Science.gov

Sample records for compounds lattice thermal

  1. Lattice thermal expansion for normal tetrahedral compound semiconductors

    SciTech Connect

    Omar, M.S. . E-mail: dr_m_s_omar@yahoo.com

    2007-02-15

    The cubic root of the deviation of the lattice thermal expansion from that of the expected value of diamond for group IV semiconductors, binary compounds of III-V and II-VI, as well as several ternary compounds from groups I-III-VI{sub 2}, II-IV-V{sub 2} and I-IV{sub 2}V{sub 3} semiconductors versus their bonding length are given straight lines. Their slopes were found to be 0.0256, 0.0210, 0.0170, 0.0259, 0.0196, and 0.02840 for the groups above, respectively. Depending on the valence electrons of the elements forming these groups, a formula was found to correlate all the values of the slopes mentioned above to that of group IV. This new formula which depends on the melting point and the bonding length as well as the number of valence electrons for the elements forming the compounds, will gives best calculated values for lattice thermal expansion for all compounds forming the groups mentioned above. An empirical relation is also found between the mean ionicity of the compounds forming the groups and their slopes mentioned above and that gave the mean ionicity for the compound CuGe{sub 2}P{sub 3} in the range of 0.442.

  2. Compressed sensing approach for calculating lattice thermal conductivity of complex thermoelectric compounds

    NASA Astrophysics Data System (ADS)

    Ozolins, Vidvuds; Xia, Yi; Nielson, Weston; Zhou, Fei

    2015-03-01

    Earth-abundant minerals such as tetrahedrite Cu12Sb4S13 have recently received attention as promising thermoelectrics due to a combination of a relatively high figure of merit (ZT > 1 at T = 700 K in tetrahedrite), good mechanical properties and inexpensive bulk processing methods. Like many large unit-cell thermoelectrics, these compounds often have complex chemical formulas with very large unit cells that pose challenges to our ability to study their lattice dynamical properties theoretically. Here we show that a recently introduced approach, compressive sensing lattice dynamics (CSLD) [F. Zhou et al., Phys. Rev. Lett. 113, 185501 (2014)] provides an accurate and computationally efficient platform for investigating anharmonic lattice dynamics in complex materials. We will discuss the basic ideas and illustrate the performance of CSLD for the lattice thermal conductivity κL of tetrahedrite, collusite, pyrite, and other earth-abundant mineral compounds.

  3. Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization.

    PubMed

    Seko, Atsuto; Togo, Atsushi; Hayashi, Hiroyuki; Tsuda, Koji; Chaput, Laurent; Tanaka, Isao

    2015-11-13

    Compounds of low lattice thermal conductivity (LTC) are essential for seeking thermoelectric materials with high conversion efficiency. Some strategies have been used to decrease LTC. However, such trials have yielded successes only within a limited exploration space. Here, we report the virtual screening of a library containing 54,779 compounds. Our strategy is to search the library through Bayesian optimization using for the initial data the LTC obtained from first-principles anharmonic lattice-dynamics calculations for a set of 101 compounds. We discovered 221 materials with very low LTC. Two of them even have an electronic band gap <1 eV, which makes them exceptional candidates for thermoelectric applications. In addition to those newly discovered thermoelectric materials, the present strategy is believed to be powerful for many other applications in which the chemistry of materials is required to be optimized. PMID:26613454

  4. Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization

    NASA Astrophysics Data System (ADS)

    Seko, Atsuto; Togo, Atsushi; Hayashi, Hiroyuki; Tsuda, Koji; Chaput, Laurent; Tanaka, Isao

    2015-11-01

    Compounds of low lattice thermal conductivity (LTC) are essential for seeking thermoelectric materials with high conversion efficiency. Some strategies have been used to decrease LTC. However, such trials have yielded successes only within a limited exploration space. Here, we report the virtual screening of a library containing 54 779 compounds. Our strategy is to search the library through Bayesian optimization using for the initial data the LTC obtained from first-principles anharmonic lattice-dynamics calculations for a set of 101 compounds. We discovered 221 materials with very low LTC. Two of them even have an electronic band gap <1 eV , which makes them exceptional candidates for thermoelectric applications. In addition to those newly discovered thermoelectric materials, the present strategy is believed to be powerful for many other applications in which the chemistry of materials is required to be optimized.

  5. Thermal expansion and lattice dynamics of RB66 compounds at low temperatures

    SciTech Connect

    Novikov, V V; Avdashchenko, D V; Mitroshenkov, N V; Matovnikov, A V; Budko, Serguei L

    2014-10-01

    Thermal characteristics of the phonon and magnon subsystems of icosahedral borides RB66 (R = Gd, Tb, Dy, Ho, Eu, or Lu) have been studied based on the obtained experimental data on the thermal expansion of the borides and the earlier results on their heat capacity in the range of 2–300 K. The contribution to the expansion of borides containing paramagnetic R 3+ ions, which is characteristic of transition to the spin-glass state, has been revealed. The phonon spectrum moments of RB66 compounds and the Grüneisen parameters have been calculated.

  6. Reducing Lattice Thermal Conductivity of the Thermoelectric Compound AgSbTe2 (P4/mmm) by Lanthanum Substitution: Computational and Experimental Approaches

    NASA Astrophysics Data System (ADS)

    Amouyal, Yaron

    2014-10-01

    In this study we performed lattice dynamics first-principles calculations for the promising thermoelectric (TE) compound AgSbTe2, and estimated the stability of its three polymorphs over a wide temperature range from 0 to 600 K. We calculated the vibrational density of states of the AgSbTe2 (P4/mmm) phase. The results suggested that formation of substitutional defects at Ag-sublattice sites impedes lattice vibrations, thereby reducing lattice thermal conductivity. We focused on calculations based on the Debye approximation for the compound La0.125Ag0.875SbTe2, and predicted reduction of the average sound velocity from 1684 to 1563 m s-1 as a result of La doping. This is manifested as a ca. 14% reduction in thermal conductivity. To confirm the results from computation we produced two Ag-Sb-Te-based alloys, a ternary alloy without La addition and a quaternary alloy containing La. We measured the thermal conductivity of both alloys by use of the laser flash analysis method, and, as a result of La alloying, observed a reduction in thermal conductivity from 0.92 to 0.71 W m-1 K-1 at 573 K, as calculated from first principles.

  7. A Robust Approach to Lattice Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Nielson, Weston; Fei Zhou Team; Yi Xia Team; Vidvuds Ozolins Team

    2015-03-01

    Thermal conductivity is a key parameter in designing high performance thermoelectric materials. A multitude of computational methods have been developed to calculate lattice thermal conductivity. Molecular dynamics (MD) based techniques, including equilibrium and non-equilibrium methods, in addition to non MD-based solutions, such as the Boltzmann Transport Equation (BTE), are all capable of calculating thermal conductivity, but each comes with different sets of limitations and difficulties. After extensive use of these different methods, we have developed a robust set of tools for obtaining high-quality lattice thermal conductivity values of crystalline solids. The crux of our method involves a novel compressive sensing (CS) based approach for efficiently calculating high quality force constants for crystalline materials. The result is a technique for building lattice dynamical models that can treat compounds with large, complex unit cells and strong anharmonicity, including those with harmonically unstable phonon modes.

  8. Colossal negative thermal expansion induced by magnetic phase competition on frustrated lattices in Laves phase compound (Hf,Ta)Fe2

    NASA Astrophysics Data System (ADS)

    Li, B.; Luo, X. H.; Wang, H.; Ren, W. J.; Yano, S.; Wang, C.-W.; Gardner, J. S.; Liss, K.-D.; Miao, P.; Lee, S.-H.; Kamiyama, T.; Wu, R. Q.; Kawakita, Y.; Zhang, Z. D.

    2016-06-01

    Competition between ferromagnetic and antiferromagnetic phases on frustrated lattices in hexagonal Laves phase compound Hf0.86Ta0.14Fe2 is investigated by using neutron diffraction as a function of temperature and magnetic fields and density-functional-theory calculations. At 325 K, the compound orders into the 120° frustrated antiferromagnetic state with a well-reduced magnetic moment, and an in-plane lattice contraction simultaneously sets in. With further cooling down, however, the accumulated distortion in turn destabilizes this susceptible frustrated structure. The frustration is completely relieved at 255 K when the first-order transition to the ferromagnetic state takes place, where a colossal negative volumetric thermal expansion, -123 ×10-6 /K, is obtained. Meanwhile, the antiferromagnetic state can be suppressed by few-tesla magnetic fields, which results in a colossal positive magnetostriction. Such delicate competition is attributed to the giant magnetic fluctuation inherent in the frustrated antiferromagnetic state. Therefore, the magnetoelastic instability is approached even under a small perturbation.

  9. A modified model for calculating lattice thermal expansion of I{sub 2}-IV-VI{sub 3} and I{sub 3}-V-VI{sub 4} tetrahedral compounds

    SciTech Connect

    Omar, M.S. . E-mail: dr_m_s_omar@yahoo.com

    2007-05-03

    A general empirical formula was found for calculating lattice thermal expansion for compounds having their properties extended for compound groups having different mean ionicity as well as more than one type of cation atoms with that of different numbers of them such as I{sub 2}-IV-VI{sub 3} and I{sub 3}-V-VI{sub 4}. The difference in the valence electrons for cations and anions in the compound was used to correlate the deviations caused by the compound ionicity. The ionicity effects, which are due to their different numbers for their types, were also added to the correlation equation. In general, the lattice thermal expansion for a compound semiconductor can be calculated from a relation containing melting point, mean atomic distance and number of valence electrons for the atoms forming the compound. The mean ionicity for the group compounds forming I{sub 2}-IV-VI{sub 3} was found to be 0.323 and 0.785 for the ternary group compounds of I{sub 3}-V-VI{sub 4}.

  10. Structure and thermoelectric properties of the quaternary compound Cs2[PdCl4]I2 with ultralow lattice thermal conductivity

    NASA Astrophysics Data System (ADS)

    Li, Wenfeng; Yang, Gui

    2016-03-01

    We study the electronic structure and thermoelectric properties of Cs2[PdCl4]I2 with ultralow lattice thermal conductivity using first-principles calculations and the semi-classical Boltzmann transport theory. The coexistence of several ionic and covalent bonds in Cs2[PdCl4]I2 indicates a similar Zintl phase crystal structure. Cs2[PdCl4]I2 is an indirect-band semiconductor with high density of states near the valence band maximum, which leads to high Seebeck coefficients even at high carrier concentrations. The calculated transport properties of p-type Cs2[PdCl4]I2 are higher than that of the known high-performance thermoelectric material CuGaTe2. The combination of good transport properties and ultralow lattice thermal conductivity suggests that Cs2[PdCl4]I2 can be a promising p-type thermoelectric material.

  11. Diverse lattice dynamics in ternary Cu-Sb-Se compounds

    NASA Astrophysics Data System (ADS)

    Qiu, Wujie; Wu, Lihua; Ke, Xuezhi; Yang, Jihui; Zhang, Wenqing

    2015-09-01

    Searching and designing materials with extremely low lattice thermal conductivity (LTC) has attracted considerable attention in material sciences. Here we systematically demonstrate the diverse lattice dynamics of the ternary Cu-Sb-Se compounds due to the different chemical-bond environments. For Cu3SbSe4 and CuSbSe2, the chemical bond strength is nearly equally distributed in crystalline bulk, and all the atoms are constrained to be around their equilibrium positions. Their thermal transport behaviors are well interpreted by the perturbative phonon-phonon interactions. While for Cu3SbSe3 with obvious chemical-bond hierarchy, one type of atoms is weakly bonded with surrounding atoms, which leads the structure to the part-crystalline state. The part-crystalline state makes a great contribution to the reduction of thermal conductivity that can only be effectively described by including a rattling-like scattering process in addition to the perturbative method. Current results may inspire new approaches to designing materials with low lattice thermal conductivities for high-performance thermoelectric conversion and thermal barrier coatings.

  12. Diverse lattice dynamics in ternary Cu-Sb-Se compounds

    PubMed Central

    Qiu, Wujie; Wu, Lihua; Ke, Xuezhi; Yang, Jihui; Zhang, Wenqing

    2015-01-01

    Searching and designing materials with extremely low lattice thermal conductivity (LTC) has attracted considerable attention in material sciences. Here we systematically demonstrate the diverse lattice dynamics of the ternary Cu-Sb-Se compounds due to the different chemical-bond environments. For Cu3SbSe4 and CuSbSe2, the chemical bond strength is nearly equally distributed in crystalline bulk, and all the atoms are constrained to be around their equilibrium positions. Their thermal transport behaviors are well interpreted by the perturbative phonon-phonon interactions. While for Cu3SbSe3 with obvious chemical-bond hierarchy, one type of atoms is weakly bonded with surrounding atoms, which leads the structure to the part-crystalline state. The part-crystalline state makes a great contribution to the reduction of thermal conductivity that can only be effectively described by including a rattling-like scattering process in addition to the perturbative method. Current results may inspire new approaches to designing materials with low lattice thermal conductivities for high-performance thermoelectric conversion and thermal barrier coatings. PMID:26328765

  13. Lattice dynamics and lattice thermal conductivity of thorium dicarbide

    NASA Astrophysics Data System (ADS)

    Liao, Zongmeng; Huai, Ping; Qiu, Wujie; Ke, Xuezhi; Zhang, Wenqing; Zhu, Zhiyuan

    2014-11-01

    The elastic and thermodynamic properties of ThC2 with a monoclinic symmetry have been studied by means of density functional theory and direct force-constant method. The calculated properties including the thermal expansion, the heat capacity and the elastic constants are in a good agreement with experiment. Our results show that the vibrational property of the C2 dimer in ThC2 is similar to that of a free standing C2 dimer. This indicates that the C2 dimer in ThC2 is not strongly bonded to Th atoms. The lattice thermal conductivity for ThC2 was calculated by means of the Debye-Callaway model. As a comparison, the conductivity of ThC was also calculated. Our results show that the ThC and ThC2 contributions of the lattice thermal conductivity to the total conductivity are 29% and 17%, respectively.

  14. Low lattice thermal conductivity of stanene.

    PubMed

    Peng, Bo; Zhang, Hao; Shao, Hezhu; Xu, Yuchen; Zhang, Xiangchao; Zhu, Heyuan

    2016-01-01

    A fundamental understanding of phonon transport in stanene is crucial to predict the thermal performance in potential stanene-based devices. By combining first-principle calculation and phonon Boltzmann transport equation, we obtain the lattice thermal conductivity of stanene. A much lower thermal conductivity (11.6 W/mK) is observed in stanene, which indicates higher thermoelectric efficiency over other 2D materials. The contributions of acoustic and optical phonons to the lattice thermal conductivity are evaluated. Detailed analysis of phase space for three-phonon processes shows that phonon scattering channels LA + LA/TA/ZA ↔ TA/ZA are restricted, leading to the dominant contributions of high-group-velocity LA phonons to the thermal conductivity. The size dependence of thermal conductivity is investigated as well for the purpose of the design of thermoelectric nanostructures. PMID:26838731

  15. Thermal lattice Boltzmann method for complex microflows

    NASA Astrophysics Data System (ADS)

    Yasuoka, Haruka; Kaneda, Masayuki; Suga, Kazuhiko

    2016-07-01

    A methodology to simulate thermal fields in complex microflow geometries is proposed. For the flow fields, the regularized multiple-relaxation-time lattice Boltzmann method (LBM) is applied coupled with the diffusive-bounce-back boundary condition for wall boundaries. For the thermal fields, the regularized lattice Bhatnagar-Gross-Krook model is applied. For the thermal wall boundary condition, a newly developed boundary condition, which is a mixture of the diffuse scattering and constant temperature conditions, is applied. The proposed set of schemes is validated by reference data in the Fourier flows and square cylinder flows confined in a microchannel. The obtained results confirm that it is essential to apply the regularization to the thermal LBM for avoiding kinked temperature profiles in complex thermal flows. The proposed wall boundary condition is successful to obtain thermal jumps at the walls with good accuracy.

  16. Low lattice thermal conductivity of stanene

    PubMed Central

    Peng, Bo; Zhang, Hao; Shao, Hezhu; Xu, Yuchen; Zhang, Xiangchao; Zhu, Heyuan

    2016-01-01

    A fundamental understanding of phonon transport in stanene is crucial to predict the thermal performance in potential stanene-based devices. By combining first-principle calculation and phonon Boltzmann transport equation, we obtain the lattice thermal conductivity of stanene. A much lower thermal conductivity (11.6 W/mK) is observed in stanene, which indicates higher thermoelectric efficiency over other 2D materials. The contributions of acoustic and optical phonons to the lattice thermal conductivity are evaluated. Detailed analysis of phase space for three-phonon processes shows that phonon scattering channels LA + LA/TA/ZA ↔ TA/ZA are restricted, leading to the dominant contributions of high-group-velocity LA phonons to the thermal conductivity. The size dependence of thermal conductivity is investigated as well for the purpose of the design of thermoelectric nanostructures. PMID:26838731

  17. Lattice Boltzmann approach to thermal transpiration

    SciTech Connect

    Sofonea, Victor

    2006-11-15

    Diffuse reflection boundary conditions are introduced in a thermal lattice Boltzmann model to allow for variable fluid density and temperature along the walls. The capability of this model to capture the main characteristics of the thermal transpiration phenomenon in a box at nonvanishing Knudsen numbers is demonstrated. The thermal creep velocity is found to be proportional to the temperature gradient imposed at the wall, whereas the accuracy of the simulation results are found to be of first or second order, depending on the numerical scheme.

  18. The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Spuckler, Charles M.

    2008-01-01

    The lattice and radiation conductivity of thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the apparent thermal conductivity of the coating to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature and the scattering and absorption properties of the coating material. High temperature scattering and absorption of the coating systems can also be derived based on the testing results using the modeling approach. The model prediction is found to have good agreement with experimental observations.

  19. Higher Order Thermal Lattice Boltzmann Model

    NASA Astrophysics Data System (ADS)

    Sorathiya, Shahajhan; Ansumali, Santosh

    2013-03-01

    Lattice Boltzmann method (LBM) modelling of thermal flows, compressible and micro flows requires an accurate velocity space discretization. The sub optimality of Gauss-Hermite quadrature in this regard is well known. Most of the thermal LBM in the past have suffered from instability due to lack of proper H-theorem and accuracy. Motivated from these issues, the present work develops along the two works and and imposes an eighth higher order moment to get correct thermal physics. We show that this can be done by adding just 6 more velocities to D3Q27 model and obtain a ``multi-speed on lattice thermal LBM'' with 33 velocities in 3D and calO (u4) and calO (T4) accurate fieq with a consistent H-theorem and inherent numerical stability. Simulations for Rayleigh-Bernard as well as velocity and temperature slip in micro flows matches with analytical results. Lid driven cavity set up for grid convergence is studied. Finally, a novel data structure is developed for HPC. The authors express their gratitude for computational resources and financial support provide by Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, India.

  20. Lattice thermal conductivity crossovers in semiconductor nanowires.

    PubMed

    Mingo, N; Broido, D A

    2004-12-10

    For binary compound semiconductor nanowires, we find a striking relationship between the nanowire's thermal conductivity kappa(nwire), the bulk material's thermal conductivity kappa(bulk), and the mass ratio of the material's constituent atoms, r, as kappa(bulk)/kappa(nwire) (alpha) (1+1/r)(-3/2). A significant consequence is the presence of crossovers in which a material with higher bulk thermal conductivity than the rest is no longer the best nanowire thermal conductor. We show that this behavior stems from a change in the dominant phonon scattering mechanism with decreasing nanowire size. The results have important implications for nanoscale heat dissipation, thermoelectricity, and thermal conductivity of nanocomposites. PMID:15697834

  1. Multifunctional Lattices with Low Thermal Expansion and Low Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Xu, Hang; Liu, Lu; Pasini, Damiano

    Systems in space are vulnerable to large temperature changes when travelling into and out of the Earth's shadow. Variations in temperature can lead to undesired geometric changes in susceptible applications requiring very fine precision. In addition, temperature-sensitive electronic equipment hosted in a satellite needs adequate thermal-control to guarantee a moderate ambient temperature. To address these specifications, materials with low coefficient of thermal expansion (CTE) and low coefficient of thermal conductivity (CTC) over a wide range of temperatures are often sought, especially for bearing components in satellites. Besides low CTE and low CTC, these materials should also provide desirable stiffness, strength and extraordinarily low mass. This work presents ultralightweight bi-material lattices with tunable CTE and CTC, besides high stiffness and strength. We show that the compensation of the thermal expansion and joint rotation at the lattice joints can be used as an effective strategy to tailor thermomechanical performance. Proof-of-concept lattices are fabricated from Al and Ti alloy sheets via a simple snap-fit technique and vacuum brazing, and their CTE and CTC are assessed via a combination of experiments and theory. Corresponding Author.

  2. A photonic thermalization gap in disordered lattices

    NASA Astrophysics Data System (ADS)

    Kondakci, H. Esat; Abouraddy, Ayman F.; Saleh, Bahaa E. A.

    2015-11-01

    The formation of gaps--forbidden ranges in the values of a physical parameter--is common to a variety of physical systems: from energy bandgaps of electrons in periodic lattices and their analogues in photonic, phononic and plasmonic systems to pseudo-energy gaps in aperiodic quasicrystals. Here, we predict a thermalization gap for light propagating in finite disordered structures characterized by disorder-immune chiral symmetry--the appearance of the eigenvalues and eigenvectors in skew-symmetric pairs. In these systems, the span of sub-thermal photon statistics is inaccessible to input coherent light, which--once the steady state is reached--always emerges with super-thermal statistics no matter how small the disorder level. We formulate an independent constraint of the input field for the chiral symmetry to be activated and the gap to be observed. This unique feature enables a new form of photon-statistics interferometry: the deterministic tuning of photon statistics via controlled excitation symmetry breaking realized by sculpting the amplitude or phase of the input coherent field.

  3. Multi-Species Thermal Lattice Boltzmann Models

    NASA Astrophysics Data System (ADS)

    Wah, Darren; Vahala, George; Vahala, Linda; Pavlo, Pavol; Carter, Jonathan

    1998-11-01

    Thermal Lattice Boltzmann models (TLBM) are ideal for simulating nonlinear macroscopic conservation systems because of their inherent parallelizeability (nearly all operations are purely local). The TLBM solves a linear BGK-like kinetic equation so that the standard nonlinear convective terms in the standard fluid codes are now replaced by a simple shift operator (linear advection) at the kinetic level. Here we extend our previous TLBM to handle a two-species system, utilizing the models of Morse (1964),Greene (1973) and Kotelnikov & Montgomery (1997). Each kinetic equation now has 2 BGK-like relaxation terms : the first is due to self-collisions and the other is due to different- species collisions. The relaxation rates used are appropriate for electron-ion collisions. Certain constraints can be imposed on the relaxed distribution functions so that the cross-species momentum and energy evolutions relax at the rate determined from the full nonlinear Boltzmann integral collision operator. Ionization and recombination processes will also be examined. Both hexagonal and octagonal lattices are studied.

  4. Lattice dynamics study of bismuth III V compounds

    NASA Astrophysics Data System (ADS)

    Belabbes, A.; Zaoui, A.; Ferhat, M.

    2008-10-01

    We present first-principles calculations of the structural and lattice-dynamical properties for cubic bismuth III-V compounds: BBi, AlBi and GaBi. The ground-state properties, i.e., the lattice constant and the bulk modulus, are calculated using a plane wave pseudopotential method within density functional theory. A linear-response approach to density functional theory is used to derive the phonon frequencies. The effect of pressure on the dynamical charges and the longitudinal optical-transverse optical splitting is also examined.

  5. Thermal expansion of compounds of zircon structure

    SciTech Connect

    Subbarao, E.C.; Agrawal, D.K.; McKinstry, H.A.; Sallese, C.W.; Roy, R. . Materials Research Lab.)

    1990-05-01

    The thermal expansion behavior of 13 members of ABO{sub 4} compounds of the zircon family is examined in terms of crystal chemical (size, charge, and mass of cations) and crystallographic (a and c) parameters. The systematic trend in the thermal expansion coefficients {alpha}{sub a} and {alpha}{sub c}, with the ionic radii, r{sub A} and R{sub B}, can be explained in terms of the unique arrangement of M-O polyhedra along a and c directions of this lattice. In the zircon structure, edge-sharing ZrO{sub 8} dodecahedra form a chain along the a direction while the chain along the c direction consists of alternate edge-sharing SiO{sub 4} tetrahedra and ZrO{sub 8} triangular dodecahedra. Substitution in the A sites affects a and {alpha}{sub a} more than c and {alpha}{sub c} and the reverse is true for replacements in the B sites. Unequal valencies on the A and B sites affect thermal expansion coefficients, particularly {alpha}{sub c}.

  6. Lattice-structures and constructs with designed thermal expansion coefficients

    SciTech Connect

    Spadaccini, Christopher; Hopkins, Jonathan

    2014-10-28

    A thermal expansion-managed lattice structure having a plurality of unit cells each having flexure bearing-mounted tabs supported on a base and actuated by thermal expansion of an actuator having a thermal expansion coefficient greater than the base and arranged so that the tab is inwardly displaced into a base cavity. The flexure bearing-mounted tabs are connected to other flexure-bearing-mounted tabs of adjacent unit cells so that the adjacent unit cells are spaced from each other to accommodate thermal expansion of individual unit cells while maintaining a desired bulk thermal expansion coefficient of the lattice structure as a whole.

  7. Thermal equation of state for lattice Boltzmann gases

    NASA Astrophysics Data System (ADS)

    Ran, Zheng

    2009-06-01

    The Galilean invariance and the induced thermo-hydrodynamics of the lattice Boltzmann Bhatnagar-Gross-Krook model are proposed together with their rigorous theoretical background. From the viewpoint of group invariance, recovering the Galilean invariance for the isothermal lattice Boltzmann Bhatnagar-Gross-Krook equation (LBGKE) induces a new natural thermal-dynamical system, which is compatible with the elementary statistical thermodynamics.

  8. Lattice thermal conductivity of nanograined half-Heusler solid solutions

    SciTech Connect

    Geng, Huiyuan Meng, Xianfu; Zhang, Hao; Zhang, Jian

    2014-05-19

    We report a phenomenological model of atomic weight, lattice constant, temperature, and grain size to calculate the high-temperature lattice thermal conductivity of nanograined solid solutions. The theoretical treatment developed here is reasonably consistent with the experimental results of n-type MNiSn and p-type MCoSb alloys, where M is the combination of Hf, Zr, and Ti. For disordered half-Heusler alloys with moderated grain sizes, we predict that the reduction in lattice thermal conductivity due to grain boundary scattering is independent of the scattering parameter, which characterizes the phonon scattering cross section of point defects. In addition, the lattice thermal conductivity falls off with temperature as T{sup –1∕2} around the Debye temperature.

  9. The S=1 Underscreened Anderson Lattice model for Uranium compounds

    NASA Astrophysics Data System (ADS)

    Thomas, C.; Simões, A. S. R.; Iglesias, J. R.; Lacroix, C.; Perkins, N. B.; Coqblin, B.

    2011-01-01

    Magnetic properties of uranium and neptunium compounds showing coexistence of the Kondo effect and ferromagnetic order are investigated within the degenerate Anderson Lattice Hamiltonian, describing a 5f2 electronic configuration with S = 1 spins. Through the Schrieffer-Wolff transformation, both an exchange Kondo interaction for the S = 1 f-spins and an effective f-band term are obtained, allowing to describe the coexistence of Kondo effect and ferromagnetic ordering and a weak delocalization of the 5f-electrons. We calculate the Kondo and Curie temperatures and we can account for the pressure dependence of the Curie temperature of UTe.

  10. Dynamical thermal conductivity of the spin Lieb lattice

    NASA Astrophysics Data System (ADS)

    Yarmohammadi, Mohsen

    2016-05-01

    In the ferromagnetic insulator with the Dzyaloshinskii-Moriya interaction (DMI), we have theoretically investigated the dynamical thermal conductivity (DTC). In other words, we have investigated the frequency dependence of thermal conductivity, κ, of the Lieb lattice, a face-centered square lattice, subjected to a time dependence temperature gradient. Using linear response theory and Green's function approach, DTC has been obtained in the context of Heisenberg Hamiltonian. At low frequencies, DTC is found to be monotonically increasing with DMI strength (DMIS), temperature and next-nearest-neighbor (NNN) coupling. Also we have found that DTC includes a peak for different values of temperature, DMIS and NNN coupling. Furthermore we study the temperature dependence of thermal conductivity of Lieb lattice for different values of DMIS, NNN coupling and external magnetic filed. We witness a decrease in DTC with temperature due to the quantum effects in the system.

  11. Accurate measurements of thermal radiation from a tungsten photonic lattice

    SciTech Connect

    Seager, C.H.; Sinclair, M.B.; Fleming, J.G.

    2005-06-13

    Recently, photonic lattice structures have become available that are fabricated from refractory materials such as tungsten and thus stable in vacuo at high temperatures. Such structures can be tailored to exhibit optical properties that are not achievable with ordinary optical materials. In particular, photonic lattices can be designed to suppress thermal emission in undesired spectral regions, and can thereby enhance the overall energy efficiency of emission at useful wavelengths. We report measurements of the thermal emission spectra of tungsten photonic lattices in the wavelength range 3 to 24 {mu}m. Suppression of thermal emission at wavelengths longer than the photonic bandedge ({approx}6 {mu}m) is observed, along with significant emission at shorter wavelengths. We show that from 404 to 546 K the spectral emissivity E({lambda}) is temperature independent and approaches [1-R({lambda})], where R({lambda}) is the measured specular reflectance spectrum. These results are in accord with Kirchhoff's law.

  12. Predicting lattice thermal conductivity with help from ab initio methods

    NASA Astrophysics Data System (ADS)

    Broido, David

    2015-03-01

    The lattice thermal conductivity is a fundamental transport parameter that determines the utility a material for specific thermal management applications. Materials with low thermal conductivity find applicability in thermoelectric cooling and energy harvesting. High thermal conductivity materials are urgently needed to help address the ever-growing heat dissipation problem in microelectronic devices. Predictive computational approaches can provide critical guidance in the search and development of new materials for such applications. Ab initio methods for calculating lattice thermal conductivity have demonstrated predictive capability, but while they are becoming increasingly efficient, they are still computationally expensive particularly for complex crystals with large unit cells . In this talk, I will review our work on first principles phonon transport for which the intrinsic lattice thermal conductivity is limited only by phonon-phonon scattering arising from anharmonicity. I will examine use of the phase space for anharmonic phonon scattering and the Grüneisen parameters as measures of the thermal conductivities for a range of materials and compare these to the widely used guidelines stemming from the theory of Liebfried and Schölmann. This research was supported primarily by the NSF under Grant CBET-1402949, and by the S3TEC, an Energy Frontier Research Center funded by the US DOE, office of Basic Energy Sciences under Award No. DE-SC0001299.

  13. Lattice constraints on the thermal photon rate

    NASA Astrophysics Data System (ADS)

    Ghiglieri, J.; Kaczmarek, O.; Laine, M.; Meyer, F.

    2016-07-01

    We estimate the photon production rate from an SU(3) plasma at temperatures of about 1.1 Tc and 1.3 Tc . Lattice results for the vector current correlator at spatial momenta k ˜(2 -6 )T are extrapolated to the continuum limit and analyzed with the help of a polynomial interpolation for the corresponding spectral function, which vanishes at zero frequency and matches to high-precision perturbative results at large invariant masses. For small invariant masses the interpolation is compared with the next-to-leading-order (NLO) weak-coupling result, hydrodynamics, and a holographic model. At vanishing invariant mass we extract the photon rate which for k ≳3 T is found to be close to the NLO weak-coupling prediction. For k ≲2 T uncertainties remain large but the photon rate is likely to fall below the NLO prediction, in accordance with the onset of a strongly interacting behavior characteristic of the hydrodynamic regime.

  14. A three dimensional lattice model for thermal compressible flow on standard lattices

    NASA Astrophysics Data System (ADS)

    Feng, Yongliang; Sagaut, Pierre; Tao, Wenquan

    2015-12-01

    A three-dimensional double distribution function thermal lattice Boltzmann model has been developed for simulation of thermal compressible flows in the low Mach number limit. Both the flow field and energy conservation equation are solved by LB approach. A higher order density distribution function on standard lattices is used to solve the flow field, while an energy distribution function is employed to compute the temperature field. The equation of state of thermal perfect gas is recovered by higher order Hermite polynomial expansions in Navier-Stokes-Fourier equations. The equilibrium distribution functions of D3Q15, D3Q19 and D3Q27 lattices are obtained from the Hermite expansion. They exhibit slight differences originating in differences in the discrete lattice symmetries. The correction terms in LB models for third order derivation are added using an external force in orthogonal polynomials form. Present models are successfully assessed considering several test cases, namely the thermal Couette flow, Rayleigh-Bénard convection, natural convection in square cavity and a spherical explosion in a 3D enclosed box. The numerical results are in good agreement with both analytical solution and results given by previous authors.

  15. Lattice thermal conductance of quantum wires with disorder

    NASA Astrophysics Data System (ADS)

    Vyhmeister, Erik; Hershfield, Selman

    We model the lattice thermal conductance in long quantum wires connected to two large heat baths at different temperatures in the harmonic approximation. The thermal conductance is computed with the Landauer formula for phonons, where it is related to the sum over all transmission probabilities for phonons through the wire. The net transmission probability is computed using a recursive Green function technique, which allows one to study long wires efficiently. We consider several different kinds of disorder to reduce the lattice thermal conductivity: periodic rectangular holes of varying sizes and shapes, periodic triangular holes, and narrow bands, averaged over randomness to account for variance in manufacturing. Depending on the model, the thermal conductance was reduced by 80 percent or more from the perfectly ordered wire case. Funded by NSF grant DMR-1461019.

  16. Calculation of the lattice thermal conductivity in granular crystals

    SciTech Connect

    Kazan, M.; Volz, S.

    2014-02-21

    This paper provides a general model for the lattice thermal conductivity in granular crystals. The key development presented in this model is that the contribution of surface phonons to the thermal conductivity and the interplay between phonon anharmonic scattering and phonon scattering by boundaries are considered explicitly. Exact Boltzmann equation including spatial dependence of phonon distribution function is solved to yield expressions for the rates at which phonons scatter by the grain boundaries in the presence of intrinsic phonon scattering mechanisms. The intrinsic phonon scattering rates are calculated from Fermi's golden rule, and the vibration parameters of the model are derived as functions of temperature and crystallographic directions by using a lattice dynamics approach. The accuracy of the model is demonstrated with reference to experimental measurements regarding the effects of surface orientation and isotope composition on the thermal conductivity in single crystals, and the effect of grains size and shape on the thermal conductivity tensor in granular crystals.

  17. More Efficient Thermalization of Gauge Fields in Lattice QCD Simulations

    SciTech Connect

    Frigori, R.B.; Cucchieri, A.; Mendes, T.; Mihara, A.

    2004-12-02

    We introduce a new thermalization algorithm for pure SU(2) lattice gauge theory by combining heat-bath and micro-canonical updates in a single step, while preserving ergodicity. We test the new algorithm in the two-dimensional case and compare its performance with the standard heat-bath method.

  18. Lattice thermal conductivity of dense silicate glass at high pressures

    NASA Astrophysics Data System (ADS)

    Chang, Y. Y.; Hsieh, W. P.

    2015-12-01

    The layered structure of the Earth's interior is generally believed to develop through the magma ocean differentiation in the early Earth. Previous seismic studies revealed the existence of ultra low velocity zones above the core mantle boundary (CMB) which was inferred to be associated with the remnant of a deep magma ocean. The heat flux through the core mantle boundary therefore would strongly depend on the thermal conductivity, both lattice (klat) and radiative (krad) of dense silicate melts and major constituent minerals of the lower mantle. Recent experimental results on the radiative thermal conductivity of dense silicate glasses and lower-mantle minerals suggest that krad of dense silicate glasses could be remarkably lower than krad of the surrounding solid mantle phases. In this case, the dense silicate melts will act as a trap for heat from the Earth's outer core. However, this conclusion remains uncertain because of the lack of direct measurements on lattice thermal conductivities of silicate glasses/melts under lower mantle pressures up to date. Here we report experimental results on lattice thermal conductivities of dense silicate glass with basaltic composition under pressures relevant to the Earth's lower mantle in a diamond-anvil cell using time-domain thermoreflectance method. The study will assist the comprehension of thermal transport properties of silicate melts in the Earth's deep interior and is crucial for understanding the dynamic and thermal evolution of the Earth's internal structure.

