Science.gov

Sample records for composition thermal stability

  1. Multifunctional Composites for Improved Polyimide Thermal Stability

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.

    2007-01-01

    The layered morphology of silicate clay provides an effective barrier to oxidative degradation of the matrix resin. However, as resin thermal stability continues to reach higher limits, development of an organic modification with comparable temperature capabilities becomes a challenge. Typically, phyllosilicates used in polymer nanocomposites are modified with an alkyl ammonium ion. Such organic modifiers are not suited for incorporation into high temperature polymers as they commonly degrade below 200oC. Therefore, the development of nanoparticle specifically suited for high temperature applications is necessary. Several nanoparticles were investigated in this study, including pre-exfoliated synthetic clay, an organically modified clay, and carbon nanofiber. Dispersion of the layered silicate increases the onset temperature of matrix degradation as well as slows oxidative degradation. The thermally stable carbon nanofibers are also observed to significantly increase the resin thermal stability.

  2. Thermal stability of poly(3-hydroxybutyrate)/vegetable fiber composites

    NASA Astrophysics Data System (ADS)

    Cipriano, Pâmela Bento; de Sá, Mayelli Dantas; Andrade, André L. Simões; de Carvalho, Laura Hecker; Canedo, Eduardo Luis

    2015-05-01

    The present work deals with the thermal stability during and after processing of composites of poly(3-hydroxybutyrate) (PHB) - a fully biodegradable semi-crystalline thermoplastic obtained from renewable resources through low-impact biotechnological process, biocompatible and non-toxic - and vegetable fiber from the fruit (coconut) of babassu palm tree. PHB/babassu composites with 0, 5, 10 and 20% w/w load were prepared in a laboratory internal mixer. Two fractions of the mesocarp of babassu with different particle sizes were compounded with PHB and test specimens molded by compression. The effect of loading level and processing conditions on torque, temperature and mechanical energy dissipation were studied using a new engineering model. It was found that PHB degrades during processing at temperatures slightly above the melting point. To minimize thermal degradation stabilizer and chain extender additives were incorporated, with mixed results. These findings were confirmed by the dependence of the melt flow rate on the processing temperature.

  3. Thermal stability relationships between PMR-15 resin and its composites

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Jayne, Douglas; Leonhardt, Todd A.; Bors, Dennis

    1993-01-01

    A study was conducted to investigate the relationship between the thermo-oxidative stability of PMR-15 matrix resin and the stability of graphite-fiber-reinforced composites that contain this resin as the matrix material. Three areas were investigated. The first was the effect of fiber/matrix interfacial bond strength on the isothermal aging weight loss of composites. By using type-A graphite fibers produced by Hercules, it was possible to study composites reinforced with fibers that were processed to receive different surface treatments. One of the fibers was untreated, a second fiber was treated by oxidation to enhance fiber/matrix bonding, and the third type of fiber was coated with an epoxy sizing. These treatments produced three significantly different interfacial bond strengths. The epoxy sizing on the third fiber was quickly oxidized from the bare fiber surfaces at 288, 316, and 343 C. The weight loss due to the removal of the sizing was constant at 1.5 percent. This initial weight loss was not observed in thermo-oxidative stability studies of composites. The PMR-15 matrix satisfactorily protected the reinforcemnt at all three temperatures.

  4. Thermal stability relationships between PMR-15 resin and its composites

    SciTech Connect

    Bowles, K.J.; Jayne, D.; Leonhardt, T.A.; Bors, D.

    1993-10-01

    A study was conducted to investigate the relationship between the thermo-oxidative stability of PMR-15 matrix resin and the stability of graphite-fiber-reinforced composites that contain this resin as the matrix material. Three areas were investigated. The first was the effect of fiber/matrix interfacial bond strength on the isothermal aging weight loss of composites. By using type-A graphite fibers produced by Hercules, it was possible to study composites reinforced with fibers that were processed to receive different surface treatments. One of the fibers was untreated, a second fiber was treated by oxidation to enhance fiber/matrix bonding, and the third type of fiber was coated with an epoxy sizing. These treatments produced three significantly different interfacial bond strengths. The epoxy sizing on the third fiber was quickly oxidized from the bare fiber surfaces at 288, 316, and 343 C. The weight loss due to the removal of the sizing was constant at 1.5 percent. This initial weight loss was not observed in thermo-oxidative stability studies of composites. The PMR-15 matrix satisfactorily protected the reinforcemnt at all three temperatures.

  5. Bulk metallic glasses and their composites: Composition optimization, thermal stability, and microstructural tunability

    NASA Astrophysics Data System (ADS)

    Khalifa, Hesham Ezzat

    A design protocol utilizing common elements for bulk metallic glass formation has been employed to develop novel, low cost Fe-, and Ti- based bulk metallic glasses. A critical obstacle that was successfully overcome in this work is the omission of beryllium in these alloys. Beryllium is of vital importance in many bulk metallic glass forming systems, but it is expensive and poses considerable health risks. Bulk metallic glasses in these novel Fe-, and Ti-based systems exhibit extremely high mechanical strength and excellent thermal stability. Devitrification and cooling rate experiments were used to identify crystalline phase formation and assess activation energy for crystallization, as well as to explore and develop ductile BMG composites. To better control microstructure in these BMG composites, a novel processing technique, called semi-solid forging was developed, wherein the alloy melt is heated to above the melt temperature of the glass, but below the melt temperature of the ductile crystalline phase. Such an approach permits the maintenance of a glassy, or nanocrystalline matrix phase, while simultaneously coarsening and homogenizing the ductile, secondary phase. This processing approach leads to enhanced ductility in the alloys, which, to this point, has not been observed using conventional casting methods. The combination of novel, low-cost, alloy compositions with semi-solid forging has been successfully utilized to develop new high strength structural materials with enhanced ductility and toughness. Microstrutural and mechanical properties of these novel, toughened, BMG composites are presented. A comprehensive analysis of the relationship between deformation mechanisms and microstructure reveals that enhanced ductility is predicated on matching fundamental mechanical and microstructural length scales in a Ti-Ni-Si-Mo BMG composite. Under optimized microstructural conditions, a maximum compressive strength exceeding 2400 MPa with ˜ 30% total strain to

  6. Phase Stability and Thermal Conductivity of Composite Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Benkel, Samantha; Zhu, Dongming

    2011-01-01

    Advanced environmental barrier coatings are being developed to protect SiC/SiC ceramic matrix composites in harsh combustion environments. The current coating development emphasis has been placed on the significantly improved cyclic durability and combustion environment stability in high-heat-flux and high velocity gas turbine engine environments. Environmental barrier coating systems based on hafnia (HfO2) and ytterbium silicate, HfO2-Si nano-composite bond coat systems have been processed and their stability and thermal conductivity behavior have been evaluated in simulated turbine environments. The incorporation of Silicon Carbide Nanotubes (SiCNT) into high stability (HfO2) and/or HfO2-silicon composite bond coats, along with ZrO2, HfO2 and rare earth silicate composite top coat systems, showed promise as excellent environmental barriers to protect the SiC/SiC ceramic matrix composites.

  7. Thermal Shock Resistance of Stabilized Zirconia/Metal Coat on Polymer Matrix Composites by Thermal Spraying Process

    NASA Astrophysics Data System (ADS)

    Zhu, Ling; Huang, Wenzhi; Cheng, Haifeng; Cao, Xueqiang

    2014-12-01

    Stabilized zirconia/metal coating systems were deposited on the polymer matrix composites by a combined thermal spray process. Effects of the thicknesses of metal layers and ceramic layer on thermal shock resistance of the coating systems were investigated. According to the results of thermal shock lifetime, the coating system consisting of 20 μm Zn and 125 μm 8YSZ exhibited the best thermal shock resistance. Based on microstructure evolution, failure modes and failure mechanism of the coating systems were proposed. The main failure modes were the formation of vertical cracks and delamination in the outlayer of substrate, and the appearance of coating spallation. The residual stress, thermal stress and oxidation of substrate near the substrate/metal layer interface were responsible for coating failure, while the oxidation of substrate near the substrate/coating interface was the dominant one.

  8. Thermal Shock Resistance of Stabilized Zirconia/Metal Coat on Polymer Matrix Composites by Thermal Spraying Process

    NASA Astrophysics Data System (ADS)

    Zhu, Ling; Huang, Wenzhi; Cheng, Haifeng; Cao, Xueqiang

    2014-09-01

    Stabilized zirconia/metal coating systems were deposited on the polymer matrix composites by a combined thermal spray process. Effects of the thicknesses of metal layers and ceramic layer on thermal shock resistance of the coating systems were investigated. According to the results of thermal shock lifetime, the coating system consisting of 20 μm Zn and 125 μm 8YSZ exhibited the best thermal shock resistance. Based on microstructure evolution, failure modes and failure mechanism of the coating systems were proposed. The main failure modes were the formation of vertical cracks and delamination in the outlayer of substrate, and the appearance of coating spallation. The residual stress, thermal stress and oxidation of substrate near the substrate/metal layer interface were responsible for coating failure, while the oxidation of substrate near the substrate/coating interface was the dominant one.

  9. Improving the thermal dimensional stability of flexible polymer composite backing materials for ultrasound transducers.

    PubMed

    State, Mihai; Brands, Peter J; van de Vosse, Frans N

    2010-04-01

    Novel ultrasound backing materials based on polymer composites with improved dimensional stability and low coefficient of thermal expansion are being developed and analyzed. For this purpose a filled epoxy resin (Stycast(1265)), a commonly used backing material, was considered reference material and polyurethane composites (PU(2305), PU(2350)) were proposed as better alternatives. When compared to the reference, the PU(2350) filled with a mixture of Al(2)O(3) and tungsten exhibited an approximately 15 times lower glassy transition temperature and a 2.5 time lower longitudinal thermal expansion at 20 degrees C. This ensures that within the entire operational temperature range the backing material is flexible, minimizing the thermal stresses induced onto transducer elements soldered joints and piezoceramic core. For the same material, the attenuation at 5MHz was similar to the reference material while at 7 and 8.5MHz it was 33% and 54% higher respectively. From these analyses it is concluded that the newly developed polyurethane composites outperform the reference backing with respect to the thermal dimensional stability as well as to the damping properties. An integrated rigorous mechano-acoustical approach is being proposed as an appropriate passive material design path. It can be easily extended to any other passive materials used for ultrasound transducer conception. PMID:19897218

  10. Machine-able Yttria Stabilized Zirconia Composites for Thermal Insulation in Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Lo, J.; Zhang, R.; Santos, R.

    2016-02-01

    Ceramics are a promising insulating material for high temperature environment. To qualify for in-core use in nuclear reactors, there are many other materials requirements to be met, such as neutron irradiation resistance, corrosion resistance, low thermal conductivity, high coefficient of thermal expansion, high strength, high fracture toughness, ease of fabricability, etc. And among the promising ceramics meeting most of the requirements, with the exception of fabricability, is yttria-stabilized zirconia (YSZ). Like all ceramics, YSZ is hard, brittle and difficult to machine. At CanmetMATERIALS, YSZ-based composites for in-core insulation that are machine-able and capable of being formed into complex shapes have been developed. In this paper, the focus is geared towards the fabrication and property evaluation of such composites. In addition, the machinability aspect of the YSZ composites was addressed with a demonstration of a machined component.

  11. Organic-inorganic composite nanocoatings with superhydrophobicity, good transparency, and thermal stability.

    PubMed

    Xu, Qian Feng; Wang, Jian Nong; Sanderson, Kevin D

    2010-04-27

    Superhydrophobic, highly transparent, and stable organic-inorganic composite nanocoating is successfully prepared by a simple sol-gel dip-coating method. This method involves control of the aggregation of inorganic colloid particles by polymerization and ultrasonic vibration to create the desired micro/nanostructure in the coating. Superhydrophobicity and transparency of the coating can be controlled by adjusting the initial concentration of monomer and the size of aggregates in the sol-gel. Thus, superhydrophobicity and high transparency can be concurrently achieved in a single coating. The prepared coating also possesses good thermal stability. Its superhydrophobicity can be maintained from 20 to 90 degrees C. PMID:20302323

  12. Al-Ti Particulate Composite: Processing and Studies on Particle Twinning, Microstructure, and Thermal Stability

    NASA Astrophysics Data System (ADS)

    Yadav, Devinder; Bauri, Ranjit; Kauffmann, Alexander; Freudenberger, Jens

    2016-06-01

    The present investigation shows that alternate to the ceramic particles, hard metallic particles can be used as reinforcement in an aluminum matrix to achieve a good strength-ductility combination in a composite. Titanium particles were incorporated into aluminum by friction stir processing (FSP) to process an Al-Ti particulate composite. FSP led to uniform distribution of the particles in the stir zone without any particle-matrix reaction, thereby retaining the particles in their elemental state. Fracture and twinning of the Ti particles with different frequency of occurrence on the advancing and retreating sides of the stir zone was observed. Twinning of the particles was studied by focused ion beam-assisted transmission electron microscopy. The processed Al-Ti composite exhibited a significant improvement in strength and also retained appreciable amount of ductility. The thermal stability of the fine-grained structure against abnormal grain growth (AGG) was improved by the Ti particles. The AGG in the Al-Ti composite occurred at 713 K (440 °C) compared to 673 K (400 °C) in the unreinforced aluminum processed under the same conditions. On the other hand, the particle-matrix reaction occurred only at 823 K (550 °C), and hence the Ti particles were thermally more stable compared to the matrix grain structure.

  13. Al-Ti Particulate Composite: Processing and Studies on Particle Twinning, Microstructure, and Thermal Stability

    NASA Astrophysics Data System (ADS)

    Yadav, Devinder; Bauri, Ranjit; Kauffmann, Alexander; Freudenberger, Jens

    2016-08-01

    The present investigation shows that alternate to the ceramic particles, hard metallic particles can be used as reinforcement in an aluminum matrix to achieve a good strength-ductility combination in a composite. Titanium particles were incorporated into aluminum by friction stir processing (FSP) to process an Al-Ti particulate composite. FSP led to uniform distribution of the particles in the stir zone without any particle-matrix reaction, thereby retaining the particles in their elemental state. Fracture and twinning of the Ti particles with different frequency of occurrence on the advancing and retreating sides of the stir zone was observed. Twinning of the particles was studied by focused ion beam-assisted transmission electron microscopy. The processed Al-Ti composite exhibited a significant improvement in strength and also retained appreciable amount of ductility. The thermal stability of the fine-grained structure against abnormal grain growth (AGG) was improved by the Ti particles. The AGG in the Al-Ti composite occurred at 713 K (440 °C) compared to 673 K (400 °C) in the unreinforced aluminum processed under the same conditions. On the other hand, the particle-matrix reaction occurred only at 823 K (550 °C), and hence the Ti particles were thermally more stable compared to the matrix grain structure.

  14. Investigation of the stability of paraffin-exfoliated graphite nanoplatelet composites for latent heat thermal storage systems

    SciTech Connect

    Abdelaziz, Omar; Mallow, Anne; Graham, Samuel; Kalaitzidou, Kyriaki

    2012-01-01

    Organic materials, such as paraffin wax, are sought as stable and environmentally friendly phase change materials (PCM) for thermal energy storage, but they suffer from low thermal conductivity which limits the rate at which thermal energy flows into and out of the material. A common method to improve the PCM thermal behavior is through loading with high thermal conductivity particulate fillers. However, the stability of these composites in the molten state is a concern as settling of the fillers will change the effective thermal conductivity. In this work, we investigate the stability of wax loaded with exfoliated graphite nanoplatelets either of 1 m (xGnP-1) or 15 m (xGnP-15) diameter. The effect of dispersants, oxidation of the wax, viscosity of the wax, mixing time, and hydrocarbon chain length on stability is reported. It was found that the addition of octadecylphosphonic acid (ODPA) is an effective dispersant for xGnP in paraffin and microcrystalline wax. In addition, mixing time, viscosity, and oxidation of the wax influence stability in the molten state. Overall, it was found that a mixing time of 24 hours for xGnP-15 along with ODPA mixed in a high viscosity, oxidized microcrystalline wax results in composite PCM systems with the greatest stability determined at 80 C in the molten state.

  15. SiC fiber and yttria-stabilized zirconia composite thick thermal barrier coatings fabricated by plasma spray

    NASA Astrophysics Data System (ADS)

    Ma, Rongbin; Cheng, Xudong; Ye, Weiping

    2015-12-01

    Approximately 4 mm-thick SiC fiber/yttria-stabilized zirconia (YSZ) composite thermal barrier coatings (TBCs) were prepared by atmospheric plasma spray (APS). The composite coatings have a 'reinforced concrete frame structure', which can protect the coating from failure caused by increasing thickness of coating. The SiC fiber plays an important role in reducing the residual stress level of the composite coatings. The thermal conductivity (TC) value of the composite coatings is 0.632 W/m K, which is about 50% reduction compared to that of typical APS YSZ TBCs. And the composite coatings have higher fracture toughness and better thermal shock resistance than the YSZ TBCs.

  16. Static stability and thermal wind in an atmosphere of variable composition Applications to Mars

    NASA Technical Reports Server (NTRS)

    Hess, S. L.

    1979-01-01

    Radiometric measurements of the temperature of the south polar cap of Mars in winter have yielded values significantly below the expected 148 K. One proposed explanation for this result is a substantial reduction in the CO2 content of the atmosphere and a lowering of the mean molecule weight near the surface. The meteorological consequences of this explanation are explored by deriving a criterion for vertical static stability and a thermal wind law for an atmosphere of variable composition. The atmosphere proves to be statically unstable unless the anomaly in the CO2 mixing ratio extends to heights of tens of kilometers. The effect of varying molecular weight exceeds the effect of temperature gradient, producing shears with height of reversed sign. The shears are baroclinically unstable, and this instability would eradicate the latitudinal gradient of molecular weight. This inconsistency can be resolved by invoking a reasonable elevation of the central polar cap and by imposing an adequate zonal wind. It is concluded that if the explanation requiring a change in atmospheric composition is correct, it must be accompanied by other special circumstances to make it meteorologically consistent.

  17. The effect of polymeric filler on poling behavior and thermal stability of 1-3 piezoelectric composites

    NASA Astrophysics Data System (ADS)

    Wang, Chunying; Zhang, Rui; Jing, Yujia; Cao, Wenwu

    2016-01-01

    In this paper, the influence of polymeric filler with different glass transition temperature (T g) on the poling behavior and thermal stability of 1-3 piezoelectric composites were investigated, with emphasis on the relationship between T g and temperature dependent properties. The results revealed that high poling temperature improves the piezoelectric coefficient by nearly 12% for composites filled with epoxy (Epotek301, T g above room temperature). On the contrary, high temperature gives a negative impact on the poling of composites filled with rubber (Ke45W, T g below room temperature). In addition, it was found that rubber-filled composites possess better temperature stability between room temperature to140 °C, including dielectric and electromechanical properties, compared with epoxy-filled composites.

  18. Thermal Response and Stability Characteristics of Bistable Composite Laminates by Considering Temperature Dependent Material Properties and Resin Layers

    NASA Astrophysics Data System (ADS)

    Moore, M.; Ziaei-Rad, S.; Salehi, H.

    2013-02-01

    In this study, the stability characteristics and thermal response of a bistable composite plate with different asymmetric composition were considered. The non-linear finite element method (FEM) was utilized to determine the response of the laminate. Attention was focused on the temperature dependency of laminate mechanical properties, especially on the thermal expansion coefficients of the composite graphite-epoxy plate. Also the effect of including the resin layers on the stability characteristics of the laminate was investigated. The effect of the temperature on the laminate cured configurations in the range of 25°C to 180°C and -60°C to 40°C was examined. The results indicate that the coefficient of thermal expansions has a major effect on the cured shapes. Next, optical microscopy was used to characterize the laminate composition and for the first time the effect of including the resin layers on the actuation loads that causes snapping behavior between two stable shapes was studied. The results obtained from the finite element simulations were compared with experimental results and a good correlation was obtained. Finally, the stability characteristics of a tapered composite panel were investigated for using in a sample winglet as a candidate application of bistable structures.

  19. Mechanical property and thermal stability of polyurethane composites reinforced with polyhedral oligomeric silsesquioxanes and inorganic flame retardant filler.

    PubMed

    Kim, Ho-Joong; Kwon, Younghwan; Kim, Chang Kee

    2014-08-01

    Mechanical properties and thermal stability of polyurethane composites were investigated with a combination of polyhedral oligomeric silsesquioxane (POSS) molecules and inorganic barium sulfate. These hybrid composites were prepared using one-step method through the incorporation of flexible hydroxyl-terminated polybutadiene prepolymer, reactive POSS nanoparticles, and barium sulfate under isophorone diisocyanate curative system. In polyurethane composites, POSS and inorganic barium sulfate were utilized for mechanical reinforcement and flame retardant filler, respectively. The decomposition of POSS molecules during oxyacetylene torch exposure resulted in the formation of silica-based nanosized droplets, contributing on ablation behavior. PMID:25936054

  20. Improved thermal stability of polylactic acid (PLA) composite film via PLA-β-cyclodextrin-inclusion complex systems.

    PubMed

    Byun, Youngjae; Rodriguez, Katia; Han, Jung H; Kim, Young Teck

    2015-11-01

    The effects of the incorporation of PLA-β-cyclodextrin-inclusion complex (IC) and β-cyclodextrin (β-CD) on biopolyester PLA films were investigated. Thermal stability, surface morphology, barrier, and mechanical properties of the films were measured at varying IC (1, 3, 5, and 7%) and β-CD (1 and 5%) concentrations. The PLA-IC-composite films (IC-PLA-CFs) showed uniform morphological structure, while samples containing β-CD (β-CD-PLA-CFs) showed high agglomeration of β-CD due to poor interfacial interaction between β-CD and PLA moieties. According to the thermal property analysis, the 5% IC-PLA-CFs showed 6.6 times lower dimensional changes (6.5%) at the temperature range of 20-80°C than that of pure PLA film (43.0%). The increase of IC or β-CD content in the PLA-composite films shifted the glass transition and crystallization temperature to higher temperature regions. The crystallinity of both composite films improved by increasing IC or β-CD content. Both composite films had higher oxygen and water vapor permeability as IC or β-CD content increased in comparison to pure PLA film. All the composite films had less flexibility and lower tensile strength than the pure PLA film. In conclusion, this study shows that the IC technique is valuable to improve the thermal expansion stability of PLA-based films. PMID:26299710

  1. Flame retardancy and thermal stability of polyurethane foam composites containing carbon additives

    NASA Astrophysics Data System (ADS)

    Lee, Pyoung-Chan; Kim, Bo-Ram; Jeoung, Sun Kyoung; Lee, Geesoo; Han, San Wook; Kim, Hyunchul; Lee, Ki-Dong; Han, Joo-Kwon

    2016-03-01

    Polyurethane (PU) is an important class of polymers that have wide application in a number of different industrial sectors. The goal of this work was the synthesis of flame-retarded PU foam with expandable graphite (EG) or commercial graphene. The flame retardancy and thermal stability of the foams has been studied through cone calorimeter analysis, the limited oxygen index and thermal conductivity. The presence of expandable graphite brings an improvement in fire behavior. In particular, the limited oxygen index increases in a linear way and the highest limited oxygen index values are obtained for EG-PU foams. The results from the cone calorimeter are in agreement with those of oxygen index; EG filled foams show a considerable decrease of maximum-heat release rate (M-HRR) with respect to unfilled foams. The results of thermal conductivity show that an increase in expandable graphite amount in PU foams lead to an increased conductivity.

  2. Graphite Sheet Coating for Improved Thermal Oxidative Stability of Carbon Fiber Reinforced/PMR-15 Composites

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi; Papadopoulos, Demetrios; Heimann, Paula; Inghram, Linda; McCorkle, Linda

    2005-01-01

    Expanded graphite was compressed into graphite sheets and used as a coating for carbon fiber reinforced PMR-15 composites. BET analysis of the graphite indicated an increase in graphite pore size on compression, however the material was proven to be an effective barrier to oxygen when prepegged with PMR-15 resin. Oxygen permeability of the PMR-15/graphite was an order of magnitude lower than the compressed graphite sheet. By providing a barrier to oxygen permeation, the rate of oxidative degradation of PMR-15 was decreased. As a result, the composite thermo-oxidative stability increased by up to 25%. The addition of a graphite sheet as a top ply on the composites yielded little change in the material's flexural strength or interlaminar shear strength.

  3. Improving the thermal stability of 1-3 piezoelectric composite transducers.

    PubMed

    Parr, Agnes C S; O'Leary, Richard L; Hayward, Gordon

    2005-04-01

    The effect of temperature on the behavior of 1-3 piezoelectric composites manufactured using various polymeric materials was assessed experimentally through electrical impedance analysis and laser vibrometry. Device behavior varied with temperature irrespective of the polymer filler. Most significant changes in the piezoelectric composites were recorded around the glass transition temperature (Tg) of the polymer; movement to lower fundamental resonant frequencies and higher values of electrical impedance minima were observed at higher temperatures. Decoupling of the pillars from the polymer matrix was observed by laser vibrometry at high temperatures. The use of high Tg polymer extended the operational temperature range of a piezoelectric composite, and a high Tg polymer with improved thermal conductivity also proved beneficial. For all devices, at temperatures very close to room temperature, subtle changes in device performance, linked to polymer softening, were observed. Particulate filled materials have been investigated, and it is recognized that the high viscosities and low mechanical damping of such materials could be problematic for piezoelectric composite manufacture. The thermal solver of the PZFlex finite element code has been used to predict the temporal and spatial temperature response of a selection of the devices presented. The simulated and experimental data compare favorably. PMID:16060502

  4. Composition and thermal stability of anthocyanins from chinese purple corn ( Zea mays L.).

    PubMed

    Zhao, Xiaoyan; Corrales, Margarita; Zhang, Chao; Hu, Xiaosong; Ma, Yue; Tauscher, Bernhard

    2008-11-26

    Chinese purple corn extracts ( Zea mays L., Zhuozhou, Hebei, China) (EZPC) were selected among five Chinese purple corn hybrids due to their higher anthocyanin content, and their thermal stability was evaluated. The total anthocyanin content and total phenolic content of EZPC were 304.5 +/- 16.32 mg of cyanidin-3-glucoside equiv/100 g of dry seeds and 489.8 +/- 24.90 mg of gallic acid equiv/100 g of dry seeds, respectively. Moreover, the individual anthocyanins of EZPC were determined by HPLC-DAD/ESI-MS analysis. Seven main compounds were determined, including cyanidin-3-(malonylglucoside), cyanidin-3-O-glucoside-2-malonylglucoside, cyanidin-3-O-glucoside, peonidin-3-O-glucoside, peonidin-3-(malonylglucoside), pelargonidin-3-(6''-malonylglucoside), and peonidin-3-(dimalonylglucoside). The thermal stability of EZPC was studied by differential scanning calorimetry. Thermodynamic analysis showed that the conversion of EZPC followed an Arrhenius relationship, where the delta enthalpy (H) and activation energy (E(a)) were 97.0 J/g and 204 +/- 2.72 kJ/mol, respectively. Furthermore, the relationships between the degree of conversion of EZPC and time or temperature were reported. This study demonstrated that the evaluated Chinese purple corn hybrids are a natural source of anthocyanins and are stable over a wide range of temperatures and times. PMID:18950186

  5. Enhanced thermal stability of carbon nanotubes by plasma surface modification in Al{sub 2}O{sub 3} composites

    SciTech Connect

    Cho, Hoonsung; Guo Yan; Shi Donglu; Ren Zhifeng; Poudel, Bed; Song Yi; Abot, Jandro L.; Singh, Dileep; Routbort, Jules; Wang Lumin; Ewing, Rodney C.

    2008-10-01

    A plasma polymerization method was employed to deposit an ultrathin pyrrole film of 3 nm onto the surfaces of single wall carbon nanotubes (SWCNTs) and Al{sub 2}O{sub 3} nanoparticles for developing high-strength nanocomposites. The surfaces of plasma coated SWCNTs and Al{sub 2}O{sub 3} nanoparticles were studied by high resolution transmission electron microscopy (TEM) and time-of-flight secondary ion mass spectroscopy. After sintering the SWCNTs-Al{sub 2}O{sub 3} composites at different temperatures (maximum of 1200 deg. C), the thermal stability of plasma-coated SWCNTs was significantly increased, compared to their uncoated counterparts. After hot-press sintering, the SWCNTs without plasma coating were essentially decomposed into amorphous clusters in the composites, leading to degraded mechanical properties. However, under the same sintering conditions, the plasma surface modified SWCNTs were well preserved and distributed in the composite matrices. The effects of plasma surface coating on the thermal stability of SWCNTs and mechanical behavior of the nanocomposites are discussed.

  6. Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage

    PubMed Central

    Min, Xin; Fang, Minghao; Huang, Zhaohui; Liu, Yan’gai; Huang, Yaoting; Wen, Ruilong; Qian, Tingting; Wu, Xiaowen

    2015-01-01

    Radial mesoporous silica (RMS) sphere was tailor-made for further applications in producing shape-stabilized composite phase change materials (ss-CPCMs) through a facile self-assembly process using CTAB as the main template and TEOS as SiO2 precursor. Novel ss-CPCMs composed of polyethylene glycol (PEG) and RMS were prepared through vacuum impregnating method. Various techniques were employed to characterize the structural and thermal properties of the ss-CPCMs. The DSC results indicated that the PEG/RMS ss-CPCM was a promising candidate for building thermal energy storage applications due to its large latent heat, suitable phase change temperature, good thermal reliability, as well as the excellent chemical compatibility and thermal stability. Importantly, the possible formation mechanisms of both RMS sphere and PEG/RMS composite have also been proposed. The results also indicated that the properties of the PEG/RMS ss-CPCMs are influenced by the adsorption limitation of the PEG molecule from RMS sphere with mesoporous structure and the effect of RMS, as the impurities, on the perfect crystallization of PEG. PMID:26261089

  7. Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage

    NASA Astrophysics Data System (ADS)

    Min, Xin; Fang, Minghao; Huang, Zhaohui; Liu, Yan'Gai; Huang, Yaoting; Wen, Ruilong; Qian, Tingting; Wu, Xiaowen

    2015-08-01

    Radial mesoporous silica (RMS) sphere was tailor-made for further applications in producing shape-stabilized composite phase change materials (ss-CPCMs) through a facile self-assembly process using CTAB as the main template and TEOS as SiO2 precursor. Novel ss-CPCMs composed of polyethylene glycol (PEG) and RMS were prepared through vacuum impregnating method. Various techniques were employed to characterize the structural and thermal properties of the ss-CPCMs. The DSC results indicated that the PEG/RMS ss-CPCM was a promising candidate for building thermal energy storage applications due to its large latent heat, suitable phase change temperature, good thermal reliability, as well as the excellent chemical compatibility and thermal stability. Importantly, the possible formation mechanisms of both RMS sphere and PEG/RMS composite have also been proposed. The results also indicated that the properties of the PEG/RMS ss-CPCMs are influenced by the adsorption limitation of the PEG molecule from RMS sphere with mesoporous structure and the effect of RMS, as the impurities, on the perfect crystallization of PEG.

