western highlands of the Moon, have been analyzed for their Nd and Sr isotopic compositions. One sample yields a Sm-Nd mineral isochron of 4110 = 41 Ma. This age, in conjunction with U-Pb zircon ages on two other alkalic rocks from the Apollo 14 landing site suggests a distinct western highlands 'event' which was approximately 100 Ma in duration. Since the last dregs of the lunar magma ocean likely crystallized prior to 4.3 Ga, this alkalic 'event' may have included the re-melting of evolved plutons or the remobilization of urKREEP trapped liquid from upper mantle cumulates. Alkalic lithologies such as granites and felsites have been known from the Moon since the earliest days of the Apollo lunar sample returns. However, not until 1977 were alkali-rich rocks recognized from typical highlands suites such as ferroan anorthosites (FAN) and norites and Mg-suite rocks. In the intervening years, several other alkali suite samples have been discovered and characterized, mostly through labor-intesive breccia pull-apart studies of clasts and analyses of coarse-fine fractions of soils. We will speculate on the origins of this suite of lunar highlands rocks.

  3. Geochronology and petrogenesis of the western highlands alkali suite: Radiogenic isotopic evidence from Apollo 14

    NASA Technical Reports Server (NTRS)

    Snyder, Gregory A.; Taylor, Lawrence A.; Halliday, Alex N.

    1993-01-01

    Several rocks of alkalic affinity, from the western highlands of the Moon, have been analyzed for their Nd and Sr isotopic compositions. One sample yields a Sm-Nd mineral isochron of 4110 = 41 Ma. This age, in conjunction with U-Pb zircon ages on two other alkalic rocks from the Apollo 14 landing site suggests a distinct western highlands 'event' which was approximately 100 Ma in duration. Since the last dregs of the lunar magma ocean likely crystallized prior to 4.3 Ga, this alkalic 'event' may have included the re-melting of evolved plutons or the remobilization of urKREEP trapped liquid from upper mantle cumulates. Alkalic lithologies such as granites and felsites have been known from the Moon since the earliest days of the Apollo lunar sample returns. However, not until 1977 were alkali-rich rocks recognized from typical highlands suites such as ferroan anorthosites (FAN) and norites and Mg-suite rocks. In the intervening years, several other alkali suite samples have been discovered and characterized, mostly through labor-intesive breccia pull-apart studies of clasts and analyses of coarse-fine fractions of soils. We will speculate on the origins of this suite of lunar highlands rocks.

  4. Advanced Crew Escape Suit.

    PubMed

    1995-09-01

    Design of the S1032 Launch Entry Suit (LES) began following the Challenger loss and NASA's decision to incorporate a Shuttle crew escape system. The LES (see Figure 1) has successfully supported Shuttle missions since NASA's Return to Flight with STS-26 in September 1988. In 1990, engineers began developing the S1035 Advanced Crew Escape Suit (ACES) to serve as a replacement for the LES. The ACES was designed to be a simplified, lightweight, low-bulk pressure suit which aided self donning/doffing, provided improved comfort, and enhanced overall performance to reduce crew member stress and fatigue. Favorable crew member evaluations of a prototype led to full-scale development and qualification of the S1035 ACES between 1990 and 1992. Production of the S1035 ACES began in February 1993, with the first unit delivered to NASA in May 1994. The S1035 ACES first flew aboard STS-68 in August 1994 and will become the primary crew escape suit when the S1032 LES ends its service life in late 1995. The primary goal of the S1035 development program was to provide improved performance over that of the S1032 to minimize the stress and fatigue typically experienced by crew members. To achieve this, five fundamental design objectives were established, resulting in various material/configuration changes.

  5. Energetic composites

    DOEpatents

    Danen, Wayne C.; Martin, Joe A.

    1993-01-01

    A method for providing chemical energy and energetic compositions of matter consisting of thin layers of substances which will exothermically react with one another. The layers of reactive substances are separated by thin layers of a buffer material which prevents the reactions from taking place until the desired time. The reactions are triggered by an external agent, such as mechanical stress or an electric spark. The compositions are known as metastable interstitial composites (MICs). This class of compositions includes materials which have not previously been capable of use as energetic materials. The speed and products of the reactions can be varied to suit the application.

  6. Energetic composites

    DOEpatents

    Danen, W.C.; Martin, J.A.

    1993-11-30

    A method for providing chemical energy and energetic compositions of matter consisting of thin layers of substances which will exothermically react with one another. The layers of reactive substances are separated by thin layers of a buffer material which prevents the reactions from taking place until the desired time. The reactions are triggered by an external agent, such as mechanical stress or an electric spark. The compositions are known as metastable interstitial composites (MICs). This class of compositions includes materials which have not previously been capable of use as energetic materials. The speed and products of the reactions can be varied to suit the application. 3 figures.

  7. Development of an Input Suite for an Orthotropic Composite Material Model

    NASA Technical Reports Server (NTRS)

    Hoffarth, Canio; Shyamsunder, Loukham; Khaled, Bilal; Rajan, Subramaniam; Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Blankenhorn, Gunther

    2017-01-01

    An orthotropic three-dimensional material model suitable for use in modeling impact tests has been developed that has three major components elastic and inelastic deformations, damage and failure. The material model has been implemented as MAT213 into a special version of LS-DYNA and uses tabulated data obtained from experiments. The prominent features of the constitutive model are illustrated using a widely-used aerospace composite the T800S3900-2B[P2352W-19] BMS8-276 Rev-H-Unitape fiber resin unidirectional composite. The input for the deformation model consists of experimental data from 12 distinct experiments at a known temperature and strain rate: tension and compression along all three principal directions, shear in all three principal planes, and off axis tension or compression tests in all three principal planes, along with other material constants. There are additional input associated with the damage and failure models. The steps in using this model are illustrated composite characterization tests, verification tests and a validation test. The results show that the developed and implemented model is stable and yields acceptably accurate results.

  8. Navigation/Prop Software Suite

    NASA Technical Reports Server (NTRS)

    Bruchmiller, Tomas; Tran, Sanh; Lee, Mathew; Bucker, Scott; Bupane, Catherine; Bennett, Charles; Cantu, Sergio; Kwong, Ping; Propst, Carolyn

    2012-01-01

    Navigation (Nav)/Prop software is used to support shuttle mission analysis, production, and some operations tasks. The Nav/Prop suite containing configuration items (CIs) resides on IPS/Linux workstations. It features lifecycle documents, and data files used for shuttle navigation and propellant analysis for all flight segments. This suite also includes trajectory server, archive server, and RAT software residing on MCC/Linux workstations. Navigation/Prop represents tool versions established during or after IPS Equipment Rehost-3 or after the MCC Rehost.

  9. Mars EVA Suit Airlock (MESA)

    NASA Astrophysics Data System (ADS)

    Ransom, Stephen; Böttcher, Jörg; Steinsiek, Frank

    The Astrium Space Infrastructure Division has begun an in-house research activity of an Earth-based simulation facility supporting future manned missions to Mars. This research unit will help to prepare and support planned missions in the following ways: 1) to enable the investigation and analysis of contamination issues in advance of a human visit to Mars; 2) as a design tool to investigate and simulate crew operations; 3) to simulate crew operation during an actual mission; 4) to enable on-surface scientific operations without leaving the shirt-sleeve habitation environment ("glove box principle"). The MESA module is a surface EVA facility attached to the main habitation or laboratory module, or mobile pressurized rover. It will be sealed, but not pressurized, and provide protection against the harsh Martian environment. This module will include a second crew airlock for safety reasons. The compartment can also be used to provide an external working bench and experiment area for the crew. A simpler MESA concept provides only an open shelter against wind and dust. This concept does not incorporate working and experimental areas. The principle idea behind the MESA concept is to tackle the issue of contamination by minimizing the decontamination processes needed to clean surface equipment and crew suit surfaces after an EVA excursion prior to the astronaut re-entering the habitable area. The technical solution envisages the use of a dedicated crew suit airlock. This airlock uses an EVA suit which is externally attached by its back-pack to the EVA compartment area facing the Martian environment. The crew donns the suit from inside the habitable volume through the airlock on the back of the suit. The surface EVA can be accomplished after closing the back-pack and detaching the suit. A special technical design concept foresees an extendable suit back-pack, so that the astronaut can operate outside and in the vincinity of the module. The key driver in the investigation

  10. Space Suit Spins

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Space is a hostile environment where astronauts combat extreme temperatures, dangerous radiation, and a near-breathless vacuum. Life support in these unforgiving circumstances is crucial and complex, and failure is not an option for the devices meant to keep astronauts safe in an environment that presents constant opposition. A space suit must meet stringent requirements for life support. The suit has to be made of durable material to withstand the impact of space debris and protect against radiation. It must provide essential oxygen, pressure, heating, and cooling while retaining mobility and dexterity. It is not a simple article of clothing but rather a complex modern armor that the space explorers must don if they are to continue exploring the heavens

  11. The geochemical nature of the Archean Ancient Gneiss Complex and Granodiorite Suite, Swaziland: a preliminary study

    USGS Publications Warehouse

    Hunter, D.R.; Barker, F.; Millard, H.T.

    1978-01-01

    The Ancient Gneiss Complex (AGC) of Swaziland, an Archean gray gneiss complex, lies southeast and south of the Barberton greenstone belt and includes the most structurally complex and highly metamorphosed portions of the eastern Kaapvaal craton. The AGC is not precisely dated but apparently is older than 3.4 Ga. The AGC consists of three major units: (a) a bimodal suite of closely interlayered siliceous, low-K gneisses and metabasalt; (b) homogeneous tonalite gneiss; and (c) interlayered siliceous microcline gneiss, metabasalt, and minor metasedimentary rocks - termed the metamorphite suite. A geologically younger gabbro-diorite-tonalite-trondhjemite suite, the Granodiorite Suite, is spatially associated with the AGC and intrusive into it. The bimodal suite consists largely of two types of low-K siliceous gneiss: one has SiO2 14%, low Rb/Sr ratios, and depleted heavy rare earth elements (REE's); the other has SiO2 > 75%, Al2O3 < 13%, high Rb/Sr ratios, and relatively abundant REE's except for negative Eu anomalies. The interlayered metabasalt ranges from komatiitic to tholeiitic compositions. Lenses of quartz monzonitic gneiss of K2O/Na2O close to 1 form a minor part of the bimodal suite. Tonalitic to trondhjemitic migmatite locally is abundant and has major-element abundances similar to those of non-migmatitic varieties. The siliceous gneisses of the metamorphic suite show low Al2O, K2O/Na2O ratios of about 1, high Rb/Sr ratios, moderate REE abundances and negative Eu anomalies. K/Rb ratios of siliceous gneisses of the bimodal suite are very low (???130); of the tonalitic gneiss, low (???225); of the siliceous gneiss of the metamorphite suite, moderate (???300); and of the Granodiorite Suite, high (???400). Rocks of the AGC differ geochemically in several ways from the siliceous volcanic and hypabyssal rocks of the Upper Onverwacht Group and from the diapirs of tonalite and trondhjemite that intrude the Swaziland Group. ?? 1978.

  12. The Combustion Experiment on the Sample Analysis at Mars (SAM) Instrument Suite on the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Malespin, C. A.; Eigenbrode, J.; Graham, H. V.; Archer, P. D.; Brunner, A.; Freissinet, C.; Franz, H. B.; Fuentes, J.; Glavin, D. P.; hide

    2014-01-01

    The combustion experiment on the Sample Analysis at Mars (SAM) suite on Curiosity will heat a sample of Mars regolith in the presence of oxygen and measure composition of the evolved gases using quadrupole mass spectrometry (QMS) and tunable laser spectrometry (TLS). QMS will enable detection of combustion products such as CO, CO2, NO, and other oxidized species, while TLS will enable precision measurements of the abundance and carbon isotopic composition (delta C-13) of the evolved CO2 and hydrogen isotopic composition (delta D) of H2O. SAM will perform a two-step combustion to isolate combustible materials below approx. 550 C and above approx. 550 C.

  13. Enabling interoperability in Geoscience with GI-suite

    NASA Astrophysics Data System (ADS)

    Boldrini, Enrico; Papeschi, Fabrizio; Santoro, Mattia; Nativi, Stefano

    2015-04-01

    GI-suite is a brokering framework targeting interoperability of heterogeneous systems in the Geoscience domain. The framework is composed by different brokers each one focusing on a specific functionality: discovery, access and semantics (i.e. GI-cat, GI-axe, GI-sem). The brokering takes place between a set of heterogeneous publishing services and a set of heterogeneous consumer applications: the brokering target is represented by resources (e.g. coverages, features, or metadata information) required to seamlessly flow from the providers to the consumers. Different international and community standards are now supported by GI-suite, making possible the successful deployment of GI-suite in many international projects and initiatives (such as GEOSS, NSF BCube and several EU funded projects). As for the publisher side more than 40 standards and implementations are supported (e.g. Dublin Core, OAI-PMH, OGC W*S, Geonetwork, THREDDS Data Server, Hyrax Server, etc.). The support for each individual standard is provided by means of specific GI-suite components, called accessors. As for the consumer applications side more than 15 standards and implementations are supported (e.g. ESRI ArcGIS, Openlayers, OGC W*S, OAI-PMH clients, etc.). The support for each individual standard is provided by means of specific profiler components. The GI-suite can be used in different scenarios by different actors: - A data provider having a pre-existent data repository can deploy and configure GI-suite to broker it and making thus available its data resources through different protocols to many different users (e.g. for data discovery and/or data access) - A data consumer can use GI-suite to discover and/or access resources from a variety of publishing services that are already publishing data according to well-known standards. - A community can deploy and configure GI-suite to build a community (or project-specific) broker: GI-suite can broker a set of community related repositories and

  14. Ion and electron microprobe study of troctolites, norite, and anorthosites from Apollo 14: Evidence for urKREEP assimilation during petrogenesis of Apollo 14 Mg-suite rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shervais, J.W.; McGee, J.J.

    1998-09-01

    Most of the Moon`s highland crust comprises Fe-rich anorthosites with calcic plagioclase compositions. Subsequent evolution of the highland crust was dominated by troctolites, anorthosites, and norites of the Mg-suite. This plutonic series is characterized by calcic plagioclase, and mafic minerals with high mg{number_sign} (=100{sup *}Mg/[Mg + Fe]). In an effort to distinguish the origin of this important lunar rock series, the authors have analyzed the REE content of primary cumulus phases in ten Mg-suite cumulates using SIMS, along with their major and minor element compositions by electron microprobe analysis. Nine of these samples have high mg{number_sign}s, consistent with their formationmore » from the most primitive parent melts of the Mg-suite. The data presented here show that Mg-suite troctolites and anorthosites preserve major and trace element characteristics acquired during their formation as igneous cumulate rocks and that these characteristics can be used to reconstruct related aspects of the parent magma composition. Data show that primitive cumulates of the Mg-suite crystallized from magmas with REE contents similar to high-K KREEP in both concentration and relative abundance. The highly enriched nature of this parent magma contrasts with its primitive major element characteristics, as pointed out by previous workers. This enigma is best explained by the mixing of residual magma ocean urKREEP melts with ultramagnesian komatiitic partial melts from the deep lunar interior. The data do not support earlier models that invoke crustal metasomatism to enrich the Mg-suite cumulates after formation, or models which call for a superKREEP parent for the troctolites and anorthosites.« less

  15. The SAM Suite

    NASA Image and Video Library

    2013-04-08

    This illustration shows the instruments and subsystems of the Sample Analysis at Mars SAM suite on the Curiosity Rover of NASA Mars Science Laboratory Project. SAM analyzes the gases in the Martian atmosphere.

  16. Livermore Compiler Analysis Loop Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornung, R. D.

    2013-03-01

    LCALS is designed to evaluate compiler optimizations and performance of a variety of loop kernels and loop traversal software constructs. Some of the loop kernels are pulled directly from "Livermore Loops Coded in C", developed at LLNL (see item 11 below for details of earlier code versions). The older suites were used to evaluate floating-point performances of hardware platforms prior to porting larger application codes. The LCALS suite is geared toward assissing C++ compiler optimizations and platform performance related to SIMD vectorization, OpenMP threading, and advanced C++ language features. LCALS contains 20 of 24 loop kernels from the older Livermoremore » Loop suites, plus various others representative of loops found in current production appkication codes at LLNL. The latter loops emphasize more diverse loop constructs and data access patterns than the others, such as multi-dimensional difference stencils. The loops are included in a configurable framework, which allows control of compilation, loop sampling for execution timing, which loops are run and their lengths. It generates timing statistics for analysis and comparing variants of individual loops. Also, it is easy to add loops to the suite as desired.« less

  17. ASDA - Advanced Suit Design Analyzer computer program

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Conger, Bruce C.; Iovine, John V.; Chang, Chi-Min

    1992-01-01

    An ASDA model developed to evaluate the heat and mass transfer characteristics of advanced pressurized suit design concepts for low pressure or vacuum planetary applications is presented. The model is based on a generalized 3-layer suit that uses the Systems Integrated Numerical Differencing Analyzer '85 in conjunction with a 41-node FORTRAN routine. The latter simulates the transient heat transfer and respiratory processes of a human body in a suited environment. The user options for the suit encompass a liquid cooled garment, a removable jacket, a CO2/H2O permeable layer, and a phase change layer.

  18. Extravehicular Space Suit Bearing Technology Development Research

    NASA Astrophysics Data System (ADS)

    Pang, Yan; Liu, Xiangyang; Guanghui, Xie

    2017-03-01

    Pressure bearing has been acting an important role in the EVA (extravehicular activity) suit as a main mobility component. EVA suit bearing has its unique traits on the material, dustproof design, seal, interface, lubrication, load and performance. This paper states the peculiarity and development of the pressure bearing on the construction design element, load and failure mode, and performance and test from the point view of structure design. The status and effect of EVA suit pressure bearing is introduced in the paper. This analysis method can provide reference value for our country’s EVA suit pressure bearing design and development.

  19. Use MACES IVA Suit for EVA Mobility Evaluations

    NASA Technical Reports Server (NTRS)

    Watson, Richard D.

    2014-01-01

    The use of an Intra-Vehicular Activity (IVA) suit for a spacewalk or Extra-Vehicular Activity (EVA) was evaluated for mobility and usability in the Neutral Buoyancy Lab (NBL) environment. The Space Shuttle Advanced Crew Escape Suit (ACES) has been modified (MACES) to integrate with the Orion spacecraft. The first several missions of the Orion MPCV spacecraft will not have mass available to carry an EVA specific suit so any EVA required will have to be performed by the MACES. Since the MACES was not designed with EVA in mind, it was unknown what mobility the suit would be able to provide for an EVA or if a person could perform useful tasks for an extended time inside the pressurized suit. The suit was evaluated in multiple NBL runs by a variety of subjects including crewmembers with significant EVA experience. Various functional mobility tasks performed included: translation, body positioning, carrying tools, body stabilization, equipment handling, and use of tools. Hardware configurations included with and without TMG, suit with IVA gloves and suit with EVA gloves. Most tasks were completed on ISS mockups with existing EVA tools. Some limited tasks were completed with prototype tools on a simulated rocky surface. Major findings include: demonstration of the ability to weigh-out the suit, understanding the need to have subjects perform multiple runs prior to getting feedback, determination of critical sizing factors, and need for adjustment of suit work envelop. The early testing has demonstrated the feasibility of EVA's limited duration and limited scope. Further testing is required with more flight like tasking and constraints to validate these early results. If the suit is used for EVA, it will require mission specific modifications for umbilical management or PLSS integration, safety tether attachment, and tool interfaces. These evaluations are continuing through calendar year 2014.

  20. Expedition 18 Suit-up

    NASA Image and Video Library

    2008-10-11

    A Russian Sokol suit technician prepares to help American spaceflight participant Richard Garriott don his flight suit prior to the Soyuz TMA-13 launch with Expedition 18 Commander Michael Fincke and Flight Engineer Yuri V. Lonchakov, Sunday, Oct. 12, 2008 in Baikonur, Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  1. Testing of Space Suit Materials for Mars

    NASA Technical Reports Server (NTRS)

    Larson, Kristine

    2016-01-01

    Human missions to Mars may require radical changes in our approach to EVA suit design. A major challenge is the balance of building a suit robust enough to complete 50 EVAs in the dirt under intense UV exposure without losing mechanical strength or compromising its mobility. We conducted ground testing on both current and new space suit materials to determine performance degradation after exposure to 2500 hours of Mars mission equivalent UV. This testing will help mature the material technologies and provide performance data that can be used by not only the space suit development teams but for all Mars inflatable and soft goods derived structures from airlocks to habitats.

  2. The Variable Vector Countermeasure Suit (V2Suit) for space habitation and exploration.

    PubMed

    Duda, Kevin R; Vasquez, Rebecca A; Middleton, Akil J; Hansberry, Mitchell L; Newman, Dava J; Jacobs, Shane E; West, John J

    2015-01-01

    The "Variable Vector Countermeasure Suit (V2Suit) for Space Habitation and Exploration" is a novel system concept that provides a platform for integrating sensors and actuators with daily astronaut intravehicular activities to improve health and performance, while reducing the mass and volume of the physiologic adaptation countermeasure systems, as well as the required exercise time during long-duration space exploration missions. The V2Suit system leverages wearable kinematic monitoring technology and uses inertial measurement units (IMUs) and control moment gyroscopes (CMGs) within miniaturized modules placed on body segments to provide a "viscous resistance" during movements against a specified direction of "down"-initially as a countermeasure to the sensorimotor adaptation performance decrements that manifest themselves while living and working in microgravity and during gravitational transitions during long-duration spaceflight, including post-flight recovery and rehabilitation. Several aspects of the V2Suit system concept were explored and simulated prior to developing a brassboard prototype for technology demonstration. This included a system architecture for identifying the key components and their interconnects, initial identification of key human-system integration challenges, development of a simulation architecture for CMG selection and parameter sizing, and the detailed mechanical design and fabrication of a module. The brassboard prototype demonstrates closed-loop control from "down" initialization through CMG actuation, and provides a research platform for human performance evaluations to mitigate sensorimotor adaptation, as well as a tool for determining the performance requirements when used as a musculoskeletal deconditioning countermeasure. This type of countermeasure system also has Earth benefits, particularly in gait or movement stabilization and rehabilitation.

  3. Sm-Nd systematics of lunar ferroan anorthositic suite rocks: Constraints on lunar crust

    DOE PAGES

    Boyet, Maud; Carlson, Richard W.; Borg, Lars E.; ...

    2014-09-28

    Here, we have measured Sm–Nd systematics, including the short-lived 146Sm– 142Nd chronometer, in lunar ferroan anorthositic suite (FAS) whole rocks (15415, 62236, 62255, 65315, 60025). At least some members of the suite are thought to be primary crystallization products formed by plagioclase flotation during crystallization of the lunar magma ocean (LMO). Most of these samples, except 62236, have not been exposed to galactic cosmic rays for a long period and thus require minimal correction to their 142Nd isotope composition. These samples all have measured deficits in 142Nd relative to the JNdi-1 terrestrial standard in the range –45 to –21 ppm.more » The range is –45 to –15 ppm once the 62236 142Nd/ 144Nd ratio is corrected from neutron-capture effects. Analyzed FAS samples do not define a single isochron in either 146Sm– 142Nd or 147Sm– 143Nd systematics, suggesting that they either do not have the same crystallization age, come from different sources, or have suffered isotopic disturbance. Because the age is not known for some samples, we explore the implications of their initial isotopic compositions for crystallization ages in the first 400 Ma of solar system history, a timing interval that covers all the ages determined for the ferroan anorthositic suite whole rocks as well as different estimates for the crystallization of the LMO. 62255 has the largest deficit in initial 142Nd and does not appear to have followed the same differentiation path as the other FAS samples. The large deficit in 142Nd of FAN 62255 may suggest a crystallization age around 60–125 Ma after the beginning of solar system accretion. This result provides essential information about the age of the giant impact forming the Moon. The initial Nd isotopic compositions of FAS samples can be matched either with a bulk-Moon with chondritic Sm/Nd ratio but enstatite-chondrite-like initial 142Nd/ 144Nd (e.g. 10 ppm below modern terrestrial), or a bulk-Moon with superchondritic

  4. Analytical Tools for Space Suit Design

    NASA Technical Reports Server (NTRS)

    Aitchison, Lindsay

    2011-01-01

    As indicated by the implementation of multiple small project teams within the agency, NASA is adopting a lean approach to hardware development that emphasizes quick product realization and rapid response to shifting program and agency goals. Over the past two decades, space suit design has been evolutionary in approach with emphasis on building prototypes then testing with the largest practical range of subjects possible. The results of these efforts show continuous improvement but make scaled design and performance predictions almost impossible with limited budgets and little time. Thus, in an effort to start changing the way NASA approaches space suit design and analysis, the Advanced Space Suit group has initiated the development of an integrated design and analysis tool. It is a multi-year-if not decadal-development effort that, when fully implemented, is envisioned to generate analysis of any given space suit architecture or, conversely, predictions of ideal space suit architectures given specific mission parameters. The master tool will exchange information to and from a set of five sub-tool groups in order to generate the desired output. The basic functions of each sub-tool group, the initial relationships between the sub-tools, and a comparison to state of the art software and tools are discussed.

  5. Suited Contingency Ops Food - 2

    NASA Technical Reports Server (NTRS)

    Glass, J. W.; Leong, M. L.; Douglas, G. L.

    2014-01-01

    The contingency scenario for an emergency cabin depressurization event may require crewmembers to subsist in a pressurized suit for up to 144 hours. This scenario requires the capability for safe nutrition delivery through a helmet feed port against a 4 psi pressure differential to enable crewmembers to maintain strength and cognition to perform critical tasks. Two nutritional delivery prototypes were developed and analyzed for compatibility with the helmet feed port interface and for operational effectiveness against the pressure differential. The bag-in-bag (BiB) prototype, designed to equalize the suit pressure with the beverage pouch and enable a crewmember to drink normally, delivered water successfully to three different subjects in suits pressurized to 4 psi. The Boa restrainer pouch, designed to provide mechanical leverage to overcome the pressure differential, did not operate sufficiently. Guidelines were developed and compiled for contingency beverages that provide macro-nutritional requirements, a minimum one-year shelf life, and compatibility with the delivery hardware. Evaluation results and food product parameters have the potential to be used to improve future prototype designs and develop complete nutritional beverages for contingency events. These feeding capabilities would have additional use on extended surface mission EVAs, where the current in-suit drinking device may be insufficient.

  6. Space Suit (Mobil Biological Isolation)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A Houston five-year-old known as David is getting a "space suit," a vitally important gift that will give him mobility he has never known. David suffers from a rare malady called severe combined immune deficiency, which means that be was born without natural body defenses against disease; germs that would have little or no effect on most people could cause his death. As a result, he has spent his entire life in germ-free isolation rooms, one at Houston's Texas Children's hospital, another at his home. The "space suit" David is getting will allow him to spend four hours ata a time in a mobile sterile environment outside his isolation rooms. Built by NASA's Johnson Space Center, it is a specially-designed by product of Space Suit technology known as the mobile biological isolation system.

  7. Photoimageable composition

    DOEpatents

    Dentinger, Paul; Krafick, Karen L.; Simison, Kelby Liv

    2005-02-22

    The use of photoacid generators including an alkoxyphenylphenyliodonium salt and/or bis(t-butylphenyl)iodonium salt in a photoimageable composition helps improve resolution. Suitable photoimageable compositions includes: (a) a multifuctional polymeric epoxy resin that is dissolved in an organic solvent wherein the epoxy resin comprises oligomers of bisphenol A that is quantitatively protected by glycidyl ether and wherein the oligomers have an average functionality that ranges from about 3 to 12; and a photoacid generator comprising an alkoxyphenylphenyliodonium salt and/or bis(t-butylphenyl)iodonium salt. Preferred alkoxyphenylphenyliodonium salts include 4-octyloxyphenyl phenyliodonium hexafluoroantimonate and 4-methoxyphenyl phenyliodonium hexafluoroantimonate. The photoimageable composition is particularly suited for producing high aspect ratio microstructures.

  8. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer

    2010-01-01

    A space suit's mobility is critical to an astronaut's ability to perform work efficiently. As mobility increases, the astronaut can perform tasks for longer durations with less fatigue. Mobility can be broken down into two parts: range of motion (ROM) and torque. These two measurements describe how the suit moves and how much force it takes to move. Two methods were chosen to define mobility requirements for the Constellation Space Suit Element (CSSE). One method focuses on range of motion and the second method centers on joint torque. A joint torque test was conducted to determine a baseline for current advanced space suit joint torques. This test utilized the following space suits: Extravehicular Mobility Unit (EMU), Advanced Crew Escape Suit (ACES), I-Suit, D-Suit, Enhanced Mobility (EM)- ACES, and Mark III (MK-III). Data was collected data from 16 different joint movements of each suit. The results were then reviewed and CSSE joint torque requirement values were selected. The focus of this paper is to discuss trends observed during data analysis.

  9. Assessment of Suited Reach Envelope in an Underwater Environment

    NASA Technical Reports Server (NTRS)

    Kim, Han; Benson, Elizabeth; Bernal, Yaritza; Jarvis, Sarah; Meginnis, Ian; Rajulu, Sudhakar

    2017-01-01

    Predicting the performance of a crewmember in an extravehicular activity (EVA) space suit presents unique challenges. The kinematic patterns of suited motions are difficult to reproduce in gravity. Additionally, 3-D suited kinematics have been practically and technically difficult to quantify in an underwater environment, in which crewmembers are commonly trained and assessed for performance. The goal of this study is to develop a hardware and software system to predictively evaluate the kinematic mobility of suited crewmembers, by measuring the 3-D reach envelope of the suit in an underwater environment. This work is ultimately aimed at developing quantitative metrics to compare the mobility of the existing Extravehicular Mobility Unit (EMU) to newly developed space suit, such as the Z-2. The EMU has been extensively used at NASA since 1981 for EVA outside the Space Shuttle and International Space Station. The Z-2 suit is NASA's newest prototype space suit. The suit is comprised of new upper torso and lower torso architectures, which were designed to improve test subject mobility.

  10. Interoperative efficiency in minimally invasive surgery suites.

    PubMed

    van Det, M J; Meijerink, W J H J; Hoff, C; Pierie, J P E N

    2009-10-01

    Performing minimally invasive surgery (MIS) in a conventional operating room (OR) requires additional specialized equipment otherwise stored outside the OR. Before the procedure, the OR team must collect, prepare, and connect the equipment, then take it away afterward. These extra tasks pose a thread to OR efficiency and may lengthen turnover times. The dedicated MIS suite has permanently installed laparoscopic equipment that is operational on demand. This study presents two experiments that quantify the superior efficiency of the MIS suite in the interoperative period. Preoperative setup and postoperative breakdown times in the conventional OR and the MIS suite in an experimental setting and in daily practice were analyzed. In the experimental setting, randomly chosen OR teams simulated the setup and breakdown for a standard laparoscopic cholecystectomy (LC) and a complex laparoscopic sigmoid resection (LS). In the clinical setting, the interoperative period for 66 LCs randomly assigned to the conventional OR or the MIS suite were analyzed. In the experimental setting, the setup and breakdown times were significantly shorter in the MIS suite. The difference between the two types of OR increased for the complex procedure: 2:41 min for the LC (p < 0.001) and 10:47 min for the LS (p < 0.001). In the clinical setting, the setup and breakdown times as a whole were not reduced in the MIS suite. Laparoscopic setup and breakdown times were significantly shorter in the MIS suite (mean difference, 5:39 min; p < 0.001). Efficiency during the interoperative period is significantly improved in the MIS suite. The OR nurses' tasks are relieved, which may reduce mental and physical workload and improve job satisfaction and patient safety. Due to simultaneous tasks of other disciplines, an overall turnover time reduction could not be achieved.

  11. Automated Cutting And Drilling Of Composite Parts

    NASA Technical Reports Server (NTRS)

    Warren, Charles W.

    1993-01-01

    Proposed automated system precisely cuts and drills large, odd-shaped parts made of composite materials. System conceived for manufacturing lightweight composite parts to replace heavier parts in Space Shuttle. Also useful in making large composite parts for other applications. Includes robot locating part to be machined, positions cutter, and positions drill. Gantry-type robot best suited for task.

  12. The Variable Vector Countermeasure Suit (V2Suit) for space habitation and exploration

    PubMed Central

    Duda, Kevin R.; Vasquez, Rebecca A.; Middleton, Akil J.; Hansberry, Mitchell L.; Newman, Dava J.; Jacobs, Shane E.; West, John J.

    2015-01-01

    The “Variable Vector Countermeasure Suit (V2Suit) for Space Habitation and Exploration” is a novel system concept that provides a platform for integrating sensors and actuators with daily astronaut intravehicular activities to improve health and performance, while reducing the mass and volume of the physiologic adaptation countermeasure systems, as well as the required exercise time during long-duration space exploration missions. The V2Suit system leverages wearable kinematic monitoring technology and uses inertial measurement units (IMUs) and control moment gyroscopes (CMGs) within miniaturized modules placed on body segments to provide a “viscous resistance” during movements against a specified direction of “down”—initially as a countermeasure to the sensorimotor adaptation performance decrements that manifest themselves while living and working in microgravity and during gravitational transitions during long-duration spaceflight, including post-flight recovery and rehabilitation. Several aspects of the V2Suit system concept were explored and simulated prior to developing a brassboard prototype for technology demonstration. This included a system architecture for identifying the key components and their interconnects, initial identification of key human-system integration challenges, development of a simulation architecture for CMG selection and parameter sizing, and the detailed mechanical design and fabrication of a module. The brassboard prototype demonstrates closed-loop control from “down” initialization through CMG actuation, and provides a research platform for human performance evaluations to mitigate sensorimotor adaptation, as well as a tool for determining the performance requirements when used as a musculoskeletal deconditioning countermeasure. This type of countermeasure system also has Earth benefits, particularly in gait or movement stabilization and rehabilitation. PMID:25914631

  13. Class Action Suits against Public Schools.

    ERIC Educational Resources Information Center

    Mesibov, Laurie

    1984-01-01

    If a suit is brought as a class action, either plaintiff or defendant may move to uphold or challenge class certification. If neither does so, the court decides whether the action may be maintained as a class suit. Prerequisites for class certification from Rule 23 (Federal Rules of Civil Procedure) are explained. (TE)

  14. Factors influencing the composition of detrital heavy mineral suites in Holocene sands of the Apure River drainage basin, Venezuela

    USGS Publications Warehouse

    Morton, Andrew C.

    1993-01-01

    Heavy mineral assemblages in rivers in the Apure River drainage basin of Venezuela and Colombia closely reflect the nature of the source regions, which lie in the Andean orogenic terranes to the west and northwest. The Caribbean Mountains, largely composed of greenschist-facies pelites, phyllites, carbonates, and metavolcanics, supply assemblages dominated by epidote and calcic amphibole. Minor amounts of the high-pressure index minerals glaucophane and lawsonite indicate the presence of blueschistfacies rocks, reflecting the origin of the Caribbean Mountains by subduction-related tectonism. The northern Mérida Andes, which comprise basement gneisses and granites overlain by unmetamorphosed to low-grade metamorphosed clastics, supply two types of assemblage reflecting these two lithological types: garnet-sillimanite-staurolite-amphibole suites from the basement rocks, and epidote-amphibole suites from the overlying cover sequence. The southern Mérida Andes supply stable heavy mineral suites reflecting recycling from the extensive unmetamorphosed sandstones that occur at outcrop. By considering suites from different physiographical provinces, the effects of short-term alluvial storage in the Llanos on heavy mineral assemblages have been evaluated. Weathering during alluvial storage appears to be effective in modifying the apatite-tourmaline ratio, which shows a steady, marked decline with distance from the mountain front, resulting from the removal of apatite during weathering. Clinopyroxene and garnet may also show evidence of loss through weathering, although the trends are poorly constrained statistically. Epidote and amphibole proportions remain essentially constant, possibly through a balance between loss through weathering and continual resupply from the breakdown of rock fragments. In general, the heavy mineral assemblages are less affected than the bulk mineralogy by alluvial storage on the Llanos.

  15. The ZPIC educational code suite

    NASA Astrophysics Data System (ADS)

    Calado, R.; Pardal, M.; Ninhos, P.; Helm, A.; Mori, W. B.; Decyk, V. K.; Vieira, J.; Silva, L. O.; Fonseca, R. A.

    2017-10-01

    Particle-in-Cell (PIC) codes are used in almost all areas of plasma physics, such as fusion energy research, plasma accelerators, space physics, ion propulsion, and plasma processing, and many other areas. In this work, we present the ZPIC educational code suite, a new initiative to foster training in plasma physics using computer simulations. Leveraging on our expertise and experience from the development and use of the OSIRIS PIC code, we have developed a suite of 1D/2D fully relativistic electromagnetic PIC codes, as well as 1D electrostatic. These codes are self-contained and require only a standard laptop/desktop computer with a C compiler to be run. The output files are written in a new file format called ZDF that can be easily read using the supplied routines in a number of languages, such as Python, and IDL. The code suite also includes a number of example problems that can be used to illustrate several textbook and advanced plasma mechanisms, including instructions for parameter space exploration. We also invite contributions to this repository of test problems that will be made freely available to the community provided the input files comply with the format defined by the ZPIC team. The code suite is freely available and hosted on GitHub at https://github.com/zambzamb/zpic. Work partially supported by PICKSC.

  16. Emergency Medical Considerations in a Space-Suited Patient.

    PubMed

    Garbino, Alejandro; Nusbaum, Derek M; Buckland, Daniel M; Menon, Anil S; Clark, Jonathan B; Antonsen, Erik L

    The Stratex Project is a high altitude balloon flight that culminated in a freefall from 41,422 m (135,890 ft), breaking the record for the highest freefall to date. Crew recovery operations required an innovative approach due to the unique nature of the event as well as the equipment involved. The parachutist donned a custom space suit similar to a NASA Extravehicular Mobility Unit (EMU), with life support system mounted to the front and a parachute on the back. This space suit had a metal structure around the torso, which, in conjunction with the parachute and life support assembly, created a significant barrier to extraction from the suit in the event of a medical emergency. For this reason the Medical Support Team coordinated with the pressure suit assembly engineer team for integration, training in suit removal, definition of a priori contingency leadership on site, creation of color-coded extraction scenarios, and extraction drills with a suit mock-up that provided insight into limitations to immediate access. This paper discusses novel extraction processes and contrasts the required medical preparation for this type of equipment with the needs of the prior record-holding jump that used a different space suit with easier immediate access. Garbino A, Nusbaum DM, Buckland DM, Menon AS, Clark JB, Antonsen EL. Emergency medical considerations in a space-suited patient. Aerosp Med Hum Perform. 2016; 87(11):958-962.

  17. [Antigravity suit used for neurosurgical operations in sitting position].

    PubMed

    Szpiro-Zurkowska, A; Milczarek, Z; Marchel, A; Jagielski, J

    1996-01-01

    The aviator's antigravity suit (G-suit) was used for 40 operations on neurosurgical patients operated on in sitting position. The G-suit was filled with air to 0.2 atmosphere (20 kPa) pressure in 26 cases, and 0.3 atm. (30 kPa) in 14 cases. In all cases G-suit filling was followed by central venous pressure rise and mean arterial pressure rise. Venous air embolism was found in 5 (12.5%) patients. No other complications connected with the use of G-suit were observed.

  18. Suitport Feasibility: Development and Test of a Suitport and Space Suit for Human Pressurized Space Suit Donning Tests

    NASA Technical Reports Server (NTRS)

    Boyle, Robert M.; Mitchell, Kathryn; Allton, Charles; Ju, Hsing

    2012-01-01

    The suitport concept has been recently implemented as part of the small pressurized lunar rover (Currently the Space Exploration vehicle, or SEV) and the Multi-Mission Space Exploration Vehicle (MMSEV) concept demonstrator vehicle. Suitport replaces or augments the traditional airlock function of a spacecraft by providing a bulkhead opening, capture mechanism, and sealing system to allow ingress and egress of a space suit while the space suit remains outside of the pressurized volume of the spacecraft. This presents significant new opportunities to EVA exploration in both microgravity and surface environments. The suitport concept will enable three main improvements in EVA by providing reductions in: pre-EVA time from hours to less than thirty minutes; airlock consumables; contamination returned to the cabin with the EVA crewmember. To date, the first generation suitport has been tested with mockup suits on the rover cabins and pressurized on a bench top engineering unit. The work on the rover cabin has helped define the operational concepts and timelines, and has demonstrated the potential of suitport to save significant amounts of crew time before and after EVAs. The work with the engineering unit has successfully demonstrated the pressurizable seal concept including the ability to seal after the introduction and removal of contamination to the sealing surfaces. Using this experience, a second generation suitport was designed. This second generation suitport has been tested with a space suit prototype on the second generation MMSEV cabin, and testing is planned using the pressure differentials of the spacecraft. Pressurized testing will be performed using the JSC B32 Chamber B, a human rated vacuum chamber. This test will include human rated suitports, a suitport compatible prototype suit, and chamber modifications. This test will bring these three elements together in the first ever pressurized donning of a rear entry suit through a suitport. This paper presents

  19. Orthopyroxene as a recorder of lunar crust evolution: An ion microprobe investigations of Mg-suite norites. [Abstract only

    NASA Technical Reports Server (NTRS)

    Papike, J. J.; Fowler, G. W.; Shearer, C. K.

    1994-01-01

    The lunar Mg suite, which includes dunites, troctolites, and norites, could make up 20-30% of the Moon's crust down to a depth of 60 km. The remainder is largely anorthositic. This report focuses on norites because we have found that the chemical characteristics of orthopyroxene are effective recorders of their parental melt compositions. Many of the samples representing the Mg suite are small and unrepresentative. In addition, they are cumulates and thus are difficult to study by whole-rock techniques. Therefore, we decided to study these rocks by SIMS techniques to analyze a suite of trace elements in orthopyroxene. The 12 norite samples were selected from a recent compilation by Warren who attempted to select the best candidate samples from the standpoint of their pristine character. Our present database includes greater than 300 superior Electromagnetic Pulse (EMP) analyses and greater than 50 scanning ion mass spectroscopy (SIMS) analyses for 8 Rare Earth Elements (REE), Zr, Y, and Sr. The Mg#s for the parental melts calculated from Mg#s in orthopyroxene show that most melts have Mg#s in the range of 0.36-0.60. This compares with a range of Mg#s for lunar volcanic picritic glass beads of 0.4-0.68. Therefore, although the cumulate whole-rock compositions of the Mg suite can be extremely magnesian, the calculated parental melts are not anomalously high in Mg. A chemical characteristic of the Mg-suite norites that is more difficult to explain is the high KREEP content of the calculated parental melts. The REE contents for the calculated norite parental melts have REE that match or exceed the high-K KREEP component of Warren. Therefore, mixing of a KREEP component and a picritic melt cannot, by itself, explain the high estimated REE contents of the melts parental to norites. Advanced crystallization following KREEP incorporation, especially of plagiclase, may also be required.

  20. Metabolic Assessment of Suited Mobility Using Functional Tasks

    NASA Technical Reports Server (NTRS)

    Norcross, J. R.; McFarland, S. M.; Ploutz-Snyder, Robert

    2016-01-01

    Existing methods for evaluating extravehicular activity (EVA) suit mobility have typically focused on isolated joint range of motion or torque, but these techniques have little to do with how well a crewmember functionally performs in an EVA suit. To evaluate suited mobility at the system level through measuring metabolic cost (MC) of functional tasks.

  1. Sm-Nd systematics of lunar ferroan anorthositic suite rocks: Constraints on lunar crust formation

    NASA Astrophysics Data System (ADS)

    Boyet, Maud; Carlson, Richard W.; Borg, Lars E.; Horan, Mary

    2015-01-01

    We have measured Sm-Nd systematics, including the short-lived 146Sm-142Nd chronometer, in lunar ferroan anorthositic suite (FAS) whole rocks (15415, 62236, 62255, 65315, 60025). At least some members of the suite are thought to be primary crystallization products formed by plagioclase flotation during crystallization of the lunar magma ocean (LMO). Most of these samples, except 62236, have not been exposed to galactic cosmic rays for a long period and thus require minimal correction to their 142Nd isotope composition. These samples all have measured deficits in 142Nd relative to the JNdi-1 terrestrial standard in the range -45 to -21 ppm. The range is -45 to -15 ppm once the 62236 142Nd/144Nd ratio is corrected from neutron-capture effects. Analyzed FAS samples do not define a single isochron in either 146Sm-142Nd or 147Sm-143Nd systematics, suggesting that they either do not have the same crystallization age, come from different sources, or have suffered isotopic disturbance. Because the age is not known for some samples, we explore the implications of their initial isotopic compositions for crystallization ages in the first 400 Ma of solar system history, a timing interval that covers all the ages determined for the ferroan anorthositic suite whole rocks as well as different estimates for the crystallization of the LMO. 62255 has the largest deficit in initial 142Nd and does not appear to have followed the same differentiation path as the other FAS samples. The large deficit in 142Nd of FAN 62255 may suggest a crystallization age around 60-125 Ma after the beginning of solar system accretion. This result provides essential information about the age of the giant impact forming the Moon. The initial Nd isotopic compositions of FAS samples can be matched either with a bulk-Moon with chondritic Sm/Nd ratio but enstatite-chondrite-like initial 142Nd/144Nd (e.g. 10 ppm below modern terrestrial), or a bulk-Moon with superchondritic Sm/Nd ratio and initial 142Nd/144Nd

  2. Suites of dwarfs around Nearby giant galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karachentsev, Igor D.; Kaisina, Elena I.; Makarov, Dmitry I., E-mail: ikar@sao.ru, E-mail: kei@sao.ru, E-mail: dim@sao.ru

    2014-01-01

    The Updated Nearby Galaxy Catalog (UNGC) contains the most comprehensive summary of distances, radial velocities, and luminosities for 800 galaxies located within 11 Mpc from us. The high density of observables in the UNGC makes this sample indispensable for checking results of N-body simulations of cosmic structures on a ∼1 Mpc scale. The environment of each galaxy in the UNGC was characterized by a tidal index Θ{sub 1}, depending on the separation and mass of the galaxy's main disturber (MD). We grouped UNGC galaxies with a common MD in suites, and ranked suite members according to their Θ{sub 1}. Allmore » suite members with positive Θ{sub 1} are assumed to be physical companions of the MD. About 58% of the sample are members of physical groups. The distribution of suites by the number of members, n, follows a relation N(n) ∼ n {sup –2}. The 20 most populated suites contain 468 galaxies, i.e., 59% of the UNGC sample. The fraction of MDs among the brightest galaxies is almost 100% and drops to 50% at M{sub B} = –18{sup m}. We discuss various properties of MDs, as well as galaxies belonging to their suites. The suite abundance practically does not depend on the morphological type, linear diameter, or hydrogen mass of the MD, the tightest correlation being with the MD dynamical mass. Dwarf galaxies around MDs exhibit well-known segregation effects: the population of the outskirts has later morphological types, richer H I contents, and higher rates of star formation activity. Nevertheless, there are some intriguing cases where dwarf spheroidal galaxies occur at the far periphery of the suites, as well as some late-type dwarfs residing close to MDs. Comparing simulation results with galaxy groups, most studies assume the Local Group is fairly typical. However, we recognize that the nearby groups significantly differ from each other and there is considerable variation in their properties. The suites of companions around the Milky Way and M31, consisting

  3. Space Suit Joint Torque Measurement Method Validation

    NASA Technical Reports Server (NTRS)

    Valish, Dana; Eversley, Karina

    2012-01-01

    In 2009 and early 2010, a test method was developed and performed to quantify the torque required to manipulate joints in several existing operational and prototype space suits. This was done in an effort to develop joint torque requirements appropriate for a new Constellation Program space suit system. The same test method was levied on the Constellation space suit contractors to verify that their suit design met the requirements. However, because the original test was set up and conducted by a single test operator there was some question as to whether this method was repeatable enough to be considered a standard verification method for Constellation or other future development programs. In order to validate the method itself, a representative subset of the previous test was repeated, using the same information that would be available to space suit contractors, but set up and conducted by someone not familiar with the previous test. The resultant data was compared using graphical and statistical analysis; the results indicated a significant variance in values reported for a subset of the re-tested joints. Potential variables that could have affected the data were identified and a third round of testing was conducted in an attempt to eliminate and/or quantify the effects of these variables. The results of the third test effort will be used to determine whether or not the proposed joint torque methodology can be applied to future space suit development contracts.

  4. Suited Occupant Injury Potential During Dynamic Spacecraft Flight Phases

    NASA Technical Reports Server (NTRS)

    Dub, Mark O.; McFarland, Shane M.

    2010-01-01

    In support of the Constellation Space Suit Element [CSSE], a new space-suit architecture will be created for support of Launch, Entry, Abort, Microgravity Extra- Vehicular Activity [EVA], and post-landing crew operations, safety and, under emergency conditions, survival. The space suit is unique in comparison to previous launch, entry, and abort [LEA] suit architectures in that it utilizes rigid mobility elements in the scye (i.e., shoulder) and the upper arm regions. The suit architecture also utilizes rigid thigh disconnect elements to create a quick disconnect approximately located above the knee. This feature allows commonality of the lower portion of the suit (from the thigh disconnect down), making the lower legs common across two suit configurations. This suit must interface with the Orion vehicle seat subsystem, which includes seat components, lateral supports, and restraints. Due to the unique configuration of spacesuit mobility elements, combined with the need to provide occupant protection during dynamic vehicle events, risks have been identified with potential injury due to the suit characteristics described above. To address the risk concerns, a test series has been developed in coordination with the Injury Biomechanics Research Laboratory [IBRL] to evaluate the likelihood and consequences of these potential issues. Testing includes use of Anthropomorphic Test Devices [ATDs; vernacularly referred to as "crash test dummies"], Post Mortem Human Subjects [PMHS], and representative seat/suit hardware in combination with high linear acceleration events. The ensuing treatment focuses on test purpose and objectives; test hardware, facility, and setup; and preliminary results.

  5. Complexity of Sizing for Space Suit Applications

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Benson, Elizabeth

    2009-01-01

    The `fit? of a garment is often considered to be a subjective measure of garment quality. However, some experts attest that a complaint of poor garment fit is a symptom of inadequate or excessive ease, the space between the garment and the wearer. Fit has traditionally been hard to quantify, and space suits are an extreme example, where fit is difficult to measure but crucial for safety and operability. A proper space suit fit is particularly challenging because of NASA?s need to fit an incredibly diverse population (males and females from the 1st to 99th percentile) while developing a minimum number of space suit sizes. Because so few sizes are available, the available space suits must be optimized so that each fits a large segment of the population without compromising the fit of any one wearer.

  6. Thermal Analysis and Design of an Advanced Space Suit

    NASA Technical Reports Server (NTRS)

    Lin, Chin H.; Campbell, Anthony B.; French, Jonathan D.; French, D.; Nair, Satish S.; Miles, John B.

    2000-01-01

    The thermal dynamics and design of an Advanced Space Suit are considered. A transient model of the Advanced Space Suit has been developed and implemented using MATLAB/Simulink to help with sizing, with design evaluation, and with the development of an automatic thermal comfort control strategy. The model is described and the thermal characteristics of the Advanced Space suit are investigated including various parametric design studies. The steady state performance envelope for the Advanced Space Suit is defined in terms of the thermal environment and human metabolic rate and the transient response of the human-suit-MPLSS system is analyzed.

  7. Advanced EVA Suit Camera System Development Project

    NASA Technical Reports Server (NTRS)

    Mock, Kyla

    2016-01-01

    The National Aeronautics and Space Administration (NASA) at the Johnson Space Center (JSC) is developing a new extra-vehicular activity (EVA) suit known as the Advanced EVA Z2 Suit. All of the improvements to the EVA Suit provide the opportunity to update the technology of the video imagery. My summer internship project involved improving the video streaming capabilities of the cameras that will be used on the Z2 Suit for data acquisition. To accomplish this, I familiarized myself with the architecture of the camera that is currently being tested to be able to make improvements on the design. Because there is a lot of benefit to saving space, power, and weight on the EVA suit, my job was to use Altium Design to start designing a much smaller and simplified interface board for the camera's microprocessor and external components. This involved checking datasheets of various components and checking signal connections to ensure that this architecture could be used for both the Z2 suit and potentially other future projects. The Orion spacecraft is a specific project that may benefit from this condensed camera interface design. The camera's physical placement on the suit also needed to be determined and tested so that image resolution can be maximized. Many of the options of the camera placement may be tested along with other future suit testing. There are multiple teams that work on different parts of the suit, so the camera's placement could directly affect their research or design. For this reason, a big part of my project was initiating contact with other branches and setting up multiple meetings to learn more about the pros and cons of the potential camera placements we are analyzing. Collaboration with the multiple teams working on the Advanced EVA Z2 Suit is absolutely necessary and these comparisons will be used as further progress is made for the overall suit design. This prototype will not be finished in time for the scheduled Z2 Suit testing, so my time was

  8. Physiological responses to wearing the space shuttle launch and entry suit and the prototype advanced crew escape suit compared to the unsuited condition

    NASA Technical Reports Server (NTRS)

    Barrows, Linda H.; Mcbrine, John J.; Hayes, Judith C.; Stricklin, Marcella D.; Greenisen, Michael C.