  19. Application of the underscreened Kondo lattice model to neptunium compounds

    NASA Astrophysics Data System (ADS)

    Thomas, Christopher; da Rosa Simoes, Acirete S.; Iglesias, J. R.; Lacroix, C.; Coqublin, B.

    2012-12-01

    The coexistence of Kondo effect and ferromagnetic order has been observed in many uranium and neptunium compounds such as UTe or Np2PdGa3. This coexistence can be described within the underscreened Anderson lattice model with two f-electrons and S = 1 spins on each site. After performing the Schrieffer-Wolff transformation on this model, we have obtained an effective Hamiltonian with a f-band term in addition to the Kondo interaction for S = 1 spins. The results indicate a coexistence of Kondo effect and ferromagnetic order, with different relative values of the Kondo TK and Curie TC temperatures. We emphasize here especially the case TK < TC where there is a Kondo behavior below TC and a clear decrease of the magnetization below TK. Such a behavior has been observed in the magnetization curves of NpNiSi2 at low temperatures.

  20. Effect of partial void filling on the lattice thermal conductivity of skutterudites

    NASA Astrophysics Data System (ADS)

    Nolas, G. S.; Cohn, J. L.; Slack, G. A.

    1998-07-01

    Polycrystalline samples of antimonides with the skutterudite crystal structure with La partially filling the voids have been prepared in an effort to quantify the impact of partial void filling on the lattice thermal conductivity of these compounds. It is observed that a relatively small concentration of La in the voids results in a relatively large decrease in the lattice thermal conductivity. In addition, the largest decrease in the lattice thermal conductivity, compared to ``unfilled'' CoSb3 is not observed near 100% filling of the voids with La, as was previously believed. This suggests a point-defect-type phonon scattering effect due to the partial, random distribution of La in the voids as well as the ``rattling'' effect of the La ions, resulting in the scattering of a larger spectrum of phonons than in the case of 100% filling. An additional benefit of partial filling in thermoelectric materials is that it may be one way of adjusting the electronic properties of these compounds. Seebeck, resistivity, Hall effect and structural data for these skutterudite compounds are also presented.

  1. Method of simultaneous measurement of radiative and lattice thermal conductivity.

    NASA Technical Reports Server (NTRS)

    Schatz, J. F.; Simmons, G.

    1972-01-01

    A new technique of high-temperature thermal-conductivity measurement is described. A CO2 gas laser is used to generate a low-frequency temperature wave at one face of a small disk-shaped sample, and an infrared detector views the opposite face to detect the phase of the emerging radiation. A mathematical expression is derived which enables phase data at several frequencies to be used for the simultaneous determination of thermal diffusivity and mean extinction coefficient. Lattice and radiative thermal conductivities are then calculated. Test results for sintered aluminum oxide at temperatures from 530 to 1924 K are within the range of error of previously existing data.

  2. THERMAL DECOMPOSITION OF URANIUM COMPOUNDS

    DOEpatents

    Magel, T.T.; Brewer, L.

    1959-02-10

    A method is presented of preparing uranium metal of high purity consisting contacting impure U metal with halogen vapor at between 450 and 550 C to form uranium halide vapor, contacting the uranium halide vapor in the presence of H/sub 2/ with a refractory surface at about 1400 C to thermally decompose the uranium halides and deposit molten U on the refractory surface and collecting the molten U dripping from the surface. The entire operation is carried on at a sub-atmospheric pressure of below 1 mm mercury.

  3. Biodegradable compounds: Rheological, mechanical and thermal properties

    NASA Astrophysics Data System (ADS)

    Nobile, Maria Rossella; Lucia, G.; Santella, M.; Malinconico, M.; Cerruti, P.; Pantani, R.

    2015-12-01

    Recently great attention from industry has been focused on biodegradable polyesters derived from renewable resources. In particular, PLA has attracted great interest due to its high strength and high modulus and a good biocompatibility, however its brittleness and low heat distortion temperature (HDT) restrict its wide application. On the other hand, Poly(butylene succinate) (PBS) is a biodegradable polymer with a low tensile modulus but characterized by a high flexibility, excellent impact strength, good thermal and chemical resistance. In this work the two aliphatic biodegradable polyesters PBS and PLA were selected with the aim to obtain a biodegradable material for the industry of plastic cups and plates. PBS was also blended with a thermoplastic starch. Talc was also added to the compounds because of its low cost and its effectiveness in increasing the modulus and the HDT of polymers. The compounds were obtained by melt compounding in a single screw extruder and the rheological, mechanical and thermal properties were investigated. The properties of the two compounds were compared and it was found that the values of the tensile modulus and elongation at break measured for the PBS/PLA/Talc compound make it interesting for the production of disposable plates and cups. In terms of thermal resistance the compounds have HDTs high enough to contain hot food or beverages. The PLA/PBS/Talc compound can be, then, considered as biodegradable substitute for polystyrene for the production of disposable plates and cups for hot food and beverages.

  4. Thermal expansion of noble metals using improved lattice dynamical model

    NASA Astrophysics Data System (ADS)

    Kumar, Priyank; Bhatt, N. K.; Vyas, P. R.; Gohel, V. B.

    2013-06-01

    Isothermal bulk modulus and volume thermal expansion for noble metals have been studied on the basis of improved lattice dynamical model proposed by Pandya et al [Physica B 307, 138-149 (2001)]. The present study shows that for all three noble metals the approach gives satisfactory results, when they are compared with experimental findings. The present study thus confirms the use of improved model to study anharmonic property, and can be extended to study temperature dependent properties in high temperature range.

  5. Anisotropic lattice thermal conductivity in chiral tellurium from first principles

    SciTech Connect

    Peng, Hua; Kioussis, Nicholas; Stewart, Derek A.

    2015-12-21

    Using ab initio based calculations, we have calculated the intrinsic lattice thermal conductivity of chiral tellurium. We show that the interplay between the strong covalent intrachain and weak van der Waals interchain interactions gives rise to the phonon band gap between the lower and higher optical phonon branches. The underlying mechanism of the large anisotropy of the thermal conductivity is the anisotropy of the phonon group velocities and of the anharmonic interatomic force constants (IFCs), where large interchain anharmonic IFCs are associated with the lone electron pairs. We predict that tellurium has a large three-phonon scattering phase space that results in low thermal conductivity. The thermal conductivity anisotropy decreases under applied hydrostatic pressure.

  6. Anisotropic lattice thermal conductivity in chiral tellurium from first principles

    NASA Astrophysics Data System (ADS)

    Peng, Hua; Kioussis, Nicholas; Stewart, Derek A.

    2015-12-01

    Using ab initio based calculations, we have calculated the intrinsic lattice thermal conductivity of chiral tellurium. We show that the interplay between the strong covalent intrachain and weak van der Waals interchain interactions gives rise to the phonon band gap between the lower and higher optical phonon branches. The underlying mechanism of the large anisotropy of the thermal conductivity is the anisotropy of the phonon group velocities and of the anharmonic interatomic force constants (IFCs), where large interchain anharmonic IFCs are associated with the lone electron pairs. We predict that tellurium has a large three-phonon scattering phase space that results in low thermal conductivity. The thermal conductivity anisotropy decreases under applied hydrostatic pressure.

  7. Thermal expansion and lattice misfit in two-phase superalloys

    NASA Astrophysics Data System (ADS)

    Gornostyrev, Yu. N.; Kontsevoi, O. Yu.; Freeman, A. J.; Khromov, K. Yu.; Maksyutov, A. F.; Trefilov, A. V.; Katsnelson, M. I.; Lichtenstein, A. I.

    2004-03-01

    The magnitude of the lattice misfit between the γ and γ' phases is one of the key parameters determining the mechanical behavior, microstructure morphology and stability of γ/γ' high temperature superalloys. For the first time, the γ and γ' thermal expansion coefficients α(T) and the temperature dependence of the unconstrained lattice misfit parameter δ (T) for Ni-, Ir-, and Pt-based superalloys is obtained by means of ab initio full-potential electron and phonon spectrum calculations. We demonstrate that, in contrast with traditional beliefs, the electronic contribution to the misfit parameter dominates due to the strong compensation of the phonon contributions to α(T) from γ and γ'. The calculated results are in a good agreement with available experimental data for temperatures up to 0.8T_melt; at higher temperatures the effect of the redistribution of alloying elements between the γ, and γ' phases on δ (T) becomes essential.

  8. Local lattice distortions and thermal transport in perovskite manganites

    SciTech Connect

    Cohn, J.L.; Neumeier, J.J.; Popoviciu, C.P.; McClellan, K.J.; Leventouri, T.

    1997-10-01

    Measurements of thermal conductivity versus temperature and magnetic field are reported for perovskite manganites that exhibit ferromagnetic (FM), charge-ordering (CO), antiferromagnetic, and/or structural phase transitions. The data reveal a dominant lattice contribution to the heat conductivity with {kappa}{approximately}1{minus}2 W/mK near room temperature. The rather low values, implying a phonon mean free path on the order of a lattice spacing, are shown to correlate with static local distortions of the MnO{sub 6} octahedra. Modifications of the local structure are responsible for abrupt anomalies in the zero-field {kappa} at the FM, CO, and structural transitions, and for colossal magnetothermal resistance near the FM transition. {copyright} {ital 1997} {ital The American Physical Society}

  9. Lattice thermal transport in large-area polycrystalline graphene

    NASA Astrophysics Data System (ADS)

    Aksamija, Z.; Knezevic, I.

    2014-07-01

    We study lattice thermal transport in large-area polycrystalline graphene, such as the samples grown by chemical vapor deposition (CVD) of carbon on Cu. These systems are composed of single-crystalline grains with a broad range of sizes and crystal orientations, separated by atomically rough grain boundaries. We solve the phonon Boltzmann transport equation and calculate the thermal conductivity in each grain, including scattering from the grain boundary roughness. Thermal transport in the large-area sample is considered in the Corbino-membrane geometry, with heat flowing through a network of thermal resistors and away from a pointlike heat source. The thermal transport in polycrystalline graphene is shown to be highly anisotropic, depending on the individual properties of the grains (their size and boundary roughness), as well as on grain connectivity. Strongest heat conduction occurs along large-grain filaments, while the heat flow is blocked through regions containing predominantly small grains. We discuss how thermal transport in CVD graphene can be tailored by controlling grain disorder.

  10. The Coulombic Lattice Potential of Ionic Compounds: The Cubic Perovskites.

    ERIC Educational Resources Information Center

    Francisco, E.; And Others

    1988-01-01

    Presents coulombic models representing the particles of a system by point charges interacting through Coulomb's law to explain coulombic lattice potential. Uses rubidium manganese trifluoride as an example of cubic perovskite structure. Discusses the effects on cluster properties. (CW)

  11. Lattice thermal conductivity of Bi, Sb, and Bi-Sb alloy from first principles

    NASA Astrophysics Data System (ADS)

    Lee, Sangyeop; Esfarjani, Keivan; Mendoza, Jonathan; Dresselhaus, Mildred S.; Chen, Gang

    2014-02-01

    Using first principles, we calculate the lattice thermal conductivity of Bi, Sb, and Bi-Sb alloys, which are of great importance for thermoelectric and thermomagnetic cooling applications. Our calculation reveals that the ninth-neighbor harmonic and anharmonic force constants are significant; accordingly, they largely affect the lattice thermal conductivity. Several features of the thermal transport in these materials are studied: (1) the relative contributions from phonons and electrons to the total thermal conductivity as a function of temperature are estimated by comparing the calculated lattice thermal conductivity to the measured total thermal conductivity, (2) the anisotropy of the lattice thermal conductivity is calculated and compared to that of the electronic contribution in Bi, and (3) the phonon mean free path distributions, which are useful for developing nanostructures to reduce the lattice thermal conductivity, are calculated. The phonon mean free paths are found to range from 10 to 100 nm for Bi at 100 K.

  12. High thermopower and ultra low thermal conductivity in Cd-based Zintl phase compounds.

    PubMed

    Pandey, Tribhuwan; Singh, Abhishek K

    2015-07-14

    By combining first principles density functional theory and electronic as well as lattice Boltzmann transport calculations, we unravel the excellent thermoelectric properties of Zintl phase compounds ACd2Sb2 (where, A = Ca, Ba, Sr). The calculated electronic structures of these compounds show charge carrier pockets and heavy light bands near the band edge, which lead to a large power factor. Furthermore, we report large Grüneisen parameters and low phonon group velocity indicating essential strong anharmonicity in these compounds, which resulted in low lattice thermal conductivity. The combination of low thermal conductivity and the excellent transport properties give a high ZT value of ∼1.4-1.9 in CaCd2Sb2 and BaCd2Sb2 at moderate p and n-type doping. Our results indicate that well optimized Cd-based Zintl phase compounds have the potential to match the performance of conventional thermoelectric materials. PMID:26060054

  13. The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings: Models and Experiments

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Spuckler, Charles M.

    2010-01-01

    The lattice and radiation conductivity of ZrO2-Y2O3 thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the coating apparent thermal conductivity to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature, coating material scattering, and absorption properties. High temperature scattering and absorption of the coating systems can be also derived based on the testing results using the modeling approach. A comparison has been made for the gray and nongray coating models in the plasma-sprayed thermal barrier coatings. The model prediction is found to have a good agreement with experimental observations.

  14. Demystifying umklapp vs normal scattering in lattice thermal conductivity

    NASA Astrophysics Data System (ADS)

    Maznev, A. A.; Wright, O. B.

    2014-11-01

    We discuss the textbook presentation of the concept of umklapp vs normal phonon-phonon scattering processes in the context of lattice thermal conductivity. A simplistic picture, in which the "momentum conservation" in a normal process leads to the conservation of the heat flux, is only valid within the single-velocity Debye model of phonon dispersion. Outside this model, the simple "momentum conservation" argument is demonstrably inaccurate and leads to conceptual confusion. Whether or not an individual scattering event changes the direction of the energy flow is determined by the phonon group velocity, which, unlike the quasimomentum, is a uniquely defined quantity independent of the choice of the primitive cell in reciprocal space. Furthermore, the statement that normal processes do not lead to a finite thermal conductivity when umklapp processes are absent is a statistical statement that applies to a phonon distribution rather than to individual scattering events. It is also important to understand that once umklapp processes are present, both normal and umklapp processes contribute to thermal resistance. A nuanced explanation of the subject would help avoid confusion of the student and establish a connection with cutting edge research.

  15. Lattice thermal conduction in ultra-thin nanocomposites

    NASA Astrophysics Data System (ADS)

    Thomas, Iorwerth O.; Srivastava, G. P.

    2016-06-01

    We have studied the lattice thermal conductivity of Si/Ge periodic nanocomposites (superlattice, nanowire, and nanodot structures) of sample sizes in the range of 30 nm-30 μm, periodicities 1.1 nm and 2.2 nm, with reasonably dirty interfaces, and n-type doping concentration in the range of 1023-1026 m-3. Our calculations employ a judicious combination of ab initio and physically sound semi-empirical methods for detailed calculations of estimates of phonon scattering rates due to anharmonicity and interface formation. Based upon our results we conclude that the formation of ultra-thin nanocomposites in any of the three structures is capable of reducing the conductivity below the alloy limit. This can be explained as a result of combination of the sample length dependence, the on-set of mini-Umklapp three-phonon processes, mass mixing at the interfaces between Si and Ge regions, and the sample doping level.

  16. Compound Refractive Lenses for Thermal Neutron Applications

    SciTech Connect

    Gary, Charles K.

    2013-11-12

    This project designed and built compound refractive lenses (CRLs) that are able to focus, collimate and image using thermal neutrons. Neutrons are difficult to manipulate compared to visible light or even x rays; however, CRLs can provide a powerful tool for focusing, collimating and imaging neutrons. Previous neutron CRLs were limited to long focal lengths, small fields of view and poor resolution due to the materials available and manufacturing techniques. By demonstrating a fabrication method that can produce accurate, small features, we have already dramatically improved the focal length of thermal neutron CRLs, and the manufacture of Fresnel lens CRLs that greatly increases the collection area, and thus efficiency, of neutron CRLs. Unlike a single lens, a compound lens is a row of N lenslets that combine to produce an N-fold increase in the refraction of neutrons. While CRLs can be made from a variety of materials, we have chosen to mold Teflon lenses. Teflon has excellent neutron refraction, yet can be molded into nearly arbitrary shapes. We designed, fabricated and tested Teflon CRLs for neutrons. We demonstrated imaging at wavelengths as short as 1.26 ? with large fields of view and achieved resolution finer than 250 μm which is better than has been previously shown. We have also determined designs for Fresnel CRLs that will greatly improve performance.

  17. Multiblock approach for the passive scalar thermal lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Huang, Rongzong; Wu, Huiying

    2014-04-01

    A multiblock approach for the passive scalar thermal lattice Boltzmann method (TLBM) with multiple-relaxation-time collision scheme is proposed based on the Chapman-Enskog analysis. The interaction between blocks is executed in the moment space directly and an external force term is considered. Theoretical analysis shows that all the nonequilibrium parts of the nonconserved moments should be rescaled, while the nonequilibrium parts of the conserved moments can be calculated directly. Moreover, a local scheme based on the pseudoparticles for computing heat flux is proposed with no need to calculate temperature gradient based on the finite-difference scheme. In order to validate the multiblock approach and local scheme for computing heat flux, thermal Couette flow with wall injection is simulated and good results are obtained, which show that the adoption of the multiblock approach does not deteriorate the convergence rate of TLBM and the local scheme for computing heat flux has second-order convergence rate. Further application of the present approach is the simulation of natural convection in a square cavity with the Rayleigh number up to 109.

  18. Thermal multicomponent lattice Boltzmann model for catalytic reactive flows.

    PubMed

    Kang, Jinfen; Prasianakis, Nikolaos I; Mantzaras, John

    2014-06-01

    Catalytic reactions are of great interest in many applications related to power generation, fuel reforming and pollutant abatement, as well as in various biochemical processes. A recently proposed lattice Boltzmann model for thermal binary-mixture gas flows [J. Kang, N. I. Prasianakis, and J. Mantzaras, Phys. Rev. E. 87, 053304 (2013)] is revisited and extended for the simulation of multispecies flows with catalytic reactions. The resulting model can handle flows with large temperature and concentration gradients. The developed model is presented in detail and validated against a finite volume Navier-Stokes solver in the case of channel-flow methane catalytic combustion. The surface chemistry is treated with a one-step global reaction for the catalytic total oxidation of methane on platinum. In order to take into account thermal effects, the catalytic boundary condition of S. Arcidiacono, J. Mantzaras, and I. V. Karlin [Phys. Rev. E 78, 046711 (2008)] is adapted to account for temperature variations. Speed of sound simulations further demonstrate the physical integrity and unique features of the model. PMID:25019915

  19. Thermal multicomponent lattice Boltzmann model for catalytic reactive flows

    NASA Astrophysics Data System (ADS)

    Kang, Jinfen; Prasianakis, Nikolaos I.; Mantzaras, John

    2014-06-01

    Catalytic reactions are of great interest in many applications related to power generation, fuel reforming and pollutant abatement, as well as in various biochemical processes. A recently proposed lattice Boltzmann model for thermal binary-mixture gas flows [J. Kang, N. I. Prasianakis, and J. Mantzaras, Phys. Rev. E. 87, 053304 (2013), 10.1103/PhysRevE.87.053304] is revisited and extended for the simulation of multispecies flows with catalytic reactions. The resulting model can handle flows with large temperature and concentration gradients. The developed model is presented in detail and validated against a finite volume Navier-Stokes solver in the case of channel-flow methane catalytic combustion. The surface chemistry is treated with a one-step global reaction for the catalytic total oxidation of methane on platinum. In order to take into account thermal effects, the catalytic boundary condition of S. Arcidiacono, J. Mantzaras, and I. V. Karlin [Phys. Rev. E 78, 046711 (2008), 10.1103/PhysRevE.78.046711] is adapted to account for temperature variations. Speed of sound simulations further demonstrate the physical integrity and unique features of the model.

  20. Anomalous pressure dependence of thermal conductivities of large mass ratio compounds

    DOE PAGESBeta

    Lindsay, Lucas R; Broido, David A.; Carrete, Jesus; Mingo, Natalio; Reinecke, Tom L.

    2015-03-27

    The lattice thermal conductivities (k) of binary compound materials are examined as a function of hydrostatic pressure P using a first-principles approach. Compound materials with relatively small mass ratios, such as MgO, show an increase in k with P, consistent with measurements. Conversely, compounds with large mass ratios (e.g., BSb, BAs, BeTe, BeSe) exhibit decreasing with increasing P, a behavior that cannot be understood using simple theories of k. This anomalous P dependence of k arises from the fundamentally different nature of the intrinsic scattering processes for heat-carrying acoustic phonons in large mass ratio compounds compared to those with smallmore » mass ratios. We find this work demonstrates the power of first principles methods for thermal properties and advances the understanding of thermal transport in non-metals.« less

  1. Anomalous pressure dependence of thermal conductivities of large mass ratio compounds

    SciTech Connect

    Lindsay, Lucas R; Broido, David A.; Carrete, Jesus; Mingo, Natalio; Reinecke, Tom L.

    2015-03-27

    The lattice thermal conductivities (k) of binary compound materials are examined as a function of hydrostatic pressure P using a first-principles approach. Compound materials with relatively small mass ratios, such as MgO, show an increase in k with P, consistent with measurements. Conversely, compounds with large mass ratios (e.g., BSb, BAs, BeTe, BeSe) exhibit decreasing with increasing P, a behavior that cannot be understood using simple theories of k. This anomalous P dependence of k arises from the fundamentally different nature of the intrinsic scattering processes for heat-carrying acoustic phonons in large mass ratio compounds compared to those with small mass ratios. We find this work demonstrates the power of first principles methods for thermal properties and advances the understanding of thermal transport in non-metals.

  2. Classial lattice gauge fields with hard thermal loops

    NASA Astrophysics Data System (ADS)

    Hu, Chaoran

    We design, implement, and test a novel lattice program which is aimed at the study of long-range physics in either an electroweak or a quark-gluon plasma at high temperatures. Our approach starts from a separation of short-range (hard) and long-range (soft) modes. Hard modes are represented as particles, while soft modes are represented as lattice fields. Such a treatment is motivated by the dual classical limits of quantum fields as waves and particles in the infrared and ultraviolet limits, respectively. By including these charged particles, we are able to simulate their influence, by the name of 'hard thermal loops' (HTL), on the soft modes. Our investigations are based on two sets of coupled differential equations: Wong equation and Yang- Mills equation. The former describes the evolution of charged particles in the background of a mean field; the latter is the equation of motion of the mean field. The numerical implementation uses a modified leap-frog algorithm with time-centered evaluations. The validity of our approach is evaluated and verified by evidences from both analytical calculations and numerical measurements. Extensive tests have been done by using the U(1) plasma as a test ground. These include the measurement of plasma frequencies, damping rates, dispersion relation, and linear responses. Similar investigations are also performed in the SU(2) case. The results agree very well with those from perturbative calculations. An application where the method developed here has proved to be successful is the study of Chern-Simons number diffusion, which has to do with the baryon number violation responsible for the observed matter-antimatter asymmetry in the Universe. We have measured the diffusion rate and verified a newly proposed scaling law. Other applications such as the study of energy loss, color diffusion in a quark-gluon plasma await further development.

  3. Maximum hardness and minimum polarizability principles through lattice energies of ionic compounds

    NASA Astrophysics Data System (ADS)

    Kaya, Savaş; Kaya, Cemal; Islam, Nazmul

    2016-03-01

    The maximum hardness (MHP) and minimum polarizability (MPP) principles have been analyzed using the relationship among the lattice energies of ionic compounds with their electronegativities, chemical hardnesses and electrophilicities. Lattice energy, electronegativity, chemical hardness and electrophilicity values of ionic compounds considered in the present study have been calculated using new equations derived by some of the authors in recent years. For 4 simple reactions, the changes of the hardness (Δη), polarizability (Δα) and electrophilicity index (Δω) were calculated. It is shown that the maximum hardness principle is obeyed by all chemical reactions but minimum polarizability principles and minimum electrophilicity principle are not valid for all reactions. We also proposed simple methods to compute the percentage of ionic characters and inter nuclear distances of ionic compounds. Comparative studies with experimental sets of data reveal that the proposed methods of computation of the percentage of ionic characters and inter nuclear distances of ionic compounds are valid.

  4. Thermal resistances of solder-boss/potting compound combinations

    NASA Technical Reports Server (NTRS)

    Veilleux, E. D.

    1968-01-01

    Formulas, which can be used as a design tool, are derived to calculate the thermal resistance of solder-boss/potting compound combinations, for different depths of a solder boss, in electronic cordwood modules. Since the solder boss is the heat source, its shape and position will affect the thermal resistance of the surrounding potting compound.

  5. Adaptive bimaterial lattices to mitigate thermal expansion mismatch stresses in satellite structures

    NASA Astrophysics Data System (ADS)

    Toropova, Marina M.; Steeves, Craig A.

    2015-08-01

    Earth-orbiting satellites regularly pass from sunlight to shade and back; these transitions are typically accompanied by significant temperature changes. When adjoining parts of a satellite that are made of different materials are subjected to large temperature changes, thermal mismatch stresses arise that are a function of the temperature change and the difference in coefficients of thermal expansion (CTEs) between the two materials. These thermal stresses are linked to undesirable deformation and, through long-term cycling, fatigue and failure of the structure. This paper describes a type of anisotropic lattice that can serve as a stress-free adaptor between two materials, eliminating thermal mismatch stresses and their concomitant consequences. The lattices consist of planar nonidentical anisotropic bimaterial cells, each designed based on a virtual triangle. Physically the cells consist of a triangle made of material with higher CTE surrounded by a hexagon made of material with lower CTE. Different skew angles of the hexagon make a particular cell and the whole lattice anisotropic. The cells can be designed and combined in a lattice in such a way that one edge of the lattice has CTE that coincides with the CTE of the first part of the structure (substrate 1), while the other edge of the lattice has CTE equal to the CTE of the second part of the structure (substrate 2). If all joints between the parts of each cell, neighbouring cells, and the lattice and the substrates are pinned, the whole structure will be free of thermal stresses. This paper will discuss the fundamental principles governing such lattices, their refinement for special circumstances, and opportunities for improving the structural performance of the lattices. This will be presented coupled to a rational strategy for lattice design.

  6. Lattice anharmonicity and thermal properties of strongly correlated Fe1- x Co x Si alloys

    NASA Astrophysics Data System (ADS)

    Povzner, A. A.; Nogovitsyna, T. A.; Filanovich, A. N.

    2015-10-01

    The temperature dependences of the thermal and elastic properties of strongly correlated metal alloys Fe1- x Co x Si ( x = 0.1, 0.3, 0.5) with different atomic chiralities have been calculated in the framework of the self-consistent thermodynamic model taking into account the influence of lattice anharmonicity. The lattice contributions to the heat capacity and thermal expansion coefficient of the alloys have been determined using the experimental data. It has been demonstrated that the invar effect in the thermal expansion of the lattice observed in the magnetically ordered region of Fe0.7Co0.3Si and Fe0.5Co0.5Si is not related to the lattice anharmonicity, even though its appearance correlates with variations in the atomic chirality.

  7. Ab initio studies on the lattice thermal conductivity of silicon clathrate frameworks II and VIII

    NASA Astrophysics Data System (ADS)

    Härkönen, Ville J.; Karttunen, Antti J.

    2016-01-01

    The lattice thermal conductivities of silicon clathrate frameworks II and VIII are investigated by using ab initio lattice dynamics and an iterative solution of the linearized Boltzmann transport equation (BTE) for phonons. Within the temperature range 100-350 K, the clathrate structures II and VIII were found to have lower lattice thermal conductivity values than the silicon diamond structure (d -Si) by factors of 1/2 and 1/3, respectively. The main reason for the lower lattice thermal conductivity of the clathrate structure II in comparison to d -Si was found to be the harmonic phonon spectra, while in the case of the clathrate structure VIII, the difference is mainly due to the harmonic phonon spectra and partly due to the shorter relaxation times of phonons. In the studied clathrate frameworks, the anharmonic effects have larger impact on the lattice thermal conductivity than the size of the unit cell. For the structure II, the predicted lattice thermal conductivity differs approximately by a factor of 20 from the previous experimental results obtained for a polycrystalline sample at room temperature.

  8. First-principles study of lattice thermal conductivity of Td-WTe2

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Sun, Hong Yi; Zhou, Jian; Li, Qing Fang; Wan, Xian-Gang

    2016-03-01

    The structural and thermal properties of bulk Td-WTe2 have been studied by using first-principles calculations based on the simple Klemens model and an iterative self-consistent method. Both methods show that lattice thermal conductivity is anisotropic, with the highest value in the (001) plane, and lowest one along the c-axis at 300 K. The calculated average thermal conductivity of WTe2 is in agreement with the experimental measurement. The size dependent thermal conductivity shows that nanostructuring of WTe2 can possibly further decrease the lattice thermal conductivity, which can improve the thermoelectric efficiency. Such extremely low thermal conductivity, even much lower than WSe2, makes WTe2 having many potential applications in thermal insulation and thermoelectric materials.

  9. Competing orbital ordering in RVO{sub 3} compounds: High-resolution x-ray diffraction and thermal expansion

    SciTech Connect

    Sage, M. H.; Blake, G. R.; Palstra, T. T. M.; Marquina, C.

    2007-11-15

    We report evidence for the phase coexistence of orbital orderings of different symmetry in RVO{sub 3} compounds with intermediate-size rare earths. Through a study by high-resolution x-ray powder diffraction and thermal expansion, we show that the competing orbital orderings are associated with the magnitude of the VO{sub 6} octahedral tilting and magnetic exchange striction in these compounds and that the phase-separated state is stabilized by lattice strains.

  10. First principles study of lattice thermal conductivity and large isotope effect in materials

    NASA Astrophysics Data System (ADS)

    Broido, David; Lindsay, Lucas; Reinecke, Tom

    2014-03-01

    The isotope effect--the percent enhancement to a material's lattice thermal conductivity, k, with isotopic purification--depends on the interplay between phonon-isotope and phonon-phonon scattering. Diamond is known to have the largest measured room temperature (RT) isotope effect of any bulk crystal, achieving a k enhancement of 50%. Using an ab initioBoltzmann transport equation approach, we have identified several other materials with far larger RT isotope effects. In particular, we find that germanium carbide (GeC) and beryllium selenide (BeSe) have RT isotope effects of 450%, almost an order of magnitude higher than that in diamond. Isotopic purification in these materials gives surprisingly high intrinsic RT k values, over 1500 Wm-1K-1 for GeC and over 600 Wm-1 K-1 for BeSe, well above those of the best metals. These large values stem from fundamental material properties that give both enhanced phonon scattering by isotopes and weak anharmonic phonon-phonon scattering. The physical insights discussed in this work provide guidance for efficient manipulation of thermal transport properties of compound semiconductors through isotopic modification. This work was supported by ONR, DARPA and NSF.

  11. Lattice Thermal Conductivity from Atomistic Simulations: ZrB2 and HfB2

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Daw, Murray S.; Bauschlicher, Charles W.

    2012-01-01

    Ultra high temperature ceramics (UHTC) including ZrB2 and HfB2 have a number of properties that make them attractive for applications in extreme environments. One such property is their high thermal conductivity. Computational modeling of these materials will facilitate understanding of fundamental mechanisms, elucidate structure-property relationships, and ultimately accelerate the materials design cycle. Progress in computational modeling of UHTCs however has been limited in part due to the absence of suitable interatomic potentials. Recently, we developed Tersoff style parameterizations of such potentials for both ZrB2 and HfB2 appropriate for atomistic simulations. As an application, Green-Kubo molecular dynamics simulations were performed to evaluate the lattice thermal conductivity for single crystals of ZrB2 and HfB2. The atomic mass difference in these binary compounds leads to oscillations in the time correlation function of the heat current, in contrast to the more typical monotonic decay seen in monoatomic materials such as Silicon, for example. Results at room temperature and at elevated temperatures will be reported.

  12. Lattice thermal conductivity of UO2 using ab-initio and classical molecular dynamics

    NASA Astrophysics Data System (ADS)

    Kim, Hyoungchul; Kim, Moo Hwan; Kaviany, Massoud

    2014-03-01

    We applied the non-equilibrium ab-initio molecular dynamics and predict the lattice thermal conductivity of the pristine uranium dioxide for up to 2000 K. We also use the equilibrium classical molecular dynamics and heat-current autocorrelation decay theory to decompose the lattice thermal conductivity into acoustic and optical components. The predicted optical phonon transport is temperature independent and small, while the acoustic component follows the Slack relation and is in good agreement with the limited single-crystal experimental results. Considering the phonon grain-boundary and pore scatterings, the effective lattice thermal conductivity is reduced, and we show it is in general agreement with the sintered-powder experimental results. The charge and photon thermal conductivities are also addressed, and we find small roles for electron, surface polaron, and photon in the defect-free structures and for temperatures below 1500 K.

  13. Lattice thermal conductivity of UO{sub 2} using ab-initio and classical molecular dynamics

    SciTech Connect

    Kim, Hyoungchul; Kim, Moo Hwan; Kaviany, Massoud

    2014-03-28

    We applied the non-equilibrium ab-initio molecular dynamics and predict the lattice thermal conductivity of the pristine uranium dioxide for up to 2000 K. We also use the equilibrium classical molecular dynamics and heat-current autocorrelation decay theory to decompose the lattice thermal conductivity into acoustic and optical components. The predicted optical phonon transport is temperature independent and small, while the acoustic component follows the Slack relation and is in good agreement with the limited single-crystal experimental results. Considering the phonon grain-boundary and pore scatterings, the effective lattice thermal conductivity is reduced, and we show it is in general agreement with the sintered-powder experimental results. The charge and photon thermal conductivities are also addressed, and we find small roles for electron, surface polaron, and photon in the defect-free structures and for temperatures below 1500 K.

  14. Elastic and Thermal Properties of Silicon Compounds from First-Principles Calculations

    NASA Astrophysics Data System (ADS)

    Hou, Haijun; Zhu, H. J.; Cheng, W. H.; Xie, L. H.

    2016-07-01

    The structural and elastic properties of V-Si (V3Si, VSi2, V5Si3, and V6Si5) compounds are studied by using first-principles method. The calculated equilibrium lattice parameters and formation enthalpy are in good agreement with the available experimental data and other theoretical results. The calculated results indicate that the V-Si compounds are mechanically stable. Elastic properties including bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are also obtained. The elastic anisotropies of V-Si compounds are investigated via the three-dimensional (3D) figures of directional dependences of reciprocals of Young's modulus. Finally, based on the quasi-harmonic Debye model, the internal energy, Helmholtz free energy, entropy, heat capacity, thermal expansion coefficient, Grüneisen parameter, and Debye temperature of V-Si compounds have been calculated.

  15. First-principles calculation of the lattice thermal conductivity of the lower mantle

    NASA Astrophysics Data System (ADS)

    Stackhouse, S.; Stixrude, L. P.; Karki, B. B.; Liu, T.; Todd, B.

    2015-12-01

    The thermal conductivity of the lower mantle has important implications for the thermal structure of the Earth's interior. Estimates of the thermal conductivity of the most abundant phases, at core-mantle boundary conditions vary widely. We performed ab initio simulations to determine the lattice thermal conductivity of MgSiO3 perovskite, finding a value of about 7 ± 1 W m-1 K-1 at core-mantle boundary conditions, consistent with geophysical constraints for the thermal state at the base of the mantle. We find that lattice thermal conductivity depends strongly on pressure, explaining the dynamical stability of super-plumes, but weakly with temperature and composition. Our results show evidence of saturation, at lower mantle temperatures, as the phonon mean free path approaches the interatomic spacing. Combining our results with seismic tomography, we predict large lateral variations in the heat-flux from the core that could have important implications for core dynamics.