  8. Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage.

    PubMed

    Min, Xin; Fang, Minghao; Huang, Zhaohui; Liu, Yan'gai; Huang, Yaoting; Wen, Ruilong; Qian, Tingting; Wu, Xiaowen

    2015-01-01

    Radial mesoporous silica (RMS) sphere was tailor-made for further applications in producing shape-stabilized composite phase change materials (ss-CPCMs) through a facile self-assembly process using CTAB as the main template and TEOS as SiO2 precursor. Novel ss-CPCMs composed of polyethylene glycol (PEG) and RMS were prepared through vacuum impregnating method. Various techniques were employed to characterize the structural and thermal properties of the ss-CPCMs. The DSC results indicated that the PEG/RMS ss-CPCM was a promising candidate for building thermal energy storage applications due to its large latent heat, suitable phase change temperature, good thermal reliability, as well as the excellent chemical compatibility and thermal stability. Importantly, the possible formation mechanisms of both RMS sphere and PEG/RMS composite have also been proposed. The results also indicated that the properties of the PEG/RMS ss-CPCMs are influenced by the adsorption limitation of the PEG molecule from RMS sphere with mesoporous structure and the effect of RMS, as the impurities, on the perfect crystallization of PEG. PMID:26261089

  9. Mechanical Behavior and Thermal Stability of Acid-Base Phosphate Cements and Composites Fabricated at Ambient Temperature

    NASA Astrophysics Data System (ADS)

    Colorado Lopera, Henry Alonso

    This dissertation presents the study of the mechanical behavior and thermal stability of acid-base phosphate cements (PCs) and composites fabricated at ambient temperature. These materials are also known as chemically bonded phosphate ceramics (CBPCs). Among other advantages of using PCs when compared with traditional cements are the better mechanical properties (compressive and flexural strength), lower density, ultra-fast (controllable) setting time, controllable pH, and an environmentally benign process. Several PCs based on wollastonite and calcium and alumino phosphates after thermal exposure up to 1000°C have been investigated. First, the thermo-mechanical and chemical stability of wollastonite-based PC (Wo-PC) exposed to temperatures up to 1000°C in air environment were studied. The effects of processing conditions on the curing and shrinkage of the wollastonite-based PC were studied. The chemical reactions and phase transformations during the fabrication and during the thermal exposure are analyzed in detail using scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermo-gravimetric analysis (TGA Then, the thermo-mechanical and chemical stability of glass, carbon and basalt fiber reinforced Wo-PC composites, were studied using SEM, XRD, TGA. The flexural strength and Weibull statistics were analyzed. A significant strength degradation in the composites were found after the thermal exposure at elevated temperatures due to the interdifusion and chemical reactions across the fibers and the matrix at temperatures over 600°C. To overcome this barrier, we have developed a new PC based on calcium and alumino-phosphates (Ca-Al PCs). The Ca-Al PCs were studied in detail using SEM, XRD, TGA, curing, shrinkage, Weibull statistics, and compression tests. Our study has confirmed that this new composite material is chemically and mechanically stable at temperatures up to 1000°C. Moreover, the compression strength increases after exposure to 1000

  10. γ-Fe2O3-MWNT/poly(p-phenylenebenzobisoxazole) composites with excellent microwave absorption performance and thermal stability.

    PubMed

    Chen, Yi; Liu, Xiaoyun; Mao, Xiaoyang; Zhuang, Qixin; Xie, Zhong; Han, Zhewen

    2014-06-21

    Ferromagnetic γ-Fe2O3 nanoparticles were successfully loaded into multi-walled carbon nanotubes (MWNTs) as probed by transmission electron microscopy. Upon incorporation of the γ-Fe2O3-MWNTs into poly(p-phenylenebenzobisoxazole) (PBO), a conjugated polymer with high mechanical strength and outstanding thermal and oxidative stability, microwave absorbing materials were obtained. Attributed to the special structure of the γ-Fe2O3-MWNTs, synergistic effects on dielectric loss and magnetic loss, and a better matched characteristic impedance of the composites were achieved. The optimal minimum reflection loss reached -32.7 dB at 12.09 GHz on a composite containing 12 wt% γ-Fe2O3-MWNTs with a thickness of 2.7 mm, and the corresponding bandwidth below -5 dB was 6.2 GHz. This demonstrated its potential applications as a low-density microwave absorbing material operating under extreme environments. PMID:24806979

  11. Phospa-s-Triazines and Related Compositions of Improved Hydrolytic and Thermal Stability

    NASA Technical Reports Server (NTRS)

    Paciorek, K. J. L.

    1996-01-01

    The objective of the Program was to synthesize novel degradation inhibitors for perfluoropolyalkylether fluids and to evaluate their performance as well as that of other available inhibitors. Four novel additives: (C3F7OCF(CF3)CF2OC(CF3)2CN)((C6H5)2PN)2, (C3F7O(CF(CF3)CF2O)2C(CF3)2CN)((C6H5)2PN)2, u-(C3F7OCF(CF3)CF2OC(CF3)2CN)2((C6H5)2PN)2 and C3F7(OCF(CF3)CF2)6C6H4OP(O)(OC6H5)2 were prepared, characterized and their thermal stabilities established. The alloys studied were: 440C steel, M-50 steel, Pyrowear 675, Cronidur 30, Ti (4Al, 4Mn), and Ti (6Al, 4V). The additives and metals were evaluated in two different lots of Fomblin Z25, in Krytox 143AC and in Krytox 16256. Phosphate esters were found to be fully effective in arresting perfluoropolyaucylether fluid's degradation at temperatures up to 300 C over 24 h in the presence of alloys in oxygen. The overall rating of additives was: phosphates greater than phosphate/diester mixture greater than phosphine grater vthan or equal to phpospha-s-triazines.

  12. Pressurized liquid extraction of Aglaonema sp. iminosugars: Chemical composition, bioactivity, cell viability and thermal stability.

    PubMed

    Rodríguez-Sánchez, S; Martín-Ortiz, A; Carrero-Carralero, C; Ramos, S; Sanz, M L; Soria, A C

    2016-08-01

    Pressurized liquid extraction of Aglaonema sp. iminosugars has been optimized. A single cycle under optimal conditions (80mg, 100°C, 2min) was enough to extract ⩾96% of most iminosugars. Further incubation with Saccharomyces cerevisiae for 5h removed coextracted interfering low molecular weight carbohydrates from extracts of different Aglaonema cultivars. A complete characterization of these extracts was carried out by gas chromatography-mass spectrometry: three iminosugars were tentatively identified for the first time; α-homonojirimycin and 2,5-dideoxy-2,5-imino-d-mannitol were the major iminosugars determined. α-Glucosidase inhibition activity, cell viability and thermal stability of Aglaonema extracts were also evaluated. Extracts with IC50 for α-glucosidase activity in the 0.010-0.079mgmL(-1) range showed no decrease of Caco-2 cell viability at concentrations lower than 125μgmL(-1) and were stable at 50°C for 30days. These results highlight the potential of Aglaonema extracts as a source of bioactives to be used as functional ingredients. PMID:26988476

  13. Thermal stability and microstructure of catalytic alumina composite support with lanthanum species

    NASA Astrophysics Data System (ADS)

    Ozawa, Masakuni; Nishio, Yoshitoyo

    2016-09-01

    Lanthanum (La) modified γ-alumina composite was examined for application toward thermostable catalytic support at elevated temperature. La added alumina was prepared through an aqueous process using lanthanum (III) nitrate and then characterized by surface area measurement, X-ray powder diffraction (XRD), differential thermal analysis (DTA), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoemission spectroscopy (XPS) and surface desorption of CO2. It was found that the properties depended on the La content and heat treatment temperatures. The characterization of the surface, structural and chemical properties of La-Al2O3 showed the existence of a strong interaction between the La species and alumina via formation of new phase and modified surface in Al2O3 samples. LaAlO3 nanoparticle formed among alumina particles by the solid phase reaction of Al2O3 and La2O3. The increase of the surface basicity of La modified alumina was demonstrated using CO2 temperature programmed desorption experiments. The controlled surface interaction between La oxide and alumina provide the unique surface and structural properties of the resulting mixed oxides as catalysts and catalytic supports.

  14. Linking measurements of biodegradability, thermal stability and chemical composition to evaluate the effects of management on soil organic matter

    NASA Astrophysics Data System (ADS)

    Gregorich, Ed; Gillespie, Adam; Beare, Mike; Curtin, Denis; Sanei, Hamed; Yanni, Sandra

    2015-04-01

    The stability of soil organic matter (SOM) as it relates to resistance to microbial degradation has important implications for nutrient cycling, emission of greenhouse gases, and C sequestration. Hence, there is interest in developing new ways to accurately quantify and characterise the labile and stable forms of soil organic C. Our objectives in this study were to evaluate and describe relationships among the biodegradability, thermal stability and chemistry of SOM in soil under widely contrasting management regimes. Samples from the same soil under permanent pasture, an arable cropping rotation, and chemical fallow were fractionated (sand: 2000-50 μm; silt: 50-5 μm, and clay: < 5 μm). Biodegradability of the SOM in size fractions and whole soils was assessed in a laboratory mineralization study. The chemical composition of SOM was characterized by X-ray absorption near-edge structure (XANES) spectroscopy at the K-edge and its thermal stability was determined by analytical pyrolysis using a Rock-Eval pyrolyser. The mineralization bioassay showed that whole soils and soil fractions under fallow were less susceptible to biodegradation than other managements and that sand-associated organic matter was significantly more susceptible than that in the silt or clay fractions. Analysis by XANES showed accumulation of carboxylates and strong depletion of amides (protein) and aromatics in the fallow whole soil. Moreover, protein depletion was most significant in the sand fraction of the fallow soil. Sand fractions in fallow and cropped soils were, however, enriched in plant-derived phenols, aromatics and carboxylates compared to the sand fraction of pasture soils. In contrast, ketones, which have been identified as products of microbially-processed organic matter, were slightly enriched in the silt fraction of the pasture soil. These data suggest reduced inputs and cropping restrict the decomposition of plant residues and, without supplemental N additions, protein-N in

  15. THE STABILITY OF WEAKLY COLLISIONAL PLASMAS WITH THERMAL AND COMPOSITION GRADIENTS

    SciTech Connect

    Pessah, Martin E.; Chakraborty, Sagar E-mail: sagarc@iitk.ac.in

    2013-02-10

    Over the last decade, substantial efforts have been devoted to understanding the stability properties, transport phenomena, and long-term evolution of weakly collisional, magnetized plasmas which are stratified in temperature. The insights gained via these studies have led to a significant improvement of our understanding of the processes that determine the physical evolution and observational properties of the intracluster medium (ICM) permeating galaxy clusters. These studies have been carried out under the assumption that the ICM is a homogeneous medium. This, however, might not be a good approximation if heavy elements are able to sediment in the inner region of the galaxy cluster. Motivated by the need to obtain a more complete picture of the dynamical properties of the ICM, we analyze the stability of a weakly collisional, magnetized plane-parallel atmosphere which is stratified in both temperature and composition. This allows us to discuss for the first time the dynamics of weakly collisional environments where heat conduction, momentum transport, and ion-diffusion are anisotropic with respect to the direction of the magnetic field. We show that depending on the relative signs and magnitudes of the gradients in the temperature and the mean molecular weight, the plasma can be subject to a wide variety of unstable modes which include modifications to the magnetothermal instability (MTI), the heat-flux-driven buoyancy instability (HBI), and overstable gravity modes previously studied in homogeneous media. We also find that there are new modes which are driven by heat conduction and particle diffusion. We discuss the astrophysical implications of our findings for a representative galaxy cluster where helium has sedimented. Our findings suggest that the core insulation that results from the magnetic field configurations that arise as a natural consequence of the HBI, which would be MTI stable in a homogeneous medium, could be alleviated if the mean molecular

  16. Thermal Cycle Stability of a Novel Glass-Mica Composite Seal for Solid Oxide Fuel Cells: Effect of Glass Volume Fraction and Stresses

    SciTech Connect

    Chou, Y S.; Stevenson, Jeffry W.; Singh, Prabhakar

    2005-12-01

    A novel glass-mica composite seal was developed based on a previously of ''infiltrated'' mica seals for solid oxide fuel cells. Ba-Al-Ca silicate sealing glass-mica composite seals. The seals were leak tested for short-term thermal cyfunction of glass volume fraction. Composite seals with 10 v% and 20 v% glatested under compressive stresses from 3 psi to 100 psi and voltage tests on dense 8YSZ electrolyte with the glas-mica composite seal showed very good thermal cycle stability.

  17. Compositional and structural features related to thermal stability in the archaea SRP19 and SRP54 signal recognition particle proteins.

    PubMed

    Miralles, Francisco

    2011-06-01

    To survive at high temperature, thermophile organisms must adapt their biomolecules. In both nucleic acids and proteins, this adaptation involves a vast array of compositional and structural modifications. The archaea stand out as the only group of organisms that have species capable of growing at temperatures ranging from 0 to 110°C. In this study, we have used the archaea genome datasets to identify molecular trends related to thermal adaptation in the protein components (SRP19 and SRP54) of the signal recognition particle (SRP). Using comparative genomics and secondary structure homology modeling we have detected significant differences in the amino acids composition and distribution between the SRP proteins of thermophile and mesophile archaea. These include: a significant increase in the thermophile SRP proteins of the frequency of charged amino acids able to participate in electrostatic interactions which contribute to stabilize proteins; decreased content of both thermolabile and small/tiny amino acids which usually contribute to protein flexibility; and a significant increase in aliphatic and aromatic amino acids providing good covering and masking to produce hydrophobic pockets involved in stabilizing protein structure. Moreover, a detailed analysis of the four structural and functional domains of the SRP54 indicates a particularly robust correlation between the compositional properties of the M domain and the optimal growth temperature (OGT) of the archaea. The analysis of the bacterial SRP54(Ffh) shows similar adaptations to the OGT. Thus, natural selection has adapted the SRP proteins to the OGT of the archaea and bacteria species by modifying both, their amino acids composition and distribution. PMID:21505884

  18. Thermal Stability and Ablation Behavior of Modified Polydimethylsiloxane-Based Polyurethane Composites Reinforced with Polyhedral Oligomeric Silsesquioxane.

    PubMed

    Han, Zhongyou; Xi, Yukun; Kwon, Younghwan

    2016-02-01

    Series of polydimethylsiloxane (PDMS)-based polyurethane (PU)/polyhedral oligomeric silsesquioxane (POSS) composites are prepared using ether or polyether modified diol/polyol PDMS prepolymers, isophorone diisocyanate (IPDI) and either non-reactive or reactive POSS. The effect of POSS incorporated chemically or physically, number of ethylene oxide units and crosslinking on PDMS based PU is investigated in terms of thermal stability and ablation properties. The ablation property is measured using an oxyacetylene torch test, and the ablation rate is evaluated. The results show that POSS molecules make a considerable influence on the ablative resistance, because they act as protective silica forming precursors under oxyacetylene condition. POSS molecules, especially methyl POSS, in PU matrix leads to the formation of densely accumulated spherical silica layers on the top of the ablated surface, resulting in improved ablation resistance. PMID:27433703

  19. Jet Fuel Thermal Stability

    NASA Technical Reports Server (NTRS)

    Taylor, W. F. (Editor)

    1979-01-01

    Various aspects of the thermal stability problem associated with the use of broadened-specification and nonpetroleum-derived turbine fuels are addressed. The state of the art is reviewed and the status of the research being conducted at various laboratories is presented. Discussions among representatives from universities, refineries, engine and airframe manufacturers, airlines, the Government, and others are presented along with conclusions and both broad and specific recommendations for future stability research and development. It is concluded that significant additional effort is required to cope with the fuel stability problems which will be associated with the potentially poorer quality fuels of the future such as broadened specification petroleum fuels or fuels produced from synthetic sources.

  20. Anthocyanins in purple and blue wheat grains and in resulting bread: quantity, composition, and thermal stability.

    PubMed

    Bartl, Pavel; Albreht, Alen; Skrt, Mihaela; Tremlová, Bohuslava; Ošťádalová, Martina; Šmejkal, Karel; Vovk, Irena; Ulrih, Nataša Poklar

    2015-01-01

    The anthocyanin composition of blue (Triticum aestivum L., cv. Skorpion) and purple wheat (Triticum aethiopicum JAKUBZ cv. Abyssinskaja arrasajta cv. Abyssinskaja arrasajta), cultivated in the Czech Republic, and of the prepared whole blue and purple wheat bread was determined. In blue and purple wheat, 19 and 26 anthocyanins, respectively, were tentatively identified by liquid chromatography and mass spectrometry. The total content of anthocyanins determined in blue and purple wheat was 9.26 and 13.23 mgkg(-1), respectively. The breads were baked at 240 and 180 °C. Some significant differences in anthocyanins content were observed between breads prepared at different baking temperatures. The content of cyanidin-3-glucoside, delphinidin-3-glucoside and pelargonidin-3-glucoside was determinated in starting material, whole meal flours and baked breads. These kinds of wheat are suitable for baking bread, since intake of anthocyanins may play an important role in the prevention of human diseases. PMID:26088282

  1. Thermal Stability of Dopamine Transporters.

    PubMed

    Kukk, Siim; Stepanov, Vladimir; Järv, Jaak

    2015-08-01

    The thermal stabilities of the rat and mouse dopamine transporter (DAT) proteins were studied within the temperature range of 0-37°C. The inactivation of the protein was followed by monitoring changes in radioligand-specific binding. We found that the process followed a rate equation with first-order kinetics and was characterized by having a single rate constant k inact. The activation energies (E a) that were calculated from the Arrhenius plots (ln k inact vs. 1/T) were 43 ± 5 and 45 ± 6 kJ/mol for the rat (rDAT) and mouse (mDAT) transporters, respectively, and 44 ± 7 kJ/mol for rDAT from PC-6.3 cell line. These E a values were similar to the E a values of thermal inactivation of the muscarinic receptor from rat brain cortex and to the thermal inactivation of other transmembrane proteins. However, all of these activation energy values were significantly lower than the E a values for soluble single-subunit proteins of similar size. These results therefore suggest that the thermal stability of transmembrane proteins may be governed to a significant extent by cell membrane properties and by interactions between the membrane components and the protein. In contrast, the stability of soluble proteins seems to be mostly governed by protein structure and size, which determine the sum of the stabilizing intramolecular interactions within the protein molecule. It is therefore not surprising that cell membrane properties and composition may have significant effects on the functional properties of transmembrane proteins. PMID:25812533

  2. Effect of thermal shock loadings on stability of dentin-composite polymer material adhesive interfaces

    NASA Astrophysics Data System (ADS)

    Bessudnova, Nadezda O.; Shlyapnikova, Olga A.; Venig, Sergey B.; Gribov, Andrey N.

    2015-03-01

    In the past several decades the problem of longevity and durability of adhesive interfaces between hard tooth tissues and composite resin-based materials are of great interest among dental researchers and clinicians. These parameters are partially determined by adhesive system mechanical properties. In the present research project nanoindentation has been examined to test hardness of dental adhesive systems. A series of laboratory experiments was performed to study the effect of light curing time and oxygen inhibition phenomenon on light-cured adhesive material hardness. An adhesive system AdperTM Single Bond (3M ESPE) was selected as a material for testing. The analysis of experimental data revealed that the maximum values of hardness were observed after the material had been light-cured for 20 seconds, as outlined in guidelines for polymerization time of the adhesive system. The experimental studies of oxygen inhibition influence on adhesive system hardness pointed out to the fact that the dispersive layer removal led to increase in adhesive system hardness. A long - time exposure of polymerized material of adhesive system at open air at room temperature resulted in no changes in its hardness, which was likely to be determined by the mutual effect of rival processes of air oxygen inhibition and directed light curing.

  3. Preparation of high thermal stability polysulfone microcapsules containing lubricant oil and its tribological properties of epoxy composites.

    PubMed

    Li, Haiyan; Wang, Qing; Li, Meiling; Cui, Yexiang; Zhu, Yanji; Wang, Baohui; Wang, Huaiyuan

    2016-05-01

    Polysulfone (PSF) microcapsules containing lubricant oil have been successfully prepared using solvent evaporation method. The results show that lubricant oil was successfully encapsulated and the encapsulation capacity of about 56.0 wt.% was achieved. The uniform microcapsules have nearly spherical shape and quite smooth outer surface. The mean diameter is approximately 156 and 169 μm by using different dispersant solutions. The wall material is porous in structure with wall thickness of about 20 μm. The initial decomposition temperature of PSF is 480 °C. It is higher than traditional poly(urea-formaldehyde) (PUF) and poly(melamine-formaldehyde) (PMF) wall materials with 245 °C and 260 °C initial decomposition temperature, respectively. High thermal stability of PSF microcapsules can be considered as additives in high temperature resistant polymer materials. The frictional coefficient and wear rate of epoxy composites decreased significantly by incorporating microcapsules containing lubricant oil into epoxy. When the concentration of microcapsules was 25 wt.%, the frictional coefficient and specific wear rate were reduced by 2.3 and 18.3 times, respectively, as compared to the neat epoxy. PMID:27066695

  4. Chemical Composition and Thermal Stability of Atomic Force Microscope-Assisted Anodic Oxides as Nanomasks for Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Cha, Kyu Man; Shibata, Kenji; Kamiko, Masao; Yamamoto, Ryoichi; Hirakawa, Kazuhiko

    2011-12-01

    We have investigated the thermal stability of GaAs-oxides grown by atomic force microscope (AFM)-assisted anodic oxidation to identify the conditions suitable for fabricating oxide nanomasks for molecular beam epitaxy (MBE). The oxides grown at bias voltages, Vox, less than 30 V were desorbed after standard thermal cleaning in MBE, while the oxide patterns fabricated at Vox ≥40 V survived on the GaAs surfaces. From X-ray photoemission spectroscopy, we have found that the better thermal stability of AFM-oxides grown at Vox > 40 V can be attributed to the formation of Ga2O3 and that Ga2O3 can be used as nanomasks for site-controlled MBE growth.

  5. Composite stabilizer unit

    DOEpatents

    Ebaugh, Larry R.; Sadler, Collin P.; Carter, Gary D.

    1992-01-01

    An improved fin stabilized projectile including multiple stabilizer fins upon a stabilizer unit situated at the aft end of the projectile is provided, the improvement wherein the stabilizer fins are joined into the stabillizer unit by an injection molded engineering grade polymer.

  6. Chemical composition and thermal stability of GaAs oxides grown by AFM anodic oxidation for site-controlled growth of InAs quantum dots

    NASA Astrophysics Data System (ADS)

    Cha, K. M.; Shibata, K.; Horiuchi, I.; Kamiko, M.; Yamamoto, R.; Hirakawa, K.

    2011-12-01

    We have fabricated GaAs oxides by using atomic force microscope (AFM)-assisted anodic oxidation at various bias voltages, Vox, and studied their chemical compositions and thermal stabilities. The oxides grown at bias voltages less than 30 V desorbed after standard thermal cleaning in molecular beam epitaxy, while the oxide patterns fabricated at Vox≥40 V survived on the surface. We have further investigated the chemical composition of the oxides by X-ray photoemission spectroscopy. It has been found that the AFM oxides grown at Vox˜10 V predominantly consist of Ga2O and GaO, whereas those grown at Vox˜50 V contain a Ga2O3-component. This result indicates that the better thermal stability of AFM oxides grown at Vox≥40 V can be attributed to the formation of Ga2O3. We grew a GaAs buffer layer on the oxide nanomasks and obtained nanoholes. After supplying InAs, selective dot nucleation took place in the nanoholes, resulting in successful formation of site-controlled QDs.

  7. The Effect of Zn-Al-Hydrotalcites Composited with Calcium Stearate and β-Diketone on the Thermal Stability of PVC

    PubMed Central

    Tong, Mengliang; Chen, Hongyan; Yang, Zhanhong; Wen, Runjuan

    2011-01-01

    A clean-route synthesis of Zn-Al-hydrotalcites (Zn-Al-LDHs) using zinc oxide and sodium aluminate solution has been developed. The as-obtained materials were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The effects of metal ions at different molar ratios on the performance of hydrotalcites were discussed. The results showed that the Zn-Al-hydrotalcites can be successfully synthesized at three different Zn/Al ratios of 3:1, 2:1 and 1:1. Thermal aging tests of polyvinyl chloride (PVC) mixed with Zn-Al-LDHs, calcium stearate (CaSt2) and β-diketone were carried out in a thermal aging test box by observing the color change. The results showed that Zn-Al-LDHs can not only enhance the stability of PVC significantly due to the improved capacity of HCl-adsorption but also increase the initial stability and ensure good-initial coloring due to the presence of the Zn element. The effects of various amounts of Zn-Al-LDHs, CaSt2 and β-diketone on the thermal stability of PVC were discussed. The optimum composition was determined to be 0.1 g Zn-Al-LDHs, 0.15 g CaSt2 and 0.25 g β-diketone in 5 g PVC. PMID:21673921

  8. The effect of Zn-Al-hydrotalcites composited with calcium stearate and β-diketone on the thermal stability of PVC.

    PubMed

    Tong, Mengliang; Chen, Hongyan; Yang, Zhanhong; Wen, Runjuan

    2011-01-01

    A clean-route synthesis of Zn-Al-hydrotalcites (Zn-Al-LDHs) using zinc oxide and sodium aluminate solution has been developed. The as-obtained materials were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The effects of metal ions at different molar ratios on the performance of hydrotalcites were discussed. The results showed that the Zn-Al-hydrotalcites can be successfully synthesized at three different Zn/Al ratios of 3:1, 2:1 and 1:1. Thermal aging tests of polyvinyl chloride (PVC) mixed with Zn-Al-LDHs, calcium stearate (CaSt(2)) and β-diketone were carried out in a thermal aging test box by observing the color change. The results showed that Zn-Al-LDHs can not only enhance the stability of PVC significantly due to the improved capacity of HCl-adsorption but also increase the initial stability and ensure good-initial coloring due to the presence of the Zn element. The effects of various amounts of Zn-Al-LDHs, CaSt(2) and β-diketone on the thermal stability of PVC were discussed. The optimum composition was determined to be 0.1 g Zn-Al-LDHs, 0.15 g CaSt(2) and 0.25 g β-diketone in 5 g PVC. PMID:21673921

  9. Thermally stabilized heliostat

    DOEpatents

    Anderson, Alfred J.

    1983-01-01

    An improvement in a heliostat having a main support structure and pivoting and tilting motors and gears and a mirror module for reflecting solar energy onto a collector, the improvement being characterized by an internal support structure within each mirror module and front and back sheets attached to the internal support structure, the front and back sheets having the same coefficient of thermal expansion such that no curvature is induced by temperature change, and a layer of adhesive adhering the mirror to the front sheet. The adhesive is water repellent and has adequate set strength to support the mirror but has sufficient shear tolerance to permit the differential expansion of the mirror and the front sheet without inducing stresses or currature effect. The adhesive also serves to dampen fluttering of the mirror and to protect the mirror backside against the adverse effects of weather. Also disclosed are specific details of the preferred embodiment.

  10. Composite Thermal Switch

    NASA Technical Reports Server (NTRS)

    McDonald, Robert; Brawn, Shelly; Harrison, Katherine; O'Toole, Shannon; Moeller, Michael

    2011-01-01

    Lithium primary and lithium ion secondary batteries provide high specific energy and energy density. The use of these batteries also helps to reduce launch weight. Both primary and secondary cells can be packaged as high-rate cells, which can present a threat to crew and equipment in the event of external or internal short circuits. Overheating of the cell interior from high current flows induced by short circuits can result in exothermic reactions in lithium primary cells and fully charged lithium ion secondary cells. Venting of the cell case, ejection of cell components, and fire have been reported in both types of cells, resulting from abuse, cell imperfections, or faulty electronic control design. A switch has been developed that consists of a thin layer of composite material made from nanoscale particles of nickel and Teflon that conducts electrons at room temperature and switches to an insulator at an elevated temperature, thus interrupting current flow to prevent thermal runaway caused by internal short circuits. The material is placed within the cell, as a thin layer incorporated within the anode and/or the cathode, to control excess currents from metal-to-metal or metal-to-carbon shorts that might result from cell crush or a manufacturing defect. The safety of high-rate cells is thus improved, preventing serious injury to personnel and sensitive equipment located near the battery. The use of recently available nanoscale particles of nickel and Teflon permits an improved, homogeneous material with the potential to be fine-tuned to a unique switch temperature, sufficiently below the onset of a catastrophic chemical reaction. The smaller particles also permit the formation of a thinner control film layer (<50 m), which can be incorporated into commercial high-rate lithium primary and secondary cells. The innovation permits incorporation in current lithium and lithium-ion cell designs with a minimal impact on cell weight and volume. The composite thermal

  11. Thermal stability of sulfonated polymers

    SciTech Connect

    Audibert, A.; Argillier, J.F.

    1995-11-01

    Polyacrylamides which are used in oil applications i.e. polymer flooding and water based muds, are hydrolyzed versus time and temperature. This leads to a lack of tolerance towards electrolyte contamination and to a rapid degradation inducing a loss of their properties. Modifications of polyacrylamide structure have been proposed to postpone their thermal stability to higher temperatures. Monomers such as acrylamido methylpropane sulfonate (AMPS) or sulfonated styrene/maleic anhydride can be used to prevent acrylamide comonomer from hydrolysis. The aim of this work is to study under controlled conditions, i.e. anaerobic atmosphere, neutral pH, the stability of sulfonated polymers in order to distinguish between hydrolysis and radical degradation reactions. It has been observed that up to 100 C, the AMPS group is stable and protects the acrylamide function from hydrolysis up to 80%. At higher temperature, even the hydrolysis of the AMPS group occurs, giving acrylate and {beta},{beta} dimethyl taurine, with a kinetics that depends on temperature and time. Degradation in terms of molecular weight then occurs indicating that it follows a radical decarboxylation reaction. It can be limited either by the use of free radical scavenger or when the polymer is in the presence of a mineral phase such as bentonite. These results provide valuable data for the determination of the limits of use of sulfonated copolymers and guidelines for optimizing chemical structure of sulfonated polymers used in water based formulation, in particular to enhance their thermal stability.

  12. Thermal Response Of Composite Insulation

    NASA Technical Reports Server (NTRS)

    Stewart, David A.; Leiser, Daniel B.; Smith, Marnell; Kolodziej, Paul

    1988-01-01

    Engineering model gives useful predictions. Pair of reports presents theoretical and experimental analyses of thermal responses of multiple-component, lightweight, porous, ceramic insulators. Particular materials examined destined for use in Space Shuttle thermal protection system, test methods and heat-transfer theory useful to chemical, metallurgical, and ceramic engineers needing to calculate transient thermal responses of refractory composites.