    1993-01-01

    The launch and entry suit (LES) is a life support suit worn during Orbiter ascent and descent. The impact of suit weight and restricted mobility on egress from the Orbiter during an emergency is unknown. An alternate suit - the advanced crew escape suite (ACES) - is being evaluated. The physiological responses to ambulatory exercise of six subjects wearing the LES and ACES were measured and compared to those measurements taken while unsuited. Dependent variables included heart rate and metabolic response to treadmill walking at 5.6 km/h (3.5 mph), and also bilateral concentric muscle strength about the knee, shoulder, and elbow. No significant (p greater than 0.06) differences in heart rate or metabolic variables were measured in either suit while walking at 5.6 km/h. Significant (p less than 0.05) decreases in all metabolic variables were remarked when both suits were compared to the unsuited condition. There were no significant (p greater than 0.05) differences among the three suit conditions at 30 or 180 deg/s for muscles about the elbow and knee; however, about the shoulder, a significant (p = 0.0215) difference between the ACES and the unsuited condition was noted. Therefore, wearing a life support suit while performing Orbiter egress imposes a significant metabolic demand on crewmembers. Selective upper body strength movements may be compromised.

  9. Open architecture of smart sensor suites

    NASA Astrophysics Data System (ADS)

    Müller, Wilmuth; Kuwertz, Achim; Grönwall, Christina; Petersson, Henrik; Dekker, Rob; Reinert, Frank; Ditzel, Maarten

    2017-10-01

    Experiences from recent conflicts show the strong need for smart sensor suites comprising different multi-spectral imaging sensors as core elements as well as additional non-imaging sensors. Smart sensor suites should be part of a smart sensor network - a network of sensors, databases, evaluation stations and user terminals. Its goal is to optimize the use of various information sources for military operations such as situation assessment, intelligence, surveillance, reconnaissance, target recognition and tracking. Such a smart sensor network will enable commanders to achieve higher levels of situational awareness. Within the study at hand, an open system architecture was developed in order to increase the efficiency of sensor suites. The open system architecture for smart sensor suites, based on a system-of-systems approach, enables combining different sensors in multiple physical configurations, such as distributed sensors, co-located sensors combined in a single package, tower-mounted sensors, sensors integrated in a mobile platform, and trigger sensors. The architecture was derived from a set of system requirements and relevant scenarios. Its mode of operation is adaptable to a series of scenarios with respect to relevant objects of interest, activities to be observed, available transmission bandwidth, etc. The presented open architecture is designed in accordance with the NATO Architecture Framework (NAF). The architecture allows smart sensor suites to be part of a surveillance network, linked e.g. to a sensor planning system and a C4ISR center, and to be used in combination with future RPAS (Remotely Piloted Aircraft Systems) for supporting a more flexible dynamic configuration of RPAS payloads.

  10. EVA Suit R and D for Performance Optimization

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew S.; Harvill, Lauren; Benson, Elizabeth; Rajulu, Sudhakar

    2014-01-01

    Designing a planetary suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. To verify that new suit designs meet requirements, full prototypes must be built and tested with human subjects. However, numerous design iterations will occur before the hardware meets those requirements. Traditional draw-prototype-test paradigms for R&D are prohibitively expensive with today's shrinking Government budgets. Personnel at NASA are developing modern simulation techniques which focus on human-centric designs by creating virtual prototype simulations and fully adjustable physical prototypes of suit hardware. During the R&D design phase, these easily modifiable representations of an EVA suit's hard components will allow designers to think creatively and exhaust design possibilities before they build and test working prototypes with human subjects. It allows scientists to comprehensively benchmark current suit capabilities and limitations for existing suit sizes and sizes that do not exist. This is extremely advantageous and enables comprehensive design down-selections to be made early in the design process, enables the use of human performance as design criteria, and enables designs to target specific populations

  11. Advanced Sensor Platform to Evaluate Manloads For Exploration Suit Architectures

    NASA Technical Reports Server (NTRS)

    McFarland, Shane; Pierce, Gregory

    2016-01-01

    Space suit manloads are defined as the outer bounds of force that the human occupant of a suit is able to exert onto the suit during motion. They are defined on a suit-component basis as a unit of maximum force that the suit component in question must withstand without failure. Existing legacy manloads requirements are specific to the suit architecture of the EMU and were developed in an iterative fashion; however, future exploration needs dictate a new suit architecture with bearings, load paths, and entry capability not previously used in any flight suit. No capability currently exists to easily evaluate manloads imparted by a suited occupant, which would be required to develop requirements for a flight-rated design. However, sensor technology has now progressed to the point where an easily-deployable, repeatable and flexible manloads measuring technique could be developed leveraging recent advances in sensor technology. INNOVATION: This development positively impacts schedule, cost and safety risk associated with new suit exploration architectures. For a final flight design, a comprehensive and accurate man loads requirements set must be communicated to the contractor; failing that, a suit design which does not meet necessary manloads limits is prone to failure during testing or worse, during an EVA, which could cause catastrophic failure of the pressure garment posing risk to the crew. This work facilitates a viable means of developing manloads requirements using a range of human sizes & strengths. OUTCOME / RESULTS: Performed sensor market research. Highlighted three viable options (primary, secondary, and flexible packaging option). Designed/fabricated custom bracket to evaluate primary option on a single suit axial. Manned suited manload testing completed and general approach verified.

  12. Geological setting, emplacement mechanism and igneous evolution of the Atchiza mafic-ultramafic layered suite in north-west Mozambique

    NASA Astrophysics Data System (ADS)

    Ibraimo, Daniel Luis; Larsen, Rune B.

    2015-11-01

    The Atchiza mafic and ultramafic-layered suite (hereafter, "Atchiza Suite) crops out in an area 330 km2 west of the Mozambican Tete province. In an early account of the geology of this intrusion, it was considered the continuation of the Great Dyke of Zimbabwe, an idea that was aborted after detailed studies. Nevertheless, the Ni concentrations in the Atchiza outcrop rocks are considerable. Our investigation used field evidence, hand specimens and petrography descriptions, mineral chemistry studies using electron microprobe analysis and tectonic analysis to arrive at a plausible mineralogical composition and understanding of the tectonic setting for the igneous evolution. The mineral composition from the Atchiza Suite indicates that these are cumulates. The magmatic segregation from the petrographic and mineral composition reasoning indicates that dunite-lherzolitic peridotite-olivine gabbro-gabbronorite-gabbro-pegmatitic gabbro is the rock formation sequence. Olivine and chromite were the first phases formed, followed by pyroxene and plagioclase. In addition, it is shown that these minerals are near-liquidus crystallization products of basaltic magma with olivine Fo: 87.06 in dunite, mean values of clinopyroxene are (Wo: 36.4, En: 48.0, Fs: 15.2), orthopyroxene (Wo: 2.95, En: 73.0, Fs: 24.2) and plagioclase An: 71.3, respectively. Opaque minerals comprise Fe-Ti oxides and (Fe, Cr) spinel up to 4.8 vol.%, but chromitite layers are not present. Most of the opaque minerals are interstitial to pyroxene. Sulphides are common in gabbros, with pyrrhotite, pentlandite, chalcopyrite, pyrite and covellite together comprising 0.4-2.0 vol.%. The whole rock Rare Earth Element (REE) concentrations are mainly a result of differentiation, but slight crustal contamination/assimilation contributed to the REE contents. In addition, they also show Eu enrichment, suggesting that plagioclase fractionation was important in the rock. The Atchiza Suite preserves a deep-seated plumbing

  13. Z-2 Prototype Space Suit Development

    NASA Technical Reports Server (NTRS)

    Ross, Amy; Rhodes, Richard; Graziosi, David; Jones, Bobby; Lee, Ryan; Haque, Bazle Z.; Gillespie, John W., Jr.

    2014-01-01

    NASA's Z-2 prototype space suit is the highest fidelity pressure garment from both hardware and systems design perspectives since the Space Shuttle Extravehicular Mobility Unit (EMU) was developed in the late 1970's. Upon completion the Z-2 will be tested in the 11 foot human-rated vacuum chamber and the Neutral Buoyancy Laboratory (NBL) at the NASA Johnson Space Center to assess the design and to determine applicability of the configuration to micro-, low- (asteroid), and planetary- (surface) gravity missions. This paper discusses the 'firsts' that the Z-2 represents. For example, the Z-2 sizes to the smallest suit scye bearing plane distance for at least the last 25 years and is being designed with the most intensive use of human models with the suit model.

  14. Halogen-free benzoxazine based curable compositions for high TG applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tietze, Roger; Nguyen, Yen-Loan

    The present invention provides a halogen-free curable composition including a benzoxazine monomer, at least one epoxy resin, a catalyst, a toughening agent and a solvent. The halogen-free curable composition is especially suited for use in automobile and aerospace applications since the composition, upon curing, produces a composite having a high glass transition temperature.

  15. Quantifying Astronaut Tasks: Robotic Technology and Future Space Suit Design

    NASA Technical Reports Server (NTRS)

    Newman, Dava

    2003-01-01

    The primary aim of this research effort was to advance the current understanding of astronauts' capabilities and limitations in space-suited EVA by developing models of the constitutive and compatibility relations of a space suit, based on experimental data gained from human test subjects as well as a 12 degree-of-freedom human-sized robot, and utilizing these fundamental relations to estimate a human factors performance metric for space suited EVA work. The three specific objectives are to: 1) Compile a detailed database of torques required to bend the joints of a space suit, using realistic, multi- joint human motions. 2) Develop a mathematical model of the constitutive relations between space suit joint torques and joint angular positions, based on experimental data and compare other investigators' physics-based models to experimental data. 3) Estimate the work envelope of a space suited astronaut, using the constitutive and compatibility relations of the space suit. The body of work that makes up this report includes experimentation, empirical and physics-based modeling, and model applications. A detailed space suit joint torque-angle database was compiled with a novel experimental approach that used space-suited human test subjects to generate realistic, multi-joint motions and an instrumented robot to measure the torques required to accomplish these motions in a space suit. Based on the experimental data, a mathematical model is developed to predict joint torque from the joint angle history. Two physics-based models of pressurized fabric cylinder bending are compared to experimental data, yielding design insights. The mathematical model is applied to EVA operations in an inverse kinematic analysis coupled to the space suit model to calculate the volume in which space-suited astronauts can work with their hands, demonstrating that operational human factors metrics can be predicted from fundamental space suit information.

  16. 46 CFR 199.214 - Immersion suits and thermal protective aids.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Immersion suits and thermal protective aids. 199.214... Passenger Vessels § 199.214 Immersion suits and thermal protective aids. (a) Each passenger vessel must... an immersion suit. (c) The immersion suits and thermal protective aids required under paragraphs (a...

  17. 46 CFR 199.214 - Immersion suits and thermal protective aids.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Immersion suits and thermal protective aids. 199.214... Passenger Vessels § 199.214 Immersion suits and thermal protective aids. (a) Each passenger vessel must... an immersion suit. (c) The immersion suits and thermal protective aids required under paragraphs (a...

  18. 46 CFR 199.214 - Immersion suits and thermal protective aids.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Immersion suits and thermal protective aids. 199.214... Passenger Vessels § 199.214 Immersion suits and thermal protective aids. (a) Each passenger vessel must... an immersion suit. (c) The immersion suits and thermal protective aids required under paragraphs (a...

  19. 46 CFR 199.214 - Immersion suits and thermal protective aids.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Immersion suits and thermal protective aids. 199.214... Passenger Vessels § 199.214 Immersion suits and thermal protective aids. (a) Each passenger vessel must... an immersion suit. (c) The immersion suits and thermal protective aids required under paragraphs (a...

  20. 46 CFR 199.214 - Immersion suits and thermal protective aids.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Immersion suits and thermal protective aids. 199.214... Passenger Vessels § 199.214 Immersion suits and thermal protective aids. (a) Each passenger vessel must... an immersion suit. (c) The immersion suits and thermal protective aids required under paragraphs (a...

  1. Analytical techniques for retrieval of atmospheric composition with the quadrupole mass spectrometer of the Sample Analysis at Mars instrument suite on Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    B. Franz, Heather; G. Trainer, Melissa; H. Wong, Michael; L. K. Manning, Heidi; C. Stern, Jennifer; R. Mahaffy, Paul; K. Atreya, Sushil; Benna, Mehdi; G. Conrad, Pamela; N. Harpold, Dan; A. Leshin, Laurie; A. Malespin, Charles; P. McKay, Christopher; Thomas Nolan, J.; Raaen, Eric

    2014-06-01

    The Sample Analysis at Mars (SAM) instrument suite is the largest scientific payload on the Mars Science Laboratory (MSL) Curiosity rover, which landed in Mars' Gale Crater in August 2012. As a miniature geochemical laboratory, SAM is well-equipped to address multiple aspects of MSL's primary science goal, characterizing the potential past or present habitability of Gale Crater. Atmospheric measurements support this goal through compositional investigations relevant to martian climate evolution. SAM instruments include a quadrupole mass spectrometer, a tunable laser spectrometer, and a gas chromatograph that are used to analyze martian atmospheric gases as well as volatiles released by pyrolysis of solid surface materials (Mahaffy et al., 2012). This report presents analytical methods for retrieving the chemical and isotopic composition of Mars' atmosphere from measurements obtained with SAM's quadrupole mass spectrometer. It provides empirical calibration constants for computing volume mixing ratios of the most abundant atmospheric species and analytical functions to correct for instrument artifacts and to characterize measurement uncertainties. Finally, we discuss differences in volume mixing ratios of the martian atmosphere as determined by SAM (Mahaffy et al., 2013) and Viking (Owen et al., 1977; Oyama and Berdahl, 1977) from an analytical perspective. Although the focus of this paper is atmospheric observations, much of the material concerning corrections for instrumental effects also applies to reduction of data acquired with SAM from analysis of solid samples. The Sample Analysis at Mars (SAM) instrument measures the composition of the martian atmosphere. Rigorous calibration of SAM's mass spectrometer was performed with relevant gas mixtures. Calibration included derivation of a new model to correct for electron multiplier effects. Volume mixing ratios for Ar and N2 obtained with SAM differ from those obtained with Viking. Differences between SAM and Viking

  2. Space Suit CO2 Washout During Intravehicular Activity

    NASA Technical Reports Server (NTRS)

    Augustine, Phillip M.; Navarro, Moses; Conger, Bruce; Sargusingh, Miriam M.

    2010-01-01

    Space suit carbon dioxide (CO2) washout refers to the removal of CO2 gas from the oral-nasal area of a suited astronaut's (or crewmember's) helmet using the suit's ventilation system. Inadequate washout of gases can result in diminished mental/cognitive abilities as well as headaches and light headedness. In addition to general discomfort, these ailments can impair an astronaut s ability to perform mission-critical tasks ranging from flying the space vehicle to performing lunar extravehicular activities (EVAs). During design development for NASA s Constellation Program (CxP), conflicting requirements arose between the volume of air flow that the new Orion manned space vehicle is allocated to provide to the suited crewmember and the amount of air required to achieve CO2 washout in a space suit. Historically, space suits receive 6.0 actual cubic feet per minute (acfm) of air flow, which has adequately washed out CO2 for EVAs. For CxP, the Orion vehicle will provide 4.5 acfm of air flow to the suit. A group of subject matter experts (SM Es) among the EVA Systems community came to an early consensus that 4.5 acfm may be acceptable for low metabolic rate activities. However, this value appears very risky for high metabolic rates, hence the need for further analysis and testing. An analysis was performed to validate the 4.5 acfm value and to determine if adequate CO2 washout can be achieved with the new suit helmet design concepts. The analysis included computational fluid dynamic (CFD) modeling cases, which modeled the air flow and breathing characteristics of a human wearing suit helmets. Helmet testing was performed at the National Institute of Occupational Safety and Health (NIOSH) in Pittsburgh, Pennsylvania, to provide a gross-level validation of the CFD models. Although there was not a direct data correlation between the helmet testing and the CFD modeling, the testing data showed trends that are very similar to the CFD modeling. Overall, the analysis yielded

  3. Design of Test Support Hardware for Advanced Space Suits

    NASA Technical Reports Server (NTRS)

    Watters, Jeffrey A.; Rhodes, Richard

    2013-01-01

    As a member of the Space Suit Assembly Development Engineering Team, I designed and built test equipment systems to support the development of the next generation of advanced space suits. During space suit testing it is critical to supply the subject with two functions: (1) cooling to remove metabolic heat, and (2) breathing air to pressurize the space suit. The objective of my first project was to design, build, and certify an improved Space Suit Cooling System for manned testing in a 1-G environment. This design had to be portable and supply a minimum cooling rate of 2500 BTU/hr. The Space Suit Cooling System is a robust, portable system that supports very high metabolic rates. It has a highly adjustable cool rate and is equipped with digital instrumentation to monitor the flowrate and critical temperatures. It can supply a variable water temperature down to 34 deg., and it can generate a maximum water flowrate of 2.5 LPM. My next project was to design and build a Breathing Air System that was capable of supply facility air to subjects wearing the Z-2 space suit. The system intakes 150 PSIG breathing air and regulates it to two operating pressures: 4.3 and 8.3 PSIG. It can also provide structural capabilities at 1.5x operating pressure: 6.6 and 13.2 PSIG, respectively. It has instrumentation to monitor flowrate, as well as inlet and outlet pressures. The system has a series of relief valves to fully protect itself in case of regulator failure. Both projects followed a similar design methodology. The first task was to perform research on existing concepts to develop a sufficient background knowledge. Then mathematical models were developed to size components and simulate system performance. Next, mechanical and electrical schematics were generated and presented at Design Reviews. After the systems were approved by the suit team, all the hardware components were specified and procured. The systems were then packaged, fabricated, and thoroughly tested. The next step

  4. 33 CFR 144.20-5 - Exposure suits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... readily accessible location in or near the berthing area of the person for whom the exposure suit is... stowed in that location) is readily accessible to the station. (c) Each exposure suit on a MODU must be... type or multi-tone type, of corrosion resistant construction, and in good working order. The whistle...

  5. Z-2 Prototype Space Suit Development

    NASA Technical Reports Server (NTRS)

    Ross, Amy; Rhodes, Richard; Graziosi, David; Jones, Bobby; Lee, Ryan; Haque, Bazle Z.; Gillespie, John W., Jr.

    2014-01-01

    NASA's Z-2 prototype space suit is the highest fidelity pressure garment from both hardware and systems design perspectives since the Shuttle Extravehicular Mobility Unit (EMU) was developed in the late 1970's. Upon completion it will be tested in the 11' humanrated vacuum chamber and the Neutral Buoyancy Laboratory (NBL) at the NASA Johnson Space Center to assess the design and to determine applicability of the configuration to micro-, low- (asteroid), and planetary- (surface) gravity missions. This paper discusses the 'firsts' the Z-2 represents. For example, the Z-2 sizes to the smallest suit scye bearing plane distance for at least the last 25 years and is being designed with the most intensive use of human models with the suit model. The paper also provides a discussion of significant Z-2 configuration features, and how these components evolved from proposal concepts to final designs.

  6. Z-2 Prototype Space Suit Development

    NASA Technical Reports Server (NTRS)

    Ross, Amy; Rhodes, Richard; Graziosi, David

    2014-01-01

    NASA's Z-2 prototype space suit is the highest fidelity pressure garment from both hardware and systems design perspectives since the Shuttle Extravehicular Mobility Unit (EMU) was developed in the late 1970's. Upon completion it will be tested in the 11' human-rated vacuum chamber and the Neutral Buoyancy Laboratory (NBL) at the NASA Johnson Space Center to assess the design and to determine applicability of the configuration to micro-, low- (asteroid), and planetary- (surface) gravity missions. This paper discusses the 'firsts' the Z-2 represents. For example, the Z-2 sizes to the smallest suit scye bearing plane distance for at least the last 25 years and is being designed with the most intensive use of human models with the suit model. The paper also provides a discussion of significant Z-2 configuration features, and how these components evolved from proposal concepts to final designs.

  7. Fate of Subducting Organic Carbon: Evidence from HP/UHP Metasedimentary Suites

    NASA Astrophysics Data System (ADS)

    Kraft, K.; Bebout, G. E.

    2017-12-01

    Community interest in deep-Earth C cycling has focused attention on extents of C release from subducting oceanic lithosphere and sediment and the fate of this released C. Many have suggested that, based on isotopic and other arguments, 20% of the C subducted into the deeper mantle is in reduced form (organic); however, individual margins show large variation in carbonate to organic C ratios. Despite the size of the potentially deeply subducted organic C reservoir, its fate in subducting sections remains largely unexplored, with most attention paid to release of carbonate C. To characterize the forearc behavior of organic C, metamorphosed to P-T as high as that beneath volcanic fronts, we evaluated records of reduced C (RC) contents and isotope compositions in HP/UHP metasediments: 1) Schistes Lustres/Cignana (SLC) suite (Alps; Cook-Kollars et al., 2014, Chem Geol) with abundant carbonate and resembling sediment entering the East Sunda trench; and (2) Franciscan Complex (FC), W. Baja Terrain (WBT), Catalina Schist (CS) metasediments (Sadofsky and Bebout, 2003, G3), largely sandstone-shale sequences containing very little carbonate. In general, more Al-rich samples (shaley) in the terrigenous metasedimentary suites have higher concentrations of RC, which in low-grade units preserves δ13C of its organic protoliths. Carbonate-poor rocks in the SLC suite, and at ODP Site 765, show correlated major element (Al, Mg, Mn, Ti, P) and RC contents (up to 1.2 wt.%) reflecting sandstone-shale mixture. In the FC, WBT, and CS, the more Al-rich samples contain up to 2 wt. % RC. In high-grade Catalina Schist, RC has elevated δ13C due to C loss in CH4 and high-grade Alps rocks show reduced RC wt. % normalized to Al content. We consider processes that could alter contents and isotopic compositions of RC in sediment, e.g., devolatilization, closed-system exchange with carbonate, redox reactions, isotopic exchange with C in externally-derived fluids. It appears that, on modern Earth

  8. A new device for the inflation of the antigravity suit.

    PubMed

    Brodrick, P M

    1986-02-01

    The 'Schuco' orthopaedic tourniquet inflator can be simply converted into a suitable device for inflating an antigravity suit (G-suit). The antigravity suit may be used on neurosurgical patients undergoing procedures in the sitting position to help prevent hypotension and air embolism. The availability of this device may encourage the more widespread use of an antigravity suit in neuro-anaesthetic practice.

  9. Carbon Nanofiber Nanoelectrodes for Neural Stimulation and Chemical Detection: The Era of "Smart" Deep Brain Stimulation

    NASA Technical Reports Server (NTRS)

    Koehne, Jessica E.

    2016-01-01

    A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report two studies using vertically aligned CNF nanoelectrodes for biomedical applications. CNF arrays are investigated as neural stimulation and neurotransmitter recording electrodes for application in deep brain stimulation (DBS). Polypyrrole coated CNF nanoelectrodes have shown great promise as stimulating electrodes due to their large surface area, low impedance, biocompatibility and capacity for highly localized stimulation. CNFs embedded in SiO2 have been used as sensing electrodes for neurotransmitter detection. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable smart therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization.

  10. Carbon Nanofiber Nanoelectrodes for Biosensing Applications

    NASA Technical Reports Server (NTRS)

    Koehne, Jessica Erin

    2014-01-01

    A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report two studies using vertically aligned CNF nanoelectrodes for biomedical applications. CNF arrays are investigated as neural stimulation and neurotransmitter recording electrodes for application in deep brain stimulation (DBS). Polypyrrole coated CNF nanoelectrodes have shown great promise as stimulating electrodes due to their large surface area, low impedance, biocompatibility and capacity for highly localized stimulation. CNFs embedded in SiO2 have been used as sensing electrodes for neurotransmitter detection. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable smart therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization.

  11. Carbon Nanofiber Nanoelectrodes for Neural Stimulation and Chemical Detection: The Era of Smart Deep Brain Stimulation

    NASA Technical Reports Server (NTRS)

    Koehne, Jessica E.

    2016-01-01

    A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report two studies using vertically aligned CNF nanoelectrodes for biomedical applications. CNF arrays are investigated as neural stimulation and neurotransmitter recording electrodes for application in deep brain stimulation (DBS). Polypyrrole coated CNF nanoelectrodes have shown great promise as stimulating electrodes due to their large surface area, low impedance, biocompatibility and capacity for highly localized stimulation. CNFs embedded in SiO2 have been used as sensing electrodes for neurotransmitter detection. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable "smart" therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization.

  12. The physician's reaction to a malpractice suit.

    PubMed

    Lavery, J P

    1988-01-01

    A malpractice suit can have a devastating impact on a practitioner's professional and personal life. The physician's reaction to this event is profound, affecting his own life-style and that of family, colleagues, and patients. This commentary presents an analogy between the physician's reaction to a malpractice suit and the stages of grief described by Elisabeth Kübler-Ross: the sequence of denial, anger, bargaining, depression, and acceptance. Understanding the psychodynamics of this reaction can help physicians to cope with the problems inherent in a malpractice suit and to maintain a greater stability in their personal lives. Adverse effects on medical practice and private life-style, and on the legal proceedings, can be minimized.

  13. Chemical studies of H chondrites. 4: New data and comparison of Antarctic suites

    NASA Astrophysics Data System (ADS)

    Wolf, Stephen F.; Lipschutz, Michael E.

    1995-02-01

    We report data for the trace elements Au, Co, Sb, Ga, Rb, Ag, Se, Cs, Te, Zn, Cd, Bi, Ti, and In (ordered by putative volatility during nebular condensation and accretion) determined by neutron activation analysis in 13 H5 chondrites from Victoria Land and 20 H4-6 chondrites from Queen Maud Land, Antarctica. These and earlier results provide Antarctic sample suites of 34 chondrites from Victoria Land and 25 from Queen Maud Land. Treatment of data for the most volatile 10 elements (Rb to In) in these studies by multivariate statistical techniques more robust, as well as more conservative, than conventional linear discriminant analysis and logistic regression demonstrates that compositions differ at marginally significant levels. This difference cannot be explained by trivial (terrestrial) causes and becomes more significant, despite the smaller size of the database, when comparisons are limited to data from a single analyst and when all upper limits are eliminated from consideration. The Victoria Land and Queen Maud Land suites have different mean terrestrial ages (approximately 300 kyr and approximately 100 kyr, respectively) and age distributions, suggesting that a time-dependent variation of chondritic sources with different thermal histories is responsible. As a result, these two Antarctic suites are, on average, chemically distinguishable from each other. Since H chondrites serve as a paradigm for other meteorite classes, these results indicate that the near-Earth populations of planetary materials varied with time on the 105-year timescale.

  14. Chemical studies of H chondrites. 4: New data and comparison of Antarctic suites

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen F.; Lipschutz, Michael E.

    1995-01-01

    We report data for the trace elements Au, Co, Sb, Ga, Rb, Ag, Se, Cs, Te, Zn, Cd, Bi, Ti, and In (ordered by putative volatility during nebular condensation and accretion) determined by neutron activation analysis in 13 H5 chondrites from Victoria Land and 20 H4-6 chondrites from Queen Maud Land, Antarctica. These and earlier results provide Antarctic sample suites of 34 chondrites from Victoria Land and 25 from Queen Maud Land. Treatment of data for the most volatile 10 elements (Rb to In) in these studies by multivariate statistical techniques more robust, as well as more conservative, than conventional linear discriminant analysis and logistic regression demonstrates that compositions differ at marginally significant levels. This difference cannot be explained by trivial (terrestrial) causes and becomes more significant, despite the smaller size of the database, when comparisons are limited to data from a single analyst and when all upper limits are eliminated from consideration. The Victoria Land and Queen Maud Land suites have different mean terrestrial ages (approximately 300 kyr and approximately 100 kyr, respectively) and age distributions, suggesting that a time-dependent variation of chondritic sources with different thermal histories is responsible. As a result, these two Antarctic suites are, on average, chemically distinguishable from each other. Since H chondrites serve as a paradigm for other meteorite classes, these results indicate that the near-Earth populations of planetary materials varied with time on the 10(exp 5)-year timescale.

  15. Water Vapor Permeability of the Advanced Crew Escape Suit

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Kuznetz, Larry; Gillis, David; Jones, Jeffery; Daniel, Brian; Gernhardt, Michael; Hamilton, Douglas

    2009-01-01

    Crew Exploration Vehicle (CEV) crewmembers are expected to return to earth wearing a suit similar to the current Advanced Crew Escape Suit (ACES). To ensure optimum cognitive performance, suited crewmembers must maintain their core body temperature within acceptable limits. There are currently several options for thermal maintenance in the post-landing phase. These include the current baseline, which uses an ammonia boiler, purge flow using oxygen in the suit, accessing sea water for liquid cooling garment (LCG) cooling and/or relying on the evaporative cooling capacity of the suit. These options vary significantly in mass, power, engineering and safety factors, with relying on the evaporative cooling capacity of the suit being the least difficult to implement. Data from previous studies indicates that the evaporative cooling capacity of the ACES was much higher than previously expected, but subsequent tests were performed for longer duration and higher metabolic rates to better define the water vapor permeability of the ACES. In these tests five subjects completed a series of tests performing low to moderate level exercise in order to control for a target metabolic rate while wearing the ACES in an environmentally controlled thermal chamber. Four different metabolic profiles at a constant temperature of 95 F and relative humidity of 50% were evaluated. These tests showed subjects were able to reject about twice as much heat in the permeable ACES as they were in an impermeable suit that had less thermal insulation. All of the heat rejection differential is attributed to the increased evaporation capability through the Gortex bladder of the suit.

  16. Postural hypotension and the anti-gravity suit.

    PubMed

    Brook, W H

    1994-10-01

    An air force anti-gravity suit, as used by fighter pilots to prevent loss of consciousness, has been successfully employed to treat severe postural hypotension in a patient with Shy-Drager syndrome. The definition of postural hypotension is reviewed, and reference is made to the previous use of the anti-gravity suit in the treatment of this condition.

  17. Shuttle Space Suit: Fabric/LCVG Model Validation. Chapter 8

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Tweed, J.; Zeitlin, C.; Kim, M.-H. Y.; Anderson, B. M.; Cucinotta, F. A.; Ware, J.; Persans, A. E.

    2003-01-01

    A detailed space suit computational model is being developed at the Langley Research Center for radiation exposure evaluation studies. The details of the construction of the space suit are critical to estimation of exposures and assessing the risk to the astronaut on EVA. Past evaluations of space suit shielding properties assumed the basic fabric layup (Thermal Micrometeoroid Garment, fabric restraints, and pressure envelope) and LCVG could be homogenized as a single layer overestimating the protective properties over 60 percent of the fabric area. The present space suit model represents the inhomogeneous distributions of LCVG materials (mainly the water filled cooling tubes). An experimental test is performed using a 34-MeV proton beam and high-resolution detectors to compare with model-predicted transmission factors. Some suggestions are made on possible improved construction methods to improve the space suit s protection properties.

  18. Spinoff From a Moon Suit

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Al Gross transferred expertise obtained as an ILC engineer for NASA's Apollo program to the manufacture of athletic shoes. Gross substituted DuPont's Hytrel plastic for foam materials in the shoe's midsole, eliminating cushioning loss caused by body weight. An external pressurized shell applied from space suit technology was incorporated into the shoe. Stiffness and cushioning properties of the midsole were "tuned" by varying material thickness and styling lines. A stress free "blow molding" process adapted from NASA space suit design was also utilized. The resulting compression chamber midsole performed well in tests. It allows AVIA to re-configure for specific sports and is a "first step" toward a durable, foamless, non-fatiguing midsole.

  19. Elastic-Tether Suits for Artificial Gravity and Exercise

    NASA Technical Reports Server (NTRS)

    Torrance, Paul; Biesinger, Paul; Rybicki, Daniel D.

    2005-01-01

    Body suits harnessed to systems of elastic tethers have been proposed as means of approximating the effects of normal Earth gravitation on crewmembers of spacecraft in flight to help preserve the crewmembers physical fitness. The suits could also be used on Earth to increase effective gravitational loads for purposes of athletic training. The suit according to the proposal would include numerous small tether-attachment fixtures distributed over its outer surface so as to distribute the artificial gravitational force as nearly evenly as possible over the wearer s body. Elastic tethers would be connected between these fixtures and a single attachment fixture on a main elastic tether that would be anchored to a fixture on or under a floor. This fixture might include multiple pulleys to make the effective length of the main tether great enough that normal motions of the wearer cause no more than acceptably small variations in the total artificial gravitational force. Among the problems in designing the suit would be equalizing the load in the shoulder area and keeping tethers out of the way below the knees to prevent tripping. The solution would likely include running tethers through rings on the sides. Body suits with a weight or water ballast system are also proposed for very slight spinning space-station scenarios, in which cases the proposed body suits will easily be able to provide the equivalency of a 1-G or even greater load.

  20. Web-based Tool Suite for Plasmasphere Information Discovery

    NASA Astrophysics Data System (ADS)

    Newman, T. S.; Wang, C.; Gallagher, D. L.

    2005-12-01

    A suite of tools that enable discovery of terrestrial plasmasphere characteristics from NASA IMAGE Extreme Ultra Violet (EUV) images is described. The tool suite is web-accessible, allowing easy remote access without the need for any software installation on the user's computer. The features supported by the tool include reconstruction of the plasmasphere plasma density distribution from a short sequence of EUV images, semi-automated selection of the plasmapause boundary in an EUV image, and mapping of the selected boundary to the geomagnetic equatorial plane. EUV image upload and result download is also supported. The tool suite's plasmapause mapping feature is achieved via the Roelof and Skinner (2000) Edge Algorithm. The plasma density reconstruction is achieved through a tomographic technique that exploits physical constraints to allow for a moderate resolution result. The tool suite's software architecture uses Java Server Pages (JSP) and Java Applets on the front side for user-software interaction and Java Servlets on the server side for task execution. The compute-intensive components of the tool suite are implemented in C++ and invoked by the server via Java Native Interface (JNI).

  1. Multifunctional Cooling Garment for Space Suit Environmental Control

    NASA Technical Reports Server (NTRS)

    Izenson, Michael; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Ferl, Janet; Cencer, Daniel

    2015-01-01

    Future manned space exploration missions will require space suits with capabilities beyond the current state of the art. Portable Life Support Systems for these future space suits face daunting challenges, since they must maintain healthy and comfortable conditions inside the suit for long-duration missions while minimizing weight and water venting. We have demonstrated the feasibility of an innovative, multipurpose garment for thermal and humidity control inside a space suit pressure garment that is simple, rugged, compact, and lightweight. The garment is a based on a conventional liquid cooling and ventilation garment (LCVG) that has been modified to directly absorb latent heat as well as sensible heat. This hybrid garment will prevent buildup of condensation inside the pressure garment, prevent loss of water by absorption in regenerable CO2 removal beds, and conserve water through use of advanced lithium chloride absorber/radiator (LCAR) technology for nonventing heat rejection. We have shown the feasibility of this approach by sizing the critical components for the hybrid garment, developing fabrication methods, building and testing a proof-of-concept system, and demonstrating by test that its performance is suitable for use in space suit life support systems.

  2. Multifunctional Cooling Garment for Space Suit Environmental Control

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Ferl, Janet

    2014-01-01

    Future manned space exploration missions will require space suits with capabilities beyond the current state of the art. Portable Life Support Systems for these future space suits face daunting challenges, since they must maintain healthy and comfortable conditions inside the suit for longduration missions while minimizing weight and water venting. We have demonstrated the feasibility of an innovative, multipurpose garment for thermal and humidity control inside a space suit pressure garment that is simple, rugged, compact, and lightweight. The garment is a based on a conventional liquid cooling and ventilation garment (LCVG) that has been modified to directly absorb latent heat as well as sensible heat. This hybrid garment will prevent buildup of condensation inside the pressure garment, prevent loss of water by absorption in regenerable CO2 removal beds, and conserve water through use of advanced lithium chloride absorber/radiator (LCAR) technology for nonventing heat rejection. We have shown the feasibility of this approach by sizing the critical components for the hybrid garment, developing fabrication methods, building and testing a proof-of-concept system, and demonstrating by test that its performance is suitable for use in space suit life support systems.

  3. Preliminary Shuttle Space Suit Shielding Model. Chapter 9

    NASA Technical Reports Server (NTRS)

    Anderson, Brooke M.; Nealy, J. E.; Qualls, G. D.; Staritz, P. J.; Wilson, J. W.; Kim, M.-H. Y.; Cucinotta, F. A.; Atwell, W.; DeAngelis, G.; Ware, J.; hide

    2003-01-01

    There are two space suits in current usage within the space program: EMU [2] and Orlan-M Space Suit . The Shuttle space suit components are discussed elsewhere [2,5,6] and serve as a guide to development of the current model. The present model is somewhat simplified in details which are considered to be second order in their effects on exposures. A more systematic approach is ongoing on a part-by-part basis with the most important ones in terms of exposure contributions being addressed first with detailed studies of the relatively thin space suit fabric as the first example . Additional studies to validate the model of the head coverings (bubble, helmet, visors.. .) will be undertaken in the near future. The purpose of this paper is to present the details of the model as it is now and to examine its impact on estimates of astronaut health risks. In this respect, the nonuniform distribution of mass of the space suit provides increased shielding in some directions and some organs. These effects can be most important in terms of health risks and especially critical to evaluation of potential early radiation effects .

  4. Immersion Suit Usage Within the RAAF

    DTIC Science & Technology

    1992-01-01

    IMMERSION SUIT USED UVIC QDIS HOLDINGS 202. in 12 Sizes, held by ALSS 492SQN REQUIREMENTS No comment USAGE POLICY REFERENCE DIRAF) AAP 7215.004-1 (P3C...held by ALSS 492SQN. REQUIREMENTS No comment ISACE POLICY REFERENCE DIIAF) AAP 7215.004-1 (P3C Flight Manual) RAAF Supplement No 92 USAGE POUICY UVIC...TYPE P3C REFERENCE Telecon FLTLT Toft I I SQNfRESO AVMED Dated 22 Mar 91 IMMERSION SUIT USED UVIC QDIS HOLDINGS No comment REQUIREMENTS No comment USAGE

  5. Alterations in MAST suit pressure with changes in ambient temperature.

    PubMed

    Sanders, A B; Meislin, H W; Daub, E

    1983-01-01

    A study was undertaken to test the hypothesis that change in ambient air temperature has an effect on MAST suit pressure according to the ideal gas law. Two different MAST suits were tested on Resusci-Annie dummies. The MAST suits were applied in a cold room at 4.4 degrees C and warmed to 44 degrees C. Positive linear correlations were found in nine trials, but the two suits differed in their rate of increase in pressure. Three trials using humans were conducted showing increased pressure with temperature but at a lesser rate than with dummies. A correlation of 0.5 to 1.0 mm Hg increase in MAST suit pressure for each 1.0 degrees C increase in ambient temperature was found. Implications are discussed for the use of the MAST suit in environmental conditions where the temperature changes.

  6. Safety Precautions and Operating Procedures in an (A)BSL-4 Laboratory: 1. Biosafety Level 4 Suit Laboratory Suite Entry and Exit Procedures

    PubMed Central

    Janosko, Krisztina; Holbrook, Michael R.; Adams, Ricky; Barr, Jason; Bollinger, Laura; Newton, Je T'aime; Ntiforo, Corrie; Coe, Linda; Wada, Jiro; Pusl, Daniela; Jahrling, Peter B.; Kuhn, Jens H.; Lackemeyer, Matthew G.

    2016-01-01

    Biosafety level 4 (BSL-4) suit laboratories are specifically designed to study high-consequence pathogens for which neither infection prophylaxes nor treatment options exist. The hallmarks of these laboratories are: custom-designed airtight doors, dedicated supply and exhaust airflow systems, a negative-pressure environment, and mandatory use of positive-pressure (“space”) suits. The risk for laboratory specialists working with highly pathogenic agents is minimized through rigorous training and adherence to stringent safety protocols and standard operating procedures. Researchers perform the majority of their work in BSL-2 laboratories and switch to BSL-4 suit laboratories when work with a high-consequence pathogen is required. Collaborators and scientists considering BSL-4 projects should be aware of the challenges associated with BSL-4 research both in terms of experimental technical limitations in BSL-4 laboratory space and the increased duration of such experiments. Tasks such as entering and exiting the BSL-4 suit laboratories are considerably more complex and time-consuming compared to BSL-2 and BSL-3 laboratories. The focus of this particular article is to address basic biosafety concerns and describe the entrance and exit procedures for the BSL-4 laboratory at the NIH/NIAID Integrated Research Facility at Fort Detrick. Such procedures include checking external systems that support the BSL-4 laboratory, and inspecting and donning positive-pressure suits, entering the laboratory, moving through air pressure-resistant doors, and connecting to air-supply hoses. We will also discuss moving within and exiting the BSL-4 suit laboratories, including using the chemical shower and removing and storing positive-pressure suits. PMID:27768063

  7. Safety Precautions and Operating Procedures in an (A)BSL-4 Laboratory: 1. Biosafety Level 4 Suit Laboratory Suite Entry and Exit Procedures.

    PubMed

    Janosko, Krisztina; Holbrook, Michael R; Adams, Ricky; Barr, Jason; Bollinger, Laura; Newton, Je T'aime; Ntiforo, Corrie; Coe, Linda; Wada, Jiro; Pusl, Daniela; Jahrling, Peter B; Kuhn, Jens H; Lackemeyer, Matthew G

    2016-10-03

    Biosafety level 4 (BSL-4) suit laboratories are specifically designed to study high-consequence pathogens for which neither infection prophylaxes nor treatment options exist. The hallmarks of these laboratories are: custom-designed airtight doors, dedicated supply and exhaust airflow systems, a negative-pressure environment, and mandatory use of positive-pressure ("space") suits. The risk for laboratory specialists working with highly pathogenic agents is minimized through rigorous training and adherence to stringent safety protocols and standard operating procedures. Researchers perform the majority of their work in BSL-2 laboratories and switch to BSL-4 suit laboratories when work with a high-consequence pathogen is required. Collaborators and scientists considering BSL-4 projects should be aware of the challenges associated with BSL-4 research both in terms of experimental technical limitations in BSL-4 laboratory space and the increased duration of such experiments. Tasks such as entering and exiting the BSL-4 suit laboratories are considerably more complex and time-consuming compared to BSL-2 and BSL-3 laboratories. The focus of this particular article is to address basic biosafety concerns and describe the entrance and exit procedures for the BSL-4 laboratory at the NIH/NIAID Integrated Research Facility at Fort Detrick. Such procedures include checking external systems that support the BSL-4 laboratory, and inspecting and donning positive-pressure suits, entering the laboratory, moving through air pressure-resistant doors, and connecting to air-supply hoses. We will also discuss moving within and exiting the BSL-4 suit laboratories, including using the chemical shower and removing and storing positive-pressure suits.

  8. Model for Predicting the Performance of Planetary Suit Hip Bearing Designs

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew S.; Margerum, Sarah; Hharvill, Lauren; Rajulu, Sudhakar

    2012-01-01

    Designing a space suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. During the development period of the suit numerous design iterations need to occur before the hardware meets human performance requirements. Using computer models early in the design phase of hardware development is advantageous, by allowing virtual prototyping to take place. A virtual design environment allows designers to think creatively, exhaust design possibilities, and study design impacts on suit and human performance. A model of the rigid components of the Mark III Technology Demonstrator Suit (planetary-type space suit) and a human manikin were created and tested in a virtual environment. The performance of the Mark III hip bearing model was first developed and evaluated virtually by comparing the differences in mobility performance between the nominal bearing configurations and modified bearing configurations. Suited human performance was then simulated with the model and compared to actual suited human performance data using the same bearing configurations. The Mark III hip bearing model was able to visually represent complex bearing rotations and the theoretical volumetric ranges of motion in three dimensions. The model was also able to predict suited human hip flexion and abduction maximums to within 10% of the actual suited human subject data, except for one modified bearing condition in hip flexion which was off by 24%. Differences between the model predictions and the human subject performance data were attributed to the lack of joint moment limits in the model, human subject fitting issues, and the limited suit experience of some of the subjects. The results demonstrate that modeling space suit rigid segments is a feasible design tool for evaluating and optimizing suited human performance. Keywords: space suit, design, modeling, performance

  9. Planetary Suit Hip Bearing Model for Predicting Design vs. Performance

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew S.; Margerum, Sarah; Harvil, Lauren; Rajulu, Sudhakar

    2011-01-01

    Designing a planetary suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. In order to verifying that new suit designs meet requirements, full prototypes must eventually be built and tested with human subjects. Using computer models early in the design phase of new hardware development can be advantageous, allowing virtual prototyping to take place. Having easily modifiable models of the suit hard sections may reduce the time it takes to make changes to the hardware designs and then to understand their impact on suit and human performance. A virtual design environment gives designers the ability to think outside the box and exhaust design possibilities before building and testing physical prototypes with human subjects. Reductions in prototyping and testing may eventually reduce development costs. This study is an attempt to develop computer models of the hard components of the suit with known physical characteristics, supplemented with human subject performance data. Objectives: The primary objective was to develop an articulating solid model of the Mark III hip bearings to be used for evaluating suit design performance of the hip joint. Methods: Solid models of a planetary prototype (Mark III) suit s hip bearings and brief section were reverse-engineered from the prototype. The performance of the models was then compared by evaluating the mobility performance differences between the nominal hardware configuration and hardware modifications. This was accomplished by gathering data from specific suited tasks. Subjects performed maximum flexion and abduction tasks while in a nominal suit bearing configuration and in three off-nominal configurations. Performance data for the hip were recorded using state-of-the-art motion capture technology. Results: The results demonstrate that solid models of planetary suit hard segments for use as a performance design tool is feasible. From a general trend perspective

  10. Halogen free benzoxazine based curable compositions for high T.sub.g applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tietze, Roger; Nguyen, Yen-Loan

    A method for forming a halogen-free curable composition containing a benzoxazine monomer, at least one epoxy resin, a catalyst, a toughening agent and a solvent. The halogen-free curable composition is especially suited for use in automobile and aerospace applications since the composition, upon curing, produces a composite having a high glass transition temperature.

  11. EVA Suit Microbial Leakage Investigation Project

    NASA Technical Reports Server (NTRS)

    Falker, Jay; Baker, Christopher; Clayton, Ronald; Rucker, Michelle

    2016-01-01

    The objective of this project is to collect microbial samples from various EVA suits to determine how much microbial contamination is typically released during simulated planetary exploration activities. Data will be released to the planetary protection and science communities, and advanced EVA system designers. In the best case scenario, we will discover that very little microbial contamination leaks from our current or prototype suit designs, in the worst case scenario, we will identify leak paths, learn more about what affects leakage--and we'll have a new, flight-certified swab tool for our EVA toolbox.

  12. [A dynamic model of the extravehicular (correction of extravehicuar) activity space suit].

    PubMed

    Yang, Feng; Yuan, Xiu-gan

    2002-12-01

    Objective. To establish a dynamic model of the space suit base on the particular configuration of the space suit. Method. The mass of the space suit components, moment of inertia, mobility of the joints of space suit, as well as the suit-generated torques, were considered in this model. The expressions to calculate the moment of inertia were developed by simplifying the geometry of the space suit. A modified Preisach model was used to mathematically describe the hysteretic torque characteristics of joints in a pressurized space suit, and it was implemented numerically basing on the observed suit parameters. Result. A dynamic model considering mass, moment of inertia and suit-generated torques was established. Conclusion. This dynamic model provides some elements for the dynamic simulation of the astronaut extravehicular activity.

  13. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer E.; Aitchison, Lindsay

    2009-01-01

    A space suit s mobility is critical to an astronaut s ability to perform work efficiently. As mobility increases, the astronaut can perform tasks for longer durations with less fatigue. The term mobility, with respect to space suits, is defined in terms of two key components: joint range of motion and joint torque. Individually these measures describe the path which in which a joint travels and the force required to move it through that path. Previous space suits mobility requirements were defined as the collective result of these two measures and verified by the completion of discrete functional tasks. While a valid way to impose mobility requirements, such a method does necessitate a solid understanding of the operational scenarios in which the final suit will be performing. Because the Constellation space suit system requirements are being finalized with a relatively immature concept of operations, the Space Suit Element team elected to define mobility in terms of its constituent parts to increase the likelihood that the future pressure garment will be mobile enough to enable a broad scope of undefined exploration activities. The range of motion requirements were defined by measuring the ranges of motion test subjects achieved while performing a series of joint maximizing tasks in a variety of flight and prototype space suits. The definition of joint torque requirements has proved more elusive. NASA evaluated several different approaches to the problem before deciding to generate requirements based on unmanned joint torque evaluations of six different space suit configurations being articulated through 16 separate joint movements. This paper discusses the experiment design, data analysis and results, and the process used to determine the final values for the Constellation pressure garment joint torque requirements.

  14. 28 CFR 51.31 - Communications concerning voting suits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Communications concerning voting suits... Groups § 51.31 Communications concerning voting suits. Individuals and groups are urged to notify the Chief, Voting Section, Civil Rights Division, of litigation concerning voting in jurisdictions subject...

  15. EVA Physiology and Medical Considerations Working in the Suit

    NASA Technical Reports Server (NTRS)

    Parazynski, Scott

    2012-01-01

    This "EVA Physiology and Medical Considerations Working in the Suit" presentation covers several topics related to the medical implications and physiological effects of suited operations in space from the perspective of a physician with considerable first-hand Extravehicular Activity (EVA) experience. Key themes include EVA physiology working in a pressure suit in the vacuum of space, basic EVA life support and work support, Thermal Protection System (TPS) inspections and repairs, and discussions of the physical challenges of an EVA. Parazynski covers the common injuries and significant risks during EVAs, as well as physical training required to prepare for EVAs. He also shares overall suit physiological and medical knowledge with the next generation of Extravehicular Mobility Unit (EMU) system designers.

  16. Results from Carbon Dioxide Washout Testing Using a Suited Manikin Test Apparatus with a Space Suit Ventilation Test Loop

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Conger, Bruce; McMillin, Summer; Vonau, Walt; Kanne, Bryan; Korona, Adam; Swickrath, Mike

    2016-01-01

    NASA is developing an advanced portable life support system (PLSS) to meet the needs of a new NASA advanced space suit. The PLSS is one of the most critical aspects of the space suit providing the necessary oxygen, ventilation, and thermal protection for an astronaut performing a spacewalk. The ventilation subsystem in the PLSS must provide sufficient carbon dioxide (CO2) removal and ensure that the CO2 is washed away from the oronasal region of the astronaut. CO2 washout is a term used to describe the mechanism by which CO2 levels are controlled within the helmet to limit the concentration of CO2 inhaled by the astronaut. Accumulation of CO2 in the helmet or throughout the ventilation loop could cause the suited astronaut to experience hypercapnia (excessive carbon dioxide in the blood). A suited manikin test apparatus (SMTA) integrated with a space suit ventilation test loop was designed, developed, and assembled at NASA in order to experimentally validate adequate CO2 removal throughout the PLSS ventilation subsystem and to quantify CO2 washout performance under various conditions. The test results from this integrated system will be used to validate analytical models and augment human testing. This paper presents the system integration of the PLSS ventilation test loop with the SMTA including the newly developed regenerative Rapid Cycle Amine component used for CO2 removal and tidal breathing capability to emulate the human. The testing and analytical results of the integrated system are presented along with future work.

  17. Advanced Space Suit Insulation Feasibility Study

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.; Orndoff, Evelyne S.

    2000-01-01

    For planetary applications, the space suit insulation has unique requirements because it must perform in a dynamic mode to protect humans in the harsh dust, pressure and temperature environments. Since the presence of a gaseous planetary atmosphere adds significant thermal conductance to the suit insulation, the current multi-layer flexible insulation designed for vacuum applications is not suitable in reduced pressure planetary environments such as that of Mars. Therefore a feasibility study has been conducted at NASA to identify the most promising insulation concepts that can be developed to provide an acceptable suit insulation. Insulation concepts surveyed include foams, microspheres, microfibers, and vacuum jackets. The feasibility study includes a literature survey of potential concepts, an evaluation of test results for initial insulation concepts, and a development philosophy to be pursued as a result of the initial testing and conceptual surveys. The recommended focus is on microfibers due to the versatility of fiber structure configurations, the wide choice of fiber materials available, the maturity of the fiber processing industry, and past experience with fibers in insulation applications

  18. Integrated Suit Test 1 - A Study to Evaluate Effects of Suit Weight, Pressure, and Kinematics on Human Performance during Lunar Ambulation

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.; Norcross, Jason; Vos, Jessica R.