  16. Lattice dynamics and thermal conductivity of calcium fluoride via first-principles investigation

    NASA Astrophysics Data System (ADS)

    Qi, Yuan-Yuan; Zhang, Tian; Cheng, Yan; Chen, Xiang-Rong; Wei, Dong-Qing; Cai, Ling-Cang

    2016-03-01

    The lattice thermal conductivity of CaF2 is accurately computed from a first-principles theoretical approach based on an iterative solution of the Boltzmann transport equation. The second- and third-order interatomic force constants are generated from a real-space finite-difference supercell approach. Then, the force constants for both the second- and third-order potential interactions are used to calculate the lattice thermal conductivity and related physical quantities of CaF2 at temperatures ranging from 30 K to 1500 K. The obtained lattice thermal conductivity 8.6 W/(m.K) for CaF2 at room temperature agrees better with the experimental value than other theoretical data, demonstrating the promise of this parameter-free approach in providing precise descriptions of the lattice thermal conductivity of materials. The obtained dielectric parameters and phonon spectrum of CaF2 accord well with available data. Meanwhile, the temperature dependence curves of the lattice thermal conductivity, heat capacity, and phonon mean free path are presented.

  17. Size and Temperature Effect on Thermal Expansion Coefficient and Lattice Parameter of Nanomaterials

    NASA Astrophysics Data System (ADS)

    Kumar, Raghuvesh; Sharma, Geeta; Kumar, Munish

    2013-10-01

    A simple theoretical model is developed to study the effect of size and temperature on the coefficient of thermal expansion and lattice parameter of nanomaterials. We have studied the size dependence of thermal expansion coefficient of Pb, Ag and Zn in different shape viz. spherical, nanowire and nanofilm. A good agreement between theory and available experimental data confirmed the model predictions. We have used these results to study the temperature dependence of lattice parameter for different size and also included the results of bulk materials. The temperature dependence of lattice parameter of Zn nanowire and Ag nanowire are found to present a good agreement with the experimental data. We have also computed the temperature and size dependence of lattice parameter of Se and Pb for different shape viz. spherical, nanowire and nanofilm. The results are discussed in the light of recent research on nanomaterials.

  18. Impact of Lone-Pair Electrons on Thermal Conductivity in CuSbS2 Compound

    NASA Astrophysics Data System (ADS)

    Du, Baoli; Zhang, Ruizhi; Chen, Kan; Reece, Michael; Material research institute Team

    Compounds with intrinsically low lattice thermal conductivity are of practical importance for thermoelectric energy conversion. Recent studies suggest that s2 lone pair orbital electrons are a key contributing factor to the anomalously low lattice thermal conductivity of chalcogenide compounds that contain a nominally trivalent group VA element. CuSbS2 has an orthorhombic structure with space group Pnma. The pyramidal SbS5 units are separated by CuS4 tetrahedron so that the base of the square pyramidal units are aligned to face one another, thus directing the Sb lone pair electron density into the void separating the SbS5 units. Different from tetrahedrite, all the Cu atoms are bonded in the CuS4 tetrahedron. So, it has a perfect structure to study the influence of electron lone pair on thermal conductivity without the impact from trigonal coordinated Cu. In this work, the trivalent transition metal atom Fe and IIIA atom Ga without lone-pair electrons were chosen to substitute Sb in CuSbS2. The changes in the bonding environment by foreign atoms and their influences on the thermal properties have been studied and correlated. Marie Curie International Incoming Fellowship of the European Community Human Potential Program under Contract No. PIIF-GA-2013-622847.

  19. Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires

    SciTech Connect

    Mamand, S.M.; Omar, M.S.; Muhammad, A.J.

    2012-05-15

    Graphical abstract: Temperature dependence of calculated lattice thermal conductivity of Wurtzite GaN nanowires. Highlights: Black-Right-Pointing-Pointer A modified Callaway model is used to calculate lattice thermal conductivity of Wurtzite GaN nanowires. Black-Right-Pointing-Pointer A direct method is used to calculate phonon group velocity for these nanowires. Black-Right-Pointing-Pointer 3-Gruneisen parameter, surface roughness, and dislocations are successfully investigated. Black-Right-Pointing-Pointer Dislocation densities are decreases with the decrease of wires diameter. -- Abstract: A detailed calculation of lattice thermal conductivity of freestanding Wurtzite GaN nanowires with diameter ranging from 97 to 160 nm in the temperature range 2-300 K, was performed using a modified Callaway model. Both longitudinal and transverse modes are taken into account explicitly in the model. A method is used to calculate the Debye and phonon group velocities for different nanowire diameters from their related melting points. Effect of Gruneisen parameter, surface roughness, and dislocations as structure dependent parameters are successfully used to correlate the calculated values of lattice thermal conductivity to that of the experimentally measured curves. It was observed that Gruneisen parameter will decrease with decreasing nanowire diameters. Scattering of phonons is assumed to be by nanowire boundaries, imperfections, dislocations, electrons, and other phonons via both normal and Umklapp processes. Phonon confinement and size effects as well as the role of dislocation in limiting thermal conductivity are investigated. At high temperatures and for dislocation densities greater than 10{sup 14} m{sup -2} the lattice thermal conductivity would be limited by dislocation density, but for dislocation densities less than 10{sup 14} m{sup -2}, lattice thermal conductivity would be independent of that.

  20. Impact of internal crystalline boundaries on lattice thermal conductivity: Importance of boundary structure and spacing

    SciTech Connect

    Aghababaei, Ramin Anciaux, Guillaume; Molinari, Jean-François

    2014-11-10

    The low thermal conductivity of nano-crystalline materials is commonly explained via diffusive scattering of phonons by internal boundaries. In this study, we have quantitatively studied phonon-crystalline boundaries scattering and its effect on the overall lattice thermal conductivity of crystalline bodies. Various types of crystalline boundaries such as stacking faults, twins, and grain boundaries have been considered in FCC crystalline structures. Accordingly, the specularity coefficient has been determined for different boundaries as the probability of the specular scattering across boundaries. Our results show that in the presence of internal boundaries, the lattice thermal conductivity can be characterized by two parameters: (1) boundary spacing and (2) boundary excess free volume. We show that the inverse of the lattice thermal conductivity depends linearly on a non-dimensional quantity which is the ratio of boundary excess free volume over boundary spacing. This shows that phonon scattering across crystalline boundaries is mainly a geometrically favorable process rather than an energetic one. Using the kinetic theory of phonon transport, we present a simple analytical model which can be used to evaluate the lattice thermal conductivity of nano-crystalline materials where the ratio can be considered as an average density of excess free volume. While this study is focused on FCC crystalline materials, where inter-atomic potentials and corresponding defect structures have been well studied in the past, the results would be quantitatively applicable for semiconductors in which heat transport is mainly due to phonon transport.

  1. Reduced thermal conductivity in niobium-doped calcium-manganate compounds for thermoelectric applications

    SciTech Connect

    Graff, Ayelet; Amouyal, Yaron

    2014-11-03

    Reduction of thermal conductivity is essential for obtaining high energy conversion efficiency in thermoelectric materials. We report on significant reduction of thermal conductivity in niobium-doped CaO(CaMnO{sub 3}){sub m} compounds for thermoelectric energy harvesting due to introduction of extra CaO-planes in the CaMnO{sub 3}-base material. We measure the thermal conductivities of the different compounds applying the laser flash analysis at temperatures between 300 and 1000 K, and observe a remarkable reduction in thermal conductivity with increasing CaO-planar density, from a value of 3.7 W·m{sup −1}K{sup −1} for m = ∞ down to 1.5 W·m{sup −1}K{sup −1} for m = 1 at 400 K. This apparent correlation between thermal conductivity and CaO-planar density is elucidated in terms of boundary phonon scattering, providing us with a practical way to manipulate lattice thermal conductivity via microstructural modifications.

  2. Lattice thermal conductivity of disordered NiPd and NiPt alloys

    NASA Astrophysics Data System (ADS)

    Alam, Aftab; Mookerjee, Abhijit

    2006-05-01

    Numerical calculations of lattice thermal conductivity are reported for the binary alloys NiPd and NiPt. The present work is a continuation of an earlier paper by us (Alam and Mookerjee 2005 Phys. Rev. B 72 214207), which developed a theoretical framework for the calculation of configuration-averaged lattice thermal conductivity and thermal diffusivity in disordered alloys. The formulation was based on the augmented space theorem (Mookerjee 1973 J. Phys. C: Solid State Phys. 6 L205) combined with a scattering diagram technique. In this paper we shall show the dependence of the lattice thermal conductivity on a series of variables like phonon frequency, temperature and alloy composition. The temperature dependence of κ(T) and its relation to the measured thermal conductivity is discussed. The concentration dependence of κ appears to justify the notion of a minimum thermal conductivity as discussed by Kittel, Slack and others (Kittel 1948 Phys. Rev. 75 972, Brich and Clark 1940 Am. J. Sci. 238 613; Slack 1979 Solid State Physics vol 34, ed H Ehrenreich, F Seitz and D Turnbull (New York: Academic) p 1). We also study the frequency and composition dependence of the thermal diffusivity averaged over modes. A numerical estimate of this quantity gives an idea about the location of the mobility edge and the fraction of states in the frequency spectrum which is delocalized.

  3. Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Morelli, D. T.; Heremans, J. P.; Slack, G. A.

    2002-11-01

    The isotope effect on the lattice thermal conductivity for group IV and group III-V semiconductors is calculated using the Debye-Callaway model modified to include both transverse and longitudinal phonon modes explicitly. The frequency and temperature dependences of the normal and umklapp phonon-scattering rates are kept the same for all compounds. The model requires as adjustable parameters only the longitudinal and transverse phonon Grüneisen constants and the effective sample diameter. The model can quantitatively account for the observed isotope effect in diamond and germanium but not in silicon. The magnitude of the isotope effect is predicted for silicon carbide, boron nitride, and gallium nitride. In the case of boron nitride the predicted increase in the room-temperature thermal conductivity with isotopic enrichment is in excess of 100%. Finally, a more general method of estimating normal phonon-scattering rate coefficients for other types of solids is presented.

  4. Positron spectroscopy of point defects in the skyrmion-lattice compound MnSi

    PubMed Central

    Reiner, Markus; Bauer, Andreas; Leitner, Michael; Gigl, Thomas; Anwand, Wolfgang; Butterling, Maik; Wagner, Andreas; Kudejova, Petra; Pfleiderer, Christian; Hugenschmidt, Christoph

    2016-01-01

    Outstanding crystalline perfection is a key requirement for the formation of new forms of electronic order in a vast number of widely different materials. Whereas excellent sample quality represents a standard claim in the literature, there are, quite generally, no reliable microscopic probes to establish the nature and concentration of lattice defects such as voids, dislocations and different species of point defects on the level relevant to the length and energy scales inherent to these new forms of order. Here we report an experimental study of the archetypical skyrmion-lattice compound MnSi, where we relate the characteristic types of point defects and their concentration to the magnetic properties by combining different types of positron spectroscopy with ab-initio calculations and bulk measurements. We find that Mn antisite disorder broadens the magnetic phase transitions and lowers their critical temperatures, whereas the skyrmion lattice phase forms for all samples studied underlining the robustness of this topologically non-trivial state. Taken together, this demonstrates the unprecedented sensitivity of positron spectroscopy in studies of new forms of electronic order. PMID:27388948

  5. Positron spectroscopy of point defects in the skyrmion-lattice compound MnSi

    NASA Astrophysics Data System (ADS)

    Reiner, Markus; Bauer, Andreas; Leitner, Michael; Gigl, Thomas; Anwand, Wolfgang; Butterling, Maik; Wagner, Andreas; Kudejova, Petra; Pfleiderer, Christian; Hugenschmidt, Christoph

    2016-07-01

    Outstanding crystalline perfection is a key requirement for the formation of new forms of electronic order in a vast number of widely different materials. Whereas excellent sample quality represents a standard claim in the literature, there are, quite generally, no reliable microscopic probes to establish the nature and concentration of lattice defects such as voids, dislocations and different species of point defects on the level relevant to the length and energy scales inherent to these new forms of order. Here we report an experimental study of the archetypical skyrmion-lattice compound MnSi, where we relate the characteristic types of point defects and their concentration to the magnetic properties by combining different types of positron spectroscopy with ab-initio calculations and bulk measurements. We find that Mn antisite disorder broadens the magnetic phase transitions and lowers their critical temperatures, whereas the skyrmion lattice phase forms for all samples studied underlining the robustness of this topologically non-trivial state. Taken together, this demonstrates the unprecedented sensitivity of positron spectroscopy in studies of new forms of electronic order.

  6. Ultralow lattice thermal conductivity in topological insulator TlBiSe2

    NASA Astrophysics Data System (ADS)

    Ding, Guangqian; Carrete, Jesús; Li, Wu; Gao, G. Y.; Yao, Kailun

    2016-06-01

    We present ab-initio calculations of the phonon thermal transport properties of topological insulator TlBiSe2. Our results point to a very low lattice thermal conductivity, comparable or lower than those of some popular good thermoelectric materials. Furthermore, we find a slight thermal anisotropy between the in-plane and cross-plane directions in TlBiSe2, markedly smaller than those of van-der-Waals topological insulators explored so far. These conclusions are confirmed and explained by comprehensive analysis of the phonon spectrum of TlBiSe2. The combination of ultralow lattice thermal conductivity and small anisotropy makes TlBiSe2 a promising candidate for thermoelectric applications.

  7. Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials

    SciTech Connect

    Omar, M.S.

    2012-11-15

    Graphical abstract: Three models are derived to explain the nanoparticles size dependence of mean bonding length, melting temperature and lattice thermal expansion applied on Sn, Si and Au. The following figures are shown as an example for Sn nanoparticles indicates hilly applicable models for nanoparticles radius larger than 3 nm. Highlights: ► A model for a size dependent mean bonding length is derived. ► The size dependent melting point of nanoparticles is modified. ► The bulk model for lattice thermal expansion is successfully used on nanoparticles. -- Abstract: A model, based on the ratio number of surface atoms to that of its internal, is derived to calculate the size dependence of lattice volume of nanoscaled materials. The model is applied to Si, Sn and Au nanoparticles. For Si, that the lattice volume is increases from 20 Å{sup 3} for bulk to 57 Å{sup 3} for a 2 nm size nanocrystals. A model, for calculating melting point of nanoscaled materials, is modified by considering the effect of lattice volume. A good approach of calculating size-dependent melting point begins from the bulk state down to about 2 nm diameter nanoparticle. Both values of lattice volume and melting point obtained for nanosized materials are used to calculate lattice thermal expansion by using a formula applicable for tetrahedral semiconductors. Results for Si, change from 3.7 × 10{sup −6} K{sup −1} for a bulk crystal down to a minimum value of 0.1 × 10{sup −6} K{sup −1} for a 6 nm diameter nanoparticle.

  8. Lattice dynamics of the mixed-conducting intermetallic compound,. beta. -LiAl

    SciTech Connect

    Brun, T.O.; Robinson, J.E.; Susman, S.; Mildner, D.F.R.; Dejus, R.; Skoeld K.

    1983-04-01

    The intermetallic compound, ..beta..-LiAl, that crystallizes in the uncommon Zintl structure is a mixed-conducting electrode and has many unusual properties pointing to the existence of unusual bonding in the semi-metallic compound. In order to elucidate the nature of the bonding in LiAl, we have studied the lattice dynamics of ..beta..-LiAl by inelastic neutron scattering. Results for the phonon dispersion curves have been obtained for the principal symmetry directions. A force constant fit to the results indicates that the Al-Al force constants are unusually large. Pair potentials were constructed by conventional pseudopotential calculations. The pair interactions favoring the Zintl structure were used to compute phonon dispersion curves. Good agreement between theory and experiment can be obtained for the acoustic branches.

  9. Insight into lattice thermal impedance via equilibrium molecular dynamics: case study on Al

    NASA Astrophysics Data System (ADS)

    Evteev, Alexander V.; Levchenko, Elena V.; Momenzadeh, Leila; Belova, Irina V.; Murch, Graeme E.

    2016-02-01

    Using results of equilibrium molecular dynamics simulation in conjunction with the Green-Kubo formalism, we present a general treatment of thermal impedance of a crystal lattice with a monatomic unit cell. The treatment is based on an analytical expression for the heat current autocorrelation function which reveals, in a monatomic lattice, an energy gap between the origin of the phonon states and the beginning of the energy spectrum of the so-called acoustic short-range phonon modes. Although, we consider here the f.c.c. Al model as a case example, the analytical expression is shown to be consistent for different models of elemental f.c.c. crystals over a wide temperature range. Furthermore, we predict a frequency 'window' where the thermal waves can be generated in a monatomic lattice by an external periodic temperature perturbation.

  10. CH4 dissociation on Ni(111): a quantum dynamics study of lattice thermal motion.

    PubMed

    Shen, Xiangjian; Zhang, Zhaojun; Zhang, Dong H

    2015-10-14

    Lattice thermal motion is of great importance because it has a significant effect on molecule activation on metal surfaces. Here, we present an in-depth quantum dynamics study of lattice thermal motion for methane dissociation on some static distorted Ni(111) surfaces based on an accurate, fourteen-dimensional potential energy surface fitted to ∼10(5)ab initio energy points. Our study reproduces the tendency that the sticking probability of ground state methane increases (decreases) as the lattice atom moves upward (downward), and thus represents the first validation of the applicability of the energy-shifting scheme to polyatomic molecular gas-surface reactions. Furthermore, we improve on the linear model proposed by Jackson's group and introduce a new model that is applicable to a broad range of surface temperatures. PMID:26364792

  11. Mode dependent lattice thermal conductivity of single layer graphene

    SciTech Connect

    Wei, Zhiyong; Yang, Juekuan; Bi, Kedong; Chen, Yunfei

    2014-10-21

    Molecular dynamics simulation is performed to extract the phonon dispersion and phonon lifetime of single layer graphene. The mode dependent thermal conductivity is calculated from the phonon kinetic theory. The predicted thermal conductivity at room temperature exhibits important quantum effects due to the high Debye temperature of graphene. But the quantum effects are reduced significantly when the simulated temperature is as high as 1000 K. Our calculations show that out-of-plane modes contribute about 41.1% to the total thermal conductivity at room temperature. The relative contribution of out-of-plane modes has a little decrease with the increase of temperature. Contact with substrate can reduce both the total thermal conductivity of graphene and the relative contribution of out-of-plane modes, in agreement with previous experiments and theories. Increasing the coupling strength between graphene and substrate can further reduce the relative contribution of out-of-plane modes. The present investigations also show that the relative contribution of different mode phonons is not sensitive to the grain size of graphene. The obtained phonon relaxation time provides useful insight for understanding the phonon mean free path and the size effects in graphene.

  12. Thermal diffusivity of oxide perovskite compounds at elevated temperature

    NASA Astrophysics Data System (ADS)

    Hofmeister, Anne M.

    2010-05-01

    The phonon component of thermal diffusivity (D) for eleven compounds (synthetic SrTiO3, SrTiO3:Fe3+, BaTiO3, KTaO3, KNbO3, NdGaO3, YAlO3, YAlO3:Tm, LaAlO3, La0.29Sr0.66Al0.65Ta0.35O3, and natural Ca1.01Mn0.001Fe0.007Ti0.99O3) with various perovskite structures was measured from ambient temperature (T) up to ˜2000 K using contact-free, laser-flash analysis, from which effects of ballistic radiative transfer were removed. Structural transitions (e.g., orthorhombic to tetragonal) below 800 K were manifest as sharp steps in 1/D. Above 800 K, structural transitions occur over intervals of ˜150 K. Similarly broad peaks accompany changes from colorless to black, attributable to partial reduction in Ti, Nb, or Ta from contact with graphite coatings. Otherwise, D decreases with increasing T and, if substitutional disorder exists, approaches a constant (Dsat) near 1600 K. Our data are best described as D-1 following a low order polynomial in T. Ordered, cubic perovskites occupy a single trend for D(T )-1, defining the contribution of the ideal lattice. Distortion, disorder, and polymorphism affect D-1 in a manner that is consistent with the damped harmonic oscillator-phonon gas model which relates phonon lifetimes to infrared peak widths. Calculated D-values at ambient and high T agree with measurements. The behavior of D is simple compared to that of thermal conductivity, k =ρCPD, where ρ is density and CP is heat capacity. Combining our data with cryogenic measurements of YAlO3 and LaAlO3 shows that D-1 depends on T similarly to CP, consistent with phonon lifetime depending on the density of states but, the best description for D-1(T) is a proportionality to αT from ˜0 K up to the limit of measurements, where α is thermal expansivity, a strongly anharmonic property. At low T, D-1 due to phonon scattering follows that of CP, generally∝T3, so klat=k0+k1T. Defects being present preclude scattering at sample walls, adding a small constant D0-1 ˜0.0001 mm-2 s as T

  13. Understanding Nanostructuring Processes in Thermoelectrics and Their Effects on Lattice Thermal Conductivity.

    PubMed

    Wu, Di; Zhao, Li-Dong; Zheng, Fengshan; Jin, Lei; Kanatzidis, Mercouri G; He, Jiaqing

    2016-04-01

    Cooling rates of molten PbTe-CdTe compositions play a determinant role in defining the nanoscale precipitate size distribution and the corresponding number densities, resulting in distinct trends of lattice thermal conductivity evolution with varying CdTe fractions. PMID:26848933

  14. Iodine doping effects on the lattice thermal conductivity of oxidized polyacetylene nanofibers

    SciTech Connect

    Bi, Kedong E-mail: kedongbi@seu.edu.cn; Weathers, Annie; Pettes, Michael T.; Shi, Li E-mail: kedongbi@seu.edu.cn; Matsushita, Satoshi; Akagi, Kazuo; Goh, Munju

    2013-11-21

    Thermal transport in oxidized polyacetylene (PA) nanofibers with diameters in the range between 74 and 126 nm is measured with the use of a suspended micro heater device. With the error due to both radiation and contact thermal resistance corrected via a differential measurement procedure, the obtained thermal conductivity of oxidized PA nanofibers varies in the range between 0.84 and 1.24 W m{sup −1} K{sup −1} near room temperature, and decreases by 40%–70% after iodine doping. It is also found that the thermal conductivity of oxidized PA nanofibers increases with temperature between 100 and 350 K. Because of exposure to oxygen during sample preparation, the PA nanofibers are oxidized to be electrically insulating before and after iodine doping. The measurement results reveal that iodine doping can result in enhanced lattice disorder and reduced lattice thermal conductivity of PA nanofibers. If the oxidation issue can be addressed via further research to increase the electrical conductivity via doping, the observed suppressed lattice thermal conductivity in doped polymer nanofibers can be useful for the development of such conducting polymer nanostructures for thermoelectric energy conversion.

  15. Application of the S=1 underscreened Anderson lattice model to Kondo uranium and neptunium compounds

    NASA Astrophysics Data System (ADS)

    Thomas, Christopher; da Rosa Simões, Acirete S.; Iglesias, J. R.; Lacroix, C.; Perkins, N. B.; Coqblin, B.

    2011-01-01

    Magnetic properties of uranium and neptunium compounds showing the coexistence of the Kondo screening effect and ferromagnetic order are investigated within the Anderson lattice Hamiltonian with a two-fold degenerate f level in each site, corresponding to 5f2 electronic configuration with S=1 spins. A derivation of the Schrieffer-Wolff transformation is presented and the resulting Hamiltonian has an effective f-band term, in addition to the regular exchange Kondo interaction between the S=1 f spins and the s=1/2 spins of the conduction electrons. The resulting effective Kondo lattice model can describe both the Kondo regime and a weak delocalization of the 5f electrons. Within this model we compute the Kondo and Curie temperatures as a function of model parameters, namely the Kondo exchange interaction constant JK, the magnetic intersite exchange interaction JH, and the effective f bandwidth. We deduce, therefore, a phase diagram of the model which yields the coexistence of the Kondo effect and ferromagnetic ordering and also accounts for the pressure dependence of the Curie temperature of uranium compounds such as UTe.

  16. Lattice thermal conductivity of multi-component alloys

    DOE PAGESBeta

    Caro, Magdalena; Béland, Laurent K.; Samolyuk, German D.; Stoller, Roger E.; Caro, Alfredo

    2015-06-12

    High entropy alloys (HEA) have unique properties including the potential to be radiation tolerant. These materials with extreme disorder could resist damage because disorder, stabilized by entropy, is the equilibrium thermodynamic state. Disorder also reduces electron and phonon conductivity keeping the damage energy longer at the deposition locations, eventually favoring defect recombination. In the short time-scales related to thermal spikes induced by collision cascades, phonons become the relevant energy carrier. In this paper, we perform a systematic study of phonon thermal conductivity in multiple component solid solutions represented by Lennard-Jones (LJ) potentials. We explore the conditions that minimize phonon meanmore » free path via extreme alloy complexity, by varying the composition and the elements (differing in mass, atomic radii, and cohesive energy). We show that alloy complexity can be tailored to modify the scattering mechanisms that control energy transport in the phonon subsystem. Finally, our analysis provides a qualitative guidance for the selection criteria used in the design of HEA alloys with low phonon thermal conductivity.« less

  17. Lattice thermal conductivity of multi-component alloys

    SciTech Connect

    Caro, Magdalena; Béland, Laurent K.; Samolyuk, German D.; Stoller, Roger E.; Caro, Alfredo

    2015-06-12

    High entropy alloys (HEA) have unique properties including the potential to be radiation tolerant. These materials with extreme disorder could resist damage because disorder, stabilized by entropy, is the equilibrium thermodynamic state. Disorder also reduces electron and phonon conductivity keeping the damage energy longer at the deposition locations, eventually favoring defect recombination. In the short time-scales related to thermal spikes induced by collision cascades, phonons become the relevant energy carrier. In this paper, we perform a systematic study of phonon thermal conductivity in multiple component solid solutions represented by Lennard-Jones (LJ) potentials. We explore the conditions that minimize phonon mean free path via extreme alloy complexity, by varying the composition and the elements (differing in mass, atomic radii, and cohesive energy). We show that alloy complexity can be tailored to modify the scattering mechanisms that control energy transport in the phonon subsystem. Finally, our analysis provides a qualitative guidance for the selection criteria used in the design of HEA alloys with low phonon thermal conductivity.

  18. Decomposition model for phonon thermal conductivity of a monatomic lattice

    NASA Astrophysics Data System (ADS)

    Evteev, Alexander V.; Momenzadeh, Leila; Levchenko, Elena V.; Belova, Irina V.; Murch, Graeme E.

    2014-12-01

    An analytical treatment of decomposition of the phonon thermal conductivity of a crystal with a monatomic unit cell is developed on the basis of a two-stage decay of the heat current autocorrelation function observed in molecular dynamics simulations. It is demonstrated that the contributions from the acoustic short- and long-range phonon modes to the total phonon thermal conductivity can be presented in the form of simple kinetic formulas, consisting of products of the heat capacity and the average relaxation time of the considered phonon modes as well as the square of the average phonon velocity. On the basis of molecular dynamics calculations of the heat current autocorrelation function, this treatment allows for a self-consistent numerical evaluation of the aforementioned variables. In addition, the presented analysis allows, within the Debye approximation, for the identification of the temperature range where classical molecular dynamics simulations can be employed for the prediction of phonon thermal transport properties. As a case example, Cu is considered.

  19. Thermal decomposition studies of halogenated organic compounds

    SciTech Connect

    Michael, J.V.; Kumaran, S.S.

    1997-06-01

    Thermal decomposition results for CCl{sub 4}, CHCl{sub 3}, CH{sub 2}Cl{sub 2}, CH{sub 3}Cl, C{sub 3}H{sub 3}Cl, CFCl{sub 3}, CF{sub 2}Cl{sub 2}, CF{sub 3}Cl, CF{sub 2}HCl, CF{sub 3}I, CH{sub 3}I, C{sub 2}H{sub 5}I, C{sub 6}H{sub 5}I, and CCl{sub 2}O are presented. The results were obtained by shock tube techniques coupled with optical spectroscopic detection of transient species formed from dissociation. The method is illustrated with the CH{sub 3}I (+ Kr) {yields} CH{sub 3} + I (+ Kr) reaction where decomposition was monitored using I-atomic resonance absorption spectrometry (ARAS). Modern unimolecular rate theoretical analysis has been carried out on the present cases, and the conclusions from these calculations are discussed. Lastly, the possible destruction of halo-organics by incineration is considered and some implications are discussed.

  20. Lattice thermal conductivity of MgO at conditions of Earth’s interior

    PubMed Central

    Tang, Xiaoli; Dong, Jianjun

    2010-01-01

    Thermal conductivity of the Earth’s lower mantle greatly impacts the mantle convection style and affects the heat conduction from the core to the mantle. Direct laboratory measurement of thermal conductivity of mantle minerals remains a technical challenge at the pressure-temperature (P-T) conditions relevant to the lower mantle, and previously estimated values are extrapolated from low P-T data based on simple empirical thermal transport models. By using a numerical technique that combines first-principles electronic structure theory and Peierls–Boltzmann transport theory, we predict the lattice thermal conductivity of MgO, previously used to estimate the thermal conductivity in the Earth, at conditions from ambient to the core-mantle boundary (CMB). We show that our first-principles technique provides a realistic model for the P-T dependence of lattice thermal conductivity of MgO at conditions from ambient to the CMB, and we propose thermal conductivity profiles of MgO in the lower mantle based on geotherm models. The calculated conductivity increases from 15 –20 W/K-m at the 670 km seismic discontinuity to 40 –50 W/K-m at the CMB. This large depth variation in calculated thermal conductivity should be included in models of mantle convection, which has been traditionally studied based on the assumption of constant conductivity. PMID:20176973

  1. Inelastic neutron scattering studies of the spin and lattice dynamics in iron arsenide compounds.

    SciTech Connect

    Osborn, R.; Rosenkranz, S.; Goremychkin, E. A.; Christianson, A. D.

    2009-03-20

    Although neutrons do not couple directly to the superconducting order parameter, they have nevertheless played an important role in advancing our understanding of the pairing mechanism and the symmetry of the superconducting energy gap in the iron arsenide compounds. Measurements of the spin and lattice dynamics have been performed on non-superconducting 'parent' compounds based on the LaFeAsO ('1111') and BaFe{sub 2}As{sub 2} ('122') crystal structures, and on electron and hole-doped superconducting compounds, using both polycrystalline and single crystal samples. Neutron measurements of the phonon density-of-state, subsequently supported by single crystal inelastic X-ray scattering, are in good agreement with ab initio calculations, provided the magnetism of the iron atoms is taken into account. However, when combined with estimates of the electron-phonon coupling, the predicted superconducting transition temperatures are less than 1 K, making a conventional phononic mechanism for superconductivity highly unlikely. Measurements of the spin dynamics within the spin density wave phase of the parent compounds show evidence of strongly dispersive spin waves with exchange interactions consistent with the observed magnetic order and a large anisotropy gap. Antiferromagnetic fluctuations persist in the normal phase of the superconducting compounds, but they are more diffuse. Below T{sub c}, there is evidence in three '122' compounds that these fluctuations condense into a resonant spin excitation at the antiferromagnetic wavevector with an energy that scales with T{sub c}. Such resonances have been observed in the high-T{sub c} copper oxides and a number of heavy fermion superconductors, where they are considered to be evidence of d-wave symmetry. In the iron arsenides, they also provide evidence of unconventional superconductivity, but a comparison with ARPES and other measurements, which indicate that the gaps are isotropic, suggests that the symmetry is more likely

  2. Inelastic Neutron Scattering Studies of the Spin and Lattice Dynamics inIron Arsenide Compounds

    SciTech Connect

    Christianson, Andrew D; Osborn, R.; Rosenkranz, Stephen; Goremychkin, E. A.

    2009-01-01

    Although neutrons do not couple directly to the superconducting order parameter, they have nevertheless played an important role in advancing our understanding of the pairing mechanism and the symmetry of the superconducting energy gap in the iron arsenide compounds. Measurements of the spin and lattice dynamics have been performed on non-superconducting 'parent' compounds based on the LaFeAsO ('1111') and BaFe{sub 2}As{sub 2} ('122') crystal structures, and on electron and hole-doped superconducting compounds, using both polycrystalline and single crystal samples. Neutron measurements of the phonon density-of-state, subsequently supported by single crystal inelastic X-ray scattering, are in good agreement with ab initio calculations, provided the magnetism of the iron atoms is taken into account. However, when combined with estimates of the electron-phonon coupling, the predicted superconducting transition temperatures are less than 1 K, making a conventional phononic mechanism for superconductivity highly unlikely. Measurements of the spin dynamics within the spin density wave phase of the parent compounds show evidence of strongly dispersive spin waves with exchange interactions consistent with the observed magnetic order and a large anisotropy gap. Antiferromagnetic fluctuations persist in the normal phase of the superconducting compounds, but they are more diffuse. Below T{sub c}, there is evidence in three '122' compounds that these fluctuations condense into a resonant spin excitation at the antiferromagnetic wavevector with an energy that scales with T{sub c}. Such resonances have been observed in the high-T{sub c} copper oxides and a number of heavy fermion superconductors, where they are considered to be evidence of d-wave symmetry. In the iron arsenides, they also provide evidence of unconventional superconductivity, but a comparison with ARPES and other measurements, which indicate that the gaps are isotropic, suggests that the symmetry is more likely

  3. Precise realization of the thermal radiation environment for an optical lattice clock

    NASA Astrophysics Data System (ADS)

    Beloy, Kyle; Sherman, Jeff; Phillips, Nathaniel; Hinkley, Nathan; Oates, Chris; Ludlow, Andrew

    2013-05-01

    The Stark shift due to thermal radiation contributes one of the largest known perturbations to the clock transition frequency of optical lattice clocks. Consequently, the uncertainty stemming from this shift has played a dominant role in the total uncertainty of these standards. Following recent works focused on atomic response factors (e.g., the differential polarizability), uncertainty in this perturbation is now limited by imprecise knowledge of the environment itself. Here we present progress towards precise realization of the thermal radiation environment in a Yb optical lattice clock by trapping the atoms in a highly uniform radiation shield at a well-known temperature. We characterize the non-ideal aspects of this approach, including less than unit emissivity, contamination of the blackbody environment from the ambient environment, and thermal non-uniformities.

  4. Lattice dynamics and thermal expansion behavior in the metal cyanides M CN (M =Cu , Ag, Au): Neutron inelastic scattering and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Gupta, M. K.; Singh, Baltej; Mittal, R.; Rols, S.; Chaplot, S. L.

    2016-04-01

    We report measurement of temperature dependence of phonon spectra in quasi-one-dimensional metal cyanides M CN (M =Cu , Ag, Au). Ab initio lattice dynamics calculations have been performed to interpret the phonon spectra as well as to understand the anomalous anisotropic thermal expansion behavior in these compounds. We bring out the differences in the phonon mode behavior to explain the differences in the thermal expansion behavior among the three compounds. The chain-sliding modes are found to contribute maximum to the negative thermal expansion along the "c " axis in the Cu and Ag compounds, while the same modes contribute to positive thermal expansion in the Au compound. Several low-energy transverse modes lead to positive thermal expansion in the a -b plane in all the compounds. The calculated Born-effective charges show that AuCN has a covalent nature of bonding, which results in least distortion as well as the least number of unstable modes among the three cyanides. This result is well correlated with the fact that the coefficient of negative thermal expansion along the c axis in AuCN is the smallest.