  13. Tailoring characteristic thermal stability of Ni-Au binary nanocrystals via structure and composition engineering: theoretical insights into structural evolution and atomic inter-diffusion

    SciTech Connect

    Li, Bangquan; Wang, Hailong; Xing, Guozhong; Wang, Rongming E-mail: rmwang@ustb.edu.cn

    2014-11-15

    We report on the structural evolution and atomic inter-diffusion characteristics of the bimetallic Ni-Au nanocrystals (NCs) by molecular dynamics simulations studies. Our results reveal that the thermal stability dynamics of Ni-Au NCs strongly depends on the atomic configurations. By engineering the structural construction with Ni:Au = 1:1 atomic composition, compared with core-shell Au@Ni and alloy NCs, the melting point of core-shell Ni@Au NCs is significantly enhanced up to 1215 K. Unexpectedly, with atomic ratio of Au:Ni= 1:9, the melting process initiates from the atoms in the shell of Ni@Au and alloy NCs, while starts from the core of Au@Ni NCs. The corresponding features and evolution process of structural motifs, mixing and segregation are illustrated via a series of dynamic simulations videos. Moreover, our results revealed that the face centered cubic phase Au{sub 0.75}Ni{sub 0.25} favorably stabilizes in NCs form but does not exist in the bulk counterpart, which elucidates the anomalies of previously reported experimental results on such bimetallic NCs.

  14. The role of stabilization centers in protein thermal stability.

    PubMed

    Magyar, Csaba; Gromiha, M Michael; Sávoly, Zoltán; Simon, István

    2016-02-26

    The definition of stabilization centers was introduced almost two decades ago. They are centers of noncovalent long range interaction clusters, believed to have a role in maintaining the three-dimensional structure of proteins by preventing their decay due to their cooperative long range interactions. Here, this hypothesis is investigated from the viewpoint of thermal stability for the first time, using a large protein thermodynamics database. The positions of amino acids belonging to stabilization centers are correlated with available experimental thermodynamic data on protein thermal stability. Our analysis suggests that stabilization centers, especially solvent exposed ones, do contribute to the thermal stabilization of proteins. PMID:26845354

  15. Chemical and Radiochemical Composition of Thermally Stabilized Plutonium Oxide from the Plutonium Finishing Plant Considered as Alternate Feedstock for the Mixed Oxide Fuel Fabrication Facility

    SciTech Connect

    Tingey, Joel M.; Jones, Susan A.

    2005-07-01

    Eighteen plutonium oxide samples originating from the Plutonium Finishing Plant (PFP) on the Hanford Site were analyzed to provide additional data on the suitability of PFP thermally stabilized plutonium oxides and Rocky Flats oxides as alternate feedstock to the Mixed Oxide Fuel Fabrication Facility (MFFF). Radiochemical and chemical analyses were performed on fusions, acid leaches, and water leaches of these 18 samples. The results from these destructive analyses were compared with nondestructive analyses (NDA) performed at PFP and the acceptance criteria for the alternate feedstock. The plutonium oxide materials considered as alternate feedstock at Hanford originated from several different sources including Rocky Flats oxide, scrap from the Remote Mechanical C-Line (RMC) and the Plutonium Reclamation Facility (PRF), and materials from other plutonium conversion processes at Hanford. These materials were received at PFP as metals, oxides, and solutions. All of the material considered as alternate feedstock was converted to PuO2 and thermally stabilized by heating the PuO2 powder at 950 C in an oxidizing environment. The two samples from solutions were converted to PuO2 by precipitation with Mg(OH)2. The 18 plutonium oxide samples were grouped into four categories based on their origin. The Rocky Flats oxide was divided into two categories, low- and high-chloride Rocky Flats oxides. The other two categories were PRF/RMC scrap oxides, which included scrap from both process lines and oxides produced from solutions. The two solution samples came from samples that were being tested at Pacific Northwest National Laboratory because all of the plutonium oxide from solutions at PFP had already been processed and placed in 3013 containers. These samples originated at the PFP and are from plutonium nitrate product and double-pass filtrate solutions after they had been thermally stabilized. The other 16 samples originated from thermal stabilization batches before canning at

  16. Thermal stabilized vegetable oil extended diesel fuels

    SciTech Connect

    Sweeney, W.M.; Lachowicz, D.R.

    1986-03-11

    A middle distillate fuel composition is described comprising: (a) a major portion of a middle distillate containing a hydrocarbon boiling in the middle distillate boiling range; (b) an extending portion of a vegetable oil; and (c) an effective thermal-stabilizing amount of a nitrogen-containing polymer prepared by reacting an ethylene/propylene copolymer with maleic anhydride, thereby forming a succinic anhydride, reacting the succinic anhydride, with an alcohol, thereby forming a succinate ester while leaving a portion of the succinic anhydride unreacted, and, reacting the succinate ester and the unreacted succinic anhydride with dimethylaminopropylamine, thereby forming a nitrogen-containing polymer.

  17. Thermal stability of nanocrystalline microstructures

    NASA Astrophysics Data System (ADS)

    Darling, Kris Allen

    The objective of the proposed research is to develop the experimental data and scientific basis that can optimize the thermodynamic stabilization of a nanoscale microstructure during consolidation of Fe powder particles through select solute diffusion to grain boundaries. Fe based alloys were high energy ball milled to produce supersaturated solid solutions with a nominal grain size of ˜10nm. Solutes such as Y, W, Ta, Ni and Zr were selected based on their propensity to grain boundary segregated in Fe. Based on preliminary heat treatments Zr was selected as the solute of choice. Upon further heat treating experiments and microstructural analysis it was found that Zr solute additions of <4at% could stabilize a nanocrystalline microstructure of <100nm at temperatures in excess of 900°C. This is in stark comparison to pure nanocrystalline Fe which shows coarsening to the micron scale after annealing above 600°C. Reduction in grain boundary energy due to Zr segregation and solute drag are proposed as mechanism responsible for the observed thermal stability. In addition to the work presented on Fe based Zr alloys supplementary research is presented on the following systems: Fe based Ni alloys, Pd 20at%Zr, Cu3Ge and CuGeO3. The addition of Ni to Fe was selected as a control. Since Ni and Fe have similar atomic radii, the elastic enthalpy of segregation of Ni in Fe is low (+1kJ/mol) and at high temperatures Ni has complete solid solubility in Fe; it is suggested that Ni will have a negligible influence in the thermal stability of nanocrystalline Fe. It was shown that at 700°C the addition of 1at% Ni produce a bimodal microstructure consisting of ˜70% abnormally grown grains and ˜30% nanocrystalline grains of 100-200nm. While these results are interesting extensive work is still needed to understand the mechanisms governing the thermal stability in this system. A presentation of the collected data is given. Pd 20 at% Zr was high energy ball milled to produce an

  18. Thermal Stability Of Formohydroxamic Acid

    SciTech Connect

    Fondeur, F. F.; Rudisill, T. S.

    2011-10-21

    The thermal stability of formohydroxamic acid (FHA) was evaluated to address the potential for exothermic decomposition during storage and its use in the uranium extraction process. Accelerating rate calorimetry showed rapid decomposition at a temperature above 65 {degree}C; although, the rate of pressure rise was greater than two orders of magnitude less than the lower bound for materials which have no explosive properties with respect to transportation. FHA solutions in water and nitric acid did not reach runaway conditions until 150 {degree}C. Analysis by differential scanning calorimetry showed that FHA melted at 67 {degree}C and thermally decomposed at 90 {degree}C with an enthalpy of -1924 J/g. The energics of the FHA thermal decomposition are comparable to those measured for aqueous solutions of hydroxylamine nitrate. Solid FHA should be stored in a location where the temperature does not exceed 20-25 {degree}C. As a best practice, the solid material should be stored in a climate-controlled environment such as a refrigerator or freezer. FHA solutions in water are not susceptible to degradation by acid hydrolysis and are the preferred way to handle FHA prior to use.

  19. Thermal expansion behavior of LDEF metal matrix composites

    NASA Technical Reports Server (NTRS)

    Le, Tuyen D.; Steckel, Gary L.

    1993-01-01

    The thermal expansion behavior of Long Duration Exposure Facility (LDEF) metal matrix composite materials was studied by (1) analyzing the flight data that was recorded on orbit to determine the effects of orbital time and heating/cooling rates on the performance of the composite materials, and (2) characterizing and comparing the thermal expansion behavior of post-flight LDEF and lab-control samples. The flight data revealed that structures in space are subjected to nonuniform temperature distributions, and thermal conductivity of a material is an important factor in establishing a uniform temperature distribution and avoiding thermal distortion. The flight and laboratory data showed that both Gr/Al and Gr/Mg composites were stabilized after prolonged thermal cycling on orbit. However, Gr/Al composites showed more stable thermal expansion behavior than Gr/Mg composites and offer advantages for space structures particularly where very tight thermal stability requirements in addition to high material performance must be met.

  20. Thermal properties of epoxy composites filled with boric acid

    NASA Astrophysics Data System (ADS)

    Visakh, P. M.; Nazarenko, O. B.; Amelkovich, Yu A.; Melnikova, T. V.

    2015-04-01

    The thermal properties of epoxy composites filled with boric acid fine powder at different percentage were studied. Epoxy composites were prepared using epoxy resin ED-20, boric acid as flame-retardant filler, hexamethylenediamine as a curing agent. The prepared samples and starting materials were examined using methods of thermal analysis, scanning electron microscopy and infrared spectroscopy. It was found that the incorporation of boric acid fine powder enhances the thermal stability of epoxy composites.

  1. Thermally Stabilized Transmit/Receive Modules

    NASA Technical Reports Server (NTRS)

    Hoffman, James; DelCastillo, Linda; Miller, Jennifer; Birur, Gaj

    2011-01-01

    RF-hybrid technologies enable smaller packaging and mass reduction in radar instruments, especially for subsystems with dense electronics, such as electronically steered arrays. We are designing thermally stabilized RF-hybrid T/R modules using new materials for improved thermal performance of electronics. We are combining advanced substrate and housing materials with a thermal reservoir material, and develop new packaging techniques to significantly improve thermal-cycling reliability and performance stability over temperature.

  2. Lightweight, Thermally Conductive Composite Material

    NASA Technical Reports Server (NTRS)

    Sharp, G. Richard; Loftin, Timothy A.

    1990-01-01

    Aluminum reinforced with carbon fibers superior to copper in some respects. Lightweight composite material has high thermal conductivity. Consists of aluminum matrix containing graphite fibers, all oriented in same direction. Available as sheets, tubes, and bars. Thermal conductivity of composite along fibers rises above that of pure copper over substantial range of temperatures. Graphite/aluminum composite useful in variety of heat-transfer applications in which reduction of weight critical. Used to conduct heat in high-density, high-speed integrated-circuit packages for computers and in base plates for electronic equipment. Also used to carry heat away from leading edges of wings in high-speed airplanes.

  3. Thermal stability of grafted fibers. [Gamma radiation

    SciTech Connect

    Sundardi, F.; Kadariah; Marlianti, I.

    1983-10-01

    Presented the experimental results on the study of thermal stability of grafted fibers, i.e., polypropylene-, polyester-, and rayon-grafted fibers. These fibers were obtained by radiation grafting processes using hydrophylic monomers such as 1-vinyl 2-pyrolidone, acrylic acid, N-methylol acrylamide, and acrylonitrile. The thermal stability of the fibers was studied using a Shimadzu Thermal Analyzer DT-30. The thermal stability of the fibers, which can be indicated by the value of the activation energy for thermal degradation, was not improved by radiation grafting. The degree of improvement depends on the thermal stability of the monomers used for grafting. The thermal stability of a polypropylene fiber, either a grafted or an ungrafted one, was found to be inferior compared to the polyester of a rayon fiber, which may be due to the lack of C=O and C=C bonds in the polypropylene molecules. The thermal stability of a fiber grafted with acrylonitrile monomer was found to be better than that of an ungrafted one. However, no improvement was detected in the fibers grafted with 1-vinyl 2-pyrrolidone monomer, which may be due to the lower thermal stability of poly(1-vinyl-2-pyrrolidone), compared to the polypropylene or polyester fibers. 17 figures, 3 tables.

  4. Enhanced thermal stability of green-emission quantum-dot light-emitting diodes via composition-gradient thick-shell quantum dots

    NASA Astrophysics Data System (ADS)

    Vu, Hoang-Tuan; Chiang, Ray-Kuang; Huang, Chun-Yuan; Chen, Chih-Jung; Yu, Hsin-Chieh; Lien, Jiun-Yi; Su, Yan-Kuin

    2016-08-01

    We investigated the thermal properties of quantum-dot light-emitting diodes (QLEDs) using composition-gradient thick-shell CdSe@ZnS/ZnS QDs. Thick-shell QDs with low defective structures effectively prevented electron–hole pairs from nonradiative Auger recombination. More specifically, defects were prevented from thermal-stress-induced expansion at elevated temperatures and high driving currents. Consequently, 97% of EL remained after the device was thermally stressed at temperatures higher than 110 °C, indicating that the nanostructure design of QDs is an important factor for high-performance QLEDs.

  5. RP-1 and JP-8 Thermal Stability Experiments

    NASA Technical Reports Server (NTRS)

    Brown, Sarah P.; Emens, Jessica M.; Frederick, Robert A., Jr.

    2005-01-01

    This work experimentally investigates the effect of fuel composition changes on jet and rocket fuel thermal stability. A High Reynolds Number Thermal Stability test device evaluated JP-8 and RP-1 fuels. The experiment consisted of an electrically heated, stainless steel capillary tube with a controlled fuel outlet temperature. An optical pyrometer monitored the increasing external temperature profiles of the capillary tube as deposits build inside during each test. Multiple runs of each fuel composition provided results on measurement repeatability. Testing a t two different facilities provided data on measurement reproducibility. The technique is able to distinguish between thermally stable and unstable compositions of JP-8 and intermediate blends made by combining each composition. The technique is also able to distinguish among standard RP-1 rocket fuels and those having reduced sulfur levels. Carbon burn off analysis of residue in the capillary tubes on the RP-1 fuels correlates with the external temperature results.

  6. High Reynolds Number Thermal Stability Experiments

    NASA Technical Reports Server (NTRS)

    Emens, Jessica M.; Brown, Sarah P.; Frederick Robert A., Jr.; Wood, A. John

    2004-01-01

    This work represents preliminary thermal stability results for liquid hydrocarbon fuels. High Reynolds Number Thermal Stability experiments with Jet A and RP-1 resulted in a quantitative measurement of the thermal stability. Each fuel flowed through a heated capillary tube that held the outlet temperature at 290 C. An optical pyrometer measured the surface temperature of the tube at 12 locations as a function of time. The High Reynolds Number Thermal Stability number was then determined using standards published by the American Society for Testing and Materials. The results for Jet A showed lower thermal stability than similar tests conducted at another facility. The RP-1 results are the first reported using this technique. Because the temperature rise on the capillary tube during testing for the RP-1 fuels was not significant, a new standard for the testing conditions should be developed for these types of fuels.

  7. Thermal Degradation of Lead Monoxide Filled Polymer Composite Radiation Shields

    SciTech Connect

    Harish, V.; Nagaiah, N.

    2011-07-15

    Lead monoxide filled Isophthalate resin particulate polymer composites were prepared with different filler concentrations and investigated for physical, thermal, mechanical and gamma radiation shielding characteristics. This paper discusses about the thermo gravimetric analysis of the composites done to understand their thermal properties especially the effect of filler concentration on the thermal stability and degradation rate of composites. Pristine polymer exhibits single stage degradation whereas filled composites exhibit two stage degradation processes. Further, the IDT values as well as degradation rates decrease with the increased filler content in the composite.

  8. Dielectric composites incorporating enthalpy stabilization for NbTi windings

    NASA Astrophysics Data System (ADS)

    Lawless, W. N.; Clark, C. F.

    1988-09-01

    Composites of ceramic powders in epoxies appropriate for both insulating and impregnating NbTi windings are studied. Specific heat, thermal conductivity, thermal contraction, and magnetocaloric measurements on composites are presented. Thermal contractions well matched to copper are found, and thermal shock resistance is greatly enhanced. Enthalpies, 4.2-6 K, range up to 80 mJ cm-3 and are 20-50 times larger than that of the pure epoxies. The thermal group parameter, η=(κρC)1/2, is 2 1/2 -4 times larger than that for epoxy (data are given for magnetic field strengths up to 8 T). An interesting magnetocaloric stabilization mechanism is found: on up-ramp, a magnetocaloric enthalpy ≤7.6 mJ cm-3 is available for stabilization via adiabatic-magnetization cooling. Results are not specific to the epoxies used but apply to composites with any amorphous matrices.

  9. Composite materials for thermal energy storage: enhancing performance through microstructures.

    PubMed

    Ge, Zhiwei; Ye, Feng; Ding, Yulong

    2014-05-01

    Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. PMID:24591286

  10. A ceramic composite thermal insulation

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Ceramic composite thermal insulation comprised of alumina-silica fibers, pigmentary potassium titanate, and asbestos fibers, bonded with a colloidal silica sol has improved insulating capabilities to both radiant and convective heat. Gelation of the colloidal silica sol prevents binder migration.

  11. Thermal Conductivity of Alumina-Toughened Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhu, Dong-Ming

    2003-01-01

    10-mol% yttria-stabilized zirconia (10YSZ)-alumina composites containing 0 to 30 mol% alumina were fabricated by hot pressing at 1500 C in vacuum. Thermal conductivity of the composites, determined at various temperatures using a steady-state laser heat flux technique, increased with increase in alumina content. Composites containing 0, 5, and 10-mol% alumina did not show any change in thermal conductivity with temperature. However, those containing 20 and 30-mol% alumina showed a decrease in thermal conductivity with increase in temperature. The measured values of thermal conductivity were in good agreement with those calculated from simple rule of mixtures.

  12. Thermal expansion of composites: Methods and results. [large space structures

    NASA Technical Reports Server (NTRS)

    Bowles, D. E.; Tenney, D. R.

    1981-01-01

    The factors controlling the dimensional stability of various components of large space structures were investigated. Cyclic, thermal and mechanical loading were identified as the primary controlling factors of the dimensional stability of cables. For organic matrix composites, such as graphite-epoxy, it was found that these factors include moisture desorption in the space environment, thermal expansion as the structure moves from the sunlight to shadow in its orbit, mechanical loading, and microyielding of the material caused by microcracking of the matrix material. The major focus was placed on the thermal expansion of composites and in particular the development and testing of a method for its measurement.

  13. Thermal stresses in composite tubes

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.

    1986-01-01

    This paper summarizes work to determine the thermally-induced stresses and deformations in specially-constructed angle-ply composite tubes subjected to a uniform temperature change relative to their stress-free cure state. The tubes are designed for application to space structures and have high axial stiffness. Four angle-ply designs are examined in an effort to determine which design might have the most favorable thermally-induced response. A planar elasticity solution is used, the solution being valid away from the ends of the tube. Of the four designs considered, none has any particular advantage as far as stress levels are concerned. However, despite the fact that the tube wall is a balanced laminate, one design exhibits a significant amount of thermally-induced twist.

  14. Soil thermal resistivity and thermal stability measuring instrument. Volume 1. Determination of soil thermal stability and other soil thermal properties. Final report

    SciTech Connect

    Boggs, S.A.; Radhakrishna, H.S.

    1981-11-01

    Numerous considerations influence the thermal design of an underground power cable, including the soil thermal resistivity, thermal diffusivity and thermal stability. Each of these properties is a function of soil moisture which is, in turn, a function of past weather, soil composition, and biological burden. The Neher-McGrath formalism has been widely used for thermal cable design. However, this formalism assumes knowledge of soil thermal properties (resistivity and diffusivity). For design purposes, these parameters should be treated statistically, since weather varies greatly from year-to-year. As well, soil thermal property surveys are normally required along the route to assess the thermal quality of the native soil. This project is intended to fill the gap between the need to carry out thermal design and the use of the Neher-McGrath formalism which is normally employed. This goal has been addressed through: (1) development of instrumentation and methods of measuring soil thermal properties in situ and in the laboratory; (2) recommendation of methods for conducting soil surveys along a proposed cable route and of assessing the thermal quality of soils; and (3) development of a computerized method to treat soil thermal design parameters on a statistical basis using computerized weather records as supplied by the US Environmental Data Service. This volume discussed methods for determining the thermal properties of soils. The use of the methods and instrumentation developed as a result of this contract should permit less conservative thermal design thereby improving the economics of underground transmission. As well, these techniques and instrumentation facilitate weather-dependent prediction of cable ampacity for installed cables, monitoring of backfill thermal stability, and many other new practices.

  15. Thermal effects in borehole stability

    NASA Astrophysics Data System (ADS)

    Tran, Dung Trung

    An accurate wellbore stability analysis depends strongly on the state of knowledge of the problem at hand. Almost in all cases, the state of knowledge for wellbore stability analyses is poor. Values of many parameters and variables (so-called prior geological information) are poorly constrained and various assumptions of the adopted wellbore models are easily violated. The dilema is that using a model requiring few input parameters would suffer from a large number of model assumptions and simplifications; while using a complex model requiring a large number of input parameters which have wide ranges of possible values. Therefore, assessing the uncertainty (or degree of confidence) for different possible wellbore stability/instability scenarios remains difficult. Current sensitivity analyses, which consider varying possible values of one parameter while keeping others constant, are suboptimal and may not provide the correct effects of the parameters' uncertainties on the overall uncertainty of the wellbore stability prediction. Recent technological advances such as logging-while-drilling (LWD) and measuring-while-drilling (MWD) enable real-time updating of measured rock properties values and in-situ conditions. This means the ranges and uncertainties of parameters for wellbore stability analyses can be adjusted in real-time, during drilling. This aspect has not been developed into a self-updating, real-time wellbore stability analysis approach yet. As a step toward that goal, this dissertation presents several studies covering different aspects of wellbore stability. In particular, the uncertainties of input parameters and selected models are treated using a probabilistic framework combining Monte Carlo simulations and Bayesian statistics. The uncertain nature of both input parameters and model assumptions and their effects on the uncertainties of wellbore stability predictions are investigated. It is shown that, depending on the severity of parameters

  16. Thermal stability of PLD grown silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Shokeen, Poonam; Jain, Amit; Kapoor, Avinashi

    2016-05-01

    Present work discusses the stability of silver nanoparticles at different annealing temperatures. Air muffle furnace annealing is performed to study the thermal stability of pulsed laser deposited silver nanoparticles. Silver reacts with atmospheric oxygen to form silver oxide at annealing temperatures below 473K and thermal decomposition of silver oxide takes place at temperatures above 473K. Oxide formation results in core shrinkage of silver, which in turn affects the surface plasmon resonance of silver nanoparticles. With increase in annealing temperature, the surface plasmon effect of nanoparticles starts to fade. SEM, XRD and UV-vis spectroscopy have been performed to analysis various structural and optical properties.

  17. Effects of compositional changes on the performance of a thermal barrier coating system. [yttria-stabilized zirconia coatings on gas turbine engine blades

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1978-01-01

    Currently proposed thermal barrier systems for aircraft gas turbine engines consist of NiCrAlY bond coating covered with an insulating oxide layer of yttria-stabilized zirconia. The effect of yttrium concentration (from 0.15 to 1.08 w/o) in the bond coating and the yttria concentration (4 to 24.4 w/o) in the oxide layer were evaluated. Furnace, natural gas-oxygen torch, and Mach 1.0 burner rig cyclic tests on solid specimens and air-cooled blades were used to identify trends in coating behavior. Results indicate that the combinations of yttrium levels between 0.15 - 0.35 w/o in the bond coating and the yttria concentration between 6 - 8 w/o in the zirconium oxide layer were the most adherent and resistant to high temperature cyclic exposure.

  18. Using real-time electron microscopy to explore the effects of transition-metal composition on the local thermal stability in charged LixNiyMnzCo1-y-zO2 cathode materials

    DOE PAGESBeta

    Hwang, Sooyeon; Kim, Seung Min; Bak, Seong -Min; Kim, Se Young; Cho, Byung -Won; Chung, Kyung Yoon; Lee, Jeong Yong; Stach, Eric A.; Chang, Wonyoung

    2015-05-08

    In this study, we use in-situ transmission electron microcopy (TEM) to investigate the thermal decomposition that occurs at the surface of charged LixNiyMnzCo1-y-zO2 (NMC) cathode materials of different composition (with y, z=0.8, 0.1 and 0.6, 0.2 and 0.4, 0.3), after they have been charged to their practical upper limit voltage (4.3V). By heating these materials inside the TEM, we are able to directly characterize near surface changes in both their electronic structure (using electron energy loss spectroscopy) and crystal structure and morphology (using electron diffraction and bright-field imaging). The most Ni-rich material (y, z = 0.8, 0.1) is found tomore » be thermally unstable at significantly lower temperatures than the other compositions – this is manifested by changes in both the electronic structure and the onset of phase transitions at temperatures as low as 100°C. Electron energy loss spectroscopy indicates that the thermally induced reduction of Ni ions drives these changes, and that this is exacerbated by the presence of an additional redox reaction that occurs at 4.2V in the y, z = 0.8, 0.1 material. Exploration of individual particles shows that there are substantial variations in the onset temperatures and overall extent of these changes. Of the compositions studied, the composition of y, z = 0.6, 0.2 has the optimal combination of high energy density and reasonable thermal stability. The observations herein demonstrate that real time electron microscopy provide direct insight into the changes that occur in cathode materials with temperature, allowing optimization of different alloy concentrations to maximize overall performance.« less

  19. Thermal stabilization of an endoglucanase by cyclization.

    PubMed

    van Lieshout, Johan F T; Pérez Gutiérrez, Odette N; Vroom, Wietse; Planas, Antoni; de Vos, Willem M; van der Oost, John; Koutsopoulos, Sotirios

    2012-08-01

    An intein-driven protein splicing approach allowed for the covalent linkage between the N- and C-termini of a polypeptide chain to create circular variants of the endo-β-1,3-1,4-glucanase, LicA, from Bacillus licheniformis. Two circular variants, LicA-C1 and LicA-C2, which have connecting loops of 20 and 14 amino acids, respectively, showed catalytic activities that are approximately two and three times higher, respectively, compared to that of the linear LicA (LicA-L1). The thermal stability of the circular variants was significantly increased compared to the linear form. Whereas the linear glucanase lost half of its activity after 3 min at 65 °C, the two circular variants have 6-fold (LicA-C1) and 16-fold (LicA-C2) increased half-life time of inactivation. In agreement with this, fluorescence spectroscopy and differential scanning calorimetry studies revealed that circular enzymes undergo structural changes at higher temperatures compared to that of the linear form. The effect of calcium on the conformational stability and function of the circular LicAs was also investigated, and we observed that the presence of calcium ions results in increased thermal stability. The impact of the length of the designed loops on thermal stability of the circular proteins is discussed, and it is suggested that cyclization may be an efficient strategy for the increased stability of proteins. PMID:22653681

  20. Temperature Stabilization Requirements for Unchopped Thermal Detectors

    NASA Technical Reports Server (NTRS)

    Foote, Marc C.

    2000-01-01

    The temperature stabilization requirements of unchopped thermistor bolometers and thermopile detectors are analyzed. The detector temperature, on which the bolometer output signal depends, is quite sensitive to changes in instrument temperature but relatively insensitive to changes in scene temperature. In contrast, the difference in temperature between detector and substrate (instrument), on which the thermopile signal depends, is equally sensitive to changes in instrument and scene temperature. Expressions for these dependencies are derived based on a simplified instrument model. It is shown that for a typical uncooled thermal imager, the temperature stabilization requirements for a bolometer are two orders of magnitude more stringent than those for a thermopile detector. Keywords: thermistor, bolometer, thermopile, detector, IR, thermal, temperature stabilization

  1. The Thermal Stability of Galaxy Cluster Plasmas

    NASA Astrophysics Data System (ADS)

    Quataert, Eliot

    2011-09-01

    The interplay between radiative cooling and heating at the centers of massive halos remains one of the major problems in galaxy formation. Absent heating, theoretical models overpredict cooling and star formation rates in these systems by several orders of magnitude. Some process must heat the gas to offset cooling, but it is not yet clear how global thermal stability can be achieved; moreover, the plasma is likely to remain prone to local thermal instability on small scales. We propose to explore physically-motivated heating models that stabilize groups and clusters against cooling catastrophes. Our proposed work will determine both why clusters have the multiphase structure they do, and what role the cold and hot gas play in the thermal evolution of the intracluster medium.

  2. Ultraviolet and thermally stable polymer compositions

    NASA Technical Reports Server (NTRS)

    Adamson, M. J.; Gloria, H. R.; Goldsberry, R. E.; Reinisch, R. F.

    1972-01-01

    Copolymers, produced from aromatic substituted aromatic azine-siloxane compositions, are thermally stable, solar ultraviolet light non-degradable by wavelengths shorter than those reaching earth surface.

  3. Thermal Conductivity of Alumina-reinforced Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    2005-01-01

    10-mol% yttria-stabilized zirconia (10SZ) - alumina composites containing 0-30 mol% alumina were fabricated by hot pressing at 1500 C in vacuum. Thermal conductivity was determined at various temperatures using a steady-state laser heat flux technique. Thermal conductivity of the composites increased with increase in alumina content. Composites containing 0, 5, and 10-mol% alumina did not show any change in thermal conductivity with temperature. However, those containing 20 and 30-mol% alumina showed a decrease in thermal conductivity with increase in temperature. The measured values of thermal conductivity were in good agreement with those calculated from the Maxwell-Eucken model where one phase is uniformly dispersed within a second major continuous phase.

  4. In situ thermally reduced graphene oxide/epoxy composites: thermal and mechanical properties

    NASA Astrophysics Data System (ADS)

    Olowojoba, Ganiu B.; Eslava, Salvador; Gutierrez, Eduardo S.; Kinloch, Anthony J.; Mattevi, Cecilia; Rocha, Victoria G.; Taylor, Ambrose C.

    2016-01-01

    Graphene has excellent mechanical, thermal, optical and electrical properties and this has made it a prime target for use as a filler material in the development of multifunctional polymeric composites. However, several challenges need to be overcome to take full advantage of the aforementioned properties of graphene. These include achieving good dispersion and interfacial properties between the graphene filler and the polymeric matrix. In the present work, we report the thermal and mechanical properties of reduced graphene oxide/epoxy composites prepared via a facile, scalable and commercially viable method. Electron micrographs of the composites demonstrate that the reduced graphene oxide (rGO) is well dispersed throughout the composite. Although no improvements in glass transition temperature, tensile strength and thermal stability in air of the composites were observed, good improvements in thermal conductivity (about 36 %), tensile and storage moduli (more than 13 %) were recorded with the addition of 2 wt% of rGO.

  5. Microlaminate composites as thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Radhakrishna, M. C.; Doerr, H. J.; Deshpandey, C. V.; Bunshah, R. F.