    2008-01-01

    In an effort to design the next generation Lunar suit, NASA has initiated a series of tests aimed at understanding the human physiological and biomechanical affects of space suits under a variety of conditions. The first of these tests was the EVA Walkback Test (ICES 2007-01-3133). NASA-JSC assembled a multi-disciplinary team to conduct the second test of the series, titled Integrated Suit Test 1 (IST-1), from March 6 through July 24, 2007. Similar to the Walkback Test, this study was performed with the Mark III (MKIII) EVA Technology Demonstrator suit, a treadmill, and the Partial Gravity Simulator in the Space Vehicle Mock-Up Facility at Johnson Space Center. The data collected for IST-1 included metabolic rates, ground reaction forces, biomechanics, and subjective workload and controllability feedback on both suited and unsuited (shirt-sleeve) astronaut subjects. For IST-1 the center of gravity was controlled to a nearly perfect position while the weight, pressure and biomechanics (waist locked vs. unlocked) were varied individually to evaluate the effects of each on the ability to perform level (0 degree incline) ambulation in simulated Lunar gravity. The detailed test methodology and preliminary key findings of IST-1 are summarized in this report.

  19. Development of a space activity suit

    NASA Technical Reports Server (NTRS)

    Annis, J. F.; Webb, P.

    1971-01-01

    The development of a series of prototype space activity suit (SAS) assemblies is discussed. The SAS is a new type of pressure suit designed especially for extravehicular activity. It consists of a set of carefully tailored elastic fabric garments which have been engineered to supply sufficient counterpressure to the body to permit subjects to breath O2 at pressures up to 200 mm Hg without circulatory difficulty. A closed, positive pressure breathing system (PPBS) and a full bubble helmet were also developed to complete the system. The ultimate goal of the SAS is to improve the range of activity and decrease the energy cost of work associated with wearing conventional gas filled pressure suits. Results are presented from both laboratory (1 atmosphere) and altitude chamber tests with subjects wearing various SAS assemblies. In laboratory tests lasting up to three hours, the SAS was worn while subjects breathed O2 at pressures up to 170 mm Hg without developing physiological problems. The only physiological symptoms apparent were a moderate tachycardia related to breathing pressures above 130 mm Hg, and a small collection of edema fluid in the hands. Both problems were considered to be related to areas of under-pressurization by the garments. These problems, it is suggested, can ultimately be corrected by the development of new elastic fabrics and tailoring techniques. Energy cost of activity, and mobility and dexterity of subjects in the SAS, were found to be superior to those in comparable tests on subjects in full pressure suits.

  20. Injury Potential Testing of Suited Occupants During Dynamic Spacecraft Flight Phases

    NASA Technical Reports Server (NTRS)

    McFarland, Shane M.

    2010-01-01

    In support of the Constellation Program, a space-suit architecture was envisioned for support of Launch, Entry, Abort, Micro-g EVA, Post Landing crew operations, and under emergency conditions, survival. This space suit architecture is unique in comparison to previous launch, entry, and abort (LEA) suit architectures in that it utilized rigid mobility elements in the scye and the upper arm regions. The suit architecture also employed rigid thigh disconnect elements to allow for quick disconnect functionality above the knee which allowed for commonality of the lower portion of the suit across two suit configurations. This suit architecture was designed to interface with the Orion seat subsystem, which includes seat components, lateral supports, and restraints. Due to this unique configuration of spacesuit mobility elements, combined with the need to provide occupant protection during dynamic landing events, risks were identified with potential injury due to the suit characteristics described above. To address the risk concerns, a test series was developed to evaluate the likelihood and consequences of these potential issues. Testing included use of Anthropomorphic Test Devices (ATDs), Post Mortem Human Subjects (PMHS), and representative seat/suit hardware in combination with high linear acceleration events. The ensuing treatment focuses o detailed results of the testing that has ben conducted under this test series thus far.

  1. Injury Potential Testing of Suited Occupants During Dynamic Spacecraft Flight Phases

    NASA Technical Reports Server (NTRS)

    McFarland, Shane M.

    2011-01-01

    In support of the NASA Constellation Program, a space-suit architecture was envisioned for support of Launch, Entry, Abort, Micro-g EVA, Post Landing crew operations, and under emergency conditions, survival. This space suit architecture is unique in comparison to previous launch, entry, and abort (LEA) suit architectures in that it utilized rigid mobility elements in the scye and the upper arm regions. The suit architecture also employed rigid thigh disconnect elements to allow for quick disconnect functionality above the knee which allowed for commonality of the lower portion of the suit across two suit configurations. This suit architecture was designed to interface with the Orion seat subsystem, which includes seat components, lateral supports, and restraints. Due to this unique configuration of spacesuit mobility elements, combined with the need to provide occupant protection during dynamic landing events, risks were identified with potential injury due to the suit characteristics described above. To address the risk concerns, a test series was developed to evaluate the likelihood and consequences of these potential issues. Testing included use of Anthropomorphic Test Devices (ATDs), Post Mortem Human Subjects (PMHS), and representative seat/suit hardware in combination with high linear acceleration events. The ensuing treatment focuses on detailed results of the testing that has been conducted under this test series thus far.

  2. Don/doff support stand for use with rear entry space suits

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J. (Inventor); Tri, Terry O. (Inventor); Spenny, William E. (Inventor); West, Philip R. (Inventor)

    1988-01-01

    A don/doff support stand for use with rear entry space suits is disclosed. The support stand is designed for use in one-g environments; however, certain features of the stand can be used on future spacecraft, lunar, or planetary bases. The present invention has a retainer which receives a protrucing lug fixed on the torso section of the space suit. When the lug is locked in the retainer, the space suit is held in a generally upright position. In a one-g environment a portable ladder is positioned adjacent to the rear entry of the space suit supported by the stand. The astronaut climbs up the ladder and grasps a hand bar assembly positioned above the rear entry. The astronaut then slips his legs through the open rear entry and down into the abdominal portion of the suite. The astronaut then lowers himself fully into the suit. The portable ladder is then removed and the astronaut can close the rear entry door. The lug is then disengaged from the retainer and the astronaut is free to engage in training exercises in the suit. When suit use is over, the astronaut returns to the stand and inserts the lug into the retainer. A technician repositions the ladder. The astronaut opens the rear entry door, grasps the hand bar assembly and does a chin-up to extricate himself from the suit. The astronaut climbs down the movable ladder while the suit is supported by the stand.

  3. Don/Doff support stand for use with rear entry space suits

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J. (Inventor); Tri, Terry O. (Inventor); Spenny, William E. (Inventor); West, Philip R. (Inventor)

    1989-01-01

    A don/doff support stand for use with rear entry space suits is disclosed. The support stand is designed for use in one-g environments; however, certain features of the stand can be used on future space-craft, lunar or planetary bases. The present invention has a retainer which receives a protruding lug fixed on the torso section of the space suit. When the lug is locked in the retainer, the space suit is held in a generally upright position. In a one-g environment a portable ladder is positioned adjacent to the rear entry of the space suit supported by the stand. The astronaut climbs up the ladder and grasps a hand bar assembly positioned above the rear entry. The astronaut then slips his legs through the open rear entry and down into the abdominal portion of the suit. The astronaut then lowers himself fully into the suit. The portable ladder is then removed and the astronaut can close the rear entry door. The lug is then disengaged from the retainer and the astronaut is free to engage in training exercises in the suit. When suit use is over, the astronaut returns to the stand and inserts the lug into the retainer. A technician repositions the ladder. The astronaut opens the rear entry door, grasps the hand bar assembly and does a chin-up to extricate himself from the suit. The astronaut climbs down the movable ladder while the suit is supported by the stand.

  4. EVA Suit Microbial Leakage

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle

    2016-01-01

    NASA has a strategic knowledge gap (B5-3) about what life signatures leak/vent from our Extravehicular Activity (EVA) systems. This will impact how we search for evidence of life on Mars. Characterizing contamination leaks from our suits will help us comply with planetary protection guidelines, and better plan human exploration missions.

  5. 46 CFR 131.875 - Lifejackets, immersion suits, and ring buoys.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Lifejackets, immersion suits, and ring buoys. 131.875... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.875 Lifejackets, immersion suits, and ring buoys. (a) Each lifejacket, immersion suit, and ring life buoy must be marked in block capital...

  6. 46 CFR 131.875 - Lifejackets, immersion suits, and ring buoys.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Lifejackets, immersion suits, and ring buoys. 131.875... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.875 Lifejackets, immersion suits, and ring buoys. (a) Each lifejacket, immersion suit, and ring life buoy must be marked in block capital...

  7. 46 CFR 131.875 - Lifejackets, immersion suits, and ring buoys.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Lifejackets, immersion suits, and ring buoys. 131.875... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.875 Lifejackets, immersion suits, and ring buoys. (a) Each lifejacket, immersion suit, and ring life buoy must be marked in block capital...

  8. 46 CFR 131.875 - Lifejackets, immersion suits, and ring buoys.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Lifejackets, immersion suits, and ring buoys. 131.875... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.875 Lifejackets, immersion suits, and ring buoys. (a) Each lifejacket, immersion suit, and ring life buoy must be marked in block capital...

  9. 46 CFR 131.875 - Lifejackets, immersion suits, and ring buoys.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Lifejackets, immersion suits, and ring buoys. 131.875... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.875 Lifejackets, immersion suits, and ring buoys. (a) Each lifejacket, immersion suit, and ring life buoy must be marked in block capital...

  10. The EVA space suit development in Europe.

    PubMed

    Skoog, A I

    1994-01-01

    The progress of the European EVA space suit predevelopment activities has resulted in an improved technical reference concept, which will form the basis for a start of the Phase C/D development work in 1992. Technology development work over the last 2 years has resulted in a considerable amount of test data and a better understanding of the characteristics and behaviour of individual parts of the space suit system, in particular in the areas of suits' mobility and life support functions. This information has enabled a consolidation of certain design features on the one hand, but also led to the challenging of some of the design solutions on the other hand. While working towards an improved situation with respect to the main design drivers mass and cost, the technical concept has been improved with respect to functional safety and ease of handling, taking the evolving Hermes spaceplane requirements into consideration. Necessary hardware and functional redundancies have been implemented taking the operational scenario with Hermes and Columbus servicing into consideration. This paper presents the latest design status of the European EVA space suit concept, with particular emphasis on crew safety, comfort and productivity, in the frame of the predevelopment work for the European Space Agency.

  11. An evaluation of three anti-G suit concepts for shuttle reentry

    NASA Technical Reports Server (NTRS)

    Krutz, R. W., Jr.; Burton, R. R.; Sawin, C. F.

    1992-01-01

    A study was conducted to compare the standard anti-G launch-entry suit (LES) with a reentry full-coverage anti-G suit (REAGS) and a REAGS without an abdominal bladder (AB). (The inflated AB is the most uncomfortable G-suit component). Intravenous Lasix, a diuretic, was used to induce the fluid loss seen during space flight. Using the Armstrong Laboratory Centrifuge, data collected from seven subjects have shown that less anti-G suit pressure is required to maintain eye-level systolic blood pressure above 70 mmHg when the REAGS or REAGS without AB is worn during simulated shuttle reentry G-profiles when compared to the current LES G-suit. The REAGS without AB was significantly more comfortable than the standard anti-G suit.

  12. The experience in operation and improving the Orlan-type space suits.

    PubMed

    Abramov, I P

    1995-07-01

    Nowadays significant experience has been gained in Russia concerning extravehicular activity (EVA) with cosmonauts wearing a semi-rigid space suit of the "Orlan" type. The conditions for the cosmonauts' vital activities, the operational and ergonomic features of the space suit and its reliability are the most critical factors defining the efficiency of the scheduled operation to be performed by the astronaut and his safety. As the missions performed by the cosmonauts during EVA become more and more elaborate, the requirements for EVA space suits and their systems become more and more demanding, resulting in their consistent advancement. This paper provides certain results of the space suit's operation and analysis of its major problems as applied to the Salyut and MIR orbiting stations. The modification steps of the space suit in the course of operation (Orlan-D, Orlan-DM, Orlan-DMA) and its specific features are presented. The concept of the suited cosmonauts' safety is described as well as trends for future space suit improvements.

  13. Shoulder Joint For Protective Suit

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.; Smallcombe, Richard D.

    1994-01-01

    Shoulder joint allows full range of natural motion: wearer senses little or no resisting force or torque. Developed for space suit, joint offers advantages in protective garments for underwater work, firefighting, or cleanup of hazardous materials.

  14. Metabolic and Subjective Results Review of the Integrated Suit Test Series

    NASA Technical Reports Server (NTRS)

    Norcross, J.R.; Stroud, L.C.; Klein, J.; Desantis, L.; Gernhardt, M.L.

    2009-01-01

    Crewmembers will perform a variety of exploration and construction activities on the lunar surface. These activities will be performed while inside an extravehicular activity (EVA) spacesuit. In most cases, human performance is compromised while inside an EVA suit as compared to a crewmember s unsuited performance baseline. Subjects completed different EVA type tasks, ranging from ambulation to geology and construction activities, in different lunar analog environments including overhead suspension, underwater and 1-g lunar-like terrain, in both suited and unsuited conditions. In the suited condition, the Mark III (MKIII) EVA technology demonstrator suit was used and suit pressure and suit weight were parameters tested. In the unsuited conditions, weight, mass, center of gravity (CG), terrain type and navigation were the parameters. To the extent possible, one parameter was varied while all others were held constant. Tests were not fully crossed, but rather one parameter was varied while all others were left in the most nominal setting. Oxygen consumption (VO2), modified Cooper-Harper (CH) ratings of operator compensation and ratings of perceived exertion (RPE) were measured for each trial. For each variable, a lower value correlates to more efficient task performance. Due to a low sample size, statistical significance was not attainable. Initial findings indicate that suit weight, CG and the operational environment can have a large impact on human performance during EVA. Systematic, prospective testing series such as those performed to date will enable a better understanding of the crucial interactions of the human and the EVA suit system and their environment. However, work remains to be done to confirm these findings. These data have been collected using only unsuited subjects and one EVA suit prototype that is known to fit poorly on a large demographic of the astronaut population. Key findings need to be retested using an EVA suit prototype better suited to a

  15. Astronaut Fred Haise - Suiting Room - Prelaunch - KSC

    NASA Image and Video Library

    1970-04-11

    S70-34851 (11 April 1970) --- A space suit technician talks with astronaut Fred W. Haise Jr., lunar module pilot for NASA's Apollo 13 mission, during suiting up procedures at Kennedy Space Center (KSC). Other members of the crew are astronauts James A. Lovell Jr., commander, and John L. Swigert Jr., command module pilot. Swigert replaced astronaut Thomas K. Mattingly II as a member of the crew when it was learned he had been exposed to measles.

  16. Pilot Fullerton dons EES anti-gravity suit lower torso on middeck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Pilot Fullerton dons ejection escape suit (EES) anti-gravity (anti-g) suit lower torso on forward port side middeck above potable water tank. Anti-g suit is an olive drab inner garment that complements EES.

  17. Development and Evaluation of Titanium Space Suit Bearings

    NASA Technical Reports Server (NTRS)

    Rhodes, Richard; Battisti, Brian; Ytuarte, Ray, Jr.; Schultz, Bradley

    2016-01-01

    The Z-2 Prototype Planetary Extravehicular Space Suit Assembly is a continuation of NASA's Z series of spacesuits, designed with the intent of meeting a wide variety of exploration mission objectives, including human exploration of the Martian surface. Incorporating titanium bearings into the Z series space suit architecture allows us to reduce mass by an estimated 23 pounds per suit system compared to the previously used stainless steel bearing designs without compromising suit functionality. There are two obstacles to overcome when using titanium for a bearing race: 1) titanium is flammable when exposed to the oxygen wetted environment inside the space suit and 2) titanium's poor wear properties are often challenging to overcome in tribology applications. In order to evaluate the ignitability of a titanium space suit bearing, a series of tests were conducted at White Sands Test Facility that introduced the bearings to an extreme test profile, with multiple failures imbedded into the test bearings. The testing showed no signs of ignition in the most extreme test cases; however, substantial wear of the bearing races was observed. In order to design a bearing that can last an entire exploration mission (approximately 2 years), bearing test rigs were developed that allow for the quick evaluation of various bearing ball loads, ball diameters, lubricants, and surface treatments. This test data will allow designers to minimize the titanium bearing mass for a specific material and lubricant combination around a maximum contact stress that will allow the bearing to survive the life of an exploration mission. This paper reviews the current research and testing that has been performed on titanium bearing races to evaluate the use of such materials in an enriched oxygen environment and to optimize the bearing assembly mass and tribological properties to accommodate for the high bearing cycle life for an exploration mission.

  18. The Walkback Test: A Study to Evaluate Suit and Life Support System Performance Requirements for a 10 Kilometer Traverse in a Planetary Suit

    NASA Technical Reports Server (NTRS)

    Vos, Jessica R.; Gernhardt, Michael L.; Lee, Lesley

    2007-01-01

    As planetary suit and planetary life support systems develop, specific design inputs for each system relate to a presently unanswered question concerning operational concepts: What distance can be considered a safe walking distance for a suited EVA crew member exploring the surface of the Moon to "walk-back" to the habitat in the event of a rover breakdown, taking into consideration the planned EVA tasks as well as the possible traverse back to the habitat? It has been assumed, based on Apollo program experience, that 10 kilometers (6.2 mi) will be the maximum EVA excursion distance from the lander or habitat to ensure the crew member s safe return to the habitat in the event of a rover failure. To investigate the feasibility of performing a suited 10 km Walkback, NASA-JSC assembled a multi-disciplinary team to design and implement the Lunar Walkback Test . The test was designed not only to determine the feasibility of a 10 km excursion, but also to collect human performance, biomedical, and biomechanical data relevant to optimizing space suit design and life support system sizing. These data will also be used to develop follow-on studies to understand interrelationships of such key parameters as suit mass, inertia, suit pressure, and center of gravity (CG), and the respective influences of each on human performance.

  19. Comparison of Extravehicular Mobility Unit (EMU) suited and unsuited isolated joint strength measurements

    NASA Technical Reports Server (NTRS)

    Maida, James C.; Demel, Kenneth J.; Morgan, David A.; Wilmington, Robert P.; Pandya, Abhilash K.

    1996-01-01

    In this study the strength of subjects suited in extravehicular mobility units (EMU's) - or Space Shuttle suits - was compared to the strength of unsuited subjects. The authors devised a systematic and complete data set that characterizes isolated joint torques for all major joints of EMU-suited subjects. Six joint motions were included in the data set. The joint conditions of six subjects were compared to increase our understanding of the strength capabilities of suited subjects. Data were gathered on suited and unsuited subjects. Suited subjects wore Class 3 or Class 1 suits, with and without thermal micrometeoroid garments (TMG's). Suited and unsuited conditions for each joint motion were compared. From this the authors found, for example, that shoulder abduction suited conditions differ from each other and from the unsuited condition. A second-order polynomial regression model was also provided. This model, which allows the prediction of suited strength when given unsuited strength information, relates the torques of unsuited conditions to the torques of all suited conditions. Data obtained will enable computer modeling of EMU strength, conversion from unsuited to suited data, and isolated joint strength comparisons between suited and unsuited conditions at any measured angle. From these data mission planners and human factors engineers may gain a better understanding of crew posture, and mobility and strength capabilities. This study also may help suit designers optimize suit strength, and provide a foundation for EMU strength modeling systems.

  20. CO2 Washout Testing of NASA Space Suits

    NASA Technical Reports Server (NTRS)

    Norcross, Jason

    2012-01-01

    During the presentation "CO2 Washout Testing of NASA Spacesuits," Jason Norcross discussed the results of recent carbon dioxide CO2 washout testing of NASA spacesuits including the Rear Entry I-suit (REI), Enhanced Mobility Advanced Crew Escape Suit (EM-ACES), and possibly the ACES and Z-1 EVA prototype. When a spacesuit is used during ground testing, adequate CO2 washout must be provided for the suited subject. Symptoms of acute CO2 exposure depend on the partial pressure of CO2 (ppCO2) available to enter the lungs during respiration. The primary factors during ground-based testing that influence the ppCO2 level in the oronasal area include the metabolic rate of the subject and air flow through the suit. These tests were done to characterize inspired oronasal ppCO2 for a range of workloads and flow rates for which ground testing is nominally performed. During this presentation, Norcross provided descriptions of the spacesuits, test hardware, methodology, and results, as well as implications for future ground testing and verification of flight requirements.

  1. The Soviet-Russian space suits a historical overview of the 1960's.

    PubMed

    Skoog, A Ingemar; Abramov, Isaac P; Stoklitsky, Anatoly Y; Doodnik, Michail N

    2002-01-01

    The development of protective suits for space use started with the Vostok-suit SK-1, first used by Yu. Gagarin on April 12, 1961, and then used on all subsequent Vostok-flights. The technical background for the design of these suits was the work on full pressure protective suits for military pilots and stratospheric flights in the 1930's through 50's. The Soviet-Russian space programme contains a large number of 'firsts', and one of the most well known is the first EVA by Leonov in 1965. This event is also the starting point for a long series of space suit development for Extravehicular Activities over the last 35 years. The next step to come was the transfer in void space of crew members between the two spacecraft Soyuz 4 and 5 in 1969. As has later become known this was an essential element in the planned Soviet lunar exploration programme, which in itself required a new space suit. After the termination of the lunar programme in 1972, the space suit development concentrated on suits applicable to zero-gravity work around the manned space stations Salyut 6, Salyut 7 and MIR. These suits have become known as the ORLAN-family of suits, and an advanced version of this suit (ORLAN-M) will be used on the International Space Station together with the American EMU. This paper covers the space suit development in the Soviet Union in the 1960's and the experience used from the pre-space era. c2002 Published by Elsevier Science Ltd.

  2. 28 CFR 51.11 - Right to bring suit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.11 Right to bring suit. Submission to the Attorney General does not affect the right of the submitting authority to bring an action in... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Right to bring suit. 51.11 Section 51.11...

  3. 28 CFR 51.11 - Right to bring suit.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.11 Right to bring suit. Submission... affecting voting neither has the purpose nor will have the effect of denying or abridging the right to vote... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Right to bring suit. 51.11 Section 51.11...

  4. Method to fabricate layered material compositions

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu

    2004-11-02

    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

  5. NASA CONNECT(TradeMark): Space Suit Science in the Classroom

    NASA Technical Reports Server (NTRS)

    Williams, William B.; Giersch, Chris; Bensen, William E.; Holland, Susan M.

    2003-01-01

    NASA CONNECT's(TradeMark) program titled Functions and Statistics: Dressed for Space initially aired on Public Broadcasting Stations (PBS) nationwide on May 9, 2002. The program traces the evolution of past space suit technologies in the design of space suits for future flight. It serves as the stage to provide educators, parents, and students "space suit science" in the classroom.

  6. A Secure Communication Suite for Underwater Acoustic Sensor Networks

    PubMed Central

    Dini, Gianluca; Duca, Angelica Lo

    2012-01-01

    In this paper we describe a security suite for Underwater Acoustic Sensor Networks comprising both fixed and mobile nodes. The security suite is composed of a secure routing protocol and a set of cryptographic primitives aimed at protecting the confidentiality and the integrity of underwater communication while taking into account the unique characteristics and constraints of the acoustic channel. By means of experiments and simulations based on real data, we show that the suite is suitable for an underwater networking environment as it introduces limited, and sometimes negligible, communication and power consumption overhead. PMID:23202204

  7. Skin blood flow with elastic compressive extravehicular activity space suit.

    PubMed

    Tanaka, Kunihiko; Gotoh, Taro M; Morita, Hironobu; Hargens, Alan R

    2003-10-01

    During extravehicular activity (EVA), current space suits are pressurized with 100% oxygen at approximately 222 mmHg. A tight elastic garment, or mechanical counter pressure (MCP) suit that generates pressure by compression, may have several advantages over current space suit technology. In this study, we investigated local microcirculatory effects produced with negative ambient pressure with an MCP sleeve. The MCP glove and sleeve generated pressures similar to the current space suit. MCP remained constant during negative pressure due to unchanged elasticity of the material. Decreased skin capillary blood flow and temperature during MCP compression was counteracted by greater negative pressure or a smaller pressure differential.

  8. Charnockites and granites of the western Adirondacks, New York, USA: a differentiated A-type suite

    USGS Publications Warehouse

    Whitney, P.R.

    1992-01-01

    Granitic rocks in the west-central Adirondack Highlands of New York State include both relatively homogeneous charnockitic and hornblende granitic gneisses (CG), that occur in thick stratiform bodies and elliptical domes, and heterogeneous leucogneisses (LG), that commonly are interlayered with metasedimentary rocks. Major- and trace-element geochemical analyses were obtained for 115 samples, including both types of granitoids. Data for CG fail to show the presence of more than one distinct group based on composition. Most of the variance within the CG sample population is consistent with magmatic differentiation combined with incomplete separation of early crystals of alkali feldspar, plagioclase, and pyroxenes or amphibole from the residual liquid. Ti, Fe, Mg, Ca, P, Sr, Ba, and Zr decrease with increasing silica, while Rb and K increase. Within CG, the distinction between charnockitic (orthopyroxene-bearing) and granitic gneisses is correlated with bulk chemistry. The charnockites are consistently more mafic than the hornblende granitic gneisses, although forming a continuum with them. The leucogneisses, while generally more felsic than the charnockites and granitic gneisses, are otherwise geochemically similar to them. The data are consistent with the LG suite being an evolved extrusive equivalent of the intrusive CG suite. Both CG and LG suites are metaluminous to mildly peraluminous and display an A-type geochemical signature, enriched in Fe, K, Ce, Y, Nb, Zr, and Ga and depleted in Ca, Mg, and Sr relative to I- and S-type granites. Rare earth element patterns show moderate LREE enrichment and a negative Eu anomaly throughout the suite. The geochemical data suggest an origin by partial melting of biotite- and plagioclase-rich crustal rocks. Emplacement occurred in an anorogenic or post-collisional tectonic setting, probably at relatively shallow depths. Deformation and granulite-facies metamorphism with some partial melting followed during the Ottawan phase

  9. V-SUIT Model Validation Using PLSS 1.0 Test Results

    NASA Technical Reports Server (NTRS)

    Olthoff, Claas

    2015-01-01

    The dynamic portable life support system (PLSS) simulation software Virtual Space Suit (V-SUIT) has been under development at the Technische Universitat Munchen since 2011 as a spin-off from the Virtual Habitat (V-HAB) project. The MATLAB(trademark)-based V-SUIT simulates space suit portable life support systems and their interaction with a detailed and also dynamic human model, as well as the dynamic external environment of a space suit moving on a planetary surface. To demonstrate the feasibility of a large, system level simulation like V-SUIT, a model of NASA's PLSS 1.0 prototype was created. This prototype was run through an extensive series of tests in 2011. Since the test setup was heavily instrumented, it produced a wealth of data making it ideal for model validation. The implemented model includes all components of the PLSS in both the ventilation and thermal loops. The major components are modeled in greater detail, while smaller and ancillary components are low fidelity black box models. The major components include the Rapid Cycle Amine (RCA) CO2 removal system, the Primary and Secondary Oxygen Assembly (POS/SOA), the Pressure Garment System Volume Simulator (PGSVS), the Human Metabolic Simulator (HMS), the heat exchanger between the ventilation and thermal loops, the Space Suit Water Membrane Evaporator (SWME) and finally the Liquid Cooling Garment Simulator (LCGS). Using the created model, dynamic simulations were performed using same test points also used during PLSS 1.0 testing. The results of the simulation were then compared to the test data with special focus on absolute values during the steady state phases and dynamic behavior during the transition between test points. Quantified simulation results are presented that demonstrate which areas of the V-SUIT model are in need of further refinement and those that are sufficiently close to the test results. Finally, lessons learned from the modelling and validation process are given in combination

  10. Composition for detecting uranyl

    DOEpatents

    Baylor, L.C.; Stephens, S.M.

    1994-01-01

    The present invention relates to an indicator composition for use in spectrophotometric detection of a substance in a solution, and a method for making the composition. Useful indicators are sensitive to the particular substance being measured, but are unaffected by the fluid and other chemical species that may be present in the fluid. Optical indicators are used to measure the uranium concentration of process solutions in facilities for extracting uranium from ores, production of nuclear fuels, and reprocessing of irradiated fuels. The composition comprises an organohalide covalently bonded to an indicator for the substance, in such a manner that the product is itself an indicator that provides increased spectral resolution for detecting the substance. The indicator is preferably arsenazo III and the organohalide is preferably cyanuric chloride. These form a composition that is ideally suited for detecting uranyl.

  11. Interaction of Space Suits with Windblown Soil: Preliminary Mars Wind Tunnel Results

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Bratton, C.; Kosmo, J.; Trevino, R.

    1999-09-01

    Experiments in the Mars Wind Tunnel at NASA Ames Research Center show that under Mars conditions, spacesuit materials are highly susceptible to dust contamination when exposed to windblown soil. This effect was suspected from knowledge of the interaction of electrostatically adhesive dust with solid surfaces in general. However, it is important to evaluate the respective roles of materials, meteorological and radiation effects, and the character of the soil. The tunnel permits evaluation of dust contamination and sand abrasion of space suits by simulating both pressure and wind conditions on Mars. The long-term function of space suits on Mars will be primarily threatened by dust contamination. Lunar EVA activities caused heavy contamination of space suits, but the problem was never seriously manifest because of the brief utilization of the suits, and the suits were never reused. Electrostatically adhering dust grains have various detrimental effects: (1) penetration and subsequent wear of suit fabrics, (2) viewing obscuration through visors and scratching/pitting of visor surfaces, (3) penetration, wear, and subsequent seizing-up of mechanical suit joints, (4) changes in albedo and therefore of radiation properties of external heat-exchanger systems, (5) changes in electrical conductivity of suit surfaces which may affect tribocharging of suits and create spurious discharge effects detrimental to suit electronics/radio systems. Additional information is contained in the original.

  12. Inertial motion capture system for biomechanical analysis in pressure suits

    NASA Astrophysics Data System (ADS)

    Di Capua, Massimiliano

    A non-invasive system has been developed at the University of Maryland Space System Laboratory with the goal of providing a new capability for quantifying the motion of the human inside a space suit. Based on an array of six microprocessors and eighteen microelectromechanical (MEMS) inertial measurement units (IMUs), the Body Pose Measurement System (BPMS) allows the monitoring of the kinematics of the suit occupant in an unobtrusive, self-contained, lightweight and compact fashion, without requiring any external equipment such as those necessary with modern optical motion capture systems. BPMS measures and stores the accelerations, angular rates and magnetic fields acting upon each IMU, which are mounted on the head, torso, and each segment of each limb. In order to convert the raw data into a more useful form, such as a set of body segment angles quantifying pose and motion, a series of geometrical models and a non-linear complimentary filter were implemented. The first portion of this works focuses on assessing system performance, which was measured by comparing the BPMS filtered data against rigid body angles measured through an external VICON optical motion capture system. This type of system is the industry standard, and is used here for independent measurement of body pose angles. By comparing the two sets of data, performance metrics such as BPMS system operational conditions, accuracy, and drift were evaluated and correlated against VICON data. After the system and models were verified and their capabilities and limitations assessed, a series of pressure suit evaluations were conducted. Three different pressure suits were used to identify the relationship between usable range of motion and internal suit pressure. In addition to addressing range of motion, a series of exploration tasks were also performed, recorded, and analysed in order to identify different motion patterns and trajectories as suit pressure is increased and overall suit mobility is reduced

  13. STS-77 MS Andrew Thomas suits up

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-77 Mission Specialist Andrew S. W. Thomas finishes donning his launch/entry suit in the Operations and Checkout Building with assistance from a suit technician. A native of South Australia, the rookie astronaut joins a crew of five veterans on the fourth Shuttle flight of 1996. They will depart shortly for Launch Pad 39B, where the Space Shuttle Endeavour is undergoing final preparations for liftoff during a two-and-a-half hour launch window opening at 6:30 a.m. EDT, May 19.

  14. Modeling the Impact of Space Suit Components and Anthropometry on the Center of Mass of a Seated Crewmember

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Blackledge, Christopher; Ferrer, Mike; Margerum, Sarah

    2009-01-01

    subset of the possible maximum and minimum sized crewmembers, were segmented using point-cloud software to create 17 major body segments. The general approach used to calculate the human mass properties was to utilize center of volume outputs from the software for each body segment and apply a homogeneous density function to determine segment mass 3-D coordinates. Suit components, based on the current consensus regarding predicted suit configuration values, were treated as point masses and were positioned using vector mathematics along the body segments based on anthropometry and COM position. A custom MATLAB script then articulates the body segment and suit positions into a selected seated configuration, using joint angles that characterize a standard seated position and a CEV specific seated position. Additional MATLAB(r) scripts are finally used to calculate the composite COM positions in 3-D space for all 12 manikins in both suited and unsuited conditions for both seated configurations. The analysis focused on two aspects: (1) to quantify how much the whole body COM varied from the smallest to largest subject and (2) the impacts of the suit components on the overall COM in each seat configuration. The location across all boundary manikins of the anterior- posterior COM varied by approximately 7cm, the vertical COM varied by approximately 9-10cm, and the mediolateral COM varied by approximately 1.2 cm from the midline sagittal plane for both seat configurations. This variation was surprisingly large given the relative proportionality of the mass distribution of the human body. The suit components caused an anterior shift of the total COM by approximately 2 cm and a shift to the right along the mediolateral axis of 0.4 cm for both seat configurations. When the seat configuration is in the standard posture, the suited vertical COM shifts inferiorly by up to 1 cm whereas in the CEV posture the vertical COM has no appreciable change. These general differences were due the

  15. Extravehicular Mobility Unit Training Suit Symptom Study Report

    NASA Technical Reports Server (NTRS)

    Strauss, Samuel

    2004-01-01

    The purpose of this study was to characterize the symptoms and injuries experienced by NASA astronauts during extravehicular activity (space walk) spacesuit training at the Neutral Buoyancy Laboratory at Ellington Field, Houston, Texas. We identified the frequency and incidence rates of symptoms by each general body location and characterized mechanisms of injury and effective countermeasures. Based on these findings a comprehensive list of recommendations was made to improve training, test preparation, and current spacesuit components, and to design the next -generation spacesuit. At completion of each test event a comprehensive questionnaire was produced that documented suit symptom comments, identified mechanisms of injury, and recommended countermeasures. As we completed our study we found that most extravehicular mobility unit suit symptoms were mild, self-limited, and controlled by available countermeasures. Some symptoms represented the potential for significant injury with short- and long-term consequences regarding astronaut health and interference with mission objectives. The location of symptoms and injuries that were most clinically significant was in the hands, shoulders, and feet. Correction of suit symptoms issues will require a multidisciplinary approach to improve prevention, early medical intervention, astronaut training, test planning, and suit engineering.

  16. Newly designed launch and entry suit (LES) modeled by technician

    NASA Image and Video Library

    1988-11-14

    Space shuttle orange launch and entry suit (LES), a partial pressure suit, is modeled by a technician. LES was designed for STS-26, the return to flight mission, and subsequent missions. Included in the crew escape system (CES) package are launch and entry helmet (LEH) with communications carrier (COMM CAP), parachute pack and harness, life raft, life preserver unit (LPU), LES gloves, suit oxygen manifold and valves, boots, and survival gear.

  17. 46 CFR 160.171-17 - Approval testing for adult size immersion suit.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... equivalent synthetic socks; (v) Work shoes, if the suit is designed for shoes to be worn inside. (2) Test... Approval testing for adult size immersion suit. Caution: During each of the in-water tests prescribed in... if the oversize adult suit is of the same design as the adult suit except for extra material to...

  18. Utilizing a Suited Manikin Test Apparatus and Space Suit Ventilation Loop to Evaluate Carbon Dioxide Washout

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Conger, Bruce; Korona, Adam; Kanne, Bryan; McMillin, Summer; Paul, Thomas; Norcross, Jason; Alonso, Jesus Delgado; Swickrath, Mike

    2015-01-01

    NASA is pursuing technology development of an Advanced Extravehicular Mobility Unit (AEMU) which is an integrated assembly made up of primarily a pressure garment system and a portable life support subsystem (PLSS). The PLSS is further composed of an oxygen subsystem, a ventilation subsystem, and a thermal subsystem. One of the key functions of the ventilation system is to remove and control the carbon dioxide (CO2) delivered to the crewmember. Carbon dioxide washout is the mechanism by which CO2 levels are controlled within the space suit helmet to limit the concentration of CO2 inhaled by the crew member. CO2 washout performance is a critical parameter needed to ensure proper and robust designs that are insensitive to human variabilities in a space suit. A suited manikin test apparatus (SMTA) was developed to augment testing of the PLSS ventilation loop in order to provide a lower cost and more controlled alternative to human testing. The CO2 removal function is performed by the regenerative Rapid Cycle Amine (RCA) within the PLSS ventilation loop and its performance is evaluated within the integrated SMTA and Ventilation Loop test system. This paper will provide a detailed description of the schematics, test configurations, and hardware components of this integrated system. Results and analysis of testing performed with this integrated system will be presented within this paper.

  19. NIST gravimetrically prepared atmospheric level methane in dry air standards suite.

    PubMed

    Rhoderick, George C; Carney, Jennifer; Guenther, Franklin R

    2012-04-17

    The Gas Metrology Group at the National Institute of Standards and Technology was tasked, by a congressional climate change act, to support the atmospheric measurement community through standards development of key greenhouse gases. This paper discusses the development of a methane (CH(4)) primary standard gas mixture (PSM) suite to support CH(4) measurement needs over a large amount-of-substance fraction range 0.3-20,000 μmol mol(-1), but with emphasis at the atmospheric level 300-4000 nmol mol(-1). Thirty-six CH(4) in dry air PSMs were prepared in 5.9 L high-pressure aluminum cylinders with use of a time-tested gravimetric technique. Ultimately 14 of these 36 PSMs define a CH(4) standard suite covering the nominal ambient atmospheric range of 300-4000 nmol mol(-1). Starting materials of pure CH(4) and cylinders of dry air were exhaustively analyzed to determine the purity and air composition. Gas chromatography with flame-ionization detection (GC-FID) was used to determine a CH(4) response for each of the 14 PSMs where the reproducibility of average measurement ratios as a standard error was typically (0.04-0.26) %. An ISO 6134-compliant generalized least-squares regression (GenLine) program was used to analyze the consistency of the CH(4) suite. All 14 PSMs passed the u-test with residuals between the gravimetric and the GenLine solution values being between -0.74 and 1.31 nmol mol(-1); (0.00-0.16)% relative absolute. One of the 14 PSMs, FF4288 at 1836.16 ± 0.75 nmol mol(-1) (k = 1) amount-of-substance fraction, was sent to the Korea Research Institute of Standards and Science (KRISS), the Republic of Korea's National Metrology Institute, for comparison. The same PSM was subsequently sent to the National Oceanic and Atmospheric Administration (NOAA) for analysis to their standards. Results show agreement between KRISS-NIST of +0.13% relative (+2.3 nmol mol(-1)) and NOAA-NIST of -0.14% relative (-2.54 nmol mol(-1)).

  20. STS-71 Pilot Charles J. Precourt suits up

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-71 Pilot Charles J. Precourt gets a helping hand from a suit technician as he dons his launch/entry suit in the Operations and Checkout Building. About to embark on his second spaceflight, Precourt and six fellow crew members will shortly depart for Launch Pad 39A, where the Space Shuttle Atlantis is poised for a third liftoff attempt at 3:32 p.m. EDT.

  1. Neoprene wet-suit hood affects low-frequency underwater hearing thresholds.

    PubMed

    Fothergill, David M; Sims, John R; Curley, Michael D

    2004-05-01

    Psychophysical measures of wet-suit hood sound attenuation are needed to provide the diving community with guidance on protection from underwater sound. Underwater hearing thresholds were obtained from 15 male and 5 female recreational divers with and without a 3-mm thick wet-suit hood. Dives were conducted at a depth of 1 m in a large quiet anechoic pool. Thresholds were determined using a two-interval forced-choice procedure with a 0.71 probability of positive response at convergence. A 1-s pure tone was presented with a 20-ms rise and fall time at 100, 200, 250, 300, 400, and 500 Hz. Without a wet-suit hood, mean thresholds decreased from 99 dB re 1 microPa at 100 Hz to 85 dB at 500 Hz. Thresholds were statistically similar at 100 to 300 Hz with and without the wet-suit hood, but were significantly increased at 400 and 500 Hz with the hood (p < 0.001). In conclusion, at shallow depths, a 3-mm neoprene wet-suit hood attenuates underwater sound by approximately 10 dB for frequencies between 400 Hz and 500 Hz. At frequencies below 400 Hz, a 3-mm neoprene wet-suit hood offers no sound protection.

  2. Inherent work suit buoyancy distribution: effects on lifejacket self-righting performance.

    PubMed

    Barwood, Martin J; Long, Geoffrey M; Lunt, Heather; Tipton, Michael J

    2014-09-01

    Accidental immersion in cold water is an occupational risk. Work suits and life jackets (LJ) should work effectively in combination to keep the airway clear of the water (freeboard) and enable self-righting. We hypothesized that inherent buoyancy, in the suit or LJ, would be beneficial for enabling freeboard, but its distribution may influence LJ self-righting. Six participants consented to complete nine immersions. Suits and LJ tested were: flotation suit (FLOAT; 85 N inherent buoyancy); oilskins 1 (OS-1) and 2 (OS-2), both with no inherent buoyancy; LJs (inherent buoyancy/buoyancy after inflation/total buoyancy), LJ-1 50/150/200 N, LJ-2 0/290/290 N, LJ-3 80/190/270 N. Once dressed, the subject entered an immersion pool where uninflated freeboard, self-righting performance, and inflated freeboard were measured. Data were compared using Friedman's test to the 0.05 alpha level. All suits and LJs enabled uninflated and inflated freeboard, but differences were seen between the suits and LJs. Self-righting was achieved on 43 of 54 occasions, irrespective of suit or LJ. On all occasions that self-righting was not achieved, this occurred in an LJ that included inherent buoyancy (11/54 occasions). Of these 11 failures, 8 occurred (73% of occasions) when the FLOAT suit was being worn. LJs that included inherent buoyancy, that are certified as effective on their own, worked less effectively from the perspective of self-righting in combination with a work suit that also included inherent buoyancy. Equipment that is approved for use in the workplace should be tested in combination to ensure adequate performance in an emergency scenario.

  3. Photoimageable composition

    DOEpatents

    Simison, Kelby Liv; Dentinger, Paul

    2003-11-11

    The use of selected buffering amines in a photoimageable composition prevents process bias which with conventional photoresists causes designed features to be distorted, especially in corners and high resolution features. It is believed that the amines react with the catalysts, e.g., photoacids, generated to create an inert salt. The presence of the amines also increases resolution. Suitable photoimageable compositions includes: (a) a multifunctional polymeric epoxy resin that is dissolved in an organic solvent wherein the epoxy resin comprises oligomers of bisphenol A that is quantitatively protected by glycidyl ether and wherein the oligomers have an average functionality that ranges from about 3 to 12; (b) a photoactive compound; and (c) an amine that is selected from the group consisting of triisobutylamine, 1,8-bis(dimethylamino)naphthalene (also known as PROTON SPONGET.TM.), 2,2'-diazabicyclo[2.2.2] octane and mixtures thereof. The photoimageable composition is particularly suited for producing high aspect ratio metal microstructures.

  4. Assessment of Thermal Protection Afforded by Hot Water Diving Suits

    DTIC Science & Technology

    1980-07-03

    Assessment of Thermal Protect! " Afforded by Hot Water Diving Suits A AA L. A. Kuehn Diver thermal comfort in cold water is presently only...with proper control oj inlet suit water flow% and temperature, as well as heating of inspired gas, this suit technology suffices for thermal comfort for...technology provides in part to the convective heat loss that it prpsents, sustained long-term thermal comfort in cold water, Webb (W) has defined a

  5. Comparisons of three anti-G suit configurations during long duration, low onset, +Gz

    NASA Technical Reports Server (NTRS)

    Stegmann, B. J.; Krutz, R. W.; Burton, R. R.; Sawin, C. F.

    1992-01-01

    Little physiologic data exist on the effects of long duration, low onset, hypergravity (+G). Space shuttle crewmembers are subjected to low +G forces (less than +3G) for upwards of 30 minutes during reentry. A similar reentry profile is predicted for the National Aerospace Plane (NASP). The physiologic effects of this acceleration stress are compounded by the loss of body water experienced during microgravity. Currently, a standard 5 bladder anti-G suit is being used during shuttle reentry. There have been complaints of discomfort using this suit, mainly due to the abdominal bladder. This study compared the effectiveness of three anti-G suit configurations in volume depleted subjects during a simulated space shuttle reentry profile. Methods: Seven male subjects were given intravenous Lasix in a dose from 20-40 mg to induce a total body weight loss of 3 plus or minus 1.5 percent. Approximately six hours after the injection, the subjects donned one of three anti-G suits - a standard 5 bladder anti-G suit, an extended coverage anti-G suit (the advanced technology anti-G suit or ATAGS), or an extended coverage anti-G suit without an abdominal bladder (the reentry anti-G suit or REAGS). All subjects were exposed to a simulated space shuttle reentry profile. Non-invasive eye-level blood pressure (ELBP) was monitored throughout the +G exposure. When systolic ELBP dropped below 70 mmHg, the anti-G suit was inflated in 0.5 psig increments to the pressure required to maintain 70 mmHg ELBP. Each subject rode with all three suits. Comparisons were made between the final pressure required in each suit to maintain ELBP and subjective reports of comfort. Results: The mean final suit pressure required to maintain ELBP was 1.1 psi, in both the ATAGS and REAGS versus 1.8 psi in the standard suit. In addition, the subjects rated the REAGS suit highest on the comfort scale, citing the absence of the abdominal bladder as the main reason. Conclusions: Overall, the REAGS suit was the

  6. Exploration Space Suit Architecture: Destination Environmental-Based Technology Development

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.

    2010-01-01

    This paper picks up where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars (Hill, Johnson, IEEEAC paper #1209) left off in the development of a space suit architecture that is modular in design and interfaces and could be reconfigured to meet the mission or during any given mission depending on the tasks or destination. This paper will walk though the continued development of a space suit system architecture, and how it should evolve to meeting the future exploration EVA needs of the United States space program. In looking forward to future US space exploration and determining how the work performed to date in the CxP and how this would map to a future space suit architecture with maximum re-use of technology and functionality, a series of thought exercises and analysis have provided a strong indication that the CxP space suit architecture is well postured to provide a viable solution for future exploration missions. Through the destination environmental analysis that is presented in this paper, the modular architecture approach provides the lowest mass, lowest mission cost for the protection of the crew given any human mission outside of low Earth orbit. Some of the studies presented here provide a look and validation of the non-environmental design drivers that will become every-increasingly important the further away from Earth humans venture and the longer they are away. Additionally, the analysis demonstrates a logical clustering of design environments that allows a very focused approach to technology prioritization, development and design that will maximize the return on investment independent of any particular program and provide architecture and design solutions for space suit systems in time or ahead of being required for any particular manned flight program in the future. The new approach to space suit design and interface definition the discussion will show how the architecture is very adaptable to programmatic and funding changes with

  7. Trends in Personal Injury Suits.

    ERIC Educational Resources Information Center

    van der Smissen, Betty

    1985-01-01

    Professional competence becomes more important as personal injury suits against recreation enterprises and parks focus increasingly on the professional responsible for facility safety. All professionals should be aware of and educated in risk management. Trends in liability awards and providers' legal responsibilities in various situations are…

  8. Design and application of air-conditioning suit based on eddy current cooling principle for distribution network working with power uninterrupted

    NASA Astrophysics Data System (ADS)

    Xu, Li; Liu, Lanlan; Niu, Jie; Tang, Li; Li, Jinliang; Zhou, Zhanfan; Long, Chenhai; Yang, Qi; Yi, Ziqi; Guo, Hao; Long, Yang; Fu, Yanyi

    2017-05-01

    As social requirement of power supply reliability keeps rising, distribution network working with power uninterrupted has been widely carried out, while the high - temperature operating environment in summer can easily lead to physical discomfort for the operators, and then lead to safety incidents. Aiming at above problem, air-conditioning suit for distribution network working with power uninterrupted has been putted forward in this paper, and the structure composition and cooling principle of which has been explained, and it has been ultimately put to on-site application. The results showed that, cooling effect of air-conditioning suits was remarkable, and improved the working environment for the operators effectively, which is of great significance to improve Chinese level of working with power uninterrupted, reduce the probability of accidents and enhance the reliability of power supply.

  9. Cosmonaut Sergei Krikalev receives assistance from suit technician

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Sergei Krikalev, alternative mission specialist for STS-63, gets help from Dawn Mays, a Boeing suit technician. The cosmonaut was about to participate in a training session at JSC's Weightless Environment Training Facility (WETF). Wearing the training version of the extravehicular mobility unit (EMU) space suit, weighted to allow neutral buoyancy in the 25 feet deep WETF pool, Krikalev minutes later was underwater simulating a contingency spacewalk, or extravehicular activity (EVA).

  10. 15. NBS TOP SIDE CONTROL ROOM. THE SUIT SYSTEMS CONSOLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. NBS TOP SIDE CONTROL ROOM. THE SUIT SYSTEMS CONSOLE IS USED TO CONTROL AIR FLOW AND WATER FLOW TO THE UNDERWATER SPACE SUIT DURING THE TEST. THE SUIT SYSTEMS ENGINEER MONITORS AIR FLOW ON THE PANEL TO THE LEFT, AND SUIT DATA ON THE COMPUTER MONITOR JUST SLIGHTLY TO HIS LEFT. WATER FLOW IS MONITORED ON THE PANEL JUST SLIGHTLY TO HIS RIGHT AND TEST VIDEO TO HIS FAR RIGHT. THE DECK CHIEF MONITORS THE DIVER'S DIVE TIMES ON THE COMPUTER IN THE UPPER RIGHT. THE DECK CHIEF LOGS THEM IN AS THEY ENTER THE WATER, AND LOGS THEM OUT AS THEY EXIT THE WATER. THE COMPUTER CALCULATES TOTAL DIVE TIME. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  11. Suitport Feasibility - Development and Test of a Suitport and Space Suit for Human Pressurized Space Suit Donning Tests

    NASA Technical Reports Server (NTRS)

    Boyle, Robert M.; Mitchell, Kathryn; Allton, Charles; Ju, Hsing

    2011-01-01

    The suitport concept has been recently implemented as part of the small pressurized lunar rover (Currently the Space Exploration vehicle, or SEV) and the Multi-Mission Space Exploration Vehicle (MMSEV) concept demonstrator vehicle. Suitport replaces or augments the traditional airlock function of a spacecraft by providing a bulkhead opening, capture mechanism, and sealing system to allow ingress and egress of a spacesuit while the spacesuit remains outside of the pressurized volume of the spacecraft. This presents significant new opportunities to EVA exploration in both microgravity and surface environments. The suitport concept will enable three main improvements in EVA by providing reductions in: pre-EVA time from hours to less than thirty minutes; airlock consumables; contamination returned to the cabin with the EVA crewmember. To date, the first generation suitport has been tested with mockup suits on the rover cabins and pressurized on a bench top engineering unit. The work on the rover cabin has helped define the operational concepts and timelines, and has demonstrated the potential of suitport to save significant amounts of crew time before and after EVAs. The work with the engineering unit has successfully demonstrated the pressurizable seal concept including the ability to seal after the introduction and removal of contamination to the sealing surfaces. Using this experience, a second generation suitport was designed. This second generation suitport has been tested with a spacesuit prototype using the pressure differentials of the spacecraft. This test will be performed using the JSC B32 Chamber B, a human rated vacuum chamber. This test will include human rated suitports, the suitport compatible prototype suit, and chamber modifications. This test will bring these three elements together in the first ever pressurized donning of a rear entry suit through a suitport. This paper presents design of a human rated second generation suitport, modifications to

  12. The antigravity suit in neurosurgery. Cardiovascular responses in seated neurosurgical patients.

    PubMed

    Brodrick, P M; Ingram, G S

    1988-09-01

    The haemodynamic responses associated with inflation of the antigravity suit (G suit, aviation type) to 8.0 kPa were studied in a series of 40 patients who underwent neurosurgical operations in the sitting position. The study showed statistically significant increases in systolic arterial pressure (p less than 0.005) and mean central venous pressure (p less than 0.001) with inflation of the suit. The systolic arterial and mean central venous pressures remained significantly elevated immediately before deflation of the suit at the end of the operation (p less than 0.001 and p less than 0.005 respectively). The addition of 0.8-1.0 kPa positive end expiratory pressure during suit inflation was also investigated. A further increase in central venous pressure occurred but this did not achieve statistical significance.