  5. Lattice Mismatch Dominant Yet Mechanically Tunable Thermal Conductivity in Bilayer Heterostructures.

    PubMed

    Gao, Yuan; Liu, Qingchang; Xu, Baoxing

    2016-05-24

    Heterostructures that are assembled by interfacing two-dimensional (2D) materials offer a unique platform for the emerging devices with unprecedented functions. The attractive functions in heterostructures that are usually absent and beyond the single layer 2D materials are largely affected by the inherent lattice mismatch between layers. Using nonequilibrium molecular dynamics simulations, we show that the phonon thermal transport in the graphene-MoS2 bilayer heterostructure is reduced by the lattice mismatch, and the reduction can be mitigated well by an external tension, weakening the effect of inherent mismatch-induced strain on thermal conductivity. Mechanical analysis in each layered component indicates that the external tension will alleviate the lattice mismatch-induced deformation. The phonon spectra are also softened by the applied tension with a significant shift of frequency from high to low modes. A universal theory is proposed to quantitatively predict the role of the lattice mismatch in thermal conductivity of various bilayer heterostructures and shows good agreement with simulations. PMID:27093571

  6. Anisotropic lattice thermal diffusivity in olivines and pyroxenes to high temperatures

    NASA Astrophysics Data System (ADS)

    Harrell, Michael Damian

    The anisotropic lattice thermal diffusivity of three olivines (Fo 0, Fo78, and Fo91), one orthopyroxene (En 91), and one clinopyroxene (Di72He9Jd3Cr 3Ts12) have been measured via impulsive stimulated light scattering, permitting the calculation of their lattice thermal diffusivity tensors to high temperatures. For Fo0 olivine, measurements extend from room temperature to 600°C, for Fo78 to 900°C, and for Fo91 to 1000°C, all in steps of 100°C. The orthopyroxene also was taken in steps to 1000°C, while the clinopyroxene was measured at room temperature. A limited set of room-temperature measurements to 5 GPa on a fourth olivine (Fo89) is also included. Diffusivities have been combined with calculations of density and specific heat to determine the lattice thermal conductivity tensors. An earlier theory that explains the observed behavior in terms of a positive lower bound on the phonon mean free path is discussed, and the data are used to constrain a model of thermal conductivity at high temperature. The relative contributions of optic and acoustic modes are evaluated from analysis of published dispersion curves. Five conclusions are reached: First, the anisotropy of lattice thermal conductivity remains essentially unchanged over the observed range of temperatures, indicating that anisotropy remains significant under upper-mantle conditions, and, in regions displaying preferred alignment, may account for observed lateral variations in the geotherm. Second, thermal conductivity departs significantly from earlier predictions of its temperature dependence; this may be understood in terms of a phonon mean free path that cannot diminish below 1.75 times the mean interatomic spacing. Third, for olivine, the optic modes have group velocities that are approximately one-third those of the acoustic modes, and do not dominate lattice conduction despite their greater number. Fourth, impurity scattering is significant along the olivine Fe-Mg solid solution series, but is not

  7. Lattice dynamics of BaFe2X3(X=S,Se) compounds

    DOE PAGESBeta

    Popović, Z. V.; Šćepanović, M.; Lazarević, N.; Opačić, M.; Radonjić, M. M.; Tanasković, D.; Lei, Hechang; Petrovic, C.

    2015-02-27

    We present the Raman scattering spectra of the S=2 spin ladder compounds BaFe₂X₃ (X=S,Se) in a temperature range between 20 and 400 K. Although the crystal structures of these two compounds are both orthorhombic and very similar, they are not isostructural. The unit cell of BaFe₂S₃ (BaFe₂Se₃) is base-centered Cmcm (primitive Pnma), giving 18 (36) modes to be observed in the Raman scattering experiment. We have detected almost all Raman active modes, predicted by factor group analysis, which can be observed from the cleavage planes of these compounds. Assignment of the observed Raman modes of BaFe₂S(Se)₃ is supported by themore » lattice dynamics calculations. The antiferromagnetic long-range spin ordering in BaFe₂Se₃ below TN=255K leaves a fingerprint both in the A1g and B3g phonon mode linewidth and energy.« less

  8. Magnetic structure of the Kondo lattice compound CeZn0.6Sb2

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Lynn, J. W.; Lee, H.; Klavins, P.; Fisk, Z.; Nakatsuji, S.; Bao, W.; Thompson, J.; Park, T.; Macaluso, R.; Chan, J.; Carter, B.

    2006-03-01

    The new Kondo lattice compound CeZn0.6Sb2 has a tetragonal structure with space group P4/nmm and shows ferromagnetic behavior below 2.5 K. The Curie-Weiss temperature is 22 K along the tetragonal ab plane, indicating ferromagnetic interactions in the plane. Along the c axis, however, the Curie-Weiss temperature is -145 K, suggesting antiferromagnetic exchange interaction in this direction [1]. We determined the magnetic structure of CeZn0.6Sb2 using single crystal neutron diffraction. (h,0,l) and (h,h,l) scattering planes were investigated. We found CeZn0.6Sb2 orders ferromagnetically at TC=2.5 K. The magnetic structure is collinear with a low temperature ordered Ce moment of 1.3 (1) μB that lies in the ab plane. In addition, we measured the order parameter of the ferromagnetic transition. [1] Studies of the ferromagnetic Kondo lattice system of single crystal CeZnSb2, H. Lee, S. Nakatsuji, Y. Chen, W. Bao, R. Macaluso, J. Chan, T. Park, B. Carter, P. Klavins, J. Thompson, Z. Fisk, BAPS, Session L41, 2005.

  9. Lattice Anharmonicity and Thermal Conductivity from Compressive Sensing of First-Principles Calculations

    SciTech Connect

    Zhou, Fei; Nielson, Weston; Xia, Yi; Ozolins, Vidvuds

    2014-10-27

    First-principles prediction of lattice thermal conductivity KL of strongly anharmonic crystals is a long-standing challenge in solid state physics. Using recent advances in information science, we propose a systematic and rigorous approach to this problem, compressive sensing lattice dynamics (CSLD). Compressive sensing is used to select the physically important terms in the lattice dynamics model and determine their values in one shot. Non-intuitively, high accuracy is achieved when the model is trained on first-principles forces in quasi-random atomic configurations. The method is demonstrated for Si, NaCl, and Cu12Sb4S13, an earth-abundant thermoelectric with strong phononphonon interactions that limit the room-temperature KL to values near the amorphous limit.

  10. Lattice Anharmonicity and Thermal Conductivity from Compressive Sensing of First-Principles Calculations

    SciTech Connect

    Zhou, Fei; Nielson, Weston; Xia, Yi; Ozoliņš, Vidvuds

    2014-10-01

    First-principles prediction of lattice thermal conductivity κL of strongly anharmonic crystals is a long-standing challenge in solid-state physics. Making use of recent advances in information science, we propose a systematic and rigorous approach to this problem, compressive sensing lattice dynamics. Compressive sensing is used to select the physically important terms in the lattice dynamics model and determine their values in one shot. Nonintuitively, high accuracy is achieved when the model is trained on first-principles forces in quasirandom atomic configurations. The method is demonstrated for Si, NaCl, and Cu12Sb4S13, an earth-abundant thermoelectric with strong phonon-phonon interactions that limit the room-temperature κL to values near the amorphous limit.

  11. Lattice Anharmonicity and Thermal Conductivity from Compressive Sensing of First-Principles Calculations

    DOE PAGESBeta

    Zhou, Fei; Nielson, Weston; Xia, Yi; Ozolins, Vidvuds

    2014-10-27

    First-principles prediction of lattice thermal conductivity KL of strongly anharmonic crystals is a long-standing challenge in solid state physics. Using recent advances in information science, we propose a systematic and rigorous approach to this problem, compressive sensing lattice dynamics (CSLD). Compressive sensing is used to select the physically important terms in the lattice dynamics model and determine their values in one shot. Non-intuitively, high accuracy is achieved when the model is trained on first-principles forces in quasi-random atomic configurations. The method is demonstrated for Si, NaCl, and Cu12Sb4S13, an earth-abundant thermoelectric with strong phononphonon interactions that limit the room-temperature KLmore » to values near the amorphous limit.« less

  12. Thermal phase transitions in a honeycomb lattice gas with three-body interactions.

    PubMed

    Lohöfer, Maximilian; Bonnes, Lars; Wessel, Stefan

    2013-11-01

    We study the thermal phase transitions in a classical (hard-core) lattice gas model with nearest-neighbor three-body interactions on the honeycomb lattice, based on parallel tempering Monte Carlo simulations. This system realizes incompressible low-temperature phases at fractional fillings of 9/16, 5/8, and 3/4 that were identified in a previous study of a related quantum model. In particular, both the 9/16 and the 5/8 phase exhibit an extensive ground-state degeneracy reflecting the frustrated nature of the three-body interactions on the honeycomb lattice. The thermal melting of the 9/16 phase is found to be a first-order, discontinuous phase transition. On the other hand, from the thermodynamic behavior we obtain indications for a four-states Potts-model thermal transition out of the 5/8 phase. We find that this thermal Potts-model transition relates to the selection of one out of four extensive sectors within the low-energy manifold of the 5/8 phase, which we obtain via an exact mapping of the ground-state manifold to a hard-core dimer model on an embedded honeycomb superlattice. PMID:24329242

  13. Lattice dynamics investigations of phonon thermal conductivity of Si /Ge superlattices with rough interfaces

    NASA Astrophysics Data System (ADS)

    Ren, Shang-Fen; Cheng, Wei; Chen, Gang

    2006-11-01

    Phonon thermal conductivities in both growth and in-plane directions of Si /Ge superlattices (SLs) with perfect and rough interfaces are calculated by using a lattice dynamics model. In addition to the general trend, the results show that there exist fluctuations of thermal conductivity in both directions for SLs with even or odd number of layers when the layer thickness is small. Thermal conductivities in both directions of Si /Ge SLs with rough interfaces are shown to be much lower than those of SLs with perfect interfaces. To understand the influences of rough interfaces, thermal conductivities of homogeneous alloy are further calculated and compared. The results show that along the in-plane direction, the thermal conductivity of SLs with rough interfaces is about the same as that of random alloy, while in the growth direction it is lower than that of the random alloy.

  14. Phonon-mediated Thermal Conductivity in Ionic Solids by Lattice Dynamics-based Methods

    SciTech Connect

    Chernatynskiy, Aleksandr; Turney, Joseph E.; McGaughey, Alan J. H.; Amon, Christina H.; Phillpot, Simon R.

    2011-07-22

    Phonon properties predicted from lattice dynamics calculations and the Boltzmann Transport Equation (BTE) are used to elucidate the thermal-transport properties of ionic materials. It is found that a rigorous treatment of the Coulombic interactions within the harmonic analysis is needed for the analysis of the phonon structure of the solid, while a short-range approximation is sufficient for the third-order force constants. The effects on the thermal conductivity of the relaxation time approximation, the classical approximation to the phonon statistics, the direct summation method for the electrostatic interactions, and the quasi-harmonic approximation to lattice dynamics are quantified. Quantitative agreement is found between predictions from molecular dynamics simulations (a method valid at temperatures above the Debye temperature) and the BTE result within quasi-harmonic approximation over a wide temperature range.

  15. Effect of phonon confinement on lattice thermal conductivity of lead Telluride quantum well structure

    SciTech Connect

    Tripathi, Madhvendra Nath

    2014-04-24

    The paper examines the effect of spatial confinement of acoustic phonons on average group velocity and consequently the lattice thermal conductivity of a free-standing PbTe quantum well structure and their temperature dependence. The average group velocity at 100 Å decreases 30% to the bulk value and falls more rapidly on reducing the width of quantum well. Moreover, the lattice thermal conductivity of 100 Å wide PbTe quantum well with value of 0.60 W/mK shows considerable decrease of 70% compared to it’s bulk value. It is observed that the effect of reduction in well width is less pronounce as temperature increases. This appears mainly due to dominance of umklapp processes over the confinement effects.

  16. First-principles Study of Lattice Thermal Conductivity of Cu3SbS4andCu3SbSe4

    NASA Astrophysics Data System (ADS)

    Xia, Yi; Zhou, Fei; Nielson, Weston; Ozolins, Vidvuds

    2015-03-01

    Linearized self-consistent Boltzmann transport equation (BTE), utilizing interatomic force constants (IFCs) obtained via compressive sensing lattice dynamics (CSLD), is used to study the lattice thermal conductivity (κl) of Cu3SbS4, Cu3SbSe4 and their solid solutions. With these IFCs we obtain bulk lattice thermal conductivity in good agreement with experimental measurements. We also compare Cu3SbS4andCu3SbSe4 with respect to Grüneisen parameter, group velocity, phonon lifetime, mean free path and cumulative κl. All the analysis indicates that (1) slightly larger group velocity and lifetime of acoustic modes found in Cu3SbS4 lead to larger κl compared with Cu3SbSe4 over the whole temperature range. Contributions from optical modes to κl for both compounds are about 25% at temperature higher than 300K. This large portion of κl can not be neglected if one aims to predict accurate κl; (2) Nanostructures with length less than 10nm can effectively reduce κl by about 80% for both of the compounds; (3) solid solution of two compounds can effectively reduce κl as much as 40% at room temperature.

  17. From quantum to thermal topological-sector fluctuations of strongly interacting Bosons in a ring lattice

    NASA Astrophysics Data System (ADS)

    Roscilde, Tommaso; Faulkner, Michael F.; Bramwell, Steven T.; Holdsworth, Peter C. W.

    2016-07-01

    Inspired by recent experiments on Bose–Einstein condensates in ring traps, we investigate the topological properties of the phase of a one-dimensional Bose field in the presence of both thermal and quantum fluctuations—the latter ones being tuned by the depth of an optical lattice applied along the ring. In the regime of large filling of the lattice, quantum Monte Carlo simulations give direct access to the full statistics of fluctuations of the Bose-field phase, and of its winding number W along the ring. At zero temperature the winding-number (or topological-sector) fluctuations are driven by quantum phase slips localized around a Josephson link between two lattice wells, and their susceptibility is found to jump at the superfluid-Mott insulator transition. At finite (but low) temperature, on the other hand, the winding number fluctuations are driven by thermal activation of nearly uniform phase twists, whose activation rate is governed by the superfluid fraction. A quantum-to-thermal crossover in winding-number fluctuations is therefore exhibited by the system, and it is characterized by a conformational change in the topologically non-trivial configurations, from localized to uniform phase twists, which can be experimentally observed in ultracold Bose gases via matter–wave interference.

  18. Analytical insight into the lattice thermal conductivity and heat capacity of monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Saha, Dipankar; Mahapatra, Santanu

    2016-09-01

    We report, a detailed theoretical study on the lattice thermal conductivity of a suspended monolayer MoS2, far beyond its ballistic limit. The analytical approach adopted in this work mainly relies on the use of Boltzmann transport equation (BTE) within the relaxation time approximation (RTA), along with the first-principles calculations. Considering the relative contributions from the various in-plane and out-of-plane acoustic modes, we derive the closed-form expressions of the mode specific heat capacities, which we later use to obtain the phonon thermal conductivities of the monolayer MoS2. Besides finding the intrinsic thermal conductivity, we also analyse the effect of the phonon-boundary scattering, for different dimensions and edge roughness conditions. The viability of the semi-analytic solution of lattice thermal conductivity reported in this work ranges from a low temperature (T∼30 K) to a significantly high temperature (T∼550 K), and the room temperature (RT) thermal conductivity value has been obtained as 34.06 Wm-1K-1 which is in good agreement with the experimental result.

  19. Effect of some nitrogen compounds thermal stability of jet A

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.

    1982-01-01

    The effect of known concentrations of some nitrogen containing compounds on the thermal stability of a conventional fuel, namely, Jet A was investigated. The concentration range from 0.01 to 0.1 wt% nitrogen was examined. Solutions were made containing, individually, pyrrole, indole, quinoline, pyridine, and 4 ethylpyridine at 0.01, 0.03, 0.06, and 0.1 wt% nitrogen concentrations in Jet A. The measurements were all made by using a standard ASTM test for evaluating fuel thermal oxidation behavior, namely, ASTM D3241, 'thermal oxidation stability of turbine fuels (JFTOT procedure).' Measurements were made at two temperature settings, and 'breakpoint temperatures' were determined. The results show that the pyrrole and indole solutions have breakpoint temperatures substantially lower than those of the Jet A used.

  20. Real space visualization of thermal fluctuations in a triangular flux-line lattice

    NASA Astrophysics Data System (ADS)

    Schwarz, A.; Liebmann, M.; Pi, U. H.; Wiesendanger, R.

    2010-03-01

    The temperature-dependent properties of a triangular flux-line lattice (FLL) in the low-flux density regime were investigated by evaluating the imaged flux-line (FL) size and the lattice regularity observed in real space utilizing magnetic force microscopy (MFM). At low temperatures, pinning by randomly distributed point defects in the anisotropic type-II superconductor Bi2Sr2CaCu2O8+δ results in curved FLs and lateral disorder within the FLL (Bragg glass). Above 30 K, depinning of pancake vortices (PVs) leads to straightening of FLs and a better-ordered lattice. Evaluation of the temperature-dependent imaged FL size allows us to determine the stiffness of the potential, in which FLs in the lattice are caged due to mutual repulsion between them. At 54.1 K, far below melting temperatures reported so far, thermal fluctuations plus the lateral force exerted by the scanning tip facilitate decoupling of PVs near the surface and the image contrast exhibit a liquid-like behavior. Our analysis demonstrates the ability of MFM to obtain three-dimensional information on the arrangement of PVs.

  1. Macroscopic Artificial Magnetic Honeycomb Lattice of Thermally Controlled Ultra-Small Bonds

    NASA Astrophysics Data System (ADS)

    Summers, Brock; Dahal, Ashutosh; Debeer-Schitt, Lisa; Gunasekera, Jagath; Singh, Deepak

    The two-dimensional artificial magnetic honeycomb lattice system is evolving into a new research arena to explore a plethora of novel magnetism that are predicted to occur as functions of temperature and magnetic field: a long-range spin ice, spin liquid, an entropy-driven magnetic charge-ordered state involving topological vortex pairs and a spin-order due to the spin chirality. We have created macroscopic samples of artificial magnetic honeycomb lattices of Cobalt and Permalloy having connected ultra-small elements (bonds), with length scales of sub-10 nm to 30 nm, which have never before been possible. The equivalent energy of the resulting systems is 10-100 K and is thus amenable to both temperature- and field-dependent exploration of novel magnetic phenomena. We have performed detailed magnetic and small angle neutron scattering measurements (SANS) on the newly fabricated honeycomb lattice of Permalloy that show the thermal character of the system. Furthermore, the experimental data reveals the onset of magnetic ordered regimes in temperature that are consistent with the predicted novel phase diagram in artificial honeycomb lattice. Research is supported by U.S. Department of Energy, Office of Basic Energy Sciences under Grant No. DE-SC0014461.

  2. Planar lattices with tailorable coefficient of thermal expansion and high stiffness based on dual-material triangle unit

    NASA Astrophysics Data System (ADS)

    Wei, Kai; Chen, Haosen; Pei, Yongmao; Fang, Daining

    2016-01-01

    The unexpected thermal distortions and failures in engineering raise the big concern about thermal expansion controlling. Thus, design of tailorable coefficient of thermal expansion (CTE) is urgently needed for the materials used in large temperature variation circumstance. Here, inspired by multi-fold rotational symmetry in crystallography, we have devised six kinds of periodic planar lattices, which incorporate tailorable CTE and high specific biaxial stiffness. Fabrication process, which overcame shortcomings of welding or adhesion connection, was developed for the dual-material planar lattices. The analytical predictions agreed well with the CTE measurements. It is shown that the planar lattices fabricated from positive CTE constituents, can give large positive, near zero and even negative CTEs. Furthermore, a generalized stationary node method was proposed for aperiodic lattices and even arbitrary structures with desirable thermal expansion. As an example, aperiodic quasicrystal lattices were designed and exhibited zero thermal expansion property. The proposed method for the lattices of lightweight, robust stiffness, strength and tailorable thermal expansion is useful in the engineering applications.

  3. Thermal expansion and self-irradiation damage in curium nitride lattice

    NASA Astrophysics Data System (ADS)

    Takano, Masahide; Hayashi, Hirokazu; Minato, Kazuo

    2014-05-01

    A powder sample of curium nitride (CmN) containing 0.35%-Pu and 3.59%-Am as actinide impurities was prepared by carbothermic nitridation of the oxide. The lattice expansion induced by self-irradiation damage at room temperature was measured as a function of time. The saturated Δa/ao value was 0.43%, which is greater than those for transuranium dioxides available in literature. The undamaged lattice parameter at 297 ± 1 K was determined to be 0.50261 ± 0.00006 nm. Temperature dependence of the lattice parameter was measured by a high temperature X-ray diffractometer in the temperature range up to 1375 K. The linear thermal expansion from 293 to 1273 K was 0.964% and the corresponding thermal expansion coefficient was 9.84 × 10-6 K-1. Comparing with the other actinide nitrides, it was found that CmN lies between the higher expansion nitrides (PuN and AmN) and the lower expansion nitrides (UN and NpN).

  4. Robust thermal quantum correlation and quantum phase transition of spin system on fractal lattices

    NASA Astrophysics Data System (ADS)

    Xu, Yu-Liang; Zhang, Xin; Liu, Zhong-Qiang; Kong, Xiang-Mu; Ren, Ting-Qi

    2014-06-01

    We investigate the quantum correlation measured by quantum discord (QD) for thermalized ferromagnetic Heisenberg spin systems in one-dimensional chains and on fractal lattices using the decimation renormalization group approach. It is found that the QD between two non-nearest-neighbor end spins exhibits some interesting behaviors which depend on the anisotropic parameter Δ, the temperature T, and the size of system L. With increasing Δ continuously, the QD possesses a cuspate change at Δ = 0 which is a critical point of quantum phase transition (QPT). There presents the "regrowth" tendency of QD with increasing T at Δ < 0, in contrast to the "growth" of QD at Δ > 0. As the size of the system L becomes large, there still exists considerable thermal QD between long-distance end sites in spin chains and on the fractal lattices even at unentangled states, and the long-distance QD can spotlight the presence of QPT. The robustness of QD on the diamond-type hierarchical lattices is stronger than that in spin chains and Koch curves, which indicates that the fractal can affect the behaviors of quantum correlation.

  5. Manipulating graphene's lattice to create pseudovector potentials, discover anomalous friction, and measure strain dependent thermal conductivity

    NASA Astrophysics Data System (ADS)

    Kitt, Alexander Luke

    Graphene is a single atomic sheet of graphite that exhibits a diverse range of unique properties. The electrons in intrinsic graphene behave like relativistic Dirac fermions; graphene has a record high Young's modulus but extremely low bending rigidity; and suspended graphene exhibits very high thermal conductivity. These properties are made more intriguing because with a thickness of only a single atomic layer, graphene is both especially affected by its environment and readily manipulated. In this dissertation the interaction between graphene and its environment as well as the exciting new physics realized by manipulating graphene's lattice are investigated. Lattice manipulations in the form of strain cause alterations in graphene's electrical dispersion mathematically analogous to the vector potential associated with a magnetic field. We complete the standard description of the strain-induced vector potential by explicitly including the lattice deformations and find new, leading order terms. Additionally, a strain engineered device with large, localized, plasmonically enhanced pseudomagnetic fields is proposed to couple light to pseudomagnetic fields. Accurate strain engineering requires a complete understanding of the interactions between a two dimensional material and its environment, particularly the adhesion and friction between graphene and its supporting substrate. We measure the load dependent sliding friction between mono-, bi-, and trilayer graphene and the commonly used silicon dioxide substrate by analyzing Raman spectra of circular, graphene sealed microchambers under variable external pressure. We find that the sliding friction for trilayer graphene behaves normally, scaling with the applied load, whereas the friction for monolayer and bilayer graphene is anomalous, scaling with the inverse of the strain in the graphene. Both strain and graphene's environment are expected to affect the quadratically dispersed out of plane acoustic phonon. Although

  6. Molecular simulations and lattice dynamics determination of Stillinger-Weber GaN thermal conductivity

    SciTech Connect

    Liang, Zhi; Jain, Ankit; McGaughey, Alan J. H.; Keblinski, Pawel

    2015-09-28

    The bulk thermal conductivity of Stillinger-Weber (SW) wurtzite GaN in the [0001] direction at a temperature of 300 K is calculated using equilibrium molecular dynamics (EMD), non-equilibrium MD (NEMD), and lattice dynamics (LD) methods. While the NEMD method predicts a thermal conductivity of 166 ± 11 W/m·K, both the EMD and LD methods predict thermal conductivities that are an order of magnitude greater. We attribute the discrepancy to significant contributions to thermal conductivity from long-mean free path phonons. We propose that the Grüneisen parameter for low-frequency phonons is a good predictor of the severity of the size effects in NEMD thermal conductivity prediction. For weakly anharmonic crystals characterized by small Grüneisen parameters, accurate determination of thermal conductivity by NEMD is computationally impractical. The simulation results also indicate the GaN SW potential, which was originally developed for studying the atomic-level structure of dislocations, is not suitable for prediction of its thermal conductivity.

  7. Application of the multi distribution function lattice Boltzmann approach to thermal flows

    NASA Astrophysics Data System (ADS)

    Parmigiani, A.; Huber, C.; Chopard, B.; Latt, J.; Bachmann, O.

    2009-04-01

    Numerical methods able to model high Rayleigh ( Ra) and high Prandtl ( Pr) number thermal convection are important to study large-scale geophysical phenomena occuring in very viscous fluids such as magma chamber dynamics (104 < Pr < 107 and 107 < Ra < 1011). The important variable to quantify the thermal state of a convective fluid is a generalized dimensionless heat transfer coefficient (the Nusselt number) whose measure indicates the relative efficiency of the thermal convection. In this paper we test the ability of Multi-distribution Function approach (MDF) Thermal Lattice Boltzmann method to study the well-established scaling result for the Nusselt number ( Nu ∝ Ra 1/3) in Rayleigh Bénard convection for 104 ≤ Ra ≤ 109 and 101 ≤ Pr ≤ 104. We explore its main drawbacks in the range of Pr and Ra number under investigation: (1) high computational time N c required for the algorithm to converge and (2) high spatial accuracy needed to resolve the thickness of thermal plumes and both thermal and velocity boundary layer. We try to decrease the computational demands of the method using a multiscale approach based on the implicit dependence of the Pr number on the relaxation time, the spatial and temporal resolution characteristic of the MDF thermal model.

  8. Investigation of Oxygen Transfer Enhancement in Thermally Driven Cavities By Lattice Boltzmann Simulation.

    NASA Astrophysics Data System (ADS)

    Yu, Huidan; Zhang, Jinsuo; Li, Ning

    2006-03-01

    We investigate the enhancement of mass transfer in 2D thermally driven cavities using lattice Boltzmann equation (LBE) method. The computational technique integrates three coupled LBEs for solving velocity, temperature, and concentration fields simultaneously. Simulation is performed for oxygen transfer in lead/lead-bismuth eutectic with variations of temperature boundary, Schmidt number, and field aspect ratio to investigate the effects on enhancement of oxygen transfer. Interested characteristics include oxygen concentration, Sherwood number, and velocity profiles, etc. Our results clearly indicate that oxygen transfer is dominated by convection while diffusion also plays a role on it. Comparative studies demonstrate that side heating and top cooling device is more efficient to transfer oxygen than side heating and cooling device and oxygen transfers more rapidly in square cavity than in rectangular cavity. This work establishes a reliable thermal LBE model for thermally driven heat and mass transfer.

  9. Heavy fermion compounds on the geometrically frustrated Shastry-Sutherland lattice.

    PubMed

    Kim, M S; Aronson, M C

    2011-04-27

    We present measurements of the basic properties of Ce(2)Ge(2)Mg, Yb(2)Pt(2)Pb and Ce(2)Pt(2)Pb, which are members of a new class of geometrically frustrated magnets R(2)T(2)X (R = rare earth, T = transition metal, X = main group). Here, the moment-bearing R atoms are confined to layers where they are arranged in the Shastry-Sutherland lattice. Magnetic susceptibility and specific heat measurements indicate that Ce(2)Ge(2)Mg orders antiferromagnetically at 9.4 K and Yb(2)Pt(2)Pb at 2.07 K. No long ranged order is observed in Ce(2)Pt(2)Pb above 0.05 K. Analysis of Schottky peaks in the specific heat indicates that all three compounds have doublet ground states that are well separated in energy from the excited states of the crystal-field-split manifold. Electrical resistivity measurements show that Ce(2)Ge(2)Mg and Yb(2)Pt(2)Pb are excellent metals with small residual resistivities. However, the measured resistivity of Ce(2)Pt(2)Pb is large and almost temperature-independent, suggesting that strong disorder or perhaps strong quantum critical fluctuations saturate the quasiparticle scattering in this compound. The magnetic entropy develops very slowly above the onset of antiferromagnetic order and we discuss the possibility that a nonordered fluid of dimerized moments exists above T(N) in Ce(2)Ge(2)Mg and Yb(2)Pt(2)Pb, and for a wide range of temperatures in Ce(2)Pt(2)Pb, which appears to be close to a frustration-driven quantum critical point. PMID:21471619

  10. Heavy fermion compounds on the geometrically frustrated Shastry-Sutherland lattice

    NASA Astrophysics Data System (ADS)

    Kim, M. S.; Aronson, M. C.

    2011-04-01

    We present measurements of the basic properties of Ce2Ge2Mg, Yb2Pt2Pb and Ce2Pt2Pb, which are members of a new class of geometrically frustrated magnets R2T2X (R = rare earth, T = transition metal, X = main group). Here, the moment-bearing R atoms are confined to layers where they are arranged in the Shastry-Sutherland lattice. Magnetic susceptibility and specific heat measurements indicate that Ce2Ge2Mg orders antiferromagnetically at 9.4 K and Yb2Pt2Pb at 2.07 K. No long ranged order is observed in Ce2Pt2Pb above 0.05 K. Analysis of Schottky peaks in the specific heat indicates that all three compounds have doublet ground states that are well separated in energy from the excited states of the crystal-field-split manifold. Electrical resistivity measurements show that Ce2Ge2Mg and Yb2Pt2Pb are excellent metals with small residual resistivities. However, the measured resistivity of Ce2Pt2Pb is large and almost temperature-independent, suggesting that strong disorder or perhaps strong quantum critical fluctuations saturate the quasiparticle scattering in this compound. The magnetic entropy develops very slowly above the onset of antiferromagnetic order and we discuss the possibility that a nonordered fluid of dimerized moments exists above TN in Ce2Ge2Mg and Yb2Pt2Pb, and for a wide range of temperatures in Ce2Pt2Pb, which appears to be close to a frustration-driven quantum critical point.

  11. Topology optimization in thermal-fluid flow using the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Yaji, Kentaro; Yamada, Takayuki; Yoshino, Masato; Matsumoto, Toshiro; Izui, Kazuhiro; Nishiwaki, Shinji

    2016-02-01

    This paper proposes a topology optimization method for thermal-fluid flow problems using the lattice Boltzmann method (LBM). The design sensitivities are derived based on the adjoint lattice Boltzmann method (ALBM), whose basic idea is that the adjoint problem is first formulated using a continuous adjoint approach, and the adjoint problem is then solved using the LBM. In this paper, the discrete velocity Boltzmann equation, in which only the particle velocities are discretized, is introduced to the ALBM to deal with the various boundary conditions in the LBM. The novel sensitivity analysis is applied in two flow channel topology optimization problems: 1) a pressure drop minimization problem, and 2) a heat exchange maximization problem. Several numerical examples are provided to confirm the utility of the proposed method.

  12. Thermal conductivities of one-dimensional anharmonic/nonlinear lattices: renormalized phonons and effective phonon theory

    NASA Astrophysics Data System (ADS)

    Li, Nianbei; Li, Baowen

    2012-12-01

    Heat transport in low-dimensional systems has attracted enormous attention from both theoretical and experimental aspects due to its significance to the perception of fundamental energy transport theory and its potential applications in the emerging field of phononics: manipulating heat flow with electronic anologs. We consider the heat conduction of one-dimensional nonlinear lattice models. The energy carriers responsible for the heat transport have been identified as the renormalized phonons. Within the framework of renormalized phonons, a phenomenological theory, effective phonon theory, has been developed to explain the heat transport in general one-dimensional nonlinear lattices. With the help of numerical simulations, it has been verified that this effective phonon theory is able to predict the scaling exponents of temperature-dependent thermal conductivities quantitatively and consistently.

  13. Development of magneto-thermal lattice Boltzmann heat and fluid flow simulation

    NASA Astrophysics Data System (ADS)

    Kaneda, Masayuki; Kano, Hironori; Suga, Kazuhiko

    2015-09-01

    In this study, magneto-thermal lattice Boltzmann model is developed and heat transfer enhancement is investigated for a porous media heat exchanger. First, two models of thermal LBM are discussed in terms of its precision and applicability to magneto-thermal LBM including tolerance range of computational parameter. The implemented magneto-thermal LBM is then validated by convection in a cubic enclosure comparing with finite difference computation. The incompressibility limit of magneto-thermal LBM is additionally discussed. Finally, the effect of magnetic field on a flow through heated porous media is numerically investigated. It is found that, the magneto-thermal force is effective at the stagnant region inside the porous media to enhance the heat transfer. In a macroscopic view, the heat transfer enhancement is found in overall region. The effect becomes remarkable at low Reynolds number flow. Since its effect is aligned on a curve of Nusselt-Reynolds relation, the magnetic effect obviously found to assist the main flow.

  14. Lattice Thermal Transport in Si-based Nanocomposites for Thermoelectric Applications

    NASA Astrophysics Data System (ADS)

    Aksamija, Zlatan

    2015-06-01

    Silicon-germanium (SiGe) superlattices (SLs) have been studied for application as efficient thermoelectrics because of their low thermal conductivity, below that of bulk SiGe alloys. However, the cost of growing SLs is prohibitive, so Si-based nanocomposites, made by a ball-milling and sintering, have been proposed as a cost-effective replacement with similar properties. Because the lattice thermal conductivity of SiGe SLs is reduced by scattering from rough boundaries between layers, it is expected that grain boundary properties, for example roughness, orientation, and composition, will also substantially effect thermal transport in nanocomposites, resulting in many ways of adjusting their thermal conductivity by manipulation of grain size, shape, and crystal angle distributions. A model of phonon transport in nanocomposites was developed on the basis of the phonon Boltzmann transport equation. When nanocomposite structures were modeled by using a Voronoi tessellation to mimic the grains and their distribution, agreement with experimentally observed structures was excellent. To accurately treat phonon scattering from a series of atomically rough interfaces between the grains in the nanocomposite, we used a momentum-dependent specularity variable. Our results revealed thermal transport in Si-based nanocomposites is highly anisotropic and suggest further utilization of grain morphology to minimize thermal conductivity.

  15. Thermal hydraulic design analysis of ternary carbide fueled square-lattice honeycomb nuclear rocket engine

    SciTech Connect

    Furman, Eric M.; Anghaie, Samim

    1999-01-22

    A computational analysis is conducted to determine the optimum thermal-hydraulic design parameters for a square-lattice honeycomb nuclear rocket engine core that will incorporate ternary carbide based uranium fuels. Recent studies at the Innovative Nuclear Space Power and Propulsion Institute (INSPI) have demonstrated the feasibility of processing solid solution, ternary carbide fuels such as (U, Zr, Nb)C, (U, Zr, Ta)C, (U, Zr, Hf)C and (U, Zr, W)C. The square-lattice honeycomb design provides high strength and is amenable to the processing complexities of these ultrahigh temperature fuels. A parametric analysis is conducted to examine how core geometry, fuel thickness and the propellant flow area effect the thermal performance of the nuclear rocket engine. The principal variables include core size (length and diameter) and fuel element dimensions. The optimum core configuration requires a balance between high specific impulse and thrust level performance, and maintaining the temperature and strength limits of the fuel. A nuclear rocket engine simulation code is developed and used to examine the system performance as well as the performance of the main reactor core components. The system simulation code was originally developed for analysis of NERVA-Derivative and Pratt and Whitney XNR-2000 nuclear thermal rockets. The code is modified and adopted to the square-lattice geometry of the new fuel design. Thrust levels ranging from 44,500 to 222,400 N (10,000 to 50,000 lbf) are considered. The average hydrogen exit temperature is kept at 2800 K, which is well below the melting point of these fuels. For a nozzle area ratio of 300 and a thrust chamber pressure of 4.8 Mpa (700 psi), the specific impulse is 930 s. Hydrogen temperature and pressure distributions in the core and the fuel maximum temperatures are calculated.