    1988-01-01

    Thick multiple-layered Ni/NiCoCrAlY and Ti/CoCrAlY microlaminate composites are explored as thermal barrier coatings. The method of fabrication of these laminates and the measurement technique used to determine thermal diffusivity and thermal conductivity of these coatings are discussed. Results indicate that the thermal conductivity of the laminate composite perpendicular to the laminate plane decreases with increasing number of interfaces; the drop in thermal conductivity is likely to be associated with interfaces which act as a barrier to the transfer of heat across them; the variation in thermal conductivity with the number of interfaces is not linear.

  6. Substituted Cyclohexene Endcaps for Polymers with Thermal-Oxidative Stability

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This invention relates to polyimides having improved thermal-oxidative stability, to the process of preparing said polyimides, and the use of polyimide prepolymers in the preparation of prepregs and composites. The polyimides are particularly usefull in the preparation of fiber-reinforced, high-temperature composites for use in various engine parts including inlets, fan ducts, exit flaps and other parts of high speed aircraft. The polyimides are derived from the polymerization of effective amounts of at least one tetracarboxylic dianhydride, at least one polyamine and a novel dicarboxylic endcap having the formula presented.

  7. Solar-thermal conversion and thermal energy storage of graphene foam-based composites

    NASA Astrophysics Data System (ADS)

    Zhang, Lianbin; Li, Renyuan; Tang, Bo; Wang, Peng

    2016-07-01

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances the heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy.Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a

  8. Method of thermal strain hysteresis reduction in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Dries, Gregory A. (Inventor); Tompkins, Stephen S. (Inventor)

    1987-01-01

    A method is disclosed for treating graphite reinforced metal matrix composites so as to eliminate thermal strain hysteresis and impart dimensional stability through a large thermal cycle. The method is applied to the composite post fabrication and is effective on metal matrix materials using graphite fibers manufactured by both the hot roll bonding and diffusion bonding techniques. The method consists of first heat treating the material in a solution anneal oven followed by a water quench and then subjecting the material to a cryogenic treatment in a cryogenic oven. This heat treatment and cryogenic stress reflief is effective in imparting a dimensional stability and reduced thermal strain hysteresis in the material over a -250.degree. F. to +250.degree. F. thermal cycle.

  9. Determination of the thermal stability of perfluoroalkylethers

    NASA Technical Reports Server (NTRS)

    Helmick, Larry S.; Jones, William R., Jr.

    1990-01-01

    The thermal decomposition temperatures of several commercial and custom synthesized perfluoroalkylether fluids were determined with a computerized tensimeter. In general, the decomposition temperatures of the commercial fluids were all similar and significantly higher than those for custom synthesized fluids. Correlation of the decomposition temperatures with the molecular structures of the primary components of the commercial fluids revealed that the stability of the fluids is not affected by intrinsic factors such as carbon chain length, branching, or cumulated difluoroformal groups. Instead, correlation with extrinsic factors revealed that the stability may be limited by the presence of small quantities of thermally unstable material and/or chlorine-containing material arising from the use of chlorine-containing solvents during synthesis. Finally, correlation of decomposition temperatures with molecular weights for Demnum and Krytox fluids supports a chain cleavage reaction mechanism for Demnum fluids and an unzipping reaction mechanism for Krytox fluids.

  10. System Design Description PFP Thermal Stabilization

    SciTech Connect

    RISENMAY, H.R.

    2000-04-25

    The purpose of this document is to provide a system design description (SDD) and design basis for the Plutonium Finishing Plant (PFP) Thermal Stabilization project. The chief objective of the SDD is to document the Structures, Systems, and Components (SSCs) that establish and maintain the facility Safety Envelope necessary for normal safe operation of the facility; as identified in the FSAR, the OSRs, and Safety Assessment Documents (SADs). This safety equipment documentation should satisfy guidelines for the SDD given in WHC-SD-CP-TI-18 1, Criteria for Identification and Control of Equipment Necessary for Preservation of the Safety Envelope and Safe Operation of PFP. The basis for operational, alarm response, maintenance, and surveillance procedures are also identified and justified in this document. This document and its appendices address the following elements of the PFP Thermal Stabilization project: Functional and design requirements; Design description; Safety Envelope Analysis; Safety Equipment Class; and Operational, maintenance and surveillance procedures.

  11. Thermal Stability of Ni-Mn Electrodeposits

    SciTech Connect

    Talin, A. A.; Marquis, E. A.; Goods, S. H.; Kelly, J. J.; Miller, Michael K

    2006-01-01

    The effect of Mn additions on the structural stability of electrodeposited Ni is investigated by comparing the microstructure evolution of Ni and Ni-Mn specimens with similar crystallographic initial textures. As deposited, Ni-Mn electrodeposits have a smaller crystallite size and substantially higher yield strength than Ni deposits, in agreement with the Hall-Petch relationship. Moreover, dilute Ni-Mn electrodeposits exhibit a thermal stability that significantly exceeds that of pure Ni. Indeed, Ni-Mn retains its texture, fine-grain microstructure, and strength above 500 C (for 1 h anneal), and does not recrystallize up to 800 C. In contrast, pure Ni with larger average grain size and similar preferred orientation shows abnormal grain growth at 300 C and recrystallization at 600 C. This study suggests two distinct temperature regimes. Below 600 C, grain boundary segregation appears as a plausible mechanism for the thermal stability of Ni-Mn electrodeposits, whereas grain boundary pinning by precipitation contributes to the improved microstructural stability of Ni-Mn above 600 C.

  12. Reducing Thermal Expansivity of Composite Panels

    NASA Technical Reports Server (NTRS)

    Smith, D. D.

    1985-01-01

    Coefficient of thermal expansion of laminated graphite/epoxy composite panels altered after panels cured by postcuring heat treatment. Postcure decreases coefficient of thermal expansion by increasing crosslinking between molecules. Treatment makes it possible to reprocess costly panels for requisite thermal expansivity instead of discarding them.

  13. Electrical and thermal properties of graphite/polyaniline composites

    SciTech Connect

    Bourdo, Shawn E.; Warford, Brock A.; Viswanathan, Tito

    2012-12-15

    A composite of a carbon allotrope (graphite) and an inherently conducting polymer, polyaniline (PANI), has been prepared that exhibits an electrical conductivity greater than either of the two components. An almost 2-fold increase in the bulk conductivity occurs when only a small mass fraction of polyaniline exists in the composite (91% graphite/ 9% polyaniline, by mass). This increase in dc electrical conductivity is curious since in most cases a composite material will exhibit a conductivity somewhere between the two individual components, unless a modification to the electronic nature of the material occurs. In order to elucidate the fundamental electrical properties of the composite we have performed variable temperature conductivity measurements to better understand the nature of conduction in these materials. The results from these studies suggest a change in the mechanism of conduction as the amount of polyaniline is increased in the composite. Along with superior electrical properties, the composites exhibit an increase in thermal stability as compared to the graphite. - Graphical abstract: (Left) Room temperature electrical conductivity of G-PANI composites at different mass ratios. (Right) Electrical conductivity of G-PANI composites at temperatures from 5 K to 300 K. Highlights: Black-Right-Pointing-Pointer Composites of graphite and polyaniline have been synthesized with unique electrical and thermal properties. Black-Right-Pointing-Pointer Certain G-PANI composites are more conductive and more thermally stable than graphite alone. Black-Right-Pointing-Pointer G-PANI composites exhibit a larger conductivity ratio with respect to temperature than graphite alone.

  14. Thermal Expansion of Carbon Nanofiber-Reinforced Multiscale Polymer Composites

    NASA Astrophysics Data System (ADS)

    Poveda, Ronald L.; Achar, Sriniket; Gupta, Nikhil

    2012-10-01

    Improved dimensional stability of composites is desired in applications where they are exposed to varying temperature conditions. The current study aims at analyzing the effect of vapor-grown carbon nanofibers (CNFs) on the thermal expansion behavior of epoxy matrix composites and hollow particle-filled composites (syntactic foams). CNFs have a lower coefficient of thermal expansion (CTE) than epoxy resin, which results in composites with increased dimensional stability as the CNF content is increased. The experimental measurements show that with 10 wt.% CNF, the composite has about 11.6% lower CTE than the matrix resin. In CNF-reinforced syntactic foams, the CTE of the composite decreases with increasing wall thickness and volume fraction of hollow particle inclusions. With respect to neat epoxy resin, a maximum decrease of 38.4% is also observed in the CNF/syntactic foams with microballoon inclusions that range from 15 vol.% to 50 vol.% in all composite mixtures. The experimental results for CNF/syntactic foam are in agreement with a modified version of Kerner's model. A combination of hollow microparticles and nanofibers has resulted in the ability to tailor the thermal expansion of the composite over a wide range.

  15. Thermal response of integral multicomponent composite thermal protection systems

    NASA Technical Reports Server (NTRS)

    Stewart, D. A.; Leiser, D. B.; Smith, M.; Kolodziej, P.

    1985-01-01

    Integral-multicomponent thermal-protection materials are discussed in terms of their thermal response to an arc-jet airstream. In-depth temperature measurements are compared with predictions from a one-dimensional, finite-difference code using calculated thermal conductivity values derived from an engineering model. The effect of composition, as well as the optical properties of the bonding material between components, on thermal response is discussed. The performance of these integral-multicomponent composite materials is compared with baseline Space Shuttle insulation.

  16. Thermal expansion behavior of LDEF metal matrix composites

    NASA Technical Reports Server (NTRS)

    Le, T. D.; Steckel, G. L.

    1992-01-01

    The effects of the space environment on the thermal expansion stability of metal matrix composites (graphite/Al and graphite/Mg) will be presented. A sample from each category of metal matrix composites mounted on the leading and trailing edge was chosen for analysis of the temperature-time-thermal strain histories. Typical thermal expansion curves over the same range of temperature were selected at the beginning, mid, and end of the recording duration. The thermal expansion of selected post-flight LDEF samples were measured over the same range of temperature in the laboratory using a Michelson laser interferometer. The thermal strains were monitored concurrently with a laser interferometer and a mounted strain gage.

  17. Scandia-and-Yttria-Stabilized Zirconia for Thermal Barriers

    NASA Technical Reports Server (NTRS)

    Mess, Derek

    2003-01-01

    yttria in suitable proportions has shown promise of being a superior thermal- barrier coating (TBC) material, relative to zirconia stabilized with yttria only. More specifically, a range of compositions in the zirconia/scandia/yttria material system has been found to afford increased resistance to deleterious phase transformations at temperatures high enough to cause deterioration of yttria-stabilized zirconia. Yttria-stabilized zirconia TBCs have been applied to metallic substrates in gas turbine and jet engines to protect the substrates against high operating temperatures. These coatings have porous and microcracked structures, which can accommodate strains induced by thermal-expansion mismatch and thermal shock. The longevity of such a coating depends upon yttria as a stabilizing additive that helps to maintain the zirconia in an yttria-rich, socalled non-transformable tetragonal crystallographic phase, thus preventing transformation to the monoclinic phase with an associated deleterious volume change. However, at a temperature greater than about 1,200 C, there is sufficient atomic mobility that the equilibrium, transformable zirconia phase is formed. Upon subsequent cooling, this phase transforms to the monoclinic phase, with an associated volume change that adversely affects the integrity of the coating. Recently, scandia was identified as a stabilizer that could be used instead of, or in addition to, yttria. Of particular interest are scandia-and-yttria-stabilized zirconia (SYSZ) compositions of about 6 mole percent scandia and 1 mole percent yttria, which have been found to exhibit remarkable phase stability at a temperature of 1,400 C in simple aging tests. Unfortunately, scandia is expensive, so that the problem becomes one of determining whether there are compositions with smaller proportions of scandia that afford the required high-temperature stability. In an attempt to solve this problem, experiments were performed on specimens made with reduced

  18. Ionoluminscence of partially-stabilized zirconia for thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Rebollo, N. R.; Ruvalcaba-Sil, J. L.; Miranda, J.

    2007-08-01

    Ionoluminescence is explored as an alternative technique to study the high temperature phase stability of zirconia-based oxides. The evolution of an initially metastable single tetragonal phase towards de-stabilization is investigated for three single-doped zirconia compositions with Y, Yb and Gd. The differences in de-stabilization paths are identified using X-ray diffraction and ionoluminescence; elemental analysis is also performed using particle-induced X-ray emission. X-ray diffraction studies reveal a different scenario for each of the compositions selected; the differences are strongly influenced by the thermodynamic driving forces associated to the fluorite-to-tetragonal displacive transformation. Ionoluminescence studies indicate a significant increment on the signal intensity for de-stabilized samples, relative to previous annealing stages. There are also more subtle differences in the luminescent response from the samples at intermediate annealing stages also related to phase changes. This study provides a basis to characterize phase evolution in single-doped zirconia compositions for thermal insulation applications using luminescence.

  19. Thermal Stability of Li-Ion Cells

    SciTech Connect

    ROTH,EMANUEL P.

    1999-09-17

    The thermal stability of Li-ion cells with intercalating carbon anodes and metal oxide cathodes was measured as a function of state of charge and temperature for two advanced cell chemistries. Cells of the 18650 design with Li{sub x}CoO{sub 2} cathodes (commercial SONY cells) and Li{sub x}Ni{sub 0.8}Co{sub 0.2}O{sub 2} cathodes were measured for thermal reactivity in the open circuit cell condition. Accelerating rate calorimetry (ARC) was used to measure cell thermal runaway as a function of state of charge (SOC). Microcalorimetry was used to measure the time dependence of heat generating side reactions also as a function of SOC. Components of cells were measured using differential scanning calorimetry (DSC) to study the thermal reactivity of the individual electrodes to determine the temperature regimes and conditions of the major thermal reactions. Thermal decomposition of the SEI layer at the anodes was identified as the initiating source for thermal runaway. The cells with Li{sub x}CoO{sub 2} cathodes showed greater sensitivity to SOC and higher accelerating heating rates than seen for the cells with Li{sub x}Ni{sub 0.8}Co{sub 0.2}O{sub 2}cathodes. Lower temperature reactions starting as low as 40 C were also observed that were SOC dependent but not accelerating. These reactions were also measured in the microcalorimeter and observed to decay over time with a power-law dependence and are believed to result in irreversible capacity loss in the cells.

  20. Solar-thermal conversion and thermal energy storage of graphene foam-based composites.

    PubMed

    Zhang, Lianbin; Li, Renyuan; Tang, Bo; Wang, Peng

    2016-08-14

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances the heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy. PMID:27430282

  1. Thermal and Mechanical Characteristics of Polymer Composites Based on Epoxy Resin, Aluminium Nanopowders and Boric Acid

    NASA Astrophysics Data System (ADS)

    Nazarenko, O. B.; Melnikova, T. V.; Visakh, P. M.

    2016-01-01

    The epoxy polymers are characterized by low thermal stability and high flammability. Nanoparticles are considered to be effective fillers of polymer composites for improving their thermal and functional properties. In this work, the epoxy composites were prepared using epoxy resin ED-20, polyethylene polyamine as a hardener, aluminum nanopowder and boric acid fine powder as flame-retardant filler. The thermal characteristics of the obtained samples were studied using thermogravimetric analysis and differential scanning calorimetry. The mechanical characteristics of epoxy composites were also studied. It was found that an addition of all fillers enhances the thermal stability and mechanical characteristics of the epoxy composites. The best thermal stability showed the epoxy composite filled with boric acid. The highest flexural properties showed the epoxy composite based on the combination of boric acid and aluminum nanopowder.

  2. Prediction of composite thermal behavior made simple

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1981-01-01

    A convenient procedure is described to determine the thermal behavior (thermal expansion coefficients and thermal stresses) of angleplied fiber composites using a pocket calculator. The procedure consists of equations and appropriate graphs for various ( + or - theta) ply combinations. These graphs present reduced stiffness and thermal expansion coefficients as functions of (+ or - theta) in order to simplify and expedite the use of the equations. The procedure is applicable to all types of balanced, symmetric fiber composites including interply and intraply hybrids. The versatility and generality of the procedure is illustrated using several step-by-step numerical examples.

  3. Ceramic membranes with enhanced thermal stability

    DOEpatents

    Anderson, Marc A.; Xu, Qunyin; Bischoff, Brian L.

    1993-01-01

    A method of creating a ceramic membrane with enhanced thermal stability is disclosed. The method involves combining quantities of a first metal alkoxide with a second metal, the quantities selected to give a preselected metal ratio in the resultant membrane. A limited amount of water and acid is added to the combination and stirred until a colloidal suspension is formed. The colloid is dried to a gel, and the gel is fired at a temperature greater than approximately 400.degree. C. The porosity and surface area of ceramic membranes formed by this method are not adversely affected by this high temperature firing.

  4. Thermal Stability of Chelated Indium Activable Tracers

    SciTech Connect

    Chrysikopoulos, Costas; Kruger, Paul

    1986-01-21

    The thermal stability of indium tracer chelated with organic ligands ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) was measured for reservoir temperatures of 150, 200, and 240 C. Measurements of the soluble indium concentration was made as a function of time by neutron activation analysis. From the data, approximate thermal decomposition rates were estimated. At 150 C, both chelated tracers were stable over the experimental period of 20 days. At 200 C, the InEDTA concentration remained constant for 16 days, after which the thermal decomposition occurred at a measured rate constant of k = 0.09 d{sup -1}. The thermal decomposition of InNTA at 200 C showed a first order reaction with a measured rate constant of k = 0.16 d{sup -1}. At 240 C, both indium chelated tracers showed rapid decomposition with rate constants greater than 1.8 d{sup -1}. The data indicate that for geothermal reservoir with temperatures up to about 200 C, indium chelated tracers can be used effectively for transit times of at least 20 days. These experiments were run without reservoir rock media, and do not account for concomitant loss of indium tracer by adsorption processes.

  5. Advanced composite stabilizer for Boeing 737 aircraft

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Activities related to development of an advanced composites stabilizer for the Boeing 737 commercial transport are reported. Activities include discussion of criteria and objectives, design loads, the fatigue spectrum definition to be used for all spectrum fatigue testing, fatigue analysis, manufacturing producibility studies, the ancillary test program, quality assurance, and manufacturing development.

  6. Selection of composite stabilizer for automotive gasolines

    SciTech Connect

    Golubeva, I.A.; Klinaeva, E.V.; Kharitonov, V.V.

    1995-03-01

    An important and very promising approach in expanding the volume of automotive gasoline production is the incorporation of products from secondary processes, namely, pyrolysis, coking, catalytic cracking and thermal cracking. Naturally, the addition of such components gives a very sharp reduction of the gasoline`s oxidation resistance. To stabilize this sort of blended gasoline, new and highly efficient antioxidants, are required. The selection of antioxidants for this purpose is hampered by the lack of information on the mechanisms of mixed-fuel oxidation and the action of stabilizers under these conditions. Since the investigation of oxidation processes involves extended test periods, it becomes important to obtain an objective evaluation of stabilizer efficiency by standard methods, and to improve these methods. The work reported here was aimed at finding and evaluating (by standard methods) a new stabilizer for A-76 automotive gasoline containing unstable catalytic naphtha; the work was also aimed at improving the standard methods. This program consisted of several stages.

  7. Chemically Locked Bicelles with High Thermal and Kinetic Stability.

    PubMed

    Matsui, Ryoichi; Ohtani, Masataka; Yamada, Kuniyo; Hikima, Takaaki; Takata, Masaki; Nakamura, Takashi; Koshino, Hiroyuki; Ishida, Yasuhiro; Aida, Takuzo

    2015-11-01

    In situ polymerization of a bicellar mixture composed of a phospholipid and polymerizable surfactants afforded unprecedented stable bicelles. The polymerized composite showed an aligned phase over a wide thermal range (25 to >90 °C) with excellent (2)H quadrupole splitting of the solvent signal, thus implying versatility as an alignment medium for NMR studies. Crosslinking of the surfactants also brought favorable effects on the kinetic stability and alignment morphology of the bicelles. This system could thus offer a new class of scaffolds for biomembrane models. PMID:26373898

  8. Flexible all-carbon photovoltaics with improved thermal stability

    SciTech Connect

    Tang, Chun; Ishihara, Hidetaka; Sodhi, Jaskiranjeet; Chen, Yen-Chang; Siordia, Andrew; Martini, Ashlie; Tung, Vincent C.

    2015-04-15

    The structurally robust nature of nanocarbon allotropes, e.g., semiconducting single-walled carbon nanotubes (SWCNTs) and C{sub 60}s, makes them tantalizing candidates for thermally stable and mechanically flexible photovoltaic applications. However, C{sub 60}s rapidly dissociate away from the basal of SWCNTs under thermal stimuli as a result of weak intermolecular forces that “lock up” the binary assemblies. Here, we explore use of graphene nanoribbons (GNRs) as geometrically tailored protecting layers to suppress the unwanted dissociation of C{sub 60}s. The underlying mechanisms are explained using a combination of molecular dynamics simulations and transition state theory, revealing the temperature dependent disassociation of C{sub 60}s from the SWCNT basal plane. Our strategy provides fundamental guidelines for integrating all-carbon based nano-p/n junctions with optimized structural and thermal stability. External quantum efficiency and output current–voltage characteristics are used to experimentally quantify the effectiveness of GNR membranes under high temperature annealing. Further, the resulting C{sub 60}:SWCNT:GNR ternary composites display excellent mechanical stability, even after iterative bending tests. - Graphical abstract: The incorporation of solvent resistant, mechanically flexible and electrically addressable 2-D soft graphene nanoribbons facilitates the assembly of photoconductive carbon nano-p/n junctions for thermally stable and flexible photovoltaic cells.

  9. Effective thermal conductivity of damaged composites

    NASA Astrophysics Data System (ADS)

    Graham, Samuel, Jr.

    Ceramic matrix composites (CMCs) are susceptible to matrix cracking, fiber-matrix debonding, and oxidation processes as result of their application environments. These damage mechanisms act to degrade thermal conductivity and is a concern for many CMC applications. Prediction of this degradation relies on an accurate understanding of damage and thermal conductivity, and the development of analytical or numerical models. An experimental investigation into the degradation of thermal conductivity of CMCs was performed. In addition, an assessment was made of current micromechanics models for predicting thermal conductivity degradation. Experiments were performed on unidirectional reinforced Nicalon-LAS II glass-ceramic composites. Thermal conductivity was determined through flash diffusivity experiments. This procedure was also modified to treat orthotropic composite materials. Samples were subjected to mechanical loading-, oxidation-, and thermal shock-induced damage. The results showed that mechanical loading-induced damage resulted in no change in thermal conductivity transverse to the fiber axis and up to a 3.5% change parallel to the fibers. Mechanical loading followed by oxidation resulted in thermal conductivity degradation up to 26% and 10% transverse and parallel to the fibers, respectively. These data show the importance of the fiber-matrix interface in controlling both the longitudinal and transverse thermal conductivities of damaged composites. Predictions of thermal conductivity degradation parallel to the fiber direction were made with a shear-lag type micromechanics model. Results were in excellent agreement with experimental data. Thermal diffusivity data from isothermal oxidation and thermal shock experiments showed that this procedure is an effective nondestructive monitoring method. An assessment of transverse thermal conductivity rnicromechanics models was made through comparison with numerical solutions for random fiber inclusions with random

  10. Thermal stability of the phase composition, structure, and stressed state of ion-plasma condensates in the Zr-Ti-Si-N system

    NASA Astrophysics Data System (ADS)

    Beresnev, V. M.; Sobol', O. V.; Pogrebnjak, A. D.; Turbin, P. V.; Litovchenko, S. V.

    2010-06-01

    The results of studying the effect of high-tempera ture annealing in vacuum and in air on the phase composition, structure, and stressed state of ion-plasma condensates in the Zr-Ti-Si-N system are reported. In going from air annealing to vacuum annealing, the amount of active oxygen atoms decreases and the phase composition of the condensate remains stable to 1000°C or higher. A change in the crystal phase composition shows up, for the first place, in the crystallization of silicon nitride with the intense formation of hexagonal β-Si3N4 crystallites and also in the feeble formation of ZrO2 dioxide. The latter process does not lead to the decomposition of the (Zr, Ti)N solid solution: it merely increases the partial concentration of the titanium component.

  11. Thermal expansion properties of composite materials

    NASA Technical Reports Server (NTRS)

    Johnson, R. R.; Kural, M. H.; Mackey, G. B.

    1981-01-01

    Thermal expansion data for several composite materials, including generic epoxy resins, various graphite, boron, and glass fibers, and unidirectional and woven fabric composites in an epoxy matrix, were compiled. A discussion of the design, material, environmental, and fabrication properties affecting thermal expansion behavior is presented. Test methods and their accuracy are discussed. Analytical approaches to predict laminate coefficients of thermal expansion (CTE) based on lamination theory and micromechanics are also included. A discussion is included of methods of tuning a laminate to obtain a near-zero CTE for space applications.

  12. Thermal expansion behaviour of thermoplastic composite materials

    SciTech Connect

    Barnes, J.A.; Simms, I.J.; Farrow, G.J.; Jackson, D.; Wostenholm, G. Salford Univ. )

    1990-01-01

    The thermal expansion behavior of a number of commercially available and experimental continuous fiber-reinforced PEEK composites is assessed. The thermal expansion characteristics of Hercules AS4 reinforced PEEK (APC-2/AS4, ICI Fiberite) are reported in some detail, and it is shown that behavior is both reasonable and predictable. Further, it is found that repeated thermal cycling between -160 C and +120 C has no effect on the behavior of unidirectional laminates, and that the inherent characteristics of the composite are likely to promote such insensitivity. 16 refs.

  13. High temperature thermal insulating composite

    DOEpatents

    Brassell, Gilbert W.; Lewis, Jr., John

    1983-01-01

    A composite contains in one region graphite flakes and refractory fibers in arbonized polymeric resin and in an adjacent region a gradually diminishing weight proportion of graphite flakes, refractory fibers, and the same carbonized resin.

  14. Thermal Conductivity of Carbon Nanotube Composite Films

    NASA Technical Reports Server (NTRS)

    Ngo, Quoc; Cruden, Brett A.; Cassell, Alan M.; Walker, Megan D.; Koehne, Jessica E.; Meyyappan, M.; Li, Jun; Yang, Cary Y.

    2004-01-01

    State-of-the-art ICs for microprocessors routinely dissipate power densities on the order of 50 W/sq cm. This large power is due to the localized heating of ICs operating at high frequencies, and must be managed for future high-frequency microelectronic applications. Our approach involves finding new and efficient thermally conductive materials. Exploiting carbon nanotube (CNT) films and composites for their superior axial thermal conductance properties has the potential for such an application requiring efficient heat transfer. In this work, we present thermal contact resistance measurement results for CNT and CNT-Cu composite films. It is shown that Cu-filled CNT arrays enhance thermal conductance when compared to as-grown CNT arrays. Furthermore, the CNT-Cu composite material provides a mechanically robust alternative to current IC packaging technology.

  15. Thermal shock resistance of ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Carper, D. M.; Nied, H. F.

    1993-01-01

    The experimental and analytical investigation of the thermal shock phenomena in ceramic matrix composites is detailed. The composite systems examined were oxide-based, consisting of an aluminosilicate matrix with either polycrystalline aluminosilicate or single crystal alumina fiber reinforcement. The program was divided into three technical tasks; baseline mechanical properties, thermal shock modeling, and thermal shock testing. The analytical investigation focused on the development of simple expressions for transient thermal stresses induced during thermal shock. The effect of various material parameters, including thermal conductivity, elastic modulus, and thermal expansion, were examined analytically for their effect on thermal shock performance. Using a simple maximum stress criteria for each constituent, it was observed that fiber fracture would occur only at the most extreme thermal shock conditions and that matrix fracture, splitting parallel to the reinforcing fiber, was to be expected for most practical cases. Thermal shock resistance for the two material systems was determined experimentally by subjecting plates to sudden changes in temperature on one surface while maintaining the opposite surface at a constant temperature. This temperature change was varied in severity (magnitude) and in number of shocks applied to a given sample. The results showed that for the most severe conditions examined that only surface matrix fracture was present with no observable fiber fracture. The impact of this damage on material performance was limited to the matrix dominated properties only. Specifically, compression strength was observed to decrease by as much as 50 percent from the measured baseline.

  16. Pressure effects on the thermal stability of silicon carbide fibers

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.; Dicarlo, James A.

    1989-01-01

    Commercially available polymer derived SiC fibers were treated at temperatures from 1000 to 2200 C in vacuum and argon gas pressure of 1 and 1360 atm. Effects of gas pressure on the thermal stability of the fibers were determined through property comparison between the pressure treated fibers and vacuum treated fibers. Investigation of the thermal stability included studies of the fiber microstructure, weight loss, grain growth, and tensile strength. The 1360 atm argon gas treatment was found to shift the onset of fiber weight loss from 1200 to above 1500 C. Grain growth and tensile strength degradation were correlated with weight loss and were thus also inhibited by high pressure treatments. Additional heat treatment in 1 atm argon of the fibers initially treated at 1360 atm argon caused further weight loss and tensile strength degradation, thus indicating that high pressure inert gas conditions would be effective only in delaying fiber strength degradation. However, if the high gas pressure could be maintained throughout composite fabrication, then the composites could be processed at higher temperatures.

  17. Thermal stability of sputtered iridium oxide films

    SciTech Connect

    Sanjines, R.; Aruchamy, A.; Levy, F. )

    1989-06-01

    Dry and partially hydrated films of IrO/sub 2/ were prepared by reactive sputtering. The authors discuss their thermal stability investigated by means of XPS, x-ray diffraction, and resistivity measurements. Dry films decomposed at about 400{sup 0}C iin air and at 200{sup 0}C in vacuum (10/sup -2/ Pa), whereas partially hydrated films decomposed at 350{sup 0} and 150{sup 0}C, respectively. After electrochemical treatments of the films mounted as electrochromic electrodes in an electrolytic cell, the decomposition occurred at different temperatures. In particular, the bleached state was found to have the relatively low decomposition temperature of about 100{sup 0}C in air.

  18. On the stability of subsonic thermal fronts

    SciTech Connect

    Ibanez S, Miguel H.; Shchekinov, Yuri; Bessega L, Maria C.

    2005-08-15

    The stability of subsonic thermal fronts against corrugation is analyzed and an exact dispersion relation is obtained taking into account the compressibility of the gas. For heat fronts, this dispersion equation has an unstable root ({omega}{sub ex}) corresponding to the Landau-Darrieus unstable mode ({omega}{sub 0}) modified by the compressional effects. In particular, the exact solution shows a conspicuous maximum very close to the value of the intake Mach number M{sub 1} at which a Chapman-Jouguet deflagration wave behind the heat front is formed. Cooling fronts are stable for corrugation-like disturbances. A maximum damping as well as a maximum in the frequency occur at a value of M{sub 1} depending on the value of the normalized cooling q.