  13. Argon used as dry suit insulation gas for cold-water diving.

    PubMed

    Vrijdag, Xavier Ce; van Ooij, Pieter-Jan Am; van Hulst, Robert A

    2013-06-03

    Cold-water diving requires good thermal insulation because hypothermia is a serious risk. Water conducts heat more efficiently compared to air. To stay warm during a dive, the choice of thermal protection should be based on physical activity, the temperature of the water, and the duration of exposure. A dry suit, a diving suit filled with gas, is the most common diving suit in cold water. Air is the traditional dry suit inflation gas, whereas the thermal conductivity of argon is approximately 32% lower compared to that of air. This study evaluates the benefits of argon, compared to air, as a thermal insulation gas for a dry suit during a 1-h cold-water dive by divers of the Royal Netherlands Navy. Seven male Special Forces divers made (in total) 19 dives in a diving basin with water at 13 degrees C at a depth of 3 m for 1 h in upright position. A rubber dry suit and woollen undergarment were used with either argon (n = 13) or air (n = 6) (blinded to the divers) as suit inflation gas. Core temperature was measured with a radio pill during the dive. Before, halfway, and after the dive, subjective thermal comfort was recorded using a thermal comfort score. No diver had to abort the test due to cold. No differences in core temperature and thermal comfort score were found between the two groups. Core temperature remained unchanged during the dives. Thermal comfort score showed a significant decrease in both groups after a 60-min dive compared to baseline. In these tests the combination of the dry suit and undergarment was sufficient to maintain core temperature and thermal comfort for a dive of 1h in water at 13 degrees C. The use of argon as a suit inflation gas had no added value for thermal insulation compared to air for these dives.

  14. CO2 Washout Testing of the REI and EM-ACES Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.; Norcross, Jason

    2012-01-01

    When a space suit is used during ground testing, adequate carbon dioxide (CO2) washout must be provided for the suited subject. Symptoms of acute CO2 exposure depend on partial pressure of CO2 (ppCO2), metabolic rate of the subject, and other factors. This test was done to characterize inspired oronasal ppCO2 in the Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES) for a range of workloads and flow rates for which ground testing is nominally performed. Three subjects were tested in each suit. In all but one case, each subject performed the test twice. Suit pressure was maintained at 4.3 psid. Subjects wore the suit while resting, performing arm ergometry, and walking on a treadmill to generate metabolic workloads of about 500 to 3000 BTU/hr. Supply airflow was varied between 6, 5, and 4 actual cubic feet per minute (ACFM) at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored in real time by gas analyzers with sampling tubes connected to the mask. Metabolic rate was calculated from the total CO2 production measured by an additional gas analyzer at the suit air outlet. Real-time metabolic rate was used to adjust the arm ergometer or treadmill workload to meet target metabolic rates. In both suits, inspired CO2 was affected mainly by the metabolic rate of the subject: increased metabolic rate significantly (P < 0.05) increased inspired ppCO2. Decreased air flow caused small increases in inspired ppCO2. The effect of flow was more evident at metabolic rates . 2000 BTU/hr. CO2 washout values of the EM-ACES were slightly but not significantly better than those of the REI suit. Regression equations were developed for each suit to predict the mean inspired ppCO2 as a function of metabolic rate and suit flow rate. This paper provides detailed descriptions of the test hardware, methodology, and results as well as implications for future

  15. CO2 Washout Testing of the REI and EM-ACES Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kate; Norcross, Jason

    2011-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy and eventually unconsciousness or even death. Symptoms depend on several factors including partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject and physiological differences between subjects. The objective of this test was to characterize inspired oronasal ppCO2 in the Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES) across a range of workloads and flow rates for which ground testing is nominally performed. Three subjects were tested in each suit. In all but one case, each subject performed the test twice to allow for comparison between tests. Suit pressure was maintained at 4.3 psid. Subjects wore the suit while resting, performing arm ergometry, and walking on a treadmill to generate metabolic workloads of approximately 500 to 3000 BTU/hr. Supply airflow was varied at 6, 5 and 4 actual cubic feet per minute (ACFM) at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the total CO2 production measured by an additional gas analyzer at the air outlet from the suit. Real-time metabolic rate was used to adjust the arm ergometer or treadmill workload to meet target metabolic rates. In both suits, inspired CO2 was primarily affected by the metabolic rate of the subject, with increased metabolic rate resulting in increased inspired ppCO2. Suit flow rate also affected inspired ppCO2, with decreased flow causing small increases in inspired ppCO2. The effect of flow was more evident at metabolic rates greater than or equal to 2000 BTU/hr. Results were consistent between suits, with

  16. Checkout and Standard Use Procedures for the Mark III Space Suit Assembly

    NASA Technical Reports Server (NTRS)

    Valish, Dana J.

    2012-01-01

    The operational pressure range is the range to which the suit can be nominally operated for manned testing. The top end of the nominal operational pressure range is equivalent to 1/2 the proof pressure. Structural pressure is 1.5 times the specified test pressure for any given test. Proof pressure is the maximum unmanned pressure to which the suit was tested by the vendor prior to delivery. The maximum allowable working pressure (MAWP) is 90% of the proof pressure. The pressure systems RVs are set to keep components below their MAWPs. If the suit is pressurized over its MAWP, the suit will be taken out of service and an in-depth inspection/review of the suit will be performed before the suit is put back in service. The procedures outlined in this document should be followed as written. However, the suit test engineer (STE) may make redline changes real-time, provided those changes are recorded in the anomaly section of the test data sheet. If technicians supporting suit build-up, check-out, and/or test execution believe that a procedure can be improved, they should notify their lead. If procedures are incorrect to the point of potentially causing hardware damage or affecting safety, bring the problem to the technician lead and/or STE s attention and stop work until a solution (temporary or permanent) is authorized. Certain steps in the procedure are marked with a DV , for Designated Verifier. The Designated Verifier for this procedure is an Advanced Space Suit Technology Development Laboratory technician, not directly involved in performing the procedural steps, who will verify that the step was performed as stated. The steps to be verified by the DV were selected based on one or more of the following criteria: the step was deemed significant in ensuring the safe performance of the test, the data recorded in the step is of specific interest in monitoring the suit system operation, or the step has a strong influence on the successful completion of test objectives

  17. Analysis of dynamics and fit of diving suits

    NASA Astrophysics Data System (ADS)

    Mahnic Naglic, M.; Petrak, S.; Gersak, J.; Rolich, T.

    2017-10-01

    Paper presents research on dynamical behaviour and fit analysis of customised diving suits. Diving suits models are developed using the 3D flattening method, which enables the construction of a garment model directly on the 3D computer body model and separation of discrete 3D surfaces as well as transformation into 2D cutting parts. 3D body scanning of male and female test subjects was performed with the purpose of body measurements analysis in static and dynamic postures and processed body models were used for construction and simulation of diving suits prototypes. All necessary parameters, for 3D simulation were applied on obtained cutting parts, as well as parameters values for mechanical properties of neoprene material. Developed computer diving suits prototypes were used for stretch analysis on areas relevant for body dimensional changes according to dynamic anthropometrics. Garment pressures against the body in static and dynamic conditions was also analysed. Garments patterns for which the computer prototype verification was conducted were used for real prototype production. Real prototypes were also used for stretch and pressure analysis in static and dynamic conditions. Based on the obtained results, correlation analysis between body changes in dynamic positions and dynamic stress, determined on computer and real prototypes, was performed.

  18. Membrane-Based Water Evaporator for a Space Suit

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; McCann, Charles J.; O'Connell, Mary K.; Andrea, Scott

    2004-01-01

    A membrane-based water evaporator has been developed that is intended to serve as a heat-rejection device for a space suit. This evaporator would replace the current sublimator that is sensitive to contamination of its feedwater. The design of the membrane-based evaporator takes advantage of recent advances in hydrophobic micropore membranes to provide robust heat rejection with much less sensitivity to contamination. The low contamination sensitivity allows use of the heat transport loop as feedwater, eliminating the need for the separate feedwater system used for the sublimator. A cross section of the evaporator is shown in the accompanying figure. The space-suit cooling loop water flows into a distribution plenum, through a narrow annulus lined on both sides with a hydrophobic membrane, into an exit plenum, and returns to the space suit. Two perforated metal tubes encase the membranes and provide structural strength. Evaporation at the membrane inner surface dissipates the waste heat from the space suit. The water vapor passes through the membrane, into a steam duct and is vented to the vacuum environment through a back-pressure valve. The back-pressure setting can be adjusted to regulate the heat-rejection rate and the water outlet temperature.

  19. An MBSE Approach to Space Suit Development

    NASA Technical Reports Server (NTRS)

    Cordova, Lauren; Kovich, Christine; Sargusingh, Miriam

    2012-01-01

    The EVA/Space Suit Development Office (ESSD) Systems Engineering and Integration (SE&I) team has utilized MBSE in multiple programs. After developing operational and architectural models, the MBSE framework was expanded to link the requirements space to the system models through functional analysis and interfaces definitions. By documenting all the connections within the technical baseline, ESSD experienced significant efficiency improvements in analysis and identification of change impacts. One of the biggest challenges presented to the MBSE structure was a program transition and restructuring effort, which was completed successfully in 4 months culminating in the approval of a new EVA Technical Baseline. During this time three requirements sets spanning multiple DRMs were streamlined into one NASA-owned Systems Requirement Document (SRD) that successfully identified requirements relevant to the current hardware development effort while remaining extensible to support future hardware developments. A capability-based hierarchy was established to provide a more flexible framework for future space suit development that can support multiple programs with minimal rework of basic EVA/Space Suit requirements. This MBSE approach was most recently applied for generation of an EMU Demonstrator technical baseline being developed for an ISS DTO. The relatively quick turnaround of operational concepts, architecture definition, and requirements for this new suit development has allowed us to test and evolve the MBSE process and framework in an extremely different setting while still offering extensibility and traceability throughout ESSD projects. The ESSD MBSE framework continues to be evolved in order to support integration of all products associated with the SE&I engine.

  20. Extending the GI Brokering Suite to Support New Interoperability Specifications

    NASA Astrophysics Data System (ADS)

    Boldrini, E.; Papeschi, F.; Santoro, M.; Nativi, S.

    2014-12-01

    The GI brokering suite provides the discovery, access, and semantic Brokers (i.e. GI-cat, GI-axe, GI-sem) that empower a Brokering framework for multi-disciplinary and multi-organizational interoperability. GI suite has been successfully deployed in the framework of several programmes and initiatives, such as European Union funded projects, NSF BCube, and the intergovernmental coordinated effort Global Earth Observation System of Systems (GEOSS). Each GI suite Broker facilitates interoperability for a particular functionality (i.e. discovery, access, semantic extension) among a set of brokered resources published by autonomous providers (e.g. data repositories, web services, semantic assets) and a set of heterogeneous consumers (e.g. client applications, portals, apps). A wide set of data models, encoding formats, and service protocols are already supported by the GI suite, such as the ones defined by international standardizing organizations like OGC and ISO (e.g. WxS, CSW, SWE, GML, netCDF) and by Community specifications (e.g. THREDDS, OpenSearch, OPeNDAP, ESRI APIs). Using GI suite, resources published by a particular Community or organization through their specific technology (e.g. OPeNDAP/netCDF) can be transparently discovered, accessed, and used by different Communities utilizing their preferred tools (e.g. a GIS visualizing WMS layers). Since Information Technology is a moving target, new standards and technologies continuously emerge and are adopted in the Earth Science context too. Therefore, GI Brokering suite was conceived to be flexible and accommodate new interoperability protocols and data models. For example, GI suite has recently added support to well-used specifications, introduced to implement Linked data, Semantic Web and precise community needs. Amongst the others, they included: DCAT: a RDF vocabulary designed to facilitate interoperability between Web data catalogs. CKAN: a data management system for data distribution, particularly used by

  1. Air conditioned suit

    NASA Technical Reports Server (NTRS)

    Carl, G. R. (Inventor)

    1973-01-01

    An environmentally controlled suit is described consisting of an airtight outergarment attached by an airtight bellows to the wall of a sterile chamber, an undergarment providing for circulation of air near the skin of the wearer, and a circulation system comprised of air supply and distribution to the extremities of the undegarment and central collection and exhaust of air from the midsection of the undergarment. A workman wearing the undergarment and attached circulation system enters the outer garment through a tunnel in the chamber wall and the attached bellows to work in the chamber without any danger of spreading bacteria.

  2. Terrestrial EVA Suit = Fire Fighter's Protective Clothing

    NASA Technical Reports Server (NTRS)

    Foley, Tico; Brown, Robert G.; Burrell, Eddie; DelRosso, Dominic; Krishen, Kumar; Moffitt, Harold; Orndoff, Evelyne; Santos, Beatrice; Butzer, Melissa; Dasgupta, Rajib

    1999-01-01

    Firefighters want to go to work, do their job well, and go home alive and uninjured. For their most important job, saving lives, firefighters want protective equipment that will allow more extended and effective time at fire scenes in order to perform victim search and rescue. A team, including engineers at NASA JSC and firefighters from Houston, has developed a list of problem areas for which NASA technology and know-how can recommend improvements for firefighter suits and gear. Prototypes for solutions have been developed and are being evaluated. This effort will spin back to NASA as improvements for lunar and planetary suits.

  3. 22 CFR 93.2 - Notice of suit (or of default judgment).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Notice of suit (or of default judgment). 93.2... § 93.2 Notice of suit (or of default judgment). (a) A Notice of Suit prescribed in section 1608(a) of title 28, United States Code, shall be prepared in the form that appears in the Annex to this section...

  4. 22 CFR 93.2 - Notice of suit (or of default judgment).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Notice of suit (or of default judgment). 93.2... § 93.2 Notice of suit (or of default judgment). (a) A Notice of Suit prescribed in section 1608(a) of title 28, United States Code, shall be prepared in the form that appears in the Annex to this section...

  5. 22 CFR 93.2 - Notice of suit (or of default judgment).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Notice of suit (or of default judgment). 93.2... § 93.2 Notice of suit (or of default judgment). (a) A Notice of Suit prescribed in section 1608(a) of title 28, United States Code, shall be prepared in the form that appears in the Annex to this section...

  6. 22 CFR 93.2 - Notice of suit (or of default judgment).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Notice of suit (or of default judgment). 93.2... § 93.2 Notice of suit (or of default judgment). (a) A Notice of Suit prescribed in section 1608(a) of title 28, United States Code, shall be prepared in the form that appears in the Annex to this section...

  7. 22 CFR 93.2 - Notice of suit (or of default judgment).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Notice of suit (or of default judgment). 93.2... § 93.2 Notice of suit (or of default judgment). (a) A Notice of Suit prescribed in section 1608(a) of title 28, United States Code, shall be prepared in the form that appears in the Annex to this section...

  8. The physiology of spacecraft and space suit atmosphere selection

    NASA Astrophysics Data System (ADS)

    Waligora, J. M.; Horrigan, D. J.; Nicogossian, A.

    The majority of the environmental factors which comprise the spacecraft and space suit environments can be controlled at "Earth normal" values, at optimum values, or at other values decided upon by spacecraft designers. Factors which are considered in arriving at control values and control ranges of these parameters include physiological, engineering, operational cost, and safety considerations. Several of the physiologic considerations, including hypoxia and hyperoxia, hypercapnia, temperature regulation, and decompression sickness are identified and their impact on space craft and space suit atmosphere selection are considered. The past experience in controlling these parameters in U.S. and Soviet spacecraft and space suits and the associated physiological responses are reviewed. Current areas of physiological investigation relating to environmental factors in spacecraft are discussed, particularly decompression sickness which can occur as a result of change in pressure from Earth to spacecraft or spacecraft to space suit. Physiological considerations for long-term lunar or Martian missions will have different impacts on atmosphere selection and may result in the selection of atmospheres different than those currently in use.

  9. Complexity of Fit, with Application to Space Suits

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Benson, Elizabeth

    2009-01-01

    Although fitting a garment is often considered more of an art than a science, experts suggest that a subjectively poor fit is a symptom of inappropriate ease, the space between the wearer and the garment. The condition of poor suit fit is a unique problem for the space program and it can be attributed primarily to: a) NASA s policy to accommodate a wide variety of people (males and females from 1st to 99th percentile range and with various shapes and sizes) and b) its requirement to deploy a minimum number of suit sizes for logistical reasons. These factors make the space suit fit difficult to assess, where a wide range of people must be fit by the minimum possible number of suits, and yet, fit is crucial for operability and safety. Existing simplistic sizing scheme do not account for wide variations in shape within a diverse population with very limited sizing options. The complex issue of fit has been addressed by a variety of methods, many of which have been developed by the military, which has always had a keen interest in fitting its diverse population but with a multitude of sizing options. The space program has significantly less sizing options, so a combination of these advanced methods should be used to optimize space suit size and assess space suit fit. Multivariate methods can be used to develop sizing schemes that better reflect the wearer population, and integrated sizing systems can form a compromise between fitting men and women. Range of motion and operability testing can be combined with subjective feedback to provide a comprehensive evaluation of fit. The amount of ease can be tailored using these methods, to provide enough extra room where it is needed, without compromising mobility and comfort. This paper discusses the problem of fit in one of its most challenging applications: providing a safe and comfortable spacesuit that will protect its wearer from the extreme environment of space. It will discuss the challenges and necessity of closely

  10. SUIT - ASTRONAUT S. CARPENTER - PA

    NASA Image and Video Library

    1960-08-01

    S61-03510 (1961) --- Project Mercury astronaut M. Scott Carpenter smiles, in his pressure suit, prior to participating in a simulated mission run at Cape Canaveral, Florida. Astronaut Carpenter has been selected as the prime pilot on the United States second attempt to put a man into orbit around Earth. Photo credit: NASA

  11. STS-70 Commander Terence 'Tom' Henricks suits up

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-70 Commander Terence 'Tom' Henricks is donning his launch/entry suit in the Operations and Checkout Building with help from a suit technician. Henricks, who is about to make his third trip into space, and four crew members will depart shortly for Launch Pad 39B, where the Space Shuttle Discovery is undergoing final preparations for a liftoff scheduled during a two and a half hour launch window opening at 9:41 a.m. EDT.

  12. Revolutionary Design for Astronaut Exploration — Beyond the Bio-Suit System

    NASA Astrophysics Data System (ADS)

    Newman, Dava J.; Canina, Marita; Trotti, Guillermo L.

    2007-01-01

    The Bio-Suit System is designed to revolutionize human space exploration by providing enhanced astronaut extravehicular activity (EVA) locomotion and performance based on the concepts of a `second skin' capability. The novel Bio-Suit concept provides an overall exploration system realized through symbiotic relationships between a suite of advanced technologies, creative design, human modeling and analysis, and new mission operations techniques. By working at the intersection of engineering, design, life sciences and operations, new emergent capabilities and interrelationships result for applications to space missions, medical rehabilitation, and extreme sports activities. In many respects, the Bio-Suit System mimics Nature (biomimetics). For example, the second skin is capable of augmenting our biological skin by providing mechanical counter-pressure. We have designed and tested prototypes that prove mechanical counter-pressure feasibility. The `epidermis' of our second skin suit is patterned from 3D laser scans that incorporate human skin strain field maps for maximum mobility and natural movements, while requiring minimum energy expenditure for exploration tasks. We provide a technology roadmap for future design, pressure production and technology investments for the Bio-Suit System. Woven into the second skin are active materials to enhance human performance as well as to provide necessary performance metrics (i.e., energy expenditure). Wearable technologies will be embedded throughout the Bio-Suit System to place the explorer in an information-rich environment enabling real-time mission planning, prediction, and visualization. The Bio-Suit System concept augments human capabilities by coupling human and robotic abilities into a hybrid of the two, to the point where the explorer is hardly aware of the boundary between innate human performance and robotic activities.

  13. Space Suit Performance: Methods for Changing the Quality of Quantitative Data

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew; Benson, Elizabeth; Rajulu, Sudhakar

    2014-01-01

    NASA is currently designing a new space suit capable of working in deep space and on Mars. Designing a suit is very difficult and often requires trade-offs between performance, cost, mass, and system complexity. To verify that new suits will enable astronauts to perform to their maximum capacity, prototype suits must be built and tested with human subjects. However, engineers and flight surgeons often have difficulty understanding and applying traditional representations of human data without training. To overcome these challenges, NASA is developing modern simulation and analysis techniques that focus on 3D visualization. Early understanding of actual performance early on in the design cycle is extremely advantageous to increase performance capabilities, reduce the risk of injury, and reduce costs. The primary objective of this project was to test modern simulation and analysis techniques for evaluating the performance of a human operating in extra-vehicular space suits.

  14. 18. NBS SUIT LAB. OVERALL VIEW. ALL WORK TABLES WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. NBS SUIT LAB. OVERALL VIEW. ALL WORK TABLES WITH MISCELLANEOUS SUIT COMPONENTS AND SUPPLIES. TERRY WEST TO LEFT, AND PAUL DUMBACHER TO RIGHT. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  15. Gemini 7 prime crew during suiting up procedures at Launch Complex 16

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut James A. Lovell Jr. (left), Gemini 7 prime crew pilot, talks with NASA space suit technician Clyde Teague during suiting up procedures at Launch Complex 16, Kennedy Space Center. Lovell wears the new lightweight space suit planned for use during the Gemini 7 mission (61756); Astronaut Frank Borman, comand pilot of the Gemini 7 space flight, undergoes suiting up operations in Launch Complex 16 during prelaunch countdown. Medical biosensors are attached to his scalp (61757).

  16. Energetic composites and method of providing chemical energy

    DOEpatents

    Danen, Wayne C.; Martin, Joe A.

    1997-01-01

    A method for providing chemical energy and energetic compositions of matter consisting of thin layers of substances which will exothermically react with one another. The layers of reactive substances are separated by thin layers of a buffer material which prevents the reactions from taking place until the desired time. The reactions are triggered by an external agent, such as mechanical stress or an electric spark. The compositions are known as metastable interstitial composites (MICs). This class of compositions includes materials which have not previously been capable of use as energetic materials. The speed and products of the reactions can be varied to suit the application.

  17. Energetic composites and method of providing chemical energy

    DOEpatents

    Danen, W.C.; Martin, J.A.

    1997-02-25

    A method is described for providing chemical energy and energetic compositions of matter consisting of thin layers of substances which will exothermically react with one another. The layers of reactive substances are separated by thin layers of a buffer material which prevents the reactions from taking place until the desired time. The reactions are triggered by an external agent, such as mechanical stress or an electric spark. The compositions are known as metastable interstitial composites (MICs). This class of compositions includes materials which have not previously been capable of use as energetic materials. The speed and products of the reactions can be varied to suit the application. 3 figs.

  18. The Apollo Number: space suits, self-support, and the walk-run transition.

    PubMed

    Carr, Christopher E; McGee, Jeremy

    2009-08-12

    How space suits affect the preferred walk-run transition is an open question with relevance to human biomechanics and planetary extravehicular activity. Walking and running energetics differ; in reduced gravity (<0.5 g), running, unlike on Earth, uses less energy per distance than walking. The walk-run transition (denoted *) correlates with the Froude Number (Fr = v(2)/gL, velocity v, gravitational acceleration g, leg length L). Human unsuited Fr* is relatively constant (approximately 0.5) with gravity but increases substantially with decreasing gravity below approximately 0.4 g, rising to 0.9 in 1/6 g; space suits appear to lower Fr*. Because of pressure forces, space suits partially (1 g) or completely (lunar-g) support their own weight. We define the Apollo Number (Ap = Fr/M) as an expected invariant of locomotion under manipulations of M, the ratio of human-supported to total transported mass. We hypothesize that for lunar suited conditions Ap* but not Fr* will be near 0.9, because the Apollo Number captures the effect of space suit self-support. We used the Apollo Lunar Surface Journal and other sources to identify 38 gait events during lunar exploration for which we could determine gait type (walk/lope/run) and calculate Ap. We estimated the binary transition between walk/lope (0) and run (1), yielding Fr* (0.36+/-0.11, mean+/-95% CI) and Ap* (0.68+/-0.20). The Apollo Number explains 60% of the difference between suited and unsuited Fr*, appears to capture in large part the effects of space suits on the walk-run transition, and provides several testable predictions for space suit locomotion and, of increasing relevance here on Earth, exoskeleton locomotion. The knowledge of how space suits affect gait transitions can be used to optimize space suits for use on the Moon and Mars.

  19. Philosophies Applied in the Selection of Space Suit Joint Range of Motion Requirements

    NASA Technical Reports Server (NTRS)

    Aitchison, Lindsway; Ross, Amy; Matty, Jennifer

    2009-01-01

    Space suits are the most important tool for astronauts working in harsh space and planetary environments; suits keep crewmembers alive and allow them to perform exploration, construction, and scientific tasks on a routine basis over a period of several months. The efficiency with which the tasks are performed is largely dictated by the mobility features of the space suit. For previous space suit development programs, the mobility requirements were written as pure functional mobility requirements that did not separate joint ranges of motion from the joint torques. The Constellation Space Suit Element has the goal to make more quantitative mobility requirements that focused on the individual components of mobility to enable future suit designers to build and test systems more effectively. This paper details the test planning and selection process for the Constellation space suit pressure garment range of motion requirements.

  20. Regenerative Blower for EVA Suit Ventilation Fan

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Paul, Heather L.

    2010-01-01

    Portable life support systems in future space suits will include a ventilation subsystem driven by a dedicated fan. This ventilation fan must meet challenging requirements for pressure rise, flow rate, efficiency, size, safety, and reliability. This paper describes research and development that showed the feasibility of a regenerative blower that is uniquely suited to meet these requirements. We proved feasibility through component tests, blower tests, and design analysis. Based on the requirements for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) ventilation fan, we designed the critical elements of the blower. We measured the effects of key design parameters on blower performance using separate effects tests, and used the results of these tests to design a regenerative blower that will meet the ventilation fan requirements. We assembled a proof-of-concept blower and measured its performance at sub-atmospheric pressures that simulate a PLSS ventilation loop environment. Head/flow performance and maximum efficiency point data were used to specify the design and operating conditions for the ventilation fan. We identified materials for the blower that will enhance safety for operation in a lunar environment, and produced a solid model that illustrates the final design. The proof-of-concept blower produced the flow rate and pressure rise needed for the CSSE ventilation subsystem while running at 5400 rpm, consuming only 9 W of electric power using a non-optimized, commercial motor and controller and inefficient bearings. Scaling the test results to a complete design shows that a lightweight, compact, reliable, and low power regenerative blower can meet the performance requirements for future space suit life support systems.

  1. GT-6 PREFLIGHT ACTIVITY (LEAVE SUITING TRAILER) - ASTRONAUT WALTER M. SCHIRRA, JR. - SUIT

    NASA Image and Video Library

    1965-12-15

    S65-59974 (15 Dec. 1965) --- Astronauts Walter M. Schirra Jr. (leading), command pilot; and Thomas P. Stafford, pilot, leave the suiting trailer at Launch Complex 16 during the Gemini-6 prelaunch countdown at Cape Kennedy, Florida. They entered a special transport van which carried them to Pad 19 and their spacecraft. Gemini-6 lifted off at 8:37 a.m. (EST) on Dec. 15, 1965. Photo credit: NASA or National Aeronautics and Space Administration

  2. The Role of KREEP in the Production of Mg-Suite Magmas and Its Influence on the Extent of Mg-Suite Magmatism in the Lunar Crust

    NASA Technical Reports Server (NTRS)

    Elardo, S. M.; Shearer, C. K.; McCubbin, F. M.

    2017-01-01

    The lunar magnesian-suite, or Mg-suite, is a series of ancient plutonic rocks from the lunar crust. They have received a considerable amount of attention from lunar scientists since their discovery for three primary reasons: 1) their ages and geochemistry indicate they represent pristine magmatic samples that crystallized very soon after the formation of the Moon; 2) their ages often overlap with ages of the ferroan anorthosite (FAN) crust; and 3) planetary-scale processes are needed in formation models to account for their unique geochemical features. Taken as a whole, the Mg-suite samples, as magmatic cumulate rocks, approximate a fractional crystallization sequence in the low-pressure forsterite-anorthite-silica system, and thus these samples are generally thought to be derived from layered mafic intrusions which crystallized very slowly from magmas that intruded the anorthositic crust. However, no direct linkages have been established between different Mg-suite samples based either on field relationships or geochemistry.The model for the origin of the Mg-suite, which best fits the limited available data, is one where Mg-suite magmas form from melting of a hybrid cumulate package consisting of deep mantle dunite, crustal anorthosite, and KREEP (potassium-rare earth elements-phosphorus) at the base of the crust under the Procellarum KREEP Terrane (PKT). In this model, these three LMO (Lunar Magma Ocean) cumulate components are brought into close proximity by the cumulate overturn process. Deep mantle dunitic cumulates with an Mg number of approximately 90 rise to the base of the anorthositic crust due to their buoyancy relative to colder, more dense Fe- and Ti-rich cumulates. This hybridized source rock melts to form Mg-suite magmas, saturated in Mg-rich olivine and anorthitic plagioclase, that have a substantial KREEP component.

  3. Design and Testing of Suit Regulator Test Rigs

    NASA Technical Reports Server (NTRS)

    Campbell, Colin

    2010-01-01

    The next generation space suit requires additional capabilities for controlling and adjusting internal pressure compared to that of historical designs. Next generation suit pressures will range from slight pressure, for astronaut prebreathe comfort, to hyperbaric pressure levels for emergency medical treatment of decompression sickness. In order to test these regulators through-out their development life cycle, novel automated test rigs are being developed. This paper addresses the design philosophy, performance requirements, physical implementation, and test results with various units under test.

  4. [EC5-Space Suit Assembly Team- Internship

    NASA Technical Reports Server (NTRS)

    Maicke, Andrew

    2016-01-01

    There were three main projects in this internship. The first pertained to the Bearing Dust Cycle Test, in particular automating the test to allow for easier administration. The second concerned modifying the communication system setup in the Z2 suit, where speakers and mics were adjusted to allow for more space in the helmet. And finally, the last project concerned the tensile strength testing of fabrics deemed as candidates for space suit materials and desired to be sent off for radiation testing. The major duties here are split up between the major projects detailed above. For the Bearing Dust Cycle Test, the first objective was to find a way to automate administration of the test, as the previous version was long and tedious to perform. In order to do this, it was necessary to introduce additional electronics and perform programming to control the automation. Once this was done, it would be necessary to update documents concerning the test setup, procedure, and potential hazards. Finally, I was tasked with running tests using the new system to confirm system performance. For the Z2 communication system modifications, it was necessary to investigate alternative speakers and microphones which may have better performance than those currently used in the suit. Further, new speaker and microphone positions needed to be identified to keep them out of the way of the suit user. Once this was done, appropriate hardware (such as speaker or microphone cases and holders) could be prototyped and fabricated. For the suit material strength testing, the first task was to gather and document various test fabrics to identify the best suit material candidates. Then, it was needed to prepare samples for testing to establish baseline measurements and specify a testing procedure. Once the data was fully collected, additional test samples would be prepared and sent off-site to undergo irradiation before being tested again to observe changes in strength performance. For the Bearing

  5. Defining Operational Space Suit Requirements for Commercial Orbital Spaceflight

    NASA Technical Reports Server (NTRS)

    Alpert, Brian K.

    2015-01-01

    As the commercial spaceflight industry transitions from suborbital brevity to orbital outposts, spacewalking will become a major consideration for tourists, scientists, and hardware providers. The challenge exists to develop a space suit designed for the orbital commercial spaceflight industry. The unique needs and requirements of this industry will drive space suit designs and costs that are unlike any existing product. Commercial space tourists will pay for the experience of a lifetime, while scientists may not be able to rely on robotics for all operations and external hardware repairs. This study was aimed at defining space suit operational and functional needs across the spectrum of spacewalk elements, identifying technical design drivers and establishing appropriate options. Recommendations from the analysis are offered for consideration

  6. Suited versus unsuited analog astronaut performance using the Aouda.X space suit simulator: the DELTA experiment of MARS2013.

    PubMed

    Soucek, Alexander; Ostkamp, Lutz; Paternesi, Roberta

    2015-04-01

    Space suit simulators are used for extravehicular activities (EVAs) during Mars analog missions. Flight planning and EVA productivity require accurate time estimates of activities to be performed with such simulators, such as experiment execution or traverse walking. We present a benchmarking methodology for the Aouda.X space suit simulator of the Austrian Space Forum. By measuring and comparing the times needed to perform a set of 10 test activities with and without Aouda.X, an average time delay was derived in the form of a multiplicative factor. This statistical value (a second-over-second time ratio) is 1.30 and shows that operations in Aouda.X take on average a third longer than the same operations without the suit. We also show that activities predominantly requiring fine motor skills are associated with larger time delays (between 1.17 and 1.59) than those requiring short-distance locomotion or short-term muscle strain (between 1.10 and 1.16). The results of the DELTA experiment performed during the MARS2013 field mission increase analog mission planning reliability and thus EVA efficiency and productivity when using Aouda.X.

  7. Testing of Alternative Materials for Advanced Suit Bladders

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Orndoff, Evelyne; Makinen, Janice; Tang, Henry

    2011-01-01

    Several candidate advanced pressure bladder membrane materials have been developed for NASA Johnson Space Center by DSM Biomedical for selective permeability of carbon dioxide and water vapor. These materials were elasthane and two other formulations of thermoplastic polyether polyurethane. Each material was tested in two thicknesses for permeability to carbon dioxide, oxygen and water vapor. Although oxygen leaks through the suit bladder would amount to only about 60 cc/hr in a full size suit, significant amounts of carbon dioxide would not be rejected by the system to justify its use. While the ratio of carbon dioxide to oxygen permeability is about 48 to 1, this is offset by the small partial pressure of carbon dioxide in acceptable breathing atmospheres of the suit. Humidity management remains a possible use of the membranes depending on the degree to which the water permeability is inhibited by cations in the sweat. Tests are underway to explore cation fouling from sweat.

  8. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn

    2009-01-01

    During the Apollo program, the space suit outer layer fabrics were severely abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub-layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, shares the results of the testing, and provides recommendations for future work.

  9. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.

    2010-01-01

    During the Apollo program, the space suit outer layer fabrics were badly abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub -layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This Paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, and shares the results and conclusions of the testing.

  10. The Los Alamos suite of relativistic atomic physics codes

    DOE PAGES

    Fontes, C. J.; Zhang, H. L.; Jr, J. Abdallah; ...

    2015-05-28

    The Los Alamos SuitE of Relativistic (LASER) atomic physics codes is a robust, mature platform that has been used to model highly charged ions in a variety of ways. The suite includes capabilities for calculating data related to fundamental atomic structure, as well as the processes of photoexcitation, electron-impact excitation and ionization, photoionization and autoionization within a consistent framework. These data can be of a basic nature, such as cross sections and collision strengths, which are useful in making predictions that can be compared with experiments to test fundamental theories of highly charged ions, such as quantum electrodynamics. The suitemore » can also be used to generate detailed models of energy levels and rate coefficients, and to apply them in the collisional-radiative modeling of plasmas over a wide range of conditions. Such modeling is useful, for example, in the interpretation of spectra generated by a variety of plasmas. In this work, we provide a brief overview of the capabilities within the Los Alamos relativistic suite along with some examples of its application to the modeling of highly charged ions.« less

  11. The One in the Purple Suit.

    ERIC Educational Resources Information Center

    Sargeant, Hope

    2003-01-01

    In this article, a parent of a gifted child muses on the challenges of raising her daughter, coping with her daughter's frustrations, her decision to stay home, and her brief envy of a doppelganger, a professional in a purple suit. (CR)

  12. The Apollo Number: Space Suits, Self-Support, and the Walk-Run Transition

    PubMed Central

    Carr, Christopher E.; McGee, Jeremy

    2009-01-01

    Background How space suits affect the preferred walk-run transition is an open question with relevance to human biomechanics and planetary extravehicular activity. Walking and running energetics differ; in reduced gravity (<0.5 g), running, unlike on Earth, uses less energy per distance than walking. Methodology/Principal Findings The walk-run transition (denoted *) correlates with the Froude Number (Fr = v2/gL, velocity v, gravitational acceleration g, leg length L). Human unsuited Fr* is relatively constant (∼0.5) with gravity but increases substantially with decreasing gravity below ∼0.4 g, rising to 0.9 in 1/6 g; space suits appear to lower Fr*. Because of pressure forces, space suits partially (1 g) or completely (lunar-g) support their own weight. We define the Apollo Number (Ap = Fr/M) as an expected invariant of locomotion under manipulations of M, the ratio of human-supported to total transported mass. We hypothesize that for lunar suited conditions Ap* but not Fr* will be near 0.9, because the Apollo Number captures the effect of space suit self-support. We used the Apollo Lunar Surface Journal and other sources to identify 38 gait events during lunar exploration for which we could determine gait type (walk/lope/run) and calculate Ap. We estimated the binary transition between walk/lope (0) and run (1), yielding Fr* (0.36±0.11, mean±95% CI) and Ap* (0.68±0.20). Conclusions/Significance The Apollo Number explains 60% of the difference between suited and unsuited Fr*, appears to capture in large part the effects of space suits on the walk-run transition, and provides several testable predictions for space suit locomotion and, of increasing relevance here on Earth, exoskeleton locomotion. The knowledge of how space suits affect gait transitions can be used to optimize space suits for use on the Moon and Mars. PMID:19672305

  13. Characterization of the Radiation Shielding Properties of US andRussian EVA Suits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benton, E.R.; Benton, E.V.; Frank, A.L.

    2001-10-26

    Reported herein are results from the Eril Research, Inc.(ERI) participationin the NASA Johnson Space Center sponsored studycharacterizing the radiation shielding properties of the two types ofspace suit that astronauts are wearing during the EVA on-orbit assemblyof the International Space Station (ISS). Measurements using passivedetectors were carried out to assess the shielding properties of the USEMU Suit and the Russian Orlan-M suit during irradiations of the suitsand a tissue equivalent phantom to monoenergetic proton and electronbeams at the Loma Linda University Medical Center (LLUMC). Duringirradiations of 6 MeV electrons and 60 MeV protons, absorbed dose as afunction of depth was measuredmore » using TLDs exposed behind swatches of thetwo suit materials and inside the two EVA helmets. Considerable reductionin electron dosewas measured behind all suit materials in exposures to 6MeV electrons. Slowing of the proton beam in the suit materials led to anincrease in dose measured in exposures to 60 MeV protons. During 232 MeVproton irradiations, measurements were made with TLDs and CR-39 PNTDs atfive organ locations inside a tissue equivalent phantom, exposed bothwith and without the two EVA suits. The EVA helmets produce a 13 to 27percent reduction in total dose and a 0 to 25 percent reduction in doseequivalent when compared to measurements made in the phantom head alone.Differences in dose and dose equivalent between the suit and non-suitirradiations forthe lower portions of the two EVA suits tended to besmaller. Proton-induced target fragmentation was found to be asignificant source of increased dose equivalent, especially within thetwo EVA helmets, and average quality factor inside the EMU and Orlan-Mhelmets was 2 to 14 percent greater than that measured in the barephantom head.« less

  14. ASTRONAUT GLENN, JOHN - MERCURY SPACE SUIT

    NASA Image and Video Library

    1962-02-20

    S62-00965 (20 Feb. 1962) --- Astronaut John H. Glenn Jr., finishes suiting up, and prepares for the launch of his Mercury-Atlas 6 (MA-6) spacecraft. The MA-6 ?Friendship 7? mission marks America's first manned Earth-orbiting spaceflight. Photo credit: NASA

  15. Outcrop-Scale Hyperspectral Studies of a Lacustrine-Volcanic Mars Analog: Examination with a Mars 2020-like Instrument Suite

    NASA Astrophysics Data System (ADS)

    Martin, P.; Ehlmann, B. L.; Blaney, D. L.; Bhartia, R.; Allwood, A.

    2015-12-01

    Using the recently developed Ultra Compact Imaging Spectrometer (UCIS) (0.4-2.5 μm) to generate outcrop-scale infrared images and compositional maps, a Mars-relevant field site near China Ranch in the Mojave Desert has been surveyed and sampled to analyze the synergies between instruments in the Mars 2020 rover instrument suite. The site is broadly comprised of large lacustrine gypsum beds with fine-grained gypsiferous mudstones and interbedded volcanic ashes deposited in the Pleistocene, with a carbonate unit atop the outcrop. Alteration products such as clays and iron oxides are pervasive throughout the sequence. Mineralogical mapping of the outcrop was performed using UCIS. As the 2020 rover will have an onboard multispectral camera and IR point spectrometer, Mastcam-Z and SuperCam, this process of spectral analysis leading to the selection of sites for more detailed investigation is similar to the process by which samples will be selected for increased scrutiny during the 2020 mission. The infrared image is resampled (spatially and spectrally) to the resolutions of Mastcam-Z and SuperCam to simulate data from the Mars 2020 rover. Hand samples were gathered in the field (guided by the prior infrared compositional mapping), capturing samples of spectral and mineralogical variance in the scene. After collection, a limited number of specimens were chosen for more detailed analysis. The hand samples are currently being analyzed using JPL prototypes of the Mars 2020 arm-mounted contact instruments, specifically PIXL (Planetary Instrument for X-ray Lithochemistry) and SHERLOC (Scanning Habitable Environments with Raman & Luminescence). The geologic story as told by the Mars 2020 instrument data will be analyzed and compared to the full suite of data collected by hyperspectral imaging and terrestrial techniques (e.g. XRD) applied to the collected hand samples. This work will shed light on the potential uses and synergies of the Mars 2020 instrument suite, especially

  16. 19. NBS SUIT LAB. STORAGE SHELF WITH LIQUID COOLING VENTILATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. NBS SUIT LAB. STORAGE SHELF WITH LIQUID COOLING VENTILATION GARMENT (LCVG), SUIT GLOVES, WAIST INSERTS, UPPER AND LOWER ARMS (LEFT, FROM TOP TO BOTTOM), LOWER TORSO ASSEMBLIES (LTA) (MIDDLE RIGHT TO LOWER RIGHT). - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  17. Variable sulfur isotope composition of sulfides provide evidence for multiple sources of contamination in the Rustenburg Layered Suite, Bushveld Complex

    NASA Astrophysics Data System (ADS)

    Magalhães, Nivea; Penniston-Dorland, Sarah; Farquhar, James; Mathez, Edmond A.

    2018-06-01

    The Rustenburg Layered Suite (RLS) of the Bushveld Complex (BC) is famous for its platinum group element (PGE) ore, which is hosted in sulfides. The source of sulfur necessary to generate this type of mineralization is inferred to be the host rock of the intrusion. The RLS has a sulfur isotopic signature that indicates the presence of Archean surface-derived material (Δ33 S ≠ 0) in the magma. This signature, with an average value of Δ33 S = 0.112 ± 0.024 ‰, deviates from the expected Δ33 S value of the mantle of 0 ± 0.008 ‰. Previous work suggested that this signature is uniform throughout the RLS, which contrasts with radiogenic isotopes which vary throughout the igneous stratigraphy of the RLS. In this study, samples from key intervals within the igneous stratigraphy were analyzed, showing that Δ33 S values vary in the same stratigraphic levels as Sr and Nd isotopes. However, the variation is not consistent; in some levels there is a positive correlation and in others a negative correlation. This observation suggests that in some cases distinct magma pulses contained assimilated sulfur from different sources. Textural analysis shows no evidence for late addition of sulfur. These results also suggest that it is unlikely that large-scale assimilation and/or efficient mixing of host rock material in a single magma chamber occurred during emplacement. The data do not uniquely identify the source of sulfur in the different layers of the RLS, but the variation in sulfur isotope composition and its relationship to radiogenic isotope data calls for a reevaluation of the models for the formation and evolution of the RLS, which has the potential to impact the knowledge of how PGE deposits form.

  18. 46 CFR 160.171-19 - Approval testing for child size immersion suit.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 6 2012-10-01 2012-10-01 false Approval testing for child size immersion suit. 160.171... Approval testing for child size immersion suit. A child size suit must pass the following tests: (a) The stability test prescribed in § 160.171-17(c)(8), except that only six children need be used as test subjects...

  19. 46 CFR 160.171-19 - Approval testing for child size immersion suit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Approval testing for child size immersion suit. 160.171... Approval testing for child size immersion suit. A child size suit must pass the following tests: (a) The stability test prescribed in § 160.171-17(c)(8), except that only six children need be used as test subjects...

  20. 46 CFR 160.171-19 - Approval testing for child size immersion suit.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 6 2013-10-01 2013-10-01 false Approval testing for child size immersion suit. 160.171... Approval testing for child size immersion suit. A child size suit must pass the following tests: (a) The stability test prescribed in § 160.171-17(c)(8), except that only six children need be used as test subjects...

  1. 46 CFR 160.171-19 - Approval testing for child size immersion suit.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Approval testing for child size immersion suit. 160.171... Approval testing for child size immersion suit. A child size suit must pass the following tests: (a) The stability test prescribed in § 160.171-17(c)(8), except that only six children need be used as test subjects...

  2. 46 CFR 160.171-19 - Approval testing for child size immersion suit.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Approval testing for child size immersion suit. 160.171... Approval testing for child size immersion suit. A child size suit must pass the following tests: (a) The stability test prescribed in § 160.171-17(c)(8), except that only six children need be used as test subjects...

  3. Extreme-Environment Silicon-Carbide (SiC) Wireless Sensor Suite

    NASA Technical Reports Server (NTRS)

    Yang, Jie

    2015-01-01

    Phase II objectives: Develop an integrated silicon-carbide wireless sensor suite capable of in situ measurements of critical characteristics of NTP engine; Compose silicon-carbide wireless sensor suite of: Extreme-environment sensors center, Dedicated high-temperature (450 deg C) silicon-carbide electronics that provide power and signal conditioning capabilities as well as radio frequency modulation and wireless data transmission capabilities center, An onboard energy harvesting system as a power source.

  4. Petrology and In Situ Trace Element Chemistry of a Suite of R Chondrites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Peng, Z. X.; Torrano, Z. A.

    2015-01-01

    Rumuruti (R) chondrites are characterized by low chondrule/matrix modal ratios, high oxidation state, small mean chondrule size, abundant sulfides and low metal contents, and are of petrologic types 3 to 6 [1, 2]. LAP 04840 (R5, [3]) and MIL 11207 (R6), contain the high-T hydrous phases amphibole and mica [3, 4]; not all equilibrated R chondrites contain these [2]. R chondrites thus can provide evidence on whether there are compositional effects caused by high-T, high-fluid metamorphism of nebular materials. We are investigating a suite of R chondrites of diverse petrologic grades to further understand the nature of the metamorphic processes that engendered them [5]. We report on our petrological studies, plus preliminary in situ analyses of trace elements in amphibole-bearing R chondrites.

  5. Situational awareness and its application in the delivery suite.

    PubMed

    Edozien, Leroy C

    2015-01-01

    The delivery suite is a high-risk environment. Transitions between low-risk and high-risk can be swift, and sentinel events can occur without warning. The prevention of accidents in this environment rests on the vigilance of the individual practitioner at the frontline. It is, therefore, important that the individual practitioner should develop and maintain the cognitive skills to anticipate, recognize, and intercept unfolding error chains. This commentary gives an overview of a nontechnical skill that is essential for safe practice in a delivery suite: situational awareness. A basic description of situational awareness is provided, using examples of loss of situational awareness in the delivery suite and examples of simple interventions that could promote situational awareness. Involuntary automaticity readily creeps in during performance of routine tasks, and cognitive overload could deplete attentional resources that are, by nature, limited. Strategies and tactics for maintaining situational awareness include proactively seeking and managing information on unfolding events, continually updating individual and team mental models, mindful use of checklists and scoreboards, and avoidance of attentional blindness. These simple interventions require minimal financial resources but could immensely enhance clinical performance and patient safety. Situational awareness should be included in the training of obstetrician-gynecologists and other staff working in a delivery suite.

  6. Joe Walker in pressure suit with X-1E

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Joe Walker in a pressure suit beside the X-1E at the NASA High-Speed Flight Station, Edwards,California. The dice and 'Little Joe' are prominently displayed under the cockpit area. (Little Joe is a dice players slang term for two deuces.) Walker is shown in the photo wearing an early Air Force partial pressure suit. This protected the pilot if cockpit pressure was lost above 50,000 feet. Similar suits were used in such aircraft as B-47s, B-52s, F-104s, U-2s, and the X-2 and D-558-II research aircraft. Five years later, Walker reached 354,200 feet in the X-15. Similar artwork - reading 'Little Joe the II' - was applied for the record flight. These cases are two of the few times that research aircraft carried such nose art.

  7. Joe Walker in pressure suit with X-1E

    NASA Image and Video Library

    1958-01-27

    Joe Walker in a pressure suit beside the X-1E at the NASA High-Speed Flight Station, Edwards,California. The dice and "Little Joe" are prominently displayed under the cockpit area. (Little Joe is a dice players slang term for two deuces.) Walker is shown in the photo wearing an early Air Force partial pressure suit. This protected the pilot if cockpit pressure was lost above 50,000 feet. Similar suits were used in such aircraft as B-47s, B-52s, F-104s, U-2s, and the X-2 and D-558-II research aircraft. Five years later, Walker reached 354,200 feet in the X-15. Similar artwork - reading "Little Joe the II" - was applied for the record flight. These cases are two of the few times that research aircraft carried such nose art.

  8. Interfacing with an EVA Suit

    NASA Technical Reports Server (NTRS)

    Ross, Amy

    2011-01-01

    A NASA spacesuit under the EVA Technology Domain consists of a suit system; a PLSS; and a Power, Avionics, and Software (PAS) system. Ross described the basic functions, components, and interfaces of the PLSS, which consists of oxygen, ventilation, and thermal control subsystems; electronics; and interfaces. Design challenges were reviewed from a packaging perspective. Ross also discussed the development of the PLSS over the last two decades.

  9. Vascularized Composite Allografts: Procurement, Allocation, and Implementation.

    PubMed

    Rahmel, Axel

    Vascularized composite allotransplantation is a continuously evolving area of modern transplant medicine. Recently, vascularized composite allografts (VCAs) have been formally classified as 'organs'. In this review, key aspects of VCA procurement are discussed, with a special focus on interaction with the procurement of classical solid organs. In addition, options for a matching and allocation system that ensures VCA donor organs are allocated to the best-suited recipients are looked at. Finally, the different steps needed to promote VCA transplantation in society in general and in the medical community in particular are highlighted.

  10. Characterization of Carbon Dioxide Washout Measurement Techniques in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Meginnis, I; Norcross, J.; Bekdash, O.

    2016-01-01

    It is essential to provide adequate carbon dioxide (CO2) washout in a space suit to reduce the risks associated with manned operations in space suits. Symptoms of elevated CO2 levels range from reduced cognitive performance and headache to unconsciousness and death at high levels of CO2. Because of this, NASA imposes limits on inspired CO2 levels for space suits when they are used in space and for ground testing. Testing and/or analysis must be performed to verify that a space suit meets CO2 washout requirements. Testing for developmental space suits has traditionally used an oronasal mask that collects CO2 samples at the left and rights sides of the mouth. Testing with this mask resulted in artificially elevated CO2 concentration measurements, which is most likely due to the dead space volume at the front of the mask. The mask also extends outward and into the supply gas stream, which may disrupt the washout effect of the suit supply gas. To mitigate these problems, a nasal cannula was investigated as a method for measuring inspired CO2 based on the assumptions that it is low profile and would not interfere with the designed suit gas flow path, and it has reduced dead space. This test series compared the performance of a nasal cannula to the oronasal mask in the Mark III space suit. Inspired CO2 levels were measured with subjects at rest and at metabolic workloads of 1000, 2000, and 3000 BTU/hr. Workloads were achieved by use of an arm ergometer or treadmill. Test points were conducted at air flow rates of 2, 4, and 6 actual cubic feet per minute, with a suit pressure of 4.3 psid. Results from this test series will evaluate the accuracy and repeatability across subjects of the nasal cannula collection method, which will provide rationale for using a nasal cannula as the new method for measuring inspired CO2 in a space suit. Proper characterization of sampling methods and of suit CO2 washout capability will better inform requirements definition and verification

  11. Compositional Analysis of Lignocellulosic Feedstocks. 1. Review and Description of Methods

    PubMed Central

    2010-01-01

    As interest in lignocellulosic biomass feedstocks for conversion into transportation fuels grows, the summative compositional analysis of biomass, or plant-derived material, becomes ever more important. The sulfuric acid hydrolysis of biomass has been used to measure lignin and structural carbohydrate content for more than 100 years. Researchers have applied these methods to measure the lignin and structural carbohydrate contents of woody materials, estimate the nutritional value of animal feed, analyze the dietary fiber content of human food, compare potential biofuels feedstocks, and measure the efficiency of biomass-to-biofuels processes. The purpose of this paper is to review the history and lineage of biomass compositional analysis methods based on a sulfuric acid hydrolysis. These methods have become the de facto procedure for biomass compositional analysis. The paper traces changes to the biomass compositional analysis methods through time to the biomass methods currently used at the National Renewable Energy Laboratory (NREL). The current suite of laboratory analytical procedures (LAPs) offered by NREL is described, including an overview of the procedures and methodologies and some common pitfalls. Suggestions are made for continuing improvement to the suite of analyses. PMID:20669951

  12. AX-5 space suit bearing torque investigation

    NASA Technical Reports Server (NTRS)

    Loewenthal, Stuart; Vykukal, Vic; Mackendrick, Robert; Culbertson, Philip, Jr.