  16. Phase separation in thermal systems: a lattice Boltzmann study and morphological characterization.

    PubMed

    Gan, Yanbiao; Xu, Aiguo; Zhang, Guangcai; Li, Yingjun; Li, Hua

    2011-10-01

    We investigate thermal and isothermal symmetric liquid-vapor separations via a fast Fourier transform thermal lattice Boltzmann (FFT-TLB) model. Structure factor, domain size, and Minkowski functionals are employed to characterize the density and velocity fields, as well as to understand the configurations and the kinetic processes. Compared with the isothermal phase separation, the freedom in temperature prolongs the spinodal decomposition (SD) stage and induces different rheological and morphological behaviors in the thermal system. After the transient procedure, both the thermal and isothermal separations show power-law scalings in domain growth, while the exponent for thermal system is lower than that for isothermal system. With respect to the density field, the isothermal system presents more likely bicontinuous configurations with narrower interfaces, while the thermal system presents more likely configurations with scattered bubbles. Heat creation, conduction, and lower interfacial stresses are the main reasons for the differences in thermal system. Different from the isothermal case, the release of latent heat causes the changing of local temperature, which results in new local mechanical balance. When the Prandtl number becomes smaller, the system approaches thermodynamical equilibrium much more quickly. The increasing of mean temperature makes the interfacial stress lower in the following way: σ=σ(0)[(T(c)-T)/(T(c)-T(0))](3/2), where T(c) is the critical temperature and σ(0) is the interfacial stress at a reference temperature T(0), which is the main reason for the prolonged SD stage and the lower growth exponent in the thermal case. Besides thermodynamics, we probe how the local viscosities influence the morphology of the phase separating system. We find that, for both the isothermal and thermal cases, the growth exponents and local flow velocities are inversely proportional to the corresponding viscosities. Compared with the isothermal case, the

  17. Porous Substrate Effects on Thermal Flows Through a Rev-Scale Finite Volume Lattice Boltzmann Model

    NASA Astrophysics Data System (ADS)

    Zarghami, Ahad; Francesco, Silvia Di; Biscarini, Chiara

    2014-09-01

    In this paper, fluid flows with enhanced heat transfer in porous channels are investigated through a stable finite volume (FV) formulation of the thermal lattice Boltzmann method (LBM). Temperature field is tracked through a double distribution function (DDF) model, while the porous media is modeled using Brinkman-Forchheimer assumptions. The method is tested against flows in channels partially filled with porous media and parametric studies are conducted to evaluate the effects of various parameters, highlighting their influence on the thermo-hydrodynamic behavior.

  18. Entropic Lattice Boltzmann Methods for Fluid Mechanics: Thermal, Multi-phase and Turbulence

    NASA Astrophysics Data System (ADS)

    Chikatamarla, Shyam; Boesch, F.; Frapolli, N.; Mazloomi, A.; Karlin, I.

    2014-11-01

    With its roots in statistical mechanics and kinetic theory, the lattice Boltzmann method (LBM) is a paradigm-changing innovation, offering for the first time an intrinsically parallel CFD algorithm. Over the past two decades, LBM has achieved numerous results in the field of CFD and is now in a position to challenge state-of-the art CFD techniques. Major restyling of LBM resulted in an unconditionally stable entropic LBM which restored Second Law (Boltzmann H theorem) in the LBM kinetics and thus enabled affordable direct simulations of fluid turbulence. In this talk, we shall review recent advances in ELBM as a practical, modeling-free tool for simulation of complex flow phenomenon. We shall present recent simulations of fluid turbulence including turbulent channel flow, flow past a circular cylinder, creation and dynamics of vortex tubes, and flow past a surface mounted cube. Apart from its achievements in turbulent flow simulations, ELBM has also presented us the opportunity to extend lattice Boltzmann method to higher order lattices which shall be employed for turbulent, multi-phase and thermal flow simulations. A new class of entropy functions are proposed to handle non-ideal equation of state and surface tension terms in multi-phase flows. It is shown the entropy principle brings unconditional stability and thermodynamic consistency to all the three flow regimes considered here. Acknowledgements: ERC Advanced Grant ``ELBM'' and CSCS grant s437 are deeply acknowledged. References:

  19. Diameter Dependence of Lattice Thermal Conductivity of Single-Walled Carbon Nanotubes: Study from Ab Initio

    PubMed Central

    Yue, Sheng-Ying; Ouyang, Tao; Hu, Ming

    2015-01-01

    The effects of temperature, tube length, defects, and surface functionalization on the thermal conductivity (κ) of single-walled carbon nanotubes (SWCNTs) were well documented in literature. However, diameter dependence of thermal conductivity of SWCNTs received less attentions. So far, diverse trends of the diameter dependence have been discussed by different methods and all the previous results were based on empirical interatomic potentials. In this paper, we emphasize to clarify accurate κ values of SWCNTs with different diameters and in-plane κ of graphene. All the studies were under the framework of anharmonic lattice dynamics and Boltzmann transport equation (BTE) based on first principle calculations. We try to infer the right trend of diameter dependent thermal conductivity of SWCNTs. We infer that graphene is the limitation as SWCNT with an infinite diameter. We analyzed the thermal conductivity contributions from each phonon mode in SWCNTs to explain the trend. Meanwhile, we also identify the extremely low thermal conductivity of ultra-thin SWCNTs. PMID:26490342

  20. Final Design and Experimental Validation of the Thermal Performance of the LHC Lattice Cryostats

    NASA Astrophysics Data System (ADS)

    Bourcey, N.; Capatina, O.; Parma, V.; Poncet, A.; Rohmig, P.; Serio, L.; Skoczen, B.; Tock, J.-P.; Williams, L. R.

    2004-06-01

    The recent commissioning and operation of the LHC String 2 have given a first experimental validation of the global thermal performance of the LHC lattice cryostat at nominal cryogenic conditions. The cryostat designed to minimize the heat inleak from ambient temperature, houses under vacuum and thermally protects the cold mass, which contains the LHC twin-aperture superconducting magnets operating at 1.9 K in superfluid helium. Mechanical components linking the cold mass to the vacuum vessel, such as support posts and insulation vacuum barriers are designed with efficient thermalisations for heat interception to minimise heat conduction. Heat inleak by radiation is reduced by employing multilayer insulation (MLI) wrapped around the cold mass and around an aluminium thermal shield cooled to about 60 K. Measurements of the total helium vaporization rate in String 2 gives, after substraction of supplementary heat loads and end effects, an estimate of the total thermal load to a standard LHC cell (107 m) including two Short Straight Sections and six dipole cryomagnets. Temperature sensors installed at critical locations provide a temperature mapping which allows validation of the calculated and estimated thermal performance of the cryostat components, including efficiency of the heat interceptions.

  1. Diameter Dependence of Lattice Thermal Conductivity of Single-Walled Carbon Nanotubes: Study from Ab Initio.

    PubMed

    Yue, Sheng-Ying; Ouyang, Tao; Hu, Ming

    2015-01-01

    The effects of temperature, tube length, defects, and surface functionalization on the thermal conductivity (κ) of single-walled carbon nanotubes (SWCNTs) were well documented in literature. However, diameter dependence of thermal conductivity of SWCNTs received less attentions. So far, diverse trends of the diameter dependence have been discussed by different methods and all the previous results were based on empirical interatomic potentials. In this paper, we emphasize to clarify accurate κ values of SWCNTs with different diameters and in-plane κ of graphene. All the studies were under the framework of anharmonic lattice dynamics and Boltzmann transport equation (BTE) based on first principle calculations. We try to infer the right trend of diameter dependent thermal conductivity of SWCNTs. We infer that graphene is the limitation as SWCNT with an infinite diameter. We analyzed the thermal conductivity contributions from each phonon mode in SWCNTs to explain the trend. Meanwhile, we also identify the extremely low thermal conductivity of ultra-thin SWCNTs. PMID:26490342

  2. Lattice Thermal Conductivity of Superlattices from an Adiabatic Bond Charge Model

    NASA Astrophysics Data System (ADS)

    Ward, Alistair; Broido, David

    2007-03-01

    The adiabatic bond charge model (ABCM) has successfully rendered phonon dispersions of a host of bulk semiconductors [1,2] and has also been used to calculate the phonon dispersions in quantum well superlattices [3]. We have developed an ABCM for superlattices and combined it with a symmetry-based representation of the anharmonic interatomic forces to calculate the lattice thermal conductivity of short-period superlattices, using an iterative solution to the Boltzmann-Peierls equation [4]. We compare our ABCM results with those obtained from some commonly used models for the interatomic forces in semiconductors to assess the importance of accurate descriptions of the phonon dispersions in thermal conductivity calculations. [1] W. Weber, Physical Review B 15, 4789 (1977). [2] K. C. Rustagi and W. Weber, Solid State Communications 18, 673 (1976). [3] S. K. Yip and Y. C. Chang, Physical Review B 30 7037 (1984). [4] D. A. Broido, A. Ward, and N. Mingo, Physical Review B 72, 014308 (2005).

  3. Dispersion relations of externally and thermally excited dust lattice modes in 2D complex plasma crystals

    SciTech Connect

    Yang Xuefeng; Cui Jian; Zhang Yuan; Liu Yue

    2012-07-15

    The dispersion relations of the externally and thermally (naturally) excited dust lattice modes (both longitudinal and transverse) in two-dimensional Debye-Yukawa complex plasma crystals are investigated. The dispersion relations are calculated numerically by taking the neutral gas damping effects into account and the numerical results are in agreement with the experimental data given by Nunomura et al.[Phys. Rev. E 65, 066402 (2002)]. It is found that for the mode excited by an external disturbance with a real frequency, the dispersion properties are changed at a critical frequency near where the group velocity of the mode goes to zero. Therefore, the high frequency branch with negative dispersion cannot be reached. In contrast, for the thermally excited mode, the dispersion curve can extend all the way to the negative dispersion region, while a 'cut-off' wave number exists at the long wavelength end of the dispersion in the transverse mode.

  4. Orbital thermal analysis of lattice structured spacecraft using color video display techniques

    NASA Technical Reports Server (NTRS)

    Wright, R. L.; Deryder, D. D.; Palmer, M. T.

    1983-01-01

    A color video display technique is demonstrated as a tool for rapid determination of thermal problems during the preliminary design of complex space systems. A thermal analysis is presented for the lattice-structured Earth Observation Satellite (EOS) spacecraft at 32 points in a baseline non Sun-synchronous (60 deg inclination) orbit. Large temperature variations (on the order of 150 K) were observed on the majority of the members. A gradual decrease in temperature was observed as the spacecraft traversed the Earth's shadow, followed by a sudden rise in temperature (100 K) as the spacecraft exited the shadow. Heating rate and temperature histories of selected members and color graphic displays of temperatures on the spacecraft are presented.

  5. Lattice Thermal Conductivity of Ultra High Temperature Ceramics (UHTC) ZrB2 and HfB2 from Atomistic Simulations

    NASA Technical Reports Server (NTRS)

    Lawson, JOhn W.; Daw, Murray S.; Bauschlicher, Charles W.

    2011-01-01

    Ultra high temperature ceramics (UHTC) including ZrB2 and HfB2 are candidate materials for applications in extreme environments because of their high melting point, good mechanical properties and reasonable oxidation resistance. Unlike many ceramics, these materials have high thermal conductivity which can be advantageous, for example, to reduce thermal shock. Recently, we developed Tersoff style interatomic potentials for both ZrB2 and HfB2 appropriate for atomistic simulations. As an application, Green-Kubo molecular dynamics simulations were performed to evaluate the lattice thermal conductivity for single crystals of ZrB2 and HfB2. The atomic mass difference in these binary compounds leads to oscillations in the time correlation function of the heat current. Results at room temperature and at elevated temperatures will be reported.

  6. Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions.

    PubMed

    Lallemand, Pierre; Luo, Li-Shi

    2003-09-01

    The focus of the present work is to provide an analysis for the acoustic and thermal properties of the energy-conserving lattice Boltzmann models, and a solution to the numerical defects and instability associated with these models in two and three dimensions. We discover that a spurious algebraic coupling between the shear and energy modes of the linearized evolution operator is a defect universal to the energy-conserving Boltzmann models in two and three dimensions. This spurious mode coupling is highly anisotropic and may occur at small values of wave number k along certain directions, and it is a direct consequence of the following key features of the lattice Boltzmann equation: (1) its simple spatial-temporal dynamics, (2) the linearity of the relaxation modeling for collision operator, and (3) the energy-conservation constraint. To eliminate the spurious mode coupling, we propose a hybrid thermal lattice Boltzmann equation (HTLBE) in which the mass and momentum conservation equations are solved by using the multiple-relaxation-time model due to d'Humières, whereas the diffusion-advection equation for the temperature is solved separately by using finite-difference technique (or other means). Through the Chapman-Enskog analysis we show that the hydrodynamic equations derived from the proposed HTLBE model include the equivalent effect of gamma=C(P)/C(V) in both the speed and attenuation of sound. Appropriate coupling between the energy and velocity field is introduced to attain correct acoustics in the model. The numerical stability of the HTLBE scheme is analyzed by solving the dispersion equation of the linearized collision operator. We find that the numerical stability of the lattice Boltzmann scheme improves drastically once the spurious mode coupling is removed. It is shown that the HTLBE scheme is far superior to the existing thermal LBE schemes in terms of numerical stability, flexibility, and possible generalization for complex fluids. We also present

  7. Influence of asperities on fluid and thermal flow in a fracture: A coupled lattice Boltzmann study

    NASA Astrophysics Data System (ADS)

    Neuville, A.; Flekkøy, E. G.; Toussaint, R.

    2013-07-01

    The characteristics of the hydro-thermal flow which occurs when a cold fluid is injected into a hot fractured bedrock depend on the morphology of the fracture. We consider a sharp triangular asperity, invariant in one direction, perturbing an otherwise flat fracture. We investigate its influence on the macroscopic hydraulic transmissivity and heat transfer efficiency, at fixed low Reynolds number. In this study, numerical simulations are done with a coupled lattice Boltzmann method that solves both the complete Navier-Stokes and advection-diffusion equations in three dimensions. The results are compared with those obtained under lubrication approximations which rely on many hypotheses and neglect the three-dimensional (3-D) effects. The lubrication results are obtained by analytically solving the Stokes equation and a two-dimensional (integrated over the thickness) advection-diffusion equation. We use a lattice Boltzmann method with a double distribution (for mass and energy transport) on hypercubic and cubic lattices. Beyond some critical slope for the boundaries, the velocity profile is observed to be far from a quadratic profile in the vicinity of the sharp asperity: the fluid within the triangular asperity is quasi-static. We find that taking account of both the 3-D effects and the cooling of the rock, are important for the thermal exchange. Neglecting these effects with lubrication approximations results in overestimating the heat exchange efficiency. The evolution of the temperature over time, toward steady state, also shows complex behavior: some sites alternately reheat and cool down several times, making it difficult to forecast the extracted heat.

  8. Nernst and magneto-thermal conductivity in a lattice model of Weyl fermions

    NASA Astrophysics Data System (ADS)

    Sharma, Girish; Goswami, Pallab; Tewari, Sumanta

    Weyl semimetals (WSM) are topologically protected three dimensional materials whose low energy excitations are linearly dispersing massless Dirac fermions, possessing a non-trivial Berry curvature. Using semi-classical Boltzmann dynamics in the relaxation time approximation for a lattice model of time reversal (TR) symmetry broken WSM, we compute both magnetic field dependent and anomalous contributions to the Nernst coefficient. In addition to the magnetic field dependent Nernst response, which is present in both Dirac and Weyl semimetals, we show that, contrary to previous reports, the TR-broken WSM also has an anomalous Nernst response due to a non-vanishing Berry curvature. We also compute the thermal conductivities of a WSM in the Nernst (∇T ⊥ B) and the longitudinal (∇T ∥ B) set-up and confirm from our lattice model that in the parallel set-up, the Wiedemann-Franz law is violated between the longitudinal thermal and electrical conductivities due to chiral anomaly. G.S and S.T are supported by AFOSR (FA9550-13-1-0045). P.G was supported by NSF-JQI-PFC and and LPS-CMTC.

  9. Thermalization and Canonical Typicality in Translation-Invariant Quantum Lattice Systems

    NASA Astrophysics Data System (ADS)

    Müller, Markus P.; Adlam, Emily; Masanes, Lluís; Wiebe, Nathan

    2015-12-01

    It has previously been suggested that small subsystems of closed quantum systems thermalize under some assumptions; however, this has been rigorously shown so far only for systems with very weak interaction between subsystems. In this work, we give rigorous analytic results on thermalization for translation-invariant quantum lattice systems with finite-range interaction of arbitrary strength, in all cases where there is a unique equilibrium state at the corresponding temperature. We clarify the physical picture by showing that subsystems relax towards the reduction of the global Gibbs state, not the local Gibbs state, if the initial state has close to maximal population entropy and certain non-degeneracy conditions on the spectrumare satisfied.Moreover,we showthat almost all pure states with support on a small energy window are locally thermal in the sense of canonical typicality. We derive our results from a statement on equivalence of ensembles, generalizing earlier results by Lima, and give numerical and analytic finite size bounds, relating the Ising model to the finite de Finetti theorem. Furthermore, we prove that global energy eigenstates are locally close to diagonal in the local energy eigenbasis, which constitutes a part of the eigenstate thermalization hypothesis that is valid regardless of the integrability of the model.

  10. Ab initio lattice dynamical studies of silicon clathrate frameworks and their negative thermal expansion

    NASA Astrophysics Data System (ADS)

    Härkönen, Ville J.; Karttunen, Antti J.

    2014-01-01

    The thermal and lattice dynamical properties of seven silicon clathrate framework structures are investigated with ab initio density functional methods (frameworks I, II, IV, V, VII, VIII, and H). The negative thermal expansion (NTE) phenomenon is investigated by means of quasiharmonic approximation and applying it to equal time displacement correlation functions. The thermal properties of the studied clathrate frameworks, excluding the VII framework, resemble those of the crystalline silicon diamond structure. The clathrate framework VII was found to have an anomalous NTE temperature range up to 300 K and it is suitable for further studies of the mechanisms of NTE. Investigation of the displacement correlation functions revealed that in NTE, the volume derivatives of the mean square displacements and mean square relative displacements of atoms behave similarly to the vibrational entropy volume derivatives and consequently to the coefficients of thermal expansion as a function of temperature. All studied clathrate frameworks, excluding the VII framework, possess a phonon band gap or even two in the case of framework V.

  11. First principles lattice thermal conductivity of Li2Se, Li2Te and alloys: phase space guidelines for thermal transport

    NASA Astrophysics Data System (ADS)

    Lindsay, Lucas; Mukhopadhyay, Saikat; Parker, David

    The lattice thermal conductivities (k) of Li2Se, Li2Te and alloys are examined using a first-principles Peierls-Boltzmann transport methodology. The dominant resistance to heat-carrying acoustic phonons in Li2Se and Li2Te comes from the interactions of these modes with two optic phonons, aoo scattering. In typical cubic and hexagonal materials (e . g . , Si, GaAs, AlN) aoo scattering does not play a considerable role in determining k, as it requires significant bandwidth and dispersion of the optic phonon branches, both present in Li2Se and Li2Te. We discuss how these properties and other features of the phonon dispersion (e . g . , bunching of the acoustic branches and an acoustic-optic frequency gap) combine to determine the overall conductivity of a material. Thus, microscopic scattering phase space arguments are generalized to give a more comprehensive view of intrinsic thermal transport in crystalline solids. We note that these general considerations are important for the discovery and design of new `high k' and `low k' materials for thermal management applications. L. L., S. M. and D. S. P. acknowledge support from the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division.

  12. On elliptic Lax systems on the lattice and a compound theorem for hyperdeterminants

    NASA Astrophysics Data System (ADS)

    Delice, N.; Nijhoff, F. W.; Yoo-Kong, S.

    2015-01-01

    A general elliptic N × N matrix Lax scheme is presented, leading to two classes of elliptic lattice systems, one which we interpret as the higher-rank analogue of the Landau-Lifschitz equations, while the other class we characterize as the higher-rank analogue of the lattice Krichever-Novikov equation (or Adler's lattice). We present the general scheme, but focus mainly on the latter type of models. In the case N = 2 we obtain a novel Lax representation of Adler's elliptic lattice equation in its so-called 3-leg form. The case of rank N = 3 is analyzed using Cayley's hyperdeterminant of format 2× 2× 2, yielding a multi-component system of coupled 3-leg quad-equations.

  13. Importance of local force fields on lattice thermal conductivity reduction in PbTe1-xSex alloys

    NASA Astrophysics Data System (ADS)

    Murakami, Takuru; Shiga, Takuma; Hori, Takuma; Esfarjani, Keivan; Shiomi, Junichiro

    2013-05-01

    Lattice thermal conductivity of PbTe1-xSex alloyed crystals has been calculated by molecular-dynamics simulations with anharmonic interatomic force constants (a-IFCs) obtained from first principles. The a-IFCs of pure PbTe and PbSe were calculated by the real-space displacement method with care of the stability for molecular-dynamics simulations. An empirical mixing rule of a-IFCs has been developed to account for both mass and local force-field differences in alloys. The obtained alloy-fraction dependence of lattice thermal conductivity reduction agrees well with the experiments. The comparative study shows that the local force-field difference significantly impacts the lattice thermal conductivity.

  14. Measurement-induced disturbance and thermal negativity in 1D optical lattice chain

    SciTech Connect

    Guo, Jin-Liang; Lin-Wang; Long, Gui-Lu

    2013-03-15

    We study the measurement-induced disturbance (MID) in a 1D optical lattice chain with nonlinear coupling. Special attention is paid to the difference between the thermal entanglement and MID when considering the influences of the linear coupling constant, nonlinear coupling constant and external magnetic field. It is shown that MID is more robust than thermal entanglement against temperature T and external magnetic field B, and MID may reveal more properties about quantum correlations of the system, which can be seen from the point of view that MID can be nonzero when there is no thermal entanglement and MID can detect the critical point of quantum phase transition at finite temperature. - Highlights: Black-Right-Pointing-Pointer The nonlinear coupling constant can strengthen the quantum correlation. Black-Right-Pointing-Pointer MID is more robust than entanglement against temperature and magnetic field. Black-Right-Pointing-Pointer MID exhibits more information about quantum correlation than entanglement. Black-Right-Pointing-Pointer MID can detect the critical point of quantum phase transition at finite temperature.

  15. Thermal Lattice Expansion in Epitaxial SrTiO3(100) on Si(100)

    SciTech Connect

    McCready, David E.; Liang, Yong; Shutthanandan, V.; Wang, Chong M.; Thevuthasan, Suntharampillai

    2006-10-01

    Thermal lattice expansion in epitaxial SrTiO3(100) grown on Si(100) by molecular beam epitaxy was examined by in situ x-ray diffraction (XRD) at temperatures ranging from 25 C to 1000 C. The SrTiO3 layer thickness ({approx}400 ?) was determined a priori by ex situ x-ray reflectivity (XRR). In addition, the SrTiO3(100) film was further characterized before and after thermal treatment by Rutherford backscattering spectroscopy in channeling geometry (RBS/C) and transmission electron microscopy (TEM). The XRD results showed that the rate of thermal expansion in epitaxial SrTiO3 in the out-of-plane direction is approximately 1.5-2.0 times the bulk value. In addition, the SrTiO3 film was seen to relax after heating. RBS/C and TEM also revealed the formation of a thick ({approx}1000 ?), amorphous silica layer at the SrTiO3/Si interface. Interestingly, the SrTiO3 film retained its epitaxial form atop this non-templating surface while its crystalline quality improved with annealing. These results will be further discussed in the context of their potential application toward silicon-on-insulator (SOI) semiconductor architecture.

  16. Electrical Conductivity, Thermal Stability, and Lattice Defect Evolution During Cyclic Channel Die Compression of OFHC Copper

    NASA Astrophysics Data System (ADS)

    Satheesh Kumar, S. S.; Raghu, T.

    2015-02-01

    Oxygen-free high-conductivity (OFHC) copper samples are severe plastically deformed by cyclic channel die compression (CCDC) technique at room temperature up to an effective plastic strain of 7.2. Effect of straining on variation in electrical conductivity, evolution of deformation stored energy, and recrystallization onset temperatures are studied. Deformation-induced lattice defects are quantified using three different methodologies including x-ray diffraction profile analysis employing Williamson-Hall technique, stored energy based method, and electrical resistivity-based techniques. Compared to other severe plastic deformation techniques, electrical conductivity degrades marginally from 100.6% to 96.6% IACS after three cycles of CCDC. Decrease in recrystallization onset and peak temperatures is noticed, whereas stored energy increases and saturates at around 0.95-1.1J/g after three cycles of CCDC. Although drop in recrystallization activation energy is observed with the increasing strain, superior thermal stability is revealed, which is attributed to CCDC process mechanics. Low activation energy observed in CCDC-processed OFHC copper is corroborated to synergistic influence of grain boundary characteristics and lattice defects distribution. Estimated defects concentration indicated continuous increase in dislocation density and vacancy with strain. Deformation-induced vacancy concentration is found to be significantly higher than equilibrium vacancy concentration ascribed to hydrostatic stress states experienced during CCDC.

  17. Superconducting gap and vortex lattice of the heavy-fermion compound CeCu2Si2

    NASA Astrophysics Data System (ADS)

    Enayat, Mostafa; Sun, Zhixiang; Maldonado, Ana; Suderow, Hermann; Seiro, Silvia; Geibel, Christoph; Wirth, Steffen; Steglich, Frank; Wahl, Peter

    2016-01-01

    The order parameter and pairing mechanism for superconductivity in heavy-fermion compounds are still poorly understood. Scanning tunneling microscopy and spectroscopy at ultralow temperatures can yield important information about the superconducting order parameter and the gap structure. Here, we study the first heavy-fermion superconductor, CeCu2Si2 . Our data show the superconducting gap which is not fully formed and exhibits features that point to a multigap order parameter. Spatial mapping of the zero-bias conductance in magnetic field reveals the vortex lattice, which allows us to unequivocally link the observed conductance gap to superconductivity in CeCu2Si2 . The vortex lattice is found to be predominantly triangular with distortions at fields close to ˜0.7 Hc 2 .

  18. Tinselenidene: a Two-dimensional Auxetic Material with Ultralow Lattice Thermal Conductivity and Ultrahigh Hole Mobility.

    PubMed

    Zhang, Li-Chuan; Qin, Guangzhao; Fang, Wu-Zhang; Cui, Hui-Juan; Zheng, Qing-Rong; Yan, Qing-Bo; Su, Gang

    2016-01-01

    By means of extensive ab initio calculations, a new two-dimensional (2D) atomic material tin selenide monolayer (coined as tinselenidene) is predicted to be a semiconductor with an indirect gap (~1.45 eV) and a high hole mobility (of order 10000 cm(2)V(-1)S(-1)), and will bear an indirect-direct gap transition under a rather low strain (<0.5 GPa). Tinselenidene has a very small Young's modulus (20-40 GPa) and an ultralow lattice thermal conductivity (<3 Wm(-1)K(-1) at 300 K), making it probably the most flexible and most heat-insulating material in known 2D atomic materials. In addition, tinseleniden has a large negative Poisson's ratio of -0.17, thus could act as a 2D auxetic material. With these intriguing properties, tinselenidene could have wide potential applications in thermoelectrics, nanomechanics and optoelectronics. PMID:26830330

  19. An immersed boundary-thermal lattice Boltzmann method for solid-liquid phase change

    NASA Astrophysics Data System (ADS)

    Huang, Rongzong; Wu, Huiying

    2014-11-01

    In this work, an immersed boundary-thermal lattice Boltzmann method (IB-TLBM) is proposed to simulate solid-liquid phase change problems. To treat the velocity and temperature boundary conditions on the solid-liquid interface, immersed boundary method (IBM) is adopted, in which the solid-liquid interface is represented as a sharp interface rather than a diffusive interface and is tracked explicitly by Lagrangian grid. The surface forces along the immersed boundary, including the “momentum force” for velocity boundary condition and the “energy force” for temperature boundary condition, are calculated by the direct-forcing scheme. The moving velocity of solid-liquid interface induced by phase change is calculated by the amount of latent heat absorbed or released in a time step directly, with no need to compute temperature gradients in solid and liquid phases separately. The temperature on the solid-liquid interface is specified as the melting temperature, which means phase change happens at a constant temperature. As the solid-liquid interface evolves with time, the identification of phase of Eulerian points and the rearrangement of Lagrangian points are also considered. With regard to the velocity and temperature fields, passive scalar thermal lattice Boltzmann method (TLBM) with multiple-relaxation-time (MRT) collision schemes is adopted. Numerical examples, including conduction-induced melting in a semi-infinite space and melting in a square cavity, are carried out to verify the present method and good results are obtained. As a further application, melting in a circular cylinder with considering the motion of solid phase is simulated successfully by the present method; numerical results show that the motion of solid phase accelerates the melting process obviously.

  20. Lattice structure transformation and change in surface hardness of Ni3Nb and Ni3Ta intermetallic compounds induced by energetic ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Kojima, H.; Yoshizaki, H.; Kaneno, Y.; Semboshi, S.; Hori, F.; Saitoh, Y.; Okamoto, Y.; Iwase, A.

    2016-04-01

    Ni3Nb and Ni3Ta intermetallic compounds, which show the complicated lattice structures were irradiated with 16 MeV Au5+ ions at room temperature. The X-ray diffraction measurement revealed that the lattice structure of these intermetallic compounds changed from the ordered structures to the amorphous state by the ion irradiation. The irradiation-induced amorphization caused the increase in Vickers hardness. The result was compared with our previous results for Ni3Al and Ni3V, and was discussed in terms of the intrinsic lattice structures of the samples.

  1. Lattice thermal conductivity of crystalline and amorphous silicon with and without isotopic effects from the ballistic to diffusive thermal transport regime

    SciTech Connect

    Park, Minkyu; Lee, In-Ho; Kim, Yong-Sung

    2014-07-28

    Thermal conductivity of a material is an important physical parameter in electronic and thermal devices, and as the device size shrinks down, its length-dependence becomes unable to be neglected. Even in micrometer scale devices, materials having a long mean free path of phonons, such as crystalline silicon (Si), exhibit a strong length dependence of the thermal conductivities that spans from the ballistic to diffusive thermal transport regime. In this work, through non-equilibrium molecular-dynamics (NEMD) simulations up to 17 μm in length, the lattice thermal conductivities are explicitly calculated for crystalline Si and up to 2 μm for amorphous Si. The Boltzmann transport equation (BTE) is solved within a frequency-dependent relaxation time approximation, and the calculated lattice thermal conductivities in the BTE are found to be in good agreement with the values obtained in the NEMD. The isotopic effects on the length-dependent lattice thermal conductivities are also investigated both in the crystalline and amorphous Si.

  2. Phase stability and lattice thermal conductivity reduction in CoSb3 skutterudites, doped with chalcogen atoms

    NASA Astrophysics Data System (ADS)

    Battabyal, M.; Priyadarshini, B.; Pradipkanti, L.; Satapathy, Dillip K.; Gopalan, R.

    2016-07-01

    We report a significant reduction in the lattice thermal conductivity of the CoSb3 skuttertudites, doped with chalcogen atoms. Te/Se chalcogen atoms doped CoSb3 skutterudite samples (Te0.1Co4Sb12, Se0.1Co4Sb12, Te0.05Se0.05Co4Sb12) are processed by ball milling and spark plasma sintering. X-ray diffraction data combined with energy dispersive X-ray spectra indicate the doping of Te/Se chalcogen atoms in the skutterudite. The temperature dependent X-ray diffraction confirms the stability of the Te/Se doped CoSb3 skutterudite phase and absence of any secondary phase in the temperature range starting from 300 K to 773 K. The Raman spectroscopy reveals that different chalcogen dopant atoms cause different resonant optical vibrational modes between the dopant atom and the host CoSb3 skutterudite lattice. These optical vibrational modes do scatter heat carrying acoustic phonons in a different spectral range. It was found that among the Te/Se chalcogen atoms, Te atoms alter the host CoSb3 skutterudite lattice vibrations to a larger extent than Se atoms, and can potentially scatter more Sb related acoustic phonons. The Debye model of lattice thermal conductivity confirms that the resonant phonon scattering has important contributions to the reduction of lattice thermal conductivity in CoSb3 skutterudites doped with Te/Se chalcogen atoms. Lattice thermal conductivity ˜ 0.9 W/mK at 773 K is achieved in Te0.1Co4Sb12 skutterudites, which is the lowest value reported so far in CoSb3 skutterudites, doped with single Te chalcogen atom.

  3. Topological Metal of NaBi with Ultralow Lattice Thermal Conductivity and Electron-phonon Superconductivity

    PubMed Central

    Li, Ronghan; Cheng, Xiyue; Xie, Qing; Sun, Yan; Li, Dianzhong; Li, Yiyi; Chen, Xing-Qiu

    2015-01-01

    By means of first-principles and ab initio tight-binding calculations, we found that the compound of NaBi is a three-dimensional non-trivial topological metal. Its topological feature can be confirmed by the presence of band inversion, the derived effective Z2 invariant and the non-trivial surface states with the presence of Dirac cones. Interestingly, our calculations further demonstrated that NaBi exhibits the uniquely combined properties between the electron-phonon coupling superconductivity in nice agreement with recent experimental measurements and the obviously anisotropic but extremely low thermal conductivity. The spin-orbit coupling effects greatly affect those properties. NaBi may provide a rich platform to study the relationship among metal, topology, superconductivity and thermal conductivity. PMID:25676863

  4. Transition to and from the skyrmion lattice phase by electric fields in a magnetoelectric compound.

    PubMed

    Okamura, Y; Kagawa, F; Seki, S; Tokura, Y

    2016-01-01

    Dissipation-less electric control of magnetic state variable is an important target of contemporary spintronics. The non-volatile control of magnetic skyrmions, nanometre-sized spin-swirling objects, with electric fields may exemplify this goal. The skyrmion-hosting magnetoelectric chiral magnet Cu2OSeO3 provides a unique platform for the implementation of such control; however, the hysteresis that accompanies the first-order transition associated with the skyrmion phase is negligibly narrow in practice. Here we demonstrate another method that functions irrespective of the transition boundary. Combination of magnetic-susceptibility measurements and microwave spectroscopy reveals that although the metastable skyrmion lattice is normally hidden behind a more thermodynamically stable conical phase, it emerges under electric fields and persists down to the lowest temperature. Once created, this metastable skyrmion lattice remains without electric fields, establishing a bistability distinct from the transition hysteresis. This bistability thus enables non-volatile electric-field control of the skyrmion lattice even in temperature/magnetic-field regions far from the transition boundary. PMID:27580648

  5. Thermal oxidation of 3-5 compound semiconductors

    NASA Astrophysics Data System (ADS)

    Monteironeto, Othon Derego

    1988-11-01

    Thermal oxidation of 3-5 compound semiconductors has been studied in the temperature range of 300 to 600 C. Two members of this class of materials, namely InP and GaAs, were the object of the experimental work carried out here. The main analytical tools used were transmission electron microscopy (TEM) and secondary ion mass spectroscopy (SIMS). TEM was employed to access microstructural changes and SIMS to access the composition redistribution that takes place as a consequence of the oxidation reaction. Below 400 C oxidation of both materials led to the formation of amorphous scales, which consisted of a mixture of gallium and arsenic oxides in the case of GaAs, and indium phosphate and oxide in the case of InP. The oxidation kinetics of InP was found to be slower than that of GaAs. In the high temperature regime, i.e., above 400 C, the oxidation of both materials resulted in crystalline products. Precipitation of the group 5 element at the scale/semiconductor interface took place during oxidation. At the GaAs/Ga2O3interface, As precipitates were formed with a truncated square pyramid shape bound by (111) sub GaAs planes. The precipitates found at the InPO4/InP interface were either a phosphorus rich phase or red phosphorus. Strong vaporization under the electron beam prohibited a more accurate determination. The morphology of those precipitates were very similar to the As ones in GaAs.