  19. Thermal Stability of RP-2 for Hydrocarbon Boost Regenerative Cooling

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie E.; Deans, Matthew C.; Stiegemeier, Benjamin R.; Psaras, Peter M.

    2013-01-01

    A series of tests were performed in the NASA Glenn Research Centers Heated Tube Facility to study the heat transfer and thermal stability behavior of RP-2 under conditions similar to those found in rocket engine cooling channels. It has long been known that hydrocarbon fuels, such as RP-2, can decompose at high temperature to form deposits (coke) which can adversely impact rocket engine cooling channel performance. The heated tube facility provides a simple means to study these effects. Using resistively heated copper tubes in a vacuum chamber, flowing RP-2 was heated to explore thermal effects at a range of test conditions. Wall temperature (850-1050F) and bulk fluid temperature (300-500F) were varied to define thermal decomposition and stability at each condition. Flow velocity and pressure were fixed at 75 fts and 1000 psia, respectively. Additionally, five different batches of RP-2 were tested at identical conditions to examine any thermal stability differences resulting from batch to batch compositional variation. Among these tests was one with a potential coke reducing additive known as 1,2,3,4-Tetrahydroquinoline (THQ). While copper tubes were used for the majority of tests, two exploratory tests were performed with a copper alloy known as GRCop-42. Each tube was instrumented with 15 thermocouples to examine the temperature profile, and carbon deposition at each thermocouple location was determined post-test in an oxidation furnace. In many tests, intermittent local temperature increases were observed visually and in the thermocouple data. These hot spots did not appear to correspond with a higher carbon deposition.

  20. Hygrothermal stability of laminated CFRP composite mirrors

    NASA Astrophysics Data System (ADS)

    Pryor, Mark K.

    2000-07-01

    This paper is intended to address accuracy issues associated with hygrothermal stability of ultra-lightweight composite mirror structures. Hygrothermal stability of a mirror is ultimately defined as its optical performance when subjected to temperature or moisture variations. Stability is dictated by a combination of material behavior and geometric configuration. Ideally, an isotropic material could be used that is lightweight, has high stiffness, and has no response to temperature or moisture variances. This type of material would therefore be independent of geometry. Quasi-isotropic laminated CFRP composite materials offer most of these characteristics, but are transversely isotropic with near zero hygrothermal response in the plane of the laminate and a relatively high response through the thickness. Typically, mirrors made from laminated material consist of a thin curved shell supported by an array of ribs. Interference problems arise at the rib/shell interface resulting in a `print-through' effect by the ribs. Also, adhesive used to bond the ribs to the shell pull the shell causing additional `print-through'. Additional sources of instabilities result from material variances, processing, and assembly. These multiple sources of instabilities superimpose onto each other resulting in the structures overall hygrothermal stability.

  1. Thermal stability of spent coffee ground polysaccharides: galactomannans and arabinogalactans.

    PubMed

    Simões, Joana; Maricato, Elia; Nunes, Fernando M; Domingues, M Rosário; Coimbra, Manuel A

    2014-01-30

    In order to better understand the thermal stability of spent coffee grounds (SCG) galactomannans and arabinogalactans and the reactions that can occur upon roasting, long term isothermal exposures, up to 3h, were performed at 160, 180, 200, 220, and 240 °C. The resultant products were analysed according to the sugars and linkage composition and also by electrospray mass spectrometry. Galactomannans did not loss mass at T ≤ 200 °C during exposures up to 3h whereas the arabinogalactans showed that thermal stability only for T ≤ 180 °C. This was in accordance with the estimated activation energies of their thermal decomposition of 138 kJ/mol and 94 kJ/mol, respectively. The roasting of galactomannans promoted the formation of new glycosidic linkages, with occurrence of 2-, 6-, 2,3-, 2,6-, 3,6-, 2,3,6-, 3,4,6-linked mannose residues, 3,4,6-linked galactose residues, and terminally-linked glucose residues, observed by methylation analysis. Depolymerisation and formation of anhydrohexose residues at the reducing end and mannose-glucose isomerisation were also observed. The roasting of galactomannans at 200 °C promoted their solubility in water upon alkali extraction and neutralisation. PMID:24299772

  2. Flexible all-carbon photovoltaics with improved thermal stability

    NASA Astrophysics Data System (ADS)

    Tang, Chun; Ishihara, Hidetaka; Sodhi, Jaskiranjeet; Chen, Yen-Chang; Siordia, Andrew; Martini, Ashlie; Tung, Vincent C.

    2015-04-01

    The structurally robust nature of nanocarbon allotropes, e.g., semiconducting single-walled carbon nanotubes (SWCNTs) and C60s, makes them tantalizing candidates for thermally stable and mechanically flexible photovoltaic applications. However, C60s rapidly dissociate away from the basal of SWCNTs under thermal stimuli as a result of weak intermolecular forces that "lock up" the binary assemblies. Here, we explore use of graphene nanoribbons (GNRs) as geometrically tailored protecting layers to suppress the unwanted dissociation of C60s. The underlying mechanisms are explained using a combination of molecular dynamics simulations and transition state theory, revealing the temperature dependent disassociation of C60s from the SWCNT basal plane. Our strategy provides fundamental guidelines for integrating all-carbon based nano-p/n junctions with optimized structural and thermal stability. External quantum efficiency and output current-voltage characteristics are used to experimentally quantify the effectiveness of GNR membranes under high temperature annealing. Further, the resulting C60:SWCNT:GNR ternary composites display excellent mechanical stability, even after iterative bending tests.

  3. Thermal stability of simvastatin under different atmospheres.

    PubMed

    Simões, Ricardo G; Diogo, Hermínio P; Dias, Ana; Oliveira, Maria Conceição; Cordeiro, Carlos; Bernardes, Carlos E S; Minas Da Piedade, Manuel E

    2014-01-01

    Simvastatin (SV) is a widely used drug for the treatment of hypercholesterolemia in humans. Nevertheless, serious efforts are still being made to develop new SV formulations with, for example, improved tabletability or bioavailability properties. These efforts frequently involve heating the compound well above ambient temperature or even fusion. In this work, the thermal stability of solid SV under different atmospheres was investigated by using isothermal tests in glass ampules, differential scanning calorimetry, and Calvet-drop microcalorimetry experiments. These tests were combined with analytical data from diffuse reflectance infrared Fourier-transform spectroscopy and liquid chromatography coupled with tandem mass spectrometry or Fourier transform ion cyclotron resonance mass spectrometry (LC-FT-ICR-MS). No decomposition was observed when the sample was kept at a temperature ≤373 K under N2 or reduced pressure (13.3 Pa) atmospheres. Thermal degradation was, however, observed for temperatures ≥353 K in the presence of pure or atmospheric oxygen. The nature of the two main oxidative degradation products was determined through MS/MS experiments and accurate mass measurements of the precursor ions using FT-ICR-MS. The obtained results indicated that the decomposition process involves the oxidation of the hexahydronaphthalene fragment of SV. PMID:24272683

  4. Thermal and pH stability of "beta-benzyme".

    PubMed Central

    D'Souza, V T; Lu, X L; Ginger, R D; Bender, M L

    1987-01-01

    The thermal and pH stability of "beta-benzyme", an artificial chymotrypsin based on beta-cyclodextrin, has been studied and compared with the stability of real chymotrypsin. Artificial chymotrypsin is vastly superior to real chymotrypsin with regard to both temperature and pH stability. The reasons for this increased stability are discussed. PMID:3468505

  5. Thermal Conductivity and Erosion Durability of Composite Two-Phase Air Plasma Sprayed Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Schmitt, Michael P.; Rai, Amarendra K.; Zhu, Dongming; Dorfman, Mitchell R.; Wolfe, Douglas E.

    2015-01-01

    To enhance efficiency of gas turbines, new thermal barrier coatings (TBCs) must be designed which improve upon the thermal stability limit of 7 wt% yttria stabilized zirconia (7YSZ), approximately 1200 C. This tenant has led to the development of new TBC materials and microstructures capable of improved high temperature performance. This study focused on increasing the erosion durability of cubic zirconia based TBCs, traditionally less durable than the metastable t' zirconia based TBCs. Composite TBC microstructures composed of a low thermal conductivity/high temperature stable cubic Low-k matrix phase and a durable t' Low-k secondary phase were deposited via APS. Monolithic coatings composed of cubic Low-k and t' Low-k were also deposited, in addition to a 7YSZ benchmark. The thermal conductivity and erosion durability were then measured and it was found that both of the Low-k materials have significantly reduced thermal conductivities, with monolithic t' Low-k and cubic Low-k improving upon 7YSZ by approximately 13 and approximately 25%, respectively. The 40 wt% t' Low-k composite (40 wt% t' Low-k - 60 wt% cubic Low-k) showed a approximately 22% reduction in thermal conductivity over 7YSZ, indicating even at high levels, the t' Low-k secondary phase had a minimal impact on thermal in the composite coating. It was observed that a mere 20 wt% t' Low-k phase addition can reduce the erosion of a cubic Low-k matrix phase composite coating by over 37%. Various mixing rules were then investigated to assess this non-linear composite behavior and suggestions were made to further improve erosion durability.

  6. On thermal edge effects in composite laminates

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.

    1976-01-01

    Results are presented for a finite-element investigation of the combined influence of edge effects due to mechanical and thermal mismatch in composite laminates with free edges. Laminates of unidirectional boron/epoxy symmetrically bonded to sheets of aluminum and titanium were studied. It is shown that interlaminar thermal stresses may be more significant than the interlaminar stresses due to loading only. In addition, the stresses due to thermal mismatch may be of the same sign as those due to Poisson's mismatch or they may be of opposite sign depending upon material properties, stacking sequence, and direction of loading. The paper concludes with a brief discussion of thermal stresses in all-composite laminates.

  7. Si-substituted hydroxyapatite nanopowders: Synthesis, thermal stability and sinterability

    SciTech Connect

    Bianco, Alessandra Cacciotti, Ilaria; Lombardi, Mariangela Montanaro, Laura

    2009-02-04

    Synthetic hydroxyapatites incorporating small amounts of Si have shown improved biological performances in terms of enhanced bone apposition, bone in-growth and cell-mediated degradation. This paper reports a systematic investigation on Si-substituted hydroxyapatite (Si 1.40 wt%) nanopowders produced following two different conventional wet methodologies: (a) precipitation of Ca(NO{sub 3}){sub 2}.4H{sub 2}O and (b) titration of Ca(OH){sub 2}. The influence of the synthesis process on composition, thermal behaviour and sinterability of the resulting nanopowders is studied. Samples were characterised by electron microscopy, induced coupled plasma atomic emission spectroscopy, thermal analysis, infrared spectroscopy, N{sub 2} adsorption measurements, X-ray diffraction and dilatometry. Semicrystalline Si-substituted hydroxyapatite powders made up of needle-like nanoparticles were obtained, the specific surface area ranged between 84 and 110 m{sup 2}/g. Pure and Si-substituted hydroxyapatite nanopowders derived from Ca(NO{sub 3}){sub 2}.4H{sub 2}O decomposed around 1000 deg. C. Si-substituted hydroxyapatite nanopowders obtained from Ca(OH){sub 2} were thermally stable up to 1200 deg. C and showed a distinct decreased thermal stability with respect to the homologous pure sample. Si-substituted hydroxyapatites exhibited higher sintering temperature and increased total shrinkage with respect to pure powders. Nanostructured dense ceramics were obtained by sintering at 1100 deg. C Si-substituted hydroxyapatites derived from Ca(OH){sub 2}.

  8. Moire interferometry for thermal expansion of composites

    NASA Technical Reports Server (NTRS)

    Bowles, D. E.; Tenney, D. R.; Post, D.; Herakovich, C. T.

    1981-01-01

    Moire interferometry by reflection has been demonstrated using a real reference grating of 1200 lines/mm. The method is shown to be well adapted to thermal environments. Thermal expansion coefficients of graphite-epoxy composites have been measured with high precision over a wide range from nearly zero to 3300 microstrains in the temperature range 297-422 K. Random errors characterized by one standard deviation can be as small as one microstrain.

  9. Thermal and flammability characterization of graphite composites

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.

    1986-01-01

    Thermal, mechanical, and flammability properties of graphite composites fabricated with XU71775/H795, a bismaleimide/vinyl-polystyrylpyridine formulation; H795, a bismaleimide; Cycom 6162, a phenolic; and PSP 6022M, a polystyrylpyridine and two types of graphite reinforcement were evaluated and compared with a composite made with an epoxy resin as a matrix. The measured properties included limiting-oxygen index, smoke evolution, thermal degradation products, total-heat release, heat-release rates, mass loss, flame spread, ignition resistance, thermogravimetric analysis, and selected mechanical properties. It was found that the combination of XU71775/H795 with the graphite tape was the optimum design giving the lowest heat release rate.

  10. Thermal energy storage composition comprising peat moss

    SciTech Connect

    Rueffel, P.G.

    1980-11-04

    Peat moss is used in a thermal energy storage composition to provide a network in which to trap an incongruently melting salt hydrate capable of storing thermal energy as latent heat of phase change. The peat moss network is effective in preventing the segregation of a dehydrated form of the salt between heating and cooling cycles. In a preferred embodiment that salt hydrate is the decahydrate of sodium sulphate. A nucleating agent such as sodium tetraborate decahydrate is included to prevent supercooling in the composition, and promote crystallization of the decahydrate of sodium sulphate.

  11. Thermal Degradation and Combustion Behavior of Polypropylene/MWCNT Composites

    NASA Astrophysics Data System (ADS)

    Zaikov, G. E.; Rakhimkulov, A. D.; Lomakin, S. M.; Dubnikova, I. L.; Shchegolikhin, A. N.; Davidov, E. Ya.

    2010-06-01

    Studies of thermal and fire-resistant properties of the polypropylene/multi-walled carbon nanotube composites (PP/MWCNT) prepared by means of melt intercalation are discussed. The sets of the data acquired with the aid of non-isothermal TG experiments have been treated by the model kinetic analysis. The thermal-oxidative degradation behavior of PP/MWCNT and stabilizing effect caused by addition of MWCNT has been investigated by means of TGA and EPR spectroscopy. The results of cone calorimetric tests lead to the conclusion that char formation plays a key role in the mechanism of flame retardation for nanocomposites. This could be explained by the specific antioxidant properties and high thermal conductivity of MWCNT which determine high-performance carbonization during thermal degradation process. Comparative analysis of the flammability characteristics for PP-clay/MWCNT nanocomposites was provided in order to emphasize the specific behavior of the nanocomposites under high-temperature tests.

  12. System Design Description PFP Thermal Stabilization

    SciTech Connect

    RISENMAY, H.R.

    2000-01-27

    DOE has authorized in their letter of August 2, 1999, the operation of these three furnaces, quote ''Operation of the three uncompleted muffle furnaces (No.3, No.4, and No.5) located in Room 235B is authorized, using the same feed charge limits as the two existing furnaces (No.1, and No.2) located in Room 230C,''. The above statement incorrectly refers to Room 230C whereas the correct location is Room 230A. The current effort is directed to initiate the operation and to complete the design activities DOE authorized the operation of the furnaces based on their Safety Evaluation Report (SER). Based on analogy and the principle of similarity, the risks and consequences of accidents both onsite and offsite due to operation of three furnaces are not significantly larger than those already evaluated with the two operating furnaces. Thermal stabilization operations and the material of feed for furnaces in Glovebox HA-21 I are essentially the same as those currently being stabilized in furnaces in Glovebox HC-21 C. Therefore the accident analysis has utilized identical accident scenarios in evaluation and no additional failure modes are introduced by HA-21 I muffle furnace operation that would enhance the consequences of accidents. Authorization Basis documents as referenced below (PFP FSAR and DOE Letter authorizing the operation) appear to contradict each other, i.e. one allows and authorizes the operation and the other imposes the restriction on the operation. The purpose of the PFP FSAR restrictions was to review thoroughly the design and installation of three furnaces and perform acceptance testing before approving the startup for operation. With the experience of operating the two furnaces in Glovebox HC-21C, and the knowledge of risks and hazards the facility operation, the plant is adequately prepared to operate these additional furnaces. ECN 653595 has been prepared to incorporate operation of the muffle furnaces in Glovebox HA-21 I into the PFP FSAR.

  13. Polarization-Mediated Thermal Stability of Metal/Oxide Heterointerface.

    PubMed

    Zhang, Qintong; You, Lu; Shen, Xi; Wan, Caihua; Yuan, Zhonghui; Zhang, Xuan; Huang, Li; Kong, Wenjie; Wu, Hao; Yu, Richeng; Wang, Junling; Han, Xiufeng

    2015-11-18

    A polarization-mediated heterointerface is designed to research the thermal stability of magnetic metal/oxide interfaces. Using polarization engineering, the thermal stability of the interface between BiFeO3 and CoFeB can be improved by about 100°C. This finding provides new insight into the chemistry of the metal/oxide heterointerface. PMID:26421975

  14. Thermal properties of polyolefin composites with copper silicate

    NASA Astrophysics Data System (ADS)

    Klozinski, Arkadiusz; Jakubowska, Paulina; Ambrozewicz, Damian; Jesionowski, Teofil

    2015-05-01

    The aim of this work was to specify thermal properties of polyolefin composites with copper silicate. Low density polyethylene (LDPE) and polypropylene (PP) composites with 2, 4 and 8 wt % of the filler (CuO.SiO2) were analyzed. Characteristic temperatures of the polymer compositions, i.e. the melting (Tm) and crystallization temperatures (Tc), obtained by means of Differential Scanning Calorimetry (DSC), were determined. The impact of the applied additives on composites thermal stability was established using thermogravimetry measurements (TGA). Afterwards, the flammability test was performed. The measurement was complemented with the establishment of the maximum combustion temperature using infrared recording techniques and image analysis (infrared camera). One of the most important parameter of thermoplastics is the softening point which was also determined. The measurement was carried out using a Vicat apparatus. Thermal characteristic was also supplemented with an assessment of the thermal diffusivity (the parameter determining the cooling time in an injection mold). The tests were conducted using the modified Angstrom method and an infrared camera.

  15. Thermal stabilization of uranium mill tailings

    SciTech Connect

    Dreesen, D.R.; Williams, J.M.; Cokal, E.J.

    1981-01-01

    The sintering of tailings at high temperatures (1200/sup 0/C) has shown promise as a conditioning approach that greatly reduces the /sup 222/Rn emanation of uranium mill tailings. The structure of thermally stabilized tailings has been appreciably altered producing a material that will have minimal management requirements and will be applicable to on-site processing and disposal. The mineralogy of untreated tailings is presented to define the structure of the original materials. Quartz predominates in most tailings samples; however, appreciable quantities of gypsum, clay, illite, or albites are found in some tailings. Samples from the Durango and Shiprock sites have plagioclase-type aluminosilicates and non-aluminum silicates as major components. The iron-rich vanadium tailings from the Salt Lake City site contain appreciable quantities of ..cap alpha..-hematite and chloroapatite. The reduction in radon emanation power and changes in mineralogy as a function of sintering temperature (500 to 1200(NiAsS) are considered possible species for consideraed. The calculated activity data of the various carbonate, sulfate and hydroxide species in the Li/sup +/Na/sup +/K/sup +//CO/sub 3/ = SO/sub 4/ = OH/sup -/ system have been combined f liquidus surfaces, and estimated error limits are given for each system. A comng payback period, but as the initial cost of the SAHPS is reduced and fuel prices increase, the payback period of a SAHPS will be shorter and could be competitive with other conventional heating/cooling systems.

  16. PMR-15/Layered Silicate Nanocomposites For Improved Thermal Stability And Mechanical Properties

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi; Scheiman, Daniel; Faile, Michael; Papadopoulos, Demetrios; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Montmorillonite clay was organically modified by co-exchange of an aromatic diamine and a primary alkyl amine. The clay was dispersed into a PMR (Polymerization of Monomer Reactants)-15 matrix and the glass transition temperature and thermal oxidative stability of the resulting nanocomposites were evaluated. PMR-15/ silicate nanocomposites were also investigated as a matrix material for carbon fabric reinforced composites. Dispersion of the organically modified silicate into the PMR-15 matrix enhanced the thermal oxidative stability, the flexural strength, flexural modulus, and interlaminar shear strength of the polymer matrix composite.

  17. Protein thermal stabilization in aqueous solutions of osmolytes.

    PubMed

    Bruździak, Piotr; Panuszko, Aneta; Jourdan, Muriel; Stangret, Janusz

    2016-01-01

    Proteins' thermal stabilization is a significant problem in various biomedical, biotechnological, and technological applications. We investigated thermal stability of hen egg white lysozyme in aqueous solutions of the following stabilizing osmolytes: Glycine (GLY), N-methylglycine (NMG), N,N-dimethylglycine (DMG), N,N,N-trimethylglycine (TMG), and trimethyl-N-oxide (TMAO). Results of CD-UV spectroscopic investigation were compared with FTIR hydration studies' results. Selected osmolytes increased lysozyme's thermal stability in the following order: Gly>NMG>TMAO≈DMG>TMG. Theoretical calculations (DFT) showed clearly that osmolytes' amino group protons and water molecules interacting with them played a distinctive role in protein thermal stabilization. The results brought us a step closer to the exact mechanism of protein stabilization by osmolytes. PMID:26495438

  18. On the remarkable thermal stability of nanocrystalline cobalt via alloying

    PubMed Central

    Bachmaier, A.; Motz, C.

    2015-01-01

    Nanostructured Co materials are produced by severe plastic deformation via alloying with small amounts of C and larger amounts of Cu. The thermal stability of the different nanostructured Co materials is studied through isothermal annealing at different temperatures for various times and compared to the stability of severe plastically deformed high-purity nanocrystalline Co. The microstructural changes taking place during annealing are evaluated by scanning electron microscopy, transmission electron microscopy and microhardness measurements. In the present work it is shown that the least stable nanostructured material is the single-phase high purity Co. Alloying with C improves the thermal stability to a certain extent. A remarkable thermal stability is achieved by alloying Co with Cu resulting in stabilized nanostructures even after annealing for long times at high temperatures. The essential reason for the enhanced thermal stability is to be found in the immiscibility of both components of the alloy. PMID:25892849

  19. Ceramic Composites Survive Severe Thermal Shocks

    NASA Technical Reports Server (NTRS)

    Eckel, A. J.; Herbell, T. P.

    1993-01-01

    Ceramic-composite turbine blades and other components that must withstand severe thermal shocks developed for aerospace and, potentially, for terrestrial applications. Made of silicon carbide reinforced by continuous carbon fibers. Materials withstand high temperatures, exhibit high toughness, and fail gradually. Commercial applications include brake linings for fast trains and aircraft, industrial heat exchangers, and nozzles and other devices for handling molten metals.

  20. Thermal Conductivity of Al-Salt Composites

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zhang, Mei; Wang, Lijun; Seetharaman, Seshadri

    2015-11-01

    With a view to examine the possibility of estimating the content of entrapped metallic aluminium in the salt cake from aluminium remelting, the thermal diffusivity of reference composites of KCl-NaCl-Al was measured as a function of aluminium metal content at room temperature. The thermal conductivity of the reference composites was found to increase with the metallic Al content. The lumped parameter model approach was carried out to discuss the influence of different geometry arrangements of each phase, viz. air, salts and metallic aluminium on the thermal conductivity. Application of the present results to industrial samples indicates that factors such as the interfacial condition of metallic Al particles have to be considered in order to estimate the amount of entrapped Al in the salt cake.

  1. Thermal stability of Mo/Au bilayers for TES applications

    NASA Astrophysics Data System (ADS)

    Parra-Borderías, María; Fernández-Martínez, Iván; Fàbrega, Lourdes; Camón, Agustín; Gil, Oscar; González-Arrabal, Raquel; Sesé, Javier; Costa-Krämer, José Luis; Warot-Fonrose, Bénédicte; Serin, Virginie; Briones, Fernando

    2012-09-01

    Mo/Au bilayers are among the most suitable materials to be used as transition-edge sensors (TES) in cryogenic microcalorimeters and bolometers, developed, among other fields, for space missions. For this purpose the thermal stability of TES at temperatures below 150 °C is a critical issue. We report on the dependence of functional properties (superconducting critical temperature, residual resistance and α) as well as on microstructure, chemical composition and interface quality for optimized high quality Mo/Au bilayers on annealing temperature and time. Data show that the functional properties of the bilayers remain stable at T < 150 °C, but changes in microstructure, interface quality and functional properties were observed for layers heated at T ≥ 200 °C. Microstructural and chemical composition data suggest that the measured changes in residual resistance ratio (RRR) and TC at T ≥ 200 °C are mainly due to an increase in the average Au grain size and to Au migration along the Mo grain boundaries at the Au/Mo interface. A way to stabilize the functional properties of the Mo/Au bilayers against temperature enhancements is proposed.

  2. Fiber Optic Thermal Health Monitoring of Composites

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Winfree, William P.; Moore, Jason P.

    2010-01-01

    A recently developed technique is presented for thermographic detection of flaws in composite materials by performing temperature measurements with fiber optic Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of composites with subsurface defects. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared with the calculations using numerical simulation techniques. Methods and limitations for performing in-situ structural health monitoring are discussed.

  3. Fiber Optic Thermal Detection of Composite Delaminations

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Winfree, William P.

    2011-01-01

    A recently developed technique is presented for thermographic detection of delaminations in composites by performing temperature measurements with fiber optic Bragg gratings. A single optical fiber with multiple Bragg gratings employed as surface temperature sensors was bonded to the surface of a composite with subsurface defects. The investigated structure was a 10-ply composite specimen with prefabricated delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared and found to be consistent with the calculations using numerical simulation techniques. Also discussed are methods including various heating sources and patterns, and their limitations for performing in-situ structural health monitoring.

  4. Mouthrinses affect color stability of composite

    PubMed Central

    Baig, Arshia Rashid; Shori, Deepa Deepak; Shenoi, Pratima Ramakrishna; Ali, Syed Navid; Shetti, Sanjay; Godhane, Alkesh

    2016-01-01

    Aim: The aim of this study is to evaluate the effect of alcohol and nonalcohol containing mouth rinses on the color stability of a nanofilled resin composite restorative material. Materials and Methods: A total of 120 samples of a nanofilled resin composite material (Tetric N-Ceram, Ivoclar Vivadent AG, FL-9494 Schaan/Liechtenstein) were prepared and immersed in distilled water for 24 h. Baseline color values were recorded using Color Spectrophotometer 3600d (Konica Minolta, Japan). Samples were then randomly distributed into six groups: Group I - distilled water (control group), Group II - Listerine, Group III - Eludril, Group IV - Phosflur, Group V - Amflor, and Group VI - Rexidin. The postimmersion color values of the samples were then recorded, respectively. Results: Significant reduction in the mean color value (before and after immersion) was observed in nonalcohol containing mouth rinses (P < 0.001). Conclusion: All mouthrinses tested in the present in-vitro study caused a color shift in the nanofilled resin composite restorative material, but the color shift was dependent on the material and the mouthrinse used. Group VI (Rexidin) showed maximum color change. PMID:27563186

  5. Aerogel Composites for Aerospace Thermal Protection

    NASA Technical Reports Server (NTRS)

    White, Susan

    2003-01-01

    Aerogel composites formed by infiltrating organic and/or inorganic aerogels into fiber matrix materials enable us to exploit the low thermal conductivity and low density of aerogels while maintaining the strength, structure and other useful properties of a porous fiber matrix. New materials for extreme heating ranges are needed to insulate future spacecraft against the extreme heat of planetary atmospheric entry, but the insulation mass must be minimized in order to maximize the payload. A reusable system passively insulates to survive heating unchanged for relatively low heating. Ablators, which sacrifice mass to control heating, are used to protect vehicles against more extreme heating for a single use thermal protection system (TPS). Aerogel composites were fabricated and tested for spacecraft thermal protection. The high-temperaturey high heat flux tests described in this paper were performed in NASA Ames arc-jet facilities to simulate spacecraft atmospheric entry, and include heating conditions predicted for the forebody and backshell of the Mars Science Lander (MSL) entry probe. The aerogel composites tested showed excellent thermal performance in the arc-jet tests, functioning both as reusuable insulation under lower heat fluxes, and as ablative aerogels under the extreme heating predicted for the MSL forebody.

  6. Effects of ambient conditions and fuel composition on combustion stability

    SciTech Connect

    Janus, M.C.; Richards, G.A.; Yip, M.J.; Robey, E.H.

    1997-04-01

    Recent regulations on NO, emissions are promoting the use of lean premix (LPM) combustion for industrial gas turbines. LPM combustors avoid locally stoichiometric combustion by premixing fuel and the air upstream of the reaction region, thereby eliminating the high temperatures that produce thermal NO.. Unfortunately, this style of combustor is prone to combustion oscillation. Significant pressure fluctuations can occur when variations in heat release periodically couple pressure to acoustic modes in the combustion chamber. These oscillations must be controlled because resulting vibration can shorten the life of engine hardware. Laboratory and engine field testing have shown that instability regimes can vary with environmental conditions. These observations prompted this study of the effects of ambient conditions and fuel composition on combustion stability. Tests are conducted on a sub-scale combustor burning natural gas, propane, and some hydrogen/hydrocarbon mixtures. A premix, swirl-stabilized fuel nozzle typical of industrial gas turbines is used. Experimental and numerical results describe how stability regions may shift as inlet air temperature, humidity, and fuel composition are altered. Results appear to indicate that shifting instability instability regimes are primarily caused by changes in reaction rate.

  7. Ultraviolet and thermally stable polymer compositions

    NASA Technical Reports Server (NTRS)

    Reinisch, R. F.; Gloria, H. R.; Goldsberry, R. E.; Adamson, M. J. (Inventor)

    1974-01-01

    A class of polymers is provided, namely, poly(diarylsiloxy) arylazines. These polymers have a basic chemical composition which has the property of stabilizing the optical and physical properties of the polymer against the degradative effect of ultraviolet light and high temperatures. This stabilization occurs at wavelengths including those shorter than found on the surface of the earth and in the absence or presence of oxygen, making the polymers of the present invention useful for high performance coating applications in extraterrestrial space as well as similar applications in terrestrial service. The invention also provides aromatic azines which are useful in the preparation of polymers such as those of the present invention.

  8. Ultraviolet and thermally stable polymer compositions

    NASA Technical Reports Server (NTRS)

    Reinisch, R. F.; Gloria, H. R.; Goldsberry, R. E.; Adamson, M. J. (Inventor)

    1976-01-01

    A new class of polymers is provided, namely, poly (diarylsiloxy) arylazines. These novel polymers have a basic chemical composition which has the property of stabilizing the optical and physical properties of the polymer against the degradative effect of ultraviolet light and high temperatures. This stabilization occurs at wavelengths including those shorter than found on the surface of the earth and in the absence or presence of oxygen, making the polymers useful for high performance coating applications in extraterrestrial space as well as similar applications in terrestrial service. The invention also provides novel aromatic azines which are useful in the preparation of polymers such as those described.