    1990-01-01

    The symptoms and eventual resolution of a torque increase problem occurring with ball bearings in the joints of the AX-5 space suit are described. Starting torques that rose 5 to 10 times initial levels were observed in crew evaluation tests of the suit in a zero-g water tank. This bearing problem was identified as a blocking torque anomaly, observed previously in oscillatory gimbal bearings. A large matrix of lubricants, ball separator designs and materials were evaluated. None of these combinations showed sufficient tolerance to lubricant washout when repeatedly cycled in water. The problem was resolved by retrofitting a pressure compensated, water exclusion seal to the outboard side of the bearing cavity. The symptoms and possible remedies to blocking are discussed.

  13. A Smartphone Application Suite for Assessing Mobility.

    PubMed

    Madhushri, Priyanka; Dzhagaryan, Armen A; Jovanov, Emil; Milenkovic, Aleksandar

    2016-08-01

    Modern smartphones integrate a growing number of inertial and environmental sensors that can enable the development of new mobile health applications. In this paper we introduce a suite of smartphone applications for assessing mobility in elderly population. The suite currently includes applications that automate and quantify the following standardized medical tests for assessing mobility: Timed-Up-and-Go (TUG), 30 Seconds Chair Stand Test (30SCS), and a 4-stage Balance Test (4SBT). For each smartphone application we describe its functionality and a list of parameters extracted by processing signals from smartphone's inertial sensors. The paper shows the results from studies conducted on geriatric patients for TUG tests and from studies conducted in the laboratory on healthy subjects for 30SCS and 4SBT tests.

  14. Some problems of selection and evaluation of the Martian suit enclosure concept

    NASA Astrophysics Data System (ADS)

    Abramov, Isaak; Moiseyev, Nikolay; Stoklitsky, Anatoly

    2005-12-01

    One of the most important tasks for preparation of a future manned mission to Mars is to create a space suit, which ensures efficient and safe operation of the man on the planet surface. The concept of space suit (SS) utilisation on the Mars surface will be determined mainly by the Mars mission scenario. Currently the preference is given to utilisation of robotics with the crew driving a Mars rover vehicle, whereby the suit will be used solely as an additional safety means. However, one cannot exclude the necessity of a durable self-contained stay of the man outside a pressurised compartment, to pick up, for instance, soil samples or do certain repair work in case of an emergency. The requirements to the Mars suit and especially to the personal self-contained life support system (LSS) will depend in many respects on the Mars environmental conditions, the space vehicle system concept and performance characteristics, the airlock and its interface design, the availability of expendable elements for the LSS, etc. The paper reviews principal problems, which have to be solved during development of the Martian suit. A special attention is paid to the issue of suited man mobility during traversing on the planet surface. The paper also reviews the arguments for application of a suit semi-rigid design concept and evaluates potentialities of using certain elements of the existing "Orlan" type suit. The paper presents results of a number of studies on selection of the planetary SS enclosure concept and on experimental evaluation of mobility of the lower torso and leg enclosures in conjunction with a specially designed prototype model (tentative model) of the SS enclosure.

  15. XTCE GOVSAT Tool Suite 1.0

    NASA Technical Reports Server (NTRS)

    Rice, J. Kevin

    2013-01-01

    The XTCE GOVSAT software suite contains three tools: validation, search, and reporting. The Extensible Markup Language (XML) Telemetric and Command Exchange (XTCE) GOVSAT Tool Suite is written in Java for manipulating XTCE XML files. XTCE is a Consultative Committee for Space Data Systems (CCSDS) and Object Management Group (OMG) specification for describing the format and information in telemetry and command packet streams. These descriptions are files that are used to configure real-time telemetry and command systems for mission operations. XTCE s purpose is to exchange database information between different systems. XTCE GOVSAT consists of rules for narrowing the use of XTCE for missions. The Validation Tool is used to syntax check GOVSAT XML files. The Search Tool is used to search (i.e. command and telemetry mnemonics) the GOVSAT XML files and view the results. Finally, the Reporting Tool is used to create command and telemetry reports. These reports can be displayed or printed for use by the operations team.

  16. 10 CFR 14.57 - Suit against United States exclusive remedy.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Suit against United States exclusive remedy. 14.57 Section... Employee Drivers § 14.57 Suit against United States exclusive remedy. The remedy against the United States... of the same subject matter against the employee or his or her estate whose act or omission gave rise...

  17. 10 CFR 14.57 - Suit against United States exclusive remedy.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Suit against United States exclusive remedy. 14.57 Section... Employee Drivers § 14.57 Suit against United States exclusive remedy. The remedy against the United States... of the same subject matter against the employee or his or her estate whose act or omission gave rise...

  18. Asteroid Redirect Crewed Mission Space Suit and EVA System Maturation

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan; Buffington, Jesse; Hood, Drew; Kelly, Cody; Naids, Adam; Watson, Richard

    2015-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment selected for both functions is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS) currently under development for Advanced Exploration Systems (AES). The proposed architecture meets the ARCM constraints, but much more work is required to determine the details of the suit upgrades, the integration with the PLSS, and the tools and equipment necessary to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations were completed in the Neutral Buoyancy Lab (NBL) and interfacing options were prototyped and analyzed with testing planned for late 2014. This paper discusses the work done over the last year on the MACES enhancements, the use of tools while using the suit, and the integration of the PLSS with the MACES.

  19. Mobility and Agility During Locomotion in the Mark III Space Suit.

    PubMed

    Cullinane, Conor R; Rhodes, Richard A; Stirling, Leia A

    2017-06-01

    The Mark III (MIII) space suit assembly (SSAs) implements a multibearing, hard-material hip brief assembly (HBA). We hypothesize that: 1) the MIII HBA restricts operator mobility and agility which manifests in effects to gait parameters; 2) the waist bearing provides rotational motion, partially alleviating the restrictions; and 3) there are resistive, speed-dependent torques associated with the spinning bearings which further diminish mobility and agility. A subject (Suited and Unsuited) performed two planetary tasks-walking forward (WF) and backward (WB). An analysis of variance (ANOVA) and post hoc comparisons were performed to determine interaction effects. Motion capture data was processed to obtain gait parameters: static base (m), dynamic base (m), step length (m), stride length (m), cadence (steps/min), center of mass speed (m · s-1), foot clearance (toe and heel) (m), and bearing angular velocities (° · s-1). The static base when Suited (0.355 m) was larger than Unsuited (0.263 m). The Suited dynamic base (pooled, 0.200 m) was larger than both Unsuited WF (0.081 m) and WB (0.107 m). When Suited, the operator had lower clearance heights. The waist bearings provided about 7.2° of rotation when WB and WF. The maximum torque, while WF, in the right upper and mid bearings was 15.6 ± 1.35 Nm and 16.3 ± 1.28 Nm. This study integrated suit component properties and the emergent biomechanics of the operator to investigate how biomechanics are affected. The human hip has three collocated degrees of freedom (DOFs), whereas the HBA has a single DOF per bearing. The results can inform requirements for future SSA and other wearable system designs and evaluations.Cullinane CR, Rhodes RA, Stirling LA. Mobility and agility during locomotion in the Mark III space suit. Aerosp Med Hum Perform. 2017; 88(6):589-596.

  20. Irena : tool suite for modeling and analysis of small-angle scattering.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilavsky, J.; Jemian, P.

    2009-04-01

    Irena, a tool suite for analysis of both X-ray and neutron small-angle scattering (SAS) data within the commercial Igor Pro application, brings together a comprehensive suite of tools useful for investigations in materials science, physics, chemistry, polymer science and other fields. In addition to Guinier and Porod fits, the suite combines a variety of advanced SAS data evaluation tools for the modeling of size distribution in the dilute limit using maximum entropy and other methods, dilute limit small-angle scattering from multiple non-interacting populations of scatterers, the pair-distance distribution function, a unified fit, the Debye-Bueche model, the reflectivity (X-ray and neutron)more » using Parratt's formalism, and small-angle diffraction. There are also a number of support tools, such as a data import/export tool supporting a broad sampling of common data formats, a data modification tool, a presentation-quality graphics tool optimized for small-angle scattering data, and a neutron and X-ray scattering contrast calculator. These tools are brought together into one suite with consistent interfaces and functionality. The suite allows robust automated note recording and saving of parameters during export.« less

  1. Flexible Packaging Concept for a Space Suit Portable Life Support Subsystem

    NASA Technical Reports Server (NTRS)

    Thomas, Gretchen; Dillon, Paul; Oliver, Joe; Zapata, Felipe

    2009-01-01

    Neither the Shuttle Extravehicular Mobility Unit (EMU), the space suit currently used for space shuttle and International Space Station (ISS) missions, nor the Apollo EMU, the space suit successfully used on previous lunar missions, will satisfy the requirements for the next generation Constellation Program (CxP) lunar suit. The CxP system or Constellation Space Suit Element (CSSE) must be able to tolerate more severe environmental and use conditions than any previous system. These conditions include missions to the severely cold lunar poles and up to 100 Extravehicular Activity (EVA) excursions without ground maintenance. Much effort is focused on decreasing the mass and volume of the Portable Life Support Subsystem (PLSS) over previous suit designs in order to accommodate the required increase in functionality. This paper documents the progress of a conceptual packaging effort of a flexible backpack for the CSSE PLSS. The flexible backpack concept relies on a foam protection system to absorb, distribute, and dissipate the energy from falls on the lunar surface. Testing and analysis of the foam protection system concept that was conducted during this effort indicates that this method of system packaging is a viable solution.

  2. Labeled line drawing of launch and entry suit identifies various components

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Line drawings illustrate how a crewmember would be seated during space shuttle launch and entry in the mission specialist seat wearing the launch and entry suit (LES), a partial pressure suit. Front and profile drawings are labeled with numbers. The legend for the views includes: 1) Mission Specialist seat; 2) crewman; 3) helmet; 4) anti-exposure / counter pressure garment; 5) boots; 6) parachute harness; 7) parachute pack; 8) life raft with sea dye marker; 9) suit mounted oxygen (O2) manifold; 10) anti-gravity (anti-g) suit controller; 11) emergency O2 supply; 12) seawars; 13) ventilation fan; 14) orbiter O2 line; 15) headset interface unit (HIU); 16) communication (COMM) line to HIU; 17) flotation device. Crew escape system (CES) and LES was designed for STS-26, the return to flight mission, and subsequent missions.

  3. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.; Korona, F. Adam; McFarland, Shane

    2012-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars [1] left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This paper will address the space suit system architecture and technologies required based upon human exploration extravehicular activity (EVA) destinations, and describe how they should evolve to meet the future exploration EVA needs of the US human space flight program.1, 2, 3 In looking forward to future US space exploration to a space suit architecture with maximum reuse of technology and functionality across a range of mission profiles and destinations, a series of exercises and analyses have provided a strong indication that the Constellation Program (CxP) space suit architecture is postured to provide a viable solution for future exploration missions4. The destination environmental analysis presented in this paper demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew given any human mission outside of low-Earth orbit (LEO). Additionally, some of the high-level trades presented here provide a review of the environmental and non-environmental design drivers that will become increasingly important the farther away from Earth humans venture. This paper demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, independent of any particular program, and provide architecture and design solutions for space suit systems in time or ahead of need dates for any particular crewed flight program in the future. The approach to space suit design and interface definition discussion will show how the architecture is very adaptable to programmatic and funding changes with

  4. Seychelles alkaline suite records the culmination of Deccan Traps continental flood volcanism

    NASA Astrophysics Data System (ADS)

    Owen-Smith, T. M.; Ashwal, L. D.; Torsvik, T. H.; Ganerød, M.; Nebel, O.; Webb, S. J.; Werner, S. C.

    2013-12-01

    Silhouette and North Islands in the Seychelles represent an alkaline plutonic-volcanic complex, dated at 63 to 63.5 Ma by U-Pb zircon and 40Ar/39Ar methods. This magmatism coincides with the final stages of the cataclysmic Deccan Traps continental flood volcanism in India (67 to 63 Ma), and thus a causal link has been suggested. Recent reconstructions have placed the Seychelles islands adjacent to the Laxmi Ridge and at the western margin of the Réunion mantle plume at the time of formation of the complex. Here we present geochemical evidence in support of the notion that the Seychelles alkaline magmatism was initiated by the peripheral activity of the Réunion mantle plume and is thus part of the Deccan magmatic event. Positive εNd (0.59 to 3.76) and εHf (0.82 to 6.79) and initial Sr of 0.703507 to 0.705643 at 65 Ma indicate derivation of the Seychelles alkaline magmas from a Réunion-like mantle source with an additional minor enriched component, suggesting entrainment of sub-continental lithospheric mantle. The similarity in trace element composition between the Seychelles suite and Deccan alkaline felsic and mafic rocks provides additional evidence for a common mantle source for the Seychelles and Deccan magmatism. Furthermore, we demonstrate the role of fractional crystallisation in the evolution of the alkaline suite. Modelling using major elements suggests that fractional crystallisation and varying degrees of accumulation of olivine, plagioclase, ilmenite, clinopyroxene, alkali feldspar and apatite can describe the spectrum of rock types, from gabbro, through syenite, to granite.

  5. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer

    2010-01-01

    This joint mobility KC lecture included information from two papers, "A Method for and Issues Associated with the Determination of Space Suit Joint Requirements" and "Results and Analysis from Space Suit Joint Torque Testing," as presented for the International Conference on Environmental Systems in 2009 and 2010, respectively. The first paper discusses historical joint torque testing methodologies and approaches that were tested in 2008 and 2009. The second paper discusses the testing that was completed in 2009 and 2010.

  6. STS-70 Mission Specialist Nancy Jane Currie suits up

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-70 Mission Specialist Nancy Jane Currie is donning her launch/entry suit in the Operations and Checkout Building with help from a suit technician. Currie has flown in space once before, on STS-57. Currie and four crew mates will depart shortly for Launch Pad 39B, where the Space Shuttle Discovery is undergoing final preparations for a liftoff scheduled during a two and a half hour launch window opening at 9:41 a.m. EDT.

  7. Development of the Mayo Investigational Neuromodulation Control System: toward a closed-loop electrochemical feedback system for deep brain stimulation

    PubMed Central

    Chang, Su-Youne; Kimble, Christopher J.; Kim, Inyong; Paek, Seungleal B.; Kressin, Kenneth R.; Boesche, Joshua B.; Whitlock, Sidney V.; Eaker, Diane R.; Kasasbeh, Aimen; Horne, April E.; Blaha, Charles D.; Bennet, Kevin E.; Lee, Kendall H.

    2014-01-01

    Object Conventional deep brain stimulation (DBS) devices continue to rely on an open-loop system in which stimulation is independent of functional neural feedback. The authors previously proposed that as the foundation of a DBS “smart” device, a closed-loop system based on neurochemical feedback, may have the potential to improve therapeutic outcomes. Alterations in neurochemical release are thought to be linked to the clinical benefit of DBS, and fast-scan cyclic voltammetry (FSCV) has been shown to be effective for recording these evoked neurochemical changes. However, the combination of FSCV with conventional DBS devices interferes with the recording and identification of the evoked analytes. To integrate neurochemical recording with neurostimulation, the authors developed the Mayo Investigational Neuromodulation Control System (MINCS), a novel, wirelessly controlled stimulation device designed to interface with FSCV performed by their previously described Wireless Instantaneous Neurochemical Concentration Sensing System (WINCS). Methods To test the functionality of these integrated devices, various frequencies of electrical stimulation were applied by MINCS to the medial forebrain bundle of the anesthetized rat, and striatal dopamine release was recorded by WINCS. The parameters for FSCV in the present study consisted of a pyramidal voltage waveform applied to the carbon-fiber microelectrode every 100 msec, ramping between −0.4 V and +1.5 V with respect to an Ag/AgCl reference electrode at a scan rate of either 400 V/sec or 1000 V/sec. The carbon-fiber microelectrode was held at the baseline potential of −0.4 V between scans. Results By using MINCS in conjunction with WINCS coordinated through an optic fiber, the authors interleaved intervals of electrical stimulation with FSCV scans and thus obtained artifact-free wireless FSCV recordings. Electrical stimulation of the medial forebrain bundle in the anesthetized rat by MINCS elicited striatal dopamine

  8. Severity Levels and Symptoms Complexes for Acute Radiation Sickness -- Description and Quantification

    DTIC Science & Technology

    1985-11-30

    of military task performance levels. This effort was performed under the guidance and direction of DNA staff members Dr. David Auton and Dr. Robert W...INC ATTN: J HOWE ATTN: S SHRIER HORIZONS TECHNOLOGY, INC S-CUBEDATTN: B PYATT ATTN: J PALMER I:T RESEARCH INSTITUTE SCIENCE APPLICATIONS INTL CORP

  9. Asteroid Redirect Crewed Mission Space Suit and EVA System Maturation

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan T.; Kelly, Cody; Buffington, Jesse; Watson, Richard D.

    2015-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment that was selected, for both functions, is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS). The proposed architecture was found to meet the mission constraints, but much more work is required to determine the details of the required suit upgrades, the integration with the PLSS, and the rest of the tools and equipment required to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations have been completed in the NBL and interfacing options have been prototyped and analyzed with testing planned for late 2014. For NBL EVA simulations, in 2013, components were procured to allow in-house build up for four new suits with mobility enhancements built into the arms. Boots outfitted with clips that fit into foot restraints have also been added to the suit and analyzed for possible loads. Major suit objectives accomplished this year in testing include: evaluation of mobility enhancements, ingress/egress of foot restraint, use of foot restraint for worksite stability, ingress/egress of Orion hatch with PLSS mockup, and testing with two crew members in the water at one time to evaluate the crew's ability to help one another. Major tool objectives accomplished this year include using various other methods for worksite stability, testing new methods for asteroid geologic sampling and improving the fidelity of the mockups and crew equipment. These tests were completed on a medium fidelity capsule mockup, asteroid vehicle mockup, and asteroid mockups that were more accurate for an asteroid type EVA than previous tests. Another focus was the

  10. Statistical Evaluation of Causal Factors Associated with Astronaut Shoulder Injury in Space Suits.

    PubMed

    Anderson, Allison P; Newman, Dava J; Welsch, Roy E

    2015-07-01

    Shoulder injuries due to working inside the space suit are some of the most serious and debilitating injuries astronauts encounter. Space suit injuries occur primarily in the Neutral Buoyancy Laboratory (NBL) underwater training facility due to accumulated musculoskeletal stress. We quantitatively explored the underlying causal mechanisms of injury. Logistic regression was used to identify relevant space suit components, training environment variables, and anthropometric dimensions related to an increased propensity for space-suited injury. Two groups of subjects were analyzed: those whose reported shoulder incident is attributable to the NBL or working in the space suit, and those whose shoulder incidence began in active duty, meaning working in the suit could be a contributing factor. For both groups, percent of training performed in the space suit planar hard upper torso (HUT) was the most important predictor variable for injury. Frequency of training and recovery between training were also significant metrics. The most relevant anthropometric dimensions were bideltoid breadth, expanded chest depth, and shoulder circumference. Finally, record of previous injury was found to be a relevant predictor for subsequent injury. The first statistical model correctly identifies 39% of injured subjects, while the second model correctly identifies 68% of injured subjects. A review of the literature suggests this is the first work to quantitatively evaluate the hypothesized causal mechanisms of all space-suited shoulder injuries. Although limited in predictive capability, each of the identified variables can be monitored and modified operationally to reduce future impacts on an astronaut's health.

  11. The Canadian space agency planetary analogue materials suite

    NASA Astrophysics Data System (ADS)

    Cloutis, Edward A.; Mann, Paul; Izawa, Matthew R. M.; Applin, Daniel M.; Samson, Claire; Kruzelecky, Roman; Glotch, Timothy D.; Mertzman, Stanley A.; Mertzman, Karen R.; Haltigin, Timothy W.; Fry, Christopher

    2015-12-01

    The Canadian Space Agency (CSA) recently commissioned the development of a suite of over fifty well-characterized planetary analogue materials. These materials are terrestrial rocks and minerals that are similar to those known or suspected to occur on the lunar or martian surfaces. These include: Mars analogue sedimentary, hydrothermal, igneous and low-temperature alteration rock suites; lunar analogue basaltic and anorthositic rock suites; and a generic impactite rock suite from a variety of terrestrial impact structures. Representative thin sections of the materials have been characterized by optical microscopy and electron probe microanalysis (EPMA). Reflectance spectra have been collected in the ultraviolet, visible, near-infrared and mid-infrared, covering 0.2-25 μm. Thermal infrared emission spectra were collected from 5 to 50 μm. Raman spectra with 532 nm excitation, and laser-induced fluorescence spectra with 405 nm excitation were also measured. Bulk chemical analysis was carried out using X-ray fluorescence, with Fe valence determined by wet chemistry. Chemical and mineralogical data were collected using a field-portable Terra XRD-XRF instrument similar to CheMin on the MSL Curiosity rover. Laser-induced breakdown spectroscopy (LIBS) data similar to those measured by ChemCam on MSL were collected for powdered samples, cut slab surfaces, and as depth profiles into weathered surfaces where present. Three-dimensional laser camera images of rock textures were collected for selected samples. The CSA intends to make available sample powders (<45 μm and 45-1000 μm grain sizes), thin sections, and bulk rock samples, and all analytical data collected in the initial characterisation study to the broader planetary science community. Aiming to complement existing planetary analogue rock and mineral libraries, the CSA suite represents a new resource for planetary scientists and engineers. We envision many potential applications for these materials in the

  12. Heat Strain Evaluation of U.S. Navy Steam Suit Ensembles

    DTIC Science & Technology

    2016-05-01

    method for measuring the thermal insulation of clothing using a heated manikin. West Conshohocken, PA: ASTM International. 2. Castellani, J.W., Young...TECHNICAL REPORT NO. T16-13 DATE May 2016 ADA HEAT STRAIN EVALUATION OF U.S. NAVY STEAM SUIT ENSEMBLES DISCLAIMER The opinions or...USARIEM TECHNICAL REPORT T16-13 HEAT STRAIN EVALUATION OF U.S. NAVY STEAM SUIT ENSEMBLES

  13. A Conformance Test Suite for Arden Syntax Compilers and Interpreters.

    PubMed

    Wolf, Klaus-Hendrik; Klimek, Mike

    2016-01-01

    The Arden Syntax for Medical Logic Modules is a standardized and well-established programming language to represent medical knowledge. To test the compliance level of existing compilers and interpreters no public test suite exists. This paper presents the research to transform the specification into a set of unit tests, represented in JUnit. It further reports on the utilization of the test suite testing four different Arden Syntax processors. The presented and compared results reveal the status conformance of the tested processors. How test driven development of Arden Syntax processors can help increasing the compliance with the standard is described with two examples. In the end some considerations how an open source test suite can improve the development and distribution of the Arden Syntax are presented.

  14. Aesthetic guidelines for second-generation indirect inlay and onlay composite restorations.

    PubMed

    Miara, P

    1998-05-01

    Recent innovations in indirect composite technology and adhesive bonding procedures have resulted in the development of advanced materials particularly suited for inlay and onlay restorations. Microhybrid composite resins are characterized by a filler/matrix ratio that is significantly greater than that of earlier materials. This article reviews the physical properties and clinical application of these "second-generation" composite resins, with emphasis on a system that utilizes a heat-curing process in conjunction with nitrogen pressure to fabricate a material with improved mechanical and aesthetic properties.

  15. Effect of swimming suit design on the energy demands of swimming.

    PubMed

    Starling, R D; Costill, D L; Trappe, T A; Jozsi, A C; Trappe, S W; Goodpaster, B H

    1995-07-01

    Eight competitive male swimmers completed a standardized 365.8 m (400 yd) freestyle swimming trial at a fixed pace (approximately 90% of maximal effort) while wearing a torso swim suit (TOR) or a standard racing suit (STD). Oxygen uptake (VO2), blood lactate, heart rate (HR), and distance per stroke (DPS) measurements were obtained. In addition, a video-computer system was used to collect velocity data during a prone underwater glide following a maximal leg push-off from the side of the pool while wearing the TOR and STD suits. These data were used to calculate the total distance covered during the glides. VO2 (3.76 +/- 0.16 vs 3.92 +/- 0.18 l.min-1) and lactate (8.08 +/- 0.53 vs, 9.66 +/- 0.66 mM) were significantly (P < 0.05) lower during the TOR trial than the STD trial. HR was not different (P > 0.05) between the TOR (170.1 +/- 5.1 b.min-1) and STD (173.5 +/- 5.7 b.min-1) trials. DPS was significantly greater during the TOR (2.70 +/- 0.066 m.stroke-1) versus STD (2.58 +/- 0.054 m.stroke-1) trial. A significantly greater total distance was covered during the prone glide while wearing the TOR (2.05 +/- 0.067 m) compared to the STD (2.00 +/- 0.080 m) suit. These findings demonstrate that a specially designed torso suit reduces the energy demand of swimming compared to a standard racing suit which may be due to a reduction in body drag.

  16. Walking a mile in another's shoes: The impact of wearing an Age Suit.

    PubMed

    Lavallière, Martin; D'Ambrosio, Lisa; Gennis, Angelina; Burstein, Arielle; Godfrey, Kathryn M; Waerstad, Hilde; Puleo, Rozanne M; Lauenroth, Andreas; Coughlin, Joseph F

    2017-01-01

    The "Age Suit" described in this article was developed to enable future designers, business leaders, and engineers to experience navigating the world as many older adults must. Tools such as this Age Suit offer the opportunity to "walk a mile" in another's shoes to develop empathy that can result in better design of spaces, goods, and services to meet the needs of a rapidly growing older population. This work first examined, through a series of clinical tests, whether younger adults' physical capacities were reduced in a direction consistent with aging by wearing a suit developed by the MIT AgeLab. An experiential learning task was then completed with the suit to understand its impact on completion of an instrumental activity of daily living. Results showed that younger adults wearing the suit experienced changes in task performance consistent with expected changes associated with aging. Participants' self-reports from the experiential learning task indicated that they were able to empathize with older adults regarding some issues they face while completing a grocery shopping task. Future research with the suit should involve a wider range of individuals from the population and examine what effect participants' levels of fitness have on the experience of wearing the suit.

  17. STS-76 Payload Cmdr Ronald Sega suits up

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-76 Payload Commander Ronald M. Sega is donning his launch/entry suit in the Operations and Checkout Building with assistance from a suit technician. The third docking between the Russian Space Station Mir and the U.S. Space Shuttle marks the second trip into space for Sega, who recently served a five-month assignment in Russia as operations director for NASA activities there. Once suitup activities are completed the six-member STS-76 flight crew will depart for Launch Pad 39B, where the Space Shuttle Atlantis is undergoing final preparations for liftoff during an approximately seven-minute launch window opening around 3:13 a.m. EST, March 22.

  18. 28 CFR 36.501 - Private suits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ACCOMMODATIONS AND IN COMMERCIAL FACILITIES Enforcement § 36.501 Private suits. (a) General. Any person who is... general public importance. Upon application by the complainant and in such circumstances as the court may....402, 36.403, and 36.405 of this part, injunctive relief shall include an order to alter facilities to...

  19. Antigravity Suits For Studies Of Weightlessness

    NASA Technical Reports Server (NTRS)

    Kravik, Stein E.; Greenleaf, John

    1992-01-01

    Report presents results of research on use of "antigravity" suit, one applying positive pressure to lower body to simulate some effects of microgravity. Research suggests lower-body positive pressure is alternative to bed rest or immersion in water in terrestrial studies of cardioregulatory, renal, electrolyte, and hormonal changes induced in humans by microgravity.

  20. What's New with MS Office Suites

    ERIC Educational Resources Information Center

    Goldsborough, Reid

    2012-01-01

    If one buys a new PC, laptop, or netbook computer today, it probably comes preloaded with Microsoft Office 2010 Starter Edition. This is a significantly limited, advertising-laden version of Microsoft's suite of productivity programs, Microsoft Office. This continues the trend of PC makers providing ever more crippled versions of Microsoft's…

  1. Expedition 18 Suit-up

    NASA Image and Video Library

    2008-10-11

    Expedition 18 Flight Engineer Yuri V. Lonchakov, left, and Expedition 18 Commander Michael Fincke pose for a photograph after they don their Russian Sokol suits prior to the launch in the Soyuz TMA-13 spacecraft, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while American spaceflight participant Richard Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  2. Expedition 18 Suit-up

    NASA Image and Video Library

    2008-10-11

    Expedition 18 Commander Michael Fincke dons his Russian Sokol suit hours before he and Expedition 18 Flight Engineer Yuri V. Lonchakov and American spaceflight participant Richard Garriott launch in the Soyuz TMA-13 spacecraft, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  3. Expedition 18 Suit-up

    NASA Image and Video Library

    2008-10-11

    American spaceflight participant Richard Garriott, left, dons his Russian Sokol suit hours before he and Flight Engineer Yuri V. Lonchakov, second from left, and Expedition 18 Commander Michael Fincke launch in the Soyuz TMA-13 spacecraft, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  4. Expedition 18 Suit-up

    NASA Image and Video Library

    2008-10-11

    Expedition 18 Flight Engineer Yuri V. Lonchakov dons his Russian Sokol suit hours before he and Expedition 18 Commander Michael Fincke and American spaceflight participant Richard Garriott launch in the Soyuz TMA-13 spacecraft, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  5. Expedition 18 Suit-up

    NASA Image and Video Library

    2008-10-11

    Expedition 18 Flight Engineer Yuri V. Lonchakov, left, and Expedition 18 Commander Michael Fincke don their Russian Sokol suits hours before they and American spaceflight participant Richard Garriott launch in the Soyuz TMA-13 spacecraft, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  6. Clean room technology in surgery suites

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The principles of clean room technology and the criteria for their application to surgery are discussed. The basic types of surgical clean rooms are presented along with their advantages and disadvantages. Topics discussed include: microbiology of surgery suites; principles of laminar airflow systems, and their use in surgery; and asepsis and the operating room.

  7. Surgical Space Suits Increase Particle and Microbiological Emission Rates in a Simulated Surgical Environment.

    PubMed

    Vijaysegaran, Praveen; Knibbs, Luke D; Morawska, Lidia; Crawford, Ross W

    2018-05-01

    The role of space suits in the prevention of orthopedic prosthetic joint infection remains unclear. Recent evidence suggests that space suits may in fact contribute to increased infection rates, with bioaerosol emissions from space suits identified as a potential cause. This study aimed to compare the particle and microbiological emission rates (PER and MER) of space suits and standard surgical clothing. A comparison of emission rates between space suits and standard surgical clothing was performed in a simulated surgical environment during 5 separate experiments. Particle counts were analyzed with 2 separate particle counters capable of detecting particles between 0.1 and 20 μm. An Andersen impactor was used to sample bacteria, with culture counts performed at 24 and 48 hours. Four experiments consistently showed statistically significant increases in both PER and MER when space suits are used compared with standard surgical clothing. One experiment showed inconsistent results, with a trend toward increases in both PER and MER when space suits are used compared with standard surgical clothing. Space suits cause increased PER and MER compared with standard surgical clothing. This finding provides mechanistic evidence to support the increased prosthetic joint infection rates observed in clinical studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Wakata wearing Penguin-3 suit in JPM

    NASA Image and Video Library

    2009-07-12

    ISS020-E-019078 (12 July 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, is pictured wearing the Penguin-3 antigravity pressure/stress suit in the Kibo laboratory of the International Space Station.

  9. Method for hygromechanical characterization of graphite/epoxy composite

    NASA Technical Reports Server (NTRS)

    Yaniv, Gershon; Peimanidis, Gus; Daniel, Isaac M.

    1987-01-01

    An experimental method is described for measuring hygroscopic swelling strains and mechanical strains of moisture-conditioned composite specimens. The method consists of embedding encapsulated strain gages in the midplane of the composite laminate; thus it does not interfere with normal moisture diffusion. It is particularly suited for measuring moisture swelling coefficients and for mechanical testing of moisture-conditioned specimens at high strain rates. Results obtained by the embedded gage method were shown to be more reliable and reproducible than those obtained by surface gages, dial gages, or extensometers.

  10. Chromite symplectites in Mg-suite troctolite 76535 as evidence for infiltration metasomatism of a lunar layered intrusion

    NASA Astrophysics Data System (ADS)

    Elardo, Stephen M.; McCubbin, Francis M.; Shearer, Charles K.

    2012-06-01

    observations. Failure of models that call upon Cr diffusion out of olivine grains imply that the observed Cr-depleted nature of olivine observed in many Mg-suite lithologies is a primary feature of the Cr-depleted nature of the Mg-suite parental magmas and their source materials. This substantial depletion of Cr in the magma relative to mare basalt magmas still requires a satisfactory explanation in order to be consistent with Mg-suite petrogenetic models and currently accepted bulk-Moon compositions. Additionally, if the intimate interaction of migrating melts with early lunar crustal lithologies was a widespread phenomenon after LMO solidification, it provides another mechanism by which to reset or delay closure of radiogenic isotopic systems and explain the Mg-suite-ferroan anorthosite age overlap.

  11. Physiological effects of a new racing suit for elite cross country skiers.

    PubMed

    Sperlich, B; Holmberg, H C

    2011-12-01

    The aim of this paper was to investigate the influence of the new cross country racing suit, designed for the Olympic Winter Games in Vancouver 2010, on cardio-respiratory, thermoregulatory and perceptual responses. Six elite cross country skiers (29±6 years, peak oxygen uptake 73.2±6.9 mL·min-1·kg-1) performed two exercise bouts wearing either the 2009 or the 2010 racing suit. Bouts consisted of incremental testing on roller skis (12 km·h-1 at 5° inclination; 11 km·h-1 at 6° inclination and 12 km·h-1at 8° inclination for six minutes). During increasing intensities, significantly lower values were found for oxygen uptake, minute ventilation, RER and heart rate when wearing the new suit compared to the old one (P<0.05; effect sizes: 0.21-4.00). Core temperature was lower with the new suit during steps 2 and 3 (P<0.05, effect size: 1.22-1.27). Also, mean skin temperature was lower during the last increment (P<0.05, effect size: 0.87). The new 2010 racing suit, developed specifically for the Olympic Winter Games in Vancouver 2010, demonstrated lower values for oxygen uptake, minute ventilation, heart rate, skin and core temperature, ratings of thermal and sweat sensation when compared to the 2009 racing suit.

  12. 77 FR 48980 - Proposed Consent Decree, Clean Air Act Citizen Suit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-15

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9716-2] Proposed Consent Decree, Clean Air Act Citizen Suit... 16, 2011, Plaintiff filed a deadline suit to compel the Administrator to respond to an administrative..., avoiding the use of special characters and any form of encryption, and may be mailed to the mailing address...

  13. MASH Suite Pro: A Comprehensive Software Tool for Top-Down Proteomics*

    PubMed Central

    Cai, Wenxuan; Guner, Huseyin; Gregorich, Zachery R.; Chen, Albert J.; Ayaz-Guner, Serife; Peng, Ying; Valeja, Santosh G.; Liu, Xiaowen; Ge, Ying

    2016-01-01

    Top-down mass spectrometry (MS)-based proteomics is arguably a disruptive technology for the comprehensive analysis of all proteoforms arising from genetic variation, alternative splicing, and posttranslational modifications (PTMs). However, the complexity of top-down high-resolution mass spectra presents a significant challenge for data analysis. In contrast to the well-developed software packages available for data analysis in bottom-up proteomics, the data analysis tools in top-down proteomics remain underdeveloped. Moreover, despite recent efforts to develop algorithms and tools for the deconvolution of top-down high-resolution mass spectra and the identification of proteins from complex mixtures, a multifunctional software platform, which allows for the identification, quantitation, and characterization of proteoforms with visual validation, is still lacking. Herein, we have developed MASH Suite Pro, a comprehensive software tool for top-down proteomics with multifaceted functionality. MASH Suite Pro is capable of processing high-resolution MS and tandem MS (MS/MS) data using two deconvolution algorithms to optimize protein identification results. In addition, MASH Suite Pro allows for the characterization of PTMs and sequence variations, as well as the relative quantitation of multiple proteoforms in different experimental conditions. The program also provides visualization components for validation and correction of the computational outputs. Furthermore, MASH Suite Pro facilitates data reporting and presentation via direct output of the graphics. Thus, MASH Suite Pro significantly simplifies and speeds up the interpretation of high-resolution top-down proteomics data by integrating tools for protein identification, quantitation, characterization, and visual validation into a customizable and user-friendly interface. We envision that MASH Suite Pro will play an integral role in advancing the burgeoning field of top-down proteomics. PMID:26598644

  14. The European space suit, a design for productivity and crew safety

    NASA Astrophysics Data System (ADS)

    Skoog, A. Ingemar; Berthier, S.; Ollivier, Y.

    In order to fulfil the two major mission objectives, i.e. support planned and unplanned external servicing of the COLUMBUS FFL and support the HERMES vehicle for safety critical operations and emergencies, the European Space Suit System baseline configuration incorporates a number of design features, which shall enhance the productivity and the crew safety of EVA astronauts. The work in EVA is today - and will be for several years - a manual work. Consequently, to improve productivity, the first challenge is to design a suit enclosure which minimizes movement restrictions and crew fatigue. It is covered by the "ergonomic" aspect of the suit design. Furthermore, it is also necessary to help the EVA crewmember in his work, by giving him the right information at the right time. Many solutions exist in this field of Man-Machine Interface, from a very simple system, based on cuff check lists, up to advanced systems, including Head-Up Displays. The design concept for improved productivity encompasses following features: • easy donning/doffing thru rear entry, • suit ergonomy optimisation, • display of operational information in alpha-numerical and graphical from, and • voice processing for operations and safety critical information. Concerning crew safety the major design features are: • a lower R-factor for emergency EVA operations thru incressed suit pressure, • zero prebreath conditions for normal operations, • visual and voice processing of all safety critical functions, and • an autonomous life support system to permit unrestricted operations around HERMES and the CFFL. The paper analyses crew safety and productivity criteria and describes how these features are being built into the design of the European Space Suit System.

  15. The European space suit, a design for productivity and crew safety.

    PubMed

    Skoog, A I; Berthier, S; Ollivier, Y

    1991-01-01

    In order to fulfill the two major mission objectives, i.e. support planned and unplanned external servicing of the COLUMBUS FFL and support the HERMES vehicle for safety critical operations and emergencies, the European Space Suit System baseline configuration incorporates a number of design features, which shall enhance the productivity and the crew safety of EVA astronauts. The work in EVA is today--and will be for several years--a manual work. Consequently, to improve productivity, the first challenge is to design a suit enclosure which minimizes movement restrictions and crew fatigue. It is covered by the "ergonomic" aspect of the suit design. Furthermore, it is also necessary to help the EVA crewmember in his work, by giving him the right information at the right time. Many solutions exist in this field of Man-Machine Interface, from a very simple system, based on cuff check lists, up to advanced systems, including Head-Up Displays. The design concept for improved productivity encompasses following features: easy donning/doffing thru rear entry, suit ergonomy optimisation, display of operational information in alpha-numerical and graphical form, and voice processing for operations and safety critical information. Concerning crew safety the major design features are: a lower R-factor for emergency EVA operations thru increased suit pressure, zero prebreath conditions for normal operations, visual and voice processing of all safety critical functions, and an autonomous life support system to permit unrestricted operations around HERMES and the CFFL. The paper analyses crew safety and productivity criteria and describes how these features are being built into the design of the European Space Suit System.

  16. DYNA3D/ParaDyn Regression Test Suite Inventory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jerry I.

    2016-09-01

    The following table constitutes an initial assessment of feature coverage across the regression test suite used for DYNA3D and ParaDyn. It documents the regression test suite at the time of preliminary release 16.1 in September 2016. The columns of the table represent groupings of functionalities, e.g., material models. Each problem in the test suite is represented by a row in the table. All features exercised by the problem are denoted by a check mark (√) in the corresponding column. The definition of “feature” has not been subdivided to its smallest unit of user input, e.g., algorithmic parameters specific to amore » particular type of contact surface. This represents a judgment to provide code developers and users a reasonable impression of feature coverage without expanding the width of the table by several multiples. All regression testing is run in parallel, typically with eight processors, except problems involving features only available in serial mode. Many are strictly regression tests acting as a check that the codes continue to produce adequately repeatable results as development unfolds; compilers change and platforms are replaced. A subset of the tests represents true verification problems that have been checked against analytical or other benchmark solutions. Users are welcomed to submit documented problems for inclusion in the test suite, especially if they are heavily exercising, and dependent upon, features that are currently underrepresented.« less

  17. 33 CFR 150.518 - What are the inspection requirements for work vests and immersion suits?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for work vests and immersion suits? 150.518 Section 150.518 Navigation and Navigable Waters COAST... vests and immersion suits? (a) All work vests and immersion suits must be inspected by the owner or... a work vest or immersion suit is inspected and is in serviceable condition, then it may remain in...

  18. 33 CFR 150.518 - What are the inspection requirements for work vests and immersion suits?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for work vests and immersion suits? 150.518 Section 150.518 Navigation and Navigable Waters COAST... vests and immersion suits? (a) All work vests and immersion suits must be inspected by the owner or... a work vest or immersion suit is inspected and is in serviceable condition, then it may remain in...

  19. 33 CFR 150.518 - What are the inspection requirements for work vests and immersion suits?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for work vests and immersion suits? 150.518 Section 150.518 Navigation and Navigable Waters COAST... vests and immersion suits? (a) All work vests and immersion suits must be inspected by the owner or... a work vest or immersion suit is inspected and is in serviceable condition, then it may remain in...

  20. 33 CFR 150.518 - What are the inspection requirements for work vests and immersion suits?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for work vests and immersion suits? 150.518 Section 150.518 Navigation and Navigable Waters COAST... vests and immersion suits? (a) All work vests and immersion suits must be inspected by the owner or... a work vest or immersion suit is inspected and is in serviceable condition, then it may remain in...

  1. 33 CFR 150.518 - What are the inspection requirements for work vests and immersion suits?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for work vests and immersion suits? 150.518 Section 150.518 Navigation and Navigable Waters COAST... vests and immersion suits? (a) All work vests and immersion suits must be inspected by the owner or... a work vest or immersion suit is inspected and is in serviceable condition, then it may remain in...

  2. Petrology and Composition of HED Polymict Breccias

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Herrin, J. S.; Mertzman, S. A.; Mertzman, K. R.

    2010-01-01

    The howardite, eucrite and diogenite (HED) clan of meteorites forms the largest suite of achondrites with over 900 named members. The HEDs are igneous rocks and breccias of igneous rocks from a differentiated asteroid [1]. The consensus view is that these rocks hail from the asteroid 4 Vesta, which will be the first target of NASA's Dawn mission. When Dawn arrives at Vesta, she will begin remote imagery and spectroscopy of the surface. The surface she will observe will be dominated by rocks and soils mixed through impact gardening. To help with the interpretation of the remotely sensed data, we have begun a project on the petrologic and compositional study of a suite of HED polymict breccias. Here we report on the preliminary findings of this project.

  3. STS-82 Mission Specialist Steven L. Smith Suit Up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-82 Mission Specialist Steven L. Smith gives a ''';thumbs up'''; while donning his launch and entry suit in the Operations and Checkout Building. A suit technician stands ready to assist with final adjustments. This is Smith''';s second space flight. He and the six other crew members will depart shortly for Launch Pad 39A, where the Space Shuttle Discovery awaits liftoff on a 10-day mission to service the orbiting Hubble Space Telescope (HST). This will be the second HST servicing mission. Four back-to-back spacewalks are planned.

  4. 75 FR 67719 - Proposed Consent Decree, Clean Air Act Citizen Suit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9220-1] Proposed Consent Decree, Clean Air Act Citizen Suit... suit to compel the Administrator to take final action under section 110(k) of the Act on Imperial... special characters and any form of encryption, and may be mailed to the mailing address above. FOR FURTHER...

  5. G-suited for prevention of syncope in patients with vasovagal syncope: a pilot study.

    PubMed

    Rasmeehirun, Prayuth; Krittayaphong, Rungroj

    2014-03-01

    Vasovagal syncope (VVS) represents by far the most common cause of syncope as it is diagnosed in around 50% of all patients that come to an emergency department. Although VVS is not fatal, it can cause an injury. Even serious injuries are not common, but there are reports of serious injuries of up to 5%. There are no current studies that demonstrate the effectiveness of any treatment. Past studies found that an Anti-Gravity suit (G-suit) can increase blood pressure and has been reported to prevent orthostatic hypotension effectively in patients with diabetes. It is possible that the G-suit can prevent VVS. In the present study, the authors assessed the efficacy of G-suit for vasovagal syncope prevention. In this open-label, randomized controlled study, we used the Italian tilt protocol, namely 60 degree passive tilting followed by 0.4 mg nitroglycerin challenge when the passive phase fails to induce syncope. If test was positive, then patient was enrolled. Tilt table test was repeated to compare G-suited and no G-suited to assess efficacy of G-suit for vasovagal syncope prevention. 10 patients were enrolled. There is no difference between the control group and an experimental group. In this study there is no cardio-inhibition vasovagal syncope. Positive tilt table test occurred in 50% of the patients receiving G-suited and 100% in control group (p 0.133). G-suit is unable to prevent syncope in patients with positive tilt table test but the result is not statistically significant. However, the number of patients may be too small.

  6. Defensive aids suite prototype for light armored vehicles

    NASA Astrophysics Data System (ADS)

    Cantin, Andre; Fortin, Jean; Venter, Johan; Philip, Brian G.; Hagen, Russell; Krieger, Dietmar; Greenley, Mike

    2001-09-01

    The Defence Research Establishment Valcartier has initiated in 1998 R&D work to investigate and to demonstrate key technologies required for future Defensive Aid Suite to protect Light Armoured Vehicles. A basic Defensive Aid Suite demonstrator (Phase I) was built and integrated into the LAV vetronics by Litton Systems Canada and his consortium. The Defensive Aid Suite consisted of a 2-band HARLIDTM-based laser detection head, a processor capable to control and deploy countermeasures and a DAS touch-screen display all integrated in a Light Armored Vehicle. The crew was able to select the operation mode for direct fire or smoke deployment by pushing one of the pair of buttons available at the bottom of the display. This system was successfully demonstrated in October 1999 during an international trial. This article gives an overview of the results obtained in the field as well as some of the lessons learnt. It also describes laboratory and field measurements made on the Laser Warning Receiver unit itself. The results of the DAS tactical use and of Human factor evaluation will illustrate its performance within typical laser threat scenarios. This work will serve as the basis for the recommendation of a future DAS demonstrator (Phase II) integrating more sensors and countermeasures.

  7. Thermoplastic copolyimides and composites therefrom

    NASA Technical Reports Server (NTRS)

    Harris, Frank (Inventor); Gabori, Patricia A. (Inventor)

    1994-01-01

    Copolyimide compositions and methods for their preparation which are melt-processible at relative low pressures, i.e. less than 1000 psi, and are suited for laminating and molding, are described. The invention additionally encompasses copolyimide precursors, reinforced polyimide composites and laminates made from said polyimides where the composite is reinforced by fibrous materials. This is achieved by reacting at least one aromatic dianhydride where each anhydride group is located on an aromatic ring with the carbonyl units in an ortho orientation relative to one another, with at least one diamine which is capable of a transmidization reaction upon incorporation into the polyimide backbone, and with at least one other diamine which is not capable of undergoing such reaction, the diamine which is capable of undergoing the transimidization reaction being present in an amount of from about 1-50 mole percent in relation to the diamine that is not susceptable to transimidization.

  8. Micromechanics of compression failures in open hole composite laminates

    NASA Technical Reports Server (NTRS)

    Guynn, E. Gail; Bradley, Walter L.

    1987-01-01

    The high strength-to-weight ratio of composite materials is ideally suited for aerospace applications where they already are used in commercial and military aircraft secondary structures and will soon be used for heavily loaded primary structures. One area impeding the widespread application of composites is their inherent weakness in compressive strength when compared to the tensile properties of the same material. Furthermore, these airframe designs typically contain many bolted or riveted joints, as well as electrical and hydraulic control lines. These applications produce areas of stress concentration, and thus, further complicate the compression failure problem. Open hole compression failures which represent a typical failure mode for composite materials are addressed.

  9. A Parametric Model of Shoulder Articulation for Virtual Assessment of Space Suit Fit

    NASA Technical Reports Server (NTRS)

    Kim, K. Han; Young, Karen S.; Bernal, Yaritza; Boppana, Abhishektha; Vu, Linh Q.; Benson, Elizabeth A.; Jarvis, Sarah; Rajulu, Sudhakar L.

    2016-01-01

    Suboptimal suit fit is a known risk factor for crewmember shoulder injury. Suit fit assessment is however prohibitively time consuming and cannot be generalized across wide variations of body shapes and poses. In this work, we have developed a new design tool based on the statistical analysis of body shape scans. This tool is aimed at predicting the skin deformation and shape variations for any body size and shoulder pose for a target population. This new process, when incorporated with CAD software, will enable virtual suit fit assessments, predictively quantifying the contact volume, and clearance between the suit and body surface at reduced time and cost.

  10. Expedition 18 Suit-up

    NASA Image and Video Library

    2008-10-11

    American spaceflight participant Richard Garriott, left, Expedition 18 Flight Engineer Yuri V. Lonchakov and Expedition 18 Commander Michael Fincke, right, smile for the camera after they had their Russian Sokol suits pressure checked in preparation for launch onboard the Soyuz TMA-13 spacecraft, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  11. Expedition 18 Suit-up

    NASA Image and Video Library

    2008-10-11

    Expedition 18 Commander Michael Fincke smiles for the camera after he and Expedition 18 Flight Engineer Yuri V. Lonchakov and American spaceflight participant Richard Garriott had their Russian Sokol suits pressure checked prior to launching in the Soyuz TMA-13 spacecraft, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  12. Z-2 Space Suit: A Case Study in Human Spaceflight Public Outreach

    NASA Technical Reports Server (NTRS)

    McFarland, S. M.

    2016-01-01

    NASA Johnson Space Center's Z-series of planetary space suit prototypes is an iterative development platform with a Mars-forward design philosophy, targeting a Mars surface mission in the mid-2030s. The first space suit assembly, called the Z-1, was delivered in 2012. While meeting the project's stated requirements and objectives, the general public's reception primarily focused on the color scheme, which vaguely invoked similarity to a certain animated cartoon character. The public at large has and continues to be exposed to varying space suit design aesthetics from popular culture and low TRL technology maturation efforts such as mechanical counter-pressure. The lesson learned was that while the design aesthetic is not important from an engineering perspective, the perception of the public is important for NASA and human spaceflight in general. For the Z-2 space suit, an integrated public outreach strategy was employed to engage, excite and educate the public on the current technology of space suits and NASA's plans moving forward. The keystone of this strategy was a public vote on three different suit cover layer aesthetics, the winner of which would be used as inspiration in fabrication. Other components included social media, university collaboration, and select media appearances, the cumulative result of which, while intangible in its benefit, was ultimately a positive effect in terms of the image of NASA as well as the dissemination of information vital to dispelling public misconceptions.

  13. Z-2 Space Suit: A Case Study in Human Spaceflight Public Outreach

    NASA Technical Reports Server (NTRS)

    McFarland, Shane M.

    2016-01-01

    NASA Johnson Space Center's Z-series of planetary space suit prototypes is an iterative development platform with a Mars-forward design philosophy, targeting a Mars surface mission in the mid-2030s. The first space suit assembly, called the Z-1, was delivered in 2012. While meeting the project's stated requirements and objectives, the general public's reception primarily focused on the color scheme, which vaguely invoked similarity to a certain animated cartoon character. The public at large has and continues to be exposed to varying space suit design aesthetics from popular culture and low TRL technology maturation efforts such as mechanical counterpressure. The lesson learned was that while the design aesthetic is not important from an engineering perspective, the perception of the public is important for NASA and human spaceflight in general. For the Z-2 space suit, an integrated public outreach strategy was employed to engage, excite and educate the public on the current technology of space suits and NASA's plans moving forward. The keystone of this strategy was a public vote on three different suit cover layer aesthetics, the winner of which would be used as inspiration in fabrication. Other components included social media, university collaboration, and select media appearances, the cumulative result of which, while intangible in its benefit, was ultimately a positive effect in terms of the image of NASA as well as the dissemination of information vital to dispelling public misconceptions.