  6. Effects of Lattice Defects and Niobium Doping on Thermoelectric Properties of Calcium Manganate Compounds for Energy Harvesting Applications

    NASA Astrophysics Data System (ADS)

    Graff, Ayelet; Amouyal, Yaron

    2016-03-01

    We have investigated the thermoelectric (TE) properties of Ruddlesden-Popper (RP) CaO(CaMnO3) m n-type compounds, to be applied for TE waste heat recovery at elevated temperatures. We prepared several Nb-doped and undoped CaO(CaMnO3) m compounds having different CaO planar densities by controlling the Ca content via solid-state reaction, and characterized the resulting microstructures by x-ray diffraction analysis and high-resolution scanning electron microscopy. The thermal conductivity, electrical conductivity, and TE thermopower of the different compounds were measured in the range from 300 K through 1000 K. We observed a remarkable reduction in thermal conductivity as a result of increasing the CaO planar density for the Nb-doped RP compounds, from a value of 2.9 W m-1 K-1 for m = ∞ down to 1.3 W m-1 K-1 for m = 1 at 1000 K. This trend was, however, accompanied by a corresponding reduction in electrical conductivity from 76 Ω-1 cm-1 to 2.9 Ω-1 cm-1, which is associated with electron scattering. Finally, we propose an approach that enables optimization of the TE performance of these RP compounds.

  7. Massively parallel sampling of lattice proteins reveals foundations of thermal adaptation.

    PubMed

    Venev, Sergey V; Zeldovich, Konstantin B

    2015-08-01

    Evolution of proteins in bacteria and archaea living in different conditions leads to significant correlations between amino acid usage and environmental temperature. The origins of these correlations are poorly understood, and an important question of protein theory, physics-based prediction of types of amino acids overrepresented in highly thermostable proteins, remains largely unsolved. Here, we extend the random energy model of protein folding by weighting the interaction energies of amino acids by their frequencies in protein sequences and predict the energy gap of proteins designed to fold well at elevated temperatures. To test the model, we present a novel scalable algorithm for simultaneous energy calculation for many sequences in many structures, targeting massively parallel computing architectures such as graphics processing unit. The energy calculation is performed by multiplying two matrices, one representing the complete set of sequences, and the other describing the contact maps of all structural templates. An implementation of the algorithm for the CUDA platform is available at http://www.github.com/kzeldovich/galeprot and calculates protein folding energies over 250 times faster than a single central processing unit. Analysis of amino acid usage in 64-mer cubic lattice proteins designed to fold well at different temperatures demonstrates an excellent agreement between theoretical and simulated values of energy gap. The theoretical predictions of temperature trends of amino acid frequencies are significantly correlated with bioinformatics data on 191 bacteria and archaea, and highlight protein folding constraints as a fundamental selection pressure during thermal adaptation in biological evolution. PMID:26254668

  8. Tinselenidene: a Two-dimensional Auxetic Material with Ultralow Lattice Thermal Conductivity and Ultrahigh Hole Mobility

    PubMed Central

    Zhang, Li-Chuan; Qin, Guangzhao; Fang, Wu-Zhang; Cui, Hui-Juan; Zheng, Qing-Rong; Yan, Qing-Bo; Su, Gang

    2016-01-01

    By means of extensive ab initio calculations, a new two-dimensional (2D) atomic material tin selenide monolayer (coined as tinselenidene) is predicted to be a semiconductor with an indirect gap (~1.45 eV) and a high hole mobility (of order 10000 cm2V−1S−1), and will bear an indirect-direct gap transition under a rather low strain (<0.5 GPa). Tinselenidene has a very small Young’s modulus (20–40 GPa) and an ultralow lattice thermal conductivity (<3 Wm−1K−1 at 300 K), making it probably the most flexible and most heat-insulating material in known 2D atomic materials. In addition, tinseleniden has a large negative Poisson’s ratio of −0.17, thus could act as a 2D auxetic material. With these intriguing properties, tinselenidene could have wide potential applications in thermoelectrics, nanomechanics and optoelectronics. PMID:26830330

  9. Intrinsic ultralow lattice thermal conductivity of the unfilled skutterudite FeSb3

    NASA Astrophysics Data System (ADS)

    Fu, Yuhao; Singh, David J.; Li, Wu; Zhang, Lijun

    2016-08-01

    It is generally accepted that unfilled skutterudites process high lattice thermal conductivity κl that can be efficiently reduced upon filling. Here by using first-principles Boltzmann-Peierls transport calculations, we find pure skutterudite of FeSb3 with no filler in fact has an intrinsic ultralow κl smaller than that of CoSb3 by one order of magnitude. The value is even smaller than those of most of the fully filled skutterudites. This finding means that with FeSb3 as a reference, filling does not necessarily lower κl. The ultralow κl of FeSb3 is a consequence of the overall softening of phonon spectrum, especially the lowering in frequency of optical phonon branches associated with the weakly bonded Sb4 rings. They overlap more with heat-carrying acoustic phonons and significantly increase the phase space for three-phonon anharmonic scattering processes. This provides an alternative non-filling-related mechanism for lowering the κl of skutterudites.

  10. Reduction of the temperature jump in the immersed boundary-thermal lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Seta, Takeshi; Hayashi, Kosuke; Tomiyama, Akio

    2015-11-01

    We analytically and numerically investigate the boundary errors computed by the immersed boundary-thermal lattice Boltzmann method (IB-TLBM) with the two-relaxation-time (TRT) collision operator. In the linear collision operator of the TRT, we decompose the distribution function into symmetric and antisymmetric components and define the relaxation parameters for each part. We derive the theoretical relation between the relaxation parameters for the symmetric and antisymmetric parts of the distribution function so as to eliminate the temperature jump. The simple TRT collision operator succeeds in reducing the temperature jump occurring at the high relaxation time in the IB-TLBM calculation. The porous plate problem numerically and analytically demonstrate that the velocity squared terms should be neglected in the equilibrium distribution function in order to eliminate the effect of the advection velocity on the temperature jump in the IB-TLBMs. The passive scalar model without the velocity squared terms more accurately calculates the incompressible temperature equation in the IB-TLBMs, compared to the double distribution model, which is based on the relation of the distribution function gk = (ek - u)2fk / 2 . We apply the passive scalar model without the velocity squared terms to the simulation of the natural convection between a hot circular cylinder and a cold square enclosure. The proposed method adequately sets the boundary values and provides reasonable average Nusselt numbers and maximum absolute values of the stream function.

  11. Tinselenidene: a Two-dimensional Auxetic Material with Ultralow Lattice Thermal Conductivity and Ultrahigh Hole Mobility

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Chuan; Qin, Guangzhao; Fang, Wu-Zhang; Cui, Hui-Juan; Zheng, Qing-Rong; Yan, Qing-Bo; Su, Gang

    2016-02-01

    By means of extensive ab initio calculations, a new two-dimensional (2D) atomic material tin selenide monolayer (coined as tinselenidene) is predicted to be a semiconductor with an indirect gap (~1.45 eV) and a high hole mobility (of order 10000 cm2V-1S-1), and will bear an indirect-direct gap transition under a rather low strain (<0.5 GPa). Tinselenidene has a very small Young’s modulus (20-40 GPa) and an ultralow lattice thermal conductivity (<3 Wm-1K-1 at 300 K), making it probably the most flexible and most heat-insulating material in known 2D atomic materials. In addition, tinseleniden has a large negative Poisson’s ratio of -0.17, thus could act as a 2D auxetic material. With these intriguing properties, tinselenidene could have wide potential applications in thermoelectrics, nanomechanics and optoelectronics.

  12. Lattice thermal conductivity of nanostructured thermoelectric materials based on PbTe

    NASA Astrophysics Data System (ADS)

    Koh, Yee Kan; Vineis, C. J.; Calawa, S. D.; Walsh, M. P.; Cahill, David G.

    2009-04-01

    We report the through-thickness lattice thermal conductivity Λl of (PbTe)1-x/(PbSe)x nanodot superlattices (NDSLs) over a wide range of periods 5 nm≤h≤50 nm, compositions 0.15≤x≤0.25, growth temperatures 550 K≤Tg≤620 K, and growth rates 1 μm h-1≤R≤4 μm h-1. All of our measurements approach Λl of bulk homogenous PbTe1-xSex alloys with the same average composition. For 5 nm≤h≤50 nm, Λl is independent of h; a result we attribute to short mean-free paths of phonons in PbTe and small acoustic impedance mismatch between PbTe/PbSe. We alloyed the PbTe layers of four NDSLs with SnTe up to a mole fraction y =18%; Λl is reduced by <25%.

  13. Significant reduction of lattice thermal conductivity due to phonon confinement in graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Nissimagoudar, A. S.; Sankeshwar, N. S.

    2014-06-01

    Lattice thermal conductivity, κp, of suspended and supported graphene nanoribbons (GNRs) is studied over a wide temperature range, taking into account the dispersive nature of confined acoustic phonon modes. Employing a modified Callaway model, an expression for κp is developed, considering the explicit contributions from in-plane longitudinal, transverse, and torsional acoustic, and out-of-plane flexural acoustic phonon modes. Numerical calculations of κp(T) are presented assuming the confined acoustic phonons to be scattered by sample boundaries, impurities, and other phonons via both normal and umklapp processes. The effect of phonon confinement is to modify the phonon group velocities and the temperature dependence of κp. In a suspended 5-nm-wide GNR at room temperature, a decrease in κp by ˜70% is predicted. Our study brings out the relative importance of the contributing phonon modes and reveals the influence of flexural phonons on κp as a marked shoulder at low temperatures. The role of the various sample-dependent scattering mechanisms is examined. The substrate, in supported GNRs, is shown to curtail the phonon mean free path and suppress the low-temperature κp. Our results are in good agreement with recent experimental data of Bae et al. [M. H. Bae, Z. Li, Z. Aksamija, P. N. Martin, F. Xiong, Z. Y. Ong, I. Knezevic, and E. Pop, Nat. Commun. 4, 1734 (2013), 10.1038/ncomms2755] for supported GNRs.

  14. Electron-phonon coupling and thermal transport in the thermoelectric compound Mo3Sb7–xTex

    DOE PAGESBeta

    Bansal, Dipanshu; Li, Chen W.; Said, Ayman H.; Abernathy, Douglas L.; Yan, Jiaqiang; Delaire, Olivier A.

    2015-12-07

    Phonon properties of Mo3Sb7–xTex (x = 0, 1.5, 1.7), a potential high-temperature thermoelectric material, have been studied with inelastic neutron and x-ray scattering, and with first-principles simulations. The substitution of Te for Sb leads to pronounced changes in the electronic struc- ture, local bonding, phonon density of states (DOS), dispersions, and phonon lifetimes. Alloying with tellurium shifts the Fermi level upward, near the top of the valence band, resulting in a strong suppression of electron-phonon screening, and a large overall stiffening of interatomic force- constants. The suppression in electron-phonon coupling concomitantly increases group velocities and suppresses phonon scattering rates, surpassingmore » the effects of alloy-disorder scattering, and re- sulting in a surprising increased lattice thermal conductivity in the alloy. We also identify that the local bonding environment changes non-uniformly around different atoms, leading to variable perturbation strengths for different optical phonon branches. The respective roles of changes in phonon group velocities and phonon lifetimes on the lattice thermal conductivity are quantified. Lastly, our results highlight the importance of the electron-phonon coupling on phonon mean-free-paths in this compound, and also estimates the contributions from boundary scattering, umklapp scattering, and point-defect scattering.« less

  15. Study on effective thermal conductivity of silicone/phosphor composite and its size effect by Lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Li, Lan; Zheng, Huai; Yuan, Chao; Hu, Run; Luo, Xiaobing

    2016-02-01

    The silicone/phosphor composite is widely used in light emitting diode (LED) packaging. The composite thermal properties, especially the effective thermal conductivity, strongly influence the LED performance. In this paper, a lattice Boltzmann model was presented to predict the silicone/phosphor composite effective thermal conductivity. Based on the present lattice Boltzmann model, a random generation method was established to describe the phosphor particle distribution in composite. Benchmarks were conducted by comparing the simulation results with theoretical solutions for simple cases. Then the model was applied to analyze the effective thermal conductivity of the silicone/phosphor composite and its size effect. The deviations between simulation and experimental results are <7 %, when the phosphor volume fraction varies from 0.038 to 0.45. The simulation results also indicate that effective thermal conductivity of the composite with larger particles is higher than that with small particles at the same volume fraction. While mixing these two sizes of phosphor particles provides an extra enhancement for the effective thermal conductivity.

  16. Thermal lattice expansion effect on reactive scattering of H2 from Cu(111) at T(s) = 925 K.

    PubMed

    Mondal, Arobendo; Wijzenbroek, Mark; Bonfanti, Matteo; Díaz, Cristina; Kroes, Geert-Jan

    2013-09-12

    Surface phonons and surface temperature may have important effects on reactions of molecules at surfaces, and at present much remains unknown about these effects. A question addressed here, which has received little attention so far, is how reaction at elevated temperature is affected by thermal lattice expansion. To answer this question for the benchmark reaction of H2 and D2 with Cu(111), we have performed quantum and quasi-classical dynamics calculations. The specific reaction parameter (SRP) approach to density functional theory (DFT) has been used to compute the required six-dimensional potential energy surfaces (PES). Computed reaction probabilities and rotational quadrupole alignment parameters have been compared for surface temperatures Ts = 0 and 925 K. Surface thermal expansion of the lattice leads to a considerable decrease of reaction barrier heights and thereby to increased reaction probabilities as well as decreased rotational quadrupole alignment parameter values in associative desorption. PMID:23763274

  17. Lattice Thermal Conductivity of Ultra High Temperature Ceramics ZrB2 and HfB2 from Atomistic Simulations

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Murray, Daw S.; Bauschlicher, Charles W., Jr.

    2011-01-01

    Atomistic Green-Kubo simulations are performed to evaluate the lattice thermal conductivity for single crystals of the ultra high temperature ceramics ZrB2 and HfB2 for a range of temperatures. Recently developed interatomic potentials are used for these simulations. Heat current correlation functions show rapid oscillations which can be identified with mixed metal-Boron optical phonon modes. Agreement with available experimental data is good.

  18. Ba-filled Ni-Sb-Sn based skutterudites with anomalously high lattice thermal conductivity.

    PubMed

    Paschinger, W; Rogl, G; Grytsiv, A; Michor, H; Heinrich, P R; Müller, H; Puchegger, S; Klobes, B; Hermann, R P; Reinecker, M; Eisenmenger-Sitter, Ch; Broz, P; Bauer, E; Giester, G; Zehetbauer, M; Rogl, P F

    2016-07-01

    Novel filled skutterudites BayNi4Sb12-xSnx (ymax = 0.93) have been prepared by arc melting followed by annealing at 250, 350 and 450 °C up to 30 days in vacuum-sealed quartz vials. Extension of the homogeneity region, solidus temperatures and structural investigations were performed for the skutterudite phase in the ternary Ni-Sn-Sb and in the quaternary Ba-Ni-Sb-Sn systems. Phase equilibria in the Ni-Sn-Sb system at 450 °C were established by means of Electron Probe Microanalysis (EPMA) and X-ray Powder Diffraction (XPD). With rather small cages Ni4(Sb,Sn)12, the Ba-Ni-Sn-Sb skutterudite system is perfectly suited to study the influence of filler atoms on the phonon thermal conductivity. Single-phase samples with the composition Ni4Sb8.2Sn3.8, Ba0.42Ni4Sb8.2Sn3.8 and Ba0.92Ni4Sb6.7Sn5.3 were used to measure their physical properties, i.e. temperature dependent electrical resistivity, Seebeck coefficient and thermal conductivity. The resistivity data demonstrate a crossover from metallic to semiconducting behaviour. The corresponding gap width was extracted from the maxima in the Seebeck coefficient data as a function of temperature. Single crystal X-ray structure analyses at 100, 200 and 300 K revealed the thermal expansion coefficients as well as Einstein and Debye temperatures for Ba0.73Ni4Sb8.1Sn3.9 and Ba0.95Ni4Sb6.1Sn5.9. These data were in accordance with the Debye temperatures obtained from the specific heat (4.4 K < T < 140 K) and Mössbauer spectroscopy (10 K < T < 290 K). Rather small atom displacement parameters for the Ba filler atoms indicate a severe reduction in the "rattling behaviour" consistent with the high levels of lattice thermal conductivity. The elastic moduli, collected from Resonant Ultrasonic Spectroscopy ranged from 100 GPa for Ni4Sb8.2Sn3.8 to 116 GPa for Ba0.92Ni4Sb6.7Sn5.3. The thermal expansion coefficients were 11.8 × 10(-6) K(-1) for Ni4Sb8.2Sn3.8 and 13.8 × 10(-6) K(-1) for Ba0.92Ni4Sb6.7Sn5.3. The room temperature Vickers

  19. Ba-filled Ni–Sb–Sn based skutterudites with anomalously high lattice thermal conductivity

    DOE PAGESBeta

    Paschinger, W.; Rogl, Gerda; Grytsiv, A.; Michor, H.; Heinrich, P. R.; Mueller, H.; Puchegger, S.; Klobes, B.; Hermann, Raphael P.; Reinecker, M.; et al

    2016-06-21

    Here, in this study, novel filled skutterudites BayNi4Sb12-xSnx (ymax = 0.93) have been prepared by arc melting followed by annealing at 250, 350 and 450°C up to 30 days in vacuum-sealed quartz vials. Extension of the homogeneity region, solidus temperatures and structural investigations were performed for the skutterudite phase in the ternary Ni–Sn–Sb and in the quaternary Ba–Ni–Sb–Sn systems. Phase equilibria in the Ni–Sn–Sb system at 450°C were established by means of Electron Probe Microanalysis (EPMA) and X-ray Powder Diffraction (XPD). With rather small cages Ni4(Sb,Sn)12, the Ba–Ni–Sn–Sb skutterudite system is perfectly suited to study the influence of filler atomsmore » on the phonon thermal conductivity. Single-phase samples with the composition Ni4Sb8.2Sn3.8, Ba0.42Ni4Sb8.2Sn3.8 and Ba0.92Ni4Sb6.7Sn5.3 were used to measure their physical properties, i.e. temperature dependent electrical resistivity, Seebeck coefficient and thermal conductivity. The resistivity data demonstrate a crossover from metallic to semiconducting behaviour. The corresponding gap width was extracted from the maxima in the Seebeck coefficient data as a function of temperature. Single crystal X-ray structure analyses at 100, 200 and 300 K revealed the thermal expansion coefficients as well as Einstein and Debye temperatures for Ba0.73Ni4Sb8.1Sn3.9 and Ba0.95Ni4Sb6.1Sn5.9. These data were in accordance with the Debye temperatures obtained from the specific heat (4.4 K < T < 140 K) and Mössbauer spectroscopy (10 K < T < 290 K). Rather small atom displacement parameters for the Ba filler atoms indicate a severe reduction in the “rattling behaviour” consistent with the high levels of lattice thermal conductivity. The elastic moduli, collected from Resonant Ultrasonic Spectroscopy ranged from 100 GPa for Ni4Sb8.2Sn3.8 to 116 GPa for Ba0.92Ni4Sb6.7Sn5.3. The thermal expansion coefficients were 11.8 × 10-6 K-1 for Ni4Sb8.2Sn3.8 and 13.8 × 10-6 K-1 for Ba0.92Ni4

  20. Ba-filled Ni Sb Sn based skutterudites with anomalously high lattice thermal conductivity

    DOE PAGESBeta

    Paschinger, W; Rogl, Gerda; Grytsiv, A; Michor, H.; Heinrich, P. R.; Mueller, H; Puchegger, S; Klobes, B.; Hermann, Raphael P; Reinecker, M; et al

    2016-01-01

    Novel filled skutterudites BayNi4Sb12 xSnx (ymax = 0.93) have been prepared by arc melting followed by annealing at 250, 350 and 450 C up to 30 days in vacuum-sealed quartz vials. Extension of the homogeneity region, solidus temperatures and structural investigations were performed for the skutterudite phase in the ternary Ni Sn Sb and in the quaternary Ba Ni Sb Sn systems. Phase equilibria in the Ni Sn Sb system at 450 C were established by means of Electron Probe Microanalysis (EPMA) and X-ray Powder Diffraction (XPD). With rather small cages Ni4(Sb,Sn)12, the Ba Ni Sn Sb skutterudite system ismore » perfectly suited to study the influence of filler atoms on the phonon thermal conductivity. Single-phase samples with the composition Ni4Sb8.2Sn3.8, Ba0.42Ni4Sb8.2Sn3.8 and Ba0.92Ni4Sb6.7Sn5.3 were used to measure their physical properties, i.e. temperature dependent electrical resistivity, Seebeck coefficient and thermal conductivity. The resistivity data demonstrate a crossover from metallic to semiconducting behaviour. The corresponding gap width was extracted from the maxima in the Seebeck coefficient data as a function of temperature. Single crystal X-ray structure analyses at 100, 200 and 300 K revealed the thermal expansion coefficients as well as Einstein and Debye temperatures for Ba0.73Ni4Sb8.1Sn3.9 and Ba0.95Ni4Sb6.1Sn5.9. These data were in accordance with the Debye temperatures obtained from the specific heat (4.4 K < T < 140 K) and M ssbauer spectroscopy (10 K < T < 290 K). Rather small atom displacement parameters for the Ba filler atoms indicate a severe reduction in the rattling behaviour consistent with the high levels of lattice thermal conductivity. The elastic moduli, collected from Resonant Ultrasonic Spectroscopy ranged from 100 GPa for Ni4Sb8.2Sn3.8 to 116 GPa for Ba0.92Ni4Sb6.7Sn5.3. The thermal expansion coefficients were 11.8 10 6 K 1 for Ni4Sb8.2Sn3.8 and 13.8 10 6 K 1 for Ba0.92Ni4Sb6.7Sn5.3. The room temperature Vickers hardness values

  1. Electron-phonon interaction and thermal boundary resistance at the crystal-amorphous interface of the phase change compound GeTe

    SciTech Connect

    Campi, Davide; Bernasconi, Marco; Donadio, Davide; Sosso, Gabriele C.; Behler, Jörg

    2015-01-07

    Phonon dispersion relations and electron-phonon coupling of hole-doped trigonal GeTe have been computed by density functional perturbation theory. This compound is a prototypical phase change material of interest for applications in phase change non-volatile memories. The calculations allowed us to estimate the electron-phonon contribution to the thermal boundary resistance at the interface between the crystalline and amorphous phases present in the device. The lattice contribution to the thermal boundary resistance has been computed by non-equilibrium molecular dynamics simulations with an interatomic potential based on a neural network scheme. We find that the electron-phonon term contributes to the thermal boundary resistance to an extent which is strongly dependent on the concentration and mobility of the holes. Further, for measured values of the holes concentration and electrical conductivity, the electron-phonon term is larger than the contribution from the lattice. It is also shown that the presence of Ge vacancies, responsible for the p-type degenerate character of the semiconductor, strongly affects the lattice thermal conductivity of the crystal.

  2. Electron-phonon interaction and thermal boundary resistance at the crystal-amorphous interface of the phase change compound GeTe

    NASA Astrophysics Data System (ADS)

    Campi, Davide; Donadio, Davide; Sosso, Gabriele C.; Behler, Jörg; Bernasconi, Marco

    2015-01-01

    Phonon dispersion relations and electron-phonon coupling of hole-doped trigonal GeTe have been computed by density functional perturbation theory. This compound is a prototypical phase change material of interest for applications in phase change non-volatile memories. The calculations allowed us to estimate the electron-phonon contribution to the thermal boundary resistance at the interface between the crystalline and amorphous phases present in the device. The lattice contribution to the thermal boundary resistance has been computed by non-equilibrium molecular dynamics simulations with an interatomic potential based on a neural network scheme. We find that the electron-phonon term contributes to the thermal boundary resistance to an extent which is strongly dependent on the concentration and mobility of the holes. Further, for measured values of the holes concentration and electrical conductivity, the electron-phonon term is larger than the contribution from the lattice. It is also shown that the presence of Ge vacancies, responsible for the p-type degenerate character of the semiconductor, strongly affects the lattice thermal conductivity of the crystal.

  3. Relationship between changes in the crystal lattice strain and thermal conductivity of high burnup UO 2 pellets

    NASA Astrophysics Data System (ADS)

    Amaya, Masaki; Nakamura, Jinichi; Fuketa, Toyoshi; Kosaka, Yuji

    2010-01-01

    Two kinds of disk-shaped UO 2 samples (4 mm in diameter and 1 mm in thickness) were irradiated in a test reactor up to about 60 and 130 GWd/t, respectively. The microstructures of the samples were investigated by means of optical microscopy, scanning electron microscopy/ electron probe micro-analysis (SEM/EPMA) and micro-X-ray diffractometry. The measured lattice parameters tended to be considerably smaller than the reported values, and the typical cauliflower structure which is often observed in high burnup fuel pellet is hardly seen in these samples. Thermal diffusivities of the samples were also measured by using a laser flash method, and their thermal conductivities were evaluated by multiplying the heat capacity of unirradiated UO 2 and sample densities. While the thermal conductivities of sample 2 showed recovery after being annealed at 1500 K, those of sample 4 were not clearly observed even after being annealed at 1500 K. These trends suggest that the amount of accumulated irradiation-induced defects depends on the irradiation condition of each sample. From the comparison of the changes in the lattice parameter and strain energy density before and after the thermal diffusivity measurements, it is likely that the thermal conductivity recovery in the temperature region from 1200 to 1500 K is related to the migration of dislocation.

  4. First-Principles Prediction of Ultralow Lattice Thermal Conductivity of Dumbbell Silicene: A Comparison with Low-Buckled Silicene.

    PubMed

    Peng, Bo; Zhang, Hao; Shao, Hezhu; Xu, Yuanfeng; Zhang, Rongjun; Lu, Hongliang; Zhang, David Wei; Zhu, Heyuan

    2016-08-17

    The dumbbell structure of two-dimensional group IV material offers alternatives to grow thin films for diverse applications. Thermal properties are important for these applications. We obtain the lattice thermal conductivity of low-buckled (LB) and dumbbell (DB) silicene by using first-principles calculations and the Boltzmann transport equation for phonons. For LB silicene, the calculated lattice thermal conductivity with naturally occurring isotope concentrations is 27.72 W/mK. For DB silicene, the calculated value is 2.86 W/mK. The thermal conductivity for DB silicene is much lower than LB silicene due to stronger phonon scattering. Our results will induce further theoretical and experimental investigations on the thermoelectric (TE) properties of DB silicene. The size-dependent thermal conductivity in both LB and DB silicene is investigated as well for designing TE devices. This work sheds light on the manipulation of phonon transport in two-dimensional group IV materials by dumbbell structure formed from the addition of adatoms. PMID:27460331

  5. Massively parallel sampling of lattice proteins reveals foundations of thermal adaptation

    NASA Astrophysics Data System (ADS)

    Venev, Sergey V.; Zeldovich, Konstantin B.

    2015-08-01

    Evolution of proteins in bacteria and archaea living in different conditions leads to significant correlations between amino acid usage and environmental temperature. The origins of these correlations are poorly understood, and an important question of protein theory, physics-based prediction of types of amino acids overrepresented in highly thermostable proteins, remains largely unsolved. Here, we extend the random energy model of protein folding by weighting the interaction energies of amino acids by their frequencies in protein sequences and predict the energy gap of proteins designed to fold well at elevated temperatures. To test the model, we present a novel scalable algorithm for simultaneous energy calculation for many sequences in many structures, targeting massively parallel computing architectures such as graphics processing unit. The energy calculation is performed by multiplying two matrices, one representing the complete set of sequences, and the other describing the contact maps of all structural templates. An implementation of the algorithm for the CUDA platform is available at http://www.github.com/kzeldovich/galeprot and calculates protein folding energies over 250 times faster than a single central processing unit. Analysis of amino acid usage in 64-mer cubic lattice proteins designed to fold well at different temperatures demonstrates an excellent agreement between theoretical and simulated values of energy gap. The theoretical predictions of temperature trends of amino acid frequencies are significantly correlated with bioinformatics data on 191 bacteria and archaea, and highlight protein folding constraints as a fundamental selection pressure during thermal adaptation in biological evolution.

  6. Anderson lattice in the intermediate valence compound Ce3Ni2B2N3-δ

    NASA Astrophysics Data System (ADS)

    Ali, Tahir; Bauer, Ernst; Hilscher, Gerfried; Michor, Herwig

    2011-03-01

    We have studied magnetic, thermodynamic, and transport properties of Ce3Ni2B2N3-δ and its solid solution with the Tc≃13 K superconductor La3Ni2B2N3-δ. The solid solution (La,Ce)3Ni2B2N3-δ reveals a rapid reduction of Tc by increasing the Ce content with a complete suppression of superconductivity at the composition La2.85Ce0.15Ni2B2N3-δ. The low-temperature properties characterize Ce3Ni2B2N3-δ as an intermediate valence system with a moderately enhanced Sommerfeld value γ≃54 mJ/mol K2 and a susceptibility χ0≃1.6×10-3 emu/mol, increased by about one order of magnitude as compared to the respective value χ0≃0.2×10-3 emu/mol of superconducting La3Ni2B2N3-δ (γ=26 mJ/mol K2) which serves as reference with a nonmagnetic rare earth ion. The electrical resistivity and thermoelectric power of Ce3Ni2B2N3-δ are analyzed in terms of the degenerate Anderson lattice model revealing a characteristic Kondo temperature TKALM~1100 K.

  7. A nonlocal Fourier's law and its application to the heat conduction of one-dimensional and two-dimensional thermal lattices

    NASA Astrophysics Data System (ADS)

    Challamel, Noël; Grazide, Cécile; Picandet, Vincent; Perrot, Arnaud; Zhang, Yingyan

    2016-06-01

    This study focuses on heat conduction in unidimensional lattices also known as microstructured rods. The lattice thermal properties can be representative of concentrated thermal interface phases in one-dimensional segmented rods. The exact solution of the linear time-dependent spatial difference equation associated with the lattice problem is presented for some given initial and boundary conditions. This exact solution is compared to the quasicontinuum approximation built by continualization of the lattice equations. A rational-based asymptotic expansion of the pseudo-differential problem leads to an equivalent nonlocal-type Fourier's law. The differential nonlocal Fourier's law is analysed with respect to thermodynamic models available in the literature, such as the Guyer-Krumhansl-type equation. The length scale of the nonlocal heat law is calibrated with respect to the lattice spacing. An error analysis is conducted for quantifying the efficiency of the nonlocal model to capture the lattice evolution problem, as compared to the local model. The propagation of error with the nonlocal model is much slower than that in its local counterpart. A two-dimensional thermal lattice is also considered and approximated by a two-dimensional nonlocal heat problem. It is shown that nonlocal and continualized heat equations both approximate efficiently the two-dimensional thermal lattice response. These extended continuous heat models are shown to be good candidates for approximating the heat transfer behaviour of microstructured rods or membranes.

  8. Giant Phonon Anharmonicity and Anomalous Pressure Dependence of Lattice Thermal Conductivity in Y2Si2O7 silicate

    PubMed Central

    Luo, Yixiu; Wang, Jiemin; Li, Yiran; Wang, Jingyang

    2016-01-01

    Modification of lattice thermal conductivity (κL) of a solid by means of hydrostatic pressure (P) has been a crucially interesting approach that targets a broad range of advanced materials from thermoelectrics and thermal insulators to minerals in mantle. Although it is well documented knowledge that thermal conductivity of bulk materials normally increase upon hydrostatic pressure, such positive relationship is seriously challenged when it comes to ceramics with complex crystal structure and heterogeneous chemical bonds. In this paper, we predict an abnormally negative trend dκL/dP < 0 in Y2Si2O7 silicate using density functional theoretical calculations. The mechanism is disclosed as combined effects of slightly decreased group velocity and significantly augmented scattering of heat-carrying acoustic phonons in pressured lattice, which is originated from pressure-induced downward shift of low-lying optic and acoustic phonons. The structural origin of low-lying optic phonons as well as the induced phonon anharmonicity is also qualitatively elucidated with respect to intrinsic bonding heterogeneity of Y2Si2O7. The present results are expected to bring deeper insights for phonon engineering and modulation of thermal conductivity in complex solids with diverging structural flexibility, enormous bonding heterogeneity, and giant phonon anharmonicity. PMID:27430670

  9. Giant Phonon Anharmonicity and Anomalous Pressure Dependence of Lattice Thermal Conductivity in Y2Si2O7 silicate

    NASA Astrophysics Data System (ADS)

    Luo, Yixiu; Wang, Jiemin; Li, Yiran; Wang, Jingyang

    2016-07-01

    Modification of lattice thermal conductivity (κL) of a solid by means of hydrostatic pressure (P) has been a crucially interesting approach that targets a broad range of advanced materials from thermoelectrics and thermal insulators to minerals in mantle. Although it is well documented knowledge that thermal conductivity of bulk materials normally increase upon hydrostatic pressure, such positive relationship is seriously challenged when it comes to ceramics with complex crystal structure and heterogeneous chemical bonds. In this paper, we predict an abnormally negative trend dκL/dP < 0 in Y2Si2O7 silicate using density functional theoretical calculations. The mechanism is disclosed as combined effects of slightly decreased group velocity and significantly augmented scattering of heat-carrying acoustic phonons in pressured lattice, which is originated from pressure-induced downward shift of low-lying optic and acoustic phonons. The structural origin of low-lying optic phonons as well as the induced phonon anharmonicity is also qualitatively elucidated with respect to intrinsic bonding heterogeneity of Y2Si2O7. The present results are expected to bring deeper insights for phonon engineering and modulation of thermal conductivity in complex solids with diverging structural flexibility, enormous bonding heterogeneity, and giant phonon anharmonicity.

  10. Giant Phonon Anharmonicity and Anomalous Pressure Dependence of Lattice Thermal Conductivity in Y2Si2O7 silicate.

    PubMed

    Luo, Yixiu; Wang, Jiemin; Li, Yiran; Wang, Jingyang

    2016-01-01

    Modification of lattice thermal conductivity (κL) of a solid by means of hydrostatic pressure (P) has been a crucially interesting approach that targets a broad range of advanced materials from thermoelectrics and thermal insulators to minerals in mantle. Although it is well documented knowledge that thermal conductivity of bulk materials normally increase upon hydrostatic pressure, such positive relationship is seriously challenged when it comes to ceramics with complex crystal structure and heterogeneous chemical bonds. In this paper, we predict an abnormally negative trend dκL/dP < 0 in Y2Si2O7 silicate using density functional theoretical calculations. The mechanism is disclosed as combined effects of slightly decreased group velocity and significantly augmented scattering of heat-carrying acoustic phonons in pressured lattice, which is originated from pressure-induced downward shift of low-lying optic and acoustic phonons. The structural origin of low-lying optic phonons as well as the induced phonon anharmonicity is also qualitatively elucidated with respect to intrinsic bonding heterogeneity of Y2Si2O7. The present results are expected to bring deeper insights for phonon engineering and modulation of thermal conductivity in complex solids with diverging structural flexibility, enormous bonding heterogeneity, and giant phonon anharmonicity. PMID:27430670

  11. Some properties of correlations of quantum lattice systems in thermal equilibrium

    SciTech Connect

    Fröhlich, Jürg; Ueltschi, Daniel

    2015-05-15

    Simple proofs of uniqueness of the thermodynamic limit of KMS states and of the decay of equilibrium correlations are presented for a large class of quantum lattice systems at high temperatures. New quantum correlation inequalities for general Heisenberg models are described. Finally, a simplified derivation of a general result on power-law decay of correlations in 2D quantum lattice systems with continuous symmetries is given, extending results of McBryan and Spencer for the 2D classical XY model.

  12. Thermal properties of quaternary ammonium and pyridinium compounds

    SciTech Connect

    Aksenova, V.P.; Khar'kov, S.N.; Logovotovskaya, V.D.; Belotserkovets, N.I.; Chegolya, A.S.

    1982-12-10

    In the present work an attempt was made at a comprehensive investigation of the influence of the chemical structure of a whole series of cation-active surfactants on the stability to temperature influences, and the general directions of the irreversible transformations at high temperature were established. As a result of a study of processes of thermal decomposition of quaternary ammonium and syridinium salts, quantitative correlations were established according to the influence of the chemical structure of the salts on the limits of thermal stability. On the basis of a detailed analysis of volatile pyrolysis products, concrete schemes of the conversions in the objects studied were proposed.