  9. The effects of thermally reversible agents on PVC stability properties

    NASA Astrophysics Data System (ADS)

    Wang, J.; Yao, J.; Xiong, X. H.; Jia, C. X.; Ren, R.; Chen, P.; Liu, X. M.

    2016-07-01

    One kind of thermally reversible cross-linking agents for improving PVC thermally stability was synthesized. The chemical structure and thermally reversible characteristics of cross-linking agents were investigated by FTIR and DSC analysis, respectively. FTIR results confirmed that the cyclopentadienyl barium mercaptides ((CPD-C2H4S)2Ba) were successfully synthesized. DSC results showed it has thermally reversible characteristics and the depolymerization temperature was between 170 °C and 205 °C. The effects of cross-linking reaction time on gel content of Poly(vinyl chloride) compounds was evaluated. The gel content value arrived at 42% after being cross-linked for 25 min at 180 C. The static thermally stability measurement proved that the thermally stability of PVC compounds was improved.

  10. Thermal conductivity of hybrid short fiber composites

    SciTech Connect

    Dunn, M.L.; Taya, M.; Hatta, H.; Takei, T.; Nakajima, Y. Inst. of Space and Astronautical Science, Sagamihara Three-D Composites Research, Tsukuba Tohoku Univ., Sendai )

    1993-01-01

    A combined analytical/experimental study has been undertaken to investigate the effective thermal conductivity of hybrid composite materials. The analysis utilizes the equivalent inclusion approach for steady state heat conduction (Hatta and Taya, 1986) through which the interaction between the various reinforcing phases at finite concentrations is approximated by the Mori-Tanaka (1973) mean field approach. The multiple reinforcing phases of the composite are modeled as ellipsoidal in shape and thus can simulate a wide range of microstructural geometries ranging from thin platelet to continuous fiber reinforcement. The case when one phase of the composite is penny-shaped microcracks is studied in detail. Multiphase composites consisting of a Kerimid matrix and Al2O3 short fibers and Si3N4 whiskers were fabricated and, after a careful study of their microstructure, their thermal conductivities were measured. Analytical predictions are shown to be in good agreement with experimental results obtained for the Al2O3/Si3N4/Kerimid short fiber composites. 26 refs.

  11. Factors affecting the thermal shock resistance of several hafnia based composites containing graphite or tungsten. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Lineback, L. D.

    1974-01-01

    The thermal shock resistance of hafnia based composites containing graphite powder or tungsten fibers was investigated in terms of material properties which include thermal expansion, thermal conductivity, compressive fracture stress, modulus of elasticity, and phase stability in terms of the processing parameters of hot pressing pressure and/or density, degree of stabilization of the hafnia, and composition. All other parameters were held constant or assumed constant. The thermal shock resistance was directly proportional to the compressive fracture stress to modulus of elasticity ratio and was not affected appreciably by the small thermal expansion or thermal conductivity changes. This ratio was found to vary strongly with the composition and density such that the composites containing graphite had relatively poor thermal shock resistance, while the composites containing tungsten had superior thermal shock resistance.

  12. Thermal expansion measurements of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Tompkins, Stephen S.; Dries, Gregory A.

    1988-01-01

    The laser-interferometric-dilatometer system currently operational at NASA-Langley is described. The system, designed to characterize metal matrix composites, features high precision, automated data acquisition, and the ability to test a wide variety of specimen geometries over temperature ranges within 80-422 K. The paper presents typical thermal-expansion measurement data for a Gr/Al rod; Gr/Al and Gr/Mg unidirectional laminates; and a Gr/Mg (+ or -8)s laminate.

  13. Thermal stresses in thick laminated composite shells

    NASA Technical Reports Server (NTRS)

    Yuan, F. G.

    1993-01-01

    The paper provides an analytical formulation to investigate the thermomechanical behavior of thick composite shells subjected to a temperature distribution which varies arbitrarily in the radial direction. For illustrative purposes, shells under uniform temperature change are presented. It is found that thermal twist would occur even for symmetric laminated shells. Under uniform temperature rise, results for off-axis graphite/epoxy shells show that extensional-shear coupling can cause tensile radial stress throughout the shell and tensile hoop stress in the inner region. Laminated graphite/epoxy shells can exhibit negative effective thermal expansion coefficients in the longitudinal and transverse directions. Finally, the stacking sequence has a strong influence on the thermal stress distributions.

  14. Thermal expansion of composites using Moire interferometry

    NASA Technical Reports Server (NTRS)

    Bowles, D. E.; Post, D.; Herakovich, C. T.; Tenny, D. R.

    1980-01-01

    An experimental technique for precise measurement of the thermal response of fiber-reinforced composite materials uses moire interferometry with fringe multiplication which yield a sensitivity of 833 nm (32.8 mu in.) per fringe. Results from the technique are compared with those obtained from electrical resistance strain gages, and also those predicted from classical lamination theory. Temperature dependent coefficients of thermal expansion for composite materials subjected to thermal cycling in the temperature range of 297 K (75 F) to 422 K (300 F) were determined for four laminate configurations (0, 90, 0/ + or - 45/90 sub s and 0/90/ + or - 45 sub s) of T300/5208 graphite epoxy, and ranged from -0.107 mu epsilon K/1 (-0.059 mu epsilon deg F/-) for the 0 laminate to 32.18 mu epsilon K/1 (17.88 mu epsilon F/1) for the 90 laminate. Moisture was found to greatly influence the thermal response of a quasi-isotropic laminate, resulting in hysteresis and residual compressive strain as the moisture content was reduced. Comparisons between moire and strain gage measurements were inconclusive with both techniques giving consistent but systematically different results. Differences of as much as 29% were observed.

  15. Silphenylene elastomers have high thermal stability and tensile strength

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Two polymeric silphenylene ethers, when cured by reactions with ethyl silicates and metal salts at room temperature, form elastomers having excellent thermal stability and tensile properties. The highest tensile strength obtained in a reinforced elastomer was 2800 psi.

  16. Thermal stability of laser-produced iron nitrides

    NASA Astrophysics Data System (ADS)

    Han, M.; Carpene, E.; Landry, F.; Lieb, K.-P.; Schaaf, P.

    2001-04-01

    Laser nitriding is a very efficient method to improve the mechanical properties, surface hardness, corrosion, and wear resistance of iron and steel, with the advantages of a high nitrogen concentration, fast treatment, and accurate position control, and without any undesired heating effect on the substrate. However, the stability of laser-produced iron nitrides is still under investigation. This article reports investigations of the thermal stability of these iron nitrides upon annealing treatments, which were conducted both in vacuum and air. The phase and elemental composition of the nitride layers were deduced from conversion electron Mössbauer spectroscopy, resonant nuclear reaction analysis, and grazing incidence x-ray diffraction. The surface hardness was measured by the nanoindentation method. In laser-nitrided iron, two critical temperatures are found: at 523 K the predominant iron-nitride phase changes from the γ/ɛ to the γ' phase. When the temperature exceeds 773 K, all of the nitrogen has escaped from the surface layer. For annealing in air the nitrogen escapes completely already at 673 K, where a thick oxide layer has formed. Stainless steel proved to be more stable than iron, and even up to 973 K no new phases or oxides were produced, here, also, only at 973 K the nitrogen content decreased significantly. Therefore, laser-nitrided stainless steel is well suited for applications.

  17. Stabilization of supercooled fluids by thermal hysteresis proteins.

    PubMed Central

    Wilson, P W; Leader, J P

    1995-01-01

    It has been reported that thermal hysteresis proteins found in many cold-hardy, freeze-avoiding arthropods stabilize their supercooled body fluids. We give evidence that fish antifreeze proteins, which also produce thermal hysteresis, bind to and reduce the efficiency of heterogenous nucleation sites, rather than binding to embryonic ice nuclei. We discuss both possible mechanisms for stabilization of supercooled body fluids and also describe a new method for measuring and defining the supercooling point of small volumes of liquid. PMID:7612853

  18. Thermal stability and kinetic of decomposition of nitrated HTPB.

    PubMed

    Wang, Qingfa; Wang, Li; Zhang, Xiangwen; Mi, Zhentao

    2009-12-30

    Nitrated HTPB (NHTPB) is a potential energetic binder to replace the conventional inert binder, HTPB, for the composite solid propellants and plastic bonded explosives (PBXs). The thermal stability of the NHTPB sample with 10% double bonds converted to dinitrate ester group (10% NHTPB) was evaluated by high-pressure differential scanning calorimeter (PDSC) measurement. The influences of pressure (0.1, 2.5 and 5.0 MPa) and the heating rate (4, 6, 8 and 10 degrees C min(-1)) on the DSC behavior of the 10% NHTPB sample were investigated. The decomposition temperature of this compound decreased with the increase of pressure, meanwhile, increased as the heating rate increasing. The thermal decomposition at 150-250 degrees C followed a first-order law. The kinetic parameters and thermodynamic parameters for the 10% NHTPB sample at 150-250 degrees C under ambient pressure were obtained from the DSC data by non-isothermal methods proposed by ASTM E698 and Flynn-Wall-Ozawa. The critical temperature for this compound was estimated at about 154 degrees C. PMID:19740607

  19. THERMAL INSULATION PROPERTIES OF BIODEGRADABLE, CELLULOSIC-BASED NONWOVEN COMPOSITES FOR AUTOMOTIVE APPLICATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Moldable, cellulosic-based nonwoven composites with excellent thermal insulation properties were fabricated from kenaf, jute, flax, and waste cotton using recycled polyester and substandard polypropylene. The composites of these fibers have excellent shape stability and high tensile and flexural pro...

  20. Thermal radiation transmission through composite material

    NASA Astrophysics Data System (ADS)

    Loucks, Richard B.

    1995-06-01

    On 10 June 1993, the Defense Nuclear Agency (DNA) Field Command at White Sands Missile Range conducted a Thermal Radiation Simulator (TRS) test for the Naval Surface Warfare Center (NSWC) during project MINOR UNCLE. The NSWC was interested in measuring the radiant thermal energy absorbed by a fiberglass panel during a simulated nuclear weapon event. The resultant thermocouple data showed an unusual initial high-temperature rise and fall, followed by the expected conductive heating. The initial transient was theorized to be the result of thermal radiation transmitted through the panel. To investigate this theory, NSWC prepared several more panels of different thicknesses, preinstrumented with thermocouples and strain gages for testing with a U.S. Army Research Laboratory (ARL) TRS. ARL also provided additional instrumentation to measure thermal radiation on the front surface as well as behind the panel. The results showed that there was direct heating of the rear of the composite panel by thermal radiation. The quantity of heat transmission through the panel and the point of ignition of the front surface of the panel were determined. Smoke and charring of the front surface protected the panel from further heating and possible destruction.

  1. Expanded polytetrafluoroethylene reinforced polyvinylidenefluoride-hexafluoropropylene separator with high thermal stability for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Xiong, Ming; Tang, Haolin; Wang, Yadong; Lin, Yu; Sun, Meiling; Yin, Zhuangfei; Pan, Mu

    2013-11-01

    PVDF-HFP/ePTFE composite separator with high thermal stability and low thermal shrinkage characteristic has been developed. The PVDF-HFP acts to absorb the electrolyte and shutdown at elevated temperature. The thermally stable ePTFE matrix is adopted to improve the mechanical strength and sustain the insulation after the shutdown. This novel separator presents good ion conductivity (up to 1.29 mS cm-1) and has a low thermal shrinkage of 8.8% at 162 °C. The composite separator shutdown at 162 °C and keep its integrity before 329 °C. Cells based on the composite separator show excellent capacities at high rate discharge and stable cycling performance.

  2. Thermal Stability of Otto Fuel Prepolymer

    NASA Technical Reports Server (NTRS)

    Tompa, Albert S.; Sandagger, Karrie H.; Bryant, William F., Jr.; McConnell, William T.; Lacot, Fernando; Carr, Walter A.

    2000-01-01

    Otto Fuel II contains a nitrate ester, plasticizer, and 2-NPDA as a stabilizer. Otto Fuel with stabilizers from three vendors was investigated by dynamic and isothermal differential scanning calorimetry (DSC) using samples sealed in a glass ampoule and by Isothermal Microcalorimetry (IMC) using 10 gram samples aged at 75 C for 35 days. DSC kinetics did not show differences between the stabilizer; the samples had an activation energy of 36.7 +/- 0.6 kcal/mol. However, IMC analysis was sensitive enough to detect small differences between the stabilizer, namely energy of interaction values of 7 to 14 Joules. DSC controlled cooling and heating at 5 C/min from 30 to -60 to 40 C experiments were similar and showed a crystallization peak at -48 +/- 1 C during cooling, and upon heating there was a glass transition temperature step at approx. -54 +/- 0.5 C and a melting peak at -28 +/- 0.4 C.

  3. Thermal Stability of Otto Fuel Prepolymer

    NASA Technical Reports Server (NTRS)

    Tompa, Albert S.; Sandagger, Karrie H.; Bryant, William F., Jr.; McConnell, William T.; Lacot, Fernando; Carr, Walter A.

    2000-01-01

    Otto Fuel II contains a nitrate ester, plasticizer, and 2-NDPA as a stabilizer. Otto Fuel with stabilizers from three vendors was investigated by dynamic and isothermal DSC using samples sealed in a glass ampoule and by Isothermal Microcalorimetry (IMC) using 10 gram samples aged at 75 C for 35 days. DSC kinetics did not show differences between the stabilizer; the samples had an activation energy of 36.7 +/- 0.6 kcal/mol. However, IMC analysis was sensitive enough to detect small differences between the stabilizer, namely energy of interaction values of 7 to 14 Joules. DSC controlled cooling and heating at 5 C/min from 30 to -60 to 40 C experiments were similar and showed a crystallization peak at -48 +/- 1 C during cooling, and upon heating there was a glass transition temperature step at approx. -54 +/- 0.5 C and a melting peak at -28 +/- 0.4 C.

  4. Thermal stability and degradation of chitosan modified by benzophenone

    NASA Astrophysics Data System (ADS)

    Diab, M. A.; El-Sonbati, A. Z.; Bader, D. M. D.

    2011-09-01

    N-(biphenylmethylidenyl) chitosan polymer was prepared, characterized and thermal stability was compared with chitosan. Thermal degradation products of the modified polymer were identified by GC-MS technique. It seems that the mechanism of degradation of the prepared polymer is characterized by formation of low molecular weight radicals, followed by random scission mechanism along the backbond chain.

  5. Electroweak absolute, meta-, and thermal stability in neutrino mass models

    NASA Astrophysics Data System (ADS)

    Lindner, Manfred; Patel, Hiren H.; Radovčić, Branimir

    2016-04-01

    We analyze the stability of the electroweak vacuum in neutrino mass models containing right-handed neutrinos or fermionic isotriplets. In addition to considering absolute stability, we place limits on the Yukawa couplings of new fermions based on metastability and thermal stability in the early Universe. Our results reveal that the upper limits on the neutrino Yukawa couplings can change significantly when the top quark mass is allowed to vary within the experimental range of uncertainty in its determination.

  6. Thermal stress effects in intermetallic matrix composites

    NASA Technical Reports Server (NTRS)

    Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.

    1993-01-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  7. Thermal and Compositional Stratification of the Inner Core

    NASA Astrophysics Data System (ADS)

    Labrosse, S.

    2014-12-01

    The improvements on the knowledge of the seismic structure of the inner core and the complexities thereby revealed ask for a dynamical origin. Sub-solidus convection was one of the early suggestions to explain the seismic anisotropy but requires an unstable density gradient either from thermal or compositional origin, or both. Temperature and composition profiles in the inner core are computed using a unidimensional model of core evolution including diffusion in the inner core and fractional crystallisation at the the inner core boundary (ICB). The thermal conductivity of the core has been recently revised upwardly and, moreover, found increasing with depth. Values of the heat flow across the core mantle boundary (CMB) sufficient to maintain convection in the whole outer core are not sufficient to make the temperature in the inner core super-isentropic and therefore prone to thermal instability. An unreasonably high CMB heat flow is necessary to this end. The compositional stratification results from a competition of the increase of the concentration in O and S in the outer core with inner core growth, which makes the inner core concentration also increase, and of the decrease of the liquidus which makes the partition coefficient decrease as well as the concentration of light elements in the solid. While the latter (destabilizing) effect dominates at small inner core sizes, the former takes over for a large inner core. The turnover point is encountered for an inner core about half its current size in the case of S but much larger for the case of O. The combined thermal and compositional buoyancy is stabilizing and solid-state convection in the inner core appears unlikely, unless an early double-diffusive instability can set in.

  8. Effective thermal conductivity of a thin composite material

    SciTech Connect

    Phelan, P.E.; Niemann, R.C.

    1996-12-31

    The thermal conductivity of a randomly oriented composite material is modeled using a probabilistic approach in order to determine if a size effect exists for the thermal conductivity at small composite thickness. The numerical scheme employs a random number generator to position the filler elements, which have a relatively high thermal conductivity, within a matrix having a relatively low thermal conductivity. Results indicate that, below some threshold thickness, the composite thermal conductivity increases with decreasing thickness, while above the threshold the thermal conductivity is independent of thickness. The threshold thickness increases for increasing filler fraction and increasing k{sub f}/k{sub m}, the ratio between filler and matrix thermal conductivities.

  9. Thermal phase stability of some simulated Defense waste glasses

    SciTech Connect

    May, R.P.

    1981-04-01

    Three simulated defense waste glass compositions developed by Savannah River Laboratories were studied to determine viscosity and compositional effects on the comparative thermal phase stabilities of these glasses. The glass compositions are similar except that the 411 glasses are high in lithium and low in sodium compared to the 211 glass, and the T glasses are high in iron and low in aluminum compared to the C glass. Specimens of these glasses were heat treated using isothermal anneals as short as 10 min and up to 15 days over the temperature range of 450/sup 0/C to 1100/sup 0/C. Additionally, a specimen of each glass was cooled at a constant cooling rate of 7/sup 0/C/hour from an 1100/sup 0/C melt down to 500/sup 0/C where it was removed from the furnace. The following were observed. The slow cooling rate of 7/sup 0/C/hour is possible as a canister centerline cooling rate for large canisters. Accordingly, it is important to note that a short range diffusion mechanism like cooperative growth phenomena can result in extensive devitrification at lower temperatures and higher yields than a long-range diffusion mechanism can; and can do it without the growth of large crystals that can fracture the glass. Refractory oxides like CeO/sub 2/ and (Ni, Mn, Fe)/sub 2/O/sub 4/ form very rapidly at higher temperatures than silicates and significant yields can be obtained at sufficiently high temperatures that settling of these dense phases becomes a major microstructural feature during slow cooling of some glasses. These annealing studies further show that below 500/sup 0/C there is but little devitrification occurring implying that glass canisters stored at 300/sup 0/C may be kinetically stable despite not being thermodynamically so.

  10. Study of thermal stability and degradation of fire resistant candidate polymers for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Hsu, M. T. S.

    1976-01-01

    The thermochemistry of bismaleimide resins and phenolphthalein polycarbonate was studied. Both materials are fire-resistant polymers and may be suitable for aircraft interiors. The chemical composition of the polymers has been determined by nuclear magnetic resonance and infrared spectroscopy and by elemental analysis. Thermal properties of these polymers have been characterized by thermogravimetric analyses. Qualitative evaluation of the volatile products formed in pyrolysis under oxidative and non-oxidative conditions has been made using infrared spectrometry. The residues after pyrolysis were analyzed by elemental analysis. The thermal stability of composite panel and thermoplastic materials for aircraft interiors was studied by thermogravimetric analyses.

  11. Morphologies, mechanical properties and thermal stability of poly(lactic acid) toughened by precipitated barium sulfate

    NASA Astrophysics Data System (ADS)

    Yang, Jinian; Wang, Chuang; Shao, Kaiyun; Ding, Guoxin; Tao, Yulun; Zhu, Jinbo

    2015-11-01

    Poly(lactic acid) (PLA)-based composites were prepared by blending PLA with precipitated barium sulfate (BaSO4) modified with stearic acid. The morphologies, mechanical properties and thermal stability of samples with increased mass fraction of BaSO4 were investigated. Results showed that PLA was toughened and reinforced simultaneously by incorporation of precipitated BaSO4 particles. The highest impact toughness and elongation at break were both achieved at 15% BaSO4, while the elastic modulus increased monotonically with increasing BaSO4 loading. Little effect of BaSO4 on the thermal behavior of PLA was observed in the present case. However, the thermal stability of PLA/BaSO4 composites at high temperature was enhanced.

  12. Quantitative thermal diffusivity measurements of composites

    NASA Technical Reports Server (NTRS)

    Heath, D. M.; Winfree, W. P.; Heyman, J. S.; Miller, W. E.; Welch, C. S.

    1986-01-01

    A remote radiometric technique for making quantitative thermal diffusivity measurements is described. The technique was designed to make assessments of the structural integrity of large composite parts, such as wings, and can be performed at field sites. In the measurement technique, a CO2 laser beam is scanned using two orthogonal servo-controlled deflecting mirrors. An infrared imager, whose scanning mirrors oscillate in the vertical and the horizontal directions, is used as the detector. The analysis technique used to extract the diffusivity from these images is based on a thin infinite plate assumption, which requires waiting a given period of time for the temperature to equilibrate throughout the thickness of the sample. The technique is shown to be accurate to within two percent for values of the order of those for composite diffusivities, and to be insensitive to convection losses.

  13. Thermal Inspection of Composite Honeycomb Structures

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Parker, F. Raymond

    2014-01-01

    Composite honeycomb structures continue to be widely used in aerospace applications due to their low weight and high strength advantages. Developing nondestructive evaluation (NDE) inspection methods are essential for their safe performance. Pulsed thermography is a commonly used technique for composite honeycomb structure inspections due to its large area and rapid inspection capability. Pulsed thermography is shown to be sensitive for detection of face sheet impact damage and face sheet to core disbond. Data processing techniques, using principal component analysis to improve the defect contrast, are presented. In addition, limitations to the thermal detection of the core are investigated. Other NDE techniques, such as computed tomography X-ray and ultrasound, are used for comparison to the thermography results.

  14. Thermal inspection of composite honeycomb structures

    NASA Astrophysics Data System (ADS)

    Zalameda, Joseph N.; Parker, F. Raymond

    2014-05-01

    Composite honeycomb structures continue to be widely used in aerospace applications due to their low weight and high strength advantages. Developing nondestructive evaluation (NDE) inspection methods are essential for their safe performance. Pulsed thermography is a commonly used technique for composite honeycomb structure inspections due to its large area and rapid inspection capability. Pulsed thermography is shown to be sensitive for detection of face sheet impact damage and face sheet to core disbond. Data processing techniques, using principal component analysis to improve the defect contrast, are presented. In addition, limitations to the thermal detection of the core are investigated. Other NDE techniques, such as computed tomography X-ray and ultrasound, are used for comparison to the thermography results.

  15. Thermal barrier coating having high phase stability

    DOEpatents

    Subramanian, Ramesh

    2002-01-01

    A device (10) comprising a substrate (22) having a deposited ceramic thermal barrier coating characterized by a microstructure having gaps (28) where the thermal barrier coating comprises a first thermal barrier layer (40), and a second thermal barrier layer (30) with a pyrochlore crystal structure having a chemical formula of A.sup.n+.sub.2-x B.sup.m+.sub.2+x O.sub.7-y, where A is selected from the group of elements consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and mixtures thereof, where B is selected from the group of elements consisting of Zr, Hf, Ti and mixtures thereof, where n and m are the valence of A and B respectively, and for -0.5.ltoreq.x.ltoreq.0.5, ##EQU1## and excluding the following combinations for x=0, y=0: A=La and B=Zr; A=La and B=Hf; A=Gd and B=Hf; and A=Yb and B=Ti.

  16. Dielectric composites incorporating enthalpy stabilization for NbTi windings

    NASA Technical Reports Server (NTRS)

    Lawless, W. N.; Clark, C. F.

    1988-01-01

    Composites of ceramic powders in epoxies appropriate for both insulating and impregnating NbTi windings are studied. Specific heat, thermal conductivity, thermal contraction, and magnetocaloric measurements on composites are presented. Thermal contractions well matched to copper are found and thermal shock resistance is greatly enhanced. Enthalpies, 4.2-6 K, range up to 80 mJ/cu cm and are 20-50 times larger than that of the pure epoxies. Results are not specific to the epoxies used but apply to composites with any amorphous matrices.

  17. Chitosan filled recycled low density polyethylene composite: Melt flow behaviour and thermal degradation properties

    NASA Astrophysics Data System (ADS)

    Lim, B. Y.; Voon, C. H.; Salmah, H.; Nordin, H.

    2016-07-01

    An environmentally friendly composite was fabricated from chitosan and recycled low density polyethylene (rLDPE) with the means of melt mixing at 180 °C. The composites were prepared in different loading (10, 20, 30 and 40 php) of chitosan. Due to the incompatibility between filler and matrix, a coupling agent, Ultraplus TP01, was added into the composites. The melt flow index (MFI) values of rLDPE/chitosan composites decreased with chitosan loading but increased with rise of temperature. With the presence of Ultraplus TP01, MFI values of composites were decreased. The thermal stability of rLDPE/chitosan was reduced with increase of chitosan loading but increased with addition of Ultraplus TP01. It was believed that Ultraplus TP01 had provided better interfacial bonding between chitosan and rLDPE, thus enhanced the thermal stability of rLDPE/chitosan composites.

  18. Thermal Stability of Rhodopsin and Progression of Retinitis Pigmentosa

    PubMed Central

    Liu, Monica Yun; Liu, Jian; Mehrotra, Devi; Liu, Yuting; Guo, Ying; Baldera-Aguayo, Pedro A.; Mooney, Victoria L.; Nour, Adel M.; Yan, Elsa C. Y.

    2013-01-01

    Over 100 point mutations in the rhodopsin gene have been associated with retinitis pigmentosa (RP), a family of inherited visual disorders. Among these, we focused on characterizing the S186W mutation. We compared the thermal properties of the S186W mutant with another RP-causing mutant, D190N, and with WT rhodopsin. To assess thermal stability, we measured the rate of two thermal reactions contributing to the thermal decay of rhodopsin as follows: thermal isomerization of 11-cis-retinal and hydrolysis of the protonated Schiff base linkage between the 11-cis-retinal chromophore and opsin protein. We used UV-visible spectroscopy and HPLC to examine the kinetics of these reactions at 37 and 55 °C for WT and mutant rhodopsin purified from HEK293 cells. Compared with WT rhodopsin and the D190N mutant, the S186W mutation dramatically increases the rates of both thermal isomerization and dark state hydrolysis of the Schiff base by 1–2 orders of magnitude. The results suggest that the S186W mutant thermally destabilizes rhodopsin by disrupting a hydrogen bond network at the receptor's active site. The decrease in the thermal stability of dark state rhodopsin is likely to be associated with higher levels of dark noise that undermine the sensitivity of rhodopsin, potentially accounting for night blindness in the early stages of RP. Further studies of the thermal stability of additional pathogenic rhodopsin mutations in conjunction with clinical studies are expected to provide insight into the molecular mechanism of RP and test the correlation between rhodopsin's thermal stability and RP progression in patients. PMID:23625926

  19. Thermal stability of idealized folded carbyne loops.

    PubMed

    Cranford, Steven W

    2013-01-01

    Self-unfolding items provide a practical convenience, wherein ring-like frames are contorted into a state of equilibrium and subsequently  pop up' or deploy when perturbed from a folded structure. Can the same process be exploited at the molecular scale? At the limiting scale is a closed chain of single atoms, used here to investigate the limits of stability of such folded ring structures via full atomistic molecular dynamics. Carbyne is a one-dimensional carbon allotrope composed of sp-hybridized carbon atoms. Here, we explore the stability of idealized carbyne loops as a function of chain length, curvature, and temperature, and delineate an effective phase diagram between folded and unfolded states. We find that while overall curvature is reduced, in addition to torsional and self-adhesive energy barriers, a local increase in curvature results in the largest impedance to unfolding. PMID:24252156

  20. Composite Transport Coefficient for Electron Thermal Energy

    NASA Astrophysics Data System (ADS)

    Coppi, B.; Daughton, W.

    1996-11-01

    A series of experiments by the Alcator C-Mod machine over a range of heating conditions (ohmic to strongly r.f. heated) has led to the construction of a composite transport coefficient for the electron thermal energy. This is represented by the difference of two terms: one corresponding to an outflow of thermal energy and the other one corresponding to an inflow. There are theoretical arguments(B. Coppi and F. Pegoraro, Phys. Fluids B) 3 p. 2582 (1991) in support of a composite transport coefficient involving the elements of a transport matrix with an inflow term related for instance to the features of the current density profile relative to those of the electron temperature. In deriving the transport coefficient D_e^th that has been used to simulate the Alcator C-Mod plasmas, we have assumed that the driving factor of the underlying modes is the plasma pressure gradient. Thus D_e^th ∝ D_e^o [β_p* - C] where β_p* = (8π p* / B_p^2), p* ≡ -r(dp/dr) is evaluated at the point of maximum pressure gradient, C ≈ 3/16 is a positive numerical coefficient and D_e^o ∝ I_p/(nT)^5/6 is basically the Coppi-Mazzucato-Gruber diffusion coefficient introduced earlier to reproduce the results of experiments with ohmic heating. Supported in part by the U.S. Department of Energy

  1. Graphene/elastomer composite-based photo-thermal nanopositioners

    PubMed Central

    Loomis, James; Fan, Xiaoming; Khosravi, Farhad; Xu, Peng; Fletcher, Micah; Cohn, Robert W.; Panchapakesan, Balaji

    2013-01-01

    The addition of nanomaterials to polymers can result not only in significant material property improvements, but also assist in creating entirely new composite functionalities. By dispersing graphene nanoplatelets (GNPs) within a polydimethylsiloxane matrix, we show that efficient light absorption by GNPs and subsequent energy transduction to the polymeric chains can be used to controllably produce significant amounts of motion through entropic elasticity of the pre-strained composite. Using dual actuators, a two-axis sub-micron resolution stage was developed, and allowed for two-axis photo-thermal positioning (~100 μm per axis) with 120 nm resolution (feedback sensor limitation), and ~5 μm/s actuation speeds. A PID control loop automatically stabilizes the stage against thermal drift, as well as random thermal-induced position fluctuations (up to the bandwidth of the feedback and position sensor). Maximum actuator efficiency values of ~0.03% were measured, approximately 1000 times greater than recently reported for light-driven polymer systems. PMID:23712601

  2. Effective thermal conductivity of a thin, randomly oriented composite material

    SciTech Connect

    Phelan, P.E.; Niemann, R.C.

    1997-10-01

    The thermal conductivity of a randomly oriented composite material is modeled using a probabilistic approach in order to determine if a size effect exists for the thermal conductivity at small composite thicknesses. The numerical scheme employs a random number generator to position the filler elements, which have a relatively high thermal conductivity, within a matrix having a relative low thermal conductivity. The results indicate that, below some threshold thickness, the composite thermal conductivity is independent of thickness. The threshold thickness increases for increasing filler fraction and increasing k{sub f}/k{sub m}, the ratio between the filler and matrix thermal conductivities.