  14. Development of Improved Seals and Closures for Dry Diving Suits.

    DTIC Science & Technology

    1979-01-31

    7 AA SIS 17 2 BATTELLE COL4 4 St LABS 0O 4 F/6 6/17DEVLOPMENT OF IMPROVED SEALS AND CLOSURES FOR DRY DIVAlM SUITS--ETC (U) ULS JAN 79 M61331-76-C...A I Columbus Laboratories Report DTI ELIT V~ omn mbIIap" pww =dt 0lu FINAL REPORT on DEVELOPMENT OF IMPROVED SEALS AND CLOSURES FOR DRY DIVING SUITS...6 Multiple Lip Wrist Seal ..................................... 6 Closures

  15. The use of antigravity suits in the treatment of idiopathic orthostatic hypotension

    NASA Technical Reports Server (NTRS)

    Landmark, K.; Kravik, S.

    1980-01-01

    Idiopathic orthostatic hypotension is an uncommon disease characterized by a drop in blood pressure when going from a recumbent to a standing position. Treatment by medication generally produces poor results. Three patients at the Royal Hospital in Oslo were treated with antigravity suits and all were able to maintain adequate blood pressures in the standing position. One patient improved dramatically and was able to take short walks while wearing the suit. The two other patients, however, felt that wearing the suits eventually became uncomfortable. This treatment represents a useful treatment alternative for intractable cases.

  16. A transitional alkalic dolerite dike suite of Mesozoic age in Southeastern New England

    NASA Astrophysics Data System (ADS)

    Hermes, O. Don; Rao, J. M.; Dickenson, M. P.; Pierce, T. A.

    1984-12-01

    Dike rocks from the New England platform of Rhode Island and adjacent Massachusetts consist of premetamorphic and post-metamorphic suites. The older group includes metamorphosed dolerite, minette, and schistose dioritic rocks. Post-metamorphic dikes consist of dolerite and sparse monchiquite. The post-metamorphic dolerites are of comparable age to the Eastern North American dolerite suite associated with the Mesozoic basins along the eastern seaboard of North America. However, the southeastern New England dolerites exhibit mineralogy and chemistry more typical of a transitional alkalic suite compared to the more subalkalic tholeiitic dolerites of the Eastern North American suite. Both suites are compatible with a rift tectonic setting, but the more alkalic dolerites may represent a deeper source of small volume melts compared to the Eastern North American dolerites. These more alkaline melts may have concentrated at local centers, or they may be typical of flank dolerites as opposed to the less alkalic varieties that occur within the central axial rift.

  17. Non-Venting Thermal and Humidity Control for EVA Suits

    NASA Technical Reports Server (NTRS)

    Izenson, Mike; Chen, Weibo; Bue, Grant

    2011-01-01

    Future EVA suits need processes and systems to control internal temperature and humidity without venting water to the environment. This paper describes an absorption-based cooling and dehumidification system as well as laboratory demonstrations of the key processes. There are two main components in the system: an evaporation cooling and dehumidification garment (ECDG) that removes both sensible heat and latent heat from the pressure garment, and an absorber radiator that absorbs moisture and rejects heat to space by thermal radiation. This paper discusses the overall design of both components, and presents recent data demonstrating their operation. We developed a design and fabrication approach to produce prototypical heat/water absorbing elements for the ECDG, and demonstrated by test that these elements could absorb heat and moisture at a high flux. Proof-of-concept tests showed that an ECDG prototype absorbs heat and moisture at a rate of 85 W/ft under conditions that simulate operation in an EVA suit. The heat absorption was primarily due to direct absorption of water vapor. It is possible to construct large, flexible, durable cooling patches that can be incorporated into a cooling garment with this system. The proof-of-concept test data was scaled to calculate area needed for full metabolic loads, thus showing that it is feasible to use this technology in an EVA suit. Full-scale, lightweight absorber/radiator modules have also been built and tested. They can reject heat at a flux of 33 W/ft while maintaining ECDG operation at conditions that will provide a cool and dry environment inside the EVA suit.

  18. Compression under a mechanical counter pressure space suit glove

    NASA Technical Reports Server (NTRS)

    Waldie, James M A.; Tanaka, Kunihiko; Tourbier, Dietmar; Webb, Paul; Jarvis, Christine W.; Hargens, Alan R.

    2002-01-01

    Background: Current gas-pressurized space suits are bulky stiff shells severely limiting astronaut function and capability. A mechanical counter pressure (MCP) space suit in the form of a tight elastic garment could dramatically improve extravehicular activity (EVA) dexterity, but also be advantageous in safety, cost, mass and volume. The purpose of this study was to verify that a prototype MCP glove exerts the design compression of 200 mmHg, a pressure similar to the current NASA EVA suit. Methods: Seven male subjects donned a pressure measurement array and MCP glove on the right hand, which was placed into a partial vacuum chamber. Average compression was recorded on the palm, the bottom of the middle finger, the top of the middle finger and the dorsum of the hand at pressures of 760 (ambient), 660 and 580 mmHg. The vacuum chamber was used to simulate the pressure difference between the low breathing pressure of the current NASA space suits (approximately 200 mmHg) and an unprotected hand in space. Results: At ambient conditions, the MCP glove compressed the dorsum of the hand at 203.5 +/- 22.7 mmHg, the bottom of the middle finger at 179.4 +/- 16.0 mmHg, and the top of the middle finger at 183.8 +/- 22.6 mmHg. The palm compression was significantly lower (59.6 +/- 18.8 mmHg, p<0.001). There was no significant change in glove compression with the chamber pressure reductions. Conclusions: The MCP glove compressed the dorsum of the hand and middle finger at the design pressure.

  19. Compression under a mechanical counter pressure space suit glove.

    PubMed

    Waldie, James M A; Tanaka, Kunihiko; Tourbier, Dietmar; Webb, Paul; Jarvis, Christine W; Hargens, Alan R

    2002-12-01

    Current gas-pressurized space suits are bulky stiff shells severely limiting astronaut function and capability. A mechanical counter pressure (MCP) space suit in the form of a tight elastic garment could dramatically improve extravehicular activity (EVA) dexterity, but also be advantageous in safety, cost, mass and volume. The purpose of this study was to verify that a prototype MCP glove exerts the design compression of 200 mmHg, a pressure similar to the current NASA EVA suit. Seven male subjects donned a pressure measurement array and MCP glove on the right hand, which was placed into a partial vacuum chamber. Average compression was recorded on the palm, the bottom of the middle finger, the top of the middle finger and the dorsum of the hand at pressures of 760 (ambient), 660 and 580 mmHg. The vacuum chamber was used to simulate the pressure difference between the low breathing pressure of the current NASA space suits (approximately 200 mmHg) and an unprotected hand in space. At ambient conditions, the MCP glove compressed the dorsum of the hand at 203.5 +/- 22.7 mmHg, the bottom of the middle finger at 179.4 +/- 16.0 mmHg, and the top of the middle finger at 183.8 +/- 22.6 mmHg. The palm compression was significantly lower (59.6 +/- 18.8 mmHg, p<0.001). There was no significant change in glove compression with the chamber pressure reductions. The MCP glove compressed the dorsum of the hand and middle finger at the design pressure.

  20. A Suite of Tools for Technology Assessment

    DTIC Science & Technology

    2007-09-01

    Saden, Povinelli & Rosen, 1989). • This was a significant change in emphasis on the part of NASA, where technology had previously viewed as merely...Cost Analysis Symposium, April 13, 2005. A Suite of Tools for Technology Assessment 24 Bibliography - continued: • Sadin, Stanley T.; Povinelli

  1. STS-86 Mission Specialist David Wolf suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-86 Mission Specialist David A. Wolf gets assistance from a suit technician while donning his orange launch and entry suit in the Operations and Checkout Building. This will be Wolfs second flight. He and the six other crew members will depart shortly for Launch Pad 39A, where the Space Shuttle Atlantis awaits liftoff on a 10-day mission slated to be the seventh docking of the Space Shuttle with the Russian Space Station Mir. Wolf will transfer to the Mir 24 crew, replacing U.S. astronaut C. Michael Foale, who will return to Earth aboard Atlantis with the rest of the STS-86 crew. Wolf is expected to live and work aboard the Russian space station for about four months.

  2. Inmate's rape suit is viable despite missing paperwork.

    PubMed

    1999-10-29

    An appeals court has reinstated a rape suit filed by an inmate who did not follow procedures when filing his complaint. The 6th U.S. Circuit Court of Appeals reinstated the suit by [name removed], who claims officials of the Ohio Department of Corrections (DOC) were deliberately indifferent to his safety and provided inadequate care after he was attacked by a fellow inmate. The case was originally dismissed on the grounds that [name removed] filed his lawsuit before filing a grievance form as required by the Prison Litigation Reform Act of 1996. The 6th Circuit ruled that [name removed] complied with the law by writing letters to several prison officials inquiring about his attacker's HIV status and possible charges against the attacker.

  3. Evaluation of Personal Cooling Systems in Conjunction with Explosive Ordnance Disposal Suits

    DTIC Science & Technology

    1992-06-01

    of thermal comfort and perceived exertion. The results indicated that wearing the EOD suit produces significant increases in thermal physiological...indicated reduced perceived exertion levels and improved thermal comfort when wearing the liquid-cooling garment with a EOD suit. In contrast, the ribbed

  4. What was uniform about the fin-de-siècle sailor suit?

    PubMed

    Rose, Clare

    2011-01-01

    The sailor suits widely worn by children in late-nineteenth-century Britain have been interpreted at the time, and since, as expressions of an Imperial ethos. Yet, a closer examination of the ways that these garments were produced by mass manufacturers, mediated by advertisers and fashion advisors and consumed by families makes us question this characterization. Manufacturers interpreted sailor suits not as unchanging uniforms but as fashion items responding to seasonal changes. Consumers used them to assert social identities and social distinctions, selecting from the multiple variants available. Cultural commentators described sailor suits as emulating Royal practice—but also as ‘common’ and to be avoided. A close analysis of large samples of images and texts from the period 1870–1900 reveals how these different meanings overlapped, making the fin-de-siècle sailor suit a garment that undermines many of our assumptions.

  5. The Suite for Embedded Applications and Kernels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-05-10

    Many applications of high performance embedded computing are limited by performance or power bottlenecks. We havedesigned SEAK, a new benchmark suite, (a) to capture these bottlenecks in a way that encourages creative solutions to these bottlenecks? and (b) to facilitate rigorous, objective, end-user evaluation for their solutions. To avoid biasing solutions toward existing algorithms, SEAK benchmarks use a mission-centric (abstracted from a particular algorithm) andgoal-oriented (functional) specification. To encourage solutions that are any combination of software or hardware, we use an end-user blackbox evaluation that can capture tradeoffs between performance, power, accuracy, size, and weight. The tradeoffs are especially informativemore » for procurement decisions. We call our benchmarks future proof because each mission-centric interface and evaluation remains useful despite shifting algorithmic preferences. It is challenging to create both concise and precise goal-oriented specifications for mission-centric problems. This paper describes the SEAK benchmark suite and presents an evaluation of sample solutions that highlights power and performance tradeoffs.« less

  6. A Comparison of Methods for Assessing Space Suit Joint Ranges of Motion

    NASA Technical Reports Server (NTRS)

    Aitchison, Lindsay T.

    2012-01-01

    Through the Advanced Exploration Systems (AES) Program, NASA is attempting to use the vast collection of space suit mobility data from 50 years worth of space suit testing to build predictive analysis tools to aid in early architecture decisions for future missions and exploration programs. However, the design engineers must first understand if and how data generated by different methodologies can be compared directly and used in an essentially interchangeable manner. To address this question, the isolated joint range of motion data from two different test series were compared. Both data sets were generated from participants wearing the Mark III Space Suit Technology Demonstrator (MK-III), Waist Entry I-suit (WEI), and minimal clothing. Additionally the two tests shared a common test subject that allowed for within subject comparisons of the methods that greatly reduced the number of variables in play. The tests varied in their methodologies: the Space Suit Comparative Technologies Evaluation used 2-D photogrammetry to analyze isolated ranges of motion while the Constellation space suit benchmarking and requirements development used 3-D motion capture to evaluate both isolated and functional joint ranges of motion. The isolated data from both test series were compared graphically, as percent differences, and by simple statistical analysis. The results indicated that while the methods generate results that are statistically the same (significance level p= 0.01), the differences are significant enough in the practical sense to make direct comparisons ill advised. The concluding recommendations propose direction for how to bridge the data gaps and address future mobility data collection to allow for backward compatibility.

  7. EVA safety: Space suit system interoperability

    NASA Technical Reports Server (NTRS)

    Skoog, A. I.; McBarron, J. W.; Abramov, L. P.; Zvezda, A. O.

    1995-01-01

    The results and the recommendations of the International Academy of Astronautics extravehicular activities (IAA EVA) Committee work are presented. The IAA EVA protocols and operation were analyzed for harmonization procedures and for the standardization of safety critical and operationally important interfaces. The key role of EVA and how to improve the situation based on the identified EVA space suit system interoperability deficiencies were considered.

  8. A method of evaluating efficiency during space-suited work in a neutral buoyancy environment

    NASA Technical Reports Server (NTRS)

    Greenisen, Michael C.; West, Phillip; Newton, Frederick K.; Gilbert, John H.; Squires, William G.

    1991-01-01

    The purpose was to investigate efficiency as related to the work transmission and the metabolic cost of various extravehicular activity (EVA) tasks during simulated microgravity (whole body water immersion) using three space suits. Two new prototype space station suits, AX-5 and MKIII, are pressurized at 57.2 kPa and were tested concurrently with the operationally used 29.6 kPa shuttle suit. Four male astronauts were asked to perform a fatigue trial on four upper extremity exercises during which metabolic rate and work output were measured and efficiency was calculated in each suit. The activities were selected to simulate actual EVA tasks. The test article was an underwater dynamometry system to which the astronauts were secured by foot restraints. All metabolic data was acquired, calculated, and stored using a computerized indirect calorimetry system connected to the suit ventilation/gas supply control console. During the efficiency testing, steady state metabolic rate could be evaluated as well as work transmitted to the dynamometer. Mechanical efficiency could then be calculated for each astronaut in each suit performing each movement.

  9. The In-Space Propulsion Technology Project Low-Thrust Trajectory Tool Suite

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.

    2008-01-01

    The ISPT project released its low-thrust trajectory tool suite in March of 2006. The LTTT suite tools range in capabilities, but represent the state-of-the art in NASA low-thrust trajectory optimization tools. The tools have all received considerable updates following the initial release, and they are available through their respective development centers or the ISPT project website.

  10. Results and applications of a space suit range-of-motion study

    NASA Technical Reports Server (NTRS)

    Reinhardt, AL

    1989-01-01

    The range of motion of space suits has traditionally been described using limited 2-D mapping of limb, torso, or arm movements performed in front of an orthogonal grid. A new technique for recovering extra-vehicular (EVA) space suit range-of-motion data during underwater testing was described in a paper presented by the author at the 1988 conference. The new technique uses digitized data which is automatically acquired from video images of the subject. Three-dimensional trajectories are recovered from these data, and can be displayed using 2-D computer graphics. Results of using this technique for the current shuttle EVA suit during underwater simulated weightlessness testing are discussed. Application of the data for use in animating anthropometric computer models is highlighted.

  11. NASA Research Announcement for Space Suit Survivability Enhancement

    NASA Technical Reports Server (NTRS)

    Fredrickson, Thad H.; Ware, Joanne S.; Lin, John K.; Pastore, Christopher M.

    1998-01-01

    This report documents the research activities for space suit survivability material enhancements. Self-sealing mechanisms for the pressure envelope were addressed, as were improvements in materials for cut, puncture, and hypervelocity impact resistance.

  12. The Next Generation of Cold Immersion Dry Suit Design Evolution for Hypothermia Prevention

    NASA Technical Reports Server (NTRS)

    Galofaro, Joel

    2013-01-01

    This new utility patent is an active design that relies on the lung's role as an organic heat exchanger for providing deep body core heating of air. It is based on the fact that the greatest heat loss mechanism for an insulated human body immersed in a cold water environment is due to heat loss through respiration. This innovation successfully merges two existing technologies (cold immersion suit and existing valve technologies) to produce a new product that helps prevent against the onset of hypothermia at sea. During normal operations, a human maintains an approximate body temperature of [98.6 F (37 C)]. A mechanism was developed to recover the warm temperature from the body and reticulate it in a survival suit. The primary intention is to develop an encompassing systems design that can both easily and cost effectively be integrated in all existing currently manufactured cold water survival suits, and as such, it should be noted that the cold water immersion suit is only used as a framework or tool for laying out the required design elements. At the heart of the suit is the Warm Air Recovery (WAR) system, which relies on a single, large Main Purge Valve (MPV) and secondary Purge Valves (PV) to operate. The main purge valve has a thin membrane, which is normally closed, and acts as a one-way check valve. When warm air is expelled from the lungs, it causes the main purge valve to open. Air forced from the MPV is dumped directly into the suit, thereby providing warmth to the torso, legs, and arms. A slight positive over-pressure in the suit causes warm waste air (or water if the suit is punctured) to be safely vented into the sea through large PVs located at the bottom of each arm and leg. The secondary purge valves act to prevent the buildup of large concentrations of CO2 gas and help guard against asphyxia. It is noted that the MPV causes the inhalation and exhalation cycles to be completely isolated from one another in the current suit design.

  13. The system controlling the composition of clastic sediments

    USGS Publications Warehouse

    Johnsson, Mark J.

    1993-01-01

    The composition of clastic sediments and rocks is controlled by a complex suite of parameters operating during pedogenesis, erosion, transport, deposition, and burial. The principal first-order parameters include source rock composition, modification by chemical weathering, mechanical disaggregation and abrasion, authigenic inputs, hydrodynamic sorting, and diagenesis. Each of these first-order parameters is influenced to varying degrees by such factors as the tectonic settings of the source region, transportational system and depositional environment, climate, vegetation, relief, slope, and the nature and energy of transportational and depositional systems. These factors are not independent; rather a complicated web of interrelationships and feedback mechanisms causes many factors to be modulated by others. Accordingly, processes controlling the composition of clastic sediments are best viewed as constituting a system, and in evaluating compositional information the dynamics of the system must be considered as whole.

  14. Instrument Suite for Vertical Characterization of the Ionosphere-Thermosphere System

    NASA Technical Reports Server (NTRS)

    Herrero, Federico; Jones, Hollis; Finne, Theodore; Nicholas, Andrew

    2012-01-01

    A document describes a suite that provides four simultaneous ion and neutral-atom measurements as a function of altitude, with variable sensitivity for neutral atmospheric species. The variable sensitivity makes it possible to extend the measurements over the altitude range of 100 to more than 700 km. The four instruments in the suite are (1) a neutral wind-temperature spectrometer (WTS), (2) an ion-drift ion-temperature spectrometer (IDTS), (3) a neutral mass spectrometer (NMS), and (4) an ion mass spectrometer (IMS).

  15. Chemical composition of crystalline rock fragments from Luna 16 and Luna 20 fines

    NASA Technical Reports Server (NTRS)

    Cimbalnikova, A.; Palivcova, M.; Frana, J.; Mastalka, A.

    1977-01-01

    The chemical composition (bulk, rare earth, and trace elements) of the Luna 16 mare regolith and luna 20 highland regolith is discussed. The rock samples considered are 14 basaltic rock fragments (Luna 16) and 13 rock fragments of the ANT suite (Luna 20). On the basis of bulk composition, two types of basaltic rocks have been differentiated and defined in the Luna 16 regolith: mare basalts (fundamental crystalline rocks of Mare Fecunditatis) and high-alumina basalts. The bulk analyses of rock fragments of the ANT suite also enabled distinction of two rock types: anorthositic norites and troctolites and/or spinal-troctolites (the most abundant crystalline rocks of the highland region, the landing site of luna 20), and anorthosites. The chemical compositions of Luna 16 and Luna 20 regolith samples are compared. Differences in the chemistry of the Luna 16 mare regolith and that of mare basalts are discussed. The chemical affinity between the Luna 20 highland regolith and (a) anorthositic norites and (b) troctolites and/or spinel-troctolites has been ascertained.

  16. Physiological and engineering study of advanced thermoregulatory systems for extravehicular space suits

    NASA Technical Reports Server (NTRS)

    Chato, J. C.; Hertig, B. A.

    1972-01-01

    Investigations of thermal control for extravehicular space suits are reported. The characteristics of independent cooling of temperature and removal of excess heat from separate regions of the body, and the applications of heat pipes in protective suits are discussed along with modeling of the human thermal system.

  17. Optimizing the physical ergonomics indices for the use of partial pressure suits.

    PubMed

    Ding, Li; Li, Xianxue; Hedge, Alan; Hu, Huimin; Feathers, David; Qin, Zhifeng; Xiao, Huajun; Xue, Lihao; Zhou, Qianxiang

    2015-03-01

    This study developed an ergonomic evaluation system for the design of high-altitude partial pressure suits (PPSs). A total of twenty-one Chinese males participated in the experiment which tested three types of ergonomics indices (manipulative mission, operational reach and operational strength) were studied using a three-dimensional video-based motion capture system, a target-pointing board, a hand dynamometer, and a step-tread apparatus. In total, 36 ergonomics indices were evaluated and optimized using regression and fitting analysis. Some indices that were found to be linearly related and redundant were removed from the study. An optimal ergonomics index system was established that can be used to conveniently and quickly evaluate the performance of different pressurized/non-pressurized suit designs. The resulting ergonomics index system will provide a theoretical basis and practical guidance for mission planners, suit designers and engineers to design equipment for human use, and to aid in assessing partial pressure suits. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  18. The Orion Atmosphere Revitalization Technology in Manned Ambient Pressure Space Suit Testing

    NASA Technical Reports Server (NTRS)

    Button, Amy; Sweterlitsch, Jeffrey

    2011-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Atmosphere Revitalization System (ARS) for moderate duration missions of the Orion Multipurpose Crew Vehicle. The Orion ARS is designed to support not only open-cabin operations, tests of which have been reported in previous years at this conference, but also closed space suit-loop operations. A previous low-pressure suit loop test was performed with a human metabolic simulator, and humans wearing emergency masks were tested in a closed-loop configuration before that. In late 2011, simple tests were performed in a suit-loop configuration with human test subjects in prototype space suits with prototype umbilicals at ambient and two slightly above-ambient pressures. Trace contaminant filters and a prototype blower were also incorporated into the test rig. This paper discusses the performance of the ARS technology in that 2011 test configuration.

  19. Revel8or: Model Driven Capacity Planning Tool Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Liming; Liu, Yan; Bui, Ngoc B.

    2007-05-31

    Designing complex multi-tier applications that must meet strict performance requirements is a challenging software engineering problem. Ideally, the application architect could derive accurate performance predictions early in the project life-cycle, leveraging initial application design-level models and a description of the target software and hardware platforms. To this end, we have developed a capacity planning tool suite for component-based applications, called Revel8tor. The tool adheres to the model driven development paradigm and supports benchmarking and performance prediction for J2EE, .Net and Web services platforms. The suite is composed of three different tools: MDAPerf, MDABench and DSLBench. MDAPerf allows annotation of designmore » diagrams and derives performance analysis models. MDABench allows a customized benchmark application to be modeled in the UML 2.0 Testing Profile and automatically generates a deployable application, with measurement automatically conducted. DSLBench allows the same benchmark modeling and generation to be conducted using a simple performance engineering Domain Specific Language (DSL) in Microsoft Visual Studio. DSLBench integrates with Visual Studio and reuses its load testing infrastructure. Together, the tool suite can assist capacity planning across platforms in an automated fashion.« less

  20. Recent developments in the CCP-EM software suite.

    PubMed

    Burnley, Tom; Palmer, Colin M; Winn, Martyn

    2017-06-01

    As part of its remit to provide computational support to the cryo-EM community, the Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) has produced a software framework which enables easy access to a range of programs and utilities. The resulting software suite incorporates contributions from different collaborators by encapsulating them in Python task wrappers, which are then made accessible via a user-friendly graphical user interface as well as a command-line interface suitable for scripting. The framework includes tools for project and data management. An overview of the design of the framework is given, together with a survey of the functionality at different levels. The current CCP-EM suite has particular strength in the building and refinement of atomic models into cryo-EM reconstructions, which is described in detail.

  1. Recent developments in the CCP-EM software suite

    PubMed Central

    Burnley, Tom

    2017-01-01

    As part of its remit to provide computational support to the cryo-EM community, the Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) has produced a software framework which enables easy access to a range of programs and utilities. The resulting software suite incorporates contributions from different collaborators by encapsulating them in Python task wrappers, which are then made accessible via a user-friendly graphical user interface as well as a command-line interface suitable for scripting. The framework includes tools for project and data management. An overview of the design of the framework is given, together with a survey of the functionality at different levels. The current CCP-EM suite has particular strength in the building and refinement of atomic models into cryo-EM reconstructions, which is described in detail. PMID:28580908

  2. CO2 Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject and physiological differences between subjects. Computational Fluid Dynamic (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test was to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III suit across a range of workload and flow rates. Data and trends observed during testing along with refined CFD models will be used to help design an inlet vent configuration for the Z-2 space suit. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES). Three subjects performed two test sessions each in the Mark-III suit to allow for comparison between tests. Six different helmet inlet vent configurations were evaluated during each test session. Suit pressure was maintained at 4.3 psid. Suited test subjects walked on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute (ACFM) were tested at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the total oxygen consumption and CO2 production measured by additional gas analyzers at the air outlet from the suit. Realtime metabolic rate measurements were

  3. Carbon Dioxide Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy, and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject, and physiological differences between subjects. Computational Fluid Dynamics (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test was to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III suit across a range of workload and flow rates. Data and trends observed during testing along with refined CFD models will be used to help design an inlet vent configuration for the Z-2 space suit. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit, and the Enhanced Mobility Advanced Crew Escape Suit. Three subjects performed two test sessions each in the Mark-III suit to allow for comparison between tests. Six different helmet inlet vent configurations were evaluated during each test session. Suit pressure was maintained at 4.3 psid. Suited test subjects walked on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute were tested at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the CO2 production measured by an additional gas analyzer at the air outlet from the suit. Real-time metabolic rate measurements were used to adjust the treadmill workload to meet

  4. CO2 Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject and physiological differences between subjects. Computational Fluid Dynamic (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test was to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III suit across a range of workload and flow rates. Data and trends observed during testing along with refined CFD models will be used to help design an inlet vent configuration for the Z-2 space suit. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES). Three subjects performed two test sessions each in the Mark-III suit to allow for comparison between tests. Six different helmet inlet vent configurations were evaluated during each test session. Suit pressure was maintained at 4.3 psid. Suited test subjects walked on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute (ACFM) were tested at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the total oxygen consumption and CO2 production measured by additional gas analyzers at the air outlet from the suit. Real-time metabolic rate measurements were

  5. Radiation Protection Studies of International Space Station Extravehicular Activity Space Suits

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A. (Editor); Shavers, Mark R. (Editor); Saganti, Premkumar B. (Editor); Miller, Jack (Editor)

    2003-01-01

    This publication describes recent investigations that evaluate radiation shielding characteristics of NASA's and the Russian Space Agency's space suits. The introduction describes the suits and presents goals of several experiments performed with them. The first chapter provides background information about the dynamic radiation environment experienced at ISS and summarized radiation health and protection requirements for activities in low Earth orbit. Supporting studies report the development and application of a computer model of the EMU space suit and the difficulty of shielding EVA crewmembers from high-energy reentrant electrons, a previously unevaluated component of the space radiation environment. Chapters 2 through 6 describe experiments that evaluate the space suits' radiation shielding characteristics. Chapter 7 describes a study of the potential radiological health impact on EVA crewmembers of two virtually unexamined environmental sources of high-energy electrons-reentrant trapped electrons and atmospheric albedo or "splash" electrons. The radiological consequences of those sources have not been evaluated previously and, under closer scrutiny. A detailed computational model of the shielding distribution provided by components of the NASA astronauts' EMU is being developed for exposure evaluation studies. The model is introduced in Chapters 8 and 9 and used in Chapter 10 to investigate how trapped particle anisotropy impacts female organ doses during EVA. Chapter 11 presents a review of issues related to estimating skin cancer risk form space radiation. The final chapter contains conclusions about the protective qualities of the suit brought to light form these studies, as well as recommendations for future operational radiation protection.

  6. A review of medicolegal malpractice suits involving cervical spine: what can we learn or change?

    PubMed

    Epstein, Nancy E

    2011-02-01

    Utilizing Verdict Search (East Islip, New York), a medicolegal research service for civil and criminal court cases, 78 cervical spine surgical malpractice suits were identified (10-year period). Factors leading to cervical spine surgical litigation may represent an untapped source of risks/complications associated with these operations. Data with fewer adverse events are submitted to and/or published in spine journals, as they are discoverable in a court of law. Cervical spine surgery in 68 patients included 48 anterior operations (1 to 4 level anterior diskectomy/fusions, 1-level corpectomy/fusion). Twenty patients had posterior surgery (7 fusions, 13 laminectomies with/without fusions). Two patients had other operations/procedures, whereas 8 had no surgery. Four major questions were asked; (1) What were the operations/neurologic deficits that led to the suits?, (2) Who was sued?, (3) What purported and/or alleged "malpractice" events prompted the suits?, and (4) What were the outcomes of these suits? Postoperative neurologic deficits that led to suits included quadriplegia in 41 patients (21 anterior, 20 posterior operations). Other injuries/lesser postoperative deficits were observed in 15 patients, whereas 22 had pain alone. Malpractice suits involved 63 spine surgeons, whereas 15 did not. The 3 most common malpractice events prompting cervical suits, and typical for most surgery-related suits, included negligent surgery, lack of informed consent, and failure to diagnose/treat; the fourth unanticipated factor was failure to brace. Outcomes for these suits included 30 defense verdicts (10 quadriplegic patients), 22 plaintiffs' verdicts (average payout $4.0 million dollars), and 26 settlements (average $2.4 million dollars). Data gleaned from medicolegal suits may provide additional information regarding the morbidity associated with cervical surgery. These data may lessen patients' expectations, and limit spine surgeons' liability. In the future, consideration

  7. Software Suite to Support In-Flight Characterization of Remote Sensing Systems

    NASA Technical Reports Server (NTRS)

    Stanley, Thomas; Holekamp, Kara; Gasser, Gerald; Tabor, Wes; Vaughan, Ronald; Ryan, Robert; Pagnutti, Mary; Blonski, Slawomir; Kenton, Ross

    2014-01-01

    A characterization software suite was developed to facilitate NASA's in-flight characterization of commercial remote sensing systems. Characterization of aerial and satellite systems requires knowledge of ground characteristics, or ground truth. This information is typically obtained with instruments taking measurements prior to or during a remote sensing system overpass. Acquired ground-truth data, which can consist of hundreds of measurements with different data formats, must be processed before it can be used in the characterization. Accurate in-flight characterization of remote sensing systems relies on multiple field data acquisitions that are efficiently processed, with minimal error. To address the need for timely, reproducible ground-truth data, a characterization software suite was developed to automate the data processing methods. The characterization software suite is engineering code, requiring some prior knowledge and expertise to run. The suite consists of component scripts for each of the three main in-flight characterization types: radiometric, geometric, and spatial. The component scripts for the radiometric characterization operate primarily by reading the raw data acquired by the field instruments, combining it with other applicable information, and then reducing it to a format that is appropriate for input into MODTRAN (MODerate resolution atmospheric TRANsmission), an Air Force Research Laboratory-developed radiative transport code used to predict at-sensor measurements. The geometric scripts operate by comparing identified target locations from the remote sensing image to known target locations, producing circular error statistics defined by the Federal Geographic Data Committee Standards. The spatial scripts analyze a target edge within the image, and produce estimates of Relative Edge Response and the value of the Modulation Transfer Function at the Nyquist frequency. The software suite enables rapid, efficient, automated processing of

  8. DaCHS: Data Center Helper Suite

    NASA Astrophysics Data System (ADS)

    Demleitner, Markus

    2018-04-01

    DaCHS, the Data Center Helper Suite, is an integrated package for publishing astronomical data sets to the Virtual Observatory. Network-facing, it speaks the major VO protocols (SCS, SIAP, SSAP, TAP, Datalink, etc). Operator-facing, many input formats, including FITS/WCS, ASCII files, and VOTable, can be processed to publication-ready data. DaCHS puts particular emphasis on integrated metadata handling, which facilitates a tight integration with the VO's Registry

  9. The Abundance and Isotopic Composition of Hg in Extraterrestrial Materials

    NASA Technical Reports Server (NTRS)

    Lauretta, D. S.

    2004-01-01

    During the past three year grant period we made excellent progress in our study of the abundances and isotopic compositions of Hg and other volatile trace elements in extraterrestrial materials. As part of my startup package I received funds to construct a state-of-the-art experimental facility to study gas-solid reaction kinetics. Much of our effort was spent developing the methodology to measure the abundance and isotopic composition of Hg at ultratrace levels in solid materials. In our first study, the abundance and isotopic composition of Hg was determined in bulk samples of the Murchison (CM) and Allende (CV) carbonaceous chondrites. We have continued our study of mercury in primitive meteorites and expanded the suite of meteorites to include other members of the CM and CV chondrite group as well as CI and CO chondrites. Samples of the CI chondrite Orgueil, the CM chondrites Murray, Nogoya, and Cold Bokkeveld, the CO chondrites Kainsaz, Omans, and Isna, and the CV chondrites Vigarano, Mokoia, and Grosnaja were tested. We have developed a thermal analysis ICP-MS technique and applied it to the study of a suite of thermally labile elements (Zn, As, Se, Cd, In, Sn, Sb, Te, Hg, Au, Tl, Pb, and Bi) in geologic materials as well.

  10. Petrogenesis of Mare Basalts, Mg-Rich Suites and SNC Parent Magmas

    NASA Technical Reports Server (NTRS)

    Hess, Paul C.

    2004-01-01

    The successful models for the internal evolution of the Moon must consider the volume, distribution, timing, composition and, ultimately, the petrogenesis of mare basaltic volcanism. Indeed, given the paucity of geophysical data, the internal state of the Moon in the past can be gleaned only be unraveling the petrogenesis of the various igneous products on the Moon and, particularly, the mare basalts. most useful in constraining the depth and composition of their source region [Delano, 1980] despite having undergone a certain degree of shallow level olivine crystallization.The bulk of the lunar volcanic glass suite can be modeled as the partial melting products of an olivine + orthopyroxene source region deep within the lunar mantle. Ti02 contents vary from 0.2 wt % -1 7.0wt [Shearer and Papike, 1993]. Values that extreme would seem to require a Ti- bearing phase such as ilmenite in the source of the high-Ti (but not in the VLT source) because a source region of primitive LMO olivine and orthopyroxene, even when melted in small degrees cannot account for the observed range of Ti02 compositions. The picritic glasses are undersaturated with respect to ilmenite at all pressures investigated therefore ilmenite must have been consumed during melting, leaving an ilmenite free residue and an undersaturated melt [Delano, 1980, Longhi, 1992, Elkins et al, 2000 among others]. Multi- saturation pressures for the glasses potentially represent the last depths at which the liquids equilibrated with a harzburgite residue before ascending to the surface. These occur at great depths within the lunar mantle. Because the liquids have suffered some amount of crystal fractionation, this is at best a minimum depth. If the melts are mixtures, then it is only an average depth of melting. Multisaturation, nevertheless, is still a strong constraint on source mineralogy, revealing that the generation of the lunar basalts was dominated by melting of olivine and orthopyroxene.

  11. Ventilation Transport Trade Study for Future Space Suit Life Support Systems

    NASA Technical Reports Server (NTRS)

    Kempf, Robert; Vogel, Matthew; Paul, Heather L.

    2008-01-01

    A new and advanced portable life support system (PLSS) for space suit surface exploration will require a durable, compact, and energy efficient system to transport the ventilation stream through the space suit. Current space suits used by NASA circulate the ventilation stream via a ball-bearing supported centrifugal fan. As NASA enters the design phase for the next generation PLSS, it is necessary to evaluate available technologies to determine what improvements can be made in mass, volume, power, and reliability for a ventilation transport system. Several air movement devices already designed for commercial, military, and space applications are optimized in these areas and could be adapted for EVA use. This paper summarizes the efforts to identify and compare the latest fan and bearing technologies to determine candidates for the next generation PLSS.

  12. Wakata wearing Penguin-3 Antigravity Pressure/Stress Suit

    NASA Image and Video Library

    2014-01-25

    ISS038-E-035473 (24 Jan. 2014) --- Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, is pictured wearing the Penguin-3 antigravity pressure/stress suit in the Kibo laboratory of the International Space Station.

  13. Wakata wearing Penguin-3 Antigravity Pressure/Stress Suit

    NASA Image and Video Library

    2014-01-25

    ISS038-E-035476 (24 Jan. 2014) --- Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, is pictured wearing the Penguin-3 antigravity pressure/stress suit in the Kibo laboratory of the International Space Station.

  14. Wakata wearing Penguin-3 Antigravity Pressure/Stress Suit

    NASA Image and Video Library

    2014-01-24

    ISS038-E-035470 (24 Jan. 2014) --- Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, is pictured wearing the Penguin-3 antigravity pressure/stress suit in the Kibo laboratory of the International Space Station.

  15. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.; McFarland, Shane M.; Korona, F. Adam

    2013-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This space suit system architecture and technologies required based on human exploration (EVA) destinations will be discussed, and how these systems should evolve to meet the future exploration EVA needs of the US human space flight program. A series of exercises and analyses provided a strong indication that the Constellation Program space suit architecture, with its maximum reuse of technology and functionality across a range of mission profiles and destinations, is postured to provide a viable solution for future space exploration missions. The destination environmental analysis demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew, given any human mission outside of low-Earth orbit. Additionally, some of the high-level trades presented here provide a review of the environmental and nonenvironmental design drivers that will become increasingly important as humans venture farther from Earth. The presentation of destination environmental data demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, largely independent of any particular design reference mission.

  16. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.; McFarland, Shane M.; Korona, F. Adam

    2013-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars1 left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This paper addresses the space suit system architecture and technologies required based on human exploration (EVA) destinations, and describes how these systems should evolve to meet the future exploration EVA needs of the US human space flight program. A series of exercises and analyses provided a strong indication that the Constellation Program space suit architecture, with its maximum reuse of technology and functionality across a range of mission profiles and destinations, is postured to provide a viable solution for future space exploration missions. The destination environmental analysis demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew, given any human mission outside of low-Earth orbit. Additionally, some of the high-level trades presented here provide a review of the environmental and non-environmental design drivers that will become increasingly important as humans venture farther from Earth. This paper demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, largely independent of any particular design reference mission.

  17. Space Suit Environment Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy B.; Sweterlitsch, Jeffrey J.; Cox, Marlon R.

    2010-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In three previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of this technology. That testing was performed in a sea-level pressure environment with both simulated and real human metabolic loads, and in both open and closed-loop configurations. The Orion ARS is designed to also support space-suited operations in a depressurized cabin, so the next step in developmental testing at JSC was to test the ARS technology in a typical closed space suit-loop environment with low-pressure oxygen inside the process loop and vacuum outside the loop. This was the first instance of low-pressure, high-oxygen, closed-loop testing of the Orion ARS technology, and it was conducted with simulated human metabolic loads in March 2009. The test investigated pressure drops and flow balancing through two different styles of prototype suit umbilical connectors. General swing-bed performance was tested with both umbilical configurations, as well as with a short jumper line installed in place of the umbilicals. Other interesting results include observations on the thermal effects of swing-bed operation in a vacuum environment and a recommendation of cycle time to maintain acceptable suit atmospheric CO2 and moisture levels.

  18. Improvement of the extravehicular activity suit for the MIR orbiting station program.

    PubMed

    Severin, G; Abramov, I; Svertshek, V; Stoklitsky, A

    1996-09-01

    Since 1977, EVA suits of the semi-rigid type have been used to support sorties from Russian orbiting stations. Currently, within the MIR station program, the Orlan-DMA, the latest modification of the Orlan semi-rigid EVA suit is used by crewmembers. Quite some experience has been gained by Russia in operations of the Orlan type suits. It has proved the advantages of the EVA suit of a semi-rigid configuration, featuring donning/doffing through a hinged backpack door with a built-in life support system. Meanwhile there were some wishes and comments from the crewmembers addressed to the enclosure design and some LSS components. Currently a number of ways and methods are being developed to improve operational characteristics of the suit as well as to enhance its reliability and lifetime. The forthcoming EVAs to be performed by the STS-MIR crewmembers and future EVAs from the common airlock of the International Space Station Alpha make implementation of the planned improvements even more consistent. The paper analyzes the experience gained in the Orlan-DMA operation and discusses planned improvements in light of the forthcoming activities. In particular the Orlan enhancement program is aimed to make the donning/doffing easier, enhance enclosure mobility, improve the condensate removal unit, increase the CCC (Contamination Control Cartridge) operation time and simplify the onboard subsystem design concept.

  19. A Parametric Model of Shoulder Articulation for Virtual Assessment of Space Suit Fit

    NASA Technical Reports Server (NTRS)

    Young, Karen; Kim, Han; Bernal, Yaritza; Vu, Linh; Boppana, Adhi; Benson, Elizabeth; Jarvis, Sarah; Rajulu, Sudhakar

    2016-01-01

    Goal of space human factors analyses: Place the highly variable human body within these restrictive physical environments to ensure that the entire anticipated population can live, work, and interact. Space suits are a very restrictive space and if not properly sized can result in pain or injury. The highly dynamic motions performed while wearing a space suit often make it difficult to model. Limited human body models do not have much allowance for customization of anthropometry and representation of the population that may wear a space suit.

  20. Work and Fatigue Characteristics of Unsuited and Suited Humans During Isolated, Isokinetic Joint Motions

    NASA Technical Reports Server (NTRS)

    Gonzalez, L. Javier; Maida, James C.; Miles, Erica H.; Rajulu, S. L.; Pandya, A. K.; Russo, Dane M. (Technical Monitor)

    2001-01-01

    The effects of a pressurized suit on human performance were investigated. The suit is known as an Extra-vehicular Mobility Unit (EMU) and is worn by astronauts while working outside of their space craft in low earth orbit. Isolated isokinetic joint torques of three female and three male subjects (all experienced users of the suit) were measured while working at 100% and 80% of their maximum voluntary torque (MVT). It was found that the average decrease in the total amount of work done when the subjects were wearing the EMU was 48% and 41% while working at 100% and 80% MVT, respectively. There is a clear relationship between the MVT and the time and amount of work done until fatigue. In general the stronger joints took longer to fatigue and did more work than the weaker joints. However, it is not clear which joints are most affected by the EMU suit in terms of the amount of work done. The average amount of total work done increased by 5.2% and 20.4% for the unsuited and suited cases, respectively, when the subject went from working at 100% to 80% MVT. Also, the average time to fatigue increased by 9.2% and 25.6% for the unsuited and suited cases, respectively, when the subjects went from working at 100% to 80% MVT. The EMU also decreased the joint range of motion. It was also found that the experimentally measured torque decay could be predicted by a logarithmic equation. The absolute average error in the predictions was found to be 18.3% and 18.9% for the unsuited and suited subject, respectively, working at 100% MVT, and 22.5% and 18.8% for the unsuited and suited subject, respectively, working at 80% MVT. These results could be very useful in the design of future EMU suits, and planning of Extra-Vehicular Activit). (EVA) for the upcoming International Space Station assembly operations.

  1. Benefits of advanced space suits for supporting routine extravehicular activity

    NASA Technical Reports Server (NTRS)

    Alton, L. R.; Bauer, E. H.; Patrick, J. W.

    1975-01-01

    Technology is available to produce space suits providing a quick-reaction, safe, much more mobile extravehicular activity (EVA) capability than before. Such a capability may be needed during the shuttle era because the great variety of missions and payloads complicates the development of totally automated methods of conducting operations and maintenance and resolving contingencies. Routine EVA now promises to become a cost-effective tool as less complex, serviceable, lower-cost payload designs utilizing this capability become feasible. Adoption of certain advanced space suit technologies is encouraged for reasons of economics as well as performance.

  2. Calibration of the Solar Orbiter Energetic Particle Detector Suite

    NASA Astrophysics Data System (ADS)

    Wimmer-Schweingruber, R. F.; Rodriguez-Pacheco, J.; Martin-Garcia, C.; Kulkarni, S. R.; Panitzsch, L.; Boettcher, S.; Mason, G. M.; Kohler, J.; Ho, G. C.; Boden, S.; Grunau, J.; Steinhagen, J.; Terasa, C.; Yu, J.; Prieto, M.; Gomez-Herrero, R.; Blanco, J.

    2013-12-01

    We present the current status and plans for the calibration of the Energetic Particle Detector (EPD) suite on ESA's Solar Orbiter mission. Solar Orbiter is scheduled to launch in January 2017, instrument delivery in January 2015. EPD consists of four sensors: the SupraThermal Electron and Proton (STEP) sensor covers electrons (protons) from 2 (3) keV up to 100 keV, the Electron Proton Telescope (EPT) from 20 to 300 (7000) keV, the Suprathermal Ion Spectrograph (SIS) determines the ionic composition from ~0.05 to ~10 MeV/nuc (species dependent), and the High Energy Telescope (HET) measures electrons and protons (ions) from 0.3 to 30 and 10 to >100 MeV/nuc (20 - 200 MeV/nuc species dependent). EPT, HET, and SIS have two approximately opposite-facing fields of view, EPT, and HET share a common electronics box, two EPT/HET sensors allow the determination of second-order anisotropies (a total of 4 FoVs). Apart from the use of radioactive sources, STEP will be calibrated at the Kiel calibration facilities, EPT both at Kiel (electrons and low-energy protons) as well as at PTB in Braunschweig. SIS will undergo calibration at the LBL 88' cyclotron, HET at HIMAC in Chiba, Japan. Tests of the electron/protons discrimination of EPT show the expected behavior, HET prototypes have already been calibrated and the results will be shown.

  3. Fleet-Wide Prognostic and Health Management Suite: Asset Fault Signature Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vivek Agarwal; Nancy J. Lybeck; Randall Bickford

    Proactive online monitoring in the nuclear industry is being explored using the Electric Power Research Institute’s Fleet-Wide Prognostic and Health Management (FW-PHM) Suite software. The FW-PHM Suite is a set of web-based diagnostic and prognostic tools and databases that serves as an integrated health monitoring architecture. The FW-PHM Suite has four main modules: (1) Diagnostic Advisor, (2) Asset Fault Signature (AFS) Database, (3) Remaining Useful Life Advisor, and (4) Remaining Useful Life Database. The paper focuses on the AFS Database of the FW-PHM Suite, which is used to catalog asset fault signatures. A fault signature is a structured representation ofmore » the information that an expert would use to first detect and then verify the occurrence of a specific type of fault. The fault signatures developed to assess the health status of generator step-up transformers are described in the paper. The developed fault signatures capture this knowledge and implement it in a standardized approach, thereby streamlining the diagnostic and prognostic process. This will support the automation of proactive online monitoring techniques in nuclear power plants to diagnose incipient faults, perform proactive maintenance, and estimate the remaining useful life of assets.« less

  4. Experimental Evaluation of Energy Efficiency for a Soft Wearable Robotic Suit.

    PubMed

    Jin, Shanhai; Iwamoto, Noriyasu; Hashimoto, Kazunobu; Yamamoto, Motoji

    2016-10-12

    This paper presents a new soft wearable robotic suit for energy-efficient walking in daily activities for elderly persons. The presented robotic suit provides a small yet effective assistive force for hip flexion through winding belts that include elastic elements. In addition, it does not restrict the range of movement in the lower limbs. Moreover, its structure is simple and lightweight, and thus wearers can easily take the device on and off by themselves. Experimental results on nine elderly subjects (age = 74.23.7 years) show that the robotic suit worn and powered on (PON) significantly reduced energy expenditure by an average of 5.9 % compared with the condition of worn but powered off (POFF). Furthermore, compared with the POFF condition, there was a significant improvement in gait characteristics in the PON condition for all subjects.

  5. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan; Buffington, Jesse; Hood, Drew; Kelly, Cody; Naids, Adam; Watson, Richard; Blanco, Raul; Sipila, Stephanie

    2014-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment selected for both functions is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS) currently under development for Advanced Exploration Systems (AES). The proposed architecture meets the ARCM constraints, but much more work is required to determine the details of the suit upgrades, the integration with the PLSS, and the tools and equipment necessary to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations were completed in the Neutral Buoyancy Lab (NBL) and interfacing options were prototyped and analyzed with testing planned for late 2014. This paper discusses the work done over the last year on the MACES enhancements, the use of tools while using the suit, and the integration of the PLSS with the MACES.

  6. Safety Tips: Avoiding Negligence Suits in Chemistry Teaching.

    ERIC Educational Resources Information Center

    Gerlovich, Jack A.

    1983-01-01

    Discusses various aspects related to negligence on the part of chemistry teachers. Areas addressed include negligence in tort law, avoiding negligence suits, proper instructions, proper supervision, equipment maintenance, and other considerations such as sovereign immunity, and contributory versus comparative negligence. (JN)

  7. SOAR 89: Space Station. Space suit test program

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.; West, Philip; Rouen, Michael

    1990-01-01

    The elements of the test program for the space suit to be used on Space Station Freedom are noted in viewgraph form. Information is given on evaluation objectives, zero gravity evaluation, mobility evaluation, extravehicular activity task evaluation, and shoulder joint evaluation.

  8. The AST3 controlling and operating software suite for automatic sky survey

    NASA Astrophysics Data System (ADS)

    Hu, Yi; Shang, Zhaohui; Ma, Bin; Hu, Keliang

    2016-07-01

    We have developed a specialized software package, called ast3suite, to achieve the remote control and automatic sky survey for AST3 (Antarctic Survey Telescope) from scratch. It includes several daemon servers and many basic commands. Each program does only one single task, and they work together to make AST3 a robotic telescope. A survey script calls basic commands to carry out automatic sky survey. Ast3suite was carefully tested in Mohe, China in 2013 and has been used at Dome, Antarctica in 2015 and 2016 with the real hardware for practical sky survey. Both test results and practical using showed that ast3suite had worked very well without any manual auxiliary as we expected.

  9. Astronaut John Glenn is suited up at Cape Canaveral during MA-6 activities

    NASA Image and Video Library

    1962-02-01

    S64-14843 (1962) --- Astronaut John H. Glenn Jr., pilot of the Mercury-Atlas 6 Earth-orbital space mission, is suited up at Cape Canaveral, Florida, during MA-6 preflight activities. Assisting Glenn is suit technician Al Rochford. Photo credit: NASA

  10. Characterization of Carbon Dioxide Washout Measurement Techniques in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Norcross, J.; Bekdash, O.; Meginnis, I.

    2016-01-01

    Providing adequate carbon dioxide (CO2) washout is essential to the reduction of risk in performing suited operations. Long term CO2 exposure can lead to symptoms such as headache, lethargy, dizziness, and in severe cases can lead to unconsciousness and death. Thus maintaining adequate CO2 washout in both ground testing and during in flight EVAs is a requirement of current and future suit designs. It is necessary to understand the inspired CO2 of suit wearers such that future requirements for space suits appropriately address the risk of inadequate washout. Testing conducted by the EVA Physiology Laboratory at the NASA Johnson Space Center aimed to characterize a method for noninvasively measuring inspired oronasal CO2 under pressurized suited conditions in order to better inform requirements definition and verification techniques for future CO2 washout limits in space suits. Prior work conducted by the EPL examined several different wearable, respirator style, masks that could be used to sample air from the vicinity surround the nose and mouth of a suited test subject. Previously published studies utilized these masks, some being commercial products and some novel designs, to monitor CO2 under various exercise and flow conditions with mixed results for repeatability and/or consistency between subjects. Based on a meta-analysis of those studies it was decided to test a nasal cannula as it is a commercially available device that is placed directly in the flow path of the user as they breathe. A nasal cannula was used to sample air inhaled by the test subjects during both rest and exercise conditions. Eight subjects were tasked with walking on a treadmill or operating an arm ergometer to reach target metabolic rates of 1000, 2000, and 3000 BTU/hr. Suit pressure was maintained at 4.3 psid for all tests, with supply flow rates of 6, 4, and 2 actual cubic feet per minute depending on the test condition. Each test configuration was conducted twice with subjects breathing

  11. Expedition 18 Suit Pressure Check

    NASA Image and Video Library

    2008-10-11

    Expedition 18 Commander Michael Fincke has his Russian Sokol suit pressure checked prior to launching in the Soyuz TMA-13 spacecraft with Expedition 18 Flight Engineer Yuri V. Lonchakov and American spaceflight participant Richard Garriott, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  12. Expedition 18 Suit Pressure Check

    NASA Image and Video Library

    2008-10-11

    Expedition 18 Commander Michael Fincke, foreground, has his Russian Sokol suit pressure checked prior to launching in the Soyuz TMA-13 spacecraft with American spaceflight participant Richard Garriott and Expedition 18 Flight Engineer Yuri V. Lonchakov, right, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  13. Expedition 18 Suit Pressure Check

    NASA Image and Video Library

    2008-10-11

    American Spaceflight Participant Richard Garriott has his Russian Sokol suit pressure checked prior to launching in the Soyuz TMA-13 spacecraft with Expedition 18 Commander Michael Fincke and Flight Engineer Yury V. Lonchakov, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24, 2008 with two of the Expedition 17 crewmembers currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  14. Melt-Infiltration Process For SiC Ceramics And Composites

    NASA Technical Reports Server (NTRS)

    Behrendt, Donald R.; Singh, Mrityunjay

    1994-01-01

    Reactive melt infiltration produces silicon carbide-based ceramics and composites faster and more economically than do such processes as chemical vapor infiltration (CVI), reaction sintering, pressureless sintering, hot pressing, and hot isostatic pressing. Process yields dense, strong materials at relatively low cost. Silicon carbide ceramics and composites made by reactive melt infiltration used in combustor liners of jet engines and in nose cones and leading edges of high-speed aircraft and returning spacecraft. In energy industry, materials used in radiant-heater tubes, heat exchangers, heat recuperators, and turbine parts. Materials also well suited to demands of advanced automobile engines.