  13. Generalized Debye-Peierls/Allen-Feldman model for the lattice thermal conductivity of low-dimensional and disordered materials

    NASA Astrophysics Data System (ADS)

    Zhu, Taishan; Ertekin, Elif

    2016-04-01

    We present a generalized model to describe the lattice thermal conductivity of low-dimensional (low-D) and disordered systems. The model is a straightforward generalization of the Debye-Peierls and Allen-Feldman schemes to arbitrary dimensions, accounting for low-D effects such as differences in dispersion, density of states, and scattering. Similar in spirit to the Allen-Feldman approach, heat carriers are categorized according to their transporting capacity as propagons, diffusons, and locons. The results of the generalized model are compared to experimental results when available, and equilibrium molecular dynamics simulations otherwise. The results are in very good agreement with our analysis of phonon localization in disordered low-D systems, such as amorphous graphene and glassy diamond nanothreads. Several unique aspects of thermal transport in low-D and disordered systems, such as milder suppression of thermal conductivity and negligible diffuson contributions, are captured by the approach.

  14. The relationship between bond ionicity, lattice energy, coefficient of thermal expansion and microwave dielectric properties of Nd(Nb(1-x)Sb(x))O4 ceramics.

    PubMed

    Zhang, Ping; Zhao, Yonggui; Wang, Xiuyu

    2015-06-28

    The crystalline structure refinement, chemical bond ionicity, lattice energy and coefficient of thermal expansion were carried out for Nd(Nb(1-x)Sb(x))O4 ceramics with a monoclinic fergusonite structure to investigate the correlations between the crystalline structure, phase stability, bond ionicity, lattice energy, coefficient of thermal expansion, and microwave dielectric properties. The bond ionicity, lattice energy, and coefficient of thermal expansion of Nd(Nb(1-x)Sb(x))O4 ceramics were calculated using a semiempirical method based on the complex bond theory. The phase structure stability varied with the lattice energy which was resulted by the substitution constant of Sb(5+). With the increasing of the Sb(5+) contents, the decrease of Nb/Sb-O bond ionicity was observed, which could be contributed to the electric polarization. The ε(r) had a close relationship with the Nb/Sb-O bond ionicity. The increase of the Q×f and |τ(f)| values could be attributed to the lattice energy and the coefficient of thermal expansion. The microwave dielectric properties of Nd(Nb(1-x)Sb(x))O4 ceramics with the monoclinic fergusonite structure were strongly dependent on the chemical bond ionicity, lattice energy and coefficient of thermal expansion. PMID:25997635

  15. Friction, wear, and thermal stability studies of some organotin and organosilicon compounds

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1973-01-01

    Thermal decomposition temperatures were determined for a number of organotin and organosilicon compounds. A ball-on-disk sliding friction apparatus was used to determine the friction and wear characteristics of two representative compounds, (1) 3-tri-n-butylstannyl (diphenyl) and (2) 3-tri-n-butylsilyl (diphenyl). Friction and wear test conditions included a 1-kg load, 25 to 225 C disk temperatures, and a dry air atmosphere. The tin and silicon compounds yielded friction and wear results either lower than or similar to those obtained with a polyphenyl ether and a C-ether. The maximum thermal decomposition temperatures obtained in the silicon and tin series were 358 and 297 C, respectively. Increasing the steric hindrance around the silicon or tin atoms increased the thermal stability. Future work with these compounds will emphasize their use as antiwear additives rather than base fluids.

  16. The Role of Lattice Dynamics on The Thermal Properties of Cu-Ni Alloys

    NASA Astrophysics Data System (ADS)

    Onat, Berk; Durukanoglu, Sondan

    2014-03-01

    We have investigated Cu-Ni alloys with both disorder and order phases in fcc structures to analyze the effect of temperature dependent vibrational thermodynamical properties. The interactions between the atoms in the model systems are defined using an EAM type potential, specifically developed for Cu-Ni alloys. Vibrational thermodynamic functions are determined within the harmonic approximation of lattice dynamics and the vibrational densities of states are calculated using real space Green's function technique. In addition, through ab-initio calculations we have estimated the electronic contributions to set the ground for a comparative discussion. Our results show that the overall characteristics of thermodynamic functions of Cu-Ni alloys of varying concentrations are governed by the lattice vibrations. We will present our results for free energy, heat capacity and entropy of ordered/disordered Cu-Ni alloys with the experimental findings and discuss the electronic, anharmonic and lattice dynamic contributions.

  17. Spin-glass-like behavior and negative thermal expansion in antiperovskite Mn{sub 3}Ni{sub 1−x}Cu{sub x}N compounds

    SciTech Connect

    Ding, Lei; Wang, Cong Sun, Ying; Colin, Claire V.; Chu, Lihua

    2015-06-07

    The Cu-doping effect on the lattice and magnetic properties in Mn{sub 3}Ni{sub 1−x}Cu{sub x}N (x = 0, 0.3, 0.5, 0.7, 1.0) was extensively investigated. We observed that the Cu-doping at the Ni site complicated the magnetic ground states, which induced the competition of antiferromagnetic and ferromagnetic interactions. Spin-glass-like behavior, arising from possible site-randomness and competing interactions of magnetism, was observed in compounds with x = 0.3, 0.5, and 0.7, and typically discussed by means of the measurement of ac magnetic susceptibility for x = 0.7. The negative thermal expansion (NTE) behavior, due to the magnetic ordering transition, was observed in Mn{sub 3}Ni{sub 1−x}Cu{sub x}N compounds using variable temperature x-ray diffraction. It reveals that the introduction of Cu effectively broadens the temperature range displaying negative thermal expansion. The relationship between the local lattice distortion and the competing magnetic ground states might play an important role in broadening the NTE temperature range in this antiperovskite compound.

  18. Characterization of radiation-induced lattice vacancies in intermetallic compounds by means of positron-lifetime studies

    NASA Astrophysics Data System (ADS)

    Würschum, R.; Badura-Gergen, K.; Kümmerle, E. A.; Grupp, C.; Schaefer, H.-E.

    1996-07-01

    In the present paper a characterization of atomic vacancies in intermetallic compounds is given by means of positron-lifetime measurements after electron irradiation and comparison with the states after preparation, after long-time annealing, or in high-temperature equilibrium. In TiAl, Ti3Al, and Ni3Al no structural vacancies (detection limit CV=10-6) are observed at ambient temperature. This confirms that in these compounds slight deviations from stoichiometry are compensated by antisite atoms. In the Al-poor B2 alloys FeAl and NiAl, on the other hand, remnant vacancies exist due to the high thermal equilibrium vacancy concentrations and their slow diffusivities. The kinetics of vacancy elimination in FeAl and NiAl is discussed. A substantial temperature dependence of the positron lifetime in vacancies is detected in close-packed intermetallics which is attributed to an increased atomic relaxation or partial positron detrapping at high temperatures. In contrast to that, the temperature dependence of the positron lifetime in vacancies is small in the open-structured B2 aluminides. The lifetimes τf of free delocalized positrons in transition-metal aluminides and in NiZr and NiTi can be correlated to those of the pure components, taking into account the densities of valence electrons. For the positron lifetimes τ1 of vacancies in intermetallic compounds, values of τ1/τf=1.5-1.7 are observed similar as in the pure metals. Annealing studies of B2-FeAl after electron irradiation yield time constants for the disappearance of vacancies identical to those deduced recently for the equilibration of thermal vacancies. In electron-irradiated Ti aluminides annealing processes at 250 K and 450 K are observed where the latter process is tentatively attributed to long-range migration of vacancies.

  19. Antiferromagnetic Kondo lattice in the layered compounds Re2NiGa9Ge2 (Re =Ce, Pr, Sm)

    NASA Astrophysics Data System (ADS)

    Zhu, Yanglin; Liu, Jinyu; Hu, Jin; Adams, Daniel; Spinu, Leonard; Mao, Zhiqiang

    Intermetallic compounds containing rare-earth/actinide elements with 4f/5f electrons have formed a special family of strongly correlated materials, i.e. heavy fermion systems. We have recently found a new layered rare earth intermetallic system showing moderate heavy fermion behavior: Re2NiGa9Ge2 (Re =Ce, Sm, Pr). The Re =Ce and Sm members were previously synthesized, while their electronic properties have not been reported. We have recently grown single crystals of Re2NiGa9Ge2 (Re =Ce, Sm, Pr) and characterized their electronic and magnetic properties. We find all these materials are antiferromagnetic, with TN = 2.5 K, 5 K, 3.4 K respectively for Re =Ce, Pr and Sm. Moreover, they also exhibit large values of electronic specific coefficient: γ ~ 101 mJ mol-Ce-1 K-2 for Re =Ce, 368 mJ mol-Pr-1 K-2 for Re =Pr, and 196.4 mJ mol-Sm-1 K-2 for Re =Sm, indicating enhanced Kondo effect and the presence of AFM Kondo lattice. Our findings suggest that Re2NiGa9Ge2 (Re =Ce, Pr, Sm) could be interesting candidate materials for exploring novel exotic properties of correlated electrons through external parameter tuning such as chemical substitution and pressure.

  20. Effects of molecular and lattice structure on the thermal behaviours of some long chain length potassium(I) n-alkanoates

    NASA Astrophysics Data System (ADS)

    Nelson, Peter N.; Ellis, Henry A.; Taylor, Richard A.

    2014-01-01

    Lattice structures and thermal behaviours for some long chain potassium carboxylates (nc = 8-18, inclusive) are investigated using Fourier Transform Infrared spectroscopy, X-ray Powder Diffraction, Solid State spin decoupled 13C NMR spectroscopy, Differential Scanning Calorimetry and Thermogravimetry. The measurements show that the carboxyl groups are coordinated to potassium atoms via asymmetric chelating bidentate bonding, with extensive carboxyl intermolecular interactions to yield tetrahedral metal centers, irrespective of chain length. Furthermore, the hydrocarbon chains are crystallized in the fully extended all-trans configuration and are arranged as non-overlapping lamellar bilayer structures with closely packed methyl groups from opposite layers. Additionally, odd-even alternation, observed in density and methyl group chemical shift, is ascribed to the relative vertical distances between layers in the bilayer, that are not in the same plane. Therefore, for even chain homologues, where this distances is less than for odd chain adducts, more intimate packing is indicated. The phase sequences for all compounds show several reversible crystal-crystal transition associated with kinetically controlled gauche-trans isomerism of the polymethylene chains which undergo incomplete fusion when heated to the melt. The compounds degrade above 785 K to yield carbon dioxide, water, potassium oxide and an alkene.

  1. Lattice Thermal Conductivity of Ultra High Temperature Ceramics (UHTC) ZrB2 and HfB2 from Atomistic Simulations

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Daw, Murray S.; Bauschlicher, Charles W.

    2012-01-01

    Ultra high temperature ceramics (UHTC) including ZrB2 and HfB2 have a number of properties that make them attractive for applications in extreme environments. One such property is their high thermal conductivity. Computational modeling of these materials will facilitate understanding of fundamental mechanisms, elucidate structure-property relationships, and ultimately accelerate the materials design cycle. Progress in computational modeling of UHTCs however has been limited in part due to the absence of suitable interatomic potentials. Recently, we developed Tersoff style parameterizations of such potentials for both ZrB2 and HfB2 appropriate for atomistic simulations. As an application, Green-Kubo molecular dynamics simulations were performed to evaluate the lattice thermal conductivity for single crystals of ZrB2 and HfB2. The atomic mass difference in these binary compounds leads to oscillations in the time correlation function of the heat current, in contrast to the more typical monotonic decay seen in monoatomic materials such as Silicon, for example. Results at room temperature and at elevated temperatures will be reported.

  2. Non-Newtonian unconfined flow and heat transfer over a heated cylinder using the direct-forcing immersed boundary-thermal lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Amiri Delouei, A.; Nazari, M.; Kayhani, M. H.; Succi, S.

    2014-05-01

    In this study, the immersed boundary-thermal lattice Boltzmann method has been used to simulate non-Newtonian fluid flow over a heated circular cylinder. The direct-forcing algorithm has been employed to couple the off-lattice obstacles and on-lattice fluid nodes. To investigate the effect of boundary sharpness, two different diffuse interface schemes are considered to interpolate the velocity and temperature between the boundary and computational grid points. The lattice Boltzmann equation with split-forcing term is applied to consider the effects of the discrete lattice and the body force to the momentum flux, simultaneously. A method for calculating the Nusselt number based on diffuse interface schemes is developed. The rheological and thermal properties of non-Newtonian fluids are investigated under the different power-law indices and Reynolds numbers. The effect of numerical parameters on the accuracy of the proposed method has been investigated in detail. Results show that the rheological and thermal properties of non-Newtonian fluids in the presence of a heated immersed body can be suitably captured using the immersed boundary thermal lattice Boltzmann method.

  3. Thermal Cycling Effects on the Thermoelectric Properties of n-Type In, Ce based Skutterudite Compounds

    SciTech Connect

    Biswas, Krishnendu; Subramanian, Mas A.; Good, Morris S.; Roberts, Kamandi C.; Hendricks, Terry J.

    2012-06-14

    N-type In-filled CoSb3 are known skutterudite compounds that have shown promising thermoelectric (TE) properties resulting in high dimensionless figure of merit values at elevated temperatures. Their use in various waste heat recovery applications will require that they survive and operate after exposure to harsh thermal cycling environments. This research focused on uncovering the thermal cycling effects on thermoelectric properties of n-type In0.2Co4Sb12 and In0.2Ce0.15Co4Sb12 skutterudite compositions as well as quantifying their temperature-dependent structural properties (elastic modulus, shear modulus, and Poisson's ratio). It was observed that the Seebeck coefficient and resistivity increased only slightly in the double-filled In,Ce skutterudite materials upon thermal cycling. In the In-filled skutterudites the Seebeck coefficient remained approximately the same on thermal cycling, while electrical resistivity increased significantly after thermal cycling. Results also show that thermal conductivity marginally decreases in the case of In-filled skutterudites, whereas the reduction is more pronounced in In, Ce-based skutterudite compounds. The possible reason for this kind of reduction can be attributed to grain pinning effects due to formation of nano inclusions. High temperature structural property measurements (i.e., Young's modulus and shear modulus) are also reported and the results show that these structural properties decrease slowly as temperature increases and the compounds are structurally stable after numerous thermal cycles.

  4. Coupled theoretical interpretation and experimental investigation of the lattice thermal conductivity of Bi2Te3 single crystal

    NASA Astrophysics Data System (ADS)

    Jacquot, A.; Bayer, B.; Winkler, M.; Jaegle, M.

    2012-06-01

    An essential challenge in thermoelectric material research is the selection of materials having potentially a high figure-of-merit and their improvement by the reduction of their lattice thermal conductivity. In the present article the Debye model is modified for the calculation of the lattice thermal conductivity and used to gain insight into the anisotropy of single crystalline bismuth telluride (Bi2Te3). In this article the minimum wavelength of phonons that moved, which is closely related to the concept of cutoff frequency, is not taken twice the atoms separation. The Debye temperature is in fact not used to estimate the cutoff frequencies of the phonons that carry heat. The cutoff frequencies are defined in this work by setting an upper limit to the energy of acoustic phonons using the complete dispersion relations. Our work indicates that the cutoff frequencies of acoustic phonons are anisotropic in Bi2Te3. The anisotropy of the thermal conductivity is surprisingly found to be unrelated to the anisotropy of the sound velocities that are calculated as a function of the tensor of the elastic constants. The sound velocity is in fact almost isotropic when the longitudinal and two transversal waves are added together. In addition it is suggested that the relaxation time is also a function of the cutoff frequencies and that this may counterbalance the anisotropy arising from the variation of the number of acoustic phonons traveling in various directions. Finally, the anisotropy of the thermal conductivity of Bi2Te3 single crystal is found to be mostly related to the Grüneisen's constant if the main scattering mechanism is a phonon-phonon interaction.

  5. Cryogenic abnormal thermal expansion properties of carbon-doped La(Fe,Si)13 compounds.

    PubMed

    Li, Shaopeng; Huang, Rongjin; Zhao, Yuqiang; Wang, Wei; Li, Laifeng

    2015-12-14

    Recently, La(Fe,Si)13-based compounds have attracted much attention due to their isotropic and tunable abnormal thermal expansion (ATE) properties as well as bright prospects for practical applications. In this research, we have prepared cubic NaZn13-type carbon-doped La(Fe,Si)13 compounds by the arc-melting method, and their ATE and magnetic properties were investigated by means of variable-temperature X-ray diffraction, strain gauge and the physical property measurement system (PPMS). The experimental results indicate that both micro and macro negative thermal expansion (NTE) behaviors gradually weaken with the increase of interstitial carbon atoms. Moreover, the temperature region with the most remarkable NTE properties has been broadened and near zero thermal expansion (NZTE) behavior occurs in the bulk carbon-doped La(Fe,Si)13 compounds. PMID:26549525

  6. The impact of milling and thermal processing on phenolic compounds in cereal grains.

    PubMed

    Ragaee, Sanaa; Seetharaman, Koushik; Abdel-Aal, El-Sayed M

    2014-01-01

    Consumption of wholegrain foods has been recommended for healthy diets. The beneficial health properties of wholegrain products have been associated with the presence of higher amounts of dietary fiber and antioxidants and lower calories as compared to their respective refined ones. Phenolic compounds are mainly attributed to antioxidant properties of wholegrain foods. This review article provides a single comprehensive source that describes effects of milling and thermal processing on phenolic compounds and antioxidant properties in cereals. In general, milling and pearling processes affect the distribution of phenolic, compounds and thus antioxidant properties vary among the milling fractions. Thermal processes such as baking and extrusion could cause negative or positive effects on phenolic compounds and antioxidant properties of the end product subject to grain type and processing conditions. Thus factors that enhance health benefits of wholegrain cereal products have been discussed. PMID:24499063

  7. Nematic order by thermal disorder in a three-dimensional lattice spin model with dipolarlike interactions.

    PubMed

    Chamati, Hassan; Romano, Silvano

    2014-08-01

    At low temperatures, some lattice spin models with simple ferromagnetic or antiferromagnetic interactions (for example, nearest-neighbor interaction being isotropic in spin space on a bipartite three-dimensional lattice) produce orientationally ordered phases exhibiting nematic (second-rank) order, in addition to the primary first-rank one; on the other hand, in the literature, they have been rather seldom investigated in this respect. Here we study the thermodynamic properties of a three-dimensional model with dipolar-like interaction. Its ground state is found to exhibit full orientational order with respect to a suitably defined staggered magnetization (polarization), but no nematic second-rank order. Extensive Monte Carlo simulations, in conjunction with finite-size scaling analysis, have been used for characterizing its critical behavior; on the other hand, it has been found that nematic order does indeed set in at low temperatures, via a mechanism of order by disorder. PMID:25215748

  8. Application of Artificial Neural Networks in Differential Thermal Analysis of Inorganic Compounds

    NASA Astrophysics Data System (ADS)

    Ilgun, Ozlem; Beken, Murat; Alekberov, Vilayet; Ozcanli, Yesim

    2010-01-01

    Thermal decomposition of inorganic compounds have been analyzed by simultaneous differential thermal analysis (DTA) method. Also phase transitions and critical points have been investigated. Additionally a computer model based on backpropagation multilayer feed-forward artificial neural networks (ANNs) have been used for the stimulation and prediction of critical points and phase transitions of inorganic compounds. Experimental data and output values of artificial neural networks have been compared and ANN predictions showed a considerably good result due to some unjustified data values and ANN predictions concurred with each other.

  9. First principles calculation of lattice thermal conductivity of metals considering phonon-phonon and phonon-electron scattering

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Lu, Zexi; Ruan, Xiulin

    2016-06-01

    The effect of phonon-electron (p-e) scattering on lattice thermal conductivity is investigated for Cu, Ag, Au, Al, Pt, and Ni. We evaluate both phonon-phonon (p-p) and p-e scattering rates from first principles and calculate the lattice thermal conductivity (κL). It is found that p-e scattering plays an important role in determining the κL of Pt and Ni at room temperature, while it has negligible effect on the κL of Cu, Ag, Au, and Al. Specifically, the room temperature κLs of Cu, Ag, Au, and Al predicted from density-functional theory calculations with the local density approximation are 16.9, 5.2, 2.6, and 5.8 W/m K, respectively, when only p-p scattering is considered, while it is almost unchanged when p-e scattering is also taken into account. However, the κL of Pt and Ni is reduced from 7.1 and 33.2 W/m K to 5.8 and 23.2 W/m K by p-e scattering. Even though Al has quite high electron-phonon coupling constant, a quantity that characterizes the rate of heat transfer from hot electrons to cold phonons in the two-temperature model, p-e scattering is not effective in reducing κL owing to the relatively low p-e scattering rates in Al. The difference in the strength of p-e scattering in different metals can be qualitatively understood by checking the amount of electron density of states that is overlapped with the Fermi window. Moreover, κL is found to be comparable to the electronic thermal conductivity in Ni.

  10. Thermal properties of carbon-boron-titanium compounds as plasma facing materials

    NASA Astrophysics Data System (ADS)

    Tanabe, T.; Baba, T.; Ono, A.; Fujitsuka, M.; Shikama, T.; Shinno, H.

    1992-09-01

    The carbon-boron-titanium compounds were synthesized by hot press and subsequent HIP (high temperature isostatic press) treatment. The thermal diffusivity of the compounds was measured by the advanced laser-flash technique, and the heat-load shock resistance was evaluated with a low energy and high current electron beam. The obtained results were analyzed as a function of chemical composition of the compounds. The so-called gradient material was formed to attempt to improve the heat-load shock resistance.

  11. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics--a Comparative Study with Gallium Nitride.

    PubMed

    Wu, Xufei; Lee, Jonghoon; Varshney, Vikas; Wohlwend, Jennifer L; Roy, Ajit K; Luo, Tengfei

    2016-01-01

    Wurtzite Zinc-Oxide (w-ZnO) is a wide bandgap semiconductor that holds promise in power electronics applications, where heat dissipation is of critical importance. However, large discrepancies exist in the literature on the thermal conductivity of w-ZnO. In this paper, we determine the thermal conductivity of w-ZnO using first-principles lattice dynamics and compare it to that of wurtzite Gallium-Nitride (w-GaN)--another important wide bandgap semiconductor with the same crystal structure and similar atomic masses as w-ZnO. However, the thermal conductivity values show large differences (400 W/mK of w-GaN vs. 50 W/mK of w-ZnO at room temperature). It is found that the much lower thermal conductivity of ZnO originates from the smaller phonon group velocities, larger three-phonon scattering phase space and larger anharmonicity. Compared to w-GaN, w-ZnO has a smaller frequency gap in phonon dispersion, which is responsible for the stronger anharmonic phonon scattering, and the weaker interatomic bonds in w-ZnO leads to smaller phonon group velocities. The thermal conductivity of w-ZnO also shows strong size effect with nano-sized grains or structures. The results from this work help identify the cause of large discrepancies in w-ZnO thermal conductivity and will provide in-depth understanding of phonon dynamics for the design of w-ZnO-based electronics. PMID:26928396

  12. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics - a Comparative Study with Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Wu, Xufei; Lee, Jonghoon; Varshney, Vikas; Wohlwend, Jennifer L.; Roy, Ajit K.; Luo, Tengfei

    2016-03-01

    Wurtzite Zinc-Oxide (w-ZnO) is a wide bandgap semiconductor that holds promise in power electronics applications, where heat dissipation is of critical importance. However, large discrepancies exist in the literature on the thermal conductivity of w-ZnO. In this paper, we determine the thermal conductivity of w-ZnO using first-principles lattice dynamics and compare it to that of wurtzite Gallium-Nitride (w-GaN) - another important wide bandgap semiconductor with the same crystal structure and similar atomic masses as w-ZnO. However, the thermal conductivity values show large differences (400 W/mK of w-GaN vs. 50 W/mK of w-ZnO at room temperature). It is found that the much lower thermal conductivity of ZnO originates from the smaller phonon group velocities, larger three-phonon scattering phase space and larger anharmonicity. Compared to w-GaN, w-ZnO has a smaller frequency gap in phonon dispersion, which is responsible for the stronger anharmonic phonon scattering, and the weaker interatomic bonds in w-ZnO leads to smaller phonon group velocities. The thermal conductivity of w-ZnO also shows strong size effect with nano-sized grains or structures. The results from this work help identify the cause of large discrepancies in w-ZnO thermal conductivity and will provide in-depth understanding of phonon dynamics for the design of w-ZnO-based electronics.

  13. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics – a Comparative Study with Gallium Nitride

    PubMed Central

    Wu, Xufei; Lee, Jonghoon; Varshney, Vikas; Wohlwend, Jennifer L.; Roy, Ajit K.; Luo, Tengfei

    2016-01-01

    Wurtzite Zinc-Oxide (w-ZnO) is a wide bandgap semiconductor that holds promise in power electronics applications, where heat dissipation is of critical importance. However, large discrepancies exist in the literature on the thermal conductivity of w-ZnO. In this paper, we determine the thermal conductivity of w-ZnO using first-principles lattice dynamics and compare it to that of wurtzite Gallium-Nitride (w-GaN) – another important wide bandgap semiconductor with the same crystal structure and similar atomic masses as w-ZnO. However, the thermal conductivity values show large differences (400 W/mK of w-GaN vs. 50 W/mK of w-ZnO at room temperature). It is found that the much lower thermal conductivity of ZnO originates from the smaller phonon group velocities, larger three-phonon scattering phase space and larger anharmonicity. Compared to w-GaN, w-ZnO has a smaller frequency gap in phonon dispersion, which is responsible for the stronger anharmonic phonon scattering, and the weaker interatomic bonds in w-ZnO leads to smaller phonon group velocities. The thermal conductivity of w-ZnO also shows strong size effect with nano-sized grains or structures. The results from this work help identify the cause of large discrepancies in w-ZnO thermal conductivity and will provide in-depth understanding of phonon dynamics for the design of w-ZnO-based electronics. PMID:26928396

  14. Thermal lens and all optical switching of new organometallic compound doped polyacrylamide gel

    NASA Astrophysics Data System (ADS)

    Badran, Hussain Ali

    In this work thermal lens spectrometry (TLS) is applied to investigate the thermo-optical properties of new organometallic compound containing azomethine group, Dichloro bis [2-(2-hydroxybenzylideneamino)-5-methylphenyl] telluride platinum(II), doped polyacrylamide gel using transistor-transistor logic (TTL) modulated cw 532 nm laser beam as an excitation beam modulated at 10 Hz frequency and probe beam wavelength 635 nm at 14 mW. The technique is applied to determine the thermal diffusivities, ds/dT and the linear thermal expansion coefficient of the sample. All-optical switching effects with low background and high stability are demonstrated.

  15. Effects of guest atomic species on the lattice thermal conductivity of type-I silicon clathrate studied via classical molecular dynamics

    NASA Astrophysics Data System (ADS)

    Kumagai, Tomohisa; Nakamura, Kaoru; Yamada, Susumu; Ohnuma, Toshiharu

    2016-08-01

    The effects of guest atomic species in Si clathrates on the lattice thermal conductivity were studied using classical molecular dynamics calculations. The interaction between a host atom and a guest atom was described by the Morse potential function while that between host atoms was described by the Tersoff potential. The parameters of the potentials were newly determined for this study such that the potential curves obtained from first-principles calculations for the insertion of a guest atom into a Si cage were successfully reproduced. The lattice thermal conductivities were calculated by using the Green-Kubo method. The experimental lattice thermal conductivity of Ba8Ga16Si30 can be successfully reproduced using the method. As a result, the lattice thermal conductivities of type-I Si clathrates, M8Si46 (M = Na, Mg, K, Ca Rb, Sr, Cs, or Ba), were obtained. It is found that the lattice thermal conductivities of M8Si46, where M is IIA elements (i.e., M = Mg, Ca, Sr, or Ba) tend to be lower than those of M8Si46, where M is IA elements (i.e., M = Na, K, Rb, or Cs). Those of mM8Si46, where m was artificially modified atomic weight were also obtained. The obtained lattice thermal conductivity can be regarded as a function of a characteristic frequency, fc. That indicates minimum values around fc=2-4 THz, which corresponds to the center of the frequencies of the transverse acoustic phonon modes associated with Si cages.

  16. Large tunability of lattice thermal conductivity of monolayer silicene via mechanical strain

    NASA Astrophysics Data System (ADS)

    Xie, Han; Ouyang, Tao; Germaneau, Éric; Qin, Guangzhao; Hu, Ming; Bao, Hua

    2016-02-01

    Strain engineering is one of the most promising and effective routes toward continuously tuning the electronic and optic properties of materials, while thermal properties are generally believed to be insensitive to mechanical strain. In this paper, the strain-dependent thermal conductivity of monolayer silicene under uniform biaxial tension is computed by solving the phonon Boltzmann transport equation with interatomic force constants extracted from first-principles calculations. Unlike the commonly believed understanding that thermal conductivity only slightly decreases with increased tensile strain for bulk materials, it is found that the thermal conductivity of silicene can increase dramatically with strain. Depending on the size, the maximum thermal conductivity of strained silicene can be a few times higher than that of the unstrained case. Such an unusual strain dependence is mainly attributed to the dramatic enhancement in the acoustic phonon lifetime. Such enhancement plausibly originates from the flattening of the buckling of the silicene structure upon stretching, which is unique for silicene as compared with other common two-dimensional materials. Our findings offer perspectives on modulating the thermal properties of low-dimensional structures for applications such as thermoelectrics, thermal circuits, and nanoelectronics.

  17. Thermal expansion of supported and freestanding graphene: lattice constant versus interatomic distance.

    PubMed

    Pozzo, Monica; Alfè, Dario; Lacovig, Paolo; Hofmann, Philip; Lizzit, Silvano; Baraldi, Alessandro

    2011-04-01

    By using ab initio molecular dynamics calculations, we show that even where the graphene lattice constant contracts, as previously reported for freestanding graphene below room temperature, the average carbon-carbon distance increases with temperature, in both free and supported graphene. This results in a larger corrugation at higher temperature, which can affect the interaction between graphene and the supporting substrate. For a weakly interacting system as graphene/Ir(111), we confirm the results using an experimental approach which gives direct access to interatomic distances. PMID:21517393

  18. GC/FT-IR ANALYSIS OF THE THERMALLY LABILE COMPOUND TRIS (2,3-DIBROMOPROPYL) PHOSPHATE

    EPA Science Inventory

    A fast and convenient GC method has been developed for a compound [tris(2,3-dibromopropyl)phosphate] that poses a difficult analytical problem for both GC (thermal instability/low volatility) and LC (not amenable to commonly available, sensitive detectors) analysis. his method em...

  19. Thermoelectric Properties of Silicon Germanium: An Investigation of the Reduction of Lattice Thermal Conductivity and Enhancement of Power Factor

    NASA Astrophysics Data System (ADS)

    Lahwal, Ali Sadek

    Thermoelectric materials are of technological interest owing to their ability of direct thermal-to-electrical energy conversion. In thermoelectricity, thermal gradients can be used to generate an electrical power output. Recent efforts in thermoelectrics are focused on developing higher efficient power generation materials. In this dissertation, the overall goal is to investigate both the n-type and p-type of the state of the art thermoelectric material, silicon germanium (SiGe), for high temperature power generation. Further improvement of thermoelectric performance of Si-Ge alloys hinges upon how to significantly reduce the as yet large lattice thermal conductivity, and optimizing the thermoelectric power factor PF. Our methods, in this thesis, will be into two different approaches as follow: The first approach is manipulating the lattice thermal conductivity of n and p-type SiGe alloys via direct nanoparticle inclusion into the n-type SiGe matrix and, in a different process, using a core shell method for the p-type SiGe. This approach is in line with the process of in-situ nanocomposites. Nanocomposites have become a new paradigm for thermoelectric research in recent years and have resulted in the reduction of thermal conductivity via the nano-inclusion and grain boundary scattering of heat-carrying phonons. To this end, a promising choice of nano-particle to include by direct mixing into a SiGe matrix would be Yttria Stabilized Zirconia ( YSZ). In this work we report the preparation and thermoelectric study of n-type SiGe + YSZ nanocomposites prepared by direct mechanical mixing followed by Spark Plasma Sintering (SPS) processing. Specifically, we experimentally investigated the reduction of lattice thermal conductivity (kappaL) in the temperature range (30--800K) of n-type Si 80Ge20P2 alloys with the incorporation of YSZ nanoparticles (20 ˜ 40 nm diameter) into the Si-Ge matrix. These samples synthesized by SPS were found to have densities > 95% of the

  20. Optic phonon bandwidth and lattice thermal conductivity: The case of L i2X (X =O , S, Se, Te)

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Lindsay, L.; Parker, D. S.

    2016-06-01

    We examine the lattice thermal conductivities (κl) of L i2X (X =O ,S ,Se ,Te ) using a first-principles Peierls-Boltzmann transport methodology. We find low κl values ranging between 12 and 30 W m-1K-1 despite light Li atoms, a large mass difference between constituent atoms, and tightly bunched acoustic branches, all features that give high κl in other materials including BeSe (630 W m-1K-1 ), BeTe (370 W m-1K-1 ), and cubic BAs (3170 W m-1K-1 ). Together these results suggest a missing ingredient in the basic guidelines commonly used to understand and predict κl. Unlike typical simple systems (e.g., Si, GaAs, SiC), the dominant resistance to heat-carrying acoustic phonons in L i2Se and L i2Te comes from interactions of these modes with two optic phonons. These interactions require significant bandwidth and dispersion of the optic branches, both present in L i2X materials. These considerations are important for the discovery and design of new materials for thermal management applications and give a more comprehensive understanding of thermal transport in crystalline solids.

  1. Optic phonon bandwidth and lattice thermal conductivity: The case of Li2X ( X=O , S, Se, Te)

    DOE PAGESBeta

    Mukhopadhyay, S.; Lindsay, L.; Parker, D. S.

    2016-06-07

    Here, we examine the lattice thermal conductivities ( l) of Li2X (X=O, S, Se, Te) using a first-principles Peierls-Boltzmann transport methodology. We find low l values ranging between 12 and 30 W/m-K despite light Li atoms, a large mass difference between constituent atoms and tightly bunched acoustic branches, all features that give high l in other materials including BeSe (630 W/m-1K-1), BeTe (370 W/m-1K-1) and cubic BAs (3150 W/m-1K-1). Together these results suggest a missing ingredient in the basic guidelines commonly used to understand and predict l. Unlike typical simple systems (e.g., Si, GaAs, SiC), the dominant resistance to heat-carryingmore » acoustic phonons in Li2Se and Li2Te comes from interactions of these modes with two optic phonons. These interactions require significant bandwidth and dispersion of the optic branches, both present in Li2X materials. Finally, these considerations are important for the discovery and design of new materials for thermal management applications, and give a more comprehensive understanding of thermal transport in crystalline solids.« less

  2. Optimization of Norbornadiene Compounds for Solar Thermal Storage by First-Principles Calculations.

    PubMed

    Kuisma, Mikael; Lundin, Angelica; Moth-Poulsen, Kasper; Hyldgaard, Per; Erhart, Paul

    2016-07-21

    Molecular photoswitches capable of storing solar energy are interesting candidates for future renewable energy applications. Here, using quantum mechanical calculations, we carry out a systematic screening of crucial optical (solar spectrum match) and thermal (storage energy density) properties of 64 such compounds based on the norbornadiene-quadricyclane system. Whereas a substantial number of these molecules reach the theoretical maximum solar power conversion efficiency, this requires a strong red-shift of the absorption spectrum, which causes undesirable absorption by the photoisomer as well as reduced thermal stability. These compounds typically also have a large molecular mass, leading to low storage densities. By contrast, single-substituted systems achieve a good compromise between efficiency and storage density, while avoiding competing absorption by the photo-isomer. This establishes guiding principles for the future development of molecular solar thermal storage systems. PMID:27254282

  3. Electrical and thermal transport properties of RECu4 Au compounds, RE=Nd, Gd

    NASA Astrophysics Data System (ADS)

    Bashir, Aiman Kamal; Tchokonté, Moise Bertin Tchoula; Strydom, A. M.