  3. A Physics-Based Temperature Stabilization Criterion for Thermal Testing

    NASA Technical Reports Server (NTRS)

    Rickman, Steven L.; Ungar, Eugene K.

    2009-01-01

    Spacecraft testing specifications differ greatly in the criteria they specify for stability in thermal balance tests. Some specify a required temperature stabilization rate (the change in temperature per unit time, dT/dt), some specify that the final steady-state temperature be approached to within a specified difference, delta T , and some specify a combination of the two. The particular values for temperature stabilization rate and final temperature difference also vary greatly between specification documents. A one-size-fits-all temperature stabilization rate requirement does not yield consistent results for all test configurations because of differences in thermal mass and heat transfer to the environment. Applying a steady-state temperature difference requirement is problematic because the final test temperature is not accurately known a priori, especially for powered configurations. In the present work, a simplified, lumped-mass analysis has been used to explore the applicability of these criteria. A new, user-friendly, physics-based approach is developed that allows the thermal engineer to determine when an acceptable level of temperature stabilization has been achieved. The stabilization criterion can be predicted pre-test but must be refined during test to allow verification that the defined level of temperature stabilization has been achieved.

  4. Thermal and radiation resistance of stabilized LDPE

    NASA Astrophysics Data System (ADS)

    Zaharescu, T.; Jipa, S.; Henderson, D.; Kappel, W.; Mariş, D. A.; Mariş, M.

    2010-03-01

    The effect of capsaicin on the radiation stability of low density polyethylene was accomplished by applying the chemiluminescence procedure. The neat and modified polymer with 0.25% and 0.50% (w/w) capsaicin were exposed to γ-irradiation in air receiving 10, 20 and 30 kGy. The synergistic effect due to the presence of metallic selenium was demonstrated. The significant improvement in oxidation induction time was obtained demonstrating the efficient antioxidant activity of capsaicin in LDPE. The simultaneous protection action of metallic selenium in LDPE/capsaicin systems brought about a supplementary enhancement in the oxidation resistance of irradiated samples.

  5. Examination of lignocellulosic fibers for chemical, thermal, and separations properties: Addressing thermo-chemical stability issues

    NASA Astrophysics Data System (ADS)

    Johnson, Carter David

    Natural fiber-plastic composites incorporate thermoplastic resins with fibrous plant-based materials, sometimes referred to as biomass. Pine wood mill waste has been the traditional source of natural fibrous feedstock. In anticipation of a waste wood shortage other fibrous biomass materials are being investigated as potential supplements or replacements. Perennial grasses, agricultural wastes, and woody biomass are among the potential source materials. As these feedstocks share the basic chemical building blocks; cellulose, hemicellulose, and lignin, they are collectively called lignocellulosics. Initial investigation of a number of lignocellulosic materials, applied to fiber-plastic composite processing and material testing, resulted in varied results, particularly response to processing conditions. Less thermally stable lignocellulosic filler materials were physically changed in observable ways: darkened color and odor. The effect of biomass materials' chemical composition on thermal stability was investigated an experiment involving determination of the chemical composition of seven lignocellulosics: corn hull, corn stover, fescue, pine, soy hull, soy stover, and switchgrass. These materials were also evaluated for thermal stability by thermogravimetric analysis. The results of these determinations indicated that both chemical composition and pretreatment of lignocellulosic materials can have an effect on their thermal stability. A second study was performed to investigate what effect different pretreatment systems have on hybrid poplar, pine, and switchgrass. These materials were treated with hot water, ethanol, and a 2:1 benzene/ethanol mixture for extraction times of: 1, 3, 6, 12, and 24 hours. This factorial experiment demonstrated that both extraction time and medium have an effect on the weight percent of extractives removed from all three material types. The extracted materials generated in the above study were then subjected to an evaluation of thermal

  6. Thermal and mechanical stability of zeolitic imidazolate frameworks polymorphs

    SciTech Connect

    Bouëssel du Bourg, Lila; Ortiz, Aurélie U.; Coudert, François-Xavier; Boutin, Anne

    2014-12-01

    Theoretical studies on the experimental feasibility of hypothetical Zeolitic Imidazolate Frameworks (ZIFs) have focused so far on relative energy of various polymorphs by energy minimization at the quantum chemical level. We present here a systematic study of stability of 18 ZIFs as a function of temperature and pressure by molecular dynamics simulations. This approach allows us to better understand the limited stability of some experimental structures upon solvent or guest removal. We also find that many of the hypothetical ZIFs proposed in the literature are not stable at room temperature. Mechanical and thermal stability criteria thus need to be considered for the prediction of new MOF structures. Finally, we predict a variety of thermal expansion behavior for ZIFs as a function of framework topology, with some materials showing large negative volume thermal expansion.

  7. Chemical, thermal and mechanical stabilities of metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Howarth, Ashlee J.; Liu, Yangyang; Li, Peng; Li, Zhanyong; Wang, Timothy C.; Hupp, Joseph T.; Farha, Omar K.

    2016-03-01

    The construction of thousands of well-defined, porous, metal-organic framework (MOF) structures, spanning a broad range of topologies and an even broader range of pore sizes and chemical functionalities, has fuelled the exploration of many applications. Accompanying this applied focus has been a recognition of the need to engender MOFs with mechanical, thermal and/or chemical stability. Chemical stability in acidic, basic and neutral aqueous solutions is important. Advances over recent years have made it possible to design MOFs that possess different combinations of mechanical, thermal and chemical stability. Here, we review these advances and the associated design principles and synthesis strategies. We focus on how these advances may render MOFs effective as heterogeneous catalysts, both in chemically harsh condensed phases and in thermally challenging conditions relevant to gas-phase reactions. Finally, we briefly discuss future directions of study for the production of highly stable MOFs.

  8. Thermal Stability of Fluorinated Polydienes Synthesized by Addition of Difluorocarbene

    SciTech Connect

    Huang, Tianzi; Wang, Xiaojun; Malmgren, Thomas W; Hong, Kunlun; Mays, Jimmy

    2012-01-01

    Linear PCHD and polyisoprenes with different microstructures and molecular weights are synthesized and chemically modified to improve their thermal and chemical stability by forming a three-membered ring structure containing two C-F bonds. Pyrolysis of these fluorinated polydienes proceeds through a two-stage decomposition involving chain scission, crosslinking, dehydrogenation, and dehalogenation. The pyrolysis leads to graphite-like residues, whereas their polydiene precursors decompose completely under the same conditions. The fluorination of PCHD enhances its thermal stability. The stronger C-F bond along with high strain of the three-membered ring structure and formation of relatively stable free radicals play an important role in the thermal stability of fluorinated polydienes.

  9. Controlled synthesis and thermal stability of hydroxyapatite hierarchical microstructures

    SciTech Connect

    Sun, Ruixue; Chen, Kezheng; Liao, Zhongmiao; Meng, Nan

    2013-03-15

    Highlights: ► Hydroxyapatite hierarchical microstructures have been synthesized by a facile method. ► The morphology and size of the building units of 3D structures can be controlled. ► The hydroxyapatite with 3D structure is morphologically and structurally stable up to 800 °C. - Abstract: Hydroxyapatite (HAp) hierarchical microstructures with novel 3D morphology were prepared through a template- and surfactant-free hydrothermal homogeneous precipitation method. Field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD) were used to characterize the morphology and composition of the synthesized products. Interestingly, the obtained HAp with 3D structure is composed of one-dimensional (1D) nanorods or two-dimensional (2D) nanoribbons, and the length and morphology of these building blocks can be controlled through controlling the pH of the reaction. The building blocks are single crystalline and have different preferential orientation growth under different pH conditions. At low pH values, octacalcium phosphate (OCP) phase formed first and then transformed into HAp phase due to the increased pH value caused by the decomposition of urea. The investigation on the thermal stability reveals that the prepared HAp hierarchical microstructures are morphologically and structurally stable up to 800 °C.

  10. Problem of the lithium peroxide thermal stability

    NASA Astrophysics Data System (ADS)

    Nefedov, R. A.; Ferapontov, Yu A.; Kozlova, N. P.

    2016-01-01

    The behavior of lithium peroxide and lithium peroxide monohydrate samples under heating in atmospheric air was studied by the method of thermogravimetric analysis (TGA) and differential thermal analysis (DTA). It was found that in the temperature range of 32°C to 82°C the interaction of lithium peroxides and steam with the formation of lithium peroxide monohydrate occurs, which was confirmed chemically and by X-ray Single-qualitative analysis. It was experimentally found that lithium peroxide starts to decompose into the lithium oxide and oxygen in the temperature range of 340 ÷ 348°C. It was established that the resulting thermal decomposition of lithium oxide, lithium peroxide at the temperature of 422°C melts with lithium carbonate eutecticly. The manifestation of polymorphism was not marked(seen or noticed) under the heating of studied samples of lithium peroxide and lithium peroxide monohydrate in the temperature range of 25°C ÷ 34°C.

  11. Thermal barrier coating having high phase stability

    DOEpatents

    Subramanian, Ramesh

    2001-01-01

    A device (10) comprising a substrate (22) having a deposited ceramic thermal barrier coating layer (20) characterized by a microstructure having gaps (28) where the thermal barrier coating (20) consists essentially of a pyrochlore crystal structure having a chemical formula consisting essentially of A.sup.n+.sub.2-x B.sup.m+.sub.2+x O.sub.7-y, where A is selected from the group of elements selected from La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and mixtures thereof; where B is selected from the group of elements selected from Zr, Hf, Ti and mixtures thereof; n and m are the valence of A and B respectively, and for -0.5.ltoreq.x.ltoreq.0.5, ##EQU1## and excluding the following combinations for x=0, y=0: A=La and B=Zr; A=La and B=Hf; A=Gd and B=Hf; and A=Yb and B=Ti.

  12. Critical cooling rate and thermal stability of Zr--Ti--Cu--Ni--Be alloys

    SciTech Connect

    Waniuk, Theodore A.; Schroers, Jan; Johnson, William L.

    2001-02-26

    The critical cooling rate as well as the thermal stability are measured for a series of alloys in the Zr--Ti--Cu--Ni--Be system. Upon cooling from the molten state with different rates, alloys with compositions ranging along a tie line from (Zr{sub 70}Ti{sub 30}){sub 55}(Ni{sub 39}Cu{sub 61}){sub 25}Be{sub 20} to (Zr{sub 85}Ti{sub 15}){sub 55}(Ni{sub 57}Cu{sub 43}){sub 22.5}Be{sub 27.5} show a continuous increase in the critical cooling rate to suppress crystallization. In contrast, thermal analysis of the same alloys shows that the undercooled liquid region, the temperature difference between the glass transition temperature and the crystallization temperature, is largest for some compositions midway between the two endpoints, revealing that glass forming ability does not correlate with thermal stability. The relationship between the composition-dependent glass forming ability and thermal stability is discussed with reference to a chemical decomposition process.

  13. Thermal stability of the two-dimensional topological color code

    NASA Astrophysics Data System (ADS)

    Mohseninia, Razieh

    2016-08-01

    Thermal stability of the topological color code in the presence of a thermal bath is studied. We study the Lindblad evolution of the observables in the weak-coupling limit of the Born-Markov approximation. The autocorrelation functions of the observables are used as a figure of merit for the thermal stability. We show that all of the observables autocorrelation functions decay exponentially in time. By finding a lower bound of the decay rate, which is a constant independent of the system size, we show that the topological color code is unstable against thermal fluctuations from the bath at finite temperature, even though it is stable at T =0 against local quantum perturbations.

  14. Thermal-expansion hysteresis in graphite/glass composites

    SciTech Connect

    Janas, V.F.

    1988-07-01

    The thermal-expansion hysteresis phenomena in graphite/glass composites was studied. Neat (unfilled) glass and unidirectional composites showed no observable hysteresis, while (0/90) cross-ply composites showed significant residual thermal strain (approx. 20 PPM) after thermal cycling (25 ..-->.. 150 ..-->.. 25/sup 0/C). Multiple thermal cycling of the composite and the strengthening of the fiber/matrix bond were found to greatly reduce the magnitude of the residual thermal strain. Bond strengthening also weakened and embrittled the composite, supporting a fiber-slippage mechanism for hysteresis. Thermal precycling and interface modification are proposed as methods of diminishing the effects of thermal-expansion hysteresis. 11 references, 6 figures, 4 tables.

  15. Silver nanowire array-polymer composite as thermal interface material

    NASA Astrophysics Data System (ADS)

    Xu, Ju; Munari, Alessio; Dalton, Eric; Mathewson, Alan; Razeeb, Kafil M.

    2009-12-01

    Silver nanowire arrays embedded inside polycarbonate templates are investigated as a viable thermal interface material for electronic cooling applications. The composite shows an average thermal diffusivity value of 1.89×10-5 m2 s-1, which resulted in an intrinsic thermal conductivity of 30.3 W m-1 K-1. The nanowires' protrusion from the film surface enables it to conform to the surface roughness to make a better thermal contact. This resulted in a 61% reduction in thermal impedance when compared with blank polymer. An ˜30 nm Au film on the top of the composite was found to act as a heat spreader, reducing the thermal impedance further by 35%. A contact impedance model was employed to compare the contact impedance of aligned silver nanowire-polymer composites with that of aligned carbon nanotubes, which showed that the Young's modulus of the composite is the defining factor in the overall thermal impedance of these composites.

  16. Enhanced thermal stability of Ag nanorods through capping

    SciTech Connect

    Bachenheimer, Lou; Elliott, Paul; Stagon, Stephen; Huang, Hanchen

    2014-11-24

    Ag nanorods may serve as sensors in the detection of trace amounts of chemical agents, even single molecules, through surface enhanced Raman spectroscopy (SERS). However, thermal coarsening of Ag nanorods near room temperature limits their applications. This letter proposes the use of a thin oxide capping layer to enhance the thermal stability of Ag nanorods beyond 100 °C. Using electron microscopy characterization and SERS tests, the authors show that the proposed method is effective in stabilizing both morphology and sensitivity of Ag nanorods. The results of this work extend the applicability of Ag nanorods as chemical sensors to higher temperatures.

  17. CHEMICAL REACTIVITY TEST: Assessing Thermal Stability and Chemical Compatibility

    SciTech Connect

    Koerner, J; Tran, T; Gagliardi, F; Fontes, A

    2005-04-21

    The thermal stability of high explosive (HE) and its compatibility with other materials are of critical importance in storage and handling practices. These properties are measured at Lawrence Livermore National Laboratory using the chemical reactivity test (CRT). The CRT measures the total amount of gas evolved from a material or combination of materials after being heat treated for a designated period of time. When the test result is compared to a threshold value, the relative thermal stability of an HE or the compatibility of an HE with other materials is determined. We describe the CRT testing apparatus, the experimental procedure, and the comparison methodology and provide examples and discussion of results.

  18. Conditions for thermal stabilization of the superconductor's critical state

    NASA Astrophysics Data System (ADS)

    Romanovskii, V. R.

    2013-05-01

    Conditions for thermal stabilization of the electrodynamic states of a superconductor are studied. The macroscopic states are simulated in the nonisothermal approximation by numerically solving a set of the Fourier and Maxwell equations with the magnetic flux penetration boundary unknown. Stability criteria for the critical state described by the viscous flow model are formulated. The results are compared with those following from the isothermal theory. It is shown that errors inherent in the isothermal approximation are significant for a thermally insulated superconductor. Therefore, the well-known adiabatic criterion of stability formulated in the isothermal approximation limits the domain of stable states, since a correct determination of conditions for the superconducting-normal state transition must take into account the thermal history of the stable superconducting state formation. On the whole, the error of loss calculation in the isothermal approximation increases when the heat transfer coefficient decreases or an external magnetic field sweep and the size of the superconductor's cross section increases. On the other hand, nonisothermal stability conditions expand the variety of allowable states, since they include conditions that links the currently developed theory of thermomagnetic instability, the theory of losses, and the theory of a superconductor's thermal stabilization.

  19. Effects of sugars on the thermal stability of a protein.

    PubMed

    Oshima, Hiraku; Kinoshita, Masahiro

    2013-06-28

    It is experimentally known that the heat-denaturation temperature of a protein is raised (i.e., its thermal stability is enhanced) by sugar addition. In earlier works, we proposed a physical picture of thermal denaturation of proteins in which the measure of the thermal stability is defined as the solvent-entropy gain upon protein folding at 298 K normalized by the number of residues. A multipolar-model water was adopted as the solvent. The polyatomic structures of the folded and unfolded states of a protein were taken into account in the atomic detail. A larger value of the measure implies higher thermal stability. First, we show that the measure remains effective even when the model water is replaced by the hard-sphere solvent whose number density and molecular diameter are set at those of real water. The physical picture is then adapted to the elucidation of the effects of sugar addition on the thermal stability of a protein. The water-sugar solution is modeled as a binary mixture of hard spheres. The thermal stability is determined by a complex interplay of the diameter of sugar molecules dC and the total packing fraction of the solution η: dC is estimated from the volume per molecule in the sugar crystal and η is calculated using the experimental data of the solution density. We find that the protein is more stabilized as the sucrose or glucose concentration becomes higher and the stabilization effect is stronger for sucrose than for glucose. These results are in accord with the experimental observations. Using a radial-symmetric integral equation theory and the morphometric approach, we decompose the change in the measure upon sugar addition into two components originating from the protein-solvent pair and protein-solvent many-body correlations, respectively. Each component is further decomposed into the excluded-volume and solvent-accessible-surface terms. These decompositions give physical insights into the microscopic origin of the thermal-stability

  20. Effects of sugars on the thermal stability of a protein

    NASA Astrophysics Data System (ADS)

    Oshima, Hiraku; Kinoshita, Masahiro

    2013-06-01

    It is experimentally known that the heat-denaturation temperature of a protein is raised (i.e., its thermal stability is enhanced) by sugar addition. In earlier works, we proposed a physical picture of thermal denaturation of proteins in which the measure of the thermal stability is defined as the solvent-entropy gain upon protein folding at 298 K normalized by the number of residues. A multipolar-model water was adopted as the solvent. The polyatomic structures of the folded and unfolded states of a protein were taken into account in the atomic detail. A larger value of the measure implies higher thermal stability. First, we show that the measure remains effective even when the model water is replaced by the hard-sphere solvent whose number density and molecular diameter are set at those of real water. The physical picture is then adapted to the elucidation of the effects of sugar addition on the thermal stability of a protein. The water-sugar solution is modeled as a binary mixture of hard spheres. The thermal stability is determined by a complex interplay of the diameter of sugar molecules dC and the total packing fraction of the solution η: dC is estimated from the volume per molecule in the sugar crystal and η is calculated using the experimental data of the solution density. We find that the protein is more stabilized as the sucrose or glucose concentration becomes higher and the stabilization effect is stronger for sucrose than for glucose. These results are in accord with the experimental observations. Using a radial-symmetric integral equation theory and the morphometric approach, we decompose the change in the measure upon sugar addition into two components originating from the protein-solvent pair and protein-solvent many-body correlations, respectively. Each component is further decomposed into the excluded-volume and solvent-accessible-surface terms. These decompositions give physical insights into the microscopic origin of the thermal-stability

  1. Thermal Stability Analysis for a Heliocentric Gravitational Radiation Detection Mission

    NASA Technical Reports Server (NTRS)

    Folkner, W.; McElroy, P.; Miyake, R.; Bender, P.; Stebbins, R.; Supper, W.

    1994-01-01

    The Laser Interferometer Space Antenna (LISA) mission is designed for detailed studies of low-frequency gravitational radiation. The mission is currently a candidate for ESA's post-Horizon 2000 program. Thermal noise affects the measurement in at least two ways. Thermal variation of the length of the optical cavity to which the lasers are stabilized introduces phase variations in the interferometer signal, which have to be corrected for by using data from the two arms separately.

  2. A numerical study of the thermal stability of solar loops

    NASA Technical Reports Server (NTRS)

    Klimchuk, J. A.; Antiochos, S. K.; Mariska, J. T.

    1987-01-01

    An important property of all loops is their thermal stability. If low lying hot loops were thermally unstable, for example, a great majority of the low loops on the Sun might be expected to be cool. How small perturbations evolve in low lying, linearly unstable hot loops was determined and how high lying, linearly stable hot loops respond to large amplitude disturbances such as might be expected on the Sun were examined. Only general descriptions and results are given.

  3. Synthesis and thermal stability of carborane-containing phosphazenes

    NASA Technical Reports Server (NTRS)

    Fewell, L. L.; Parker, J. A.; Basi, R. J.

    1983-01-01

    Carborane-substituted polyphosphazenes were prepared by the thermal polymerization of phenyl-carboranyl pentachlorocylotriphosphazene. Successive isothermal vacuum pyrolyses were conducted on the polymer and examined for structural changes by infrared spectroscopy. The degradation products were ascertained by gas chromatography-mass spectrometric analysis. It was found that the presence of the carborane group improves the thermal stability of the polymer by retarding the ring-chain equilibrium processes of decomposition. Previously announced in STAR as A83-21034

  4. Synthesis and thermal stability of carborane containing phosphazenes

    NASA Technical Reports Server (NTRS)

    Fewell, L. L.; Basi, R. J.; Parker, J. A.

    1983-01-01

    Carborane substituted polyphosphazenes were prepared by the thermal polymerization of phenyl-carboranyl penta chlorocyclotriphosphazene. Successive isothermal vacuum pyrolyses were conducted on the polymer and examined for structural changes by infrared spectroscopy. The degradation products were ascertained by gas chromatography-mass spectrometric analysis. It was found that the presence of the carborane group improves the thermal stability of the polymer by retarding the ring chain equilibrium processes of decomposition.

  5. Thermal-Stress Reducer For Metal/Composite Joint

    NASA Technical Reports Server (NTRS)

    Glinski, Robert L.

    1993-01-01

    Simple insert called "thermal link" reduces stresses caused by mismatches between thermal expansions of metal part and nonmetallic part made of fiber/matrix composite material. Link conceived for use in casing of advanced jet engine.

  6. Solvent-free fabrication of thermally conductive insulating epoxy composites with boron nitride nanoplatelets as fillers

    NASA Astrophysics Data System (ADS)

    Wang, Zifeng; Fu, Yuqiao; Meng, Wenjun; Zhi, Chunyi

    2014-11-01

    A solvent-free method for the fabrication of thermally conductive epoxy-boron nitride (BN) nanoplatelet composite material is developed in this study. By this method, polymer composites with nearly any filler fractions can be easily fabricated. The maximum thermal conductivity reaches 5.24 W/mK, which is 1,600% improvement in comparison with that of pristine epoxy material. In addition, the as-fabricated samples exhibit excellent overall performances with great mechanical property and thermal stability well preserved.

  7. Solvent-free fabrication of thermally conductive insulating epoxy composites with boron nitride nanoplatelets as fillers

    PubMed Central

    2014-01-01

    A solvent-free method for the fabrication of thermally conductive epoxy-boron nitride (BN) nanoplatelet composite material is developed in this study. By this method, polymer composites with nearly any filler fractions can be easily fabricated. The maximum thermal conductivity reaches 5.24 W/mK, which is 1,600% improvement in comparison with that of pristine epoxy material. In addition, the as-fabricated samples exhibit excellent overall performances with great mechanical property and thermal stability well preserved. PMID:25489292

  8. Solvent-free fabrication of thermally conductive insulating epoxy composites with boron nitride nanoplatelets as fillers.

    PubMed

    Wang, Zifeng; Fu, Yuqiao; Meng, Wenjun; Zhi, Chunyi

    2014-01-01

    A solvent-free method for the fabrication of thermally conductive epoxy-boron nitride (BN) nanoplatelet composite material is developed in this study. By this method, polymer composites with nearly any filler fractions can be easily fabricated. The maximum thermal conductivity reaches 5.24 W/mK, which is 1,600% improvement in comparison with that of pristine epoxy material. In addition, the as-fabricated samples exhibit excellent overall performances with great mechanical property and thermal stability well preserved. PMID:25489292

  9. Correcting Thermal Deformations in an Active Composite Reflector

    NASA Technical Reports Server (NTRS)

    Bradford, Samuel C.; Agnes, Gregory S.; Wilkie, William K.

    2011-01-01

    Large, high-precision composite reflectors for future space missions are costly to manufacture, and heavy. An active composite reflector capable of adjusting shape in situ to maintain required tolerances can be lighter and cheaper to manufacture. An active composite reflector testbed was developed that uses an array of piezoelectric composite actuators embedded in the back face sheet of a 0.8-m reflector panel. Each individually addressable actuator can be commanded from 500 to +1,500 V, and the flatness of the panel can be controlled to tolerances of 100 nm. Measuring the surface flatness at this resolution required the use of a speckle holography interferometer system in the Precision Environmental Test Enclosure (PETE) at JPL. The existing testbed combines the PETE for test environment stability, the speckle holography system for measuring out-of-plane deformations, the active panel including an array of individually addressable actuators, a FLIR thermal camera to measure thermal profiles across the reflector, and a heat source. Use of an array of flat piezoelectric actuators to correct thermal deformations is a promising new application for these actuators, as is the use of this actuator technology for surface flatness and wavefront control. An isogrid of these actuators is moving one step closer to a fully active face sheet, with the significant advantage of ease in manufacturing. No extensive rib structure or other actuation backing structure is required, as these actuators can be applied directly to an easy-to-manufacture flat surface. Any mission with a surface flatness requirement for a panel or reflector structure could adopt this actuator array concept to create lighter structures and enable improved performance on orbit. The thermal environment on orbit tends to include variations in temperature during shadowing or changes in angle. Because of this, a purely passive system is not an effective way to maintain flatness at the scale of microns over several

  10. Advances in Computational Stability Analysis of Composite Aerospace Structures

    SciTech Connect

    Degenhardt, R.; Araujo, F. C. de

    2010-09-30

    European aircraft industry demands for reduced development and operating costs. Structural weight reduction by exploitation of structural reserves in composite aerospace structures contributes to this aim, however, it requires accurate and experimentally validated stability analysis of real structures under realistic loading conditions. This paper presents different advances from the area of computational stability analysis of composite aerospace structures which contribute to that field. For stringer stiffened panels main results of the finished EU project COCOMAT are given. It investigated the exploitation of reserves in primary fibre composite fuselage structures through an accurate and reliable simulation of postbuckling and collapse. For unstiffened cylindrical composite shells a proposal for a new design method is presented.

  11. On the cause of low thermal stability of ethyl halodiazoacetates

    PubMed Central

    Mortén, Magnus; Hennum, Martin

    2016-01-01

    Summary Rates for the thermal decomposition of ethyl halodiazoacetates (halo = Cl, Br, I) have been obtained, and reported herein are their half-lives. The experimental results are supported by DFT calculations, and we provide a possible explanation for the reduced thermal stability of ethyl halodiazoacetates compared to ethyl diazoacetate and for the relative decomposition rates between the chloro, bromo and iodo analogs. We have also briefly studied the thermal, non-catalytic cyclopropanation of styrenes and compared the results to the analogous Rh(II)-catalyzed reactions. PMID:27559411

  12. On the cause of low thermal stability of ethyl halodiazoacetates.

    PubMed

    Mortén, Magnus; Hennum, Martin; Bonge-Hansen, Tore

    2016-01-01

    Rates for the thermal decomposition of ethyl halodiazoacetates (halo = Cl, Br, I) have been obtained, and reported herein are their half-lives. The experimental results are supported by DFT calculations, and we provide a possible explanation for the reduced thermal stability of ethyl halodiazoacetates compared to ethyl diazoacetate and for the relative decomposition rates between the chloro, bromo and iodo analogs. We have also briefly studied the thermal, non-catalytic cyclopropanation of styrenes and compared the results to the analogous Rh(II)-catalyzed reactions. PMID:27559411

  13. Formation and thermal stability of amorphous Cu-Zr thin films deposited by coevaporation

    SciTech Connect

    Minemura, T.; van den Broek, J.J.; Daams, J.L.C.

    1988-05-01

    The formation and thermal stability of amorphous thin films have been characterized by comparing them with those of melt-spun ribbons. The various Cu/sub 1-//sub x/Zr/sub x/ thin films were deposited by coevaporation. The amorphous formation range and the crystallization behavior in the films were investigated with x-ray diffraction and differential scanning calorimetry. The amorphous thin films are formed in the composition range x = 0.20--0.75, which is wider than that found for the melt-spun ribbons. The crystallization temperature and the activation energy for crystallization are lower than those of the melt-spun ribbons, although the composition dependencies show tendencies similar to those of the ribbons. These differences in thermal stability between amorphous films and ribbons might be due to a lower degree of the short-range ordering in the films.

  14. Can green solvents be alternatives for thermal stabilization of collagen?

    PubMed

    Mehta, Ami; Rao, J Raghava; Fathima, Nishter Nishad

    2014-08-01

    "Go Green" campaign is gaining light for various industrial applications where water consumption needs to be reduced. To resolve this, industries have adopted usage of green, organic solvents, as an alternative to water. For leather making, tanning industry consumes gallons of water. Therefore, for adopting green solvents in leather making, it is necessary to evaluate its influence on type I collagen, the major protein present in the skin matrix. The thermal stability of collagen from rat tail tendon fiber (RTT) treated with seven green solvents namely, ethanol, ethyl lactate, ethyl acetate, propylene carbonate, propylene glycol, polyethylene glycol-200 and heptane was determined using differential scanning calorimetry (DSC). Crosslinking efficiency of basic chromium sulfate and wattle on RTT in green solvents was determined. DSC thermograms show increase in thermal stability of RTT collagen against heat with green solvents (>78°C) compared to water (63°C). In the presence of crosslinkers, RTT demonstrated thermal stability >100°C in some green solvents, resulting in increased intermolecular forces between collagen, solvent and crosslinkers. The significant improvement in thermal stability of collagen potentiates the capability of green solvents as an alternative for water. PMID:24942230

  15. Thermal stability of liquid antioxidative extracts from pomegranate peel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research was carried out to assess the potential of using the natural antioxidants in pomegranate peel extracts as replacement for synthetic antioxidants. As a result the thermal stability of pomegranate peel extract products during sterilization and storage, and its effect on industrial, color...

  16. Substituted silane-diol polymers have improved thermal stability

    NASA Technical Reports Server (NTRS)

    Byrd, J. D.; Curry, J. E.

    1966-01-01

    Organosilicon polymers were synthesized to produce improved physical and chemical properties, including high thermal stability. Of the polymers produced, poly/4, 4 prime-bisoxybi- phenylene/diphenylsilane, formed from bis/anilino/diphenylsilane and p, p prime-biphenol, was found to have the most desirable properties.