  15. Nonlinear analyses of composite aerospace structures in sonic fatigue

    NASA Technical Reports Server (NTRS)

    Mei, Chuh

    1993-01-01

    This report summarizes the semiannual research progress, accomplishments, and future plans performed under the NASA Langley Research Center Grant No. NAG-1-1358. The primary research effort of this project is the development of analytical methods for the prediction of nonlinear random response of composite aerospace structures subjected to combined acoustic and thermal loads. The progress, accomplishments, and future plates on four sonic fatigue research topics are described. The sonic fatigue design and passive control of random response of shape memory alloy hybrid composites presented in section 4, which is suited especially for HSCT, is a new initiative.

  16. Space Radiation Effects in Inflatable and Composite Habitat Materials

    NASA Technical Reports Server (NTRS)

    Waller, Jess; Rojdev, Kristina

    2015-01-01

    This Year 2 project provides much needed risk reduction data to assess solar particle event (SPE) and galactic cosmic ray (GCR) space radiation damage in existing and emerging materials used in manned low-earth orbit, lunar, interplanetary, and Martian surface missions. More specifically, long duration (up to 50 years) space radiation damage is quantified for materials used in inflatable structures (1st priority), and habitable composite structures and space suits materials (2nd priority). The data collected has relevance for nonmetallic materials (polymers and composites) used in NASA missions where long duration reliability is needed in continuous or intermittent radiation fluxes.

  17. Nonlinear analyses of composite aerospace structures in sonic fatigue

    NASA Astrophysics Data System (ADS)

    Mei, Chuh

    1993-06-01

    This report summarizes the semiannual research progress, accomplishments, and future plans performed under the NASA Langley Research Center Grant No. NAG-1-1358. The primary research effort of this project is the development of analytical methods for the prediction of nonlinear random response of composite aerospace structures subjected to combined acoustic and thermal loads. The progress, accomplishments, and future plates on four sonic fatigue research topics are described. The sonic fatigue design and passive control of random response of shape memory alloy hybrid composites presented in section 4, which is suited especially for HSCT, is a new initiative.

  18. Utility of simultaneous interventional radiology and operative surgery in a dedicated suite for seriously injured patients.

    PubMed

    D'Amours, Scott K; Rastogi, Pratik; Ball, Chad G

    2013-12-01

    In recent years, combined interventional radiology and operative suites have been proposed and are now becoming operational in select trauma centres. Given the infancy of this technology, this review aims to review the rationale, benefits and challenges of hybrid suites in the management of seriously injured patients. No specific studies exist that investigate outcomes within hybrid trauma suites. Endovascular and interventional radiology techniques have been successfully employed in thoracic, abdominal, pelvic and extremity trauma. Although the association between delayed haemorrhage control and poorer patient outcomes is intuitive, most supporting scientific data are outdated. The hybrid suite model offers the potential to expedite haemorrhage control through synergistic operative, interventional radiology and resuscitative platforms. Maximizing the utility of these suites requires trained multidisciplinary teams, ergonomic and workplace considerations, as well as a fundamental paradigm shift of trauma care. This often translates into a more damage-control orientated philosophy. Hybrid suites offer tremendous potential to expedite haemorrhage control in trauma patients. Outcome evaluations from trauma units that currently have operational hybrid suites are required to establish clearer guidelines and criteria for patient management.

  19. Development of a Novel Continuous Processing Technology for Functionally Graded Composite Energetic Materials Using an Inverse Design Procedure

    DTIC Science & Technology

    2006-01-01

    is naturally suited to produce this type of gradient from one composition to another. Operating a twin screw extruder at one steady condition and...dynamically changing the ingredients to produce a new formulation will result in the extrudate changing from the original composition to second one...Because of the inherent backmixing in a twin screw extruder , an abrupt change in ingredients results in a more gradual change in the composition of

  20. Conception et optimisation d'une peau en composite pour une aile adaptative =

    NASA Astrophysics Data System (ADS)

    Michaud, Francois

    Les preoccupations economiques et environnementales constituent des enjeux majeurs pour le developpement de nouvelles technologies en aeronautique. C'est dans cette optique qu'est ne le projet MDO-505 intitule Morphing Architectures and Related Technologies for Wing Efficiency Improvement. L'objectif de ce projet vise a concevoir une aile adaptative active servant a ameliorer sa laminarite et ainsi reduire la consommation de carburant et les emissions de l'avion. Les travaux de recherche realises ont permis de concevoir et optimiser une peau en composite adaptative permettant d'assurer l'amelioration de la laminarite tout en conservant son integrite structurale. D'abord, une methode d'optimisation en trois etapes fut developpee avec pour objectif de minimiser la masse de la peau en composite en assurant qu'elle s'adapte par un controle actif de la surface deformable aux profils aerodynamiques desires. Le processus d'optimisation incluait egalement des contraintes de resistance, de stabilite et de rigidite de la peau en composite. Suite a l'optimisation, la peau optimisee fut simplifiee afin de faciliter la fabrication et de respecter les regles de conception de Bombardier Aeronautique. Ce processus d'optimisation a permis de concevoir une peau en composite dont les deviations ou erreurs des formes obtenues etaient grandement reduites afin de repondre au mieux aux profils aerodynamiques optimises. Les analyses aerodynamiques realisees a partir de ces formes ont predit de bonnes ameliorations de la laminarite. Par la suite, une serie de validations analytiques fut realisee afin de valider l'integrite structurale de la peau en composite suivant les methodes generalement utilisees par Bombardier Aeronautique. D'abord, une analyse comparative par elements finis a permis de valider une rigidite equivalente de l'aile adaptative a la section d'aile d'origine. Le modele par elements finis fut par la suite mis en boucle avec des feuilles de calcul afin de valider la

  1. STS-108 Pilot Kelly suits up for launch

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-108 Pilot Kelly suits up for launch KSC-01PD-1776 KENNEDY SPACE CENTER, Fla. -- STs-108 Pilot Mark E. Kelly is helped with his launch and entry suit in preparation for the second launch attempt of Space Shuttle Endeavour. The first attempt Dec. 4 was scrubbed due to poor weather conditions at KSC. The main goals of the mission are to carry the Expedition 4 crew to the International Space Station as replacement for Expedition 3; carry the Multi-Purpose Logistics Module Raffaello filled with water, equipment and supplies; and install thermal blankets over equipment at the base of the ISS solar wings. STS-108 is the final Shuttle mission of 2001 and the 107th Shuttle flight overall. It is the 12th flight to the Space Station. Launch is scheduled for 5:19 p.m. EST Dec. 5, 2001, from Launch Pad 39B.

  2. Testing of materials for passive thermal control of space suits

    NASA Technical Reports Server (NTRS)

    Squire, Bernadette

    1988-01-01

    An effort is underway to determine the coating material of choice for the AX-5 prototype hard space suit. Samples of 6061 aluminum have been coated with one of 10 selected metal coatings, and subjected to corrosion, abrasion, and thermal testing. Changes in reflectance after exposure are documented. Plated gold exhibited minimal degradation of optical properties. A computer model is used in evaluating coating thermal performance in the EVA environment. The model is verified with an experiment designed to measure the heat transfer characteristics of coated space suit parts in a thermal vacuum chamber. Details of this experiment are presented.

  3. Skin Temperatures During Unaided Egress: Unsuited and While Wearing the NASA Launch and Entry or Advanced Crew Escape Suits

    NASA Technical Reports Server (NTRS)

    Woodruff, Kristin K.; Lee, Stuart M. C.; Greenisen, Michael C.; Schneider, Suzanne M.

    2000-01-01

    The two flight suits currently worn by crew members during Shuttle launch and landing, the Launch and Entry Suit (LES) and the Advanced Crew Escape Suit (ACES), are designed to protect crew members in the case of emergency. Although the Liquid Cooling Garment (LCG) worn under the flight suits was designed to counteract the heat storage of the suits, the suits may increase thermal stress and limit the astronaut's egress capabilities. The purpose of this study was to assess the thermal loads experienced by crew members during a simulated emergency egress before and after spaceflight. Comparisons of skin temperatures were made between the preflight unsuited and suited conditions. between the pre- and postflight suited conditions, and between the two flight suits.

  4. The Northwest Africa 8159 martian meteorite: Expanding the martian sample suite to the early Amazonian

    NASA Astrophysics Data System (ADS)

    Herd, Christopher D. K.; Walton, Erin L.; Agee, Carl B.; Muttik, Nele; Ziegler, Karen; Shearer, Charles K.; Bell, Aaron S.; Santos, Alison R.; Burger, Paul V.; Simon, Justin I.; Tappa, Michael J.; McCubbin, Francis M.; Gattacceca, Jérôme; Lagroix, France; Sanborn, Matthew E.; Yin, Qing-Zhu; Cassata, William S.; Borg, Lars E.; Lindvall, Rachel E.; Kruijer, Thomas S.; Brennecka, Gregory A.; Kleine, Thorsten; Nishiizumi, Kunihiko; Caffee, Marc W.

    2017-12-01

    Northwest Africa (NWA) 8159 is an augite-rich shergottite, with a mineralogy dominated by Ca-, Fe-rich pyroxene, plagioclase, olivine, and magnetite. NWA 8159 crystallized from an evolved melt of basaltic composition under relatively rapid conditions of cooling, likely in a surface lava flow or shallow sill. Redox conditions experienced by the melt shifted from relatively oxidizing (with respect to known Martian lithologies, ∼QFM) on the liquidus to higher oxygen fugacity (∼QFM + 2) during crystallization of the groundmass, and under subsolidus conditions. This shift resulted in the production of orthopyroxene and magnetite replacing olivine phenocryst rims. NWA 8159 contains both crystalline and shock-amorphized plagioclase (An50-62), often observed within a single grain; based on known calibrations we bracket the peak shock pressure experienced by NWA 8159 to between 15 and 23 GPa. The bulk composition of NWA 8159 is depleted in LREE, as observed for Tissint and other depleted shergottites; however, NWA 8159 is distinct from all other martian lithologies in its bulk composition and oxygen fugacity. We obtain a Sm-Nd formation age of 2.37 ± 0.25 Ga for NWA 8159, which represents an interval in Mars geologic time which, until recently, was not represented in the other martian meteorite types. The bulk rock 147Sm/144Nd value of 0.37 ± 0.02 is consistent with it being derived directly from its source and the high initial ε143Nd value indicates this source was geochemically highly depleted. Cr, Nd, and W isotopic compositions further support a unique mantle source. While the rock shares similarities with the 2.4-Ga NWA 7635 meteorite, there are notable distinctions between the two meteorites that suggest differences in mantle source compositions and conditions of crystallization. Nevertheless, the two samples may be launch-paired. NWA 8159 expands the known basalt types, ages and mantle sources within the Mars sample suite to include a second igneous unit from

  5. The Northwest Africa 8159 martian meteorite: Expanding the martian sample suite to the early Amazonian

    DOE PAGES

    Herd, Christopher D. K.; Walton, Erin L.; Agee, Carl B.; ...

    2017-09-01

    Northwest Africa (NWA) 8159 is an augite-rich shergottite, with a mineralogy dominated by Ca-, Fe-rich pyroxene, plagioclase, olivine, and magnetite. NWA 8159 crystallized from an evolved melt of basaltic composition under relatively rapid conditions of cooling, likely in a surface lava flow or shallow sill. Redox conditions experienced by the melt shifted from relatively oxidizing (with respect to known Martian lithologies, ~QFM) on the liquidus to higher oxygen fugacity (~QFM + 2) during crystallization of the groundmass, and under subsolidus conditions. This shift resulted in the production of orthopyroxene and magnetite replacing olivine phenocryst rims. NWA 8159 contains both crystallinemore » and shock-amorphized plagioclase (An 50–62), often observed within a single grain; based on known calibrations we bracket the peak shock pressure experienced by NWA 8159 to between 15 and 23 GPa. The bulk composition of NWA 8159 is depleted in LREE, as observed for Tissint and other depleted shergottites; however, NWA 8159 is distinct from all other martian lithologies in its bulk composition and oxygen fugacity. Here, we obtain a Sm-Nd formation age of 2.37 ± 0.25 Ga for NWA 8159, which represents an interval in Mars geologic time which, until recently, was not represented in the other martian meteorite types. The bulk rock 147Sm/ 144Nd value of 0.37 ± 0.02 is consistent with it being derived directly from its source and the high initial ε 143Nd value indicates this source was geochemically highly depleted. Cr, Nd, and W isotopic compositions further support a unique mantle source. While the rock shares similarities with the 2.4-Ga NWA 7635 meteorite, there are notable distinctions between the two meteorites that suggest differences in mantle source compositions and conditions of crystallization. Nevertheless, the two samples may be launch-paired. Finally, NWA 8159 expands the known basalt types, ages and mantle sources within the Mars sample suite to include a

  6. The Northwest Africa 8159 martian meteorite: Expanding the martian sample suite to the early Amazonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herd, Christopher D. K.; Walton, Erin L.; Agee, Carl B.

    Northwest Africa (NWA) 8159 is an augite-rich shergottite, with a mineralogy dominated by Ca-, Fe-rich pyroxene, plagioclase, olivine, and magnetite. NWA 8159 crystallized from an evolved melt of basaltic composition under relatively rapid conditions of cooling, likely in a surface lava flow or shallow sill. Redox conditions experienced by the melt shifted from relatively oxidizing (with respect to known Martian lithologies, ~QFM) on the liquidus to higher oxygen fugacity (~QFM + 2) during crystallization of the groundmass, and under subsolidus conditions. This shift resulted in the production of orthopyroxene and magnetite replacing olivine phenocryst rims. NWA 8159 contains both crystallinemore » and shock-amorphized plagioclase (An 50–62), often observed within a single grain; based on known calibrations we bracket the peak shock pressure experienced by NWA 8159 to between 15 and 23 GPa. The bulk composition of NWA 8159 is depleted in LREE, as observed for Tissint and other depleted shergottites; however, NWA 8159 is distinct from all other martian lithologies in its bulk composition and oxygen fugacity. Here, we obtain a Sm-Nd formation age of 2.37 ± 0.25 Ga for NWA 8159, which represents an interval in Mars geologic time which, until recently, was not represented in the other martian meteorite types. The bulk rock 147Sm/ 144Nd value of 0.37 ± 0.02 is consistent with it being derived directly from its source and the high initial ε 143Nd value indicates this source was geochemically highly depleted. Cr, Nd, and W isotopic compositions further support a unique mantle source. While the rock shares similarities with the 2.4-Ga NWA 7635 meteorite, there are notable distinctions between the two meteorites that suggest differences in mantle source compositions and conditions of crystallization. Nevertheless, the two samples may be launch-paired. Finally, NWA 8159 expands the known basalt types, ages and mantle sources within the Mars sample suite to include a

  7. CO2 Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject and physiological differences between subjects. Computational Fluid Dynamic (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test is to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III space suit across a range of workload and flow rates. As a secondary objective, results will be compared to the predicted CO2 concentrations and used to refine existing CFD models. These CFD models will then be used to help design an inlet vent configuration for the Z-2 space suit, which maximizes oronasal CO2 washout. This test has not been completed, but is planned for January 2014. The results of this test will be incorporated into this paper. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES). Three subjects will be tested in the Mark-III space suit with each subject performing two test sessions to allow for comparison between tests. Six different helmet inlet vent configurations will be evaluated during each test session. Suit pressure will be maintained at 4.3 psid. Subjects will wear the suit while walking on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute (ACFM) will be tested at each workload. Subjects will wear an oronasal mask with an open port in front of the mouth and will be allowed to

  8. Physiologic and anti-G suit performance data from YF-16 flight tests

    NASA Technical Reports Server (NTRS)

    Gillingham, K. K.; Winter, W. R.

    1976-01-01

    Biomedical data were collected during high-G portions of 11 YF-16 test flights. Test pilots monitored revealed increased respiratory rate and volume, decreased tidal volume, and increased heart rate at higher G levels, with one pilot exhibiting various cardiac arrhythmias. Anti-G suit inflation and pressurization lags varied inversely with G-onset rate, and suit pressurization slope was near the design value.

  9. Hazard Analysis for the Mark III Space Suit Assembly (SSA) Used in One-g Operations

    NASA Technical Reports Server (NTRS)

    Mitchell, Kate; Ross, Amy; Blanco, Raul; Wood, Art

    2012-01-01

    This Hazard Analysis document encompasses the Mark III Space Suit Assembly (SSA) and associated ancillary equipment. It has been prepared using JSC17773, "Preparing Hazard Analyses for JSC Ground Operation", as a guide. The purpose of this document is to present the potential hazards involved in ground (23 % maximum O2, One-g) operations of the Mark III and associated ancillary support equipment system. The hazards listed in this document are specific to suit operations only; each supporting facility (Bldg. 9, etc.) is responsible for test specific Hazard Analyses. A "hazard" is defined as any condition that has the potential for harming personnel or equipment. This analysis was performed to document the safety aspects associated with manned use of the Mark III for pressurized and unpressurized ambient, ground-based, One-g human testing. The hazards identified herein represent generic hazards inherent to all standard JSC test venues for nominal ground test configurations. Non-standard test venues or test specific configurations may warrant consideration of additional hazards analysis prior to test. The cognizant suit engineer is responsible for the safety of the astronaut/test subject, space suit, and suit support personnel. The test requester, for the test supported by the suit test engineer and suited subject, is responsible for overall safety and any necessary Test Readiness Reviews (TRR).

  10. 28 CFR 51.31 - Communications concerning voting suits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED Communications From Individuals and... Chief, Voting Section, Civil Rights Division, of litigation concerning voting in jurisdictions subject... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Communications concerning voting suits...

  11. Center for Efficient Exascale Discretizations Software Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolev, Tzanio; Dobrev, Veselin; Tomov, Vladimir

    The CEED Software suite is a collection of generally applicable software tools focusing on the following computational motives: PDE discretizations on unstructured meshes, high-order finite element and spectral element methods and unstructured adaptive mesh refinement. All of this software is being developed as part of CEED, a co-design Center for Efficient Exascale Discretizations, within DOE's Exascale Computing Project (ECP) program.

  12. Evaluation of the operator protection factors offered by positive pressure air suits against airborne microbiological challenge.

    PubMed

    Steward, Jackie A; Lever, Mark S

    2012-08-01

    Laboratories throughout the world that perform work with Risk Group 4 Pathogens generally adopt one of two approaches within BSL-4 environments: either the use of positive pressure air-fed suits or using Class III microbiological safety cabinets and isolators for animal work. Within the UK at present, all laboratories working with Risk Group 4 agents adopt the use of Class III microbiological safety cabinet lines and isolators. Operator protection factors for the use of microbiological safety cabinets and isolators are available however; there is limited published data on the operator protection factors afforded by the use of positive pressure suits. This study evaluated the operator protection factors provided by positive pressure air suits against a realistic airborne microbiological challenge. The suits were tested, both intact and with their integrity compromised, on an animated mannequin within a stainless steel exposure chamber. The suits gave operator protection in all tests with an intact suit and with a cut in the leg. When compromised by a cut in the glove, a very small ingress of the challenge was seen as far as the wrist. This is likely to be due to the low airflow in the gloves of the suit. In all cases no microbiological penetration of the respiratory tract was observed. These data provide evidence on which to base safety protocols for use of positive pressure suits within high containment laboratories.

  13. Dressing for Altitude: U.S. Aviation Pressure Suits--Wiley Post to Space Shuttle

    NASA Technical Reports Server (NTRS)

    Jenkins, Dennis R.

    2012-01-01

    Since its earliest days, flight has been about pushing the limits of technology and, in many cases, pushing the limits of human endurance. The human body can be the limiting factor in the design of aircraft and spacecraft. Humans cannot survive unaided at high altitudes. There have been a number of books written on the subject of spacesuits, but the literature on the high-altitude pressure suits is lacking. This volume provides a high-level summary of the technological development and operational use of partial- and full-pressure suits, from the earliest models to the current high altitude, full-pressure suits used for modern aviation, as well as those that were used for launch and entry on the Space Shuttle. The goal of this work is to provide a resource on the technology for suits designed to keep humans alive at the edge of space. Hopefully, future generations will learn from the hard-fought lessons of the past. NASA is committed to the future of aerospace, and a key component of that future is the workforce. Without these men and women, technological advancements would not be possible. Dressing for Altitude is designed to provide the history of the technology and to explore the lessons learned through years of research in creating, testing, and utilizing today s high-altitude suits. It is our hope that this information will prove helpful in the development of future suits. Even with the closeout of the Space Shuttle and the planned ending of the U-2 program, pressure suits will be needed for protection as long as humans seek to explore high frontiers. The NASA Aeronautics Research Mission Directorate is committed to the training of the current and future aerospace workforce. This book and the other books published by the NASA Aeronautics Research Mission Directorate are in support of this commitment. Hopefully, you will find this book a valuable resource for many years to come.

  14. The composition of the lunar crust: Radiative transfer modeling and analysis of lunar visible and near-infrared spectra

    NASA Astrophysics Data System (ADS)

    Cahill, Joshua T. S.

    This dissertation has two focuses: (1) the evaluation and validation of algorithms used for analysis of lunar visible and near-infrared data sets, and (2) the determination of lunar surface and sub-surface crustal composition by virtue of these algorithms. To that end, the results and interpretation reported herein further enhance knowledge of lunar ferroan anorthosite (FAN) and magnesium-suite (Mg-suite) mineralogy, chemistry, and distribution on and in our Moon's crust.

  15. Astronaut John Glenn dons space suit during preflight operations

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Astronaut John Glenn dons space suit during preflight operations at Cape Canaveral, February 20, 1962, the day he flew his Mercury-Atlas 6 spacecraft, Friendship 7, into orbital flight around the Earth.

  16. Expedition 18 Suit Pressure Check

    NASA Image and Video Library

    2008-10-11

    Expedition 18 Commander Michael Fincke waves hello to his family as he and Expedition 18 Flight Engineer Yuri V. Lonchakov and American spaceflight participant Richard Garriott have their Russian Sokol suits pressure checked prior to launching in the Soyuz TMA-13 spacecraft, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  17. Monitoring Human Performance During Suited Operations: A Technology Feasibility Study Using EMU Gloves

    NASA Technical Reports Server (NTRS)

    Bekdash, Omar; Norcross, Jason; McFarland, Shane

    2015-01-01

    Mobility tracking of human subjects while conducting suited operations still remains focused on the external movement of the suit and little is known about the human movement within it. For this study, accelerometers and bend sensitive resistors were integrated into a custom carrier glove to quantify range of motion and dexterity from within the pressurized glove environment as a first stage feasibility study of sensor hardware, integration, and reporting capabilities. Sensors were also placed on the exterior of the pressurized glove to determine if it was possible to compare a glove joint angle to the anatomical joint angle of the subject during tasks. Quantifying human movement within the suit was feasible, with accelerometers clearly detecting movements in the wrist and reporting expected joint angles at maximum flexion or extension postures with repeatability of plus or minus 5 degrees between trials. Bend sensors placed on the proximal interphalangeal and distal interphalangeal joints performed less well. It was not possible to accurately determine the actual joint angle using these bend sensors, but these sensors could be used to determine when the joint was flexed to its maximum and provide a general range of mobility needed to complete a task. Further work includes additional testing with accelerometers and the possible inclusion of hardware such as magnetometers or gyroscopes to more precisely locate the joint in 3D space. We hope to eventually expand beyond the hand and glove and develop a more comprehensive suit sensor suite to characterize motion across more joints (knee, elbow, shoulder, etc.) and fully monitor the human body operating within the suit environment.

  18. STS-85 Mission Specialist Stephen Robinson suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-85 Mission Specialist Stephen K. Robinson smiles as he is assisted with his ascent/reentry flight suit by a suit technician in the Operations and Checkout (O&C) Building. He has been a NASA employee since 1975 and has worked at Ames and Langley Research Centers. Robinson holds a doctorate in mechanical engineering and is a licensed pilot. He will assist Mission Specialist Robert L. Curbeam, Jr. with the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA- SPAS-2) free-flyer and conduct Comet Hale-Bopp observations with the Southwest Ultraviolet Imaging System. Robinson will also coordinate photo and television data operations during the mission. The primary payload aboard the Space Shuttle orbiter Discovery is the CRISTA-SPAS- 2. Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), and Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments.

  19. Boeing Unveils New Suit for Commercial Crew Astronauts

    NASA Image and Video Library

    2017-01-23

    Boeing unveiled its spacesuit design Wednesday as the company continues to move toward flight tests and crew rotation missions of its Starliner spacecraft and launch systems that will fly astronauts to the International Space Station. Astronauts heading into orbit for the station aboard the Starliner will wear Boeing’s new spacesuits. The suits are custom-designed to fit each astronaut, lighter and more comfortable than earlier versions and meet NASA requirements for safety and functionality. NASA's commercial crew astronauts Eric Boe and Suni Williams tried on the suits at Boeing’s Commercial Crew and Cargo Facility at NASA’s Kennedy Space Center. Boe, Williams, Bob Behnken, and Doug Hurley were selected by NASA in July 2015 to train for commercial crew test flights aboard the Starliner and SpaceX’s Crew Dragon spacecraft. The flight assignments have not been set, so all four of the astronauts are rehearsingheavily for flights aboard both vehicles.

  20. A quantitative reconstruction software suite for SPECT imaging

    NASA Astrophysics Data System (ADS)

    Namías, Mauro; Jeraj, Robert

    2017-11-01

    Quantitative Single Photon Emission Tomography (SPECT) imaging allows for measurement of activity concentrations of a given radiotracer in vivo. Although SPECT has usually been perceived as non-quantitative by the medical community, the introduction of accurate CT based attenuation correction and scatter correction from hybrid SPECT/CT scanners has enabled SPECT systems to be as quantitative as Positron Emission Tomography (PET) systems. We implemented a software suite to reconstruct quantitative SPECT images from hybrid or dedicated SPECT systems with a separate CT scanner. Attenuation, scatter and collimator response corrections were included in an Ordered Subset Expectation Maximization (OSEM) algorithm. A novel scatter fraction estimation technique was introduced. The SPECT/CT system was calibrated with a cylindrical phantom and quantitative accuracy was assessed with an anthropomorphic phantom and a NEMA/IEC image quality phantom. Accurate activity measurements were achieved at an organ level. This software suite helps increasing quantitative accuracy of SPECT scanners.

  1. Geochemical investigation of Archaean Bimodal and Dwalile metamorphic suites, Ancient Gneiss Complex, Swaziland

    USGS Publications Warehouse

    Hunter, D.R.; Barker, F.; Millard, H.T.

    1984-01-01

    The bimodal suite (BMS) comprises leucotonalitic and trondhjemitic gneisses interlayered with amphibolites. Based on geochemical parameters three main groups of siliceous gneiss are recognized: (i) SiO2 14%, and fractionated light rare-earth element (REE) and flat heavy REE patterns; (ii) SiO2 and Al2O3 contents similar to (i) but with strongly fractionated REE patterns with steep heavy REE slopes; (iii) SiO2 > 73%, Al2O3 < 14%, Zr ??? 500 ppm and high contents of total REE having fractionated light REE and flat heavy REE patterns with large negative Eu anomalies. The interlayered amphibolites have major element abundances similar to those of basaltic komatiites, Mg-tholeiites and Fe-rich tholeiites. The former have gently sloping REE patterns, whereas the Mg-tholeiites have non-uniform REE patterns ranging from flat (??? 10 times chondrite) to strongly light REE-enriched. The Fe-rich amphibolites have flat REE patterns at 20-30 times chondrite. The Dwalile metamorphic suite, which is preserved in the keels of synforms within the BMS, includes peridotitic komatiites that have depleted light REE patterns similar to those of compositionally similar volcanics in the Onverwacht Group, Barberton, basaltic komatiites and tholeiites. The basaltic komatiites have REE patterns parallel to those of the BMS basaltic komatiites but with lower total REE contents. The Dwalile tholeiites have flat REE patterns. The basic and ultrabasic liquids were derived by partial melting of a mantle source which may have been heterogeneous or the heterogeneity may have resulted from sequential melting of the mantle source. The Fe-rich amphibolites were derived either from liquids generated at shallow levels or from liquids generated at depth which subsequently underwent extensive fractionation. ?? 1984.

  2. Clay-mineral suites, sources, and inferred dispersal routes: Southern California continental shelf

    USGS Publications Warehouse

    Hein, J.R.; Dowling, J.S.; Schuetze, A.; Lee, H.J.

    2003-01-01

    Clay mineralogy is useful in determining the distribution, sources, and dispersal routes of fine-grained sediments. In addition, clay minerals, especially smectite, may control the degree to which contaminants are adsorbed by the sediment. We analyzed 250 shelf sediment samples, 24 river-suspended-sediment samples, and 12 river-bed samples for clay-mineral contents in the Southern California Borderland from Point Conception to the Mexico border. In addition, six samples were analyzed from the Palos Verdes Headland in order to characterize the clay minerals contributed to the offshore from that point source. The <2 ??m-size fraction was isolated, Mg-saturated, and glycolated before analysis by X-ray diffraction. Semi-quantitative percentages of smectite, illite, and kaolinite plus chlorite were calculated using peak areas and standard weighting factors. Most fine-grained sediment is supplied to the shelf by rivers during major winter storms, especially during El Nin??o years. The largest sediment fluxes to the region are from the Santa Ynez and Santa Clara Rivers, which drain the Transverse Ranges. The mean clay-mineral suite for the entire shelf sediment data set (26% smectite, 50% illite, 24% kaolinite+chlorite) is closely comparable to that for the mean of all the rivers (31% smectite, 49% illite, 20% kaolinite+chlorite), indicating that the main source of shelf fine-grained sediments is the adjacent rivers. However, regional variations do exist and the shelf is divided into four provinces with characteristic clay-mineral suites. The means of the clay-mineral suites of the two southernmost provinces are within analytical error of the mineral suites of adjacent rivers. The next province to the north includes Santa Monica Bay and has a suite of clay minerals derived from mixing of fine-grained sediments from several sources, both from the north and south. The northernmost province clay-mineral suite matches moderately well that of the adjacent rivers, but does

  3. Overview of the Development for a Suite of Low-Thrust Trajectory Analysis Tools

    NASA Technical Reports Server (NTRS)

    Kos, Larry D.; Polsgrove, Tara; Hopkins, Randall; Thomas, Dan; Sims, Jon A.

    2006-01-01

    A NASA intercenter team has developed a suite of low-thrust trajectory analysis tools to make a significant improvement in three major facets of low-thrust trajectory and mission analysis. These are: 1) ease of use, 2) ability to more robustly converge to solutions, and 3) higher fidelity modeling and accuracy of results. Due mostly to the short duration of the development, the team concluded that a suite of tools was preferred over having one integrated tool. This tool-suite, their characteristics, and their applicability will be described. Trajectory analysts can read this paper and determine which tool is most appropriate for their problem.

  4. Evaluation of sensors for use inside chemical protective suits

    NASA Astrophysics Data System (ADS)

    Russell, Derrick A.; Duncan, E. J. S.; Hunt, Stephen; Gudgin Dickson, Eva F.; Weagle, Glenn E.

    1999-11-01

    Organizations such as the military, hazardous materials units, first responders and industries involved in the processing and manufacture of chemicals all have requirements for specialized whole body protection for those people in their organizations whose job it is to work with toxic chemicals on a day to day basis or in emergency situations. Currently, excluding chemical biological (CB) challenge scenarios, there is no routine monitoring of the possible ingress of toxic chemicals within chemical protective suits. Under existing national standards, swatches of the protective suit fabric are usually tested for chemical breakthrough and if they meet certain criteria, the suit is considered to provide adequate protection to the individual. Despite advances in protection level research provided by full system protective clothing tests, inexpensive, real-time, sensitive and robust chemical monitoring systems for use both under protective clothing and within a challenge environment, remains a technologically deficient area. This paper presents the results of a preliminary assessment of the feasibility of miniature detectors for monitoring real-time volatile organic chemical (VOC) challenges under chemical protective clothing and in closed environments where such suits are used. Nine gas sensors of n-type semiconductor design (Figaro Engineering Inc) were assessed for their response to a dichloromethane concentration of 560 ppm at a temperature of 23 degrees Celsius and relative humidity of 20%. Absolute voltage output, speed of response to dichloromethane exposure, and time required to return to zero, were considered. The top ranked sensor was further evaluated for its calibration response to a range of dichloromethane concentrations up to 560 ppm. Variables that were considered include effect of temperature and relative humidity, hysteresis and repeatability. Increasing RH causes an increase in the zero output of the sensor with an approximate linear relationship. The

  5. Filing period for suit begins with notice of right-to-sue letter.

    PubMed

    1998-06-12

    An HIV job discrimination suit in Tampa, FL was dismissed because it was filed 15 days beyond the allowed 90-day period. In this case, the plaintiff, [name removed] G. [Name removed]., received notice that a certified right-to-sue letter from the Equal Employment Opportunity Commission (EEOC) was waiting for him, but he did not file suit until 105 days later. Issues raised by the plaintiff to support the discrimination suit were disqualified, because they did not prove that the employer, Capital One Financial Corp., was reacting to the plaintiff's HIV-positive status, instead of reacting to his excessive absenteeism. The employers had previously warned the plaintiff about his excessive absenteeism, because he had missed 25 days of work and left early 5 times, all in a 6 month period.

  6. STS-108 Mission Specialist Daniel M. Tani final suit checkout

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-108 Mission Specialist Daniel M. Tani final suit checkout KSC-01PD-1717 KENNEDY SPACE CENTER, Fla. - STS-108 Mission Specialist Daniel M. Tani waves as he undergoes final suit check before launch on Nov. 29. Top priorities for the STS-108 (UF-1) mission of Endeavour are rotation of the International Space Station Expedition Three and Expedition Four crews; bringing water, equipment and supplies to the station in the Multi-Purpose Logistics Module Raffaello; and completion of robotics tasks and a spacewalk to install thermal blankets over two pieces of equipment at the bases of the Space Station's solar wings. Liftoff is scheduled for 7:41 p.m. EST.

  7. STS-108 Mission Specialist Linda A. Godwin final suit checkout

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-108 Mission Specialist Linda A. Godwin final suit checkout KSC-01PD-1720 KENNEDY SPACE CENTER, Fla. -- STS-108 Mission Specialist Linda A. Godwin undergoes final suit check before launch on mission STS-108 Nov. 29. Top priorities for the STS-108 (UF-1) mission of Endeavour are rotation of the International Space Station Expedition Three and Expedition Four crews; bringing water, equipment and supplies to the station in the Multi-Purpose Logistics Module Raffaello; and completion of robotics tasks and a spacewalk to install thermal blankets over two pieces of equipment at the bases of the Space Station's solar wings. Liftoff is scheduled for 7:41 p.m. EST.

  8. Labeled line drawing of launch and entry suit identifies various components

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Line drawings illustrate the front and back of the space shuttle launch and entry suit (LES) and labels identify various components. LES was designed for STS-26, the return to flight mission, and subsequent missions. Included in the crew escape system (CES) package are launch and entry helmet (LEH) with communications carrier (COMM CAP), parachute pack and harness, life preserver unit (LPU), life raft unit (LRU), LES gloves, suit oxygen manifold and valves, boots, and survival gear. Details of larger components are also identified.

  9. Labeled line drawing of launch and entry suit identifies various components

    NASA Image and Video Library

    1988-09-22

    Line drawings illustrate the front and back of the space shuttle launch and entry suit (LES) and labels identify various components. LES was designed for STS-26, the return to flight mission, and subsequent missions. Included in the crew escape system (CES) package are launch and entry helmet (LEH) with communications carrier (COMM CAP), parachute pack and harness, life preserver unit (LPU), life raft unit (LRU), LES gloves, suit oxygen manifold and valves, boots, and survival gear. Details of larger components are also identified.

  10. The use of anti-gravity suits for the control of critical intra-abdominal hemmorhage

    NASA Technical Reports Server (NTRS)

    Kravik, S.; Landmark, K.

    1980-01-01

    The history and use as well as the physiology of the use of antigravity suits for the control of critical intra-abdominal hemorrhages is reviewed. The use of this suit is highly recommended, especially for first aid.

  11. Well-Suited Partners: Psychoanalytic Research and Grounded Theory

    ERIC Educational Resources Information Center

    Anderson, Janet

    2006-01-01

    Research is a "core activity" of "central importance in improving mental health and social care" (NIME, CAMHS National Conference, 2005). This paper examines the philosophical issues confronted when considering psychoanalytic clinical research. It is argued that a well-suited partnership can be formed between psychoanalytic clinical research and…

  12. LExTeS: Link Extraction and Testing Suite

    NASA Astrophysics Data System (ADS)

    Ryan, P. W.

    2017-11-01

    LExTeS (Link Extraction and Testing Suite) extracts hyperlinks from PDF documents, tests the extracted links to see which are broken, and tabulates the results. Though written to support a particular set of PDF documents, the dataset and scripts can be edited for use on other documents.

  13. Failure to exercise due diligence costs plaintiff her suit.

    PubMed

    1997-11-28

    The Mississippi State Supreme Court affirmed a lower court ruling dismissing a last-minute suit filed by a plaintiff against United Blood Services of Mississippi and the American Association of Blood Banks. A woman known as D. Doe was a recipient of a tainted transfusion. She contracted HIV in 1983 and died of AIDS-related causes in 1991. Her daughter, the plaintiff, filed a contaminated blood transfusion lawsuit just five days before the statute of limitations ran out but failed to ascertain the correct identity of the blood bank. She named two blood banks in her suit because she was unable to determine the source of the blood. The Supreme Court ruled that waiting until five days before the statute elapsed indicated that the plaintiff did not exercise reasonable diligence within a specific time frame.

  14. 33 CFR 149.329 - How must work vests and deck suits be marked?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false How must work vests and deck... Lifesaving Equipment Manned Deepwater Port Requirements § 149.329 How must work vests and deck suits be marked? All work vests and deck suits must be fitted with Type I retroreflective material, approved under...

  15. 33 CFR 149.329 - How must work vests and deck suits be marked?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false How must work vests and deck... Lifesaving Equipment Manned Deepwater Port Requirements § 149.329 How must work vests and deck suits be marked? All work vests and deck suits must be fitted with Type I retroreflective material, approved under...

  16. 33 CFR 149.329 - How must work vests and deck suits be marked?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false How must work vests and deck... Lifesaving Equipment Manned Deepwater Port Requirements § 149.329 How must work vests and deck suits be marked? All work vests and deck suits must be fitted with Type I retroreflective material, approved under...

  17. 33 CFR 149.329 - How must work vests and deck suits be marked?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false How must work vests and deck... Lifesaving Equipment Manned Deepwater Port Requirements § 149.329 How must work vests and deck suits be marked? All work vests and deck suits must be fitted with Type I retroreflective material, approved under...

  18. 33 CFR 149.329 - How must work vests and deck suits be marked?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false How must work vests and deck... Lifesaving Equipment Manned Deepwater Port Requirements § 149.329 How must work vests and deck suits be marked? All work vests and deck suits must be fitted with Type I retroreflective material, approved under...

  19. Time Management in the Operating Room: An Analysis of the Dedicated Minimally Invasive Surgery Suite

    PubMed Central

    Hsiao, Kenneth C.; Machaidze, Zurab

    2004-01-01

    Background: Dedicated minimally invasive surgery suites are available that contain specialized equipment to facilitate endoscopic surgery. Laparoscopy performed in a general operating room is hampered by the multitude of additional equipment that must be transported into the room. The objective of this study was to compare the preparation times between procedures performed in traditional operating rooms versus dedicated minimally invasive surgery suites to see whether operating room efficiency is improved in the specialized room. Methods: The records of 50 patients who underwent laparoscopic procedures between September 2000 and April 2002 were retrospectively reviewed. Twenty-three patients underwent surgery in a general operating room and 18 patients in an minimally invasive surgery suite. Nine patients were excluded because of cystoscopic procedures undergone prior to laparoscopy. Various time points were recorded from which various time intervals were derived, such as preanesthesia time, anesthesia induction time, and total preparation time. A 2-tailed, unpaired Student t test was used for statistical analysis. Results: The mean preanesthesia time was significantly faster in the minimally invasive surgery suite (12.2 minutes) compared with that in the traditional operating room (17.8 minutes) (P=0.013). Mean anesthesia induction time in the minimally invasive surgery suite (47.5 minutes) was similar to time in the traditional operating room (45.7 minutes) (P=0.734). The average total preparation time for the minimally invasive surgery suite (59.6 minutes) was not significantly faster than that in the general operating room (63.5 minutes) (P=0.481). Conclusion: The amount of time that elapses between the patient entering the room and anesthesia induction is statically shorter in a dedicated minimally invasive surgery suite. Laparoscopic surgery is performed more efficiently in a dedicated minimally invasive surgery suite versus a traditional operating room. PMID

  20. Modular Algorithm Testbed Suite (MATS): A Software Framework for Automatic Target Recognition

    DTIC Science & Technology

    2017-01-01

    004 OFFICE OF NAVAL RESEARCH ATTN JASON STACK MINE WARFARE & OCEAN ENGINEERING PROGRAMS CODE 32, SUITE 1092 875 N RANDOLPH ST ARLINGTON VA 22203 ONR...naval mine countermeasures (MCM) operations by automating a large portion of the data analysis. Successful long-term implementation of ATR requires a...Modular Algorithm Testbed Suite; MATS; Mine Countermeasures Operations U U U SAR 24 Derek R. Kolacinski (850) 230-7218 THIS PAGE INTENTIONALLY LEFT

  1. Vibrotactile perception assessment for a haptic interface on an antigravity suit.

    PubMed

    Ko, Sang Min; Lee, Kwangil; Kim, Daeho; Ji, Yong Gu

    2017-01-01

    Haptic technology is used in various fields to transmit information to the user with or without visual and auditory cues. This study aimed to provide preliminary data for use in developing a haptic interface for an antigravity (anti-G) suit. With the structural characteristics of the anti-G suit in mind, we determined five areas on the body (lower back, outer thighs, inner thighs, outer calves, and inner calves) on which to install ten bar-type eccentric rotating mass (ERM) motors as vibration actuators. To determine the design factors of the haptic anti-G suit, we conducted three experiments to find the absolute threshold, moderate intensity, and subjective assessments of vibrotactile stimuli. Twenty-six fighter pilots participated in the experiments, which were conducted in a fixed-based flight simulator. From the results of our study, we recommend 1) absolute thresholds of ∼11.98-15.84 Hz and 102.01-104.06 dB, 2) moderate intensities of 74.36 Hz and 126.98 dB for the lower back and 58.65 Hz and 122.37 dB for either side of the thighs and calves, and 3) subjective assessments of vibrotactile stimuli (displeasure, easy to perceive, and level of comfort). The results of this study will be useful for the design of a haptic anti-G suit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Requirements and Sizing Investigation for Constellation Space Suit Portable Life Support System Trace Contaminant Control

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Jennings, Mallory A.; Waguespack, Glenn

    2010-01-01

    The Trace Contaminant Control System (TCCS), located within the ventilation loop of the Constellation Space Suit Portable Life Support System (PLSS), is responsible for removing hazardous trace contaminants from the space suit ventilation flow. This paper summarizes the results of a trade study that evaluated if trace contaminant control could be accomplished without a TCCS, relying on suit leakage, ullage loss from the carbon dioxide and humidity control system, and other factors. Trace contaminant generation rates were revisited to verify that values reflect the latest designs for Constellation Space Suit System (CSSS) pressure garment materials and PLSS hardware. Additionally, TCCS sizing calculations were performed and a literature survey was conducted to review the latest developments in trace contaminant technologies.

  3. Assessment of probability of detection of delaminations in fiber-reinforced composites

    NASA Technical Reports Server (NTRS)

    Chern, E. J.; Chu, H. P.; Yang, J. N.

    1991-01-01

    Delamination is one of the critical defects in composite materials and structures. An ultrasonic C-scan imaging technique which maps out the acoustic impedance mismatched areas with respect to the sample coordinates, is particularly well suited for detecting and characterizing delaminations in composites. To properly interpret the results, it is necessary to correlate the indications with the detection limits and probability of detection (POD) of the ultrasonic C-scan imaging technique. The baseline information on the assessment of POD of delaminations in composite materials and structures is very beneficial to the evaluation of spacecraft materials. In this study, we review the principle of POD, describe the laboratory set-up and procedure, and present the experimental results as well as assessment of POD of delaminations in fiber reinforced composite panels using ultrasonic C-scan techniques.

  4. Effects of an anti-G suit on the hemodynamic and renal responses to positive /+Gz/ acceleration

    NASA Technical Reports Server (NTRS)

    Shubrooks, S. J., Jr.; Epstein, M.; Duncan, D. C.

    1974-01-01

    The effects of the currently used U.S. Air Force (CSU-12/P) anti-G suit on renal function during positive radial acceleration (+Gz) were assessed in seven normal male subjects in balance on a 200 meq sodium diet. Following suit inflation in the seated position, +2.0 Gz for 30 min resulted in a decrease in the rate of sodium excretion from 125 plus or minus 19 to 60 plus or minus 14 microeq/min, which persisted during a 25-min recovery period. Fractional excretion of sodium also decreased significantly during +Gz. The magnitude of the antinatriuresis was indistinguishable from that observed during +Gz without suit inflation. In contrast to the antinatriuresis observed during centrifugation without suit, however, the antinatriuresis with suit was mediated primarily by an enhanced tubular reabsorption of sodium.

  5. Development of an Objective Space Suit Mobility Performance Metric Using Metabolic Cost and Functional Tasks

    NASA Technical Reports Server (NTRS)

    McFarland, Shane M.; Norcross, Jason

    2016-01-01

    Existing methods for evaluating EVA suit performance and mobility have historically concentrated on isolated joint range of motion and torque. However, these techniques do little to evaluate how well a suited crewmember can actually perform during an EVA. An alternative method of characterizing suited mobility through measurement of metabolic cost to the wearer has been evaluated at Johnson Space Center over the past several years. The most recent study involved six test subjects completing multiple trials of various functional tasks in each of three different space suits; the results indicated it was often possible to discern between different suit designs on the basis of metabolic cost alone. However, other variables may have an effect on real-world suited performance; namely, completion time of the task, the gravity field in which the task is completed, etc. While previous results have analyzed completion time, metabolic cost, and metabolic cost normalized to system mass individually, it is desirable to develop a single metric comprising these (and potentially other) performance metrics. This paper outlines the background upon which this single-score metric is determined to be feasible, and initial efforts to develop such a metric. Forward work includes variable coefficient determination and verification of the metric through repeated testing.

  6. ORION Environmental Control and Life Support Systems Suit Loop and Pressure Control Analysis

    NASA Technical Reports Server (NTRS)

    Eckhardt, Brad; Conger, Bruce; Stambaugh, Imelda C.

    2015-01-01

    Under NASA's ORION Multi-Purpose Crew Vehicle (MPCV) Environmental Control and Life Support System (ECLSS) Project at Johnson Space Center's (JSC), the Crew and Thermal Systems Division has developed performance models of the air system using Thermal Desktop/FloCAD. The Thermal Desktop model includes an Air Revitalization System (ARS Loop), a Suit Loop, a Cabin Loop, and Pressure Control System (PCS) for supplying make-up gas (N2 and O2) to the Cabin and Suit Loop. The ARS and PCS are designed to maintain air quality at acceptable O2, CO2 and humidity levels as well as internal pressures in the vehicle Cabin and during suited operations. This effort required development of a suite of Thermal Desktop Orion ECLSS models to address the need for various simulation capabilities regarding ECLSS performance. An initial highly detailed model of the ARS Loop was developed in order to simulate rapid pressure transients (water hammer effects) within the ARS Loop caused by events such as cycling of the Pressurized Swing Adsorption (PSA) Beds and required high temporal resolution (small time steps) in the model during simulation. A second ECLSS model was developed to simulate events which occur over longer periods of time (over 30 minutes) where O2, CO2 and humidity levels, as well as internal pressures needed to be monitored in the cabin and for suited operations. Stand-alone models of the PCS and the Negative Pressure relief Valve (NPRV) were developed to study thermal effects within the PCS during emergency scenarios (Cabin Leak) and cabin pressurization during vehicle re-entry into Earth's atmosphere. Results from the Orion ECLSS models were used during Orion Delta-PDR (July, 2014) to address Key Design Requirements (KDR's) for Suit Loop operations for multiple mission scenarios.

  7. A Parametric Model of Shoulder Articulation for Virtual Assessment of Space Suit Fit

    NASA Technical Reports Server (NTRS)

    Kim, K. Han; Young, Karen S.; Bernal, Yaritza; Boppana, Abhishektha; Vu, Linh Q.; Benson, Elizabeth A.; Jarvis, Sarah; Rajulu, Sudhakar L.

    2016-01-01

    Shoulder injury is one of the most severe risks that have the potential to impair crewmembers' performance and health in long duration space flight. Overall, 64% of crewmembers experience shoulder pain after extra-vehicular training in a space suit, and 14% of symptomatic crewmembers require surgical repair (Williams & Johnson, 2003). Suboptimal suit fit, in particular at the shoulder region, has been identified as one of the predominant risk factors. However, traditional suit fit assessments and laser scans represent only a single person's data, and thus may not be generalized across wide variations of body shapes and poses. The aim of this work is to develop a software tool based on a statistical analysis of a large dataset of crewmember body shapes. This tool can accurately predict the skin deformation and shape variations for any body size and shoulder pose for a target population, from which the geometry can be exported and evaluated against suit models in commercial CAD software. A preliminary software tool was developed by statistically analyzing 150 body shapes matched with body dimension ranges specified in the Human-Systems Integration Requirements of NASA ("baseline model"). Further, the baseline model was incorporated with shoulder joint articulation ("articulation model"), using additional subjects scanned in a variety of shoulder poses across a pre-specified range of motion. Scan data was cleaned and aligned using body landmarks. The skin deformation patterns were dimensionally reduced and the co-variation with shoulder angles was analyzed. A software tool is currently in development and will be presented in the final proceeding. This tool would allow suit engineers to parametrically generate body shapes in strategically targeted anthropometry dimensions and shoulder poses. This would also enable virtual fit assessments, with which the contact volume and clearance between the suit and body surface can be predictively quantified at reduced time and

  8. Origin of the lunar highlands Mg-suite: An integrated petrology, geochemistry, chronology, and remote sensing perspective

    DOE PAGES

    Shearer, C. K.; Elardo, S. M.; Petro, N. E.; ...

    2014-12-23

    The Mg-suite represents an enigmatic episode of lunar highlands magmatism that presumably represents the first stage of crustal building following primordial differentiation. This review examines the mineralogy, geochemistry, petrology, chronology, and the planetary-scale distribution of this suite of highlands plutonic rocks, presents models for their origin, examines petrogenetic relationships to other highlands rocks, and explores the link between this style of magmatism and early stages of lunar differentiation. Of the models considered for the origin of the parent magmas for the Mg-suite, the data best fit a process in which hot (solidus temperature at ≥2 GPa = 1600 to 1800more » °C) and less dense (r ~3100 kg/m3) early lunar magma ocean cumulates rise to the base of the crust during cumulate pile overturn. Some decompressional melting would occur, but placing a hot cumulate horizon adjacent to the plagioclase-rich primordial crust and KREEP-rich lithologies (at temperatures of <1300 °C) would result in the hybridization of these divergent primordial lithologies, producing Mg-suite parent magmas. As urKREEP (primeval KREEP) is not the “petrologic driver” of this style of magmatism, outside of the Procellarum KREEP Terrane (PKT), Mg-suite magmas are not required to have a KREEP signature. Evaluation of the chronology of this episode of highlands evolution indicates that Mg-suite magmatism was initiated soon after primordial differentiation (<10 m.y.). Alternatively, the thermal event associated with the mantle overturn may have disrupted the chronometers utilized to date the primordial crust. Petrogenetic relationships between the Mg-suite and other highlands suites (e.g., alkali-suite and magnesian anorthositic granulites) are consistent with both fractional crystallization processes and melting of distinctly different hybrid sources.« less

  9. The recovery and utilization of space suit range-of-motion data

    NASA Technical Reports Server (NTRS)

    Reinhardt, AL; Walton, James S.