    2016-09-01

    We report the electrical and thermal transport properties of NdCu4 Au and GdCu4 Au compounds, crystallizing in the cubic MgCu4 Sn - type crystal structure, with space group F 4 bar 3 m (no. 216).These properties are reported through measurements of electrical resistivity, ρ(T) , thermoelectric power, S(T) and thermal conductivity, λ(T) . ρ(T) and S(T) data indicate an antiferromagnetic (AFM)-like anomaly associated with a N e ´ el temperature TN=3.9 K and 10.9 K for NdCu4 Au and GdCu4 Au compounds, respectively. ρ(T) data for both compounds shows a sudden drop at TN. Above TN, ρ(T) results are characteristic of an electron-phonon interaction in the presence of s - d scattering. Application of magnetic field slightly suppresses TN value in GdCu4 Au compound from TN=10.9 K in a field of 0 T to 10.1 K in a field of 6 T. S(T) data at low temperatures for both compounds shows a minimum at TN. Critical analysis of S(T) in terms of the phenomenological resonance model yield the positions (Ef) and bandwidths (Wf) of the 4 f - band in both compounds: Ef=3.81(6)K, Wf=329(58) K for the Nd compound and Ef=18.2(4) K, Wf=306(5) K for the Gd compound. λ(T) for both compounds decreases linearly upon cooling from room temperature. The reduced Lorentz number L /L0 deviates from the Wiedmann-Franz at low temperature with a strong increase in L /L0 upon cooling the samples from room temperature.

  4. Boundary condition-enforced immersed boundary-lattice Boltzmann flux solver for thermal flows with Neumann boundary conditions

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Shu, C.; Yang, L. M.

    2016-02-01

    A boundary condition-enforced-immersed boundary-lattice Boltzmann flux solver is proposed in this work for effective simulation of thermal flows with Neumann boundary conditions. In this method, two auxiliary layers of Lagrangian points are introduced and respectively placed inside and outside of the solid body, on which the temperature corrections (related to the heat source) are set as unknowns. To effectively consider the fluid-boundary interaction, these unknowns are expressed as algebraic summations of the temperature correction on Eulerian points, which are in turn obtained from biased distributions of unknown temperature corrections on the immersed boundary. By enforcing the temperature gradient at the solid boundary being equal to that approximated by the corrected temperature field, a set of algebraic equations are formed and solved to obtain all the unknowns simultaneously. They are then distributed biasedly to the inner region of the auxiliary layer so that the diffusion from the smooth delta function can be reduced substantially. In addition, the solutions of the flow and temperature fields are obtained by the thermal lattice Boltzmann flux solver with the second order of accuracy. The proposed method is well validated through its applications to simulate several benchmarks of natural, forced and mixed convection problems. It has been demonstrated that the present solver has about 1.724 order of accuracy and the error between the present result and theoretical value for the temperature gradient on the solid surface is in the order of 10-13, which indicates that the proposed method is able to satisfy the Neumann boundary condition accurately.

  5. Lattice location and thermal stability of implanted Fe in ZnO

    SciTech Connect

    Rita, E.; Wahl, U.; Correia, J.G.; Alves, E.; Soares, J.C.

    2004-11-22

    The emission channeling technique was applied to evaluate the lattice location of implanted {sup 59}Fe in single-crystalline ZnO. The angular distribution of {beta}{sup -} particles emitted by {sup 59}Fe was monitored with a position-sensitive electron detector, following 60 keV low dose (2.0x10{sup 13} cm{sup -2}) room-temperature implantation of the precursor isotope {sup 59}Mn. The emission patterns around the [0001], [1102],[1101], and [2113] directions revealed that following annealing at 800 deg. C, 95(8)% of the Fe atoms occupy ideal substitutional Zn sites with rms displacements of 0.06-0.09 A.

  6. NaKV4O9·2H2O: a new 2D magnetic compound with a 1/5-depleted square lattice.

    PubMed

    Cui, Meiyan; He, Zhangzhen; Wang, Nannan; Tang, Yingying; Guo, Wenbin; Zhang, Suyun; Wang, Lin; Xiang, Hongping

    2016-03-15

    A new vanadate compound NaKV4O9·2H2O is successfully synthesized by a conventional hydrothermal method. This compound crystallizes in the monoclinic system with the space group C2/c, showing a typical 2D layered structure built from VO5 pyramids, in which the layers are separated by Na(+), K(+), and H2O. The topology structure of magnetic V(4+) ions shows a quite interesting 1/5-depleted square lattice, which is quite similar to that of a famous low-dimensional quantum spin system CaV4O9. A structural and magnetic comparison confirmed that the title compound may exhibit a more pronounced 2D character with a large spin gap. PMID:26892907

  7. Probing the lower limit of lattice thermal conductivity in an ordered extended solid: Gd117Co56Sn112, a phonon glass-electron crystal system.

    PubMed

    Schmitt, Devin C; Haldolaarachchige, Neel; Xiong, Yimin; Young, David P; Jin, Rongying; Chan, Julia Y

    2012-04-01

    The discovery of novel materials with low thermal conductivity is paramount to improving the efficiency of thermoelectric devices. As lattice thermal conductivity is inversely linked to unit cell complexity, we set out to synthesize a highly complex crystalline material with glasslike thermal conductivity. Here we present the structure, transport properties, heat capacity, and magnetization of single-crystal Gd(117)Co(56)Sn(112), a complex material with a primitive unit cell volume of ~6858 Å(3) and ~285 atoms per primitive unit cell (1140 atoms per face-centered cubic unit cell). The room temperature lattice thermal conductivity of this material is κ(L) = 0.28 W/(m·K) and represents one of the lowest ever reported for a nonglassy or nonionically conducting bulk solid. Furthermore, this material exhibits low resistivity at room temperature, and thus represents a true physical system that approaches the ideal phonon glass-electron crystal. PMID:22375963

  8. Evaluation of thermal contact conductance between mold compound and heat spreader materials

    SciTech Connect

    Peterson, G.P.; Fletcher, L.S. )

    1988-11-01

    The need to develop microelectronic devices capable of operating at increased performance levels with high reliability requires a better understanding of the factors that govern the thermal performance of semiconductor packages. With the recent trend toward increased miniaturization and component density, thermal management wtihin these packages has become the primary factor that limits the physical size of both individual components and multichip modules. Although extensive testing and analysis of the thermal conductivity of various mold compound materials have been performed by several different manufacturers, presently no experimental information is available on the contact conductance occurring at the interface between mold compounds and substrate or heat spreader materials. From a modeling perspective, numerous standard thermal modeling techniques, which have been modified to accomodate electronic packages, are currently in use. In addition, a number of numerical models have been developed specifically for electronic packages by Pogson and Franklin Buchanan and Reeber, Andrews et al., and Chyu and Aghazadeh. However, none of these existing models incorporates the effects of the contact conductance present at the mold compound and heat spreader interface.

  9. Determination of the thermal and physical properties of black tattoo ink using compound analysis.

    PubMed

    Humphries, Alexander; Lister, Tom S; Wright, Philip A; Hughes, Michael P

    2013-07-01

    Despite the widespread use of laser therapy in the removal of tattoos, comparatively little is known about its mechanism of action. There is a need for an improved understanding of the composition and thermal properties of the tattoo ink in order that simulations of laser therapy may be better informed and treatment parameters optimised. Scanning electron microscopy and time-of-flight secondary ion mass spectrometry identified that the relative proportions of the constituent compounds of the ink likely to exist in vivo are the following: carbon black pigment (89 %), carvacrol (5 %), eugenol (2 %), hexenol (3 %) and propylene glycol (1 %). Chemical compound property tables identify that changes in phase of these compounds lead to a considerable reduction in the density and thermal conductivity of the ink and an increase in its specific heat as temperature increases. These temperature-dependent values of density, thermal conductivity and specific heat are substantially different to the constant values, derived from water or graphite at a fixed temperature, which have been applied in the simulations of laser therapy as previously described in the literature. Accordingly, the thermal properties of black tattoo ink described in this study provide valuable information that may be used to improve simulations of tattoo laser therapy. PMID:22983425

  10. Length divergence of the lattice thermal conductivity in suspended graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Majee, Arnab K.; Aksamija, Zlatan

    2016-06-01

    Thermal properties of graphene have attracted much attention, culminating in a recent measurement of its length dependence in ribbons up to 9 μ m long. In this paper, we use the improved Callaway model to solve the phonon Boltzmann transport equation while capturing both the resistive (umklapp, isotope, and edge roughness) and nonresistive (normal) contributions. We show that for lengths smaller than 100 μ m , scaling the ribbon length while keeping the width constant leads to a logarithmic divergence of thermal conductivity. The length dependence is driven primarily by a ballistic-to-diffusive transition in the in-plane (LA and TA) branches, while in the hydrodynamic regime when 10 μ m thermal conductivity converges beyond L >100 μ m due to the coupling between in-plane and flexural modes. This coupling leads to renormalization of ZA phonon dispersion in the long-wavelength range, preventing further divergence of thermal conductivity. We also uncover a strong dependence on sample width, which we attribute to the interplay between nonresistive normal and diffusive edge scattering in the Poisseuille flow regime. We conclude that normal processes play a crucial role in the length and width dependence of thermal transport in graphene in the hydrodynamic regime and dictate the relative in-plane (LA+TA) to out-of-plane (ZA) contribution to transport.

  11. Effect of disorder on the dimer transition of the honeycomb-lattice compound Li2RuO3

    NASA Astrophysics Data System (ADS)

    Jimenez-Segura, Marco-Polo; Ikeda, Atsutoshi; Yonezawa, Shingo; Maeno, Yoshiteru

    2016-02-01

    We report the dependence of magnetic properties on the crystalline disorder in Li2RuO3 with Ru honeycomb lattice. This oxide exhibits unconventional Ru-dimer transition below Td˜540 K. We demonstrate that the cell parameters, related to the coherence of the dimer formation, are strongly dependent on the synthesis procedure. We show that the magnetic behavior at the dimer transition is closely related to the lattice parameters. In particular, we revealed that samples with well-ordered dimers exhibit a first-order magnetic transition with the onset exceeding 550 K, higher than that reported previously. We discuss possible dimer configurations leading to this magnetolattice coupling.

  12. Effectiveness and Mechanisms of Defluorination of Perfluorinated Alkyl Substances by Calcium Compounds during Waste Thermal Treatment.

    PubMed

    Wang, Fei; Lu, Xingwen; Li, Xiao-yan; Shih, Kaimin

    2015-05-01

    The mineralization of perfluorinated alkyl substances (PFASs) by calcium compounds during the waste thermal treatment was systemically studied. Different calcium compounds showed different mineralization efficiencies of PFASs during the thermal process, owing to the different reaction mechanisms. Calcium hydroxide was recommended as the most effective Ca reagent for PFAS defluorination because the carbon-fluorine bonds in PFASs can be converted to carbon-hydrogen bonds via the hydrodefluorination reaction. PFASs with different chain lengths and functional groups were further investigated for their potentially different mineralization behavior. The results showed that the chain length of PFASs had an insignificant effect on the mineralization efficiency by calcium hydroxide. The thermogravimetric analysis-differential thermal analysis (TGA-DTA) also revealed that perfluorooctanesulfonate (PFOS) and perfluorohexanesulfonate (PFHxS) (with different chain lengths) had a similar thermal behavior. However, PFASs with different functional groups showed different mineralization behavior with calcium hydroxide in relation to their different thermal decomposition temperatures. Finally, the mineralization ratio of polytetrafluoroethylene (PTFE) particles by calcium hydroxide could reach 80% or higher when the temperature was above 400 °C. The gas chromatography/mass spectrometry (GC/MS) results demonstrated much reduced production of gaseous fluorocarbon fragments during PTFE decomposition when coexisting with calcium hydroxide. PMID:25850557

  13. An Improved Momentum-Exchanged Immersed Boundary-Based Lattice Boltzmann Method for Incompressible Viscous Thermal Flows

    NASA Astrophysics Data System (ADS)

    Chen, Mufeng; Niu, Xiaodong

    2016-06-01

    An improved momentum-exchanged immersed boundary-based lattice Boltzmann method (MEIB-LBM) for incompressible viscous thermal flows is presented here. MEIB-LBM was first proposed by Niu et al, which has been shown later that the non-slip boundary condition is not satisfied. Wang. et al. and Hu. et al overcome this drawback by iterative method. But it needs to give an appropriate relaxation parameter. In this work, we come back to the intrinsic feature of LBM, which uses the density distribution function as a dependent variable to evolve the flow field, and uses the density distribution function correction at the neighboring Euler mesh points to satisfy the non-slip boundary condition on the immersed boundary. The same idea can also be applied to the thermal flows with fluid-structure interference. The merits of present improvements for the original MEIB-LBM are that the intrinsic feature of LBM is kept and the flow penetration across the immersed boundaries is avoided. To validate the present method, examples, including forced convection over a stationary heated circular cylinder for heat flux condition, and natural convection with a suspended circle particle in viscous fluid, are simulated. The streamlines, isothermal contours, the drag coefficients and Nusselt numbers are calculated and compared to the benchmark results to demonstrate the effective of the present method.

  14. Role of ions in thermal diffusion of DNA: Lattice Boltzmann based simulations

    NASA Astrophysics Data System (ADS)

    Hammack, Audrey; Rana, Daharsh; May, Karl; Bledsoe, Matthew; Kreft Pearce, Jennifer; Chen, Yeng-Long

    2008-11-01

    The Ludwig-Soret effect, the migrarion of a species as a consequence of a temperature gradient, has been a factor in the development of microfluidic laboratory instrumentation. In a system consisting of DNA in a buffered salt solution exposed to a temperature gradient in micro channels, it has previously been observed that DNA will migrate to the colder regions, yielding an irregular density profile. We present a computational model in order to quantify the motion of the particles and describe the causes of this migration. In this construct, the salt ions are modeled as charged point particles and DNA as charged beads connected by springs. The motions of particles is calculated by using a combination of Brownian dynamics and the lattice Boltzmann method. We observe that the salt are also affected by the temperature gradient, creating a density profile. By varying the number of ions, the charge of the ions and the length of the DNA chain, we observe that the accumulation of ions in the cold region enhances the migration of the DNA to those regions of the channel.

  15. Simple microscope using a compound refractive lens and a wide-bandwidth thermal neutron beam

    SciTech Connect

    Cremer, J. T.; Park, H.; Piestrup, M. A.; Gary, C. K.; Pantell, R. H.; Flocchini, R. G.; Egbert, H. P.; Kloh, M. D.; Walker, R. B.

    2007-04-02

    The results of imaging experiments using biconcave, spherical compound refractive lenses (CRLs) and a wide-bandwidth thermal neutron beam are presented. Two CRLs were used, consisting of 155 beryllium and 120 copper lenses. The experiments were performed using a thermal neutron beam line at McClellan Nuclear Radiation Center reactor. The authors obtained micrographs of cadmium slits with up to 5x magnification and 0.3 mm resolution. The CRL resolution was superior to a pinhole camera with the same aperture diameter. The modulation transfer function (MTF) of the CRL was calculated and compared with the measured MTF at five spatial frequencies, showing good agreement.

  16. Abnormal thermal expansion properties of cubic NaZn13-type La(Fe,Al)13 compounds.

    PubMed

    Li, Wen; Huang, Rongjin; Wang, Wei; Zhao, Yuqiang; Li, Shaopeng; Huang, Chuanjun; Li, Laifeng

    2015-02-28

    The cubic NaZn13-type La(Fe,Al)13 compounds were synthesized, and their linear thermal expansion properties were investigated in the temperature range of 4.2-300 K. It was found that these compounds exhibit abnormal thermal expansion behavior, i.e., pronounced negative thermal expansion (NTE) or zero thermal expansion (ZTE) behavior, below the Curie temperature due to the magnetovolume effect (MVE). Moreover, in the La(Fe,Al)13 compounds, the modification of the coefficient of thermal expansion (CTE) as well as the abnormal thermal expansion (ATE) temperature-window is achieved through optimizing the proportion of Fe and Al. Typically, the average CTE of the LaFe13-xAlx compounds with x = 1.8 reaches as large as -10.47 × 10(-6) K(-1) between 100 and 225 K (ΔT = 125 K). Also, the ZTE temperature-window of the LaFe13-xAlx compounds with x = 2.5 and x = 2.7 could be broadened to 245 K (from 5 to 250 K). Besides, the magnetic properties of these compounds were measured and correlated with the abnormal thermal expansion behavior. The present results highlight the potential application of such La(Fe,Al)13 compounds with abnormal thermal expansion properties in cryogenic engineering. PMID:25642468

  17. Thermal properties of a new dye compound measured by thermal lens effect and Z-scan technique

    NASA Astrophysics Data System (ADS)

    Badran, Hussain A.

    2015-05-01

    A new dye compound containing azomethine groups has been synthesized and characterized by FT-IR, 13C NMR, and an UV-visible spectrometer. Measurements of the thermally induced optical nonlinearity of dichloro bis[2-(2-hydroxybenzylideneamino)-5-methylphenyl] telluride platinum(II) in a chloroform solvent were studied using a cw diode laser at 487 nm as the source of excitation, both in solution and as a poly methyl methacrylate solid film, respectively. The optical response was characterized by measuring the intensity-dependent refractive index n 2 of the medium using the Z-scan technique. The sample showed negative and large nonlinear refractive index values of the order of 10-7 cm2/W and reverse saturable absorption with high values of the nonlinear absorption coefficient of the order of 10-3 cm/W. The nonlinear refractive index was found to vary with the concentration. These results indicate that the dye is a promising candidate for applications in the nonlinear optic field. Thermal lens spectrometry was applied to investigate the thermo-optical properties and the nonlinear refractive index. In this technique, a pump and a probe beam were aligned collinearly. A localized change in the refractive index of the sample due to the thermal heating produced a thermal lens, which was then detected by studying the focusing and defocusing of the pump and probe beam.

  18. Comparative Ab-Initio Study of Substituted Norbornadiene-Quadricyclane Compounds for Solar Thermal Storage

    PubMed Central

    2016-01-01

    Molecular photoswitches that are capable of storing solar energy, so-called molecular solar thermal storage systems, are interesting candidates for future renewable energy applications. In this context, substituted norbornadiene-quadricyclane systems have received renewed interest due to recent advances in their synthesis. The optical, thermodynamic, and kinetic properties of these systems can vary dramatically depending on the chosen substituents. The molecular design of optimal compounds therefore requires a detailed understanding of the effect of individual substituents as well as their interplay. Here, we model absorption spectra, potential energy storage, and thermal barriers for back-conversion of several substituted systems using both single-reference (density functional theory using PBE, B3LYP, CAM-B3LYP, M06, M06-2x, and M06-L functionals as well as MP2 calculations) and multireference methods (complete active space techniques). Already the diaryl substituted compound displays a strong red-shift compared to the unsubstituted system, which is shown to result from the extension of the conjugated π-system upon substitution. Using specific donor/acceptor groups gives rise to a further albeit relatively smaller red-shift. The calculated storage energy is found to be rather insensitive to the specific substituents, although solvent effects are likely to be important and require further study. The barrier for thermal back-conversion exhibits strong multireference character and as a result is noticeably correlated with the red-shift. Two possible reaction paths for the thermal back-conversion of diaryl substituted quadricyclane are identified and it is shown that among the compounds considered the path via the acceptor side is systematically favored. Finally, the present study establishes the basis for high-throughput screening of norbornadiene-quadricyclane compounds as it provides guidelines for the level of accuracy that can be expected for key properties from

  19. Electron-phonon coupling and thermal transport in the thermoelectric compound Mo3Sb7–xTex

    SciTech Connect

    Bansal, Dipanshu; Li, Chen W.; Said, Ayman H.; Abernathy, Douglas L.; Yan, Jiaqiang; Delaire, Olivier A.

    2015-12-07

    Phonon properties of Mo3Sb7–xTex (x = 0, 1.5, 1.7), a potential high-temperature thermoelectric material, have been studied with inelastic neutron and x-ray scattering, and with first-principles simulations. The substitution of Te for Sb leads to pronounced changes in the electronic struc- ture, local bonding, phonon density of states (DOS), dispersions, and phonon lifetimes. Alloying with tellurium shifts the Fermi level upward, near the top of the valence band, resulting in a strong suppression of electron-phonon screening, and a large overall stiffening of interatomic force- constants. The suppression in electron-phonon coupling concomitantly increases group velocities and suppresses phonon scattering rates, surpassing the effects of alloy-disorder scattering, and re- sulting in a surprising increased lattice thermal conductivity in the alloy. We also identify that the local bonding environment changes non-uniformly around different atoms, leading to variable perturbation strengths for different optical phonon branches. The respective roles of changes in phonon group velocities and phonon lifetimes on the lattice thermal conductivity are quantified. Lastly, our results highlight the importance of the electron-phonon coupling on phonon mean-free-paths in this compound, and also estimates the contributions from boundary scattering, umklapp scattering, and point-defect scattering.

  20. Thermoelectric Properties of Silicon Germanium: An In-depth Study to the Reduction of Lattice Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Thompson, Daniel Ross

    properties of the resulting materials were investigated. Based on the densities, x-ray diffraction patterns, derived lattice constants, and Vegard's law it will be shown that the SE SPS method does successfully alloy multiple compositions of undoped SiGe. The third and most important study demonstrated that SiGe alloyed using the SE SPS synthesis technique can be successfully doped to a n and p type thermoelectric (TE) material. This required an investigation of all of the TE transport properties of these materials. A significant investigation and commentary will be provided for the lattice thermal conductivity of SiGe. The need for this investigation arises from the difference in synthesis processes between the traditional MA and the novel SE SPS techniques. The MA powder is already alloyed into micron sized powders that are consolidated by the HP for an extended time (>1 hour), which allows for grain growth. The SE SPS method relies on diffusion being promoted by the electric field assisted sintering technique and occurs over a very short period of time (<30 minutes). Therefore it can not be assumed that grain growth is not affected by the time dependent processes of sintering and diffusion with the SE SPS process. As will be discussed grain size plays a role in the lattice thermal conductivity of SiGe. It is surprising and physically interesting that the MA+HP standards and the SE SPS samples have lattice thermal conductivities that indicate the dominant scattering mechanism is the same. The physical insight provided by the fourth study is made possible by the existence of the new SE SPS synthesis method for SiGe. The MA method is optimized by the addition of GaP to the n-type SiGe materials during processing. The explanation for this optimization is a subject of debate within the community. Although, a staunch conclusion can not be made due to the need for more samples and carrier concentration data, this initial study does indicate that one physical explanation within

  1. Electronic and thermal properties of compounds bearing diimide, azomethine and triphenylamine units

    NASA Astrophysics Data System (ADS)

    Grucela-Zajac, Marzena; Bijak, Katarzyna; Zaleckas, Ernestas; Grigalevicius, Saulius; Wiacek, Malgorzata; Janeczek, Henryk; Schab-Balcerzak, Ewa

    2014-11-01

    New triphenylamine containing azomethine diimides and two kinds of poly(azomethine imide)s, i.e., linear and branched were synthesized. These compounds were prepared from two diamines, that is, N,N‧-bis(4-amino-2,3,5,6-tetramethylphenyl)phtalene-1,2,4,5-dicarboximide (DAPhDI), N,N‧-bis(5-aminonaphtalen)naphthalene-1,4,5,8-dicarboxyimide (DANDI-2) and 4-formyltriphenylamine, 4,4‧-diformyltriphenylamine and 4,4‧,4″-triformyltriphenylamine. The structures of the compounds were characterized by means of FTIR, 1H NMR spectroscopy and elemental analysis; the results show an agreement with the proposed structure. Thermal properties of prepared azomethine diimides and polymers were evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Obtained compounds exhibited high thermal stability with 5% weight-loss temperatures above 390 °C. Azomethine diimides exhibited glass-forming properties with high glass-transition temperatures 216 and 308 °C. Optical properties of the prepared compounds were investigated by UV-vis and photoluminescence (PL) measurements. All compounds emitted blue light in NMP solution and in solid state as blend with PMMA. The electrochemical properties, that is, orbital energies and resulting energy gap were estimated based on cyclic voltammetry (CV). All synthesized material showed reversible reduction process, furthermore AzPhDI and AzNDI showed partially reversible oxidation process. Electrochemical band gap was found in the range 1.23-1.70 eV. Low molecular weight model compounds were tested as bipolar host materials in blue phosphorescent organic light emitting diodes (OLEDs). The devices exhibited turn-on voltages of about 5.5 V and maximum brightness of 40-220 cd/m2.

  2. Nanostructure and thermal properties of melt compounded PE/clay nanocomposites filled with an organosilylated montmorillonite

    NASA Astrophysics Data System (ADS)

    Scarfato, Paola; Incarnato, Loredana; Di Maio, Luciano; Dittrich, Bettina; Niebergall, Ute; Böhning, Martin; Schartel, Bernhard

    2015-12-01

    In this work we report on the functionalization of a natural sodium montmorillonite (MMT) with (3-glycidyloxypropyl)trimethoxysilane by a silylation procedure and on its use as nanofiller in melt compounding of polyethylene nanocomposites. The obtained organosilylated clay showed higher interlayer spacing than the original MMT and higher thermal stability with respect to most of commercial organoclays modified with alkylammonium salts. Its addition (at 5wt%) to two different polyethylene matrices (a low density polyethylene, LDPE, and a high density polyethylene, HDPE), processed in a pilot-scale twin-screw extruder, allowed to produce hybrids with nanoscale dispersion of the filler, as demonstrated by X-ray diffraction. Thermogravimetric and differential scanning thermal analyses point out that the obtained nanocomposites do not show noticeable changes in the thermal behavior of both LDPE and HDPE, even if a slight reduction in the overall bulk crystallinity was observed in presence of the nanofillers.

  3. Nanostructure and thermal properties of melt compounded PE/clay nanocomposites filled with an organosilylated montmorillonite

    SciTech Connect

    Scarfato, Paola; Incarnato, Loredana; Di Maio, Luciano; Dittrich, Bettina; Niebergall, Ute; Böhning, Martin; Schartel, Bernhard

    2015-12-17

    In this work we report on the functionalization of a natural sodium montmorillonite (MMT) with (3-glycidyloxypropyl)trimethoxysilane by a silylation procedure and on its use as nanofiller in melt compounding of polyethylene nanocomposites. The obtained organosilylated clay showed higher interlayer spacing than the original MMT and higher thermal stability with respect to most of commercial organoclays modified with alkylammonium salts. Its addition (at 5wt%) to two different polyethylene matrices (a low density polyethylene, LDPE, and a high density polyethylene, HDPE), processed in a pilot-scale twin-screw extruder, allowed to produce hybrids with nanoscale dispersion of the filler, as demonstrated by X-ray diffraction. Thermogravimetric and differential scanning thermal analyses point out that the obtained nanocomposites do not show noticeable changes in the thermal behavior of both LDPE and HDPE, even if a slight reduction in the overall bulk crystallinity was observed in presence of the nanofillers.

  4. Magnetic structure of the antiferromagnetic Kondo lattice compounds CeRhAl4Si2 and CeIrAl4Si2

    DOE PAGESBeta

    Ghimire, N. J.; Calder, S.; Janoschek, M.; Bauer, E. D.

    2015-06-01

    In this article, we have investigated the magnetic ground state of the antiferromagnetic Kondo-lattice compounds CeMAl4Si2(M = Rh, Ir) using neutron powder diffraction. Although both of these compounds show two magnetic transitions TN1 and TN2 in the bulk properties measurements, evidence for magnetic long-range order was only found below the lower transition TN2. Analysis of the diffraction profiles reveals a commensurate antiferromagnetic structure with a propagation vector k = (0, 0, 1/2). The magnetic moment in the ordered state of CeRhAl4Si2 and CeIrAl4Si2 were determined to be 1.14(2) and 1.41(3) μB/Ce, respectively, and are parallel to the crystallographic c-axis inmore » agreement with magnetic susceptibility measurements.« less

  5. Correlation of lattice defects and thermal processing in the crystallization of titania nanotube arrays

    NASA Astrophysics Data System (ADS)

    Hosseinpour, Pegah M.; Yung, Daniel; Panaitescu, Eugen; Heiman, Don; Menon, Latika; Budil, David; Lewis, Laura H.

    2014-12-01

    Titania nanotubes have the potential to be employed in a wide range of energy-related applications such as solar energy-harvesting devices and hydrogen production. As the functionality of titania nanostructures is critically affected by their morphology and crystallinity, it is necessary to understand and control these factors in order to engineer useful materials for green applications. In this study, electrochemically-synthesized titania nanotube arrays were thermally processed in inert and reducing environments to isolate the role of post-synthesis processing conditions on the crystallization behavior, electronic structure and morphology development in titania nanotubes, correlated with the nanotube functionality. Structural and calorimetric studies revealed that as-synthesized amorphous nanotubes crystallize to form the anatase structure in a three-stage process that is facilitated by the creation of structural defects. It is concluded that processing in a reducing gas atmosphere versus in an inert environment provides a larger unit cell volume and a higher concentration of Ti3+ associated with oxygen vacancies, thereby reducing the activation energy of crystallization. Further, post-synthesis annealing in either reducing or inert atmospheres produces pronounced morphological changes, confirming that the nanotube arrays thermally transform into a porous morphology consisting of a fragmented tubular architecture surrounded by a network of connected nanoparticles. This study links explicit data concerning morphology, crystallization and defects, and shows that the annealing gas environment determines the details of the crystal structure, the electronic structure and the morphology of titania nanotubes. These factors, in turn, impact the charge transport and consequently the functionality of these nanotubes as photocatalysts.

  6. Lattice specific heat for the RMIn5 (R=Gd, La, Y; M=Co, Rh) compounds: Non-magnetic contribution subtraction

    NASA Astrophysics Data System (ADS)

    Facio, Jorge I.; Betancourth, D.; Cejas Bolecek, N. R.; Jorge, G. A.; Pedrazzini, Pablo; Correa, V. F.; Cornaglia, Pablo S.; Vildosola, V.; García, D. J.

    2016-06-01

    We analyze theoretically a common experimental process used to obtain the magnetic contribution to the specific heat of a given magnetic material. In the procedure, the specific heat of a non-magnetic analog is measured and used to subtract the non-magnetic contributions, which are generally dominated by the lattice degrees of freedom in a wide range of temperatures. We calculate the lattice contribution to the specific heat for the magnetic compounds GdMIn5 (M=Co, Rh) and for the non-magnetic YMIn5 and LaMIn5 (M=Co, Rh), using density functional theory based methods. We find that the best non-magnetic analog for the subtraction depends on the magnetic material and on the range of temperatures. While the phonon specific heat contribution of YRhIn5 is an excellent approximation to the one of GdCoIn5 in the full temperature range, for GdRhIn5 we find a better agreement with LaCoIn5, in both cases, as a result of an optimum compensation effect between masses and volumes. We present measurements of the specific heat of the compounds GdMIn5 (M=Co, Rh) up to room temperature where it surpasses the value expected from the Dulong-Petit law. We obtain a good agreement between theory and experiment when we include anharmonic effects in the calculations.

  7. Effects of monovalent cation doping on the structure, microstructure, lattice distortion and magnetic behavior of single crystalline NdMnO3 compounds.

    PubMed

    Nandy, Anshuman; Pradhan, S K

    2015-10-21

    Pure and 15 mol% Na, K-doped NdMnO3 compounds with perovskite structures are prepared by sol-gel method. Tiny single crystals are formed after sintering the compounds at 1000 °C. The effect of Na and K doping as well as the effect of sintering temperature on the formation and microstructure of NdMnO3 are studied in detail by the Rietveld refinement technique using X-ray powder diffraction data. Single phase formation and single crystalline growth are also confirmed by high resolution transmission electron microscopy (HRTEM). Bond angles and bond lengths are calculated and shown by 3D diagrams. Monovalent doping induces noticeable changes in the microstructure and yields better structural stability in these compounds. Doping results in the change of Mn-O, Nd-O and Mn-O-Mn bond lengths which in turn reduces the lattice and octahedral distortion in the system along with an increase in the tolerance factor. The magnetic properties of these compounds are also modified as a result of doping. The temperature dependent magnetization results show that the Neel temperature of antiferromagnetic NdMnO3 compound is 67.2 K and the Curie temperatures of ferromagnetic Nd0.85Na0.15MnO3 and Nd0.85K0.15MnO3 compounds are 99.1 K and 98.6 K respectively. Both 15% Na and K doping results in a similar TC in doped NdMnO3 compounds. PMID:26373986

  8. Thermal dilepton rates and electrical conductivity of the QGP from the lattice

    NASA Astrophysics Data System (ADS)

    Ding, Heng-Tong; Kaczmarek, Olaf; Meyer, Florian

    2016-08-01

    We investigate the temperature dependence of the thermal dilepton rate and the electrical conductivity of the gluon plasma at temperatures of 1.1, 1.3, and 1.5 Tc in quenched QCD. Making use of nonperturbatively clover-improved Wilson valence quarks allows for a clean extrapolation of the vector meson correlation function to the continuum limit. We found that the vector correlation function divided by T3 is almost temperature independent in the current temperature window. The spectral functions are obtained by χ2 fitting of phenomenologically inspired Ansätze for the spectral function to the continuum extrapolated correlator data, where the correlations between the data points have been included. Systematic uncertainties arising from varying the Ansätze motivated from strong coupling theory as well as perturbation theory are discussed and estimated. We found that the electrical conductivity of the hot medium, related to the slope of the vector spectral function at zero frequency and momentum, is 0.2 Ce m≲σ /T ≲0.7 Ce m for T =1.1 Tc and 0.2 Ce m≲σ /T ≲0.4 Ce m for the higher temperatures. The dilepton rates and soft photon rates, resulting from the obtained spectral functions, show no significant temperature dependence, either.

  9. Effect of AlN content on the lattice site location of terbium ions in Al x Ga1-x N compounds

    NASA Astrophysics Data System (ADS)

    Fialho, M.; Rodrigues, J.; Magalhães, S.; Correia, M. R.; Monteiro, T.; Lorenz, K.; Alves, E.

    2016-03-01

    Terbium lattice site location and optical emission in Tb implanted Al x Ga1-x N (0 ≤ x ≤ 1) samples grown by halide vapour phase epitaxy on (0001) sapphire substrates are investigated as a function of AlN content. The samples were implanted with a fluence of 5 × 1014 cm-2 of terbium ions and an energy of 150 keV. Lattice implantation damage is reduced using channelled ion implantation performed along the <0001> axis, normal to the sample surface. Afterwards, thermal annealing treatments at 1400 °C for GaN and 1200 °C for samples with x > 0 were performed to reduce the damage and to activate the optical emission of Tb3+ ions. The study of lattice site location is achieved measuring detailed angular ion channelling scans across the <0001>, < 10\\bar{1}1> and < \\bar{2}113> axial directions. The precise location of the implanted Tb ions is obtained by combining the information of these angular scans with simulations using the Monte Carlo code FLUX. In addition to a Ga/Al substitutional fraction and a random fraction, a fraction of Tb ions occupying a site displaced by 0.2 Å along c-axis from the Ga/Al substitutional site was considered, giving a good agreement between the experimental results and the simulation. Photoluminescence studies proved the optical activation of Tb3+ after thermal annealing and the enhancement of the 5D4 to 7F6 transition intensity with increasing AlN content.

  10. Time-resolved observation of band-gap shrinking and electron-lattice thermalization within X-ray excited gallium arsenide.

    PubMed

    Ziaja, Beata; Medvedev, Nikita; Tkachenko, Victor; Maltezopoulos, Theophilos; Wurth, Wilfried

    2015-01-01

    Femtosecond X-ray irradiation of solids excites energetic photoelectrons that thermalize on a timescale of a few hundred femtoseconds. The thermalized electrons exchange energy with the lattice and heat it up. Experiments with X-ray free-electron lasers have unveiled so far the details of the electronic thermalization. In this work we show that the data on transient optical reflectivity measured in GaAs irradiated with femtosecond X-ray pulses can be used to follow electron-lattice relaxation up to a few tens of picoseconds. With a dedicated theoretical framework, we explain the so far unexplained reflectivity overshooting as a result of band-gap shrinking. We also obtain predictions for a timescale of electron-lattice thermalization, initiated by conduction band electrons in the temperature regime of a few eVs. The conduction and valence band carriers were then strongly non-isothermal. The presented scheme is of general applicability and can stimulate further studies of relaxation within X-ray excited narrow band-gap semiconductors. PMID:26655671