  17. Composite flexible insulation for thermal protection of space vehicles

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.; Tran, Huy K.; Chiu, S. Amanda

    1991-01-01

    A composite flexible blanket insulation (CFBI) system considered for use as a thermal protection system for space vehicles is described. This flexible composite insulation system consists of an outer layer of silicon carbide fabric, followed by alumina mat insulation, and alternating layers of aluminized polyimide film and aluminoborosilicate scrim fabric. A potential application of this composite insulation would be as a thermal protection system for the aerobrake of the aeroassist space transfer vehicle (ASTV). It would also apply to other space vehicles subject to high convective and radiative heating during atmospheric entry. The thermal performance of this composite insulation as exposed to a simulated atmospheric entry environment in a plasma arc test facility is described. Other thermophysical properties which affect the thermal response of this composite insulation is included. It shows that this composite insulation is effective as a thermal protection system at total heating rates up to 30.6 W/sq cm.

  18. Ordered domain lateral location, symmetry, and thermal stability in Ge:Si islands

    SciTech Connect

    Richard, M.-I.; Schülli, T. U.; Zhong, Z.; Metzger, T. H.; Renaud, G.

    2015-01-05

    Compositional atomic ordering is a crucial issue in the epitaxial growth of nanoparticles and thin films. Here, we report on a method based on x-ray diffuse scattering close to basis forbidden Bragg reflections to infer the lateral location, the symmetry, and the thermal stability of ordered domains in GeSi dome-shaped islands on Si(001) after growth and during annealing. We observe that atomic ordering does not disappear after annealing, demonstrating that it is a resilient metastable phenomenon.

  19. Effect of some nitrogen compounds thermal stability of jet A

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.

    1982-01-01

    The effect of known concentrations of some nitrogen containing compounds on the thermal stability of a conventional fuel, namely, Jet A was investigated. The concentration range from 0.01 to 0.1 wt% nitrogen was examined. Solutions were made containing, individually, pyrrole, indole, quinoline, pyridine, and 4 ethylpyridine at 0.01, 0.03, 0.06, and 0.1 wt% nitrogen concentrations in Jet A. The measurements were all made by using a standard ASTM test for evaluating fuel thermal oxidation behavior, namely, ASTM D3241, 'thermal oxidation stability of turbine fuels (JFTOT procedure).' Measurements were made at two temperature settings, and 'breakpoint temperatures' were determined. The results show that the pyrrole and indole solutions have breakpoint temperatures substantially lower than those of the Jet A used.

  20. Thermal stability studies of polyimide-teflon blends

    SciTech Connect

    Davis, C.R.; Zimmerman, J.A.

    1993-12-31

    Polymers, such as poly(tetrafluoroethylene) (PTFE) that exhibit excellent thermal stability, in addition to other attractive physical properties, are an important component of high-performance devices. However, due to PTFE`s inertness and intractability, significant processing challenges exist and thus limit its successful widespread application in such industries an aerospace and electronics. One specific processing challenge example is the lack of available methods to uniformly and controllably form features in the neat fluoropolymer. Recently, it has been reported that excellent structuring of PTFE can be achieved by sensitizing the fluoropolymer to excimer laser of the sensitization agent, in addition to interacting strongly with the laser`s emitted energy, is suitable thermal stability. Using several analytical techniques, the thermal behavior of PTFE, polyimide sensitizer and resulting polyimide-fluoropolymer blend has been investigated and found to be excellent.

  1. Prediction of the biochar carbon stability by thermal analysis

    NASA Astrophysics Data System (ADS)

    Méndez, Ana; Cely, Paola; Plaza, César; Paz-Ferreiro, Jorge; Gascó, Gabriel

    2015-04-01

    Thermal analysis (DTA, DSC, TG and dTG) has been used for decades to characterize carbonaceous materials used as fuels (oil, coal). Our research group has used these techniques for the characterisation of different biochars in order to assess proportions of labile and recalcitrant organic matter and to study the evolution of soil organic matter in soils amended with biochar. Thermal analysis could be used to determine the proximate analysis, i.e., the percentage of humidity, volatile matter and fixed carbon or to calculate the thermostability index, previously identified as a reliable parameter for evaluating the level of stability of organic matter in organic wastes and biochar. Relationship between the stability of biochar, the raw material and the pyrolysis conditions could be established by thermal analysis techniques.

  2. Thermal Stability of Co-Sputtered Ru Ti Alloy Electrodes for Dynamic Random Access Memory Applications

    NASA Astrophysics Data System (ADS)

    Horng, Ray-Hua; Wuu, Dong-Sing; Wu, Luh-Huei; Lee, Ming-Kwei; Chan, Shih-Hsiung; Leu, Ching-Chich; Huang, Tiao-Yuan; Sze, Simon

    1998-10-01

    Ru Ti alloy films were studied for use as a bottom electrode of ferroelectric/paraelectric thin film capacitors. These thin films with different Ru/Ti compositions were first prepared by co-sputtering. The Ru/Ti ratio in the alloy was found to strongly affect the resistivity, structure formation and thermal stability. The resistivity of the as-deposited films decreases and closes to that of pure Ru metal films as the amount of Ru atoms increasing. From X-ray diffraction measurement, it was found that the RuTi phase has formed for the as-deposited sample. There also exist Ru and Ti phases for Ru-enriched and Ti-enriched samples, respectively. As-deposited alloy films were also annealed by rapid thermal processing (RTP, 600 750°C, 1 min) in oxygen ambient to simulate the processing of ferroelectric/paraelectric thin film capacitors. It was found that the composition of the thin film has a large effect on the thermal stability. The resistivity of alloy thin films is thermally stable as the Ru composition varies from 0.68 to 0.81. It may be due to the RuTiO2 formation at the surface and play an important role in preventing further oxidation of the Ru-enriched layer. This oxide also presents conductive behavior. On the other hand, the interface between Ru-enriched alloys and Si substrate was still sharp for the RTP-treated sample at 600°C for 1 min. The alloy film with high Ru composition shows excellent thermal stability and barriers against interdiffusion of Si and oxygen. These results suggest that the Ru-enriched alloy films are suitable for the bottom electrode application in ferroelectric/paraelectric thin film capacitors.

  3. The feasibility of thermal and compositional convection in Earth's inner core

    NASA Astrophysics Data System (ADS)

    Lythgoe, Karen H.; Rudge, John F.; Neufeld, Jerome A.; Deuss, Arwen

    2015-05-01

    Inner core convection, and the corresponding variations in grain size and alignment, has been proposed to explain the complex seismic structure of the inner core, including its anisotropy, lateral variations and the F-layer at the base of the outer core. We develop a parametrized convection model to investigate the possibility of convection in the inner core, focusing on the dominance of the plume mode of convection versus the translation mode. We investigate thermal and compositional convection separately so as to study the end-members of the system. In the thermal case the dominant mode of convection is strongly dependent on the viscosity of the inner core, the magnitude of which is poorly constrained. Furthermore recent estimates of a large core thermal conductivity result in stable thermal stratification, hindering convection. However, an unstable density stratification may arise due to the pressure dependant partition coefficient of certain light elements. We show that this unstable stratification leads to compositionally driven convection, and that inner core translation is likely to be the dominant convective mode due to the low compositional diffusivity. The style of convection resulting from a combination of both thermal and compositional effects is not easy to understand. For reasonable parameter estimates, the stabilizing thermal buoyancy is greater than the destabilizing compositional buoyancy. However we anticipate complex double diffusive processes to occur given the very different thermal and compositional diffusivities.

  4. Composite Nonwovens Made of Cotton and Other Plant Fibers: Mechanical and Thermal Characterization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Composite nonwoven samples have been prepared from blends of fibers containing cotton and other fibers, such as bagasse, kenaf or ramie. The nonwoven structure has been stabilized with synthetic or bioderived polymers. Mechanical and thermal characteristics of nonwovens (tensile strength, modulus an...

  5. Radiation and Thermal Stability of Solid Radwaste After Immobilization in Polymer Matrix - 13504

    SciTech Connect

    Pokhitonov, Yu.; Babain, V.; Strelkov, S.; Kuznetsov, D.; Kelley, Dennis

    2013-07-01

    The paper will illustrate results of the various experiments on radiation and thermal stability of polymer matrixes after solutions solidification including aqueous and organic solutions and mixed waste. It was shown that- after irradiation the specimen and after solidification the mixture with oil and TBP hydrogen has been observed (less 1%) and some others gases have been detected. Results of the performed experiments and the radiation stability data of the polymer compositions allow the conclusion that the technological process of immobilizing the above mentioned aqueous solutions and solutions with organic products into polymers at room temperature is the explosion- and flameproof as well as the storage thereof. (authors)

  6. Flexible composite material with phase change thermal storage

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    2001-01-01

    A highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The composite material can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The composite may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the PCM composite also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, ,gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  7. Flexible composite material with phase change thermal storage

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    1999-01-01

    A highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The composite material can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The composite may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the PCM composite also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  8. Effect of fiber reinforcements on thermo-oxidative stability and mechanical properties of polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.

    1991-01-01

    A number of studies have investigated the thermo-oxidative behavior of polymer matrix composites. Two significant observations have been made from these research efforts: (1) fiber reinforcement has a significant effect on composite thermal stability; and (2) geometric effects must be considered when evaluating thermal aging data. A compilation of some results from these studies is presented, and this information shows the influence of the reinforcement fibers on the oxidative degradation of various polymer matrix composites. The polyimide PMR-15 was the matrix material that was used in these studies. The control composite material was reinforced with Celion 6000 graphite fiber. T-40R graphite fibers, along with some very stable ceramic fibers were selected as reinforcing fibers because of their high thermal stability. The ceramic fibers were Nicalon (silicon carbide) and Nextel 312 (alumina-silica-boron oxide). The mechanical properties of the two graphite fiber composites were significantly different, probably owing to variations in interfacial bonding between the fibers and the polyimide matrix. The Celion 6000/PMR-15 bond is very tight but the T-40/PMR-15 bond is less tight. Three oxidation mechanisms were observed: (1) the preferential oxidation of the Celion 6000 fiber ends at cut surfaces, leaving a surface of matrix material with holes where the fiber ends were originally situated; (2) preferential oxidation of the composite matrix; and (3) interfacial degradation by oxidation. The latter two mechanisms were also observed on fiber end cut surfaces. The fiber and interface attacks appeared to initiate interfiber cracking along these surfaces.

  9. Thermo-oxidative stability studies of PMR-15 polymer matrix composites reinforced with various continuous fibers

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.

    1990-01-01

    An experimental study was conducted to measure the thermooxidative stability of PMR-15 composites reinforced with various fibers and to observe differences in the way they degrade in air. The fibers studied include graphite and the thermally stable Nicalon and Nextel ceramic fibers. Weight-loss rates for the different composites were assessed as a function of mechanical properties, specimen geometry, fiber sizing, and interfacial bond strength. Differences were observed in rates of weight loss, matrix cracking, geometry dependency, and fiber sizing effects. It was shown that Celion 6000 fiber-reinforced composites do not exhibit a straight-line Arrhenius relationship at temperatures above 316 C.

  10. Thermo-oxidative stability studies of PMR-15 polymer matrix composites reinforced with various fibers

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.

    1990-01-01

    An experimental study was conducted to measure the thermo-oxidative stability of PMR-15 polymer matrix composites reinforced with various fibers and to observe differences in the way they degrade in air. The fibers that were studied included graphite and the thermally stable Nicalon and Nextel ceramic fibers. Weight loss rates for the different composites were assessed as a function of mechanical properties, specimen geometry, fiber sizing, and interfacial bond strength. Differences were observed in rates of weight loss, matrix cracking, geometry dependency, and fiber-sizing effects. It was shown that Celion 6000 fiber-reinforced composites do not exhibit a straight-line Arrhenius relationship at temperatures above 316 C.

  11. The oxidative stability of carbon fibre reinforced glass-matrix composites

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Batt, J. A.

    1988-01-01

    The environmental stability of carbon fibre reinforced glass-matrix composites is assessed. Loss of composite strength due to oxidative exposure at elevated temperatures under no load, static load and cyclic fatigue as well as due to thermal cycling are all examined. It is determined that strength loss is gradual and predictable based on the oxidation of carbon fibres. The glass matrix was not found to prevent this degradation but simply to limit it to a gradual process progressing from the composite surfaces inward.

  12. Using real-time electron microscopy to explore the effects of transition-metal composition on the local thermal stability in charged LixNiyMnzCo1-y-zO2 cathode materials

    SciTech Connect

    Hwang, Sooyeon; Kim, Seung Min; Bak, Seong -Min; Kim, Se Young; Cho, Byung -Won; Chung, Kyung Yoon; Lee, Jeong Yong; Stach, Eric A.; Chang, Wonyoung

    2015-05-08

    In this study, we use in-situ transmission electron microcopy (TEM) to investigate the thermal decomposition that occurs at the surface of charged LixNiyMnzCo1-y-zO2 (NMC) cathode materials of different composition (with y, z=0.8, 0.1 and 0.6, 0.2 and 0.4, 0.3), after they have been charged to their practical upper limit voltage (4.3V). By heating these materials inside the TEM, we are able to directly characterize near surface changes in both their electronic structure (using electron energy loss spectroscopy) and crystal structure and morphology (using electron diffraction and bright-field imaging). The most Ni-rich material (y, z = 0.8, 0.1) is found to be thermally unstable at significantly lower temperatures than the other compositions – this is manifested by changes in both the electronic structure and the onset of phase transitions at temperatures as low as 100°C. Electron energy loss spectroscopy indicates that the thermally induced reduction of Ni ions drives these changes, and that this is exacerbated by the presence of an additional redox reaction that occurs at 4.2V in the y, z = 0.8, 0.1 material. Exploration of individual particles shows that there are substantial variations in the onset temperatures and overall extent of these changes. Of the compositions studied, the composition of y, z = 0.6, 0.2 has the optimal combination of high energy density and reasonable thermal stability. The observations herein demonstrate that real time electron microscopy provide direct insight into the changes that occur in cathode materials with temperature, allowing optimization of different alloy concentrations to maximize overall performance.

  13. Extreme thermal expansion, piezoelectricity, and other coupled field properties in composites with a negative stiffness phase

    NASA Astrophysics Data System (ADS)

    Wang, Y. C.; Lakes, R. S.

    2001-12-01

    Particulate composites with negative stiffness inclusions in a viscoelastic matrix are shown to have higher thermal expansion than that of either constituent and exceeding conventional bounds. It is also shown theoretically that other extreme linear coupled field properties including piezoelectricity and pyroelectricity occur in layer- and fiber-type piezoelectric composites, due to negative inclusion stiffness effects. The causal mechanism is a greater deformation in and near the inclusions than the composite as a whole. A block of negative stiffness material is unstable, but negative stiffness inclusions in a composite can be stabilized by the surrounding matrix and can give rise to extreme viscoelastic effects in lumped and distributed composites. In contrast to prior proposed composites with unbounded thermal expansion, neither the assumptions of void spaces nor slip interfaces are required in the present analysis.

  14. The work function engineering and thermal stability of novel metal gate electrodes for advanced CMOS devices

    NASA Astrophysics Data System (ADS)

    Zhao, Penghui

    The continuous scaling of Complementary Metal Oxide Semiconductor (CMOS) integrated circuits requires the replacement of the conventional poly-silicon gate electrode and silicon dioxide gate dielectric with metal gate electrodes and high-agate dielectrics, respectively. The most critical requirements for alternative metal gates are proper work function and good thermal stability. This dissertation has focused on the effective work function and thermal stability of molybdenum-based metal gates (Mo, MoN, and MoSiN) and fully silicided (FUSI) NiSi metal gates. Capacitance-Voltage (C-V) and Current-Voltage (I-V) measurements of MOS capacitors were performed to investigate the electrical properties of molybdenum-based metal gates. Four-point probe resistivity measurements, Rutherford Backscattering Spectroscopy (RBS), X-ray Photoelectron Spectroscopy (XPS), High Resolution Transmission Electron Microscopy (HR-TEM), Electron Nanodiffraction analysis, X-ray Diffraction (XRD) and backside Secondary Ion Mass Spectroscopy (SIMS) methods were performed as well, to characterize the thermal stability of metal gate electrodes. The effective work function and thermal stability of molybdenum-based metal gates (Mo, MoN and MoSiN) on both SiO2 and Hf-based high-kappadielectrics have been evaluated systematically. The effects of silicon and nitrogen concentrations on the work function and thermal stability are discussed. The effective work function of molybdenum nitrides on both SiO2 and Hf-based high-kappadielectrics can be tuned to ˜4.4-4.5 eV, however, the thermal budgets should be less than 900°C 10 sec due to nitrogen loss and the phase transformation behavior of molybdenum nitrides. Silicon incorporation in the Mo-N system can improve the film thermal stability and diffusion barrier properties at the interface of metal gates/dielectrics due to the presence of Si-N bonds. By optimizing the film composition, the work function of MoSiN gates on SiO2 can be tuned for fully

  15. Thermal shock behavior of fiber-reinforced ceramic composites

    SciTech Connect

    Singh, R.N.; Wang, H.

    1995-10-01

    The influence of fiber type and method of composite fabrication on the thermal shock behavior of 2-D fiber-reinforced ceramic composites is studied. Thermal shock tests are performed using a water quench technique, and thermal shock damage is characterized by both destructive and nondestructive techniques. It is shown that the composites possessed superior resistance to thermal shock damage than the monolithic ceramics. Catastrophic failure due to severe thermal stresses is prevented in composites and a significant portion of their original strength is retained at a quench temperature difference up to 1,000 C. These results along with an analysis of the thermal shock damage mechanism based on the destructive and nondestructive tests is described.

  16. Enhanced thermal stability of phosphate capped magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Muthukumaran, T.; Philip, John

    2014-06-01

    We have studied the effect of phosphate capping on the high temperature thermal stability and magnetic properties of magnetite (Fe3O4) nanoparticles synthesized through a single-step co-precipitation method. The prepared magnetic nanoparticles are characterized using various techniques. When annealed in air, the phosphate capped nanoparticle undergoes a magnetic to non-magnetic phase transition at a temperature of 689 °C as compared to 580 °C in the uncoated nanoparticle of similar size. The observed high temperature phase stability of phosphate capped nanoparticle is attributed to the formation of a phosphocarbonaceous shell over the nanoparticles, which acts as a covalently attached protective layer and improves the thermal stability of the core material by increasing the activation energy. The phosphocarbonaceous shell prevents the intrusion of heat, oxygen, volatiles, and mass into the magnetic core. At higher temperatures, the coalescence of nanoparticles occurs along with the restructuring of the phosphocarbonaceous shell into a vitreous semisolid layer on the nanoparticles, which is confirmed from the small angle X-ray scattering, Fourier transform infra red spectroscopy, and transmission electron microscopy measurements. The probable mechanism for the enhancement of thermal stability of phosphocarbonaceous capped nanoparticles is discussed.

  17. Enhanced thermal stability of phosphate capped magnetite nanoparticles

    SciTech Connect

    Muthukumaran, T.; Philip, John

    2014-06-14

    We have studied the effect of phosphate capping on the high temperature thermal stability and magnetic properties of magnetite (Fe{sub 3}O{sub 4}) nanoparticles synthesized through a single-step co-precipitation method. The prepared magnetic nanoparticles are characterized using various techniques. When annealed in air, the phosphate capped nanoparticle undergoes a magnetic to non-magnetic phase transition at a temperature of 689 °C as compared to 580 °C in the uncoated nanoparticle of similar size. The observed high temperature phase stability of phosphate capped nanoparticle is attributed to the formation of a phosphocarbonaceous shell over the nanoparticles, which acts as a covalently attached protective layer and improves the thermal stability of the core material by increasing the activation energy. The phosphocarbonaceous shell prevents the intrusion of heat, oxygen, volatiles, and mass into the magnetic core. At higher temperatures, the coalescence of nanoparticles occurs along with the restructuring of the phosphocarbonaceous shell into a vitreous semisolid layer on the nanoparticles, which is confirmed from the small angle X-ray scattering, Fourier transform infra red spectroscopy, and transmission electron microscopy measurements. The probable mechanism for the enhancement of thermal stability of phosphocarbonaceous capped nanoparticles is discussed.

  18. Organic underlayer materials with exceptionally high thermal stability

    NASA Astrophysics Data System (ADS)

    Cheon, Hwan-Sung; Yoon, Kyong-Ho; Kim, Min-Soo; Oh, Sung Bae; Song, Jee-Yun; Tokareva, Nataliya; Kim, Jong-Seob; Chang, Tuwon

    2009-03-01

    Multilayer hardmask (MLHM) schemes have been implemented as an indispensable process for ArF lithography which continues to demand thinner photoresist films. There are many variations of MLHM and semiconductor manufacturers choose to adopt their own designs, depending on their specific needs and technical advances. The quad-layer stack consisting of photoresist, organic ARC, CVD Si hardmask, and spin-on carbon underlayer is one of them. Despite the need for wafer transporting between the spin track and CVD equipment, this scheme is attractive because it can avoid laborious elaboration of sophisticated etching chemistries for spin-on Si-ARC and carbon underlayer. One of the issues arising from the mixed film forming process is the thermal stability of carbon underlayer at high temperatures during the CVD process of the Si hardmask. Organic underlayer which shows high thermal stability is crucial for this mixed hardmask process. These types of thermally stable organic film can also be used for other applications such as the spacer patterning technique for pitch size shrinkage. In this paper, we discuss the development of organic resins with high thermal stability, their physical properties, and their lithographic behaviors in the MLHM schemes.

  19. Thermal Stability of Ice on Ceres with Rough Topography

    NASA Astrophysics Data System (ADS)

    Hayne, Paul O.; Aharonson, Oded

    2015-11-01

    The dwarf planet Ceres may have an ice-rich crust, and subsurface ice exposed by impacts or endogenic activity would be subject to sublimation. The “bright spots” recently discovered by the Dawn mission on the illuminated surface of Ceres have prompted speculation regarding their possible icy composition and the youthful age this might imply. Furthermore, sublimation of ice at the surface or in the interior of Ceres could explain water vapor observed on more than one occasion in the exosphere. We investigated the possible distribution and lifetimes of water ice and other volatiles on Ceres using detailed thermal models, including realistic thermophysical properties and surface roughness.Topographic shadowing creates polar cold traps where a small, but non-negligible fraction (~0.4%) of Ceres' surface is perennially below the ~110 K criterion for 1 Gyr of H2O ice stability. These areas are found above 60° latitude. Other molecules (CH3OH, NH3, SO2, CO2) may be cold-trapped in smaller abundances. A model for the transport, gravitational escape and photoionization of H2O molecules suggests net accumulation in the cold traps. At latitudes 0° - 30°, ice is stable under solar illumination only briefly (~10-100 yr), unless it has high albedo and thermal inertia, in which case lifetimes of > 104 yr are possible.Buried ice is stable within a meter for > 1 Gyr at latitudes higher than ~50°. An illuminated polar cap of water ice would be stable within a few degrees of the poles only if it maintained a high albedo (> 0.5) at present obliquity. If the obliquity exceeded 5° in the geologically recent past, then a putative polar cap would have been erased. Finally, a small hemispheric asymmetry exists due to the timing of Ceres' perihelion passage, which would lead to a detectable enhancement of ice in the northern hemisphere if the orbital elements vary slowly relative to the ice accumulation rate. Our model results are potentially testable during the Dawn science

  20. NiTi-Polyimide Composites Prepared Using Thermal Imidization Process

    NASA Astrophysics Data System (ADS)

    Vokoun, D.; Sysel, P.; Heller, L.; Kadeřávek, L.; Svatuška, M.; Goryczka, T.; Kafka, V.; Šittner, P.

    2016-05-01

    We manufactured NiTi plate-polyimide composite samples and analyzed their thermomechanical behavior. The residual stresses formed in the composite result from the shift of transformation temperatures and shape changes during thermal cycling. We demonstrate the use of finite element analysis for modeling the shape changes. The shape changes result from the difference in coefficients of thermal expansion and from the changes of Young's modulus and of the coefficient of thermal expansion in the NiTi shape memory alloy.

  1. Thermal fatigue of composites: Ultrasonic and SEM evaluations

    SciTech Connect

    Forsyth, D.S.; Kasap, S.O. . Dept. of Electrical Engineering); Wacker, I.; Yannacopoulos, S. . Dept. of Mechanical Engineering)

    1994-01-01

    Results are presented on the evaluation of thermal fatigue in three fiber reinforced polymer composites, using ultrasonic techniques and scanning electron microscopy. The composites examined were (a) continuous carbon fibers in a vinylester matrix (b) continuous aramid fibers in a vinylester matrix and (c) randomly oriented aramid fibers in a polyphenylene matrix. Specimens of these composites were subjected to thermal fatigue by thermal cycling from [minus]25 C to 75 C. Changes in ultrasonic attenuation and velocity were monitored during thermal cycling, and scanning electron microscopy was used to qualitatively evaluate any damage. It was observed that ultrasonic attenuation is sensitive to thermal fatigue, increasing with increasing number of thermal cycles. SEM evaluations showed that the primary damage due to thermal fatigue is due to fiber-matrix debonding.

  2. Environmental and Mechanical Stability of Environmental Barrier Coated SA Tyrannohex SiC Composites Under Simulated Turbine Engine Environments

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Halbig, Michael Charles; Sing, Mrityunjay

    2014-01-01

    The environmental stability and thermal gradient cyclic durability performance of SA Tyrannohex composites were investigated for turbine engine component applications. The work has been focused on investigating the combustion rig recession, cyclic thermal stress resistance and thermomechanical low cycle fatigue of uncoated and environmental barrier coated Tyrannohex SiC SA composites in simulated turbine engine combustion water vapor, thermal gradients, and mechanical loading conditions. Flexural strength degradations have been evaluated, and the upper limits of operating temperature conditions for the SA composite material systems are discussed based on the experimental results.

  3. Composite materials for thermal energy storage

    DOEpatents

    Benson, D.K.; Burrows, R.W.; Shinton, Y.D.

    1985-01-04

    A composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These PCM's do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  4. Composite materials for thermal energy storage

    DOEpatents

    Benson, David K.; Burrows, Richard W.; Shinton, Yvonne D.

    1986-01-01

    The present invention discloses composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These phase change materials do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions, such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  5. Composite materials for thermal energy storage

    NASA Astrophysics Data System (ADS)

    Benson, D. K.; Burrows, R. W.; Shinton, Y. D.

    1985-01-01

    A composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations are discussed. These PCM's do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  6. Honey: Chemical composition, stability and authenticity.

    PubMed

    da Silva, Priscila Missio; Gauche, Cony; Gonzaga, Luciano Valdemiro; Costa, Ana Carolina Oliveira; Fett, Roseane

    2016-04-01

    The aim of this review is to describe the chemical characteristics of compounds present in honey, their stability when heated or stored for long periods of time and the parameters of identity and quality. Therefore, the chemical characteristics of these compounds were examined, such as sugars, proteins, amino acids, enzymes, organic acids, vitamins, minerals, phenolic and volatile compounds present in honey. The stability of these compounds in relation to the chemical reactions that occur by heating or prolonged storage were also discussed, with increased understanding of the behavior regarding the common processing of honey that may compromise its quality. In addition, the identity and quality standards were described, such as sugars, moisture, acidity, ash and electrical conductivity, color, 5-HMF and diastase activity, along with the minimum and maximum limits established by the Codex Alimentarius. PMID:26593496

  7. Composition Effects on Phase Formation and Stability

    NASA Technical Reports Server (NTRS)

    Kelton, Kenneth F.

    1999-01-01

    In this report, results from experimental studies of the composition dependence of nucleation are presented. A model for nucleation that takes simultaneous account of the interfacial attachment processes at the growing cluster interface and diffusion into the region surrounding the developing cluster is presented and numerical results are discussed.

  8. Layered and intercalated hydrotalcite-like materials as thermal stabilizers in PVC resin

    NASA Astrophysics Data System (ADS)

    Lin, Yanjun; Wang, Jianrong; Evans, David G.; Li, Dianqing

    2006-05-01

    In the light of the accepted mechanism of thermal stabilization of PVC by layered double hydroxides (LDHs), the layer cations and interlayer counterions in LDHs were tailored to give MgZnAl-CO3-LDH and MgZnAl-maleate-LDH. These materials were characterized by XRD, FT-IR, and TG DTA. The thermal stability of PVC composites containing different LDH additives was tested in sheets having a thickness of about 1 mm. The results showed that compared with MgAl-CO3-LDH, MgZnAl-CO3-LDH enhances the thermal stability of PVC in terms of both long-term stability and early coloring. After intercalation of maleate in the LDH by reaction of maleic acid with the MgZnAl-CO3-LDH precursor, the interlayer distance increases from 0.75 to 1.11 nm. Since Cl- promotes the autocatalytic dehydrochlorination of PVC, which is responsible for its degradation, an increased interlayer distance should facilitate entry of Cl- into the interlayer galleries and inhibit the decomposition of PVC. In addition, maleic acid has a conjugated C=C double bond which can react with double bond formed in the dehydrochlorination of PVC and thus further inhibit the autocatalytic degradation reaction. The results show that the early coloring of PVC is markedly improved and the long-term stability slightly reduced by addition of the MgZnAl-maleate-LDH.

  9. Modifications to improve entrance slit thermal stability for grasshopper monochromators

    NASA Astrophysics Data System (ADS)

    Wallace, Daniel J.; Rogers, Gregory C.; Crossley, Sherry L.

    1994-08-01

    As new monochromators are designed for high-flux storage rings, computer modeling and thermal engineering can be done to process increased heat loads and achieve mechanical stability. Several older monochromators, such as the Mark 2 and Mark 5 Grasshopper monochromators, which were designed in 1974, have thermal instabilities in their entrance slit mechanisms. The Grasshoppers operating with narrow slits experience closure of the entrance slit from thermal expansion. In extreme cases, the thermal expansion of the precision components has caused permanent mechanical damage, leaving the slit uncalibrated and/or inoperable. For the Mark 2 and Mark 5 Grasshopper monochromators at the Synchrotron Radiation Center, the original 440 stainless steel entrance slit jaws were retrofitted with an Invar (low expansion Fe, Ni alloy) slit jaw. To transfer the heat from the critical components, two flexible heat straps of Cu were attached. These changes allow safe operation with a 10 μm entrance slit width where the previous limit was 30 μm. After an initial 2 min equilibration, the slit remains stable to 10%, with 100 mA of beam current. Additional improvements in slit thermal stability are planned for a third Grasshopper.

  10. Thermally crosslinked polymeric compositions and methods of making the same

    DOEpatents

    Koros, William John; Kratochvil, Adam Michal

    2014-03-04

    The various embodiments of the present disclosure relate generally to thermally crosslinked polymeric compositions and methods of making thermally crosslinked polymeric compositions. An embodiment of the present invention comprises a composition comprising: a first polymer comprising a first repeat unit, the first repeat unit comprising a carboxyl group, wherein the first polymer crosslinks to a second polymer formed from a second repeat unit, and wherein the first polymer crosslinks to the second polymer without formation of an ester group.