    1988-01-01

    A technique for recovering data for the range of motion of a subject wearing a space suit is described along with the validation of this technique on an EVA space suit. Digitized data are automatically acquired from video images of the subject; three-dimensional trajectories are recovered from these data, and can be displayed using three-dimensional computer graphics. Target locations are recovered using a unique video processor and close-range photogrammetry. It is concluded that such data can be used in such applications as the animation of anthropometric computer models.

  10. Field protection effectiveness of chemical protective suits and gloves evaluated by biomonitoring

    PubMed Central

    Chang, F K; Chen, M L; Cheng, S F; Shih, T S; Mao, I F

    2007-01-01

    Objectives To determine the effectiveness of protective suits and gloves by biomonitoring. Methods Fifteen male spray painters at a ship coating factory were studied for two weeks. Workers wore no protective clothing during the first week and wore protective suits and gloves during the second week. Sampling was conducted on four consecutive working days each week. Ethyl benzene and xylene in the air were collected by using 3M 3500 organic vapour monitors. Urine was collected before and after each work shift. Results Urinary mandelic acid (MA) and methyl hippuric acid (MHA) levels were divided by the personal exposure concentrations of ethyl benzene and xylene, respectively. Mean (SE) corrected MA and MHA concentrations in the first week were 1.07 (0.18) and 2.66 (0.68) (mg/g creatinine)/(mg/m3), and concentrations in the second week were 0.50 (0.12) and 1.76 (0.35) (mg/g creatinine)/(mg/m3) in the second week, respectively. Both MA and MHA concentrations in the second week (when spray painters wore protective suits and gloves) were lower than in the first week, respectively (p<0.001, p = 0.011). Mean decrease in MA and MHA biomarkers were 69% and 49%, respectively. Conclusion This study successfully evaluated the effectiveness of chemical protective suits and gloves by using biomarkers as urinary MA and MHA. This method is feasible for determining the performance of workers wearing personal protective equipment. Moreover, the experimental results suggest that dermal exposure may be the major contributor to total body burden of solvents in spray painters without protective suits and gloves. PMID:17522137

  11. Protein-free culture of the human pancreatic cancer cell line, SUIT-2.

    PubMed

    Taniguchi, S; Iwamura, T; Kitamura, N; Yamanari, H; Kojima, A; Hidaka, K; Seguchi, K; Setoguchi, T

    1994-12-01

    A human pancreatic cancer cell line (SUIT-2), usually cultured in serum-supplemented medium (DMEM/FBS), was adapted to protein-free conditions using a 1:1 mixture of DMEM and Ham's F12 medium (DMEM/F12). The cells have been maintained in DMEM/F12 for more than 2 years, with over 50 passages. The SUIT-2 cells grew in DMEM/F12 with a doubling time of 35.7 h, which was similar to that in DMEM/FBS (35.0 h). The cellular morphology was similar in both media. Type IV collagenolytic activity was detected in the conditioned media from cells grown in DMEM/F12. The secretion of CEA and CA19-9 initially decreased in DMEM/F12. CEA was not detected after passage 5 (p5) but the concentration of CA19-9 did not decrease further after the first few serial passages in protein-free medium. Xenografts of SUIT-2 cells cultured in DMEM/F12 remained tumorigenic and could form metastatic tumors in nude mice. In conclusion, SUIT-2 cells grown in protein-free media continued to produce CA19-9 and type IV collagenase in vitro and formed metastatic tumors in vivo.

  12. Metabolic Diet App Suite for inborn errors of amino acid metabolism.

    PubMed

    Ho, Gloria; Ueda, Keiko; Houben, Roderick F A; Joa, Jeff; Giezen, Alette; Cheng, Barbara; van Karnebeek, Clara D M

    2016-03-01

    An increasing number of rare inborn errors of metabolism (IEMs) are amenable to targeted metabolic nutrition therapy. Daily adherence is important to attain metabolic control and prevent organ damage. This is challenging however, given the lack of information of disorder specific nutrient content of foods, the limited availability and cost of specialty products as well as difficulties in reliable calculation and tracking of dietary intake and targets. To develop apps for all inborn errors of amino acid metabolism for which the mainstay of treatment is a medical diet, and obtain patient and family feedback throughout the process to incorporate this into subsequent versions. The Metabolic Diet App Suite was created with input from health care professionals as a free, user-friendly, online tool for both mobile devices and desktop computers (http://www.metabolicdietapp.org) for 15 different IEMs. General information is provided for each IEM with links to useful online resources. Nutrient information is based on the MetabolicPro™, a North American food database compiled by the Genetic Metabolic Dietitians International (GMDI) Technology committee. After user registration, a personalized dashboard and management plan including specific nutrient goals are created. Each Diet App has a user-friendly interface and the functions include: nutrient intake counts, adding your own foods and homemade recipes and, managing a daily food diary. Patient and family feedback was overall positive and specific suggestions were used to further improve the App Suite. The Metabolic Diet App Suite aids individuals affected by IEMs to track and plan their meals. Future research should evaluate its impact on patient adherence, metabolic control, quality of life and health-related outcomes. The Suite will be updated and expanded to Apps for other categories of IEMs. Finally, this Suite is a support tool only, and does not replace medical/metabolic nutrition professional advice. Copyright

  13. Development of a Compact Efficient Cooling Pump for Space Suit Life Support Systems

    NASA Technical Reports Server (NTRS)

    vanBoeyen, Roger W.; Reeh, Jonathan A.; Trevino, Luis

    2008-01-01

    With the increasing demands placed on extravehicular activity (EVA) for the International Space Station (ISS) assembly and maintenance, along with planned lunar and Martian missions, the need for increased human productivity and capability becomes ever more critical. This is most readily achieved by reduction in space suit weight and volume, and increased hardware reliability, durability, and operating lifetime. Considerable progress has been made with each successive generation of space suit design; from the Apollo A7L suit, to the current Shuttle Extravehicular Mobile Unit (EMU) suit, and the next generation Constellation Space Suit Element (CSSE). However, one area of space suit design which has continued to lag is the fluid pump used to drive the water cooling loop of the Primary Life Support System (PLSS). The two main types of fluid pumps typically used in space applications are rotodynamic pumps (pumping is achieved through a rotary vaned impeller) and displacement pumps (which includes rotary and diaphragm pumps). The rotating and moving parts found in the pumps and electric motor add significantly to the susceptibility to wear and friction, thermal mismatch, and complexity of the pumps. Electric motor-driven pumps capable of achieving high operational reliability are necessarily large, heavy, and energy inefficient. This report describes a development effort conducted for NASA by Lynntech, Inc., who recently demonstrated the feasibility of an electrochemically-driven fluid cooling pump. With no electric motor and minimal lightweight components, an electrochemically-driven pump is expected to be significantly smaller, lighter and achieve a longer life time than conventional rotodynamic and displacement pumps. By employing sulfonated polystyrene-based proton exchange membranes, rather than conventional Nafion membranes, a significant reduction in the actuator power consumption was demonstrated. It was also demonstrated that these membranes possess the

  14. Results of the Particulate Contamination Control Trade Study for Space Suit Life Support Development

    NASA Technical Reports Server (NTRS)

    Cognata, Thomas J.; Conger, Bruce; Paul, Heather L.

    2009-01-01

    As the United States plans to return astronauts to the moon and eventually to Mars, designing the most effective, efficient, and robust space suit life support system that will operate successfully in these dusty environments is vital. There is some knowledge of the contaminants and level of infiltration expected from the Lunar and Mars dust, however risk mitigation strategies and filtration designs to prevent contamination within the space suit life support system are still undefined. A trade study was initiated to identify and address these concerns, and to develop new requirements for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS). This trade study investigates historical methods of particulate contamination control in space suits and vehicles, and evaluated the possibility of using commercial technologies for this application. In addition, the trade study examined potential filtration designs. This paper summarizes the results of this trade study.

  15. STS-88 Mission Specialist Nancy Currie suits up before launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Operations and Checkout Building, STS-88 Mission Specialist Nancy J. Currie gets help with her flight suit from suit technician Drew Billingsley before launch. Mission STS-88 is expected to launch at 3:56 a.m. EST with the six-member crew aboard Space Shuttle Endeavour on Dec. 3. Endeavour carries the Unity connecting module, which the crew will be mating with the Russian-built Zarya control module already in orbit. In addition to Unity, two small replacement electronics boxes are on board for possible repairs to Zarya batteries. The mission is expected to last 11 days, 19 hours and 49 minutes, landing at 10:17 p.m. EST on Dec. 14.

  16. Flexible composite material with phase change thermal storage

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    2001-01-01

    A highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The composite material can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The composite may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the PCM composite also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, ,gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  17. Flexible composite material with phase change thermal storage

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    1999-01-01

    A highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The composite material can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The composite may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the PCM composite also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  18. [Effect of loading suit "Penguin" on human metabolism during movements].

    PubMed

    Barer, A S; Kozlovskaia, I B; Tikhomirov, E P; Sinigin, V M; Letkova, L I

    1998-01-01

    Additional energy expenses due to stretching of the elastic elements of anti-loading suit (ALS) "Penguin" as a whole (shoulders-feet) or only its lower part (waist-feet) in the course of cyclic leg movements were measured in five female and five male volunteers. ALS design enabled tensometric monitoring of efforts applied to specific elastic elements, and total efforts applied to the shoulder or pelvic girdles separately. Energy spend were determined with the indirect calorimetric techniques from the data of the expired air analysis. Registered were electromyograms of m. longus spinae, femoral extensor (m. biceps femoris) and femoral flexor (m. rectus femoris), and m. gastrocnemius. On the first stage, bicycle ergometer was pedaled w/o loading with a frequency of 60 cycles/min. The next stage included testing by incremental loading in which pedaling ceased at the pulse rate of 150/min. Results of the experiments that did not require stretching elastic parts of the suit and in which the total strain effort made up 20 to 25 kg and 15 to 16 kg by males and females, respectively, were compared. It was ascertained that ALS enhanced metabolism during motion by 20 to 30%; however, there was no significant difference in energy expenses when loaded by the whole suit or only its lower part.

  19. Integrated Instrument Simulator Suites for Earth Science

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, Johnathan; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.; hide

    2012-01-01

    The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.

  20. Ergonomic assessment of neck posture in the minimally invasive surgery suite during laparoscopic cholecystectomy.

    PubMed

    van Det, M J; Meijerink, W J H J; Hoff, C; van Veelen, M A; Pierie, J P E N

    2008-11-01

    With the expanding implementation of minimally invasive surgery, the operating team is confronted with challenges in the field of ergonomics. Visual feedback is derived from a monitor placed outside the operating field. This crossover trial was conducted to evaluate and compare neck posture in relation to monitor position in a dedicated minimally invasive surgery (MIS) suite and a conventional operating room. Assessment of the neck was conducted for 16 surgeons, assisting surgeons, and scrub nurses performing a laparoscopic cholecystectomy in both types of operating room. Flexion and rotation of the cervical spine were measured intraoperatively using a video analysis system. A two-question visual analog scale (VAS) questionnaire was used to evaluate posture in relation to the monitor position. Neck rotation was significantly reduced in the MIS suite for the surgeon (p = 0.018) and the assisting surgeon (p < 0.001). Neck flexion was significantly improved in the MIS suite for the surgeon (p < 0.001) and the scrub nurse (p = 0.018). On the questionnaire, the operating room team scored their posture significantly higher in the MIS suite and also indicated fewer musculoskeletal complaints. The ergonomic quality of the neck posture is significantly improved in the MIS suite for the entire operating room team.

  1. Measuring the effects of structural turnout suits on firefighter range of motion and comfort.

    PubMed

    Ciesielska-Wróbel, Izabela; DenHartog, Emiel; Barker, Roger

    2017-07-01

    Range of motion (ROM) can be restricted by wearing stiff and bulky clothing. This is particularly true of firefighter suits that are constructed using fabric layers to provide thermal protection from fire. This study developed an evaluation technique to quantify the loss of mobility associated with wearing firefighters' protective suits that were deliberately selected to represent similar ergonomic design features. The ROM of 10 firefighters was measured using electro-goniometers attached to their bodies while they wore uniforms and a reference outfit, and performed specific movements. The most restrictive uniform is the Bulky suit that contained additional layers of materials in sleeves and on the knees. The Traditional Suit was more ROM restrictive than Ergonomic. The subjective evaluation of suits supported the objective assessments provided by the electro-goniometers. A 3-D body scanning technique was employed to establish a correlation between the bulkiness of firefighter outfits and subject ROM. Practitioner Summary: This study presents a methodology for measurements of range of motion (ROM) in firefighters wearing personal protective equipment (PPE). Even small differences in designs of PPE may impact firefighters' ROM, which can be detected by electro-goniometers providing measurements if they are attached along the joint to measure limb angular movement.

  2. Refinement of the Hybrid Neuroendovascular Operating Suite: Current and Future Applications.

    PubMed

    Ashour, Ramsey; See, Alfred P; Dasenbrock, Hormuzdiyar H; Khandelwal, Priyank; Patel, Nirav J; Belcher, Bianca; Aziz-Sultan, Mohammad Ali

    2016-07-01

    In early-generation hybrid biplane endovascular operating rooms, switching from surgical to angiographic position is cumbersome. In this report, we highlight the unique design of a new hybrid neuroendovascular operating suite that allows surgical access to the head while keeping the biplane system over the lower body of the patient. Current and future hybrid neuroendovascular operating suite applications are discussed. We collaborated with engineers to implement the following modifications to the design of the angiographic system: translation of the bed toward the feet to allow biplane cerebral imaging in the head-side position and the biplane left-side position; translation of the base of the A-plane C-arm away from the feet to allow increased operator space at the head of the bed and to allow cerebral imaging in both the head-side and left-side positions; use of a specialized boom mount for the display panel to increase mobility; and use of a radiolucent tabletop with attachments for the headrest or radiolucent head clamp system. The modified hybrid neuroendovascular operating suite allows for seamless transition between surgical and angiographic positions within seconds, improving workflow efficiency and decreasing procedure time as compared with early-generation hybrid rooms. Combined endovascular and surgical applications are facilitated by co-locating their respective technologies and refining the ergonomics of the system to ease transition between both sets of technologies. In so doing, hybrid neuroendovascular operating suites can be anticipated to improve patient outcomes, generate novel treatment paradigms, and improve time and cost efficiency. Copyright © 2016. Published by Elsevier Inc.

  3. Development of the DL/H-1 full pressure suit for private spaceflight

    NASA Astrophysics Data System (ADS)

    León, Pablo de; Harris, Gary L.

    2010-06-01

    The objective of this paper is to detail the need for full pressure suits to protect spaceflight participants during the experimental phases of flight testing of new space vehicles. It also details the objectives, historical background, basis for design, problems encountered by the designers and final development of the DL/H-1 full pressure suit. It will include justification for its use and results of the initial tests in the high altitude chamber and spacecraft simulator at the J.D. Odegard School of Aerospace Sciences at the University of North Dakota. For the test flights of early commercial space vehicles and tourist suborbital spacecrafts, emergency protection from the rarified air of the upper atmosphere and the vacuum of low Earth orbit almost certainly will be a requirement. Suborbital vehicles could be operating in "space equivalent conditions" for as long as 30 min to as much as several hours. In the case of cabin pressure loss, without personal protection, catastrophic loss of crew and vehicle could result. This paper explains the different steps taken by the authors who designed and built a preflight hardware pressure suit that can meet the physiological and comfort requirements of the tourist suborbital industry and the early commercial private spaceflight community. The suborbital tourist and commercial spaceflight industry have unique problems confronting the pressure suit builder such as unpressurized comfort, reasonable expense, unique sizing of the general population, decompression complications of persons not fitting a past military physiology profile and equipment weight issues. In addition, the lack of a certifying agency or guidance from international or national aviation authorities has created the opportunity for the emerging civilian pressure suit industry to create a new safety standard by which it can regulate itself in the same way the recreational SCUBA diving industry has since the late 1950s.

  4. Human skin in vitro permeation of bentazon and isoproturon formulations with or without protective clothing suit.

    PubMed

    Berthet, Aurélie; Hopf, Nancy B; Miles, Alexandra; Spring, Philipp; Charrière, Nicole; Garrigou, Alain; Baldi, Isabelle; Vernez, David

    2014-01-01

    Skin exposures to chemicals may lead, through percutaneous permeation, to a significant increase in systemic circulation. Skin is the primary route of entry during some occupational activities, especially in agriculture. To reduce skin exposures, the use of personal protective equipment (PPE) is recommended. PPE efficiency is characterized as the time until products permeate through material (lag time, Tlag). Both skin and PPE permeations are assessed using similar in vitro methods; the diffusion cell system. Flow-through diffusion cells were used in this study to assess the permeation of two herbicides, bentazon and isoproturon, as well as four related commercial formulations (Basagran(®), Basamais(®), Arelon(®) and Matara(®)). Permeation was measured through fresh excised human skin, protective clothing suits (suits) (Microchem(®) 3000, AgriSafe Pro(®), Proshield(®) and Microgard(®) 2000 Plus Green), and a combination of skin and suits. Both herbicides, tested by itself or as an active ingredient in formulations, permeated readily through human skin and tested suits (Tlag < 2 h). High permeation coefficients were obtained regardless of formulations or tested membranes, except for Microchem(®) 3000. Short Tlag, were observed even when skin was covered with suits, except for Microchem(®) 3000. Kp values tended to decrease when suits covered the skin (except when Arelon(®) was applied to skin covered with AgriSafe Pro and Microgard(®) 2000), suggesting that Tlag alone is insufficient in characterizing suits. To better estimate human skin permeations, in vitro experiments should not only use human skin but also consider the intended use of the suit, i.e., the active ingredient concentrations and type of formulations, which significantly affect skin permeation.

  5. Gemini-Titan (GT)-8 - Lightweight Suit - MSC

    NASA Image and Video Library

    1965-12-06

    S65-60035 (6 Dec. 1965) --- The new light-weight spacesuit planned for possible use during the Gemini-7 mission is modeled by Fred R. Spross, Gemini Support Office, Crew Systems Division. The spacesuit weighs 16 pounds, including the aviator's crash helmet. The suit is designed so that it may be partially or completely removed during flight. It has two layers of material while the previously used Gemini spacesuit has four layers. Photo credit: NASA

  6. An experimental microcomputer controlled system for synchronized pulsating anti-gravity suit.

    PubMed

    Moore, T W; Foley, J; Reddy, B R; Kepics, F; Jaron, D

    1987-07-01

    An experimental system to deliver synchronized external pressure pulsations to the lower body is described in this technical note. The system is designed using a microcomputer with a real time interface and an electro-pneumatic subsystem capable of delivering pressure pulses to a modified anti-G suit at a fast rate. It is versatile, containing many options for synchronizing, phasing and sequencing of the pressure pulsations and controlling the pressure level in the suit bladders. Details of its software and hardware are described along with the results of initial testing in a Dynamic Flight Simulator on human volunteers.

  7. Suits reflectance models for wheat and cotton - Theoretical and experimental tests

    NASA Technical Reports Server (NTRS)

    Chance, J. E.; Lemaster, E. W.

    1977-01-01

    Plant canopy reflectance models developed by Suits are tested for cotton and Penjamo winter wheat. Properties of the models are discussed, and the concept of model depth is developed. The models' predicted exchange symmetry for specular irradiance with respect to sun polar angle and observer polar angle agreed with field data for cotton and wheat. Model calculations and experimental data for wheat reflectance vs sun angle disagreed. Specular reflectance from 0.50 to 1.10 micron shows fair agreement between the model and wheat measurements. An Appendix includes the physical and optical parameters for wheat necessary to apply Suits' models.

  8. Apollo/Skylab suit program management systems study. Volume 2: Cost analysis

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The business management methods employed in the performance of the Apollo-Skylab Suit Program are studied. The data accumulated over the span of the contract as well as the methods used to accumulate the data are examined. Management methods associated with the monitoring and control of resources applied towards the performance of the contract are also studied and recommended upon. The primary objective is the compilation, analysis, and presentation of historical cost performance criteria. Cost data are depicted for all phases of the Apollo-Skylab program in common, meaningful terms, whereby the data may be applicable to future suit program planning efforts.

  9. Variation of Nb-Ta, Zr-Hf, Th-U and K-Cs in two diabase-granophyre suites

    USGS Publications Warehouse

    Gottfried, D.; Greenland, L.P.; Campbell, E.Y.

    1968-01-01

    Concentrations of Nb, Ta, Zr, Hf, Th, U and Cs have been determined in samples of igneous rocks representing the diabase-granophyre suites from Dillsburg, Pennsylvania, and Great Lake, Tasmania. Niobium and tantalum have a three to fourfold increase with differentiation in each of the suites. The chilled margin of the Great Lake intrusion contains half the niobium and tantalum content (5.3 ppm and 0.4 ppm, respectively) of the chilled basalt from Dillsburg (10 ppm and 0.9 ppm, respectively). The twofold difference between the suites is correlated with differences in their titanium content. The average Nb Ta ratios for each suite are similar: 13.5 for the Great Lake suite, and 14.4 for the Dillsburg suite. The zirconium content of the two suites is essentially the same and increases from 50 to 60 ppm in the chilled margins to 240-300 ppm in the granophyres. Hafnium is low in the early formed rocks (0.5 -1.5 ppm and achieves a maximum in the granophyres (5-8 ppm). The Zr Hfratio decreases from 68 to 33 with progressive differentiation. In the Dillsburg suite thorium and uranium increase from 2.6 ppm and 0.6 ppm, respectively, in the chilled samples to 11.8 ppm and 3.1 ppm in the granophyres. The chilled margin of the Great Lake suite contains 3.2 ppm thorium and 9.8 ppm uranium; the granophyre contains 11.2 ppm thorium and 2.8 ppm uranium. The average Th U ratios of the Dillsburg and Great Lake suites are nearly the same-4.1 and 4.4, respectively. Within each suite the Th U ratio remains quite constant. Cesium and the K Cs ratio do not vary systematically in the Dillsburg suite possibly because of redistribution or loss of cesium by complex geologic processes. Except for the chilled margin of the Great Lake suite, the variation of Cs and the K Cs ratio are in accord with theoretical considerations. Cesium increases from about 0.6 ppm in the lower zone to 3.5 ppm in the granophyre; the K Cs ratio varies from 10 ?? 103 in the lower zone to 6 ?? 103 in the granophyre. A

  10. Certification of EEOC Class Suits under Rule 23.

    ERIC Educational Resources Information Center

    Becker, Mary E.

    1979-01-01

    The purposes, functions, and underlying policies of both rule 23 of the Federal Rules of Civil Procedure and Title VII indicate that the Equal Employment Opportunity Commission should be required to certify when it brings class action suits. Available from University of Chicago Law School, 1111 E. 60th St., Chicago, IL 60637; single issue $3.50.…

  11. Mass loss of shuttle space suit orthofabric under simulated ionospheric atomic oxygen bombardment

    NASA Technical Reports Server (NTRS)

    Miller, W. L.

    1985-01-01

    Many polymeric materials used for thermal protection and insulation on spacecraft degrade significantly under prolonged bombardment by ionospheric atomic oxygen. The covering fabric of the multilayered shuttle space suit is composed of a loose weave of GORE-TEX fibers, Nomex and Kevlar-29, which are all polymeric materials. The complete evaluation of suit fabric degradation from ionospheric atomic oxygen is of importance in reevaluating suit lifetime and inspection procedures. The mass loss and visible physical changes of each test sample was determined. Kapton control samples and data from previous asher and flight tests were used to scale the results to reflect ionospheric conditions at about 220 km altitude. It is predicted that the orthofabric loses mass in the ionosphere at a rate of about 66% of the original orthofabric mass/yr. The outer layer of the two-layer orthofabric test samples shows few easily visible signs of degradation, even when observed at 440X. It is concluded that the orthofabric could suffer significant loss of performance after much less than a year of total exposure time, while the degradation might be undetectable in post flight visual examinations of space suits.

  12. Proton and Electron Threshold Energy Measurements for Extravehicular Activity Space Suits. Chapter 2

    NASA Technical Reports Server (NTRS)

    Moyers, M. F.; Nelson, G. D.; Saganti, P. B.

    2003-01-01

    Construction of ISS will require more than 1000 hours of EVA. Outside of ISS during EVA, astronauts and cosmonauts are likely to be exposed to a large fluence of electrons and protons. Development of radiation protection guidelines requires the determination of the minimum energy of electrons and protons that penetrate the suits at various locations. Measurements of the water-equivalent thickness of both US. and Russian EVA suits were obtained by performing CT scans. Specific regions of interest of the suits were further evaluated using a differential range shift technique. This technique involved measuring thickness ionization curves for 6-MeV electron and 155-MeV proton beams with ionization chambers using a constant source-to-detector distance. The thicknesses were obtained by stacking polystyrene slabs immediately upstream of the detector. The thicknesses of the 50% ionizations relative to the maximum ionizations were determined. The detectors were then placed within the suit and the stack thickness adjusted until the 50% ionization was reestablished. The difference in thickness between the 50% thicknesses was then used with standard range-energy tables to determine the threshold energy for penetration. This report provides a detailed description of the experimental arrangement and results.

  13. Cardiovascular effects of anti-G suit and cooling garment during space shuttle re-entry and landing.

    PubMed

    Perez, Sondra A; Charles, John B; Fortner, G William; Hurst, Victor; Meck, Janice V

    2003-07-01

    Many cardiovascular changes associated with spaceflight reduce the ability of the cardiovascular system to oppose gravity on return to Earth, leaving astronauts susceptible to orthostatic hypotension during re-entry and landing. Consequently, an anti-G suit was developed to protect arterial pressure during re-entry. A liquid cooling garment (LCG) was then needed to alleviate the thermal stress resulting from use of the launch and entry suit. We studied 34 astronauts on 22 flights (4-16 d). Subjects were studied 10 d before launch and on landing day. Preflight, crewmembers were suited with their anti-G suits set to the intended inflation for re-entry. Three consecutive measurements of heart rate and arterial pressure were obtained while seated and then again while standing. Three subjects who inflated the anti-G suits also donned the LCG for landing. Arterial pressure and heart rate were measured every 5 min during the de-orbit maneuver, through maximum G-loading (max-G) and touch down (TD). After TD, crew-members again initiated three seated measurements followed by three standing measurements. Astronauts with inflated anti-G suits had higher arterial pressure than those who did not have inflated anti-G suits during re-entry and landing (133.1 +/- 2.5/76.1 +/- 2.1 vs. 128.3 +/- 4.2/79.3 +/- 2.9, de-orbit; 157.3 +/- 4.5/102.1 +/- 3.6 vs. 145.2 +/- 10.5/95.7 + 5.5, max-G; 159.6 +/- 3.9/103.7 +/- 3.3 vs. 134.1 +/- 5.1/85.7 +/- 3.1, TD). In the group with inflated anti-G suits, those who also wore the LCG exhibited significantly lower heart rates than those who did not (75.7 +/- 11.5 vs. 86.5 +/- 6.2, de-orbit; 79.5 +/- 24.8 vs. 112.1 +/- 8.7, max-G; 84.7 +/- 8.0 vs. 110.5 +/- 7.9, TD). The anti-G suit is effective in supporting arterial pressure. The addition of the LCG lowers heart rate during re-entry.

  14. Cardiovascular effects of anti-G suit and cooling garment during space shuttle re-entry and landing

    NASA Technical Reports Server (NTRS)

    Perez, Sondra A.; Charles, John B.; Fortner, G. William; Hurst, Victor 4th; Meck, Janice V.

    2003-01-01

    BACKGROUND: Many cardiovascular changes associated with spaceflight reduce the ability of the cardiovascular system to oppose gravity on return to Earth, leaving astronauts susceptible to orthostatic hypotension during re-entry and landing. Consequently, an anti-G suit was developed to protect arterial pressure during re-entry. A liquid cooling garment (LCG) was then needed to alleviate the thermal stress resulting from use of the launch and entry suit. METHODS: We studied 34 astronauts on 22 flights (4-16 d). Subjects were studied 10 d before launch and on landing day. Preflight, crewmembers were suited with their anti-G suits set to the intended inflation for re-entry. Three consecutive measurements of heart rate and arterial pressure were obtained while seated and then again while standing. Three subjects who inflated the anti-G suits also donned the LCG for landing. Arterial pressure and heart rate were measured every 5 min during the de-orbit maneuver, through maximum G-loading (max-G) and touch down (TD). After TD, crew-members again initiated three seated measurements followed by three standing measurements. RESULTS: Astronauts with inflated anti-G suits had higher arterial pressure than those who did not have inflated anti-G suits during re-entry and landing (133.1 +/- 2.5/76.1 +/- 2.1 vs. 128.3 +/- 4.2/79.3 +/- 2.9, de-orbit; 157.3 +/- 4.5/102.1 +/- 3.6 vs. 145.2 +/- 10.5/95.7 + 5.5, max-G; 159.6 +/- 3.9/103.7 +/- 3.3 vs. 134.1 +/- 5.1/85.7 +/- 3.1, TD). In the group with inflated anti-G suits, those who also wore the LCG exhibited significantly lower heart rates than those who did not (75.7 +/- 11.5 vs. 86.5 +/- 6.2, de-orbit; 79.5 +/- 24.8 vs. 112.1 +/- 8.7, max-G; 84.7 +/- 8.0 vs. 110.5 +/- 7.9, TD). CONCLUSIONS: The anti-G suit is effective in supporting arterial pressure. The addition of the LCG lowers heart rate during re-entry.

  15. A new hydrostatic anti-G suit vs. a pneumatic anti-G system: preliminary comparison.

    PubMed

    Eiken, O; Kölegård, R; Lindborg, B; Aldman, M; Karlmar, K E; Linder, J; Kölegoård, R

    2002-07-01

    A newly developed hydrostatic anti-G suit is now commercially available. The suit is said to offer a high level of protection against +Gz acceleration. However, past experience shows that it is difficult to produce a hydrostatic suit with effective high-G protection. Careful testing is, therefore, needed to verify its efficacy. The G-protective properties of the hydrostatic anti-G suit (Libelle; L) were compared with those of a pneumatic anti-G ensemble (AGE-39) used in the Swedish JAS 39 Cripen aircraft. Three pilots were studied during vertical (+Gz) acceleration in a centrifuge using the following: 1) the L-suit with varied straining maneuvers; 2) the AGE-39 in combination with full anti-G straining maneuvers (AGSM) throughout each high-G exposure (full maneuver; FM); and 3) the AGE-39 in combination with AGSM during the initial part of each high-G exposure (reduced maneuver; RM). G-intensity tolerance was established during exposures to rapid onset rate (ROR) profiles with G-plateau levels ranging from +6.0 to +9.0 Gz. G-endurance was studied during simulated aerial combat maneuvers (SACM) consisting of 10 cycles of 5.5 to 7.5 G. All three pilots tolerated 9.0 G with the pneumatic system both in the RM and FM conditions; their tolerances averaged 6.3 G (range 6.0 to 7.0 G) for the L suit. Thus, during the ROR exposures only the 6.0 G profile was completed by all subjects in all three conditions. At this G-load both muscle straining (as indicated by electromyographic activity in thigh and abdomen) and heart rate were higher in the L than in the RM condition. Mean arterial pressure at eye level was higher in the FM than in the L and RM conditions. Only one subject was able to complete the SACM profile in the L condition. In the RM condition all subjects completed the SACM profile and in the FM condition two subjects completed the SACM. Whether the AGE-39 was used in combination with maximal AGSM throughout the duration of each high-G exposure or with AGSM only

  16. Work and fatigue characteristics of unsuited and suited humans during isolated isokinetic joint motions

    NASA Technical Reports Server (NTRS)

    Gonzalez, L. Javier; Maida, J. C.; Miles, E. H.; Rajulu, S. L.; Pandya, A. K.

    2002-01-01

    The effects of a pressurized suit on human performance were investigated. The suit is known as an Extra-Vehicular Mobility Unit (EMU) and is worn by astronauts while working outside their spacecraft in a low earth orbit. Isolated isokinetic joint torques of three female and three male subjects (all experienced users of the suit in 1G gravity) were measured while working at 100% and 80% of their maximum voluntary torque (MVT, which is synonymous with maximum voluntary contraction (MVC)). It was found that the average decrease in the total amount of work (the sum of the work in each repetition until fatigue) done when the subjects were wearing the EMU were 48% and 41% while working at 100% and 80% MVT, respectively. There is a clear relationship between the MVT and the time and amount of work done until fatigue. Here, the time to fatigue is defined as the ending time of the repetition for which the computed work done during that repetition dropped below 50% of the work done during the first repetition. In general the stronger joints took longer to fatigue and did more work than the weaker joints. It was found that the EMU decreases the work output at the wrist and shoulder joints the most, due to the EMU joint geometry. The EMU also decreased the joint range of motion. The average total amount of work done by the test subjects increased by 5.2% (20.4%) for the unsuited (suited) case, when the test subjects decreased the level of effort from 100% to 80% MVT. Also, the average time to fatigue increased by 9.2% (25.6%) for the unsuited (suited) case, when the test subjects decreased the level of effort from 100% to 80% MVT. It was also found that the experimentally measured torque decay could be predicted by a logarithmic equation. The absolute average errors in the predictions were found to be 18.3% and 18.9% for the unsuited and suited subjects, respectively, when working at 100% MVT, and 22.5% and 18.8% for the unsuited and suited subjects, respectively, when working

  17. View of anteroom in the Grand Master's suite from the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of anteroom in the Grand Master's suite from the southeast. The Grand Master's office is visible through the open door. - Masonic Temple, 1 North Broad Street, Philadelphia, Philadelphia County, PA

  18. 33. SOLARIUM AND TERRACE IN EXECUTIVE SUITE LOOKING NORTH PAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. SOLARIUM AND TERRACE IN EXECUTIVE SUITE LOOKING NORTH PAST SLIDING GLASS WALL THAT DIVIDES SOLARIUM FROM EXECUTIVE DINING ROOM - Philadelphia Saving Fund Society, Twelfth & Market Streets, Philadelphia, Philadelphia County, PA

  19. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    NASA Technical Reports Server (NTRS)

    Blanco, Raul A.; Bowie, Jonathan T.; Watson, Richard D.; Sipila, Stephanie A.

    2014-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability for Orion. The EVAs will involve a two-person crew for approximately four hours. Currently, two EVAs are planned with one contingency EVA in reserve. Providing this EVA capability is very challenging due to system level constraints and a new and unknown environment. The goal of the EVA architecture for ARCM is one that builds upon previously developed technologies and lessons learned, and that accomplishes the ARCM mission while providing a stepping stone to future missions and destinations. The primary system level constraints are to 1) minimize system mass and volume and 2) minimize the interfacing impacts to the baseline Orion design. In order to minimize the interfacing impacts and to not perturb the baseline Orion schedule, the concept of adding "kits" to the baseline system is proposed. These kits consist of: an EVA kit (converts LEA suit to EVA suit), EVA Servicing and Recharge Kit (provides suit consumables), the EVA Tools, Translation Aids & Sample Container Kit (the tools and mobility aids to complete the tasks), the EVA Communications Kit (interface between the EVA radio and the MPCV), and the Cabin Repress Kit (represses the MPCV between EVAs). This paper will focus on the trade space, analysis, and testing regarding the space suit (pressure garment and life support system). Historical approaches and lessons learned from all past EVA operations were researched. Previous and current, successfully operated EVA hardware and high technology readiness level (TRL) hardware were evaluated, and a trade study was conducted for all possible pressure garment and life support options. Testing and analysis was conducted and a recommended EVA system architecture was proposed. Pressure garment options that were considered for this mission include the currently in-use ISS EVA Mobility Unit (EMU), all variations of

  20. Surgical suite environmental control system. [using halothane absorbing filter

    NASA Technical Reports Server (NTRS)

    Higginbotham, E. J.; Jacobs, M. L.

    1974-01-01

    Theoretical and experimental work for a systems analysis approach to the problem of surgical suit exhaust systems centered on evaluation of halothane absorbing filters. An activated charcoal-alumina-charcoal combination proved to be the best filter for eliminating halothane through multilayer absorption of gas molecules.

  1. Designing Test Suites for Software Interactions Testing

    DTIC Science & Technology

    2004-01-01

    the annual cost of insufficient software testing methods and tools in the United States is between 22.2 to 59.5 billion US dollars [13, 14]. This study...10 (2004), 1–29. [21] Cheng, C., Dumitrescu, A., and Schroeder , P. Generating small com- binatorial test suites to cover input-output relationships... Proceedings of the Conference on the Future of Software Engineering (May 2000), pp. 61 – 72. [51] Hartman, A. Software and hardware testing using

  2. Post-collisional magmatism in the central East African Orogen: The Maevarano Suite of north Madagascar

    NASA Astrophysics Data System (ADS)

    Goodenough, K. M.; Thomas, R. J.; De Waele, B.; Key, R. M.; Schofield, D. I.; Bauer, W.; Tucker, R. D.; Rafahatelo, J.-M.; Rabarimanana, M.; Ralison, A. V.; Randriamananjara, T.

    2010-04-01

    Late tectonic, post-collisional granite suites are a feature of many parts of the Late Neoproterozoic to Cambrian East African Orogen (EAO), where they are generally attributed to late extensional collapse of the orogen, accompanied by high heat flow and asthenospheric uprise. The Maevarano Suite comprises voluminous plutons which were emplaced in some of the tectonostratigraphic terranes of northern Madagascar, in the central part of the EAO, following collision and assembly during a major orogeny at ca. 550 Ma. The suite comprises three main magmatic phases: a minor early phase of foliated gabbros, quartz diorites, and granodiorites; a main phase of large batholiths of porphyritic granitoids and charnockites; and a late phase of small-scale plutons and sheets of monzonite, syenite, leucogranite and microgranite. The main phase intrusions tend to be massive, but with variably foliated margins. New U-Pb SHRIMP zircon data show that the whole suite was emplaced between ca. 537 and 522 Ma. Geochemically, all the rocks of the suite are enriched in the LILE, especially K, and the LREE, but are relatively depleted in Nb, Ta and the HREE. These characteristics are typical of post-collisional granitoids in the EAO and many other orogenic belts. It is proposed that the Maevarano Suite magmas were derived by melting of sub-continental lithospheric mantle that had been enriched in the LILE during earlier subduction events. The melting occurred during lithospheric delamination, which was associated with extensional collapse of the East African Orogen.

  3. Selective removal of dental composite using a rapidly scanned carbon dioxide laser

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Fried, Daniel

    2011-03-01

    Dental restorative materials are color matched to the tooth and are difficult to remove by mechanical means without excessive removal or damage to peripheral enamel and dentin. Lasers are ideally suited for selective ablation to minimize healthy tissue loss when replacing existing restorations, sealants or removing composite adhesives such as residual composite left after debonding orthodontic brackets. In this study a carbon dioxide laser operating at high laser pulse repetition rates integrated with a galvanometer based scanner was used to selectively remove composite from tooth surfaces. A diode array spectrometer was used to measure the plume emission after each laser pulse and determine if the ablated material was tooth mineral or composite. The composite was placed on tooth buccal and occlusal surfaces and the carbon dioxide laser was scanned across the surface to selectively remove the composite without excessive damage to the underlying sound enamel. The residual composite and the damage to the underlying enamel was evaluated using optical microscopy. The laser was able to rapidly remove the composites rapidly from both surfaces with minimal damage to the underlying sound enamel.

  4. 21. NBS SUIT LAB. THREE GLOVES, HELMET, AND SCREW DRIVER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. NBS SUIT LAB. THREE GLOVES, HELMET, AND SCREW DRIVER TORQUE WRENCH FOR ASSEMBLY AND REPAIR OF BOTH. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  5. Geochemical fingerprinting of ∼2.5 Ga forearc-arc-backarc related magmatic suites in the Bastar Craton, central India

    NASA Astrophysics Data System (ADS)

    Asthana, Deepanker; Kumar, Sirish; Vind, Aditya Kumar; Zehra, Fatima; Kumar, Harshavardhan; Pophare, Anil M.

    2018-05-01

    The Pitepani volcanic suite of the Dongargarh Supergroup, central India comprises of a calc-alkaline suite and a tholeiitic suite, respectively. The rare earth element (REE) patterns, mantle normalized plots and relict clinopyroxene chemistry of the Pitepani calc-alkaline suite are akin to high-Mg andesites (HMA) and reveal remarkable similarity to the Cenozoic Setouchi HMA from Japan. The Pitepani HMAs are geochemically correlated with similar rocks in the Kotri-Dongargarh mobile belt (KDMB) and in the mafic dykes of the Bastar Craton. The rationale behind lithogeochemical correlations are that sanukitic HMAs represent fore-arc volcanism over a very limited period of time, under abnormally high temperature conditions and are excellent regional and tectonic time markers. Furthermore, the tholeiitic suites that are temporally and spatially associated with the HMAs in the KDMB and in the mafic dykes of the Bastar Craton are classified into: (a) a continental back-arc suite that are depleted in incompatible elements, and (b) a continental arc suite that are more depleted in incompatible elements, respectively. The HMA suite, the continental back-arc and continental arc suites are lithogeochemically correlated in the KDMB and in the mafic dykes of the Bastar Craton. The three geochemically distinct Neoarchaean magmatic suites are temporally and spatially related to each other and to an active continental margin. The identification of three active continental margin magmatic suites for the first time, provides a robust conceptual framework to unravel the Neoarchaean geodynamic evolution of the Bastar Craton. We propose an active continental margin along the Neoarchaen KDMB with eastward subduction coupled with slab roll back or preferably, ridge-subduction along the Central Indian Tectonic Zone (CITZ) to account for the three distinct magmatic suites and the Neoarchean geodynamic evolution of the Bastar Craton.

  6. A new interpretation of the structure of the Sept Iles Intrusive suite, Canada

    NASA Astrophysics Data System (ADS)

    Higgins, Michael D.

    2005-08-01

    The layered mafic intrusion at Sept Iles, Canada, is one of the largest intrusions in the world. A new interpretation of its structure is proposed, based on a review of its geology and a comparison with the Skaergaard intrusion, Greenland. Several different magmatic components are recognized; hence the name Sept Iles Intrusive suite (SIIS) is proposed. Emplacement of the suite may have been preceded by eruption of flood basalts. The first magmas of the suite rose in the crust to accumulate beneath the density filter afforded by the basalts. The largest component is the Sept Iles Mafic intrusion (SIMI). The Lower series of the SIMI is dominated by leucotroctolites and leucogabbros. Above it lie the Layered series, which is largely comprised of gabbro and troctolite. Both these units are unchanged from earlier interpretations. The anorthosites (s.l.), gabbros and monzogabbros, formerly called the Transitional series, are now considered to be the Upper Border series, developed by floatation of plagioclase. Common autoliths in the Layered series are parts of the hydrothermally altered Upper Border series from towards the interior of the intrusion, which have foundered and settled through the magma. The contamination of the magma that accompanied this event oxidised iron in the magma and led to the precipitation of magnetite around the periphery of the intrusion. The subsequent depletion of Fe 3+ and/or increase in SiO 2, CaO and P 2O 5 may have induced apatite saturation and accumulation to form two layers rich in apatite, near the base and at top of the Layered series. Granitic magma was developed by fractional crystallisation and was emplaced along the roof of the chamber, where it acquired large quantities of xenoliths. These were probably derived from the flood basalts, their evolved members and fragments of mafic dykes chilled by the granitic magma. Accumulations of monzonite pillows in this unit testify to another magmatic event and a floor to the granitic magma

  7. 33 CFR 149.327 - What are the approval requirements for work vests and anti-exposure (deck) suits?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for work vests and anti-exposure (deck) suits? 149.327 Section 149.327 Navigation and Navigable... approval requirements for work vests and anti-exposure (deck) suits? All work vests and anti-exposure (deck... as a work vest; (b) Approval series 160.053 or 160.153 as an anti-exposure suit; or (c) Approval...

  8. 33 CFR 149.327 - What are the approval requirements for work vests and anti-exposure (deck) suits?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for work vests and anti-exposure (deck) suits? 149.327 Section 149.327 Navigation and Navigable... approval requirements for work vests and anti-exposure (deck) suits? All work vests and anti-exposure (deck... as a work vest; (b) Approval series 160.053 or 160.153 as an anti-exposure suit; or (c) Approval...

  9. 33 CFR 149.327 - What are the approval requirements for work vests and anti-exposure (deck) suits?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for work vests and anti-exposure (deck) suits? 149.327 Section 149.327 Navigation and Navigable... approval requirements for work vests and anti-exposure (deck) suits? All work vests and anti-exposure (deck... as a work vest; (b) Approval series 160.053 or 160.153 as an anti-exposure suit; or (c) Approval...

  10. 33 CFR 149.327 - What are the approval requirements for work vests and anti-exposure (deck) suits?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for work vests and anti-exposure (deck) suits? 149.327 Section 149.327 Navigation and Navigable... approval requirements for work vests and anti-exposure (deck) suits? All work vests and anti-exposure (deck... as a work vest; (b) Approval series 160.053 or 160.153 as an anti-exposure suit; or (c) Approval...

  11. 33 CFR 149.327 - What are the approval requirements for work vests and anti-exposure (deck) suits?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for work vests and anti-exposure (deck) suits? 149.327 Section 149.327 Navigation and Navigable... approval requirements for work vests and anti-exposure (deck) suits? All work vests and anti-exposure (deck... as a work vest; (b) Approval series 160.053 or 160.153 as an anti-exposure suit; or (c) Approval...

  12. STS-82 Suit-up for Post Insertion Training in Crew Compartment Trainer 2

    NASA Image and Video Library

    1996-10-30

    S96-18553 (30 Oct. 1996) --- Astronaut Scott J. Horowitz, pilot, gets help with his launch and entry suit prior to a training session in JSC's systems integration facility. Wearing training versions of the partial pressure launch and entry escape suit, Horowitz and his crewmates went on to simulate an emergency ejection, using the escape pole system on the mid deck, as well as other phases of their scheduled February mission.

  13. Mineralogy and geochemistry of the Neo-Tethyan Orhaneli ultramafic suite, NW Turkey: Evidence for the initiation and evolution of magmatic processes in a developing crust-mantle boundary

    NASA Astrophysics Data System (ADS)

    Uysal, Ibrahim; Dokuz, Abdurrahman; Kapsiotis, Argyris; Kaliwoda, Melanie; Karsli, Orhan; Müller, Dirk; Aydin, Faruk

    2017-04-01

    The eastern Orhaneli ophiolitic massif, located in NW Anatolia, Turkey, forms part of the northwestern branch of the so-called Neotethys Ocean across the Izmir-Ankara-Erzincan Suture Zone. It is comprised mainly of a well preserved ultramafic suite, dominated by voluminous dunite exposures, accompanied by subsidiary harzburgite occurrences. The entire suite is commonly cross cut by a complex network of relatively undeformed clinopyroxenite veins. Clinopyroxene and spinel compositions in harzburgites are moderately depleted, whereas their whole-rock heavy rare earth element (HREE) abundances are consistent with harzburgite formation after approximately 19% dry melting of a spinel-bearing fertile mantle protolith at an extentional geotectonic regime. Nevertheless, textural data indicate that protracted dissolution of pyroxene coupled with precipitation of olivine happened during the transformation of harzburgites to replacive dunites, containing olivine with high Fo [Fo = 100×Mg/(Mg + Fe2+)] content (91.3-94.2) and spinel with elevated Cr# [100×Cr/(Cr + Al)] values (78-82). Such highly depleted mineralogical signatures imply that dunite for harzburgite substitution occurred under hydrous melting conditions in the mantle region above a subducted oceanic slab. Enrichments in incompatible elements (e.g., Cs, Rb and Sr) and the characteristic U-shaped chondrite-normalized rare earth elements (REE) profiles exhibited by replacive dunites along with the elevated TiO2 (0.20-0.36 wt.%) contents in their accessory spinels indicate that the reactive melt had an intermediate affinity between boninite and island arc tholeiite (IAT) regimes. The metasomatic reaction triggered an additional 8% melting of the harzburgite residue. The resultant melt fractionated (,almost in situ,) to crystallize cumulate dunites composed of olivine with relatively high Fo content (88.8-92.3), spinel with moderate Cr# values (62-74), as well as clinopyroxene with a depleted composition (low TiO2

  14. STS-88 Mission Specialist Nancy J. Currie suits up for TCDT

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-88 Mission Specialist Nancy J. Currie suits up in the Operations and Checkout Building, as part of flight crew equipment fit check, prior to her trip to Launch Pad 39A. She is helped by suit tech Drew Billingsley. The crew are at KSC to participate in the Terminal Countdown Demonstration Test (TCDT) which includes mission familiarization activities, emergency egress training, and the simulated main engine cut-off exercise. This is Currie's third space flight. Mission STS-88 is targeted for launch on Dec. 3, 1998. It is the first U.S. flight for the assembly of the International Space Station and will carry the Unity connecting module.

  15. 33 CFR 149.330 - When may a work vest or deck suit be substituted for a lifejacket?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false When may a work vest or deck suit... EQUIPMENT Lifesaving Equipment Manned Deepwater Port Requirements § 149.330 When may a work vest or deck suit be substituted for a lifejacket? (a) A work vest or deck suit meeting the requirements of § 149...

  16. 33 CFR 149.330 - When may a work vest or deck suit be substituted for a lifejacket?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false When may a work vest or deck suit... EQUIPMENT Lifesaving Equipment Manned Deepwater Port Requirements § 149.330 When may a work vest or deck suit be substituted for a lifejacket? (a) A work vest or deck suit meeting the requirements of § 149...

  17. 33 CFR 149.330 - When may a work vest or deck suit be substituted for a lifejacket?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false When may a work vest or deck suit... EQUIPMENT Lifesaving Equipment Manned Deepwater Port Requirements § 149.330 When may a work vest or deck suit be substituted for a lifejacket? (a) A work vest or deck suit meeting the requirements of § 149...

  18. 33 CFR 149.330 - When may a work vest or deck suit be substituted for a lifejacket?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false When may a work vest or deck suit... EQUIPMENT Lifesaving Equipment Manned Deepwater Port Requirements § 149.330 When may a work vest or deck suit be substituted for a lifejacket? (a) A work vest or deck suit meeting the requirements of § 149...

  19. 33 CFR 149.330 - When may a work vest or deck suit be substituted for a lifejacket?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false When may a work vest or deck suit... EQUIPMENT Lifesaving Equipment Manned Deepwater Port Requirements § 149.330 When may a work vest or deck suit be substituted for a lifejacket? (a) A work vest or deck suit meeting the requirements of § 149...

  20. Rb-Sr, Sm-Nd and Lu-Hf isotope systematics of the lunar Mg-suite: the age of the lunar crust and its relation to the time of Moon formation

    PubMed Central

    Carlson, Richard W.; Borg, Lars E.; Gaffney, Amy M.; Boyet, Maud

    2014-01-01

    New Rb-Sr, 146,147Sm-142,143Nd and Lu-Hf isotopic analyses of Mg-suite lunar crustal rocks 67667, 76335, 77215 and 78238, including an internal isochron for norite 77215, were undertaken to better define the time and duration of lunar crust formation and the history of the source materials of the Mg-suite. Isochron ages determined in this study for 77215 are: Rb-Sr=4450±270 Ma, 147Sm-143Nd=4283±23 Ma and Lu-Hf=4421±68 Ma. The data define an initial 146Sm/144Sm ratio of 0.00193±0.00092 corresponding to ages between 4348 and 4413 Ma depending on the half-life and initial abundance used for 146Sm. The initial Nd and Hf isotopic compositions of all samples indicate a source region with slight enrichment in the incompatible elements in accord with previous suggestions that the Mg-suite crustal rocks contain a component of KREEP. The Sm/Nd—142Nd/144Nd correlation shown by both ferroan anorthosite and Mg-suite rocks is coincident with the trend defined by mare and KREEP basalts, the slope of which corresponds to ages between 4.35 and 4.45 Ga. These data, along with similar ages for various early Earth differentiation events, are in accord with the model of lunar formation via giant impact into Earth at ca 4.4 Ga. PMID:25114305